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Summary 

The genetic modulators of porcine fatness and meat quality traits, as well as their mechanisms 

of action, are still poorly understood. In the first study of the present Ph.D. thesis, we aimed to 

investigate the variability of candidate genes located within QTL regions associated with meat 

quality traits, with a special emphasis on intramuscular fat content and composition. In this 

way, we used QTL mapping information to prioritize candidate genes for further analyses. 

Polymorphic sites located at selected candidate genes were identified based on RNA-seq data 

generated in previous studies and whole-genome sequencing of five Duroc boars that sired a 

commercial population formed by 350 Duroc pigs (Lipgen population). Statistical analyses 

revealed several significant nominal associations between TGFBRAP1, SELENOI, ACADSB, 

GPR26, ATP1A2, ATP8B2 and CREB3L4 genotypes and meat quality traits. However, only 

the association between ATP1A2 genotype and electric conductivity in the longissimus dorsi 

muscle remained significant after correction for multiple testing, as well as in a chromosome-

wide analysis. Our results suggest that the ATP1A2 gene might be involved in the regulation 

of the electric conductivity of the skeletal muscle, but additional structural and functional 

studies will be needed to assess this hypothesis.  

In the second study, we employed whole-genome sequencing data from the five Duroc boars 

mentioned before to identify putative stop gained mutations which might be segregating in the 

Lipgen population. By doing so, seven apparently healthy pigs homozygous for a potentially 

lethal nonsense recessive mutation in the ASS1 gene (rs81212146, c.944T>A) were detected. 

In order to elucidate the possible underlying causes of such finding, we sequenced the region 

surrounding the mutation at the genomic and transcriptomic levels. Our results indicated the 

presence of an additional polymorphism (rs81212145, c.943T>C) located immediately before 

the nonsense mutation that disrupts the stop codon. Both SNPs segregated in complete linkage 

disequilibrium in a sample of 120 pigs with available whole-genome sequences. The 

rs81212146 and rs81212145 mutations form a dinucleotide polymorphism that causes a 

benign amino acid substitution (Leu315Gln) in the ASS1 sequence. Such results illustrate the 

complexity of predicting loss-of-function effects due to compensatory mechanisms that limit 

the harmful consequences of deleterious mutations. 
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In the third study, we made use of previous RNA-seq differential expression data to 

investigate the association of several candidate genes with meat quality traits recorded in the 

Lipgen population. Polymorphisms in genes related to peripheral circadian clock regulation 

(ARNTL2, CIART, CRY2, NPAS2, PER1 and PER2), glucose metabolism (PCK1) and energy 

homeostasis (MIGA2) were genotyped and association analyses were performed. Two 

polymorphisms located in the CRY2 (rs320439526, c.-6C>T) and MIGA2 (rs330779504, 

c.1455G>A) genes showed significant associations with stearic acid content in the 

longissimus dorsi skeletal muscle and with LDL serum concentration at ~190 days of age, 

respectively. Moreover, these polymorphic sites were also associated with the mRNA levels 

of the corresponding genes. Additional joint association analyses with chromosome-wide 

genotyping data showed that these polymorphisms (rs320439526 and rs330779504) are not 

the ones showing the most significant associations with stearic acid content and LDL serum 

concentration, respectively. Such results highlighted that these variants might not be the 

causal mutations explaining the phenotypic variation of these two phenotypes. 

In the fourth study of this thesis, we extended our search for regulatory determinants of meat 

quality traits to polymorphisms residing in microRNA genes, which are known to play 

relevant roles in modulating the expression of protein-coding mRNAs. A total of 120 publicly 

available whole-genome sequences from European and Asian wild boars and domestic pigs 

were used for variant calling analyses, and polymorphisms within miRNA loci and targeted 

3’-UTR binding sites were investigated. Distinctive segregation patterns were observed 

between pigs from Asian and European origins, while such differentiation was less evident 

when comparing wild boars with domestic pigs. Variability within miRNA loci was strongly 

reduced in the seed region compared with the rest of the miRNA sequence, and also with 

other regions in the genome. The most likely explanation for this result is the presence of 

strong purifying selection removing mutations that might alter the binding properties of the 

miRNA. Fifteen SNPs mapping to miRNA genes were also genotyped in the Lipgen 

population. Several significant associations between miRNA SNPs and mRNA levels in the 

gluteus medius skeletal muscle and liver tissues of their putative target mRNAs were 

observed. Of special relevance was the case of the rs319154814 (n.46G>A) polymorphism, 

located in the apical loop of ssc-miR-326. This SNP might contribute to a structural 

rearrangement of the miRNA hairpin pairing, thus modifying the efficiency of the miRNA 

maturation.  
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In the fifth study, we aimed to improve the yet poorly annotated porcine miRNAome by 

developing a bioinformatic pipeline for the discovery and annotation of miRNA genes from 

small RNA-seq data and homology-based search. This goal was achieved by selecting bona 

fide porcine miRNA genes, jointly with other non-miRNA loci closely resembling hairpin-

like structures, typical of miRNA precursors. An additional set of unlabeled hairpin sequences 

were extracted from the porcine genome to help increase the biological information embedded 

in the prediction model. The small RNA fraction of 48 Duroc gilts was sequenced and used to 

detect novel and known expressed miRNAs. Subsequently, small RNA-seq transcripts and 

annotated human mature miRNAs were mapped to the porcine genome. Further 

reconstruction of candidate hairpin sequences was performed by applying a motif search 

correction approach. Moreover, a series of sequence and thermodynamic features were 

obtained from each sequence and a machine learning graph-based transductive algorithm was 

employed for predicting novel and annotated miRNA sequences. A total of 47 unreported 

putative porcine miRNAs were detected with this approach. Twenty of them corresponded to 

transcripts present in the porcine muscle small RNA-seq data set, while the remaining ones 

were inferred on the basis of an homology-based search using human miRNAs. The 

expression of three of the unreported miRNAs was assessed by using RT-qPCR analyses and 

their expression in an independent Göttingen minipig population was confirmed. 

Finally, in the sixth study of the present thesis, we employed the muscle small RNA-seq data 

set generated in 36 Duroc guilts in order to determine miRNA differential expression patterns 

between pigs subjected to fasting conditions and after being fed during 5 and 7 hours, 

respectively. The expression profiles of mRNAs, miRNAs and lincRNAs were compared in 

terms of their abundance and intragroup variability. Protein coding transcripts were generally 

more expressed than miRNAs and lincRNAs, whereas miRNAs showed very stable 

expression patterns compared with mRNAs and lincRNAs. The reconstruction of gene 

regulatory networks for miRNA-mRNA interactions highlighted several co-expression 

modules containing genes related with lipid metabolism. Moreover, we described the 

potential influence of several differentially expressed miRNAs, such as ssc-miR-148a-3p, ssc-

miR-151-3p, ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-421-5p and ssc-miR-493-5p, in 

regulating the expression of mRNA genes with key roles in glucose metabolism and energy 

homeostasis. 
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Resumen 

Los reguladores genéticos del engrasamiento porcino y la calidad de la carne, así como sus 

mecanismos de acción, son aún poco conocidos. En el primer artículo de la presente tesis 

doctoral, nos propusimos investigar la variabilidad de genes candidatos situados en regiones 

QTL asociadas a diversos caracteres de calidad de la carne, con especial énfasis en el 

contenido y la composición de la grasa intramuscular. En este sentido, hicimos uso de 

información de cartografiado de QTL con el objetivo de priorizar genes candidatos para ser 

analizados. Identificamos regiones polimórficas en los genes candidatos seleccionados 

mediante datos de RNA-seq generados en estudios previos y a partir de la secuenciación del 

genoma de cinco verracos que dieron origen a una población comercial de 350 cerdos Duroc 

(población Lipgen). Los análisis estadísticos revelaron diversas asociaciones nominalmente 

significativas entre caracteres de calidad de la carne y los genotipos de los genes TGFBRAP1, 

SELENOI, ACADSB, GPR26, ATP1A2, ATP8B2 y CREB3L4. Sin embargo, sólo la asociación 

entre el genotipo del gen ATP1A2 y la conductividad eléctrica en el músculo longissimus 

dorsi permaneció significativa tras aplicar la corrección para tests múltiples, así como después 

de su análisis estadístico a nivel cromosómico. Nuestros resultados sugieren que el gen 

ATP1A2 podría estar involucrado en la regulación de la conductividad eléctrica del músculo 

esquelético porcino. No obstante, estudios estructurales y funcionales serán necesarios para 

confirmar dicha hipótesis. 

En el segundo artículo, hicimos uso de los datos de secuenciación del genoma de los cinco 

cerdos Duroc, con el objetivo de identificar posibles mutaciones con efecto stop gain que 

pudieran segregar en la población Lipgen. Dicho análisis reveló la existencia de siete cerdos 

aparentemente sanos y, sin embargo, homocigotos para una mutación recesiva potencialmente 

letal en el gen ASS1 (rs81212146, c.944T>A). Con el objetivo de dilucidar las posibles causas 

de dicha observación, procedimos a secuenciar la región que contiene la mencionada 

mutación, tanto a nivel genómico como transcriptómico. Nuestros resultados indicaron la 

presencia de un polimorfismo adicional (rs81212145, c.943T>C) localizado en una posición 

inmediatamente anterior a la mutación stop gain, que propicia la eliminación del codón de 

parada prematura de la traducción. Se observó que ambos SNPs segregan en completo 

desequilibrio de ligamiento en una muestra de 120 cerdos con secuencias de genoma 

completo disponibles. Las mutaciones rs81212146 y rs81212145 constituyen un polimorfismo 
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dinucleotídico que causa una sustitución aminoacídica benigna (Leu315Gln) en la secuencia 

del gen ASS1. Dichos resultados ilustran la complejidad de predecir efectos funcionales 

debido a la existencia de mecanismos compensatorios que limitan las consecuencias 

potencialmente dañinas de las mutaciones deletéreas. 

En el tercer artículo, hicimos uso de resultados previos de expresión diferencial a partir de 

datos de RNA-seq, con el objetivo de investigar la asociación de varios genes candidatos con 

caracteres de calidad de la carne medidos en la población Lipgen. Una selección de 

polimorfismos en genes relacionados con la regulación periférica del ciclo circadiano 

(ARNTL2, CIART, CRY2, NPAS2, PER1 y PER2), el metabolismo de la glucosa (PCK1) y la 

homeostasis energética (MIGA2) fueron genotipados para realizar análisis de asociación. Dos 

polimorfismos localizados en los genes CRY2 (rs320439526, c.-6C>T) y MIGA2 

(rs330779504, c.1455G>A) mostraron asociaciones significativas con el contenido de ácido 

esteárico en el músculo longissimus dorsi y con la concentración sérica de LDL medida a los 

~190 días de edad, respectivamente. Además, se encontraron asociaciones significativas entre 

dichos polimorfismos y los niveles de expresión de los correspondientes mRNAs. Análisis 

estadísticos adicionales a nivel cromosómico relevaron que ambos polimorfismos 

(rs320439526 y rs330779504) no muestran las asociaciones más significativas con los 

caracteres de contenido de ácido esteárico y concentraciones séricas de LDL. Dichos 

resultados indican que estos polimorfismos probablemente no tengan efectos causales sobre la 

variación fenotípica de los caracteres bajo estudio.  

En el cuarto artículo de la presente tesis, decidimos extender nuestra búsqueda de elementos 

reguladores de la calidad de la carne con la finalidad de abarcar polimorfismos en los genes 

que codifican microRNAs, los cuales poseen una función relevante en la modulación de la 

expresión de mRNAs codificantes de proteína. Un total de 120 secuencias genómicas, 

previamente descritas, de jabalíes y cerdos domésticos europeos y asiáticos, fueron utilizadas 

para identificar variantes genéticas. Mediante dicha información, se pudo investigar la 

presencia de polimorfismos en genes miRNA, así como en sus potenciales dianas de unión en 

las regiones 3’-UTRs de los mRNAs a los cuales regulan. Se observaron patrones 

diferenciados de segregación de variantes entre cerdos asiáticos y europeos, mientras que 

dichas diferencias fueron menos evidentes cuando se contrastaron cerdos domésticos y 

jabalíes. La variabilidad de los genes miRNA fue muy baja en la región seed al compararla 

con la de otras regiones del propio miRNA, así como respecto a otras regiones del genoma. 
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La explicación más plausible para este hallazgo es la presencia de una fuerte selección 

purificadora que eliminaría las mutaciones que pudieran alterar las secuencias a través de las 

cuales los miRNAs hibridan con sus mRNAs diana. Un total de quince SNPs localizados en 

genes miRNA fueron genotipados en la población Lipgen. Diversas asociaciones 

significativas fueron identificadas entre dichos SNPs y los niveles de expresión de sus 

mRNAs diana en el músculo gluteus medius y en el hígado. Especialmente relevante fue el 

caso de la variante rs319154814 (n.46G>A), localizada en el bucle apical del miRNA ssc-

miR-326. Este SNP podría contribuir a la reestructuración del apareamiento de bases en la 

cadena en forma de horquilla (hairpin) del miRNA, modificando la eficiencia de la 

maduración del propio miRNA. 

En el quinto artículo, nuestro objetivo fue mejorar la anotación del aún limitado miRNAoma 

porcino mediante el desarrollo de un procedimiento bioinformático para la identificación y la 

anotación de genes miRNA a partir de datos de small RNA-seq y búsqueda por homología. 

Para conseguir dicho objetivo, se seleccionaron los miRNAs porcinos con una anotación 

fiable, conjuntamente con otros loci no identificados como miRNAs, pero que aun así poseen 

una estructura secundaria en forma de horquilla, similar a la de los propios miRNAs. De 

forma adicional, un conjunto de secuencias con estructura de horquilla, pero sin anotación 

asignada, fueron extraídas del genoma porcino con el objeto de incrementar la información 

biológica incluida en el modelo predictivo. La fracción de RNAs pequeños de 48 cerdas 

Duroc fue secuenciada y utilizada para detectar miRNA expresados, tanto anotados como sin 

anotar. Seguidamente, los transcritos identificados a partir de datos de small RNA-seq, así 

como las secuencias de miRNA maduro anotadas en humano, fueron cartografiadas en el 

genoma porcino. Por otra parte, se reconstruyeron secuencias candidatas con estructura en 

forma de horquilla mediante una técnica de corrección posicional basada en la búsqueda de 

determinados motivos nucleotídicos. Además, se obtuvieron una serie de parámetros de 

secuencia y termodinámicos para cada secuencia candidata y se utilizó un algoritmo 

transductivo de machine learning basado en grafos para la predicción de miRNAs, tanto 

nuevos como ya conocidos. Un total de 47 miRNAs porcinos putativos y carentes de 

anotación fueron detectados mediante esta aproximación. Veinte de ellos se correspondieron 

con transcritos expresados en la fracción del RNA pequeño del músculo porcino, mientras que 

el resto fueron identificados mediante búsqueda por homología a partir de miRNAs anotados 

en humano. Mediante técnicas de RT-qPCR, se pudo confirmar, en una población 
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independiente formada por cerdos de la raza Göttingen minipig, la expresión de tres de los 

nuevos miRNAs identificados con el algoritmo transductivo. 

Por último, en el sexto artículo de la presente tesis, hicimos uso de los datos de secuenciación 

de RNAs pequeños generados en 36 cerdas Duroc, con el objetivo de identificar patrones de 

expresión diferencial de miRNAs en condiciones de ayuno y tras haber recibido alimento 

durante 5 y 7 horas. Se compararon los perfiles de expresión de mRNAs, miRNAs y 

lincRNAs respecto a su abundancia y variabilidad intragrupal. Los transcritos codificantes de 

proteínas presentaron una expresión mayor que la de los miRNAs y lincRNAs, mientras que 

los transcritos de miRNAs mostraron patrones de expresión muy estables comparados con 

mRNAs y lincRNAs. La reconstrucción de redes de regulación génica para interacciones 

miRNA-mRNA reveló diversos módulos de co-expresión formados por genes relacionados 

con el metabolismo de los lípidos. Además, se evidenció la posible influencia de diversos 

miRNAs diferencialmente expresados tales como ssc-miR-148a-3p, ssc-miR-151-3p, ssc-

miR-30a-3p, ssc-miR-30e-3p, ssc-miR-421-5p o ssc-miR-493-5p, sobre la regulación de la 

expresión de genes mRNA con funciones importantes en el metabolismo de la glucosa y la 

homeostasis energética. 

 

. 
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1.1. Investigating the molecular basis of meat quality traits in pigs 

1.1.1. The pig industry is highly technified 

Pig industry is one of the most important sectors in meat production, together with poultry 

and beef. The development of an intensive and highly technified productive system has made 

possible the access of consumers to affordable and safe pig fresh meat and other processed 

products. With an observed annual growth of ~1.25% in meat production, spanning 2009-

2018 (OECD-FAO Agricultural Outlook 2019-2028, agri-outlook.org), pig meat production 

has followed the increasing trend observed for the production and consumption of other types 

of meats and animal-derived products, although in relative terms, poultry, beef and sheep 

experienced higher percentual increases compared to pigs. In absolute numbers, pig meat 

production is expected to experience an increase of approximately 11 Mt during the next 

decade, with ~0.8% of additional growth per year, while the number of productive animals 

will only grow around 0.5% interannually, in accordance with data observed for the period 

comprising 2009-2018 (OECD-FAO Agricultural Outlook 2019-2028, agri-outlook.org, 

Figure 1). China will concentrate the majority of the predicted increases in pig production 

(42%), with two-thirds of forecasted growth coming from increasing production efficiency. 

Indeed, China is currently the most important producer of porcine-derived products. Other 

relevant producers are the USA, Brazil, Germany or Spain, where the porcine industry 

constitutes an important fraction of the food production system. On the other hand, most 

consumers of porcine-derived products are from European countries, followed by China, 

South Korea and USA. Consumers are increasingly favoring new standards in pig production 

other than affordability and offer, often related with animal welfare, such as traceability and 

high-quality standards for pig management as well as of the final marketed products 

(Thorslund et al., 2017; Xu et al., 2019).  
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Figure 1: Consumption of pig meat during 2009-2018 in different geographic regions and 

expressed as the number of tonnes of meat produced by year (agri-outlook.org). 

 

 

More specifically, pig industry is based on a cost-effective production system devoted to yield 

high-quality porcine products while meeting the highest standards in food security (Dekkers 

et al., 2011). This system often implies an intensive stratified scheme with three well-defined 

separated phases: 1) Nucleus farms, where purebred pig males (sires) and females (dams) are 

kept in health and management conditions following the highest standards and are subjected 

to intensive selection procedures. Dams are specifically selected for reproductive and 

maternal traits such as fertility, litter size or litter weaning weight, as well as for growth rate 

and meat leanness (Neeteson-van Nieuwenhoven et al., 2013). Conversely, the breeding sire 

line is primarily selected for growth rate, leanness, reduced mortality and meat quality traits 
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(Neeteson-van Nieuwenhoven et al., 2013). 2) Multiplier farms, where purebred selected lines 

are mated to generate a hybrid F1 generation of sows that are sold to 3) commercial farms, 

where F1 sows are inseminated with sperm from purebred sires from nucleus farms to produce 

the final crossbred F2 generation of piglets that will complete a growth-finishing phase until 

slaughtering for commercial purposes. A schematic representation of the productive three-

phase pyramid is shown in Figure 2. 

 

 

 

 

Figure 2: Breeding pyramid scheme. (I) Nucleus farm, where F0 purebred animals are 

selected and subjected to intensive selection. (II) Multiplier farms, where purebred animals 

from different lines are crossed to generate F1 animals (hybrid sows). (III) Production farms, 

where F1 sows are inseminated by F0 sires to generate F2 commercial finishers that are bred 

and fattened until slaughter. 
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As a highly technified industry, breeders apply both classical BLUP and also genomic 

selection procedures in their selection nuclei in order to select breeders and improve the 

overall genetic and productive performance of pigs from the commercial stratum. Genomic 

selection relies on the estimation of the genomic breeding values (GEVB) of each individual 

of the population by using a large number of genotyped markers across the whole genome 

(Meuwissen et al., 2013). The additive effect of each marker is then estimated as a regression 

of the phenotype on the genotype information, using animals with both phenotypic and 

genotypic recordings and used to predict the GEVBs of the rest of individuals without the 

need to have phenotype data for the whole population (Samorè and Fontanesi, 2016). During 

the past decade, different methods for implementing genomic selection have been proposed: 

from Bayesian approaches (Gianola et al., 2009; Habier et al., 2011), to the widely used 

“single-step” genomic selection (Legarra et al., 2009), which can be seen as an extension of 

the genomic best linear unbiased prediction (GBLUP) method. In this approach, a genomic 

relationship matrix is used to account for family relationships (VanRaden, 2008), combining 

genomic relationships between genotyped animals with pedigree relationship matrices from 

non-genotyped animals. 

Pig genomic selection has been capitalized by transnational companies such as Topigs 

Norsvin, Pig improvement company (PIC), Hypor or Monsanto, which maintain several 

selection nuclei under extensive phenotype recording. These companies use classical 

measurements of body conformation and other productive and reproductive traits, as well as 

more advanced phenotyping technologies. For instance, the Topigs Norsvin company 

(https://topigsnorsvin.com/) is using computed tomography scans to measure carcass traits 

and other phenotypes of interest. Additionally, these companies have also included massive 

genotyping procedures in their selection programs, making use of single nucleotide 

polymorphism (SNP) arrays to obtain genome-wide genotype information of pigs from the 

selection nuclei and perform genomic selection. However, GBLUP-based methods assume 

that quantitative traits are controlled by additive effects of a large number of genes and SNPs 

within them, explaining a small percentage of the observed phenotypic variance (Goddard, 

2009). This assumption leads to suboptimal performances in the prediction of GEVBs 

because many quantitative traits are regulated by a certain number of genes with small 

additive effects (Hayes and Goddard, 2001). To overcome this situation, previous selection of 

SNPs based on genome-wide association studies (GWAS) to account for linkage 
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disequilibrium, dominance, imprinting or breed-specific effects have been proposed (Su et al., 

2012Costa et al., 2015; Esfandyari et al., 2015). Nevertheless, as the statistical power of 

GWAS heavily relies on the amount of available genotype data, the size of analyzed 

populations is of paramount importance for obtaining a comprehensive picture of genomic 

sites with functional effects on productive traits, both at coding and non-coding regions of the 

genome. 

 

1.1.2. Uncovering the genetic basis of meat quality traits 

Research about the genetic determinism of meat quality traits has focused on key phenotypes 

influencing the technological and organoleptic attributes of meat, including post-mortem pH, 

electric conductivity, water-holding capacity, drip loss, color, and intramuscular fat content 

and composition. Heritabilities for these traits are in general moderate to high, as reported by 

Rothschild et al. (2011) and Van Eenennam et al. (2014). Of course, heritability values of 

phenotypes depend on many factors including breed, animal cohorts and analyzed muscle 

tissues (Suzuki et al.,2006; Casellas et al., 2010; Gjerlaug-Enger et al., 2010; Ramayo-Caldas 

et al., 2012). Nevertheless, meat quality traits are expected to provide a good response to 

artificial selection.  

In the nineties, the development of molecular markers that could be genotyped by polymerase 

chain reaction (PCR) made possible the development of marker-assisted selection (MAS) 

programs to identify quantitative trait loci (QTL), i.e. regions of the genome containing 

polymorphisms with causal effects on quantitative traits (Große-Brinkhaus et al., 2010). The 

first QTL studies (Andersson et al., 1994) were based on panels of 100-200 microsatellites, so 

their resolution was limited. However, they were extraordinarily useful to obtain a first 

glimpse about the genomic architecture of meat quality traits. It was clear that phenotypes of 

economic interest are polygenic and that genomic contributions to phenotypic variance are 

considerably heterogeneous across loci (Van Eenennaam et al., 2014). Since then, a great 

number of studies have identified meat quality QTL, mainly in intercrosses such as wild boar 

× Large White (Andersson et al., 1994), Landrace × Iberian (Pérez-Enciso et al., 2000; 

Revilla et al., 2014), Berkshire × Yorkshire (Malek et al., 2001), Japanese wild boar × Large 

White (Nii et al., 2005), Duroc × Landrace (Rohrer et al., 2006), Duroc × Pietrain (Liu et al., 

2007; Große-Brinkhaus et al., 2010; Choi et al., 2011), Landrace × Korean pigs (Cho et al., 
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2015) or white Duroc × Erhualian pigs (Guo et al., 2019). However, genome scans carried out 

in purebred populations evidenced that many of the QTL identified in intercrosses do not 

segregate in commercial populations (Evans et al., 2003; Vidal et al., 2005), thus limiting the 

applicability of such knowledge. Despite these limitations, a plethora of QTL have been 

mapped and thoroughly collected and summarized in ad-hoc databases like PigQTLdb (Hu et 

al., 2005). Up to date, the PigQTLdb database encompasses a total of 30,170 porcine QTL 

identified in a range of 687 different scientific publications and representing 688 porcine 

quantitative traits (release 40, https://www.animalgenome.org/cgi-bin/QTLdb/index). 

Although these initial studies allowed the identification of multiple QTL, their resolution to 

fine map the boundaries of such QTL were usually hindered by the small sizes of the 

investigated populations, which prevented mutations with weak effects to be detected. 

Moreover, the small number of known microsatellites markers also reduced the confidence 

and resolution with which QTL were mapped (Nagamine et al., 2003). Nonetheless, several 

causal mutations underlying changes in porcine productive traits were described using MAS 

approaches or by candidate gene search studies. One of the very early examples of candidate 

gene study led to the identification of the causal mutation of the halothane syndrome in 

porcine populations selected for carcass conformation and lean meat. In certain highly 

muscled pig breeds (e.g. Pietrain), the frequency of a missense variant (Arg615Cys) in the 

coding region of the ryanodine 1 (RYR1) gene was markedly high. This allele causes the 

dysregulation of the flow of Ca2+ from the sarcoplasmic reticulum to the cytosol of the 

myocyte under stressful conditions, favoring the development of a metabolic disbalance due 

to acidosis caused by energy exhaustion (Fujii et al., 1991). This syndrome results in pale, 

soft and exudative meats and subsequent economic loses for producers (MacLennan et al., 

1990; Fujii et al., 1991). 

With regard to QTL studies that were successful at identifying causal mutations, it is worth 

mentioning the one that demonstrated that an intronic mutation in the paternally imprinted 

insulin growth factor 2 (IGF2) gene influences skeletal and cardiac muscle mass development 

in pigs (Jeon et al., 1999). In a study by Milan et al. (2000), the precise location of a dominant 

mutation causing high glycogen content, low ultimate pH and decreased water-holding 

capacity in the skeletal muscle of Hampshire pigs was successfully mapped. Through the use 

of microsatellites, Milan et al. (2000) built a high-resolution linkage map which allowed the 

detection of a missense mutation (Arg200Gln) located at the protein kinase AMP-activated 

https://www.animalgenome.org/cgi-bin/QTLdb/index
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non-catalytic subunit γ 3 (PRKAG3) gene, which encodes a muscle-specific isoform of the 

regulatory γ subunit of the adenosine monophosphate-activated protein kinase (AMPK). 

Linking the observed Rendement Napole phenotype with the putative effects of the missense 

mutation in the PRKAG3 protein, the authors hypothesized that the replacement of Arginine 

by Glutamine could lead to an increase of AMPK basal activity and thus to an augmented 

glycogen content in the muscle (Milan et al., 2000). Besides, another missense variant in the 

melanocortin 4 receptor (MC4R) was found at high frequencies in Hampshire, Landrace and 

Duroc breeds, possibly as a consequence of selection for daily gain in these populations 

(Bruun et al., 2006). Indeed, the MC4R gene maps to a QTL associated with carcass fat/meat 

ratio and to another QTL affecting muscle gain (Houston et al., 2004), which would be in 

agreement with the role of MC4R gene as a key regulator of feed intake and energy 

homeostasis (Bruun et al., 2006). Polymorphisms in the leptin receptor (LEPR) and fatty acid 

binding protein 3 (FABP3) genes have been also associated with meat quality traits like 

intramuscular fat content, meat moisture, cholesterol content and flavor score, as well as with 

the expression of LEPR and FABP3 transcripts (Li et al., 2010; Óvilo et al., 2010; Pérez-

Montarelo et al., 2013).  

To increase the power and resolution of these initial QTL mappings, researchers started to 

combine different sources of genotype information into meta-analyses (Tortereau et al., 2010; 

Rückert et al., 2012), an approach that contributed to further refine the chromosomal location 

of many described QTL while reducing their confidence intervals (Silva et al., 2011). 

Moreover, the advent of SNP arrays for genotyping studies in pigs (Ramos et al., 2009) 

greatly improved previous attempts for building detailed maps of genomic regions influencing 

meat quality traits. Jointly with the publication of the first sequenced genome assembly of the 

pig by Groenen et al. (2012), commercial SNP panels made possible to perform GWAS in 

pigs and paved the way for implementing genomic selection schemes in the pig industry. 

With more than 62K SNPs included in the Porcine SNP60 Beadchip (Ramos et al., 2009), 

GWAS approaches started to be applied with the aim of mapping pig QTL. The first study 

implementing the genome-wide scale mapping of QTL with the porcine chip was reported by 

Duijvesteijn et al. (2010). These authors described two regions in porcine chromosomes 1 and 

6 that were associated with androsterone levels in a commercial Duroc population 

(Duijvesteijn et al., 2010). After this first report, many other authors have also applied these 

techniques to gain further insight into the genomic architecture of meat quality traits such as 
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intramuscular fat content and composition (Puig-Oliveras et al., 2016; Ros-Freixedes et al., 

2016; Sato et al., 2017; Zhang et al., 2016, 2019), meat pH (Davoli et al., 2019; Liu et al., 

2019b) and meat color (Zhang et al., 2015; González-Prendes et al., 2017; Cho et al., 2019). 

As previous QTL scans based on microsatellites, GWAS evidenced the highly complex 

genetic basis of meat quality traits. For instance, a total of 865 polymorphisms, clustered in 11 

genome-wide significant loci across 9 different chromosomes were associated with 33 fatty 

acid phenotypes in five different porcine populations (Zhang et al., 2016). Furthermore, the 

authors discussed the role of relevant lipid-related genes mapping to QTL regions such as the 

fatty acid desaturase 2 (FADS2), the sterol regulatory element binding transcription factor 1 

(SREBF1) or the phospholipase A2 Group VII (PLA2G7) loci. Many other studies focused on 

the genetics of fatty acids traits have been published (Ramayo-Caldas et al., 2012; Casellas et 

al., 2013; Muñoz et al., 2013; Yang et al., 2013; Sato et al., 2017). Lipid content and 

composition affect the technological properties of meat. For instance, unsaturated fatty acids 

tend to decrease the melting point of fat and polyunsaturated fatty acids are prone to 

oxidation, thus deteriorating meat flavor (Wood et al., 2008). Moreover, fatty acid 

composition has also effects on the nutritional quality of food (unsaturated fatty acids are 

healthier than the saturated ones), a feature that has prompted the identification of causal 

mutations with effects on fat composition phenotypes. In this regard, Estany et al. (2014) 

found 18 mutations located at the 5’end and 3’-UTR regions of the stearoyl-CoA desaturase 

(SCD) gene in Duroc pigs, from which they identified a T/C SNP in the 5’end of the SCD 

gene. This site was described as highly associated with the enhanced desaturation ratio of 

stearic (C18:0) vs oleic (C18:1) fatty acids, both in muscle and subcutaneous fat, but not in 

liver (Estany et al., 2014). Two years later, Ros-Freixedes and collaborators used the Porcine 

SNP60 Beadchip (Illumina) to carry out a GWAS for intramuscular fat content and 

composition in Duroc pigs (Ros-Freixedes et al., 2016). In this second study, the influence of 

SNPs located in the SCD gene on the desaturation of stearic to oleic acid was further 

confirmed. 

Other traits such as pH, meat color or glycogen content have also been investigated at a 

genome-wide scale. In a study employing a Duroc sire line crossed with hybrid females 

(Landrace × Large White), Zhang and collaborators described several polymorphisms, 

associated with multiple pH and color-related measurements, which mapped to the Zinc 

finger 142 gene (ZNF142) or close to the protein kinase AMP-activated non-catalytic subunit 
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γ 3 (PRKAG3) and the Serine/Threonine kinase 36 (STK36), among others (Zhang et al., 

2015). More recently, González-Prendes et al. (2017) reported several QTL located at porcine 

chromosomes 3, 4, 5, 13 and 17, that were associated with post-mortem meat pH, electric 

conductivity or meat redness (a*), lightness (L*) and yellowness (b*) in the gluteus medius 

and longissimus dorsi muscles from a dedicated commercial Duroc line. 

 

1.1.3. Expression QTL for analyzing gene regulation in pigs 

A number of studies have been made in order to identify expression QTL (eQTL), i.e. regions 

of the pig genome containing polymorphisms with causal effects on the expression of genes. 

Microarrays and, more recently, the high-throughput sequencing of RNA transcripts (RNA-

seq) have made possible to generate massive amounts of gene expression data, thus 

facilitating the detection of underlying variations in transcript expression. In this regard, 

expression profiles of RNA transcripts can be used as quantitative phenotypes and subjected 

to statistical association analyses, mirroring QTL detection (Ernst and Steibel, 2013). Such 

information can be very useful to understand fundamental processes related with gene 

regulation, as well as to interpret the results of GWAS studies. In this context, the co-

localization of QTL and eQTL has been employed to generate working hypothesis regarding 

the gene and type of polymorphism explaining the QTL (Westra and Franke, 2014). 

Moreover, gene regulatory networks and key regulators or hub genes and putative causal 

variants can be inferred by integrating QTL and eQTL information (Nica and Dermitzakis, 

2013). Two types of eQTL are usually defined, i.e. cis-eQTL which regulate the expression of 

a nearby locus (e.g. less than 1 Mb apart) and trans-eQTL, which act on distant loci. It is clear 

that this definition is quite arbitrary because the terms “nearby” and “distant” will greatly 

depend on the experimental model system and on the resolution of the genome scan. A 

schematic view of the differences between cis- and trans-eQTL is shown in Figure 3. 



Introduction 

 

66 

 

 

 

Figure 3: Representation of cis- and trans-eQTL affecting gene expression. Polymorphisms 

with cis-effects act over the expression of genes located at proximal distances (normally up to 

1 Mb distance). Polymorphisms with trans-effect are located at distal positions (more than 1 

Mb or even in other chromosomal regions). 

 

 

The first study that used an eQTL approach in pigs was reported by Ponsuksili et al. (2008). 

In this study, the authors used Affimetrix GeneChip microarray expression data measured in 

longissimus dorsi skeletal muscle samples from 72 Duroc × Pietrain F2 pigs to detect eQTL 

affecting meat water holding capacity. Further surveys made by the same authors investigated 

the existence of eQTL co-localizing with QTL associated with meat quality (Ponsuksili et al., 

2010), fatty acids metabolism and fatness-related traits (Ponsuksili et al., 2011), plasma 

metabolites concentration (Ponsuksili et al., 2012) and muscle pH or electric conductivity 

(Ponsuksili et al., 2014). In this latter study, several SNPs located on porcine chromosomes 4 

and 6 were associated with the expression of the inositol monophosphatase 1 (IMPA1), zinc 
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finger 704 (ZNF704), oxidative stress response kinase 1 (OXSR1) or sialic acid binding Ig like 

lectin 10 (SIGLEC10) genes. Cánovas et al. (2012) also performed eQTL analyses using 

gluteus medius mRNA expression levels obtained with Affymetrix microarrays in 105 Duroc 

pigs selected for divergent fatness traits. These authors reported a predominance of trans-

acting eQTL signals over cis-regulatory effects (Cánovas et al., 2012). 

More recently, other authors have implemented eQTL analyses jointly with other sources of 

information to reconstruct gene regulatory networks with potential effects on pig productive 

traits. For instance, Peñagaricano et al. (2015) integrated QTL and eQTL data to infer gene 

regulatory networks including genes regulated by eQTL and focusing on genomic regions 

containing QTL for productive phenotypes. 

In an additional work by González-Prendes et al. (2019a), the authors compared cis- and 

trans-eQTL signals between skeletal muscle and liver tissues and found a total of 76 and 28 

genome-wide significant cis-eQTL in the gluteus medius skeletal muscle and liver tissue, 

respectively. Several of the eQTL-regulated genes in muscle might be involved in meat 

quality traits. From those eQTL identified by González-Prendes and collaborators in the liver, 

almost 43% (12) were also detected in the muscle (González-Prendes et al., 2019a). Although 

the number of shared cis-eQTL between these two tissues was relatively high, the reduced 

sample size limited the power of the study. Overall, the proportion of cis-eQTL shared across 

tissues in humans (Aguet et al., 2017) is similar to that obtained in pigs, and the main genetic 

mechanisms that regulate gene expression in pigs and humans are also expected to be similar 

(Pant et al., 2015). In this regard, Aguet et al. (2017) reported a sample size-dependent effect 

of the magnitude and significance of the effects mediated by cis- and trans-eQTL across 

tissues. While the number of identified cis-eQTL increased in tissues with smaller sample 

sizes, significance increased with sample size. This would suggest that a good strategy for 

augmenting the statistical power of experiments with a limited number of individuals could be 

the tissue-specific identification of eQTL and their joint-analysis with other publicly available 

data to infer their significance (Aguet et al., 2017). Equivalent results have been obtained in 

other meta-analyses: Võsa et al. (2018) conducted an extensive analysis of different sources 

of blood eQTL data and reported that 92% of the lead cis-eQTL SNPs map close (± 100 kb) 

to the gene they regulate. Moreover, the fine-mapping of the cis-effects increased with sample 

size, as significant leading SNPs were detected closer to the cis-eQTL associated gene (Võsa 

et al., 2018). Similarly, around 33% of traits were associated with some observed eQTL in 
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trans, and many of them were related to cis-effects in transcription factors (TFs) that were 

themselves co-expressed with genes showing significant trans-eQTL signals. However, the 

correct mapping of trans-effects was still tightly linked to a sufficient sample size (Võsa et 

al., 2018). The apparent lack of significant shared trans-effects, even when considering large 

sample sizes, and their prominent tissue-specificity might be explained by the fact that most 

of trans-eQTL function as weak modulators of the expression of peripheral genes that, at the 

same time, affect the expression of core genes that are typically associated with cis-signals. 

This suggests that even when considering experiments with many individuals and different 

body tissues, the magnitude of missing heritabilities for gene expression phenotypes might be 

high as a consequence of weak trans-effects that are not detectable due to limited statistical 

power (Liu et al., 2019a). 

 

1.1.4. Detection of deleterious variants in pigs 

Natural selection has favored the spread of beneficial mutations, while removing the harmful 

ones due to their negative effects on fitness and offspring survivability. The load of 

deleterious mutations in a given population depends on multiple factors such as their level of 

harmfulness on fitness, dominance and epistatic effects, environmental interactions and 

linkage disequilibrium with adjacent polymorphic sites (Makino et al., 2018). Demography 

can also have huge effects on the spread and retention of deleterious mutations. For instance, 

it is well known that the reduction in the effective population size increases inbreeding and 

the chance of the emergence of homozygous genotypes for harmful recessive mutations. 

Indeed, weakly deleterious sites may persist through generations, thus contributing to 

debilitate population fitness (Bosse et al., 2019). Additionally, livestock populations have 

been selected for centuries, and more prominently during the past decades with classical 

breeding strategies and recently with novel techniques based on genomic selection. This has 

contributed to create almost closed breeding lines with small (several hundreds) or very small 

(some dozens) effective population sizes, which are therefore more prone to suffer from 

inbreeding depression (Charlesworth and Willis, 2009; González-Peña et al., 2015). This 

effect is mostly caused by an increased homozygosity in partially detrimental recessive alleles 

segregating in animal populations and a consequent reduction in fitness (Charlesworth and 

Willis, 2009). The frequencies of harmful or even lethal mutations can increase if they are 
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linked to alleles with favorable effects on the traits that are selected for. Given the complex 

history of pig breeds (Bosse et al., 2014), the segregation of deleterious alleles in commercial 

pig populations has been the focus of several studies during the past years. A selection of 

studies characterizing loss-of-function mutations and their putative deleterious consequences 

on transcript structure and related phenotypes is shown in Table 1. 

 

Table 1: List of loss-of-function mutations with harmful predicted consequences on 

productive traits in pigs. 

SSCa Position (Mb) Gene Typeb Trait Reference 

1 141.23 DUOX2 Missense Hypothyroidism (Cao et al., 2019) 

3 43.95 POLR1B Splice-region Litter size (Derks et al., 2019a) 

6 48.75-50.25 SPTBN4 Deletion Postnatal mortality (Derks et al., 2019b) 

6 54.88 PNKP Missense Litter size (Derks et al., 2019a) 

8 107-113.3 MAD2L1 
 

Stillborn piglets 
(Häggman and Uimari, 

2017) 

8 107-113.3 FGF2 
 

Stillborn piglets 
(Häggman and Uimari, 

2017) 

8 107-113.3 NUDT6 
 

Stillborn piglets 
(Häggman and Uimari, 

2017) 

8 107-113.3 ANXA5 
 

Stillborn piglets 
(Häggman and Uimari, 

2017) 

12 38.92 TADA2A Splice-donor Litter size (Derks et al., 2019a) 

13 195.98 URB1 Frameshift Litter size (Derks et al., 2019a) 

18 39.2-40.1 BBS9 Deletion 
Growth rate, loin depth, 

feed intake 
(Derks et al., 2018) 

18 39.1-40.1 BMPER Deletion 
Litter size, stillborn piglets, 

mummification 
(Derks et al., 2018) 

 

aSSC: Porcine chromosome; bType: Predicted effect of the causal polymorphism. 

 

 

Derks et al. (2018) analyzed the genetic basis of a recessive lethal haplotype on pig 

chromosome 18 showing reduced or missing homozygosity. A thorough study of this region 

in heterozygous carriers revealed a deletion of 212 kb partially spanning the Bardet Biedl 

syndrome 9 (BBS9) gene. After examining the expression patterns and exon structure of BBS9 

transcripts in several tissues, the authors found that the observed deletion induced the 

skipping of several exons. Such alteration introduced 11 novel amino acids immediately 

before a premature stop codon, thus generating a truncated non-functional BBS9 protein. 
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Furthermore, quantitative real-time PCR (RT-qPCR) analyses between wild type and 

heterozygous animals demonstrated a 50% lower expression of the BBS9 transcripts in 

carriers compared with non-carrier individuals (Derks et al., 2018). Apart from the observed 

reduction in BBS9 expression, association analyses with reproductive traits revealed that 

carriers also presented a decreased number (~20%) of born piglets compared with crosses 

involving pigs homozygous for the wild type allele, as well as with carrier × wild type 

matings. Besides, stillborn and mummified piglets were more prevalent in carrier × carrier 

matings, and the homozygous status for the deletion in several of the mummified individuals 

was also confirmed. These results contrasted with the relatively high frequency of the lethal 

mutation in the pig population, i.e. a 10.8% carrier frequency (5.4% allele frequency) was 

detected. When the authors examined the productive performance of carriers and non-carriers, 

increased growth rate, smaller loin depth, litters with reduced weight and increased feed 

intake were found in carrier animals. Such results would explain the maintenance of the lethal 

allele at non-negligible frequencies due to artificial selective pressure of selection programs 

aimed at improving growth rates. Other relevant examples of harmful deletions have also 

been reported by Derks and collaborators, like one producing a truncated form of the spectrin 

β non-erythrocytic 4 protein (SPTBN4) and resulting in postnatal mortality with homozygous 

piglets suffering severe myopathy, hind-limb paralysis and tremors (Derks et al., 2019b). 

Analogously, other surveys have reported harmful recessive haplotypes causing reproductive 

problems in pigs. In a study by Häggman and Uimari (2017), the authors identified 26 

putative lethal haplotypes spanning 12 chromosomes by estimating the deviation in recessive 

homozygosity according to the observed carrier proportion in a population of Finnish 

Yorkshire pigs. One haplotype located on chromosome 18 showed significant associations 

with increased numbers of stillborn piglets in first and later parities. This region harbored 

several interesting genes such as the mitotic arrest deficient 2-like 1 (MAD2L1) gene, which is 

involved in the regulation of meiosis and prevents aneuploidy events (Homer et al., 2005), the 

fibroblast growth factor 2 (FGF2) and its antisense transcript, nudix hydrolase 6 (NUDT6), 

which participates in the vascular reorganization of uterine and placental beds during 

pregnancy (Chrusciel et al., 2010), or the placental anticoagulant annexin 5 (ANXA5), which 

was linked to pregnancy losses in humans (Bogdanova et al., 2007). Moreover, another study 

reported sets of frameshift, splice-site and missense variants causing a complete loss-of-

function of the affected genes and reduced litters in carrier × carrier matings. Essential genes 
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for regulating DNA transcription and repair of DNA damage such as the transcriptional 

adapter-Ada2 (TADA2A), the RNA polymerase I subunit B (POLR1B), the URB1 ribosome 

biogenesis homolog (URB1) or the polynucleotide kinase 3'-phosphatase (PNKP) were 

affected by these deleterious variants, which generated either truncated proteins or proteins 

with amino acid substitutions compromising their function (Derks et al., 2019a). Similarly, 

missense variants with predicted harmful effects have also been reported for non-reproductive 

traits in pigs. For instance, an A/G mutation located at a splicing enhancer region of the dual 

oxidase 2 (DUOX2) gene was described to cause aberrant alternatively spliced mRNA 

isoforms, hence impairing the production of H2O2 and altering the synthesis of thyroid 

hormones in Chinese Bama pigs (Cao et al., 2019). 

 

 

1.2. The era of transcriptomics and integrative analyses 

1.2.1. An introduction to the analysis of transcriptomes 

The advent of the next-generation sequencing (NGS) techniques allowed the high-throughput 

sequencing of the cell transcriptome with unprecedented resolution. The NGS of RNA 

transcripts (RNA-seq) paved the way for the systematic characterization of the transcriptomes 

of multiple tissues. In this regard, RNA-seq involves the bulk extraction of the RNA fraction 

from a tissue sample obtained from animals subjected to a specific experimental treatment 

(Wolf, 2013). This RNA preparation encompasses the whole fraction of RNA molecules 

present in the cell, where many different types of RNA transcripts exist. Indeed, the most 

abundant RNAs present in a typical metazoan cell corresponds to ribosomal RNAs (rRNAs), 

which accounts for ~80 % of the total amount of RNA molecules present within the cell (Wu 

et al., 2014b). The remaining RNAs correspond to other types of transcripts: either protein-

coding RNAs (messenger RNAs or mRNAs) yielding ~4 % of the total RNA mass, or other 

types of RNA molecules (Wu et al., 2014b). This latter group of RNAs drives major cellular 

activities, such as chromosomal structure and organization, DNA replication and repair or 

transcriptional/post-transcriptional regulation, and it encompasses transfer RNAs (tRNAs), 

microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), small 

nuclear RNAs (sncRNAs), small nucleolar RNAs (snoRNAs) and mitochondrial RNAs 
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(mtRNAs), among few others. In section 1.3 we will discuss with more detail the biology of 

miRNAs, which is one of the main subjects of this thesis. 

Prior to sequencing, the abundant rRNAs must be depleted with the goal of concentrating 

sequencing efforts on the remaining types of RNAs, (Wolf, 2013). Moreover, extraction 

protocols and sequencing techniques should also be adjusted for the correct capturing of 

particularly small RNA molecules like, for instance, miRNAs (Brown et al., 2018). 

Subsequently, researchers must decide whether to perform single-end or paired-end library 

preparation, which also requires PCR-based transcript amplification. Paired-end protocols are 

useful for initial transcriptome assembly or isoform detection, and are the preferred choice for 

common RNA-seq experiments aiming at sequencing the mRNA transcriptome, whereas 

single-end sequencing allows a better capture of the small size fraction of transcripts such as 

miRNAs (Wolf, 2013). In addition, strand-specific protocols should be considered when 

attempting to reach accurate sequencing of regions with overlapping transcription from both 

genomic strands (Borodina et al., 2011).  

After library preparation, sequencing of the extracted RNA transcripts must be performed. A 

varied range of NGS platforms are commercially available nowadays, with Illumina, Pacific 

Biosciences, Oxford Nanopore and ThermoFisher Ion Torrent being among the most currently 

used ones (Levy and Myers, 2016). While some of them are based on optical light or 

fluorescence detection (Illumina and Pacific Biosciences), others use different methods of 

sequence detection such as changes in pH during a polymerization reaction via a solid-state 

sensor (ThermoFisher Ion Torrent) or modifications of an electrical field as the nucleic acids 

pass through a protein nanopore (Oxford Nanopore). Among them, the Illumina sequencing 

platform is probably one of the most used approaches, followed by the emerging Oxford 

Nanopore technique, which allows long read sequencing and hence a more accurate de novo 

assembly of genomes and a better characterization of large structural variations in the genome 

(Amarasinghe et al., 2020). During the course of the present thesis, Illumina platform was 

used for short-read sequencing of miRNAs, and is therefore further explained in Figure 4. 
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Figure 4: Illumina sequencing of short DNA transcript fragments after library preparation 

and PCR amplification. (A) Adaptors are annealed to the 5’ and 3’ ends of fragments and 

attached to primer primer-loaded flow cell. (B) Sequence fragments form bridge structures 

allowing PCR amplification and dissociation where the bridge amplification is repeated. (C) 

Through successive cycles of PCR bridge amplification, double stranded DNA sequences are 

denatured and attach to the flow cell to form sequence clusters. (D) When clonal amplification 

terminates, all formed reverse strands are washed away and primers are attached to the 

forward strands. A DNA polymerase then adds fluorescently tagged nucleotides 

complementary to the sequence. Only one base is added per round. After each cycle, the 

machine scans which nucleotide was added by using a color signal recording in order to 

reconstruct the read sequence.  

Modified from http://www.3402bioinformaticsgroup.com/service/. 

 

http://www.3402bioinformaticsgroup.com/service/
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Once sequencing has been performed, the resulting reads are processed and typically stored in 

FASTA or FASTQ formatted files. Then, in order to process the sequenced data, a broad 

array of bioinformatic pipelines can be applied to retrieve the transcriptional information 

contained in the sequenced RNA reads (Wolf, 2013, Conesa et al., 2016). A schematic 

workflow of the successive steps for processing and analyzing RNA-seq data is depicted in 

Figure 5 and summarized hereunder: 

1) Most commonly, the pipeline for processing FASTQ formatted reads involves a first step 

of quality check and filtering process of the raw reads, in which poorly determined 

nucleotides at the 3’ end of the reads are removed according to pre-established quality 

thresholds, and any remaining adapters used during sequencing are also filtered out in order to 

generate clean processed and quality-checked reads. Different dedicated software tools are 

available for the quality checking of the reads, such as FASTQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Common tools for adapter 

trimming are, for instance, Cutadapt (Martin, 2011), Trimmomatic (Bolger et al., 2014), fastp 

(Chen et al., 2018) or the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). 

Although several distinct pipelines can be used to analyze RNA-seq data, here we will discuss 

one of the most widely used for the mapping and quantification of transcripts, differential 

expression (DE) analysis and pathway and gene ontology enrichment analyses (Figure 5). 

 2) After quality check and adapter trimming, clean reads are now ready to be aligned to a 

reference genome assembly (as long as it is available for the species of interest). In the event 

that no assembly can be used, de novo transcript assembly can be performed in order to obtain 

a putative representation of the transcriptome defined by the set of sequenced reads (Haas et 

al., 2013). Moreover, reference annotation-free mapping can also be performed to generate 

novel prediction of unannotated transcripts (Kim et al., 2019). Among the most used and cited 

tools for reference assembly-based alignment, it is worth mentioning Bowtie (Langmead et 

al., 2009), Bowtie 2 (Langmead and Salzberg, 2012), STAR (Dobin et al., 2012), HISAT2 

(Kim et al., 2019), or BWA (http://bio-bwa.sourceforge.net/). The alignment of reads 

generates a representation of the mapping location of the reads towards the employed 

reference assembly in the format of sequence alignment map (SAM) files, or their binary 

version, BAM files. 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
http://bio-bwa.sourceforge.net/
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3) Once the alignment files are generated, successfully mapped transcripts need to be 

quantified in order to determine the expression abundance of each gene. Genes showing a 

higher expression will be represented by more transcripts mapping to their genomic location 

compared with lowly expressed genes, which will gather less mapped reads. In this way, tools 

like featureCounts (Liao et al., 2014), StringTie (Pertea et al., 2015), HTSeq (Anders et al., 

2015), Kallisto (Bray et al., 2016), Salmon (Patro et al., 2017) or StringTie2 (Kovaka et al., 

2019) allow the quantification of the number of transcripts representing each annotated locus.  

4) Before DE analyses, normalization of the count matrices must be performed in order to 

account for library size biases. Several normalization methods like the trimmed mean of 

means (TMM), quantile normalization, size factors, transcript per million mapped reads 

(TPM) or reads per kilobase transcript per million mapped reads (RPKM) have been 

compared and thoroughly reviewed by Abrams et al. (2019). 

5) With quantified and normalized gene matrices, DE analyses between two or more defined 

contrasting conditions can be performed. Multiple tools are available for this purpose, which, 

in general, fit a probabilistic negative binomial distribution or linear additive response error 

models to the input quantification data in order to detect differences in average gene 

expression between two groups of samples. Dedicated tools for DE analysis are, for instance, 

edgeR (Robinson et al., 2010), DESeq2 (Love et al., 2014), NOISeq (Tarazona et al., 2015) or 

Sleuth (Pimentel et al., 2017). Through these analyses, researchers can obtain a representative 

list of genes showing significant expression differences (i.e. activation or repression) between 

contrasts after multiple testing correction (Benjamini and Hochberg, 1995; Benjamini and 

Yekutieli, 2001). Aside of canonical DE analyses based on contrasting mean gene expression 

differences by groups, alternative models targeting statistical differences on the variance of 

gene expression have also been recently proposed (Ran and Daye, 2017). 

6) Finally, enrichment analyses are performed in order to obtain enriched gene ontologies or 

metabolic pathways that are overrepresented in the set of DE genes above a random 

distribution, typically by means of hypergeometric or Fisher’s exact tests. Available tools for 

such analyses are, to mention a few, ClueGO (Bindea et al., 2009), GOrilla (Eden et al., 

2009), DAVID (Jiao et al., 2012), enrichR (Kuleshov et al., 2016), g:Profiler (Reimand et al., 

2016) or PANTHER (Mi et al., 2019). 
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Figure 5: Schematic workflow for RNA-seq analysis of differentially expressed genes and 

enriched gene ontologies and metabolic pathways. 1) Raw reads are quality checked and 

sequencing adaptors are trimmed. 2) Clean reads are mapped to a reference genome assembly, 

if available. 3) Gene counts are estimated based on read alignment and reference gene 

annotation. Alternatively, reference-free annotation can be performed for novel transcripts. 4) 

Count matrices must be normalized prior to differential expression analyses. 5) Different 

probabilistic distributions can be fitted to count data in order to perform differential 

expression analyses and multiple testing correction. 6) Differentially expressed gene lists can 

be used to perform gene ontology and/or pathway enrichment analyses hence obtaining 

overrepresented ontologies and pathways. 
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1.2.2. Gene regulatory networks 

Shortly after high-throughput sequencing techniques became a common methodology for 

many genomic projects, the amount of data generated made possible the integration of 

different sources of information to obtain a comprehensive hierarchy of the relationships 

among the different components that form part of the cell metabolism as a whole. This task 

has been accomplished by reconstructing gene-to-gene interactions, fundamentally based on 

transcriptomic information from NGS experiments, although non-transcriptomic data, such as 

DNA methylation patterns, histone marks, chromatin organization or post-translational 

modifications (e.g. phosphorylation or acetylation signals) have also been taken into 

consideration in several studies (Thompson et al., 2015). Overall, all these sources of data can 

be integrated to build a gene regulatory network (GRN), thus allowing a comprehensive 

representation of the multiple interactions that occur among RNA transcripts, proteins and 

other epigenetic factors (Figure 6). The inference of GRNs from different -omic data assumes 

that the variations in the expression of a given gene can be modeled as a function of one or 

more elements with which this gene interacts in a certain manner (Barbosa et al., 2018). 

Nevertheless, such assumption relies on multiple variables such as the experimental design, 

the sequencing depth, the type and techniques used for generating the information, 

confounding variables, intrinsic noise etc. 

As discussed by Emmert-Streib et al. (2014), GRN inference is subjected to such a number of 

interacting variables that, virtually, no methodology has attained sufficient consensus to be 

applied as an all-purpose approach. It is therefore critical to correctly understand which are 

the main features of the data and the underlying hypothesis to be tested, in order to make good 

decisions about which approach to choose for reconstructing GRN. 

The graphical representation of GRNs can be expressed as G = {V, E}, in which genes are 

considered as nodes or vertices (V) of the graph, while the edges (E) define the connections 

between genes in the form of expression correlations or any other metric. A connection is 

established when the interaction between two vertices is thought to exist or to be potentially 

meaningful. If the directionality of edges is known, i.e., the regulatory gene and its target are 

defined and differentiated, the graph is directed, whereas if no information regarding edge 

direction is included, the graph is undirected (Barbosa et al., 2018). 
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Figure 6: Gene regulatory network (GRN) inference. From a series of -omic data 

representing gene expression measures of different types (e.g. mRNAs or miRNAs), ranking 

and prioritization algorithms can be applied to infer regulatory interactions among the 

different layers of input data. 

 

 

The correct method used for inferring GRNs is highly dependent on the type, quality and 

quantity of data available. Several commonly used approaches for GRN inference are: 1) co-

expression or correlation-based methods, 2) information-theoretic approaches, 3) regression-

based algorithms and 4) Bayesian models. A summarized list of several representative 

methods for each of these categories is shown in Table 2. 
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Table 2: Summary of representative methods for Gene regulatory network inference. 

Method Type Platform Package Reference 

GeneNet Correlation R GeneNetb (Opgen-Rhein and Strimmer, 2007) 

WGCNA Correlation R WGCNAc (Langfelder and Horvath, 2008) 

MutRank Correlation R NetBenchmarkd (Obayashi and Kinoshita, 2009) 

RELNET ITa 
  

(Butte and Kohane, 2000) 

ARACNE ITa R MINETe (Margolin et al., 2006) 

CLR ITa R MINETe (Faith et al., 2007) 

PCIT ITa R PCITf (Reverter and Chan, 2008) 

C3NET ITa R c3netg (Altay and Emmert-Streib, 2010) 

BC3NET ITa R bc3neth (de Matos Simoes and Emmert-Streib, 2012) 

MIDER ITa Matlab 
 

(Villaverde et al., 2014) 

PREMER ITa Matlab 
 

(Villaverde et al., 2018) 

Genie3 Regression R GENIE3i (Huynh-Thu et al., 2010) 

TIGRESS Regression R Tigressj (Haury et al., 2012) 

GGM Bayesian R GeneNetb (Schäfer and Strimmer, 2005) 

CBN Bayesian R catnetk (Balov, 2013) 

 

aIT: Information Theory. bhttps://CRAN.R-project.org/package=GeneNet.  

chttps://CRAN.R-project.org/package=WGCNA. 

dhttps://www.bioconductor.org/packages/release/bioc/html/netbenchmark.html (Bellot et al., 2015). 

ehttps://www.bioconductor.org/packages/release/bioc/html/minet.html (Meyer et al., 2008). 

fhttps://CRAN.R-project.org/package=PCIT (Watson-Haigh et al., 2010).  

ghttps://CRAN.R-project.org/package=c3net. 

hhttps://CRAN.R-project.org/package=bc3net. ihttps://bioconductor.org/packages/release/bioc/html/GENIE3.html. 

jhttps://github.com/jpvert/tigress.  

khttps://CRAN.R-project.org/package=catnet. 

 

 

Co-expression methods 

These methods assume that similar expression profiles between genes are suggestive of 

underlying relationships that are revealed by measuring the patterns of co-expression. Co-

expression can be explained by direct or indirect regulatory mechanisms and/or participation 

in common biological pathways. Co-expression networks are reconstructed by computing a 

similarity score reflecting pairwise interactions among genes. The simplest metrics would 

imply calculating correlation coefficients between the sets of gene expression data. If the 

observed correlation ranks above a predefined threshold, the interaction is considered as 

meaningful and conserved for building the GRN. Representative methods of such approach 

https://cran.r-project.org/package=GeneNet
https://cran.r-project.org/package=WGCNA
https://www.bioconductor.org/packages/release/bioc/html/netbenchmark.html
https://www.bioconductor.org/packages/release/bioc/html/minet.html
https://cran.r-project.org/package=PCIT
https://cran.r-project.org/package=c3net
https://cran.r-project.org/package=bc3net
https://bioconductor.org/packages/release/bioc/html/GENIE3.html
https://github.com/jpvert/tigress
https://cran.r-project.org/package=catnet
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are, for instance, GeneNet (Opgen-Rhein and Strimmer, 2007), which relies on the conversion 

of the inferred correlation network into a partial correlation graph. In this context, the ranking 

of nodes is assigned by means of a multiple testing of the log-ratio of the standardized partial 

variances. The weighted gene correlation network analysis (WGCNA) proposed by 

Langfelder and Horvath (2008) is probably one of the most used and cited methods of this 

category. This procedure prioritizes relevant high co-expression relationships by raising the 

absolute value of the correlation to a pre-defined power threshold greater or equal to 1 (β ≥ 1), 

which produces weighted adjacency matrices that are then transformed and clustered into co-

expression modules formed by highly similar nodes. MutRank (Obayashi and Kinoshita, 

2009) is a simple algorithm that ranks correlations between pairs of genes by considering a 

similarity score between genes, the reliability of which is measured as the geometric mean of 

the scores obtained between gene i and j, and vice versa. 

Information-Theoretic approaches 

These approaches use a generalization of the pairwise correlation coefficients known as 

mutual information (MI), which measures the degree of dependence between two given genes 

(Cover and Thomas, 2005). The RELNET algorithm (Butte and Kohane, 2000) is a simple 

method using MI between two nodes i and j. A connection is created if the computed MIij 

surpasses an established threshold. The algorithm for the reconstruction of accurate cellular 

networks (ARACNE) assumes that many expression similarities between pairs of genes might 

be the result of other weak indirect interactions. Thus, this method uses the data processing 

inequality (DPI) algorithm to remove the weakest edge, i.e. the one with lowest MI among 

each considered triplet of genes (Margolin et al., 2006). The CLR method (Faith et al., 2007) 

is an extension of the RELNET algorithm, which derives a normalized z-score of the MI 

between two nodes i and j, thus facilitating the removal of indirect connections. The partial 

correlation coefficient with information theory (PCIT) algorithm (Reverter and Chan, 2008) 

extracts all possible triplets of genes and applies DPI to remove indirect connections, 

combined with first-order partial correlations for weighting interactions. This approach aims 

to eliminate third indirect interactors for any given pairwise correlation of genes i and j. The 

conservative causal core network (C3NET) algorithm (Altay and Emmert-Streib, 2010) and 

the updated version BC3NET (de Matos Simoes and Emmert-Streib, 2012) incorporating a 

bagging procedure, first removes non-significant connections from pairwise MI estimates that 
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do not surpass a pre-established threshold α. Subsequently, the most significant connection 

for each gene is selected. Non-parametric bootstrap is then applied to generate an ensemble of 

independent networks that are used to build a weighted network to determine the significance 

of each pairwise connection between genes. An entropy reduction step from MI distances was 

proposed by Villaverde et al. (2014) in the MIDER method. The goal was to discriminate 

direct from indirect interactions between genes in order to minimize the false positive rate. A 

parallelized version of this method (PREMER) was also developed to incorporate prior 

knowledge to the network inference (Villaverde et al., 2018). 

Regression algorithms 

Regression-based algorithms aim at finding the statistical relationship between two or more 

gene expression measures. In this framework, a change in a dependent variable can be 

modeled by considering changes in other independent variables. Examples of this method are, 

to mention a few, the Genie3 algorithm (Huynh-Thu et al., 2010), which uses random forest 

feature selection to solve a regression problem that consists of predicting the expression 

profile of a given target gene by means of the expression of other defined regulators. The 

trustful inference of gene regulation with stability selection (TIGRESS) algorithm (Haury et 

al., 2012) predicts the expression of a given gi gene from the expression patterns of its 

predicted regulators. Through this approach, TIGRESS finds the minimum set of regulators 

able to predict the expression of the i target gene by scoring their potential involvement in the 

regression model through a likelihood approach. 

Bayesian models  

Multiple approaches based on Bayesian networks (Friedman et al., 2000) have been proposed. 

One of the most used in the inference of gene regulatory networks are graphical Gaussian 

models (GGM), which evaluate network structure by estimating the covariance matrix to 

detect conditionally dependent genes and apply multiple testing correction for a heuristic 

network search (Schäfer and Strimmer, 2005). Another relevant Bayesian method is the 

categorical Bayesian network (CBN), which learns the graph structure by a score-based 

procedure identifying significant differences in gene interactions between the two conditions 

being compared (Balov, 2013). 
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1.2.3. The analysis of pig transcriptomes  

The FAANG consortium (Giuffra et al., 2019) is currently generating multiple sources of -

omic data from different domestic species, while increasing the number of analyzed animals 

for gene expression data. The integration of RNA-seq transcriptomics, histone modification 

marks, DNA methylation patterns and chromatin spatial conformation and accessibility data is 

expected to provide an extensive knowledge about the genetic basis of phenotypes of 

economic interest in domestic species. 

In pigs, many RNA-seq experiments have been performed during the past years, analyzing the 

landscape of RNA transcript expression in multiple porcine breeds, tissues, developmental 

stages and experimental conditions (Puig-Oliveras et al., 2014; Pérez-Montarelo et al., 2014; 

Pilcher et al., 2015; Ayuso et al., 2016; Cardoso et al., 2017a, 2017b; Horodyska et al., 2018; 

Ramayo-Caldas et al., 2018; Benítez et al., 2019). The majority of these studies are focused 

on the protein-coding mRNA fraction of the transcriptome, since it can provide a 

comprehensive representation of the metabolic state of the analyzed tissues in response to 

different stimuli. Multiple porcine tissues have been analyzed with RNA-seq technologies. 

For instance, Ayuso et al. (2016) investigated the mRNA expression profiles of two 

metabolically divergent skeletal muscles (biceps femoris and longissimus dorsi) in Iberian and 

Iberian × Duroc pigs. Differential expression analyses showed that the transcriptome of the 

biceps femoris muscle is enriched in pathways related with lipid metabolism and adipocyte 

differentiation, thus suggesting an active intramuscular fat deposition. Besides, Iberian pigs 

presented increased expression of glucose and lipid metabolism-related genes compared with 

Iberian × Duroc crosses, and enrichment analyses of the set of DE genes between both breeds 

revealed pathways involved in protein deposition and cellular growth (Ayuso et al., 2016). 

When comparing pigs in a fasting condition with others fed during variable period of times, 

multiple differentially expressed genes related with angiogenesis and oxidative stress, 

ribosomal proteins or the regulation of peripheral circadian rhythms were detected (Cardoso 

et al., 2017b). In a study performed by Benitez et al. (2020), the influence of diet and breed-

specific genetic determinants was evaluated by RNA-seq of subcutaneous adipose tissue 

samples from the hams of Iberian and Duroc pigs. As expected, several genes involved in the 

regulation of lipid metabolism, such as leptin (LEP), cytosolic phosphoenolpyruvate 

carboxykinase (PCK1) or the retinoid X receptor γ (RXRG), were upregulated in Iberian pigs. 
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Besides, other upregulated genes in Duroc pigs were related with cell growth and insulin 

signaling such as the insulin growth factor 2 (IGF2), insulin (INS), insulin receptor (INSR) 

and insulin-induced 1 (INSIG1) genes (Benítez et al., 2019). These results are compatible with 

the existence of insulin resistance in fatty Iberian pigs, a breed which is prone to increased 

adiposity and obesity (Torres-Rovira et al., 2012). Moreover, the glucose transporter 4 

(GLUT4) was upregulated in Iberian pigs, a finding that might be explained by leptin 

resistance compensatory mechanisms (Waller et al., 2011). 

Although porcine non-coding RNAs have been much less studied than mRNAs, there is solid 

evidence that miRNAs have an important role in regulating fatty acids metabolism in the 

skeletal muscle and in adipose tissue, which highly influences the organoleptic properties of 

meat and its shelf life (Wood et al., 2008). Noteworthy, Li et al. (2011) were among the first 

authors to report putative functions for miRNAs expressed in porcine adipose tissue. 

According to their results, members of the ssc-miR-143, ssc-miR-103, ssc-let-7 and ssc-miR-

148 families were abundantly expressed in the backfat tissue of Rongchang pigs. Moreover, 

several relevant lipid-related pathways such as MAPK, Wnt, TGF-β or insulin signaling were 

enriched in the set of predicted putative mRNA targets. The role of ssc-miR-122 in lipid 

metabolism was also revealed in a study using Göttingen minipigs fed with standard and high-

cholesterol diets (Cirera et al., 2010). This research showed that the expression of ssc-miR-

122 was reduced in pigs with high-cholesterol food intake (Cirera et al., 2010). In a similar 

investigation comparing lean and obese minipigs, Mentzel et al. (2015) reported ssc-miR-10b-

5p, ssc-miR-143-3p, ssc-miR-26a-5p or ssc-miR-22-3p as highly expressed in subcutaneous 

adipose tissue, whereas ssc-miR-9-5p and ssc-miR-124a-3p were overexpressed in obese pigs 

compared with their lean counterparts. These two miRNAs have been associated with weight 

gain, insulin resistance and proinflammatory signaling (Blüher et al., 2007; Bazzoni et al., 

2009; Grandjean et al., 2009). Many other recent studies have also analyzed the miRNA 

expression profiles of adipose tissues. For instance, the overexpression of ssc-miR-17-5p 

significantly reduced the transcript levels of the nuclear receptor coactivator 3 (NCOA3), the 

fatty acid binding protein 4 (FABP4) and the peroxisome proliferator activated receptor γ 

(PPARG) genes, which inhibit the differentiation of intramuscular pre-adipocytes (Han et al., 

2017). The ssc-miR-146b, on the other hand, reduced glucose uptake in pre-adipocytes by 

targeting the insulin receptor substrate 1 (IRS1) and glucose transporter 4 (GLUT4) genes 

(Zhu et al., 2018). 
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In the liver, an organ of paramount importance in the integration and processing of nutrients 

after food intake, as well as in the maintenance of glucose homeostasis (Han et al., 2016), 

porcine miRNAs have also been described to play relevant regulatory roles. Mentzel et al. 

(2016) profiled the expression of several miRNAs and mRNAs in the liver from Göttingen 

minipigs, and found ssc-miR-34a and ssc-miR-1285 as highly upregulated in obese pigs fed 

ad libitum, whereas ssc-miR-181d was downregulated. Another recent study reported a total 

of 13 differentially expressed miRNAs in liver when contrasting pigs with low and high fat 

deposition, among which ssc-miR-451, ssc-miR-127 or ssc-miR34c were significantly 

downregulated in pigs with a high fat profile (Xing et al., 2019). 

In the same study made by Mentzel et al. (2016), the authors also reported the upregulated 

expression of ssc-miR-215, ssc-miR-1285, ssc-miR-208b or ssc-miR-1 in the skeletal muscle 

of obese pigs. In an additional study comparing the miRNA expression profiles of longissimus 

dorsi skeletal muscle samples with divergent phenotypes for drip loss, Wei et al. (2018) 

reported ssc-miR-22-5p and ssc-miR-499 as highly expressed, and inferred potential GRNs 

from their putative mRNA targets. A miRNA-mediated differential muscle fiber development 

was described for Tongcheng and Yorkshire pig breeds, further validating, with luciferase 

assays, the regulation of the destrin/actin depolymerizing factor (DSTN) mRNA by ssc-miR-

499-5p (Xi et al., 2018). Moreover, co-expression network integration of miRNA and mRNA 

sequencing data provided additional insights into the role of ssc-miR-499-5p as a key 

regulator of AMPK, mTOR and TGF-β signaling pathways (Xie et al., 2019). 

In the light of these results, it is clear that non-coding RNAs, and especially, miRNAs, play 

important roles in regulating the expression of many metabolic pathways in multiple tissues. 

Nevertheless, the accumulated knowledge regarding their expression, regulation, function and 

variation across porcine tissues is still limited. Such phenomenon motivated our investigation 

of the putative roles that miRNAs might have in skeletal muscle metabolism in response to 

nutrient supply, as well as the analysis of their variability across different populations, in 

search of putative causal mutations that might be driving changes in the expression profiles of 

their targeted mRNAs. 
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1.3. MicroRNAs as key post-transcriptional regulators 

1.3.1. An introduction to microRNA biology 

MicroRNAs (miRNAs) are small endogenous post-transcriptional regulators of gene 

expression found in a wide range of eukaryotes. These non-coding RNA transcripts derive 

from the processing of primary miRNA spliced transcripts (pri-miRNAs) into hairpin-like 

precursors (pre-miRNAs), which are formed by a single fully base-paired stem with two arms 

containing both -5p and -3p mature miRNA sequences and an apical loop (Bartel, 2018), as 

depicted in Figure 7. Subsequently, these precursor transcripts are processed into functionally 

active mature miRNAs (~18-22 nucleotides long) in the cytoplasm.  

 

 

 

Figure 7: Secondary structure of the folded pri-miRNA containing the pre-miRNA and the -

5p and -3p mature miRNAs. The pri-miRNA forms a hairpin-like structure with one apical 

loop and a central stem composed by two paired arms of the RNA sequence. The terminal 5’ 

and 3’ ends are unpaired. The basal junction at the end of the hairpin determines the Drosha 

cleavage site for generating the pre-miRNA. In the cytoplasm, Dicer recognizes the end of the 

central stem near the apical loop and cleaves the pre-miRNA to release the miRNA-miRNA* 

duplex with both -5p and -3p mature miRNAs that are loaded into the RISC complex. 
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Thousands of different miRNAs have been described since they were firstly reported in C. 

elegans (Lee et al., 1993). MiRNAs act as post-transcriptional regulators of targeted 

messenger RNAs (mRNAs) to which they bind by base complementarity between the seed 

region of mature miRNAs (2nd to 8th 5’ nucleotides) and short matching sequences in the 3’-

UTR of targeted mRNAs (Friedman et al., 2009). It is well known that miRNAs can regulate 

the expression of hundreds of targeted mRNAs, thus modulating multiple biological pathways 

and contributing to fine-tune the expression of protein-coding transcripts. Indeed, many 

miRNA loss-of-function studies have reported the influence of miRNAs in several key 

biological processes such as development (Bhaskaran and Mohan, 2014), energy homeostasis 

(Dumortier et al., 2013), circadian clock regulation (Cheng et al., 2007) or lipid metabolism 

(Lynn, 2009). Moreover, they are also involved in the progression of numerous pathologies 

like obesity (Iacomino and Siani, 2017), diabetes (Feng et al., 2016), heart failure (Zhou et al., 

2018) or cancer (Peng and Croce, 2016). 

Early studies about the function of the lin-4 gene in C. elegans found that this transcript was 

not able to encode a protein (Lee et al., 1993). Instead, it had the ability to target the mRNA 

transcripts encoded by the lin-14 gene in an antisense manner. Such finding led to the 

realization that lin-4 generated a short non-coding RNA transcript of ~22 nucleotides in 

length, and that its sequence had imperfect complementarity to conserved sites in the 3’-UTR 

of the targeted lin-14 mRNA. Studies carried out by Reinhart et al. (2000) and focused on let-

7, another non-coding gene, reinforced such vision about the function of these short non-

coding RNAs as regulators of mRNA expression. Besides, the let-7 gene was reported to be 

highly conserved in a wide range of animal species (Pasquinelli et al., 2000). These initial 

results, along with other investigations reporting the existence of short non-coding RNA 

transcripts processed from hairpin-like precursors and displaying regulatory functions (Lagos-

Quintana et al., 2001; Lau et al., 2001; Lee and Ambros, 2001), were essential steps to 

understand the role of small regulatory RNAs in the modulation of gene expression. 

 

1.3.2. Biogenesis and function of microRNAs 

Animal miRNA genes are typically transcribed by RNA Polymerase II (Pol-II) as pri-

miRNAs (Lee et al., 2004). Transcription of pri-miRNAs results in non-coding RNAs 

harboring single miRNA sequences (Figure 8A). At some instances, multiple miRNAs are 
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embedded in a single large polycistronic pri-miRNA, thus being transcribed simultaneously 

(Ameres and Zamore, 2013). Pri-miRNAs fold back on themselves to form long hairpin-like 

structures in the nucleus, with an apical loop, a long imperfect stem of ~33-35 nucleotides and 

a basal junction formed by the two 5’ and 3’ strands, followed by flanking single-stranded 

segments (Ha and Kim, 2014). This primary structure is then recognized by the 

Microprocessor machinery, which is a heterotrimeric complex composed by one molecule of 

the Drosha endonuclease and two DGCR8 (named Pasha in flies and nematodes) molecules 

(Nguyen et al., 2015). Drosha, which contains two RNase III domains, along with other 

cofactors, binds to the pri-miRNA transcripts via the recognition and positioning of the 

Drosha subunit in the basal region of the hairpin (Partin et al., 2017; Kwon et al., 2019). 

Subsequently, it cleaves the pri-miRNA, thus releasing a sliced stem-loop folded structure of 

~60-80 nucleotides called pre-miRNA (Bartel, 2018). The Drosha processing mechanism 

mediates the canonical intergenic miRNA maturation (Figure 8B). Nevertheless, other 

alternative processing pathways exist. For instance, intronic miRNAs, the so-called mirtrons, 

are directly spliced from intronic segments by the spliceosome (Ruby et al., 2007). Other less 

prevalent pathways include endogenous short-hairpin RNAs (shRNAs) or chimeric miRNAs 

that are transcribed in tandem as part of other non-coding RNAs (Babiarz et al., 2008; Ender 

et al., 2008). Whatever the mechanism of synthesis might be, once generated, pre-miRNAs 

are transported to the cytoplasm (Figure 8C) by Exportin 5 (XPO5) and RAN-GTP (Lund et 

al., 2004). 

In the cytoplasm, pre-miRNAs are recognized by another component of the processing 

machinery: Dicer (Zhang et al., 2004), a RNase-II protein that cleaves the apical loop region 

from the hairpin (Figure 8D), hence yielding a double-stranded short miRNA-miRNA* 

duplex of ~22 nucleotides (Hutvágner et al., 2001; Bartel, 2018). This miRNA-miRNA* 

duplex contains the mature guide miRNA coupled with its passenger strand (miRNA*), and 

an overhang of ~2 nucleotides in the 3’ end of the sequence, previously created by the slicing 

action of Drosha. Once formed, the miRNA duplex is loaded into the RNA-induced silencing 

complex (RISC) to form the so-called miRISC complex. This complex contains an Argonaute 

(AGO) subunit protein that allocates the miRNA duplex with the aid of chaperon proteins 

(HSC70/HSP90). These cofactors induce Argonaute to adopt a high-energy open structure 

suitable for binding to the miRNA duplex (Iwasaki et al., 2010). Argonaute proteins contain 

four domains: PAZ (which binds to the 3’ end of the miRNA-miRNA* duplex), Mid (which 
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binds to the 5’-phosphate group of the miRNA), C-terminal PIWI (presumably exhibits 

endonucleolytic activity) and the N-terminal domain. Among the different existing paralogs 

of the Ago protein, only Ago2 shows the ability to elicit miRNA-induced mRNA repression 

(Liu et al., 2004). 

After the loading of the miRNA duplex into Argonaute, the miRNA* passenger strand is 

removed via a structural reorganization of Argonaute into a more relaxed form and 

subsequently undergoes rapid exonuclease-mediated degradation (Kawamata and Tomari, 

2010). Both strands of the initial duplex have the ability to act as guide or passenger strands 

(Griffiths-Jones et al., 2011). The choice of which strand is used as a guide miRNA depends 

on the thermodynamic stability of the miRNA ends. Indeed, the less stable 5’-end in the 

duplex is typically used as the guide strand (Khvorova et al., 2003). Besides, A- and U-

residues are preferentially loaded in Ago compared with G- or C-residues at the 5’-end of the 

selected guide miRNA (Frank et al., 2010). Other factors can also influence the choice of the 

guide strand, such as sequence composition (Hu et al., 2009). When the functional miRISC 

complex is generated, the seed sequence of the miRNA guides the specificity of the pairing to 

short complementary sequences in the 3’-UTR of mRNAs (Figure 8E). The recognition by 

base-pair complementarity between the miRNA and the targeted mRNA often occurs through 

a perfect match. However, such interaction can be also mediated through subtle imperfect 

pairings (Chipman and Pasquinelli, 2019), which can be compensated or stabilized by 

supplementary pairings alongside the body of the miRNA (typically 13th-to-16th nucleotides in 

the mature miRNA).  

 



Introduction 

 

 

89 
 

 

 

Figure 8: Biogenesis and function of miRNAs. (A) The miRNA gene is transcribed by RNA-

Polymerase II (Pol II) into a primary miRNA transcript (pri-miRNA) which adopts a hairpin-

like secondary structure. (B) The Microprocessor complex formed by Drosha and DGCR8 

proteins bind to the pri-miRNA and cuts the edges of the stem to generate the precursor 

miRNA (pre-miRNA). (C) The pre-miRNA transcript is then transported from the nucleus to 

the cytoplasm by the action of Exportin 5 (XPO5) and RAN-GTP. (D) Once in the cytoplasm, 

the pre-miRNAs are processed by Dicer, which removes the apical loop to form the miRNA-

miRNA* duplex. This miRNA duplex is then loaded into the Ago protein to form the miRISC 

complex, where the passenger miRNA* is degraded and the guide mature miRNA remains. 

(E) The active miRISC interacts with target mRNAs via base-pairing of the mRNA 3’-UTR 

with the mature miRNA seed (2nd to 8th 5’ nucleotides) and elicits the degradation of the 

mRNA by shortening its poly(A) tail or, alternatively, by impeding its translation in the 

ribosomes. 

 



Introduction 

 

90 

 

Active target matches often occur via the pairing of 7 nucleotides corresponding to the 

miRNA seed (2nd to 8th 5’ nucleotides) and a complementary target site in the 3’-UTR of the 

mRNA (Lewis et al., 2005). Canonical pairing involves the more active 8mer matches and 

also 7mer-m8 matches, which can be defined as follows: 

 1) The 8mer interaction consists of 7 nucleotide pairings along the entire miRNA seed and 

the target 3’-UTR binding site, plus an additional interaction between the adenine (A) in the 

3’ end of the mRNA which binds to a pocket inside the Argonaute complex, thus contributing 

to stabilize mRNA positioning (Schirle et al., 2015).  

2) When nucleotides other than adenine are placed at position 1 of the target mRNA, the 7-

nucleotide matching site is called 7mer-m8. 

Alternatively, the 7mer interaction can take place when the miRNA seed pairing encompasses 

5’ nucleotides 2st to 7th of the mature miRNA, provided the presence of an A nucleotide in the 

3’ end of matching sequence from the target mRNA, analogously to the 8mer sites. This 

intermediate 7mer pairing is called 7mer-A1 (Bartel, 2018). Other additional and less 

common non-canonical pairings can also occur, like 6mer, 6mer-offset and 3’-compensatory 

pairings or CDS interactions (Chipman and Pasquinelli, 2019). A schematic representation of 

some canonical and non-canonical target sites is depicted in Figure 9. 

 

 

 

Figure 9: Canonical and non-canonical target sites between the miRNA seed region and short 

matching sequences in the 3’-UTR of mRNAs. Modified from Bartel (2018). 
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The miRNA-induced repression of targeted mRNAs occurs via the degradation of targeted 

mRNAs by poly(A) deadenylation-mediated decay and also by impeding their translation in 

the ribosomes (Jonas and Izaurralde, 2015). This repression mechanism requires the 

recruitment of the protein adaptor TNRC6 by Argonaute, which interacts with the poly(A)-

binding protein PABC, in conjunction with deadenylases PAN2-PAN3 and the CCR4-NOT 

complex (Jonas and Izaurralde, 2015). The recruited deadenylases promote the shortening of 

the poly(A) tail of the targeted mRNA, triggering the destabilization of the mRNA through 

5’-to-3’ decay and decapping (Chen and Shyu, 2011; Jonas and Izaurralde, 2015). Besides, 

translation inhibition is also induced by TNRC6 and CCR4-NOT through the recruitment of 

the DDX6 helicase, a cofactor with inhibitory effects on translation (Ozgur et al., 2015). 

Other than the widely reported post-transcriptional regulation of targeted mRNAs by the 

action of miRNAs, several alternative repressive mechanisms have been elucidated for 

miRNA transcripts. Eiring et al. (2010) described the interfering of miR-338 with RNA-

binding proteins in the nucleus in a decoy manner, independently of its interaction with 

targeted mRNAs through the seed. Other authors identified miRNAs acting at the 

transcriptional level to inhibit the expression of targeted mRNAs by binding to the promoter 

regions of the corresponding genes, thus suggesting the existence of a miRNA-directed 

transcriptional gene-silencing effect (Kim et al., 2008a). Moreover, Vasudevan et al. (2007) 

proposed the upregulation of mRNA translation in the ribosomes by direct intervention of 

miRNAs recruiting AU-rich sequence motifs (AREs) and sets of associated proteins, a 

mechanism that was further supported by studies on cell cycle activation (Truesdell et al., 

2012). Nevertheless, despite some studies describing non-canonical mechanisms of gene 

regulation mediated by miRNAs, they still remain poorly characterized and further research is 

needed to better document these non-canonical functions of miRNAs. 

 

1.3.3. MicroRNA sequence motifs and isoforms 

Given the extensive variety of RNA hairpins that can arise from genome transcription, the 

precise recognition of miRNA hairpins primarily relies on the correct orientation of Drosha 

for the pri-miRNA processing. Such event is fundamental for discriminating between true pri-

miRNA sequences and other hairpin-like structures. Several studies have identified different 

processing motifs (Auyeung et al., 2013; Fang and Bartel, 2015; Roden et al., 2017) that 
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allow the recognition of pri-miRNA hairpins by Drosha (Nguyen et al., 2015). The basal 

upstream UG motif is found in ~40% of studied miRNAs and helps recruiting Drosha to the 

basal junction of the pri-miRNA (Auyeung et al., 2013). Located at the start of the apical 

loop, the UGU motif interacts with the DGCR8 dimer of the Microprocessor, and indirectly 

prevents Drosha to bind the apical loop, facilitating its positioning at the basal junction 

(Auyeung et al., 2013; Nguyen et al., 2015). The downstream CNNC motif is one of the most 

commonly found sequences across all miRNA genes, with ~50-60% of annotated miRNAs 

presenting such motif (Auyeung et al., 2013). The CNNC sequence is recognized by the 

RNA-binding protein SRSF3, a molecule that promotes Microprocessor activity and hence the 

miRNA maturation process (Kim et al., 2018). The binding affinity of SRSF3 to the CNNC 

motif is influenced by the structural conformation of the pri-miRNA hairpin (Fernandez et al., 

2017). Other additional motifs have been proposed, like basal GHG mismatches (Fang and 

Bartel, 2015), as well as bulge-depleted regions and stem length preference (Roden et al., 

2017). 

Additionally, the existence of several alternative processing pathways and post-transcriptional 

modifications has favored the emergence of multiple miRNA isoforms (isomiRs) derived 

from the same expressed miRNA gene. Inaccurate cleavage by Drosha or Dicer can generate 

variable 5’ and/or 3’ ends and different nucleotide overhangs within the miRNA duplex, 

which can lead to the generation of alternative seeds and guide strand switching in the 

miRISC complex (Neilsen et al., 2012). Other alternative mechanisms have also been 

reported, such as adenosine-to-inosine (A-to-I) RNA-editing (Kume et al., 2014) and 3’ 

shortening of the mature miRNA due to exonuclease activity (Kim et al., 2016). The existence 

of a broad repertoire of miRNA isoforms with individual specificities contributes to increase 

the array of mRNAs that can be targeted by a given miRNA without the need of novel 

miRNA gain or the fixation of polymorphic sites in miRNA regions. 
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1.3.4. Phylogenetic conservation 

Early after the identification of the first miRNA genes (Lau et al., 2001; Lee and Ambros, 

2001), the existence of orthologous miRNA sequences that were highly conserved across 

different species became obvious (Tanzer and Stadler, 2004; Peterson et al., 2009). The 

relatively low divergence of miRNAs across species led to their utilization as useful 

molecular markers for phylogenetic and evolutionary studies (Wheeler et al., 2009; Kenny et 

al., 2015). In this regard, it is worth mentioning the let-7 miRNA, which is extensively 

conserved across many different species (Pasquinelli et al., 2000). Studies of let-7 function 

demonstrated its key role in cell development and transition between larval and adult stages in 

C. elegans (Reinhart et al., 2000), as well as in the regulation of metamorphosis in D. 

melanogaster (Sempere et al., 2003). In vertebrates, let-7 has also been identified as one of 

the main regulators of embryonic development in zebrafish (Chen et al., 2005), as well as of 

numerous tissue-specific signaling pathways during cell division and differentiation 

(Schulman et al., 2005; Watanabe et al., 2005). Another relevant case is exemplified by 

miRNA 1 (miR-1), one of the most important and highly expressed miRNAs in the muscle 

tissue and intimately related with cardiac and skeletal muscle development (Chen et al., 

2006). Both in mammals and in D. melanogaster, the expression of this miRNA is regulated 

by the myocyte enhancer factor 2 (Mef-2) and myoblast determination protein 1 (MYOD1), 

which suggests that the regulation of miR-1 expression and function is evolutionarily 

conserved in vertebrates and insects (Kalsotra et al., 2014).  

More recently, the evolutionary dynamics of miRNAs in domestic animals was surveyed by 

Penso-Dolfin et. al (2018). These authors thoroughly analyzed, in cow, dog, horse, pig and 

rabbit, the patterns of gains and losses in miRNA loci and their corresponding predicted target 

sites. Moreover, they described duplication events as a relevant mechanism for miRNA 

evolution and they also reported that young emerging miRNA families have a more restricted 

tissue expression profile than other more conserved old miRNA families (Penso-Dolfin et al., 

2018). Besides, 3’-UTR sites targeted by conserved miRNA families across multiple species 

also showed reduced variation rates. Other species-specific miRNA target sites, conversely, 

did not evolve under such strong evolutionary constraints (Penso-Dolfin et al., 2018). Another 

recent study by Simkin et al. (2020) further described three differentiated groups of miRNAs 

in terms of gain and loss events in their predicted 3’-UTR target sites (Simkin et al., 2020). 
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While ancient and widely conserved miRNAs, like let-7, presented signatures of strong 

purifying selection in their 3’-UTR target sites, other less conserved miRNAs did not show 

evidence of gaining or loosing target sites. Besides, a reduced number of miRNAs like miR-

146 evidenced a rapid turnover, gaining and loosing target sites with neutral, or even faster 

than neutral rates (Simkin et al., 2020). 

 

1.3.5. MicroRNA annotation 

The annotation of miRNAs is a fundamental step towards elucidating their crucial roles in 

regulating and fine-tuning of many relevant biological pathways. Regarding Metazoa, the 

amount of knowledge about miRNA identity, location, structure and function has been 

accumulating during the past two decades at a fast pace, and in well-studied model organisms 

such as humans or mice, comprehensive catalogues of annotated miRNAs have been built. 

The majority of studies focused on miRNA biology have used these two organisms as 

experimental models, while other species have been much less studied. This phenomenon is 

particularly obvious when analyzing the data set stored in one of the most accessed and cited 

miRNA databases, miRBase (Kozomara et al., 2019, https://www.mirbase.org). This database 

has become one of the reference sources of scientific information regarding miRNA 

annotation across species. In its last release (v.22, March 2018), miRBase hosted miRNA 

sequences from 271 different organisms, with a total of 38,589 hairpins representing pre-

miRNA sequences, which encode a total of 48,860 mature miRNAs. Despite these impressive 

numbers, some species such as human or mice are predominantly represented in the database, 

while other relevant organisms are missing or poorly annotated. In Figure 10 we can observe 

that several livestock species such as pig, goats or sheep have reduced numbers of annotated 

miRNAs. In contrast, cow and chicken rank at third and fourth positions (immediately after 

human and mice), respectively. 
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Figure 10: Number of miRNA hairpins annotated in the miRBase database v.22 in humans, 

primates, model organisms and domestic species such as cow (B. Taurus), chicken (G. 

gallus), pig (S. scrofa), goat (C. hircus) or sheep (O. aries). Highlighted in red is the number 

of annotated miRNA hairpins (408) in pigs. 

 

 

This high heterogeneity across species, not only in the numbers of annotated miRNAs but 

also in the quality of the annotation, is a problem of high concern for scientists working in the 

miRNA field. Indeed, miRNA prediction algorithms obtain worse performance metrics when 

using miRNA sequences from miRBase, compared with other more curated databases (Saçar 

et al., 2013). These problems have motivated the construction of other alternative and more 

curated databases with stricter annotation rules and, accordingly, a much more reduced set of 

available miRNA sequences and organisms (Backes et al., 2018; Fromm et al., 2019). 

Moreover, to overcome the high heterogeneity and redundancy in miRNA annotation, several 

authors have proposed homogeneous and well-structured criteria for naming novel and 

orthologous miRNA sequences (Ambros et al., 2003; Budak et al., 2015; Fromm et al., 2015; 

Desvignes et al., 2019).  
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Only 388 miRNA loci are available in the last annotation release of the pig assembly 

(Sscrofa11.1) in the Ensembl database (https://www.esnembl.org). From these, 370 miRNA 

genes are in chromosomal locations, whereas 18 are located in scaffolds. The number of 

annotated miRNA genes in the Ensembl database closely resembles that obtained when 

screening porcine miRNAs in the miRBase database (Kozomara et al., 2019, 

https://www.mirbase.org), where, as previously shown in Figure 10, 408 porcine miRNAs are 

available. This subtle difference might be due to the presence of doubtful or poorly annotated 

porcine miRNAs in miRBase, a caveat that has been also reported for other species (Saçar et 

al., 2013). 

The first set of porcine miRNAs were reported by Wernersson et al. (2005). At the same time, 

Sawera et al. (2005) also used a homology-based search to describe the miRNA-17-92 cluster 

and the expression profile of several miRNAs mapping to this cluster across different tissues. 

Subsequent surveys further described additional sets of porcine miRNAs using homology-

based search (Kim et al., 2006), as well as cDNA cloning and sequencing techniques (Kim et 

al., 2008b; McDaneld et al., 2009; Cho et al., 2010; Cirera et al., 2010; Xie et al., 2011). 

Microarray hybridization profiling (Huang et al., 2008; Podolska et al., 2011) and de novo 

assembly and sequencing (McDaneld et al., 2012) were also used. Following these initial 

studies, and shortly after the release of the first porcine genome assembly by Groenen et al. 

(2012), researchers started to use RNA-seq technologies to characterize the functions, 

interactions and expression profiles of non-coding RNAs in different porcine tissues, 

developmental stages and experimental conditions. Nevertheless, our understanding about the 

extent of the porcine miRNA repertoire is still limited, as evidenced by the reduced amount of 

annotated miRNA loci in the porcine genome. Hence, there is still room for expanding the set 

of porcine miRNAs by means of state-of-the-art prediction techniques using homology-based 

search, as well as sequencing of miRNA expression profiles in porcine tissues. 

 

1.3.6. MicroRNA gene prediction 

Early approaches to detect miRNAs 

Initial methods for miRNA discovery and annotation relied on laborious low-throughput 

procedures that required the isolation, cloning (Bentwich et al., 2005) and in situ 

hybridization of the miRNA transcripts (Nelson et al., 2006), followed by Sanger sequencing 

https://www.esnembl.org/
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of the detected RNA molecules. This molecular research was backed up by computational 

methods such as comparative alignment scanning for other overlapping non-miRNA 

sequences, homology-based comparison among species or the in silico prediction of miRNA 

secondary structures based on the search of hairpin-like foldings by means of RNA-folding 

algorithms like UNAFold (Markham and Zuker, 2008) or RNAfold (Lorenz et al., 2011). 

Following these early efforts, researchers focused their attention on the high evolutionary 

conservation of miRNA genes with the aim of using such feature to detect miRNA genes in 

poorly annotated species. In this regard, several methods using homology-based search 

approaches were published, like miRscan (Lim et al., 2003), miRSeeker (Lai et al., 2003), 

RNAmicro (Hertel and Stadler, 2006) or miROrtho (Gerlach et al., 2009). However, these 

approaches heavily relied on the 3′ and 5′ stem conservation of the candidate miRNAs (Lim et 

al., 2003), as well as in shared nucleotide patterns between the reference set of annotated 

miRNAs to which they are compared (Lai et al., 2003). Hence, it soon became evident that 

homology-based methods were only applicable to the detection of miRNAs exceptionally 

well-conserved across species, thus failing to detect species-specific miRNA loci or miRNAs 

with some degree of divergence among species. 

Prediction of miRNAs from small RNA-seq data 

Following the development of NGS technologies, specific protocols were also designed for 

the targeted sequencing of small RNAs (sRNA-seq), as canonical RNA-seq methods for 

mRNA capture tended to misrepresent the small RNA fraction. One of the first published 

papers using NGS technologies targeting miRNAs was authored by Bar et al. (2008). In this 

work, the authors sequenced the small RNA fraction of human embryonic stem cells, and 

profiled the expression of 1) 191 human miRNAs annotated in previous studies, 2) 56 

miRNAs not previously annotated in humans but with conserved orthologs in other species, 

and 3) 13 novel miRNA candidates without orthologs in other species. For miRNA 

prediction, Bar et al. (2008) established a series of rule-based criteria for miRNA 

characterization: 1) lack of overlap with other coding and non-coding annotated elements, 2) 

perfect alignment towards the reference genome, 3) sufficient read alignment to mature 

miRNAs within the hairpin, 4) minimized free energy of the folding compared with other 

non-miRNA sequences (Bonnet et al., 2004) and 5) shared 5’ end among clustered reads 

(derived from the high conservation of the miRNA seed region). 
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These studies were essential to implement in silico tools for predicting miRNAs from sRNA-

seq experimental data. The miRDeep algorithm (Friedländer et al., 2008) was one of the first 

end-to-end approaches incorporating rule-based methods for reconstructing miRNA hairpin 

candidates from sequencing data. Friedländer and collaborators designed a rule-based 

algorithm able to integrate sequence data from high-throughput analyses and extract miRNA 

hairpin candidates based on a combination of parameters, alike to those mentioned before, 

which were summarized in a score quantifying the probability of the hairpin to be a true 

miRNA. After this groundbreaking work, similar methods were developed, like miReap 

(https://sourceforge.net/projects/mireap/), MIReNA (Mathelier and Carbone, 2010), 

miRSeqNovel (Qian et al., 2012), sRNAbench (Barturen et al., 2014), miRdentify (Hansen et 

al., 2014) or miRNAFold (Tav et al., 2016). Updated versions of these tools, such as 

miRDeep2 (Friedländer et al., 2012), miRDeep* (An et al., 2013) and sRNAtoolbox (Rueda 

et al., 2015; Aparicio-Puerta et al., 2019) were also developed. 

Besides, other comprehensive methods for sRNA-seq analysis also incorporated miRNA 

prediction tools in their pipelines, with miRDeep (Friedländer et al., 2008), sRNAbench 

(Barturen et al., 2014) and miReap being the most used ones. Additional examples of these 

general-purpose pipelines are wapRNA (Zhao et al., 2011), omiRas (Müller et al., 2013), 

miRTools2.0 (Wu et al., 2013), iMiR (Giurato et al., 2013), eRNA (Yuan et al., 2014), Cap-

miRSeq (Sun et al., 2014), miARma-Seq (Andrés-León et al., 2016), the UEA sRNA 

workbench (Beckers et al., 2017) or the sRNAtoolbox (Aparicio-Puerta et al., 2019). 

Rule-based methods vs machine learning approaches 

In recent years, machine learning (ML) approaches have been implemented for miRNA 

prediction, detecting and discriminating miRNA hairpin structures from other types of non-

coding RNAs by using statistical learning models instead of deterministic rules. Nevertheless, 

both ML and rule-based methods can benefit from sRNA-seq data to uncover novel miRNA 

transcripts (Figure 11). Different tools have addressed the problem of correctly classifying 

miRNAs by training several ML algorithms: Hidden Markov models (HMM), support vector 

machine (SVM), random forest (RF), naïve Bayes (NB) or neural networks (NN), among 

others, all of them with inherent strengths and caveats (Stegmayer et al., 2018).  

One of the first examples of ML applied to miRNA prediction was proMiR (Nam et al., 2005) 

and its updated version proMiR II (Nam et al., 2006). These methods implemented an HMM 

https://sourceforge.net/projects/mireap/
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approach with probabilistic co-learning based on conserved sequences, their secondary 

structures and other characteristic features like the G/C ratio, conservation score or the free 

energy of the candidate sequences. Other tools making use of HMM are, to mention a few, 

miRRim (Terai et al., 2007), HHMMiR (Kadri et al., 2009) and SSCprofiler (Oulas et al., 

2009). With regard to SVM models, there are numerous methods implementing this type of 

learning approach, as early studies on miRNA prediction showed promising results in term of 

its accuracy and performance. The first SVM-based tool was reported by Xue et al. (2005), 

who used a specific triplet-encoding of the miRNA sequence to obtain a vector representation 

of the nucleotides in the hairpin. Methods developed subsequently were also based on 

different feature calculations, parameters and kernels from SVM algorithms. Examples of 

these tools are, for instance, miRAbela (Sewer et al., 2005), RNAmicro (Hertel and Stadler, 

2006), miRFinder (Huang et al., 2007), miRCoS (Sheng et al., 2007), miROrtho (Gerlach et 

al., 2009), microPred (Batuwita and Palade, 2009), micro-ProcessorSVM (Helvik et al., 

2007), miRenSVM (Ding et al., 2010), miRPara (Wu et al., 2011), BosFinder (Sadeghi et al., 

2014), YamiPred (Kleftogiannis et al., 2015), miRNA-dis (Liu et al., 2015), miRBoost (Tran 

et al., 2015), iMiRNA-SSF (Chen et al., 2016a) or miRge 2.0 (Lu et al., 2018). Tools based on 

RF algorithms are miPred (Jiang et al., 2007), miRanalyzer (Hackenberg et al., 2009), 

miReader (Jha and Shankar, 2013), HuntMi (Gudyś et al., 2013), miRClassify (Zou et al., 

2014) and Mirnovo (Vitsios et al., 2017). The BayesmiRNAfind (Yousef et al., 2006) and 

MatureBayes (Gkirtzou et al., 2010) tools, in contrast, use a classification method based on 

NB algorithm. Examples of the use of NN structures are miRANN (Rahman et al., 2012), a 

method using back-propagation on neural networks (Jiang et al., 2016), DP-miRNA (Thomas 

et al., 2017) or DeepMir (Tang and Sun, 2019). Other tools aimed to detect miRNAs have 

applied ensemble methods combining several ML algorithms, like izMiR (Saçar et al., 2017) 

or a recent work by Saçar et al. (2019) using 3D representations of RNA secondary structures.  

These methods generally include a first step of selecting a positive set of hairpin sequences to 

contrast with a negative set of other non-coding RNAs or pseudo-miRNA sequences and 

subsequent extraction of a set of representative miRNA features. Finally, the ML algorithm is 

trained based on these features in order to build a classifier for miRNA prediction. In Table 3, 

the extensive range of positive and negative data sets used for ML models training is 

displayed. 
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Figure 11: Schematic representation of the miRNA prediction workflow from sRNA-seq 

data. After pre-processing and filtering, reads are mapped and putative hairpin structures are 

reconstructed. Known pre-miRNAs and other hairpin-like non-coding RNAs can be used for 

training machine learning-based classifiers. Putative novel hairpins are then embedded into 

rule-based methods or as input for trained classifiers. Both approaches allow to obtain a list of 

novel predicted miRNA candidates. 
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Table 3: List of machine learning algorithms for microRNA gene prediction and the positive and negative data sets used for model training. 

Modela Tool Positive data Negative data Reference 

HMM 

ProMiR H. sapiens pre-miRNA hairpins Random pseudo-hairpins from H. sapiens (Nam et al., 2005) 

miRRim H. sapiens conserved miRNAs +/- 50 bp 
Randomly chosen conserved, moderately conserved 

and non-conserved regions in H. sapiens 
(Terai et al., 2007) 

HHMMiR H. sapiens pre-miRNA hairpins from miRBase v10 CDS and random regions from H. sapiens (Kadri et al., 2009) 

SSCprofiler H. sapiens pre-miRNA hairpins from miRBase v12 3'-UTRs from H. sapiens (Oulas et al., 2009) 

SVM 

Triplet-SVM H. sapiens pre-miRNA hairpins from miRBase v5 Random pseudo hairpins from H. sapiens (Xue et al., 2005) 

mirAbela MiRNA genes from Rfam 
Random sequences isolated from tRNA, rRNA and 

mRNA genes 
(Sewer et al., 2005) 

RNAmicro Metazoan miRNAs from miRBase v6 
Random shuffled sequences from positive data and 

tRNAs 
(Hertel and Stadler, 2006) 

miRFinder 
Pre-miRNA hairpins in human, mouse, pig, cattle, dog 

and sheep from miRBase v8.2 
Random sequences from H. sapiens and M. musculus (Huang et al., 2007) 

miRCoS M. musculus pre-miRNA hairpins from miRBase v9.1 
Random hairpins that did not pass filterings for 

positive data set 
(Sheng et al., 2007) 

miROrtho Metazoan miRNAs from miRBase Randomly chosen hairpins from non-miRNA genes (Gerlach et al., 2009) 

microPred H. sapiens pre-miRNA hairpins from miRBase 
Non-redundant H. sapiens pseudo hairpins from 

RefSeq 

(Batuwita and Palade, 

2009) 

micro-

ProcessorSVM 
H. sapiens pre-miRNA hairpins from miRBase v8 H. sapiens non-coding RNAs from Ensembl v37 (Helvik et al., 2007) 

miRenSVM 
H. sapiens and A. gambiae pre-miRNA hairpins from 

miRBase v12.2 

H. sapiens and A. gambiae 3'-UTRs and other non-

coding sequences from 3'-UTRdb v22 and Rfam9.1 
(Ding et al., 2010) 

miRPara Metazoan miRNAs from miRBase v13 
Sequences identical to positive data with mature 

miRNAs shifted to random starts 
(Wu et al., 2011) 

BosFinder B. taurus pre-miRNA hairpins from miRBase v20 
Non-redundant B. taurus pseudo hairpins and other 

non-coding sequences from RefSeq 
(Sadeghi et al., 2014) 

YamiPred H. sapiens pre-miRNA hairpins from miRBase Random pseudo hairpins from H. sapiens (Kleftogiannis et al., 2015) 

miRNA-dis Metazoan miRNAs from miRBase v20 Random pseudo hairpins from H. sapiens (Liu et al., 2015) 

miRBoost 
Pre-miRNA hairpins from eukaryotic genomes with at 

least 100 annotated miRNAs in miRBase v18 

Exonic regions and other non-coding sequences from 

fRNAdb, NONCODE and sonRNA-LBME-db 
(Tran et al., 2015) 

iMiRNA-SSF Non-redundant H. sapiens pre-miRNA hairpins Random pseudo hairpins from H. sapiens (Chen et al., 2016a) 
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miRge 2.0 
H. sapiens and M. musculus pre-miRNA hairpins 

expressed in several tissues from miRGeneDB 

Other expressed transcripts mapping to tRNA, 

snoRNA, rRNA or mRNA loci 
(Lu et al., 2018) 

RF 

miPred H. sapiens pre-miRNA hairpins from miRBase v8.2 Random pseudo hairpins from H. sapiens (Jiang et al., 2007) 

miRanalyzer 
Pre-miRNA hairpins in H. sapiens, C. elegans and R. 

norvegicus from miRBase v12 
Random hairpins from non-miRNA genes (Hackenberg et al., 2009) 

miReader 
Read sequences from sRNA-seq data set mapping to 

miRNA loci 

Read sequences from sRNA-seq data set mapping to 

non-miRNA loci 
(Jha and Shankar, 2013) 

HuntMi Pre-miRNAs from miRBase v17 
Non-coding RNAs and mRNAs from 10 animal and 

7 plant species, as well as 29 viruses 
(Gudyś et al., 2013) 

miRClassify Pre-miRNAs from miRBase v19 Random pseudo hairpins (Zou et al., 2014) 

Mirnovo 
Read sequences from sRNA-seq data set mapping to 

miRNA loci 

Read sequences from sRNA-seq data set mapping to 

non-miRNA loci 
(Vitsios et al., 2017) 

NB 

BayesmiRNAfind 
Pre-miRNA hairpins in C. elegans and M. musculus 

genomes 

Other non-coding sequences in C. elegans and M. 

musculus from UCSC 
(Yousef et al., 2006) 

MatureBayes 
Experimentally verified pre-miRNA hairpins in H. 

sapiens and M. musculus from miRBase v10 

Random shuffled sequences from positive data and 

tRNAs 
(Gkirtzou et al., 2010) 

NN miRANN H. sapiens pre-miRNA hairpins from miRBase v18 
Random pseudo hairpins from CDS regions in H. 

sapiens assembly 
(Rahman et al., 2012) 

BP BP-miRNA Pre-miRNA hairpins from A. lyrata Other non-miRNA hairpins from A. lyrata (Jiang et al., 2016) 

DL 
DP-miRNA H. sapiens pre-miRNA hairpins from miRBase v18 Random pseudo hairpins from H. sapiens (Thomas et al., 2017) 

DeepMir Non-redundant pre-miRNA hairpins from Rfam 
 

(Tang and Sun, 2019) 

Ensemble izMiR 
Pre-miRNA hairpin data sets in human, mouse, 

chicken and zebrafish from miRGeneDB and miRBase 
Random pseudo hairpins and CDS sequences (Saçar et al., 2017) 

TG miRNAss Pre-miRNA hairpins in H. sapiens and A. thaliana 
Random pseudo hairpins extracted from genome 

assemblies 
(Yones et al., 2018) 

SOM DeepSOM Pre-miRNA hairpins from miRBase v17 
 

(Stegmayer et al., 2017) 

 

aHMM: Hidden Markov model; SVM: Support vector machine; RF: Random forest; NB: Naïve Bayes; NN: Neural networks; BP: Back-propagation SVM; DL: Deep learning; Ensemble: Ensemble from various ML 

models; TG: Transductive graphs; SOM: Self-organizing maps. 
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Despite the plethora of available tools, the majority of domestic species, still lack a complete 

and reliable set of annotated miRNAs in their genomes, as shown in Figure 10. This 

circumstance narrows the possibilities of gene expression profiling and carrying out 

functional studies for determining miRNA-mRNA interactions, hence limiting the outcome of 

experiments aiming at disentangling the miRNA-dependent regulation of biological pathways. 

Unfortunately, many of the tools developed for miRNA prediction are just focused on 

reference species such as humans or mice (Ding et al., 2010; Chen et al., 2016), hindering the 

training of species-specific or updated prediction models. Indeed, the prediction of miRNA 

genes has generally emerged as a species-dependent problem, and better results are often 

obtained when using species-specific training data sets (Lopes et al., 2016). Another pitfall is 

that a number of miRNA prediction tools are based on web servers and thus they are limited 

to test a limited number of sequences at a time (Liu et al., 2015; Tran et al., 2015; Chen et al., 

2016a; Tav et al., 2016). Other miRNA prediction packages have become deprecated, being 

no longer available for downloading or online testing (Ding et al., 2010; Zou et al., 2014) or, 

even worse, they are not available for usage (Jiang et al., 2016; Saçar, 2019). Awareness of 

these limitations led to the development of other alternative methods taking advantage of 

unlabeled sequences in unsupervised schemes. Clustering techniques like graph-based 

transductive methods (Yones et al., 2018) or self-organizing maps (SOM), as implemented in 

deepSOM (Stegmayer et al., 2017) are examples of this unsupervised approach. 

 

1.3.7. Prediction of mRNAs targeted by microRNAs 

The role of miRNAs as post-transcriptional regulators has motivated the optimization of tools 

to predict and identify mRNAs targeted by miRNAs. Although several types of miRNA 

binding sites have been reported (Bartel, 2018), only canonical targets involving 7mer/8mer 

interactions seem to elicit observable and reproducible effects at the experimental level 

(Agarwal et al., 2015). Other alternative non-canonical targets might appear at marginal levels 

or correspond to very specific miRNA-mRNA interactions (Agarwal et al., 2018). To achieve 

a reliable prediction of miRNA targets, a useful approach is to directly search for sequence 

complementarity between the miRNA seed and short pairing regions within the 3’-UTR of 

mRNA transcripts. Moreover, restricting this simple sequence search to sites that are 

conserved among species might confer an additional strenght to the successful identification 
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of the target sites. Indeed, conserved miRNA-mRNA interactions have a good functional 

correspondence with knockdown experiments involving miRNA loss, while inconsistent 

results have been obtained in the case of less conserved target sites (Baek et al., 2008). 

To overcome these limitations, numerous tools and pipelines for miRNA target prediction 

have been developed, each applying a mixture of different approaches to accurately predict 

miRNA-mRNA interactions. In Table 4, the most commonly used miRNA target prediction 

tools are presented. One of the first released tools for miRNA target prediction was miRanda 

(John et al., 2004), a web-server software (microRNA.org) that integrates sequence 

complementarity and free energy of the miRNA-mRNA duplex to identify miRNA binding 

sites. Similarly, RNAhybrid (Krüger and Rehmsmeier, 2006) incorporates the free energy of 

the duplex. Other methods are based on the pattern-based recognition between miRNAs and 

3’-UTRs. Examples of this approach are rna22 (Miranda et al., 2006) or PITA (Kertesz et al., 

2007). 

Probably, the most cited, used and accessed tool for miRNA target prediction is the 

TargetScan software (Agarwal et al., 2015, 2018). This software is lodged in a web-based site 

(http://www.targetscan.org/vert_72/) and predicts miRNA target sites according to their 

conservation across species and the type of interaction. Besides, several additional variables, 

such as the free energy of the miRNA-mRNA duplex, 3’ compensatory pairing, and the local 

AU context or the pairing position within the 3’-UTR, are used for improving the accurary of 

the prediction. All these parameters are then summarized for ranking the most probable 

targets. Other tools for miRNA target prediction have incorporated ML algorithms to their 

pipelines. Examples of ML-based approaches for miRNA target prediction are miRDB 

(Wang, 2008; Liu and Wang, 2019), which uses a SVM model trained on the basis of 

commonly used sequence-based and experimental features from functionally confirmed 

miRNA-mRNA interactions, or the DIANA-microT-CDS tool (Maragkakis et al., 2009; 

Paraskevopoulou et al., 2013), which incorporates experimental features based on 

photoactivatable-ribonucleoside-enhanced cross-linking immunoprecipitation (PAR-CLIP) 

data. More recently, deep-learning methods based on neural networks schemes have also been 

applied for this task, like the miRAW tool (Pla et al., 2018), as well as others SOM-based 

tools like MiRNATIP (Fiannaca et al., 2016). 

https://microrna.org/
http://www.targetscan.org/vert_72/
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Table 4: Relevant bioinformatic tools for microRNA target prediction. 

Tool Type Organisma URL Reference 

miRanda 
database/web 

server/software 
h, m, r, d, c http://www.microrna.org/microrna/home.do  (John et al., 2004) 

RNAhybrid software 
 

https://directory.fsf.org/wiki/RNAhybrid  (Krüger and Rehmsmeier, 2006) 

rna22 database/web server h, m, d, c https://cm.jefferson.edu/rna22/Interactive/  (Miranda et al., 2006) 

PITA 
database/web 

server/software 
h, m, d, c https://genie.weizmann.ac.il/pubs/mir07/index.html  (Kertesz et al., 2007) 

TargetScan 
database/web 

server/software 

h, m, r, p, b, f, 

g, x, o, ma, z 
http://www.targetscan.org/vert_72/  (Agarwal et al., 2015, 2018) 

miRDB database/web server h, m, r, f, g http://mirdb.org/  (Wang, 2008; Liu and Wang, 2019) 

DIANA-microT-CDS 
database/web 

server/software 
h http://diana.imis.athena-innovation.gr/DianaTools/  (Maragkakis et al., 2009) 

miRAW software 
 

https://bitbucket.org/bipous/workspace/projects/MIRAW  (Pla et al., 2018) 

MiRNATIP database h, c http://tblab.pa.icar.cnr.it/public/miRNATIP/1.0/  (Fiannaca et al., 2016) 

 

aAcronyms for detailed organisms are: h (H. sapiens), m (M. musculus), r, (R. norvegicus), d (D. melanogaster), c (C. elegans), p (P. troglodytes), b (B. taurus), f (C. familiaris), g (G. gallus), x (X. laevis), o (M. 

domestica), ma (M. mulatta) and z (D. rerio). 
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This Ph.D. thesis was carried out with data generated under the framework of projects “Study 

of traits related with pigs lipid metabolism and pork quality by means of integral analyses of 

high density genotyping and gene expression data” (grant number: AGL2010-22208-C02-02) 

and “Genomic physiology of intramuscular fat storage in pigs” (grant number: AGL2013-

48742-C2-1-R). In the AGL2010-22208-C02-02 project, a number of QTL for meat quality 

traits were identified in a Duroc population through a GWAS approach and the genomes of 

the five founders of this population were sequenced. The goals of the thesis linked with this 

project were: 

1. To identify candidate polymorphisms in the sequenced QTL regions and exploring 

their association with porcine meat quality traits. 

2. To detect polymorphisms with potential deleterious effects in the five sequenced 

genomes and determining their association with viability and production traits. 

In the AGL2013-48742-C2-1-R project, we sequenced the skeletal muscle transcriptomes of 

fasted and fed sows and we investigated the differential expression of mRNA genes in these 

two physiological stages. In this thesis, we have put a special emphasis on investigating the 

potential role of microRNAs in the determinism of meat quality traits through several 

complementary approaches. The specific goals of the thesis linked to project AGL2013-

48742-C2-1-R were: 

1. To determine whether the variability of a number of mRNA encoding genes 

differentially expressed in fasted and fed sows is associated with meat quality traits.  

2. To characterize the patterns of variability of porcine microRNA genes and to 

investigate the association of such variation with mRNA expression and meat quality 

phenotypes. 

3. To improve the yet-poorly annotated porcine microRNAome by developing a 

dedicated prediction software tool able to detect novel and annotated microRNA 

sequences from transcriptomic data. 

4. To elucidate the patterns of microRNA expression in the skeletal muscle of fasted and 

fed sows and to integrate such information with the profiles of expression of mRNAs 

and long non-coding RNAs in order to obtain a comprehensive perspective about the 

consequences of nutrition on skeletal muscle metabolism. 
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Abstract 

In previous GWAS carried out in a Duroc commercial line (Lipgen population), we detected 

on pig chromosomes 3, 4 and 14 several QTL for gluteus medius muscle redness (GM a*), 

electric conductivity in the longissimus dorsi muscle (LD CE) and vaccenic acid content in 

the LD muscle (LD C18:1 n-7), respectively. We have genotyped, in the Lipgen population, 

19 SNPs mapping to 14 genes located within these QTL. Subsequently, association analyses 

have been performed. After correction for multiple testing, two SNPs in the TGFBRAP1 

(rs321173745) and SELENOI (rs330820437) genes were associated with GM a*, whereas 

ACADSB (rs81449951) and GPR26 (rs343087568) genotypes displayed significant 

associations with LD vaccenic content. Moreover, the polymorphisms located at the ATP1A2 

(rs344748241), ATP8B2 (rs81382410) and CREB3L4 (rs321278469 and rs330133789) genes 

showed significant associations with LD CE. We made a second round of association analyses 

including the SNPs mentioned above as well as other SNPs located in the chromosomes to 

which they map. After performing a correction for multiple testing, the only association that 

remained significant at the chromosome-wide level was that between the ATP1A2 genotype 

and LD CE. From a functional point of view, this association is meaningful because this locus 

encodes a subunit of the Na+ /K+ -ATPase responsible for maintaining an electrochemical 

gradient across the plasma membrane. 

 

Keywords: Na+/K+-ATPase; pig; single nucleotide polymorphism. 

 

Meat quality traits are of paramount importance for the pig industry because they determine, 

to a great extent, consumer acceptance and financial profit. Once pigs are slaughtered, there is 

a decline of the pH of the skeletal muscle owing to the production of lactic acid through 

anaerobic glycolysis (Rosenvold & Andersen 2003). The rate of muscle acidification has a 

strong effect on meat color and water‐holding capacity. In this way, a low ultimate pH (5.3–

5.4) is associated with pale, soft and exudative meat, as well as with an increased electrical 

conductivity (CE) and elevated drip and cooking losses (Lee et al. 2000; Rosenvold & 

Andersen 2003). In contrast, a high ultimate pH (6.3 or higher) results in dark, firm and dry 

meat with a high water‐holding capacity and a lowered CE (Lee et al. 2000; Kim et al. 2016). 

Adverse effects on meat quality are influenced by both genetic and environmental factors. 

https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0023
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0016
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0023
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0016
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0015
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Recessive and dominant genotypes in the porcine ryanodine receptor 1 (RYR1) and the protein 

kinase AMP‐activated non‐catalytic subunit γ 3 (PRKAG3) genes, respectively, are strong 

predisposing factors to the occurrence of pale, soft and exudative meats (Fujii et al. 1991; 

Milan et al. 2000). On the other hand, there are multiple factors related to pig management 

and transportation (pre‐slaughter stress), stunning method at slaughter, carcass chilling and 

pelvic suspension of carcasses that influence pork quality (Rosenvold & Andersen 2003). 

Another important parameter that determines meat quality is intramuscular fat (IMF) 

composition. In this regard, fatty acid composition can have important consequences on the 

oxidative stability of meat during processing and retail display as well as on fat firmness 

(Wood et al. 2008). 

In previous GWAS, we identified several genomic regions containing QTL for meat 

Minolta a* value (redness), CE (González‐Prendes et al. 2017) and IMF composition 

(González‐Prendes et al. 2019) traits measured in the longissimus dorsi (LD) and gluteus 

medius (GM) muscle samples of 350 Duroc barrows (Lipgen population). Details about the 

rearing of the Lipgen pigs can be found in Gallardo et al. (2009), whereas a thorough 

description of QTL mapping methods is reported in González‐Prendes et al. (2017). The 

measurement of CE was done 24 h after slaughter using a Pork Quality Meter (PQM‐I INTEK 

GmbH, Aichach, Germany), and Minolta a* value was determined with a Minolta Chroma‐

Meter CR‐200 (Konica Minolta, Osaka, Japan) equipment at the same time point. Muscle 

fatty acid composition was measured as previously described by Quintanilla et al. (2011). In 

the current work, we have selected 14 candidate genes located within QTL regions for GM a* 

on SSC3, LD CE on SSC4, and LD vaccenic content on SSC14 (Table 1). These genes were 

as follows: phosphorylase kinase catalytic subunit γ 1 (PHKG1), transforming growth factor β 

receptor‐associated protein 1 (TGFBRAP1), selenoprotein I (SELENOI), hydroxyacil‐CoA 

dehydrogenase trifunctional multienzyme (HADHA), coatomer protein complex 

subunit α (COPA), proliferation and apoptosis adaptor protein 15 (PEA15), calsequestrin 1 

(CASQ1), ATPase Na+/K+ transporting α2 subunit (ATP1A2), ATPase phospholipid 

transporting 8B2 (ATP8B2), cAMP‐responsive element binding protein 3 like 4 (CREB3L4), 

CREB‐regulated transcription coactivator 2 (CRTC2), acyl‐CoA dehydrogenase 

short/branched chain (ACADSB), G protein‐coupled receptor 26 (GPR26) and C‐terminal 

binding protein 2 (CTBP2). 

https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0008
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0018
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0023
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0029
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0010
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0011
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0009
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0010
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-tbl-0001
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Table 1: An association analysis between 19 SNPs mapping to 14 candidate genes and meat quality traits recorded in a Duroc pig population 

(significant associations are shown in bold)a. 

Gene SNP Type Trait P-value q-value P-value* q-value* δ ± SE A1 MAF 

PHKG1 
rs697732005 

(3:16.830 Mb) 
Splice region variant (G/A) 

GM a* 

0.88661 0.88661 0.68325 0.96577 -0.02 (0.142) A 0.3443 

TGFBRAP1 
rs321173745 

(3:49.516 Mb) 
Missense variant (A/G) 0.00361 0.00902 0.03108 0.6722 0.549 (0.186) G 0.1875 

SELENOI 
rs330820437 

(3:112.635 Mb) 
Missense variant (A/G) 0.00039 0.00196 0.01307 0.51778 0.643 (0.181) G 0.1757 

HADHA 

rs81215086 

((3:112.794 Mb) 
Missense variant (G/A) 0.53993 0.67491 0.62966 0.96577 -0.102 (0.169) A 0.2899 

rs344578723 

(3:112.796 Mb) 
Missense variant (G/A) 0.53466 0.67491 0.6798 0.96577 -0.104 (0.169) A 0.2866 

COPA 

rs340853721 

(4:90.163 Mb) 
Splice region variant (T/C) 

LD CE 

0.90735 0.95684 0.79005 0.99942 0.014 (0.091) T 0.4351 

rs333099339 

(4:90.183 Mb) 
Splice region variant (T/C) 0.87813 0.95684 0.88586 0.99942 0.017 (0.090) T 0.4381 

rs80949931 

(4:90.186 Mb) 
Missense variant (A/G) 0.95684 0.95684 0.6899 0.99942 -0.002 (0.091) A 0.4335 

PEA15 
rs329681990 

Splice region variant (G/A) 0.85666 0.95684 0.58021 0.99942 -0.014 (0.091) G 0.433 
(4:90.266 Mb) 

CASQ1 
rs334946278 

(4:90.280 Mb) 
Splice region variant (G/A) 0.95267 0.95684 0.9224 0.99942 0.005 (0.104) A 0.1304 

ATP1A2 
rs344748241 

(4:90.356 Mb) 
Splice region variant (G/A) 6.52E-03 7.17E-02 0.00006 0.02518 -0.325 (0.066) G 0.497 

ATP8B2 
rs81382410 

(4:95.435 Mb) 
Splice region variant (T/C) 0.00285 0.01565 0.00256 0.21113 -0.233 (0.077) T 0.3345 

CREB3L4 

rs329686514 

(4:95.717 Mb) 
Missense variant (C/T) 0.08043 0.17695 0.22592 0.97957 -0.155 (0.088) T 0.3063 

rs321278469 

(4:95.717 Mb) 
Missense variant (C/A) 0.00639 0.01757 0.00554 0.30475 -0.228 0.083) C 0.3084 

rs330133789 

(4:95.721 Mb) 
Missense variant (G/A) 0.00493 0.01757 0.01769 0.57188 0.254 (0.075) A 0.3373 



 

118 

 

CRTC2 
rs330198768 

(4:95.740 Mb) 
Intron variant (C/T) 0.32931 0.60373 0.5631 0.99942 -0.083 (0.085) T 0.3687 

ACADSB 
rs81449951 

(14:132.588 Mb) 
Missense variant (C/A) 

LD (C18:1) n-7 

0.04036 0.08073 0.0424837 0.8322423 0.093 (0.045) A 0.2109 

GPR26 
rs343087568 

(14:133.182 Mb) 
Splice region variant (A/G) 0.00333 0.01334 0.1269422 0.9956111 -0.096 (0.032) G 0.4632 

CTBP2 
rs339956077 

(14:134.334 Mb) 
Splice region variant (G/A) 0.88166 0.88166 0.1269422 0.9956111 0.007 (0.046) A 0.2094 

 

aThe P‐value and the q‐value terms define the statistical significance of the association analysis before and after correcting for multiple testing with a false discovery rate approach, respectively. The correction for 

multiple testing took into account the number of selected candidate SNPs mapping to each one of the SSC3 GM a* (5 SNPs), SSC4 CE (11 SNPs) and SSC14 LD (C18:1) n − 7 (3 SNPs) QTL. The P‐value* and the q‐

value* terms define the statistical significance of the chromosome‐wide association analysis before and after correcting for multiple testing with a false discovery rate approach, respectively. In this case, the correction 

for multiple testing took into account the number of markers in the porcine SNP60 BeadChip mapping to pig chromosomes SSC3 (3123 SNPs), SSC4 (3899 SNPs) and SSC14 (4203 SNPs). Other terms that need to be 

defined are: δ, estimated allele substitution effect and its standard error (SE); A1, minor allele; MAF, minor allele frequency; GM a*, Minolta a* value (redness) in the gluteus medius muscle; LD CE, electric 

conductivity in the longissimus dorsi muscle; and LD (C18:1) n − 7, vaccenic acid content in the longissimus dorsi muscle. 
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Genes were selected based on bibliographic information about their biological functions that 

suggested that they could be involved in the determinism of meat quality. Based on available 

RNA-seq (Cardoso et al. 2017) and whole‐genome data (our unpublished results), we called 

19 SNPs mapping to these 14 genes using the GATK Best Practices workflow for SNP calling 

(https://software.broadinstitute.org/gatk/best-practices/workflow?xml:id=11145), in 

accordance with protocols reported by Mármol‐Sánchez et al. (2019). Nineteen SNPs were 

finally selected because the SnpEff software predicted that they might have functional effects 

(Cingolani et al. 2012), as reported in Table S1. The 19 selected SNPs (Table 1) were 

genotyped at the Servei Veterinari de Genètica Molecular of the Universitat Autònoma de 

Barcelona (http://sct.uab.cat/svgm/en) using a QuantStudio 12K Flex Real‐Time PCR System 

(Thermo Fisher Scientific, Barcelona, Spain). Association analyses between SNPs and 

phenotypes were performed with the genome-wide efficient mixed model 

association (GEMMA) software (Zhou & Stephens 2012). The following statistical model 

was used: 

 

𝑦 = 𝑊𝛼 + 𝑥𝛿 + 𝑢 +  𝜀 

 

where y is the vector of phenotypic observations for every individual, α corresponds to a 

vector including the intercept plus the fixed effects, that is batch effect with four categories 

(all traits), and farm origin effect with three categories (all traits). The α vector also contains 

the regression coefficients of the following covariates: (i) carcass weight at slaughterhouse for 

meat quality traits; and (ii) IMF content in the LD muscle for LD fatty acid composition. W is 

the incidence matrix relating phenotypes with the corresponding effects; x is the vector of the 

genotypes corresponding to the set of selected polymorphisms; δ is the allele substitution 

effect for each polymorphism; u is a vector of random individual effects with an n‐

dimensional multivariate normal distribution MVNn (0, λ τ−1 K), where τ−1 is the variance of 

the residual errors, λ is the ratio between the two variance components and K is a known 

relatedness matrix derived from the SNPs; and ε is the vector of residual errors. Results were 

corrected for multiple testing using the false discovery rate method reported by Benjamini & 

Hochberg (1995). The correction for multiple testing took into account the number of 

https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0002
https://software.broadinstitute.org/gatk/best-practices/workflow?xml:id=11145
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0017
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0004
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#support-information-section
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-tbl-0001
http://sct.uab.cat/svgm/en
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0031
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0001
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candidate selected SNPs mapping to each one of the SSC3 GM a* (5 SNPs), SSC4 LD CE 

(11 SNPs) and SSC14 LD (C18:1) n − 7 (3 SNPs) QTL. 

Performance of association analyses with the methodology described above revealed the 

existence of several associations that remained significant even after correction for multiple 

testing. We found, for instance, an association between GM Minolta a* value and missense 

mutations in the TGFBRAP1 and SELENOI genes, which map to two different GM a* QTL 

on SSC3 (Table 1). The inactivation of the TGFBRAP1 gene results in the suppression of 

aerobic glycolysis and increased levels of mitochondrial respiration and fatty acid oxidation 

(Yoshida et al. 2013), whereas SELENOI encodes a selenoprotein that is fundamental for the 

synthesis of phosphatidylethanolamine, a molecule with important effects on the oxidation of 

lipid membranes, oxidative phosphorylation and mitochondrial morphology 

(Tasseva et al. 2013; Poyton et al. 2016). We have also detected significant associations 

between LD CE and SNPs in the ATP1A2, ATP8B2 and CREB3L4 genes, which map to SSC4 

LD CE QTL covering two regions spanning 85.6–91 and 95.2–97.8 Mb. These findings are 

suggestive because the ATP1A2 gene, the one showing the most significant association, is 

preferentially expressed in the skeletal and heart muscles and brain and it encodes the α2 

subunit of the ion pump Na+/K+ ATPase (Clausen et al. 2017). Noteworthy, Na+/K+‐ATPases 

provide the energy necessary for the maintenance of Na+ and K+ electrochemical gradients 

across the plasma membrane by hydrolyzing ATP (Clausen et al. 2017; Sampedro 

Castañeda et al. 2018). These gradients are essential for the preservation of the resting 

membrane potential as well as for the generation of electrical impulses in the skeletal muscle 

and nervous system (Clausen et al. 2017; Sampedro Castañeda et al. 2018). The ATP8B2 

protein is also an ATPase with flippase activity toward phosphatidyl choline, a key 

component of phospholipid membranes with important effects on the functioning of the 

sarcoendoplasmic reticulum Ca2+ATPase pumps (Fajardo et al. 2018; Shin & Takatsu 2018), 

whereas CREB3L4 is a transmembrane bZip transcription factor involved in the modulation 

of endoplasmic reticulum stress (Kim et al. 2014). Our association analysis also revealed the 

existence of significant associations between the phenotypic variation of LD vaccenic 

(C18:1 n − 7) content and SSC14 SNPs located in the ACADSB gene, which catalyzes the 

oxidation of branched‐chain fatty acids (Porta et al. 2019), and the GPR26 gene, whose 

inactivation leads to hyperphagia, glucose intolerance, hyperinsulinemia, dyslipidemia and 

obesity in mice (Chen et al. 2012). 

https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-tbl-0001
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0030
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0028
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0021
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0005
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0005
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0025
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0005
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0025
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0006
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0026
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0014
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0020
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0003
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We made a second round of association analyses in which the SNPs that previously showed 

evidence of statistical significance were compared against the whole sets of the porcine 

SNP60 BeadChip SNPs co‐localizing to the same chromosome (chromosome‐wide analysis), 

that is 3,123 SNPs on SSC3, 3,899 SNPs on SSC4 and 4,203 SNPs on SSC14. These 11,225 

SNPs were obtained from previously published porcine SNP60 BeadChip data reported by 

González‐Prendes et al. (2017). In this case, the correction for multiple testing took into 

account the number of SNPs mentioned above for each one of the three chromosomes under 

analysis, that is 3,128, 3,910 and 4,206 independent tests were taken into consideration when 

performing association analyses for pig chromosomes SSC3, SSC4 and SSC14, respectively. 

Interestingly, the rs344748241 SNP in the ATP1A2 gene was the only one that surpassed the 

chromosome‐wide threshold of significance (q‐value < 0.05; Table 1, Figure 1). Noteworthy, 

this SNP was not significant when we made an association analysis at the genome‐wide level 

(data not shown). Additionally, we used the LD function of the GASTON R package (version 

1.5.5; Perdry et al. 2019) to evaluate the presence of linkage disequilibrium among the SNP 

markers that showed significant associations with LD CE after correction for multiple testing 

at the chromosome‐wide level (Figure S1). The amount of linkage disequilibrium was 

expressed as r2 in accordance with the definition of Hill & Robertson (1968). As shown 

in Figure S1, we observed a high degree of linkage disequilibrium between the rs344748241 

(ATP1A2 gene) and the rs80782100 (IGSF8 gene) markers. It is noteworthy that the 

rs80782100 SNP, which maps to an intronic position within the immunoglobulin superfamily 

member 8 gene, displays the highest association with the LD CE phenotype, as described in 

González‐Prendes et al. (2017). 
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https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0019
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Figure 1: Manhattan plot depicting associations between electrical conductivity in 

the longissimus dorsi muscle and the genotypes of markers in the ATP1A2 (rs344748241), 

ATP8B2 (rs81382410) and CREB3L4 (rs321278469 and rs330133789) loci plus 3,899 

additional SNPs mapping to pig chromosome 4 (SSC4). The positions of these three genes 

are: SSC4, 90.292–90.371 Mb (ATP1A2); SSC4, 95.426 – 95.446 Mb (ATP8B2); and SSC4, 

95.714–95.723 Mb (CREB3L4). The green line represents the nominal P‐value of 

significance, whereas the blue line indicates the P‐value of significance after correcting for 

multiple testing with a false discovery rate approach (q‐value). The rs344748241 SNP in 

the ATP1A2 gene is located 23 kb away from the peak of the LD CE QTL, that is 

ALGA0026686 (rs80782100; 4:90.378 Mb) SNP, as reported by González‐Prendes et al. 

(2017). 

 

https://onlinelibrary.wiley.com/doi/full/10.1111/age.12864#age12864-bib-0010
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As previously discussed, we consider that the ATP1A2 gene is a strong positional and 

functional candidate to explain the CE QTL found on SSC4 because Na+, K+ ATPases are 

fundamental to inducing an electrochemical gradient across the plasma membrane of cells 

(Suhail 2010), and their kinetics are modulated by the extracellular pH 

(Salonikidis et al. 2000), a parameter that also displays strong effects on muscle electrical 

conductivity. In pigs, the ATP1A2 gene has been sequenced (Henriksen et al. 2013) and its 

polymorphisms have been associated with fat cut percentage (Fontanesi et al. 2012). A next 

step would be to re‐sequence the whole gene in Lipgen pigs with alternative genotypes (QQ 

vs. qq) for the LD CE QTL on SSC4, to build a complete catalog of SNPs with potential 

effects on protein activity and expression and to investigate their association with CE in the 

Lipgen population. Subsequently, functional tests should be applied to ascertain whether any 

of the mutations in the pig ATP1A2 gene with highly significant q‐values also have causal 

effects on muscle conductivity. 

 

 

Supplementary Information 

Supplementary Table 1: Additional information about selected SNP and their potential 

impact and deleteriousness (SIFT). 

Supplementary Figure 1: Graph depicting the magnitude of linkage disequilibrium among 

SNPs that showed significant associations with longissimus dorsi electric conductivity after 

correction for multiple testing at the chromosome-wide level. Here, the amount of linkage 

disequilibrium is expressed as r2 as defined by Will & Robertson (1968) and such parameter 

was calculated with the LD function of gaston R package. 
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Abstract 

The sequencing of the pig genome revealed the existence of homozygous individuals for a 

nonsense mutation in the argininosuccinate synthase 1 (ASS1) gene (rs81212146, c.944T>A, 

L315X). Paradoxically, an AA homozygous genotype for this polymorphism is expected to 

abolish the function of the ASS1 enzyme that participates in the urea cycle, leading to 

citrullinemia, hyperammonemia, coma and death. Sequencing of five Duroc boars that sired a 

population of 350 Duroc barrows revealed the segregation of the c.944T>A polymorphism, so 

we aimed to investigate its phenotypic consequences. Genotyping of this mutation in the 350 

Duroc barrows revealed the existence of seven individuals homozygous (AA) for the 

nonsense mutation. These AA pigs had a normal weight despite the fact that mild 

citrullinemia often involves impaired growth. Sequencing of the region surrounding the 

mutation in TT, TA and AA individuals revealed that the A substitution in the second position 

of the codon (c.944T>A) is in complete linkage disequilibrium with a C replacement 

(c.943T>C) in the first position of the codon. This second mutation would compensate for the 

potentially damaging effect of the c.944T>A replacement. In fact, this is the most probable 

reason why pigs with homozygous AA genotypes at the 944 site of the ASS1 coding region 

are alive. Our results illustrate the complexities of predicting the consequences of nonsense 

mutations on gene function and phenotypes, not only because of annotation issues but also 

owing to the existence of genetic mechanisms that sometimes limit the penetrance of highly 

harmful mutations. 

Keywords: citrullinemia; nonsense mutation; pig; premature stop codon; single nucleotide 

polymorphism. 

 

The sequencing of the pig genome led to the discovery of 157 nonsense mutations mapping to 

142 genes, and 11 of them were reported to have pathological effects in humans (Groenen et 

al. 2012). Although most of these 11 damaging nonsense variants were found in a 

heterozygous state, two mutations mapping to the argininosuccinate synthase 1 

(ASS1, rs81212146, c.944T>A, L315X) and to the RB binding protein 8 endonuclease 

(RBBP8) genes displayed homozygous genotypes. The inactivation of the RBBP8 gene causes 

embryonic lethality (Polato et al. 2014), but it should be noticed that the current release of the 

https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0010
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Ensembl database (https://www.ensembl.org) does not report any stop gained mutation in the 

porcine RBBP8 gene. With regard to the ASS1 enzyme, its inactivation leads to the disruption 

of the urea cycle and to citrullinemia, a disease characterized by increased ammonia levels in 

blood, stupor, convulsions, coma and death (Endo et al. 2004). Groenen et al. (2012) argued 

that homozygosity for the nonsense ASS1 mutation might be associated with a milder form of 

citrullinemia. However, the mild course of this disease is usually, but not always, explained 

by mutations causing only a partial abolishment of the function of the ASS1 enzyme 

(Häberle et al. 2003). In some cases, the mild form of the disease involves the development of 

symptoms such as poor growth, liver failure, cerebral infarction or spasticity, whereas in other 

occasions patients remain asymptomatic (Häberle et al. 2003). 

Whole‐genome sequencing (WGS) (our unpublished data) of the five Duroc boars that sired a 

purebred population of 350 Duroc barrows (Gallardo et al. 2008, 2009) revealed the 

segregation of the rs81212146 ASS1 nonsense polymorphism, providing an opportunity to 

investigate its phenotypic effects. Indeed, the consequences of this polymorphism were 

predicted by NCBI automated computational analysis, but no experiment was made to assess 

the accuracy of such a prediction. Using a QuantStudio 12 K flex Real‐Time PCR System 

available at the Servei Veterinari de Genètica Molecular at the Universitat Autònoma de 

Barcelona (http://sct.uab.cat/svgm/en), we genotyped the 350 offspring of the five boars with 

a dedicated TaqMan Open Array multiplex assay. In total, 323 pigs were successfully 

genotyped for the rs81212146 polymorphism, which led to the identification of 239 TT, 77 

TA and 7 AA pigs, hence confirming the existence of homozygous individuals for this 

mutation in the population under study. As one of the potential symptoms of mild 

citrullinemia is retarded growth, we inspected the final weight of the AA pigs compared with 

their TT and TA counterparts. Live weights were measured before slaughtering and carcass 

weights were also collected after evisceration at the abattoir. The average live weights at 

190 days of TT, TA and AA pigs were 122.55 ± 12.18, 121.26 ± 16.66 and 119.92 ± 21.91 kg 

respectively. Moreover, carcass weights of TT, TA and AA pigs were 94.47 ± 10.18, 

95.09 ± 11.78 and 93.67 ± 11.67 kg respectively (Figure S1). An analysis of variance 

(ANOVA) performed with the aov R function and contrasting ASS1 genotypic means for both 

live (P‐value = 0.724) and carcass (P‐value = 0.893) weights did not reveal any significant 

difference. In summary, we did not find evidence of a significantly decreased weight, before 

or after slaughter, in AA pigs. 

https://www.ensembl.org/
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0006
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0010
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https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0011
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0008
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0009
http://sct.uab.cat/svgm/en
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#support-information-section
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In order to further investigate the potential consequences of the rs81212146 polymorphism, 

we sequenced the region of the ASS1 gene containing the putative nonsense mutation by 

making use of both genomic DNA and complementary DNA (cDNA) as templates. A total of 

16 liver samples belonging to each of five TT and AA and six TA animals were selected at 

random. Genomic DNA extraction was performed by digestion of 30 mg of liver tissue in 

0.5 ml lysis buffer (50 mM Tris–HCl, pH 8; 20 mM EDTA, pH 8; 2% SDS) plus 15 μl 

(1 μg/μl) proteinase K and incubated overnight at 56 °C. Subsequently, 500 μl of the lysate 

was deproteinized with 0.5 ml of a mixture of phenol–chloroform–isoamyl alcohol (25:24:1). 

The resulting supernatant was mixed with 1 ml ice‐cold pure ethanol plus 50 μl NaCl (2 M) 

and centrifuged for 30 min at maximum speed. The DNA pellets obtained in this way were 

washed with 500 μl of ethanol 70% and resuspended in 50 μl of ultrapure water. We also 

extracted RNA from the same selected liver samples corresponding to TT, AA and TA pigs. 

In brief, liver samples were pulverized in liquid nitrogen with a mortar and a pestle, 

homogenized and submerged in 1 ml of TRI Reagent (Thermo Fisher Scientific, Barcelona, 

Spain). Total RNA was then purified with the RiboPure kit (Ambion, Austin, TX, USA) in 

accordance with the instructions of the manufacturer. The concentration and purity of DNA 

and RNA samples were assessed with a NanoDrop ND‐1000 spectrophotometer (Thermo 

Fisher Scientific, Barcelona, Spain). A Bioanalyzer‐2100 equipment (Agilent Technologies 

Inc., Santa Clara, CA) was employed for determining RNA integrity (RIN) with the Agilent 

RNA 6000 Nano Kit (Agilent Technologies Inc., Santa Clara, CA). All RNA samples had 

RIN values > 7. The average RIN values of RNA preparations corresponding to TT, TA and 

AA pigs were 7.46, 7.24 and 7.52 respectively. Reverse transcription (RT) was carried out 

with the High‐Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific, 

Barcelona, Spain). Each reverse transcription reaction contained 2 µl 10× RT Buffer, 0.8 µL 

25× dNTP Mix (100 mM), 2 µl 10× RT Random Primers, 1 µl MultiScribe Reverse 

Transcriptase (50 U/µl) and 10 µl total RNA (~100 ng/µl). Ultrapure water was added until a 

final volume of 20 µl was reached. The RT thermal profile included an incubation step at 

25 °C for 10 min, followed by 120 min at 37 °C and an inactivation step at 95 °C for 5 min. 

Genomic DNA and cDNA samples were then subjected to PCR amplification. Primers 

(Table S1) were designed with the Primer3 software (Untergasser et al. 2012) to span 

contiguous exon–intron and exon–exon junctions for genomic DNA and cDNA amplicons 

respectively. Expected sizes were 278 and 221 bp for PCR products amplified from genomic 

https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#support-information-section
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0022
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DNA and cDNA templates respectively. The relative positions of genotyped rs81212146 

polymorphism in genomic and cDNA amplicons are depicted in Figure S2. Amplification 

reactions contained 2 µl of 10× PCR buffer, 0.2 µl dNTPs (25 mM), 0.6 µl of each primer 

(10 µM), 2 µl of MgCl2 (25 mM), 2.5 µl of genomic DNA (10 ng/µl) or 2.5 µl of a 5‐fold 

dilution of the RT‐reaction, and 0.2 µl Amplitaq Gold DNA Polymerase (5 U/µl) (Thermo 

Fisher Scientific, Barcelona, Spain). Ultrapure water was added until a 20 µl final volume was 

reached. The thermal profile included a denaturation step at 95 °C for 10 min, followed by 35 

cycles of denaturation at 95 °C for 1 min, annealing at 60 °C for 1 min and extension at 72 °C 

for 1 min, plus a final extension step at 72 °C for 7 min. Amplicons with the expected size 

were purified with the ExoSAP‐IT PCR Clean‐up kit (Thermo Fisher Scientific, Barcelona, 

Spain). They were subsequently sequenced with the BigDye Terminator Cycle Sequencing 

Kit v1.1 (Applied Biosystems, Foster City, CA, USA) and with primers listed in Table S1. 

Sequencing reactions were electrophoresed in an ABI 3730 DNA analyzer (Applied 

Biosystems, Foster City, CA, USA). The MEGA software version 6.0 (Tamura et al. 2013) 

was employed to visualize the results of the sequencing experiments. Partial ASS1 sequences 

obtained from genomic DNA (accession numbers: MN296492–MN296493) and cDNA 

(MN296494–MN296495) were submitted to the Genbank database. 

The predicted consequence of the replacement of T by A at the second position of codon 315 

would be the introduction of a premature stop codon (TTG>TAG), completely abolishing the 

function of the ASS1 enzyme. However, sequencing of ASS1 DNA and cDNA amplicons 

revealed that the A allele in the second position of the codon is linked to a C replacement 

(rs81212145, c.943T>C) in the first position of the codon (Figure 1, Figure S3), leading to the 

generation of a benign missense (L315Q) mutation. This second polymorphism is expected to 

compensate for the potentially damaging effect of the c.944T>A replacement. As revealed by 

the PolyPhen‐2 algorithm (Adzhubei et al. 2010), the substitution of leucine (TTG) by 

glutamine (CAG) is predicted to be tolerated (PolyPhen‐2 score = 0.012). Indeed, 

homozygosity for the TAG codon at position 315 should be lethal in pigs, and in 

consequence, it might have been strongly selected against. Interestingly, all sequenced 

animals displaying an AA genotype for the second position of codon 315 were also 

homozygous CC for the first position (rs81212145), i.e. all of them were CAG for codon 315, 

suggesting the existence of complete linkage disequilibrium (LD) between both 

polymorphisms. By using a previously generated liver microarray dataset from the same 

https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#support-information-section
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#support-information-section
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0021
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-fig-0001
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#support-information-section
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0001
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Duroc population analyzed herewith (Manunza et al. 2014), we compared the levels 

of ASS1 mRNA expression between two c.944T>A genotypes, i.e. TA (N = 18) vs TT 

(N = 67). A t‐test analysis performed with the t.test R function did not reveal any significant 

difference in ASS1 mRNA expression between these two genotypes (P‐value = 0.346), 

suggesting that the c.944T>A polymorphism does not have any effect on the transcriptional 

rate of the ASS1 gene. 

In order to estimate the co‐association between the two mutations in the first and second 

positions of codon 315, 120 WGS belonging to European and Asian domestic pigs and wild 

boars were retrieved from the NCBI Sequence Read Archive 

(SRA, https://www.ncbi.nlm.nih.gov/sra). Detailed information about these WGSs is 

available in Table S2. All raw SRA files were converted into FASTQ format using the fastq‐

dump 2.8.2 tool from the SRA-TOOLKIT package 

(https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft). The FASTQ files were subsequently 

filtered for any sequencing adaptors with the Trimmomatic version 0.36 software (Bolger et 

al. 2014). Paired‐end filtered sequences were then aligned to the porcine reference genome 

(Sscrofa11.1, Warr et al. 2019) with the BWA MEM algorithm (Li 2013). Alignment files 

were sorted and binarized and PCR duplicates were marked and removed with the PICARD 

tool (https://broadinstitute.github.io/picard). INDEL realignment and base recalibration were 

performed and the HaplotypeCaller function from the GATK 3.8 tool (McKenna et al., 2010) 

with default parameters was used to generate variant call format (VCF) files. Hard filtering 

was applied according to GATK best practices (https://software.broadinstitute.org/gatk/best-

practices/). The rs81212145 and rs81212146 contiguous polymorphisms were retrieved and 

their co‐segregation in European and Asian domestic pigs as well as in European and Asian 

wild boars was investigated by estimating the r2 coefficient, which defines the amount of LD 

between two markers (Hill & Robertson 1968). 

https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0016
https://www.ncbi.nlm.nih.gov/sra
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#support-information-section
https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0002
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0023
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0013
https://broadinstitute.github.io/picard
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0017
https://software.broadinstitute.org/gatk/best-practices/
https://software.broadinstitute.org/gatk/best-practices/
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0012
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Figure 1: Sequencing of codon 315 of the porcine ASS1 gene and its surrounding region 

using genomic DNA as a template. The upper (a), central (b) and lower (c) electropherograms 

display the three codon 315 genotypes (CAG/CAG CAG/TTG and TTG/TTG) detected by 

Sanger sequencing in a sample of 16 pigs. The c.943T>C and c.944T>A polymorphisms are 

indicated with the (Π) and (*) symbols, respectively. 
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This analysis supported the notion that rs81212145 and rs81212146 polymorphisms are in 

complete LD (Table 1), implying the existence of two potential sequences, CAG and TTG, at 

codon 315. In contrast, the TAG sequence, which would have severe deleterious effects on 

ASS1 enzyme activity, was not detected in our WGS dataset. The frequency of the CAG 

haplotype was much higher in pigs and wild boars from Asia than in those with a European 

origin (Table 1). This result is probably due to the high genetic divergence between Asian and 

European pigs, which separated 1 million years ago (Frantz et al. 2015). 

 

Table 1: Frequency of the codon 315 CAG ASS1 haplotype in 120 sequenced pigs and wild 

boars (NCBI Sequence Read Archive) and measurement of the r2 coefficient between 

polymorphisms c.943T>C and c.944T>A. 

Parameter 
European domestic pigs 

(N = 40) 

European wild boars 

(N = 20) 

Asian domestic pigs 

(N = 40) 

Asian wild boars 

(N = 20) 

Missing1 0.375 1 0.05 0.15 

CAG 

frequency2 
0.08 - 0.89 0.47 

r2 LD3 1 - 1 1 

 

1Percentage of pigs with missing genotypes for codon 315 of the ASS1 gene; 2CAG haplotype frequency; 3r2 LD: magnitude of the linkage 

disequilibrium between polymorphisms c.943T>C and c.944T>A expressed as r2 (Hill & Robertson 1968). 

 

 

There is an increasing interest in characterizing nonsense mutations associated with lethality 

because they can have a negative effect on the profitability of pig farms. For instance, 

Derks et al. (2017) analyzed, with an 80K SNP array, 24,000 pigs from commercial farms and 

found 35 haplotypes with complete absence or depletion of homozygous genotypes and 

https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-tbl-0001
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-tbl-0001
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0007
https://onlinelibrary.wiley.com/doi/full/10.1111/age.12877#age12877-bib-0004
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showing adverse effects on reproduction traits. Moreover, Derks et al. (2019) detected five 

relatively frequent recessive lethal haplotypes in two commercial Norwegian Landrace and 

Duroc purebred populations which cause important reductions (15.1–21.6%) in litter size 

owing to the embryonic death of homozygous individuals. Interestingly, these recessive lethal 

haplotypes increase litter size in crossbred individuals owing to a positive heterotic effect on 

fertility. 

The results of our study reflect the difficulties of predicting the outcome of putative loss‐of‐

function mutations, either because problems in their correct annotation (Narasimhan et 

al. 2016) or owing to the existence of mechanisms of genetic compensation that prevent 

lethality. Indeed, the rs81212145 and rs81212146 SNPs are annotated as synonymous and 

stop gained substitutions in the Sscrofa10.2 and Sscrofa11.1 assemblies of the pig genome 

respectively, but according to our analyses they should be jointly considered as a dinucleotide 

polymorphism in codon 315 with a missense effect. With regard to genetic compensation, an 

analysis of 589,306 human genomes led to the identification of 13 individuals with 

homozygous (autosomal recessive disease) or heterozygous (autosomal dominant disease) 

genotypes for eight severe Mendelian childhood diseases (Chen et al. 2016). These 

individuals should have manifested serious clinical symptoms before the age of 18 years, but 

apparently they were perfectly healthy (Chen et al. 2016). The only explanation for such a 

paradoxical result is that there are mechanisms at play that decrease the penetrance of 

nonsense mutations, including suppressor mutations able to change the sequence of the 

affected codon or to induce splicing events eliminating the exon carrying the nonsense 

mutation (MacArthur et al. 2012). Alternatively, the readthrough of the premature stop codon 

during ribosomal translation might also prevent its truncating effect on protein synthesis 

(Rausell et al. 2014). In conclusion, our data indicate that the c.944T>A ASS1 mutation 

probably does not have pathological consequences on pigs owing to the existence of an 

adjacent mutation that prevents the formation of a premature stop codon. The considerable 

amount of deleterious variation segregating in domestic animals (Makino et al. 2018) offers 

an unparalleled opportunity to explore the effects of loss‐of‐function mutations on phenotypes 

of economic interest, as well as to elucidate the genetic mechanisms that, on some occasions, 

counteract their harmful consequences. 
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Abstract 

The genetic factors determining the phenotypic variation of porcine fatness phenotypes are 

still largely unknown. We investigated whether the polymorphism of eight genes 

(MIGA2, CRY2, NPAS2, CIART, ARNTL2, PER1, PER2 and PCK1), which display 

differential expression in the skeletal muscle of fasted and fed sows, is associated with the 

variation of lipid and mRNA expression phenotypes in Duroc pigs. The performance of an 

association analysis with the GEMMA software demonstrated that the rs330779504 SNP in 

the MIGA2 gene is associated with LDL concentration at 190 days (LDL2, corrected P-

value = 0.057). Moreover, the rs320439526 SNP of the CRY2 gene displayed a significant 

association with stearic acid content in the longissimus dorsi muscle (LD C18:0, corrected P-

value = 0.015). Both SNPs were also associated with the mRNA levels of the corresponding 

genes in the gluteus medius skeletal muscle. From a biological perspective these results are 

meaningful because MIGA2 protein plays an essential role in mitochondrial fusion, a process 

tightly connected with the energy status of the cell, while CRY2 is a fundamental component 

of the circadian clock. However, inclusion of these two SNPs in chromosome-wide 

association analyses demonstrated that they are not located at the peaks of significance for the 

two traits under study (LDL2 for rs330779504 and LD C18:0 for rs320439526), thus implying 

that these two SNPs do not have causal effects. 

 

 

Introduction 

The genome-wide analysis of gene expression data obtained from RNA-seq 

experiments can provide valuable information in order to understand the biology of 

production phenotypes and how they are genetically regulated. Cardoso et al.1 compared the 

muscle transcriptomic profiles of Duroc sows before and after feeding and, in doing so, they 

demonstrated that the ingestion of food is associated with changes in the mRNA levels of 

several circadian genes including the cryptochrome circadian regulator 2 (CRY2), neuronal 

PAS domain protein 2 (NPAS2), circadian associated repressor of transcription (CIART), aryl 

hydrocarbon receptor nuclear translocator like 2 (ARNTL2), period circadian regulator 1 

(PER1) and period circadian regulator 2 (PER2). The identification of circadian clock 

https://www.nature.com/articles/s41598-019-45108-z#ref-CR1
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regulator genes is particularly relevant because they have been broadly reported as major 

contributors to lipid metabolism and energy homeostasis2,3,4,5,6,7, driving changes in the 

expression of multiple transcripts and modulating cell response to different stimuli such as 

food intake5,8,9. Two other interesting genes identified by Cardoso et al.1 as differentially 

expressed before and after eating were mitoguardin 2 (MIGA2), which regulates 

mitochondrial fusion10, a process tightly connected with energy homeostasis11, and 

phosphoenolpyruvate carboxykinase 1 (PCK1), an enzyme fundamental for the maintenance 

of glucose and lipid levels12. 

The expression of the eight genes mentioned above 

(ARNTL2, CIART, CRY2, NPAS2, PER1, PER2, PCK1 and MIGA2) is affected by food intake 

and there is ample evidence that they have a key role in carbohydrate and lipid 

metabolism8,10,13,14,15. The main hypothesis that we aim to test in the current work is whether 

the variability of these eight genes is associated with lipid phenotypes recorded in a Duroc pig 

population denominated as Lipgen (Supplementary Table 1). To achieve this goal, we have 

first identified a total of 20 polymorphisms (Table 1) in these eight genes by using a 

previously published RNA-seq data set corresponding to 52 pigs from the Lipgen 

population16. These 20 SNPs have been genotyped in 345 pigs from the Lipgen population 

with available records for a broad array of lipid traits listed in Supplementary Table 1, i.e. 

serum lipid concentrations17,18, longissimus dorsi (LD) and gluteus medius (GM) muscle fatty 

acid composition19 and backfat thickness. Subsequently, those SNPs showing significant 

associations (after correction for multiple testing) with a given lipid trait, have been further 

studied by investigating if they are associated with gene expression as well as by performing 

chromosome-wide association analyses based on Porcine SNP60 BeadChip data. The liver 

and GM muscle mRNA expression data sets18,20 and the Porcine SNP60 BeadChip 

genotypes18,21 used for this purpose were generated in previous studies (Supplementary 

Table 2). 
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Table 1: List of polymorphisms genotyped in a population of Duroc pigs (N = 345). SSC: pig 

chromosome. 

Gene 
Sscrofa.11.1 

SSC Start End Strand SNP Effect 

MIGA2 1 269338125 269362328 + 

rs322533788 Splice region 

rs80923452 Splice region 

rs80832336 Splice region 

rs330779504 Splice region 

CRY2 2 16584431 16620669 - rs320439526 5'-UTR 

NPAS2 3 53295744 53418480 - rs335603631 Missense 

CIART 4 98797378 98814553 - rs322666984 Missense 

ARNTL2 5 46330522 46482280 - rs326158774 Splice region 

PER1 12 53341329 53376723 - 

rs699427837 Missense 

rs345340955 Splice region 

rs81436952 Missense 

PER2 15 137793421 137836268 - 

rs344440225 Splice region 

rs329662925 Missense 

rs324793161 Missense 

rs80910874 Missense 

rs325502974 Missense 

PCK1 17 57930356 57938817 + 

rs343196765 Missense 

rs331782052 Missense 

rs345064848 Splice region 

rs320568163 Missense 

 

 

 

Results 

Association analyses for lipid traits 

Previous data sets employed for making the association analyses with a wide variety of lipid-

related traits are listed in Supplementary Table 2. Performance of association analyses 

between the 20 selected SNPs and the phenotypes listed in Supplementary Table 1 allowed us 

to identify several associations that were significant at the nominal level (Table 2). Three 

SNPs in the PER1 gene were associated with LD and GM C18:3, and there was also an 

association between the CIART genotype and backfat thickness. Two SNPs in the PCK1 gene 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#MOESM1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#MOESM1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/table/Tab2/
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were associated with LD C17:0, and CRY2 and MIGA2 genotypes showed associations with 

several serum lipid and fatty acid composition traits. These results were consistent with the 

relevant role of the genes under study on metabolism and energy homeostasis. However, only 

two associations remained significant after correction for multiple testing. The serum 

concentration of low-density-lipoproteins (LDL) measured at ~190 days was significantly 

associated with the rs330779504 SNP (Table 2), a splice region variant located in the 

beginning of intron 14 (1:269.360 Mb) of the mitoguardin 2 gene (MIGA2). Pigs inheriting 

the A-allele showed an increased LDL cholesterol concentration (Figure 1A), with 

homozygous AA animals having a higher median blood LDL concentration (69.35 mg/dL) 

than GA (61.75 mg/dL) and GG (58.40 mg/dL) individuals. Kruskal-Wallis ranking test for 

differences in median LDL concentrations yielded a P-value of 5.14E-03 (Supplementary 

Table 3), thus supporting the existence of significant differences among the three 

rs330779504 genotypes. Besides, this MIGA2 polymorphism also displayed an additive effect 

on palmitic acid content in LD muscle, total serum cholesterol concentration at ~190 days of 

age and the ratio between omega-6 and omega-3 desaturation in LD, but only at the nominal 

P-value level of significance (Table 2). The proportion of variance in LDL cholesterol 

concentration explained by rs330779504 genotype was 2.16% (SE = 0.03%). 

The other association that remained significant after correction for multiple testing was that 

between rs320439526 genotype and stearic acid content (C18:0) of the LD muscle (Table 2). 

This polymorphism is located in the 5′ end of the CRY2 gene, and it was annotated as having 

a putative stop gain effect in the former Sus scrofa assembly record (Sscrofa10.2). This led us 

to select it due to the high impact effect that the inactivation of this gene could have on the 

regulation of circadian clock rhythms and many other relevant metabolic processes. However, 

when interrogated in the last available assembly release for the porcine genome (Sscrofa11.1), 

this variant appeared to be located in the 5′-UTR of the CRY2 gene. The Kruskal-Wallis 

ranking test for differences in median C18:0 content in the LD muscle yielded a P-value of 

5.71E-03 (Supplementary Table 3), with homozygous TT pigs having a higher median stearic 

acid content (12.52%) than their CT (11.54%) and CC (11.30%) counterparts (Figure 1C). 

The proportion of variance in stearic acid content in LD muscle explained by the rs320439526 

genotype was 8.87% (SE = 0.04%). 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/table/Tab2/
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/table/Tab2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/table/Tab2/
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Table 2: Polymorphisms significantly associated with lipid-related traitsa. 

Gene SNP Type Trait P-value q-value δ ± SE A1 MAF 

MIGA21 

rs330779504 

(1:269.360 

Mb) 

Splice 

region 

variant 

(G/A) 

LDL2 2.71E-03 5.69E-02 6.26 (2.01) 

A 0.236 
LD (C16:0) 7.89E-03 1.66E-01 -0.43 (0.14) 

TotalCholest2 3.06E-02 2.73E-01 5.86 (2.53) 

LDFAn6/FAn3 2.91E-02 6.10E-01 -1.00 (0.42) 

rs80832336 

(1:269.359 

Mb) 

Splice 

region 

variant 

(C/T) 

LD (C16:0) 7.06E-02 3.63E-01 -0.24 (0.13) 

T 0.381 
TotalCholest2 2.69E-02 2.73E-01 5.03 (2.13) 

rs322533788 

(1:269.341 

Mb) 

Splice 

region 

variant 

(T/C) 

GM (C10:0) 3.77E-02 4.32E-01 -0.01 (0.01) 

C 0.093 
GM (C20:0) 5.46E-03 1.15E-01 -0.04 (0.01) 

CRY21 

rs320439526 

(2:16.620 

Mb) 

5'-UTR 

variant 

(C/T) 

LD (C18:0) 7.04E-04 1.48E-02 0.39 (0.12) 

T 0.353 

TotalCholest2 4.22E-02 2.73E-01 -4.74 (2.23) 

LDUFA 3.10E-02 3.82E-01 -0.43 (0.20) 

LDSFA 3.69E-02 3.75E-01 0.42 (0.20) 

LD (C16:1) 2.05E-02 4.31E-01 -0.12 (0.05) 

CIART 

rs322666984 

(4:98.801 

Mb) 

Missense 

variant 

(G/C) 

BFT1 4.07E-03 8.54E-02 -3.20 (1.12) C 0.214 

PER1 

rs81436952 

(12:53.368 

Mb) 

Missense 

variant 

(C/T) 

LD (C18:3) 1.16E-02 1.22E-01 0.04 (0.02) 
C 0.058 

GM (C18:3) 4.11E-02 2.96E-01 0.04 (0.02) 

rs699427837 

(12:53.365 

Mb) 

Missense 

variant 

(A/G) 

LD (C18:3) 9.65E-03 1.22E-01 0.04 (0.02) 
G 0.059 

GM (C18:3) 4.22E-02 2.96E-01 0.04 (0.02) 

rs345340955 

(12:53.368 

Mb) 

Splice 

region 

variant 

(A/T) 

LD (C18:3) 2.33E-02 1.62E-01 0.04 (0.02) 

T 0.054 
GM (C18:3) 1.33E-02 2.96E-01 0.05 (0.02) 

PCK1 

rs320568163 

(17:57.936 

Mb) 

Missense 

variant 

(A/G) 

LD (C17:0) 2.23E-02 2.70E-01 -0.02 (0.01) G 0.144 

rs331782052 

(17:57.933 

Mb) 

Missense 

variant 

(A/G) 

LD (C17:0) 2.57E-02 2.70E-01 -0.02 (0.01) G 0.138 

 

aSNPs in bold show associations that remained significant after correction for multiple testing; q-value: q-value calculated with the false-

discovery rate (FDR) method; δ: estimated allele substitution effect and standard error (SE); A1: minor allele, MAF: Minor allele frequency; 

LD: longissimus dorsi muscle, GM: gluteus medius muscle; trait acronyms are defined in Supplementary Table 1. 
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Figure 1: (A) Boxplots depicting the median and the distribution of serum low density 

lipoprotein concentrations at ~190 days for each one of the three rs330779504 genotypes: GG 

(N = 191), GA (N = 125) and AA (N = 16). (B) Boxplots depicting the median and the 

distribution of MIGA2 mRNA expression levels in the gluteus medius skeletal muscle for 

each one of the three rs330779504 genotypes: GG (N = 48), GA (N = 33) and AA (N = 6). (C) 

Boxplots depicting the median and the distribution of stearic acid (C18:0) content in LD 

skeletal muscle for each one of the three rs320439526 genotypes: CC (N = 135), CT (N = 161) 

and TT (N = 37). (D) Boxplots depicting the median and the distribution of CRY2 mRNA 

expression levels in the gluteus medius skeletal muscle for each one of the three rs320439526 

genotypes: CC (N = 37), CT (N = 45) and TT (N = 6). 
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Polymorphisms in the MIGA2 and CRY2 genes are associated with mRNA expression 

levels 

To gain new insights into the molecular basis of the two significant associations found 

(Table 2), we investigated whether the rs330779504 and the rs320439526 SNPs are 

associated with the mRNA expression of the MIGA2 and CRY2 genes, respectively. 

Previously reported hepatic and GM muscle microarray data sets18,20 were employed for this 

purpose (Supplementary Table 2). Analysis with the GEMMA software revealed a significant 

association between the rs330779504 polymorphism and MIGA2 mRNA expression levels in 

the GM muscle (Table 3). Pigs inheriting the A-allele of the rs330779504 polymorphism 

showed a reduced MIGA2 mRNA expression (Figure 1B). Performance of a test based on the 

analysis of variance (ANOVA) confirmed the existence of statistically significant differences 

among genotypes (Supplementary Table 4). Moreover, a weak but significant association 

between the SNP rs330779504 and one of the probes defining liver MIGA2 mRNA 

expression was also found (Table 3). With regard to the CRY2 gene, when we performed an 

association analysis with the GEMMA software, the rs320439526 5′-UTR variant happened 

to be significantly associated with the expression of the corresponding gene in the GM muscle 

(Table 3). When we compared the CRY2 mRNA levels corresponding to each one of the three 

rs320439526 genotypes (Figure 1D) by using an ANOVA test, we found differences that 

almost reached significance (Supplementary Table 4). 

 

Inclusion of significant SNPs in a chromosome-wide association analysis 

After demonstrating that in the Lipgen population the rs330779504 (MIGA2) and 

rs320439526 (CRY2) SNPs are associated with serum LDL concentration at ~190 days and 

LD C18:0, respectively, we aimed to investigate whether other SNP markers located in the 

vicinity of rs330779504 and rs320439526 display associations with these two traits with a 

higher level of significance than those observed for rs330779504 and rs320439526. To 

achieve this goal, we merged the rs330779504 SNP with 7,188 SNPs mapping to pig 

chromosome 1 (SSC1) and the rs320439526 SNP with 3,684 SNPs mapping to SSC2. The 

SSC1 and SSC2 SNP data were extracted from Porcine SNP60 BeadChip genotyping data 

reported by Manunza et al.18 and González-Prendes et al.21 in the Lipgen population 

(Supplementary Table 2). The associations between the markers rs330779504 (MIGA2) and 

https://www.nature.com/articles/s41598-019-45108-z#Tab2
https://www.nature.com/articles/s41598-019-45108-z#ref-CR18
https://www.nature.com/articles/s41598-019-45108-z#ref-CR20
https://www.nature.com/articles/s41598-019-45108-z#MOESM1
https://www.nature.com/articles/s41598-019-45108-z#Tab3
https://www.nature.com/articles/s41598-019-45108-z#Fig1
https://www.nature.com/articles/s41598-019-45108-z#MOESM1
https://www.nature.com/articles/s41598-019-45108-z#Tab3
https://www.nature.com/articles/s41598-019-45108-z#Tab3
https://www.nature.com/articles/s41598-019-45108-z#Fig1
https://www.nature.com/articles/s41598-019-45108-z#MOESM1
https://www.nature.com/articles/s41598-019-45108-z#ref-CR18
https://www.nature.com/articles/s41598-019-45108-z#ref-CR21
https://www.nature.com/articles/s41598-019-45108-z#MOESM1
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rs320439526 (CRY2) with LDL serum concentration at ~190 days of age and with stearic acid 

content in LD, respectively, were only detected at the nominal level (Figure 2). Indeed, we 

did not find any significant association at the chromosome-wide level when correcting for 

multiple testing with the false discovery rate (FDR) approach22 (Figure 2). 

 

 

Table 3: Associations between MIGA2 and CRY2 genotypes and the mRNA levels of the 

corresponding genes estimated with microarrays in gluteus medius skeletal muscle and liver 

samples from Duroc pigs; δ: estimated allele substitution effect and standard error (SE); A1: 

minor allele, MAF: Minor allele frequency; GM: gluteus medius skeletal muscle. 

Gene SNP Type Probe Tissue P-value δ ± SE A1 MAF 

MIGA2 

rs330779504 

(1:269.360 

Mb) 

Splice 

region 

variant 

(G/A) 

Ssc.19153.2.A1_at 

GM 8.11E-06 -0.39 (0.08) 

A 0.236 

LIVER 5.99E-01 0.05 (0.09) 

Ssc.19153.1.S1_at 

GM 2.78E-07 -0.53 (0.09) 

LIVER 2.60E-02 0.16 (0.07) 

CRY2 

rs320439526 

(2:16.620 

Mb) 

5'-UTR 

variant 

(C/T) 

Ssc.26267.1.S1_at GM 3.01E-02 -0.19 (0.09) T 0.353 

 

 

 

Discussion 

One of the main goals of our study was to evaluate whether the polymorphisms of six genes 

with critical roles in the regulation of the circadian rhythms 

(CRY2, NPAS2, CIART, ARNTL2, PER1, PER2) are associated with the variation of lipid 

traits recorded in 345 Duroc pigs (Lipgen population). Indeed, circadian clock genes have 

https://www.nature.com/articles/s41598-019-45108-z#Fig2
https://www.nature.com/articles/s41598-019-45108-z#ref-CR22
https://www.nature.com/articles/s41598-019-45108-z#Fig2
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been broadly reported as major contributors to the regulation of lipid metabolism and 

maintenance of energy homeostasis3,4,7, driving changes in the expression of multiple 

transcripts and thus causing differences in protein and enzymatic activity across the day-night 

cycle23,24. We have found multiple associations between the variability of the pig circadian 

genes and fatty acid composition traits, but the majority of them were only significant at the 

nominal level (Table 2). There are reports that indicate that there is a close relationship 

between the activity of circadian genes and fatty acid synthesis. For instance, fatty acid 

elongation is under circadian control because the cyclic acetylation of acetyl-CoA synthetase 

1 by the SIRT1 deacetylase modulates the intracellular concentration of acetyl-CoA25. 

Moreover, alteration of circadian genes can potentially influence liver lipid metabolism in 

mice26. With regard to the circadian genes, the only association that remained significant after 

correction for multiple testing was that between the rs320439526 SNP of the CRY2 gene and 

C18:0 content in the longissimus dorsi muscle (Table 2, Supplementary Table 3). This 

association is particularly interesting because it has been demonstrated that the CRY1/2 genes 

can repress the peroxisome proliferator-activated receptor δ (PPARD) transcription factor, 

which has a fundamental role in lipid metabolism15. Indeed, the inhibition of PPARD 

by CRY1/2 is expected to decrease the rates of fatty acids transport and oxidation in the 

skeletal muscle15. Besides, the CRY2 gene has multiple effects on lipid metabolism. In 

response to a high-fat diet, CRY-deficient mice showed an increased body weight gain despite 

less feed consumption compared with wild-type animals, as a result of the activation of 

lipogenic pathways combined with increased insulin secretion and lipid storage27, thus leading 

to obesity propensity when CRY regulatory function was disrupted. We have also shown that 

the rs320439526 SNP of the CRY2 gene is associated with the expression of the CRY2 mRNA 

in the gluteus medius muscle (Table 3, Supplementary Table 4), suggesting that this 

polymorphism, or a nearby mutation, has regulatory effects on the transcriptional rate of 

the CRY2 gene. This polymorphism maps to the 5′-UTR of the CRY2 gene, a region that can 

have broad transcriptional effects on gene expression by interacting with RNA-binding 

proteins28. However, the Ensembl annotation of the rs320439526 SNP does not predict any 

functional effect, so we favor the hypothesis that this SNP is linked to another mutation with 

regulatory effects on CRY2 mRNA levels. The chromosome-wide (SSC2) association analysis 

depicted in Figure 2 clearly shows that rs320439526 is not the marker displaying the most 

significant association with LD C18:0, thus indicating that the associations detected in our 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR23
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR24
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/table/Tab2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR25
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/table/Tab2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#MOESM1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR27
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/table/Tab3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR28
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/figure/Fig2/
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study have been produced by the existence of linkage disequilibrium between the 

rs320439526 SNP and a causal mutation yet to be found. 

 

 

Figure 2: (A) Manhattan plot depicting the association of SNP rs330779504 and 7,188 

additional SNPs mapping to pig chromosome 1 (SSC1) with serum low density lipoprotein 

concentration at ~190 days of age recorded in 345 Duroc pigs (Lipgen population). (B) 

Manhattan plot depicting the association of SNP rs320439526 and 3,684 additional SNPs 

mapping to pig chromosome 2 (SSC2) with stearic acid content in the longissimus dorsi 

muscle. The green line represents the nominal P-value of significance, while the blue line 

indicates the P-value of significance after correcting for multiple testing with an FDR test. 
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Another association that remained significant after correction for multiple testing was that 

between the MIGA2 rs330779504 SNP and serum LDL concentrations at ~190 days (Table 2, 

Supplementary Table 3). Moreover, this SNP was also associated with MIGA2 mRNA 

expression in the GM muscle and liver tissues (Table 3, Supplementary Table 4). The MIGA2 

gene, also known as FAM73B, and its homolog MIGA1 (FAM73A) encode proteins localized 

to the outer membrane of mitochondria as membrane-integrated proteins and they have been 

previously associated with reduced body weight in mice29 and variations in backfat thickness 

in pigs30. In a study performed by Zhang et al.10, it was reported that MIGA1/2 proteins 

stabilize the dimeric complex formed by active MitoPLD, thus facilitating mitochondrial 

fusion31. Interestingly, the dynamics of mitochondrial fusion and fission is tightly related with 

the energy demand of cells. Indeed, nutrient abundance and starvation are associated with an 

increased frequency of fission and fusion events, respectively27,32. Besides, the capacity to 

produce ATP in response to changes in energy demand and supply is modulated by 

mitochondrial morphology33. A recent study reported that mitochondrial fusion induced by 

leptin could have important effects on the hepatic lipid accumulation34, but to the best of our 

knowledge it is currently unknown whether mitochondrial fusion/fission has any effect on 

cholesterol and lipoprotein metabolism. Noteworthy, the chromosome-wide analysis pictured 

in Figure 2 evidenced that the association observed between the MIGA2 rs330779504 marker 

and serum LDL levels at ~190 days is probably not causal, as there are some other 

neighboring SNPs that show more significant associations with this trait. 

 

 

Conclusions 

In this work, we wanted to test whether the variability of six circadian genes 

(ARNTL2, CIART, CRY2, NPAS2, PER1 and PER2) and two additional genes (MIGA2 and 

PCK1) with key roles in energy homeostasis is associated with a set of lipid phenotypes 

recorded in Duroc pigs (Lipgen population). We have observed multiple associations between 

the variation of circadian genes and muscle fatty acid composition, but only that between the 

rs320439526 SNP of the CRY2 gene and LD C18:0 content remained significant after 

correction for multiple testing. We have also detected a significant association between the 

rs330779504 SNP of the MIGA2 gene and LDL concentration at 190 days. In the light of the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/table/Tab2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/table/Tab3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR29
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR30
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR27
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR32
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR33
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/#CR34
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588565/figure/Fig2/
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results of the chromosome-wide analyses, we conclude that none of these two associations are 

causal. 

 

 

Methods 

Ethics approval 

Animal care and management procedures were performed following Spanish national 

guidelines for the Good Experimental Practices and they were approved by the Ethical 

Committee of the Institut de Recerca i Tecnologia Agroalimentàries (IRTA). 

 

Animal material and phenotype recording 

As previously reported by Gallardo et al.17,35 a total of 345 Duroc barrows belonging to 5 

half-sib families and distributed in 4 fattening batches were selected from a commercial pig 

line, devoted to high quality meat production. This line is characterized by its high content of 

intramuscular fat, a feature that results in the improvement of meat juiciness and taste, hence 

conferring a better consumer acceptance36. Pigs were bred under intensive conditions of 

feeding and handling, and slaughtered when they reached 122 kg of live weight (~190 days of 

age). Phenotypic measures for different traits (Supplementary Table 1) were recorded during 

the productive cycle or after slaughtering: Triglycerides (TG), total cholesterol 

(TotalCholest), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) serum 

concentrations at ~45 and ~190 days of age as reported by Gallardo et al.17, whereas 

intramuscular fat content in the LD and GM muscles and fatty acid composition for LD and 

GM were determined as described by Quintanilla et al.19. 

 

Selection and genotyping of twenty SNPs mapping to eight candidate genes 

Based on the results reported by Cardoso et al.1, we took into consideration eight genes that 

showed differential expression before and after feeding and that, moreover, play important 

roles in metabolism and circadian clock regulation (Table 1). The variability of these 8 genes 

was characterized by using, as a source of information, RNA-seq data results from 52 Duroc 

https://www.nature.com/articles/s41598-019-45108-z#ref-CR37
https://www.nature.com/articles/s41598-019-45108-z#MOESM1
https://www.nature.com/articles/s41598-019-45108-z#ref-CR17
https://www.nature.com/articles/s41598-019-45108-z#ref-CR19
https://www.nature.com/articles/s41598-019-45108-z#ref-CR1
https://www.nature.com/articles/s41598-019-45108-z#Tab1
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pigs retrieved from the same population analyzed herewith (Supplementary Table 2). Single 

nucleotide polymorphisms within selected genes were retrieved among variant calling results 

from sequences generated by Cardoso et al.16.  

 

Variant discovery analyses were performed by following the GATK Best Practices workflow 

for SNP calling: 

 (https://software.broadinstitute.org/gatk/documentation/article.php?id=3891). Briefly, after 

read mapping, sequences were split into exon segments and intronic overhanging sequences 

hard-clipped. Mapping qualities were reassigned by using the SplitNCigarReads GATK tool 

(https://software.broadinstitute.org/gatk), and the Haplotype Caller tool 

(https://software.broadinstitute.org/gatk) was used to detect SNPs for each analyzed sample 

(N = 52). Variant effect prediction on detected polymorphisms was estimated by using the 

SnpEff software37 and those that showed potential functional or regulatory effects (i.e. high 

impact, missense, splice site regions, 5′-UTR) within selected genes were kept for genotyping. 

Moreover, we also selected 3 SNPs showing potential functional or regulatory effects 

(rs322533788, rs335603631 and rs326158774) that were retrieved from the Ensembl database 

(https://www.ensembl.org). A total of 20 selected SNPs and their flanking sequences (60 

nucleotides upstream and downstream), were submitted to the Custom TaqMan Assay Design 

Tool website (https://www5.appliedbiosystems.com /tools/cadt/; Life Technologies) to 

ascertain if they were amenable to genotyping in a TaqMan Open Array multiplex assay 

platform. Genotyping was performed at the Servei Veterinari de Genètica Molecular at the 

Universitat Autònoma de Barcelona (http://sct.uab.cat/svgm/en) by using a QuantStudio 12 K 

flex Real-Time PCR System (ThermoFisher Scientific). 

 

Association analyses between twenty selected SNPs and porcine lipid-related traits 

The PLINK software38 was used for processing genotyped data. Association analyses between 

genotyped polymorphisms and phenotypes were performed with the genome-wide efficient 

mixed model association (GEMMA) software39. This package uses a mixed model approach 

to account for population stratification and relatedness by calculating a genomic kinship 

matrix with SNPs genotypes as random effects and provides an exact test of significance. We 

implemented a univariate mixed model as follows: 

https://www.nature.com/articles/s41598-019-45108-z#MOESM1
https://www.nature.com/articles/s41598-019-45108-z#ref-CR16
https://software.broadinstitute.org/gatk/documentation/article.php?id=3891
https://software.broadinstitute.org/gatk
https://software.broadinstitute.org/gatk
https://www.nature.com/articles/s41598-019-45108-z#ref-CR38
https://www.ensembl.org/
https://www5.appliedbiosystems.com/
http://sct.uab.cat/svgm/en
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𝑦 = 𝑊𝛼 + 𝑥𝛿 + 𝑢 +  𝜀 

 

where y is the vector of phenotypic observations for every individual; α corresponds to a 

vector including the intercept plus the fixed effects, i.e. batch effect with 4 categories (all 

traits), farm origin effect with 3 categories (all traits), data of extraction with 2 categories 

within batch (only for TotalCholest, TG, HDL and LDL serum concentration, that were 

measured at approximately 45 and 190 days). The α vector also contains the regression 

coefficients of the following covariates: live weight at slaughterhouse for TotalCholest, TG, 

HDL and LDL serum concentrations, and IMF content in LD and GM for LD and GM fatty 

acid composition respectively; W is the incidence matrix relating phenotypes with the 

corresponding effects; x is the vector of the genotypes corresponding to the set of selected 

polymorphisms; δ is the allele substitution effect for each polymorphism; u is a vector of 

random individual effects with a n-dimensional multivariate normal distribution MVNn (0, 

λ τ−1 K), where τ−1 is the variance of the residual errors, λ is the ratio between the two variance 

components and K is a known relatedness matrix derived from the SNPs; and ε is the vector 

of residual errors. 

The association between lipid-related traits and the twenty analyzed polymorphisms was 

assessed on the basis of the estimated allele substitution effects. The significance of these 

effects was established by implementing a correction for multiple testing using the FDR 

method reported by Benjamini and Hochberg22. Moreover, we compared the phenotypic 

medians corresponding to each one of the three possible genotypes by applying the non-

parametric Kruskal-Wallis test, due to the non-normal data distribution of lipid phenotypes 

under study. 

 

Association analyses between the rs330779504 and rs320439526 polymorphisms and the 

expression of the genes that contain them 

Gluteus medius skeletal muscle and liver samples were collected from 103 Duroc pigs 

belonging to the Lipgen population. Samples were retrieved after slaughtering and 

https://www.nature.com/articles/s41598-019-45108-z#ref-CR22
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immediately frozen at −80 °C in liquid nitrogen. Total RNA was isolated from GM samples 

by using the TRIzol method40 and the RiboPure kit (Ambion, Austin, TX) following 

manufacturer’s recommendations. Transcriptomic mRNA expression profiles were then 

assessed by hybridization to the GeneChip Porcine arrays (Affymetrix Inc., Santa Clara, CA), 

as previously reported by Cánovas et al.20. Expression data corresponding to GM muscle and 

liver samples are deposited in NCBI’s Gene Expression Omnibus41 and can be accessed 

through GEO Series accession number GSE115484 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115484). Data pre-processing, 

background correction, normalization and log-transformation of expression values between 

samples were carried out by computing a Robust Multi-array Average (RMA) as described by 

Irizarry et al.42. 

The correspondence between genes and microarray expressed probes was assessed with the 

Biomart database available at Ensembl repositories 

(https://www.ensembl.org/biomart/martview/). Expression levels for selected genes were then 

extracted from microarray samples for both GM muscle and liver tissues and used as 

continuous variables in association analyses, following the same statistical model previously 

described for phenotype records and correcting for batch (4 categories), farm of origin (3 

categories) and laboratory (2 categories) as fixed effects. Moreover, we compared the 

phenotypic means corresponding to each one of the three possible genotypes by applying an 

ANOVA test. 

 

Inclusion of the MIGA2 rs330779504 and CRY2 rs320439526 SNPs in a chromosome-

wide association analysis 

As previously described by Manunza et al.18 and González-Prendes et al.21, the population 

employed in the current experiment was typed with the Porcine SNP60 BeadChip (Illumina, 

San Diego, CA) which contains probes for 62,163 SNPs (Supplementary Table 2). The 

GenomeStudio software (Illumina) was used for quality control analyses, as reported by 

Manunza et al.18. The PLINK software38 was used for removing SNPs that (a) did not map to 

autosomal chromosomes, (b) had minor allele frequency (MAF) <0.05, (c) with rate of 

missing genotypes > 0.05, (d) major departures from the Hardy-Weinberg equilibrium (P-

value = 0.001), (e) had a GenCall score < 0.15, (f) had a call rate < 0.95, or (g) that could not 

https://www.nature.com/articles/s41598-019-45108-z#ref-CR20
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115484
https://www.ensembl.org/biomart/martview/
https://www.nature.com/articles/s41598-019-45108-z#ref-CR18
https://www.nature.com/articles/s41598-019-45108-z#ref-CR21
https://www.nature.com/articles/s41598-019-45108-z#MOESM1
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be mapped to the pig reference genome. A total of 36,710 SNPs were finally retrieved after 

filtering and merged with genotyping data corresponding to the rs330779504 and the 

rs320439526 SNPs. Association analyses were performed with the GEMMA software39 as 

described before, and multiple testing correction was implemented with the FDR method22 by 

establishing a chromosome-wide threshold of significance. 

 

 

Supplementary Information 

Supplementary Table 1: Analyzed phenotypic traits for 345 Duroc pigs belonging to the 

Lipgen population. LD: longissimus dorsi skeletal muscle; GM: gluteus medius skeletal 

muscle. 

Supplementary Table 2: Sources of information for data described in the current work. 

Supplementary Table 3: Phenotypic distribution by MIGA2 and CRY2 genotypes. Median ± 

SE: Median values ± standard error for LDL cholesterol serum concentration (mg/dL) and 

stearic acid content (%) in the longissimus dorsi skeletal muscle. KW P-value: Nominal P-

value obtained with the Kruskal-Wallis test. 

Supplementary Table 4: Normalized probe expression values for MIGA2 and CRY2 

genotypes. Mean ± SE: Mean values ± standard error for the estimated normalized probe 

expression values; ANOVA P-value: Nominal P-value obtained with an ANOVA test. 
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Abstract 

Background 

Mature microRNAs (miRNAs) play an important role in repressing the expression of a wide 

range of protein coding transcripts by promoting their degradation or inhibiting their 

translation into functional proteins. The presence of segregating polymorphisms inside 

miRNA loci and their corresponding 3’-UTR binding sites might disrupt canonical conserved 

miRNA-mRNA pairing, thus modifying gene expression patterns. 

Results 

We aimed to investigate the variability of miRNA genes and their putative binding sites by 

analyzing whole-genome sequences from 120 pigs and wild boars from Europe and Asia. In 

total, 285 SNPs residing within miRNA loci were detected. From these, 221 were located in 

precursor regions, whereas 52 and 12 mapped to mature and seed regions, respectively. 

Moreover, a total of 109,724 polymorphisms were identified in 7mer-m8 miRNA binding 

sites within porcine 3’-UTRs. A principal components analysis revealed a clear genetic 

divergence between Asian and European samples, which was particularly strong for 3’-UTR 

sequences. We also observed that miRNA genes show reduced polymorphism compared with 

other non-miRNA regions. To assess the potential consequences of miRNA polymorphisms, 

we sequenced the genomes of 5 Duroc pigs and, by doing so, we identified 15 SNPs in 

miRNA loci that were genotyped in the offspring (N = 345) of the five boars. Association 

analyses between miRNA SNPs and hepatic and muscle microarray data allowed us to 

identify 4 polymorphisms displaying significant associations. Particularly interesting was the 

rs319154814 polymorphism (G/A), located in the apical loop of the ssc-miR-326 precursor 

sequence. This polymorphism is predicted to cause a subtle hairpin rearrangement that 

improves the accessibility to processing enzymatic factors. 

Conclusions 

Porcine miRNA genes show a reduced variability, particularly in the seed region which plays 

a critical role in miRNA binding. Although it is generally assumed that SNPs mapping to the 

seed region are the ones with the strongest consequences on mRNA expression, we show that 

a SNP mapping to the apical region of ssc-miR-326 is associated with the mRNA expression 

of several of its predicted targets. This result suggests that porcine miRNA variability 
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mapping within and outside the seed region could have important regulatory effects on gene 

expression. 

 

 

Background 

Mature microRNA transcripts (miRNAs) are short (~22 nt) non-coding RNAs which play an 

essential role in the regulation of gene expression [1]. During the biogenesis of miRNAs, one 

strand of the miRNA duplex binds to the guide-strand channel of an Argonaute protein 

forming a miRNA-induced silencing complex (miRISC) with the ability of repressing mRNA 

expression through binding to specific 3’-UTR target sites [2]. In postembryonic cells, this 

repressor mechanism mainly acts by destabilizing the mRNA through decapping and poly(A)-

tail shortening [3,4] and less often by hindering translation [2]. The binding of the miRNA to 

its 3’-UTR target site depends critically on the sequence of the seed region, which 

encompasses nucleotides (nt) 2nd to 8th from the 5’end of the miRNA and interacts with the 

target site through Watson-Crick pairing [1]. Polymorphisms located within the seed region 

have the potential to cause strong effects on target recognition, due to the emergence of novel 

target sites complementary to the mutated seed and the ablation of canonical wild-type 

miRNA-mRNA interactions [5,6]. Additionally, polymorphisms affecting miRNA binding 

sites in the 3’-UTR of targeted mRNAs can also notably influence the miRNA-dependent 

expression of these genes [5,7,8]. Nevertheless, imperfect seed matches can still be 

compensated by nucleotides 13th to 16th of the miRNA, thus providing additional anchor 

pairing to the seed region [2]. Other sites relevant for miRNA processing and function are the 

basal UG, flanking CNNC and apical UGU motifs [9], as well as a mismatched GHG motif 

(Roden et al., 2017), all of which contribute to facilitate miRNA processing [2]. 

Saunders et al. (2007) [5] investigated the variability of 474 human miRNA genes and found 

that SNP density within such loci (~1.3 SNPs per miRNA) is lower than that of surrounding 

regions (~3 SNPs). Moreover, they found that ~90% of human miRNA genes do not contain 

polymorphisms, and the majority of SNPs mapping to miRNAs are outside the seed region, 

thus evidencing that the variability of this critical functional motif evolves under strong 

selective constraints [5]. Indeed, polymorphisms in the first 14 nucleotides of the mature 

miRNA, and particularly those within the seed region, might abrogate the binding of the 
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miRNA to its 3’-UTR targets, leading to an extensive rewiring of the miRNA-mediated 

regulatory network and, in some instances, to detrimental consequences [11]. Mammalian 

miRNA knockouts often display abnormal phenotypes, reduced viability and clinical 

disorders [2], although functional redundancy among miRNA family members might mitigate 

to some extent the severity of such manifestations [2]. Polymorphisms within miRNA loci 

laying outside the seed region can also affect the processing and stability of miRNAs during 

their maturation and loading into the functional silencing complex [12,13]. Moreover, 

Saunders et al. (2007) [5] showed that a broad array of predicted miRNA target sites in the 3’-

UTR of mRNAs are polymorphic, a finding that suggests that purifying selection on these 

regions is less intense than in miRNA genes [11].  

Wild boars emerged as a species in Southeast Asia 5.3–3.5 Mya and dispersed westwards 

until reaching Europe 0.8 Mya, leading to the establishment of two highly divergent Asian 

and European gene pools with different levels of variability [14,15]. The wild ancestors of 

pigs were independently domesticated in the Near East and China 10,000 YBP [14]. Domestic 

pigs spread worldwide becoming one of the most important sources of animal protein for 

humans and diversifying in an extensive array of breeds displaying distinct morphological 

traits and productive abilities [16]. Phenotypic changes associated with domestication and 

breed formation might be explained, at least partially, by modifications in the miRNA 

regulation of gene expression [17]. Here, we wanted to investigate the patterns of variability 

of miRNA genes in European and Asian wild boars and domestic pigs. Moreover, we aimed 

to elucidate the potential associations of miRNA polymorphisms with the expression profiles 

of protein-coding genes and complex phenotypes in domestic pigs. 

 

 

Methods 

Characterizing the polymorphisms of miRNA genes and their binding sites in a 

worldwide sample of pig and wild boar genome sequences 

Retrieval of Porcine Whole-Genome Sequences 

Whole-genome sequences from a total of 120 wild and domestic pigs (Sus scrofa) were 

retrieved from the NCBI sequence read archive (SRA) database 
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(https://www.ncbi.nlm.nih.gov/sra). Detailed information about each sequenced porcine 

sample is available at Additional file 1: Table S1. The 120 selected genome sequences were 

classified into Asian domestic pigs (ADM, N = 40), Asian wild boars (AWB, N = 20), 

European domestic pigs (EDM, N = 40) and European wild boars (EWB, N = 20). More 

specifically, the European and Asian domestic individuals encompassed a selection of 

different representative porcine breeds, i.e. Meishan, Tongchen, Jinhua, Rongchan, 

Wuzhishan, Tibetan, Sichuan, Hetao, Minzhu, Bamaixang and Laiwu for ADM population, 

and Pietrain, Mangalitza, Iberian, Duroc, American Yucatan (from America, but with a 

European origin), Yorkshire, Landrace, Hampshire and Large-white for EDM population, 

each of them including ~1-7 individuals, depending on the availability of good-quality whole-

genome sequenced samples. Regarding European and Asian wild boars, samples were 

selected according to their location of origin, spanning a broad proportion of Europe and the 

Far East (Additional file 1: Table S1). The European pool contained one sample from the 

Near East. Raw data in SRA format were downloaded from SRA public repositories and 

converted into fastq format by using the fastq-dump 2.8.2 tool available in the SRA-toolkit 

package (ncbi.github.io/sra-tools/). 

Whole-genome sequence data processing and calling of single nucleotide polymorphisms 

FASTQ paired-end files generated from SRA data were quality-checked filtered and any 

remaining sequence adapters were trimmed by making use of the Trimmomatic software 

(v.0.36) with default parameters [18]. Trimmed paired-end sequences that successfully passed 

previous filters were aligned against the Sus scrofa reference genome (Sscrofa11.1) [19] with 

the BWA-MEM algorithm [20] and default settings. Sequence alignment map (SAM) 

formatted files were sorted and transformed into binary (BAM) formatted files and PCR 

duplicates were subsequently marked and removed to perform INDEL realignment with the 

Picard tool (https://broadinstitute.github.io/picard/). Base quality score recalibration (BQSR), 

variant calling and quality hard filtering of the variants called by default were implemented 

with the Genome Analysis Toolkit (GATK v.3.8) [21], according to GATK best practices 

recommendations. Individual gVCF formatted files, including both polymorphic and 

homozygous blocks, were generated in this way, and they were subsequently merged into 

separate multi-individual variant calling format (VCF) files containing single polymorphic 

and INDEL sites, respectively. 

https://www.ncbi.nlm.nih.gov/sra
https://broadinstitute.github.io/picard/
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Cataloguing the repertoire of single nucleotide polymorphisms in miRNA genes and the 3’-

UTRs of mRNA genes 

Single nucleotide polymorphisms (SNPs) mapping to annotated porcine miRNA loci (N = 

370) were retrieved by making use of the curated Sscrofa11.1 annotation for miRNA regions 

available at miRCarta v1.1 database [22]. Additionally, annotated mature miRNA loci (N = 

409) inside miRNA genes (N = 370) were retrieved and SNPs within miRNA genes residing 

in mature and seed regions (2nd to 8th positions at 5’ end in the mature miRNA) were 

identified. Moreover, we expanded our analysis to putative miRNA target sites in the 3’-UTR 

of protein-coding mRNAs. To this end, we downloaded the current annotation of the 3’-UTR 

of porcine mRNA transcripts from Ensembl repositories 

(http://www.ensembl.org/info/data/ftp/index.html) and interrogated the corresponding set of 

sequences against seed regions of miRNAs available at miRBase database [23]. Seed 

sequences were reverse-complemented and searched along the 3’-UTR sequences of mRNA 

genes by making use of the SeqKit toolkit [24]. All 7mer-m8 canonical seed pairing (2nd to 8th 

5’ nts perfect match) as well as 8mer seed pairing (adding an additional adenine to the 1st 

position of the matched region within the mRNA 3’-UTR, which is used as a complementary 

anchor to the Argonaute miRISC complex), were identified for each miRNA seed and the 

corresponding putative miRNA-mRNA target pairs were defined. Subsequently, the genomic 

location of both 7mer-m8 and 8mer matching regions were determined, and SNP variants 

residing in such targeted sites were retrieved. Principal components analyses (PCA) based on 

autosomal whole-genome SNPs, as well as on autosomal SNPs inside miRNAs genes, 8mer 

and 7mer-m8 3’-UTR sites and whole 3’-UTRs were performed with the smartPCA software 

[25]. When implementing the whole-genome PCA, polymorphisms complying with the 

following parameters were retained: 1) minimum allele frequency (MAF) > 0.05, 2) Hardy-

Weinberg equilibrium exact test P-value > 0.001. In contrast, in the PCA based on miRNA 

SNPs no filtering was performed and all retrieved autosomal miRNA-related polymorphic 

sites were included.  

Identifying signatures of selection in miRNA genes 

Whole-genome SNP data sets generated for the four ADM, AWB, EDM and EWB 

populations were filtered on the basis of the following parameters: 1) MAF > 0.01, 2) Hardy-

Weinberg equilibrium exact test P-value > 0.001, and 3) missing rate < 0.9. Only bi-allelic 

http://www.ensembl.org/info/data/ftp/index.html
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SNPs were considered. The Weir and Cockerham’s FST statistic [26] was employed for 

evaluating the presence of signatures of selection between the four defined contrasts (i.e., 

ADM vs AWB, EDM vs EWB, ADM vs EDM and AWB vs EWB). In this regard, the FST 

estimate can be defined as a measure of population differentiation due to changes in genetic 

structure based on the variance of allele frequency. The wcFst calculator implemented in the 

Genotype Association Toolkit (GPAT++, https://github.com/vcflib/vcflib/) was used to 

estimate the magnitude of FST in each of the defined pairwise contrasts. Statistical 

significance was determined with a permutation test (1,000 permutations). An empirical P-

value ≤ 0.05 was set as the cutoff of significance. 

Frequency and distribution of SNPs in miRNA genes  

To assess the patterns of SNP distribution across miRNA-related loci, polymorphic sites 

mapping to miRNA genes were classified according to their location, i.e., SNPs inside the 

seed region of mature miRNAs were flagged as “seed”, whereas the rest of SNPs located in 

mature miRNAs but outside the seed were classified as “mature”. The remaining SNPs inside 

miRNA loci that did not belong to any of the two previous categories were assigned to the 

“precursor” class. Allele frequencies for reference and alternative alleles were separately 

calculated for the whole set of porcine samples (N = 120), as well as for each defined porcine 

population separately (Additional file 2: Table S2). 

Additionally, SNPs inside mature miRNAs but outside the seed region were assigned to the 

following subtypes: 1) “anchor” (1st position at 5’ end), and 2) “supplemental pairing” (13th 

to 18th position from 5’ end). In order to calculate SNP density in precursor, mature and seed 

miRNA regions, we first calculated the total length of each of these regions. Seed length was 

obtained by considering 7 positions in each of the annotated mature miRNAs (N = 409) 

mapping to the 370 miRNA loci considered in this study. The total length of the 409 mature 

miRNAs (8,916 bp) was calculated, and total seed length (7 bp × 409 = 2,863 bp) was 

subtracted from this number to obtain the remaining mature length (6,053 bp), which 

corresponds to the total length of all mature miRNA sequences excluding the seeds. Precursor 

length (22,229 bp) was calculated by subtracting seed length (2,863 bp) and remaining mature 

length (6,053 bp) from the total length (31,145 bp) of all miRNA loci (N = 370). Then, SNP 

density in each of these regions was calculated as follows: 
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𝐷 =  
𝑁𝑠𝑛𝑝  × 100𝑏𝑝

𝑁𝑟
 

 

where Nsnp is the total number of miRNA SNPs (N = 285), as well as the number of detected 

SNPs in each of the defined regions, (i.e. 221, 52 and 12 polymorphisms in precursor, mature 

and seed regions, respectively); Nr is the total nucleotide length of all miRNA loci (31,145 

nts), as well as the total number of nucleotides in miRNA loci belonging to either “precursor” 

(22,229 bp), “mature” (6,053 bp) or “seed” (2,863 bp) regions. These calculations would 

yield the number of SNPs per bp for each category. We decided to adjust this estimate to a 

window of 100 bp, and this is why Nsnp is multiplied by 100 in the above formula. 

Furthermore, the average SNP density at the whole-genome level was compared with the SNP 

density within miRNA genes. To this end, we retrieved all detected SNPs in our whole-

genome sequenced dataset (N = 120) and applied the SNP density formula considering the 

length of Sscrofa11.1 whole-genome assembly (~2.48 Gb) available at Ensembl repositories 

(http://www.ensembl.org/info/data/ftp/index.html).  

 

Investigating the association of miRNA polymorphisms with gene expression and 

phenotype data recorded in Duroc pigs 

Whole-Genome sequencing of five Duroc pigs 

In 2003, five Duroc boars were selected and used as founders of a half-sib population of 

purebred Duroc pigs devoted to the production of high-quality cured ham and phenotypic and 

genotypic recording for subsequent analyses. In the current work, we aimed to characterize 

the variability of these five individuals by whole-genome sequencing, identify SNPs located 

in miRNA genes and investigate their association with mRNA levels and lipid phenotypes 

recorded in their offspring (Lipgen population, N = 350). Extraction of DNA was performed 

for the five Duroc founders and genome sequencing was carried at the Centro Nacional de 

Análisis Genómico (CNAG, Barcelona, Spain). Paired-end multiplex libraries were prepared 

according to the instructions of the manufacturer with the KAPA PE Library Preparation kit 

(Kapa Biosystems, Wilmington, MA). Libraries were loaded to Illumina flow-cells for cluster 

generation prior to producing 100 bp paired-end reads on a HiSeq2000 instrument following 

http://www.ensembl.org/info/data/ftp/index.html
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the Illumina protocol. Base calling and quality control analyses were performed with the 

Illumina RTA sequence analysis pipeline according to the instructions of the manufacturer. 

Quality-checked filtered reads were mapped to the Sus scrofa genome version 11.1 and 

processed for SNP calling according to GATK best practices recommendations and the 

protocol implemented for Asian/European wild boars and domestic pigs. 

Description of the Duroc Lipgen population and phenotype recording  

A total of 350 Duroc barrows, sired by the five Duroc founder boars mentioned before were 

used as a resource population (Lipgen population [27,28]) to further investigate the 

segregation of SNPs affecting miRNA loci and to evaluate their association with the mRNA 

expression of miRNA predicted targets. The five sequenced boars were mated with 400 sows 

in three different farms and one offspring per litter was selected for phenotypic recording 

(only 350 individuals provided valid records). All selected piglets were weaned, castrated and 

subsequently fattened at IRTA pig experimental farm in Monells (Girona, Spain) under 

intensive standard conditions in four contemporary batches. Once they reached ~122 kg of 

live weight (~190 days of age), they were slaughtered in a commercial abattoir following 

recommended animal welfare guidelines. After slaughtering, tissue samples from gluteus 

medius (GM) and longissimus dorsi (LD) skeletal muscles and liver were obtained as 

previously described [29-31].  

Total DNA was extracted from each sample following Vidal et al. 2005 [32]. A total of 345 

DNA samples from the initial set of 350 pigs were successfully obtained and processed for 

further genotyping. Total RNA was extracted from a number of GM (N = 89 pigs) and liver 

(N = 87 pigs) tissue samples obtained from the Lipgen population following the acid/phenol 

RNA extraction method [33] implemented in the Ribopure isolation kit (Ambion, Austin, 

TX). Expression mRNA profiles were then characterized by means of hybridization to the 

GeneChip porcine arrays (Affymetrix Inc., Santa Clara, CA), as reported by Cánovas et al. 

2010 [29]. Further details about tissue collection, sample selection, RNA isolation and 

microarray hybridization procedures can be found in [29]. Microarray data pre-processing, 

background correction, normalization and log2-transformation of expression estimates were 

performed with a robust multi-array average (RMA) method per probe [34]. The mas5calls 

function from affy R package [34] was then applied to infer probe intensity significance level 

in order to detect gene expression above background noise. This function applies a Wilcoxon 
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signed rank-based gene expression presence/absence detection algorithm for labeling 

expressed probes in each sample. Control probes and those with expression levels below the 

detection threshold in more than 50% of samples were discarded from further analyses.  

Besides gene expression phenotypes, we also obtained lipid-related phenotypes in the Duroc 

population. Backfat thickness measured between 3rd and 4th ribs and at last rib, ham fat 

thickness, as well as fatty acids (FA) composition phenotypes from GM and LD skeletal 

muscle samples (N = 345) were determined as described in [28,30]. Briefly, intramuscular 

fatty acid (IMF) percentages in GM and LD muscles were calculated with the Near Infrared 

Transmittance technique (NIT, Infratec 1625, Tecator Hoganas, Sweden), while muscle 

cholesterol measurements were inferred following Cayuela et al. 2003 [35]. A gas 

chromatography of methyl esters protocol was used to determine muscle fatty acids 

composition of saturated (SFA), unsaturated (UFA), monounsaturated (MUFA) and 

polyunsaturated (PUFA) fatty acids. Weight (kg), backfat and ham fat thickness (mm) were 

measured on a regular basis prior and after slaughter. Mean and standard deviation values for 

the Lipgen population (N = 345) and further details about measured phenotypes are described 

in Additional file 3: Table S3. 

Genotyping of a panel of single nucleotide polymorphisms mapping to microRNA genes in the 

Lipgen population 

Whole-genome sequencing of the 5 Duroc founders yielded 54 polymorphisms mapping to 

miRNA loci. From these, we selected 15 SNPs on the basis of their location at relevant 

annotated miRNA loci (Table 1). Selected miRNA SNPs and their flanking regions (60 

upstream and downstream nts) were evaluated with the Custom TaqMan Assay Design Tool 

website (https://www5.appliedbiosystems.com/tools/cadt/; Life Technologies) and genotyped 

in our purebred Duroc population (N = 345) at the Servei Veterinari de Genètica Molecular of 

the Universitat Autònoma of Barcelona (http://sct.uab.cat/svgm/en) by using a QuantStudio 

12K Flex Real-Time PCR System (Thermo Fisher Scientific, Barcelona, Spain). 

https://www5.appliedbiosystems.com/tools/cadt/
http://sct.uab.cat/svgm/en
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Table 1: List of genotyped miRNA polymorphisms in a population of Duroc pigs (N = 345). 

microRNA SSCa Start End Strand SNP Type Alt. Alleleb Frequencyc 

ssc-miR-339 1 164025972 164026057 - rs81349391 apical loop G 0.4138 

ssc-miR-130a 2 13296695 13296773 - rs344472188 apical loop G 0.1364 

ssc-miR-23a 2 65308117 65308186 + rs333787816 precursor stem C 0.5398 

ssc-miR-30d 4 6948669 6948747 + rs340704946 precursor stem G 0.4762 

ssc-miR-371 6 56427208 56427285 - rs320008166 precursor stem C 0.2955 

ssc-miR-429 6 63491921 63492001 + rs323906663 precursor stem A 0.2955 

ssc-miR-9802 7 6393454 6393532 - rs337567928 mature region T 0.0852 

ssc-miR-9792 8 110922737 110922830 + rs322514450 seed region A 0.1989 

ssc-miR-326 9 9581944 9582034 - rs319154814 apical loop A 0.5852 

ssc-miR-34c 9 39280278 39280357 + rs321151601 mature region A 0.0805 

ssc-miR-378-2 12 36947443 36947510 + rs341950320 precursor stem A 0.1176 

ssc-miR-15b 13 100083172 100083269 + rs334680106 precursor stem T 0.2706 

ssc-miR-1224 13 122141042 122141149 + rs327603919 precursor stem T 0.1724 

ssc-miR-486 17 10758818 10758899 - rs335924546 precursor stem T 0.3391 

ssc-miR-335 18 18341568 18341659 - rs334590580 precursor stem C 0.1875 
 

aSSC: porcine chromosome; bAlt. Allele: alternative allele of the genotyped SNP; cFrequency: alternative allele frequency in the genotyped population of 345 Duroc pigs. 
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Association analyses between miRNA SNPs and mRNA expression and lipid phenotypes 

Genotype data from 15 miRNA SNPs (Table 1) were processed with the PLINK software [36] 

in order to generate formatted files for subsequent analyses. The genome-wide efficient 

mixed-model association (GEMMA) software [37] was used to implement association 

analyses between genotyped SNPs and lipid phenotypes and microarray expression data in 

GM and liver tissues. The following univariate mixed model was used: 

 

𝑦 = 𝑊𝛼 + 𝑥𝛿 + 𝑢 +  𝜀 

 

Where y is the phenotypic vector of recorded phenotypes for each individual; α is a vector 

indicating the intercept plus the considered fixed effects, i.e. batch effect with 4 categories (all 

traits), farm of origin effect with 3 categories (all traits) and laboratory of processing with 2 

categories (GM and liver microarray expression data). The α vector also includes the 

regression coefficients on IMF in LD and GM tissues (for LD and GM fatty acid composition 

traits, respectively), as well as on live and carcass weight (for backfat and ham fat thickness 

measures before and after slaughter); W corresponds to the incidence matrix relating 

phenotypes with their corresponding effects; x is the genotype vector for selected miRNA 

polymorphisms; δ is the allele substitution effect for each polymorphism; u is a vector 

indicating random individual effects with a n-dimensional multivariate normal distribution 

MVNn (0, λ τ-1 K), where τ-1 corresponds to the variance of the residual errors, λ is the ratio 

between the two variance components and K is the known relatedness matrix derived from 

SNP information; and ε is the vector of residual errors.  

With regard to the mRNA expression phenotypes, expressed probes mapping to mRNA genes 

in GM and hepatic tissues were identified using BioMart databases [38]. Furthermore, 

probes/genes were filtered based on the following conditions: (1) they contain, in their 3’-

UTR, 7mer-m8 sites for any of the polymorphic miRNAs defined in Table 1 and (2) such 

interaction has been experimentally validated in humans. To this end, predicted porcine 

targets on the basis of 7mer-m8 seed matches inferred with the SeqKit software [24] were 

selected. If the analyzed polymorphism affected the seed region, putative targets were 



Paper IV 

178 

 

predicted according to the novel mutated seed. Moreover, miRNA-mRNA target pairs 

experimentally validated in humans were obtained from the Tarbase v.8 database [39] (i.e. 

directly repressed mRNA targets on the basis of CLASH, PAR-CLIP, HITS-CLIP and 

Luciferase assays). When no validated human targets were available for any of the miRNAs 

harboring the analyzed SNPs, only predicted 7mer-m8 targets were used. This was the case of 

ssc-miR-9792 and ssc-miR-9802 (Table 1).  

The existence of associations between lipid-related traits and gene expression data with the 

analyzed SNPs were assessed on the basis of the estimated allele substitution effects (δ). More 

specifically, the alternative hypothesis H1: õ ≠ 0 was contrasted against the null hypothesis 

H0: δ = 0 with a likelihood ratio test. 

The statistical significance of the associations between miRNA SNPs and lipid and mRNA 

expression phenotypes were assessed by using a false discovery rate (FDR) approach [40] 

which corrects for multiple testing. 

miRNA structural inference with RNAfold 

The potential effects of SNPs on pri-miRNA structural conformation as well as on miRNA 

stability and processing availability were predicted with the RNAfold tool from the 

ViennaRNA Package 2.0 [41] based on the Boltzmann-weighted centroid structure ensemble 

of the RNA sequence [42]. 

 

 

Results 

microRNA-related polymorphisms follow differential segregation patterns in pigs and 

wild boars from Europe and Asia 

Roughly, 58.54 million SNPs were identified with the GATK haplotype caller tool [21] in a 

data set comprising 120 whole-genome sequences from 40 EDM, 40 ADM, 20 EWB and 20 

AWB pigs (Additional file 1: Table S1) retrieved from public repositories. The majority of 

these SNPs were biallelic (98.68%), but 770,806 of them showed 3 or more alleles. 

Alternative allele frequencies were consistently high (> 0.5) for 9.25% of variants, whereas 
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low (between 0.05 and 0.01) and very low (< 0.01) alternative allele frequencies were 

detected in 27.85% and 19.62% of SNPs, respectively. 

After filtering, 19,720,314 autosomal whole-genome SNPs were selected for assessing 

population structure based on PCA clustering techniques. The spatial representation of whole-

genome data principal components showed a strong genetic differentiation among Asian and 

European populations (Figure 1A). In contrast, domestic pigs and wild boars, and particularly 

those with a European origin, did not show such stark divergence. Asian pigs and wild boars 

displayed some level of genetic differentiation and they were more diverse than their 

European counterparts.  

With regard to miRNA variability, the 370 porcine miRNA genes annotated in the manually 

curated miRCarta v1.1 database [22] were selected and SNPs within those regions were 

retrieved. A total of 285 SNPs residing in 139 (37.56% of the total count) miRNAs were 

identified (Additional file 2: Table S2), implying that most of miRNAs are monomorphic. 

The majority of these 139 miRNA loci (76.98%) presented 1-2 SNPs located inside their 

predicted genomic boundaries, while 18.70% contained between 3 up to 5 variants, and 

4.32% of them displayed more than 7 polymorphisms (Additional file 4: Figure S1). Only 43 

miRNA SNPs (15.09%) were shared among EDM, ADM, EWB and AWB populations 

(Additional file 2: Table S2), showing alternative alleles in at least one of the analyzed 

individuals in each group. The number of SNPs segregating in each of the four defined groups 

were 129 (EDM), 201 (ADM), 76 (EWB) and 172 (AWB), respectively (Additional file 2: 

Table S2). With regard to precursor and mature regions, 41 and 2 SNPs where shared among 

the four populations under consideration, respectively (Additional file 5: Figure S2A and 

S2B). None of the SNPs in the seed regions were shared by the four porcine populations 

(Additional file 5: Figure S2C). Only three miRNA variants were found in the European data 

set but not in the Asian one. In strong contrast, 55 miRNA SNPs were detected in the Asian 

data set but not in the European one. Principal component analyses based on identified 

autosomal miRNA SNPs (N = 260) showed the existence of a poor differentiation between 

pigs and wild boars (Figure 1B), while the genetic divergence between European and Asian 

individuals was still apparent using whole-genome autosomal SNPs (Figure 1A). 

When we analyzed population structure based on whole-genome autosomal 3’-UTR SNPs (N 

= 709,343 SNPs, Figure 1C), 3’-UTR 7mer-m8 site SNPs (N = 107,196 SNPs, Figure 1D) 
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and 3’-UTR 8mer site SNPs (N = 33,511 SNPs, Figure 1E), genetic differentiation between 

Asian and European populations was evident, in close concordance with results shown in 

Figure 1A and 1B. However, we also detected a pronounced differentiation between domestic 

pigs and wild boars, and this observation was particularly true for Asian pigs and wild boars 

when considering variants in 3’-UTR regions, either at the full 3’-UTR sequence (Figure 1C) 

or at miRNA target sites (Figure 1D-E).  

 

 

 

 

Figure 1: Principal component analysis plots based on SNPs mapping to: (A) the whole-

genome, (B) miRNA genes, (C) Full 3’-UTRs, (D) 3’-UTR 7mer-m8 sites and (E) 3’-UTR 

8mer sites, respectively. 
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The analysis of European and Asian populations shows reduced variability in porcine 

microRNAs 

About 47.76%, 57.36%, 44.77% and 36.84% of miRNA SNPs showed alternative allele 

frequencies ≤ 0.1 in the ADM, EDM, AWB and EWB populations, respectively (Figure 2, 

Additional file 2: Table S2). Variations located at mature miRNA and seed regions were 

enriched in rare or very rare variants when compared to the variability of miRNA precursor 

regions (Additional file 2: Table S2), with average alternative allele frequencies of ~0.1 for 

mature and seed miRNA polymorphisms. In contrast, the average alternative allele frequency 

observed for SNPs in precursor areas was ~0.15. 

Moreover, the observed SNP density adjusted to 100 bp for miRNA precursor, mature and 

seed regions consistently followed the order precursor > mature > seed when we considered 

all whole-genome sequenced pigs (N = 120). Indeed, ~1 SNP per 100 bp was detected in 

precursor regions, whereas ~0.86 and ~0.42 SNPs per 100 bp were observed in the mature 

and seed regions, respectively (Figure 3A). These results implied a slight difference in SNP 

density between precursor and mature regions, while for seed regions, which are critical 

determinants of miRNA-mRNA interaction, the observed SNP density was ~2.4 fold lower 

than in precursor regions. This differential distribution of the SNP density across miRNA 

regions (precursor > mature miRNA > seed) was also observed in each of the analyses 

performed in the ADM, EDM, AWB and EWB groups (Figure 3A). With regard to variants 

located within mature miRNAs (N = 64), both inside (N = 12) and outside seed regions (N = 

52), their observed distribution within the whole body of the mature miRNA (~22 nts) showed 

a characteristic pattern (Figure 3B): among all the detected SNPs, the 1st position of the 

mature miRNA 5’ end, which binds to the MID domain of the Argonaute protein in the 

miRISC complex, exhibited a SNP density of ~0.49 SNPs per 100 bp. Such scarcity in 

polymorphic sites was also observed when considering the next 2nd to 8th positions in the 

mature miRNA sequence (seed region), where up to ~0.73 SNPs per 100 bp were observed in 

the 6th position of the mature miRNA, and an average of ~0.42 SNPs per 100 bp where found 

among all analyzed miRNA seeds. In contrast, the interval comprising positions 9th to 12th 

showed an average SNP density of ~0.98 SNPs per 100 bp. Regarding the next 13th to 18th 

positions of the mature miRNA, which roughly corresponds to a functional region providing 

additional anchor pairing to the seed region, we observed a decreased SNP density, more 
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prominent at positions 16th to 17th (Figure 3B). Finally, an increased SNP density was found at 

positions 19th to 22nd. 

 

 

 

 

Figure 2: Alternative allele frequency distribution of polymorphisms located at miRNA loci 

in (A) Asian domestic pigs (ADM), (B) European domestic (EDM) pigs, (C) Asian wild boars 

(AWB) and (D) European wild boars (EWB). 
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Figure 3: (A) SNP density per 100 bp for each analyzed miRNA region considering the full 

set of 120 whole-genome sequenced porcine samples as well as each of the ADM, EDM, 

AWB and EWB populations. (B) SNP density across mature miRNA regions. 1: anchor (1st 5’ 

end position), 2: seed (2nd to 8th position) and 3: supplemental pairing (13th to 18th position). 

 

 

We have compared the SNP density of miRNA loci (seed, mature miRNA and precursor 

miRNA altogether) with the global genomic SNP density. As previously mentioned, we 

identified ~58.54 million SNP sites across a whole length of 2,478 million bp in the 

Sscrofa11.1 assembly, i.e. the average estimated whole-genome SNP density was ~2.36 SNP 

per 100 bp. Conversely, the average SNP density in miRNA loci was ~0.92 SNPs per 100 bp. 

These results indicated that the overall probability of finding a SNP in any region of the pig 

genome was approximately 2.5-fold higher than inside miRNA loci.  

We also carried out a selection scan based on the FST statistic in each one of the four defined 

contrasts between porcine populations (i.e., ADM vs AWB, EDM vs EWB, ADM vs EDM 

and AWB vs EWB) with the aim of identifying positive selection signals coinciding with the 

location of miRNA genes. After filtering, a set of 6,408,611 SNPs were retrieved, from which 

206 SNPs mapped to miRNA loci. Very few selection signals inside miRNA genes were 

detected with this approach (Additional file 6: Table S4). A SNP located at the precursor 
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region of ssc-miR-4335 showed a significant FST in the ADM vs AWB contrast. Besides, the 

rs330981259 polymorphism, located in the precursor region of ssc-miR-9835 segregated in all 

populations except in EWB (Additional file 2: Table S2). This SNP showed a significant FST 

value when contrasting AWB vs EWB, as shown in Additional file 6: Table S4. 

 

Statistics of the whole-genome sequencing of five Duroc boars 

As previously explained, we sequenced the genomes of five Duroc pigs which founded a 

population of 350 offspring with the goal of identifying SNPs in miRNA genes and 

investigating their association with mRNA expression and lipid phenotypes. Mean coverage 

values of the five pig genomes ranged from 37.67× to 46.6×, with more than 98.6% of the 

genome bp covered by at least 10 reads in all five samples, and 96.71% of the bp covered by 

at least 15 reads. Details about coverage and genome mapping are shown in Additional files 7 

and 8: Table S5 and Figure S3. After performing variant calling on mapped reads, a total of 

13,839,422 SNPs passed the established quality filters, whereas 3,721,589 insertions and 

deletions (INDELs) were detected. From these, 54 SNPs and 5 INDELs were located inside 

miRNAs (N = 370) annotated in the Sscrofa.11.1 genome assembly according to the 

miRCarta database [22]. Moreover, a total of 1,643,861 INDELs (44.17%) and 6,034,548 

SNPs (43.60%) resided inside annotated protein coding loci. 

 

The rs319154814 polymorphism in the apical loop of ssc-miR-326 is associated with the 

mRNA expression of several of its putative gene targets 

From the set of 15 SNPs listed in Table 1, only 4 SNPs showed significant associations with 

liver (N = 87) and/or GM muscle (N = 89) expression data. It is important to emphasize that 

we only considered probes corresponding to genes fulfilling two conditions: (1) Their 3’-

UTRs contain 7mer-m8 sites matching to positions 2nd to 8th (seed) of at least one of the 

mature miRNAs under consideration, and (2) the corresponding miRNA-mRNA interaction 

has been experimentally validated in humans, as reported in the Tarbase v.8 database [37], if 

available (Additional file 9: Table S6). When we analyzed the association between the 

rs319154814 (G/A) polymorphism located in the apical loop of ssc-miR-326 and gene 

expression data (Table 2), several significant results were obtained after multiple testing 

correction (q-value < 0.1). More specifically, we detected seven significant associations 
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between this SNP and the hepatic mRNA expression of experimentally confirmed 7mer-m8 

targets of this miRNA (Table 2). For instance, the protein phosphatase 1 catalytic subunit γ 

(PPP1CC), the cellular FLICE-like inhibitory protein (CFLAR), the splicing factor 3A 

subunit 3 (SF3A3) and the Follistatin-like 1 (FSTL1) mRNAs showed the most significant 

associations (Table 2). No significant associations were found for GM tissue expression data. 

The expression levels of six significantly associated mRNAs targeted by ssc-miR-326 (Table 

2) were reduced in pigs homozygous for the mutated allele (N = 32), as depicted in Figure 4. 

 

 

 

Figure 4: Hepatic mRNA expression levels of the CFLAR, ELAVL1, FSTL1, NAA50, 

PPP1CC and SF3A3 genes according to the genotype of the rs319154814 apical loop 

polymorphism in the ssc-miR-326 gene. The number of individuals representing each 

genotype were: GG (N = 17), GA (N = 37) and AA (N = 32). 
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Table 2: Significant associations (q-value < 0.1) between 15 genotyped miRNA SNPs and the mRNA expression of their targets in the gluteus 

medius (GM) skeletal muscle (N = 89) and liver (N = 87) tissues of Duroc pigs. 

SNP Type Tissue Probe ID Gene δa seb P-value q-valuec 

rs333787816 

(2:65308181) 

ssc-miR-23a 

precursor stem (T/C) 
GM 

Ssc.1790.1.S1_at ENSSSCG00000000019 NUP50 -0.1052 0.0288 3.849E-04 9.160E-02 

Ssc.12493.1.A1_at ENSSSCG00000024027 PAFAH1B2 -0.2021 0.0565 3.921E-04 9.160E-02 

Ssc.8682.2.A1_at ENSSSCG00000014240 CSNK1G3 -0.1532 0.0434 4.515E-04 9.160E-02 

Ssc.4948.1.S1_at ENSSSCG00000034725 UBE2R2 0.1726 0.0493 5.906E-04 9.160E-02 

Ssc.21303.1.S1_at ENSSSCG00000003630 AGO1 0.1016 0.0275 6.775E-04 9.160E-02 

Ssc.24035.2.A1_at ENSSSCG00000005935 AGO2 0.2896 0.0864 8.339E-04 9.395E-02 

rs322514450 

(8:110922752) 

ssc-miR-9792 

seed region (G/A) 

GM Ssc.23813.1.S1_at ENSSSCG00000009085 NUDT6 -0.3577 0.0836 2.805E-05 5.073E-02 

LIVER Ssc.11164.1.A1_at ENSSSCG00000001836 RLBP1 -0.1619 0.0390 5.113E-05 9.479E-02 

rs319154814 

(9:9581989) 

ssc-miR-326 

apical loop (G/A) 
LIVER 

Ssc.9544.2.S1_a_at ENSSSCG00000016101 CFLAR 0.3246 0.0997 1.264E-03 7.061E-02 

Ssc.11661.2.S1_at ENSSSCG00000009828 PPP1CC 0.4508 0.1436 1.784E-03 7.061E-02 

Ssc.11044.1.A1_at ENSSSCG00000003643 SF3A3 0.1808 0.0561 2.598E-03 7.061E-02 

Ssc.23242.1.A1_at ENSSSCG00000039426 FSTL1 0.2407 0.0780 2.606E-03 7.061E-02 

Ssc.12222.1.S1_at ENSSSCG00000013233 CELF1 -0.1714 0.0574 3.210E-03 7.061E-02 

Ssc.10946.2.A1_at ENSSSCG00000011917 NAA50 0.2853 0.0993 4.070E-03 7.462E-02 

Ssc.4516.2.S1_at ENSSSCG00000013592 ELAVL1 0.1666 0.0598 6.226E-03 9.783E-02 

rs335924546 

(13:122141078) 

ssc-miR-1224 

precursor stem (C/T) 
LIVER Ssc.11539.1.A1_at ENSSSCG00000016498 MKRN1 0.2105 0.0594 4.661E-04 2.983E-02 

 

aδ: estimated allele substitution effect; bse: standard error of the substitution effect; cq-value: q-value calculated with the false discovery rate (FDR) approach on experimentally confirmed 7mer-m8 targets of miRNAs 

harboring the genotyped  
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We further aimed to predict the potential consequences of the rs319154814 SNP on the 

secondary structure of the ssc-miR-326 transcript by means of the RNAfold centroid-based 

algorithm [41]. According to structural folding inference (Figure 5), the presence of the 

rs319154814 polymorphism would have an impact on the steric forces contributing to the 

adequate base-pairing selection of the hairpin, thus generating an unpaired bulge with a 

considerable size at the base of the pri-miRNA folded structure generated immediately after 

transcription (Figure 5). More importantly, the accessibility of the two observed contiguous 

CNNC motifs (located at positions -16/-21 from the miRNA gene boundaries and inside the 

originated bulge at the base of the pri-miRNA) would be facilitated by the open unpaired 

bulge, hence improving its recognition by the Serine-rich splicing factor 3 (SRSF3) protein, a 

relevant miRNA processing factor that binds to the CNNC motifs of the pri-miRNA sequence 

and contributes to the correct positioning of Drosha endonuclease for miRNA maturation. 
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Figure 5: Secondary structural folding of the initial ssc-miR-326 primary miRNA transcript 

(pri-miRNA) predicted with the RNAfold centroid-based algorithm. The rs319154814 (G/A) 

polymorphism in the apical loop of the ssc-miR-326 is thought to produce a reorganization to 

the base-pairing selection of the hairpin, thus generating an unpaired bulge at the base of the 

pri-miRNA hairpin. Such alteration of the hairpin structure would facilitate the accessibility 

of the SRSF3 protein to two consecutive CNNC motifs located at the basal bulge of the 

polymorphic miRNA. The SRSF3 factor then promotes the recruitment of Drosha slicing 

factor putatively allowing an increased maturation rate of ssc-miR-326. This interaction 

would imply a higher repression in the expression of its predicted mRNA targets (see Figure 

4). Precursor miRNA (pre-miRNA) sliced after Drosha processing is highlighted in blue, 

whereas mature ssc-miR-326 is depicted in red. 

 

 

The rs322514450 polymorphism in the seed of ssc-miR-9792-5p is associated with the 

mRNA expression of several of its potential targets  

Polymorphisms in the seed of mature miRNAs might alter the repertoire of their potential 

targets by abolishing existing miRNA-mRNA interactions and creating new ones. Only one 

SNP (rs322514450, G/A) located in the seed region of the ssc-miR-9792-5p segregated in our 

Duroc population. After genotyping, the observed allele frequency for the alternative mutated 

allele was of 19.89% (Table 1). In this case, we considered as ssc-miR-9792-5p mRNA 

targets those probes corresponding to mRNAs with predicted 7mer-m8 binding sites (we did 

not consider experimental validation in humans due to a lack of information in Tarbase v.8 

database, Additional file 9: Table S6). Significant associations between this SNP and the 

expression levels of targeted mRNAs were detected (Table 2). The levels of the retinaldehyde 

binding protein 1 (RBLP1) mRNA in the liver and of the nudix hydrolase 6 (NUDT6) mRNA 

in the GM muscle were significantly associated with rs322514450 genotypes (Table 2). 

Moreover, we observed a decreased expression of RBLP1 and NUTD6 mRNAs in pigs 

homozygous for the mutated allele (Figure 6). 
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Figure 6: Gluteus medius (GM) skeletal muscle and hepatic mRNA expression levels of the 

NUDT6 and RBLP1 genes according to the genotype of the rs322514450 polymorphism 

located in the seed of the ssc-miR-9792-5p gene. The number of pigs representing each 

genotype were: GG (N = 56 in GM, 58 in liver), GA (N = 25) and AA (N = 5). 

 

 

Polymorphisms outside the mature microRNA region are associated with mRNA 

expression 

The rs333787816 (T/C) polymorphism, located in the precursor region immediately 

downstream to the mature ssc-miR-23a sequence, was significantly associated with several 

experimentally confirmed targeted genes in the GM muscle tissue (Table 2, Additional file 9: 

Table S6). From these, it is worth mentioning the Argonaute RISC component 1 (AGO1) and 

the Argonaute RISC catalytic component 2 (AGO2) mRNAs. Both AGO1 and AGO2 genes 

showed lower mRNA expression levels in homozygous CC pigs with respect to their TT and 

TC counterparts (Table 2). On the other hand, the rs335924546 (C/T) variant located at ssc-

miR-1224 was significantly associated with the mRNA expression of the E3 ubiquitin ligase 
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makorin ring finger protein 1 (MKRN1) in the liver. Pigs homozygous for the alternative 

allele of rs335924546 polymorphism showed a reduced expression of the MKRN1 transcript 

(data not shown). 

 

Porcine lipid phenotypes are associated with the genotypes of miRNA genes 

We also evaluated the association between miRNA SNPs and several lipid-related phenotypes 

recorded in the Lipgen population (Additional file 3: Table S3). Only the rs319154814 variant 

inside ssc-miR-326 was significantly associated (q-value < 0.1) with lipid traits (Table 3, 

Additional file 10: Table S7). More specifically, we found significant associations with the 

myristic acid (C14:0) content in both LD and GM muscles, as well as with the gadoleic acid 

(C20:1) content and the ratio between PUFA and MUFA in the LD muscle (Table 3, 

Additional file 10: Table S7). We also observed several associations between the 

rs319154814 SNP and fatty acid composition traits but they were significant only at the 

nominal level (P-value < 0.01), as shown in Table 3. Other apical loop SNPs like (1) 

rs81349391 at ssc-miR-339 and (2) rs344472188 at ssc-miR-130a were significantly 

associated at the nominal level (P-value < 0.01) with palmitic acid (C16:0) content and SFA 

and UFA proportion in the GM muscle, as well as with backfat thickness. Besides, a SNP 

located in the precursor 3’ stem of ssc-miR-30d showed a nominally significant association 

with the content of arachidic acid (C20:0) (Table 3). Other relevant examples of significant 

associations at the nominal level were, for instance, those between the rs322514450 (G/A) 

polymorphism in the seed of the ssc-miR-9792-5p and several fatty acid composition 

phenotypes in the LD muscle, such as palmitic (C16:0), palmitoleic (C16:1), linoleic (C18:2), 

α-linolenic (C18:3) and arachidonic acids (C20:4) content. Besides, the rs334590580 (T/C) 

SNP located at the precursor stem region of ssc-miR-335 was associated with palmitic and 

arachidic acids content in GM tissue (Table 3). 
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Table 3: Significant associations at the nominal level (P-value < 0.01) and/or after multiple testing (q-value < 0.1; in bold) between 15 

genotyped SNPs and lipid metabolism-related phenotypes recorded in a population of Duroc pigs (N = 345). 

SNP Type Trait δ se P-value q-value 

rs81349391 (1:164026014) ssc-miR-339 apical loop (A/G) 

GM (C16:0) -0.3234 0.1396 2.005E-02 3.772E-01 

GM SFA -0.4394 0.2030 2.969E-02 3.772E-01 

GM UFA 0.4392 0.2030 2.978E-02 3.772E-01 

rs344472188 (2:13296736) ssc-miR-130a apical loop (T/C) BFTLR -1.2084 0.5914 4.087E-02 9.683E-01 

rs340704946 (4:6948743) ssc-miR-30d precursor stem (A/G) GM (C20:0) -0.0219 0.0098 2.541E-02 5.779E-01 

rs320008166 (6:56427227) ssc-miR-371 precursor stem (T/C) GM IMF 0.5368 0.2461 3.104E-02 9.060E-01 

rs323906663 (6:63491948) ssc-miR-429 precursor stem (G/A) GM IMF 0.5682 0.2482 2.348E-02 8.923E-01 

rs337567928 (7:6393469) ssc-miR-9802-3p seed region (G/T) GM (C14:0) 0.0802 0.0379 3.692E-02 5.854E-01 

rs322514450 (8:110922752) ssc-miR-9792-5p seed region (G/A) 

LD (C18:3) -0.0261 0.0087 6.434E-03 1.298E-01 

LD Cholesterol 2.2471 0.9022 1.301E-02 1.298E-01 

LD UFA -0.5428 0.2169 1.582E-02 1.298E-01 

LD (C14:0) 0.0624 0.0253 1.728E-02 1.298E-01 

LD SFA 0.5292 0.2177 1.907E-02 1.298E-01 

LD (C20:4) -0.3518 0.1569 2.435E-02 1.298E-01 

LD (C16:0) 0.3151 0.1372 2.623E-02 1.298E-01 

LD PUFA -1.3593 0.6184 2.732E-02 1.298E-01 

LD (C18:2) -0.8890 0.4258 3.598E-02 1.519E-01 

LD (C16:1) 0.1208 0.0590 4.019E-02 1.527E-01 

rs319154814 (9:9581989) ssc-miR-326 apical loop (G/A) 

LD (C14:0) 0.0885 0.0213 8.722E-05 3.314E-03 

GM (C14:0) 0.0700 0.0184 3.942E-04 7.489E-03 

LD PUFA/MUFA -0.0506 0.0188 7.109E-03 7.653E-02 

LD (C20:1) 0.0349 0.0125 8.055E-03 7.653E-02 

LD (C20:4) -0.2918 0.1268 2.092E-02 1.438E-01 

LD MUFA 0.9512 0.3971 2.485E-02 1.438E-01 
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LD (C18:1) 0.8349 0.3624 2.814E-02 1.438E-01 

LD PUFA -1.0670 0.5004 3.222E-02 1.438E-01 

LD (C18:2) -0.7266 0.3443 3.405E-02 1.438E-01 

GM (C18:0) -0.2245 0.1115 4.423E-02 1.681E-01 

rs321151601 (9:39280312) ssc-miR-34c mature region (C/A) LD (C20:0) -0.0262 0.0119 2.655E-02 8.171E-01 

rs335924546 (13:122141078) ssc-miR-1224 precursor stem (C/T) 
LD (C18:3) 0.0270 0.0116 2.026E-02 4.480E-01 

LD (C18:0) -0.3578 0.1663 3.091E-02 4.480E-01 

rs335924546 (17:10758828) ssc-miR-486 precursor stem (C/T) 

GM (C20:4) 0.3396 0.1465 2.100E-02 4.555E-01 

LD (C14:0) -0.0586 0.0256 2.937E-02 4.555E-01 

LD IMF 0.3300 0.1553 4.748E-02 4.555E-01 

rs334590580 (18:18341582) ssc-miR-335 precursor stem (T/C) 

GM (C16:0) -0.4305 0.1558 5.862E-03 1.201E-01 

GM (C20:0) 0.0331 0.0121 6.321E-03 1.201E-01 

GM UFA 0.5231 0.2278 2.147E-02 2.045E-01 

GM SFA -0.5229 0.2278 2.153E-02 2.045E-01 

 

aδ: estimated allele substitution effect; bse: standard error of the substitution effect; cq-value: q-value calculated with the false discovery rate (FDR) approach. Trait acronyms are defined in Additional file 3: Table S3. 
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Discussion 

Divergent patterns of variation for microRNA and 3’-UTR polymorphisms in Asian and 

European pigs and wild boars 

The PCA revealed the existence of a detectable genetic differentiation between Asian and 

European populations, with the later showing reduced levels of diversity when compared to 

the former (Figure 1). Groenen et al. (2012) [43] investigated the variability of pig genomes 

and found that Asian pigs and wild boars are more diverse than their European counterparts 

and that both gene pools split during the mid-Pleistocene 1.6–0.8 Myr ago. Calabrian glacial 

intervals probably favored a restricted gene flow between these two pools [43]. The high 

variability of Asian populations could be explained by the fact that Sus scrofa emerged as a 

species in Southeast Asia (5.3-3.5 Mya) and then dispersed westwards until reaching Europe 

around 0.8 Mya [15]. This initial founder effect combined with the occurrence of strong 

bottlenecks reduced the genetic diversity of European wild boars [43]. 

While genetic differentiation between wild boar and pig populations is clearly discernible in 

Figure 1A (total SNP data set), this is less evident in the PCA based on miRNA SNPs (Figure 

1B), probably because the low number (285 SNPs) of markers employed in this analysis 

limits the resolution with which population differentiation can be detected. We have 

investigated whether there is any miRNA SNP under positive selection by using an FST test 

(Additional file 6: Table S4). According to the results of the selection scan, only 2 SNP 

yielded significant FST values, suggesting that the majority of miRNA genes have not been 

targeted by positive selection. This result implies that the genetic differentiation that we 

observe in Figure 1B is mostly produced by non-neutral evolutionary forces.  

We have also found that the degree of population differentiation between Asian domestic pigs 

and Asian wild boars increases when PCAs are built on the basis of SNPs located in the 3’-

UTR (709,343 SNPs), 3’-UTR 7mer-m8 sites (107,196 SNPs) or 3’-UTR 8mer (33,511 

SNPs) sites (Figs. 1C-E). The potential effects of 3’-UTR SNPs are the modulation of mRNA 

expression, secondary structure, stability, localization, translation, and binding to miRNAs 

and RNA-binding proteins [44], so in general they are not expected to have drastic 

consequences on gene function. In humans, only a small fraction (3.7%) of the 

polymorphisms associated with phenotypes reside in 3’-UTRs [44]. Thus, it is reasonable to 

assume that the intensity of purifying selection is lower in 3’-UTRs than in protein-coding 
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regions, meaning that 3’-UTRs evolve faster and accumulate a larger fraction of recent 

polymorphisms contributing to population differentiation. In this regard, Bachtiar et al. (2019) 

[45] reported that ~95% of population-differentiated polymorphisms reside in non-genic 

regions, compared to the proportion of all SNPs (58%) found in non-genic regions.  

 

The majority of microRNA polymorphisms are shared by at least two porcine 

populations 

The percentage of SNPs located within precursor miRNAs that were shared by all four 

populations was approximately 18.55%, while the percentages of SNPs found exclusively in 

ADM (13.57%), AWB (12.67%), EDM (10.40%) and EWB (5.43%) populations were lower 

(Additional file 5: Figure S2A). Moreover, the examination of Figs. S2B and S2C indicates 

that in mature miRNAs and, to a lesser extent, in seed regions, the percentages of group-

specific SNPs exceed that of SNPs shared by all four populations, being ADM pigs the 

population which displays a higher percentage of exclusive SNPs. By using a data set of 133 

porcine whole-genome sequences, Bianco and coworkers [46] computed the percentages of 

total SNPs that were private to ADM (4.8%), AWB (23.4%), EDM (12.6%) and EWB (2.6%) 

populations, as well as the fraction of SNPs shared by all four of them (11.7%). In close 

similarity with our results, the majority of SNPs (> 80%) were shared by two or more 

populations, and EWB pigs was the population that showed a lower percentage of private 

SNPs. It should be noticed, however, that the number of genomes used in our study and in the 

one of Bianco et al. (2015) [46] is moderate (~120-130 genomes), so these estimates might 

change if additional whole-genome sequences were incorporated to the investigated data sets. 

The sharing of SNPs between the four populations under consideration could be due to 

common ancestry as well as to the occurrence of an extensive gene flow between (1) domestic 

vs wild pigs, and (2) European vs Asian populations [47]. Reproductive isolation between 

wild and domestic pigs was disrupted to some extent during and after domestication in Asia 

and Europe [47]. Even in present times, significant levels of domestic pig introgression have 

been reported in northwest European [48], Sardinian [49] and Romanian [50] wild boars. On 

the other hand, there are abundant evidences of domestic pig exchanges between Europe and 

Asia [47,51,52]. The high frequency of Asian mitochondrial variants in European pigs has 

been interpreted in the light of the massive importation of Chinese sows into England in the 



Paper IV 

 

195 

 

18th-19th centuries with the goal of increasing fatness and reproductive efficiency [51-53]. 

Conversely, the importation of improved European breeds into Asia explains the admixture of 

certain Chinese breeds with European blood [54]. In close agreement with our results, Bianco 

et al. (2015) identified Asian wild boars as the population with a higher percentage of private 

SNPs [46]. As previously said, the most likely explanation for this result is the Asian origin of 

Sus scrofa and the occurrence of a strong founder effect in Europe [15,43]. 

 

Low SNP density in microRNA genes lack a uniform SNP distribution across sites 

We have found that, in general, miRNA loci have a substantially lower SNP density than that 

of the global pig genome (2.5-fold reduction), a result that is concordant with data presented 

by Saunders et al. (2007) [5]. This reduction in SNP density was stronger in the seeds 

compared with mature and precursor regions (Figure 3A). The low variability of miRNA 

genes, a feature that was particularly evident in the seed region, is probably due to the intense 

effects of purifying selection. Indeed, the importance of the miRNA seeds is revealed by the 

high conservation of their sequence across species [17,55,56], as this sequence ultimately 

determines the success of the miRNA-mRNA interactions [2]. In our study, a total of 221, 52 

and 12 SNPs were found in precursor, mature and seed regions within miRNA loci, 

respectively (Additional files 2 and 5: Table S2, Figure S2). Gong et al. (2012) [57] described 

the existence of 40% polymorphic miRNAs in the human genome but only 16% of them 

displayed more than one SNP. In a more recent study, He et al. (2018) [58] reported 1,879 

SNPs in 1,226 (43.6%) human miRNA seed regions, and 97.5% of these polymorphisms had 

frequencies below 5%, results in accordance with the overall frequency distribution of 

miRNA SNPs in the European and Asian populations analyzed in the current work (Figure 2). 

He et al. (2018) also demonstrated that 1,587, 749, 340, 102, 31, and 4 miRNAs harbored 

zero, one, two, three, four, and five SNPs, respectively, in their seed regions, reflecting that 

mutations in this critical functional region are not well tolerated [58]. This distribution is 

similar to the one that we have observed in domestic pigs and wild boars, with 81, 31, 11, 9 

and 5 miRNAs harboring one, two, three, four and five SNPs (Additional file 4: Figure S1). 

Only 4 and 2 miRNAs showed a total of seven and ten polymorphisms within their sequences. 

We have found a trend towards a decreased variability in porcine miRNA genes, as well as in 

their precursor, mature and seed regions. Moreover, we have detected a high heterogeneity in 
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the SNP density across mature miRNA sites (Figure 3B). Gong et al. (2012) [57] showed that 

SNPs tend to concentrate in the middle region of the mature miRNA gene rather than in its 5’ 

and 3’ends, but they also detected a non-uniform distribution of variability across the mature 

miRNA sequence. Moreover, the same authors described an increased SNP density at 

positions 9 and 15 of the mature miRNA, a result that closely matches ours (Figure 3B) 

However, we have also identified an elevated number of polymorphic sites at positions 11, 19 

and 20, a finding that does not match human data presented by Gong et al. (2012) [57]. 

Several of the sites showing a reduced variability in porcine miRNAs exert critical functions 

(Figure 3B). For instance, the 1st nucleotide of mature miRNAs plays an important role in the 

loading process of the mature miRNA within the Argonaute protein in the miRISC complex. 

Indeed, the 5’ end (1st nucleotide) of the mature miRNAs is thought to interact with a 

structural pocket of the Argonaute MID domain, anchoring the miRNA in its position and 

thus being inaccessible to pairing with targeted mRNAs [59]. Nucleotides 2nd to 8th in the 

mature miRNA correspond to the seed, where we found a consistently reduced SNP density 

(Figure 3A and 3B) compared with other miRNA regions. This result was expected because 

this region has a crucial role in shaping the interaction between the mature miRNA and short 

sequences within 3’-UTRs of targeted mRNAs. The presence of polymorphic sites inside the 

seed region has the potential to disrupt the proper miRNA-mRNA pairing and thus alter 

biologically relevant regulatory pathways, which tend to be evolutionary conserved [55]. 

Alternatively, polymorphisms in the seed might favor the emergence of novel miRNA-mRNA 

interactions, thus modifying gene regulatory networks. 

In contrast with the first 5’ position of the miRNA and the seed region, we found a high SNP 

density in positions 9th to 12th, which do not contribute substantially to miRNA target 

recognition [2] (Figure 3B). Following positions 13th to 16th have been previously described 

to facilitate 3’-compensatory pairing between the mature miRNA and targeted 3’-UTRs [60], 

although only at marginal levels [61]. Nevertheless, in the region comprising 13th to 18th 

nucleotides within the mature miRNA, only positions 16th-17th showed a reduced SNP density 

in our porcine dataset (Figure 3B). 
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Polymorphisms in microRNA genes show associations with the mRNA expression of 

several of their predicted targets  

By sequencing the genomes of five parental Duroc boars, we selected a total of 15 SNPs 

mapping to miRNA genes and segregating in their offspring (N = 345). We were interested in 

determining if any of these SNPs was associated with microarray mRNA expression data 

recorded in skeletal muscle and liver samples from 87-89 offspring individuals. The putative 

mRNA targets of the miRNAs were selected according to in silico prediction of 7mer-m8 

binding sites using porcine 3’-UTR sequences. We also identified those interactions that were 

experimentally confirmed in humans according to the Tarbase v.8 database [39].  

No experimentally confirmed targets were available for the porcine ssc-miR-9272-5p, which 

contains the rs322514450 SNP in its seed. If we just consider mRNA targets on the basis of 

the 7mer-m8 criterion (without requiring experimental confirmation in humans), two 

significant associations in GM and liver tissues were detected for the NUDT6 and RBLP1 

genes, respectively (Table 2, Additional file 9: Table S6). The NUDT6 gene overlaps the 

fibroblast growth factor 2 (FGF2) gene in an antisense manner, and is thought to negatively 

regulate its expression [62]. The FGF2 gene is involved in myoblast proliferation and is a 

potent inhibitor of skeletal muscle cells differentiation through the activation of the 

phosphorylation cascade triggered by the protein kinase C (PCK) [63]. Both NUDT6 and 

RBLP1 transcripts showed a reduced expression in pigs homozygous for the mutated A-allele 

(Figure 6).  

In principle, mutations in the seed region should affect target recognition and, by this reason, 

seed variability is known to evolve under strong evolutionary constraints. Abnormal 

phenotypes have been observed in knockout mice for specific miRNAs, sometimes with 

severe effects on viability [64]. However, we did not detect a drastic effect of this seed 

polymorphism on hepatic or muscle mRNA expression. In a previous experiment, Gong et al. 

(2012) [57] investigated the consequences of SNPs in the seeds of eight miRNAs by using a 

dual luciferase assay and found that there was a total or partial abrogation of target binding 

function for four miRNAs, and a gain of target binding for a fifth one, implying that seed 

polymorphisms not always induce a complete rewiring of the network of genes regulated by 

the miRNA. Indeed, 3’-compensatory sites within mature miRNAs can mitigate the 

consequences of imperfect pairing in the seed [2]. Moreover, the existence of miRNA clusters 
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encompassing multiple, highly similar miRNAs is fairly frequent in mammals [64], 

introducing some degree of functional redundancy with compensatory effects on gene 

repression. 

Regarding other polymorphisms located in the miRNA precursor region, the rs333787816 

(T/C) polymorphism within the ssc-miR-23a showed several significant associations, with 

AGO1 and AGO2 transcripts among them, two essential components of the miRNA-mediated 

cell metabolism regulation [65,66]. Besides, the hepatic expression of MKRN1 transcript, 

whose depletion promotes glucose usage and reduces lipid accumulation via AMPK 

stabilization and activation [67], was also associated with the rs335924546 SNP at ssc-miR-

1224 (Table 2).  

Interestingly, the rs319154814 polymorphism in the apical loop region of ssc-miR-326 

showed a significant association, after multiple testing correction, with the hepatic mRNA 

expression of several of its predicted and experimentally confirmed targets (Table 2). In 

contrast, no association with GM muscle mRNA expression was observed. Differences in the 

expression of miRNAs or their targets across tissues might explain such outcome. Indeed, the 

analysis of the distribution of miRNA expression across human tissues has shown that only a 

minority of miRNAs are expressed ubiquitously [68]. The hepatic mRNA targets showing the 

most significant association with rs319154814 genotype were PPP1CC, CFLAR, FSTL1, 

SF3A3, NAA50, ELAVL1 and EIF4G2 (Table 2, Additional file 9: Table S6). The protein 

encoded by the PPP1CC gene belongs to the protein phosphatase PP1 subfamily, which is a 

ubiquitous serine/threonine phosphatase involved in regulating multiple cellular processes 

through dephosphorylation signaling. Among them, it is worth mentioning insulin signaling 

[69], post-translational localization of circadian clock components [70] and lipids [71,72] or 

glycogen metabolism regulation [73]. Last but not least, the cellular FLICE-like inhibitory 

protein gene (CFLAR) encodes the cFLIP protein and is involved in the inhibition of Fas-

mediated apoptosis [74], while the Follistatin-like 1 (FSTL1) plays a role in the immune 

inflammatory signaling and fibrosis in the liver [75]. 

Although the apical region of the miRNA does not have a function as critical as the seed, 

polymorphisms located in this particular region can have relevant effects on the structural 

conformation of the pre-miRNA hairpin [13]. In other words, SNPs in the apical region can 

modify the efficiency with which the Drosha processing machinery, mediating the initial 
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slicing of the hairpin, is recruited. We found particularly interesting that pigs homozygous for 

the derived A-allele of the rs319154814 SNP showed a consistent downregulation of the 

hepatic mRNA expression of the PPP1CC, CFLAR, FSTL1, SF3A3, NAA50 and ELAVL1 

genes (Figure 4), thus suggesting that this variant may increase the repressive activity of ssc-

miR-326. We might hypothesize that the rs319154814 A-allele in the apical region of ssc-

miR-326 could enhance the processing and the expression of this miRNA. However, a 

functional test will be required to demonstrate the hypothesis outlined in Figure 5, where we 

indicate the potential mechanism by which the rs319154814 SNP might affect the processing 

of the miRNA. The A allele is predicted to produce a change in the organization of the hairpin 

that allows the creation of a bulge around the CNNC processing motif. Such specific region, 

located at the basis of the pri-miRNA hairpin, is recognized by the SRSF3 protein, which 

induces Drosha to correctly slice both stems of the pri-miRNA, thus generating the pre-

miRNA hairpin [76,77] that will be subsequently exported to the cytoplasm and further 

processed by Dicer into the mature miRNA transcript [2]. 

The aforementioned downstream CNNC motif, jointly with the basal UG motif, was first 

reported by Auyeung and collaborators (2013). These authors described both sequence motifs 

located around the miRNA precursor hairpins and assessed their contribution to the miRNA 

maturation process [9]. Additional surveys further reported other motifs affecting the 

expression of miRNAs [10] and analyzed the structural specifications of RNA-protein 

interactions between miRNAs and protein subunits in the Microprocessor complex [77-79], as 

well as the influence of such processing motifs in miRNA prediction analyses [80]. 

Particularly relevant was the study by Fernandez et al. (2017) [13], where they described a 

mutation in the apical loop of hsa-miR-30c (G/A) that creates a steric disruption of the pri-

miRNA folding structure of the hairpin, hence creating a bulge around the CNNC motif that 

facilitates the SRSF3 factor accessibility to the RNA sequence. The SRSF3 protein 

incorporates an RNA-recognition motif (RRM), broadly conserved across many bilaterian 

animals, which recognizes a degenerate CNNC motif in a base-specific manner [81]. 

Interestingly, the rs319154814 (G/A) polymorphism detected in porcine ssc-miR-326 might 

have structural consequences similar to those described for the hsa-miR-30c apical loop 

variant [13]. This interpretation is further corroborated by structural analyses of the ssc-miR-

326 hairpin with and without incorporating the rs319154814 variant (Figure 5). Such 
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similarity could hence be compatible with a conserved mechanism for enhanced miRNA 

processing via restructuration of the hairpin through sequence modifications. 

 

A polymorphism in the apical loop of microRNA 326 is associated with fatty acid 

composition traits 

The only miRNA SNP showing significant associations (q-value < 0.1) with lipid-related 

phenotypes was, once again, the rs319154814 in the apical loop of ssc-miR-326. As shown in 

Table 3, this SNP was associated with myristic content in the GM and LD muscles of Duroc 

pigs. To the best of our knowledge, no direct effect of ssc-miR-326 on the metabolism of 

myristic fatty acid has been described so far, but there are reports suggesting that several of 

the targets of this miRNA might be involved in diverse carbohydrate and lipid metabolism 

pathways. For instance, increased expression of miR-326 has been detected in type 1 diabetic 

patients with ongoing islet autoimmunity [82] and there are evidences that this miRNA 

represses PKM2, an enzyme that catalyzes the final and limiting step in glycolysis [83]. 

Moreover, targets of miR‑326 are enriched in pathways related with sphingolipid metabolism 

and arachidonic acid metabolism [71]. In this regard, the PPP1CC transcript, one of the 

predicted targets of miR-326, encodes a subunit of protein phosphatase-1 which activates 

acetyl-CoA carboxylase α and 6-phosphofructo2-kinase/fructose-2,6-bisphosphatase, the main 

regulators of fatty acid synthesis and glycolysis, respectively [72]. Protein phosphatase-1 also 

activates lipogenic transcription factors such as sterol regulatory element-binding protein 1 

(SREBF1), carbohydrate-responsive element-binding protein (MLXIPL) and, moreover, it 

dephosphorylates the DNA-dependent protein kinase encoded by the PRKDC gene, which is 

another main determinant of hepatic lipogenesis [72]. In summary, a potential effect of the 

rs319154814 SNP in the synthesis or degradation of myristic acid can be envisaged, but this 

hypothesis still needs to be confirmed at the functional level. 
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Conclusions 

MicroRNA genes show divergent patterns of variation between Asian and European pigs and 

wild boars and, in general, they display low levels of polymorphic sites. As expected, this 

reduced miRNA variability was particularly prevalent in the seed region, a finding that is 

likely explained by the strong effects of purifying selection aiming to preserve the 

conservation of this critical site. In the light of this, it could be expected that SNPs in the seed 

region might have more drastic consequences on mRNA expression than those in other 

miRNA regions. However, in the analyzed Lipgen population, the SNP displaying the most 

significant associations with mRNA expression and lipid-related phenotypes was located in 

the apical loop of the ssc-miR-326, whereas a SNP in the seed region of ssc-miR-9792-5p 

showed very few relevant associations. Recent studies have demonstrated that polymorphisms 

in the apical region of microRNAs can affect their processing and expression patterns, thus 

highlighting the importance of the maturation process in the fine-tuning of the miRNA 

regulatory function.  
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Highlights 

 Motif search improved pre-miRNA reconstruction from mature microRNA sequences. 

 Semi-supervised methods outperformed canonical supervised classification 

algorithms. 

 The presence of multiple isomiRs in the porcine muscle miRNA repertoire was 

uncovered. 

 A total of 47 novel microRNA genes were identified in the porcine genome. 

 RT-qPCR analyses allowed us to confirm the existence of three novel porcine 

microRNAs. 

 

 

Abstract 

Despite the broad variety of available microRNA (miRNA) prediction tools, their application 

to the discovery and annotation of novel miRNA genes in domestic species is still limited. In 

this study we designed a comprehensive pipeline (eMIRNA) for miRNA identification in the 

yet poorly annotated porcine genome and demonstrated the usefulness of implementing a 

motif search positional refinement strategy for the accurate determination of precursor 

miRNA boundaries. The small RNA fraction from gluteus medius skeletal muscle of 48 

Duroc gilts was sequenced and used for the prediction of novel miRNA loci. Additionally, we 

selected the human miRNA annotation for a homology-based search of porcine miRNAs with 

orthologous genes in the human genome. A total of 20 novel expressed miRNAs were 

identified in the porcine muscle transcriptome and 27 additional novel porcine miRNAs were 

also detected by homology-based search using the human miRNA annotation. The existence 

of three selected novel miRNAs (ssc-miR-483, ssc-miR484 and ssc-miR-200a) was further 

confirmed by reverse transcription quantitative real-time PCR analyses in the muscle and liver 

tissues of Göttingen minipigs. In summary, the eMIRNA pipeline presented in the current 

work allowed us to expand the catalogue of porcine miRNAs and showed better performance 

than other commonly used miRNA prediction approaches. More importantly, the flexibility of 

our pipeline makes possible its application in other yet poorly annotated non-model species. 
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Introduction 

The accurate annotation of a comprehensive set of miRNAs in different species has been 

challenging since the first genome assemblies were published, although an ever-increasing 

amount of knowledge about miRNA diversity across species has been accumulating during 

the past years, being available in public databases [1-3]. Despite these advances, many 

commonly studied domestic species still lack a complete and reliable set of annotated 

miRNAs in their genomes [1]. 

The computational prediction of miRNAs in sequenced genomes initially relied on the strong 

conservation of mature miRNA sequences across closely related species [4,5], taking 

advantage of homology-based comparisons between well annotated genome assemblies and 

other poorly annotated organisms [6-8]. Other approaches focused on rule-based 

classification, integrating other sources of information such as sequencing data or structural 

features to identify novel miRNAs [9-12]. More recently, several machine learning (ML) 

approaches have been proposed for miRNA prediction. Different tools have addressed the 

problem of correctly classifying miRNAs by training ML algorithms with a set of positive 

(annotated miRNAs) and negative (other non-miRNA sequences) data sets. [13-16]. 

Nevertheless, despite the broad array of available tools for novel miRNA identification, their 

application to the discovery and annotation of novel miRNAs in domestic species is still 

limited [17-25]. Moreover, the majority of miRNA surveys carried out in domestic species do 

not generally take into account several issues regarding miRNA genes prediction that have 

recently emerged. For instance, the set of positive training annotated miRNAs often include 

misclassified sequences [26,27], whereas the negative class is sometimes not clearly defined, 

i.e. different types of sequences have been used as negative data sets (coding regions, pseudo-

hairpins, non-coding hairpins or artificial randomized miRNA sequences). Despite some 

efforts [28], obtaining a truly representative negative class is still challenging and few 

approaches have critically addressed this important issue [29-31]. Besides, miRNAs are 

thought to encompass a small percentage of the total non-coding transcriptomic repertoire, 
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with thousands of other non-miRNA hairpin-like RNA molecules that represent a major 

fraction of it. This circumstance contributes to create a high class-imbalance between positive 

and negative sequences. Different approaches have dealt with such phenomenon [32], but 

recent studies have shown that commonly used techniques for solving the high-class 

imbalance problem in microRNA prediction may not be suited to a real-case classification 

scenario [15]. 

In this study we present eMIRNA, a bioinformatics pipeline for miRNA discovery and 

annotation in sequenced genomes. The proposed pipeline implements a semi-supervised 

transductive learning approach to predict and annotate novel microRNAs in the porcine 

genome, overcoming several of the drawbacks outlined above. In order to validate the 

performance of our pipeline in a real-case scenario, we have applied it to the analysis of a data 

set comprising the small RNA fraction of gluteus medius skeletal muscle from a population of 

48 Duroc gilts [33,34]. Furthermore, making use of the better annotated H. 

sapiens miRNAome, an additional set of novel porcine miRNA genes were identified based 

on a homology-based search approach. Finally, some of the identified novel porcine miRNA 

candidates were independently validated in a Göttingen minipig population, investigating 

their expression in skeletal muscle and liver tissues. 

 

 

Materials and methods 

A detailed flow chart depicting all steps described in the eMIRNA pipeline is shown in Figure 

1. Additional instructions and modular scripts needed for the implementation of eMIRNA are 

available at: https://github.com/emarmolsanchez/eMIRNA/. 

Positive and negative training data sets 

To define the corresponding positive (annotated miRNAs) data set required for novel miRNA 

prediction, two approaches were considered: 

1) The annotated pre-miRNA coordinates in Sscrofa11.1 genome assembly were obtained 

from Ensembl repositories, release version 97 

(http://www.ensembl.org/info/data/ftp/index.html), and the corresponding sequences were 

extracted from the pig reference genome by using the BEDTools suite v2.27.0 software [35]. 

https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#f0005
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#f0005
https://github.com/emarmolsanchez/eMIRNA/
http://www.ensembl.org/info/data/ftp/index.html
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miRNA loci located in scaffolds were removed from further analyses, resulting in a total of 

484 annotated porcine miRNA genes. Sequence repeats from pre-miRNA duplicated elements 

were removed from the retrieved positive data set by using the CD-HIT Suite [36] with a 0.9 

sequence identity cut-off value (i.e. sequences showing a similarity ≥ 90% to each other were 

removed and only unique representative pre-miRNA candidates were retained). Moreover, to 

avoid the inclusion of miss-annotated miRNA loci, an additional filtering based on secondary 

structure folding was applied. To this end, the RNAfold tool from the ViennaRNA Package 

2.0 [37] was used to select sequences with canonical pre-miRNA hairpin secondary structures 

(stem-loop conformation with one single terminal loop and two stems). Sequences that failed 

to comply with required folding structure pre-requisites were removed. 

2) In the second approach, the curated miRNA annotation for Sscrofa11.1 available in the 

miRCarta database [2] was retrieved, and the same pre-filtering criteria based on sequence 

identity and secondary structure employed in the analysis of the Ensembl data set were 

applied. The miRCarta database [2] integrates one of the most comprehensive and curated 

databases for miRNA annotation and functional activity, aiming to overcome the limitations 

of other widely used miRNA databases such as miRBase [1]. 

Regarding the negative data set (other hairpin-like sequences), two different data sources were 

used. First, the annotated non-coding transcripts in Ensembl repositories were retrieved and 

non-miRNA sequences were retained. Analogously to what was implemented for the positive 

data set, identity by sequence and secondary structure pre-filters were applied, and non-

miRNA non-coding hairpin-like unique sequences were obtained. Only sequences ranging 

from 50 up to 150 nucleotides (nt) were retained, thus removing hairpin-like long non-coding 

RNAs from the negative data set. Additionally, a set of unlabeled sequences within the 

porcine reference genome (Sscrofa11.1) were generated by extracting candidate pre-miRNA-

like sequences from random blocks of 1 Megabase (Mb) in each of the chromosomes of the 

porcine assembly with the HextractoR package [38], and the previously described pre-filters 

for the negative class were subsequently applied. 
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Figure 1: eMIRNA pipeline scheme for homology-based miRNA prediction using data from 

closely related species and de novo miRNA prediction from small RNA-seq data. (1) Positive, 

negative and unlabeled data are filtered based on size and secondary folding structure and a 

set of features is extracted for each sequence. (2) Mature miRNA sequences from small RNA-

seq data or related model species are mapped against the selected genome assembly and 

elongated to reconstruct putative pre-miRNA candidates. (3) Candidate precursors are filtered 

based on size and secondary folding structure and a set of features is extracted for each 

candidate sequence. Optionally, sequences showing unstable secondary structure are 

removed. (4) Candidate sequences are embedded in the semi-supervised transductive 

classifier and a list of putative miRNAs is predicted. (5) Predicted miRNAs are either 

assigned to already annotated miRNA loci in the provided reference assembly or classified as 

putative novel miRNAs genes. 
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Obtaining putative miRNA candidate sequences from the porcine genome 

In order to test our method with pig transcriptomic data, a small RNA-seq data set was 

generated by sequencing the muscle transcriptome of 48 gilts used in two previous studies 

[33,34]. Upon collection, muscle samples were individually submerged in RNAlater and 

snap-frozen in liquid nitrogen. Samples were pulverized and homogenized in 1 ml of TRI 

Reagent (Thermo Fisher Scientific, Barcelona, Spain). Total RNA was isolated with the 

RiboPure kit (Ambion, Austin, TX). A Nanodrop ND-100 spectrophotometer (Thermo Fisher 

Scientific, Barcelona, Spain) was used to assess RNA concentration and quality. RNA 

integrity expressed in RNA Integrity Number (RIN) units was measured with a Bionalyzer-

2100 equipment (Agilent Technologies Inc., Santa Clara, CA). High quality RNA samples 

were then submitted to Sistemas Genómicos S.L. (https://www.sistemasgenomicos.com) for 

small RNA sequencing. Library preparation for each individual sample was carried out with 

the TruSeq Small RNA Sample Preparation Kit (Illumina Inc., USA) and small RNA libraries 

were single-end sequenced (1 × 50 bp) in a HiSeq 2500 platform (Illumina Inc., CA). 

FASTQ sequence files were subjected to a quality control check as reported by Cardoso et al. 

[33]. After preliminary quality-based filtering, sequencing adaptors were trimmed with the 

Cutadapt software [39] and an acceptance sequence window of 15–30 nt per read was 

established. Processed FASTQ files from all sequenced samples (N = 48) were pooled and 

collapsed to unique FASTA sequences with the FASTQ collapser tool from FASTX-toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/). Unique FASTA sequences represented by >10 

reads-per-million (RPM) were considered to be significantly expressed above the background 

noise [40], and thus selected for further analyses (File S1). The CD-HIT Suite [36] was 

employed to build sequence clusters with >0.9 sequence identity. 

Furthermore, the human mature miRNA coordinates were obtained from Ensembl repositories 

and the corresponding sequences were retrieved from the GRCh38.p12 assembly. Pre-filtering 

based on sequence identity was applied and a set of non-redundant human mature miRNAs 

was generated for homology-based search in the Sscrofa11.1 porcine assembly (File S2). 

 

Pre-miRNA reconstruction by sequence elongation and motif search 

Once putative mature miRNA candidate sequences from the small RNA-seq data set and the 

human mature miRNA sequences were retrieved, they were aligned against the porcine 

https://www.sistemasgenomicos.com/
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0165
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0195
http://hannonlab.cshl.edu/fastx_toolkit/
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0200
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#ec0005
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0180
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#ec0010
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reference assembly (Sscrofa11.1) with the Bowtie aligner [41] and the following 

specifications for short reads: 1) allowing 2 mismatches within the entire aligned sequence 

with respect to the reference assembly, 2) removing reads with >50 putative mapping sites 

and 3) reporting first single best stratum alignment (bowtie -n 2 -l 25 -m 50 -k 1 --best --

strata). Reported alignment genome positions for successfully mapped putative mature 

miRNAs were elongated upstream and downstream, thus ensuring an adequate pre-miRNA 

reconstruction. As no prior knowledge about the 3p or 5p identity of putative mature miRNA 

sequences was available for porcine small RNA-seq data, two candidate pre-miRNA 

structures were generated for each expressed sequence. The same procedure was applied to 

human mature miRNAs when 3p or 5p identity was not specified. Candidate sequences that 

were aligned and extracted from overlapping regions corresponding to other annotated non-

miRNA non-coding loci were discarded from further analyses. 

Elongation patterns were based on previously reported pre-miRNA favored size, with a stem 

length of ~35 ± 3 nt and an apical loop ≥10 nt [42,43]. With these specifications, we 

established two upstream and three downstream elongation pattern combinations: 1) from the 

starting genome position of each aligned sequence, 15 and 30 nt were added upstream, 

beginning from each mature miRNA sequence start position. 2) Additionally, 60, 70 and 80 nt 

were added from each miRNA end position, resulting in the following elongation pattern 

combinations for each candidate sequence: 15/60, 30/60, 15/70, 30/70, 15/80 and 30/80 added 

nt (i.e. we generated a total of 12 putative elongated pre-miRNA candidates per each aligned 

sequence). Besides, the presence of flanking microprocessor motifs was assessed for 

positionally correcting the elongated pre-miRNA candidate sequences. Downstream CNNC 

and upstream UG motifs were assessed within the 30/60, 30/70 and 30/80 elongated 

candidates for each sequence, as described in [44], whereas downstream mismatched GHG 

and upstream CHC motifs were searched in 15/60, 15/70 and 15/80 candidates [42]. 

To determine the most prevalent positional range of flanking processing motifs surrounding 

pre-miRNA sequences in the porcine genome, 30 and 15 nt were added at the flanking 

positions of annotated porcine pre-miRNAs available at the curated miRCarta database [2]. 

The presence of CNNC and UG motifs within flanking ±30 nt, as well as GHG and CHC 

motifs within ±15 nt was hence assessed. According to positional results (Figure 2A), the 

CNNC and UG flanking motifs appeared more prominently located 18 nt after miRNA gene 

ending and 12 nt before miRNA starting points, respectively. Therefore, when downstream 

https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0205
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0210
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0215
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0220
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0210
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0010
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#f0010
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CNNC or upstream UG motifs were found within ±30 nt flanking windows along pre-miRNA 

candidates, −18 and +12 nt positions were added from CNNC and UG motifs location, 

respectively, so as to establish accurate miRNA genes boundaries determined by the 

microprocessor machinery. In the event that none of the aforementioned motifs within 

flanking upstream and/or downstream defined regions were found, the original elongated pre-

miRNA candidates with no motif-based positional refinement were kept. 

 

Selecting putative pre-miRNA candidate sequences based on structural integrity 

To better assess the optimal elongation pattern for each candidate sequence, the structural 

stability of the 12 pre-miRNA candidates per single sequence was determined based on the 

randfold algorithm [45]. This approach assumes the estimated minimum free energy (MFE) 

of the folded pre-miRNA hairpin to be consistently lower than that of other random sequences 

resembling hairpin-like folded structures [45]. Based on this property of pre-miRNA 

sequences, we implemented a Monte Carlo randomization test to select the most stable 

hairpin, i.e. those having the least folding minimum free energy (MFE) values among the 12 

previously generated candidates during pre-miRNA elongation reconstruction for each of the 

analyzed sequences. To this end, we generated a total of 100 randomized sequences per 

candidate by shuffling their nucleotide distribution while maintaining k-let counts [46]. The 

corresponding MFE values for each shuffled and original hairpin-folded sequences were 

calculated with the RNAfold tool [37] and the structural integrity score (p) was defined as: 

 

𝑝 =
𝑅

𝑁 + 1
 

 

where R is the number of randomized sequences having an MFE value equal or smaller than 

that of the MFE value of the original sequence and N is the number of generated iterations 

(100 in this study). 
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Figure 2: Processing motifs distribution and structural stability metrics. (A) Positional 

distribution of upstream and downstream motifs across annotated pre-miRNA boundaries in 

the porcine genome. (B) Proportion of candidate sequences for each elongation pattern 

showing the most stable folding structure according to randfold p score. The proportion of 

sequences for which the structural stability was higher in motif corrected candidates or, 

conversely, in non-corrected (native) candidates are shown as red and green bars, 

respectively. The proportion of sequences for which the structural stability was equivalent 

between motif corrected and native candidates were labeled as equally stable (blue). (C) 

Proportion of selected pre-miRNA candidates detected in the porcine gluteus medius muscle 

small RNA-seq data and (D) Proportion of selected pre-miRNA candidates detected through a 

H. sapiens homology-based miRNA search strategy, according to the most structurally stable 

elongation pattern tested. If two or more pre-miRNA sequences showed equivalent stability, 

the shortest motif-corrected candidate was selected. 
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Subsequently, the candidate sequence showing the higher structural integrity (i.e. the one 

showing the smallest p score) among all 12 generated pre-miRNA candidates per sequence 

was selected. The proportion of the most structurally stable sequences for each elongation 

pattern is shown in Figure 2B. When two or more sequences had equal p scores (i.e. they had 

equivalent structural stability irrespective of the elongation pattern) the reconstructed 

candidates belonging to the motif-corrected (if available) and shortest elongation pattern were 

retained. The proportion of each elongation pattern selected as the most structurally stable 

among all 12 tested patterns from expression-based and homology-based data is shown in 

Figure 2C and D, respectively. 

 

Candidates classification with semi-supervised transductive learning 

After defining training and candidate data sets, we selected a total of 100 features representing 

structural and statistical properties from each pre-defined sequence. These extracted features 

have been previously reported in other state-of-the-art methods and thoroughly reviewed in 

[47]. A complete list of all used features is shown in Table 1. 

For pre-miRNA classification, the miRNAss algorithm proposed by Yones et al. [31] was 

applied. This method implements a semi-supervised transductive learning scheme by using 

well defined labeled cases, either positives (annotated pre-miRNAs) or negatives (comprising 

other annotated non-coding hairpin-like sequences and unlabeled cases with unknown 

hairpins), in order to draw a graph-based representation of each sequence based on input 

features. Each node in the graph represents a sequence, whereas the corresponding edges 

account for the expected similarities among them. In order to accurately represent the spatial 

distribution and connections of each node, the feature importance is obtained by applying the 

Relief-F algorithm [48,49], where k-nearest predictors are weighted based on conditional 

dependencies among all the considered features and the response vector of labels. This 

algorithm penalizes those predictor features giving different values to k-neighbors from the 

same label class and vice versa. After graph construction, a prediction score is assigned to 

each sequence node [31]. 
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Table 1: List of calculated features extracted from candidate hairpins. 

Sequence Features Symbol 
Number 

of variables 

Triplet Elements by SVM-Triplet T1 … T32 32 

Sequence Length Length 1 

G+C/Length GC 1 

A+U/G+C AU.GCr 1 

A, U, G, C/Length Ar, Ur, Gr, Cr 4 

Dinucleotide/Length Aar, GGr, CCr … 16 

Secondary Structure metrics Symbol 
Number of 

variables 

Hairpin loop Length Hl 1 

5’ and 3’ Stems Length Steml5, Steml3 2 

Basepairs in Secondary Structure BP 1 

Matches in 5’ and 3’ Stems BP5, BP3 2 

Mismatches in 5’ and 3’ Stems Mism5, Mism3 2 

Bulges in 5’ and 3’ Stems B5, B3 2 

Bulges in 5’ and 3’ Stems of types 1 to 7 mismatches BN1.5, BN1.3 … 14 

A-U, G-C and G-U basepairs Aup, GCp, Gup 3 

Structural Statistics Symbol 
Number of 

variables 

Minimum Free Energy MFE 1 

Ensemble and Centroid Free Energy EFE, CFE 2 

Centroid Distance to Ensemble CDE 1 

Maximum Expected Accuracy MEA, MEAFE 2 

BP/Length BPP 1 

MFE Ensemble Frequency Efreq 1 

Ensemble Diversity ED 1 

MFE/Length, EFE/Length and CDE/Length MFEadj, EFEadj, Dadj 3 

Shannon Entropy/Length Seadj 1 

MFE-EFE/Length DiffMFE.EFE 1 

MFEadj/GC and MFEadj/BP MFEadj.GC, MFEadj.BP 2 

MEAFE/Length and ED/Length MEAFEadj, Edadj 2 
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Sscrofa11.1 pre-miRNA sequences from Ensembl and miRCarta databases were evaluated 

and different imbalance ratios between positive (taken as reference) and negative data sets 

were applied to assess the performance of the classification algorithm for miRNA discovery 

in the porcine genome (i.e. 1:1, 1:2, 1:10, 1:20, 1:40, 1:60, 1:80, 1:100, 1:150 and 1:200 

imbalance ratios were considered). Labeled sequences comprised annotated pre-miRNAs (+1) 

as positive sequences, while other non-coding hairpin-like transcripts (−1) were considered as 

negative. Genome-wide randomly extracted hairpins were assigned as unlabeled cases (0) 

within the negative data set. 

Testing subsets were randomly assigned from all proposed imbalanced training data set 

combinations using a 0.25 ratio. The performance of the classification algorithm for miRNA 

identification was assessed with a total of 100 random Monte Carlo iterations and average 

performance measures based on sensitivity (SE), specificity (SP), accuracy (Acc), F-1 score 

(F1) and adjusted geometric-mean (Agm) [50] were estimated (Figure 3A). Furthermore, we 

evaluated the performance for each imbalance scenario by computing the corresponding 

receiver operating characteristics (ROC) curves and the precision-recall (PR) curves. PR 

curves can be more informative than ROC curves for highly imbalanced data sets [51]. ROC 

and PR curves as well as the corresponding Areas under the curve (AUC) estimates are shown 

in Figure S1 and Table S1. The ability of the algorithm to correctly classify the list of 

Ensembl and miRCarta annotated porcine miRNAs was also assessed by incorporating the 

positive data set as unlabeled candidate sequences during the classification process in each of 

the defined imbalance scenarios. Results for annotated porcine miRNAs assignment are 

shown in Table S2. 

Finally, the reconstructed expressed candidate sequences from the porcine small RNA-seq 

data and H. sapiens homologous miRNAs detected in the porcine genome were used for 

identifying putative novel miRNAs. For this purpose, annotated pre-miRNAs from the 

Ensembl database were used as positive class and other hairpin-like sequences were 

considered as either negative or unlabeled sequences. Candidates classification was 

implemented with all previously proposed imbalance ratios. In order to reduce the false 

positive rate (i.e. reducing the misclassification of non-miRNA short hairpins as true miRNA 

candidates), the Ensembl miRNA data set was defined as the positive class, due to its higher 

overall reported specificity (Figure 3A and B). Prediction of novel miRNA candidates was 

carried independently with every defined imbalance ratio. Only candidates consistently 
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reported as putative miRNAs in all imbalance scenarios were kept in order to minimize the 

number of false positive miRNA candidates, albeit probably at the expense of increasing the 

false negative rate. 

Besides, for homology-based predicted novel pre-miRNA candidates, we calculated the 

proportion of shared neighboring genes (setting a 2 Mb window before and after each 

annotated human miRNA detected in the porcine genome) present in both S. scrofa and H. 

sapiens assemblies and expressed as a Neighborhood Score (N): 

 

 

𝑁 =  
𝐺𝑟  ∩  𝐺𝑖

𝐺𝑟
 

 

where Gr is the number of orthologous genes within the 4 Mb window in the model species 

(H. sapiens) and Gi is the number of genes within the same window in the species of interest 

(S. scrofa). Only homology-based novel pre-miRNA candidates with N > 0.1 were considered 

for further analyses, based on the assumption that microRNAs residing in genomic regions 

with surrounding and/or host genes phylogenetically conserved across species are more prone 

to be integrated in biologically relevant transcriptional networks [52]. 
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Figure 3: Classification performance and feature importance statistics. Performance metrics 

for sensitivity (SE), specificity (SP), accuracy (Acc), F1-score (F1) and adjusted geometric-

mean (Agm) across incremental imbalance-ratios by using positive miRNAs from (A) 

Ensembl and (B) miRCarta databases. (C) Thirty most discriminant features according to the 

relief-F algorithm. (D) Pearson’s correlation coefficient among the seven most discriminant 

features associated with secondary structure stability metrics. (E) Comparison of the folding 

structure stability between annotated miRNAs and other hairpin-like non-coding RNA 

sequences present in the porcine genome. Stability is expressed as the scaled minimum free 

energy of the folded hairpins adjusted by sequence length (MFEadj). 
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Benchmarking for miRNA prediction performance 

One of the most cited and used prediction miRNA algorithms is miRDeep. This tool was 

developed by Friedländer et al. [53], and further improvements were made in subsequent 

updates [11,54]. This algorithm implements a series of heuristics to compute a score for each 

miRNA candidate expressing the log-odds probability of a sequence being a true miRNA 

gene against the probability of being a miRNA-like pseudo-hairpin [53]. In order to 

benchmark the eMIRNA pipeline compared with the widely used miRDeep approach, we 

used the miRDeep2 algorithm [54] to identify novel and annotated miRNAs by using the 

same small RNA-seq data set employed for de novo miRNA identification with the eMIRNA 

pipeline. To ensure a fair comparison, the arf alignment file needed for running the miRDeep2 

software was generated from the eMIRNA alignment pipeline using the bowtie tool (bowtie -

n 2 -l 25 -m 50 -k 1 --best --strata) on pre-filtered expressed small RNA sequences generated 

in this study. After running the miRDeep2 algorithm, both novel and already annotated pre-

miRNA candidates were compared with those obtained with the eMIRNA pipeline. The 

positional accuracy of the annotated pre-miRNA candidates concurrently identified with both 

approaches was then determined using the Ensembl annotation available for the Sscrofa11.1 

assembly. To further determine which of the two approaches provided a better positional 

annotation of predicted miRNAs, the deviation rate (dr) of each miRNA gene commonly 

detected was calculated for both eMIRNA and miRDeep2, expressed as the average number 

of upstream and downstream overhanging nucleotides compared with the latest porcine 

miRNA Ensembl annotation (v97). The differential deviation estimate (∆D) was assessed 

separately for each predicted pre-miRNA candidate, as follows: 

 

∆𝐷 =  𝑒𝑀𝐼𝑅𝑁𝐴𝑑𝑟 − 𝑚𝑖𝑅𝐷𝑒𝑒𝑝2𝑑𝑟 

 

Additionally, the performance statistics of the semi-supervised transductive learning method 

[31] implemented in the eMIRNA pipeline was compared with other canonical widely used 

state-of-the-art supervised ML approaches for miRNA prediction, such as support vector 

machine (SVM), random forest (RF), k-nearest neighbors (KNN), naïve Bayes (NB), extreme 

gradient boosting trees (XGB) and light gradient boosting trees (lGBM). Only labeled 
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positive and negative data sets were used for comparison between semi-supervised and 

supervised algorithms. Training and testing subsets were randomly generated with a 0.25 ratio 

for testing data and commonly used with all the proposed methods. No imbalance correcting 

procedure was applied. The comparative performance of these tools was assessed on the basis 

of SE, SP, F1-score, ROC and PR curves obtained for each algorithm implementation. SVM, 

RF, KNN and NB algorithms were trained allowing 10 iterations for parameter tuning and a 

10-fold cross-validation scheme, using built-in functions included in the caret R package [55]. 

The xgboost [56] and lightgbm (https://github.com/microsoft/LightGBM/tree/master/R-

package) R packages with default parameters were employed for the training of XGB and 

lGBM classifiers, respectively. 

 

Experimental confirmation of novel identified porcine miRNAs through the RT-qPCR 

analysis of an independent Göttingen minipig population 

In order to investigate the existence of several of the novel putative predicted miRNAs in the 

porcine genome, three well established orthologous novel miRNA candidates detected by 

homology-based search and not previously annotated in the Sscrofa11.1 assembly were 

selected (hsa-miR-483-3p, hsa-miR-484-5p and hsa-miR-200a-3p). The existence of miRNA 

genes orthologous to hsa-miR-483-3p and hsa-miR-484-5p was supported by the 

identification of the corresponding expressed mature miRNA sequences in our small RNA-

seq data set. Transcripts corresponding to hsa-miR-200a-3p were detected at very low 

expression levels (RPM < 10) in the porcine skeletal muscle transcriptomic data, so they were 

not considered as biologically relevant or functionally active in our experimental conditions. 

Longissimus dorsi muscle and liver RNA samples were collected from an independent 

Göttingen minipig population [57]. A total of 7 extracted RNA samples from muscle and liver 

tissues were randomly selected and cDNA synthesis was carried out as reported by Balcells et 

al. [58]. Primers for the qPCR amplification of miRNAs were designed with the miRprimer 

software [59] according to described protocols [60] and they are indicated in Table S3. 

MiRspecific qPCR was performed on a MX3005P machine (Stratagene, USA). Briefly, 1 μl 

of cDNA diluted 8 fold, 5 μl of 2× QuantiFast SYBR Green PCR master mix (Qiagen, 

Germany) and 250 nM of each primer (Table S3) were mixed in a final volume of 10 μl. 

Cycling conditions were: 95 °C for 5 min followed by 40 cycles of 95 °C for 10 s and 60 °C 

https://github/
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for 30 s. Melting curve analyses (60 °C to 99 °C) were performed after completing 

amplification reaction to ensure the specificity of the assays. Data were processed with the 

MxPro qPCR associated software. Assays were considered successful when: 1) the melting 

curve was specific (1 single peak) and 2) the samples had Cq values <33 cycles (i.e. 

sufficiently expressed to be considered biologically functional). Finally, amplified products 

for muscle and liver samples were visually inspected by electrophoresis in a 3% agarose gel. 

 

 

Results 

Motif-based positional refinement enhances structural stability of pre-miRNA 

candidates 

We have evaluated the usefulness of previously reported flanking motifs that enhance pre-

miRNA processing [42,44] as possible novel determinants for pre-miRNA reconstruction 

from mature sequences. The presence of UG and CHC motifs in upstream flanking regions as 

well as of downstream CNNC and GHG motifs was assessed in the curated porcine miRNA 

annotation available in the miRCarta database [2] (Figure 2A). Consistent with data reported 

by Fang et al. [42] and Auyeung et al. [44], the most common flanking upstream positions for 

UG and CHC motifs from the 5′ start of the porcine pre-miRNA genes were −13/−12 and 

−7/−5, respectively, whereas for downstream CNNC and GHG motifs, the most common 

position from the 3’end of the pre-miRNA genes were +18/+21 and +4/+6 (Figure 2A). 

Moreover, we determined the percentage of annotated porcine miRNAs that were surrounded 

by the aforementioned processing motifs, allowing ±2 nt of positional variation from their 

corresponding expected sites. From a total of 328 confidently annotated porcine pre-miRNAs 

in the miRCarta database [2], CNNC, UG, GHG and CHC flanking motifs were found in 

53.05%, 42.68%, 30.79% and 33.54% of the sequences, respectively. The high frequency of 

the CNNC motif agrees well with its key role in the correct Drosha ribonuclease III 

(DROSHA) positioning through the recruitment of Serine and Arginine rich splicing factor 3 

(SRSF3) at the basal junction of the processed pri-miRNA [61]. The proportion of the three 

other flanking motifs were also consistent with previously reported surveys [42,44]. 
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To further elucidate the contribution of each motif to better delineate the boundaries of pri-

miRNA processing, we compared the structural stability (i.e. the estimated p score of the 

hairpin secondary structure with the randfold approach [45]) for every pre-miRNA candidate 

in each of the 12 generated elongation patterns per sequence (15/60, 30/60, 15/70, 30/70, 

15/80 and 30/80, with and without taking into account motif search positional refinement). As 

depicted in Figure 2B, predictions of candidate miRNA sequences based on positional 

information obtained through processing motif search showed a consistently increased 

structural stability compared with non-positionally corrected original sequences. This 

phenomenon was less evident for shorter elongation patterns, where the structural stability of 

the positionally corrected hairpins resembled that of non-corrected candidates (Figure 2B). In 

certain cases, both approaches resulted in equally stable secondary structures. Furthermore, 

shorter elongation patterns appeared to be more favored than their longer counterparts, 

showing higher overall structural stability both in small RNA-seq and homology-based 

derived candidate sequences (Figure 2C and D). This result highlights that the preferred 

length for pre-miRNA processed transcripts would be approximately in the range of 80 to 

90 nt, with few cases showing longer stable hairpin structures. Interestingly, this favored pre-

miRNA length interval coincides with that reported by Roden et al. [43], who determined a 

preferred 2× stem length of 35 nt and a terminal loop of ~10 nt, accounting for a total pre-

miRNA sequence length of ~80 nt. Indeed, the average length of annotated pre-miRNAs in 

the porcine genome after filtering for secondary structure and sequence similarity was 

84.63 nt, also in accordance with results obtained after selecting the most structurally stable 

elongation pattern from all generated candidates per sequence. 

 

Classifier performance and feature importance 

For assessing the performance of transductive semi-supervised miRNA classification on the 

porcine transcriptome, Ensembl and miRCarta positive pre-filtered porcine miRNA data sets 

(415 Ensembl and 244 miRCarta non-redundant hairpin-like stable annotated miRNAs) were 

tested against selected non-coding hairpin-like sequences (252 annotated non-coding hairpin-

like RNAs other than miRNAs) and different imbalance ratios were applied by incorporating 

genome-wide randomly extracted hairpins (unlabeled). Overall, SE and SP obtained with the 

Ensembl miRNA data set (Figure 3A) were slightly better than those inferred for the 
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miRCarta data set (Figure 3B). Ensembl average SE and SP were 0.9199 and 0.9101 

respectively, whereas results obtained with the miRCarta data set were slightly worse 

(SE = 0.8975, SP = 0.9019). Optimal performance was achieved by using a balanced ratio 

between positive and negative classes, with a slightly descending trend in the classifier 

performance when increasing the imbalance ratio (Figure 3A and B), a result that was also 

observed when analyzing the ROC and PR curves (Figure S1). When we compared the 

performance of the semi-supervised approach vs that of other supervised algorithms, the 

miRNAss algorithm [31] implemented in the eMIRNA pipeline outperformed the rest of 

supervised approaches, with the exception of lGBM, which showed similar performance 

results (Table 2). SP, as well as AUROC and AUPR estimates obtained with the miRNAss 

method [31] showed its high ability to discard false positives miRNA candidates, at the cost 

of a lower SE (Table 2). Additionally, after evaluating the ability of the algorithm to correctly 

identify the annotated porcine miRNA loci in all defined imbalance scenarios, a total of 399 

(89.92%) and 213 (87.30%) annotated miRNAs were consistently classified as miRNA 

sequences using Ensembl (415) and miRCarta (244) positive databases, respectively. 

 

Table 2: Comparative benchmarking between the semi-supervised transductive learning 

approach employed by the miRNAss algorithm and other state-of-the-art supervised 

algorithms (i.e. SVM: Support vector machine, RF: Random forest, KNN: k-Nearest 

neighbors, NB: Naïve Bayes, XGB: Extreme gradient boosting and lGBM: Light gradient 

boosting tree) for miRNA classification. Only labeled positive and negative data sets were 

used for training. 

Statistic SVM RF KNN NB XGB lGBM miRNAss 

SE 0.932 0.932 0.9223 0.9126 0.9515 0.9223 0.8835 

SP 0.8413 0.9524 0.9524 0.9683 0.9365 0.9048 0.9683 

F-1 0.9187 0.9505 0.9453 0.9447 0.9561 0.9314 0.9226 

AUROC 0.6428 0.7246 0.5757 0.4291 0.7063 0.9781 0.9783 

AUPR 0.7222 0.8489 0.6751 0.5818 0.8509 0.9873 0.987 

 

SE: Sensitivity; SP: Specificity; F-1: F-score measure of the harmonic mean of the precision and recall; AUROC: Area under the receiver 

operating characteristics (ROC) curve; AUPR: Area under the precision-recall curve. 
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The improved performance achieved with the Ensembl data set was expected because 

Ensembl annotation includes a more diverse and complete miRNA catalogue (415) than 

miRCarta (244). However, these differences are probably due to a stricter miRNA annotation 

procedure in the case of miRCarta database [2], which only includes manually curated bona 

fide miRNA genes. Nevertheless, the slight increase in overall performance observed in the 

Ensembl miRNA data set evidenced that even when reducing the set of positive sequences to 

a more stringent annotation, as that available in the miRCarta database [2], the ability of the 

eMIRNA pipeline to accurately distinguish miRNA sequences from other non-miRNA 

hairpins remained almost unaltered. 

Besides, we determined the importance of the set of calculated features for classifying the 

miRNA candidates with the relief-F algorithm [48,49]. The estimated importance of the 30 

most discriminant features is depicted in Figure 3C. The estimated impact of each feature on 

the accuracy of miRNA is shown in Table S4. Structural stability-related features accounted 

for the most important variables for classifying miRNAs correctly (MFEadj, EFEadj, MFE, 

EFE, MEAFE, MFEadj.GC and CFE). All of these parameters represented different hairpin 

structure folding statistics and they were highly intercorrelated (Figure 3D). The discriminant 

power of structural stability features is better exemplified in Figure 3E, where Ensembl 

annotated pre-miRNA sequences had an overall higher structural stability (i.e. lower MFEadj 

values) compared with that of other non-coding hairpin-like RNA sequences. These results 

clearly show the outmost importance of the structural folding configuration in order to 

discriminate true miRNA candidates from other hairpin-like sequences, hence supporting the 

need of a careful determination of pre-miRNA boundaries. 

 

Novel porcine miRNA identified in the muscle transcriptome and by homology-based 

search 

After microRNA identification from the porcine small RNA-seq data set, a total of 1,403 

reconstructed pre-miRNA candidates from expressed transcripts were successfully identified 

as putative novel miRNAs in the porcine gluteus medius transcriptome, which corresponded 

to 160 unique miRNA loci after assigning clustered isomiRs to consensus single miRNA 

genes. Among these, 140 consensus candidates (87.5%) overlapped already annotated 
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miRNAs in the porcine genome, whereas the 20 remaining ones (12.5%) were classified as 

novel miRNA candidates. 

Regarding homology-based search miRNA discovery in the porcine assembly (Sscrofa11.1), a 

total of 310 annotated human miRNAs had orthologous miRNA genes in the porcine genome. 

The already annotated miRNAs in the porcine genome comprised 281 (90.64%) of the 310 

homologous miRNAs detected with eMIRNA (File S3), and the 29 (N > 0.1) remaining 

candidates were classified as novel non-previously annotated homologous miRNAs in the 

porcine assembly (Table 3). The miR-483 and miR-484 genes were also identified as novel 

expressed miRNA candidates in the gluteus medius muscle transcriptome generated in our 

small RNA-seq experiment. A complete list of the novel miRNA candidates obtained with de 

novo and homology-based approaches is shown in Table 3. The full list of detected miRNAs 

that had been already annotated and all isomiRs associated with novel miRNA sequences can 

be found in File S3. The existence of multiple isoform candidates for single predicted miRNA 

loci, either displaying polymorphisms within the mature miRNA sequence or corresponding 

to 5′ or 3′-trimming variations (File S3), evidenced the wide variety of isomiR sequences 

expressed at significant levels in our gluteus medius muscle transcriptomic data set. 

 

 

Table 3: Novel porcine miRNA genes predicted through a homology-based comparison with 

human miRNA annotation and on the basis of data generated by sequencing small RNAs 

expressed in the gluteus medius muscle of Duroc pigs. 

Chr Start End Strand ID N 

1 191218572 191218651 + miR-3529 0.33 

1 268816970 268817050 + miR-219b 0.92 

2 32718 32792 + miR-6743 0.82 

2 1473428 1473495 - miR-483 0.84 

2 1474436 1474513 - 3229-4643 - 

2 40104336 40104403 - 1325-14520 - 

2 134660802 134660897 - 1323-14559 - 

3 7180536 7180603 - miR-484 0.1 

3 40421320 40421409 + 427-63874 - 

3 40772345 40772445 + 176-178526 - 

4 22195784 22195880 + 2340-6855 - 

5 3397056 3397130 - 1111-18619 - 

5 17410008 17410122 + 1794-9841 - 
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5 95548384 95548458 + miR-3059 1 

6 56426941 564267012 - miR-520e 0.3 

6 63490755 63490822 + miR-200a 0.6 

8 1205684 1205760 - miR-4800 0.85 

9 52087075 52087155 + 1864-9314 - 

9 114528009 114528076 + miR-3120 0.7 

10 27079413 27079489 - miR-24-1 0.79 

11 1824995 1825062 + 504-51258 - 

11 49808356 49808431 - miR-3665 0.86 

12 1538011 1538119 + 337-84973 - 

12 1601453 1601506 - miR-3065 0.82 

12 18989584 18989651 + 399-69074 - 

12 45088806 45088863 + miR-451b 0.78 

12 45597382 45597459 + miR-4523 0.81 

12 46211527 46211594 - miR-3184 0.61 

12 48162620 48162704 - miR-132 0.84 

12 56201226 56201300 - 518-49963 - 

13 30242047 30242114 + 772-29980 - 

13 33152284 33152383 + miR-4787 0.83 

13 197168804 197168901 + miR-6501 0.97 

14 87673881 87673954 + 3552-4147 - 

14 109233945 109234032 - miR-3085 0.95 

14 122706280 122706361 + miR-6715a 0.96 

14 122706285 122706353 - miR-6715b 0.96 

14 127016706 127016794 - miR-9851 0.83 

14 140979533 140979627 + 3525-4198 - 

15 128165751 128165827 - miR-5702 0.86 

17 61915309 61915376 + 1544-12001 - 

X 41793240 41793315 + 451-58980 - 

X 43716471 43716538 + miR-502 0.73 

X 59551153 59551220 + miR-374c 0.8 

X 94122543 94122610 + miR-1264 0.83 

X 96979691 96979765 + miR-1277 0.68 

X 124724889 124724956 - miR-718 0.89 

 

Chr: Chromosome; N: Neighborhood score. 

 

 

 

 

 



Paper V 

237 

 

The eMIRNA pipeline accurately recalls miRNA loci 

The same gluteus medius skeletal muscle transcriptomic data from the small RNA-seq 

experiment employed for de novo miRNA discovery with the eMIRNA pipeline was used for 

running the miRDeep2 algorithm [54]. A total of 148 transcripts belonging to 134 unique 

annotated miRNA loci were identified with miRDeep2. These numbers were slightly smaller 

than the 140 annotated porcine miRNAs recovered as expressed transcripts by the eMIRNA 

pipeline. Among these, 126 annotated miRNAs (85.14%) were consistently recovered with 

eMIRNA and miRDeep2, 14 (9.46%) were only reported by eMIRNA, and 8 (5.41%) were 

exclusively predicted by miRDeep2 (Table S5). 

Regarding novel candidates, miRDeep2 was able to recover a total of 11 putative novel 

candidates belonging to 10 unique loci (Table S6). Seven of these candidates displayed an 

estimated probability of being a true positive miRNA above 19% (miRDeep2 score ≥ 4, Table 

S6). Noteworthy, two of the putatively true miRNAs detected by miRDeep2 spanned other 

previously annotated non-coding RNAs in the porcine assembly and were hence considered as 

miRNA-like false positives (Table S6). Among the 5 remaining candidates, 4 of them (miR-

193a, miR-26a, miR-106b and miR-17) spanned other already annotated miRNAs in the 

porcine assembly and were thus wrongly classified as novel miRNAs by miRDeep2. The 

remaining candidate corresponded to miR-483, which had already been identified with the 

eMIRNA pipeline (Table 3, Table S6). 

When comparing the accuracy of miRNA loci boundaries determined by the eMIRNA 

pipeline and miRDeep2, the eMIRNA approach demonstrated an overall better capability to 

accurately assign miRNA boundaries according to data from porcine miRNA loci annotated 

in the Ensembl database. A total of 103 out of 126 (81.74%) annotated miRNA genes 

detected by both eMIRNA and miRDeep2 showed reduced ∆D values (Table S7). This result 

implies that genomic positions of miRNA precursors predicted with the eMIRNA pipeline 

were more concordant with the annotation of the Sscrofa11.1 assembly than those predicted 

with miRDeep2. This outcome illustrates the effectiveness of motif search positional 

correction for reconstructing pre-miRNA candidates with a higher reliability than the fixed 

elongation patterns strategy used by miRDeep2 [54]. Three of the miRNA candidates showed 

no differences in positional accuracy between both approaches, while the positions of the 

remaining sequences (15.87%) were more accurately predicted with miRDeep2 (Table S7). 
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Experimental confirmation of the existence of three novel miRNAs in the muscle and 

liver tissues of Göttingen minipigs 

The RT-qPCR analyses allowed us to detect the expression of the novel ssc-miR-483, ssc-

miR-484 and ssc-miR-200a candidates in both longissimus dorsi skeletal muscle and liver 

tissues (Figure S2A and B) retrieved from Göttingen minipigs. Both ssc-miR-483 and ssc-

miR-484 were also detected as consistently expressed in the skeletal muscle of Duroc gilts 

from our small RNA-seq experiment. The ssc-miR-200a was also detected in our generated 

data set but at very low expression levels. Nevertheless, its expression was further confirmed 

independently by RT-qPCR analyses. Amplification profiles and melting curves for the three 

novel miRNA candidates detected by RT-qPCR are shown in File S4. 

 

 

Discussion 

In the discovery of novel miRNA genes, one essential issue is the generation of pre-miRNA 

sequence candidates, given that the majority of miRNA prediction tools are based on feature 

extraction from the well-defined pre-miRNA hairpin structure [62]. At the cellular level, the 

most abundant and stable miRNA transcripts are the mature miRNA forms. Indeed, precursor 

stages, such as pri or pre-miRNAs, are much less abundant and have shorter half-lives than 

mature miRNAs [63,64]. Therefore, the accurate definition of pre-miRNA boundaries 

reconstructed from mature miRNAs is a crucial issue in order to predict folding structure and 

minimum free energy (MFE) estimates in a robust manner. 

Noteworthy, the majority of state-of-the-art methods for miRNA prediction are solely focused 

on the miRNA classification of predefined candidate sequences. Moreover, many of them do 

not contemplate the generation of such candidates for the identification of unannotated 

miRNAs. On the contrary, they rely on well-known hairpins or on sets of manually curated 

candidate sequences that are embedded in their prediction pipelines [30,31,65-72]. 

Several other algorithms take advantage of the automated generation of hairpin candidates, 

adopting fixed defined elongation patterns in order to reconstruct pre-miRNA candidates from 

mature miRNA sequences [9,11,73,74]. However, fixed assumptions about elongation 

patterns do not take into consideration the expected variable length of pre-miRNA loci, and 
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tend to generate candidate sequences that, despite harboring mature miRNAs, might have 

unreliable boundaries. This may lead to inaccuracies in the folding prediction and thus to an 

augmentation of the false negative rate. Even worse, non-miRNA hairpin-like sequences 

strongly resembling pre-miRNAs may be generated through the blind elongation of short 

sequences, which could result in the emergence of false positive candidates. This situation is 

particularly critical when analyzing the reliability of miRNA annotation in public databases 

[27,75,76]. Other approaches have also adopted a multiple hairpin candidate search for each 

query sequence to further select those showing a higher structural stability [77-79]. By using 

this strategy, we explored the influence of flanking processing motifs on the accurate 

determination of the length and boundaries of pre-miRNA candidates. By doing so, we have 

demonstrated that the inclusion of processing motif search criteria for the estimation of pre-

miRNA boundaries resulted in an improved ability to better assess the optimal candidate 

sequences to be used for miRNA prediction. 

Compared with miRDeep2 [54], the eMIRNA pipeline showed an improved ability to better 

assess the already annotated miRNA loci boundaries after pre-miRNA sequence 

reconstruction. However, the presence of embedded processing motifs within the boundaries 

of miRNA genes is not a universal feature, with a non-negligible amount of miRNA loci 

lacking the well-known CNNC and UG motifs [44], as well as the CHC and GHG 

mismatches [42] in their proximal surroundings. Additional work is needed to better 

characterize other processing motifs or structural determinants that may also contribute to 

miRNA maturation. 

In contrast with pre-existing supervised methods for miRNA discovery, few semi-supervised 

methods have been developed for such purpose [31,80]. From a biological perspective, the 

scarce miRNA annotation typically found in non-model species poses a great challenge when 

attempting to predict novel miRNA loci uniquely based on labeled data. This happens because 

the amount of unknown non-miRNA sequences with hairpin-like secondary structures is 

expected to be hundreds of times larger than the number of confidently annotated miRNAs to 

be used for training supervised algorithms. Despite the fact that good performance statistics 

may be obtained after classifier training, supervised algorithms heavily depend on the 

existence of an extensive miRNA annotation. Indeed, the ability of such classifiers to detect 

unannotated miRNA sequences is mainly driven by the amount and diversity of positive and 

negative instances used for learning training. 
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On the contrary, semi-supervised transductive approaches [31] are able to overcome such 

limitation by incorporating unlabeled cases to the training process, with the aim of increasing 

the variability of the data used for target sequences classification. In fact, allowing the 

classifier to check hundreds or thousands of unknown unlabeled sequences has proven to 

increase the validity of microRNA prediction over other methods solely based on labeled data 

[31], a result that was also verified when comparing the semi-supervised approach used in this 

study with other broadly reported supervised methods (Table 2). This strategy is particularly 

reliable when few positive data are available and the annotated negative data set only 

represent a small proportion of the whole non-miRNA class. Besides, in classification 

problems where the negative class is expected to be dozens or hundreds of times larger than 

the positive class, the accurate identification of false positives is crucial. Indeed, such scenario 

is completely applicable to miRNAs, where thousands of non-miRNA sequences exist 

compared with the few hundreds of reliably annotated miRNA genes, and the annotation of 

negative hairpin-like sequences only represents a small proportion of the whole non-miRNA 

class. 

After miRNA prediction, the detection of multiple isoforms for each single predicted miRNA 

loci evidenced the existence of a broad array of isomiR sequences expressed at significant 

levels in our gluteus medius muscle transcriptomic data set (File S3). Previous studies have 

highlighted the importance of isomiRs in expanding the biological diversity of miRNA 

function [81-84]. Like canonical miRNAs, isomiRs are also evolutionary conserved [81]. 

Both 5′ and 3′ miRNA isoforms can be generated either from alternative processing sites of 

DROSHA and Dicer [43,85] or from post-transcriptional modifications, influencing miRNA 

half-lives as well as their interactions with RNA-binding proteins (RBPs) [86,87]. 

More recently, other integrative approaches have addressed the detection of isomiRs and the 

potential functional influence that subtle modifications in the 3′ and 5′ boundaries of mature 

miRNA sequences might have on target recognition [88-91]. Other studies have also reported 

5′ alternative processing events in a large number of miRNAs, contributing to the expansion 

of their target repertoire at a higher rate than previously thought [92]. Despite these promising 

results, the biological implications of miRNA alternative processing events leading to the 

generation of isomiRs are still poorly understood and further research is needed in order to 

exclude potential biases in isomiR quantification and functional validation, as variations in 3′ 
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or 5′ ends of mature miRNAs can strongly affect the reliability of stem-loop qPCR 

amplification protocols [93]. 

One potential limitation of our study is that 17 of the novel miRNAs predicted with eMIRNA 

and based on muscle transcriptomic data have not been further investigated in order to 

confirm their existence by RT-qPCR, so their experimental validation is still pending. Indeed, 

we only investigated 3 out of 20 predicted novel porcine miRNAs. Noteworthy, the three 

selected miRNAs were successfully confirmed as bona fide miRNAs by RT-qPCR thus 

suggesting that eMIRNA predictions are accurate. 

Among the three validated miRNAs, it is worth mentioning miR-483, which has been 

functionally associated with cell growth regulation [94] as well as with insulin resistance and 

metabolic syndrome susceptibility likely due to its strong implication in the regulation of 

glucose metabolism [95,96]. Additionally, the expression of miR-483, whose coding sequence 

maps to the second intron of the insulin growth factor 2 (IGF2) gene, has been tightly 

associated with an enhancement of IGF2 gene expression. This is achieved through the 

binding of miR-483 to transcription factors in a positive feed-back loop [97], although other 

authors have questioned such dependence [98]. Other relevant successfully profiled miRNAs 

were ssc-miR-200a and ssc-miR-484. The miR-200a gene has been mainly reported as a 

regulator of cell growth and differentiation through targeting several protein-encoding 

transcripts like the growth factor receptor-bound 2 (GRB2), α-smooth muscle actin (α-SMA) 

or the fibroblast-specific protein-1 (FSP-1), thus hampering the endothelial-mesenchymal 

transition [99]. Furthermore, miR-484 has been associated with the inhibition of Fis1-

mediated mitochondrial fission and apoptosis signaling [100]. 

 

 

Conclusions 

In this study we have implemented an end-to-end pipeline that may facilitate the identification 

of novel miRNAs in the porcine genome. We have tested the eMIRNA pipeline by following 

a homology-based approach making use of the well annotated human microRNA 

transcriptome. Besides, we have analyzed the presence of non-annotated miRNAs in the 

porcine genome using data from a small RNA-seq experiment comprising muscle samples 
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from 48 Duroc gilts. We have also taken into consideration several issues that are critical to 

robustly predict miRNA genes, such as the accurate reconstruction of candidate pre-miRNAs, 

the correct definition of negative training data sets and the evaluation of the high class-

imbalance phenomenon, which is not fully addressed in many miRNA-prediction studies. In 

parallel, we have established hard-threshold filtering steps to keep false positive predictions at 

a minimum. We have also demonstrated the usefulness of positional refinement through 

flanking motif search to better determine the boundaries of pre-miRNA hairpin-like candidate 

sequences. The expression of several of the novel miRNAs described in this work was further 

confirmed by RT-qPCR analyses. In the light of these results, we believe that the eMIRNA 

pipeline will facilitate the discovery and annotation of novel miRNAs, thus broadening the 

miRNA catalogue of non-model species with yet poorly annotated genome assemblies. 

 

 

Supplementary Information 

Figure S1: (A) Receiver operating characteristics (ROC) and (B) precision-recall (PR) curves 

computed for each pre-defined imbalance scenario using porcine Ensembl annotation for 

positive (miRNAs) and negative (other hairpin-like non-coding RNAs) data sets. 

Figure S2: RT-qPCR results of selected novel miRNAs. Successfully profiled novel miRNAs 

in (A) the longissimus dorsi skeletal muscle and (B) liver tissues from 7 Göttingen minipigs. 

File S1: FASTA file of collapsed expressed sequences (RPM > 10) used in the de novo 

discovery of miRNAs expressed in the porcine gluteus medius skeletal muscle. 

File S2: Non-redundant annotated mature miRNA sequences obtained from the H. sapiens 

GRCh38.p12 genome assembly used as a reference in the homology-based search of novel 

miRNAs in the current release of the porcine genome (Sscrofa11.1). 

File S3: List of already annotated miRNAs and all isomiRs detected as expressed (RPM > 10) 

in the porcine gluteus medius skeletal muscle. 

File S4: Amplification profiles and melting curves for the three novel miRNA candidates 

subjected to confirmation by RT-qPCR analyses. 
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Table S1: Area under the curve (AUC) computed for each pre-defined imbalance scenario 

using Ensembl annotation for positive and negative data sets. 

Table S2: True positive ratio of porcine miRNA loci annotated in the Ensembl and miRCarta 

databases and identified by the eMIRNA pipeline in all considered imbalance scenarios. 

Table S3: Mature miRNAs and primers used for RT-qPCR confirmation of selected novel 

miRNA candidates. 

Table S4: Feature importance according to the relief-F algorithm. 

Table S5: Previously annotated miRNAs genes that are correctly classified as miRNAs by 

eMIRNA and miRDeep2. 

Table S6: miRDeep2 algorithm results for miRNA prediction using the gluteus medius 

muscle small RNA-seq data generated in the present study. 

Table S7: Deviation rates (dr) and Differential deviation (∆D) estimates for miRNA genomic 

positional prediction with eMIRNA and miRDeep2. 
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Abstract 

Background 

The role of non-coding RNAs in the porcine muscle metabolism is poorly understood, with 

few studies investigating their expression patterns in response to nutrient supply. Therefore, 

we aimed to investigate the changes in microRNAs (miRNAs), long intergenic non-coding 

RNAs (lincRNAs) and mRNAs muscle expression before and after food intake. 

Results 

We measured the miRNA, lincRNA and mRNA expression levels in the gluteus 

medius muscle of 12 gilts in a fasting condition (AL-T0) and 24 gilts fed ad libitum during 

either 5 h. (AL-T1, N = 12) or 7 h. (AL-T2, N = 12) prior to slaughter. The small RNA 

fraction was extracted from muscle samples retrieved from the 36 gilts and sequenced, 

whereas lincRNA and mRNA expression data were already available. In terms of mean and 

variance, the expression profiles of miRNAs and lincRNAs in the porcine muscle were quite 

different than those of mRNAs. Food intake induced the differential expression of 149 (AL-

T0/AL-T1) and 435 (AL-T0/AL-T2) mRNAs, 6 (AL-T0/AL-T1) and 28 (AL-T0/AL-T2) 

miRNAs and none lincRNAs, while the number of differentially dispersed genes was much 

lower. Among the set of differentially expressed miRNAs, we identified ssc-miR-148a-3p, 

ssc-miR-22-3p and ssc-miR-1, which play key roles in the regulation of glucose and lipid 

metabolism. Besides, co-expression network analyses revealed several miRNAs that 

putatively interact with mRNAs playing key metabolic roles and that also showed differential 

expression before and after feeding. One case example was represented by seven miRNAs 

(ssc-miR-148a-3p, ssc-miR-151-3p, ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-421-5p, ssc-

miR-493-5p and ssc-miR-503) which putatively interact with the PDK4 mRNA, one of the 

master regulators of glucose utilization and fatty acid oxidation. 

Conclusions 

As a whole, our results evidence that microRNAs are likely to play an important role in the 

porcine skeletal muscle metabolic adaptation to nutrient availability. 

Keywords: Co-expression analysis, lincRNAs, microRNAs, Pig, Regulatory impact factor, 

Skeletal muscle 
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Background 

The majority of nutrigenomic studies in domestic animals have investigated the effects of 

dietary factors on the mean expression of messenger RNAs (mRNAs) [1], whereas the 

potential consequences of nutrition on the expression profiles of microRNAs (miRNAs) and 

long intergenic non-coding RNAs (lincRNAs) have not been explored in depth. Although 

changes in the expression of porcine genes in response to dietary and genetic factors have 

been reported in previous studies [2–6], the regulatory co-expression networks underlying 

such changes have not been fully elucidated yet [3, 7, 8]. Moreover, gene expression variance 

(GEV), also referred as gene dispersion, has been often overlooked, being considered just as 

experimental noise without any biological significance [9]. Few methods have been explicitly 

designed for modeling GEV across samples in RNA-seq experiments [10, 11], despite the fact 

that changes in gene expression in response to a specific stimulus might have a biologically 

meaningful individual component that should not be confounded with experimental noise. 

Indeed, metabolic responses to nutritional factors are often driven by complex signaling 

pathways and gene-to-gene interactions that are not necessarily identical across the whole 

cohort of analyzed biological replicates, adding an intrinsic source of variation in gene 

expression patterns that is often ignored or modeled as a constant variable [11]. A widely 

accepted estimator of GEV is the biological coefficient of variation (BCV) [12]. In contrast 

with the canonical coefficient of variation (CV), the BCV effectively integrates both technical 

and biological variability, thus avoiding the dependence on count size that CV commonly 

shows. 

When the expression patterns of two experimental groups are compared, differences in the 

magnitudes of average gene expression (differential gene expression) and GEV (differential 

gene dispersion) can be observed. Differential dispersion might be particularly useful to 

identify regulatory changes induced by the experimental factor under study. For instance, it is 

assumed that genes with low GEV are central members of signal transduction pathways while 

those with high GEV tend to occupy more peripheral positions in gene networks [13]. 

However, the central or peripheral position of a given gene in a network is not necessarily 

stable across time and it could also be altered by the experimental factor being analyzed. 

Differential dispersion could be a useful parameter to detect such source of biological 

variation as well as to infer its potential consequences. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966835/#CR1
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In a previous study, we investigated how the patterns of mRNA expression change in 

response to food intake by comparing the muscle transcriptomes of fasting vs fed gilts [5]. 

Herewith, we wanted to determine how the expression profiles of miRNAs and lincRNAs 

vary in response to nutrient supply by using mRNA profiles as a reference [5]. This analysis 

took into consideration both changes in the mean (differential expression) and the variance 

(differential dispersion) of gene expression. Moreover, we have used a co-expression network 

approach to elucidate potential regulatory interactions between expressed miRNAs and 

differentially expressed (DE) mRNA genes as well as to investigate the relationship between 

gene co-expression modules and meat quality and fatty acid composition traits recorded in 

the gluteus medius skeletal muscle of Duroc pigs. 

 

 

Materials and methods 

Animal material and phenotypic recording 

The Duroc pig population used in the current work has been previously described [5]. Thirty-

six female Duroc piglets were transported to the IRTA-Pig Experimental Farm at Monells 

(Girona, Spain) after weaning (age = 3–4 weeks). Gilts were kept in transition devices and fed 

ad libitum with a standard transition diet until they reached approximately 2 months of age 

(around 18 kg of live weight). Subsequently, all gilts were transferred to fattening pens, where 

they were housed individually and fed ad libitum until reaching approximately 155 d of age. 

Nutritional details about the feed provided to gilts between 60 and 155 d have been previously 

reported in [6]. During fattening (60 to 125 d), gilts received feed ad libitum with 14.6% 

crude protein, 4.25% crude fat, 4.8% crude fiber, 4.9% ashes, 0.92% lysine, 0.58% 

methionine + cysteine and 3190 kcal/kg. During the finishing period (126 to 155 d), gilts were 

also fed ad libitum with a diet containing 14.4% crude protein, 5.53% crude fat, 5.1% crude 

fiber, 4.9% ashes, 0.86% lysine, 0.53% methionine + cysteine and 3238 kcal/kg. Gilts were 

slaughtered in the IRTA Experimental Slaughterhouse in Monells (Girona, Spain) in 

accordance with relevant Spanish welfare regulations. Before slaughter, the 36 gilts were 

fasted for 12 h. Subsequently, 12 gilts were slaughtered in a fasting condition (AL-

T0, N = 12), and the remaining ones were slaughtered 5 h. (AL-T1, N = 12) and 7 h. (AL-

T2, N = 12) after receiving food. High concentrations of CO2 were used to stun the gilts 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966835/#CR5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966835/#CR5
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before bleeding. After slaughter, samples of the gluteus medius skeletal muscle were taken 

from the 36 gilts, submerged in RNAlater (Thermo Fisher Scientific, Barcelona, Spain) and 

stored at − 80 °C. The whole experimental design used in the current work is depicted in 

Figure 1. 

 

 

 

 

Figure 1: Depiction of the experimental design used in our study. Gilts were fed ad 

libitum (N = 36, N = 12 per group) with a commercial feeding diet during the whole growth 

period. Prior to slaughter, the 36 gilts were fasted for 12 h. The day of slaughter, 12 gilts (AL-

T0) were killed under fasting conditions. The remaining 24 gilts were fed during 5 h. (AL-T1) 

and 7 h. (AL-T2) and they were subsequently slaughtered. 
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Phenotypes listed in Additional file 1: Table S1 were recorded in the 36 Duroc gilts. Meat 

quality traits were measured as described in [14, 15]. Total muscle cholesterol content was 

determined following Cayuela et al. [16], whereas intramuscular fatty acids content and 

composition were determined in accordance with previous reports [17]. 

 

RNA isolation, library preparation and sequencing of small RNAs 

The gluteus medius skeletal muscle RNA-seq data set employed in the analysis of lincRNA 

and mRNA expression comprised a total of 36 individuals (12 AL-T0, 12 AL-T1 and 12 AL-

T2 gilts). Details about the RNA extraction and sequencing protocols can be found in [5]. 

Briefly, gluteus medius skeletal muscle samples were pulverized and subsequently 

homogenized in 1 mL of TRI Reagent (Thermo Fisher Scientific, Barcelona, Spain). The 

RiboPure kit (Ambion, Austin, TX) was used to isolate the total RNA fraction, and its 

concentration and purity were determined with a Nanodrop ND-1000 spectrophotometer 

(Thermo Fisher Scientific, Barcelona, Spain). RNA integrity was assessed with a 

Bioanalyzer-2100 equipment (Agilent Technologies Inc., Santa Clara, CA) by using the 

Agilent RNA 6000 Nano Kit (Agilent Technologies, Inc., Santa Clara, CA). Libraries were 

prepared with the TruSeq SBS Kit v3-HS (Illumina Inc. CA) and paired-end sequenced 

(2 × 75 bp) in a HiSeq 2000 platform (Illumina Inc., CA) at the Centro Nacional de Análisis 

Genómico (https://www.cnag.crg.eu). 

In the present study, we have generated an additional gluteus medius skeletal muscle RNA-

seq data set specifically targeting small RNAs and comprising the same 36 individuals cited 

above. Total RNA was purified as reported above. The percentage of small-RNA over total 

RNA was determined with the Agilent Small RNA Kit (Agilent Technologies Inc., Santa 

Clara, CA). All 36 samples met the quality threshold (i.e. 0.2–2 μg total RNA with RIN > 7 

and miRNA percentage over total RNA > 0.5%) to be sequenced in Sistemas Genómicos S.L. 

(https://www.sistemasgenomicos.com). Individual libraries for each sample (N = 36) were 

prepared with the TruSeq Small RNA Sample Preparation Kit (Illumina Inc., CA) according 

to the protocols of the manufacturer. Small RNA libraries were then subjected to single-end 

(1 × 50 bp) sequencing in a HiSeq 2500 platform (Illumina Inc., CA). 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966835/#MOESM1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966835/#CR14
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966835/#CR15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966835/#CR16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966835/#CR17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966835/#CR5
https://www.cnag.crg.eu/
https://www.sistemasgenomicos.com/


Paper VI 

262 

 

Quality assessment, mapping and count estimation 

Quality control of paired-end reads was performed with the FASTQC software (Babraham 

Bioinformatics, http://www.bioinformatics.babraham.ac.uk./projects/fastqc/) and filtered 

reads were trimmed for any remaining sequencing adapters with the Trimmomatic v.0.22 tool 

[18], as described in [5, 6]. In the case of single-end sequenced reads derived from small 

RNA molecules, sequencing adapters were trimmed and filtered with the Cutadapt software 

[19], and reads outside a window of 15–25 nucleotides were discarded. Paired-end trimmed 

raw reads from RNA-seq sequences were mapped to the porcine Sscrofa.11.1 reference 

assembly by using the HISAT2 aligner [20] with default parameters. The StringTie software 

[21] was subsequently employed to estimate mRNA and lincRNA abundances. Single-end 

trimmed raw reads derived from small RNAs were also mapped to the Ssscrofa.11.1 assembly 

with the Bowtie Alignment v.1.2.1.1 software [22], and the following specifications for 

aligning short miRNA reads were taken into consideration: 1) allowing no mismatches in the 

alignment, 2) removing reads with more than 20 putative mapping sites and 3) reporting first 

single best stratum alignment (bowtie -n 0 -l 25 -m 20 -k 1 --best --strata). The featureCounts 

software tool [23] was then used to summarize counts of unambiguously mapped reads from 

miRNA-seq sequences. 

 

Differential expression and differential dispersion estimates 

Raw expression matrices generated on the basis of count estimates obtained with StringTie 

(mRNAs and lincRNAs) or featureCounts (miRNAs) [21, 23] were normalized with the 

trimmed mean of M-values normalization method [24]. Sequencing depth and read count per 

gene were calculated for each sequenced sample (Additional file 15: Figure S1). On the basis 

of this analysis, the AL-T0 7197 sample was removed from RNA-seq and miRNA-seq count 

matrices due to the low read coverage observed in the RNA-seq sequencing data set. The 

presence of influential outliers for each estimate of gene expression was corrected by capping 

expression values laying outside the boundaries of 1.5 times inter-quartile range per gene and 

fitting them within the 10th and 90th percentiles. For estimating GEV, the BCV was computed 

for each detected annotated gene as described in the edgeR protocol [25], and further 

discussed in [12]. The BCV encapsulates all sources of inter-library variation between 

replicates, including the contribution of library preparation biases [12]. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966835/#CR18
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Differentially expressed (DE) and dispersed (DD) genes were determined by comparing the 

means and variances of gene expression in the two AL-T0/AL-T1 and AL-T0/AL-T2 

contrasts. Only mRNAs and miRNAs showing an average expression value above 1 count-

per-million (CPM) in at least 50% (N = 12) of the samples (considering all AL-T0, AL-T1 

and AL-T2 samples) were retained for further analyses. Because lincRNAs are much less 

expressed than mRNAs and miRNAs, all lincRNAs (N = 352) annotated in the Sscrofa11.1 

reference assembly (v.97) were considered for differential expression and dispersion analyses 

(a filtering step imposing an expression threshold above 1 CPM would have implied the 

removal of as much as 80% of annotated lincRNA loci). The edgeR [25] and MDSeq [10] 

packages with default parameters were used for performing differential expression and 

dispersion analyses, respectively. The edgeR protocol uses the quantile-adjusted conditional 

maximum likelihood method for detecting differences in gene expression between two 

groups. Once negative binomial models are fitted to the input counts and dispersion estimates 

are obtained, differential expression is determined by using an exact test of significance. 

Correction for multiple hypothesis testing is implemented by using the Benjamini-Hochberg 

false discovery rate approach [26]. The MDSeq method implements a re-parametrization of 

the real-valued negative binomial distribution to allow the modelling of gene expression 

variability [10]. Correction for multiple hypothesis testing across genes is implemented with 

the Benjamini-Yekutieli procedure [27]. The DE and DD genes obtained with MDSeq and 

edgeR were considered to be significant at a fold change > |1.5| and q-value < 0.05. 

 

Gene Ontology and pathway enrichment analysis 

The lists of mRNA genes detected as DE in the AL-T0/AL-T1 and AL-T0/AL-T2 contrasts 

were used as inputs for Gene Ontology (GO) and pathway enrichment analyses. The ClueGO 

v2.5.0 plug-in application [28] embedded in the Cytoscape 3.5.1 software [29] was used for 

determining enriched Reactome and KEGG pathways, as well as Biological Process enriched 

GO terms. A two-sided hypergeometric test of significance was applied for determining 

enriched terms and multiple testing correction for pathway enrichment analyses was 

implemented with a false discovery rate approach [26], whereas a Bonferroni-based multiple 

testing correction was used in the GO enrichment analysis. 
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Building of co-expression networks 

Significant connections between predicted interacting gene pairs were identified with the 

partial correlation with information theory (PCIT) network inference algorithm [30]. By using 

first-order partial correlation coefficients estimated for each trio of genes along with an 

information theory approach, this tool identifies meaningful gene-to-gene putative 

interactions. The PCIT approach has been widely used to reconstruct co-expression regulatory 

networks from expression data with good performance [31]. The main aim of this analysis 

was to determine truly informative correlations between node pairs (genes in our context), 

once the influence of other nodes in the network has been considered. 

Pearson’s pairwise correlation coefficients (r) were calculated for each expressed miRNA and 

DE mRNAs in each of the two contrasts (AL-T0/AL-T1 and AL-T0/AL-T2). The pcit 

function from the PCIT R package [30, 32] was then used for detecting meaningful co-

expressed gene pairs. To further identify the putative miRNA-to-mRNA interaction pairs with 

biological interest, a repressor effect of miRNAs on mRNA expression was assumed [33] and, 

in consequence, only miRNA-to-mRNA co-expressed pairs showing r < − 0.5 were retained. 

Furthermore, we only considered miRNA-to-mRNA interactions with perfect 7mer-

m8 pairing between the miRNA-seed and the 3′-UTR of the putative mRNA targets, hence 

removing spurious miRNA-to-mRNA significant correlations with no robust biological 

meaning. To this end, we downloaded the full set of annotated 3′-UTR sequences in the 

porcine Sscrofa11.1 assembly available at BioMart Ensembl repositories 

(http://www.ensembl.org/biomart/martview/). Seed portions (2nd to 8th 5′ nucleotides in the 

mature miRNA) of the annotated set of porcine miRNAs were reverse-complemented and 

interrogated along the 3′-UTR sequence regions of mRNA genes by making use of the SeqKit 

toolkit [34]. Additionally, we selected four highly expressed and DE miRNAs (ssc-miR-148a-

3p, ssc-miR-1, ssc-miR-493-5p and ssc-let-7/ssc-miR-98) and used the TargetScan webserver 

to evaluate the evolutionary conservation of their binding sites in the 3’-UTR of predicted 

mRNA targets [35]. Only conserved target mRNAs with TargetScan context++ scores above 

the 75% percentile were considered as confidently cross-validated. The context++ score 

described by Agarwal et al. [35] incorporates the information of 14 estimated features in order 

to rank the probability of all the predicted target sites to be biologically functional. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966835/#CR30
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For those mRNAs predicted to interact with miRNAs, we also investigated if they also 

interact with other mRNA-encoding genes. In order to focus on relevant putative mRNA-to-

mRNA gene interactions, we only retained those meaningful mRNA co-expressed pairs 

showing |r| > 0.7, as assessed with the PCIT algorithm. We applied this threshold, which is 

more stringent than the one used for miRNA-to-mRNA interactions, because correlations 

between expressed mRNAs tend to be higher than those between mRNAs and miRNAs [36]. 

Hub genes within selected mRNA-to-mRNA gene interactions (i.e. those mRNAs showing a 

higher degree of meaningful connectivity according to the PCIT algorithm), were also 

identified by calculating a hub score per gene (Ki), defined as: 

 

𝐾𝑖 =
𝑥𝑖

𝑋
 

 

where xi is the number of selected significant connections (|r| > 0.7) reported by the PCIT 

algorithm and X is the average connectivity within the mRNA-to-mRNA co-expression 

network among DE mRNA genes. Gene co-expression networks were visualized with the 

Cytoscape 3.5.1 software [29]. 

Besides, for each selected miRNA-to-mRNA predicted interactions, we calculated the 

regulatory impact factor (RIF) of the corresponding miRNAs [37]. The RIF algorithm aims to 

identify regulator genes contributing to the observed differential expression in the analyzed 

contrasts. Its implementation results in two different and inter-connected RIF scores: while 

RIF1 score represents those transcriptional regulators that are most differentially co-expressed 

with the most highly abundant and highly DE genes, the RIF2 score highlights those 

regulators that show the most altered ability to act as predictors of the changes in the 

expression levels of DE genes [37]. Both RIF values capture different regulatory impact 

features and hence, they can be considered as two independent measurements of the putative 

relevance of miRNAs as gene expression regulators. The RIF1 values for each ith regulatory 

factor were calculated as follows: 
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𝑅𝐼𝐹1𝑖 =
1

𝑛𝑑𝑒
∑ 𝑃𝐼𝐹𝑗 × 𝐷𝑊𝑖𝑗

2

𝑗=𝑛𝑑𝑒

𝑗=1

 

 

where nde is the number of DE genes and phenotype impact factor (PIF) and differential 

wiring (DW) are denoted by: 

 

 

𝑃𝐼𝐹𝑗 =
1

2
(𝑒1𝑗

2 − 𝑒2𝑗
2) 

𝐷𝑊𝑖𝑗 = 𝑟1𝑖𝑗 − 𝑟2𝑖𝑗 

 

being e1j and e2j the expression of the jth differentially expressed gene in both conditions 1 

and 2, respectively, whereas r1ij and r2ij represent the co-expression correlation between the 

ith regulatory factor (miRNAs in our case) and the jth DE mRNA gene in conditions 1 and 2, 

respectively. 

The RIF2 values for each ith regulatory factors were defined as: 

 

𝑅𝐼𝐹2𝑖 =
1

𝑛𝑑𝑒
∑ [(𝑒1𝑗 × 𝑟1𝑖𝑗)

2
− (𝑒2𝑗 × 𝑟2𝑖𝑗)

2
]

𝑗=𝑛𝑑𝑒

𝑗=1

 

 

The positive or negative sign of the RIF1 score is mainly determined by the magnitude of the 

PIF estimates, and hence is dependent on the directionality of the defined contrast (i.e. the 

AL-T0/AL-T2 vs. AL-T2/AL-T0 contrasts would generate RIF1 scores with opposite signs). 

In contrast, the sign of the RIF2 score reflects the altered ability of the regulators to act as 

predictors of the abundance of DE genes [37]. 
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Association between muscle phenotypes and weighted gene co-expression networks 

Significant associations between key co-expressed genes and meat quality and fatty acids 

composition traits measured in the gluteus medius skeletal muscle samples (Additional file 1: 

Table S1) were determined with the weighted gene correlation network analysis (WGCNA) 

approach [38]. We used the WGCNA R package [38] for building signed weighted gene co-

expression modules based on mRNA and miRNA genes present in the AL-T0/AL-T1 and 

AL-T0/AL-T2 count matrices and displaying a minimum expression of 1 CPM in at least 50% 

of samples. Weighted adjacency matrices were built for each expression data set by using a 

power soft threshold (β) = 16, as recommended by Langfelder and Horvath [38] for estimating 

signed correlations based on the number of replicates used in our experimental design. The 

obtained weighted adjacency matrices were subsequently transformed into topological 

overlapping matrices (TOM) and corresponding dissimilarities were calculated to minimize 

the effect of noise and spurious co-expression patterns. Hierarchical clustering was then 

applied to the dissimilarity matrices (1-TOM) and co-expressed genes were merged into 

modules through dynamic tree branch cutting. Highly inter-connected modules were finally 

merged by calculating their eigengenes and setting a minimum height cut of 0.25 and a 

minimum module size of 30 genes for each identified gene co-expression module. 

To further elucidate whether the inferred gene co-expression modules were significantly 

associated with the variation of meat quality and fatty acids composition traits (Additional 

file 1: Table S1), module eigengenes (MEs) were defined as the first principal component 

calculated with the principal component analysis (PCA) algorithm. In this way, MEs 

summarize the co-expression patterns of all genes within each module into a single variable. 

Measured phenotypes were then correlated with each defined ME. Correlated phenotype-

module pairs were considered to be significant when P-value < 0.05. Co-expressed miRNA-

only modules were discarded for further analyses. A Student asymptotic P-value approach 

was finally used for determining the significance of the contribution of each gene within the 

co-expression modules to the correlation coefficient between MEs and each one of the 

recorded phenotypes. Relevant genes within significant modules were selected based on the 

estimates of gene significance (GS, P-value < 0.05) obtained for each phenotype-module 

significant association. 
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Additionally, hub genes within each detected gene co-expression module showing significant 

correlations with phenotypic traits were assessed. WGCNA inferred networks were converted 

to edge graphs by using the RNAseqDE wrapper R package 

(https://github.com/jtlovell/RNAseqDE). Subsequently, hub scores for each gene in the 

selected co-expression modules were calculated by computing the scaled Kleinberg’s hub 

centrality score as described in the igraph tool (https://igraph.org) [39]. 

 

 

Results 

Comparing the expression patterns of coding and non-coding RNAs expressed in the 

porcine skeletal muscle 

The RNA-seq data set employed for mRNA and lincRNA quantification encompassed an 

average of 48.6 million paired-end reads per sample, and approximately 93% of them mapped 

successfully to the Sscrofa11.1 assembly. Roughly, 76% of unambiguously mapped reads 

were assigned to annotated features (genes) after quantification. With regard to the miRNA-

seq experiment, an average of 8.2 million single-end reads per sample were generated, which 

were reduced to approximately 6.8 million reads per sample after quality-check and adapter 

trimming. From these, approximately 77% mapped to the porcine assembly, and an average of 

42% single-end mapped reads were successfully assigned to annotated microRNAs in the 

Sscrofa11.1 assembly. The accuracy of the RNA-seq procedures employed in the current 

work were previously validated by Cardoso et al. [40], analyzing the differential expression of 

eight genes based on RNA-seq results and real-time quantitative PCR measurements of gene 

expression. Such comparison showed a high concordance between the results obtained with 

these two independent methods [40]. 

We have characterized and compared the muscle expression profiles of lincRNAs, miRNAs 

and mRNAs in three groups of pigs (Figure 1): AL-T0 (fasted), AL-T1 (5 h after feeding) and 

AL-T2 (7 h after feeding). The computed BCVs measuring the range of variability in gene 

expression across biological replicates within the same group were markedly elevated for 

lincRNAs, moderate for mRNAs and low for miRNAs, which ultimately showed a very stable 

and homogeneous expression profile across samples (Figure 2a). Moreover, as expressed by 

https://github.com/jtlovell/RNAseqDE
https://igraph.org/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966835/#CR39
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the regularized log2 (Rlog) transformation of gene counts according to Love et al. [41], the 

average expression of lincRNAs was much lower than that of mRNAs, while miRNAs 

occupied an intermediate position between these two extremes (Figure 2b). 

 

 

 

 Figure 2: Expression variability and quantification of expression levels of mRNAs, 

microRNAs and lincRNAs. (A) Biological coefficient of variation (BCV) distribution across 

transcript types within each analyzed group. (B) DESeq2 regularized log2 mean expression 

(Rlog) values across transcript types within each analyzed group. 

 

 

In general, lowly expressed genes displayed higher BCVs than genes with high levels of 

expression (Figure 3). This pattern was especially relevant for mRNAs (Figure 3a), with an 

average estimated background BCV of 0.53 (i.e. 53% of mean variability in gene expression 

across biological replicates expected for mRNA genes), and lincRNAs (mean BCV = 115%, 

Figure 3c). In strong contrast, miRNAs showed a narrow range of gene expression variability 

(mean BCV = 37%). Indeed, we did not detect miRNA genes with extremely high BCV 

values even when we considered miRNAs expressed at marginal levels below 1 CPM 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966835/#CR41
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(Figure 3b). With MDSeq tool [10], we computed fold changes (FC) for dispersion estimates. 

For each contrast, log2FC dispersion values were then plotted against log2CPM gene 

expression values (Figure 4). In general, protein-coding genes with medium to low expression 

levels (Figure 4a) showed higher dispersion FC values than those that were highly expressed. 

This antagonistic relationship was much less obvious for miRNAs or lincRNAs than for 

mRNAs (Figure 4b, c). 

 

 

 

Figure 3: Biological coefficient of variation (BCV) vs. DESeq2 regularized log2 mean 

expression (Rlog) of (A) mRNAs, (B) microRNAs and (C) lincRNAs in each of the analyzed 

groups (AL-T0, AL-T1 and AL-T2). 
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Figure 4: Log2 fold change (FC) of the dispersion values estimated with MDSeq tools vs. 

log2 mean expression (counts-per-million, CPM) of (A) mRNAs, (B) microRNAs and (C) 

lincRNAs expression patterns in the AL-T0/AL-T1 (left column) and AL-T0/AL-T2 contrasts 

(right column). 
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Identification of differentially expressed and dispersed genes 

Principal component analysis showed a clear clustering of samples according to their group of 

origin (AL-T0, AL-T1 and AL-T2) when we considered mRNA expression patterns 

(Figure 5a), and this was particularly true in the AL-T0/AL-T2 contrast. This outcome agrees 

well with previously reported results using the same experimental data [5]. In contrast, the 

clustering of samples based on their miRNA expression patterns was more diffuse 

(Figure 5b), and in the case of lincRNAs, no evident pattern of clustering was observed 

(Figure 5c). This lack of sample clustering could be due, at least in part, to the low and very 

low numbers of annotated pig miRNAs and lincRNAs, respectively. Moreover, the highly 

variable expression of lincRNAs across samples could also contribute to this lack of 

clustering. Joint PCA clustering considering all three contrast groups is depicted in 

Additional file 15: Figure S2. 

As previously said, statistical analyses for DE and DD miRNA and mRNA genes were 

restricted to loci with expression levels above 1 CPM in each contrast and in at least 50% 

(N = 12) of the samples (each contrast includes 23 samples), whereas all annotated lincRNAs, 

irrespective of their expression levels, were considered. These filtering criteria reduced 

approximately by half the number of analyzed mRNAs, i.e. 10,648 (AL-T0/AL-T1) and 

10,714 (AL-T0/AL-T2,) expressed mRNAs from a total of 22,342 annotated protein-coding 

genes were selected for further analyses. Regarding miRNAs, 35% of annotated miRNAs did 

not reach the expression threshold of 1 CPM (286 expressed miRNAs out of 442 annotated 

miRNA genes in both AL-T0/AL-T1 and AL-T0/AL-T2). 

Differential expression and/or dispersion results generated with MDSeq and edgeR 

approaches reflected evident changes in the skeletal muscle transcriptomic profile of pigs 

after feed intake. These changes were particularly intense in the case of mRNA genes, with 

149 and 435 DE mRNAs in AL-T0/AL-T1 and AL-T0/AL-T2, respectively (Additional file 2: 

Table S2). Moreover, 6 and 28 miRNAs (q-value < 0.05; |FC| > 1.5) were classified by edgeR 

as DE in AL-T0/AL-T1 and AL-T0/AL-T2 respectively (Table 1), whereas no lincRNAs 

showed significant DE in any of the two contrasts. When we considered a less stringent FC 

threshold for miRNAs and lincRNAs (|FC| > 1.2), we were able to recover 5 additional DE 

miRNAs in the AL-T0/AL-T2 contrast (Table 1). With regard to differential dispersion, 27 

and 30 DD mRNAs were detected with MDSeq in the AL-T0/AL-T1 and AL-T0/AL-T2 

https://jasbsci.biomedcentral.com/articles/10.1186/s40104-019-0412-z#Fig5
https://jasbsci.biomedcentral.com/articles/10.1186/s40104-019-0412-z#ref-CR5
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contrasts, respectively (Additional file 3: Table S3), and several of these mRNAs were also 

differentially expressed (Additional file 2: Table S2). Few DD miRNAs (i.e. 5 in AL-T0/AL-

T1 and 1 in AL-T0/AL-T2) and only two DD lincRNAs (in AL-T0/AL-T1) were detected 

(Table 2). 

 

 

 

Figure 5: Principal component analysis (PCA) clustering of gluteus medius skeletal muscle 

samples (11 AL-T0, 12 AL-T1 and 12 AL-T2 gilts) according to the expression profiles of 

(A) mRNAs, (B) microRNAs and (C) lincRNAs. 
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Table 1: MicroRNAs detected by edgeR as differentially expressed when comparing AL-T0 

(fasted) gilts with their AL-T1 (5 h after eating) and AL-T2 (7 h after eating) counterparts. 

Contrast miRNA log2FCb P-value q-valuec 
log2CPM 

AL-T0d 

log2CPM 

AL-T1d 

log2CPM 

AL-T2d 

 

AL-T0/AL-T1a 

ssc-miR-7-5p 0.9978 7.56E-05 2.16E-02 6.8416 7.5115 - 
 

ssc-miR-374a-3p 0.8568 4.73E-04 3.81E-02 6.9201 7.5034 - 
 

ssc-miR-7 0.9229 5.26E-04 3.81E-02 6.4206 7.0178 - 
 

ssc-miR-148a-3p 0.8989 5.97E-04 3.81E-02 13.8692 14.5105 - 
 

ssc-miR-1 0.7686 6.66E-04 3.81E-02 16.8124 17.3183 - 
 

ssc-miR-32 1.2420 9.92E-04 4.73E-02 2.9824 3.6098 - 
 

AL-T0/AL-T2a 

ssc-miR-1285 -2.9830 3.47E-09 9.92E-07 7.9799 - 5.5849 
 

ssc-miR-148a-3p 1.3831 2.39E-06 2.83E-04 13.8692 - 14.9315 
 

ssc-miR-7-5p 1.1592 2.97E-06 2.83E-04 6.8416 - 7.6948 
 

ssc-miR-493-5p 0.7464 3.84E-05 2.37E-03 6.4846 - 7.1191 
 

ssc-miR-7 1.0724 4.14E-05 2.37E-03 6.4206 - 7.1910 
 

ssc-miR-22-3p -0.9814 1.01E-04 4.20E-03 12.6857 - 11.7583 
 

ssc-miR-421-5p 1.2893 1.03E-04 4.20E-03 2.6775 - 3.7359 
 

ssc-miR-758 -0.7536 1.24E-04 4.43E-03 5.4106 - 4.5480 
 

ssc-miR-339 -0.876 1.68E-04 5.34E-03 2.8919 - 2.0274 
 

ssc-let-7f-1 0.7735 2.36E-04 6.43E-03 14.0981 - 147031 
 

ssc-let-7f-5p 0.7641 2.74E-04 6.43E-03 12.4788 - 13.0761 
 

ssc-miR-374a-3p 0.9025 2.75E-04 6.43E-03 6.9201 - 7.5867 
 

ssc-miR-30a-3p 0.66 3.36E-04 6.43E-03 9.8397 - 10.3833 
 

ssc-miR-151-3p 0.694 3.37E-04 6.43E-03 12.3832 - 12.9732 
 

ssc-miR-129a-3p -1.3858 4.09E-04 7.05E-03 4.7123 - 3.0830 
 

ssc-miR-296-5p -0.9342 4.79E-04 7.61E-03 5.1094 - 3.9239 
 

ssc-miR-30e-3p 0.643 7.45E-04 1.12E-02 10.8497 - 11.3840 
 

ssc-miR-98 0.7127 1.24E-03 1.69E-02 9.6818 - 10.2075 
 

ssc-let-7a-1 0.466 1.13E-03 2.53E-02 13.7761 - 14.1002 
 

ssc-let-7a-2 0.459 1.43E-03 2.53E-02 12.4875 - 12.8046 
 

ssc-miR-503 0.4912 1.12E-03 2.53E-02 7.8380 - 8.1776 
 

ssc-miR-181c -0.6665 2.02E-03 2.56E-02 3.0770 - 2.3722 
 

ssc-miR-32 1.1189 2.11E-03 2.56E-02 2.9824 - 3.5525 
 

ssc-miR-1 0.6586 2.15E-03 2.56E-02 16.8124 - 17.2479 
 

ssc-miR-450b-3p 0.9689 2.78E-03 2.95E-02 1.3512 - 2.0993 
 

ssc-miR-136-5p 0.9319 2.78E-03 2.95E-02 3.4211 - 3.8968 
 

ssc-miR-7857-3p -1.1003 3.03E-03 3.09E-02 2.3255 - 1.5283 
 

ssc-miR-125b -0.5858 1.88E-03 3.20E-02 13.0432 - 12.3566 
 

ssc-miR-361-5p -0.5109 3.02E-03 4.45E-02 7.4597 - 6.8061 
 

ssc-miR-362 -0.5567 3.45E-03 4.61E-02 6.5327 - 5.8194 
 

ssc-miR-218b 0.7746 4.75E-03 4.62E-02 48429 - 5.2796 
 

ssc-miR-532-3p -0.6865 4.84E-03 4.62E-02 7.4422 - 6.5930 
 

ssc-miR-365-3p -0.7367 5.36E-03 4.79E-02 9.9681 - 8.9921 
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aAL-T0: Duroc gilts in a fasting condition (N = 11); AL-T1: Duroc gilts slaughtered after 5 h of food intake (N = 12); AL-T2: Duroc gilts 

slaughtered after 7 h of food intake (N = 12). bLog2FC: estimated log2 fold change mean expression levels. cq-value: P-value corrected for 

multiple testing with the Benjamini-Hochberg procedure. dLog2CPM: estimated log2 counts-per-million (CPM) mean expression levels in 

AL-T0, AL-T1 and AL-T2 groups. 

 

 

Table 2: MicroRNAs and lincRNAs detected by MDSeq as differentially expressed when 

comparing AL-T0 (fasted) gilts with their AL-T1 (5 h after eating) and AL-T2 (7 h after 

eating) counterparts. 

 

log2FCb P-value q-valuec 
Log2CPM 

AL-T0d 

Log2CPM 

AL-T1d 

Log2CPM 

AL-T2d 
AL-T0/AL-T1a 

miRNA 

ssc-miR-17-5p -4.0190 3.20E-06 2.81E-03 6.2654 5.7652 - 

ssc-miR-186-5p -4.1486 1.66E-06 2.81E-03 8.6343 8.2410 - 

ssc-miR-362 -3.6875 1.64E-05 9.48E-03 6.5327 5.8885 - 

ssc-miR-451 -3.6825 2.16E-05 9.48E-03 8.1730 8.1217 - 

ssc-miR-29a-3p -3.3204 1.16E-04 4.07E-02 9.1335 8.7859 - 

lincRNA       

ENSSSCG00000032301 3.3076 3.60E-05 1.32E-02 1.4722 5.8072 - 

ENSSSCG00000031192 -3.8178 1.59E-04 2.93E-02 5.8864 1.7548 - 

AL-T0/AL-T2a       

miRNA       

ssc-miR-1285 -4.1428 4.60E-06 8.04E-03 7.9799 - 5.5849 

 

aAL-T0: Duroc gilts in a fasting condition (N = 11); AL-T1: Duroc gilts slaughtered after 5 h of food intake (N = 12); AL-T2: Duroc gilts 

slaughtered after 7 h of food intake (N = 12). bLog2FC: estimated log2 fold change mean dispersion levels. cq-value: P-value corrected with 

the Benjamini-Yekutieli procedure. dLog2CPM: estimated log2 counts-per-million (CPM) mean expression levels in AL-T0, AL-T1 and AL-

T2 groups. 

 

 

Functional annotation and pathway enrichment of differentially expressed genes 

A total of 26 Reactome and 8 KEGG significantly enriched pathways were detected in 

the AL-T0/AL-T1 contrast, whereas 16 Reactome and 14 KEGG enriched pathways were 

identified for the AL-T0/AL-T2 contrast (q-value < 0.05). Gene ontology biological process 

enrichment analyses resulted in 65 and 107 significant GO terms for AL-T0/AL-T1 and AL-

T0/AL-T2, respectively. A complete list of enriched pathways and GO terms is shown in 
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Additional files 4: Table S4 (AL-T0/AL-T1) and 5: Table S5 (AL-T0/AL-T2). Among the 

most highly enriched pathways, those related with circadian clock regulation appeared in both 

contrasts, as well as other pathways associated with myogenesis, nuclear receptor 

transcription or NOTCH1, and interleukin 4 and 13 signaling. Regarding the GO enriched 

terms, many biological processes triggered by nutrient availability after food intake were 

activated, such as skeletal muscle differentiation (GO:0035914), carbohydrate biosynthetic 

process (GO:0016051), regulation of gluconeogenesis (GO:0035947), glycogen biosynthetic 

process (GO:0005978), gluconeogenesis (GO:0006094), energy reserve metabolic process 

(GO:0006112), activation of transcription from RNA polymerase II promoter (GO:0006366), 

response to lipids (GO:0033993), adipose tissue development (GO:006012), regulation of fat 

cell differentiation (GO:0045598), circadian regulation of gene expression (GO:0032922), 

cellular response to external stimulus (GO:0071496), response to starvation (GO:0042594) or 

regulation of energy homeostasis (GO:2000505), to mention a few (Additional files 4 and 5: 

Table S4 and S5). 

 

Construction of co-expression networks and measurement of regulatory impact factors 

We also aimed to determine whether the expression of miRNAs is associated with that of 

mRNAs in each one of the experimental contrasts. With the PCIT algorithm, we detected 24 

(AL-T0/AL-T1) and 55 (AL-T0/AL-T2) miRNAs co-expressed (r < − 0.50) with sets of 

differentially expressed putative mRNA targets (Additional file 6: Table S6). For mRNA-to-

mRNA connections, only meaningful co-expression relationships with |r| > 0.7 were 

considered (Additional file 7: Table S7). Hub genes showing a high degree of connectivity 

were prioritized by means of their estimated hub score values (K). A list of selected mRNA 

genes and their K values is available in Additional file 8: Table S8. Among the genes with the 

top (5%) hub scores, it is worth mentioning the following ones: (1) AL-T0/AL-T1: Rev-Erb-β 

(NR1D2), BTB domain and CNC homolog 1 (BACH1), ETS proto-oncogene 1 (ETS1) and the 

cAMP responsive element binding protein 1 (CREB1), and (2) AL-T0/AL-T2: secretory 

carrier membrane protein 2 (SCAMP2), neuraminidase 3 (NEU3), pyruvate dehydrogenase 

kinase 4 (PDK4), fatty acid transport protein 4 (SLC27A4), thiamine transporter 1 (SLC19A2), 

NAD kinase (NADK), BTB domain and CNC homolog 2 (BACH2) and ARID domain-

containing protein 5B (ARID5B). We have also compared the results based on K estimates 

https://jasbsci.biomedcentral.com/articles/10.1186/s40104-019-0412-z#MOESM4
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with the sets of hub genes forming part of the co-expression modules generated with the 

WGCNA algorithm [38]. By doing so, we found several genes that in both approaches were 

identified as top central players in the metabolic response to food intake. For 

instance, BACH1 and CREB1 genes were among the top hubs in the Blue co-expression 

module corresponding to the AL-T0/AL-T1 contrast (Additional file 9: Table S9). With 

respect to AL-T0/ALT2, SCAMP2, NEU3 and PDK4 genes within the Green co-expression 

module were also among the top hub transcripts, whereas BACH2 and ARID5B occupied 

intermediate positions in the ranking of hub genes (Additional file 9: Table S9). 

Additionally, we used the TargetScan algorithm to evaluate the accuracy of the miRNA-to-

mRNA interactions predicted with PCIT and 3′-UTR seed matching. Four highly expressed 

DE miRNAs (ssc-miR-148a-3p, ssc-miR-1, ssc-miR-493-5p and ssc-let-7/ssc-miR-98) were 

selected for this task. From a total of 30 different mRNA genes predicted to be targets of the 

selected miRNAs (Additional file 6: Table S6), 14 showed conserved and putatively valid 

interactions (context++ score > 75% percentile) according to predictions made with the 

TargetScan algorithm (Additional file 10: Table S10). 

Particularly interesting was the case of the miRNAs predicted to bind the 3′-UTR sequence of 

the PDK4 mRNA (Additional file 11: Table S11), which happened to be the most highly 

downregulated gene in the AL-T0/AL-T2 contrast (Additional file 2: Table S2). Among the 7 

predicted miRNAs with putative 7mer-m8 binding sites in the PDK4 3′-UTR, only two sites 

appeared to be consistently conserved when compared against the corresponding orthologous 

regions in other phylogenetically related species (Additional file 15: Figure S3, 

Additional file 10: Table S10). Noteworthy, the two conserved sites are predicted to bind to 

ssc-miR-148a-3p and ssc-miR-493-5p, which were two of the most highly DE miRNAs in the 

AL-T0/AL-T2 contrast (Table 1). 

Besides, after estimating the RIF score for each co-expressed miRNA, results were ranked 

according to their regulatory relevance. A complete list of all RIF values for miRNAs is 

presented in Additional file 12: Table S12. Moreover, a list of the top 5 ranking positive and 

negative regulatory miRNAs according to their RIF1 and RIF2 scores is presented in 

Tables 3 and 4, respectively. Interestingly, we observed a high correspondence between 

miRNAs classified as DE with the edgeR tool and miRNAs categorized by the PCIT and RIF 

algorithms as meaningful regulators (Tables 1, 3 and 4, Additional files 6 and 12: Table S6 

https://jasbsci.biomedcentral.com/articles/10.1186/s40104-019-0412-z#ref-CR38
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and S12). For instance, ssc-miR-32, which was DE in the two considered contrasts, ranked as 

the second (AL-T0/AL-T1) and third (AL-T0/AL-T2) most relevant miRNA in terms of RIF1 

(Table 3, Additional file 12: Table S12). The DE miRNAs (AL-T0/AL-T2) ssc-miR-339 and 

ssc-miR-1 were also detected as relevant in terms of RIF1 score (Table 3). When considering 

RIF2 and AL-T0/AL-T2, the ssc-miR-1285, ssc-miR-129a-3p, ssc-miR-296-5p, ssc-miR-

374a-3p and ssc-miR-7-5p DE miRNAs happened to be among the top predicted regulators 

(Table 4). In the AL-T0/AL-T2 contrast, several additional DE miRNAs also belonged to the 

group of the top 10 most relevant regulators according to their RIF scores, e.g. ssc-miR-22-3p 

for RIF1 and ssc-miR-148a-3p or ssc-miR-493-5p for RIF2 (Additional file 12: Table S12). 

 

Table 3: Top five positive and negative regulatory microRNAs according to their regulatory 

impact factor 1 (RIF1). 

 

 

aAL-T0: Duroc gilts in a fasting condition (N = 11); AL-T1: Duroc gilts slaughtered after 5 h of food intake (N = 12); AL-T2: Duroc gilts 

slaughtered after 7 h of food intake (N = 12). 

miRNA RIF1 

AL-T0/AL-T1a  

ssc-miR-450b-5p 1.7939 

ssc-miR-32 1.7041 

ssc-miR-136-5p 1.3928 

ssc-miR-542-3p 1.2969 

ssc-miR-19a 1.2620 

ssc-miR-339-3p -0.9864 

ssc-miR-421-5p -0.9871 

ssc-miR-503 -1.1680 

ssc-miR-326 -1.2569 

ssc-miR-128 -1.2830 

AL-T0/AL-T2a  

ssc-miR-9858-5p 2.7536 

ssc-miR-148b-5p 2.4587 

ssc-miR-32 2.3825 

ssc-miR-129a-5p 1.9010 

ssc-miR-7139-5p 1.3797 

ssc-let-7g -1.0629 

ssc-miR-130b-5p -1.1300 

ssc-miR-339 -1.2069 

ssc-miR-1 -1.2630 

ssc-miR-326 -1.3955 
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Table 4: Top five positive and negative regulatory microRNAs according to their regulatory 

impact factor 2 (RIF2). 

miRNA RIF2 

AL-T0/AL-T1a  

ssc-miR-129a-3p 1.8373 

ssc-miR-219a 1.4996 

ssc-miR-128 1.4256 

ssc-miR-503 1.2053 

ssc-miR-450b-3p 1.0913 

ssc-miR-455-5p -0.9408 

ssc-miR-296-5p -1.0613 

ssc-miR-143-3p -1.3923 

ssc-miR-542-3p -1.4893 

ssc-miR-450b-5p -1.5585 

AL-T0/AL-T2a  

ssc-miR-1285 2.2089 

ssc-miR-206 1.7993 

ssc-let-7d-5p 1.7537 

ssc-miR-129a-3p 1.5109 

ssc-miR-129a-5p 1.3630 

ssc-miR-296-5p -1.6368 

ssc-miR-374a-3p -1.6758 

ssc-miR-148b-5p -1.8280 

ssc-miR-7-5p -2.0613 

ssc-miR-7139-5p -2.6767 

 

aAL-T0: Duroc gilts in a fasting condition (N = 11); AL-T1: Duroc gilts slaughtered after 5 h of food intake (N = 12); AL-T2: Duroc gilts 

slaughtered after 7 h of food intake (N = 12). 

 

 

Relationship between weighted gene co-expression modules and meat quality and muscle 

fatty acids composition traits 

The WGCNA algorithm applied to mRNA and miRNA expression estimates in the AL-

T0/AL-T1 and AL-T0/AL-T2 matrices made possible the identification of 5 and 10 gene co-

expression modules, respectively (Additional file 15: Figure S4 and S5), excluding miRNA-

only co-expression modules. Among these, the identified modules for the AL-T0/AL-T1 

contrast were significantly associated with the following meat quality and fatty acids 

https://jasbsci.biomedcentral.com/articles/10.1186/s40104-019-0412-z#MOESM15
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composition phenotypes measured in the gluteus medius muscle: meat lightness (L*), 

intramuscular pH (PHGM), intramuscular fat content (GMIMF), palmitic acid content 

(C16:0), linoleic acid content (C18:2-ω6), arachidonic acid content (C20:4), omega-6 fatty 

acids content (ω6), omega-6/omega-3 ratio (ω6/ω3), polyunsaturated fatty acids content 

(PUFA) and polyunsaturated/saturated fatty acids ratio (PUFA/SFA), as shown in 

Additional file 13: Table S13. Regarding the AL-T0/AL-T2 contrast, gluteus medius 

phenotypes showing significant associations with co-expression modules were: meat redness 

(a*), pH measured 45 min post-mortem (PH45GM), linoleic acid content (C18:2-ω6), 

arachidonic acid content (C20:4), omega-3 (ω3), omega-6/omega-3 ratio (ω6/ω3), unsaturated 

fatty acids content (UFA) and polyunsaturated/saturated fatty acids ratio (PUFA/SFA) and 

saturated/unsaturated fatty acids ratio (SFA/UFA) (Additional file 14: Table S14). A detailed 

list of all analyzed phenotypes is shown in Additional file 1: Table S1. P-values measuring 

the significance of the contribution of each gene within co-expression modules to 

significantly correlated phenotypic traits can be found in Additional files 13: Table S13 (AL-

T0/AL-T1) and 14: Table S14 (AL-T0/AL-T2). 

 

 

Discussion 

Coding and non-coding RNAs show highly divergent patterns of expression in the 

porcine muscle 

By comparing mRNAs, miRNAs and lincRNAs expression patterns, we have observed that 

the expression of mRNAs in the porcine skeletal muscle is, on average, substantially higher 

than that of miRNAs and lincRNAs (Figure 2). This finding was expected because previous 

studies in humans have reflected the same trend for lincRNAs [42, 43] and miRNAs [44]. On 

the other hand, we have also observed an inverse relationship between the expression means 

of mRNA and lincRNA genes and the magnitude of BCVs (Figure 3a, c), whereas such trend 

was not obvious for miRNAs (Figure 3b). 

With regard to differential dispersion, the number of DD mRNA and miRNA genes was much 

lower than that of DE mRNA and miRNA genes, indicating that nutrient supply has a stronger 

impact on the mean expression of genes rather than on their BCV. Of course, these two 
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parameters are closely related, so decreases in the mean expression of genes are usually 

accompanied by increases in the variance of expression (and vice versa), being such trend 

particularly true for mRNAs and lincRNAs. In contrast, miRNAs showed a very resilient and 

stable pattern of expression across replicates (Figs. 3b and 4b). 

While nutrient supply induced substantial changes in the expression of mRNAs (Additional 

file 2: Table S2), the absolute number of DE miRNAs was much lower (Table 1), whereas no 

DE lincRNAs were detected. This result is probably not due to a limited accuracy of RNA-seq 

in detecting differential gene expression, because previous experiments [40] showed a high 

consistency between differential gene expression results obtained with RNA-seq and real time 

quantitative PCR data in the same experimental system. However, it should be taken into 

account that the absolute numbers of annotated porcine miRNAs and lincRNAs are much 

smaller than those of mRNAs. Indeed, when the number of DE genes is expressed as a 

proportion (i.e. number of DE genes/number of total analyzed expressed genes), the total 

amount of DE mRNAs happened to be 1.39% (AL-T0/AL-T1) and 4.06% (AL-T0/AL-T2). In 

the case of miRNAs, such proportions were 2.09% (AL-T0/AL-T1) and 9.79% (AL-T0/AL-

T2). Moreover, the average |FC| of DE mRNAs was 2.12-fold and 2.02-fold in AL-T0/AL-T1 

and AL-T0/AL-T2 respectively, while for miRNAs, changes of 1.9-fold (AL-T0/AL-T1) and 

1.85-fold (AL-T0/AL-T2) were detected. In the light of these results, it should be concluded 

that both mRNAs and miRNAs show consistent patterns of differential expression in response 

to food intake, while no conclusive evidence has been obtained for lincRNAs. This latter 

observation could be due to the poor annotation of lincRNAs as well as to their low 

expression levels and elevated within group expression variability (Figs. 2 and 3c), which 

ultimately would make the differential expression analysis much less powerful to detect 

significant differences. 

Nevertheless, the high variance in the expression of lincRNAs contrasted strongly with the 

stable patterns of expression across contrasts displayed by miRNAs (Figs. 2 and 3b, c). This 

high stability might be due to the fact that the expression and silencing activity of miRNAs 

are decoupled to some extent [36]. There are several factors that explain such circumstance. 

For instance, miRNAs can be sequestered by pseudogene, mRNA, lincRNA or circular RNA 

transcripts with repeated miRNA antisense sequences (the so-called miRNA sponges), thus 

limiting their availability to regulate the expression of target RNAs [45,46,47]. Moreover, 

compelling evidence has been accumulating during past years highlighting the exceptional 
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stability of certain miRNAs, which show half-lives of days [48, 49]. This long half-life might 

be explained by the protective effect of the Argonaute protein in isolating naked single-

stranded small miRNA molecules from exonucleases within the cell environment [50]. 

Besides, miRNAs might localize to cell compartments other than the cytosol, where they 

exert functions unrelated with the modulation of mRNA levels [51]. Last but not least, the 

expression levels of miRNAs do not necessarily correlate with their functional availability as 

a part of the RNA-induced silencing complex [36]. 

 

Differentially expressed and dispersed miRNAs are related with the regulation of key 

metabolic processes in the skeletal muscle 

As shown in Tables 1 and 2, several miRNAs were detected as either being DE and/or DD in 

the AL-T0/AL-T1 and AL-T0/AL-T2 contrasts. Among the DE miRNAs, we found that ssc-

miR-1 and ssc-miR-148a were two of the most expressed and DE miRNAs in AL-T0/AL-T1 

and AL-T0/AL-T2 contrasts (Table 1), whereas ssc-miR-7-5p was the most highly 

differentially upregulated miRNA in AL-T1 gilts. Both miR-7 and miR-1 regulate the mTOR-

related cell response to nutrient availability. For instance, miR-1 was found to be directly 

upregulated by the myogenic differentiation 1 (MYOD1) gene [52], which is a transcription 

factor essential for skeletal muscle development and myocyte fusion [53] and also functions 

as a circadian modulator in the peripheral muscle clock [54]. Noteworthy, MYOD1 was also 

significantly upregulated in the AL-T0/AL-T2 contrast (Additional file 2: Table S2), a finding 

that agrees well with the observed upregulation of ssc-miR-1 (Table 1). Additionally, miR-7 

has been also associated with the Akt-mTOR and PI3K/Akt signaling by targeting the insulin 

receptor substrate 2 (IRS2) and the phosphoinositide 3-kinase catalytic subunit δ (PIK3CD) 

[55, 56], two genes that are integrated in the coordinated signaling cascade in response to 

nutrient supply to promote skeletal muscle growth and differentiation. 

Regarding the miR-148 family, it has been reported that these miRNAs play a key role in 

cholesterol metabolism [57,58,59] and insulin homeostasis [60]. In a fasting/feeding study 

resembling ours, Goedeke et al. [59] reported that miR-148a binds the 3′-UTR of the low 

density lipoprotein receptor (LDLR) mRNA leading to the accumulation of low-density 

lipoprotein (LDL) cholesterol in blood plasma. Similar results were reported by Rotllan et al. 

[61]. Furthermore, Goedeke et al. [59] suggested that the sterol regulatory element-binding 
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transcription factor 1 (SREBF1) may activate the expression of miR-148a by targeting 

conserved E-box motifs in the miRNA promoter. In the same study, the role of the ATP-

binding cassette 1 (ABCA1) gene in the regulation of high-density lipoprotein (HDL) 

cholesterol levels was explored, and a binding site for miR-148a in the 3′-UTR 

of ABCA1 transcripts was predicted, thus providing a functional explanation for the inhibitory 

effect of miR-148a on plasma HDL cholesterol levels [59]. Other studies have also linked 

miRNAs belonging to the miR-148 family with angiogenesis and glucose metabolism through 

insulin like growth factor 1 receptor (IGF1R) target inhibition [62]. 

With respect to other relevant DE miRNAs detected in our study, the miR-30 family and miR-

503 have been described to be involved in skeletal muscle differentiation and fiber-type 

composition [63, 64]. Moreover, they also regulate adipogenesis [65], a role that has also been 

reported for miR-148a [66] and miR-22 [67]. Furthermore, the observed downregulation of 

miR-22 after food ingestion (Table 1) could be the consequence of the active influx of 

glucose within muscle cells after nutrient supply. Indeed, the glucose transporter 1 (GLUT1) 

mRNA is targeted by miR-22 [68]. A similar reasoning could be extended to miR-17-5p, 

which binds to the glucose transporter 4 (GLUT4) mRNA [69] and that was DD but not DE 

after feed intake (Table 2). 

 

Relevant miRNA-to-mRNA regulatory interactions in response to nutrient supply 

Co-expression network analyses highlighted that the majority of DE miRNAs were also 

potentially meaningful regulatory factors (Tables 1, 3 and 4, Additional file 12: Table S12). 

Other miRNAs also emerged as potential regulators (Tables 3 and 4, Additional file 12: Table 

S12) despite not being detected as significantly DE, a finding that would be in agreement with 

the very stable and low expression levels detected for most miRNAs (Figs. 2 and 3b). These 

results evidence the interest of reconstructing regulatory networks in order to gain new 

biological insights that canonical differential expression analysis cannot yield [70]. Several 

critical downregulated transcription factors in AL-T1 animals were identified as potential co-

expressed targets of ssc-miR-1 and ssc-miR-148a-3p DE miRNAs (Additional files 2 and 6: 

Table S2 and Table S6), e.g. the myogenic factor 6 (MYF6), FOS-related antigen 2 (FOSL2) 

and arrestin domain-containing protein 3 (ARRDC3) for ssc-miR-1, and thioredoxin 

interacting protein (TXNIP) and fasting-induced gene protein (DEPP1) for ssc-miR-148a. 
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The MYF6 gene has been previously associated with the regulation of myogenesis and 

skeletal muscle cell differentiation [8, 71]. A proliferation modulating function has also been 

described for TXNIP [72] as well as for FOSL2 [73], which is also involved in leptin 

expression regulation [74], whereas DEPP1 downregulation has been associated with 

autophagy inhibition [75]. Moreover, ssc-miR-32 and ssc-miR-7-5p, two miRNAs that were 

differentially upregulated in AL-T1 gilts (Table 1), were predicted to target several relevant 

genes (Additional file 6: Table S6) such as the activating transcription factor 3 (ATF3), a key 

regulator of glucose and energy metabolism [76, 77] which was significantly downregulated 

in both AL-T0/AL-T1 and AL-T0/AL-T2 contrasts (Additional file 2: Table S2). Other 

relevant additional transcripts that formed part of the miRNA-to-mRNA interconnected 

networks were, to mention a few, the Kruppel-like factor 15 (KLF15), early growth factor 1 

(EGR1) and ARID domain-containing protein 5B (ARID5B), all of which play key roles in 

muscle lipid metabolism [8, 78, 79], or myogenin (MYOG), a gene that is crucial for muscle 

development and differentiation [80]. 

With regard to AL-T2 gilts, it is worth mentioning the PDK4 gene, which happened to be the 

most extremely downregulated mRNA transcript (Additional file 2: Table S2) and was also 

detected as DD in the AL-T0/AL-T2 contrast (Additional file 3: Table S3). After 

reconstructing meaningful miRNA-to-mRNA interactions, seven miRNAs (ssc-miR-148a-3p, 

ssc-miR-151-3p, ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-421-5p, ssc-miR-493-5p and ssc-

miR-503) were predicted to have putative binding sites in the PDK4 3′-UTR (Additional 

files 6 and 11: Table S6 and Table S11). Noteworthy, all these miRNAs were significantly 

upregulated in the skeletal muscle of AL-T2 gilts (Table 1), with the only exception of ssc-

miR-503, (Table 1). Our findings agree well with a cooperative and synergistic interaction 

between the aforementioned miRNAs and the PDK4 mRNA, that would result in its strong 

downregulation observed in AL-T2 pigs (Additional file 2: Table S2). Interestingly, among 

the set of miRNAs significantly co-expressed with PDK4 mRNAs, and also predicted to 

interact with its 3′-UTR, ssc-miR-148a-3p and ssc-miR-493-5p were two of the most 

significantly upregulated miRNAs in AL-T2 gilts (Table 1). Moreover, the TargetScan 

analysis [35] showed that both miRNAs have evolutionarily conserved binding sites in the 3′-

UTR of the PDK4 gene (Additional file 15: Figure S3, Additional file 10: Table S10). We 

may hypothesize that ssc-miR-148a-3p and ssc-miR-493-5p play a key role in the 
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downregulation of the PDK4 mRNA after food intake, but such hypothesis still needs 

experimental verification. 

Co-expression network analysis also indicated that the PDK4 gene might interact with a broad 

array of mRNA transcripts (Figure 6). Among these, several have been already mentioned 

(MYF6, FOSL2, KLF15, ARID5B, DEPP1, MYOG or TXNIP) while others have not, e.g. aryl 

hydrocarbon receptor nuclear translocator like (ARNTL), forkhead box O1 (FOXO1), neuronal 

PAS domain protein 2 (NPAS2), BTB domain and CNC homolog 2 (BACH2) or the period 

circadian regulator 2 (PER2). The PDK4 gene is one of the master regulators of glucose and 

lipid metabolism [81]. Moreover, the PDK4 protein is located in the matrix of the 

mitochondria and inhibits the pyruvate dehydrogenase complex, which catalyzes the 

conversion of pyruvate to acetyl-CoA, and hence it is responsible of the decrease in glucose 

utilization and the upregulation of fatty acid oxidation in energy-deprived cells under fasting 

conditions [82, 83]. 

The observed coordinated downregulation of both PDK4 and FOXO1 mRNAs in the AL-

T0/AL-T2 contrast (Additional file 2: Table S2) is consistent with the active energy 

production and fatty acid synthesis of muscle cells in response to nutrient supply, as already 

reported by Cardoso et al. [5]. In fact, the activation of FOXO1 is known to enhance PDK4 

transcription by binding to its promoter region [84, 85]. Besides, the BACH2 transcription 

factor was also predicted to be regulated by ssc-miR-148a-3p (Additional files 6 and 10: 

Table S6 and Table S10) as well as to interact with both FOXO1 and PDK4 

mRNAs (Figure 6). These findings agree well with the previously described role of BACH2 as 

a transcriptional activator of FOXO1 by binding to its promoter region [86,87,88]. The 

presence of genes involved in the maintenance of circadian rhythms (NPAS2, ARNTL 

and PER2) was also relevant, as the expression of the PDK4 mRNA is subjected to circadian 

fluctuations in response to light shifting and insulin and fatty acids availability [89,90,91]. 

Noteworthy, the potential implications of nutrition in the regulation of the porcine peripheral 

clocks was already discussed in two previous studies using the very same animal material and 

experimental design reported herewith [5, 40], a result that would be in agreement with the 

reconstructed PDK4 miRNA-to-mRNA interaction network reported in this study. 
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Figure 6: Selected miRNA-to-mRNA and mRNA-to-mRNA co-expression network 

according to the PCIT algorithm in the AL-T0/AL-T2 contrast. Differentially expressed 

miRNAs and mRNAs were considered. Only significant correlations below − 0.5 for miRNA-

to-mRNA and above |0.7| for mRNA-to-mRNA interactions where selected. Red and blue 

edges indicate negative and positive correlations in the co-expression network, respectively. 

 

 

mRNA-to-mRNA hub genes reveal glucose and lipid metabolism changes induced by 

food intake 

Hub scoring of meaningful mRNA genes from selected co-expression interaction networks 

also allowed the identification of several relevant transcripts involved in organizing the cell 

response to nutrient availability (Additional file 8: Table S8), and several of these were also 

detected as hub genes in WGCNA analyses (Additional file 9: Table S9). With respect to AL-

T0/AL-T1, the NR1D2 gene was the most prominent hub gene among all other transcripts, 

https://jasbsci.biomedcentral.com/articles/10.1186/s40104-019-0412-z#MOESM8
https://jasbsci.biomedcentral.com/articles/10.1186/s40104-019-0412-z#MOESM9


Paper VI 

287 

 

despite the fact that it was not detected as DE. This transcription factor and its paralog Rev-

Erbα (NR1D1) contribute to establish links between circadian rhythms and cell metabolism 

regulation [92]. Remarkably, other relevant top hub genes were not DE, e.g. the BACH1 

transcription factor, whose inhibition has been associated with an increased protection against 

oxidative stress [93], ETS1, which mediates FOXO1 acetylation and regulates 

gluconeogenesis in fasting-feeding cycles [94] or CREB1, an important cofactor for the 

peroxisome proliferator-activated receptor γ coactivator 1-α (PPARGC1A), a gene that plays a 

key role in insulin-mediated glucose uptake [95]. 

Regarding hub genes detected in the AL-T0/AL-T2 contrast (Additional file 8: Table S8), 

SCAMP2 has been related to glucose transporters trafficking during insulin stimulation [96], 

whereas NEU3, which was also highly upregulated in fed gilts (Additional file 2: Table S2), 

stimulates insulin sensitivity and glucose tolerance [97]. Other relevant examples are: 

SLC27A4, responsible for long chain fatty acids metabolism and trafficking [98], SLC19A2, 

also highly downregulated in fed gilts (Additional file 2: Table S2) and reported as being 

negatively regulated by glucose uptake [99], and NADK, a protein that phosphorylates 

NAD+ to generate NADP+, a metabolite tightly linked with the regulation of circadian 

rhythms [100]. 

These findings agree well with data previously reported by Cardoso et al. [5], as well as with 

enrichment analyses described in this study (Additional files 4 and 5: Table S4 and Table S5), 

where many DE genes associated with diverse glucose and lipid metabolism pathways and 

GO terms were highlighted. Other biological processes like muscle proliferation associated to 

nutrient availability and circadian regulation provided compelling evidence about the complex 

machinery triggered in the skeletal muscle to respond to nutrient supply after food ingestion. 

 

Weighted co-expression analyses revealed hub genes related with lipids metabolism 

regulation 

Among the gene co-expression modules detected with the WGCNA approach [38], the so-

called Red and Purple clusters (Additional file 14: Table S14), corresponding to the AL-

T0/AL-T2 contrast, contained several relevant lipid metabolism-related genes such as the 

fatty acid binding protein 4 (FABP4), carbohydrate-responsive element-binding protein 

(MLXIPL), fatty acid synthase (FASN), thyroid hormone responsive protein (THRSP), 
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stearoyl-CoA desaturase (SCD), acetyl-CoA carboxylase α (ACACA) or the secreted frizzled-

related proteins 1 and 5 (SFRP1 and SFRP5), as well as other loci such as the cholinergic 

receptor nicotinic δ subunit (CHRND). From these, the MLXIPL, FASN, SCD, SFRP1, SFRP5 

and THRSP genes were also significantly upregulated in AL-T2 gilts after feeding (Additional 

file 2: Table S2). 

Interestingly, the active/non-active conformation of the muscle acetylcholine receptor 

function regulating motor nerve-muscle communication and muscle contraction is tightly 

associated with the concentration of certain surrounding fatty acid components, contributing 

to stabilize or destabilize its functionality [101], a phenomenon that could explain the 

observed association between its δ subunit (CHRND) and the content of ω-3 fatty acids and 

ω6/ω3 content ratio in the gluteus medius, as shown in Additional file 14: Table S14. 

Other genes that are key regulators of lipid metabolism such as SCD, ACACA, FABP4, 

SFRP1, THRSP or the hub genes SFRP5 and FASN (Additional file 9: Table S9), also 

clustered in a tight co-expression module and they were significantly associated with linoleic 

and arachidonic fatty acids content in the gluteus medius muscle (Additional file 14: Table 

S14). The SFRP5 protein has been thoroughly studied as a central regulator of lipid 

accumulation and adipocytes differentiation, which are a result of an increased mitochondrial 

respiration promoted by SFRP5 blocking of Wnt signaling, hence repressing Wnt-induced 

oxidative metabolism [102]. The other identified SFRP element (SFRP1) has also been 

reported to be located in a genomic region overlapping a QTL for meat marbling [103, 104]. 

Moreover, the THRSP, MLXIPL and FASN upregulation detected in our analyses (Additional 

file 2: Table S2), as well as their contribution to intramuscular lipid content (Additional 

files 9 and 14: Table S9 and Table S14) could be a reflection of the intramuscular adipocyte 

proliferation triggered by the nutrient supply provided to AL-T2 fed gilts [105]. Indeed, the 

MLXIPL is a key carbohydrate-signaling transcription factor whose activity is enhanced by 

glucose metabolites, thus binding to carbohydrate response elements (ChoREs) present in the 

promoters of several key lipid genes such as FASN [106]. 
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Conclusions 

In conclusion, we have demonstrated that the profiles of expression of lincRNAs and 

miRNAs in the gluteus medius muscle of pigs are very different than those observed for 

mRNAs. For instance, the mean and the variance of gene expression are closely 

interdependent parameters in the case of mRNAs, while miRNAs do not show such trend. We 

have also demonstrated that feeding induces changes mainly in the mean expression of genes 

rather than on their expression variance, a parameter which remains relatively unaffected by 

nutrient supply. Finally, co-expression network analyses predict that miRNAs and hub mRNA 

genes may play an essential role in the regulation of mRNAs showing differential expression 

upon feeding. Such regulatory interactions predicted with in silico tools should be validated 

experimentally in order to verify their occurrence as well as to infer their biological 

significance in the context of porcine muscle metabolism and nutrition. 
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module significantly correlated with phenotypic traits in the AL-T0/AL-T1 and AL-T0/AL-

T2 contrasts.  

Additional file 10: Table S10. Identification of conserved mRNA targets for selected highly 

expressed and differentially expressed miRNAs based on the TargetScan Context++ score.  

Additional file 11: Table S11. miRNAs predicted to bind the 3′-UTR of the porcine PDK4 

gene. 

Additional file 12: Table S12. Regulatory impact factor scores (RIF1 and RIF2) for miRNAs 

classified by the PCIT algorithm as meaningful regulators in the AL-T0/AL-T1 and AL-

T0/AL-T2 contrasts.  

Additional file 13: Table S13. Gene co-expression modules significantly associated with 
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T0/AL-T1 contrast).  

Additional file 14: Table S14. Gene co-expression modules significantly associated with 

meat quality and fatty acids composition traits according to the WGCNA algorithm (AL-

T0/AL-T2 contrast).  

Additional file 15: Figure S1. Sequencing depth obtained for samples analyzed in each one 

of the two contrasts (AL-T0/AL-T1 and AL-T0/AL-T2). Figure S2. Joint principal 

component analysis (PCA) clustering of gluteus medius skeletal muscle samples (11 AL-T0, 

12 AL-T1 and 12 AL-T2 samples) according to the expression profiles of (A) mRNAs, (B) 

microRNAs and (C) lincRNAs. Figure S3. Phylogenetically conserved 7mer-8 m predicted 

binding sites in the 3′- UTR of the pig PDK4 gene for (A) ssc-miR-148a-3p and (B) ssc-miR-

493-5p porcine miRNAs. The TargetScan software was used for generating conservation 
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Figure S5. Gene co-expression module association with meat quality and fatty acids 

composition traits in the AL-T0/AL-T2 contrast as determined with the WGCNA tool. 
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The main goals of the present discussion are to explain the rationale of the experiments made 

in the current thesis as well as to discuss issues and additional topics, thematically linked to 

our results, that were not treated with enough detail in the six papers that form part of the 

Ph.D. thesis. 

 

4.1. Identifying causal mutations in regions containing QTL for meat quality traits: 

limitations and prospects 

In previous studies, González-Prendes et al. (2017, 2019b) carried out GWAS for meat color, 

pH, muscle electric conductivity (CE) and IMF content and composition traits recorded in the 

Lipgen population formed by 350 Duroc pigs, thus accomplishing one of the main goals of 

the AGL2010-22208-C02-02 project. González-Prendes et al. (2017) found 17 QTL for color 

traits such as redness (a*), and lightness (L*), as well as for pH and CE of the longissimus 

dorsi (LD) and gluteus medius (GM) skeletal muscles. In an additional work, González-

Prendes et al. (2019b) further determined QTL regions associated with IMF content and 

composition traits in the GM and LD muscles. One of the goals of the present Ph.D. thesis 

was to identify potential genes of interest mapping to meat quality QTL reported by González 

Prendes et al. (2017, 2019b) and to investigate whether their variability might be associated 

with such traits. The final goal of this research would be to identify mutations which might be 

good candidates to have causal effects, thus deserving further validation. To achieve this goal, 

we performed WGS of the five Duroc founders of the Lipgen population. This provided a 

comprehensive view of all SNP variants mapping to genomic regions of the five founders 

that, in the Lipgen population, have been identified as containing meat quality QTL. 

An interesting approach for detecting putative causal mutations in candidate genes within 

QTL of interest would have been the fine-mapping of these causal polymorphisms by using 

the WGS data from the founders to impute genotypes in the Lipgen population (Marchini and 

Howie, 2010). Through this approach, the number of markers within QTL would have 

increased substantially and, in principle, the causal mutations would be comprised in the set 

of imputed variants. This would lead to an increased accuracy of GWAS predictions and a 

higher number of reported QTL within refined intervals (Druet et al., 2014). 

Unfortunately, in our case this approach was unfeasible due to the very low number of 

sequenced individuals (N = 5), a feature that made imputations highly unreliable. Given this 
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limitation, we used a much less powerful approach consisting of identifying high impact 

mutations in functional candidate genes mapping to meat quality QTL. This approach has 

certain limitations because the biological factors that regulate meat quality traits are mostly 

unknown and the annotation of the pig genome is still quite limited, making it difficult to 

select the set of candidate genes and polymorphisms to be genotyped. In the end, we selected 

a set of 14 candidate genes, and a total of 19 SNPs that were located in QTL regions 

associated with meat quality and IMF composition traits. In this regard, we were able to 

detect 8 SNPs significantly associated with a*, CE and C18:1-n7 fatty acid content in the LD 

muscle at the nominal level, and seven of them conserved their significance after multiple 

testing correction, as described in Paper I. The significance at the nominal level of these seven 

SNPs was also maintained when analyzing their association at the chromosome-wide level, 

but only 1 SNP in the ATP1A2 gene remained significant at the chromosome-wide level after 

multiple testing correction. 

Why the majority of the SNPs mapping to QTL were not associated with the trait regulated by 

the QTL? The most obvious reason would be the lack of sufficient linkage disequilibrium 

with the causal mutation. The analysis of the Manhattan plot shown in Figure 1 of paper I 

clearly indicates that SNPs located at a close distance behave differently, i.e. they show 

highly divergent associations with electrical conductivity in the LD muscle, going from the 

complete lack of association to highly significant associations. The amount of LD between 

nearby mutations depends on many factors such as local recombination rate, selection and 

demography (Pritchard and Przeworski, 2001; Tenesa et al., 2007; Amaral et al., 2008). In a 

recent study, the association of 4 SNPs mapping to the SLC45A2 gene with the red and blond 

color of Mangalitza pigs was investigated, and two SNPs displayed a very significant 

association while the remaining two did not show any evidence of association despite being 

located in the same gene (our unpublished data). 

The only SNP that showed chromosome-wide significance, after multiple testing correction, 

when merged with 3,899 SNPs mapping to SSC4 chromosome, was the splice region variant 

rs344748241 (c.1653G>A) located in the ATPase Na+/K+ transporting α2 subunit (ATP1A2) 

gene. As outlined in Paper I, this finding was relevant because the ATP1A2 gene has been 

previously reported in a number of studies as being associated with several porcine meat 

quality traits such as fat cut percentage, backfat thickness, carcass length or muscle mass 

(Cepica et al., 2003; Davoli et al., 2006; Fontanesi et al., 2012). More importantly, this gene 
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encodes the catalytic subunit of the ATPase Na+/K+ enzyme, which is responsible for the 

hydrolysis of ATP coupled with the exchange of Na+ and K+ ions across the plasma 

membrane. Such mechanism contributes to maintain the electrochemical balance within the 

cell, providing the energy needed for the active transport of several nutrients and the electrical 

excitability of nerves and muscles (Suhail, 2010). 

A high linkage disequilibrium between the rs344748241 ATP1A2 SNP and the reported QTL 

lead variant with the highest significance in the study of González-Prendes et al. (2017) was 

revealed (Paper I). Despite this result, it is important to note that the site with the highest 

significance within the QTL interval not always contains the causal mutation (Schaid et al., 

2018). As previously stated, SNP panels are designed to capture linkage disequilibrium blocks 

throughout the genome, rather than pre-defined causal SNPs. Indeed, even if the underlying 

causal mutation is genotyped, the statistical significance obtained for the association with the 

phenotypic measure highly depends on allele frequency, so we cannot assume that always 

causal mutations will be located at the peak of QTL because if their frequencies are very low 

the estimates of genotypic means will be inaccurate unless very large populations are used in 

the GWAS. 

In summary, as discussed in Paper I, the polymorphism of the ATP1A2 gene might modulate 

the electrochemical gradient across the cellular membrane of skeletal muscle cells (Suhail, 

2010), a parameter intimately ligated with electrical conductivity in the meat. Nevertheless, 

the confirmation of such hypothesis was not part of our work. Further experiments should be 

conducted in order to determine the functional implications of the ATP1A2 gene and variants 

within its sequence. For instance, building a comprehensive catalogue of ATP1A2 variants 

and genotyping them in the Lipgen population, as well as in other pig populations with 

electrical conductivity data, could facilitate the identification of a potential causal variant. In 

the Ensembl database, as much as 2,945 SNP variants have been detected in the porcine 

ATP1A2 gene and only 54 of them might have functional effects in the coding region (i.e., 

missense or splice site variants). On the other hand, in our set of mutations to be genotyped, 

we did not include indels because calling for such type of variants is prone to error, 

generating many false positives because most dedicated tools lack accurate methods for 

identifying sequencing errors before indel calling (Hasan et al., 2015). Moreover, the 

observed concordance among tools when annotating indels is reported to be quite low (Fang 

et al., 2014). However, indels can have important consequences on gene expression and 
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protein structure, so any gene-centric study should take them into account. Once one or 

several candidate mutations are detected, the next step would be the implementation of 

functional assays. In the case of a candidate regulatory mutation, the creation of fusion 

plasmid constructs to be co-transfected to cell lines jointly with luciferase reporters and 

subsequent measurement of the transcriptional activity of each allele through a luciferase 

reporter assays system could be a good strategy. This method has proved to be a successful 

approach to unravel the functional consequences of variants with uncertain significance 

(Woods et al., 2016). In the case of a missense mutation, enzyme activity could be measured 

in cell cultures transfected with different constructs (one for each allele). In this way, 

structural and physicochemical alterations in the Na+/K+ ATPase enzymes could be 

investigated, as several pathological conditions have been previously reported for 

dysfunctions in this enzymatic complex (Suhail, 2010; Sampedro Castañeda et al., 2018).  

 

4.2. Loss-of-function variant detection and the relevance of accurate gene annotation 

The segregation of deleterious variants has a considerable impact on the fitness and fertility of 

pig populations, as lethal or sublethal mutations can cause reproductive dysfunctions as well 

as pre and postnatal losses in the form of mummification, abortions or stillborn events (Dron 

et al., 2014; Verardo et al., 2016; Derks et al., 2017, 2019a). The WGS of the five Duroc 

boars that founded the Lipgen population allowed us to identify putative loss-of-function 

(LoF) mutations and examine their segregation in the offspring formed by 350 Duroc 

barrows. From a functional point of view, stop gained polymorphisms are particularly 

relevant because they might cause the inactivation of gene function through nonsense 

mediated decay or due to the generation of truncated non-functional or impaired proteins 

(Miller and Pearce, 2014), thus leading to observable phenotypic or genotypic (e.g. lack or 

depletion of one of the homozygous genotypes) consequences. 

First, we would like to discuss the experimental workflow that led to the identification of a 

putative stop gained mutation in the ASS1 gene. This workflow is no presented in the Animal 

Genetics paper II, due to space constraints, but it is essential to understand the motivation of 

the experiments that led to its publication. An initial screening of the whole-genome 

sequences of the five founders of the Lipgen population using the Sscrofa10.2 assembly 

annotation revealed the existence of 432 predicted stop gained mutations, from which a total 
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of 225 were found in heterozygous states (our unpublished data). Among these, we selected a 

total of 60 variants for genotyping, based on their location at genes with relevant predicted 

functions. After genotyping the 60 stop gained variants, only 27 of them segregated in the 

Lipgen population. Such results revealed the extent of false positives included in the predicted 

variant effects using the Sscrofa10.2 annotation, a finding that could be explained by the fact 

that the initial porcine assembly was the least complete among all sequenced domestic species 

(Seemann et al., 2015). A good example of this is the number of genomic regions with low 

quality and low coverage in the Sscrofa10.2 assembly. Warr et al. (2015) investigated this 

issue and found that regions with low quality and low coverage encompassed as much as 

33.07% of the pig genome, and that half of annotated SNPs according to dbSNP database 

(https://www.ncbi.nlm.nih.gov/snp/) were located in these regions. This could provide an 

explanation to the fact that when we carefully assessed the predicted effects of the selected 27 

segregating variants using the current Sscrofa11.1 annotation, only 7 of them conserved a stop 

gained predicted effect. 

The level of discrepancy among different porcine annotations should be considered as clearly 

indicative of the limited accuracy of functional predictions based on mere sequence 

assessment, particularly in poorly annotated species. It is therefore crucial that a careful 

manual curation of the observed LoF mutations is performed, in order to exclude as many 

false positives as possible before considering any further analyses. Indeed, a substantial 

number of false positives for LoF polymorphism are expected to arise when performing 

variant-calling from WGS data. For instance, MacArthur et al. (2012) identified a total of 

2,951 putative LoF variants from a cohort of 185 human whole-genome sequences. From 

these, 2,809 corresponded to SNPs or short indels, whereas 142 belonged to large deletions. 

By applying diverse filtering steps, MacArthur and collaborators were able to retain 1,285 

(43,5%) out of the initial 2,951 polymorphisms. Among the removed variants, there was a 

tendency to have increased alternative allele frequencies and a higher distribution at the 

beginning or the end of the annotated transcripts, highlighting their probable non-

deleteriousness or at least partial harmful effects. 

The are many factors which can cause the erroneous annotation of LoF variants, like, for 

instance, the presence of adjacent indels or compensatory mutations, the presence of 

pseudogenes, which can be an important source of error as they tend to accumulate 

deleterious mutations (Sen and Ghosh, 2013), insufficient coverage of the region containing 

https://www.ncbi.nlm.nih.gov/snp/
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the SNP, splice sites located in non-canonical sites or deficient knowledge of gene structure, 

which ultimately requires a thorough curation (Warr et al., 2015). Several of these factors 

were very difficult to control in our experimental design due to the poor quality of the 10.2 

version of the pig genome assembly (Seemann et al., 2015; Warr et al., 2015), leading to 

genotype many putative stop gained mutations that in reality did not have such effect.  

Even in very well characterized species such as humans, obtaining a set of high-confidence 

LoF mutations is very challenging. This topic is not discussed in the six papers that form part 

of the current thesis, but we think it needs to be commented in this global discussion. As 

previously said, we consider that these difficulties were produced not only by the intrinsic 

complexity of evaluating the functional consequences of LoF mutations (it is even hard in 

well characterized species such as humans) but also by the poor annotation of the 10.2 

assembly of the pig genome. In a couple of cases, however, we found mutations that are, in 

principle, bona fide stop gained mutations with potential functional effects. One of them was 

the rs339148947 (c.1087C>T) variant within the glycerol-3 phosphate acyltransferase 2 

(GPAT2) gene (manuscript in preparation). We observed in the Lipgen population a complete 

lack of TT pigs, and a significant deviation of the Hardy-Weinberg equilibrium (P-value = 

0.0044). It is well known that one of the hallmarks of lethal or sublethal mutations is the lack 

or depletion of homozygous genotypes (Casellas et al., 2012; Derks et al., 2017, 2019a; 

Pausch et al., 2015; VanRaden et al., 2011). Knockout mice for GPAT2 display male 

infertility associated with reduced testis weight, impaired spermatogenesis, azoospermia, 

abnormal DNA methylation during gametogenesis, and increased male germ cell apoptosis 

(http://www.informatics.jax.org/marker/MGI:2684962). Indeed, GPAT2 protein has key roles 

in regulating spermatogenesis and biogenesis of piwi-interacting RNAs (piRNAs), as 

described by Shiromoto et al. (2019). 

The second mutation of interest was rs81212146 (c.944T>A), located in the ASS1 gene, which 

was analyzed in depth in Paper II. Genotyping of this polymorphism confirmed, to our 

surprise, the existence of seven AA homozygous animals in the Lipgen population, and a 

relatively high proportion of heterozygous individuals (MAF = 0.1433). Such findings were 

counterintuitive because highly harmful variants usually have very low frequencies and, 

moreover, individuals with homozygous genotypes are usually not viable. Interestingly, when 

we surveyed the available literature, we became aware that Groenen et al. (2012) already 

reported the existence of pigs homozygous for the same stop gained mutation detected by us. 

http://www.informatics.jax.org/marker/MGI:2684962
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These authors attributed such finding to the fact that homozygous AA pigs might suffer a 

mild form of citrullinemia, not harmful enough to determine the death or any reproductive 

impairment of the affected animals (Häberle et al., 2003). This assumption did not take into 

account that homozygous individuals for LoF mutations that abolish partially ASS1 function 

usually present a severely hampered detoxification of ammonia metabolites, thus leading to 

type I citrullinemia. Typical symptoms of the partial inactivation of ASS1 are 

hyperammonemia and hepatic encephalopathy that usually manifests with lethargy, reduced 

feed intake and growth rate, seizures, comma and sometimes death (Burton, 2000). In the case 

of individuals with a complete inactivation of ASS1, the urea cycle is not functional and they 

die soon after birth. The contradiction between the severe predicted harmful effects of ASS1 

dysfunction and the apparent healthy status of homozygous recessive pigs in our population 

(they completed their production cycle and showed a normal weight at slaughter), motivated 

us to further investigate the possible underlying causes. 

In our mind, we were aware that individuals with homozygous genotypes for lethal mutations 

that are alive and perfectly healthy have been reported in the literature (Chen et al., 2016b). 

Such paradoxical findings could be explained by the existence of compensatory mechanisms 

like the read-through of the nonsense codon in the ribosome, skipping of the exon carrying the 

lethal mutation during mRNA maturation, or the co-segregation of variants abolishing the 

effect of the nonsense mutation by modifying the open reading frame (ORF) of the transcript 

(MacArthur et al., 2012; Rausell et al., 2014). We suspected that one of these mechanisms 

was the true cause of the non-lethality of the c.944T>A mutation in the ASS1 gene. 

We carried out the sequencing of the genomic region containing the stop gained mutation 

both at the genomic DNA and cDNA levels, in order to detect any possible structural 

compensatory mechanism, such as alternative splicing events, that could avoid the nonsense 

mutation to be present in the mRNA sequence. A thorough analysis of the obtained sequences 

allowed us to discover a compensatory mutation (rs81212145, c.943T>C) located 

immediately before the rs81212146 variant, being both in complete linkage disequilibrium. 

This result was confirmed by analyzing the segregation of both mutations in 120 whole-

genome sequenced pigs obtained from NCBI SRA public repositories, which evidenced that 

both SNPs co-segregate perfectly and reach high frequencies in Asian pigs. In the light of 

these results, rather than considering the existence of two SNPs, each one with its particular 

annotation and functional prediction, we should consider the existence of a single 
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dinucleotide missense polymorphism causing a benign amino acid change of leucine by 

glutamine at position 315 of the mature protein. 

From a practical point of view, one of the applications of identifying harmful mutations 

would be the design of genotyping techniques aiming to screen boars with the final aim of 

planning mating schemes resulting in the total or at least partial removal of such variation. 

This approach would result in the improvement of numerical productivity, which is one of the 

main parameters which determines the economic profitability of pig farms.  

 

4.3. RNA-seq analyses from porcine skeletal muscle transcriptome revealed candidate 

polymorphisms regulating gene expression profiles 

In paper I, we reported the genotyping of high impact SNPs located in genes with potential 

roles in meat quality and mapping to meat quality QTL. These meat quality QTL were 

previously identified by González-Prendes et al (2017) by using a GWAS approach. As 

previously stated, the moderate sample size of the Lipgen population (N = 350) and thus the 

limited statistical power, made it highly likely that many genomic regions with true but small 

additive effects on meat quality traits were missed in the GWAS carried out by González-

Prendes et al. (2017). On the other hand, Cardoso et al. (2017b) investigated the effect of food 

intake on the GM skeletal muscle transcriptome in 36 Duroc gilts subjected to fasting-feeding 

conditions. This study led to the identification of a wide range of transcripts showing 

differential expression profiles when comparing fasting and fed gilts. Among the set of 

detected DE genes, those associated with the regulation of peripheral circadian clock, as well 

as with glucose metabolism and energy homeostasis were among the ones which showed a 

prominent differential expression. In this regard, in paper III we aimed to investigate whether 

the variability of several of the differentially expressed genes detected by Cardoso et al. 

(2017b) might display associations with meat quality traits. The main emphasis of this 

experiment was put on circadian genes ARNTL2, CIART, CRY2, NPAS2, PER1 and PER2. 

The main reason of this is that there is a tight link between circadian genes and lipid 

metabolism. For instance, genes involved in lipid absorption show dysregulated expression 

patterns and are irresponsive to feed restriction in knockout mice lacking the clock circadian 

regulator (CLOCK) gene (Pan et al., 2010). In peripheral tissues, the role of CLOCK is 

accomplished by NPAS2, in conjunction with ARNTL2 (Landgraf et al., 2016). Additionally, 



Discussion 

315 

 

CLOCK impairment also produces altered rhythmic expression patterns of lipolytic and 

lipogenic genes (Shostak et al., 2013). The lack of another important circadian zeitgeber, 

ARNTL, a paralog of ARNTL2 in the central nervous system, severely impacts the expression 

of key lipogenic factors such as PPARG, CCAAT/enhancer-binding protein α (CEBPA), 

SREBF1 or FASN (Shimba et al., 2005). Triglycerides serum concentrations are also affected 

by altered expression of PER and CRY elements, as PER2 inhibits PPARG-mediated 

activation of lipogenic genes (Grimaldi et al., 2010), while CRY1/2 inhibition leads to 

increased susceptibility to diet-induced obesity (Barclay et al., 2013). We also investigated 

two genes related with energy homeostasis (MIGA2) and glucose metabolism (PCK1), as both 

processes are also tightly linked with circadian rhythmicity (Lamia et al., 2011; Zhao et al., 

2012; Barclay et al., 2013; Zani et al., 2013). 

The polymorphisms to be genotyped (N = 20) in the Lipgen population were retrieved from 

52 Duroc pigs with RNA-seq transcriptomic data for the GM muscle (Cardoso et al., 2017a), 

as well as from the WGS of the five Duroc boars that founded the Lipgen population. 

Performance of association analyses revealed that 10 out of 20 genotyped SNPs showed 

nominal associations with at least one lipid trait, but the majority of these associations lost 

significance after correction for multiple testing (Paper III). It should be noticed that here 

correction for multiple testing is much less stringent that in the case of a GWAS, hence we 

conclude that the majority of SNPs mapping to circadian genes did not have any impact on 

the lipid traits under study. One interpretation of this result is that circadian genes are master 

regulators of gene expression and a disruption of their function could have dramatic 

consequences on viability, so purifying selection is probably intense at removing most 

polymorphisms with functional effects. For instance, Layeghifard et al. (2008) explored the 

evolutionary mechanisms underlying gene duplication and functional divergence in circadian 

regulator genes, and found that the rate of nonsynonymous substitutions per nonsynonymous 

site rate was well below the rate of synonymous substitutions per synonymous site rate, while 

purifying selection was the evolutionary dominant process guiding sequence change in 

several of the analyzed genes such as CLOCK and NPAS2 or the casein kinases δ and ε 

(CSNK1D and CSNK1E). Other key circadian regulators like timeless (TIM), which 

downregulates the activation of PER1 by CLOCK/ARNTL, are also under strong purifying 

selection (Gu et al., 2014). Indeed, this evolutionary constraint would have removed strong 

deleterious mutations from such regulatory circadian genes, given their paramount importance 
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in maintaining a correct shifting between day-night cycles and the metabolic balance in cells. 

So, we conclude that the majority of the variants that we genotyped were benign and did not 

have noticeable effects on lipid metabolism, probably because purifying selection has a strong 

effect on the variability of circadian genes.  

Apart from circadian genes, we were particularly interested in exploring the effects of PCK1 

gene variations. In this regard, it is worth mentioning the rs343196765 missense mutation 

(Met139Leu) located in the 4th exon of PCK1 gene, which was among the ones we genotyped 

in the Lipgen population. Latorre et al. (2016) investigated this variant in several porcine 

populations, and reported its strong association with reduced IMF content and glucose 

metabolism due to a reduced enzymatic activity in the glyceroneogenic direction. However, 

we did not find any significant association of this variant on IMF content or on other lipid 

traits, with the only exception of C17:0 in the LD muscle, but only at the nominal level. 

Additionally, other polymorphisms located at CIART, PER1 and PCK1 genes were associated 

with backfat thickness, α-linolenic (C18:3) and margaric (C17:0) fatty acids, respectively, 

although only at the nominal level.  

Moreover, as discussed in paper III, increased C18:0 fatty acid content in LD and LDL serum 

concentration were revealed for animals carrying the mutated alleles for rs320439526 (c.-

6C>T) and rs330779504 (c.1455G>A) polymorphisms at CRY2 and MIGA2 genes, 

respectively. Only these two SNPs showed associations with meat quality traits that remained 

significant after correction for multiple testing. For these variants, we decided to investigate 

their association with the mRNA expression of the corresponding genes. Through these 

analyses, we were able to detect an association between rs320439526 and rs330779504 

polymorphisms and the expression of CRY2 and MIGA2 transcripts, respectively. In this way, 

pigs with homozygous genotypes for the alternative alleles showed a reduced mRNA 

expression of the corresponding genes when compared with pigs heterozygous or 

homozygous for the reference alleles using microarray expression data (Paper III, Figure 1). 

A complementary analysis that is not published in paper III but that was carried out during the 

present thesis was to confirm whether these observed differences in microarray probes 

expression profiles could be reproduced in the RNA-seq data employed for detecting 

candidate SNPs (Cardoso et al., 2017a), as microarray profiles have limited resolution to 

measure with confidence the mRNA levels of lowly expressed genes (Black et al., 2013). This 



Discussion 

317 

 

is an important issue because regulatory transcription factors like those encoded by circadian 

genes usually are expressed at low levels (Vaquerizas et al., 2009). Although this 

confirmatory analysis has not been published, we believe that it is worth briefly reporting it in 

this global discussion because it provides an additional and valuable perspective about the 

results presented in paper III. Indeed, contrary to our expectation, no significant association 

were detected between the two aforementioned CRY2 and MIGA2 SNPs and the mRNA levels 

of the corresponding genes measured by RNA-seq technique (Figure 1). This result is 

probably due to the scarce number of available animals with GM muscle RNA-Seq data (N = 

52). Nevertheless, we observed a statistical tendency towards reduced expression levels in 

pigs homozygous for the alternative alleles for rs320439526 (TT) and rs330779504 (AA) 

polymorphisms. So, there is a certain consistency between the association analyses performed 

with microarray and RNA-seq data, although statistical significances are not the same. 
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Figure 1: (A) Boxplots depicting the median and the distribution of CRY2 mRNA log2 

counts-per-million (CPM) expression levels in the gluteus medius skeletal muscle for each 

one of the three rs320439526 genotypes: CC (N = 11), CT (N = 30) and TT (N = 3). 

Homozygous TT animals for the alternative allele showed a reduced expression of CRY2 

compared with their homozygous CC and heterozygous CT counterparts, although not at a 

significant level (P-value = 0.392). (B) Boxplots depicting the median and the distribution of 

MIGA2 mRNA log2 counts-per-million (CPM) expression levels in the gluteus medius 

skeletal muscle for each one of the three rs330779504 genotypes: GG (N = 24), GA (N = 18) 

and AA (N = 3). Homozygous AA animals for the alternative allele showed a reduced 

expression of MIGA2 compared with their homozygous GA and heterozygous GG 

counterparts, although not at a significant level (P-value = 0.0953). 
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The inclusion of chromosome-wide genotyping information for the two polymorphic sites 

rs320439526 and rs330779504 SNPs at CRY2 and MIGA2, respectively, obtained by 

González-Prendes et al. (2017), did not yield significant results. In other words, there were 

several SNPs in the chip that displayed associations with C18:0 fatty acid content in LD and 

LDL serum concentration that were more significant than the ones obtained for the 

rs320439526 and rs330779504 SNPs, respectively (Paper III, Figure 2). This outcome 

inclines us to think that these SNPs do not have causal effects. However, as discussed in 

Paper I, causal mutations not always display the most significant association with the trait 

under study (Schaid et al., 2018) and, moreover, QTL are not always produced by a solitary 

causal mutation but by the combined effects of multiple SNPs in close linkage disequilibrium. 

Overall, it should not be concluded from our results that the variability of the circadian genes 

does not have effects on the lipid metabolism of pigs, but probably alleles with strong effects 

are very rare and can only be detected by sequencing or genotyping large populations. Indeed, 

some studies in humans have identified SNPs from core circadian regulating genes including 

CLOCK, ARNTL, and CRY2, being associated with lipid levels and metabolic syndrome 

(Scott et al., 2008; Englund et al., 2009; Garaulet et al., 2009; Sookoian et al., 2010; Tsuzaki 

et al., 2010; Garcia-Rios et al., 2012; Kovanen et al., 2015; Lin et al., 2017), so we consider 

that the potential consequences of the polymorphism of circadian genes on traits of genomic 

interest in pigs should be further explored. On the other hand, our results indicate that 

differential expression analysis can be used as a source of information to select candidate 

genes but only in combination with other criteria, being one of the most important ones the 

positional information generated in GWAS experiments. 

 

4.4. About the amount and distribution of variation in porcine microRNA genes 

One of the main goals of paper IV was to analyze the distribution of polymorphic sites within 

miRNA loci in four selected porcine populations of wild boars (WB) and domestic breeds 

(DM) from Asian (A) and European (E) origins. For this purpose, we made use of publicly 

available WGS data from a set of 120 pigs covering different breeds and geographical origins, 

as detailed in papers II and IV. We selected a set of bona fide miRNA loci annotated in the 

porcine genome (N = 370) to assess the presence of SNPs within their sequences, and a total 

of 285 variants segregating in at least one of the four defined porcine populations (i.e. ADM, 
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AWB, EDM or EWB) were identified. A thorough analysis of the distribution of these SNPs 

within these populations evidenced a clear differentiation between pigs from Asian and 

European origins. This result was expectable because the analysis of genetic markers and of 

porcine WGS has evidenced that Sus scrofa emerged in Southeast Asia in the early Pliocene, 

5.3–3.5 Myr ago (Larson et al., 2007, 2011; Frantz et al., 2013), and subsequently spread 

westwards and reached Europe 0.8 Mya (Frantz et al., 2013). Following this initial dispersal 

of wild boars across Eurasia, there was a long period of geographic isolation between the 

European and Asian gene pools, probably due to a colder climate that promoted the high 

genetic differentiation that we have been able to corroborate in our miRNA data set. Initial 

estimates obtained with mitochondrial data suggested that these two gene pools diverged 

500,000 YBP, while more recent estimates inferred from WGS indicate a much older time of 

divergence, i.e. 1.6-0.8 Myr (Groenen et al., 2012). We have also detected (Paper IV, Figure 

1) that Asian pigs and wild boars are much more diverse than their European counterparts, a 

finding probably motivated by the strong founder effect that the first wild boars colonizing 

Europe underwent as a consequence of a dispersal process initiated in Southeast Asia, a very 

distant location (Groenen et al., 2012). It should be also mentioned that, in the last centuries, 

the long-lasting geographic isolation of the European and Asian gene pools was disrupted by 

the transfer of pigs in both directions (Frantz et al., 2015). It is well known, for instance, that 

Chinese sows were massively imported into England during the 18th-19th centuries, and that as 

a result of this, many European breeds, and particularly Large White, carry Asian alleles at 

relatively high frequencies (Giuffra et al., 2000). The opposite is also true, so European 

breeds have been imported into China to improve the genetics of the national pig industry. In 

any case, the PCAs depicted in Figure 1 of paper IV agrees well with the general idea, backed 

up by the results of many studies (Ramos-Onsins et al., 2014), that the magnitude of these 

migrations was not strong enough to dilute the genetic differences produced by millennia of 

geographic isolation. 

These genetic differences, although detectable, where less evident when comparing wild boars 

and domestic breeds, especially in animals from the European lineage. It is worth noting that, 

despite the limited number of analyzed miRNA loci (N = 370), the population differentiation 

between ADM and AWB pigs was still discernible, although less evident compared with other 

PCAs based on a much higher number of SNPs. These differences were also evidenced when 

analyzing SNPs at a whole-genome scale, as well as SNPs located in 3’-UTRs and in putative 
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predicted 7mer-m8 and 8mer miRNA target sites. The current view is that the relatively weak 

differentiation between pigs and wild boars is mainly explained by the occurrence of recurrent 

hybridization events soon after domestication. Indeed, Frantz et al. (2015) demonstrated the 

existence of a post-domestication gene flow between pigs and wild boars, and they also 

evidenced that this gene flow was strongly asymmetrical, mainly following the direction that 

goes from wild boars to pigs. The most probable cause of this outcome is that, at least in 

Europe, pigs were not kept in sties, but instead they could roam freely, scavenging food, until 

the 18th century (White, 2011), thus providing a broad window of opportunity for the 

occurrence of hybridization events with their wild counterparts. 

Moreover, when we analyzed the distribution of SNPs within miRNA loci, we detected that 

the majority of miRNA genes showed 1 or 2 polymorphic sites at most, and almost half of the 

variants presented reduced alternative allele frequencies (MAF < 0.1). Besides, the probability 

of finding a SNP in the seed region of miRNAs (the miRNA portion that ultimately 

determines its targeting affinity and regulatory effects) was reduced by half compared with 

the remaining of the mature miRNA sequence, and more than twice compared with miRNA 

precursor regions. Indeed, the average SNP density observed in the seeds (~0.42 SNPs per 

100 bp) strongly contrasted with that observed in other non-miRNA regions of the genome 

(~2.5 SNPs per 100 bp), thus evidencing that mutations within the seed of miRNA genes have 

been strongly selected against. This is the likely signature of the ongoing purifying selection 

in regions that are crucial to ensure the binding affinity of the miRNA. These results were in 

accordance with other similar previous reports analyzing miRNA variability in diverse 

vertebrate species (Saunders et al., 2007; Sun et al., 2009; Gong et al., 2012; Zorc et al., 2012; 

Omariba et al., 2020). Accordingly, provided that microRNA loci seem to evolve under 

selective constraints, population differentiation observed at these sites should be relatively 

low. Such hypothesis was reinforced by the scarce FST significance observed for SNPs located 

at miRNA loci among the four porcine populations. In fact, only two SNPs within ssc-miR-

4335 and ssc-miR-9835 showed significant FST estimates when contrasting allele frequencies 

between ADM and AWB pigs, and between EWB and AWB pigs, respectively (Paper IV, 

Additional Table S4). 

The existence of a strong purifying selection removing mutations, mostly in the seed region 

(2nd to 8th 5’ nucleotides in the mature miRNA), is somewhat expected given the importance 

of preserving the seed integrity to ensure a correct targeting of the mRNAs regulated by a 
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given miRNA. Gains and losses of target sites by means of seed modifications have the 

potential to completely disrupt entire gene regulatory networks, a reasoning supported by the 

involvement of miRNAs as central players in dysregulated pathways and aberrant gene 

expression patterns observed in cancer (Ryan et al., 2010; Wilk and Braun, 2018). It is worth 

mentioning that polymorphisms in the miRNA binding sites of 3’-UTRs, rather than in the 

sequence of the miRNA itself, seem to account for the majority of observed gains and losses 

of miRNA targets (Marco, 2015). That is, the emergence of novel regulatory networks is 

biased towards the variability observed in 3’-UTRs, compared with the highly conserved 

miRNA loci. Indeed, while many miRNA families seem to have remained almost unaltered 

during millions of years across species, it is at their target binding sites that evolutionary 

differences seem to be more pervasive (Hui et al., 2013). Nevertheless, strong purifying 

selection has also been reported for miRNA target gains, as the appearance of novel 

regulatory effects of miRNAs should be mainly deleterious (Chen and Rajewsky, 2006; 

Saunders et al., 2007; Hatlen and Marco, 2020). In contrast, population differentiation via 

positive selection has also been described for target sites (Gardner and Vinther, 2008; Li et 

al., 2012), but this phenomenon seems to be linked to the loss of miRNA binding sites where 

the functional target site is the ancestral allele, and losses in a given miRNA-mRNA might be 

neutral or even beneficial in some cases (Helmy et al., 2019; Hatlen and Marco, 2020). 

To the best of our knowledge, these effects have not been thoroughly studied in the porcine 

species. Although partially envisaged in paper IV, in which we demonstrate the low 

variability of porcine miRNA genes, further studies analyzing miRNA target binding sites 

could provide novel hints about the genetic divergence across porcine populations in miRNA-

related regulatory pathways.  

Of particular interest is our observation that, even outside the seed, the rate of polymorphic 

sites across the mature miRNA sequence is not uniform. In fact, we found a high 

heterogeneity in the SNP density across the mature miRNA, with well-defined intervals that 

matched regions with potential functional properties in the miRNA binding affinity. In the 

first 5’ nucleotide of the miRNA, we found a SNP density similar to that of the seed (~0.49 

SNPs per 100 bp). This nucleotide is important as it provides an anchor to the miRNA for 

correctly attaching to the Argonaute protein in the miRISC complex. The four nucleotides (9th 

to 12th) immediately following the seed gathered an increased SNP density (~0.98 SNPs per 

100 bp), which was in accordance with their probable lack of involvement in the miRNA 
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binding process (Bartel, 2018). Following nucleotides 13th to 18th experienced, once again, a 

decrease in their observed SNP density, more prominent towards nucleotides 16th and 17th 

(Paper IV, Figure 3). This finding is consistent with the existence of a supplementary pairing 

in the miRNA that stabilizes the binding to the 3’-UTR of target mRNAs (Bartel, 2018). The 

remaining nucleotides until the end of the mature miRNA displayed elevated SNP densities, 

similar to those observed for the 9th to 12th nt interval. These results were in accordance to 

those previously reported by Gong et al. (2012), who described a non-uniform distribution of 

SNPs along miRNA sequences. In summary the observed pattern of SNP density variation in 

pig miRNA genes is consistent with the functional significance of the regions under analysis 

(Bartel, 2018). 

 

4.5. The variability of miRNA genes is associated with the mRNA expression of their 

predicted targets 

A total of 15 SNPs located in miRNA genes were genotyped in the Lipgen population (N = 

350), and association analyses were carried out using microarray expression profiles in GM 

and liver tissues from a set of animals belonging to the Lipgen population. Our results 

highlighted several significant associations between SNPs in the seed (rs322514450, 

n.16G>A), and also outside the seed (rs333787816, n.65T>C; rs319154814, n.46G>A; 

rs335924546, n.72C>T), with the expression of their putative mRNA targets. From these, the 

rs322514450 SNP located in the seed of ssc-miR-9792-5p was significantly associated with 

the mRNA expression of the NUDT6 and RLBP1 genes in GM and liver tissues, respectively. 

The targeting of the 3’-UTR of both genes took place when the A allele was present in the 

seed of ssc-miR-9792-5p, hence their expression might be lowered in pigs homozygous for 

the mutated seed of ssc-miR-9792-5p. Indeed, individuals with AA genotypes for this SNP 

showed reduced expression profiles of NUDT6 and RLBP1 transcripts with respect to their 

GG and GA counterparts, as depicted in Figure 6 of paper IV. The significance of such 

expression variation was better exemplified when we contrasted the mean mRNA expression 

of each genotype measured by microarray hybridization (our unpublished data, Table 1). 

However, the fact that only two putative gained mRNA targets for the mutated seed of ssc-

miR-9792-5p showed significant, yet not extremely dramatic changes in their expression, 

evidences the probable existence of compensatory mechanisms buffering the effects of 
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potentially deleterious SNPs located in the seed region, such as functional redundancy of 

genes and miRNAs (Ventura et al., 2008; Alvarez-Saavedra and Horvitz, 2010; Park et al., 

2010; Concepcion et al., 2012) or compensatory pairing mechanisms, and/or imperfect seed 

matching (Chipman and Pasquinelli, 2019). Indeed, the knockdown of miRNAs not always 

implies neither substantial changes in the expression of its target mRNAs nor readily 

observable phenotypic effects (Park et al., 2010; Gong et al., 2012). 

Interestingly, the SNP showing the most consistent associations with gene expression, i.e. 

rs319154814 (n.46G>A) in the apical loop of ssc-miR-326, was located outside the seed 

(Table 1). These changes in gene expression involving miRNAs not polymorphic in their 

seed, but in other parts of their sequences, shed light on the existence of potential mechanisms 

related with the maturation process, that could affect the function of porcine miRNAs without 

altering their binding properties. In this way, these SNPs would impact on the expression 

profiles of the miRNAs, thus leading to changes in the expression levels of their mRNA 

targets. Polymorphisms located at the apical loop of miRNA hairpins like the one reported by 

us in paper IV or elsewhere (Fernandez et al., 2017), and also variants in the basal junction 

(Li et al., 2020; Nguyen et al., 2020) or in the middle of the hairpin stem (Omariba et al., 

2020), have the potential to modify the pairing process during the folding of the hairpin, thus 

stabilizing or destabilizing the miRNA hairpin (Omariba et al., 2020). Moreover, these SNPs 

are able to affect crucial determinants for the processing machinery, hence hampering or 

directly abrogating the expression of the miRNA (Li et al., 2020; Nguyen et al., 2020). 
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Table 1: Results of significance tests for differences in normalized microarray expression profiles of mRNAs putatively regulated by ssc-miR-

9792 and ssc-miR-326.a 

SNP Type Gene ANOVA P-value 
Tukey's HSD 

GA vs AA GG vs AA GG vs GA 

rs322514450 (8:110922752) ssc-miR-9792 seed region (G/A) 
NUDT6 3.670E-05 9.918E-01 4.544E-02 6.990E-05 

RLBP1 3.200E-04 9.760E-01 7.301E-02 5.885E-04 

rs319154814 (9:9581989) ssc-miR-326 apical loop (G/A) 

CFLAR 3.120E-03 1.850E-02 6.389E-03 6.177E-01 

PPP1CC 8.060E-03 1.512E-01 6.465E-03 6.177E-01 

FSTL1 9.610E-03 3.161E-01 6.687E-03 1.167E-01 

SF3A3 1.930E-03 8.079E-03 6.475E-03 7.689E-01 

ELAVL1 1.340E-02 3.993E-02 2.824E-02 8.003E-01 

NAA50 1.600E-02 1.294E-01 1.580E-02 4.052E-01 

 

aExpression values for each genotype of rs322514450 (GG = 56 in GM and 58 in liver, GA = 25, AA = 5) and rs319154814 (GG = 17, GA = 37, AA = 32) were contrasted applying an ANOVA test and further stratified 

between groups with a Tukey’s range test for honestly significant differences (HSD). 
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As we did for data reported in paper III, in this global discussion we have investigated 

whether the associations between miRNA SNPs and mRNA levels measured with 

microarrays could be reproduced using RNA-seq data generated by Cardoso et al. (2017a) in 

the GM skeletal muscle of 52 Duroc pigs from the Lipgen population. It is important to 

emphasize that only the associations between rs333787816 (n.65T>C) in ssc-miR-23a and 

NUP50, PAFAH1B2, CSNK1G3, UBE2R2, AGO1 and AGO2 transcript levels, as well as that 

between rs322514450 (n.16G>A) in ssc-miR-9792 and NUDT6, were detected in the GM 

muscle. In contrast, the remaining significant associations were only valid for transcripts 

expressed in the liver tissue. When using GM RNA-seq expression phenotypes, no significant 

associations were observed for any miRNA genotype (Table 2). For those genes that were 

detected as significantly associated with miRNA SNPs in the liver tissue, these results were 

expected, as miRNA expression signatures are independent for each tissue (Ludwig et al., 

2016). Indeed, they should be fairly different between the GM skeletal muscle and the liver, 

two tissues that greatly differ in their metabolic functions and gene expression profiles 

(González-Prendes et al., 2019a). In this way, co-expression associations for miRNA-mRNA 

interactions should also reproduce any tissue and/or developmental stage specificity observed 

for the expression patterns of either miRNA or mRNA transcripts (Nowakowski et al., 2018).  

As previously commented in the section 4.3 of the present general discussion, the limited 

number of available samples with GM RNA-seq profiles in the Lipgen population (N = 52) 

could be hampering the statistical power to detect any meaningful differences. Moreover, 

contrary to what was shown for CRY2 and MIGA2 RNA-seq profiles, no tendency towards a 

reduced expression for homozygous animals carrying the mutated alleles was observed when 

comparing ssc-miR-23a and ssc-miR-9792 miRNA genotypes (data not shown). To what 

extent this would be attributable to the reduced number of available samples or to inherent 

differences in the inference of transcript abundances between microarrays and RNA-seq 

approaches, remains unclear. Nevertheless, it should be noticed that, contrary to cis- 

expression effects observed for CRY2 and MIGA2 polymorphisms investigated in paper III, 

expression differences in mRNAs described in paper IV are dependent on trans- effects 

elicited by SNPs mapping to miRNAs that putatively target these transcripts. Contrary to the 

direct cis- effects reported in paper III, confounding variables such as the expression level of 

the miRNAs, their subcellular location or their loading into active miRISC complexes to exert 

functional interactions with their mRNA targets, can cause important distortions in the 
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magnitude and significance of the associations detected between miRNA genotypes and the 

mRNA levels of the corresponding miRNA targets. Moreover, our inference of putative 

mRNA targets for the analyzed miRNAs relied on in silico predictions based on the detection 

of 7mer-m8 binding sites between the miRNA seeds and short sequences in the 3’-UTRs of 

target mRNAs, as well as on experimental validations reported in humans and available in 

public databases (Karagkouni et al., 2018). Such approach did not take into account neither 

the existence of alternative seed matching types for miRNA-mRNA interactions nor the 

possibility that experimental results validated in humans might not be directly reproducible in 

pigs. 

 

Table 2: Results of significance tests for differences in log2 counts-per-million (CPM) RNA-

seq expression profiles of mRNA targets putatively regulated by ssc-miR-23a, ssc-miR-9792, 

ssc-miR-326 and ssc-miR-1224.a  

SNP Type Tissue Gene P-value 

rs333787816  

(2:65308181) 

ssc-miR-23a  

precursor stem (T/C) 
GM 

NUP50 6.40E-01 

PAFAH1B2 7.78E-01 

CSNK1G3 9.83E-01 

UBE2R2 5.91E-01 

AGO1 5.68E-01 

AGO2 5.04E-01 

rs322514450 

 (8:110922752) 

ssc-miR-9792  

seed region (G/A) 
GM NUDT6 1.23E-01 

rs319154814  

(9:9581989) 

ssc-miR-326  

apical loop (G/A) 
LIVER 

CFLAR 9.40E-01 

PPP1CC 8.96E-01 

SF3A3 3.94E-01 

FSTL1 7.31E-01 

CELF1 3.32E-01 

NAA50 7.08E-01 

ELAVL1 2.86E-01 

rs335924546 

 (13:122141078) 

ssc-miR-1224 

 precursor stem (C/T) 
LIVER MKRN1 8.25E-01 

 

aExpression values for rs333787816 (TT = 10, TC = 28, CC = 8), rs322514450 (GG = 31, GA = 11, AA = 3), rs319154814 (GG = 8, GA = 

17, AA = 20) and rs335924546 (CC = 31, CT = 14, TT = 0) genotypes were contrasted applying an ANOVA test. 
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4.6. Polymorphisms within porcine microRNA genes are associated with lipid-related 

traits 

Another goal that we aimed to achieve in paper IV was to analyze the association of the 

genotyped miRNA SNPs with the phenotypic variation of lipid-related traits measured in the 

Lipgen population. In this regard, most of the associations that remained significant after 

multiple testing correction involved the rs319154814 SNP (n.46G>A) in the apical loop of 

ssc-miR-326. Indeed, this polymorphism was associated with myristic acid content in both 

LD and GM muscles, as well as with the gadoleic acid content and the ratio between PUFA 

and MUFA in the LD muscle. Other several significant associations at the nominal level for 

this and other miRNA SNPs were also detected (Paper IV, Table 3). Although no previous 

surveys have been conducted investigating if ssc-miR-326 is involved in the regulation of 

lipid metabolism, it is well known that miRNAs can act as key regulators of lipogenesis, 

lipolysis, cholesterol metabolism, and many other lipid-related pathways. For instance, miR-

122 is one of the most expressed miRNAs in the liver, and its downregulation has been 

associated with a marked decrease in total serum cholesterol and triglyceride levels (Esau et 

al., 2006; Elmén et al., 2007). Besides, this miRNA is also transcribed in a circadian fashion 

(Gatfield et al., 2009), being involved in the circadian regulation of its mRNA targets (Kojima 

et al., 2010). The miRNA-33 family can directly target ABCA1, a key regulator of cholesterol 

metabolism, resulting in a decreased cholesterol efflux and lowered nascent HDL levels 

(Marquart et al., 2010; Najafi-Shoushtari et al., 2010; Rayner et al., 2010). These two 

outcomes are anticipated to have protective effects against atherosclerosis progression (Horie 

et al., 2012). Taniguchi et al. (2014) also reported ssc-miR-33b as a key player in lipogenesis 

in the porcine adipose tissue. Mice lacking miR-33b and fed with a high-fat diet during a long 

period of time, developed obesity and liver steatosis, and they also displayed an increased 

expression of two miR-33b targets, i.e. FASN and ACACA, two essential players in 

lipogenesis (Horie et al., 2013; Goedeke et al., 2014). The miR-148a, which was reported as 

DE in paper VI, can target the LDL receptor transcript (LDLR), hence contributing to increase 

the plasma concentration of LDL (Goedeke et al., 2015; Rotllan et al., 2016). Moreover, miR-

21 overexpression blocks intracellular lipid accumulation by targeting the fatty acid-binding 

protein 7 (FABP7) in high-fat diet-fed mice (Ahn et al., 2012) and miR-378 is directly 

regulated by the lipogenic factors CCAAT/enhancer-binding protein α and β (CEBPA and 

CEBPB) (Gerin et al., 2010; John et al., 2012). 
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The number of associations that we have found between miRNA SNPs and lipid phenotypes 

are relatively low. The most probable reason is the functional redundancy that exists for many 

miRNAs, in which even the consequences of a complete knockout are not readily evident 

because loss of function can be compensated by other highly related miRNAs with similar 

binding properties. For instance, functional overlaps have been described for the miR-34a/b/c 

and miR-449a/b/c loci (Concepcion et al., 2012), as well as for miR-17~92 family and miR-

106a/b (Ventura et al., 2008), where partial losses of any but not all of the miRNAs of the 

family are compensated by the expression of other existing miRNA paralogs (Alvarez-

Saavedra and Horvitz, 2010). Another important reason for this lack of association could be 

purifying selection, that tends to remove potentially deleterious mutations altering miRNA 

function. In this context, such harmful mutations would be extremely rare and unlikely to be 

detected in a population such as the Lipgen, which has a modest sample size (N = 350). 

Finally, the genetic determinism of lipid-related traits is very complex and depends on many 

genetic determinants with variable and sometimes opposed effects on the trait under study, 

thus providing an additional mechanism of genetic compensation that obscures the 

consequences of miRNA variability. For instance, a mutation in the seed of a miRNA could 

be counteracted by another suppressor mutation in the binding site of the 3’-UTR of one of its 

targets, thus restoring the affinity between both molecules. Our impression is that the most 

reliable mechanism to understand the functional consequences of miRNAs on complex 

phenotypes is exploring their relationship with intermediate and simpler expression 

phenotypes, which depend on many fewer variables and can be dissected more easily. Of 

course, this involves not only the performance of association analyses but of functional tests 

to confidently determine the sets of mRNAs targeted by specific miRNAs. We foresee that 

the exploration of the functions of non-coding RNAs will be one of the most active fields of 

research aiming to elucidate the biological basis and molecular physiology of production traits 

in livestock.  
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4.7. Development of the eMIRNA pipeline to annotate porcine microRNA genes 

As previously outlined, the miRNA annotation in pigs is still incomplete if compared with 

that of cows and chicken, or with the annotations of well characterized organisms such as 

humans and mice (Introduction, Figure 10).  

Such circumstance motivated us to further investigate the existence of miRNA genes not yet 

annotated in the current porcine assembly. In principle, a plethora of tools for the homology-

based search of miRNAs and their identification from small transcriptome data are available 

(Bortolomeazzi et al., 2017). Many different approaches have been implemented, ranging 

from rule-based algorithms using a series of heuristics for calculating the odds of a sequence 

to be a true miRNA (Friedländer et al., 2008, 2012; Mathelier and Carbone, 2010; Barturen et 

al., 2014; Aparicio-Puerta et al., 2019), to more advanced classifier algorithms relying on 

machine learning techniques, and further discussed in Stegmayer et al. (2018). Nevertheless, 

the majority of them do not implement end-to-end pipelines for the discovery and functional 

annotation of miRNAs, but are mostly focused on maximizing their predictive performance 

compared with other tools. In this way, hairpin reconstruction from mature miRNA sequences 

(one of the most critical steps in identifying novel miRNA genes) is often overlooked. 

Moreover, pre-miRNA boundaries are commonly defined by flanking sequence motifs around 

the miRNA gene (Auyeung et al., 2013; Fang and Bartel, 2015), a source of information that 

could be used for better delineating the hairpin sequences to be used as candidates for 

prediction. 

In paper V, we aimed to tackle this issue by using a motif-informed ranking approach based 

on the randfold algorithm (Bonnet et al., 2004). Briefly, we analyzed the positional 

occurrence of miRNA flanking motifs in a set of annotated bona fide porcine miRNAs (N = 

370), determining their most common location (e.g. -13/-12 for basal UG upstream motif, and 

+18/+21 for downstream CNNC motif), which coincided with previous surveys characterizing 

such motifs in human miRNAs (Auyeung et al., 2013; Fang and Bartel, 2015). Candidate 

sequence reconstruction from aligned mature miRNAs were generated using several 

elongation patterns (i.e. 15/60, 30/60, 15/70, 30/70, 15/80 and 30/80 nucleotides were added 

upstream and downstream, respectively). Motif positional information was then incorporated 

to generate motif-corrected candidate sequences. In this way, we were able to generate 12 

putative candidate sequences per each aligned mature miRNA. Their folding thermodynamic 
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stability was assessed with the randfold algorithm (Bonnet et al., 2004), and those showing a 

more stable secondary structure of the hairpin were selected to be interrogated by the 

classifier algorithm. 

As detailed in Figure 1 from paper V, and further described in the github repository for the 

eMIRNA pipeline (https://github.com/emarmolsanchez/eMIRNA), the eMIRNA.Hunter 

module was explicitly designed for aligning mature miRNAs to any given genome assembly 

and, subsequently, performing the reconstruction of the sequence candidate by (i) taking 

advantage of user-defined elongation patterns, and (ii) simultaneously adjusting the 

boundaries according to flanking motifs, if present. Once candidate elongated sequences are 

generated, the eMIRNA.Structural.Pscore module can be optionally used for assessing the 

stability of the folding, thus filtering those sequences that do not surpass a given threshold 

(i.e. p < 0.05). This implementation relies on a user-guided decision on which elongation 

patterns need to be applied to the data, as well as on the optional use of p scores calculation 

for removing structurally unstable candidate sequences. Users could implement a similar 

procedure as reported in paper V, where we tested several elongation patterns and selected 

those showing a more stable folding. Another option would be to apply a fixed elongation 

pattern (i.e. 15-30/60-70) and further remove all the candidates that do not show a p score < 

0.05. 

However, such approach assumes the informed decision of the users to choose which 

elongation patterns to test, as well as whether to implement candidate sequence filtering based 

on structural stability or bypassing such step and continue with further analyses. 

A better approach to this task would be the development of an automated dynamic search for 

proper elongation and motif search correction, which would directly generate the better 

possible candidate sequence for each mature miRNA. This could be achieved in the same line 

to what has been reported by Evers et al. (2015) and Paicu et al. (2017). In this regard, a 

sufficiently long window around the mature miRNA under study should be defined (i.e. 80-

100 nts). Following steps would include the generation of multiple secondary folding hairpin 

candidates within the defined window, by using, for instance, the RNALfold algorithm 

(Lorenz et al., 2011). Subsequently, the most stable hairpin candidate would be prioritized by 

applying any given thresholding rule such as that provided by the randfold algorithm, or by 

https://github.com/emarmolsanchez/eMIRNA
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using the minimum free energy of the folding or both. With this approach, an easier-to-use 

implementation for generating candidate sequences to be tested could be achieved. 

For miRNA prediction, we made use of a machine learning semi-supervised transductive 

graph-based approach, as reported by Yones et al. (2018). Semi-supervised schemes have the 

advantage to allow the inclusion of unlabeled data to the training process, hence increasing 

the amount of data used for training the model, which, in the case of miRNAs, is a very 

limiting factor, given the scarce number of annotated miRNAs that are often available to be 

used as a reference. To the best of our knowledge, only one pipeline, apart from the one 

published by Yones and collaborators, is currently available to perform such task (Sheikh 

Hassani and Green, 2019). This case exemplifies the still limited exploration of semi-

supervised frameworks for miRNA prediction. Furthermore, it is worth noting that, despite 

the wide range of ML algorithms that have been employed for miRNA prediction throughout 

the years, with SVM and RF being the most used ones (Introduction, Table 3), good 

performances are often reported when evaluating the ability of the classifiers to correctly 

discern between miRNAs and other sequences. Indeed, benchmarking of several other ML 

algorithms showed acceptable performances for correctly identifying annotated porcine 

miRNAs (Paper V, Table 2), with the lGBM algorithm yielding performance metrics 

equivalent to those achieved by our semi-supervised approach. In the light of these results, we 

are inclined to think that, other than the training algorithm, the correct selection and diversity 

of training sequences and their defined features are the key factors affecting the real 

performance of miRNA prediction tools. It is therefore of paramount importance that 

researchers focus their efforts on correctly determining sequence candidates with adjusted 

boundaries, jointly with a careful estimation of their defining features. At the same time, it is 

highly advisable to incorporate as much sequences as possible to the training process. 

Moreover, as an extension of the discussion of paper V, we would like to emphasize that the 

annotation nomenclature of novel detected miRNAs and their isoforms (isomiRs) should be 

carefully considered, taking into account recent unified systems for miRNA classification as 

the ones proposed by Fromm et al. (2015) or Desvignes et al. (2019). 

The functional annotation of novel and annotated miRNAs is also a relevant task, which, once 

again, is not commonly covered by many of the reported tools for miRNA prediction. On the 

contrary, this task is usually carried out by integrated tools for miRNA bioinformatic analyses 
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such as the UEA sRNA workbench (Beckers et al., 2017) or the sRNAtoolbox (Aparicio-

Puerta et al., 2019). More importantly, the inference of miRNA-mRNA interaction networks 

by making use of expression data and miRNA targeting properties is also a very useful 

approach in order to discern functional interactions between miRNAs and their mRNA 

targets. To do so, several methods have been proposed, which commonly start from a set of 

expression data for miRNA and mRNA genes that are used to infer co-expression patterns 

among miRNAs and their putative mRNA targets. In order to exclude spurious correlations, 

prior miRNA targeting rules are often embedded, as well as experimental information about 

true miRNA-mRNA interactions. One of the most reported approaches aiming at integrating 

miRNA and mRNA expression data sets through gene regulatory networks is the MAGIA 

tool (Sales et al., 2010), and its updated version MAGIA2 (Bisognin et al., 2012). This web-

based software incorporates in silico and experimental miRNA target predictions based on 

MicroCosm (Griffiths-Jones et al., 2008), miRanda (John et al., 2004), DIANA-microT 

(Maragkakis et al., 2009; Paraskevopoulou et al., 2013), miRDB (Wang, 2008; Liu and Wang, 

2019), PicTar (Krek et al., 2005), PITA (Kertesz et al., 2007), rna22 (Miranda et al., 2006), 

and TargetScan (Agarwal et al., 2015, 2018) as prior knowledge. Then, co-expression 

modules between miRNA and mRNA expression data are inferred based on correlation 

metrics in order to generate informed miRNA-mRNA regulatory interaction networks. Other 

more recent tools are also available, such as micrographite (Calura et al., 2014), ToppMiR 

(Wu et al., 2014a), DIANA-mirEXTra v2.0 (Vlachos et al., 2016), spidermiR (Cava et al., 

2017) or miRmapper (da Silveira et al., 2018). 

We consider that integrating co-expression miRNA-mRNA networks with miRNA prediction 

and target mRNAs identification would allow researchers to infer putative functional 

relationships emerging from their predicted novel miRNA candidates, hence highlighting 

hidden regulatory relationships that would have been overlooked otherwise. 

In order to implement such approach, we have developed three additional modules for the 

eMIRNA pipeline, which can be found in the dedicated github repository 

(https://github.com/emarmolsanchez/eMIRNA). A detailed scheme is also shown in Figure 2. 

First, similarly to what was implemented in papers IV and VI for miRNA target prediction, 

we made use of the SeqKit Toolkit (Shen et al., 2016) for searching miRNA binding sites in 

3’-UTR sequences of putative target mRNAs. The eMIRNA.Target module was developed for 

such purpose. It accepts two FASTA files, one with mature miRNA sequences, and the other 

https://github.com/emarmolsanchez/eMIRNA
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one encompassing 3’-UTR sequences of mRNAs to screen for binding sites. This module 

allows the user to choose between four different types of miRNA target sites (i.e. 6mer, 7mer-

A1, 7mer-m8 or 8mer binding types). After running the module, the identified putative 

miRNA-mRNA interactions can be used to feed the following module, eMIRNA.Network. In 

order to detect meaningful co-expression regulatory networks, this module makes use of 

miRNA and mRNA expression datasets, jointly with the prior knowledge of miRNA-mRNA 

interactions inferred with the eMIRNA.Target, as well as first-order partial correlation 

coefficients deduced with the PCIT algorithm (Reverter and Chan, 2008; Watson-Haigh et al., 

2010). 

Finally, the eMIRNA.RIF module is able to identify key regulatory miRNAs from the set of 

expressed miRNAs by means of the RIF algorithm (Reverter et al., 2010). The miRNA and 

mRNA expression data sets, along with meaningful miRNA-mRNA interactions from 

eMIRNA.Network and, optionally, a list of differentially expressed mRNAs, are needed for 

running the RIF algorithm. 

Overall, the collection of bioinformatic modules described in paper V and discussed herewith, 

allowed us to identify a total of 47 putative novel porcine miRNAs. Besides, 20 of them were 

detected as expressed in a small RNA-seq data set from the GM skeletal muscle of Duroc 

gilts. The remaining ones were inferred by an homology-based approach using orthologous 

annotated human mature miRNAs. Furthermore, three of them were successfully profiled as 

expressed in the LD skeletal muscle and liver tissues from an independent population of 

Göttingen minipigs. Our pipeline demonstrated good performance compared with other state-

of-the-art algorithms, and showed an improved ability to recover the miRNA boundaries with 

regard to miRDeep2, another widely used tool for miRNA prediction (Friedländer et al., 

2012). In the light of these results, we believe that the eMIRNA pipeline reported in paper V, 

jointly with further ongoing developments such as those mentioned above, constitutes a useful 

tool for the discovery and functional annotation of novel miRNAs in any given species with 

an available genome assembly. We also think that the development of this and other tools will 

be essential to improve the annotation of miRNAs in domestic species, a step that is crucial to 

understand their role in the determinism of traits of economic importance. 
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Figure 2: eMIRNA pipeline scheme for assessing meaningful miRNA-mRNA interactions 

and key regulatory miRNAs from expression data sets. (1) mature miRNA and 3'-UTR 

sequences are used for predicting miRNA-mRNA target interactions. (2) Expression data 

from miRNA and mRNA genes belonging to the same experimental conditions are used to 

predict meaningful miRNA-mRNA interactions based on a partial correlations and 

information theory (PCIT) approach. (3) The regulatory impact factor (RIF) of each 

considered miRNA is calculated based on mRNA and miRNA expression data, as well as 

with meaningful PCIT interactions. 

 

 

4.8. Analyzing the changes in the expression mean and variance of genes transcribed in 

the skeletal muscle of fasting and fed gilts 

In paper VI, we first compared the expression profiles of protein coding mRNAs, miRNAs 

and lincRNAs, making use of RNA-seq data previously reported by Cardoso et al. (2017b) 

and small RNA-seq generated within the framework of the present Ph.D. thesis, using the 

same Duroc pig population of 36 gilts subjected to fasting-feeding experimental conditions. 
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We modeled the amount of expression of each of these three types of transcripts by means of 

their regularized log2 normalized expression, which showed that, overall, mRNA transcripts 

were more expressed than miRNAs and lincRNAs. With few exceptions, lincRNAs had low 

or very low expression levels in the pig skeletal muscle (Paper IV, Figure 2). Such results 

coincided with the fact that lincRNA median expression is only about a tenth than that of 

protein coding mRNAs (Cabili et al., 2011; Ulitsky and Bartel, 2013), although both 

transcript types have similar half-life distributions (Clark et al., 2012; Tani et al., 2012). 

In addition, we aimed to analyze the inherent intragroup expression variability observed for 

each gene, i.e. we computed the biological coefficient of variation (BCV) for each annotated 

mRNA, miRNA and lincRNA in each of the defined dietary groups (T0, T1 and T2), in order 

to obtain an estimate of how variable each transcript would be across biological replicates. In 

this way, we observed that, on average, lowly expressed mRNAs and lincRNAs showed 

increased BCV values, meaning that lowly expressed genes presented increased variance in 

their expression profiles when compared to loci expressed at higher rates (Paper VI, Figure 3), 

and this trend was particularly true for mRNAs and lincRNAs. In contrast, miRNAs showed 

very stable and resilient expression profiles across samples, irrespective of their expression 

values, with few exceptions showing mildly increased variances. Moreover, we computed the 

fold changes not only for the mean expression of genes but also for the variances associated 

with these means in each experimental condition. By doing so, we observed that mRNA genes 

with low expression profiles tend to display higher fold changes of their expression variances 

that genes which are highly expressed. This pattern was not observed in the case of miRNA or 

lincRNA genes (Paper VI, Figure 4). 

These results were in accordance with previous surveys characterizing the rate of production, 

accumulation and decay of mRNAs (Carninci et al., 2005; Söllner et al., 2017), lincRNAs 

(Cabili et al., 2011; Iyer et al., 2015) and miRNAs (de Rie et al., 2017). Indeed, the overall 

stable expression profile observed for miRNA transcripts, probably reflects the particular 

decoupling between synthesis and functional activity that small RNAs often experience 

(Mayya and Duchaine, 2015; Reichholf et al., 2019). 

The existence of intrinsic variation in gene expression and the transcriptional noise produced 

by such phenomenon has been reported since the beginning of the characterization of 

transcriptional profiles (Tu et al., 2002), but their biological meaning remained obscure until 
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high-throughput sequencing techniques allowed researchers to investigate the transcriptional 

landscape of multiple tissues, developmental stages and biological conditions (Suntsova et al., 

2019). In this regard, it is important to discern between true gene expression variation and 

other possible sources of variation that might be introduced throughout the generation of the 

data, either at collecting samples, or in subsequent steps while performing library preparation, 

sequencing, and further processing of the data. Biological variation, in essence, reflects not 

only the noisy nature of cell dynamics across tissues, but also to which extent the individuals 

comprised in a group respond differently to the same stimulus. Indeed, when we observe a 

change in the mean mRNA levels of a given gene in response to an experimental condition, 

very often this fold change of the mean does not necessarily have an identical magnitude (or 

even direction) in all the members of the experimental group. Thus, changes in the variance of 

the expression of genes capture a source of information that cannot be inferred from a simple 

comparison of means, paving the way to understand why individuals subjected to the same 

experimental condition respond, sometimes, in vastly different manners. Of course, the main 

challenge is to model and treat the many sources of technical variation to minimize their 

influence in the data set and to correctly estimate the amount of biological variation. The so-

called BCV metric was reported to successfully account for this purpose (McCarthy et al., 

2012), and was hence used in paper VI for estimating the extent of gene variation across 

samples, while controlling for technical sources of background noise. 

Several authors have intended to explore the biological meaning of the variance of gene 

expression (also termed as gene dispersion). In fact, the stochasticity of gene expression and 

its inverse correlation with transcription and translation rates is well known to have a relevant 

impact in the cell metabolism (Raj and van Oudenaarden, 2008). Moreover, how intrinsic and 

extrinsic gene stochasticity might affect the gene-to-gene interactome rewiring has been also 

subjected to detailed analysis (Chalancon et al., 2012). For instance, Komurov and Ram 

(2010) described how the extent of transcriptional activation and expression levels was 

associated to the hierarchy of signaling cascades and the centrality or peripheral positioning 

of genes in regulatory networks. Highly expressed and lowly variable genes with active 

transcription tend to be central regulators of cellular metabolism such as energy homeostasis, 

transcription and processing rates or protein synthesis and degradation. In contrast, lowly 

expressed genes with high variability often correspond to extracellular effectors and 

regulatory proteins with peripheral and sparser locations within the regulatory networks 
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(Komurov and Ram, 2010). Kaneko et al. (2011) extended the notion of gene expression 

variability, due to intrinsic noise in transcription rate, to dispersion effects caused by 

mutations altering the expression of genes and their regulatory networks. Both types of noise 

(due to gene expression dynamics and to mutations altering transcriptional regulation) had 

significant effects on the observed phenotypic variability and the plasticity of gene-to-gene 

interplay, thus evolving in response to environmental forces. Age-dependent patterns of gene 

expression noise have been also reported, affecting phenotypes such as redox homeostasis or 

fatty acids metabolism. These patterns are sometimes produced by age-related diseases caused 

by epigenetic modifications under environmental aggressions rather than by a genetically-

driven decline in regulatory functions after genome damage caused by age (Viñuela et al., 

2017). 

Nevertheless, it is worth commenting that, given the fact that high dispersion estimates are 

commonly found in lowly expressed genes, such is the case of lincRNAs and protein-coding 

regulatory elements like transcription factors (Vaquerizas et al., 2009), the modelling of gene 

dispersion needs to be adjusted for the zeroes inflation that arises from such expression 

patterns. This issue makes canonical models for RNA-seq data based on negative binomial 

distributions particularly prone to underestimate the true signals of differential expression 

between conditions, and, unfortunately, few methods have been proposed to tackle the zero-

inflated problem (Ran and Daye, 2017; Li et al., 2019b). 

In paper VI, we applied the MDseq method proposed by Ran and Daye (2017) in order to 

infer differential dispersion signals between fasting (T0) and fed (T1 and T2) pigs at the 

mRNA, miRNA and lincRNA levels. Few results compared to those obtained with canonical 

differential expression analyses based on the mean were obtained (Paper VI, Table 2 and 

Additional Table S3), leading to the conclusion that feeding did not produce dramatic changes 

on the variance of the expression of genes. Among the differentially dispersed mRNAs, to 

mention a few, NEU3 was detected as overdispersed and also overexpressed after food intake 

in both T0/T1 and T0/T2 contrasts. This protein is located in the plasma membrane and 

stimulates insulin sensitivity and glucose tolerance (Yoshizumi et al., 2007). In contrast, the 

fold change of the variance of the PDK4 gene was significantly reduced in fed gilts (T2) 

compared with their fasting counterparts (T0), in agreement with the marked downregulation 

of its expression in T2 animals (Paper VI, Additional Table S2). About miRNAs, ssc-miR-17-

5p and ssc-miR-451 showed reduced dispersion values in fed pigs (T1) with respect to fasting 
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individuals (T1), hence indicating stabilized expression profiles upon feeding. However, no 

significant downregulation was observed for their mean expression values in the same 

contrast, but a trend to reduced expression was indeed detected (Paper VI, Table 3). The ssc-

miR-17-5p molecule is able to target several key transcripts regulating lipid metabolism such 

as FABP4 or PPARG (Han et al., 2017), whereas ssc-miR-451 is downregulated in pigs with 

increased fatness (Xing et al., 2019). Although two lincRNAs (ENSSSCG00000032301 and 

ENSSSCG00000031192) showed slight significant differences in their dispersion profiles, no 

putative functional meaning could be deduced due to the lack of biological information. 

Taking into account these results, several points should be further discussed here: 

First, for miRNAs and particularly for lincRNAs, the reduced number of investigated 

transcripts (286 expressed miRNAs and 352 annotated lincRNAs) would definitely limit our 

ability to find significant dispersion signals. In recent genome annotations for the pig 

assembly, the number of annotated lincRNAs increased substantially, so further re-analyzing 

our muscle expression data might provide a better representation of the long non-coding RNA 

fraction of the transcriptome than what was reported in paper VI. Despite this, the limited 

annotation of such non-coding regions might still hamper the detection of significant 

differentially dispersed transcripts. Besides, the possibility that the applied MDseq method 

might still be too conservative for detecting the whole landscape of gene dispersion 

differences should not be discarded, as well as technical distortions produced throughout the 

pre-processing, normalization and outlier correction procedures that were applied to the 

expression data sets. 

On the other hand, the effects of gene dispersion in sequencing experiments has gained 

momentum with recent advances in profiling gene expression at the single-cell level. In 

single-cell sequencing techniques (scRNA-seq), researchers have the ability of tracking gene 

expression heterogeneity and determine cell subpopulations within a given tissue at single-

cell scale resolution (Jaitin et al., 2014). In this way, gene dispersion can be seen as a 

manifestation of cell-to-cell differences in a single tissue sample, and different approaches 

have been reported to model this phenomenon (Yip et al., 2018). Such refined analysis is 

unfeasible with bulk RNA-seq methods. Therefore, it is relevant to remark that RNA-seq 

experiments rely on the bulk sequencing of an homogenate tissue sample, and that expression 

profiles obtained using this approach are formed by a complex mixture of single-cell 
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transcriptomic contributions. Although sample collection for RNA-seq analyses is commonly 

implemented in such a way that tissue integrity and purity are prioritized, it is obvious that 

tissues such as muscle, liver, fat etc, are composed by diverse cell populations in different 

developmental stages, a feature which is known to significantly contribute to the observed 

gene variability across and within biological replicates (Osorio et al., 2019). 

In the light of this, RNA-seq-based experiments might not be powerful enough to fully 

capture the intrinsic nature of gene dispersion within treatment groups. To what extent the 

apparent absence of gene variability in our experimental design is due to true biological 

homogeneity or to other sources of variation remains unclear. For instance, sequence variants 

located at promoter regions can affect the accessibility of transcription factors, hence 

changing the expression dynamics of genes in a cis- action manner. This phenomenon, known 

as allelic differential expression (ADE), can be produced by any regulatory mutation and 

probably explains in part the existence of differential dispersion in RNA-seq data sets (Serre 

et al., 2008; Reddy et al., 2012). In addition, other more in depth analyses might also be 

applied in order to determine the biological implications of gene dispersion, using, for 

instance, scRNA-seq techniques, which are currently surpassing RNA-seq as a method of 

choice in the molecular biology research field (Chen et al., 2019). 

 

4.9. Analyzing gene co-expression modules associated with energy homeostasis and lipid 

metabolism in response to nutrient supply 

The second goal we aimed to achieve in paper VI was to identify mRNA co-expression 

modules based on skeletal muscle transcriptomic data obtained from fasting (T0) and fed (T1 

= 5 hours after feeding, and T2 = 7 hours after feeding) Duroc gilts. We were also interested 

in determining to which extent these modules are associated with meat quality and lipid-

related phenotypic traits recorded in the analyzed gilts (Paper VI, Additional Table S1). 

For this purpose, we made use of the WGCNA software (Langfelder and Horvath, 2008), a 

widely used and cited tool particularly designed for finding gene co-expression modules and 

hub genes in gene expression data sets and for relating modules (clusters of genes with 

correlated expression) with phenotype measurements.  



Discussion 

 

341 

 

Apart from the WGCNA approach, we computed an additional hub score metric (K) 

describing the degree of connectivity of each analyzed gene according to meaningful co-

expression interactions defined with the PCIT algorithm (Reverter and Chan, 2008; Watson-

Haigh et al., 2010). Our goal was to detect hub genes and compare the reproducibility of the 

hub score K metric with Kleinberg’s hub centrality score metric by means of the WGCNA 

algorithm. 

Our analyses evidenced the presence of highly co-expressed genes in both T0/T1 and T0/T2 

contrasts, although the muscle metabolic response to nutrient supply was more intense after 7 

hours of feeding (T2) than after 5 hours (T1). Indeed, the number of DE mRNA genes 

increased by nearly 3-fold in T0/T2 (N = 435 genes) when compared to T0/T1 (N = 149 

genes). As previously discussed in paper VI, it is worth mentioning the case of BACH1, ETS1 

and CREB1 genes in the T0/T1 contrast. These genes formed part of a co-expression module 

significantly associated with the C16:0 content of the GM muscle (r = 0.45; P-value = 0.03). 

Although none of these genes was DE in T0/T1, they were identified as hub genes in the 

WGCNA and K metric analyses (Table 3). In addition, the NR1D2 gene was also classified as 

a hub gene according to the analysis based on K values, but such result was not confirmed 

with the WGCNA tool. More importantly, these genes are regulatory cofactors of key 

metabolic processes such as the maintenance of circadian rhythms (Everett and Lazar, 2014), 

protection against oxidative stress (Zhang et al., 2018), gluconeogenesis in fasting-feeding 

transitions (Li et al., 2019a) and glucose uptake (Besse-Patin et al., 2019). 

With regard to the T0/T2 contrast, the SCAMP2, NEU3, PDK4, BACH2 and ARID5B genes 

showed significant differential expression, as well as high interconnectivity in both the 

WGCNA analysis and PCIT-based determination of hub genes (Table 3). Moreover, they 

formed a co-expression module which showed expression patterns negatively correlated with 

the pH of the GM skeletal muscle after slaughtering. Nevertheless, the meat pH measured for 

T0 and T2 gilts after slaughter did not show significant differences in the T0/T2 contrast (P-

value = 0.467), i.e. we only observed a slight pH reduction in T2 gilts (average pH = 6.46, SD 

= 0.16) when compared with T0 gilts (average pH = 6.58, SD = 0.11). Despite the fact that 

PDK4 was the most highly downregulated gene in T2 gilts, and that it was also highly 

interconnected within its co-expression module according to the WGCNA analysis, its 

contribution to the slight pH reduction observed after nutrient supply (T2) was not significant. 

The SCAMP2, NEU3, PDK4 and ARID5B genes are involved in regulating glucose and lipid 
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metabolism (Laurie et al., 1993; Yoshizumi et al., 2007; Jeong et al., 2012; Muñoz et al., 

2018), and their expression patterns might reflect the activated glycolysis profile that is 

established in response to food intake in order to produce ATP for energy storage. 

Besides, it is worth mentioning the observed Red co-expression module (Paper VI, Additional 

Table S9 and S14) composed by several lipid-related mRNA genes, among which the 

MLXIPL, FASN and SCD genes showed high to moderate hub scores by using the PCIT-based 

K metric (Table 3). These genes were also detected as significantly upregulated in T2 gilts, 

and were among the most relevant contributors to the association of this co-expression 

module with the content of palmitic and arachidonic fatty acids in the GM muscle, according 

to the WGCNA algorithm. Once again, these observed significant associations with fatty 

acids content did not imply relevant changes of their contents in the T0/T2 contrast (C16:0 P-

value = 0.699; C20:4 P-value = 0.501). Despite this, the presence of FASN as a highly 

interconnected and overexpressed hub gene in fed gilts is suggestive of a coordinated 

response between the activated glycolysis in response to nutrient supply and the de novo fatty 

acids synthesis of palmitate, which is used as a precursor for generating more complex fatty 

acids chains through elongation and desaturation processes (Figure 3). Indeed, the final 

products obtained after glycolysis are two molecules of pyruvate plus 2 ATPs per each 

catabolized glucose molecule. Pyruvate molecules accumulated in the cytosol after active 

glycolysis can then be imported into the mitochondrial matrix and used as a substrate to 

produce acetyl-CoA by means of the pyruvate dehydrogenase (PDH) complex (Ameer et al., 

2014). The PDK4 kinase (highly downregulated in fed gilts, Table 3) is in fact responsible of 

phosphorylating two sites of the PDH enzyme, hence inhibiting its functionality (Holness and 

Sugden, 2003; Zhang et al., 2014). Subsequently, the produced acetyl-CoA molecules are 

imported into the tricarboxylic acids (TCA) cycle to generate citric acid that can be exported 

back to the cytosol to generate acetyl-CoA by the ATP citrate lyase (ACLY) enzyme. These 

cytosolic acetyl-CoA molecules accumulated after active glycolysis are transformed by the 

acetyl-CoA carboxylase α enzyme (encoded by the ACACA gene) into malonyl-CoA, which is 

subsequently used by the fatty acid synthase (FASN) as a substrate to generate palmitic 

(C16:0) fatty acid molecules (Ameer et al., 2014). In this regard, ACACA mRNA expression 

was also included in the Red co-expression module and was among the top contributors to the 

association with C16:0 fatty acid content in GM (P-value = 9.82E-04).  
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Table 3: Summary of integrated metrics for DE analyses, WGCNA co-expression modules and hub scores for relevant mRNA genes in the 

T0/T1 and T0/T2 contrasts. Genes that commonly showed significant DE, hub scores and associations with GM phenotypes are depicted in bold. 

Genes log2FCb DE q-valuec WGCNA Hub scored K Hub scoree Modulef P-valueg Phenotype rh P-value*i 

T0/T1a 

NR1D2 -0.4212 1.00E+00 - 3.0387 

Blue 

- 

C16:0j 0.45 0.03 
BACH1 -0.7830 7.54E-01 0.9583 3.0118 1.17E-01 

ETS1 -0.4667 7.55E-01 0.7114 2.9042 1.90E-01 

CREB1 -0.0802 1.00E+00 0.9604 2.9042 5.66E-02 

T0/T2a 

SCAMP2 1.0292 5.50E-07 0.7646 3.2596 

Green 

3.25E-02 

PH45GMk -0.46 0.03 

NEU3 1.9862 3.48E-14 0.9445 3.1914 5.68E-03 

PDK4 -4.9403 2.00E-18 0.7089 3.0548 1.14E-01 

BACH2 -2.0980 3.28E-10 0.4938 2.7988 3.06E-02 

ARID5B -2.5951 5.33E-14 0.5397 2.6282 2.81E-02 

MLXIPL 0.9659 3.89E-02 - 0.2731 

Red 

6.18E-04 C18:2l -0.42 0.04 

1.41E-02 C20:4m -0.47 0.03 

FASN 1.4127 2.17E-02 0.8601 0.4096 
8.73E-03 C18:2l -0.42 0.04 

1.79E-02 C20:4m -0.47 0.03 

SCD 1.9187 6.32E-03 - 0.3755 
4.00E-05 C18:2l -0.42 0.04 

7.82E-04 C20:4m -0.47 0.03 

 

aT0, T1, T2: Duroc gilts slaughtered in a fasting condition (T0, N = 11) and after 5 h (T1, N = 12) and 7 h (T2, N = 12) of food intake. bLog2FC: estimated log2 fold change mean expression levels. cDE q-value: P-value 

corrected for multiple testing with the Benjamini-Hochberg procedure, indicating the significance of differential expression between T0 and T1 gilts, as well as between T0 and T2 gilts. dWGCNA Hub score: Scaled 

Kleinberg’s hub centrality score for co-expression modules according to the WGCNA algorithm. eK Hub score: Hub score per gene according to mRNA-mRNA meaningful interactions with the PCIT algorithm. 

fModule: WGCNA co-expression module color identification. gP-value: Gene significance P-value within the co-expression module according to the WGCNA algorithm. hr: Pearson correlation coefficient. iP-value*: P-

value of the Pearson correlation between co-expression WGCNA modules and measured phenotypes. jC16:0: Palmitic acid content in the GM muscle. kPH45GM: intramuscular pH measured 45 minutes post mortem in 

the GM muscle. lC18:2: Linoleic acid content in the GM muscle. mC20:4: Arachidonic acid content in the GM muscle. 
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On the contrary, ACACA was neither detected as DE in the T0/T2 contrast, nor highly 

interconnected by WGCNA or PCIT algorithms. 

Overall, these results evidenced the existence of an active metabolic interconnection and 

common regulation between the glycolytic process for energy storage and the de novo 

lipogenesis in the cytoplasm (Figure 3), which would be in accordance with the observed 

differential expression patterns of the aforementioned genes in response to nutrient supply. 

 

4.10. Analyzing miRNA-mRNA interactions associated with energy homeostasis and 

lipid metabolism in response to nutrient supply 

In paper VI, we also aimed to analyze the expression profiles of miRNAs in the GM skeletal 

muscle after food intake, and how these profiles would correlate with the observed 

downregulation of mRNA transcripts putatively targeted by the analyzed miRNAs. We 

sequenced the small RNA fraction of the GM muscle samples that were previously analyzed 

by Cardoso et al. (2017b), and further explored in paper VI, to assess gene co-expression 

modules. It is important to remark that the use of bulk RNA-seq sequencing data previously 

generated by Cardoso et al. (2017b) would have not allowed us to characterize the expression 

profiles of small RNAs, including miRNAs. The reason is that this bulk RNA-seq data set 

was generated by Cardoso and collaborators by using the TruSeq Stranded mRNA Library 

Preparation Kit (Illumina Inc., CA) before paired-end sequencing (2 × 75 bp) in a HiSeq 2000 

platform (Illumina Inc., CA). This library preparation protocol is specifically designed to 

target mRNA transcripts via poly(A) affinity selection to enrich for polyadenylated RNA 

sequences. This enriched fraction would include the pri-miRNA precursor forms of mature 

miRNAs, which are transcribed by Pol-II in the form of capped and polyadenylated 

transcripts (Cai et al., 2004). Such transcripts would have the sufficient size (~80-100 nts 

long) to be captured, at least partially, by mRNA sequencing protocols. However, the most 

abundant miRNA molecules present in the cytoplasm and also the functional effectors 

responsible for downregulating target mRNAs are the processed mature miRNAs. Indeed, 

mature miRNAs almost double the concentration of pri and pre-miRNA molecules (Gan and 

Denecke, 2013), they are much smaller in size (~18-22 nts) and they do not have poly(A) tails 

themselves, so they would not be enriched by library preparation kits that perform poly(A) 

selection as it is the case of the TruSeq protocol. 



Discussion 

345 

 

With this caveat in mind, we decided to perform a single-end small RNA-seq sequencing of 

the total RNA fraction extracted from GM muscle samples in the same T0, T1 and T2 gilts for 

which RNA-seq data were available. A HiSeq 2500 platform (Illumina Inc., CA) was used for 

sequencing. Through this approach, we were able to fully capture the small RNA molecules 

present in our RNA homogenates, which would have been otherwise missed or 

misrepresented if making use of the original RNA-seq sequencing data reported by Cardoso et 

al. (2017b). 

Once pre-processing was completed and specific alignment for small RNA sequences and 

quantification of annotated porcine miRNAs were performed, we explored the differences in 

miRNA expression between fasting (T0) and fed (T1 and T2) gilts. As described in paper VI, 

a total of 6 and 28 DE miRNAs were detected in the T0/T1 and T0/T2 contrasts, respectively. 

Differences in the numbers of DE miRNAs in the T0/T1 and T0/T2 contrasts were consistent 

with the numbers of DE mRNAs obtained for the same contrasts (149 for T0/T1 and 435 for 

T0/T2). However, the overall detected absolute FC measures were slightly lower for miRNAs 

(~1.9) than for mRNAs (~2.1). 

Additionally, we aimed to integrate both mRNA and miRNA expression profiles by inferring 

putative miRNA-mRNA interactions that might partially explain the muscle metabolic 

responses to nutrient supply. In this way, we predicted in silico DE mRNAs putatively 

targeted by the observed DE miRNAs by means of sequence searching of 7mer-m8 binding 

sites in the 3’-UTRs of these putative mRNA targets. To do so, we made use of the 

eMIRNA.Target tool previously described in this general discussion (Section 4.7), as a further 

development of our eMIRNA pipeline. Meaningful negative correlations (as a reflection of 

the repressor activity of miRNAs over targeted mRNAs) between miRNAs and mRNAs were 

also assessed using the eMIRNA.Network module. The regulatory impact of the DE miRNAs 

was also analyzed by applying the RIF algorithm (Reverter et al., 2010) with the eMIRNA.RIF 

module. Our results highlighted several interesting meaningful miRNA-mRNA interactions 

that merited further discussion in paper VI. 

Regarding the T0/T1 contrast, ssc-miR-32 was among the upregulated miRNAs (FC = 1.242, 

q-value = 4.73E-02) detected as highly influential according to the RIF1 metric (Paper VI, 

Table 3). Moreover, it was significantly associated with the downregulation of the EGR1 and 

ARID5B differentially expressed mRNAs. These two genes are involved in the regulation of 
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lipid metabolism (Boyle et al., 2009; Muñoz et al., 2018). Other relevant miRNA-mRNA 

interactions were, to mention a few, those observed between ssc-miR-1, scc-miR-148a-3p and 

ssc-miR-7-5p and several mRNAs such as MYF6, FOSL2, ARRDC3, TXNIP, ATF3 or MYOG, 

all of which play key roles in regulating muscle growth and differentiation (Óvilo et al., 2014; 

Li et al., 2017; Muñoz et al., 2018), as well as in modulating glucose and lipid metabolism 

(Wrann et al., 2012; Lee et al., 2013; Allison et al., 2018; Ling et al., 2018). 

Besides, in the T0/T2 contrast one of the most relevant miRNA-mRNA interactions was that 

between several upregulated miRNAs (ssc-miR-148a-3p, ssc-miR-151-3p, ssc-miR-30a-3p, 

ssc-miR-30e-3p, ssc-miR-421-5p and ssc-miR-493-5p) and the PDK4 mRNA transcript, 

which was strongly downregulated in fed gilts (T2) compared with their fasting counterparts 

(T0). Among these, the ssc-miR-148a-3p and ssc-miR-493-5p showed conserved 7mer-m8 

binding sites in the PDK4 3’-UTR across closely related species according to TargetScan 

analyses (Paper VI, Additional Table S10). These findings give support to the significant 

inverse relationship between the levels of these two miRNAs and PDK4 expression as 

inferred with the PCIT-based co-expression analyses. Moreover, ssc-miR-148a-3p and ssc-

miR-493-5p were among the top 10 impactful regulators according to RIF2 metric (Paper VI, 

Additional Table S12). 

In summary, we were able to detect several meaningful putative miRNA-mRNA interactions 

in the experiment comparing gilts in fasting-feeding conditions, as further discussed in paper 

VI. More importantly, a suggestive regulatory interconnection between active glycolysis and 

energy storage, upon nutrient supply in the GM skeletal muscle, and the synthesis and 

elongation of fatty acids, was envisaged (Figure 3), thus shedding light on the induction and 

coordination of carbohydrate and lipid metabolism in the porcine skeletal muscle as a 

consequence of nutrient availability. 
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Figure 3: Scheme of the coordination of carbohydrate and lipid metabolism in the porcine 

skeletal muscle. (A) Carbohydrate supply to GM skeletal muscle cells in the form of glucose 

is converted into pyruvate and ATP through glycolysis. (B) The pyruvate dehydrogenase 

(PDH) enzyme can convert pyruvate to acetyl-CoA in the mitochondria, which is imported 

into the TCA cycle to generate citrate. Pyruvate kinase 4 (PDK4) enzyme can inhibit the PDH 

enzyme by phosphorylation, but its expression was strongly downregulated in fed gilts (T2) 

by the putative predicted interaction of several miRNAs such as ssc-miR-148a-3p or ssc-miR-

493-5p, which were differentially upregulated in T2 compared with fasting (T0) pigs. (C) The 

citrate molecules are transformed to cytosolic acetyl-CoA by the ATP citrate lyase (ACLY) 

enzyme, so that acetyl-CoA can then be converted into malonyl-CoA by the acetyl CoA 

carboxylase α enzyme (ACACA). (D) Malonyl-CoA is the precursor used to synthetize 

palmitic fatty acid (C16:0) by the action of the fatty acid synthase (FASN) enzyme, the 

expression of which was significantly upregulated after food intake (T2). Palmitate molecules 

are finally used as precursors for the synthesis of a broad array of elongated saturated fatty 

acids (SFA), as well as of monounsaturated and polyunsaturated fatty acids (MUFA and 

PUFA). 
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The main conclusions that can be extracted from the present Ph.D. thesis are as follows: 

 

1. We have genotyped 19 SNPs located in 14 genes with well characterized metabolic 

functions and mapping to meat quality QTL in 345 Duroc pigs (Lipgen population). 

The majority of these SNPs did not show significant associations with the traits under 

investigation after correcting for multiple testing, with the only exception of one SNP 

located in the ATP1A2 gene, which was highly associated with electric conductivity in 

the longissimus dorsi muscle. Given the important function of the ATP1A2 protein in 

the induction of an electrochemical gradient across the plasma membrane of cells, this 

is an interesting candidate gene for modulating electric conductivity that should be 

further investigated.  

 

2. We have identified one putative stop gained mutation (rs81212146, c.944T>A) in the 

pig ASS1 gene segregating in a Duroc commercial population (Lipgen). Individuals 

homozygous for these mutations were perfectly healthy despite the fact that ASS1 

inactivation has lethal consequences due to the disruption of the urea cycle. 

Sequencing of this region revealed the existence of an additional compensatory 

mutation (rs81212145, c.943T>A) immediately adjacent to c.944T>A, which 

suppresses the emergence of a premature stop codon.  

 

3. We have investigated the association between the phenotypic variation of lipid-related 

traits recorded in the Duroc Lipgen population and polymorphic sites of six circadian 

genes (CRY2, NPAS2, CIART, ARNTL2, PER1 and PER2) and two loci (PCK1 and 

MIGA2) with important metabolic functions. Out of 20 genotyped SNPs, only two 

SNPs in the CRY2 (rs320439526, c.-6C>T) and MIGA2 (rs330779504, c.1455G>A) 

genes showed significant associations, after correction for multiple testing, with 

stearic acid content in the longissimus dorsi muscle and with LDL serum 

concentration at 190 days, respectively. However, chromosome-wide level association 

analyses did not yield significant results, indicating that these SNPs are unlikely to 

have causal effects on the phenotypic variance of the aforementioned traits. 
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4. The analysis of the variability of porcine microRNA genes has shown divergent 

patterns in Asian vs European pigs and wild boars, and a dramatic reduction of 

polymorphic sites in the seed region, likely due to the presence of purifying selection 

removing mutations that alter the binding ability of the microRNA. Genotyping of 15 

SNPs in Duroc pigs with microarray expression data from gluteus medius muscle (N = 

89) and liver (N = 87) tissues revealed several associations. The most interesting one 

was featured by one SNP in the apical loop of ssc-miR-326 (rs319154814, n.46G>A), 

which displayed significant associations with several of its potential mRNA targets 

(e.g. PPP1CC, CFLAR, SF3A3 or FSTL1). This polymorphism might exert its effect 

by influencing the efficiency of the maturation of the microRNA. 

 

5. The development of a machine learning-based transductive approach for the discovery 

and annotation of miRNA genes allowed us to identify 20 unreported porcine miRNAs 

expressed in the gluteus medius muscle of 48 Duroc pigs, as well as 27 additional 

miRNAs with orthologous sequences in humans. We verified that the use of a 

dynamic sequence motif search for the reconstruction of candidate miRNA sequences 

improved the predictive accuracy of the miRNA classifier, allowing a better 

determination of the boundaries of miRNA genes. Comparison with the miRDeep2 

software demonstrated that our approach makes possible to identify an increased 

number of miRNAs as well as to determine more accurately the boundaries of miRNA 

genes. 

 

6. Comparison of the expression patterns of mRNAs, miRNAs and lincRNAs expressed 

in the gluteus medius muscle of Duroc pigs showed that protein-coding genes were 

generally the most expressed transcripts, followed by miRNAs and lincRNAs. 

Moreover, lincRNAs displayed the highest variance in expression, while microRNAs 

showed the lowest, indicating that they have a narrow range of expression probably 

due to their key regulatory role.  

 

7. The gluteus medius miRNA expression profiles of fasted pigs (T0) and pigs sampled 5 

h (T1) and 7h (T2) after feeding were determined in the current thesis. A total of 149 

(T0 vs T1) and 435 (T0 vs T2) mRNAs, 6 (T0 vs T1) and 28 (T0 vs T2) miRNAs and 
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none lincRNAs were detected as differentially expressed in fasted vs fed pigs. Such 

results allowed us to infer that the expression of ssc-miR-148a-3p, ssc-miR-151-3p, 

ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-421-5p, ssc-miR-493-5p and ssc-miR-503 

is significantly associated with the observed downregulation of PDK4, a gene 

involved in regulating glucose metabolism and fatty acids oxidation. Additionally, co-

expression modules were identified including relevant differentially expressed genes 

related with lipid metabolism such as MLXIPL, FASN, SCD, SFRP1, SFRP5 or 

THRSP. 
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