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“Science is built up of facts, as a house is with stones. But a collection of facts is no more a 

science that a heap of stones in a house” 

 

“La ciencia son hechos; de la misma manera que las casas están hechas de piedras, la ciencia 
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Lung transplantation (LT) is an established treatment for end-stage respiratory diseases. Short-

term survival has progressively improved due to advancements in surgical techniques, donor 

preservation, immunosuppressive agents and perioperative management. However, the 

development of chronic lung allograft dysfunction (CLAD) is the main limiting factor of long-

term success after LT, with an approximate ten-year survival rate of 34.3%. 

The lifelong immunosuppression of solid organ transplant patients leads to severe 

complications, such as nephrotoxicity, infectious diseases, malignancies, and metabolic 

disorders, which poorly affect their long-term survival. For this reason, one of the main goals in 

organ transplantation is achieving an alloantigen-specific unresponsiveness state in the 

sustained absence of toxic immunosuppressive therapies. In most cases, immunosuppression 

withdrawal leads to transplant rejection. However, a small group of transplant patients 

maintains long-term stable graft function despite interrupted treatment (operational tolerance 

state). This phenomenon is infrequent and varies according to the type of allograft; excluding 

kidney and liver transplant fields, there are only anecdotal cases in lung, heart and intestine 

transplantation. Due to the lack of operationally tolerant lung transplant recipients, long-term 

survivors with normal allograft function (LTS) after LT are the closest group to “operational 

tolerance” of kidney or liver transplant patients. 

Identifying biomarkers of operational tolerance would serve to accurately identify candidate 

patients for minimization and potential withdrawal of immunosuppression. Furthermore, 

these potential tolerance biomarkers could provide knowledge of the underlying biological 

mechanism of tolerance for new tolerogenic therapies. It has been observed that tolerance 

fingerprints from kidney and liver transplant recipients differ, suggesting that the underlying 

mechanisms of operational tolerance, not fully elucidated, are organ-specific and 

consequently, potential renal and liver tolerance biomarkers cannot be extrapolated to lung.  

Since no extensive studies examining this LT state have been published, the main objective of 

this thesis was to screen the greatest number of clinical and immunological parameters to 

identify potential biomarkers across different platforms in order to provide a better 

understanding of the biological mechanisms underlying LTS with normal allograft function 

after LT in comparison with CLAD patients. 

The microbiome of the upper respiratory tract and the full transcriptomic expression profile 

and extensive cell immunophenotyping of peripheral blood samples were studied to assess the 

particular characteristics of LTS patients. The results derived from bioinformatics analyses of 

gene and miRNA expression provided a better understanding of the mechanisms involved in 

long-term survival. Moreover, they proved to be highly accurate in the classification of LT 

patients by employing gene and multi-biomarker expression profiling using different 

transcriptional platforms, including microarrays and RT-qPCR arrays. 

The findings obtained demonstrated the usefulness of global transcriptome profile and 

peripheral blood samples to differentiate between LTS and CLAD patients and to identify some 

of the potential mechanisms responsible for graft acceptance. 

Overall, the studies included in this thesis shed light on the biology underlying graft acceptance 

after LT, suggesting a complex interaction of several immunological mechanisms and opening 

up new perspectives for future research in LT immunology. 
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El trasplante pulmonar (TP) es el tratamiento de elección en enfermedades respiratorias 

terminales. La supervivencia a corto plazo tras el mismo ha ido aumentando progresivamente 

debido a las mejoras en las técnicas quirúrgicas, la preservación de órganos, las terapias 

inmunosupresoras y el manejo perioperatorio. Sin embargo, el desarrollo de la disfunción 

crónica del injerto pulmonar (DCIP) representa el principal factor limitante para alcanzar la 

supervivencia a largo plazo tras el TP, siendo la tasa de supervivencia a diez años 

aproximadamente de un 34.3%. 

El tratamiento inmunosupresor de por vida en los pacientes trasplantados de órgano sólido 

conlleva una serie de complicaciones, como pueden ser la nefrotoxicidad, infecciones, 

aparición de cáncer, así como desórdenes metabólicos, que influyen negativamente en su 

supervivencia a largo plazo. Es por ello, que uno de los principales objetivos en el trasplante de 

órganos es conseguir la falta de respuesta inmunológica del receptor frente al injerto en 

ausencia de terapias inmunosupresoras sostenidas. En la mayoría de los casos, la retirada de la 

inmunosupresión conlleva el rechazo del injerto. Sin embargo, se ha observado que un 

pequeño grupo de pacientes mantiene una buena función del injerto a largo plazo a pesar de 

la interrupción del tratamiento (fenómeno conocido como tolerancia operacional). Este estado 

es infrecuente y su aparición varía en función del tipo de órgano, observándose únicamente 

casos en pacientes trasplantados renales y de hígado. En otros trasplantes de órgano sólido 

(pulmón, corazón o intestino) solo se han reportado casos anecdóticos de este fenómeno. 

Dada la falta de pacientes trasplantados pulmonares con tolerancia operacional, los 

supervivientes a largo plazo (SLP) con una buena función del injerto tras el TP son el grupo que 

más se asemeja a los tolerantes operacionales tras el trasplante de riñón o de hígado. 

La identificación de biomarcadores de tolerancia operacional permitiría la precisa selección de 

aquellos pacientes candidatos a la minimización y potencial retirada del tratamiento 

inmunosupresor. Además, estos potenciales biomarcadores podrían proporcionar 

conocimiento acerca de los mecanismos biológicos que subyacen a la tolerancia y podrían 

usarse en el desarrollo de nuevas terapias tolerogénicas. Se ha observado que las firmas de 

tolerancia en riñón e hígado difieren, sugiriendo que los mecanismos responsables de la 

tolerancia operacional, no completamente dilucidados, son órgano-específicos y que, por lo 

tanto, los potenciales biomarcadores de tolerancia de riñón e hígado no pueden extrapolarse 

al caso del pulmón. 

Dado los escasos estudios publicados sobre la supervivencia a largo plazo con buena función 

del injerto tras el TP, el objetivo de esta tesis es analizar el mayor número de parámetros 

clínicos e inmunológicos a través de diferentes plataformas para la identificación de 

potenciales biomarcadores, y así, proporcionar nuevo conocimiento sobre los mecanismos 

biológicos responsables de la supervivencia a largo plazo con buena función del injerto en 

comparación con pacientes con DCIP. 

El microbioma de las vías respiratorias altas y el completo perfil transcriptómico e 

inmunofenotipado en sangre periférica fue analizado para evaluar las características de los 

pacientes SLP. Los resultados derivados de los análisis bioinformáticos correspondientes a la 

expresión génica y de microRNAs proporcionaron nuevos datos referentes a los mecanismos 

implicados en la supervivencia a largo plazo. Además, se consiguió clasificar a los pacientes 
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trasplantados pulmonares con alta precisión empleándose para ello perfiles de expresión 

génica y de expresión combinada de varios biomarcadores, haciendo uso de diferentes 

plataformas transcriptómicas (microarrays y PCR a tiempo real). 

Los hallazgos obtenidos han demostrado la utilidad del uso del perfil transcriptómico y de las 

muestras de sangre periférica para discriminar a los pacientes SLP y con DCIP y para identificar 

potenciales mecanismos responsables de la aceptación del injerto a largo plazo. 

En conclusión, los estudios incluidos en la presente tesis proporcionan nuevos conocimientos 

sobre los mecanismos subyacentes a la aceptación del injerto tras el TP, sugiriendo una 

compleja interacción entre varios mecanismos inmunológicos y proporcionando nuevas 

perspectivas para futuras investigaciones en la inmunología del TP. 
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1.1 HISTORY OF LUNG TRANSPLANTATION 

The history of Lung Transplantation (LT) began in The Soviet Union in 1946 with animal 

experimentation when Demikhov performed the first cardiopulmonary transplant in a dog. 

One year later he also performed the first unilateral LT, both without success1. 

After this experimental stage with dogs involving more than 400 re-implantation and homo-

transplantation experiments2,3, the first human unilateral LT was conducted in 1963 at the 

University of Mississippi Medical Center by Hardy4 and his team in a patient with left lung 

bronchial carcinoma. The patient died on the 18th post-operative day as a result of renal failure 

and malnutrition. 

From 1963 to 1980, only 38 LT were performed, using corticoids and azathioprine (AZA) as the 

main immunosuppressive treatment and with a median survival of 8.5 days5,6, although two 

patients survived six7 and ten8 months, respectively. The main causes of death were infection 

and dehiscence of the bronchial anastomosis6.  

The discovery of cyclosporine A (CsA) revolutionized transplant medicine. It was initially 

discovered in the microbiology laboratory of Sandoz (Basel) in 1970 when a group of 

researchers were examining cultures of microorganisms from soil samples from Hardanger, in 

Norway. They isolated the ascomycete fungus Tolypocladium inflatum, which produced a 

polypeptide that would later be called CsA. 

In 1976, Borel and colleagues discovered its immunosuppressive effect9 and in 1981, it was 

confirmed that CsA prevented rejection in recipients of cadaveric renal transplant10. 

The introduction of CsA entailed a change in immunosuppression regimens and served to 

enhance survival in organ transplantation10,11. In the LT field, CsA served to reduce the dose of 

corticoids and, consequently, the dehiscence of the bronchial suture12. 

In the 1980s, improvements in immunosuppression and surgical techniques led to renewed 

interest in LT. In 1983, Cooper and co-workers from The Toronto Lung Transplant Group 

performed their second attempt at LT, achieving the first successful unilateral LT with long-

term survival13. The patient died of renal failure more than seven years later.  

Later, in 1987, Cooper published the results of five unilateral LT, four of them with long-term 

survival14 and two years later Pearson’s team described 16 unilateral LT with only six deaths 

among their patients15. 

Feasibility of bilateral LT was experimentally demonstrated in dogs16, and it was subsequently 

performed in a patient with end-stage emphysema in 1986 at the Toronto General Hospital17. 

After replacing the en bloc double-lung operation with the bilateral sequential technique18, in 

1991 the St. Louis team published the results of 28 bilateral LT, and showed that bilateral 

sequential LT can be performed with a minimum of early mortality and morbidity, being 

comparable to unilateral LT19. 
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In the 1990s, LT was established as a therapeutic option for end-stage respiratory diseases and 

according to the International Society of Heart and Lung Transplantation (ISHLT) Registry data, 

the number of LT since then has progressively increased.  

After more than 37 years of experience and more than 69,200 procedures performed 

worldwide, LT has evolved considerably. Currently, the most frequent procedure performed is 

bilateral LT with more than 3,500 patients per year, followed by unilateral LT with 700-900 

annual operations20 (Figure 1). 

 

Figure 1. International evolution of the number of adult lung transplants reported to the ISHLT 

Registry by year and procedure type (1988-2017 period)20.  

1.2 LUNG TRANSPLANTATION IN SPAIN 

Spanish LT programmes started in the beginning of the 1990s. The first successful LT was 

performed at the Hospital Universitario Vall d’Hebron in 199021 and after that, other Spanish 

LT programmes started their activity: Hospital Universitario Puerta de Hierro (Madrid) in 1991, 

Hospital Universitario de La Fe (Valencia) in 1992, Hospital Universitario Reina Sofía (Córdoba) 

in 1993, Hospital Universitario Marqués de Valdecilla (Santander) in 1997, Hospital 

Universitario de A Coruña (La Coruña) in 1999 and Hospital Universitario 12 de Octubre 

(Madrid) in 2008.  

Currently, more than 1,133 LT have been performed in Spain and the annual activity presents a 

continuous increase; in 2018 a total of 369 LT were performed22 (Figure 2), and the Catalan LT 

programme led the state's activity23 (Figure 3). 
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Figure 2. Evolution of the number of lung transplants in Spain reported to the Organización Nacional 

de Trasplantes (ONT) by year (1990-2018 period)22. 

 

 

 

Figure 3. Evolution of the number of lung transplants in Catalonia reported to the Organització 

Catalana de Transplantaments (OCATT) by year (1990-2018 period)23. 
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1.3 INDICATIONS FOR LUNG TRANSPLANTATION 

Lung transplantation is a well-established treatment option for patients with end-stage 

congenital or acquired lung disease when all conservative treatment options have been 

exhausted24. The main indications for LT are interstitial lung diseases (ILD) (32.4%), chronic 

obstructive pulmonary disease (COPD) (26.1%), cystic fibrosis (CF) (13.1%), alpha-1-antitrypsin 

deficiency (A1ATD) (2.7%), re-transplant (3.8%) and idiopathic pulmonary arterial hypertension 

(IPAH) (2,9%)20.  

Over the years, most recipients who suffered CF or IPAH underwent bilateral LT, whereas a 

marked change from unilateral to bilateral transplantation occurred for COPD, A1ATD and ILD 

recipients. Since the mid-1990s, the number of procedures has increased in parallel with the 

persistent growth in the number of bilateral LT, whereas the number of unilateral LT 

performed annually during this time has remained relatively stable25 (Figure 1). 

The choice of one technique or another depends on the pathology, age and presence or not of 

colonization in the recipient, pulmonary hypertension, the expected symptoms derived from 

the residual native lung and the preferences of each transplanting center. Currently, most 

common indications for LT undergo bilateral procedures. 

1.4 SHORT-TERM COMPLICATIONS AFTER LUNG TRANSPLANTATION 

1.4.1 EARLY POST-OPERATIVE COMPLICATIONS 

The mortality associated with airway complications following surgery remains between 2% and 

4%26. Common airway complications after LT include those related to suturing. The LT surgical 

procedure includes three anastomoses: bronchial, pulmonary arteries and left atrium, with the 

bronchial anastomosis being the most vulnerable and the one with the highest number of 

complications27. These complications can occur within the first month post-transplant, as in 

the case of anastomotic infections, necrosis and bronchial dehiscence, or later, for example, 

the development of excess granulation tissue, anastomotic stenosis, bronchomalacia and 

airway fistulas26. 

Regarding vascular suture, pulmonary arterial and venous anastomosis complications are less 

frequent but have a dire prognosis. Vascular complications include stenosis28, vascular 

bending, arterial torsion and the development of pulmonary vein thrombosis which can lead to 

peripheral embolism, stroke and pulmonary venous obstruction29. 

Another relevant surgical complication is phrenic nerve injury30. It is reported that 

diaphragmatic paralysis due to phrenic nerve injury incidence after LT is around 1-17%31. This 

complication is associated with prolonged post-operative mechanical ventilation, and 

consequently, with a longer hospital stay. However, diaphragmatic paralysis is not necessarily 

associated with a more complicated post-operative course or with a long-term impact on 

patient survival31. 

Other less common complications after LT include pleural alterations such as the development 

of bronchopleural fistula, pleural effusion, pneumothorax, hemothorax and chylothorax32. 
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1.4.2  PRIMARY GRAFT DYSFUNCTION 

Primary graft dysfunction (PGD), which typically develops within 72 hours of LT, is a 

multifactorial acute lung injury form the pathophysiology of which is not well known. It occurs 

as a result of events inherent in the LT procedure including brain death in the donor, 

pulmonary ischemia, cooling and graft preservation and the transplant and reperfusion in the 

recipient33. 

PGD is a leading cause of early morbidity and mortality and affects from 10 to 25% of all LT33. 

In addition, this acute alteration has an impact on the long-term graft survival increasing the 

risk of the development of bronchiolitis obliterans syndrome (BOS)33–35. 

PGD is characterized by interstitial and alveolar edema which causes impaired oxygenation, 

diffuse pulmonary radiographic opacities and decreased lung compliance due to diffuse 

alveolar damage (DAD)33. 

1.4.3 ACUTE CELLULAR REJECTION 

Acute rejection (AR) is one of the most common complications after LT with an incidence of 

approximately 27% within the first post-transplant year20. It is the most important risk factor 

for the development of BOS36–38. 

AR can be presented in two different forms: acute cellular rejection and antibody mediated 

rejection (see section 1.4.4. Antibody mediated rejection) 

Acute cellular rejection (ACR) is the main way AR manifest after LT. This alloimmune response 

is predominantly driven by the recipient T cell’s recognition of foreign major histocompatibility 

complex (MHC) molecules [Human Leucocyte Antigen (HLA) in humans] by donor antigen 

presenting cells (APCs), or processed self-peptides of the graft through recipient APCs, 

inducing a subsequent immune response against the grafted organ39,40. This rejection type is 

blocked by current immunosuppressive strategies. 

Bronchoscopic transbronchial biopsy remains the gold standard for the diagnosis of ACR41. 

Histologically, ACR is characterized by perivascular and/or peribronchiolar mononuclear cell 

infiltrates in lung tissue which can be associated or not with a concomitant lymphocytic 

bronchiolitis42. 

The main factors that can contribute to the development of ACR include those related to the 

HLA mismatching between donor and recipient, immunosuppression therapy, infections43 and 

those dependent on donor or recipient characteristics such as age20, pre-transplant vitamin D 

deficiency44 and genetic variations in: interleukin (IL)-10 gene45, in human multidrug resistance 

gene (MDR1)46 and in innate pattern recognition receptors47,48. 
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1.4.4 ANTIBODY MEDIATED REJECTION 

Another less common immunological complication than ACR is the antibody-mediated 

rejection (AMR), or humoral rejection, which is mediated by anti-HLA and non-anti HLA 

antibodies against the donor graft, known as donor-specific antibodies (DSA), produced by  

B cells and plasma cells. 

A correlation between the presence of circulating anti-HLA antibodies and the development of 

BOS has been demonstrated in several studies. These anti-HLA antibodies can be pre-existing49 

or formed post-LT via de novo synthesis50. Furthermore, other studies suggest that non-HLA 

antibodies might play a role in BOS pathogenesis in the absence of anti-HLA antibodies51. 

AMR has been classified into three categories based on clinical and histological features: 

hyperacute, acute and chronic AMR52. 

Hyperacute AMR is a fulminant form of AMR that occurs intraoperatively or within 24 hours of 

surgery due to pre-existing DSA, and that causes a very serious immune response53. The 

advent of solid-phase HLA antibody techniques has improved the sensitivity and specificity of 

antibody detection before transplantation54. This has led to the use of a virtual cross-match to 

accept potential donors for an allosensitized recipient and consequently, the incidence of 

hyperacute AMR has decreased significantly55,52.  

Acute AMR can occur at any time after the immediate post-operative period (often mimicking 

ACR) and chronic AMR manifests as an occult cause of chronic lung allograft dysfunction 

(CLAD)56,57. 

Acute AMR has been widely accepted as a significant cause of graft failure in other solid organ 

transplants (SOT), including kidney and heart transplantation58,59; and chronic AMR is well 

characterized in kidney transplantation60.  

In the LT field, it is accepted that AMR exists in its acute form61, but the existence of its chronic 

form is more controversial62,43. No standardized diagnostic criteria exist for AMR, so a 

multidisciplinary approach for patients suspected of having AMR is recommended. Key 

diagnostic criteria include clinical evidence of graft dysfunction, the presence of circulating 

DSA (pre-existing or de novo) and histological tissue injury with evidence of complement 

deposition in allograft biopsies (positive C4d staining) 56,57,63. 

AMR histopathologic features include vasculitis, intra-alveolar haemorrhage, DAD, vascular 

thrombosis, neutrophilic margination, neutrophil capillaritis and arteritis, as well as the 

deposition of complement-fixing DSA in the graft. 

Recent studies suggest that capillary complement deposition through the detection of 

complement components C1p, C3d, C4d and C5b-9, along with immunoglobulin, is the most 

appropriate way to diagnose AMR64,65 . However, other studies have shown that C3d/C4d 

deposition can also be observed in other different AMR conditions, such as PGD and airway 

infections66.   

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwj71tf02IfkAhV4ThUIHVs5CyIQFjAAegQIAxAB&url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5123809%2F&usg=AOvVaw2q-reGI1DN31BFPPI2yB6l
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwj71tf02IfkAhV4ThUIHVs5CyIQFjAAegQIAxAB&url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5123809%2F&usg=AOvVaw2q-reGI1DN31BFPPI2yB6l
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1.5 LONG-TERM COMPLICATIONS AFTER LUNG TRANSPLANTATION 

1.5.1 INFECTIONS  

Although the main obstacle to the long-term success of LT is the development of CLAD, which 

occurs in up to two-thirds of patients, infectious complications remain one of the chief causes 

of morbidity and mortality at all time points after LT67. Infections are the main cause of 

mortality during the early post-operative period and during the first post-transplant year68. 

This is because the pulmonary allograft is the most common site of infection69. This 

susceptibility is determined by the interrelation of different factors such as the continuous and 

direct exposure of the allograft to microbes; the denervation of the allograft with subsequent 

impaired cough reflex and abnormal mucociliary clearance; impaired lymphatic drainage; 

complications associated with the anastomosis site; transmission or infection from the donor 

lungs; infection from the native lung in single LT and the immunosuppression involved in 

transplantation70. At the same time, many of the infection episodes have been recognized as 

risk factors for the further development of CLAD71. 

The category of these infections is affected by time; nosocomial infections are frequent in the 

first post-operative month. From one to six months after transplantation, opportunistic agents 

as well as activation of latent infection are common. Six months after LT, the main infections 

are due to community-acquired pathogens72,73. 

The relationship between pathogens and the host is currently being studied. In recent years, 

different studies have analysed the role of the graft microbiome (“the full collection of 

microbes that naturally exist in the lung”)74 in the development of chronic rejection by 

providing new information about the relationship between infection and CLAD75–77. 

In 2012, a study from the University of Pennsylvania78 demonstrated that lung microbiome 

from LT recipients was significantly different from healthy controls. They observed that the 

richness and diversity of microbial communities were reduced in transplant subjects compared 

with control subjects.  

These results were also reproduced one year later by Dickson and colleagues79 who also found 

that lung microbiome was significantly different between BOS and lung transplant stable 

patients. Accordingly, Willner and colleagues80, from the University of Queensland, also 

demonstrated a different lung microbiome between transplant recipients with and without 

BOS. 

Furthermore, they observed that there was an association between the decrease in microbial 

community composition and the development of BOS, and that reestablishment of 

pretransplant microbiome in the allograft was protective and reduced the risk of chronic 

rejection80. 

In conclusion, infection episodes have a double impact on graft survival; on the one hand, they 

have implicit morbidity and mortality, and on the other hand, they make patients predisposed 

to the development of BOS. Exploring the involvement of the microbiome in long-term survival 

after LT will be an objective of this thesis. 
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1.5.2 CHRONIC LUNG ALLOGRAFT DYSFUNCTION 

1.5.2.1 CHRONIC LUNG ALLOGRAFT DYSFUNCTION CONCEPT 

Chronic rejection was originally described in 1969 by Derom et al as a progressive loss of 

pulmonary function that finally causes graft loss8,81. 

Historically, the concept of chronic allograft dysfunction was based on the presence of 

histopathological lesions of obliterative bronchiolitis (OB), a hallmark of chronic rejection, 

which was characterized by small airway fibrosis and luminal obliteration82 and its clinical 

correlation was defined as BOS83. 

In 1993, Cooper et al introduced the first definition of BOS as the main manifestation of 

chronic rejection. It was defined as a persistent (three weeks or more) decline in forced 

expiratory volume in 1 second (FEV1) of ≥ 20%, from a defined baseline, obtained by averaging 

the two best post-operative FEV1 values taken at least three weeks apart and after the 

exclusion of other known pulmonary and extrapulmonary confounding causes of FEV1 decline 

such as acute rejection, infection or bronchial suture problems83,84. However, not all patients 

who initiate a BOS process follow the same clinical pattern. 

The acronym CLAD was first introduced in lung transplant literature in 2010 by Granville85 as 

an umbrella term to describe the clinical manifestations of several pathologic processes that 

lead to a significant and persistent deterioration in lung function over a specific period of time. 

The term CLAD includes the two different clinical manifestations of chronic rejection: 

obstructive CLAD (BOS), restrictive CLAD (RAS, restrictive allograft syndrome), in addition to 

dysfunction due to causes not related to chronic rejection86  

The lack of consensus regarding the definition of CLAD has been problematic, as it is an 

overarching term for heterogeneous conditions which cause persistent lack of normal function 

of the transplanted allografts87. Some authors have used the term CLAD as a synonym for BOS, 

or a combination of BOS and RAS, whereas others propose using CLAD for every possible post-

transplant decline in FEV1
87. 

As a consequence, in 2019, the ISHLT Pulmonary Council created a robust description of the 

term CLAD, which was defined as a substantial and persistent decline of >20% in measured 

FEV1 value from the reference (baseline) value defined as the mean of the two best post-

operative FEV1 measurements taken at least three weeks apart. 

CLAD can be presented either as a predominantly obstructive ventilatory pattern, a restrictive 

pattern, or a mixed obstructive and restrictive pattern that cannot be explained by other 

potentially reversible complications84. 

Approximately 70% of CLAD is attributable to BOS, 30% to RAS and only a reduced number to 

non-rejection related causes such as muscular dysfunction, chronic colonization, thoracic cage 

problems or gastroesophageal reflux disease (GERD)88,86. Overall, CLAD is the most important 

cause of death after the first year post transplant, presenting an approximate prevalence of 

50% at five years and 76% at ten years20. Both chronic rejection phenotypes, BOS and RAS, 
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present different courses and prognoses89,90. Physiologically, based on pulmonary function 

tests, BOS is characterized by a persistent obstruction 91 whereas RAS is defined by a persistent 

restriction89,92. 

1.5.2.2 PATHOPHYSIOLOGY OF CHRONIC REJECTION PHENOTYPES 

The pathogenesis of both BOS and RAS has not been clearly elucidated. Historically, in 1993 

BOS was considered the equivalent to chronic rejection83. The appearance of a new chronic 

rejection phenotype 18 years later supported the idea that the pathophysiology of these 

processes was more complex and less uniform than was initially thought. 

BOS is postulated to be the end result of multiple immunological factors (HLA mismatch93, the 

number and severity of ACR episodes94, lymphocytic bronchiolitis95, self-antigen exposure96,97, 

persistent elevated bronchoalveolar lavage (BAL) neutrophilia and IL-898 and donor specific 

antibodies, including anti-HLA antibodies50,99 and non HLA-antibodies51) and non-immune 

mechanisms (recipient age100, ischemia-reperfusion injury101, PGD35, GERD102,103, 

cytomegalovirus (CMV)104,105 and other respiratory viral infections73,106,107 and graft 

colonization 108,109,76) that lead to chronic inflammation and lung injury. Recently, other risk 

factors have been included in the list such as traffic-related air pollution exposure, which could 

represent up to 25% of BOS events110,111. 

It has been speculated that all these alloimmune and non-alloimmune risk factors lead to the 

activation of both innate and acquired immunity112–114. BOS is hallmarked by excessive fibrosis, 

extracellular matrix deposition, bronchial epithelial cell loss, and scar tissue formation which 

all result in small airway obliteration and finally in lung function loss113,115 (Figure 4). 

As described above, neutrophils are recognized as major players in BOS pathogenesis. 

Activated neutrophils have a remarkable potential to cause damage to lung tissue given their 

ability to release large amounts of reactive oxygen species and matrix metalloproteinases that 

produce further airway injury116,117. 

RAS pathogenesis is much less well known than BOS. Histologically, RAS is characterized by 

tissue damage and fibrotic lesions in the periphery of the lungs (alveolar interstitium, visceral 

pleura and in the interlobular septa)89,118. In the case of BOS, as mentioned before, the fibrotic 

lesions are more likely to occur in the bronchioles113,118 with relatively intact peripheral lung 

tissue89.  

Anatomopathological lesions of both BOS and RAS are clearly different. However, both types 

of lesions may coexist119, with OB being a common denominator. Overall, risk factors are 

similar between them120, suggesting that common physio-pathological mechanisms are shared 

between both syndromes118. 

Among the exclusive risk factors contributing to RAS, elevated BAL and blood eosinophilia121 

and higher serum levels of Krebs von den Lungen-6 (KL-6) protein compared with BOS 

patients122 are included. 
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Figure 4. Primary damage to the airway epithelium or underlying endothelial cells leads to the 

activation of the innate and adaptive immune system and a consequent inflammatory response. 

Epithelium or endothelium activation results in the secretion of proinflammatory cytokines [i.e. 

interleukin (IL) 2, IL-6, tumour necrosis factor-α (TNF-)], and chemokines (i.e. IL-8, RANTES, MCP-1) 

that trigger a massive influx of polymorphonuclear leucocytes (PMNs), macrophages, dendritic cells 

(DCs), T and B cells. This process also leads to the attraction and accumulation of activated 

neutrophils which promote an additional production of cytokines and chemokines that amplify cell 

recruitment. Injury to the airway epithelium and subepithelial structures of small airways lead to 

excessive fibroproliferation due to ineffective epithelial regeneration and aberrant tissue repair 

mechanisms, the secretion of profibrotic cytokines, and extracellular matrix deposition, which finally 

results in fibrotic plugging of the small airways, presenting the typical OB lesions. (adapted from 

Boehler A., and Estenne M. Eur Respir J, 2003 and Budding K., 2016)113,123. RANTES: regulated on 

activation, normal T cell expressed and secreted; MCP-1: Monocyte chemoattractant protein-1. 

1.5.2.3 CHRONIC LUNG ALLOGRAFT DYSFUNCTION PHENOTYPES 

1.5.2.3.1 Bronchiolitis Obliterans Syndrome  

BOS diagnosis is rare within the first year after LT with an incidence of 10% per year and a 

prevalence of 50% after five years20. As discussed above, BOS is characterized by an 

obstructive and persistent pulmonary function decline83,124 with a heterogeneous clinical 

course; from an insidious onset and gradual decline in pulmonary function over months to 

years to abrupt onset with severe decline in pulmonary function over a few weeks125.  

The diagnosis and severity of BOS was initially divided into four grades, only based on FEV1 

decline, compared to the baseline post-transplant FEV1
83,124. In a first revision of the BOS 

definition, a fifth category was added as an early class for BOS or a potential BOS stage  

(BOS 0-p) in which only a reduction in the forced expiratory flow between 25% and 75% of 

forced vital capacity (FEF 25-75) was modified126. 

Nowadays, classical BOS staging has been replaced by a CLAD staging (from CLAD 0 to 4), 

which is more appropriate due to the establishment of different allograft dysfunction 

phenotypes84 (Table 1). 
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Table 1. CLAD classification84. CLAD: chronic lung allograft dysfunction; FEV1: forced expiratory volume 

in 1 second.  

Stage Spirometry 

CLAD 0 Current FEV1 >80% FEV1 baseline 

CLAD 1 Current FEV1 >65-80% FEV1 baseline 

CLAD 2 Current FEV1 >50-65% FEV1 baseline 

CLAD 3 Current FEV1 >35-50% FEV1 baseline 

CLAD 4 Current FEV1≤ 35% FEV1 baseline 

The diagnosis of BOS is defined by clinical and physiological criteria and requires the careful 

exclusion of other post-transplant complications that cause a persistent decline in FEV1.  

Transbronchial biopsies are not necessary to diagnose BOS126, although they may be indicated 

to exclude alternative diagnoses. Accordingly, it has been described that early-onset DAD 

(within 3 months of LT) has been associated with BOS127,121. 

Radiology could also be helpful for BOS diagnosis. Imaging by computed tomography (CT) scan 

shows two main abnormalities during the clinical course of BOS: air trapping on expiratory 

thoracic CT scans128 and the presence of bronchiectasis and large bronchi injury. 

The combination of all these findings may help to exclude other causes of loss of allograft 

function. The use of micro-CT might help to determine precisely the site of airway obstruction 

and could refine the radiological diagnosis of BOS129. 

The treatment options for BOS have shown limited efficacy. Sustained treatment with high-

dose corticosteroids is not recommended given its association with numerous and frequent 

harmful side effects and as it has not been demonstrated to improve BOS84,130.  

On the other hand, maintenance azithromycin therapy in the treatment of BOS has shown 

beneficial effects in some groups of patients131. It has been described that approximately 40% 

of neutrophilic and non-neutrophilic BOS patients respond to azithromycin, increasing by ≥ 

10% in FEV1 values from baseline132–137. The clinical condition of the responders to 

azithromycin (defined as FEV1 increase of ≥ 10% after a 2-3 month treatment) is called 

azithromycin responsive allograft dysfunction (ARAD) and due to its reversible nature is 

currently classified as a separate entity to CLAD138,87. 

Adjustments in BOS immunosuppressive therapy, including the increase in calcineurin inhibitor 

doses, the switch from CsA to tacrolimus (FK), the conversion of AZA to mycophenolate mofetil 

(MMF)125,139 and the introduction of new treatments such as montelukast84, cyclophosphamide 

and methotrexate139 are potential therapeutic options. Other more aggressive therapeutic 

choices for BOS cover total lymphoid irradiation140 or extracorporeal photopheresis141. 

Most of these treatment options are reportedly beneficial in a variable percentage of the 

patients. However, these results may be unreliable as the current studies related to the 

treatment of BOS are retrospective and mostly performed in a single-center139. Re-

transplantation for carefully selected BOS patients remains the ultimate treatment option as it 

is the only procedure that has been proven to have an impact on survival130 . 



INTRODUCTION 
 

22 

1.5.2.3.2 Restrictive Allograft Syndrome  

Restrictive Allograft Syndrome (RAS) was first described as a novel form of CLAD in 2011 by 

Sato and colleagues from the Toronto Lung Transplant Program89. Compared with BOS, this 

chronic rejection phenotype presents a faster clinical course and shows poorer survival89 (see 

section 1.7 Survival after lung transplantation). Preliminary studies suggest that one out of four 

CLAD patients will develop RAS124. 

In the last consensus report from the Pulmonary Council of the ISHLT, RAS was defined 

physiologically by121,84: 

(1) A persistent ≥20% decline in FEV1 compared with the reference or baseline value, which is 

computed as the mean of the best two post-operative FEV1 measurements taken at least three 

weeks apart. 

(2) A concomitant decline in total lung capacity (TLC) to ≥10% compared with the reference or 

baseline value, defined as the average of the two measurements obtained at the same time as 

or very near to the best two post-operative FEV1 measurements. 

(3) The presence of persistent opacities on chest imaging (chest X-ray and/or CT). 

A problem with this definition is its applicability in unilateral LT88. For this reason, the 

introduction of the FEV1/Forced vital capacity (FVC) ratio (FEV1%), also known as the Tiffeneau-

Pinelli index, has been proposed as a restriction indicator that could be useful for unilateral LT 

cases124. 

Histopathological RAS characteristics are non-specific. These findings include: DAD lesions127, 

different degrees of interstitial fibrosis and development of pleuroparenchymal 

fibroelastosis119. It has even been described that late new-onset DAD (>3 months after LT) 

increases the risk of the development of RAS127,142,121. The presence of acute fibrinoid 

organizing pneumonia (AFOP)143 lesions on transbronchial biopsies has also been associated 

with the development of the RAS phenotype144,145. Both histological diagnoses are mutually 

exclusive143. 

The AFOP entity is characterized by a radiological pattern of ground-glass opacities with 

interlobular septal thickening86. Histopathologically, it is characterized by the intra-alveolar 

deposition of fibrin with no interstitial infiltrate or fibrosis143. AFOP shows clear clinical 

similarities with RAS, suggesting a likely extensive overlap between both entities88. Further 

investigation is needed to assess whether AFOP may be an early or acute manifestation of 

RAS86. 

From a radiological point of view, RAS patients show alterations of interstitial lung disease89. 

The RAS phenotype is not homogenous, as two subgroups of RAS patients have been 

identified: slow progression and fast progression146. The slow-progressing RAS group is 

characterized by a stair-step progression pattern. In the early stages of RAS, central and 

peripheral ground glass are the most notable features on CT, whereas in the later stages, the 

most commonly observed features are (traction-) bronchiectasis, central and peripheral 

consolidation, pleural thickening, volume loss and hilus retraction147, with most patients 
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showing an upper lobe-dominant fibrotic pattern121. According to the last consensus report 

from the ISHLT Pulmonary Council, the presence of pleural thickening and volume loss in the 

upper lobes is associated with survival 121. 

The slow progressing group shows a significant overlap with pleuroparenchymal fibroelastosis, 

whereas the fast progressing group shows a possible overlap with previously described 

AFOP146. 

An additional problem is the coexistence of both BOS and RAS characteristic lesions in some 

patients who develop a combined syndrome87. Moreover, it has also been described that some 

patients who initiate a BOS process incorporate RAS characteristic lesions during their clinical 

course, thus producing the conversion from obstructive BOS to the RAS phenotype87. Patients 

may also first develop RAS, later clear their opacities, and end up with classical BOS 

physiology87, although it has not been observed a switch from a clearly RAS phenotype to a 

BOS phenotype in any of the Vall d’Hebron patient series. 

As the description of the RAS phenotype is relatively new, there are no formal clinical practice 

guidelines for RAS, and management is rather experimental84. Generally, physicians have used 

the same therapeutic interventions as those indicated for BOS121,84. 

1.6 LUNG TRANSPLANTATION TREATMENT AND MANAGEMENT 

1.6.1 IMMUNOSUPPRESIVE DRUG THERAPY  

Currently a SOT cannot be successfully carried out without using immunosuppressive drugs. 

Immunosuppression is used to prevent acute and chronic rejection and to treat rejection once 

established. 

There are four main groups of drugs used as maintenance therapy after transplantation: 

calcineurin inhibitors (CsA and FK), mammalian target of rapamycin (mTOR) inhibitors 

(sirolimus, also known as rapamycin and everolimus), antiproliferative agents (AZA and (MMF) 

and corticosteroids. 

Whereas different centers adopt different immunosuppresive strategies, the most accepted 

protocols after LT are based on a triple therapy that comprises a combination of a calcineurin 

inhibitor (CsA or FK), an antiproliferative agent (AZA or MMF) or an m-TOR inhibitor (sirolimus 

or everolimus) and corticosteroids. 

The combination of drugs targeting the immune response at different levels, makes them 

more effective, and each immunosuppressant dose can be reduced, decreasing their individual 

toxicity. 
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CALCINEURIN INHIBITORS 

Despite chemical structure differences between CsA and FK, both have similar mechanisms of 

action. After entering the cell, they are complexed with an immunophilin; CsA binds to 

cyclophilin while FK acts through immunophilin FK binding protein-12 (FKBP12). The drug-

immunophilin complex inhibits the phosphatase activity of the calcineurin, preventing the 

dephosphorylation of the nuclear factor of activated T-cells (NFAT), and avoiding its 

translocation into the nucleus. Subsequently, this turns into the down-regulation of cytokine 

genes and other immune mediators regulated by the NFAT transcription factor, such as IL-2. As 

a result, T-cell activation is blocked and thereby, immune response propagation is 

decreased148. 

ANTIPROLIFERATIVE AGENTS 

AZA and MMF are antimetabolites that specifically exert their antiproliferative effect inhibiting 

de novo nucleotide synthesis in lymphocytes, as these cells lack the alternative salvage 

pathway, in which nucleotides are synthesized from intermediates. 

AZA is one of the earliest immunosuppressive drugs used after organ transplantation. It is 

metabolized to its active component 6-mercaptopurine, a purine antagonist which inhibits 

DNA, RNA, and protein synthesis, blocking lymphocyte proliferation149.  

On the other hand, the mechanism of action of MMF is based on the capacity of its active 

component mycophenolic acid to inhibit inosine monophosphate dehydrogenase, the enzyme 

that controls the production of guanosine nucleotides required for DNA synthesis, thus 

blocking the proliferation and clonal expansion of T and B lymphocytes150. 

mTOR INHIBITORS 

The main mechanism of action of these agents is the inhibition of the protein serine/threonine 

kinase mTOR, which is a key regulator of cell growth, proliferation and metabolism. 

After entering the cell, sirolimus and everolimus bind to FKBP12 and the resulting complex 

binds to mTOR inhibiting its kinase activity with subsequent suppression of T-cell 

proliferation151. 

CORTICOSTEROIDS 

The mechanism by which corticosteroids exert their immunosuppressive effects remains 

poorly understood. Nevertheless, it is known that after entering the cell, corticosteroids bind 

to its cytoplasmic receptors and this steroid-receptor complex translocates into the nucleus, 

binding to a number of DNA sites and inhibiting the transcription of cytokine genes152.  

Corticosteroids also act by inhibiting the translocation to the nucleus of nuclear factor -  

(NF-), preventing the transcription of several inflammatory genes and thus blocking the 

activation of the immune system153. 
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1.6.2 ANTI-MICROBIAL THERAPY 

Solid organ transplant (SOT) recipients have an elevated risk of acquiring infections, that is the 

reason why broad-spectrum antimicrobials are given prophylactically post-transplant. The 

regimens used varies by SOT and anti-microbial LT prophylaxis is carried out by a triple therapy 

including antibacterial, antifungal and antiviral drugs. 

Antiviral prophylaxis with either intravenous ganciclovir or oral valganciclovir reduced 

significantly the risk for cytomegalovirus infection, one of the most important pathogens after 

LT. Different antifungal prophylactic regimens have been reported, being aerosolized 

Amphotericin B alone or in combination with itraconazole the most used drugs. One of the 

most successful antimicrobial prophylaxes is probably the administration of cotrimoxazole for 

the prevention of Pneumocystis jirovecci infection. 

As regards azithromycin, as previously mentioned, it is used as immunomodulatory therapy in 

BOS treatment and in the prevention of BOS or ARAD conditions. 

1.7 SURVIVAL AFTER LUNG TRANSPLANTATION 

Short-term survival has progressively improved due to advancements in surgical techniques, 

donor preservation, immunosuppressive agents and perioperative management. Around 85% 

of patients who undergo a LT are still alive one year after the intervention20. However, long-

term survival after LT remains reduced; with 6.7 years being the median survival after 

transplantation20, as shown in Figure 5. 

 

Figure 5. Kaplan-Meier survival analysis for adult lung transplant recipients reported to the ISHLT 

Registry by indication for transplantation (1992- June 2017 period)20. A1ATD: −1-anti-trypsin 

deficiency; CF: cystic fibrosis; COPD: Chronic obstructive pulmonary disease; IIP: idiopathic interstitial 

pneumonia; ILD: interstitial lung disease; IPAH: idiopathic pulmonary arterial hypertension. 
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CLAD represents the main limiting factor of long-term success after LT; with approximate five- 

and ten-year survival rates of 56% and 34.3%, respectively20. Thereby, long-term survival 

remains far below other SOT such as kidney (86.2%)154, liver (61%)155, heart (56%)156, pancreas 

(80%)157 and intestine (43%)158. 

Unadjusted Kaplan-Meier survival analyses have demonstrated that bilateral LT, women 

recipients and CF patients who underwent LT, present higher survival than all other groups20. 

The survival of RAS patients after CLAD onset was significantly shorter than BOS; their mean 

survival post-diagnosis was only 1.5 years, compared to four years with BOS89. 

BOS survival is influenced by several factors such as timing of disease onset, BOS 

progression159, and the initial BOS grade at diagnosis160. Patients who developed BOS early 

after transplantation showed a poorer prognosis than late-onset BOS (> three years), whose 

prognosis was almost comparable with that of patients free of CLAD91. On the other hand, 

high-grade (grades two or three from the old BOS classification126) onset BOS was associated 

with significantly increased mortality compared with grade one (from the old BOS 

classification126) onset160,91. 

Considering incidence estimates of BOS and Kaplan-Meier estimates of freedom from BOS 

exclude death, a recent study focused on the composite outcome of death or BOS (BOS-free 

survival) provided a more robust estimate than either of its components. The study concluded 

that the median BOS-free survival of unilateral and bilateral LT was 3.16 and 3.58 years 

respectively161. 

1.8 TOLERANCE AFTER TRANSPLANTATION 

Current immunosuppressive agents are not alloreactive cell selective and exert an extended 

non-specific effect on the immune system. Consequently, lifelong immunosuppression therapy 

in SOT is associated with nephrotoxicity162,163 and considerable other side effects, including 

higher rates of infections72, malignancies164, hypertension, new onset diabetes after transplant 

and hyperlipidemia due to the metabolic effects of steroids, calcineurin inhibitors and 

sirolimus165, besides interaction with other medications, that considerably contribute to 

morbidity and mortality among transplant recipients. 

One of the highly desirable goals of current transplantation research is to achieve the 

phenomenon known as “tolerance”166, defined as the stable maintenance of good allograft 

function in the sustained absence of toxic immunosuppressive therapies. 

The term transplantation tolerance was first introduced by Billingham et al167 in 1953, with the 

report of a murine model that developed donor-specific unresponsiveness. This phenomenon 

has been widely reported in numerous animal models168,169. 

In the clinical arena, the best proof that tolerance is certainly achievable is the existence of a 

small group of transplant patients who, after having discontinued immunosuppressive therapy, 

either through physician-led voluntary weaning or attributable to non-adherence, did not 

suffer from graft rejection. The clinical state that develops in these patients is known as 
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“operational tolerance”, in which there is long-term allograft survival in the absence of 

immunosuppression170. Operational tolerance is infrequent and its incidence varies by allograft 

type; up to 20% of liver transplant recipients show spontaneous operational tolerance171,172, 

although this phenomenon has rarely been reported in renal transplantation173–175  

Excluding liver and kidney cases, there are only anecdotal cases of operational tolerance in 

other SOT such as lung176, heart177 and intestine178. The underlying mechanisms responsible for 

the establishment of operational tolerance have not been fully elucidated. 

1.8.1 TOLERANCE BIOMARKERS 

A biomarker has been defined as “a characteristic that is objectively measured and evaluated 

as an indicator of normal biologic processes, or pharmacologic responses to a therapeutic 

intervention” by The Biomarkers Definitions Working Group 179. 

Identifying operational tolerance biomarkers would facilitate an accurate identification of 

candidate patients for minimization and potential withdrawal of immunosuppression. 

Furthermore, the potential tolerance biomarkers identified could provide knowledge of the 

underlying biological mechanism of tolerance for new tolerogenic therapies. 

In recent years, great efforts have been made in the identification of non-invasive biomarkers 

of operational tolerance in kidney and liver transplantation. Although peripheral blood 

probably does not reflect all the molecular mechanisms responsible for maintaining tolerance 

which are occurring in the allograft, the use of non-invasive blood monitoring has clear clinical 

advantages, facilitating the methodological standardization methods and increasing the 

attempts at obtaining clinically applicable results. Furthermore, this type of sample has been 

widely validated for diagnostic purposes in transplantation studies employing both 

immunophenotyping and gene expression profiling180–182. 

These studies reported that kidney and liver tolerant recipients differed in blood gene 

expression and immunophenotypic patterns from those of non-tolerant recipients and healthy 

individuals. A list of biomarkers that are suggested to have a role in organ tolerance is detailed 

in Table 2. 

In the kidney transplant field, a number of phenotypic and transcriptomic studies have 

facilitated the identification of a B-cell-related signature that predominates in peripheral blood 

from tolerant patients183–187(Table 2). However, none of these studies had assessed the 

confounding effect of pharmacological immunosuppressive therapy. In this way, Rebollo-

Mesa188 and co-workers demonstrated that the percentage of transitional B cells within the 

naïve B cell population in peripheral blood, previously described as a feature of tolerant 

recipients, was significantly affected by immunosuppressive drugs. 

In contrast, in the liver transplant field, blood samples from tolerant recipients showed 

increases in the percentage of  T cells (specifically V1 T cells)189,190, the ratio of 

plasmacytoid to myeloid DCs191 and in innate immunity-related transcripts185,192,193 (Table 2).  
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Table 2. Summary of potential tolerance biomarkers in renal and liver recipients from selected clinical 

studies. 

Clinical study 
Transplanted 

organ 
Sample Methodology Cells Genes 

Louis et al181, 2006 Kidney Blood Flow cytometry, qPCR 
↑ CD4+ CD25high  

T cells 
FOXP3  

Sagoo et al183, 2010 Kidney Blood 
Flow cytometry, 
microarray, qPCR 

↑ B cells, NK cells 

CD79B, TCL1A, 
HS3ST1, SH2D1B, 

MS4A1, TLR5, FCRL1, 
PNOC, SLC8A1, 

FCRL2 

Newell et al184, 
2010 

Kidney Blood 
Flow cytometry, 
microarray, qPCR 

↑ Total B cells, naïve 
B cells and 

transitional B cells 

IGKV1D-13,  
IGKV4-1, IGLL1 

Lozano et al185, 
2010 

Kidney Blood 
Flow cytometry, 
microarray, qPCR 

↑ Total B cells, 
memory B cells and 

activated B cells 
B-cell-related genes 

Moreso et al186, 
2014 

Kidney Blood Flow cytometry, qPCR - 
IGKV1D-13,  

IGKV4-1 

Baron et al187, 2015 Kidney Blood Meta-analysis 
↑ Total B cells, CD4 T 

cells 
B-cell-related genes 

Rebollo-Mesa  
et al188, 2016 

Kidney Blood 
ElasticNet 

qPCR 
- 

ATXN3, BCL2A1, 
EEF1A1, GEMIN7, 
IGLC1, MS4A4A, 

NFBIA, RAB40C, 
TNFAIP3 

Mazariegos et al191, 
2003 

Liver Blood Flow cytometry ↑Plasmacytoid DCs - 

Li et al189,2004 Liver Blood Flow cytometry 

↑ CD4+ CD25high  
T cells, B cells 

V1/V2  T cells 
ratio 

↓ NK and NKT cells 

- 

Martinez-Llordela  
et al190, 2007 

Liver Blood 
Flow cytometry, 
microarray, qPCR 

↑ CD4+ CD25+  

T cells, V1+  T cells 

CD94, IL1, IL23, 

ICAM1, TNF-  

Martinez-Llordela  
et al192, 2008 

Liver Blood Microarray, qPCR - 

KLRF1, SLAMF7, 
NKG7, ILR2B, KLRB1, 

FANCG, GNPTAB, 
CLIC3, PSMD14, 

ALG8, CX3CR1, RGS3 

Pons et al182, 2008 Liver Blood Flow cytometry, qPCR 
↑ CD4+ CD25high  

T cells 
FOXP3 

Lozano et al185, 
2010 

Liver Blood 
Flow cytometry, 
microarray, qPCR 

- NK-related genes 

Li et al193, 2012 Liver Blood microarray, qPCR - 

SENP6, FEM1C, 
ERBB2, AKR1C3, 

MAN1A1, UBAC2, 
GRP68, NFKB1, 

MAFG, BTG3, ASPH, 
PTBP2, PDE4DIP 
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Kidney and liver tolerant recipients exhibit different blood expression and immunophenotypic 

patterns and, as can be observed in Table 2, there is a minimal overlap between the kidney 

and liver tolerance fingerprints. These differences indicate that the mechanism underlying 

operational tolerance in kidney transplantation is different to those in liver recipients194. 

The major common methodological limitation to all previous studies is the small number of 

operationally tolerant transplant recipients. This sample size constraint constitutes a serious 

obstacle in reaching acceptable statistical power to perform relevant analyses in the search for 

tolerance biomarkers. 

In the LT field, there are no true operationally tolerant recipients, being long-term survivors 

with normal allograft function (LTS) after LT the closest group to “operational tolerance” of 

other solid organ allografts. Patients who survive more than ten years after LT and have 

normal pulmonary function test values constitute a special LT population for research studies.  

There is limited evidence in long-term survival after LT and very little knowledge has been 

reported above ten years after LT considering graft condition. In this scenario, few studies 

conducted in isolated series of patients form single centers have published inconsistent 

data195–198. 

In connection with this, some studies have focused on specific mechanisms or particular 

pathways to explain long-term survival, but no studies have pointed to a global sight for LT.  

The aim of the present work is to define a multiparameter “fingerprint” of LTS, using for 

comparison age, sex and underlying disease matched CLAD individuals. 

 



 

 



 

 

2  
HYPOTHESIS 

AND OBJECTIVES 
  



 

 

 



HYPOTHESIS AND OBJECTIVES 
 

33 

HYPOTHESIS 

Several studies performed in kidney and liver transplantation have revealed different tolerance 

fingerprints, suggesting an organ-specific mechanism for operational tolerance. Consequently, 

potential renal and liver tolerance biomarkers cannot be extrapolated to lung.  

Due to the lack of operationally tolerant lung transplant recipients, long-term survivors with 

normal allograft function after lung transplantation are the closest to operational tolerance 

kidney or liver transplant patients. 

Overall, the working hypothesis of the present thesis included the following: long-term survival 

with normal allograft function after lung transplantation signature differs from kidney and liver 

tolerance fingerprints. 

MAIN OBJECTIVE 

The final goal of this study is to identify potential biomarkers across different platforms in 

order to provide a better understanding of the biological mechanisms underlying long-term 

survival with normal allograft function after lung transplantation in comparison with chronic 

lung allograft dysfunction patients. 

SPECIFIC OBJECTIVES 

1- To define the clinical characteristics of long-term survivors with normal allograft 

function. 

2- To determine genetic expression patterns (mRNA and microRNA) and perform an 

integrative analysis of both expression profiles. To build classification mRNA and 

miRNA models to differentiate between long-term survivors with normal allograft 

function and chronic lung allograft dysfunction patients. 

3- To compare the composition of the different peripheral blood leucocyte 

subpopulations, donor-specific antibodies and serum proteins between long-term 

survivors with normal allograft function and chronic lung allograft dysfunction 

patients.  

4- To identify the differences in the upper respiratory tract bacterial microbiome 

between long-term survivors with normal allograft function and chronic lung allograft 

dysfunction patients. 
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THESIS OUTLINE 

In order to achieve the main and specific goals, the present thesis comprises five separate 

sections, detailed as following: 

Part I (Section 3.1). Definition of the clinical characteristics of long-term survivors with normal 

allograft function. 

Part II (Section 3.2). Transcriptomic analyses: gene expression and gene regulation analyses, 

construction of transcriptomic models to discriminate LTS and CLAD patients and integrative 

analyses studies. 

Part III (Section 3.3). Immunophenotype and molecular characterization: cell subpopulations, 

anti-HLA antibody detection and serum protein determination. 

Part IV (Section 3.4). Multi-platform biomarker analysis: construction of a highly correlated 

multi-biomarker signature to discriminate LTS and CLAD patients including data from part I, II 

and III. 

Part V (Section 3.5). Identification of the upper respiratory tract bacterial microbiome 

composition. 

In summary, several platforms have been used to assess clinical factors, genetic expression, 

leucocyte subpopulations profile, molecular biomarkers and microbiome composition in order 

to define a specific long-term survival signature as shown in Figure 6.  

  



METHODS AND RESULTS 
 

38 

 

 

Figure 6. Scheme of the five sections and the analyses included in the present thesis. 
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3.1 PART I. CLINICAL CHARACTERISTICS OF LONG-TERM SURVIVORS WITH NORMAL 

ALLOGRAFT FUNCTION 

3.1.1 PATIENTS AND METHODS 

3.1.1.1 STUDY DESIGN 

This doctoral thesis is based on a cross-sectional multi-center case-control study. A total of 62 

patients undergoing bilateral LT were included: 31 long-term survivors with normal allograft 

function (LTS; cases) and 31 CLAD patients (controls). The study was approved by the local 

ethics committees and all patient samples were collected with written informed consent. 

Cases were identified in five Spanish centers1 with more than 10 years of experience in LT. 

Cases were defined as LT patients, 10-year survivors, alive at the time of the study, with stable 

and normal lung function (FEV1 ≥ 90% of the best FEV1 and corrected FEF25-75 > 75%) and no 

CLAD. 

Control group was composed by LT patients with CLAD, defined as a persistent FEV1 decline > 

20% of the best post-operative value for 6 months and without other explanation. All of them 

came from the same centers (Hospital Universitario Vall d’Hebron). Controls were matched by 

age, gender and underlying disease in order to achieve homogeneous groups. 

3.1.1.2 PATIENTS DATA AND SAMPLE COLLECTION 

All clinical histories were retrospectively reviewed by the same clinician to avoid center bias. 

The clinical variables recorded for each individual of the study are detailed in Supplementary 

Information section. 

All patients were visited at the Hospital Universitario Vall d’Hebron. During their medical visit, 

peripheral blood samples obtained by venous puncture were collected in: EDTA-anti-coagulant 

coated VacutainerTM tubes (BD Biosciences), heparin VacutainerTM tubes (BD Biosciences), 

Serum-Separator VacutainerTM (BD Biosciences) tubes and TempusTM Blood RNA tubes (Life 

Technologies). In addition, nasopharyngeal swabs were also collected. 

One part of fresh peripheral blood samples in EDTA and heparin tubes were used for 

immunophenotyping analysis. Serum and plasma aliquots were obtained from the rest of 

peripheral blood samples in EDTA tubes and Serum-Separator tubes and were stored at -80º C 

until further analysis. TempusTM Blood RNA tubes and nasopharyngeal swabs were also stored 

at -80º C.  

  

 
1 Hospital Universitario Puerta de Hierro (Madrid), Hospital Universitario de La Fe (Valencia), Hospital 
Universitario Reina Sofía (Córdoba), Hospital Universitario Marqués de Valdecilla (Santander), and 
Hospital Universitario Vall d’Hebron (Barcelona). 
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3.1.1.3 STATISTICAL ANALYSES 

Comparisons between the two groups were performed employing nonparametric Mann-

Whitney test for quantitative variables and Chi-square or Fisher’s exact tests for categorical 

variables. Variables compared using Mann-Whitney test were presented as medians with 

interquartile ranges (IQR) whereas categorical variables were presented as frequencies with 

percentages. For comorbidity, immunological and infectious events two different calculations 

were conducted, as a number of events to a define time point and as an incidence rate, in 

order to correct for differences in the length of the follow-up period. 

3.1.2 CLINICAL RESULTS 

Initial clinical characteristics of patients are summarized in Table 3. There were no significant 

differences in basal characteristics and immediate postoperative follow-up between the 2 

groups except for diabetes mellitus after LT and days in the waiting list, which were more 

frequent in the CLAD group. 

Table 3. Demographics and transplant characteristics of LTS and CLAD subjects. Comparisons between 

the two groups were performed employing nonparametric Mann-Whitney test for quantitative variables 

and Chi-square or Fisher’s exact tests for categorical variables. Variables compared using Mann-Whitney 

test are presented as medians with interquartile ranges (IQR) whereas categorical variables are 

presented as frequencies with percentages. 

 LTS (n=31) CLAD (n=31) p-value 

Age, median (IQR) 31.0 (23.1; 46.5) 41.5 (22.7; 51.8) 0.371 

Gender (males), n (%) 14 (45.2) 15 (48.4) 1.00 

Diagnosis, n (%)   0.857 

ILD 4 (12.9) 4 (12.9) 

 

COPD  4 (12.9) 8 (25.8) 

CF 14 (45.2) 13 (41.9) 

Non-CF bronchiectasis 2 (6.45) 2 (6.45) 

Pulmonary arterial hypertension 1 (3.23) 1 (3.23) 

Langerhans cell histiocytosis 1 (3.23) 1 (3.23) 

Lymphangioleiomyomatosis (LAM) 5 (16.1) 2 (6.45) 

Recipient characteristics    

Pre LT FVC (%), median (IQR) 46 (32.5; 54.5) 41 (28.5; 47.5) 0.202 

Pre LT FEV1 (%), median (IQR) 26 (22.0; 35.0) 25 (17.5; 29.5) 0.307 

Pre LT O2 treatment, n (%) 26 (83.9) 24 (80) 0.952 

Pre LT diabetes mellitus, n (%) 5 (16.1) 15 (48.4) 0.014 

Days Waiting List, median (IQR) 138 (56.2; 248) 256 (200; 541) 0.011 

Years after LT, median (IQR) 15.3 (12.4; 17.1) 6.9 (4.95; 10.7) <0.001 

Extracorporeal circulation, n (%) 9 (30) 7 (23.3) 0.772 

Primary graft dysfunction (positive), n (%) 2 (6.67) 3 (10.0) 1.00 

Days in the ICU, median (IQR) 8 (5.0; 17.0) 13 (5.75; 32.75) 0.213 

Days on mechanical ventilation, median 
(IQR) 

2 (1.0; 11.50) 3 (2.0; 30.0) 0.181 

Days of hospitalization, median (IQR) 8 (5.25; 18.2) 13 (6.0; 32.0) 0.291 

CMV serology (positive), n (%) 22 (71.0) 21 (70.0) 1.00 
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In Table 4 long-term follow-up variables after LT are shown. LTS patients showed a lower 

comorbidity rate, due to fewer incidence of diabetes mellitus and psychiatric disorders. 

Besides, LTS patients showed a lower incidence of infectious events and their best lung 

function test was better, although it took longer to achieve it. However, no differences in 

immunological events were observed. LTS patients also showed a lower rate of use of 

antimicrobial prophylactic therapies. 

CLAD patients were evenly treated with cotrimoxazole, azithromycin and inhaled amphotericin 

B with few exceptions whereas some LTS patients did not receive them due to specific center-

related protocols.  

Differences in immunosuppressive treatment were also observed between both groups. 

Whereas LTS patients were treated more frequently with antimetabolites, CLAD patients were 

more frequently treated with mTOR inhibitors. All LTS patients received standard 

immunosuppression treatment (CsA or FK, MMF or AZA and corticosteroids), except 4 of them 

who were treated with mTOR inhibitors due to renal impairment (n=2), LAM as underlying 

disease and recurrent infections (3 in combination with calcineurin inhibitors and one in 

combination with MMF). In the CLAD group, 23 patients received mTOR inhibitors combined 

with calcineurin inhibitors. High variability in immunosuppression was observed equally in 

both groups (Table 4). 
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Table 4. Follow-up variables of LTS and CLAD subjects. Comparisons between the two groups were 

performed employing nonparametric Mann-Whitney test for quantitative variables and Chi-square or 

Fisher’s exact tests for categorical variables. Variables compared using Mann-Whitney test are 

presented as medians with interquartile ranges (IQR) whereas categorical variables are presented as 

frequencies with percentages. 

 LTS (n=31) CLAD (n=31) p-value 

Comorbidities    

Comorbidity events at 5th yr, median (IQR) 2 (1.0; 3.0) 4 (2.0; 5.0) 0.0012 

Comorbidity rate, median per year (IQR) 0.24 (0.16; 0.30) 0.63 (0.34; 0.92) 1.1e-06 

Arterial hypertension, n (%) 15 (48.4) 16 (51.6) 1.00 

Diabetes mellitus, n (%) 5 (16.13) 15 (48.39) 0.014 

Dyslipidemia, n (%) 12 (38.71) 19 (61.29) 0.128 

Renal dysfunction, n (%) 15 (48.39) 21 (67.74) 0.198 

Obesity, n (%) 1 (3.23) 5 (16.13) 0.195 

Anaemia, n (%) 4 (12.90) 11 (35.48) 0.075 

Osteoporosis, n (%) 9 (29.03) 11 (35.48) 0.492 

Psychiatric disorders, n (%) 2 (6.67) 11 (35.5) 0.015 

GERD 5 (16.13) 10 (32.26) 0.236 

Infectious events    

Infection episodes at 3rd yr, median (IQR)1 2 (1.0; 5.0) 4 (3.0; 7.0) 0.0105 

Infection rate, median per year (IQR) 0.54 (0.29; 0.73) 1.50 (1.0; 2.22) 5.1e-09 

Mild infections rate, median per year (IQR)2 0.54 (0.29; 0.73) 1.50 (1.00; 2.22) 6e-09 

Immunological events    

Immunological events at 1st yr, median (IQR)3 1 (0.0; 1.0) 0 (0.0; 1.0) 0.666 

Immunological events at 3rd yr, median (IQR)3 1 (0.0; 1.0) 1 (0.0; 1.0) 0.988 

Immunological events rate, median per year 
(IQR)3 

0.05 (0.0; 0.08) 0.07 (0.0; 0.15) 0.073 

Laboratory tests    

Hb (g/dL) at 5thyr, median (IQR) 12.6 (11.9;13.9) 12.7 (12.2; 13.6)  0.485 

WBC (x10E9/L) at 5th yr, median (IQR) 7.9 (6.8; 9.6) 6.8 (5.5; 8.1) 0.054 

Creatine (mg/dL) at 5th yr, median (IQR) 1.30 (0.88; 1.30) 1.20 (0.93; 1.48) 0.171 

Cholesterol (mg/dL) at 5th yr, median (IQR) 198 (145; 223) 193 (180; 218) 0.760 

Lung Function tests (first after LT), median (IQR)    

FEV1 (L) 1.84 (1.55; 2.55) 1.81 (1.44; 2.24) 0.477 

FEV1 (%) 60.0 (49.5; 71.0) 61.0 (46.0; 69.0) 0.652 

FVC (L) 2.03 (1.73; 2.82) 2.22 (1.775; 2.67) 0.972 

FVC (%) 57.0 (44.5; 70.0) 56.0 (45.0; 67.0) 0.636 

FEV1% 94.0 (83.0; 96.0) 85.0 (78.2; 93.0) 0.059 

TLC (%) 76.0 (70.0; 83.0) 88 (79.5; 91.2) 0.537 

DLCO (%) 51.0 (44.0; 58.0) 47.0 (39.0; 52.0) 0.593 

Lung Function tests (best after LT), median (IQR)    

FEV1 (L) 3.41 (2.76; 4.22) 2.44 (2.16; 3.13) <0.001 

FEV1 (%) 103 (95.0; 110) 83.0 (75.0; 93.0) <0.001 

FVC (L) 3.55 (3.03; 4.42) 3.02 (2.7; 3.71) 0.023 

FVC (%) 91.0 (88.5; 104) 79.0 (72.0; 93.0) 0.002 

FEV1% 90.5 (82.0; 96.0) 85.0 (72.0; 91.0) 0.011 

TLC (%) 96.5 (85.8; 109) 96.0 (86.0; 97.0) 0.555 

DLCO (%) 78.5 (69.0; 86.5) 58.0 (51.0; 72.0) 0.015 

  



Part I. Clinical characteristics 
 

43 

 LTS (n=31) CLAD (n=31) p-value 

Time to best lung function tests, median (IQR) 2.15 (1.54;4.01) 1.19 (0.68; 1.83) 0.001 

Treatment    

Cotrimoxazole, n (%) 18 (58.06) 29 (93.55) 0.003 

Azithromycin, n (%) 20 (64.52) 31 (100) 0.001 

Inhaled amphotericin B, n (%) 18 (58.06) 27 (87.09) 0.023 

Immunosuppressive therapy    

Calcineurin inhibitors, n (%) 31 (100) 31 (100) 1.00 

Antimetabolites, n (%) 26 (83.87) 7 (22.58) <0.001 

mTOR inhibitors, n (%) 4 (12.90) 23 (74.19) <0.001 

Corticosteroids, n (%) 28 (90.32) 30 (96.77) 0.612 

High variability in immunosuppression levels4, n (%) 10 (32.26) 14 (45.16) 0.297 
1 Infection episodes were defined as bronchitis, pneumonia, viral respiratory infections or CMV infections.  

2 Mild infection episodes were defined as any respiratory infection excluding pneumonia, sepsis and bacteraemia. 
3 CLAD events, both BOS and RAS, have not been taken into consideration.  
4 Defined as CsA levels under 100ng/ml or FK levels under 5ng/ml more than 3 times during follow-up.  

 

Considering each comorbid condition as a separate event, CLAD patients had more events at 5 

and 10 years post-LT than LTS patients whereas no significant differences were observed at the 

first year post- LT (Figure 7). 

 

Figure 7. Comorbidity events at 1st year, 5th year and 10th year in LTS (blue) and CLAD (red) patients. 

  

https://www.uptodate.com/contents/trimethoprim-sulfamethoxazole-an-overview?search=cotrimoxazol&source=search_result&selectedTitle=2%7E148&usage_type=default&display_rank=1
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As shown in Table 4, infectious events were more frequent in the CLAD group at three years  [2 

(1.0; 5.0) episodes in LTS vs 4 (3.0; 7.0) episodes in CLAD, p=0.01] and the infection rate was 

also higher [0.54 (0.29: 0.73) in LTS vs 1.50 (1.0; 2.22) in CLAD, p=5.1e-09], mainly due to a 

higher rate of mild infections [0.54 (0.29: 0.73) in LTS vs 1.50 (1.0; 2.22) in CLAD, p=6e-09], 

defined as a respiratory infection after excluding pneumonia, sepsis and bacteraemia This 

higher rate of infections in the CLAD groups were observed graphically in Figure 8, where all 

the infection events for each patient were represented in a timeline. 

 

Figure 8. Infection events (bronchitis, pneumonia, viral respiratory infections and CMV infections) in 

LTS (blue) and CLAD (red) patients during follow-up time after LT. Severe infections are represented 

with the “x” sign. 
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Best pulmonary function tests differed significantly between the LTS and CLAD group with the 

better values in LTS group, although no significant differences were found in lung function 

tests neither before LT nor first spirometry after LT (Table 4 and Figure 9).  

 

Figure 9. FVC and FEV1 values before LT (PFR pre), first time after LT (PFR -1) and best value after LT 

(PFR-Best) in LTS (blue) and CLAD (red) patients. P-values are detailed in Table 4. 

The characteristics of CLAD group are detailed in Table 5. Briefly, the vast majority (83.87%) of 

CLAD patients showed a BOS phenotype and all CLAD grades were equally distributed, except 

grade 0, with no patients. 

Table 5. Characteristics of CLAD subjects. Quantitative variables are presented as medians with 

interquartile ranges (IQR) whereas categorical variables are presented as frequencies with percentages. 

 Total (n=31) 

Years from LT to diagnosis of CLAD, median (IQR) 3.32 (2.24;5.71) 

Years from diagnosis of CLAD 3.05 (1.83; 5.87) 

CLAD phenotype  

BOS, n (%) 26 (83.87) 

Combined, n (%) 2 (6.45) 

RAS, n (%) 3 (9.68) 

ISHLT CLAD grade  

CLAD-0, n (%) 0 (0.0) 

CLAD-1, n (%) 7 (22.58) 

CLAD-2, n (%) 8 (25.81) 

CLAD-3, n (%) 8 (25.81) 

CLAD-4, n (%) 8 (25.81) 
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3.2 PART II. TRANSCRIPTOMIC ANALYSES  

TRANSCRIPTOMIC ANALYSES WORKFLOW 

The transcriptomic analyses performed can be grouped into the three following blocks: gene 

expression analysis studies, miRNA expression analysis studies and integrative analysis studies. 

The workflow of the transcriptomic analyses is shown in Figure 10. 

 

Figure 10. Flow chart of the data processing and analysis. All the analyses were performed using 

stabilized blood samples. 

Gene expression analysis block is composed by the following sub-studies: microarray 

differential gene expression analysis, pathway enrichment analysis, gene classification model 

building and RT-qPCR validation of microarray expression data. 

miRNA expression analysis block is composed by the following sub-studies: microarray 

differential microRNA (miRNA) expression analysis, mature miRNA classification model building 

and RT-qPCR validation of microarray expression data. 

Integrative analysis block is composed by the following sub-studies: correlation analysis of the 

differentially expressed genes and differentially expressed miRNA expression values and the 

pathway enrichment analysis of the differentially expressed experimentally validated miRNA 

gene targets. 
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3.2.1 TRANSCRIPTOMIC MATERIAL AND METHODS 

3.2.1.1 GENE EXPRESSION ANALYSES BLOCK 

3.2.1.1.1 Total RNA Extraction 

Total RNA was extracted from thawed whole blood stored in TempusTM Blood RNA tubes (Life 

Technologies) at -80°C using a magnetic bead method (MagMAX™ for Stabilized Blood Tubes 

RNA Isolation Kit, compatible with Tempus™ Blood RNA Tubes; Thermo Fisher Scientific) 

following the manufacturer’s guidelines. RNA was stored at -80ºC until further analysis.  

The quality and integrity of extracted RNA was assessed using the Agilent RNA 600 Nano Kit on 

the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA).  

Two samples (1 LTS and 1 CLAD) were missing, so gene and miRNA expression were analysed 

by microarrays and RT-qPCR from 60 extracted total RNA samples (30 samples from LTS group 

and 30 samples from CLAD group).  

3.2.1.1.2 Microarray Analysis 

Microarrays service was carried out at High Technology Unit (UAT) at Vall d’Hebron Research 

Institut (VHIR), Barcelona (Spain). Affymetrix microarray platform and the Genechip Human 

Clariom D array cartridges (Affymetrix UK Ltd., High Wycombe, United Kingdom) were used for 

this experiment. This array analyses gene expression patterns on a whole-genome scale on a 

single array with probes covering many exons on the target genomes, and thus permitting an 

accurate expression summarization at gene level. Clariom D arrays contain >6,765,500 total 

probes for >134,700 genes199. 

Starting material was 10 ng of total RNA for each sample. Quality of isolated RNA was first 

measured by Bioanalyzer Assay (Agilent). Briefly, sense ssDNA suitable for labelling was 

generated from total RNA with the GeneChip WT Pico Reagent Kit from Affymetrix 

(Thermofisher - Affymetrix, UK) according to the manufacturer’s instructions. Sense ssDNA was 

fragmented, labelled and hybridized to the arrays with the GeneChip WT Pico Terminal 

Labeling and Hybridization Kit from the same manufacturer.  

3.2.1.1.3 Statistical and Bioinformatics Methodology 

All the statistical analyses were performed using R software version 3.4.4 (Copyright© 2018 

The R Foundation for Statistical Computing) and the libraries developed for the microarray 

analysis in the Bioconductor Project200. Bioinformatic analyses were performed at the Statistics 

and Bioinformatics Unit (UEB) from the Vall d'Hebron Research Institute (VHIR). 
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3.2.1.1.3.1 Microarray Quality Control 

Different types of quality controls were performed before and after array normalization in the 

analysis to check if all the arrays were suitable for the normalization process, and check if 

normalized data were appropriated for differential expression analysis. 

Different approaches to examine the quality of the arrays were conducted: Principal 

Component Analysis (PCA), heatmap depicting the distances between arrays and hierarchical 

clustering. After performing the different outlier-detection approaches, they were compared 

in order to decide whether an array should be removed. 

3.2.1.1.3.2 Microarray Data Pre-processing: Normalization and Filtering 

In order to make data comparable and remove technical biases, the arrays were pre-processed 

using the RMA (Robust Multiarray Average) normalization algorithm.200,201 After data were 

normalised, some quality controls were performed again. In addition, the exon level values 

were averaged to yield one expression value per gen. 

In order to increase statistical power and reduce unnecessary noise, genes considered non-

expressed or un-differentially expressed were removed. To assure that any gene differentially 

expressed was removed, the standard deviations (SD) of all genes in the array were calculated, 

ordered and plotted (Figure 11). 

 

Figure 11. Standard deviation of all probesets in the array. Red line marks 80% of the total probesets. 

All the genes with a SD below the 66 percentile were removed. Moreover, those genes without 

a valid Entrez Gene ID were also removed. These filters were applied to all samples, setting a 

list of 8239 genes for further statistical analysis.  
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3.2.1.1.3.3 Differential Gene Expression Analysis  

After the dataset was cleaned (filtered, normalized and without outliers), the next step was to 

perform the differential gene expression analysis. The analysis to select differentially 

expressed genes (DEG) was based on adjusting a linear model with empirical Bayes moderation 

of the variance202. 

The comparison between LTS vs CLAD patients yielded a list of genes sorted from most to least 

differentially expressed. Benjamini & Hocherg method203 (False Discovery Rate, FDR) was 

applied for multiple testing corrections. 

A heatmap using DEG with a raw p-value below 0.05 and absolute logarithmic FC above 0.5 

(112 genes included) was plotted to visualize the expression profiles between the two 

experimental conditions in order to find common patterns of regulation. In the same way, a 

volcano plot was used to represent the biological fold change (FC) and the statistical 

differences between both groups. A FC greater than 1 (in absolute terms) and a raw p-value 

lower than 0.01 were defined as the minimum to consider potential significance for 

discrimination between both groups. 

3.2.1.1.3.4 Pathway Enrichment Analysis 

DEG identified were subjected to pathway enrichment analysis, in order to understand their 

biological implications. The analyses were performed over two annotation databases: the 

Gene Ontology (GO) and the Reactome Pathway Knowledge base204. 

The goal of these analyses was to perform one of the available statistical tests to determine 

whether a given Gene Set (a particular category of the GO/Reactome) was over-represented in 

the list of selected genes (the sample) with respect to a reference set (the population) from 

where it had been selected. The reference set taken in these analyses was the whole genes 

that were included in the array used. 

Genes with a raw p-value below 0.05 and absolute log FC above 0.4 were only included in GO 

analysis and Reactome analysis (236 genes). Genes with up- or down-regulation were 

considered in the same list. GO and Reactome terms were considered enriched when the raw 

p-value was below 0.05. Dot plots of the first enriched pathways and an enrichment map of 

the top enriched GO pathways grouped by similarity were performed. 
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3.2.1.1.3.5 Gene Classification Model Building  

The objective of this section was to build models with different sets of genes that allow the 

classification of the LT population into LTS and CLAD patients. Since the genes which best 

classified both groups of patients might not be the top ranked DEG205–207, classification models 

were built. 

Firstly, the fundamentals of supervised and unsupervised analyses should be noted. The 

supervised methodology classifies the observations regarding the state of the individuals (LTS 

or CLAD patients in this study), while the unsupervised algorithms try to establish the existence 

of classes or clusters throughout the distance calculated between observations (e.g PCA or 

hierarchical clustering). 

This part of the work was focused on supervised methods, since they allow building 

classifiers208. A classifier or classification algorithm is a mathematical function that allows 

predicting the class of a new sample. In recent years, there has been a large number of studies 

that describe the use of machine learning techniques to develop models for diagnosis, 

prognosis and patient classification209,210. 

Machine learning can be defined as a computational system that learns patterns from training 

data to be able to classify unknown cases211. Training set and test set are two important 

concepts that will also be mentioned throughout this section. In Figure 12 the pipeline of the 

machine learning process used for classification model building is shown. 

 

Figure 12. Building and validating gene classifier models pipeline.  
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To build and validate the gene classification models, 5-fold cross-validation resampling 

strategy was used. In 5-fold cross-validation method the training and testing sets were created 

by splitting the original data into five equally size subsets (five folds; 12 patients per subset in 

this case). In each learning-test iteration, the model was built using 4 folds, and was tested on 

the remaining partition212: four of the subsets (training set, composed by 48 patients) were 

used for training the classification models. The fifth subset (test set, composed by 12 patients) 

was used as an independent subset for evaluating the performance of the trained classifier. 

The process was repeated 5 times until all the subsets were used as a test set (Figure 13). 

 

Figure 13. Schematic representation of 5-fold cross-validation procedure. 

The overall prediction performance in each iteration was estimated as the average of the 

performance values obtained from the 5 test folds. Given the limited sample size of the 

training set and to get more robust classifiers, the 5-fold cross validation process was 

performed 500 times (500 iterations) and the average classification accuracy was estimated.  

Within each iteration, the classifier parameters (genes in this case) were selected by 

comparing expression means between LTS and CLAD patients (t-test comparison). Only the 

genes with a raw p-value below 0.01 in the differential gene expression analysis of the 8239 

initial filtered genes were candidate parameters to be part of the classifier (458 genes). Six 

different supervised classification algorithms, of distinct statistical nature, were used: diagonal 

discriminant analysis, fisher’s linear discriminant analysis, shrunken centroids discriminant 

analysis, least absolute shrinkage and selection operator (LASSO), penalized logistic regression 

and random forest. The reason for building classifiers using different methods is consistent 

with the “No-Free-Lunch theorem”, that states that “there is no universal model that works 

best for every problem”213. Furthermore, the number of genes to be used as biomarkers was 
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also optimized by building the classification models with different number of parameters: 

8, 10, 15, 20 and 25 genes. 

All the steps involved in the statistical process for biomarker discovery (building and validation 

classifiers) have been carried out using the CMA R package214. 

 

Figure 14. Schematic representation of the different mRNA classification models building. 

The overall process resulted in 75,000 classification models: for each 5-fold, 5 subsets were 

generated, thus 5 x 500 iterations resulted in 2500 training-test sets. In each training-test the 

selection of the genes was carried out and six different classification algorithms were tested in 

conjunction with 5 different classifier gene sets. Therefore, 6 classification algorithms x 5 

different classifier gene sets x 2500 training-test sets resulted in75,000 different models 

(Figure 14). 

The combinations of the different classification algorithms with the different gene sets were 

evaluated as an average of the performance of them in each iteration (an average of the 

performance of the 2500 training-test sets). Thereby, the final result of the computational 

process was the performance average of 30 classification models.  

For visualizing and comparing classifiers based on their performance, receiver operating 

characteristics (ROC) graphs were used215.The area under the ROC curve (AUC) values were 

calculated to compare the different classification models and to summarize their classification 

accuracy. A higher AUC value corresponds to a better classification. Furthermore, 

misclassification rate was also evaluated in order to conclude which combination had the best 

discriminatory ability. 
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3.2.1.1.3.6 Validation of Microarray Gene Expression Data by RT-qPCR 

TaqMan low-density arrays (TLDAs) were employed to confirm the microarray hybridization 

results as an independent technique. More specifically, the expression pattern of 21 target 

genes, previously identified by microarrays were measured by RT-qPCR employing the 7900 HT 

Fast Real-Time PCR System with 384-well block module (Applied Biosystems™, Foster City, CA, 

USA) using this microfluidic card technology on the same set of samples used for microarray 

experiments. Thermal cycling conditions were as follow 50°C for 2 min, 94.5°C for 10 min 

followed by 40 cycles of 97°C for 30 sec and 59.7 °C for 60 sec.  

Besides these 21 genes, also two housekeeping genes were included in the cards. In order to 

select the housekeeping genes, the coefficient of variation (CV) of all genes in the microarrays 

was calculated to determine which reference genes were most stably expressed across the 

evaluated samples. In addition, gene intensity was also considered. Hence, GAPDH (high 

intensity) and TUBGCP4 (medium intensity) were selected and all samples were normalized 

over them. 

Customised 384-well TLDAs cards were produced by Applied Biosystems™ (Foster City, CA, 

USA) using information for optimized gene probes provided by Applied Biosystems™ 

Transcriptome Analysis Console Software ver.4.0. Twenty-four TaqMan assays (21 targets, 2 

endogenous controls and 1 manufacturing control) were plated in duplicate for each sample 

with eight samples per TLDA card. One of the samples was used as an internal control for every 

TLDA in order to evaluate inter-assay variation.  

Total RNA samples were reverse transcribed into cDNA using the SuperScript™ IV VILO™ 

Master Mix cDNA Synthesis Kit (Invitrogen) according to manufacturer’s instructions. 500 ng of 

total extracted RNA were used as starting material for each sample. Pre-designed hydrolysis 

probe-based TaqMan Gene Expression Assays and Taqman Universal Master Mix II, no UNG 

(Thermo Fisher Scientific) were used.  

Prior to the analysis, the shape of all the amplification curves was checked in order to 

eliminate outlier amplifications. A quality control was also carried out to determine if there 

was any sample or gene that should be eliminated from the study in order to improve its final 

quality.  

Gene expression values were calculated by the relative threshold cycle (CRT) method. The 

relative threshold cycle CRT indicates the cycle number taken to reach an automatically 

determined threshold of quantification. CRT values were determined using the Relative 

Quantification module of Thermo Fisher Cloud Software (Thermo Fisher Scientific). 

To quantify the levels of mRNA, the expression of the target genes were normalized to the 

geometric mean of the 2 selected housekeeping genes216 and the results were presented as 

relative expression of the cDNA from the LTS samples versus the CLAD samples according to 

the 2-Cq method217. Results were analysed employing standard 2-class unpaired t test. 

  



METHODS AND RESULTS 
 

54 

Finally, the microarray and RT-qPCR gene linear FC values were analysed in order to assess the 

degree of correlation between both technologies. A data transformation (-1/linear FC) was 

applied to the genes whose linear FC was under 1 in order to compare the data of both 

technologies. 

3.2.1.2 microRNA EXPRESSION ANALYSES BLOCK 

3.2.1.2.1 Microarray Analysis 

Microarrays service was carried out at High Technology Unit (UAT) at Vall d’Hebron Research 

Institut (VHIR), Barcelona (Spain). Affymetrix microarray platform and the Genechip miRNA 

array cartridges 4.0 (Affymetrix UK Ltd., High Wycombe, United Kingdom) were used for this 

experiment. This arrays contain 41404 probes from 203 different organisms, of which 6631 

miRNA probe sets correspond to Homo sapiens 218  

Starting material was 250 ng of total RNA for each sample. miRNA in the sample was labelled 

using Flash Tag Biotin HSR RNA Labelling kit (Thermofisher - Affymetrix, UK) following the 

manufacturer’s instructions. 

3.2.1.2.2 Statistical and Bioinformatics Methodology 

The miRNA data were analysed using the same pipeline as detailed in the gene section. The 

specific aspects of the miRNA analysis are detailed below. Bioinformatic analyses were 

performed at the Statistics and Bioinformatics Unit (UEB) from the Vall d'Hebron Research 

Institute (VHIR). 

3.2.1.2.2.1 Microarray Quality Control 

As in the case of gene expression analysis, different types of quality controls were performed 

before and after array normalization in the analysis to check if all the arrays were suitable for 

normalization process, and check if normalized data were appropriated for differential 

expression analysis. 

Different approaches to assess the quality of the arrays were conducted: PCA, heatmap 

depicting the distances between arrays and hierarchical clustering. After performing the 

different outlier-detection approaches, they were compared in order to decide whether an 

array should be removed. 

3.2.1.2.2.2 Microarray Data Pre-processing: Normalization and Filtering 

In order to make data comparable and remove technical biases, the arrays were pre-processed 

using the RMA normalization algorithm.200,201. After the data were normalised, some quality 

controls were performed again. 

In order to increase statistical power and reduce unnecessary noise, miRNAs probes from 

species different from Homo sapiens were removed. 
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3.2.1.2.2.3 Differential microRNA Expression Analysis  

After the dataset was cleaned (filtered, normalized and without outliers) the next step was to 

perform the differential miRNA expression analysis. The analysis to select differentially 

expressed miRNAs was based on adjusting a linear model with empirical Bayes moderation of 

the variance.202 The comparison between LTS vs CLAD patients yielded a list of miRNAs sorted 

from most to least differentially expressed. Benjamini & Hocherg method203 was applied for 

multiple testing corrections. 

A volcano plot was used to represent the biological FC and the statistical differences between 

both groups. A FC, greater than 0.75 (in absolute terms) and a raw p-value lower than 0.01 

were defined as the minimum to consider potential significance for discrimination between 

both groups. 

In the same way, two heatmaps using differentially mature miRNAs with a raw p-value below 

0.01 were plotted to visualize the expression profiles between the two experimental 

conditions in order to find common patterns of regulation; the former based on hierarchical 

clustering and the latter relying on supervised clustering of the 2 experimental groups. 

3.2.1.2.2.4 Identification of microRNA Gene Targets 

Since miRNAs regulate gene expression by binding to their target mRNAs and repressing the 

protein translation219, miRNA target sites have been catalogued in databases based on 

experimental validation and computational prediction using a variety of algorithms. 

MultiMiR R package was used for the identification of miRNA gene targets220.This package 

enables retrieval of miRNA-target interactions from 14 different databases MiRNA targets will 

be used in the pathway enrichment analysis of the differentially expressed experimentally 

validated miRNA gene targets (included in the Integrative Analysis Block section). 

3.2.1.2.2.5 microRNA Classification Model Building 

The pipeline of the machine learning process used for miRNA classification model building was 

the same as the one described in gene expression analysis block (Figure 12). The classification 

models were built and validated using 5-fold cross-validation strategy (Figure 13). 

The only difference regarding the gene classification model building was the number of 

supervised classification algorithms performed; in this case, five algorithms, instead of six were 

used (Figure 15). In order to build the miRNA classification models, from the initial 6631 

miRNAs that corresponds to Homo sapiens, only the mature miRNAs with a raw p-value below 

0.01 were postulated as candidates to be part of the classifier. 
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Figure 15. Schematic representation of the different miRNA classification models building. 

The overall process resulted in 62,500 classification models: for each 5-fold, 5 subsets were 

generated, thus 5 x 500 iterations resulted in 2500 training-test sets. In each training-test the 

selection of the miRNAs was carried out and five different classification algorithms were tested 

in conjunction with 5 different classifier miRNA sets. Therefore, 5 classification algorithms x 5 

different classifier miRNA sets x 2500 training-test sets resulted in 62,500 different models 

(Figure 15). 

The combinations of the different classification algorithms with the different miRNAs sets were 

evaluated as an average of the performance of them in each iteration (an average of the 

performance of the 2500 training-test sets). Thereby, the final result of the computational 

process was the performance average of 25 classification models.  

As in the case of gene section, for visualizing and comparing classifiers based on their 

performance, ROC graphs were used215. The AUC values were calculated to compare the 

different classification models and to summarize their classification accuracy. A higher AUC 

value corresponds to a better classification. Furthermore, misclassification rate was also 

evaluated in order to conclude which combination had the best discriminatory ability. 

3.2.1.2.2.6 Validation of Microarray microRNA Expression Data by RT-qPCR 

Taqman low-density arrays (TLDAs) were employed to confirm the microarray hybridization 

results as an independent technique. More specifically, the expression pattern of 21 target 

mature miRNAs previously identified by microarrays were measured by RT-qPCR employing 

the 7900 HT Fast Real-Time PCR System with 384-well block module (Applied Biosystems™, 

Foster City, CA, USA) using this microfluidic card technology on the same set of samples used 
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for microarray experiments. In this case, thermal cycling conditions were as follow 92°C for  

10 min followed by 40 cycles of 95°C for 1 sec and 60 °C for 20 sec.  

Besides these 21 miRNAs, also two housekeeping miRNAs were included in the cards. In order 

to select the housekeeping miRNAs, the CV of all miRNAs in the microarrays was calculated to 

determine which reference mature miRNAs were most stably expressed across the evaluated 

samples. In addition, miRNA intensity was also considered. Hence, hsa-miR-106b-3p (high 

intensity) and hsa-miR-877-5p (medium intensity) were selected and all samples were 

normalized over them. 

Customised 384-well TLDAs cards were produced by Applied Biosystems™ (Foster City, CA, 

USA) using information provided for mature miRNA probes. Twenty-four TaqMan assays  

(21 targets, 2 endogenous controls and 1 manufacturing control) were plated in duplicate for 

each sample with eight samples per TLDA card. One of the samples was used as an internal 

control for every TLDA in order to evaluate inter-assay variation.  

2 l of total extracted RNA of each sample was reverse transcribed into cDNA using an 

adapter-based Taqman® Advanced miRNA cDNA Synthesis Kit (Thermo Fisher Scientific) with 

preamplification step according to the manufacturer’s protocol. Predesigned hydrolysis probe-

based TaqMan Advanced miRNA Assays and Taqman Fast Advanced Master Mix (Thermo 

Fisher Scientific) were used. 

Prior to the analysis, the shape of all the amplification curves was checked in order to 

eliminate outlier amplifications. A quality control was also carried out to determine if there 

was any sample or miRNA that should be eliminated from the study in order to improve its 

final quality.  

miRNA expression values were calculated by the relative threshold cycle (CRT) method. The 

relative threshold cycle CRT indicates the cycle number taken to reach an automatically 

determined threshold of quantification. CRT values were determined using the Relative 

Quantification module of Thermo Fisher Cloud Software (Thermo Fisher Scientific). 

To quantify the levels of miRNA, the expression of the target mature miRNAs were normalized 

to the geometric mean of the 2 selected housekeeping mature miRNAs216 and the results were 

presented as relative expression of the cDNA from the LTS samples versus the CLAD samples 

according to the 2-Cq method217. Results were analysed employing standard 2-class unpaired 

t test.  

Finally, the microarray and RT-qPCR miRNA linear FC values were analysed in order to assess 

the degree of correlation between both technologies. A data transformation (-1/linear FC) was 

applied to the miRNAs whose linear FC was under 1 in order to compare the data of both 

technologies.  
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3.2.1.3 INTEGRATIVE ANALYSES BLOCK 

After obtaining the results of the gene and miRNA blocks separately, both expression profiles 

were simultaneously analysed to move a step forward in the biological interpretation of the 

combined results. 

The analyses were performed following two different integrative approaches:  

• Correlation analysis of DEG and differentially expressed mature miRNA expression 

values. 

• Analysis of biological significance of the differentially expressed experimentally 

validated miRNA gene targets.  

3.2.1.3.1 Statistical and Bioinformatics Methodology 

Bioinformatic analyses were performed at the Statistics and Bioinformatics Unit (UEB) from the 

Vall d'Hebron Research Institute (VHIR). 

3.2.1.3.1.1 Correlation Analysis of DEG and Differentially Expressed microRNA 

Expression Values 

The main objective of this sub-study was to assembly DEG and differentially expressed miRNAs 

expression values by integrative analysis in order to find correlated elements between them. 

The analyses were performed using the mixOmics R package221. 

Data Pre-processing: Filtering  

The gene and miRNA data sets were both properly filtered using the same statistically criteria 

in order to just select the most significative features. The elements with a raw p-value below 

0.01 were only included in the analysis: 458 genes and 36 mature miRNAs. 

Since the miRNA data set has one less sample that was discarded during the quality control 

analyses in the miRNA expression analysis block, this sample was removed from the gene data 

set too for further correlation analyses. 

Canonical Correlation Analysis 

The correlation structure between the paired genetic data sets (mRNA and miRNA) was 

performed based on regularized Canonical Correlation Analysis2 (rCCA), due to the amount of 

variables in the mRNA data set (genes) was higher than the number of experimental units 

(patients).

 
2 Canonical Correlation Analysis (CCA) is a multivariate exploratory approach to highlight correlations between two 

sets of quantitative variables acquired on the same experimental units. CCA seeks for linear combinations of the 

variables to reduce the dimensions of the data sets trying to maximize the correlation between the two variables 

(the canonical correlation)309. 
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The correlations between genes and miRNAs were graphically displayed with a Clustered 

Image Map. A relevance network showing the connections between genes and miRNAs 

applying a rCCA correlation value threshold of 0.5 was also plotted. 

3.2.1.3.1.2 Pathway Enrichment Analysis of the Differentially Expressed Experimentally 

Validated microRNA Gene Targets  

The goal of this part was to perform a biological significance analysis of the genes targeted by 

differentially expressed miRNAs that were also found differentially expressed in the gene 

expression analysis (Figure 10) in order to understand their biological implications. As in the 

previous case, only elements with a raw p-value below 0.01 were included in the analysis:  

458 genes and 36 mature miRNAs. 

Gene targets for the 36 mature miRNAs were retrieved using multiMiR Bioconductor’s 

package.220 The resulting validated gene targets were intersected with the top 458 DEG to find 

the subset of differentially expressed validated gene targets. Finally, an enrichment analysis 

was performed for this subset of genes across GO and Reactome databases. The reference set 

taken in these analyses was the whole human genes annotated. GO and Reactome terms were 

considered enriched under a p-value below 0.05. 

An enrichment analysis for the miRNA with the highest number of validated differentially 

expressed gene targets was also performed across GO database. 

3.2.2 TRANSCRIPTOMIC RESULTS 

3.2.2.1 GENE EXPRESSION ANALYSES BLOCK 

3.2.2.1.1 Differential Gene Expression Analysis 

None of the samples were discarded in quality control analyses; therefore, the 60 samples 

were used for the differential expression analysis. After non-specific filtering, 8239 genes were 

included in the analysis.  

Gene expression analysis revealed 458 DEG (raw p-value below 0.01) between LTS and CLAD 

subjects. Among them, 201 genes were up-regulated and 257 genes were down-regulated in 

LTS compared to CLAD individuals. A complete list with the top 50 DEG is provided in 

Supplementary Information section. 

A heatmap comparing LTS and CLAD patients using DEG with a raw p-value below 0.05 and 

absolute logarithmic FC above 0.5 was performed, giving a total of 112 genes included. 

Hierarchical clustering showed a relative good classification of samples (columns), except for a 

few samples of both groups, which were classified within the other group. Despite this fact, 

the heatmap showed a clear different expression profile between samples of LTS and CLAD 

condition (Figure 16). 
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Figure 16. Hierarchical clustering of the two experimental groups based on their gene expression 

profiles. Each column represents a patient, being purple LTS group and yellow CLAD group, whereas 

each row represents a gene. For each gene, red indicates up-regulated expression, and blue indicates 

down-regulated expression. 

A volcano plot showing DEG with a raw p-value below 0.01 and absolute logarithmic FC above 

1 was performed (Figure 17). In LTS group, most up-regulated DEG correspond to RPS26, 

RPS26P11 and JCHAIN, whereas the most down-regulated DEG were MMP8, LTF, OLFM4, 

TCN1, OLR1, CAMP, FCGR1B and ANKRD22.  
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Figure 17. Volcano plot of DEG between LTS compared to CLAD patients. Each dot of the graph 

corresponds to a gene. The fold difference in expression between LTS and CLAD patients is graphed 

on the x axis (logarithm of the base 2-fold changes), giving an idea of the magnitude of the change. 

The p-value for each gene is graphed on the y axis (negative logarithm to the base 10 of the t-test p-

values). The vertical dashed lines correspond to logarithmic fold difference of -1.0 and 1.0. The purple 

dots represent up and down-regulated DEG whose p-value is below 0.01 and absolute logarithmic2 

fold change is above 1. The blue dots denote genes that do not fit that criteria of DEG. 

3.2.2.1.2 Pathway Enrichment Analysis  

Analyses of biological significance were done including those genes with a raw p-value below 

0.05 and absolute log FC value above 0.4 (236 genes included). 

The most significant GO biological process terms enriched in the gene list were related to 

neutrophil mediated processes (Table 6). Similarly, pathways significantly enriched in this gene 

list using Reactome database were related to innate immunity (Table 7). 

Graphically, these results were represented in dot plots of the top enriched pathways  

(Figure 18). An enrichment map of the top enriched GO pathways grouped by similarity is 

shown in Figure 19. 
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Table 6. Pathway enrichment analysis representing top 10 GO enriched biological processes among DEG 

between LTS and CLAD patients. Enriched terms are ranked based on the FDR value. 

Term ID Gene ratio p-value FDR 

Neutrophil activation GO:0042119 46/199 6.54E-28 1.88E-24 

Granulocyte activation GO:0036230 46/199 1.16E-27 1.88E-24 

Neutrophil degranulation GO:0043312 45/199 2.21E-27 2.39E-24 

Neutrophil activation involved in immune response GO:0002283 45/199 2.95E-27 2.39E-24 

Neutrophil mediated immunity GO:0002446 45/199 8.34E-27 5.20E-24 

Leucocyte degranulation GO:0043299 46/199 9.64E-27 5.20E-24 

Myeloid cell activation involved in immune response GO:0002275 46/199 2.14E-26 9.89E-24 

Leucocyte migration GO:0050900 24/199 3.54E-10 1.44E-07 

Immune response-regulating cell surface receptor 
signalling pathway 

GO:0002768 20/199 5.74E-09 2.07E-06 

Immune response-regulating signalling pathway GO:0002764 24/199 6.96E-09 2.25E-06 

Table 7. Pathway enrichment analysis representing top 10 Reactome enriched pathways among DEG 

between LTS and CLAD patients. Enriched terms are ranked based on the FDR value. 

Description ID Gene ratio p-value FDR 

Neutrophil degranulation R-HSA-6798695 43/146 4.29E-24 2.44E-21 

Antimicrobial peptides R-HSA-6803157 9/146 7.52E-08 2.14E-05 

Role of phospholipids in phagocytosis R-HSA-2029485 6/146 1.24E-06 2.35E-04 

Cell surface interactions at the vascular wall R-HSA-202733 10/146 1.77E-05 2.52E-03 

FCGR activation R-HSA-2029481 4/146 2.36E-05 2.69E-03 

Fibronectin matrix formation R-HSA-1566977 3/146 6.78E-05 6.44E-03 

Activation of Matrix Metalloproteinases R-HSA-1592389 5/146 9.63E-05 7.85E-03 

CD28 dependent PI3K/Akt signalling R-HSA-389357 4/146 2.10E-04 1.50E-02 

Class A/1 (Rhodopsin-like receptors) R-HSA-373076 14/146 2.74E-04 1.74E-02 

Costimulation by the CD28 family R-HSA-388841 6/146 4.93E-04 2.81E-02 
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Figure 18. Dot plots of the fifteen and ten statistically significant top enriched pathways using the GO 

(A) and Reactome (B) databases. The color of circles depends on the p-value and the size depends on 

the number of genes included in the pathway. Gene ratio is the ratio between the genes in the data 

that belong to that pathway and the total number of genes in the pathway. 
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Multiple GO pathway clusters can be identified, highlighting those related to the immune 

response and neutrophils (Figure 19). 

 

Figure 19. Enriched map of the top enriched GO Biological Processes pathways grouped by similarity. 

Nodes are colored by p-value and their size reflects the number of genes found in that term. 

3.2.2.1.3 Gene Classification Model Building  

The classification capacity combining different classifier gene sets with different classification 

methods is displayed in Table 8. The best discriminatory power was provided by the 

combination of the LASSO classifier algorithm using 25 genes (AUC of 0.87, misclassification 

value of 0.21) (Figure 20). The 25 genes included in the classifier model are detailed in Table 9. 

Actually, the combination of the LASSO algorithm using smaller set of genes (20 or 15 genes) 

provided similar performances. 

The performances of all the models obtained are acceptable, since the misclassification rate is 

below the 26% and AUC values are over the 80% for all the combinations.  
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Table 8. Performance of the 30 gene classification models derived from the combination of the different 

classifier gene sets with the 6 classification algorithms to discriminate LTS and CLAD patients. The best 

classification model is marked in bold. SN: sensitivity, SP: specificity, AUC: area under the curve. 

Number  
of genes 

Classification algorithms Misclassification SN SP AUC 

8 

Diagonal Discriminant Analysis 0.25 0.71 0.79 0.82 
Penalized Logistic Regression 0.24 0.77 0.77 0.84 
Random Forest 0.26 0.74 0.75 0.82 
Fisher’s Linear Discriminant Analysis 0.23 0.76 0.78 0.84 
Lasso 0.25 0.76 0.75 0.82 
Shrunken Centroids Discriminant Analysis 0.25 0.71 0.79 0.82 

10 

Diagonal Discriminant Analysis 0.25 0.70 0.80 0.82 
Penalized Logistic Regression 0.23 0.78 0.78 0.85 
Random Forest 0.26 0.74 0.76 0.82 
Fisher’s Linear Discriminant Analysis 0.23 0.76 0.79 0.85 
Lasso 0.24 0.78 0.75 0.84 
Shrunken Centroids Discriminant Analysis 0.25 0.71 0.80 0.82 

15 

Diagonal Discriminant Analysis 0.25 0.70 0.81 0.81 
Penalized Logistic Regression 0.22 0.78 0.79 0.86 
Random Forest 0.26 0.73 0.77 0.83 
Fisher’s Linear Discriminant Analysis 0.22 0.77 0.80 0.86 
Lasso 0.22 0.79 0.78 0.86 
Shrunken Centroids Discriminant Analysis 0.25 0.70 0.81 0.81 

20 

Diagonal Discriminant Analysis 0.25 0.69 0.82 0.81 
Penalized Logistic Regression 0.23 0.77 0.77 0.84 
Random Forest 0.25 0.73 0.77 0.83 
Fisher’s Linear Discriminant Analysis 0.24 0.76 0.78 0.84 
Lasso 0.21 0.79 0.79 0.87 
Shrunken Centroids Discriminant Analysis 0.25 0.69 0.82 0.81 

25 

Diagonal Discriminant Analysis 0.25 0.69 0.82 0.81 
Penalized Logistic Regression 0.26 0.74 0.74 0.82 
Random Forest 0.25 0.73 0.78 0.83 
Fisher’s Linear Discriminant Analysis 0.26 0.73 0.75 0.81 
Lasso 0.21 0.79 0.80 0.87 
Shrunken Centroids Discriminant Analysis 0.25 0.69 0.82 0.81 
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Figure 20. ROC curves showing the accuracy of the gene classification models derived from the 

combination of the 25 classifier genes with the 6 classification algorithms. dlda: Diagonal Discriminant 

Analysis; plr: Penalized Logistic Regression; rf: Random Forest; fda: Fisher’s Linear Discriminant 

Analysis; Lasso: least absolute shrinkage and selection operator; scda: Shrunken Centroids 

Discriminant Analysis. 

As can be observed in Table 8 and Figure 20 above, the measures obtained from the  

6 different classification methods within each different classifier gene set are homogeneous. 

This means that the gene classification models are robust, as their performances are not 

conditioned by the classification algorithm used. 
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Table 9. List of the 25 genes finally used for building the gene classification models. Genes chosen for 

subsequent RT-qPCR validation are identified with an *. 

Classification 
rank 

Gene symbol 
Entrez 

gene-ID 
Gene-name 

Linear FC  
LTS vs CLAD 

FDR 

1 *ANXA3 306 Annexin A3 0.514 0.0003 

2 *FCGR1B 2210 Fc fragment of IgG receptor Ib 0.488 0.0008 

3 *TNFRSF21 27242 
TNF receptor superfamily 

member 21 
1.387 0.0025 

4 *NRP1 8829 Neuropilin 1 1.493 0.0032 

5 *LILRA4 23547 
Leucocyte immunoglobulin 

like receptor A4 
1.544 0.0025 

6 *SLC22A4 6583 Solute carrier family 22 member 4 0.674 0.0053 

7 *HCK 3055 
HCK proto-oncogene, 

Src family tyrosine kinase 
0.773 0.0169 

8 FCGR1CP 100132417 
Fc fragment of IgG receptor Ic, 

pseudogene 
0.568 0.0035 

9 MGAM2 93432 maltase-glucoamylase 2 (putative) 0.522 0.0035 

10 *KCNJ15 3772 
Potassium voltage-gated channel 

subfamily J member 15 
0.565 0.0032 

11 *PNPLA2 57104 
Patatin like phospholipase 

domain containing 2 
0.768 0.012 

12 *CA4 762 Carbonic anhydrase 4 0.739 0.0336 

13 *ACSL1 2180 
Acyl-CoA synthetase long chain 

family member 1 
0.563 0.0025 

14 TGM2 7052 transglutaminase 2 0.795 0.0184 

15 *MMP8 4317 Matrix metallopeptidase 8 0.27 0.0039 

16 *FCGR2A 2212 Fc fragment of IgG receptor IIa 0.747 0.0169 

17 *DHRS13 147015 Dehydrogenase/reductase 13 0.685 0.0035 

18 ZNF438 220929 zinc finger protein 438 0.785 0.0336 

19 *LRRC6 23639 Leucine rich repeat containing 6 0.63 0.0025 

20 *BCL6 604 B cell CLL/lymphoma 6 0.636 0.0046 

21 SH3BP4 23677 SH3 domain binding protein 4 1.247 0.0184 

22 KCNJ2-AS1 400617 KCNJ2 antisense RNA 1 0.654 0.0025 

23 *TLR5 7100 Toll like receptor 5 0.717 0.0168 

24 *PROK2 60675 Prokineticin 2 0.658 0.0112 

25 WNK1 65125 
WNK lysine deficient 

protein kinase 1 
0.761 0.0435 
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3.2.2.1.4 Validation of Microarray Gene Expression Data by RT-qPCR 

RT-qPCR analyses employing TLDAs were performed on the same set of samples used for 

microarray experiments to confirm the expression results of a selected target gene list. 

Selected target genes for RT-qPCR experiments included 18 genes that were part of the gene 

classifier (identified with an * in Table 9), most of them also in the top table of DEG (see  

Table S-1 in Supplementary Information section), and 3 genes (Table 10) which had the highest 

FC of the 8239 genes included in the differential gene expression analysis. Thus, 21 target 

genes were analysed by RT-qPCR plus 2 housekeeping genes. 

Table 10. List of the three genes with the highest microarray FC that did not form part of the classifiers 

included in the RT-qPCR analyses. 

Gene top table rank Gene Symbol Entrez gene ID Gene name 
Linear FC  

LTS vs. CLAD 
FDR 

129 OLFM4 10562 Olfactomedin 4 0.413 0.0612 

26 LTF 4057 Lactotransferrin 0.364 0.0169 

82 TCN1 6947 Transcobalamin 1 0.428 0.0336 

None of the samples were discarded in RT-qPCR quality control analyses; therefore the 60 

samples were used for the differential expression analysis. The analysis of the control sample 

included in every TLDA showed very low inter-assay variability (CV of 0.75%). 

The RT-qPCR results for 20 of the 21 genes were consistent with the trend observed in the 

microarray analysis: up-regulation of TNFRSF21, LILRA4, NRP1 and down-regulation of ANXA3, 

MMP8, FCGR1B, LTF, TCN1, OLFM4, ACSL1, KCNJ15, LRRC6, BCL6, SLC22A4, HCK, DHRS13, 

FCGR2A, CA4, PROK2 and PNPLA2 were confirmed by RT-qPCR analysis TLR5 gene was 

differentially expressed when assessed by microarrays but not by RT-qPCR. Hence, RT-qPCR 

confirmed the differential expression of 95% of the genes selected by microarrays (Table 11 

and Figure 21). 
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Table 11. List of the genes validated using RT-qPCR ranked by FDR value. 

Gene Symbol 
Taqman mRNA 

Assay name 
CRT Linear FC p-value FDR 

TNFRSF21 Hs00377837_m1 -1.798 3.478 0.0000 0 

LILRA4 Hs01110096_g1 -2.081 4.231 0.0000 0 

NRP1 Hs01546498_m1 -1.382 2.606 0.0000 1E-05 

ANXA3 Hs00971415_m1 1.299 0.406 0.0000 4E-05 

MMP8 Hs01029057_m1 2.204 0.217 0.0001 0.0003 

FCGR1B Hs02387778_mH 0.709 0.612 0.0001 0.0004 

LTF Hs00914337_m1 1.894 0.269 0.0003 0.0007 

TCN1 Hs01055538_m1 1.331 0.397 0.0003 0.0008 

OLFM4 Hs00197437_m1 2.169 0.222 0.0009 0.0022 

ACSL1 Hs00960569_m1 0.732 0.602 0.0011 0.0022 

KCNJ15 Hs00158427_m1 0.804 0.573 0.0011 0.0022 

LRRC6 Hs00917166_m1 0.815 0.568 0.0015 0.0026 

BCL6 Hs01115888_m1 0.641 0.641 0.0025 0.0039 

SLC22A4 Hs01548716_m1 0.705 0.613 0.0027 0.0041 

HCK Hs01067405_m1 0.314 0.804 0.0043 0.0060 

DHRS13 Hs00376268_m1 0.388 0.764 0.0062 0.0081 

FCGR2A Hs01013402_gH 0.449 0.732 0.0114 0.0140 

CA4 Hs01088413_m1 0.786 0.579 0.0152 0.0177 

PROK2 Hs01587689_m1 0.551 0.683 0.0162 0.0179 

PNPLA2 Hs00982042_m1 0.324 0.799 0.0359 0.0378 

TLR5 Hs00152825_m1 0.254 0.838 0.0763 0.0763 

 

 

 

Figure 21. Relative gene expression of genes validated by RT-qPCR. Fold changes (RQ) are shown 

relative to CLAD group. On the x axis is reported the list of the 21 target genes analysed. On the y axis 

is reported the results of the relative quantification calculations or folds changes. Relative quantities 

are graphed on a logarithmic scale. Asterisks indicate differentially expressed genes (FDR<0.05; 

Student’s t-test).  
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Overall, from these 21 genes selected, 20 were validated by RT-qPCR and 8 DEG with a raw p-

value below 0.01 and absolute logarithmic FC above 1 were identified: 3 up-regulated DEG 

(TNFRSF21, LILRA4 and NRP1), and 5 down-regulated DEG (ANXA3, MMP8, LTF, TCN1 and 

OLFM4) in LTS group, compared to CLAD individuals. 

Gene expression results from both platforms were highly correlated; the sense of the change 

and the magnitude of FC values were very similar between the two technologies (correlation 

value between microarrays and qPCR techniques of 0.98). The FC values for each gene and 

technology are detailed in Supplementary Information section. 

3.2.2.2 microRNA EXPRESSION ANALYSES BLOCK 

3.2.2.2.1 Differential microRNA Expression Analysis 

One of the samples (corresponding to a CLAD patient) was discarded in quality control 

analyses; therefore 59 samples were used for the differential expression analysis. After 

removing miRNAs not belonging to Homo Sapiens, 6631 miRNAs were included and 2578 of 

which were mature miRNAs. FDR p-values were calculated, but no differences were found in 

miRNA expression between LTS and CLAD groups. Regarding raw p-values, miRNA expression 

analysis revealed 108 differentially expressed miRNAs between LTS and CLAD subjects with a 

raw p-value below 0.01. A complete list with the top 50 differentially expressed miRNAs is 

provided in Supplementary Information section. 

A volcano plot showing differentially expressed miRNAs with a raw p-value below 0.01 and 

absolute logarithmic FC above 0.75 was performed (Figure 22). In LTS group, non up-regulated 

differentially expressed miRNA was observed, whereas the down-regulated differentially 

expressed miRNAs were: snoRNA U78 and the matures miRNAs hsa-miR-223-5p 

(MIMAT0000280_st) and hsa-miR-26b-5p (MIMAT0000083_st). 
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Figure 22. Volcano plot of the differentially expressed miRNAs between LTS compared with CLAD 

patients. Each dot of the graph corresponds to a miRNA. The fold difference in expression between 

LTS and CLAD patients is graphed on the x axis (logarithm of the base 2-fold changes), giving an idea 

of the magnitude of the change. The p-value for each miRNA is graphed on the y axis (negative 

logarithm to the base 10 of the t-test p-values). The vertical dashed lines correspond to logarithmic 

fold difference of -0.75 and 0.75. The purple dots represent down-regulated differentially expressed 

miRNAs whose raw p-value is below 0.01 and absolute logarithmic2 fold change is above 0.75. The 

blue dots denote miRNAs that do not fit that criteria of differentially expressed miRNAs. 

Among the 108 differentially expressed miRNAs between LTS and CLAD patients, 36 were 

mature miRNAs: 15 mature miRNAs were up-regulated in LTS patients and 21 mature miRNAs 

were down-regulated in LTS patients. In subsequent analyses, only mature miRNAs were 

considered. 

Two heatmaps comparing LTS and CLAD patients using the differentially expressed mature 

miRNAs were performed. Hierarchical clustering showed a misclassification of samples 

(columns). Nevertheless, supervised clustering showed a different expression profile between 

samples of LTS and CLAD condition (Figure 23). 
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Figure 23. Clustering heatmaps of microarray data showing differential expression of miRNAs 

between LTS versus CLAD patients (A) Hierarchical clustering of the 2 experimental groups based on 

their miRNA expression profiles. Each column represents a patient, being purple LTS group and yellow 

CLAD group, whereas each row represents a miRNA. For each miRNA, red indicates up-regulated 

expression, and blue indicates down-regulated expression. (B) Supervised clustering of the 2 

experimental groups based on the state of the individuals.  

A 

B 
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3.2.2.2.2 microRNA Classification Model Building 

The classification capacity combining different classifier miRNA sets with different classification 

methods is displayed in Table 12. In this case, the best discriminatory power was provided by 

the combination of the Diagonal Discriminant Analysis classifier algorithm using 25 miRNAs 

(AUC of 0.78, misclassification value of 0.29) (Figure 24). 

It has been observed that, the higher number of variables (miRNAs), the lower the error. The 

performance of all the models with the lower number of miRNAs is far from acceptable, since 

it will misclassify almost the 50% (randomness of classification) of the individuals. The  

25 miRNAs included in the classifier model are detailed in Table 13. 

Table 12. Performance of the 25 miRNA classification models derived from the combination of the 

different classifier miRNAs sets with the 5 classification algorithms to discriminate LTS and CLAD 

patients. The best classification model is marked in bold. SN: sensitivity, SP: specificity, AUC: area under 

the curve. 

Number of 
miRNAs 

Classification algorithms Misclassification SN SP AUC 

8 

Diagonal Discriminant Analysis 0.42 0.62 0.57 0.60 

Penalized Logistic Regression 0.44 0.60 0.54 0.59 

Random Forest 0.45 0.57 0.57 0.57 

Lasso 0.48 0.56 0.54 0.53 

Shrunken Centroids Discriminant Analysis 0.42 0.61 0.56 0.59 

10 

Diagonal Discriminant Analysis 0.39 0.64 0.59 0.63 

Penalized Logistic Regression 0.42 0.63 0.56 0.62 

Random Forest 0.43 0.58 0.59 0.59 

Lasso 0.44 0.59 0.57 0.59 

Shrunken Centroids Discriminant Analysis 0.40 0.63 0.59 0.63 

15 

Diagonal Discriminant Analysis 0.34 0.67 0.65 0.69 

Penalized Logistic Regression 0.38 0.66 0.60 0.67 

Random Forest 0.38 0.63 0.64 0.66 

Lasso 0.37 0.65 0.62 0.67 

Shrunken Centroids Discriminant Analysis 0.35 0.67 0.65 0.69 

20 

Diagonal Discriminant Analysis 0.32 0.69 0.69 0.75 

Penalized Logistic Regression 0.34 0.70 0.63 0.71 

Random Forest 0.34 0.66 0.68 0.71 

Lasso 0.34 0.69 0.65 0.72 

Shrunken Centroids Discriminant Analysis 0.32 0.69 0.68 0.74 

25 

Diagonal Discriminant Analysis 0.29 0.70 0.72 0.78 

Penalized Logistic Regression 0.32 0.72 0.65 0.74 

Random Forest 0.32 0.67 0.71 0.75 

Lasso 0.32 0.72 0.68 0.76 

Shrunken Centroids Discriminant Analysis 0.30 0.70 0.71 0.77 
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Figure 24. ROC curves showing the accuracy of the miRNA classification models derived from the 

combination of the 25 classifier miRNAs with the 5 classification algorithms. dlda: Diagonal 

Discriminant Analysis; plr: Penalized Logistic Regression; rf: Random Forest; Lasso: least absolute 

shrinkage and selection operator; scda: Shrunken Centroids Discriminant Analysis. 
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Table 13. List of the 25 mature miRNAs finally used for building the miRNA classification models. miRNAs 

chosen for subsequent RT-qPCR validation are identified with an *. FDR values come from the 

differential miRNA expression analysis which included human mature miRNAs, pre-miRNAs, snoRNAs, 

CDBox RNAs, H/ACA Box RNAs and scaRNAs. 

 
miRNA ID 

Linear FC  
LTS vs. CLAD 

Number of validated 
gene targets 

p-value FDR 

1 *hsa-miR-223-3p 0.427 84 0.0014 0.4977 

2 *hsa-miR-942-3p 0.806 51 0.0044 0.5256 

3 *hsa-miR-543 0.783 96 0.0035 0.5256 

4 *hsa-miR-27b-3p 0.678 384 0.0017 0.5256 

5 *hsa-miR-let-7a-5p 0.833 589 0.0042 0.5256 

6 *hsa-miR-1290 0.901 59 0.0024 0.5256 

7 *hsa-miR-let-7g-5p 0.723 301 0.005 0.5256 

8 *hsa-miR-151b 0.733 24 0.0028 0.5256 

9 *hsa-miR-421 0.697 224 0.0077 0.5754 

10 *hsa-miR-let-7f-5p 0.676 361 0.0061 0.5425 

11 *hsa-miR-26b-5p 0.488 1864 0.0087 0.5811 

12 *hsa-miR-1180-3p 1.244 60 0.0036 0.5256 

13 hsa-miR-4715-3p 1.078 99 0.0092 0.5909 

14 *hsa-miR-4732-3p 1.266 64 0.0041 0.5256 

15 *hsa-miR-194-5p 0.716 70 0.0098 0.5930 

16 hsa-miR-6864-3p 1.078 209 0.006 0.5381 

17 *hsa-miR-489-5p 0.909 1 0.0039 0.5256 

18 *hsa-miR-4639-5p 1.138 63 0.0036 0.5256 

19 *hsa-miR-6808-3p 1.164 34 0.0037 0.5256 

20 *hsa-miR-7108-5p 1.259 48 0.0086 0.5811 

21 *hsa-miR-151a-5p 0.825 56 0.006 0.5381 

22 hsa-miR-6511a-3p 1.226 68 0.0068 0.5754 

23 hsa-miR-3607-3p 0.904 92 0.0046 0.5256 

24 hsa-miR-653-5p 0.914 65 0.0074 0.5754 

25 hsa-miR-567 0.904 163 0.0053 0.5256 
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3.2.2.2.3 Validation of Microarray microRNA Expression Data by RT-qPCR 

Just like the gene validation study, RT-qPCR analyses employing TLDAs were performed on the 

same set of samples used for microarray experiments to confirm the expression results of a 

selected target mature miRNAs list. 

Selected target miRNAs for RT-qPCR experiments included 19 mature miRNAs that were part 

of the miRNA classifier (identified with an * in Table 13) (see Table S-2 in Supplementary 

Information section), 1 mature miRNA (hsa-miR-6734-3p) which had the lower raw p-value of 

the 2578 mature miRNA included in the differential miRNA expression analysis and that was 

not included in the miRNA classifier and 1 mature miRNA (hsa-miR-6516-5p) detected in the 

integrative analysis which had a relevant negative correlation with DEG (Table 14). Thus, 21 

target mature miRNAs were analysed by RT-qPCR plus 2 housekeeping genes. 

Table 14. List of the two mature miRNAs that did not form part of the classifiers included in the RT-qPCR 

analyses. FDR values come from the differential miRNA expression analysis which included human 

mature miRNAs, pre-miRNAs, snoRNAs, CDBox RNAs, H/ACA Box RNAs and scaRNAs. 

 
miRNA name 

Linear FC  
LTS vs. CLAD 

Number of validated  
gene targets 

p-value FDR 

1 hsa-miR-6734-3p 1.115 209 0.0018 0.5256 

2 hsa-miR-6516-5p 0.715 329 0.0082 0.5811 

Two of the samples were discarded in the RT-qPCR quality control analysis and the sample 

previously discarded in the microarray miRNA expression analysis, was also not included in RT-

qPCR validation experiments; therefore 57 samples (30 LTS and 27 CLAD) were used for the 

differential expression analysis. 

The analysis of the control sample included in every TLDA showed very low inter-assay 

variability (CV of 0.56%). 

The results showed that 13 targets were not amplified during RT-qPCR experiments, so only 8 

of the 21 mature miRNAs (38.09%) were included in the differential expression analysis. Based 

on the raw p-value 4 mature miRNAs were differentially expressed between LTS and CLAD 

groups: down-regulation of hsa-miR-194-5p, hsa-miR-151b, hsa-miR-26b-5p and hsa-miR-421 

were confirmed in LTS patients by RT-qPCR analysis Conversely, hsa-miR-223-3p, hsa-miR-

1180-3p, hsa-miR-543 and hsa-let-7g-5p were differentially expressed when the microarray 

was assessed but not when RT-qPCR was performed. Hence, RT-qPCR confirmed the 

differential expression of 19.05% of the mature miRNAs selected by microarrays (Table 15 and 

Figure 25). 
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Table 15. List of the miRNAs amplified using RT-qPCR ranked by FDR value. 

miRNA ID 
Taqman Advanced 

miRNA Assay ID 
CRT Linear FC p-value FDR 

hsa-miR-194-5p 477956_mir 0.522 0.696 0.0096 0.0464 

hsa-miR-151b 477811_mir 0.396 0.760 0.0103 0.0464 

hsa-miR-26b-5p 478418_mir 0.522 0.696 0.0218 0.0654 

hsa-miR-421 478088_mir 0.342 0.789 0.0422 0.0950 

hsa-miR-223-3p 477983_mir 0.543 0.687 0.0636 0.1117 

hsa-miR-1180-3p 477869_mir  -0,145 1.106 0.1095 0.1408 

hsa-miR-543 478155_mir 0.441 0.737 0.1947 0.2190 

hsa-let-7g-5p 478580_mir 0.146 0.904 0.4373 0.4373 

 

 

Figure 25. Relative expression of mature miRNA amplified by RT-qPCR. Fold changes (RQ) are shown 

relative to CLAD group. On the x axis is reported the list of the target miRNA analysed. On the y axis is 

reported the results of the relative quantification calculations. Relative quantities are graphed on a 

linear scale. Asterisks indicate differentially expressed miRNAs (raw p-value<0.05; Student’s t-test). 

Overall, 4 down-regulated differentially expressed miRNAs with a raw p-value below 0.05 and 

absolute linear FC above 0.6 were identified in LTS group: hsa-miR-151b, hsa-miR-194-5p, hsa-

miR-26b-5p and hsa-miR-421. 

Mature miRNA expression results from both platforms were highly correlated; the sense of the 

change and the magnitude of FC values were very similar between the two technologies 

(correlation value between microarrays and qPCR techniques of 0.95). The FC values for each 

miRNA and technology are detailed in Supplementary Information section. 
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3.2.2.3 INTEGRATIVE ANALYSES BLOCK 

3.2.2.3.1 Correlation Analysis of DEG and Differentially Expressed microRNA Expression 

Values  

The Clustered Image Map (Figure 26) showed intense positive and negative correlation 

patterns between some miRNA and some gene clusters. 

 

Figure 26. Clustered Image Map (Euclidean distance, Complete linkage) displaying the correlation 

structure between the elements. Each colored block represents an association between miRNAs and 

genes, spanning a range of colors from blue (negative correlation) to red (positive correlation).  
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A relevance network was plotted, showing those elements connected with a rCCA correlation 

value above 0.5, and depicting the positive or negative correlation by the color of the lines 

(Figure 27). 

 

Figure 27. Relevance correlation network between miRNAs and genes with a rCCA correlation value 

higher than 0.5. The color of the lines indicates the direction of the association between the elements 

(red marks positive correlation and green marks negative correlation).MIMAT0030417_st, 

MIMAT0019856_st and MIMAT0000280_st are the probe IDs of hsa-miR-6516-5p, hsa-miR-4732-5p 

and hsa-miR-223-5p, respectively. 

None of the genes included in the correlation network were validated targets for the  

3 miRNAs. 
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3.2.2.3.2 Pathway Enrichment Analysis of the Differentially Expressed Experimentally 

Validated microRNA Gene Targets  

The analysis was performed across the validated multiMiR databases for the subset of the  

36 mature miRNAs differentially expressed (raw p-value below 0.01). A total of 4791 validated 

unique gene targets were found for the 36 miRNAs analysed, corresponding to 6929 individual 

interactions. 

The resulting validated gene targets were intersected with the top 458 DEG derived from the 

gene expression analysis (see 3.2.2.1 Gene Expression Analysis Results section) to find the 

subset of validated genes targets that were differentially expressed. A total of 113 genes, 

among the 458 DEG, were also found in the list of 4791 validated target genes (intersecting 

genes); corresponding to 30 miRNAs (Figure 28). 

 

Figure 28. Algorithm for the pathway enrichment analysis of the differentially expressed 

experimentally validated miRNA gene targets. 

The list of 113 differentially expressed validated gene targets was submitted to pathway 

analysis. The most significant GO biological process terms enriched in the gene list were 

related to neutrophil mediated processes (Table 16). Pathways significantly enriched in this 

gene list using Reactome database were related to CD28 costimulation and neutrophil 

degranulation (Table 17).  

Graphically, these results were represented in dot plots of the top enriched pathways  

(Figure 29). 

  



Part II. Transcriptomic analyses – Integrative analyses 
 

81 

 

Table 16. Pathway enrichment analysis representing top 10 GO enriched biological processes among 

differentially expressed validated target genes between LTS and CLAD patients. Enriched terms are 

ranked based on the FDR value. 

Term ID Gene ratio p-value FDR 

T cell differentiation in thymus GO:0033077 5/105 4.21e-05 8.42e-02 

Homeostasis of number of cells GO:0048872 7/105 5.50e-04 2.64e-01 

Neutrophil degranulation GO:0043312 10/105 6.26e-04 2.64e-01 

Neutrophil activation involved in 
immune response 

GO:0002283 10/105 6.56e-04 2.64e-01 

Neutrophil activation GO:0042119 10/105 7.67e-04 2.64e-01 

Neutrophil mediated immunity GO:0002446 10/105 7.91e-04 2.64e-01 

T cell differentiation GO:0030217 6/105 2.26e-03 3.53e-01 

Regulation of erythrocyte differentiation GO:0045646 3/105 2.42e-03 3.53e-01 

Protein autophosphorylation GO:0046777 6/105 2.81e-03 3.53e-01 

Response to starvation GO:0042594 5/105 4.13e-03 3.53e-01 

Table 17. Pathway enrichment analysis representing top 10 Reactome enriched pathways among 

differentially expressed validated target genes between LTS and CLAD patients. Enriched terms are 

ranked based on the FDR value. 

Term ID Gene ratio p-value FDR 

Costimulation by the CD28 family R-HSA-388841 4/73 1.37e-03 3.08e-01 

CD28 co-stimulation R-HSA-389356 3/73 1.49e-03 3.08e-01 

Mitochondrial biogenesis R-HSA-1592230 4/73 4.16e-03 4.07e-01 

Interleukin-10 signalling R-HSA-6783783 3/73 4.65e-03 4.07e-01 

Neutrophil degranulation R-HSA-6798695 9/73 5.53e-03 4.07e-01 

Cellular hexose transport R-HSA-189200 2/73 9.09e-03 4.07e-01 

CTLA4 inhibitory signalling R-HSA-389513 2/73 9.09e-03 4.07e-01 

CD28 dependent PI3K/Akt signalling R-HSA-389357 2/73 9.96e-03 4.07e-01 

RNA Polymerase I Promoter Escape R-HSA-73772 2/73 1.81e-02 4.07e-01 

RNA Polymerase I Transcription Termination R-HSA-73863 2/73 2.04e-02 4.07e-01 

.  
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Figure 29. Dot plots of the ten and fifteen statistically significant top enriched using the GO (A) and 
Reactome (B) databases. The color of circles depends on the p-value and the size depends on the 
number of genes included in the pathway. Gene ratio is the ratio between the genes in the data that 
belong to that pathway and the total number of genes in the pathway.  
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The analysis of biological significance was also performed for hsa-miR-26b-5p, since this miRNA 

presented the highest number of validated differentially expressed gene targets (53 genes). 

The most significant GO biological process terms enriched in the hsa-miR-26b-5p differentially 

expressed validated gene targets are listed in Table 18. 

Table 18. Pathway enrichment analysis representing top 5 GO enriched biological processes among the 

hsa-miR-26b-5p differentially expressed validated target genes between LTS and CLAD patients. 

Enriched terms are ranked based on the FDR value. 

Term ID Gene ratio p-value FDR 

T cell differentiation in thymus GO:0033077 3/49 0 0.29 

B cell activation involved in immune response GO:0002312 3/49 0 0.29 

Animal organ regeneration GO:0031100 3/49 0 0.29 

Dendritic cell chemotaxis GO:0002407 2/49 0 0.29 

Dendritic cell migration GO:0036336 2/49 0 0.29 
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3.3 PART III. IMMUNOPHENOTYPE AND MOLECULAR CHARACTERIZATION 

3.3.1 IMMUNOPHENOTYPE AND MOLECULAR MATERIAL AND METHODS 

3.3.1.1 IMMUNOPHENOTYPING ANALYSES 

Immunophenotyping was performed by flow cytometry on fresh peripheral blood samples, 

obtained by venous puncture in EDTA and heparin VacutainerTM (BD Biosciences) tubes. 

Peripheral white blood cells were stained using five different Duraclone immunophenotype 

panels computing 6 to 10 cell markers (Beckman Coulter, Peenya, Bangalore, India): Basic,  

T cell subsets, T cell receptor (TCR) subsets, regulatory T cells (Treg) and B cells, according to 

the manufacture’s protocol. For the intracelullar Helios and Foxp3 staining (included in the 

Treg panel), PerFix-no centrifuge assay Kit (Beckman Coulter) was used. 

The amount of fresh whole blood used for surface staining was 300 l for the characterization 

of B lymphocyte subset phenotypes and 100 l for the characterization of Basic panel and  

T lymphocyte subset phenotypes (T cell subsets, TCRs and Treg panels). 

The identification of the different leucocyte subpopulations was based on the use of 

antibodies specific for different cell surface and intracellular markers labeled with different 

fluorochromes (Table 19). 

Table 19. Summary of the DuraClone panels used, detailing the cell markers labeled with their 

respective fluorochromes. FITC: Fluorescein isothiocyanate; PE: R Phycoerythrin; ECD: R Phycoerythrin 

Texas Red-X; PC5.5: R Phycoerythrin-Cyanine 5.5; PC7: R Phycoerythrin-Cyanine 7; APC: 

Allophycocyanin; A700: Alexa Fluor 700; A647: Alexa Fluor 647; APC-A750: Allophycocyanin Alexa Fluor 

750; PBE: Pacific Blue; KrO: Krome Orange. 

 Immunophenotype panel 

Fluorochrome Basic TCR T cell Treg B cell 

FITC CD16 TCR  CD45RA CD45RA IgD 

PE CD56 TCR  CD197 CD25 CD21 

ECD CD19 CD45RO CD28 - CD19 

PC5.5 - - CD279 CD39 - 

PC7 CD14 - CD27 CD4 CD27 

APC CD4 CD4 CD4 - CD24 

A700 CD8 CD8 CD8 - - 

A647 - - - Foxp3 - 

APC-A750 CD3 CD3 CD3 CD3 CD38 

PBE CD64 - CD57 Helios IgM 

KrO CD45 CD45 CD45 CD45 CD45 

 



Part III. Immunophenotype and molecular characterization 
 

85 

Furthermore, a customised panel of 4 colours was designed for the characterization of 

granulocyte subsets. For that purpose, 100 l of heparinized venous blood was incubated with 

the fluorochrome-labeled monoclonal antibodies detailed in Table 20 and Brilliant Stain Buffer 

(BD Horizon™) at room temperature in the dark for 30 min using a negative control without 

staining. Following incubation, 1.5 ml of the mix of erythrocyte lysing solution (VersaLyse, 

Beckman Coulter) and fixative solution (IOTest 3, Beckman Coulter) was added to the samples 

and incubated under the same conditions for 15 min. 

Table 20. Details of the granulocyte panel indicating the cell markers labeled with their respective 

fluorochromes. FITC: Fluorescein isothiocyanate; PE: Phycoerythrin; APC: Allophycocyanin; BV510: 

Brilliant Violet 510. 

 Immunophenotype panel 

Fluorochrome Granulocyte 

FITC CD45 (BD Pharmingen™; clone HI30) 

PE CD16b (BD Pharmingen™, clone CLB-gran11.5) 

APC CD11b (BD Biosciences, clone D 12) 

BV510 CD62L (BD Horizon™, clone DREG-56) 

Stained cells were acquired on LSR Fortessa flow cytometer and data were analysed with DIVA 

software (BD Biosciences) using specific gating strategies (Supplementary Information section). 

To ensure data quality, leucocyte subpopulations with less than 100 events were not 

considered for subsequent analysis. Comparisons between the two groups were performed 

employing parametric unpaired t-test or nonparametric Mann-Whitney test, according to data 

distribution. A p-value below 0.05 was considered statistically significant. R software version 

3.3.2 (Copyright© 2015 The R Foundation for Statistical Computing) was used for statistical 

analysis. 

3.3.1.2 ANTI-HLA ANTIBODIES DETECTION 

Anti-HLA antibodies were detected in serum samples using solid-phase Luminex bead assays 

(Immucor Medizinische Diagnostik GmbH, Rodermark, Germany), following the validated 

protocols used for clinical samples by the Histocompatibility Laboratory of Catalonia, 

Biomedical Diagnostic Center, Hospital Clinic de Barcelona. The fluorescence intensities of the 

samples were measured on a Luminex 100 System (Luminex Corp., Austin, TX, USA) and data 

were analysed with MATCH-IT software provided by the manufacturer (Immucor). 

All samples were first assessed using screening Lifecodes LifeScreen Deluxe kit. Samples with a 

positive or doubtful result were further tested to identify antibody specificity using Lifecodes 

class I (LSA1) and class II (LSA2) single antigen beads (SAB) kits. Samples were run with positive 

and negative control samples and control beads. 

The mean fluorescence intensity (MFI) was normalized by negative control beads and a 

standard sample provided by the manufacturer was added as a quality negative control. For 

SAB assays, a MFI cut-off of 3000 was considered positive, representing the clinical threshold 

used at the Histocompatibility Laboratory of Catalonia. 
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3.3.1.3 SERUM PROTEIN DETERMINATIONS 

Individual sandwich enzyme-linked immunosorbent assay (ELISA) was used to measure the 

serum levels of MMP8 (dilution 1:10), LTF (dilution 1:100), KL-6 (dilution 1:50), IL-10 

(undiluted) and IL-17A (undiluted) using commercially available kits (R&D Systems, 

Minneapolis, MN, USA; Novus Biologicals, Littleton, CO, USA; Sekisui Medical Co. Ltd. Tokyo, 

Japan and eBioscience, Inc., San Diego, CA, USA, respectively). The lower limits of detection for 

each protein are indicated in Table 22 and Table 24 

In addition, a panel of Th17 cytokines [IL-17F, interferon-gamma (IFN-), IL-33, IL-4, IL-5, IL-6 

and TNF- were measured in undiluted serum samples using a magnetic bead-base multiplex 

assay employing the Human Th17 Magnetic Bead Panel (Millipore Milliplex Map Kit, Billerica, 

MA, USA) on a MAGPIX instrument (Luminex Corp., Austin, TX, USA) according to the 

manufacturer’s protocols. Data analyses were performed with xPONENT 4.2 Software 

(Luminex Corp., Austin, TX, USA). The lower limits of detection for each protein are indicated in 

Table 22. 

Percentages of detection were determined for all the cytokines and the statistical analyses 

were restricted to the cytokines with a detection percentage above 60% in order to avoid a 

confusing interpretation of the results. For statistical analysis, non-detectable values were 

assigned the lower limit of detection of the corresponding assay.  

All samples were measured in duplicate, and mean values were used for the subsequent 

analysis. For the multiplex assay, samples with a CV above 30% were not taken into account.  

Categorical data (percentages of detection) were presented as absolute numbers and 

proportions and continuous variables (protein levels) were expressed as ng/ml or pg/ml as 

appropriate, and data were represented as median and interquartile range as they did not 

follow a normal distribution.  

The Chi-square or Fisher’s exact tests were used to compare the distributions of categorical 

variables. The concentrations for each serum protein were compared between the LTS and 

CLAD groups using the non-parametric Mann-Whitney U test. A p-value below 0.05 was 

considered statistically significant. Statistical analyses were performed using GraphPad Prism 

version 6.0 (GraphPad Software Inc., San Diego, CA). 
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3.3.2 IMMUNOPHENOTYPE AND MOLECULAR RESULTS 

3.3.2.1 IMMUNOPHENOTYPING ANALYSES 

LTS recipients exhibited increased proportions of CD14high CD16- monocytes, CD56+ CD16- NK 

cells, CD4- CD8-   cells and CD62L+ granulocytes, whereas CD14highCD16+ monocytes, 

CD56+CD16+ NK cells and V1+  T cells were significantly elevated in CLAD patients (Table 21 

and Figure 30). 

No differences were observed in the frequency of other cell subsets. Leucocyte subpopulations 

measured in the study that did not reach statistical significance are detailed in Supplementary 

Information section (Tables from S5 to S12).  

Table 21. Leucocyte subpopulations with significant differences between LTS and CLAD groups. LTS: long 
term survivors, CLAD: chronic lung allograft dysfunction; NK: natural killer. 

Leucocyte Subsets 
Percentages (%) 

p-value 
LTS CLAD 

Monocytes 
CD14high CD16- 86.9 83.5 0.046 

CD14high CD16+ 5.8 9.3 0.009 

NK Cells 
CD56+ CD16- 15.6 6.2 0.02 

CD56+ CD16+ 86.3 94.2 0.004 

T cells 
CD4- CD8-  1.8 0.8 0.002 

V1+  59.9 71.9 0.027 

Granulocytes CD62L+ 99.8 98.8 0.007 
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Figure 30. Quantitative differences of leucocyte subpopulations between LTS and CLAD groups. (A) 

Monocytes, expressed as the percent of CD14high CD16- (1) and CD14high CD16+ (2) of the total 

monocytes. (B) Natural killer cells, expressed as the percent of CD56+ CD16- (1) and CD56+ CD16+ (2) 

of the total NK cells. (C) CD4- CD8-  T cells (1) shown as the percent of the total  T cells and V1+ 

T cells (2) shown as the percent of the total  T cells. (D) Granulocytes CD62L+ expressed as the 

percent of the total granulocytes. Boxes depict median and IQR; whiskers denote 1.5 x IQR. Two-

sided p-values for Mann-Whitney U test comparisons between groups are shown (P<0.05).  
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3.3.2.2 ANTI-HLA ANTIBODIES DETECTION 

Anti-HLA antibodies were detected in 2 out of 62 (3.23%) samples in the SAB assay against 

Class I (2 CLAD patients) and 9 out of 62 (14.52%) against class II (4 LTS and 5 CLAD patients). 

No significant differences were observed between groups for Class I and Class II. Among the 9 

anti class II positive patients, the donor HLA typing only was obtained from 7 of them (2 LTS 

donor typing missing). 

DSA anti class II were observed in 4 CLAD patients (12.90%) and in 2 LTS patients (6.5%), but 

difference was not statistically significant (p=0.671). 

Serum non-donor-specific antibodies (NDSAs) were detectable in patients from both LTS and 

CLAD groups, although no significative differences were found. 

3.3.2.3 SERUM PROTEIN DETERMINATIONS 

Except for IL-4, IL-10 and IL-17A, the rest of the cytokines were detectable above 60%. 

Percentages of detection for each cytokine are shown in Table 22. Percentages of detection 

were significantly different for IL-6 between LTS and CLAD patients (p=0.037), being higher for 

CLAD. 

The results in cytokine levels are shown in Table 23 and visually represented in Figure 31. No 

differences were found in the cytokine serum levels between the two groups. Measurement of 

the mentioned cytokines in serum revealed increases in IL-33 and IL-6 levels in CLAD group, 

although statistical significance was not reached (0.456 and p=0.078, respectively). 

Table 22. Percentage of detection of serum cytokines in the studied groups. Data are presented as the 

total number of detected samples (% of detection). P-value in bold is below 0.05. All limits of detection 

were determined by the manufacturer. 

Cytokines Detection limit Total (n=62) LTS (n=31) CLAD (n=31) p-value 

IL-17F 0.009 ng/ml 43 (69.35%) 19 (61.29%) 24 (77.42%) 0.1684 

IFN-, 1.8 pg/ml 51 (82.26%) 24 (77.42%) 27 (87.10%) 0.5077 

IL-33 6.3 pg/ml 39 (62.90%) 18 (58.06%) 21 (67.74%) 0.5996 

IL-4 0.009 ng/ml 16 (25.81%) 8 (25.81%) 8 (25.81%) 1.0 

IL-5 1.2 pg/ml 42 (67.74%) 20 (64.52) 22 (70.97%) 0.5869 

IL-6 1.7 pg/ml 38 (61.29%) 15 (48.39%) 23 (74.19%) 0.037 

TNF- 0.9 pg/ml 60 (96.77%) 29 (93.55%) 31 (100%) 0.4918 

IL-10 0.05 pg/ml 23 (37.10%) 12 (38.71%) 11 (35.48%) 0.7926 

IL-17A 0.01 pg/ml 15 (24.19%) 9 (29.03%) 6 (19.35%) 0.3737 
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Table 23. Comparison of serum cytokine levels between LTS and CLAD patients. Data are presented as 

median, interquartile ranges (IQR). 

Cytokines  LTS (n=31) CLAD (n=31) p-value 

IL-17F (ng/ml) 0.02 (0.009-0.115) 0.02 (0.009-0.16) 0.4999 

IFN- (pg/ml) 11.85 (3.65-110.3) 9.91 (5.028-42.04) 0.7259 

IL-33 (pg/ml) 6.3 (6.3-281) 28.32 (6.3-140.3) 0.4561 

IL-5 (pg/ml) 1.2 (0.985-3.58) 1.93 (1.2-4.785) 0.41 

IL-6 (pg/ml) 1.7 (1.7-6.965) 5.1 (1.7-22.91) 0.0782 

TNF- (pg/ml) 12.47 (8.513-18.83) 14.56 (9.57-18.91) 0.4116 

 

  

Figure 31. Comparison of IL-17F, IL-5, IL-6, IFN-, IL-33 and TNF- in serum between LTS and CLAD 

patients. Each dot represents the result from one serum sample. No significant differences in serum 

cytokine levels were found between the two groups.   
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Serum levels of MMP8, LTF and KL-6 in the two groups are shown in Table 24 and visually 

represented in Figure 32. Differences were found in MMP8 and KL-6 serum levels between 

both groups (p=0.0054 and p=0.0042 respectively). 

Table 24. Comparison of serum MMP8, LTF and KL-6 levels between LTS and CLAD patients. Data are 

presented as median, interquartile ranges (IQR). All limits of detection were determined by the 

manufacturer. 

Protein Detection limit LTS (n=31) CLAD (n=31) p-value 

MMP8 (ng/ml) 0.013 ng/ml 25.20 (13.69-33.99) 49.19 (24.99-81.23) 0.0054 

LTF (ng/ml) 0.3 ng/ml 1596 (1227-2323) 1842 (1097-3814) 0.3115 

KL-6 (U/ml) 1 U/ml 470.4 (374.7-583.8) 630.5 (482.9-744.5) 0.0042 

 

 

 

Figure 32. Comparison of serum MMP8, LTF and KL-6 levels between LTS and CLAD patients. Each dot 

represents the result from one serum sample. No significant differences in serum LTF levels were 

found between the two groups.  
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3.4 PART IV. MULTI-PLATFORM BIOMARKER ANALYSIS  

After clinical, transcriptomic (mRNA and miRNA) and immunophenotyping data were analysed 

separately, the next step was to combine the four data blocks and perform a multilevel data 

integration analysis to assess if the classification ability to discriminate between both groups of 

patients improve by using a cross-platform approach. 

Classic classification algorithms are not usually focused on associating biological information 

and consequently, any derived discriminative marker used to classify may not mechanistically 

link the underlying biology to the phenotype. To address this concern, this analysis was 

performed using a new integrative classification method, which in addition to identify 

discriminative features of each biological data block, explains the correlation structure 

between them, assuming that correlation involves similar functional relationships222,223. 

Therefore, the aim of this integrative analysis was to identify a highly correlated multi-

biomarker signature discriminating LTS and CLAD patients.  

3.4.1 MULTI-PLATFORM BIOMARKER MATERIAL AND METHODS 

3.4.1.1 STATISTICAL AND BIOINFORMATICS METHODOLOGY 

3.4.1.1.1 Construction of the Training and Validation Data Sets 

Only the patients who had data from the four data blocks were included in the integrative 

analysis (59 patients).  

The construction and performance of the multi-platform biomarker classifier was assessed by 

the holdout method: the dataset was randomly partitioned into two independent groups 

(“train” and “test” sets). The training set (67% of total samples, 39 patients) was used to train 

the model, whereas the test set (33% of total samples, 20 patients) was used to evaluate the 

accuracy of the classifier224. 

3.4.1.1.2 Variable Selection 

The most relevant variables selected from each biological block are detailed as following: 

• Two clinical variables: immunological events rate and infection rate. 

• Twenty-one genes validated by RT-qPCR; 20 of them with a FDR below 0.05 (ANXA3, 

FCGR1B, TNFRSF21, NRP1, LILRA4, SLC22A4, HCK, KCNJ15, PNPLA2, CA4, ACSL1, MMP8, 

FCGR2A, DHRS13, LRRC6, BCL6, PROK2, OLFM4, LTF, TCN1) and one with a FDR below 

0.08 (TLR5). 

• Four mature miRNAs validated by RT-qPCR with a raw p-value below 0.05 (hsa-miR-

194-5p, hsa-miR-151b, hsa-miR-26b-5p and hsa-miR-421). 

• Eight leucocyte subpopulations; 7 of them with a raw p-value below 0.05 (CD14high 

CD16+/- monocytes, CD56+ CD16+/- NK cells, , CD4- CD8-  T cells, V1+  T cells , 

CD62L+ granulocytes) and another relevant subpopulation (NK T cells) was also 

included although statistical significance was not reached (raw p-value= 0.053).
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3.4.1.1.3 Data Integration 

The integration analyses were performed using the multivariate dimension reduction 

discriminant analysis method, DIABLO225 (Data Integration Analysis for Biomarker discovery 

using a Latent component method for Omics studies) implemented in mixOmics R package221. 

DIABLO is a supervised method that uses sparse Generalized Canonical Correlation Analysis 

(sGCCA), which extends the Partial Least Squares (PLS) regression method for multiple data 

sets integration. The aim of DIABLO is to identify correlated or co-expressed variables 

measured on the same samples on different datasets which explain the classification of LT 

patients225. All the statistical analyses were performed using R software version 3.4.4 

(Copyright© 2018 The R Foundation for Statistical Computing) and the mixOmics R package221. 

To improve the interpretation of the data integration results, a Circos plot and a Clustered 

Image Map were plotted: 

1- The Circos plot3 represents the connections between variables of different biological 

blocks, indicating positive or negative correlations. Only the correlations above 0.75 in 

the multi-platform biomarker signature were plotted. 

2- The Clustered Image Map represents the multi-platform biomarker signature 

expression for each sample, and it is very similar to a classic hierarchical clustering. The 

value of each variable scaled between +2 and -2 is shown in the center of the graph 

and, both in the upper (columns) and left (rows) parts, a hierarchical cluster has been 

made. 

The classification performance of the multi-biomarker model was assessed using the test set. 

  

 
3 The Circos plot is built based on a similarity matrix, extended to the case of multiple data sets310. 
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3.4.2 MULTI-PARAMETER BIOMARKER RESULTS 

3.4.2.1 CORRELATION ANALYSIS  

Most relationships within and between biological blocks were positive correlations. 

Nevertheless, correlations between the infection rate, NKT cells, LILRA4 and TNFRSF21 genes 

were negative (Figure 33). 

 

Figure 33. Circos plot depicting the correlation (r>0.75) between selected features (genes, miRNAs, 

cell populations and clinical variables) pairs as indicated by the red (positive correlation) and blue 

(negative correlation) links, feature names appear in the quadrants. External lines (blue, LTS; orange, 

CLAD) reflect expression levels of each feature within each biological level. 
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The Clustered Image Map displayed a good clustering for samples (rows), except for 2 patients 

of CLAD group and 3 patients of LTS group, which were classified within the other group 

(Figure 34).  

The grouping of the variables used, according to their expression among the different patients, 

was observed in the columns of the Clustered Image Map.  

 

Figure 34. Clustered Image Map (Euclidean distance, Complete linkage) representing the “high 

dimensional” multi-platform biomarker signature expression for each sample. Samples are 

represented in rows and selected features (genes, miRNAs, cell populations and clinical variables) in 

columns. For each variable, red indicates up-regulation and blue indicates down-regulation. 

3.4.2.2 PERFORMANCE ASSESSMENT 

To assess the classification performance of the multi-platform biomarker model, the test set 

(20 samples; 11 LTS and 9 CLAD patients) was used. 

The confusion table compares the real patient status (LTS, CLAD) with the predicted status. 

Nine of 11 LTS patients were correctly identified as LTS, and 7 of 9 CLAD participants were 

correctly identified as CLAD, yielding a positive predictive value (PPV) and negative predictive 

value (NVP) of 82% and 78%, respectively (Table 25).  
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Table 25. Confusion matrix and classification summary using the 35-biomarker prediction model with 

the samples from the test set (n=20). (PPV, 82%, NPV, 78%).  

 Predicted as LTS Predicted as CLAD Not predicted  

Actual LTS 9 0 2 

Actual CLAD 1 7 1 

Additionally, a ROC graph per biological block was plotted. The AUC of the multi-biomarker 

classifier using a holdout validation method was 0.859. The performance (AUC based) of the 

combined model was similar to performances of individual biological blocks, despite little 

improvements for miRNA and cells (Figure 35). 

 

Figure 35. ROC curves corresponding to each biological block (A, mRNA; B, miRNAs; C, clinical 

variables; D, cell populations) and combined model (E). 

 



Part V. Microbiome 
 

97 

3.5 PART V. UPPER RESPIRATORY TRACT BACTERIAL MICROBIOME COMPOSITION  

3.5.1 MICROBIOME MATERIAL AND METHODS 

3.5.1.1 DNA EXTRACTION, PCR AMPLIFICATION AND SEQUENCING 

The microbiome of nasopharyngeal swabs from 26 LTS patients, 25 CLAD patients and 10 

healthy (non-transplanted) control subjects (HC) was analysed. DNA was extracted from the 

nasopharyngeal swab from each individual using a modified “Godon” protocol 226,227. Briefly, 

nasopharyngeal swabs were eluted in 250 l of guanidine thiocyanate (Sigma-Aldrich, St. Louis, 

MO, USA), 0.1 M Tris (pH 7.5), 40 l of 10% N-lauroyl sarcosine (Sigma-Aldrich), and 500 l of 

5% N-lauroyl sarcosine. 

Microbial cells were mechanically disrupted using zirconia silica beads and RNA was removed 

by the addition of 4 l of a 100-mg/ml solution of RNAase A (Qiagen). DNA was purified and 

recovered by ethanol precipitation and resuspended in 30 l of a Tris-EDTA buffer solution 

(Tris 10mM, 1mM EDTA, pH 7) (Invitrogen, Lithuania) and stored at -20°C for further analyses. 

To create the amplicon library, the hyper-variable region (V4) of the bacterial and archaeal 16S 

ribosomal RNA (rRNA) gene was amplified by standard PCR, using 20 pmol/μL of the forward 

(V4F_515_19) and reverse (V4R_806_20) primers (Table 26) targeting the 16S gene, and 0.75 

units of Taq polymerase (Roche). Specific reverse primers contained a unique Golay barcode (a 

sequence of 12 bases, indicated in bold in Table 26) different for each sample in order to tag 

specifically each one of the samples228. Besides, the 5’ ends of both forward and reverse 

primers were tagged with specific sequences  

Table 26. Specific sequences of primers targeting the bacterial V4 16S rRNA gene. 

Primers Specific sequences 

Forward 5′-{AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGT}{GTGCCAGCMGCCGCGGTAA}-3′ 

Reverse 5′-{CAAGCAGAAGACGGCATACGAGAT}{Golay Barcode}{GGACTACHVGGGTWTCTAAT}-3′ 

Three negative and one positive PCR controls were included in the run. PCR was conducted in a 

TGradient thermocycler (Biometra) at 94°C for 3 min, followed by 35 cycles of 94°C for 45 sec, 

56°C for 60 sec, 72°C for 90 sec, and a final cycle of 72°C for 10 min. 

Amplicons were purified using the QIAquick® PCR Purification Kit (Qiagen) according to 

manufacturer’s instructions in order to remove primers, nucleotides, enzymes and other 

impurities and were quantified using a NanoDrop ND-1000 Spectrophotometer (Nucliber). 

DNA integrity was evaluated by microcapillary gel electrophoresis using an Agilent 2100 

Bioanalyzer (Agilent Technologies) with the DNA 12000 kit, and then all samples were pooled 

in equal concentrations. The pooled amplicons were sequenced using Illumina MiSeq 

technology at the technical support unit of Universitat Autònoma de Barcelona (UAB, Spain) 

following standard Illumina platform protocols. 
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3.5.1.2 STATISTICAL AND BIOINFORMATICS METHODOLOGY 

3.5.1.2.1 Pre-processing of 16S rRNA Sequence Reads 

Raw sequence reads were demultiplexed using the idemp tool229 with its default parameters. 

Then, the reads were processed by following the pipeline for the DADA2 R package (version 

1.10.1)230 to obtain counts of amplicon sequence variants (ASVs). Sequence taxonomy was 

assigned using the DADA2-formatted database of sequences derived from the SILVA database 

version 132231. The resulting ASV counts were stored along with metadata for samples and 

analysed using the Phyloseq R package (version 1.26.1)232. A phylogenetic tree of the 

organisms present in the dataset was approximated following a workflow233 which relies on 

the DECIPHER (version 2.10.2)234 and phangorn (version 2.5.5)235 R packages. Only samples 

with at least 1000 total counts after processing with DADA2 were retained.  

ASV counts were normalized per sample using two methods which were analysed in parallel: 

relative abundance of each taxon within a sample, and centered log ratio values. For the latter, 

zero counts were first transformed using the “count zero multiplicative” method in the 

cmultRepl function from the zCompositions R package (version 1.3.2-1)236, and then the 

centered log ratios were calculated using the codaSeq.clr function from the CoDaSeq R 

package (version 0.99.3)237,238.  

3.5.1.2.2 Diversity Measures 

The estimate richness function from the Phyloseq package was used to calculate alpha 

diversity measures, including the Shannon and Simpson indices, which determine the 

biological diversity of organisms present within a given sample.  

For beta diversity, which measures the difference between a given pair of samples based on 

the values of all taxa in the dataset, a few different approaches were used to obtain distance 

matrices. The UniFrac function from Phyloseq was used to obtained both weighted and 

unweighted UniFrac distances, which give weights based on phylogenetic distances between 

taxa (the weighted distance also gives weights based on relative abundances of taxa, and thus 

differences between samples are more affected by higher abundance taxa as opposed to rare 

taxa). In addition, the Aitchison distance was calculated using the aDist function from the 

robComposition R package (version 2.1.0)239. The Aitchison distance is based on the centered 

log ratio values, and thus is robust to changes in variation of abundances between samples, 

regardless of the relative number of counts from a given taxon. 

3.5.1.2.3 Statistical Analyses 

The global effects of metadata variables on the microbiome composition of samples were 

tested using the adonis function from the vegan R package (version 2.5-5)240, which runs a 

permutation multivariate ANOVA by fitting linear models to distance matrices. Each variable 

was tested using each of the distance matrices calculated in order to test the association of the 

variable with the differing effects of each beta diversity calculation. The linear model for each 

variable also included three covariates, which were SampleStatus (LTS, CLAD or HC), as this 
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was the most relevant and seemingly influential variable, as well as age and gender to account 

for systematic variation from these factors.  

The associations between variables and particular taxa were tested using the lm function from 

the base R package stats (version 3.5.0)241. The function fits a linear model, again using the 

same covariates as fixed effects in the model. Figures were generated using the ggplot2 R 

package (version 3.2.1)242. 

3.5.2 MICROBIOME RESULTS 

In this study, specimens collected from 26 LTS and 25 CLAD patients were considered. 

However, 45 samples (23 LTS and 22 CLAD) were finally included in the analysis because 6 of 

them did not reach the reads cut off. The characteristics of these subjects are summarized in 

Table 27. 

Table 27. Clinical characteristics of LTS and CLAD subjects included in microbiome analysis. For age 

variable comparison, a Kruskal-Wallis test was performed (data presented as medians with interquartile 

ranges (IQR)), whereas Chi-square or Fisher’s exact tests were used for comparing categorical variables 

(data presented as frequencies with percentages). HC: Healthy Controls; NA: not applicable. 

 LTS (n=23) CLAD (n=22) HC (n=10) p-value 

Age, median (IQR) 42 (36.0; 61.0) 52.5 (36.0; 58.25) 56.0 (40.0; 60.0) 0.873 

Gender (males), n (%) 10 (43.48) 12 (54.55) 7 (70.0) 0.365 

Underlying disease, n (%)     

ILD 3 (13.04) 2 (9.09) NA >0.999 

COPD  4 (17.39) 8 (36.36) NA 0.189 

CF 11 (47.83) 9 (40.91) NA 0.641 

Non-CF bronchiectasis 1 (4.35) 2 (9.09) NA 0.608 

Pulmonary arterial hypertension 1 (4.35) 0 (0.0) NA >0.999 

Langerhans cell histiocytosis 1 (4.35) 0 (0.0) NA >0.999 

LAM 2 (8.69) 1 (4.55) NA >0.999 

Anti-microbial treatment     

Cotrimoxazole, n (%) 14 (60.87) 20 (90.91) NA 0.035 

Azithromycin, n (%) 15 (65.22) 22 (100.0) NA 0.002 

Inhaled amphotericin B, n (%) 11 (47.83) 19 (86.36) NA 0.011 

Immunosuppressive therapy     

Calcineurin inhibitors, n (%) 23 (100.0) 22 (100.0) NA 1.0 

Antimetabolites, n (%) 19 (82.61) 3 (13.64) NA <0.0001 

mTOR inhibitors, n (%) 1 (4.35) 19 (86.36) NA <0.0001 

Corticosteroids, n (%) 20 (86.96) 21 (95.45) NA 0.608 

In the Figure 36 the distributions of abundances of the most common phyla (A) and genera (B) 

among the samples of each group (LTS, CLAD and HC) were illustrated. LTS patients followed 

essentially the same trends as the healthy control group, being the Actinobacteria phylum and 

Corynebacterium genus more dominant in the upper respiratory tract of these patients. 

Conversely, the phylum Firmicutes and genus Staphylococcus were enriched in CLAD group. 

Many of the top 10 genera were members of the Firmicutes phylum, including: 

Staphylococcus, Streptococcus, Anaerococcus, Dolosigranulum, Peptoniphilus and Finegoldia. 

https://www.uptodate.com/contents/trimethoprim-sulfamethoxazole-an-overview?search=cotrimoxazol&source=search_result&selectedTitle=2%7E148&usage_type=default&display_rank=1
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Corynebacterium and Lawsonella were the only genera in the top 10 from the phylum 

Actinobacteria. 

 
Figure 36. Relative abundance of the 10 most abundant upper respiratory tract phyla (A) and  

genera (B). 

Both LT groups, LTS and CLAD, did not present significant differences concerning alpha 

diversity (data not shown). However, the upper respiratory tract microbiota showed a 

significant difference in the overall bacterial composition between both groups. For the two 

indices computed for beta diversity (Weighted Unifrac and Aitchison method), LTS and CLAD 

groups were separated. It may not appear to be an obvious separation in the Aitchison 

Principal Coordinate Analysis (PCoA) plot, but the Adonis function accounts for differences in 

the variation of all the taxa in each sample. The highest difference was observed for the 

Aitchison method (Adonis test for weighted index: p-value=0.002 and Adonis test for Aitchison 

index: p-value=0.001). (Figure 37). Both indices were performed as they gave complementary 

information: Weighted Unifrac, based on changes in relative abundances of organisms was 

easier to interpret while Aitchison approach offered a better indication of true variation in 

abundance between organisms.  

 

Figure 37. Bacterial diversity clustering by Weighted UniFrac PCoA (A) and Aitchison PCoA (B) of upper 

respiratory tract microbiota. Each dot represents a sample (red, CLAD; green, healthy patients; blue, 

LTS), the variance explained by the Principal Coordinates is indicated in parentheses on the axes.  
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LTS patients showed a statistically significant increase in the Actinobacteria phylum  

(p-value= 0.009) (Figure 38A), and a decrease in the Firmicutes phylum (p-value=0.019) (Figure 

38B) compared to CLAD patients. LTS and HC groups did not present statistical differences. 

Regarding genus, LTS and healthy control samples had greater abundance of the genus 

Corynebacterium (p-values of 0.002 and 0.002, respectively) (Figure 38C). Conversely, 

Staphylococcus genus were reduced in LTS group, both with regard to CLAD and healthy 

control (p-values of 0.031 and 0.016, respectively) (Figure 38D). 

 

Figure 38. Abundance comparison of Actinobacteria and Firmicutes phyla and Corynebacterium and 

Staphylococcus genera between LTS, CLAD and healthy control groups. 

Moreover, higher abundances of Spirochaetes phylum and Lactobacillus genera in CLAD 

patients and Acidocella genera in LTS patients with respect to healthy controls were observed 

(p-values of 0.030, 0.015 and 0.019, respectively). 

As significant differences were observed between groups with respect to treatments  

(Table 27), in order to verify that all the microbiome findings were not affected by treatment, 

microbiome composition was analised regarding individuals receiving different treatments. 

Microbiome composition was clustered by LT status (LTS, CLAD) regardless of amphotericin 

(A), azythromycin (B), cotrimoxazole (C) and corticosteroids (D) treatment, based on the 

Weighted Unifrac distance (Figure 39). The effect of antimetabolites or mTOR inhibitors intake 

could not be determined, as most of LTS patients were taking antimetabolites while most of 

CLAD patients were under mTOR inhibitor treatment. 
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Figure 39. Bacterial diversity clustering by Weighted UniFrac PCoA of upper respiratory tract 

microbiota in LT patients treated with amphotericin (A), azythromycin (B), cotrimoxazole (C) and 

corticosteroids (D). Each dot represents a sample (red, CLAD; blue, LTS) and the variance explained by 

the Principal Coordinates is indicated in parentheses on the axes. 

In Figure 40, Figure 41 and Figure 42 the distributions of abundances of the most common 

phyla (A) and genera (B) among the individuals receiving different treatments (amphotericin, 

azithromycin and cotrimoxazole, respectively) selected by group were illustrated. 

LTS patients presented the same trends as the analyses performed regardless of treatment, 

being the Actinobacteria phylum and Corynebacterium genus more dominant in the upper 

respiratory tract of these patients (Figure 40, Figure 41 and Figure 42). Conversely, the phylum 

Firmicutes and genus Staphylococcus were also enriched in CLAD group. In conclusion, these 

findings were consistent and did not depend on these treatments. 
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Figure 40. Relative abundance of the 10 most abundant upper respiratory tract phyla (A) and genera 

(B) of LTS and CLAD patients treated with amphotericin. 

 

Figure 41. Relative abundance of the 10 most abundant upper respiratory tract phyla (A) and genera 

(B) of LTS and CLAD patients treated with azythromycin.

 

Figure 42. Relative abundance of the 10 most abundant upper respiratory tract phyla (A) and genera 

(B) of LTS and CLAD patients treated with cotrimoxazole. 
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Lung transplantation (LT) is the final treatment option for patients with end-stage respiratory 

diseases24. Advances in surgical techniques, organ preservation, immunosuppressive treatment 

and perioperative management have improved short-term survival. However, despite the 

beneficial effects of LT on quality of life, long-term survival after LT is hindered mainly by the 

development of CLAD. 

Kidney, liver and heart transplantation present a ten year survival rate of 86.2%154, 61%155, and 

56%156, respectively, compared to 34.3% among LT20. One plausible explanation for this lower 

survival rate is that lungs are continuously exposed to the external environment, being the first 

line of protection from pathogens and noxious agents. 

The lifelong immunosuppression of SOT patients poorly influences their long-term survival, 

leading to severe complications such as nephrotoxicity162,163, infectious diseases72, 

malignancies164, and metabolic disorders165. For this reason, the main goal in organ 

transplantation is achieving an alloantigen-specific unresponsiveness state in the sustained 

absence of toxic immunosuppressive therapies. 

In most cases, immunosuppression withdrawal leads to transplant rejection. However, a small 

group of transplant patients has maintained long-term stable graft function despite 

interrupted treatment (operational tolerance state). This phenomenon is infrequent and varies 

according to the type of allograft, being more prevalent in kidney and liver transplantation171–

175. 

In recent years, the main purpose of organ transplantation has been to characterise the 

immunological mechanisms involved in tolerance, which remain poorly understood. The 

intensive research conducted with this small number of kidney183–188 and liver189–193 transplant 

recipients has reported immunophenotypical and transcriptional changes in tolerant patients 

compared to non-tolerant recipients and healthy individuals. Nevertheless, these studies have 

revealed that kidney and liver tolerant recipients differed in blood gene expression and 

immunophenotype patterns, suggesting that the immune mechanisms involved in achieving 

transplantation tolerance are organ-specific. 

In the field of LT, there is only one anecdotal reported case of operational tolerance. The long-

term acceptance of the allograft in the absence of ongoing immunosuppression was due to a 

state of chimerism in the recipient, produced by the HLA-match combining bone marrow and 

LT from the same living donor176. 

Therefore, LTS patients after LT, included in this study, are the closest group to operationally 

tolerant kidney or liver transplant individuals. As the recipients of both groups (LTS and CLAD 

patients) were receiving immunosuppression treatment, the confounding effect of 

immunosuppression, not assessed in most previous studies performed in other organs, was 

excluded. Furthermore, to avoid additional differences due to patient characteristics, the 

recipients were matched by age, sex and underlying disease when feasible. 

To date, the association of allograft acceptance with different immune fingerprints has been 

widely described for kidney and liver transplantation, although this has not been the case with 

LT. Accordingly, the present thesis was designed to screen the greatest number of clinical and 
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immunological parameters; the microbiome of the upper respiratory tract and the full 

transcriptomic expression profile and flow cytometric immunophenotyping of peripheral blood 

samples were assessed to study the particular characteristics of the patients with normal 

allograft function after at least ten years from LT. 

In addition, the use of peripheral blood samples to perform most studies and nasopharyngeal 

swabs to carry out microbiome analyses represented a clear benefit for patient safety and for 

its clinical applicability due to the low invasiveness of these procedures. 

The results derived from bioinformatics analyses of gene and miRNA expression provide a 

better understanding of the mechanisms involved in long-term survival. Moreover, they are 

highly accurate in the classification of LT patients by employing gene and multi-platform 

biomarker expression profiling.  

The findings obtained have demonstrated the usefulness of clinical data, microbiome 

discoveries and global transcriptome profile from peripheral blood samples to differentiate 

between LTS and CLAD patients and to identify some of the potential mechanisms responsible 

for organ acceptance. 

Overall, this study has contributed to the knowledge of long-term survival with normal 

allograft function in the field of LT.  

4.1 PART I. CLINICAL CHARACTERISTICS OF LONG-TERM SURVIVORS WITH NORMAL 

ALLOGRAFT FUNCTION 

Limited evidence about long-term survival after LT of more than ten years considering graft 

condition has been published and very few studies about long-term survival have been 

conducted in isolated series of patients from single centers195–198. In this study, LTS were 

identified in five Spanish centers with more than ten years’ experience in LT technique at the 

moment of the study. All selected patients were bilateral to avoid the confounding effect of 

the native lung. 

One of the main limitations of this project was that LTS and CLAD patients did not undergo 

transplantation at the same time. The longer follow-up time is inherent to the LTS group, and 

consequently this is why the findings obtained could be due to a favourable patient outcome 

or to time post-LT. Another major limitation was the heterogeneity of the CLAD group. 

Although having all the patients with the same CLAD phenotype would have been ideal, the 

complex matching process did not allow it. 

The factors contributing to long-term survival with normal allograft function after LT compared 

to CLAD patients identified in this study were: donor age (lower in LTS group, data not shown), 

lower comorbidity and infection rates, the latter mainly due to the lower rate of mild 

infections and diabetes mellitus, which was more frequent in the follow-up of the CLAD group.  

In line with this, Riou243 et al evaluated the impact of diabetes mellitus on survival after LT, 

observing a worse survival in the patients with diabetes pre-post LT, compared to patients 

without pre-transplant diabetes. However, they did not find survival differences between 
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patients who developed diabetes mellitus after LT and non-diabetic LT recipients. Therefore, 

the results obtained might confirm the impact of diabetes mellitus on survival after LT. 

4.2 PART II. TRANSCRIPTOMIC ANALYSES 

This study examined the mRNA and miRNA expression profiles of peripheral blood across LTS 

and CLAD patients. Differences in both mRNA expression and upstream miRNA regulators were 

found between both groups of patients. Transcriptomic microarray expression analyses 

revealed 458 DEG and 108 differentially expressed miRNAs, 36 of which were mature miRNAs. 

Functional annotation of microarray data showed that the main biological pathways among 

DEG were referred to neutrophil mediated processes and innate immunity. An interesting 

result obtained was the up-regulated expression of the gene RPS26 in LTS recipients. It has 

been demonstrated that rapamycin represses the expression of the cytoplasmic ribosomal 

protein RPS26244, so this finding probably reflects the use of Sirolimus in CLAD patients.  

An integrative analysis between transcriptomic data was performed following two different 

approaches. In the first, based on correlations between expression values, a correlation 

network between three mature miRNAs and twelve genes was identified. The relevance or 

implications of these new relationships have not yet been described, as none of the target 

genes included in this correlation network were validated targets for the three miRNAs to 

date. 

The second approach was based on the biological significance of the differentially expressed 

experimentally validated miRNA gene targets. Of the 36 differentially expressed mature 

miRNA, 30 miRNAs had experimentally validated target genes enriched in the set of 458 DEG. 

The bioinformatic evaluation of the 113 differentially expressed experimentally validated 

miRNA gene targets revealed enrichment for neutrophil mediated processes, as in the case of 

the functional annotation results of the microarray DEG. 

Using a machine learning approach, a reduced number of genes and miRNAs that were able to 

discriminate LT patients were found. Using these variables, different classification models 

capable of distinguishing LTS status in the validation sets resulting from the 5-fold cross 

validation strategy were built. 

The combination of the LASSO and diagonal discriminant analysis algorithms with the 25 

classifier variables, genes and miRNAS respectively, provided the best discriminatory powers. 

Concerning genes, the performances of all the models obtained was adequate. However, in 

the case of miRNAs, the performances of the models with a lower number of miRNAs were far 

from acceptable. Therefore, these 25 classifier genes are potentially relevant in the 

discrimination between LTS and CLAD patients, suggesting that they may have a potential 

clinical applicability. 

The gene expression analysis by RT-qPCR successfully validated the most informative genes 

selected from the classification models, so the reproducibility of the results using different 

transcriptional platforms was confirmed. Nevertheless, in the miRNA expression analysis by 

RT-qPCR most targets were not amplified. 
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A summary of the most relevant miRNAs and genes results found are discussed below.  

MicroRNAs (miRNAs) are described as short non-coding RNA molecules that inhibit gene 

expression post-transcriptionally by binding to the 3’ untranslated region (UTR) of target 

mRNAs, promoting their degradation or inhibiting translation245. Since miRNAs regulate 

hundreds of target genes post-transcriptionally, a single miRNA may be involved in the 

development of many diseases (“many-to-one” and “one-to-many” relationships), and 

consequently, their peripheral blood expression may be altered246. In the transplant field, 

miRNAs have recently emerged as diagnostic and prognostic markers and potential 

therapeutic targets247. 

Considering both statistical criteria and biological changes, four down-regulated miRNAs (hsa-

miR-151b, hsa-miR-194-5p, hsa-miR-26b-5p and hsa-miR-421.) were identified in LTS 

recipients. In the LT field, no studies regarding miRNAs in graft acceptance have been 

performed although a huge variety of miRNA profiles analysed during lung rejection have been 

reported248,249. However, none of the four miRNAs down-regulated in LTS patients have been 

previously associated with lung rejection. It is worth noting that none of these studies were 

performed in whole blood samples. 

As regards miR-194, a previous study demonstrated that the serum levels of this miRNA 

correlated with liver injury after liver transplantation250. Specifically, miR-194-5p was 

presented to suppress type I IFN expression and type I IFN-mediated antiviral response, 

enhancing viral replication251. Furthermore, a recent study reported that miR-194-5p was over-

expressed in patients suffering from acute graft-versus-host disease252. 

miR-421 up-regulation was shown to contribute to the progression of multiple cancers such as 

gastric, pancreatic, hepatocellular, biliary tract and nasopharyngeal cancers253. Regarding miR-

151b, it was observed that the serum levels of this miRNA were significantly increased in 

ischemic stroke patients compared to those of healthy controls254. However, there are no 

studies that link these miRNAs with any SOT outcome, so further investigation is needed to 

elucidate their function in the LT field.  

In the integrative analysis, miR-26b-5p presented the highest number of validated DEG targets, 

which were involved in “T cell differentiation in thymus”, “B cell activation” and “DC 

chemotaxis and migration”, suggesting that this miRNA may contribute to these biological 

processes in LT patients. 

In the case of genes, considering both statistical criteria and biological changes, three up-

regulated DEG (TNFRSF21, LILRA4 and NRP1) and five down-regulated DEG (ANXA3, MMP8, 

LTF, TCN1 and OLFM4) in LTS recipients were identified.  

TNFRSF21, also named death receptor 6 (DR6) and CD358, is a member of the tumour necrosis 

factor receptor superfamily, which is highly expressed in human plasmacytoid DCs (pDCs)255. 

TNFRSF21 is involved in NK-B signaling pathways and plays a regulatory function in the 

proliferation and survival of T and B cells256. 
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Furthermore, LILRA4, also named CD85g and ILT7, is a member of the activating leucocyte 

immunoglobulin-like receptor (LILRA) family that is abundantly and exclusively expressed by 

human pDCs257.  

The up-regulation of these two genes in LTS recipients observed in this study probably 

reflected the presence of circulating pDCs. These tolerogenic DCs can suppress immune 

responses via several mechanisms, including T cell deletion, the induction of Tregs and anergic 

T cells, the expression of immunomodulatory molecules and the production of 

immunosuppressive factors258. 

In recent years, appreciable evidence has supported a role of pDCs in regulating the induction 

and/or maintenance of solid organ allograft tolerance259. Herein, Abe260 and co-workers 

demonstrated for the first time that pre-pDCs prolonged murine vascularized heart allograft 

survival. Later, Ochando261 et al demonstrated that interactions between pDCs and CD4+ T cells 

in the lymph nodes were required for Treg generation to potentially achieve vascular allograft 

tolerance. 

Finally, in the human liver transplantation field, higher proportions of pDCs precursors had 

already been observed in the circulation of liver transplant recipients with successful 

immunosuppression withdrawal compared to those receiving maintenance 

immunosuppression, suggesting that pDCs might promote liver transplantation tolerance191. 

The third up-regulated DEG, Neuropilin-1 (NRP1), is a type I transmembrane glycoprotein 

exclusively expressed by DCs, NK cells and Foxp3+ Treg cells which plays an important role in 

establishing the immunological synapse between DCs and T cells262 and contributes to the 

function, phenotypic maintenance and survival of Treg cells263. 

In 2012, it was reported that this surface marker served to differentiate between natural-Tregs 

(developed in the thymus) and induced-Tregs (generated in the periphery), becoming 

established as a useful tool to identify and isolate viable Tregs in the clinical transplantation 

field264. 

The contribution of NRP1 to transplant tolerance was first demonstrated in murine studies in 

which CD4+ CD25- NRP1+ T cells transferred into heart allograft recipient mice induced long-

term graft survival265. Regarding human studies, the association of NRP1+ T cells with the 

acceptance of tissue grafts was also proposed, since the percentage of NRP1+ cells among 

lymphocytes in kidney transplant biopsies decreased significantly in rejected grafts, when 

compared to biopsies from non-rejecting individuals266  

In the present study, the increased expression of NRP1 probably reflected the presence of 

circulating CD4+ CD25- NRP1+ T cells since no changes were observed in Foxp3 microarray 

expression. 

As regards the five down-regulated DEG (ANXA3, MMP8, LTF, TCN1 and OLFM4) in LTS, they 

have all been directly associated with neutrophils. Their protein products are detailed below: 

Annexin 3 (ANXA3) is associated with neutrophil cytoplasmatic granules and involved in 

granule fusion processes267. ANXA3 has also been identified in the phagosome in bacterial 
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infection, likely involving its calcium and phospholipid binding ability268, and revealing its 

involvement in the innate immune response.  

Neutrophils can express the matrix metalloproteinase 8 (MMP8) and store it in their granules. 

The increased levels of this metalloproteinase are associated with the development of BOS, as 

they contribute to extracellular matrix turnover, epithelial damage, fibrosis, tissue remodelling 

and inflammation269. 

Lactoferrin (LTF) is an iron-binding protein found in the secondary neutrophil granules. This 

protein plays a direct antimicrobial role, through iron sequestration in biological fluids or its 

direct interaction with microorganism surfaces, destabilizing its membranes in order to kill 

them and limit the proliferation and adhesion of microorganisms to the epithelia surfaces270. 

Transcobalamin 1 (TCN1), a member of the vitamin B12-binding protein family, is a major 

constituent of secondary granules in neutrophils and facilitates the transport of cobalamin into 

cells271. Finally, olfactomedin 4 (OLFM4) is a constituent of neutrophil-specific granules272. 

In addition to this, a longitudinal study reported high expression of OLFM4, MMP8 and LTF 

during the first week after a kidney transplant. However, these genes were not differentially 

expressed compared to baseline after the sixth month post-transplant273. 

It has been shown that an elevated expression of these five genes was considered a marker of 

neutrophil degranulation, suggesting an alteration in the innate immune system, underlying 

the important role of neutrophils. Since the greater leucocyte population in circulation in BOS 

patients are neutrophils116, the higher expression levels of their corresponding markers 

reflected with high probability the presence of these circulating cells. 

Overall, gene profiling revealed a strong association with an up-regulation of genes involved in 

pDC-mediated processes, and a down-regulation of genes associated with neutrophil pathways 

in LTS patients. 

Concerning protein assessment, differences in MMP8 expression were confirmed at protein 

level in serum, whereas LTF protein levels did not differ between LT groups. ELISA experiments 

do not necessarily reflect RNA expression of blood cells. The aim of these measurements was 

to find potential new biomarkers and not to replicate of microarrays and RT-qPCR results. 

Measurements of the serum levels of KL-6 protein in LT patients with survival time of more 

than ten years were performed as there were no previous studies evaluating this protein level 

in this LT population. KL-6 is a high-molecular-weight mucin mainly expressed by type II 

pneumocytes and to a lesser extent in respiratory bronchiolar epithelial cells which may play a 

pathological role in fibrosing lung diseases due to its chemotactic, pro-proliferative and anti-

apoptotic activity on fibroblasts122. 

In a previous study122, increased levels of KL-6 were observed in RAS recipients compared to 

BOS recipients, suggesting that this protein could serve as a potential biomarker to 

differentiate between BOS and RAS phenotypes. In the present study, serum KL-6 levels were 

lower in LTS patients compared to the CLAD group, both when considering RAS patients and 

not (data not shown). Compared to previous results, LTS patients presented higher levels of 

KL-6 than the stable LT group. This difference can be explained by the post-transplant time, as 
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the stable samples were taken six months after LT versus more than ten years in the case of 

LTS patients. 

Despite the lack of statistical significance, serum IL-33 and IL-6 levels showed an upward trend 

in CLAD patients. 

The specific role of IL-33 in alloimmunity is controversial; some studies reported that serum 

up-regulated IL-33 can contribute to chronic allograft dysfunction in kidney transplant 

patients274, whereas in a chronic cardiac rejection model275 study this interleukin prolonged 

allograft survival. The pro-inflammatory cytokine IL-6, identified as a key player in 

inflammatory and immunomodulatory pathways, has been associated with kidney276 and 

cardiac277 graft rejection. 

In accordance with this, the elevation levels of IL-33 and IL-6 in CLAD patients suggest that 

these cytokines may play a role in poor graft outcomes  

4.3 PART III. IMMUNOPHENOTYPE AND MOLECULAR CHARACTERIZATION 

Two different Treg cell populations were found in the peripheral blood of LTS and CLAD 

patients: V1+  T cells, significantly elevated in CLAD patients, and CD4- CD8-  T cells, 

significantly elevated in LTS patients. 

 T cells are “non-conventional” T cells, representing a small subset of around 1-5% of the 

total T cell population278 which participate in both innate and adaptive immunity as cytolytic 

effector cells and also in immunoregulatory responses.  

There are two main  T cell subpopulations in human peripheral blood: V1 and V2. In 

healthy individuals, the V2 repertoire constitutes the major subtype in peripheral blood 

(>80% of circulating  T cells), while V1  T cells prevail in tissues such as skin, intestine, 

liver and spleen279,192. 

The role of  T cells in clinical organ transplantation remains ambiguous; they may potentially 

contribute to both allograft acceptance and rejection, since they mediate anti-inflammatory 

and pro-inflammatory responses280. 

Several animal model studies have shown that  T cells could be involved in liver281 and 

cardiac282,283 allograft rejection. Conversely, other clinical studies have proposed a protective 

role of  T cells after associating high percentages of circulating  T cells with stable kidney284 

and liver allograft function189,285,286. In addition, a prevalence of circulating Vδ1 γδ T cells was 

found in operationally tolerant liver recipients189,190, suggesting that this type of regulatory cell 

was involved in liver transplant tolerance. 

Surprisingly, the present results show that Vδ1 γδ T cells prevailed in the peripheral blood of 

CLAD patients compared with LTS patients. However, caution is required in the interpretation 

of  T cells findings in clinical organ transplantation as an expansion of Vδ1 γδ T cells (leading 

to an elevated total number of γδ T cells and to a shift in the ratio between Vδ1 and Vδ2 T 

cells) was observed following kidney and liver transplantation regardless of the chronic 
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administration or not of an immunosuppression drug. Therefore, the quantification of  T cell 

subpopulations was unlikely to constitute a useful biomarker of operational solid organ 

allograft tolerance287. Nonetheless, these cells exhibit cytotoxic effects as discussed later. 

The double negative CD4- CD8- + TCR (DN) subset is a Treg cell population present in both 

animal models and human peripheral blood and constitutes approximately 1-3% of total T 

cells288. 

Previous studies reported that the DN T cell subpopulation was able to suppress antigen-

specific immune responses preventing allograft rejection289,290 by killing mature or immature 

DCs and activated alloreactive T cells (CD8+ or CD4+) through the Fas pathway. Similarly, B cells 

and NK cells can also be killed by DN T cells via a perforin/granzyme-mediated process291. 

Recently, a new mechanism of DN T cell-mediated suppression based on mTOR pathway 

inhibition in CD4+ T cells has been revealed, demonstrating that cellular therapy using these 

cells could limit the alloreactive immune response292. 

In agreement with these previous studies, the present results showed an increase of DN T cells 

in the peripheral blood of LTS patients, concluding that these Treg cells might be beneficial in 

prolonging allograft survival. 

Furthermore, Foxp3 Treg cells have been shown to be critically involved in the induction and 

maintenance of transplant tolerance in a broad range of studies181,182. However, in the present 

work these cells were not observed in peripheral blood of neither LTS nor CLAD groups. This 

could be due to the use of immunosuppressant drugs, especially calcineurin inhibitors, in all 

the patients included in the study. The presence of IL-2 is critical for Treg suppressor function 

and a reduction of this cytokine, due to calcineurin inhibitors administration, correlated with a 

decrease number of Foxp3+ T cells293. In line with this, a recent study evaluating Foxp3+ Treg 

cells in long-term lung transplant survivors also showed that Foxp3+ Treg cells were not 

observed in the blood, but in the BAL fluid, suggesting an accumulation of intragraft Foxp3+ 

cells in LTS294. 

Regarding monocytes and NK cells, CLAD patients displayed an elevated proportion of both 

CD16+ cell subpopulations, whereas the LTS group showed a high proportion of CD16- 

monocyte and NK cell subpopulations. 

The CD14high CD16+ monocyte subset (intermediate monocytes) displays inflammatory function 

and is associated with antigen presentation and T cell activation295,296. The elevation of these 

circulating cells in CLAD patients suggested a persistence of inflammation within the allograft. 

On the other hand, CD14high CD16- monocytes were raised in LTS groups; these cells, known as 

classical monocytes, trigger phagocytosis in these patients296. 

The high expression level of CD16 in circulating NK cells in the CLAD group makes them 

efficient mediators of antibody-dependent cell-mediated cytotoxicity (ADCC). In contrast, the 

expanded CD56+ CD16- NK subset in the LTS group resulted in decreased cytotoxic activity, as 

they lack ADCC ability. 

The ADCC mechanism is based on the bifunctional format of IgG antibodies. After the antigen-

binding fragment (Fab) binds to the surface of the target cell, the NK cell surface Fc receptor 



GENERAL DISCUSSION 
 

115 

for IgG CD16 interacts with the crystalline fragment (Fc) of the antibody-coated cell297, 

inducing NK cell activation which results in both cytotoxicity and cytokine response. 

There is increasing evidence that NK cells might play a dual role in mediating either allograft 

acceptance or rejection in solid organ allografts298. In the LT field, NK cells can promote 

tolerance by eliminating donor APCs and alloreactive T cells and they can also contribute to 

rejection through cytotoxic effects on allograft tissue recognized as “non-self” or “stressed” 

and even enhance AMR via ADCC299.  

The findings obtained are consistent with these studies, and furthermore, recent data 

reported support that alloantibody-mediated NK cell activation via CD16 contributes to 

rejection in other SOT as in the case of kidney transplant300,301. 

The CD16 marker can also be expressed by  T cells, especially by Vδ1 γδ T cells, mediating 

the ADCC process and promoting a higher cytotoxic potential of these T cells302. Furthermore, 

recent studies have demonstrated that the presence of neutrophils can enhance the killing 

capacity of activated  T cells303. 

On the other hand, L-selectin, also known as CD62L, is an adhesion molecule involved in 

inflammatory and immune reaction, that mediates leucocyte tethering and rolling304. LTS 

patients showed an elevated percentage of circulating granulocytes with higher CD62L 

expression, although the magnitude of the change of this population was not clinically 

relevant. 

4.4 PART IV. MULTI-PARAMETER BIOMARKER ANALYSIS  

The most relevant clinical, transcriptomic and immunophenotype findings were combined 

using a new integrative method (DIABLO) to assess if the discrimination ability between the 

two groups of LT patients improved by using a cross-platform approach. This module approach 

also sought to improve the biological interpretability of the underlying biological interactions, 

as the model also explained the correlation structure between the variables included.  

The performance of individual biomarker blocks in the multi-biomarker model did not vary 

considerably in predicting the LT state, and the combined performance was similar. 

Interestingly, the gene transcript biomarker block performance was the highest in the 

discrimination of LT patients. 

These results suggest that using combinations of different biological markers did not increase 

their individual discrimination power. This fact is probably due to a previous refining process of 

the variables included, since in the case of gene for example, they were selected from a pre-

internal computational validation strategy. It is likely that, if a greater number of variables had 

been included in each block, an increase of classification power would have been observed. In 

any case, the combined performance, with an AUC of 0.86, is more than acceptable. 

Positive correlations were the most abundant finding between clinical, mRNA, miRNA and cell 

populations. However, negative correlations were found between the infection rate and 

LILRA4 or TNFRSF21 genes. These findings again suggested the potential involvement of these 
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genes in long-term survival after LT. Both genes probably reflected the presence of circulating 

tolerogenic DCs in LTS patients, which would affect their good outcomes, and this means a 

reduction in the infection rate. 

4.5 PART V. UPPER RESPIRATORY TRACT BACTERIAL MICROBIOME COMPOSITION 

To date, this is the first study to assess respiratory tract bacterial microbiome in LTS with 

normal allograft function after LT compared to both CLAD patients and healthy (non-

transplanted) controls.  

Although BAL fluid is the preferred sample used in most LT microbiome literature 

available78,79,305, in this study nasopharyngeal swabs were used in order to avoid such an 

invasive procedure in LTS patients without a clinical and ethically justifiable reason. 

As regards alpha diversity, neither LT group presented significant differences. There is some 

controversy about alpha diversity in the LT field; while some authors reported a decrease in 

microbiome diversity in lung recipients compared to healthy controls78,80, others have found an 

increase among LT recipients compared to controls305. 

Considering bacterial beta diversity analysis, the upper respiratory tract microbiota showed a 

significant difference in the overall bacterial composition between LTS and CLAD patients. 

Actinobacteria phylum and Corynebacterium genera were more prevalent in LTS patients, 

whereas Firmicutes phylum and Staphylococcus genera were enriched in the CLAD group. 

Regarding abundance distributions, LTS patients followed essentially the same trends as the 

healthy control group, with the Actinobacteria phylum and Corynebacterium genus being more 

dominant in the upper respiratory tract of these patients. 

Recent literature has indicated that the nasal microbiome of healthy humans was primarily 

composed of the genera Corynebacterium and Bifidobacterium (phylum Actinobacteria), 

Staphylococcus, Streptococcus and Dolosigranulum (phylum Firmicutes), Moraxella (phylum 

Proteobacteria) and the phylum Bacteroidetes306. 

Similarly, numerous studies have characterized the lung flora of healthy adults using BAL 

samples, with Bacteroides, Firmicutes and Proteobacteria being the most frequent phyla305,307. 

Despite differences in relative abundances, the described phyla in BAL samples were reported 

to be similar to those observed in upper airway samples (oropharynx, nasal)307.  

In this study, the LTS population presented an increase in the Corynebacterium genus 

compared with CLAD patients, suggesting that LTS patients presented a “healthy” 

nasopharyngeal flora, since this genus was also predominant in the non-transplant-healthy 

controls. Conversely, Firmicutes phylum was only elevated in the CLAD group, but not in LTS or 

healthy control patients.  

All the findings were also analysed regarding the treatment received in the experimental 

groups (amphotericin, azythromycin, cotrimoxazole, and corticosteroid treatments), as this 

was an important parameter which could alter the results. The results obtained were not 

altered by the treatment. 
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Among Staphylococcus genera, the Staphylococcus aureus pathogen causes most infections. 

Approximately, 20-30% of the healthy population is persistently colonized by S. aureus308, so 

the presence of this bacteria in some LTS and healthy patients was an expected finding.  

To colonize nasal orifices in healthy subjects, this pathogen must compete with other 

microorganisms normally present in this region, such as Actinobacteria phylum308. 

Moreover, higher abundances of Spirochaetes phylum and Lactobacillus and Acidocella genera 

were observed in LTS and CLAD patients compared to healthy controls. These results 

suggested a tendency to present higher abundances of these organisms after LT, although 

their involvement in transplant outcome remains unknown.  

Therefore, the microbiome characterization has suggested that LTS patients presented healthy 

nasopharyngeal flora. Besides, in these patients Corynebacterium might prevent infections by 

potential pathogens such as Staphylococcus aureus. 

DISCUSSION SUMMARY  

In short, the peripheral blood of LTS with normal allograft function patients exhibited an up-

regulation of genes involved in pDC-mediated processes, down-regulation of genes associated 

with neutrophil pathways, an elevation in DN Treg cells and decreased levels of V1+  T cells 

and CD16+ monocytes and NK cells. Furthermore, these patients maintain a dominant 

Corynebacterium microbiota in their upper respiratory tracts. 

Collectively, the results obtained in the current study reveal that immunophenotypical and 

transcriptomical expression patterns between LTS and operationally tolerant kidney and liver 

recipients differ, suggesting that allograft acceptance in kidney, liver and lung transplants is 

achieved through different immune mechanisms. Unravelling these mechanisms would help to 

develop specific screening and treatment protocols and result in more personalized medicine. 
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The results obtained in the studies included in this thesis offer valuable insights to gain a 

better understanding of the potential mechanisms involved in long-term survival after lung 

transplantation, leading to the following conclusions: 

1- Long-term survivors with normal allograft function present a lower frequency of pre-

transplant diabetes mellitus, days in waiting list, and lower comorbidity and infection 

rates after lung transplantation. 

2- The expression signature associated with long-term survival after lung transplantation 

is mainly characterized by enrichment in genes encoding for cell-surface receptors 

expressed by plasmacytoid dendritic cells and down-regulation of genes associated 

with neutrophil pathways. Gene classifiers and multi-platform biomarker expression 

profiling model developed accurately differentiate long-term survivors with normal 

allograft function from chronic lung allograft dysfunction recipients, although any 

miRNA set cannot classify patients between both groups. 

3- Long-term survivors with normal allograft function exhibit an increased number of 

double negative regulatory T cells, CD16- monocytes and CD16- NK cells in peripheral 

blood and lower serum biomarker levels of MMP8 and KL-6 compared to chronic lung 

allograft dysfunction recipients.  

4- Actinobacteria phylum and Corynebacterium genus dominate the upper respiratory 

tract microbiome of long-term survivors with normal allograft function. 
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The principal aim of this thesis was to characterize LTS with normal allograft function ten years 

after LT. The results provided here could contribute to a better understanding of the 

underlying mechanisms of graft acceptance after LT and open up new perspectives for future 

research. 

Several studies have already analysed specific parameters in the peripheral blood of kidney 

and liver tolerant recipients. The present research is the first to describe the long-term survival 

with normal allograft function after LT state, the closest phenomenon to kidney or liver 

operational tolerance, by employing exhaustive transcriptomic and immunophenotypic 

analyses. Moreover, serum protein analyses and the microbiome composition of the upper 

respiratory tract have also provided new data about this condition.  

Although these results are of potential relevance, the external validation of these findings in 

other independent cohort of LT recipients with similar clinical group characteristics would be 

required to confirm the results in leucocyte subpopulations, genes and miRNAs.  

Once external validation has been carried out, studies evaluating the predictive nature of 

transcriptional and immunophenotypical profiles should be performed. The relationship 

between the mechanisms of LILRA4, TNFRSF21 and NRP1 genes and their role as potential 

predictors of long-term survival with normal allograft function after LT need to be further 

investigated in prospective studies. 

In this vein, the genetic findings suggested that pDCs in the peripheral blood of LTS patients 

could play an important role in long-term survival with normal allograft function. Primarily, the 

presence of these cells in the peripheral blood of LTS patients must be analysed. After 

confirming that, the specific role of pDCs would be assessed in the graft acceptance process.  

The characterization of LTS patients validated some features described for other organ 

transplantation fields, such as the potential role of DN T cells in the maintenance of long-term 

survival with normal allograft function, highlighting the importance of this pool of cells for 

prolonging allograft survival. 

This was not the case for Foxp3 Treg cells which were absent in the peripheral blood of all 

patients regardless LT condition. In line with this, studies have demonstrated that 

immunosuppressive drugs can inhibit Foxp3 expression. Consequently, it will be necessary to 

confirm that the absence of Foxp3 Treg cells is due to the immunosuppressive treatment and 

assess the intragraft role of these cells. 

Considering the exploratory nature of this study, the present findings could be used as a 

starting point in the unravelling of the mechanisms involved in lung transplant immunology.  
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List of clinical variables recorded. 

- Pre-transplant diagnosis - Episodes of infections (bacterial, viral o fungal) 
and their characteristics 

- Academic degree and working status - Episodes of biopsy-proven AR or other 
immunological complication 

- Family support - Presence of anti-HLA donor specific antibodies 

- Pre-transplant characteristics and 
functional status 

- Other comorbidities (arterial hypertension, 
dyslipidemia, diabetes mellitus, osteoporosis, 
anemia, renal dysfunction, malignancies) 

- HLA mismatch - Duration of intubation 

- Characteristics of the transplantation 
procedure 

- Immunosuppression protocol 

- PGD - Respiratory functional tests (first spirometry 
post-LT, best spirometry post-LT, last spirometry) 

- Need of reintervention - Presence and time to CLAD development 

- Complications during Intensive Care Unit 
stay 

- Laboratory data (hemoglobin, leucocytes, urea, 
creatine, glomerular filtration rate and 
cholesterol) 

- Intensive Care Unit length of stay - Time and cause of death. 

- Characteristics at the first protocol 
bronchoscopy (macroscopic, microscopic, 
cytological and microbiologic) 

 

The results of the analyses of some of the characteristics indicated above have not been 

shown in the present thesis. 
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Table S- 1. List of the top 50 differentially expressed genes between LTS and CLAD patients. 

Rank 
position 

Gene 
Symbol 

Entrez  
Gene ID 

Gene name 
Linear FC  

LTS vs. CLAD 
FDR 

1 ANXA3 306 Annexin A3 0.514 0.0003 

2 FCGR1B 2210 Fc fragment of IgG receptor Ib 0.488 0.0008 

3 LILRA4 23547 
Leucocyte immunoglobulin like  
receptor A4 

1.544 0.0025 

4 TNFRSF21 27242 TNF receptor superfamily member 21 1.387 0.0025 

5 KCNJ2-AS1 400617 KCNJ2 antisense RNA 1 0.654 0.0025 

6 ACSL1 2180 
Acyl-CoA synthetase long  
chain family member 1 

0.563 0.0025 

7 LRRC6 23639 Leucine rich repeat containing 6 0.630 0.0025 

8 NRP1 8829 Neuropilin 1 1.493 0.0032 

9 KCNJ15 3772 
Potassium voltage-gated channel 
subfamily J member 15 

0.565 0.0032 

10 FCGR1CP 100132417 
Fc fragment of IgG receptor Ic, 
pseudogene 

0.568 0.0035 

11 DHRS13 147015 Dehydrogenase/reductase 13 0.685 0.0035 

12 MGAM2 93432 Maltase-glucoamylase 2 (putative) 0.522 0.0035 

13 MMP8 4317 Matrix metallopeptidase 8 0.270 0.0039 

14 BCL6 604 B cell CLL/lymphoma 6 0.636 0.0046 

15 SLC22A4 6583 Solute carrier family 22 member 4 0.674 0.0053 

16 DYSF 8291 Dysferlin 0.578 0.0091 

17 GPR183 1880 G protein-coupled receptor 183 1.729 0.0091 

18 PROK2 60675 Prokineticin 2 0.658 0.0112 

19 PNPLA2 57104 
Patatin like phospholipase  
domain containing 2 

0.768 0.0120 

20 PLD4 122618 phospholipase D family member 4 1.353 0.0159 

21 TLR5 7100 Toll like receptor 5 0.717 0.0168 

22 ITM2C 81618 Integral membrane protein 2C 1.499 0.0168 

23 MIR3161 100423000 MicroRNA 3161 0.655 0.0169 

24 HRH2 3274 Histamine receptor H2 0.706 0.0169 

25 FCGR2A 2212 Fc fragment of IgG receptor IIa 0.747 0.0169 

26 LTF 4057 Lactotransferrin 0.364 0.0169 

27 FCER1A 2205 Fc fragment of IgE receptor Ia 1.793 0.0169 

28 SLED1 643036 
Proteoglycan 3, pro eosinophil  
major basic protein 2 pseudogene 

0.635 0.0169 

29 KCNJ2 3759 
Potassium inwardly rectifying 
 channel subfamily J member 2 

0.617 0.0169 

30 RPS26 6231 Ribosomal protein S26 2.517 0.0169 

31 MAPK14 1432 Mitogen-activated protein kinase 14 0.673 0.0169 

32 LIMK2 3985 LIM domain kinase 2 0.685 0.0169 

33 HCK 3055 
HCK proto-oncogene,  
Src family tyrosine kinase 

0.773 0.0169 

34 DSC2 1824 Desmocollin 2 0.620 0.0169 

35 SLC2A3 6515 Solute carrier family 2 member 3 0.678 0.0170 

36 OLR1 4973 
Oxidized low density lipoprotein  
receptor 1 

0.469 0.0175 

37 SH3BP4 23677 SH3 domain binding protein 4 1.247 0.0184 

38 TGM2 7052 Transglutaminase 2 0.795 0.0184 

39 CHIT1 1118 Chitinase 1 0.564 0.0184 
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Rank 
position 

Gene 
Symbol 

Entrez  
Gene ID 

Gene name 
Linear FC  

LTS vs. CLAD 
FDR 

40 FAM41C 284593 
Family with sequence similarity 41 
member C 

0.689 0.0184 

41 SBNO2 22904 Strawberry notch homolog 2 0.721 0.0187 

42 SIRPD 128646 Signal regulatory protein delta 0.753 0.0187 

43 FAM19A1 407738 
TAFA chemokine like  
family member 1 

1.438 0.0187 

44 RPS26P11 441502 
Ribosomal protein S26  
pseudogene 11 

2.219 0.0188 

45 ALOX5 240 Arachidonate 5-lipoxygenase 0.726 0.0199 

46 FCGR1A 2209 Fc fragment of IgG receptor Ia 0.550 0.0205 

47 PFKFB3 5209 
6-phosphofructo-2-kinase/ 
fructose-2,6-biphosphatase 3 

0.716 0.0211 

48 MCEMP1 199675 
Mast cell expressed membrane 
protein 1 

0.605 0.0211 

49 CEACAM6 4680 CEA cell adhesion molecule 6 0.574 0.0211 

50 GK 2710 Glycerol kinase 0.652 0.0211 
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Table S- 2. List of the top 50 differentially expressed miRNAs between LTS and CLAD patients. Analysis 

included human mature miRNAs, pre-miRNAs, snoRNAs, CDBox RNAs, H/ACA Box RNAs and scaRNAs. 

Rank 
position 

miRNA ID Accession 
Linear FC  

LTS vs. CLAD 
p-value FDR 

1 U78 U78 0.573 1.81E-05 1.20E-01 
2 ENSG00000212378 ENSG00000212378 0.565 6.73E-05 1.49E-01 
3 U78 U78 0.565 6.73E-05 1.49E-01 
4 U17b U17b 0.706 2.41E-04 2.80E-01 
5 U75 U75 0.672 2.47E-04 2.80E-01 
6 ENSG00000252199 ENSG00000252199 0.854 3.27E-04 2.80E-01 
7 U75 U75 0.709 3.71E-04 2.80E-01 
8 ACA7B ACA7B 0.748 4.23E-04 2.80E-01 
9 ACA7 ACA7 0.748 4.23E-04 2.80E-01 

10 ENSG00000206913 ENSG00000206913 0.748 4.23E-04 2.80E-01 
11 U46 U46 0.843 5.48E-04 3.31E-01 
12 hsa-mir-548o-2 MI0016746 1.139 7.20E-04 3.98E-01 
13 hsa-mir-3142 MI0014166 1.109 8.01E-04 4.09E-01 
14 hsa-mir-1973 MI0009983 0,862 1.16E-03 4.98E-01 
15 ACA48 ACA48 0,809 1.19E-03 4.98E-01 
16 HBI-6 HBI-6 1.103 1.26E-03 4.98E-01 
17 U30 U30 0.705 1.29E-03 4.98E-01 
18 hsa-miR-223-3p MIMAT0000280 0.427 1.35E-03 4.98E-01 
19 HBII-180C HBII-180C 0.796 1.67E-03 5.26E-01 
20 hsa-miR-27b-3p MIMAT0000419 0.678 1.73E-03 5.26E-01 
21 HBII-251 HBII-251 0.771 1.73E-03 5.26E-01 
22 hsa-miR-6734-3p MIMAT0027370 1.115 1.84E-03 5.26E-01 
23 ENSG00000264346 ENSG00000264346 1.114 1.90E-03 5.26E-01 
24 ENSG00000200536 ENSG00000200536 1.109 1.96E-03 5.26E-01 
25 ENSG00000252438 ENSG00000252438 1.156 2.16E-03 5.26E-01 
26 ENSG00000253042 ENSG00000253042 0.899 2.18E-03 5.26E-01 
27 ENSG00000221345 ENSG00000221345 1.109 2.20E-03 5.26E-01 
28 hsa-miR-1290 MIMAT0005880 0.901 2.38E-03 5.26E-01 
29 ENSG00000239098 ENSG00000239098 1.109 2.44E-03 5.26E-01 
30 hsa-mir-4461 MI0016807 1.113 2.52E-03 5.26E-01 
31 ENSG00000238925 ENSG00000238925 1.087 2.76E-03 5.26E-01 
32 U58C U58C 0.871 2.76E-03 5.26E-01 
33 hsa-miR-151b MIMAT0010214 0.733 2.76E-03 5.26E-01 
34 hsa-mir-548h-3 MI0006413 1.107 2.76E-03 5.26E-01 
35 hsa-mir-8064 MI0025900 1.155 3.24E-03 5.26E-01 
36 hsa-miR-543 MIMAT0004954 0.783 3.51E-03 5.26E-01 
37 hsa-mir-3937 MI0016593 1.202 3.52E-03 5.26E-01 
38 hsa-miR-1180-3p MIMAT0005825 1.244 3.58E-03 5.26E-01 
39 hsa-miR-4639-5p MIMAT0019697 1.138 3.64E-03 5.26E-01 
40 ACA44 ACA44 0.622 3.66E-03 5.26E-01 
41 ENSG00000252840 ENSG00000252840 0.622 3.66E-03 5.26E-01 
42 hsa-mir-1287 MI0006349 1.102 3.66E-03 5.26E-01 
43 hsa-miR-6808-3p MIMAT0027517 1.164 3.73E-03 5.26E-01 
44 ENSG00000212579 ENSG00000212579 1.142 3.85E-03 5.26E-01 
45 hsa-miR-489-5p MIMAT0026605 0.909 3.87E-03 5.26E-01 
46 hsa-miR-4732-3p MIMAT0019856 1.266 4.08E-03 5.26E-01 
47 hsa-let-7a-5p MIMAT0000062 0.833 4.24E-03 5.26E-01 
48 ENSG00000252236 ENSG00000252236 1.100 4.24E-03 5.26E-01 
49 hsa-miR-548j-5p MIMAT0005875 1.097 4.27E-03 5.26E-01 
50 U31 U31 0.818 4.28E-03 5.26E-01 
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Table S- 3. Comparison of the gene expression results obtained by microarrays and RT-qPCR 

technologies. In order to compare the FC values of both technologies, a transformation of the negative 

linear FC values (-1/FC) was performed. 

 

Table S- 4. Comparison of the miRNA expression results obtained by microarrays and RT-qPCR 

technologies. Microarray FDR values come from the differential miRNA expression analysis which 

included human mature miRNAs, pre-miRNAs, snoRNA, CDBox RNAs, H/ACA Box RNAs and scaRNAs. 

  

Gene Symbol qPCR Linear FC qPCR FDR Microarray Linear FC Microarray FDR 

TNFRSF21 3.478 0 1.387 0.0025 

LILRA4 4.231 0 1.544 0.0025 

NRP1 2.606 1E-05 1.493 0.0032 

ANXA3 -2.463 4E-05 -1.946 0.0003 

MMP8 -4.608 0.0003 -3.698 0.0039 

FCGR1B -1.634 0.0004 -2.051 0.0008 

LTF -3.717 0.0007 -2.744 0.0169 

TCN1 -2.519 0.0008 -2.334 0.0336 

OLFM4 -4.505 0.0022 -2.421 0.0612 

ACSL1 -1.661 0.0022 -1.776 0.0025 

KCNJ15 -1.745 0.0022 -1.769 0.0032 

LRRC6 -1.761 0.0026 -1.588 0.0025 

BCL6 -1.56 0.0039 -1.572 0.0046 

SLC22A4 -1.631 0.0041 -1.483 0.0053 

HCK -1.244 0.0060 -1.293 0.0169 

DHRS13 -1.309 0.0081 -1.459 0.0035 

FCGR2A -1.366 0.0140 -1.339 0.0169 

CA4 -1.727 0.0177 -1.353 0.0336 

PROK2 -1.464 0.0179 -1.519 0.0112 

PNPLA2 -1.252 0.0378 -1.302 0.012 

TLR5 -1.193 0.0763 -1.394 0.0168 

miRNA ID qPCR Linear FC qPCR FDR Microarray Linear FC Microarray FDR 

hsa-miR-194-5p -1.436 0.0464 -1.396 0.5930 

hsa-miR-151b -1.316 0.0464 -1.364 0.5256 

hsa-miR-26b-5p -1.436 0.0654 -2.05 0.5811 

hsa-miR-421 -1.268 0.0950 -1.434 0.5754 

hsa-miR-223-3p -1.457 0.1117 -2.34 0.4977 

hsa-miR-1180-3p 1.106 0.1408 1.244 0.5256 

hsa-miR-543 -1.357 0.2190 -1.276 0.5256 

hsa-let-7g-5p -1.106 0.4373 -1.383 0.5256 
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Figure S- 1. Gating strategy for CD14high CD16+/- monocytes and CD56+ CD16+/- NK cells in flow 

cytometry. PBMCs were gated on leucocytes by CD45 staining. Within the CD45+ leucocyte 

population, CD45+ monocytes and lymphocytes were identified. CD14high CD16+/- monocytes were 

gated from the CD14+ monocyte population. Within lymphocytes without B cells (gated from the 

leucocytes without granulocytes and monocytes), NK cells were identified as CD3- CD56+ cells and 

CD56+ CD16+/- NK subpopulations were gated from them. Representative data from one patient is 

shown. 
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Figure S- 2. Gating strategy for DN and V+  TCR T cells in flow cytometry. PBMCs were gated on 

leucocytes by CD45 staining Within the CD45+ leucocyte population, T cells were identified as CD45+ 

CD3+ population. Within the T cell population,  and  TCR T cells were identified. V+  T cells 

were identified as CD3+ V1+ V2- from the + TCR T population whereas DN T cells were identified 

as CD4- CD8- + TCR from the + TCR T cell population. Representative data from one patient is 

shown. 

 

 

Figure S- 3. Gating strategy for CD62L+ granulocytes in flow cytometry. PBMCs were gated on 

leucocytes by CD45 staining. CD62L+ granulocytes were identified from CD45+ granulocyte 

population. Representative data from one patient is shown. 
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Table S- 5. Percentages of leucocyte subpopulations between LTS and CLAD patients. Comparisons 

between the two groups were performed employing parametric unpaired t-test or nonparametric 

Mann-Whitney test, according to data distribution. Variables compared using t-test are presented as 

mean with SD whereas variables compared using Mann-Whitney test are presented as median with 

interquartile range. * Immunophenotype of NKT subsets is indicated in Table S- 6. 

Cell subpopulation (Basic Panel) CLAD LTS p-value 

granulocytes (out of total leucocytes) 61.1 (13.9) 56.1 (11.6) 0.131 
Monocytes and lymphocytes  
(out of total leucocytes) 

38.9 (13.9) 43.9 (11.6) 0.133 

monocytes (out of total leucocytes) 9.03 (3.02) 8.95 (2.86) 0.911 
CD14+ CD16+ monocytes  
(out of total monocytes) 

12.4 [9.52;16.8] 9.57 [7.13;12.1] 0.025 

CD14+ CD16- monocytes  
(out of total monocytes) 

87.6 [83.2;90.5] 90.4 [87.9;92.9] 0.025 

CD14high CD16- monocytes  
(out of total monocytes) 

85.7 [81.6;87.1] 88.5 [85.1;91.0] 0.046 

CD14high CD16+ monocytes  
(out of total monocytes) 

6.69 [5.22;11.5] 5.38 [3.94;6.31] 0.009 

CD14dim CD16- monocytes  
(out of total monocytes) 

2.01 [1.45;2.58] 1.95 [1.54;2.70] 0.953 

CD14dim CD16+ monocytes  
(out of total monocytes) 

4.33 [3.16;5.39] 3.79 [2.98;6.02] 0.977 

lymphocytes (out of total leucocytes) 28.4 (11.8) 33.2 (10.1) 0.091 
B cells (out of total lymphocytes) 4.39 [2.38;7.28] 4.98 [2.67;7.22] 0.678 
NK cells (out of total lymphocytes) 8.73 [5.75;17.1] 8.88 [4.62;16.2] 0.531 
NK CD56 high (out of total NK cells) 8.55 [5.54;12.4] 8.47 [4.71;16.6] 0.608 
NK CD56 dim (out of total NK cells) 92.6 [88.3;95.7] 91.5 [81.0;95.2] 0.234 
CD56+ CD16+ NK (out of total NK cells) 95.0 [92.8;96.9] 91.2 [84.1;95.1] 0.004 
CD56+ CD16- NK (out of total NK cells) 5.45 [3.63;7.81] 8.82 [4.95;19.8] 0.020 
CD56dim CD16+ NK (out of total NK cells) 89.3 [84.5;93.2] 88.3 [77.5;93.1] 0.186 
CD56high CD16+ NK (out of total NK cells) 4.53 [3.22;8.14] 3.92 [2.15;7.28] 0.298 
CD56dim CD16- NK (out of total NK cells) 3.18 [1.39;4.03] 2.65 [1.78;5.09] 0.721 
CD56high CD16- NK (out of total NK cells) 3.64 [2.53;4.72] 4.74 [2.89;9.33] 0.052 
T cells (out of total lymphocytes) 79.4 [72.7;87.7] 81.1 [75.2;89.2] 0.379 
CD4+ T cells (out of total T cells) 51.4 (14.1) 54.2 (12.9) 0.419 
CD8+ T cells (out of total T cells) 42.9 (11.8) 38.6 (10.4) 0.131 
NKT cells (out of total T cells) 8.55 [4.14;11.7] 8.99 [7.15;19.2] 0.101 
NKT subset 1 (out of total NKT) 73.9 [61.3;79.2] 73.7 [60.2;78.9] 0.637 
NKT subset 2 (out of total NKT) 17.7 [8.58;28.1] 13.7 [8.09;26.0] 0.852 
NKT subset 3 (out of total NKT) 15.0 [4.92;24.6] 11.7 [8.23;17.5] 0.629 
NKT (out of total lymphocytes) 5.23 [3.17;9.06] 7.34 [5.20;14.3] 0.053 
NKT subset 1 (out of total lymphocytes) 4.55 [2.34;6.10] 5.12 [3.54;8.65] 0.161 
NKT subset 2(out of total lymphocytes) 0.76 [0.39;1.84] 1.26 [0.55;2.41] 0.302 
NKT subset 3 (out of total lymphocytes) 0.62 [0.35;1.41] 0.94 [0.53;2.42]  0.242 

 

Table S- 6. Proposed immunophenotype of NKT subpopulations. 

NKT population Markers used 

NKT subset 1 CD3+ CD56+ CD4- CD8- 

NKT subset 2 CD3+ CD56+ CD4- CD8+ 

NKT subset 3 CD3+ CD56+ CD4+ CD8- 
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Table S- 7. Percentages of B cell subpopulations between LTS and CLAD patients. Comparisons between 

the two groups were performed employing parametric unpaired t-test or nonparametric Mann-Whitney 

test, according to data distribution. Variables compared using t-test are presented as mean with SD 

whereas variables compared using Mann-Whitney test are presented as median with interquartile 

range. * Immunophenotype of B cell subsets is indicated in Table S- 8. 

Cell subpopulation (B cells Panel) CLAD LTS p-value 

Leucocytes (out of total single cells) 99.9 [99.8;99.9] 99.8 [99.2;99.9] 0.039 

Lymphocytes (out of total leucocytes) 26.6 (12.0) 30.9 (9.31) 0.128 

B cells (out of total lymphocytes) 3.77 [2.03;6.24] 4.43 [2.19;6.15] 0.678 

Naive and CD27- B cells (out of total B cells) 65.5 [49.5;73.0] 63.8 [44.2;76.6] 0.638 

Memory B cells (out of total B cells) 41.6 (18.0) 42.0 (20.7) 0.945 

Naïve and transitional B cells (out of total B cells) 54.8 (16.4) 53.3 (21.9) 0.766 

Mature naïve B cells (out of total B cells) 13.4 [10.5;26.9] 16.0 [11.0;20.8] 0.759 

Transitional T1/T2 B cells (out of total B cells) - - - 

Mature B cells (out of total B cells) 19.7 (6.01) 22.2 (7.92) 0.215 

ASC and SwM B cells (out of total B cells) 24.3 [18.8;31.5] 22.5 [11.9;35.7] 0.498 

SwM B cells (out of total B cells) 15.2 (6.13) 15.1 (9.57) 0.956 

Plasmablast cells (out of total B cells) 5.73 [4.06;6.63] 8.67 [4.32;12.4] 0.133 

B10 cells (out of total B cells) 18.1 [15.4;26.8] 17.2 [9.74;31.9] 0.594 

Unswitched memory B cells (out of total B cells) 15.4 [11.8;19.3] 11.4 [8.81;20.9] 0.346 

IgD- CD27- B cells (out of total B cells) 7.38 [5.83;10.7] 7.48 [5.63;9.30] 0.569 

IgD- B cells (out of total B cells) 32.0 [25.9;40.8] 33.7 [17.5;45.9] 0.602 

DN B cells (out of total B cells) 6.42 [4.69;8.33] 5.95 [4.88;7.68] 0.716 

IgM only B cells (out of total B cells) 5.02 [3.48;6.41] 5.93 [3.58;11.5] 0.477 

CD21-/low CD38low B cells (out of total B cells) 10.2 [7.69;16.3] 10.3 [7.73;14.7] 0.563 

 

Table S- 8. Proposed immunophenotype of B cell subpopulations. 

B cell population B cell markers used 

Naive and DN B cells CD19+ CD27- 

Memory B cells CD19+ CD27+ 

Naïve and transitional B cells CD19+ IgD+ CD27- 

Mature naïve B cells CD19+ IgD+ CD27- CD38+ CD24+ 

Transitional T1/T2 B cells CD19+ IgD+ CD27- CD38high CD24high 

Mature B cells CD19+ IgD+ CD38low/+ CD24+ 

Antibody-secreting cells (ASC) and “switched” memory  
(SwM) B cells 

CD19+ IgD- CD27+ 

Switched memory (SwM) cells CD19+ IgD- CD27+ IgM- CD38- 

Plasmablast cells CD19+ IgD- CD27+ IgM- CD38high 

B10 cells CD19+ IgD- CD27+ IgD- CD24+ 

Unswitched memory B cells CD19+ IgD+ CD27+ 

Double negative (DN) B cells CD19+ IgD- CD27- IgM- 

IgM only B cells CD19+ IgD- CD27+ IgM+ 
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Table S- 9. Percentages of T cell subpopulations between LTS and CLAD patients. Comparisons between 

the two groups were performed employing parametric unpaired t-test or nonparametric Mann-Whitney 

test, according to data distribution. Variables compared using t-test are presented as mean with SD 

whereas variables compared using Mann-Whitney test are presented as median with interquartile 

range. 

Cell subpopulation (T cells Panel) CLAD LTS p-value 

Lymphocytes (out of total leucocytes) 26.5 (10.6) 30.2 (8.02) 0.126 

T cells (out of total lymphocytes) 79.1 [72.5;87.0] 80.5 [73.9;87.5] 0.531 

CD4+ T cells (out of total T cells) 51.7 (13.9) 54.3 (13.1) 0.453 

CD4+ CD57+ T cells (out of total CD4+ T cells) 9.95 [3.75;15.1] 5.14 [2.25;12.0] 0.131 

CD4+ CD27- CD28+ T cells (out of total CD4+ T cells) 9.16 [5.72;11.1] 7.99 [5.07;11.6] 0.598 

CD4+ CD27+ CD28+ T cells (out of total CD4+ T cells) 85.9 [76.0;91.9] 86.8 [77.7;92.8] 0.598 

CD4+ CD27- CD28- T cells (out of total CD4+ T cells) 10.9 [5.43;16.0] 8.22 [4.32;18.2] 0.745 

CD4+ CD27+ CD28- T cells (out of total CD4+ T cells) 0.54 (0.07) 0.62 (0.21) 0.515 

CD4+ CD27+ T cells (out of total CD4+ T cells) 86.1 [76.1;91.9] 86.8 [77.9;92.8] 0.607 

CD4+ CD27- T cells (out of total CD4+ T cells) 13.9 [8.07;23.9] 13.2 [7.19;22.1] 0.607 

CD4+ CD28+ T cells (out of total CD4+ T cells) 95.7 [87.2;99.7] 95.9 [89.9;99.9] 0.678 

CD4+ CD28- T cells (out of total CD4+ T cells) 11.0 [5.61;16.2] 8.14 [4.05;18.7] 0.584 

CD4+ CD28- CD279+ T cells  
(out of total CD4+ T cells) 

5.91 [2.72;14.0] 4.43 [3.31;9.77] 0.822 

CD4+ CD28+ CD279+ T cells  
(out of total CD4+ T cells) 

24.9 [18.2;35.0] 26.2 [18.7;30.1] 0.578 

CD4+ CD28- CD279+ T cells  
(out of total CD4+ T cells) 

5.54 [3.39;9.27] 3.97 [1.43;5.62] 0.188 

CD4+ CD28+ CD279- T cells  
(out of total CD4+ T cells) 

63.8 [57.0;75.5] 68.5 [61.4;75.0] 0.269 

CD4+ CD279+ T cells (out of total CD4+ T cells) 32.7 [23.1;39.4] 30.3 [21.5;35.6] 0.288 

CD4+ CD279- T cells (out of total CD4+ T cells) 67.3 [60.6;76.9] 69.7 [64.4;78.5] 0.288 

CD4+ CD197+ CD45RA- T cells  
(out of total CD4+ T cells) 

48.1 (14.0) 47.8 (15.6) 0.926 

CD4+ CD197+ CD45RA+ T cells  
(out of total CD4+ T cells) 

31.0 [18.4;43.1] 33.3 [25.0;38.6] 0.718 

CD4+ CD197- CD45RA- T cells  
(out of total CD4+ T cells) 

11.4 [7.53;15.3] 9.19 [5.42;14.4] 0.157 

CD4+ CD197- CD45RA+ T cells  
(out of total CD4+ T cells) 

9.71 [3.33;12.1] 6.06 [2.98;11.9] 0.536 

CD4+ CD197+ T cells (out of total CD4+ T cells) 83.9 [74.5;90.3] 87.4 [75.6;92.2] 0.426 

CD4+ CD197- T cells (out of total CD4+ T cells) 16.1 [9.71;25.5] 12.6 [7.76;24.4] 0.426 

CD4+ CD45RA+ T cells (out of total CD4+ T cells) 42.0 [27.3;48.1] 37.3 [31.4;46.9] 0.741 

CD4+ CD45RA- T cells (out of total CD4+ T cells) 58.0 [51.9;72.7] 62.7 [53.1;68.6] 0.741 

CD8+ T cells (out of total T cells) 42.2 (11.6) 37.7 (10.7) 0.119 

CD8+ CD57+ T cells (out of total CD8+ T cells) 26.9 (15.6) 24.1 (17.2) 0.507 

CD8+ CD27- CD28+ T cells (out of total CD8+ T cells) 3.47 [3.03;6.68] 4.72 [3.16;7.62] 0.290 

CD8+ CD27+ CD28+ T cells (out of total CD8+ T cells) 36.9 [28.0;59.0] 49.1 [30.7;75.1] 0.301 

CD8+ CD27- CD28- T cells (out of total CD8+ T cells) 51.5 [30.3;58.0] 35.5 [8.16;49.1] 0.204 

CD8+ CD27+ CD28- T cells (out of total CD8+ T cells) 7.35 [5.23;9.68] 5.91 [5.00;10.4] 0.647 

CD8+ CD27+ T cells (out of total CD8+ T cells) 45.2 [38.1;67.0] 59.8 [42.7;83.7] 0.328 

CD8+ CD27- T cells (out of total CD8+ T cells) 54.8 [33.0;61.9] 40.2 [16.3;57.3] 0.328 

CD8+ CD28+ T cells (out of total CD8+ T cells) 42.3 [33.2;65.5] 53.6 [40.2;80.0] 0.251 

CD8+ CD28- T cells (out of total CD8+ T cells) 57.7 [34.5;66.8] 46.4 [20.0;59.8] 0.251 
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Cell subpopulation (T cells Panel) CLAD LTS p-value 

CD8+ CD28- CD279+ T cells  
(out of total CD8+ T cells) 

8.82 [5.92;21.2] 5.93 [4.52;14.5] 0.097 

CD8+ CD28+ CD279+ T cells  
(out of total CD8+ T cells) 

11.5 [9.79;18.6] 15.2 [10.4;21.5] 0.371 

CD8+ CD28- CD279- T cells  
(out of total CD8+ T cells) 

39.3 [20.6;48.0] 31.0 [12.0;42.9] 0.335 

CD8+ CD28+ CD279- T cells  
(out of total CD8+ T cells) 

30.2 [21.6;47.4] 36.6 [24.7;52.4] 0.394 

CD8+ CD279+ T cells (out of total CD8+ T cells) 25.7 [18.2;38.2] 26.7 [17.3;36.3] 0.949 

CD8+ CD279- T cells (out of total CD8+ T cells) 74.3 [61.8;81.8] 73.3 [63.7;82.7] 0.949 

CD8+ CD197+ CD45RA- T cells  
(out of total CD8+ T cells) 

9.79 [7.63;14.3] 11.1 [7.99;15.8] 0.453 

CD8+ CD197+ CD45RA+ T cells  
(out of total CD8+ T cells) 

25.2 [14.7;41.3] 29.9 [14.8;45.2] 0.644 

CD8+ CD197- CD45RA- T cells  
(out of total CD8+ T cells) 

14.2 [9.83;23.7] 14.3 [8.94;21.2] 0.912 

CD8+ CD197- CD45RA+ T cells  
(out of total CD8+ T cells) 

43.0 (22.0) 40.5 (24.5) 0.670 

CD8+ CD197+ T cells (out of total CD8+ T cells) 35.9 [23.5;55.2] 49.9 [20.7;63.3] 0.522 

CD8+ CD197- T cells (out of total CD8+ T cells) 64.1 [44.8;76.5] 50.1 [36.7;79.3] 0.522 

CD8+ CD45RA+ T cells (out of total CD8+ T cells) 72.2 (12.2) 72.3 (15.6) 0.968 

CD8+ CD45RA- T cells (out of total CD8+ T cells) 27.8 (12.2) 28.6 (15.0) 0.828 
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Table S- 10. Percentages of TCR T cell subpopulations between LTS and CLAD patients. Comparisons 

between the two groups were performed employing parametric unpaired t-test or nonparametric 

Mann-Whitney test, according to data distribution. Variables compared using t-test are presented as 

mean with SD whereas variables compared using Mann-Whitney test are presented as median with 

interquartile range. 

Cell subpopulation (TCR T cells Panel) CLAD LTS p-value 

Lymphocytes (out of total leucocytes) 27.9 (11.2) 32.1 (9.21) 0.107 

T cells (out of total lymphocytes) 79.3[68.2;85.2] 79.0[73.4;84.3] 0.477 

CD4+ T cells (out of total T cells) 51.3 (14.0) 54.3 (12.9) 0.386 

CD4+ HLA DR+ T cells (out of total CD4+ T cells) 12.0[7.25;18.9] 9.71[6.57;16.9] 0.356 

CD8+ T cells (out of total T cells) 43.4 (11.9) 39.2 (10.5) 0.148 

CD8+ HLA DR+ (out of total CD8+ T cells) 42.6 (18.1) 39.4 (20.6) 0.511 

+ TCR T cells (out of total T cells) 96.1[94.3;98.2] 95.9[92.1;97.8] 0.559 

+ TCR CD8+ T cells (out of total + TCR T cells) 53.9 (13.5) 57.6 (11.3) 0.247 

+ TCR CD4+ T cells (out of total + TCR T cells) 44.4 (13.4) 39.9 (11.2) 0.161 

+ TCR CD4- CD8- T cells (out of total + TCR T cells) 0.58[0.45;1.08] 1.13[0.72;1.67] 0.002 

+ TCR T cells (out of total T cells) 3.91[1.91;5.73] 4.12[2.22;7.99] 0.404 

V1+ V2- + TCR T cells (out of total + TCR T cells) 73.8[61.4;86.7] 64.5[46.5;76.5] 0.027 

V1+ V2- + TCR CD4- CD8+ T cells  

(out of total V1+ V2- + TCR T cells) 
47.6 (23.2) 40.1 (16.3) 0.202 

V1+ V2- + TCR CD4+ CD8- T cells  

(out of total V1+ V2- + TCR T cells) 
- - - 

V1+ V2- + TCR CD4- CD8- T cells  

(out of total V1+ V2- +TCR T cells) 
59.9 (19.8) 63.6 (16.9) 0.475 

V1- V2+ + TCR T cells (out of total + TCR T cells) 16.1[10.3;26.9] 17.0[7.34;33.1] 0.968 

V1- V2+ + TCR CD4- CD8+ T cells  

(out of total V1- V2+ + TCR T cells) 
- - - 

V1- V2+ + TCR CD4+ CD8- T cells  

(out of total V1- V2+ + TCR T cells) 
- - - 

V1- V2+ + TCR CD4- CD8- T cells  

(out of total V1- V2+ + TCR T cells) 
84.3[77.6;88.3] 87.1[81.9;90.2] 0.383 

V1- V2- + TCR T cells (out of total + TCR T cells) 16.4[9.52;40.6] 19.7[15.1;29.7] 0.479 

V1- V2- + TCR CD4- CD8+ T cells  

(out of total V1- V2- + TCR T cells) 
57.2 (30.6) 45.7 (22.0) 0.345 

V1- V2- + TCR CD4+ CD8- T cells  

(out of total V1- V2- + TCR T cells) 
- - - 

V1- V2- + TCR CD4- CD8- T cells  

(out of total V1- V2- + TCR T cells) 
75.1 (20.7) 67.4 (17.9) 0.299 

+ TCR CD8+ T cells (out of total + TCR T cells) 43.6 (18.8) 36.8 (17.4) 0.184 

+ TCR CD4+ T cells (out of total + TCR T cells) - - - 

+ TCR CD4- CD8- T cells (out of total + TCR T cells) 62.9[56.5;77.0] 72.4[50.6;77.4] 0.632 
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Table S- 11. Percentages of T cell subpopulations between LTS and CLAD patients. Comparisons 

between the two groups were performed employing parametric unpaired t-test or nonparametric 

Mann-Whitney test, according to data distribution. Variables compared using t-test are presented as 

mean with SD whereas variables compared using Mann-Whitney test are presented as median with 

interquartile range. 

Cell subpopulation (Regulatory T Cells Panel) CLAD LTS p-value 

Lymphocytes (out of total single cells) 39.3 (14.0) 40.7 (12.6) 0.684 
T cells (out of total lymphocytes) 77.8 [71.5;86.2] 80.3 [72.6;87.2] 0.575 
CD4+ CD25+ T cells (out of total T cells) 18.8 [14.1;25.5] 15.1 [9.04;21.3] 0.129 
CD4+ CD25low T cells (out of total T cells) 18.5 (8.81) 14.9 (8.96) 0.123 
CD4+ CD25high T cells (out of total T cells) 1.70 [1.02;2.25] 1.33 [0.76;1.88] 0.316 
CD4+ CD25low T cells (out of total CD4+ CD25+ T cells) 91.2 [87.2;94.1] 90.2 [83.8;93.9] 0.514 
CD4+ CD25high T cells (out of total CD4+ CD25+ T cells) 8.95 [6.14;12.5] 9.25 [5.32;16.8] 0.613 
CD4+ CD25+ Foxp3+ T cells (out of total T cells) 1.00 [0.70;1.39] 0.91 [0.68;1.30] 0.646 
CD4+ CD25+ Foxp3low CD45RA+ T cells  
(out of total CD25+ Foxp3+ T cells) 

- - - 

CD4+ CD25+ Foxp3low CD45RA- T cells  
(out of total CD25+ Foxp3+ T cells) 

75.0 (14.9) 70.7 (14.6) 0.297 

CD4+ CD25+ Foxp3high CD45RA- T cells  
(out of total CD25+ Foxp3+ T cells) 

35.6 (12.1) 34.7 (15.5) 0.886 

CD4+ CD25+ Foxp3+ Helios+ T cells  
(out of total CD25+ Foxp3+ T cells) 

80.1 [72.0;87.5] 79.8 [72.3;84.5] 0.592 

CD4+ CD25+ Foxp3+ Helios- T cells  
(out of total CD25+ Foxp3+ T cells) 

38.8 [26.2;56.3] 29.2 [24.6;36.7] 0.480 

CD4+ CD25+ Foxp3+ CD39- T cells  
(out of total CD25+ Foxp3+ T cells) 

56.2 (23.4) 51.8 (18.4) 0.495 

CD4+ CD25+ Foxp3+ CD39+ T cells  
(out of total CD25+ Foxp3+ T cells) 

55.1 (21.4) 59.5 (15.6) 0.451 

CD4+ T cells (out of total T cells) 52.9 (13.7) 51.9 (13.6) 0.790 
CD4+ Foxp3+ T cells (out of total T cells) 1.20 [1.01;2.26] 1.18 [0.85;2.02] 0.425 
CD4+ Foxp3+ (out of total CD4+ T cells) 2.94 [2.00;4.64] 2.34 [1.74;3.93] 0.407 
CD4+ CD25low T cells (out of total T cells) 17.7 [12.1;25.5] 14.0 [8.21;21.6] 0.146 
CD4+ CD25high T cells (out of total T cells) 1.69 [1.03;2.25] 1.34 [0.76;1.91] 0.301 
CD4+ CD25+ Foxp3+ T cells (out of total T cells) 0.99 [0.70;1.39] 0.85 [0.66;1.33] 0.450 
CD4+ Foxp3low CD45RA+ T cells  
(out of total CD4+ Foxp3+ T cells) 

19.3 (17.0) 26.4 (13.0) 0.532 

CD4+ Foxp3low CD45RA- T cells  
(out of total CD4+ Foxp3+ T cells) 

72.4 [59.7;94.9] 69.5 [57.8;79.8] 0.290 

CD4+ Foxp3high CD45RA- T cells  
(out of total CD4+ Foxp3+ T cells) 

30.5 [18.6;37.6] 23.4 [19.9;28.7] 0.538 

CD4+ Foxp3+ CD39- T cells  
(out of total CD4+ Foxp3+ T cells) 

52.2 [33.3;84.6] 55.7 [43.8;80.8] 0.566 

CD4+ Foxp3+ CD39+ T cells  
(out of total CD4+ Foxp3+ T cells) 

47.2 (22.0) 49.8 (22.3) 0.697 

CD4+ Foxp3+ Helios+ T cells  
(out of total CD4+ Foxp3+ T cells) 

63.3 (22.0) 68.1 (22.6) 0.782 

CD4+ Foxp3+ Helios- T cells  
(out of total CD4+ Foxp3+ T cells) 

32.5 [27.5;50.9] 39.6 [26.1;60.3] 0.927 

CD4+ CD25+ Foxp3+ T cells (out of total lymphocytes) 0.74 [0.55;1.16] 0.68 [0.49;1.03] 0.671 
CD4+ Foxp3+ T cells (out of total lymphocytes) 1.02 [0.83;1.69] 0.80 [0.69;1.60] 0.380 
CD4+ CD25+ Foxp3+ T cells (out of total CD4+ T cells) 1.78 [1.19;2.73] 1.53 [1.12;2.61] 0.633 
CD4+ Foxp3+ T cells (out of total CD4+ T cells) 2.94 [2.00;4.64] 2.34 [1.74;3.93] 0.407 
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Table S- 12. Percentages of granulocyte subpopulations between LTS and CLAD patients. Comparisons 

between the two groups were performed employing parametric unpaired t-test or nonparametric 

Mann-Whitney test, according to data distribution. Variables compared using t-test are presented as 

mean with SD whereas variables compared using Mann-Whitney test are presented as median with 

interquartile range. HAP= High Autofluorescent Population. 

Cell subpopulation (Granulocyte Panel) CLAD LTS p-value 

CD45+ CD16+ leucocytes  
(out of total CD45+ leucocytes) 

0.66 [0.17;57.2] 0.22 [0.09;51.8] 0.088 

CD45+ CD16+ CD62L+ leucocytes  
(out of total CD45+ leucocytes) 

0.56 [0.17;56.6] 0.22 [0.09;51.5] 0.095 

CD45+ CD16+ CD11b+ leucocytes  
(out of total CD45+ leucocytes) 

0.50 [0.15;57.2] 0.23 [0.11;52.7] 0.206 

Granulocytes (out of total CD45+ leucocytes) 58.8 (15.0) 53.6 (10.7) 0.124 

CD16+ granulocytes (out of total granulocytes) 96.2 [0.17;99.2] 0.48 [0.15;98.2] 0.360 

CD62L+ granulocytes (out of total granulocytes) 99.7 [98.9;99.8] 99.9 [99.7;99.9] 0.007 

CD11b+ granulocytes (out of total granulocytes) 100.0 [99.9;100.0] 100.0 [100.0;100.0] 0.894 

HAP (out of total CD45+ leucocytes) 1.76 [1.23;3.54] 2.13 [1.24;3.69] 0.578 

CD16+ HAP (out of total HAP) 20.8 [8.09;40.6] 29.8 [14.9;46.2] 0.521 

CD11b+ HAP (out of total HAP) 97.8 [96.9;98.9] 98.7 [95.6;99.3] 0.468 

CD62L+ HAP (out of total HAP) 99.3 [98.3;99.7] 99.7 [99.1;99.9] 0.110 

Single cells without HAP  
(out of total single cells) 

94.5 [91.1;96.1] 94.7 [92.6;96.4] 0.751 

CD45+ leucocytes without HAP  
(out of total single cells without HAP) 

99.8 [99.4;99.9] 99.7 [99.6;99.8] 0.321 

CD45+ CD16+ leucocytes without HAP  
(out of total CD45+ leucocytes without HAP) 

26.9 [0.19;60.0] 0.50 [0.16;52.4] 0.412 

CD45+ CD16+ CD11b+ leucocytes without HAP 
(out of total CD45+ leucocytes without HAP) 

33.8 [0.18;60.0] 0.44 [0.16;52.6] 0.383 

CD45+ CD16+ CD62L+ leucocytes without HAP 
(out of total CD45+ leucocytes without HAP) 

26.8 [0.19;59.5] 0.50 [0.16;52.2] 0.424 
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