
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi doctoral i la seva utilització ha de respectar els drets de la
persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials dʼinvestigació i
docència en els termes establerts a lʼart. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres
utilitzacions es requereix lʼautorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels
seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No
sʼautoritza la seva reproducció o altres formes dʼexplotació efectuades amb finalitats de lucre ni la seva comunicació
pública des dʼun lloc aliè al servei TDX. Tampoc sʼautoritza la presentació del seu contingut en una finestra o marc aliè
a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la
persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de
investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad
Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En
cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona
autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines
lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de
su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de
la tesis como a sus resúmenes e índices.

WARNING. The access to the contents of this doctoral thesis and its use must respect the rights of the author. It can
be used for reference or private study, as well as research and learning activities or materials in the terms established
by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the
author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis
must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX
service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either.
These rights affect both the content of the thesis and its abstracts and indexes.



Assessing spatio-temporal impacts of pine processionary

moth defoliation on Mediterranean forest dynamics using

UAV remote sensing

Doctoral thesis submitted by

Kaori Otsu

for the degree of PhD in Terrestrial Ecology

Director:
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Abstract

Natural disturbances are driven by a range of biotic or abiotic factors that may
occur independently or interactively from each factor. Such disturbances induce a
series of changes in forest structure and composition, leading to interrupting forest
succession and altering forest ecosystem dynamics. Consequently, the forest distur-
bances may continue to increase with the future trend of climate change scenarios
and may affect global forest ecosystems. While pest outbreaks can be triggered by
climate change in terms of altering their distributions and population dynamics,
stressed trees due to climate change can become more susceptible to pests, which
may accelerate reducing tree growth and forest production. Currently, crucial limi-
tations to predict impact of natural disturbances on forest ecosystems are due to the
complex interactions among trees, pests and climate. Especially, effects of climate
change such as decreased precipitations and increased temperatures under drier and
warmer conditions and extreme weather events on the Mediterranean forests have
increased frequency and intensity of outbreaks, shifting and expanding the pest dis-
tribution to higher latitudes as well as altitudes. Since biotic disturbances driven by
defoliators are known as major causes of forest decline in the Mediterranean region,
my approach in this thesis focuses on evaluating defoliation damages for their visible
detection.

With this research interest, my thesis starts with a systematic literature review
on tree defoliation caused by insects worldwide at any spatial scale, assessing the
past and present impact of defoliation on forest ecosystem dynamics during the
period of 1996-2016. This review presents spatial and temporal distributions of
defoliation by each pest-host tree relationship to evaluate change dynamics, associ-
ated detection methods, and observed quantitative indicators over time in relation
to ecosystem services. Three case studies are then demonstrated on defoliations
caused by Thaumetopoea pityocampa in Catalonia, Spain, in Mediterranean forests
where I aim to quantify the levels of defoliation damage using vegetation indices
(VIs) derived from remote sensing techniques, in particular UAV (unmanned aerial
vehicle), for data calibration and validation purposes. In the first case study, UAV-
derived RGB colour images are used as observed data for quantifying defoliation
and are calibrated with Landsat-based VIs. The second study applies UAV-RGB
imagery as referenced data to generate canopy height model (CHM) and automati-
cally detect individual trees while the normalized difference vegetation index (NDVI)
derived from UAV multispectral imagery is obtained to detect defoliation at the
high-resolution pixel level. In the third study, four different NDVIs obtained from
UAV multispectral imagery are tested in additional study areas to estimate the av-
erage threshold of detection on tree defoliation and discrimination of host species in
various pine-oak mixed stands. Finally, all VIs used are further classified by thresh-
olding and validated in each confusion matrix with referenced UAV-derived RGB
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imagery.
Main findings in the thesis include that calibrating UAV-RGB data with the

Landsat-based VIs may contribute to filling temporal data gaps for monitoring and
detecting defoliations since satellite images are provided at a regular interval due
to orbit scheduling. In addition, automated image processing techniques applied to
UAV imagery, enabling to identify and delineate individual trees, may enhance the
accuracy of defoliation estimations at tree and stand level. Further advancements
with the use of UAV multispectral imagery include that some VIs are more suitable
for predicting the health of trees, depending on whether the species is coniferous
or deciduous. Moreover, the threshold values of detecting defoliation with those
VIs are sought for establishing robust classification techniques, which may require
increasing the number of sample study areas and should be tested on a large number
of pine dominated stands in the Mediterranean region.

Overall, this thesis highlights that the latest modelling and remote sensing tech-
niques, including UAV as an alternative 3D technology, are currently available to
be combined with conventional ground surveys and statistical analyses according to
the spatial and temporal scales and types of defoliation. The use of UAV images
may also hold great potential as an alternative cost-effective method to other con-
ventional ground-truth data for monitoring forest health. I conclude that optimal
detection and monitoring methods are often specific to each pest agent associated
with host tree species. Therefore, the advancement in prediction models linked to
ecosystem services in pest and disease control would be promising for mitigating the
future damage to our forests under climate change.
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Chapter 1

General introduction

1.1 Forest disturbance drivers

Natural disturbances are driven by a range of biotic or abiotic factors that may
occur independently or interactively from each factor. Such disturbances induce a
series of changes in forest structure and composition, leading to interrupting for-
est succession and altering forest ecosystem dynamics (Flower and Gonzalez-Meler,
2015). Consequently, forest disturbances are predicted to increase with the future
trend of climate change scenarios and may affect global forest ecosystems serving
timber production and carbon sequestration (Boyd et al., 2013; Roques, 2015). As
disturbance factors are categorized in Figure 1.1, biotic disturbances caused by in-
sects, pathogens and wildlife browsing are generally specific to host tree species,
therefore, their recovery patterns may be more difficult to model predictions than
the abiotic ones such as fires, droughts, floods, windthrows and volcanoes (Flower
and Gonzalez-Meler, 2015; Kautz et al., 2017).

While pest outbreaks can be triggered by climate change in terms of altering
their distributions and population dynamics, stressed trees due to climate change
or anthropogenic malpractice can become more susceptible to pests, which may
consequently reduce tree growth and forest production (FAO, 2009; Ramsfield et al.,
2016; Linnakoski et al., 2019). Effective means to mitigate increased pest damage
have been explored since both climate change and forest management can affect
the level of risks, with a combination of the frequency of pest, the vulnerability
of the forest stand to pest, and the socio-economic impact on standing volume
(Ramsfield et al., 2016). Since the importance of provisioning forest disturbance
impacts combined with future climate change on ecosystems is increasing, it requires
integrating their effects on the carbon cycle such as net ecosystem production (NEP)
in ecosystem services (Flower and Gonzalez-Meler, 2015).

Currently, crucial limitations to predict impact of natural disturbances on for-
est ecosystems are due to the complex interactions among trees, pests and climate
(Linnakoski et al., 2019) as shown in Figure 1.2. A monitoring study on these inter-
actions (Whipple et al., 2019) revealed that chronically stressed and pest-susceptible
trees have better adapted to poor environments, therefore, healthy trees resulted to
be more sensitive to extreme events such as drought and outbreak with a higher mor-
tality (Linnakoski et al., 2019). Hentschel et al. (2018) also analyzed relationships
between past outbreaks caused by three different defoliators and other disturbance
drivers, depending on the surrounding landuse type adjacent to the tree stand,
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climate parameters, or a combination of climate and stand structure parameters
(Linnakoski et al., 2019).

Thus, scientific communities and societies are more interested than ever before
in predicting the effects of global change on ecosystems to maintain forest as well
as human health (Morán-Ordóñez et al., 2018). In particular, effects of climate
change such as decreased precipitations and increased temperatures under drier
and warmer conditions and extreme weather events on the Mediterranean forests
(FAO, 2018) have been observed as changes in tree growth and phenology, vegetation
pattern and distribution, wildfires, and pest outbreaks. Warmer winter temperatures
have increased frequency and intensity of outbreaks, shifting and expanding the
pest distribution to higher latitudes as well as altitudes. In general, the scientific
communities agreed that climate change would favor forest pest species in that the
survival of many insects depends on low temperature limits while pathogens benefit
from dry conditions (Jactel et al., 2012; FAO, 2018). Moreover, how this general
pattern will apply to specific cases is uncertain, which makes the predictions more
difficult.

Figure 1.1: Breakdown of forest disturbance drivers by causal factor.

1.2 Biotic disturbances under climate change

Kautz et al. (2017) reviewed past published studies and concluded that annual per-
centages of forest areas affected by biotic disturbances vary spatially and temporally
and are significantly higher than those caused by abiotic disturbances. Biotic dis-
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Figure 1.2: Interactions and associations among tree, pest and climate.

turbances can cause both ecological and economic impacts including tree damage
such as growth reduction or even tree mortality, degraded timber quality, alteration
on biodiversity, and loss of ecosystem services (flood mitigation, water purification,
recreational and cultural values) (Ramsfield et al., 2016; Haines-Young and Potschin,
2018).

Among biotic disturbance drivers, insects and pathogens are considered to be
more susceptible to climate change than browsing wildlife animals, due to their
dependency on their host trees’ resilience (Tiberi et al., 2016). Insect and pathogen
drivers can impact species composition, structure, and function in forest ecosystems,
which may even affect their resilience to extreme events and outbreaks (Flower and
Gonzalez-Meler, 2015). According to the global review of forest pests and diseases
reported by FAO (2009), the majority of the pests worldwide, accounting for 77%,
were insects followed by pathogens (16%). In general, it is easier to trap insects and
visually detect the damage bored or defoliated by them than other pest types in
such that the pathogenic impact on tree growth can be subtle or delayed.

1.2.1 Insect type

In the Mediterranean region, defoliators can be harmful to tree growth and mortality
while boring insects can cause serious damage more rapidly (Paine and Lieutier,
2016). On the contrary, phloem-feeding insects are not usually considered harmful
to trees for their survival, yet, damage is rather aesthetically significant for the
chlorosis, leaf deformity, and twig distortion (Paine and Lieutier, 2016). The optimal
host habitat and the time of the year for detection as well as damage type are specific
to each pest species (Hall et al., 2016). The following sections differentiate three
most harmful insect types focusing on the Mediterranean region.

Bark borers

Insects as small as less than one centimeter in length feed on the cambium, making
the first impact toward wood decomposition (Flower and Gonzalez-Meler, 2015).
After bark borers infest the host trees by a sudden and massive attack, the infested
canopy may start to turn yellow within a few weeks, continue to reddish and fall
completely (Paine and Lieutier, 2016).
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Their attacks on the cambium for reproduction are dependent on the physiolog-
ical tree conditions, following the molecules released by stressed trees to select the
suitable host tree. For this reason, they are known as secondary pests for attacking
weakened trees by pioneer pests while they can even attack healthy trees during epi-
demic outbreaks (Paine and Lieutier, 2016). While some species can feed on both
coniferous and deciduous trees, the majority of bark colonization occur on conifers
where larger size species tend to infest the lower part of large trees with thick bark
and smaller size species on the contrary colonize in the upper part of young trees
with thin bark (Paine and Lieutier, 2016).

Bark beetles have been mostly studied in temperate forests (Senf et al., 2017),
which can result in degraded timber quality and eventually tree mortality within a
few years (Wulder et al., 2006; Meigs et al., 2011). As bark beetles are particularly
susceptible to temperature changes, the population dynamics have been already
affected on the background of the climate change. Moreover, with simulations of
future climate scenarios the Mediterranean region is predicted more vulnerable to
global change than temperate and boreal regions (Paine and Lieutier, 2016).

Wood borers

Insects in larval or adult forms that consume wood are known as one of the most
important threats to both coniferous and deciduous forests worldwide, causing seri-
ous ecological and economic consequences and leading to the longest recovery time
(Brockerhoff et al., 2006; Flower and Gonzalez-Meler, 2015; Paine and Lieutier,
2016).

While some species can be primary pests infesting healthy trees, other species
bore galleries into the wood of weakened trees, causing tree death, which can be the
secondary driver damaging those trees stressed by abiotic factors and/or defoliators
(Tiberi et al., 2016). These secondary species may take advantage of greater quanti-
ties of stressed trees, suitable for colonization, allowing further extended network of
galleries and an accumulation of dead wood on decaying trees (Paine and Lieutier,
2016).

Outbreaks of wood-boring insects, especially beetles, following the fires may also
further negatively affect such stressed stands (Tiberi et al., 2016). Thus, increased
wildfire frequency due to drought and global warming may negatively affect post-fire
survival of trees (FAO, 2018).

Defoliators

Defoliators are defined as larval or adult forms that consume leaf or needle material
(Flower and Gonzalez-Meler, 2015). Defoliation can cause severe damage often
associated with outbreaks of insect populations over subsequent years, leading to
intensive and extensive defoliation and even tree mortality (Paine and Lieutier,
2016; Tiberi et al., 2016). Completely defoliated trees decrease the following growth
without photosynthesis, in consequence, the stressed trees start to reduce the vigor
(Paine and Lieutier, 2016; Tiberi et al., 2016), which may be even more susceptible
to any other disturbance factors (FAO, 2018). Some pest insects prefer to feed on
young leaves (needles) while others can defoliate all age classes (Hall et al., 2016).
Regardless of the defoliation patterns, cumulative defoliation over subsequent years
may lead to tree mortality.
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Deciduous defoliators have been mostly studied in temperate forests while conif-
erous defoliators were more commonly observed in boreal forests (Senf et al., 2017).
In the Mediterranean region, while the foliage loss may be detected within one year
with most deciduous defoliators on oaks, the process of coniferous defoliation on
pines is usually gradual over a long period of time, which may take several years to
be measured (Vogelmann et al., 2009; Paine and Lieutier, 2016). Recent increased
winter temperatures have been favorable for overwintering larvae to feed and there-
fore increasing their survival (Battisti et al., 2005).

1.2.2 Host type

Coniferous vs. deciduous

On a global scale the majority of pests were observed on deciduous (broadleaf) tree
species (62%) while the pests on conifer species account for 30%. Variability in
forest responses to biotic disturbance is likely a function of host type (coniferous or
deciduous) as well as insect type (Flower and Gonzalez-Meler, 2015).

In the Mediterranean region, dominant native conifers are pines while common
deciduous species include oaks, which can be evergreen and deciduous, poplars and
willows (Paine and Lieutier, 2016). Depending on the Mediterranean tree species,
adaptation to drought which is typical abiotic disturbance in this region can vary
due to differences in morphology and phenology according to host species (Tiberi
et al., 2016). Thus, mixed Mediterranean forests (e.g. pine-oak stands) may benefit
from this species diversity that contributes to a stand-level efficient use of scarce
water resource allocated by the ecosystem.

Planted vs. natural

The trend in forest type was reported (FAO, 2009) that pests were more dominantly
recorded in planted forests with single tree species than natural forests where the
species composition and stand structure are diverse. While there has been a nu-
merous studies on forest health assessment and monitoring of natural (unmanaged)
stands, much fewer studies have focused specifically on plantations. Planted forests
are typically single-species stands such as Pinus spp. and Eucalyptus spp., which are
poorer in species diversity and stand structure, and consequently more susceptible
to pest attacks despite the importance of containing economic resources and provid-
ing various ecosystem services (Wingfield et al., 2015). In forest management, it is
important that the selected tree species is adapted to the site conditions (Ramsfield
et al., 2016). Moreover, silviculture systems such as single-tree or group selection
would play an important role to increase stand structural diversity, leading to re-
cover the tree vigour and thus resistance to pests, which would also reduce the risk
of affecting the timber value (Ramsfield et al., 2016).

Nevertheless, if not natural forests, increased species and genetic diversity at a
landscape level is one of the most effective and efficient methods to maintain healthy
plantations under climate change (Jactel and Brockerhoff, 2007; Miller and Thode,
2007; O’Neill et al., 2008). Promoting the right tree species composition in mixed
plantations (e.g. fast-growing deciduous species associated with host pines against
the pine processionary moth) would provide an opportunity to increase stand resis-
tance and reduce vulnerability to forest pests since most of them are species specific
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and their damage potentials are dependent on the species composition (Wingfield
et al., 2015; Damien et al., 2016).

Exotic vs. native

Both exotic and native forest stands in the Mediterranean region are subject to the
threats of climate change and anthropogenic activities as well as the introduction of
exotic pests (Paine and Lieutier, 2016). While native tree species can be vulnerable
to introduced pests, exotic trees in plantations can be successful when they are
separated from their natural enemies (Wingfield et al., 2015). On the other hand,
when those trees can coevolve with introduced or native pests to which they are not
resistant, damage can be severe. The longer exotic trees are planted in an area, the
more threatened they become by native pests (Wingfield et al., 2015).

Pest problems are often specific to the Mediterranean forests rather than in
common with other forest regions. While the forests are subject to both native
and introduced insects, they are also at risk from intensive plantation forestry using
exotic timber species from outside of its native range, in addition to native pines
and oaks (Paine and Lieutier, 2016). In particular, plantations of introduced pine
and eucalyptus have been established for the production of wood fiber and struc-
tural timber (Paine and Lieutier, 2016). These newly established stands are highly
susceptible to pests and may trigger insect outbreaks over large areas, remaining a
challenging issue to forest management (Jactel et al., 2012).

1.2.3 Monitoring and detection

Conventional data

In most of the regions worldwide, monitoring and detection methods are informal,
involving field surveys by forest practitioners, which are often targeted to specific
pests. Conventional forest health surveys include aerial mapping, ground measure-
ments and sampling, and pheromone traps while additional surveys are conducted in
commercially valuable planted forests than in natural forests (FAO, 2009). As much
as conventional data on forest health are qualitative in nature, quantitative data
are limited, varied in format and difficult to access online in many regions. Since
data are often collected after visual symptoms have been observed and significant
damage has been caused, time-series data for monitoring on the impacts of forest
pests are not available for most regions (FAO, 2009).

As the need for monitoring forest pests is increasing, agreement on quantitative
parameters to standardize data, in particular, common definitions on how the data
are to be collected (FAO, 2009). Conducting worldwide surveys to better understand
forest ecosystems on a global scale remains challenging when new pests are still
unknown or undetected in numerous developing countries (Wingfield et al., 2015).
Those pest problems are typically managed at small scales to deal with local damage,
of which information should be shared and funded for collaborations through global
networks of forest scientists such as European Union, International Union of Forest
Research Organizations, and United Nations (Wingfield et al., 2015). Moreover,
such local information should be linked to a compatible central database system
and integrated internationally.
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Remote sensing data

Due to limitations such as lack of reliable and timely data, and inconsistency in tem-
poral trends across regions, it was suggested that future forest monitoring should im-
prove by providing accessible, precise and consistent data harmonized across regions
(Kautz et al., 2017). With the use of worldwide satellite images at a medium spatial
resolution (e.g. Landsat, MODIS, Sentinel) which are available to the public, remote
sensing of insect disturbances has gained so much attention for its ability to monitor
spatial and temporal distributions and dynamics. Such remote sensing technologies
should be integrated into operational forest management to improve quantifying
spatial and temporal disturbances included in regional and global ecosystem models
(Hall et al., 2016; Senf et al., 2017). While pest prevention approaches are currently
only effective in some developed wealthy countries with advanced technologies, they
are not available elsewhere, yet affecting global impacts on the long-term forest sus-
tainability worldwide (Wingfield et al., 2015). Therefore, continuous improvements
in monitoring and prevention techniques should be made on forest health issues
by a variety of international working groups, research organizations and networks,
which are currently initiated by the National Aeronautics and Space Administration
(NASA) and European Space Agency (ESA).

Remote sensing information regarding the areal extent, location, and severity of
insect damage is also effective for a range of forest pest management planning and
modelling purposes (Hall et al., 2016), with the aim to quantify and understand
their consequences on the wide range of ecosystem services that forests provide
(Hicke et al., 2012; Boyd et al., 2013). Widely used forest monitoring models include
TIMESAT with MODIS images and LandTrendr with Landsat, at different spatial
resolutions, for effectively monitoring phenological trends and detecting disturbance
and recovery processes with time-series analysis.

UAV data

Most recently, one of remote sensing technologies, UAV (Unmanned Aerial Vehicle)
in particular, has advanced as a low-cost time-efficient tool to acquire both hyper-
spectral and multispectral data that are effective for detecting specific vegetation
properties in small-scale forestry applications (Adão et al., 2017; Torresan et al.,
2017; Barbedo, 2019). This latest remote sensing technology is capable of captur-
ing 3D imagery at a high spatial resolution in centimeter using airborne sensors to
detect individual tree crowns as well as flying much closer to the ground surface
than spaceborne satellites, without significantly being influenced by cloud effects
(Näsi et al., 2015; Dash et al., 2017; Cardil et al., 2019). In addition to such ad-
vanced spatial resolution, temporal resolution may be improved with more flexible
scheduling for UAV flights under clear weather conditions than fixed satellite orbit
scheduling (Näsi et al., 2015; Dash et al., 2017; Torresan et al., 2017). Moreover,
it is suitable for quantifying acquired data in image processing and analysis such
as target detection, classification, and vegetation indices (VIs), which may further
enable to assess the impacts of various disturbances on forest health (Adão et al.,
2017; Barbedo, 2019).

In the Mediterranean region, forests are continuous in nature across administra-
tive boundaries of European or North African countries. At European Union level
(Torresan et al., 2017), research activities using UAV are increasing in forestry appli-
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cations, however, current regulations for forest monitoring purposes fall under each
member state and thus lack common rules for cross-boundary operations within Eu-
rope, except large UAV operations used by the military and defense forces. While
small-scale forest monitoring activities increase within the Mediterranean region
and Europe, it would require harmonizing such regulations at a common framework
to promote mobility and exchange opportunities for regular monitoring operations
across different countries (Torresan et al., 2017).

1.3 Thesis objectives

Biotic disturbances driven by defoliators are major causes of forest decline in the
Mediterranean region; furthermore, climate change suggests increasing impact in
the future (FAO, 2018; Muller et al., 2018). Thus, I decided to focus on evalu-
ating defoliation damages for their visible detection. In this thesis I started with
an overview of all the past published studies on pest defoliation throughout the
world, identifying spatial and temporal distribution of defoliations by each pest-
host tree relationship to evaluate change dynamics, associated detection methods
and observed quantitative indicators over time in relation to ecosystem services.
Then three case studies are demonstrated on defoliations caused by the pine pro-
cessionary moth (Thaumetopoea pityocampa) in Catalonia, Spain, in Mediterranean
forests where I have involved in quantifying the levels of defoliation damage with
various remote sensing techniques, in particular UAV (unmanned aerial vehicle), to
be further incorporated into forecasting models and ecosystem services. According
to the review in Chapter 2 that addressed the issue of existing data gaps, the main
objective of the thesis is to conduct analyses on forest defoliation using the detection
methods specific to pest-host tree relationships between T. pityocampa and Pinus
spp. (Chapters 3, 4 and 5). The specific objectives are as follows:

• To assess the past and present impact of insect defoliation worldwide on forest
ecosystem dynamics as a state-of-the-art review (Chapter 2).

• To calibrate the severity of forest defoliation due to T. pityocampa in Mediter-
ranean pine-dominated stands observed by UAV imagery with Landsat-based
VIs (Chapter 3).

• To automatically detect individual trees and quantify defoliation on host tree
species in a pine-oak mixed stand using Normalized Difference Vegetation In-
dex (NDVI) derived from UAV multispectral imagery (Chapter 4).

• To estimate the average threshold of detection on tree defoliation and dis-
crimination of host species in various pine-oak mixed stands using different
UAV-derived NDVIs (Chapter 5).

Chapter 2

I focused on damage caused by defoliators for their visible detection and visual
impact on the forest health as well as aesthetic. While systematically reviewing
studies published over the past two decades associated with the world’s forest de-
foliations without limiting to geographical regions or types of detection methods, I
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mainly considered quantifying the levels of defoliation damage to be incorporated
into forecasting models and ecosystem services. I also aimed to identify spatial and
temporal distributions of defoliation by each pest-host tree relationship to evaluate
change dynamics, associated detection methods and observed quantitative indicators
over time in relation to ecosystem services.

Chapter 3

For quantifying forest response to infestation by defoliators in Mediterranean pine-
dominated stands, I used Landsat-derived VIs to predict the defoliation levels. In
this study, I aimed to evaluate the spatiotemporal degree of defoliation during a
recent outbreak of T. pityocampa in Catalonia, by change detection analysis us-
ing a combination of satellite (multispectral) and UAV (RGB) imagery. I mainly
examined regression models between VIs derived from medium-resolution Landsat
imagery and defoliation degrees interpreted by high-resolution UAV imagery for data
calibration so that defoliation classes based on the best-fit VI model can be mapped
to assess classification accuracy.

Chapter 4

I aimed at applying UAV multispectral imagery to calculate NDVI and quantita-
tively assess defoliation due to T. pityocampa on a pine-oak mixed stand in Catalonia
and potentially identify host tree species. The UAV-derived RGB imagery was also
used to generate digital surface model (DSM) and canopy height model (CHM) for
delineating individual trees. The multispectral imagery was further analyzed to de-
velop a method of unsupervised classification by thresholding to objectively quantify
defoliation and distinguish tree species for automatically detected individual trees.

Chapter 5

In addition to the study area analyzed in Chapter 4, I analyzed three additional
areas in seeking to develop a simple and robust method applicable to similar pine-
oak mixed stands, for forest practitioners to obtain timely information and monitor
forest defoliation at the operational level. Specifically, I explored simple histogram
thresholding classification tools to detect defoliation of host pine trees affected by T.
pityocampa using UAV multispectral imagery. I further attempted to estimate the
threshold values of different NDVIs averaged over four study areas, for detecting de-
foliation and distinguishing pine species at the pixel level to examine the robustness
at a larger scale.
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Chapter 2

Background: A review of the past
and present impacts of insect
defoliation on forest dynamics

Abstract
Currently, pest insects are one of the major driver to cause disturbances threatening
the world’s forests in a combination with abiotic factors. In a systematic review of
literature on detecting pest disturbances, we identified specific methods for quantify-
ing the defoliation degrees derived by insects. Recent improvements in detection and
monitoring methods over the past 20 years and potential future improvements were
discussed. Following the systematic literature review by keyword search (Web of
Science), selected study cases associated with forest defoliation were sorted into the
database to summarize the parameters such as pest drivers, tree effects, defoliation
scales, detection methods, and ecosystem service types studied in each case. We used
articles published during the period of 1996-2016 in various countries and regions
in the world’s forests. A summary of the time-series studies assessing quantitative
impacts of forest defoliation was presented in both temporal and spatial scales. It
is noted that the effort on improving methods for pest detection and monitoring
has been significantly increased over the past decade. Depending on the spatial
and temporal scales and types of defoliation in concern, the latest modelling and
remote sensing techniques, including an emerging UAV (unmanned aerial vehicle)
technology, are currently available to be combined with conventional ground surveys
and statistical analyses. As we conclude that optimal methods recommended are
specific to each pest agent associated with host tree species, the advancement in pest
detection and monitoring methods is promising for mitigating the future damage to
forests with high ecological, social and economic values. Thus, predictive models
based on those monitoring methods may be linked to ecosystem services as pest and
disease control with the future trend of climate change scenarios.

2.1 Introduction

Currently, pest insects are the principal biotic drivers for disturbances threatening
the world’s forests (Muller et al., 2018) in addition to abiotic factors such as droughts,
fires, floods and climate change (Rullan-Silva et al., 2013; Sangüesa-Barreda et al.,
2014). Some of the major pest insects have been considered by the Intergovernmen-
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tal Panel on Climate Change (IPCC) as indicator of global warming (Rosenzweig
et al., 2007) for being recorded in the expanded biogeographical range of host distri-
bution, mainly in Europe and North America, towards northern latitudes and higher
elevations over the past twenty years (Battisti et al., 2005; Roques, 2015). Conse-
quently, the disturbances derived from those insects may continue to increase with
the future trend of climate change scenarios and may affect global forest ecosystems
serving timber production and carbon sequestration (Boyd et al., 2013; Roques,
2015).

Most recently, several reviews have summarized the studies measuring and mon-
itoring forest damages due to various biotic and abiotic disturbance drivers. Morán-
Ordóñez et al. (2018) focused on the studies within the Mediterranean basin, assess-
ing the modelling approaches used to predict the trends of biodiversity and ecosys-
tem services under the future scenarios of global change, including the associated
biotic and abiotic disturbance drivers and indicators of change. They found that
in general scenario forecasting makes relatively little use of modelling approaches
based on ecological processes. Kautz et al. (2017) expanded the spatial extent
of their review to Northern Hemisphere forests, evaluating annual percentages of
forest areas affected according to data sets of large-scale, multi-year biotic distur-
bances, without detailing the detection methods. The main findings showed that
the percentages affected by biotic disturbances vary spatially and temporally and
are significantly higher than those caused by abiotic disturbances such as fire. Due
to limitations such as absence of reliable and timely data, inconsistency in temporal
trends across regions and inherent uncertainties, it was suggested that future for-
est monitoring should improve by providing accessible, precise and consistent data
harmonized across regions.

As impacts of the climate change on forests have been concerned in recent years,
the increasing number of infestation problems caused by insects have been reported.
Therefore, this combination of biotic and abiotic factors causing forest infestations
is more complex than ever before for modelling spatiotemporal forest dynamics.
While being a source of aesthetic problems in cultural values, forest infestations are
most commonly ecological and economic problems leading to tree growth reduction
or mortality caused by various feeding behaviors such as leaf chewing, sap sucking,
stem boring, and root pruning (Kautz et al., 2017). Due to defoliators, in particular,
trees lose the capability of continuing photosynthesis, leading to nutrient deficiencies
and a stress factor to the leaf water content in the following years if host trees are
attacked repeatedly or intensively (Cooke et al., 2007).

With the aim to quantify infestations and understand their consequences on the
wide range of ecosystem services that forests provide, information regarding the areal
extent, location, and severity of insect damage is required for forest pest management
planning and modelling purposes (Hicke et al., 2012; Boyd et al., 2013; Hall et al.,
2016). Senf et al. (2017) reviewed worldwide studies without limiting geographic
extents, but with a focus on forest insect disturbances detected by the use of remote
sensing. By comparing sensors and methods used for mapping disturbances by
insect types (pest as borers vs. defoliators, host as coniferous vs. deciduous), they
found significant differences among the methods used across insect types. In their
conclusions, remote sensing of insect disturbances has gained so much attention
for its ability to monitor spatial and temporal distributions and dynamics that it
should be integrated into operational forest management and that the improvement
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in quantifying spatial and temporal disturbances should be included into regional
and global ecosystem models. Hall et al. (2016) also reviewed studies associated with
insect disturbances monitored by remote sensing, highlighting Canadian case studies
in more details. They compared the monitoring methods, involving field and aerial
surveys combined with sensors by incorporating change detection techniques, in
relation to major pest species and the damage. While relatively cost-effective aerial
surveys may not be consistent or sufficient for detailed monitoring continuous vast
forests at a national scale, remote sensing may provide greater extent and increased
precision, even at a lower cost as sensor developments advance. They emphasized
the importance of resolving data gaps with the development of integrated monitoring
systems that combine aerial survey and remote sensing for mapping and monitoring.

The focus of above reviews was narrowed down to certain regions or detection
techniques while the type of forest disturbances was amplified. To fill the informa-
tion gap among above reviews on forest disturbances, differentiated by geographical
extent, disturbance type and detection method, we systematically reviewed on stud-
ies over the past two decades associated with the world’s forest defoliations without
limiting to regions or types of detection method. In addition to that biotic dis-
turbances driven by defoliators are major causes of forest decline in many regions,
climate change suggests increasing impact in the future (Muller et al., 2018). Thus,
we decided to focus on defoliation damages for their visible detection and visual im-
pact on the forest aesthetic and health. Mainly we considered quantifying the levels
of defoliation damage to be incorporated into forecasting models and ecosystem ser-
vices. We also aimed to identify spatial and temporal distribution of defoliations by
each pest-host tree relationship to evaluate change dynamics, associated detection
methods, and observed quantitative indicators over time in relation to ecosystem
services.

2.2 Materials and methods

2.2.1 Selection of case studies

Our systematic literature review selected articles published in English during the
period of 1996-2016 in various countries and regions throughout the world. Specif-
ically, we searched articles using the topic search (TS) by Web of Science: TS =
(defoliation* AND (pest* OR insect*) AND (forest* OR tree*) AND (manage* OR
monitor* OR detect*)). Based on this search the total of 490 articles were ini-
tially included. Furthermore, filtering by the title and abstract excluded irrelevant
articles such as experimental and DNA studies, biological controls, plantations of
exotic species, orchards, and generic studies (not specific to pest or host species),
and reduced the final number to 160 articles with 183 studies in total. The criteria
selected in those articles are as follows:

• Forest defoliation affected by insects must be natural disturbance. No manip-
ulation or experiment (artificially caused defoliation);

• Spatial and temporal scales must be defined;

• Pest driver and host tree must be defined;

• Damage must be evaluated quantitatively;
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• There must be some methods or models for detecting and/or monitoring de-
foliations;

• Whether the model can predict future scenarios and/or provide ecosystem
services.

Following to extracting necessary information from above case studies, we sum-
marized the parameters in the database, such as pest drivers, tree effects, damage
scales, detection methods, and ecosystem service types studied in each case. The
description of each parameter is shown in Table 2.1.

Table 2.1: A summary of parameters extracted into the database from articles
associated with forest defoliation.

Parameter Data type Description
ID Numeric selection indexed by keyword search on the Web

of Science database
Published
year

Numeric the year of publication in journals and books

Title Character the article title
Study area Character the name and location of study area
Spatial scale Discrete local/subnational/national/regional/global
Temporal
scale

Numeric specific year(s) or a period of consecutive years

Method/model Character damage assessment methods and models includ-
ing aerial and field surveys, sampling, measure-
ments, statistical analysis, GIS, remote sensing,
algorithms, simulations

Pest driver Character scientific name of pest insect
Host tree Character scientific name of host tree
Stand group Discrete coniferous (C), deciduous (D), mixed (M)
Indicator Character damage indicator assessed quantitatively
Prediction Discrete yes/no whether method/model is capable of pre-

dicting future conditions
Ecosystem
Service (ES)

Discrete yes/no whether method/model is associated with
Ecosystem Services

ES category Discrete if applicable, category of Ecosystem Services de-
fined by Common International Classification of
Ecosystem Services (CICES) V5.1 (Haines-Young
and Potschin, 2018)

2.3 Results

2.3.1 Geographical distribution and spatial scale

The geographic locations of case studies are mostly concentrated in North America
with 87 studies (Figure 2.1), counting for 47 percent of the total studies, where
substantial studies were conducted across the national border between Canada and
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United States as vast forests are often continuous rather than fragmented by admin-
istrative boundaries. The central Europe including Mediterranean areas resulted in
39 studies (21%), followed by Scandinavia and Russia with 38 studies (21%). In Eu-
rope, the trend of outbreaks across countries was found especially in Fennoscandia
(Finland, Norway and Sweden) and Alps regions where the majority of forests are
concentrated. The rest of studies were mainly found in Iran, China and Japan from
Asia and in Chile from South America.

Figure 2.1: The number of studies on forest defoliation categorized by geographic
distribution.

2.3.2 Spatial and temporal scales

Spatial scale is the key parameter to success in damage detection, which depends
on the spatial resolution required for the nature of the defoliation and the indicator
in question (Hall et al., 2016).

At the tree level, submetric imagery, which is less than 1 m spatial resolution,
enables to assess individual trees and their health conditions (Hall et al., 2016).
Metric imagery at 1-9 m spatial resolution is suitable for mapping dispersed stands
that have been damaged by endemic or incipient infestations (Hall et al., 2016). In
addition, there are some advantages of applying appropriate silviculture practices to
stand management against forest pests (Ramsfield et al., 2016). For larger epidemic
infestations at the landscape level, decametric imagery up to 100 m spatial resolution
is appropriate for damage mapping (Hall et al., 2016). The landscape scale can be as
small as local (135 studies), extending to larger landscapes defined by administrative
boundaries on subnational (28 studies), national (12 studies), regional (7 studies)
mainly in Europe and North America, and global (1) scales, as summarized in Figure
2.2. On a global scale, Martin et al. (2008) attempted to develop a generalized
calibration model for predicting canopy nitrogen concentration, based on field survey
and remote sensing data combined from North America, Central American and
Australia.

We also quantified the temporal scale parameter over a period of time in each
study. As shown in Figure 2.3, most of which conducted their survey once in sin-
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gle year (26 studies) or repeated it for two years (13 studies) to three years (19
studies). While some studies focused on change detection among multiple years or
decades comparing the current and past satellite images, other studies applied a
dendrochronological method such as tree ring analysis enabling to trace back up
over 300 years.

Figure 2.2: The number of studies on forest defoliation categorized by spatial scale.

Figure 2.3: The number of studies on forest defoliation categorized by temporal
scale for the study period.

2.3.3 Pest drivers and host trees

Knowledge of how trees are manifested by their pest agents is important as it leads
to the impacts on the host tree in terms of changes in morphology and/or physiology
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(Hall et al., 2016). The damage patterns are associated with the life cycle of their
different pests, and the damage types can vary from defoliation to tree mortality
(Hall et al., 2016). Table 2.2 shows 18 major defoliators, of which seven were defo-
liators on deciduous trees, as well as associated host trees with their geographical
distribution.

2.3.4 Damage assessment methods and indicators

Symptoms of defoliation include foliage yellowing or reddening, and loss of foliage
(Murtha, 1972; Hall et al., 2016). Defoliators cause moderate to severe short-term
reductions in photosynthesis and associated carbon sequestration, however, it may
not affect the following growing season as leaves can re-flush for photosynthesis
(Kramer and Kozlowski, 1979; Cook et al., 2008; Dymond et al., 2010; Flower and
Gonzalez-Meler, 2015). Damage assessment involves assigning severity classes or
quantitatively estimating values to each tree parameter and spatial unit (polygon or
pixel) (Hall et al., 2016). Table 2.3 shows trends of such assessment methods used
and combined in 1990s, 2000s and 2010s by decade.

Aerial survey

As the primary tool for mapping the location and severity of pest damage, aerial
survey has been widely used for reporting on forest health conditions locally and
nationally (Hall et al., 2016). Mapping polygons and grid cells of defoliated areas is
an example of sketch maps from the air. In general, accuracy is not high enough for
damage mapping with aerial surveys due to the subjectivity of surveyors, limited to
monitoring the outbreak frequency of those defoliated areas (Kautz et al., 2017).

Field survey

During the 90’s, field measurements including tree-ring analysis were the main means
to detect and assess the tree growth associated with defoliations. The field data were
used for further statistical analysis to assess the relationship between the insect
population density, damage degree and tree growth reduction. Some statistical
models also enabled to estimate the cyclic trends of outbreaks. However, since it is
quite time-consuming to apply field surveys to a large area, it is not efficient to deal
with the rate of pest outbreaks.

Typically, the average of pest damage within a fixed-area plot with the Global
Positioning System (GPS) coordinates was assigned to percent intervals based on
visual assessment (Royle and Lathrop, 2002; Hall et al., 2003; Hall and Skakun,
2006; Hall et al., 2016). In the 2000s, Leaf Area Index (LAI) and canopy foliar
nitrogen concentration started to be measured in some Permanent Sample Plots
(PSPs) for monitoring forest health. Routine field surveys are recommended for
assessing forest health conditions and reporting to the province, country or region
in a standardized manner. However, when sampling procedures are different and
specific to tree species, the methods are not standardized or consistent (Hall et al.,
2016). Therefore, sampling results can be biased by the surveyor’s experience, time
available, season, weather, and illumination (Hall et al., 2016).
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Table 2.2: A list of major defoliators and host trees with their geographical extent.

Common name Scientific name Host tree Study area Study
count

Eastern Spruce
budworm

Choristoneura
fumiferana

Abies balsamea,
Picea mariana,
P. glauca

Eastern North
America

14

European pine
sawfly

Neodiprion ser-
tifer

Pinus sylvestris Fennoscandia 10

Common pine
sawfly

Diprion pini Pinus sylvestris Europe 6

Jack pine bud-
worm

Choristoneura
pinus

Pinus banksiana Eastern North
America

8

Siberian silk
moth

Dendrolimus su-
perans sibiricus

Abies sibirica,
Pinus sibirica

Russia 6

Mountain pine
beetle

Dendroctonus
ponderosae

Pinus pon-
derosa, P.
contorta

Northwest
Canada-USA

4

Douglas-fir tus-
sock moth

Orgyia pseudot-
sugata

Pseudotsuga
menziesii, Abies
grandis, A.
concolor

Northwest USA 5

Pine procession-
ary moth

Thaumetopoea
pityocampa

Pinus nigra,
P. sylvestris,
P. pinaster, P.
halepensis

Mediterranean 5

Western spruce
budworm

Choristoneura
occidentalis

Pseudotsuga
menziesii, Abies
spp.

Northwest USA 4

Hemlock woolly
adelgid

Adelges tsugae Tsuga canaden-
sis

Northwest USA 4

European spruce
bark beetle

Ips typographus Picea abies Northern Eu-
rope

3

Gypsy moth Lymantria
dispar

Quercus spp. USA, Japan,
Italy

22

Autumnal moth Epirrita autum-
nata

Betula
pubescens

Fennoscandia,
Russia

7

Winter moth Operophtera
brumata

Betula
pubescens

Fennoscandia,
Russia

8

Forest tent
caterpillar

Malacosoma dis-
stria

Populus tremu-
loides

Eastern North
America

7

Larch budmoth Zeiraphera dini-
ana

Larix decidua Alps 5

Green oak tor-
trix

Tortrix viridana Quercus robur,
Quercus spp.

Russia, UK, Iran 5

Large aspen tor-
trix

Choristoneura
conflictana

Populus tremu-
loides

Western Canada 4

Trap sampling

Three types of trapping methods were found: pheromone, yellow sticky and burlap.
Pheromone traps (Sharov et al., 1996; Lyytikäinen-saarenmaa et al., 2001; Lyytikäinen-
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Table 2.3: Type of methods used for damage assessment by decade.

Assessment method 1990s 2000s 2010s
Aerial sketch-map x x
Field Measurement x x x
Trap sampling x x x
Tree ring x x x
Statistics x x x
Remote sensing x x x
GIS x x
Algorithm x x
Prediction model x
Ecosystem service x

Saarenmaa et al., 2006; Augustin et al., 2009; Chenchouni et al., 2010) and yellow
sticky traps (Battisti and Rodeghiero, 1998) capturing pest insects were used to as-
sess emergence dates of adults and local population density in relation to defoliation
risks for monitoring future outbreaks. On the other hand, burlap traps (Liang et al.,
1998) were mainly designed to sample pupae on host trees to estimate the population
density of pest insects in relation to defoliation levels. Combined with geostatistical
analysis, trapping methods in general can quantify the spatial distribution of insect
populations associated with defoliation degrees.

Tree-ring analysis

Using an increment borer, sample cores were analyzed for visually cross-dating for
long time series over the past hundreds of years by the program such as COFECHA
(Holmes, 1983) . In the 1990s, tree-ring widths were measured to the nearest 0.01mm
as an indicator to quantify radial growth changes in basal area of defoliated trees
(Oberhuber et al., 1999). Moreover, since 2000s the trend of tree-ring analysis has
been shifted to reconstruct historical cyclic insect outbreaks and their spatiotem-
poral dynamics by comparing the dendrochronology of host and non-host stands
for the same tree species (Ryerson et al., 2003; Avćı and Carus, 2005; Carus and
Avci, 2005; Paritsis et al., 2009; Babst et al., 2010; Bouchard and Pothier, 2010;
Sangüesa-Barreda et al., 2014; Leland et al., 2016).

Statistical analysis

Statistics has been the most fundamental tool for quantitatively assessing the rela-
tionship among variables in all decades, whether manually calculated or automat-
ically computed. Most commonly, simple and generalized linear regressions were
analyzed, as well as linear fixed or mixed regression, multiple regression, logistic
regression and logarithmic regression. For assessing the fit of regression models,
various coefficients were used such as ANOVA, ANCOVA, AIC, PCA, Pearson’s,
kappa, etc., using software applications (e.g. SAS, SPSS, R, Minitab, Matlab, Gen-
Stat, Statgraphics, Statistica, StatSoft and BMDP). The shift is notable that SAS
has been most commonly used (24 articles) from the 1990s (Sharov et al., 1996;
Coli et al., 1997; Koukl et al., 1997; Liebhold et al., 1998), the 2000s (Alonso et al.,
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2000; Royle and Lathrop, 2002; Brandt et al., 2003; Halldórsson et al., 2003; Sol-
berg et al., 2006; Eisenbies et al., 2007; Hanssen and Solberg, 2007; Weiskittel and
Maguire, 2007; Barron and Patterson, 2008; Kozlov, 2008; Man et al., 2008; To-
bin and Whitmire, 2009; Wolter et al., 2009) up to the 2010s (Cocco et al., 2010;
Nevalainen et al., 2010; Sikström et al., 2011; Krause et al., 2012; Simmons et al.,
2014; Gómez et al., 2015; Rullán-Silva et al., 2015) while the use of R (20 articles)
(Candau and Fleming, 2005; Cooke and Roland, 2007; James et al., 2010; Kantola
et al., 2010; Thayn, 2013; Vastaranta et al., 2013; Adelabu et al., 2014; Cayuela
et al., 2014; Fisichelli et al., 2014; Haynes et al., 2014; Kretchun et al., 2014; Rozen-
daal and Kobe, 2014; Sangüesa-Barreda et al., 2014; Simmons et al., 2014; Li et al.,
2015; Nakajima, 2015; Walter et al., 2016; Bognounou et al., 2017; Popa et al., 2017)
has increased and become more common in the 2010s. Some software applications,
in particular, R functions hold the advantage of generating geostatistics including
spatial analysis without any license fee.

Remote sensing analysis

There were 62 studies associated with remote sensing analysis, accounting for 34%
of the total studies reviewed. In the 1990s satellite-based sensors at low spatial reso-
lution such as AVHRR and SPOT VEGETATION were already launched, however,
their resolution was as coarse as 1 km, typically used for mapping cloud and surface
(land, water, snow and ice). Imagery at medium spatial resolution from MODIS,
providing most commonly used vegetation indices (VIs) such as Normalized Dif-
ference Vegetation Index (NDVI) and LAI, has proved to be useful for detecting
defoliation over a large area of interest at regional scale while the 250 m spatial
resolution was not fine enough for estimating the damage severity (Van Der Sanden
et al., 2006; Eklundh et al., 2009; Rullan-Silva et al., 2013; Hall et al., 2016). On the
other hand, Landsat-derived NDVI, most frequently used since 1990s at a 30 m spa-
tial resolution, became available for free of charge from the United States Geological
Survey (USGS). It has been found sufficient for mapping damage at the stand level
in various studies as a general method to assess percent defoliation and calculate
the change in VIs (Hall and Skakun, 2006; Wulder et al., 2006; Rullan-Silva et al.,
2013; Hall et al., 2016). This method allows for continuous spectrum across defolia-
tion values, rather than discrete defoliation classes (Rullan-Silva et al., 2013). More
recently in 2015, Sentinel-2 imagery of the 10-20 m spatial resolution became freely
downloadable from the European Space Agency (ESA). For spaceborne sensors at
high spatial resolution (<10 m), the private industry continued to launch satellites
such as RapidEye, SPOT-5, IKONOS and QuickBird. With further advancements,
the sensor’s spatial resolution nowadays can be as high as 0.3 m (WorldView-4), in
addition, temporal and spectral resolutions continue to enhance.

Apart from spaceborne remote sensing, the focus of airborne Light Detection and
Ranging (LiDAR) technology in the 2000s provided three-dimensional (3D) param-
eters such as tree height as well as more advanced canopy height model (CHM) and
individual tree detection (ITD) based on the tree-level crown structure. Further-
more, the emergence of airborne laser scanning (ALS), characterized by the spatial
resolution higher than any spaceborne technology, complemented point clouds in the
3D structure (Rullan-Silva et al., 2013; Roncat et al., 2014). Using ALS metrics,
classification of defoliated Scots pines at the individual tree level was demonstrated
by Kantola et al. (2013). Moreover, new 3D technologies in the 2010s featuring
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cost-effective UAVs (unmanned aerial vehicles) have been used to predict defolia-
tion classes for small operational areas, which may bridge gaps between field and
satellite scales by offering data for image calibration and validation of satellite-based
monitoring (Hall et al., 2016). A total of 19% of the studies with remote sensing
analysis included the use of airborne sensors.

GIS

In the 2000s the use of Geographic Information System (GIS) has increased for gen-
erating defoliation maps to show spatial patterns of insect outbreaks (Liebhold et al.,
1998; Eshleman et al., 2000; MacLean et al., 2000; Peltonen et al., 2002; Eshleman
et al., 2004; Tobin and Whitmire, 2009; Cocco et al., 2010). Using a geostatistical
tool, predicting or interpreting the spread rate and frequency probability became ef-
fective. At the operational level, Decision Support System (DSS) was implemented
for assisting forest managers to predict outbreak effects on forest structure and
productivity, forecast forest growing stock and sustainable harvest levels, and use
silviculture and harvest scheduling to restructure forests to reduce future damage
(MacLean et al., 2000). Towards 2010s, integrating GIS and remote sensing tech-
niques has become more effective for monitoring insect defoliations (Radeloff et al.,
2000; Allen and Kupfer, 2001; Gilichinsky et al., 2013; Kirschbaum et al., 2016).

Algorithm

In the 2000s algorithms such as Markov Chain Monte Carlo (MCMC) were per-
formed for simulations by random variables to map probability distribution for defo-
liation severity and frequency and consider uncertainty in prediction models (James
et al., 2010). In addition, with MODIS time-series images, TIMESAT was developed
by Jönsson and Eklundh (2002) using different smoothing functions (asymmetric
Gaussian (AG), double logistic (DL) and adaptive Savitzky–Golay (SG) filtering)
to fit the time-series data and fill the gaps for computing phenological metrics. It
was also applied as a damage mapping method for identifying pixels that represent
areas containing forest damage.

In the 2010s Random Forest (RF) algorithm was commonly used due to the
robust and flexible non-parametric method, enabling to handle both categorical and
continuous independent variables. RF is based on model aggregation that can be
used for both regression and classification problems. This method consists of a set of
random decision trees in a sequence of rules that are constructed from sets of samples
taken randomly with replacement from the original training set. Measurement of
nearness in RF is defined based on observations of the probability of ending up
in the same terminal node in classification (Kantola et al., 2010; Vastaranta et al.,
2013), with each tree contributing to the final classification outcome (Adelabu et al.,
2014). With Landsat time-series images, LandTrendr was developed using statistical
algorithms to separate trends from noise, on a per-pixel basis (30 m resolution), to
describe a time series of spectral reflectance values and the shape of the curve such as
phenological condition or sun angle at the time of image acquisition. As a detection
method for trends in disturbance and recovery, LandTrendr has been effective to
identify periods of spectral stability and instability (Kirschbaum et al., 2016).
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Prediction model

A model of predicting future scenarios was found in only 5 articles (Mason, 1996;
MacLean et al., 2000; Kapeller et al., 2011; Fisichelli et al., 2014; Kretchun et al.,
2014) among 160 reviewed. In the 1990s some models were based on statistical
analysis to predict pest density change (Mason, 1996). As the computer technology
advances in spatiotemporal modelling, GIS-based DSS (MacLean et al., 2000) and
cellular automaton (Kapeller et al., 2011) simulations were developed for estimating
future conditions such as volume loss (m3/ha) and population dynamics. Finally,
in compliance with the IPCC climate change scenarios, some models developed in
2010s predicted tree habitat suitability (Fisichelli et al., 2014) and carbon-related
indicators such as Net Primary Production (NPP) (g C/m2/year), carbon (g Cm2),
biomass (g Cm2) (Kretchun et al., 2014). The associated study areas were mostly
in USA and Canada followed by some Mediterranean countries such as Spain and
France. The spatial scale was mainly local as it is often less robust to apply a complex
of predictable variables at a large scale across country. On the contrary, temporal
scales were generally long enough (10-30 years) to make inferences or simulate the
future conditions. While there was no major defoliator species modelled in common,
most of the host trees were coniferous such as pines and firs.

Ecosystem service

The studies associated with ecosystem services (ES) were found in 15 articles and
categorized into provisioning or regulation & maintenance according to Common In-
ternational Classification of Ecosystem Services (CICES) (Haines-Young and Potschin,
2018). The indicators in provisioning (MacLean et al., 2000; Cook et al., 2008; Catal,
2011; Sikström et al., 2011; Fisichelli et al., 2014; Kretchun et al., 2014; Rozendaal
and Kobe, 2014; Sangüesa-Barreda et al., 2014; Olsson et al., 2017) included LAI,
basal area growth, radial increment, volume loss or growth, NPP and habitat suit-
ability. In regulation & maintenance category (Eshleman et al., 2004; Fischer et al.,
2007; McNeil et al., 2007; Pitman et al., 2010; Scanlon et al., 2010; Fernández et al.,
2011), physical, chemical and biological conditions in water and soil, such as nutrient
concentration and nitrate export derived from defoliation, were quantified as indi-
cators. These articles were all published posterior to year 2000, focusing on study
areas at various spatial scales ranging from local, subnational, national to regional
in European or North American countries. The range of temporal scales was wide,
depending on whether the model is capable of forecasting the future conditions (ES:
provisioning category) which would require a study period of the past 30 years on av-
erage, while the rest of models could apply a short study period for a couple of years
to provide ecosystem services representing the current conditions (ES: regulation &
maintenance category). The model types were well combined among conventional
statistical analysis or simulation algorithm based on forest inventory data (PSP and
International Co-operative Program (ICP)) and recent remote sensing technologies.
This integration seems to be the trend in providing ecosystem services. There was
no major focus on specific defoliators, however, it was observed that coniferous trees
are pines, spruces and firs while the majority of broadleaf trees belong to Quercus
spp.
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2.4 Discussion

2.4.1 Geographical distribution

Due to some differences among regions and countries in economic conditions, re-
search funds and /or availability of professionals and experts (Morán-Ordóñez et al.,
2018; Muller et al., 2018), the studies conducted on forest defoliations were concen-
trated in the developed countries in North America and Europe. For this reason,
the higher number of studies in those developed countries does not necessarily indi-
cate the higher number of existing defoliators or the larger area defoliated in their
regions where studies are more extensively and frequently conducted. It may be due
to the mere fact that some developing countries lack the research resources including
knowledge, technology and financial support for detecting, measuring, mapping and
monitoring forest defoliations as well as publishing research outcomes in English for
international readers.

2.4.2 Spatial and temporal scales

A tradeoff between spatial resolution and extension is critical for deciding how much
detail and how much space should be surveyed. In general, the larger geographical
extent from national to regional and global scales requires low resolution satellite
imagery (e.g. MODIS with time-series TIMESAT) while the use of sketch map-
ping and/or medium resolution satellite imagery (e.g. Landsat with time-series
LandTrendr) is appropriate from local to subnational scales. In some other special
cases requiring individual tree measurements, field data may be more appropriate
even though the latest remote sensing is capable of capturing imagery at sub-metric
high resolution, including spaceborne sensors and airborne technologies such as Li-
DAR, ALS and UAV. For measuring parameters observable only from the ground
level in a single small study area, field surveys may be the fundamental source of
data. It should be noted that repeating the same field survey method in different
study areas by different surveyors may cause some biases derived from manual or
visual measurements unless the parameter of interest can be measured by electronic
devices such as lasers which are relatively consistent with measurements regardless
of the surveyor. Nowadays, some tree parameters such as crown defoliation and
height can be measured from airborne sensors where forest stands are not too dense
to detect individual trees.

Temporal scale may refer to the period and frequency of detection for continuous
monitoring. Most of detection methods reviewed were based on annual surveys to
detect general changes from previous years while inter-annual surveys were effective
for detecting any seasonal variation in plant phenology (i.e. annual phenological
cycle). Some methods can track back over several years and decades as well as pre-
dict future values in upcoming years. The longest period observed in this literature
review was 300 years, achieved by dendrochronological method using annual tree-
ring analysis (Büntgen et al., 2009). Time-series analysis with satellite images such
as Landsat and MODIS became available from year 1972 and 2000, respectively.
On the other hand, the shortest period observed was single year as the initial year,
found in 26 studies, to start up the methodology with or without the intention to
continue monitoring from then.
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2.4.3 Pest drivers and host trees

Native tree species may recover from defoliations in a relatively short time, however,
negative consequences on growth and ecological functions of the forests often occur
in plantations especially where certain species are introduced to outside of their
natural range (Battisti et al., 2016).

Moreover, due to increasing droughts caused by climate change in the Mediter-
ranean region, some insects benefit from stress-induced trees, depending on their
feeding method (Koricheva et al., 2002; Huberty and Denno, 2004; Tiberi et al.,
2016). While defoliators are negatively affected by water-stressed trees due to the
increased allelochemical levels in leaf tissues (Inbar et al., 2001; Tiberi et al., 2016),
bark or wood borers take advantage of the stressed trees for colonization (Tiberi
et al., 2016). Increasing winter temperatures caused by global warming may also
favor pest outbreaks as a result of reduced winter mortality of some insects (Tiberi
et al., 2016). In addition, these climatic factors may increase the risk of wild-
fire, which would make stressed trees become even more susceptible to pest agents
(Coelho and Campos, 2009; Tiberi et al., 2016).

2.4.4 Damage assessment methods and indicators

Integrated monitoring system

Since the absence of routine surveys may lead to temporal data gaps as well as
spatial data gaps in the monitoring system, timing is critical for detecting certain
damage, according to what time of the year and how long the damage is likely visible
(Rullan-Silva et al., 2013; Hall et al., 2016). As a solution to reduce information
gaps, remote sensing may complement field surveys towards an integrated, multi-
scale, multi-source pest monitoring system (Hall et al., 2016).

Current remote sensing technologies enable to detect trends over long-term se-
ries of satellite imagery. Since the year 2008 initiated by the first open access to
Landsat data, long-term continuous monitoring for land cover changes has been en-
couraged (Wulder et al., 2012; Hall et al., 2016). Consequently, pre-outbreak and
post-outbreak images can be assessed for changes in tree damage and recovery using
Landsat time-series analysis such as LandTrendr. Although assessment methods
have been improving, assigning severity classes can be challenging with acceptable
accuracy especially in mixed stands where the stand is composed of more than single
species (Hall et al., 2016; Otsu et al., 2018).

Thus, remote sensing may play a complementary role in monitoring damage
continuously and frequently to serve as a means to identify data gaps, address re-
search questions of impacts on forest dynamics using damage data with high spatial
resolutions, and develop predictive models to estimate damage trends (Hall et al.,
2016). Traditionally, remote sensing has not played a significant role to detect early
population endemics, however, the importance of the role will likely increase in the
future especially in large remote areas at high altitudes and high latitudes where
there is limited access to road networks (Hall et al., 2016).

Prediction and scenario modelling

The difficulty in predicting pest outbreaks involves the interpretation of ecological
processes as well as biotic, abiotic and anthropogenic factors (Villemant and Andrëı-
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Ruiz, 1999; Tiberi et al., 2016). For this reason, establishing robust models for
prediction of pest population dynamics remains challenging (Tiberi et al., 2016).
Since there is great uncertainty about the frequency and severity of pest outbreaks
due to global warming, the consequences of such climate change are also unknown
(Flower and Gonzalez-Meler, 2015). However, some biological indicators may be
useful to anticipate population outbreaks to the best knowledge in prediction models
(Tiberi et al., 2016). Combined with climate factors, it is important to develop
prediction models for assessing the forest response to climate changes (Duning, 1995;
Tiberi et al., 2016). Specifically, sensitivity analysis testing the model robustness by
increasing and decreasing predictive parameter values may reduce the uncertainty
of response values (Otsu et al., 2019). Moreover, hierarchical processed-based biotic
interactions should be taken into consideration for modelling physiological responses
to pest outbreaks at tree and stand levels (Flower and Gonzalez-Meler, 2015; FAO,
2018).

Ecosystem services and future research

As forests offer a variety of ecosystem services such as timber, water purification and
carbon sequestration (Thompson et al., 2011; Boyd et al., 2013; Ramsfield et al.,
2016; Haines-Young and Potschin, 2018), it is important to mitigate economic and
social impacts of damage caused by forest pests as well as impacts on biodiversity.
By monitoring forest productivity as an indicator of tree growth, tools to quantify
impacts of forest defoliation become useful for ecosystem services in pest and disease
control (Thompson et al., 2011; Ramsfield et al., 2016). Ultimately, monitoring forest
health may contribute to early detection of pest outbreaks and prevention of further
damages in the following years to reduce the amount of loss in various ecosystem
values. Such values should be well defined and standardized on a global scale for
being able to compare assessments at the international level. This is why the CICES
(Haines-Young and Potschin, 2018) was developed by the European Environmental
Agency (EEA) with the aim of classifying what ecosystems as living processes do
for human well-being.

2.5 Conclusions

Currently, biotic disturbances caused by defoliators are major causes of forest decline
in many regions, even accelerated by climate change. We presented a systematic lit-
erature review on the studies over the past two decades associated with the world’s
forest defoliations, with the aim of filling the information gap among previous review
articles that focused on forest disturbances, in general, limited by particular regions
or detection techniques. We identified spatial and temporal distribution of defoli-
ations, pest-host tree relationships, and specific detection methods for quantifying
the defoliation degrees. Our findings highlighted that the effort on improving meth-
ods for pest detection and monitoring has been significantly increased over the past
decade. Depending on the scales and types of defoliation in question, the latest mod-
elling and remote sensing techniques, including an emerging UAV technology, are
currently available to be combined with conventional ground surveys and statistical
analyses.

The current limitations should be addressed with potential solutions as follows:
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• Spatial data gaps on forest defoliations outside North America and Europe are
evident, possibly due to scarce research funds and resources. Opportunities
for increasing international projects focused on gap areas may be encouraged
and collaborated by leading countries.

• Temporal data gaps in the past defoliations with the use of remote sensing
images are inevitable prior to 1972. Towards the future, the timeline of avail-
able satellite images will increase with Landsat (posterior to 1972), MODIS
(posterior to 2000), and Sentinel (posterior to 2015), which may be combined
to enhance the temporal resolution as well.

• Identifying defoliation drivers combined with other biotic and/or abiotic fac-
tors and their relationships with specific host trees is complex. Monitoring
changes in several potential factors based on climate, forest inventory, and
remote sensing data may have the potential to distinguish the causes.

• Methods and indicators for detecting and quantifying defoliation damages are
inconsistent. In addition to innovatively developed models, well-established
existing methods may be tested with baseline (default) scenarios using forest
inventory (e.g. PSP, ICP), dendrochronology (e.g. COFECHA), statistics
(e.g. SAS, R), and/or time-series algorithm (e.g. TIMESAT, LandTrendr).

• Increasing uncertainty and variability in prediction models is significant, due
to the current absence of robust models and the increased number of predictive
variables interacted. Starting with the baseline scenario complemented with
a sensitivity analysis may be encouraged by using existing (inter)nationally
standardized data as inputs, if available, to generate comparable outputs such
as the indicators defined by CICES.

As we conclude that optimal methods may be specific to each pest agent as-
sociated with host tree species, the advancement in pest detection and monitoring
methods is promising for mitigating the future damage to high ecological, social and
economic values of forests. For future research, we recommend that prediction mod-
els based on those monitoring methods should be well linked to ecosystem services
related to pest and disease control in compliance with the IPCC scenarios.
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Chapter 3

Article 1: Calibrating the severity
of forest defoliation by pine
processionary moth with Landsat
and UAV imagery

Abstract
The pine processionary moth (Thaumetopoea pityocampa Dennis and Schiff.), one
of the major defoliating insects in Mediterranean forests, has become an increas-
ing threat to the forest health of the region over the past two decades. After a
recent outbreak of T. pityocampa in Catalonia, Spain, we attempted to estimate the
damage severity by capturing the maximum defoliation period over winter between
pre-outbreak and post-outbreak images. The difference in vegetation index (dVI)
derived from Landsat 8 was used as the change detection indicator and was fur-
ther calibrated with Unmanned Aerial Vehicle (UAV) imagery. Regression models
between predicted dVIs and observed defoliation degrees by UAV were compared
among five selected dVIs for the coefficient of determination. Our results found the
highest R-squared value (0.815) using Moisture Stress Index (MSI), with an overall
accuracy of 72%, as a promising approach for estimating the severity of defoliation
in affected areas where ground-truth data is limited. We concluded with the high
potential of using UAVs as an alternative method to obtain ground-truth data for
cost-effectively monitoring forest health. In future studies, combining UAV images
with satellite data may be considered to validate model predictions of the forest
condition for developing ecosystem service tools.

3.1 Introduction

Currently, pest insects are the principal biotic drivers causing disturbances threat-
ening Mediterranean forests in combination with abiotic factors such as drought,
fire and climate change (Rullan-Silva et al., 2013; Sangüesa-Barreda et al., 2014).
The pine processionary moth (Thaumetopoea pityocampa Dennis and Schiff.), one of
the major defoliating insects in Mediterranean pine forests, has been considered by
the Intergovernmental Panel on Climate Change (IPCC) as an indicator of global
warming (Rosenzweig et al., 2007) for being recorded in an expanded biogeograph-
ical range of host distribution from Southern Europe in the Mediterranean region
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towards northern latitudes and higher elevations over the past twenty years (Battisti
et al., 2005; Roques, 2015). Consequently, the defoliators may continue to increase
with the future trend of climate change scenarios (Roques, 2015).

Outbreaks of T. pityocampa have been observed to be cycles of 6 years on average
(Hódar et al., 2004; Sangüesa-Barreda et al., 2014), mainly in managed young stands
(Robinet et al., 2007; Roques, 2015). In a normal year healthy forest stands recover
from defoliation, however, periodic outbreaks attack large forests in which host
trees may suffer up to 100% defoliation. Thus, severely affected stands may result
in significant reductions of individual tree growth, stand productivity, and forest
ecosystem health, from tree to stand and landscape levels (De Beurs and Townsend,
2008; Roques, 2015). Such growth reduction may accelerate the rate of tree mortality
when the damage is accumulated due to other biotic factors as well as abiotic factors
(Hódar et al., 2003). As a consequence, defoliation focused on host pine trees is more
likely to change the structure and species composition in natural stands as well as
lose economic values in planted stands (Hódar et al., 2003; Sangüesa-Barreda et al.,
2014). Furthermore, forest ecosystems at the landscape level are major carbon
sinks contributing to mitigate the impacts of climate change (Hyvonen et al., 2007;
Luyssaert et al., 2010; Li et al., 2015). Therefore, to predict future scenarios on forest
productivity and mortality in cases where the outbreaks may occur, reliable data
from monitoring the pest distribution at regional and national scales are required
(Li et al., 2015; Roques, 2015).

Despite the annual ground survey on forest health in the Mediterranean coun-
tries such as France, Portugal and Spain which are frequently affected by outbreaks
of T. pityocampa, we currently lack accurate, fine-grained and timely information
systems for monitoring the latest forest condition. Thus, an efficient tool to im-
prove such regional or national monitoring systems spatially and temporally may be
developed by adequately using the latest remote sensing technologies. In addition
to conventional field surveys which are often time-consuming to cover large areas,
satellite-based images such as MODIS and Landsat at medium spatial resolution
(30–250 m) have been widely used for detecting defoliations in forest systems over
the past two decades (Rullan-Silva et al., 2013). Currently, due to the free accessi-
bility to medium-resolution (10–60 m) products from Landsat 8 (NASA, 2019) and
Sentinel-2 (ESA, 2015), they are most commonly used for cost-effectively monitoring
large areas. For sensors at high spatial resolution (<10 m), the private industry con-
tinued to launch satellites such as IKONOS, QuickBird, RapidEye and TerraSAR-X
[1]. With further advancements in spaceborne technology, the sensor’s spatial reso-
lution nowadays can be as high as 0.3 m (WorldView-4), and continue to enhance
temporal and spectral resolution as well. In Spain, using various sensors (Airborne
Hyperspectral Scanner, Hyperion, ChrisProba, Quickbird, and Landsat), Cabello
et al. (2011) have applied vegetation indices for mapping forest damage caused by
T. pityocampa to estimate the Leaf Area Index in affected pine stands, followed by
Sangüesa-Barreda et al. (2014) with the combined method of Landsat-derived vege-
tation indices and dendrochronology for assessing the tree growth reduction affected
by outbreaks of T. pityocampa. Furthermore, the emergence of airborne laser scan-
ning (ALS) characterized by point clouds complements the three-dimensional (3D)
structure in addition to the spatial resolution higher than any spaceborne technology
(Rullan-Silva et al., 2013; Roncat et al., 2014). Using ALS metrics, classification
of defoliated Scots pines at the individual tree level was demonstrated by Kantola
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et al. (2013).
Since the cost of above high-resolution products remains a limiting factor for

small operational areas, the trend of monitoring forest health in recent studies has
shifted to the alternative 3D technology based on cost-effective Unmanned Aerial
Vehicle (UAV) at high temporal and spatial resolution over the past decade (Dash
et al., 2017). While initial studies with UAVs were focused on crop management for
agriculture applications, the latest UAV technology has proved to be effective for
forestry applications (forest disturbances and diseases, forest cover mapping, tree
species identification, and forest inventory measurements) as a sampling tool for
acquiring ground-truth data (Torresan et al., 2017). To date only a few studies
have examined on the classification accuracy of forest insect defoliations using UAV
imagery. The classification methods include Random Forest (Dash et al., 2017),
object-based image analysis (OBIA) (Lehmann et al., 2015; Brovkina et al., 2018),
k-Nearest Neighbor (Näsi et al., 2015), and maximum likelihood (Cardil et al., 2017;
Hentz and Strager, 2017). Moreover, no study has calibrated satellite-based vegeta-
tion indices as a predictive indicator of such defoliation with UAV-derived data as
ground-truth while Pla et al. (2017) has recently made progress in calibrating some
indices specific to fire damage using UAV imagery.

With the objective to quantify forest response to infestation, we developed re-
mote sensing-derived indicators to measure the defoliation levels. In this study, we
aim to evaluate the spatiotemporal degree of defoliation during a recent outbreak
of T. pityocampa in Mediterranean pine forests by change detection analysis using a
combination of satellite and UAV imagery. Our main objectives are: (1) examine re-
gression models between vegetation indices (VI) derived from Landsat imagery and
defoliation degrees interpreted by UAV imagery for calibration; (2) map defoliation
classes based on the best-fit VI model to assess classification accuracy for validation.

3.2 Materials and methods

3.2.1 Study area

The study area is located near the city of Solsona, Catalonia, northeast of Spain
(Figure 3.1a), encompassing 6809 hectares (Figure 3.1b) dominated by pine forests
(elevation above sea level ranging from 600 m to 1100 m). Primary host species
are Pinus nigra followed by P. sylvestris, which are the dominant tree species in
mixed stands with Quercus ilex and Q. humilis. The climate is Mediterranean
continental characterized by hot summer and cold winter. According to the local
meteorological station, the mean annual temperature is 11.7 ◦C and the mean total
annual precipitation is 864 mm. As larvae of T. pityocampa develop across winter,
it has benefited from recent warmer fall and winter temperatures for overcoming
the thermal thresholds and consequently increasing the rate of larval survival and
growth as far as the host trees are present (Roques, 2015).

3.2.2 Field data

Ground and aerial sketch mapping data were first obtained from the regional forest
health inventory during the years from 2010 to 2016. Since the project on evaluating
the severity of infestations caused by T. pityocampa started, field surveys have been
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Figure 3.1: Study area showing: (a) Location of Solsona (41◦59′40′′ N, 1◦31′04′′

E), Catalonia (solid gray line), Spain; (b) one of the most severely affected areas
mapped by rural agents (2016).

conducted by rural agents every winter when the symptoms are visually most evident
from February to March after the larvae complete feeding on needles and go into
the soil for pupation (Battisti et al., 2005). The survey form is standardized by
the government (Generalitat de Catalunya) and filled out by rural agents. Affected
stands are mapped as polygons, on average about 137 hectares per polygon ranging
to the smallest of 0.03 hectare, with attributes such as observation date, forest type,
aspect, tree species, and infestation severity. The severity scales are ranked from
1 to 4 at highest as follows: (1) several nests at the margins and some nests in
the center of the forest stand; (2) partial defoliation at the margins on some trees
and several nests in the center of the forest stand; (3) intense defoliation at the
margins and partial defoliation in the forest stand; (4) very intense defoliation both
at the margins and in the center of the forest stand. The total area infested by T.
pityocampa was recorded at largest in 2016. Based on this inventory database with
sketch map polygons, our study area was selected to be one of the most severely
affected areas during winter 2015–2016 (Figure 3.1b).

3.2.3 Landsat images and vegetation indices

Pre-outbreak (20 September 2015) and post-outbreak (30 March 2016) images were
obtained from Landsat 8 (path 198, row 31) with minimum clouds to capture the
maximum defoliation period from fall to spring. Surface Reflectance (SR) products
were downloaded from the GloVis (http://glovis.usgs.gov) USGS server. Further-
more, the Band Quality Assessment included in the SR product was applied to
exclude pixels described as water, snow, cloud, and cloud shadow so that only pixels
with values indicating clear terrain were extracted (Hantson and Chuvieco, 2011;
Sangüesa-Barreda et al., 2014; Pla et al., 2017). Preprocessed images in the carto-
graphic UTM projection were further extracted by forest cover classified as pine-
dominated stands according to the Land Cover Map of Catalonia (MCSC) generated
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in 2009. The best spectral regions for defoliation detection may correspond to re-
flectance bands from Landsat 8 such as near infrared (NIR = Band 5) and shortwave
infrared (SWIR1 = Band 6 and SWIR2 = Band 7) which enable to capture a fast
reduction of pine foliage and the consequent reduction in tree evapotranspiration
(Rullan-Silva et al., 2013; Pla et al., 2017). In this study, we tested five VIs to
predict the defoliation degree in pine forests as summarized in Table 3.1.

Table 3.1: Vegetation indices derived from Landsat 8 multispectral bands.

Index Acronym Formula Reference
Middle Infrared Wave-
lengths

MID Band 6 + Band 7 Lu et al. (2004)

Moisture Stress Index MSI
Band 6

Band 5
Rock et al.
(1986)

Normalized Difference
Moisture Index

NDMI
Band 5 – Band 6

Band 5 + Band 6
Hunt Jr and
Rock (1989)

Normalized Difference
Vegetation Index

NDVI
Band 5 – Band 4

Band 5 + Band 4
Rouse et al.
(1973)

Normalized Burn Ratio NBR
Band 5 – Band 7

Band 5 + Band 7
Garćıa and
Caselles (1991)

Comparing values of VI among multiple dates may function as a good indicator
for change detection (Battisti et al., 2005; Cabello et al., 2011; Kantola et al., 2013;
Rullan-Silva et al., 2013; Roncat et al., 2014). To distinguish annual defoliation
during the outbreak from cumulative defoliation over several years, a pre-outbreak
(20 September 2015) image was compared to additional images from Landsat 8
representing the month of September in the previous two years (2013 and 2014) to
confirm that there was no abrupt change in the VI values used in our study area
before outbreak. The difference in VI (dVI) was calculated by simply subtracting
the value of each VI in year 2016 (post-outbreak) from year 2015 (pre-outbreak) to
estimate annual defoliation:

V I(pre-outbreak) − V I(post-outbreak) = dV I (3.1)

3.2.4 Visual interpretation with UAV Images

To assess the level of defoliation in selected locations, we used a camera (FC200,
DJI, Shenzhen, China) mounted on a UAV (Phantom 2 vision+, DJI, Shenzhen,
China). This camera can capture images, photos or videos, in the visible spectrum
(RGB including blue, green and red bands) with a lens focal length of 5 mm and
field of view of 120 degrees (DJI, 2015). The RGB imagery had a 14 megapixels-
resolution and was collected from a flying altitude ranging at 50–100 m above the
ground level, resulting in a ground sample distance (GSD) of 2.0–3.5 cm. Seven
flight surveys were conducted between December 2015 and March 2016 covering
approximately 193 hectares across the study area shown in Figure 3.2a, of which
five were collected in photos (81 hectares) and two were recorded in videos (112
hectares) at speeds ranging from 4–8 m per second depending on light conditions.
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The survey locations were selected to represent the stand types characterized by P.
nigra and P. sylvestris and by various defoliation levels. Some surveys were recorded
earlier than the post-outbreak image (30 March 2016) where high defoliation levels
had been already observed at that time.

The total of 526 adjacent photos overlapped (forward 80%, side 60%) from the
five flights with their geotagged locations were processed in the software PhotoScan
Professional 1.4.0 (Agisoft LLC, St. Petersburg, Russia). In the image processing
they were geometrically aligned to build a point cloud, 3D model, digital elevation
model (DEM), and finally five orthomosaic images (Agisoft, 2018a). To collect
more sample images, we included additional two videos flying at 4 m per second and
recording 29 frames per second with the associated GPS files, which were imported
into the software Video GeoTagger (Remote GeoSystems, Fort Collins, CO, USA) to
tag geolocations. Extracting a frame per second resulted in the total of 339 frames in
photo files. We repeated the same image processing used for the photos to generate
two additional orthomosaic images derived from the video frames.

Using the ArcGIS version 10.5 software (ESRI, Redlands, CA, USA) each or-
thomosaic was georeferenced to the Landsat imagery in the UTM projection by
performing a first order polynomial transformation with 4 control points, obtaining
an accuracy of sub-meter root mean square error. The georeferenced orthomosaic
images were further stratified to delineate non-forested or forested areas with the
severity of defoliation in homogeneously affected stands by visual interpretation
(Figure 3.2b).

As summarized in Table 3.2, the sampled grid cells of 30 m x 30 m on orthomosaic
images, corresponding to the pixels captured by Landsat, were haphazardly selected
by an analyst avoiding shadow pixels from each representative category. Upon
delineating the surface area containing defoliated trees per grid cell, the defoliated
portion of the total cell area (900 m2) was calculated and expressed at 5% interval
(Figure 3.2c). Finally, all selected grid cells were classified into four categories: nil
(no change 0–5%); low (defoliation 10–30%); medium (defoliation 35–65%); and high
(defoliation 70–100%), as a modified classification suggested by Hall et al. (2016).

Table 3.2: Selected UAV sample images for calibration in each category of defoliation
severity.

Severity Defoliation (%) Number of Samples
Nil 0–5 10
Low 10–30 23

Medium 35–65 8
High 70–100 9

3.2.5 Regression analysis and threshold classification

We statistically analyzed relationships between two variables, predicted dVI (X )
from Landsat imagery and observed defoliation % (Y ) from UAV imagery. The
relationships between X and Y were evaluated using the software R in various re-
gression models including simple linear, logarithmic, exponential, polynomial, and
logistic models. Provided that the range of defoliation % (Y ) is limited as the re-
sponse variable is bounded from 0 to 1 (Townsend et al., 2012; Rullán-Silva et al.,
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Figure 3.2: Observed defoliations based on UAV imagery showing: (a) the location of
UAV sample images captured in photos and videos where sketch map polygons were
identified as most severely affected areas in 2016; (b) an example of the orthomosaic
stratified by land cover and defoliation degree (NF - not forested, L - low, M -
medium, H - high) showing selected grid cells of 30 m x 30 m; (c) visual interpretation
of defoliation in percentage per grid cell (50% in this sample).

2015; Zhu et al., 2018), logistic regression was employed to express proportion defo-
liated, following the equation:

Y =
1

1 + e−(a+bX)
(3.2)

where X represents the value of pixel in a selected dVI within the sample image, Y
represents the percentage of defoliation interpreted within an individual UAV sample
image, and a and b are the slope and intercept of the regression function. Based on
fifty selected samples (sample size = 50) in the study area, regression models were
fitted to evaluate the coefficient of determination, McFadden’s R2 (McFadden, 1973),
which is most often reported in statistical software and recommended for measures
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of fit for logistic regression (Allison, 2014). The dVI models were then compared to
determine the best-fit indicator for estimating the severity of defoliation. With the
known Y values of 10, 35 and 70 to separate the range of defoliation %, threshold
limits in dVI (X ) from the Equation 3.2 were recalculated as follows:

X =
ln

(
Y

1−Y

)
− a

b
(3.3)

Finally, as defined in Table 3.2, the severity map of defoliation was generated by
threshold classification (Miller and Thode, 2007; Parks et al., 2014; Pla et al., 2017).

3.2.6 Classification accuracy

To assess an overall accuracy of the threshold classification, we generated a confusion
matrix of the four defoliation classes in the 50 selected grid cells, which were com-
pared between the Landsat-based prediction and UAV-based interpretation. Valida-
tion of classes in the severity map was performed by assessing classification accuracy
of dVIs referenced to UAV observations.

3.3 Results

In Figure 3.3 the resulting X and Y points were plotted and compared among selected
VIs. Moreover, the coefficient of determination (R2) by dVI is summarized in Table
3.3, which was statistically analyzed for logistic regression proposed by McFadden
(1973). The goodness of fit was highest = 0.815 with dMSI while it was not improved
by normalizing VIs such as dNDMI, dNDVI, and dNBR.

Using the equations in Table 3.3, the range of dVI values were determined as
threshold limits in classification (Table 3.4). Applying values in dMSI to defoliation
%, any value higher than -125 is classified as no defoliation (<10%): -125 to -
295 (10–35%); -295 to -453 (35–70%); and lower than -453 (>70%). Based on the
threshold limits, pixels assigned to four classes of defoliation were mapped to show
the severity across the study area (Figure 3.4). The blank pixels in no color indicate
either non-forested areas or stands dominated by other tree species, which were
initially excluded from the analysis.

Table 3.3: Summary of logistic regression models.

Index Formula R2 (McFadden’s)

dMID Y =
1

1 + e−(−3.1299111−0.0041928X)
0.740

dMSI Y =
1

1 + e−(−3.3570352−0.0092755X)
0.815

dNDMI Y =
1

1 + e−(−3.5552389+0.0014107X)
0.749

dNDVI Y =
1

1 + e−(−3.509468+0.001767X)
0.787

dNBR Y =
1

1 + e−(−3.6323329−0.0013874X)
0.776
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Figure 3.3: Scatterplots of defoliation (%) as response variable and dVI as predictor
variable: (a) dMID; (b) dMSI; (c) dNDMI; (d) dNDVI; (e) dNBR.

The overall accuracy of the threshold classification was presented in Table 3.5
for the four defoliation classes (nil, low, medium, and high) in the 50 selected sam-
ples of dMSI referenced to UAV orthomosaic images. Greatest producer’s accuracy
representing a measure of omission error was 90% for the nil defoliation class, where
nine out of the 10 cells observed as nil were correctly classified by predicted dMSI.
On the other hand, the high defoliation class was mapped with greatest user’s accu-
racy of 86% indicating commission error, which six out the seven cells predicted as
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Figure 3.4: Severity map of defoliation classified by threshold limits of dMSI repre-
senting pine-dominant stands (excluding non-forested areas and stands dominated
by other tree species).

Table 3.4: Threshold limits and the range of vegetation indices.

Defoliation (%)
Index 10 35 70
dMID −222 −599 −949
dMSI −125 −295 −453

dNDMI 963 2081 3121
dNDVI 743 1636 2466
dNBR 1034 2172 3229

high correctly represented the observed class. Overall, it should be noted that the
number of cells classified as nil or medium defoliation was overestimated whereas
the one classified as low or high defoliation was underestimated. Finally, the overall
accuracy of the classification was 72% calculated by the ratio between the sum of
the cells correctly classified from each class and 50 cells in total.
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Table 3.5: Confusion matrix of a threshold classification using 50 pixel values of
dMSI predicted from Landsat 8 in reference to four classes observed from UAV.

Predicted (Landsat 8)
Class Nil Low Medium High Total Producer’s

Accuracy
Nil 9 1 0 0 10 0.90
Low 2 17 4 0 23 0.74

Observed Medium 0 3 4 1 8 0.50
(UAV) High 0 0 3 6 9 0.67

Total 11 21 11 7 50
User’s Accuracy 0.82 0.81 0.36 0.86 0.72

3.4 Discussion

Among five VIs tested in our study, the results with dMSI as the best predictor
were consistent with recent studies on insect defoliations (Townsend et al., 2012;
Sangüesa-Barreda et al., 2014; Rullán-Silva et al., 2015; Zhu et al., 2018). The SWIR
band calculated in dMSI is known to be a good indicator for the plant moisture
content in addition to the plant stress detected in the NIR band (Vogelmann et al.,
2009; Rullan-Silva et al., 2013). It may be assumed that the MSI better indicated
early symptoms of the host trees stressed by dehydration in our study. The first
study examining MSI in relation to conifer damage was conducted by Vogelmann
(1990), resulted with an R2 of 0.830 in linear regression. Other studies with MSI
have been conducted in pine forests by Sangüesa-Barreda et al. (2014) demonstrating
the highest significance on ANOVA tests and most recently by Zhu et al. (2018)
with an R2 of 0.982 in logistic regression. The MSI was also effectively applied to
defoliation in deciduous forests by Townsend et al. (2012) with an R2 of 0.844 in
logistic regression and Rullán-Silva et al. (2015) with an R2 of 0.632 in sigmoidal
mixed-effects models. For monitoring coniferous forests in general, the MSI has
been found to be more effective than the NDVI which has been mainly applied
to deciduous forests (Vogelmann, 1990; Vogelmann et al., 2009; Zhu et al., 2018).
Nevertheless, several potentially robust VIs should be tested on each particular study
area since tree-insect relationships vary from site to site (Rullan-Silva et al., 2013).

Our initial attempt was to use sketch map polygons from field data as training
samples for supervised classification on the severity of defoliation. However, the
significant discrepancy in spatial resolution between the field data provided by re-
gional rural agents and Landsat data became evident. The sketch map polygons
were delineated for classifying severity levels at a coarse scale in hectares including
non-forested areas whereas the spatial resolution of Landsat imagery is as fine as
30 m per pixel, which resulted in a wide range of values among pixels within the
same polygon. Yet, without any ground observation such as nests of T. pityocampa,
it is often difficult to distinguish the cause of defoliation based on only spectral
bands or even aerial surveys at low levels of defoliation (De Beurs and Townsend,
2008). Further integration by training the rural agents to apply UAV workflows to
their annual health survey may fill this monitoring gap. As suggested in the most
recent review on forest health monitoring by Hall et al. (2016), how spaceborne
and airborne remote sensing may be integrated with aerial and field surveys into a
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multi-scale, multi-source monitoring system should be explored.

Regarding stand dynamics and species compositions, we extracted pine-dominated
stands from the Land Cover Map of Catalonia (MCSC) and assumed that sampled
stands were dense enough to represent Landsat VIs based on the defoliation degree
of dominant species in pine stands. Nonetheless, we acknowledge the possibility
of misrepresenting the VIs in severely defoliated stands to some extent where un-
derstory species is non-host evergreen such as Q. ilex which is not affected by T.
pityocampa. In such cases, healthy understory trees below defoliated pine trees may
have reflected more greenness at the stand level. Moreover, it is also possible to
overestimate the defoliation degree in stands mixed with non-host deciduous trees
shedding their leaves in winter (Hall et al., 2016). This issue of overestimating or
underestimating the impacts on host trees can be minimized by discrimination of
deciduous species by detecting spectral variations due to vegetation phenology with
Landsat time-series approach such as LandTrendr which can monitor cumulative
defoliation as well as annual defoliation (Senf et al., 2017) while the satellite-based
spatial resolution is not high enough to identify individual trees. Thus, for species
identification at the tree level recent studies with UAV-derived multispectral bands
and the associated indices (Torresan et al., 2017) may be further investigated to dis-
criminate only those species of interest for calibration and validation of defoliation
degrees.

Regression analysis may be improved by increasing the sample size in each sever-
ity category or the number of predictive parameters, or testing transformed dVIs
(Miller and Thode, 2007; Parks et al., 2014; Pla et al., 2017). One simple way to in-
crease the sample size can be achieved by reducing the cell size for sampling VIs from
30 m in Landsat 8 to 20 m in Sentinel-2 imagery. As multiple predictive parame-
ters climate data (temperature and precipitation) or topographic features (elevation,
slope and orientation) may be considered to improve the coefficient of determination
in regression models. Moreover, we may introduce the number of nests formed by T.
pityocampa as an additional predictive parameter to estimate the infestation severity
as recent studies with the UAV technology have attempted to examine the severity
of infestation at the individual branch level (Cardil et al., 2017; Hentz and Strager,
2017). However, the number of nests captured by UAV images from the air may
be potentially underestimated if some nests on lower branches or in dense stands
are not counted. Regarding observed parameters, our assessment on UAV-derived
defoliation levels (%) was limited to manual photointerpretation, including shadows
where some uncertainty remains. The automated removal of shadow pixels should
be explored in future studies by testing various thresholds on spectral bands.

Threshold classification based on regression models in this study was one method
to generate the defoliation severity map with the advantage of increasing or decreas-
ing the number of classes by changing threshold limits of dVI (X) corresponding
to the continuous defoliation degree (Y). Other classification methods using non-
parametric algorithms may be taken into further consideration with a larger sample
size to find the optimal method among unsupervised (ISODATA, K-means), super-
vised (maximum likelihood), and machine learning such as Random Forest, Decision
Trees, k-Nearest Neighbor, and Support Vector Machine (Noi and Kappas, 2018).
In general, those studies based on non-parametric models demonstrated that the
classification accuracy significantly increased when the number of classes decreased
(Näsi et al., 2015; Torresan et al., 2017).
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Tradeoffs between spatial, temporal, and spectral resolution are critical to deter-
mine classification specific to case study. In our study sketch map polygons served
as the primary information to filter affected areas most likely by T. pityocampa de-
spite low spatial and temporal resolution. The defoliations over winter due to T.
pityocampa can be discriminated by seasonal activity from other potential causes
for defoliations during summer such as drought and summer-feeding insects (Zhu
et al., 2018). Satellite-based Landsat imagery, at medium spatial and temporal res-
olution, enabled us to calculate various dVIs due to high spectral resolution. While
Landsat has the advantage of allowing time-series analysis from the data archive to
track back to 1972 (NASA, 2019), the use of Sentinel-2 has been recently increasing
since its launch in 2015 due to the public access available at the higher temporal,
spatial and spectral resolution (every 5 days at 10 m, 20 m, or 60 m for 13 bands)
(ESA, 2015) than that of Landsat 8 (every 16 days at 15 m, 30 m, or 100 m for 11
bands). As shown in Figure 4, those dVIs at medium spatial resolution need to be
calibrated with field observations to estimate the severity classification at a regional
scale. Thus, UAV imagery observed at high spatial and temporal resolution may im-
prove the efficiency of such calibration. Yet, current limitations of UAV technology
include battery duration for 20–30 min, associated small area coverage for sample
images per flight, and imagery acquisition permission due to privacy issues specific
to some countries (Lehmann et al., 2015; Torresan et al., 2017). To cover a large
area at landscape and regional scales, it would require multiple flights that may not
be consistent with the time, sensor and weather conditions, therefore, it would not
replace satellite-based imagery.

Nonetheless, the latest UAV can obtain dense point clouds and multispectral
bands (sensors for red edge, NIR and SWIR outside the visible spectrum), which
may be a promising technology with a high spatial and spectral resolution for small-
scale forestry applications. Using the density of points at a tree level, as successfully
demonstrated by Näsi et al. (2015), the structural change in individual trees may
be detected and monitored for cumulative defoliation. While some studies (Garcia-
Ruiz et al., 2013; Gini et al., 2014; Näsi et al., 2015; Michez et al., 2016) have used
the UAV-derived NDVI as the most robust indicator for their analysis on insect
defoliations, future studies shall compare it to the UAV-derived MSI which can be
calculated from SWIR in the latest sensor technology. Where high spectral reso-
lution is not required for small operational areas, compared to using both satellite
and UAV imagery, preparing a UAV flight would greatly increase the time-efficiency
and cost-effectiveness as well as flexibility in planning imagery acquisition (Lehmann
et al., 2015; Näsi et al., 2015; Dash et al., 2017). In addition to such advantages
as alternative methods for generating orthomosaic images and calculating VIs from
multispectral bands, the use of UAVs enables to avoid clouds during flights, which
often cannot be controlled by satellite orbit scheduling (Näsi et al., 2015; Dash et al.,
2017). Thus, with relatively less efforts and lower costs, UAV imagery may increase
the spatial quality to be equivalent to ground-truth data.

3.5 Conclusions

In this study the difference in vegetation index between pre-outbreak and post-
outbreak images derived from Landsat imagery was calculated for estimating the
severity of defoliation. Although satellite data was calibrated with the limited num-
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ber of UAV images including photos and videos available from the study area, dMSI
among five satellite-derived vegetation indices resulted in the best-fit logistic regres-
sion model with an acceptable overall accuracy of 72% for the severity classification.
Therefore, the use of UAV images may hold great potential as an alternative cost-
effective method to other conventional ground-truth data. In future studies, new
additional UAV images should be incorporated to validate previously calibrated re-
sults in the same study area or adjacent areas affected by T. pityocampa. Upon
validation the best-fit dVI model may become a robust tool to estimate the severity
of defoliation for areas where ground-truth data is limited.
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Chapter 4

Article 2: Quantifying pine
processionary moth defoliation in
a pine-oak mixed forest using
unmanned aerial systems (UAS)
and multispectral imagery

Abstract
Pine processionary moth (PPM) feeds on conifer foliage and periodically result in
outbreaks leading to large scale defoliation, causing decreased tree growth, vitality
and tree reproduction capacity. Multispectral high-resolution imagery acquired from
a UAS platform was successfully used to assess pest tree damage at the tree level in
a pine-oak mixed forest. We generated point clouds and multispectral orthomosaics
from UAS through photogrammetric processes. These were used to automatically
delineate individual tree crowns and calculate vegetation indices such as the normal-
ized difference vegetation index (NDVI) and excess green index (ExG) to objectively
quantify defoliation of trees previously identified. Overall, our research suggests that
UAS imagery and its derived products enable robust estimation of tree crowns with
acceptable accuracy and the assessment of tree defoliation by classifying trees along
a gradient from completely defoliated to non-defoliated automatically with 81.8 per-
cent overall accuracy. The promising results presented in this work should inspire
further research and applications involving a combination of methods allowing the
scaling up of the results on multispectral imagery by integrating satellite remote
sensing information in the assessments over large spatial scales.

4.1 Introduction

The area covered by forest ecosystems in the Mediterranean has increased during
the last century due to land abandonment and climate change impacts, which have
led to significant changes in forest dynamics (Resco De Dios et al., 2007; Filho
et al., 2017; Lasanta et al., 2017). These forest changes increase in the effects of
pests on trees, partially due to more frequent large-scale outbreaks becoming an
increasingly important disturbance in forest dynamics (Cayuela et al., 2011; Cardil
et al., 2017). Amongst these pests we can highlight the increasing impact of the
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pine processionary moth (Thaumetopoea pityocampa Dennis and Schiff.,Lepidoptera:
Notodontidae; henceforth PPM), one of the main pests of Pinus sp., a native species
of the Mediterranean region including North Africa, southern Europe and some
areas of the Middle East (Hódar et al., 2004). Life cycle is characterized by a
one-year development cycle for short-lived female moths which typically live for 1
or 2 days and longer-lived males (Battisti and Larsson, 2015). The cycle involves
adult emergence in summer (June–September), larval feeding during fall and winter,
and pupation in soil followed by a short or prolonged diapause up to several years
under specific circumstances (Jactel et al., 2006; Cayuela et al., 2011; Tamburini
et al., 2013; Battisti and Larsson, 2015). The area affected by PPM in Europe
is expanding northwards to higher latitudes and upwards to higher altitudes from
where it was absent, probably as a result of increasing winter temperatures (Hódar
et al., 2004).

PPM caterpillars feed on conifer needles resulting in a general weakening of
trees and eventually cause large scale defoliation at the stand and landscape lev-
els. Intense defoliation negatively affects height and radial tree growth, increase
the mortality rate of saplings and reduce the reproduction capacity of trees (Hódar
et al., 2003; Kanat et al., 2005; Arnaldo et al., 2010). At the same time, PPM can
trigger a decrease in tree resistance and resilience against other disturbances such
as forest fires, drought conditions or other pests (Post, 2003; Moore and Allard,
2008; Cardil et al., 2017) that could influence and modify the tree species composi-
tion in mixed forests. PPM damages are associated with the spatial and temporal
complexity of Mediterranean landscapes, as well as with its life cycle. Regarding
the spatial complexity, trees in fragmented small stands suffer PPM damage with
varying intensities. However, the current pattern of outbreaks at landscape level is
still largely unknown (Cayuela et al., 2014). Regarding the temporal complexity,
PPM defoliation is maximum at the beginning of spring. During the spring and
summer, if weather conditions are not extremely stressful, the vegetation generally
recovers its initial greenness. There is also lack of knowledge about the effects of
forest diversity and mixed versus monospecific forests on overall pest tree damage
(Guyot et al., 2016). Several studies showed that diverse forests are less prone to
pest insects than monoculture forests (Jactel and Brockerhoff, 2007), which suggests
associational resistance (Barbosa et al., 2009). However, recent studies also reported
more damage in mixed forests suggesting associational susceptibility (Schuldt et al.,
2010), or simply no effect of diversity (Haase et al., 2015). However, recovery time
appears to depend on the site characteristics of each forest (Sangüesa-Barreda et al.,
2014). Thus, quantifying defoliation processes at landscape level is key to improve
the knowledge of PPM damage patterns and consequently to better guide control
measures or improve ecological conditions to increase forest resistance and resilience
to this kind of damages.

Historically, the degree of infestation and mortality by PPM in pine stands (Jac-
tel et al., 2006; Battisti, 2008; Cayuela et al., 2014) has been visually assessed in
the field (Hódar et al., 2003) by forestry technicians or through interpretation of
aerial photographs (Rullan-Silva et al., 2013). However, field inventories are ex-
pensive and require a large amount of manpower and resources while aerial pho-
tographs taken in periods relevant to assess PPM impacts are not always readily
available or may lack sufficient temporal details. In addition, visual interpretation
can be subjective if not carefully validated and may not always provide the re-
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quired quantitative information when assessing spatial variability in PPM impacts.
More recently, multi-temporal satellite images and remote sensing products such as
Landsat Thematic Mapper (TM), Moderate Resolution Imaging Spectroradiometer
(MODIS), TerraSAR-X and light detection and ranging (LiDAR), have been exten-
sively used in monitoring forest health attacks by pest insects (Wulder et al., 2006;
Kantola et al., 2013; Ortiz et al., 2013; Rullan-Silva et al., 2013) and found to be
useful for insect outbreak surveys at large scale (Näsi et al., 2015). Yet, even these
medium-resolution remote sensing products have been unable to capture the spa-
tial heterogeneity in agroforestry mosaics or complex defoliation patterns caused by
PPM at local scale (Näsi et al., 2015) and, especially, in mixed forests at tree level.

Currently, unmanned aerial systems (UAS) platform have also become suitable
tools to perform small-scale analyses as well as local-scale sampling, assessment
and validation that can be complemented and integrated with aerial or satellite
imagery for broader spatial scale analyses (Puliti et al., 2017; Dash et al., 2018).
Most recent years have experienced an enormous increase in the use of UAS due
to low infrastructure requirements, ease of deployment, acquisition and suitability
for photogrammetric workflows (Whitehead and Hugenholtz, 2014; Puliti et al.,
2015). The current availability of photogrammetric software allows for handling
and processing of large spatial datasets. UAS have been applied in fine-scale studies
to inventory forest resources (Puliti et al., 2015), map diseases (Dandois and Ellis,
2013), assess pest damages at tree level (Lehmann et al., 2015; Näsi et al., 2015;
Cardil et al., 2017; Dash et al., 2017) and at the landscape level (Hung et al., 2014;
Feng et al., 2015), quantify spatial gaps or estimate post-harvest soil displacement
(Torresan et al., 2017). UAS platforms are establishing a niche in low cost image
acquisition at local scales that make this technology an alternative cost-effective
option in forestry applications. However, most common cameras employed in UAS
surveys are digital RGB cameras (Zhang et al., 2016), or are adapting one of the
visible bands for NIR imagery acquisition (Puliti et al., 2015). To date, only a few
studies with multispectral cameras such as Tetracam ADC Lite, MicaSenseRedEdge
(Tian et al., 2017) or SEQUOIA (Parrot SA, Paris, France) (Fernández-Guisuraga
et al., 2018) have demonstrated improvements in the analysis of fine-scale forest
dynamics.

In this study, we aimed at evaluating the potential use of multispectral high-
resolution imagery acquired from a UAS platform and image processing techniques
to quantitatively assess PPM impact on a pine-oak mixed forest. To achieve this ob-
jective, we used point clouds and multispectral orthomosaics from UAS generated
through photogrammetric processes. Point clouds have proven useful to generate
high resolution digital surface models (DSM) from which it is possible to automati-
cally identify and delineate individual trees (Puliti et al., 2015, 2017; Mohan et al.,
2017). We hypothesized that multispectral information will enable us to calculate
vegetation indices such as NDVI to objectively quantify the degree of defoliation of
the pines previously delineated from DSM (Deshayes et al., 2006; Townsend et al.,
2012; Sangüesa-Barreda et al., 2014) after identifying tree species (Gini et al., 2014;
Michez et al., 2016). Field data was used to validate our results and assess the level
of detail and accuracy of our method to investigate the spatial dynamics of the pest.
More precisely, the presented study attempts to develop a method using high resolu-
tion multispectral images collected with UAS to automatically quantify defoliation
by PPM for individual trees and classify them as non-defoliated, partially defoliated
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and completely defoliated in a pine-oak mixed forest.

4.2 Materials and methods

4.2.1 Study area

The study was conducted in Codo site (longitude = 1.544◦; latitude = 42.127◦;
altitude = 1300m), a mixed forest area located near the city of Solsona (Lleida,
Catalonia, NE Spain, Figure 4.1) dominated by holm oaks (Quercus ilex L.) and
Scots pines (Pinus sylvestris L). The dimension of the study area was 350 x 350m
(12.25 ha) representing a Mediterranean climate zone characterized by hot dry sum-
mers and mild wet winters.

Figure 4.1: An RGB orthomosaic of the study are, Codo in Catalonia (Spain). Base
map source: USGS National Map Viewer.

4.2.2 UAS-based image acquisition and data preprocessing

Multispectral high spatial resolution image data was collected using a quadcopter
(UAS Phantom 3 from DJI) in two successive flights with one hour gap between
both. This UAS is capable of autonomous, waypoint flight following a preplanned
route. In the first flight, the UAS was equipped with the multispectral camera
Parrot SEQUOIA and, in the second with RGB PC300S Phantom 3 camera, to
create RGB orthomosaics. The Parrot SEQUOIA camera has four 1.2-megapixel
monochrome sensors that collect global shutter imagery along four discrete spectral
bands: green (center wavelength -CW- : 550 nm; bandwidth -BW- : 40 nm), red
(CW: 660 nm; BW: 40 nm), red edge (CW: 735 nm; BW: 10 nm) and near infrared
-NIR- (CW: 790 nm; BW: 40 nm). The horizontal (HFOV), vertical (VFOV) and
diagonal (DFOV) fields of view of the multispectral camera are 70.6◦, 52.6◦ and
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89.6◦, respectively, with a focal length of 4 mm. With a flight altitude of 120 m and
an image overlap of 80%, a ground sample distance (GSD) of 15 cm was achieved.
The camera was bundled with an irradiance sensor to record light conditions in the
same spectral bands as the multispectral sensor. The total weight of the multispec-
tral camera with the irradiance sensor is 107 g. This camera stored 16-bit RAW files
(based on 10-bit data) during image shooting. The ISO value and exposure time
were set to be automatic. Every image capture setting was saved in a text meta-
data file together with the irradiance sensor data. The text metadata files register
information about ISO, aperture, shutter speed, sensor response and optical system
and vignetting. The optical system and vignetting are registered by the irradiance
sensor. Additionally, irradiance panels available by AIRINOV photos were taken at
the beginning of the flight. An absolute reference for each spectral band was set
through the calibration target, which allow getting absolute reflectance values. The
aerial survey was carried out on November 26th, 2017 within one hour of the solar
zenith in a clear sky and no winds. Finally, a total of 202 SEQUOIA photographs
were collected to cover the study area of Codo.

Pix4Dmapper desktop photogrammetric software (https://pix4d.com/; accessed
on 2 April 2018) following the “Ag Multispectral” template was used to generate
point clouds, 3D reconstruction, radiometric calibrations and correction and finally
the orthomosaics. This software integrates vision techniques with photogrammetry
algorithms Puliti et al. (2015) to obtain high accuracy in aerial imagery processing.
Pix4Dmapper Pro computes key points on the single images and uses them to find
matches between images. From these initial matches, the software runs several au-
tomatic aerial triangulation (AAT), bundle block adjustments (BBA) and camera
self-calibration steps iteratively until optimal reconstruction is achieved (Fernández-
Guisuraga et al., 2018). Then, a densified point cloud is generated to obtain a
highly detailed digital surface model (DSM) that will be used to generate the final
reflectance orthomosaics maps for every plot. The reflectance maps were achieved
applying radiometric calibrations and corrections. First, the images of the irradiance
panels taken at the beginning of the flight allow the radiometric calibration. Second,
we also applied a ”Camera and Sun irradiance” radiometric correction to correct for
factors that distort the true reflectance pixel values and achieving a radiometric
trustful measure of the terrain reflectance taking into account the information reg-
istered in the text metadata files (EXIF and XMP tags) for every single photogram.
Pix4Dmapper applies this calibration and correction process to every single pho-
togram just before achieve the final reflectance orthomosaic for every spectral band.
Once the radiometric corrections were done for every photogram, the final orthomo-
saic was generated through automated workflows and SFM (structure from motion)
methods (Lucieer et al., 2014) with image identification and feature matching. Af-
ter the initial alignment through bundle adjustment, the resultant sparse cloud was
assessed for projection errors, followed by reconstruction of dense point clouds using
the cartographic UTM projection system. With original photos projected onto the
3D models, blending the overlap areas produced the reflectance orthomosaic for each
spectral band.

The UAS-derived 3D point cloud was used to compute a digital terrain model
(DTM) and a canopy height model (CHM) based on the approach developed by
Mohan et al. (2017) (Figure 4.2). First, one m DTM was created using the GridSur-
faceCreate function in FUSION/LDV 3.42 (Kraus and Pfeifer, 1998) after classifying
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ground points using a progressive Triangulated Irregular Network (TIN) densifica-
tion algorithm implemented in lasground (settings: step is 10 m, bulge is 0.5 m, spike
is 1 m, offset is 0.05 m), LAStools (Isenburg, 2015). Secondly, the UAS-derived 3D
point cloud was normalized to height above ground by subtraction of the DTM
elevation from the Z coordinate of each point projected on the ground using the
ClipData tool. Lastly, the CanopyModel function, also in FUSION/LDV, was used
to compute the CHM at 0.5 m spatial resolution for the study site.

4.2.3 Field validation data

A randomly selected sample of 110 trees from the Codo forest was acquired through
a visual assessment at tree level (Figure 4.3). The sample consisted of 25 holm oak
(they were excluded from the analysis to assess percentage of defoliation at tree level
because they were not defoliated), 13 non-defoliated pines, 29 partially defoliated
pines and 43 completely defoliated pines depending on the level of defoliation. Pines
were classified as non-defoliated, partially defoliated and completely defoliated trees
when having defoliation <15%, between 15% and 85%, and >85%, respectively.

4.2.4 Data analysis

Individual tree identification and delineation (ITDe)

The rLiDAR package (Silva et al., 2017) in R (R Core Team, 2016) was used in
this study for individual tree delineation and defoliation assessment on the UAS-
derived CHM. First, the FindTreesCHM function from this package, based on a
local maximum algorithm, was applied for automatic detection of tree tops on the
UAS-derived CHM using fixed tree and smoothed window sizes of 3 x 3 pixels.
Secondly, the ForestCAS function from the same package, based on the Voronoi tes-
sellation (Aurenhammer, 1991), was applied for individual tree delineation (ITDe)
on the UAS-derived (Figure 4.1) based on Silva et al. (2017). Independently, the
110 randomly selected trees in the field were manually onscreen-digitized on the or-
thomosaic image in order to assess the accuracy of the automatic ITDe and compare
the results obtained with this method in terms of PPM defoliation. We analyzed
spatial discrepancies in each tree between ITDe and manual tree crown delineation
(MCDe) by using the Sørensen’s coefficient (SC) (Legendre and Legendre, 1998)
calculated as follows:

SC =
2A

2A + B + C
(4.1)

where A is the area coded as “tree crown” for both ITDe and MCDe, B is the area
coded as “tree crown” in the ITDe and “no crown” in the MCDe and, C is the area
coded as “tree crown” in the MCDe and “no crown” in the ITDe. SC coefficient
values range between 0 and 1, with values close to 1 indicating very high spatial
agreement between the variables.

Tree species identification and defoliation assessment based on NIR and
RGB imagery

In addition to visible bands in RGB images, the near-infrared (NIR) reflectance
of the multispectral camera was use for tree species identification and defoliation
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Figure 4.2: A canopy height model (CHM) derived from UAS-derived 3D point
cloud and a digital terrain model (DTM). (a) UAS-derived 3D point cloud. (b)
Digital terrain model. (c) Canopy height model.
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Figure 4.3: Object-based image analysis. (a) RGB orthomosaic image with crown
surfaces delineated by ITDe. (b) Image classification with NDVI for non-defoliated
(in green) surfaces and defoliated / non-vegetation background (in black) with ITDe.
(c) Colour-infrared composite using green, red and nir reflectance bands with crown
surfaces delineated by ITDe. (d) Unsupervised classification with ExG for isolating
shaded pixels (in grey). (e) Manual digitization of tree crowns (MCDe) for validating
the results by ITDe. (f) Image classification with NDVI for non-defoliated (in green)
surfaces and defoliated / non-vegetation background (in black) with MCDe.
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detection as a stress indicator, which may measure plant health more precisely than
visibly evident greenness (Wang et al., 2010; Townsend et al., 2012; Rullan-Silva
et al., 2013). Thus, we considered normalized difference vegetation index (NDVI),
a ratio between the red (R) and NIR values, as potentially the most robust and
widely tested indicator in order to predict the tree species and defoliation degree
(Rullan-Silva et al., 2013).

NDV I =
NIR−R

NIR + R
(4.2)

In order to separate the vegetation from the background to assess PPM defo-
liation, excess green index (ExG) was calculated in this study. Previous studies
successfully applied this index together with NDVI to image classification in their
object-based image analysis (OBIA) (Torres-Sánchez et al., 2015; Lottes et al., 2017).

ExG = 2

[
G

R + G + B

]
− R

R + G + B
− B

R + G + B
(4.3)

After automatically identifying and delineating tree crowns of the 110 selected
trees, we identified tree species by using the mean NDVI of pixel values for each of
the delineated crown. The default threshold value to classify the selected trees as
holm oak (NDVI >0.42) or pine (NDVI <0.42) was selected by sensitivity analysis
on the NDVI range in comparison with field data (increasing by 0.01) considering
the mean NDVI of pixel values per each delineated crown.

Image classification with NDVI was first processed for separating defoliated
crown surfaces from non-defoliated ones by threshold analysis. The default thresh-
old value was selected by automated unsupervised classification and compared to
sensitivity analysis on the NDVI range (increasing by 0.01) against the orthomo-
saic images. Then threshold classification was applied at the pixel level: defoliated
in black (NDVI <0.27) or non-defoliated in green (NDVI >0.27) as illustrated in
Figure 4.3b.

It was noted that some shaded pixels in the RGB orthomosaic image, correspond-
ing to dark grey-black areas by heavy shadowing in Figure 4.3a, were not visually
distinguishable between defoliated and non-defoliated crown surfaces. Therefore, we
decided to exclude those from thresholding with NDVI for the purpose of effectively
validating classification accuracy. Since NDVI in general can detect non-defoliated
leaves in shaded pixels (Lottes et al., 2017), it was not successful to achieve the
threshold value of NDVI for isolating shaded pixels exclusively. However, calculat-
ing such specific vegetation index as ExG enabled automated isolation of shaded
pixels by unsupervised classification, where ExG is lower than -0.06 (Figure 4.3d).
Finally, we applied another class ‘shaded’ to automatically mask all shaded pixels,
regardless of the NDVI value, so that those pixels were excluded from the crown
surface area for further analysis.

To evaluate the accuracy of threshold classification (defoliated, non-defoliated,
shaded), we show a confusion matrix by assessing 100 pixels that were randomly
selected and visually interpreted against the orthomosaic image. The overall clas-
sification accuracy between classified imagery and reference imagery was calculate
as:

Accuracy (%) =
number of pixels correctly classified

total number of pixels referenced
(4.4)
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We systematically quantified the percentage of defoliation by PPM in each pine
by using both the automatic ITDe and the MCDe (Figure 4.3b and 4.3f). For
evaluating the overall defoliation degree at tree level, pixels classified as defoliated
were grouped by tree ID and calculated as follows:

Defoliation per tree (%) =
number of defoliated pixels

sum of defoliated and non-defoliated pixels
(4.5)

We statistically analyzed relationships between the predicted defoliation degree
with NDVI (X ) and the observed defoliation % on the orthomosaic image (Y ). The
relationship is expressed in linear regression:

Y i = aXi + b (4.6)

where Yi represents the percentage of defoliation per tree interpreted on the
orthomosaic image, Xi represents the portion of pixels classified as defoliated with
NDVI per tree, and a and b are the slope and intercept of the regression line. Based
on the same 110 selected sample trees from the study area used to MCDe, linear
regression models were fitted to evaluate both the slope of the regression line and
coefficient of determination (R2).

Accuracy of defoliated tree identification and validation of percent defo-
liation

To assess image classification accuracy in our PPM defoliation estimates at tree level
and to distinguish between non-defoliated, partially defoliated and completely defo-
liated trees, we computed a confusion matrix of the 110 selected trees that were field
identified and compared them with the obtained image classifications. Validation of
the defoliation classification was performed by comparing field measured defoliation
against the classification derived defoliation at tree level using both ITDe (Figure
4.3a and 4.3b) and MCDe (Figure 4.3e and 4.3f).

4.3 Results

4.3.1 Accuracy of the individual tree detection and species
identification

The algorithm on the UAS-derived CHM effectively detected individual trees. The
algorithm correctly identified all the 110 trees randomly selected through the field
survey (Figure 4.4a). The accuracy of the automatic ITDe was also analyzed in
comparison to the MCDe on the orthomosaic. The overall spatial agreement of
crown area for the 110 selected trees was high with a mean SC of 0.75 and a standard
deviation of 0.11.

The NDVI-based tree species identification after identifying and delineating tree
crowns was effective. We found significant differences in the mean NDVI of pines
and holm oaks (p-value <0.001; Figure 4.5a) and among non-defoliated, partially
defoliated and completely defoliated pines and holm oaks at the same statistical sig-
nificance (Figure 4.5b). All pines were correctly classified by the method. However,
5 of 25 holm oaks were wrongly identified, being classified as healthy pines (Tables
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4.1 and 4.2). Therefore, the overall rate of success to identify the tree species was
95.5%.

Figure 4.4: Tree species identification and pine processionary moth defoliation in
pines in the Codo forest site. (a) Individual automatic tree delineation on the
colour-infrared composite orthomosaic using green, red and NIR reflectance bands.
(b) Individual automatic tree delineation on the RGB orthomosaic. (c) Automatic
tree classification in the field as holm oak or non-defoliated, partially defoliated and
completely defoliated pine through multispectral high-resolution imagery.
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Figure 4.5: Mean NDVI at the tree level. (a) Mean NDVI values and standard error
for pines (P) and holm oaks (Q). (b) completely defoliated (CD), partially defoliated
(D) and non-defoliated pines (H) and holm oaks (Q) of the 110 randomly selected
trees.

Table 4.1: Confusion matrix for non-defoliated, partially defoliated and completely
defoliated trees measured in the field or classified by using the multispectral imagery
with the automatic ITDe.

Multispectral imagery with automatic ITDe
Class Completely

defoliated
Partially
defoliated

Non-
defoliated

Holm
oak

Total Accuracy
(%)

Completely
defoliated

32 11 0 0 43 74

Partially
defoliated

0 28 1 0 29 97

Field Non-
defoliated

0 4 9 0 13 69

Holm oak 0 2 3 20 25 80
Total 32 45 13 20 110
Accuracy
(%)

100 62 69 100 81

4.3.2 PPM defoliation at pixel level

We assessed the classification accuracy of the three defoliation classes (defoliated,
non-defoliated, and shaded) by randomly selecting 100 pixels and validating with the
reference of the orthomosaic image. The results were presented in a confusion matrix
(Table 4.3). Out of the selected 100 pixels, 41 pixels were classified as defoliated with
the NDVI threshold (NDVI = 0.27) while 34 were correctly classified as defoliated.
Among 43 pixels classified as non-defoliated, 37 of them were correct (86%). Class
‘shaded’ found 10 out of 16 pixels correctly classified (62.5%). It should be noted that
the number of pixels classified as defoliated was underestimated (omission errors)
whereas the one classified as non-defoliated was overestimated (commission errors).
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Table 4.2: Confusion matrix for non-defoliated, partially defoliated and completely
defoliated trees measured in the field or classified by using the multispectral imagery
with the manual onscreen-digitized tree segmentation (MCDe).

Multispectral imagery with automatic ITDe
Class Completely

defoliated
Partially
defoliated

Non-
defoliated

Holm
oak

Total Accuracy
(%)

Completely
defoliated

40 3 0 0 43 93

Partially
defoliated

2 24 3 0 29 83

Field Non-
defoliated

0 1 12 0 13 92

Holm oak 0 1 4 20 25 80
Total 42 29 19 20 110
Accuracy
(%)

95 83 63 100 87

Table 4.3: Confusion matrix for classification assessment at the pixel level. The
classified image was based on vegetation indices while RGB orthomosaic was used
as the reference image.

Classified image
Class Defoliated Non-

defoliated
Shaded Total Accuracy

(%)
Kappa

Defoliated 34 4 6 44 77
Non-
defoliated

3 2 10 16 63

Reference Shaded 4 2 10 16 63
image Total 41 43 16 100

Accuracy
(%)

83 86 63 81

Kappa 69

The overall accuracy of classification was calculated as follows:

Overall accuracy (%) =
(34 + 37 + 10) pixels correctly classified

100 pixels in total
= 81% (4.7)

Finally, the kappa coefficient indicates a level of agreement of 69%.

4.3.3 PPM defoliation at tree level

The results of our method using UAS multispectral imagery and ITDe to classify
trees as non-defoliated, partially defoliated and completely defoliated pines and holm
oaks was related to the data of 110 randomly selected trees though the field survey
in a confusion matrix to calculate accuracy (Table 4.1 and Figure 4.4). The overall
accuracy of the classification was 81.8% (94.1% when combining partially defoliated
and completely defoliated trees in the same category without considering holm oaks).
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The method correctly distinguished all pines while 5 of the 25 holm oaks were
wrongly classified as pines (Tables 4.1 and 4.2). All completely defoliated trees
identified by this method were correctly classified. Among the 13 non-defoliated
pines, 9 trees were correctly classified while 4 were wrongly classified as partially
defoliated and none was classified as completely defoliated (Table 4.1). Although
the classification accuracy for completely defoliated trees was 74% (Table 4.1), 11
completely defoliated trees in the field were classified as partially defoliated. The
average percentage of defoliation of those trees was 74.8% and none of them was
classified as non-defoliated.

The overall accuracy of classification with MCDe increased up to 87.2% of the
110 selected trees (95.2% when considering only non-defoliated and partially defoli-
ated pines). Table 4.2 shows the accuracy for classifying the trees as non-defoliated,
partially defoliated and completely defoliated pines or holm oaks by using the mul-
tispectral imagery with MCDe, which was overall higher than that with ITDe.

A linear regression model indicated the significant relationship between the per-
centage of defoliation measured through UAS multispectral images with ITDe or
MCDe in pines and percentage of defoliation measured in the field (Figure 4.6).
Our results showed that the relationship between the field measured defoliation and
through UAS multispectral images with ITDe or MCDe was highly significant (p-
value<0.001), and that the model’s predictive accuracy was very high in both cases
(R2 = 0.91 for ITDe and R2 = 0.93 for MCDe).

Figure 4.6: Linear regression model between PPM defoliation measured in the field
and through UAS multispectral images in Codo forest site with ITDe (a) and MCDe
(b). Green: non-defoliated trees; orange: partially defoliated; red: completely defo-
liated.

4.4 Discussion

Under a global change context with more frequent extreme climatic events (Jac-
tel et al., 2006; Cardil et al., 2014, 2015; Robinet et al., 2014) PPM outbreaks are
expected to become more frequent on Mediterranean coniferous and mixed forests.
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In this context, effective monitoring techniques are urgently required over a large
spatial scales. The use of UAS-based image acquisition technology is emerging re-
search in assessment of forest pests such as the PPM over representative spatial and
temporal scales. Furthermore, the acquisition of data through UAS may also be
useful to complement, or even substitute field assessments with large scale quantita-
tive evaluations when detailed results are required. Several authors have suggested
low-cost image acquisition with UAS platforms as an alternative option to assess
the percentage of defoliated trees and the level of defoliation in each tree quantita-
tively, and obtain promising validation results with field measurements (Näsi et al.,
2015; Cardil et al., 2017). In this study, we have used RGB and NIR imagery to
account for tree species and degree of defoliation in mix pine-oak stands. We iden-
tified pine and holm oak and classified pines as non-defoliated, partially defoliated
and completely defoliated, after being identified and delineated by a local maximum
algorithm on a CHM, as well as assessing the percentage of defoliation of each tree.

Our results showed that the use of UAS multispectral images through NDVI after
automatically delineating tree crowns can be very useful for identifying tree species
in mixed forests in order to assess PPM impacts on forests. The rate of success iden-
tifying the two tree species was very high on the 110 selected trees although further
research would be needed to have a more robust methodology to be applied in other
locations. In this sense, the combination of various metrics using the multispectral
images, as well Green Normalized Difference Vegetation Index (GNDVI), Normal-
ized Green-Red Vegetation Index (GRVI), Normalized Green-Blue Index (GBNDVI)
or Normalized NIR-Blue Index (BNDVI), could improve the results (Lisein et al.,
2015; Michez et al., 2016). Also, other recent studies used a larger sample size for
species identification (Gini et al., 2014; Lisein et al., 2015; Michez et al., 2016), deter-
mining when is the best time window to achieve an optimal species discrimination,
an approach that could be useful given the PPM life cycle.

Field validation showed that defoliation assessment through UAS multispectral
images with ITDe was accurate. The statistical models showed a significant cor-
relation between the defoliation degree measured in the field and UAS technology
at tree level and, therefore, our methodology may be used by forest managers to
quantitatively assess the level of defoliation of individual trees. Moreover, this ap-
proach enabled us to classify pines among non-defoliated, partially defoliated and
completely defoliated automatically after tree species identification with a classifi-
cation accuracy of 81.8% with ITDe and even higher with MCDe (87.2%). This
result was slightly more accurate than that obtained in the previous study (Cardil
et al., 2017) using RGB imagery in pure pine forest, in which the overall accuracy
of the methodology to classify trees as partially defoliated or non-defoliated with
MCDe was 79%. Our methodology using NDVI and removing shaded pixels de-
tected by the ExG increased the classification accuracy between non-defoliated and
partially defoliated trees up to 95.2% with MCDe. Therefore, in addition to RGB
imagery, the use of multispectral imagery and vegetation indices such as NDVI
may have improved assessment of PPM defoliation (Näsi et al., 2015). Although
NDVI is the most widely used and tested index for monitoring of forest insect de-
foliation (Rullan-Silva et al., 2013), further research would be needed to evaluate
whether other indices among the spectral band scan improve the accuracy of PPM
defoliation assessments. Furthermore, improvements in algorithms to identify and
delineate individual trees may enhance the accuracy of the defoliation estimations
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at tree level as our results with MCDe demonstrated. In the Codo case study, the
algorithm based on the UAS derived CHM was able to successfully identify all the
selected trees. Previously, other studies with different tree species, canopy cover and
tree heights have found the accuracy higher than 85% in detecting individual trees,
suggesting that the tree identification accuracy was high in general (Kattenborn
et al., 2014; Sperlich et al., 2014; Mohan et al., 2017). Yet, there is no standard-
ized accuracy assessment procedure for ITDe, therefore, it is extremely difficult to
compare ITDe algorithms unless multiple approaches are tested on a single study
area using the same datasets and metrics (Zhen et al., 2016). Nonetheless, it seems
evident that improvements in ITDe will enhance the estimation accuracy of PPM
defoliation (Jaafar et al., 2018). Our approach provides accurate PPM impact as-
sessments with an efficient data processing to delineate individual trees in terms of
time and staff, allowing the quantitative estimation of defoliation at tree-level scale
in larger scales than MCDe. As expected, the accuracy levels of this methodology to
analyze PPM defoliation at high resolution were higher than other previous studies
using other techniques and methods with airborne laser scanning or satellite data
such as Landsat or MODIS at medium resolution (Dennison et al., 2009; Eklundh
et al., 2009; Solberg, 2010; Townsend et al., 2012; Cardil et al., 2017) and can be
used in mixed forest to assess PPM defoliation at tree level.

At the pixel level, the overall classification accuracy among partially defoliated,
non-defoliated and shaded was 81% in the high resolution NIR imagery, which was
as high as that at the tree level with ITDe. The use of NDVI in general has the
advantage of detecting non-defoliated pixels that cannot be visibly detected by RGB
imagery due to shade as has been demonstrated in agricultural areas (Lottes et al.,
2017), but we think that it is still necessary to achieve some improvements in the
multispectral sensors and/or in radiometric calibrations for forest areas as Codo.
This type of invisibility in the orthomosaic image may make it difficult to validate the
classification accuracy of predicted non-defoliated pixels based on NDVI. Another
limitation was the one hour difference between the flights with the RGB camera and
the multispectral camera. This temporal difference may have contributed to slight
increases in the uncertainty in shaded pixels. In the future study the simultaneous
flight with both RGB and multispectral cameras, as the UAS technology advances,
may improve our methodology and the results.

The use of UAS technology offers several advantages when applied to the defolia-
tion assessment caused by insect pests in spite of the fact that substantial investment
in equipment, infrastructure and training of people is necessary. The key highlights
of those advantages include (1) data acquisition is usually more efficient in terms
of time, quality and manpower, (2) the technology has a great capacity to monitor
and assess areas with difficult access (3) researchers can easily derive quantitative
methods to estimate defoliation at tree level and (4) this information can be ana-
lyzed at forest stand scale which is the work scale of forest managers and eventually
be repeated in time thus providing the potential for the development of long term
forest health monitoring programs. Finally, (5) UAS high-resolution data can be
a great source of information to calibrate medium resolution remote sensing infor-
mation derived from satellites to map information in coarser scales (Fraser et al.,
2017; Pla et al., 2017). Nevertheless, it should be noted that several methodological
constraints need to be considered when planning for the large area deployment of
UAS technologies in the estimation of defoliation levels such as the regulations to
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use UAS in urban areas and areas located near airfields.

4.5 Conclusions

In this study, we investigated the use of multispectral high-resolution imagery ac-
quired from a UAS platform and image processing techniques to quantitatively assess
PPM impact on a pine-oak mixed forest at tree level. Overall, this research sug-
gested that UAS imagery and its derived products, such as canopy height model
and normalized difference vegetation index, enabled us to estimate tree species,
count individual trees with acceptable accuracy and assess defoliation using canopy
cover at tree level by classifying pines non-defoliated, partially defoliated and com-
pletely defoliated automatically with high accuracy. Moreover, the accuracy of our
proposed methodology at tree level was higher than previous studies. This pro-
posed framework highlights the future potential of UAS, multispectral imagery and
structure-from motion algorithms for individual tree detection, PPM quantification,
qualification and monitoring. Thus, we believe that the promising results presented
here in should inspire further research and applications to the forest health assess-
ments.
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Chapter 5

Article 3: Estimating the
threshold of detection on tree
crown defoliation using vegetation
indices from UAS multispectral
imagery

Abstract
Periodical outbreaks of Thaumetopoea pityocampa feeding on pine needles may pose
a threat to Mediterranean coniferous forests by causing severe tree defoliation,
growth reduction, and eventually mortality. To cost–effectively monitor the tem-
poral and spatial damages in pine–oak mixed stands using unmanned aerial systems
(UASs) for multispectral imagery, we aimed at developing a simple thresholding clas-
sification tool for forest practitioners as an alternative method to complex classifiers
such as Random Forest. The UAS flights were performed during winter 2017–2018
over four study areas in Catalonia, northeastern Spain. To detect defoliation and
further distinguish pine species, we conducted nested histogram thresholding anal-
yses with four UAS-derived vegetation indices (VIs) and evaluated classification
accuracy. The normalized difference vegetation index (NDVI) and NDVI red edge
performed the best for detecting defoliation with an overall accuracy of 95% in the
total study area. For discriminating pine species, accuracy results of 93–96% were
only achievable with green NDVI in the partial study area, where the Random Forest
classification combined for defoliation and tree species resulted in 91–93%. Finally,
we achieved to estimate the average thresholds of VIs for detecting defoliation over
the total area, which may be applicable across similar Mediterranean pine stands
for monitoring regional forest health on a large scale.

5.1 Introduction

Climate change is predicted to continue increasing global temperatures over this
century (Collins et al., 2013), which may lead to an alteration of forest disturbances
including pest insects that are strongly dependent on climatic variables (Netherer
and Schopf, 2010; Robinet and Roques, 2010; Battisti and Larsson, 2015; Battisti
et al., 2016). Such a combination of biotic and abiotic disturbance factors may accel-
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erate forest damage as defoliation, growth reduction and tree mortality in relation
to global changes (Roques, 2015). In Mediterranean forests dominated by Pinus
spp., outbreaks of the pine processionary moth (Thaumetopoea pityocampa Dennis
and Schiff.) have become more frequent over the past two decades and have ex-
tended their spatial distribution due to warmer winters favoring the survival of the
pest (Battisti et al., 2005; Robinet et al., 2007; Roques, 2015; Battisti et al., 2016).
Traditionally, annual forest health surveys by practitioners have been and still re-
main the fundamental means for monitoring forest conditions at local and national
administrative levels. However, due to the recent pest expansion and associated
threats to the forest health (FAO, 2018), a more frequent interannual monitoring
system at a finer spatial scale is currently required to meet the demand for keeping
forest information up to date.

Consequently, the use of airborne-based UAS technology with enhanced spatial
and temporal resolutions has significantly increased over the past decade for de-
tecting and monitoring forest defoliation on host trees (Lehmann et al., 2015; Näsi
et al., 2015; Cardil et al., 2017, 2019; Dash et al., 2017; Hentz and Strager, 2017;
Brovkina et al., 2018). While spaceborne satellites have been more commonly used
for defoliation detection and time-series monitoring over large areas, their images
can be either free to the public at medium spatial resolutions (30–250 m) provided
by Landsat and MODIS or costly at high spatial resolutions (0.3–10 m) available
from WorldView-4, IKONOS, QuickBird, RapidEye, and TerraSAR-X (Rullan-Silva
et al., 2013). Since medium-high spatial resolution images from Sentinel-2 (10–20
m) became freely downloadable in 2015 (ESA, 2015), cost–effective monitoring of
large areas is increasing. With such further advancements in spaceborne technol-
ogy, sensors’ spatial resolution continues to enhance temporal and spectral resolu-
tions (Manfreda et al., 2018). Furthermore, airborne laser scanning (ALS) featuring
point clouds complements the three-dimensional (3D) structure besides capturing
two-dimensional (2D) imagery at higher spatial resolutions than any spaceborne
technology (Rullan-Silva et al., 2013; Roncat et al., 2014). Using such ALS met-
rics, an innovative study by Kantola et al. (2013) demonstrated the classification of
defoliated Pinus sylvestris at the individual tree level.

Since the cost of these satellite and ALS high-resolution products remains a
limiting factor for the purpose of targeting small operational areas, the use of cost-
effective unmanned aerial systems (UASs) as an alternative 3D technology at a
high spatial resolution has increased in recent studies for monitoring forest health
over the past decade (Pajares, 2015; Manfreda et al., 2018). While initial studies
with UASs were focused on crop management for agriculture applications, the latest
UAS technology has proved to be effective for forestry applications as a sampling
tool to acquire ground-truth data (Dash et al., 2017; Torresan et al., 2017). To date,
only a few studies have examined the classification accuracy of forest defoliation by
insects using UAS imagery applied to methods such as Random Forest (Dash et al.,
2017), object-based image analysis (OBIA) (Lehmann et al., 2015; Brovkina et al.,
2018), k-nearest neighbor (Näsi et al., 2015), maximum likelihood (Cardil et al.,
2017; Hentz and Strager, 2017), and unsupervised classification (Cardil et al., 2019),
which demonstrated that the UAS technology enabled to examine their defoliation
detection method at individual tree level with a high overall accuracy. An object-
based classification approach with the Random Forest classifier was used by Dash
et al. (2017) to predict discoloration classes of Pinus radiata in New Zealand, based
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on spectral indices such as normalized difference vegetation index (NDVI) and red
edge NDVI with the kappa coefficient of 0.694. Lehmann et al. (2015) used a blue
NDVI to distinguish infested Quercus robur in Germany by OBIA classification
with overall accuracies of 82-85%. Another OBIA technique was applied by Michez
et al. (2016) to assess defoliation and discoloration of Alnus glutinosa in Belgium
using vegetation indices (VIs) derived from red, green, blue (RGB) and near-infrared
(NIR) bands, with an overall accuracy of 90.6%. In Finland, with a combination of
NDVI, NIR, red edge and RGB bands, Näsi et al. (2015) detected infested Picea abies
by object-based k-nearest neighbor classification with an overall accuracy of 75%.
Using a pixel-based approach, in Scotland, Smigaj et al. (2015) extracted canopy
temperatures of Pinus sylvestris with a combination of thermal infrared (TIR) and
NIR bands derived from UASs to evaluate the correlation with the tree infection
level estimated from the ground, resulting in a moderate linear regression (R =
0.527). In the United States, Hentz and Strager (2017) combined RGB bands and
elevation values to classify damage on deciduous trees using a pixel-based maximum
likelihood classification (MLC) technique, with the kappa coefficient of 0.86. Cardil
et al. (2017) also used the MLC based on RGB bands to distinguish infested or
healthy trees of Pinus spp. in Spain with an overall accuracy of 79%, which was
improved to 81% by adding an NIR band to classify three categories of defoliation
and using unsupervised classification with NDVI (Cardil et al., 2019).

The traditional image classification by histogram thresholding analyses has been
mainly used for detecting shadow areas in satellite-based high spatial resolution im-
ages (Otsu, 1979; Dare, 2005; Chen et al., 2007; Adeline et al., 2013; Jan-Chang C,
2016) as it is considered to be the simplest to compute and minimize intraclass vari-
ance when a clear separation is observed in a bimodal distribution (Adeline et al.,
2013; Tang and Shao, 2015; Aasen et al., 2018). However, no study has applied such
a simple classification method, combined with very high spatial resolution UAS im-
agery, to forestry applications. This is due to the recent trend in research of UAS
technology combined with object-based classification methods such as OBIA and
Random Forest which have demonstrated excellent performance for analyzing com-
plex high spatial resolution data including multispectral, geospatial, and textural
properties (Blaschke, 2010; Weih and Riggan, 2010; Duro et al., 2012; Qian et al.,
2015; Hossain and Chen, 2019). Although these object-based image classification
techniques are generally considered to be more robust and accurate (Blaschke, 2010;
Weih and Riggan, 2010; Duro et al., 2012; Qian et al., 2015; Hossain and Chen,
2019), it may require extra knowledge and training with software applications to
perform such complex analysis correctly. Based on the same study area analyzed
by Cardil et al. (2019) with UAS multispectral imagery for quantifying defoliation
degrees due to T. pityocampa in Catalonia where regional forest health surveys are
officially conducted on an annual basis, we seek for further improvements to their ap-
proach using simple and robust methods applied to similar pine-dominated stands,
for forest practitioners to obtain timely information and monitor forest defoliation
at the operational level. In this context, the main objectives of this study are: (1)
to explore simple histogram thresholding classification tools for forest practitioners
to detect defoliation of host pine trees affected by T. pityocampa using UAS-derived
NIR imagery and (2) to estimate the threshold values of various VIs averaged over
our study areas for detecting defoliation and distinguishing pine species at the pixel
level to examine the robustness in extended study areas. Achieving our objectives
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may provide forest practitioners with the classification options of adopting the his-
togram thresholding method and directly applying the estimated average threshold
values according to selected VIs.

5.2 Materials and methods

5.2.1 Study area

The study was conducted in four pine-dominant stands, including Codo, Hostal,
Bosquet, and Olius in the region of Solsona, Catalonia, Spain (Figure 5.1a), covering
64 hectares in total where the recent expansion of T. pityocampa has been recorded
in the regional forest health inventory (Generalitat de Catalunya). They represent
a Mediterranean continental climate with hot dry summers and mild wet winters
at elevations ranging from 600 m to 1300 m. According to the Land Cover Map of
Catalonia (MCSC) for 2009, forest stands were typically dominated by Pinus nigra
and P. sylvestris, which are often mixed with evergreen oak species such as Quercus
ilex.

5.2.2 UAS image acquisition and processing

In this study, a quadcopter (Phantom 3, DJI) was used as an UAS platform,
equipped with a high spatial resolution multispectral camera (SEQUOIA, Parrot)
carrying a payload of 72 g, to capture both visible RGB and invisible NIR images
simultaneously. The RGB camera has a resolution of 16 megapixel with a lens focal
length of 5 mm and fields of view (FOV) with horizontal (HFOV): 63.9◦, vertical
(VFOV): 50.1◦, and diagonal (DFOV): 73.5◦. In addition, another 1.2 megapixel
sensor, with a lens focal length of 4 mm, and fields of view with HFOV: 61.9◦,
VFOV: 48.5◦, and DFOV: 73.7◦, captures four spectral bands in green (530–570 nm
wavelength), red (640–680 nm wavelength), red edge (730–740 nm wavelength), and
near infrared (770–810 nm wavelength). Both RGB and NIR images were collected
simultaneously from a flying altitude at 76–95 m above the ground level with 80%
forward and side overlap at speeds ranging from 4–8 per second, achieving a ground
sample distance of 2.0 cm with the RGB camera and 7.4 cm with the NIR camera,
on average. Four flights were conducted in winter 2017–2018 on clear sunny days
around noon to minimize the effects of clouds and shadows, covering the total area
of 64 hectares. The flight features with the RGB and NIR cameras were summarized
in Table 5.1.

A total of 1042 adjacent photos, overlapped from the flights with their geotagged
locations, were processed separately for those captured with the RGB and NIR
cameras in the software, PhotoScan Professional 1.4.0 (Agisoft LLC, St. Petersburg,
Russia). In image processing, the photos were geometrically aligned to build a point
cloud, 3D model, digital elevation model (DEM), and digital surface model (DSM).
For generating orthomosaic images, those composed of multispectral bands were
radiometrically corrected to calibrate the reflectance values corresponding to each
band, by using reflectance panels which were captured before each flight specific
to the lighting conditions of the date, time, and location of the flight (Agisoft,
2018b; Pla et al., 2019). The use of a reflectance panel captured as an image of
calibrating a white balance card enabled the PhotoScan to recognize the images’
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Figure 5.1: Location map of study areas in the region of (a) Solsona (41◦59′40′′ N,
1◦31′04′′ E) in red line and Catalonia in blue line, projected in the UTM Zone 31
North showing: (b) Codo; (c) Hostal; (d) Bosquet; and (e) Olius, with calibration
ground control points in yellow georeferenced to orthophotos.
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Table 5.1: RGB and NIR imagery features for orthomosaic generation in the Agisoft
PhotoScan.

Site Codo Hostal Bosquet Olius
Camera RGB/NIR RGB/NIR RGB/NIR RGB/NIR
Date
(dd/mm/yy)

26/11/2017 19/01/2018 23/01/2018 30/01/2018

Time (dura-
tion)

12:43–12:50 12:05–12:14 12:16–12:22 11:55–12:03

Elevation (m) 1300 820 620 720
Flight height
(m)

95 78 76 85

Area (ha) 14.1 16.2 7.4 26.3
Number of
images

210 333 155 344

Data size
(GB)

0.93 / 0.49 1.65 / 0.78 0.39 / 0.36 1.05 / 0.80

Processing
time (h)

4.8 / 3.3 7.6 / 5.0 3.9 / 2.4 5.7 / 3.8

Software plat-
form

(Microsoft Windows 7 64 bits)

Ground
resolution
(cm/pix)

2.32 / 8.64 1.90 / 6.82 1.80 / 6.58 2.12 / 7.49

RMS re-
projection
error (pix)

2.45 / 0.66 2.51 / 0.70 2.34 / 0.64 2.19 / 0.62

reflectance according to known values of all spectral bands written on the panel for
radiometric calibration (Agisoft, 2018b). Using the ArcGIS version 10.5 software
(ESRI, Redlands, CA, USA), each orthomosaic was georeferenced to the 1:2500
orthophotos (ICGC, 2018) in the cartographic UTM projection by performing a first
order polynomial transformation with four ground control points (GCPs) of clearly
visible features such as roads, structures, and field edges across each study area
(Figure 5.1b-e), obtaining an accuracy of sub-meter root mean square error (RMS).
As alternative ground validation data, we used the UAS orthomosaic images and
DSM captured at a very higher spatial resolution (2.0 cm) with the RGB camera.

5.2.3 Vegetation indices

Given the four bands in NIR imagery obtained from UAS flights, we calculated
vegetation indices (VIs) which may extract the relevant information on different
vegetation features for further analysis. The chlorophyll absorption is very high
in the visible spectrum, where the reflectance is the highest for green wavelengths
(Rullan-Silva et al., 2013). In shifting from the range of visible wavelengths to invis-
ible towards the NIR, the reflectance starts to increase for red edge wavelengths as
the chlorophyll absorption ceases (Rullan-Silva et al., 2013). For automated classifi-
cation and repeated application, four normalized VIs based on various combinations
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of spectral bands were selected as comparable thresholding values among the four
different study areas (Table 5.2). NDVI has been most commonly used for detect-
ing land cover change and mapping forest defoliation due to its sensitivity to low
chlorophyll concentrations (Gitelson et al., 1996; Rullan-Silva et al., 2013). On the
contrary, green NDVI (GNDVI) is sensitive to high chlorophyll concentrations and
accurate for assessing chlorophyll content at the tree crown level (Gitelson et al.,
1996). By exploring various combinations of available spectral bands, we addition-
ally examined the sensitivity of other indices such as green-red NDVI (GRNDVI)
and NDVI red edge (NDVIRE) to find the most sensitive VI to classify forest defo-
liation and tree species.

Table 5.2: Vegetation indices derived from UAS multispectral bands.

Index Acronym Formula Reference

Normalized Difference Vege-
tation Index

NDVI
NIR - Red

NIR + Red
Rouse et al.
(1973)

Green Normalized Difference
Vegetation Index

GNDVI
NIR - Green

NIR + Green
Gitelson et al.
(1996)

Green–Red Normalized Dif-
ference Vegetation Index

GRNDVI
NIR - (Green + Red)

NIR + (Green + Red
Wang et al.
(2007)

Normalized Difference Vege-
tation Index Red Edge

NDVIRE
RE - Red

RE + Red
Chevrel et al.
(2002)

5.2.4 Pixel-based thresholding analysis

In this study, histogram thresholding analyses, known as the classical approach
to classification (Otsu, 1979; Adeline et al., 2013; Shahtahmassebi et al., 2013),
were explored in a nested method for excluding shadow from sun pixels, detecting
defoliation from foliated green pixels, and discriminating pine from evergreen oak.
Using the ArcGIS version 10.5 software, available spectral bands and VIs from the
UAS-derived NIR imagery were analyzed in a histogram distribution by the first
valley detection thresholding with local minima. Figure 5.2 simplifies a workflow of
the nested histogram thresholding analyses per study area, from the initial shadow
removal with the NIR band to the final separation of pixels by defoliation and tree
species for monitoring, so that this method can be repeated to conduct a time series
image analysis.

Shadow removal

Although all flights were conducted around noon when the sun angle is considered
to be minimum to generate shadows in images, there are often some limitations
to achieving shadow-free images. Among several shadow detection algorithms sug-
gested and compared by Adeline et al. (2013), a histogram thresholding analysis
performed well as the most robust method and demonstrated good results with
an NIR band alone. Generally, the location of shadows in the histogram should
be separated at the first valley of multimodal distribution with two or more peaks
(Chen et al., 2007; Adeline et al., 2013; Lehmann et al., 2015). We then applied
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Figure 5.2: Overall workflow of classification methods per study area by nested his-
togram thresholding analyses, indicating pixel intensity on the x-axis and frequency
on the y-axis, with four VIs derived from NIR imagery for monitoring defoliated
and foliated pine trees.

the method, first valley detection thresholding, using the UAS-derived NIR band to
exclude shadow pixels from further analysis to reduce uncertainty.

Defoliation detection

Following shadow removal, shadow-free pixels in each study area were extracted by a
mask of pine-dominated forest polygons mapped on the MCSC. The same histogram
thresholding approach was applied to separate the masked pixels representing green
tree crown from non-green in each study area with four VIs (Table 5.2). In this
analysis, green pixels with leaves were defined as foliated class, while non-green
pixels without leaves belonged to the defoliated class. While the previous study in
the Codo area (Cardil et al., 2019) applied pixel-based unsupervised classification
with NDVI to calculate the percentage of defoliation per tree crown area identified by
individual tree delineation algorithm, in this study we simply focused on determining
the threshold values of four VIs and their variations among four study areas as well
as evaluating the performance of each VI.

Foliated species discrimination

To distinguish shadow-free foliated trees of pine species from evergreen oak, we first
visually interpreted RGB images. Once 10 pines and 10 evergreen oaks in each of
two study areas (Codo and Olius) were manually selected in RGB orthomosaic im-
ages (Figure 5.3a) and delineated to extract sample pixels based on NIR imagery
representing each species (Figure 5.3b), histogram thresholding analyses were ap-
plied to those selected pixels showing the spectral profiles in Figure 5.3c. Relatively,
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the color intensity and texture of pine species are softer than evergreen oak species
(Riemann Hershey and Befort, 1995). Moreover, broadleaf vegetation reflects no-
tably higher values of NIR than needle-leaf vegetation (Aronoff, 2005) as observed
in our study area with spectral profiles of the two species for the wavelength range
of 770–810 nm (Figure 5.3c). However, the previous study in the Codo area (Cardil
et al., 2019) suggested that NIR alone or standard NDVI (Rouse et al., 1973) may
not be sufficient to distinguish two species by thresholding analysis. Thus, for fur-
ther exploring species discrimination, we applied the histogram thresholding method
with the three additional VIs (Table 5.2) to pixels extracted by sample crown poly-
gons. There were only a few evergreen oak samples observed in the other two study
areas (Hostal and Bosquet), which were not included in this analysis.

5.2.5 Object-based Random Forest

In contrast to determining threshold values for pixel-based classification, we used
another method, object-based Random Forest, with the advantage of analyzing com-
bined data of multiple spectral bands, spatial parameters, and textural properties.
As shown in Figure 5.4a, color infrared (CIR) images composed of NIR, red, and
green bands were first computed for automatically aggregating adjacent pixels that
are similar in spectral properties as image segments (Figure 5.4b) in the ArcGIS
version 10.5 software. To supervise Random Forest classification, sample data were
then trained as segments of shadow, defoliation, and tree species such as pine and
evergreen oak, which were comparable to the thresholding analysis in Codo and
Olius study areas. CIR images may contain more effective parameters as predic-
tive indices characterized by relative color, color intensity, and texture (Riemann
Hershey and Befort, 1995).

5.2.6 Validation and accuracy assessment

Ground validation data were obtained by photointerpretation of the RGB orthomo-
saic images (Figure 5.5a) and DSM (Figure 5.5b), at a very high spatial resolution
(2.0 cm), which was higher than the resolution of NIR imagery (7.2 cm) based on
the separate multispectral camera from the same UAS flight. The DSM profile,
in particular, enabled to generate a 3D stand structure and distinguish soils from
defoliated tree branches, which might have been misinterpreted due to the similar
colors in the RGB orthomosaic images. We then observed plots of the RGB images
classified as: (1) shadow or sun pixels, (2) defoliated or foliated for the sun pixels,
and (3) pine or evergreen oak species for the foliated pixels. Such validation by pho-
tointerpretation has been increasingly used as an alternative to conventional ground
truth data in recent studies with promising results (Hentz and Strager, 2017; Mohan
et al., 2017; Pla et al., 2017; Otsu et al., 2018; Cardil et al., 2019).

In each study area 100 pixels were randomly selected to assess the accuracy of
final classification results by histogram thresholding analyses and Random Forest,
separately, with predicted indices derived from the NIR imagery, in reference to
ground observations based on the RGB orthomosaic images. A confusion matrix
was then generated to compare producer’s and user’s accuracy indicating omission
and commission errors, respectively, as well as overall accuracy. To explore the
uncertainty in the best performed results over the total study area, the overall
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accuracies were further investigated in a sensitivity analysis, testing the robustness
of the estimated thresholds by increasing and decreasing values.

Figure 5.3: Examples of tree characteristics by foliated evergreen oak in purple line
and foliated pine in blue line observed in: (a) an RGB image; (b) a NIR image; and
(c) spectral profiles of the two tree species in Codo study area.

5.3 Results

5.3.1 Pixel-based thresholding analysis

Shadow removal

A multimodal histogram distribution of NIR values was shown by study area in
Figure 5.6, with the first valley determined as the thresholding value to exclude
shadow pixels indicating the lowest class of reflectance in the NIR band. As shown
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Figure 5.4: Comparison of: (a) CIR image and (b) segmentation of the CIR-derived
pixels that are similar in spectral properties as image objects.

Figure 5.5: Comparison of: (a) RGB image with a line of sight in red line and (b)
corresponding point cloud profile of RGB-derived DSM.

in Figure 5.6a for the Codo area, those pixels with the value smaller than 17 were
classified as shadow areas, counting for 29% of the total number of pixels, thus
excluded to reduce uncertainly. Likewise, shadow areas resulted in 14% for Hostal
(Figure 5.6b), 17% for Bosquet (Figure 5.6c) and 35% for Olius (Figure 5.6d) study
areas, respectively. We found a variation in those threshold values among four study
area compared in Table 5.3, ranging from 17-28.
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Table 5.3: Summary of threshold values determined by multimodal histogram dis-
tributions with various indices for classifying shadow, defoliated, and tree species.

Classification Index Codo Hostal Bosquet Olius Total
Average

Shadow NIR 17 23 27 28 24
Defoliated NDVI 0.584 0.529 0.481 0.490 0.52

GNDVI 0.561 - - 0.393 -
GRNDVI 0.295 0.254 0.171 0.175 0.22
NDVIRE 0.515 0.475 0.416 0.431 0.46

Species NDVI - - - - -
GNDVI 0.681 - - 0.631 -
GRNDVI 0.539 - - - -
NDVIRE - - - - -

Figure 5.6: The valley detection thresholding to separate shadow class toward the
lowest NIR values in a multimodal distribution, with pixel intensity on the x-axis
and frequency on the y-axis, in the four study areas: (a) Codo; (b) Hostal; (c)
Bosquet; and (d) Olius.

Defoliation detection

Each histogram distribution of pixel values calculated for NDVI, GNDVI, GRNDVI,
and NDVIRE was presented in Figure 5.7 for the Codo study area. The final valley
of multimodal distribution determined the threshold value to separate the highest
class of reflection in each index classified as foliated to mask green tree crown pixels.
All threshold values determined by the same method in the other three study areas
(Appendix: Figures 5.11, 5.12 and 5.13) are summarized in Table 5.3, with a various
range of NDVI (0.481–0.584), GNDVI (0.393–0.561), GRNDVI (0.171–0.295), and
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NDVIRE (0.416–0.515) including the average values. We found some exceptions
for those unimodal distributions with no valley detected with GNDVI in Hostal
(Appendix: Figure 5.11b) and Bosquet (Appendix: Figure 5.12b).

Figure 5.7: The valley detection thresholding to separate foliated class towards the
highest VI values in a multimodal distribution, with pixel intensity on the x-axis
and frequency on the y-axis, for detecting defoliation in the Codo study area with:
(a) NDVI; (b) GNDVI; (c) GRNDVI; and (d) NDVIRE.

Foliated species discrimination

For discriminating species between pine and evergreen oak in Codo and Olius study
areas, shadow-free foliated pixels were classified as shown in Figure 5.8. Among
the four VIs analyzed, GNDVI and GRNDVI resulted in a bimodal distribution
in Codo (Figures 5.8b,5.8c), revealing two distinguishable species classes between
pine and evergreen oak, while the rest of our results with NDVI (Figure 5.8a) and
NDVIRE (Figure 5.8d) did not achieve this distinction. The first valley of bimodal
distribution, indicating the lower class of reflectance in each index, was classified
as pine to mask host tree species. In Olius, on the other hand, only the histogram
with GNDVI showed a bimodal distribution (Appendix: Figure 5.14b). However,
we found that the threshold value of GNDVI for separating pine from evergreen oak
in Codo (0.681) was notably close to the one (0.631) in Olius, as summarized in
Table 5.3.

The above results of histogram thresholding analysis are illustrated in Figure
5.9, starting with a CIR image (Figure 5.9a) overlaid with NIR highlighting shadow
pixels in gray (Figure 5.9b). Following shadow removal, the CIR image was overlaid
with GNDVI highlighting shadow-free defoliated pixels in meshed yellow and foliated
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Figure 5.8: The valley detection thresholding to discriminate pine toward lower VI
values from evergreen oak, with pixel intensity on the x-axis and frequency on the
y-axis, in the Codo study area with: (a) NDVI; (b) GNDVI; (c) GRNDVI; and (d)
NDVIRE.

pixels in green (Figure 5.9c), which were further classified and highlighted as pine
in blue and evergreen oak in purple (Figure 5.9d).

5.3.2 Object-based Random Forest

As shown in Figure 5.9e, image segmentation enabled the aggregation of adjacent
pixels with similar spectral properties in CIR imagery (Figure 5.9a). Following
training sample segments with supervised Random Forest classification, the resultant
segments were classified into shadow, defoliated, pine, and evergreen oak (Figure
5.9f) in comparison to the results of thresholding classification (Figure 5.9d).

5.3.3 Validation and accuracy assessment

Classes defined by histogram thresholding analyses (Tables 5.4, 5.5, 5.6 and 5.7) and
Random Forest (Tables 5.8 and 5.9) were validated by a confusion matrix evaluating
shadow, defoliation, and species with referenced RGB images and DSM as ground
observations. The confusion matrix for classifying shadow and sun is detailed in
Table 5.4 based on totaling 400 randomly selected pixels, showing that the higher
producer’s accuracy was 96% for the sun class where 212 out of the 220 pixels
observed as sun were correctly classified by predicted NIR, while the shadow class
showed a higher user’s accuracy of 95% where 167 out of the 175 pixels predicted as
shadow correctly represented the observed class. To analyze any variation among
all study areas, overall accuracies were calculated by each area to compare the
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Figure 5.9: Process of histogram thresholding analysis in Codo: (a) CIR image;
(b) CIR image with NIR highlighting shadow pixels in gray; (c) CIR image with
GNDVI highlighting foliated pixels in green and defoliated in meshed yellow; and (d)
CIR image with GNDVI highlighting foliated pines in blue, foliated evergreen oaks in
purple, and defoliated in meshed yellow. The process of Random Forest classification
in Codo: (e) CIR-derived segmentation as image objects and (f) supervised Random
Forest classifying shadow in gray, defoliated in yellow, pine in blue, and evergreen
oak in purple.
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performance to the one totaled in Table 5.5, resulting in a total overall accuracy of
95% without any significant discrepancy by study area.

Table 5.4: Confusion matrix of NIR for shadow removal in the four study areas
with the total of 400 randomly selected pixels, referenced to RGB images as ground
observations.

Predicted
Class Shadow Sun Total Producer’s Accuracy

Shadow 167 13 180 93%
Observed Sun 8 212 220 96%

Total 175 225 400 -
User’s Accuracy 95% 94% - 95%

Table 5.5: Summary of overall accuracies from the confusion matrix of NIR in
the four study areas for shadow removal, with each 100 randomly selected pixels
referenced to ground observations.

Index Codo Hostal Bosquet Olius Total
NIR 96% 93% 96% 94% 95%

Table 5.6: Summary of overall accuracies from the confusion matrix of four VIs in
the four study areas for defoliation detection, with each 100 randomly selected pixels
referenced to ground observations.

Index Codo Hostal Bosquet Olius Total
NDVI 93% 91% 97% 98% 95%
GNDVI 91% - - 86% -
GRNDVI 93% 84% 95% 97% 92%
NDVIRE 94% 90% 97% 97% 95%

Table 5.7: Summary of overall accuracies from the confusion matrix of GNDVI in
the Codo and Olius study areas for species discrimination, with each 100 randomly
selected pixels referenced to ground observations.

Index Codo Hostal Bosquet Olius Total
GNDVI 96% - - 93% -

For classifying defoliated and foliated pixels, overall accuracies were assessed in
the same manner and compared among the four predicted VIs in the four study
areas (Table 5.6). When the total overall accuracy based on totaling 400 randomly
selected pixels was calculated per study area, NDVI and NDVIRE equally performed
the best with a total overall accuracy of 95%, followed by GRNDVI with 92%, while
it was not evaluable with GNDVI due to undetermined threshold values in Hostal
and Bosquet. Since we were also able to estimate the average thresholds of best
performed NDVI and NDVIRE over the total study area, the accuracy assessment
was complemented with a sensitivity analysis, shifting the average threshold values
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by 0.02–0.1. As shown in Figure 5.10a,b, the optimal threshold values (0.50 for NDVI
and 0.44 for NDVIRE), where the difference in overall accuracies is the smallest
across the four study areas, were highlighted resulting in slightly lower values than
the estimated average.

For evaluating the accuracy of species discrimination, we conducted a third con-
fusion matrix in the same manner by assessing overall accuracies with GNDVI in
each of two study areas, Codo and Olius, as shown in Table 5.7. With an overall
accuracy of 96%, GNDVI performed better in Codo study area than in Olius (93%).
After visual inspection, we found that most errors derived from those randomly
selected pixels that occurred to be near the boundary area between two classes.

Finally, Tables 5.8 and 5.9 by study area show the integrated confusion matrix
of object-based Random Forest, which enabled to segment CIR images composed
of three spectral bands and distinguish four classes of shadow, defoliated, pine, and
evergreen oak at the same time with overall accuracies of 93% in Codo and 91% in
Olius, as high as those results combined from Tables 5.5, 5.6 and 5.7.

Table 5.8: Summary of overall accuracies from the confusion matrix of Random
Forest classification in Codo study area for shadow, defoliated, and species, with
100 randomly selected pixels referenced to ground observations.

Predicted
Class Shadow Defoliated Pine Oak Total Producer’s

Accuracy
Shadow 22 1 3 0 26 85%
Defoliated 0 31 0 0 31 100%
Pine 0 1 21 2 24 88%

Observed Oak 0 0 0 19 19 100%
Total 22 33 24 21 100 -
User’s
Accuracy

100% 94% 88% 90% - 93%

Table 5.9: Summary of overall accuracies from the confusion matrix of Random
Forest classification in Olius study area for shadow, defoliated, and species, with
100 randomly selected pixels referenced to ground observations.

Predicted
Class Shadow Defoliated Pine Oak Total Producer’s

Accuracy
Shadow 22 1 1 0 24 92%
Defoliated 0 26 0 0 26 100%
Pine 0 2 26 0 28 93%

Observed Oak 4 0 1 17 22 77%
Total 26 29 28 17 100 -
User’s
Accuracy

85% 90% 93% 100% - 91%
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Figure 5.10: Sensitivity analysis testing the robustness of best performed VIs: (a)
NDVI and (b) NDVIRE for defoliation detection in the four study areas. The
optimal thresholds were highlighted in pink resulting in slightly lower values than
the estimated average drawn in red line.
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5.4 Discussion

Our methodology explored the capabilities of UAS-derived high spatial resolution
NIR imagery for monitoring forest defoliation caused by T. pityocampa in small pine-
dominated stands mixed with evergreen oak. Using a simple histogram thresholding
analysis as a classification technique, the overall results showed that specific spectral
bands or NIR-derived VIs perform better than the others for discriminating shadow,
defoliation, and foliated tree species, which was determined by accuracy assessment
in a confusion matrix. In contrast to this simple classification approach, we also
used a more complex and robust object-based image classification technique with
Random Forest, resulting in overall excellent performance as expected from the
literature reviews (Blaschke, 2010; Weih and Riggan, 2010; Duro et al., 2012; Qian
et al., 2015; Hossain and Chen, 2019).

5.4.1 Shadow removal

Shadow detection using a histogram thresholding analysis with an NIR band has
been explored in several studies on forest areas following urban and agricultural
areas (Shahtahmassebi et al., 2011; Adeline et al., 2013; Shahtahmassebi et al.,
2013; Aasen et al., 2018). One of the disadvantages of this technique is that it can
often be dicult to distinguish shadow areas and other dark surfaces such as water
bodies (Shahtahmassebi et al., 2013); however, this limitation did not apply to our
small study areas where no water features such as river, lake, or ocean were found.
Miura and Midorikawa (Miura and Midorikawa, 2013) classified shadow areas by a
histogram thresholding analysis using the NIR band from IKONOS data in order to
eliminate shadow pixels that were difficult to accurately detect slope failure based
on the difference in NDVI between the pre- and post-earthquake images. Lu (2007)
also separated vegetation from shadows with the thresholds based on the IKONOS
NDVI or NIR images, although it was difficult to extract cloud shadows from tree
shadows. Martinuzzi et al. (2007) developed a method for detecting shadow areas
in the NIR band from Landsat data to mask cloud shadows, including topographic
shadows which were not successfully discriminated from each other. This type of
limitation to separating topographic shadows from cloud shadows is not an issue in
the UAS imagery as flights can be conducted under clouds.

Although in our study shadow areas were eliminated with high overall accura-
cies, those may be corrected by supervised classification training samples for different
shadowed land cover types, instead of excluding them from further analysis. Other
types of shadow corrections include deshadowing by scaling shadow pixels with com-
bined spectral criteria of NIR and shortwave infrared bands derived from satellite
images (Richter and Müller, 2005), which are more sensitive to shadow effects than
visible bands, while a combination of RGB and NIR bands captured by airborne
cameras was explored for diffusing shadow effects and validated by field measure-
ments with a good agreement (Schläpfer et al., 2012). Thus, shadow correction
methods should be explored for our further studies by developing a tool to combine
spectral criteria from available bands and/or conducting extra flights within the
following days or weeks over the same area of interest around the same time of the
day to be comparable among them.
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5.4.2 Defoliation detection

Focusing on forestry applications over the past decade, NDVI derived from UAS has
been increasingly used for detecting defoliation at high spatial resolutions and assess-
ing damage severity by classification techniques (Lehmann et al., 2015; Näsi et al.,
2015; Smigaj et al., 2015; Michez et al., 2016; Cardil et al., 2017; Hentz and Strager,
2017; Torresan et al., 2017; Cardil et al., 2019). A continuous improvement in overall
accuracy was demonstrated in our study by using histogram thresholding classifi-
cation with the four VIs. NDVI and NDVIRE performed the best with an overall
accuracy of 95%, followed by GRNDVI with 92% while GNDVI was excluded due to
poor performance in determining the threshold values, which may be explained by
the difference in reflectance between two bands selected for calculating each index.
We could explain that the reflectance is generally higher in the green band due to
chlorophyll absorption in blue and red bands (Aronoff, 2005; Rullan-Silva et al.,
2013). Another explanation could be that unhealthy leaves show a notably higher
reflectance than healthy leaves in the range of RGB visible light due to a decrease
in chlorophyll content, while healthy leaves show significantly increased and exceed-
ing reflectance in both the red edge and NIR bands (Xiao and McPherson, 2005;
Masaitis et al., 2013; Hentz and Strager, 2017). Therefore, a larger difference in
reflectance between the two bands used in any formula (Table 5.2) leads to higher
index values and indicates healthier leaves. At least for the forest types analyzed in
our study, there was no significant difference between NDVI and NDVIRE. In other
words, the red edge band was not particularly more sensitive to defoliation than the
NIR band.

Opportunities for future improvements include defoliation detection at the pixel
level in integration with the UAS-derived canopy height model (CHM) at the 3D
tree level to automatically delineate individual tree crowns and extract only pixels
detected by the height of interest (Cardil et al., 2017, 2019; Mohan et al., 2017).
For monitoring the forest inventory as a function of ecosystem services, it will be
necessary to estimate the overall defoliation degree per individual tree which can be
calculated by the ratio between pixels grouped as defoliated and foliated per tree
(Cardil et al., 2019). For further 3D tree research, detecting the structural change
of defoliated trees may be explored as an additional parameter by quantifying a
dense point cloud (Harwin and Lucieer, 2012; Dandois and Ellis, 2013; Mathews
and Jensen, 2013; Wallace et al., 2016; Hentz and Strager, 2017), which may contain
information on cumulative defoliation in time series imagery, where the density of
points on defoliating trees may start to decrease over time (Wallace et al., 2016).

5.4.3 Foliated species discrimination

As the UAS technology advances, studies on species discrimination for forestry ap-
plications (Gini et al., 2014; Lisein et al., 2015; Michez et al., 2016; Baena et al.,
2017) have increased using various classification methods. Most recently, Cardil
et al. (2019) applied thresholding classification with NDVI to distinguish among Pi-
nus spp. with three levels of defoliation and from Quercus ilex in Codo, Spain, with
an overall accuracy of 81%. The classification accuracy was re–evaluated in two of
our study areas where we distinguished foliated Pinus spp. from Q. ilex by his-
togram thresholding classification with GNDVI with an increased overall accuracy
of 93–96%. We again demonstrated that this comparison among various VIs led
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to improve the classification results on species discrimination with GNDVI showing
a bimodal histogram distribution in both the two study areas. This may suggest
that the relation between green and NIR bands is the key measure to distinguish
broad leaves from needle leaves among healthy trees, while GNDVI showed poor
performance in defoliation detection. Several studies have suggested that the use of
green bands in NDVI is more sensitive to chlorophyll which is well correlated to leaf
area index (Yoder and Waring, 1994; Gitelson et al., 1996; Wang et al., 2007) as well
as that broad leaves show a much higher reflection in the NIR range than needle
leaves (Aronoff, 2005; Baldridge et al., 2009; Motohka et al., 2010). To examine the
robustness of GNDVI for species discrimination, the similar threshold values deter-
mined in Codo and Olius should be reapplied to additional pine–oak mixed stands
in new study areas.

It should be noted that UAS imagery has the advantage of separating pine trees
from other species in mixed stands at tree level, enabling the exclusion of non-pine
pixels for further analysis, while this may not be capable with Sentinel-2 (ESA, 2015)
or Landsat 8 (NASA, 2019) data at medium spatial resolutions (10–30 m), which
are too coarse to assess an individual tree crown area. Although the enhancement
at spatial and temporal resolution is one of the significant advantages for using UAS
imagery, the spectral resolution by Parrot SEQUOIA is limited to capturing RGB,
red edge, and NIR bands, with wider bandwidths in the wavelength in comparison
to other airborne sensors and satellites which are required to detect more features
with narrower and/or specific bandwidths. Nonetheless, the Parrot SEQUOIA has
been widely used for a relatively good economic performance tradeoff in operational
forestry and agriculture applications, with the additional advantage of applying such
high-resolution data to calibrate medium-resolution satellite data (Fraser et al., 2017;
Pla et al., 2017, 2019; Otsu et al., 2018).

5.4.4 Classification techniques

General findings in the above-mentioned studies suggest that the overall accuracy for
shadow removal, defoliation detection, and species discrimination should increase as
the number of classes decreases, regardless of the technique used for classification.
As observed in our study, a series of pixel-based thresholding analyses generated
slightly higher overall accuracies in each confusion matrix for predicting two classes
than object-based Random Forest for predicting four classes in one combined con-
fusion matrix. One of the limitations of histogram thresholding analyses is that
spatially isolated and fragmented pixels (Figure 5.9b-d) were as small as a ground
resolution of approximately 7 cm to identify the class and assess the accuracy against
the referenced orthomosaic image, unless pixels with similar digital number (DN)
values were aggregated. To restrict pixels at a very high spatial resolution from
being dispersed, object-based classification techniques enable to merge them with
adjacent segments according to certain minimum segment size or shape (Blaschke,
2010). Despite these limitations, our study highlighted the simplicity of the his-
togram thresholding method to suggest combining the best indices for a series of
classifications to extract the relevant information on different vegetation features.
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5.4.5 Future research directions

Among four study areas defined as pine–dominated by land cover map, we noted
that all threshold values of VIs in Codo study area for detecting defoliation were
relatively higher than those in the other three study areas (Table 5.3). This may be
explained by the seasonal difference in reflectance since the UAS imagery in Codo
was captured in the end of November 2017, which was almost two months before
the rest of the UAS flights were conducted in January 2018. It should also be noted
that in Hostal study area the valley detection thresholding to separate foliated class
in the multimodal distribution with GRNDVI (Appendix: Figure 5.11c) was not as
clear as those with NDVI (Appendix: Figure 5.11a) or NDVIRE (Appendix: Figure
5.11d), which is one of the disadvantages of histogram thresholding analyses (Adeline
et al., 2013; Aasen et al., 2018). Consequently, due to this ambiguous discrimination
between defoliated and foliated classes, the classification accuracy with GRNDVI in
Hostal turned out to be 84%, notably the lowest among the four study areas and
VIs tested. As a solution to mitigate any potential errors, multiple flights over the
same study area should be repeated at different dates to determine whether each
threshold value is specific to a study area and/or season for accuracy improvement
and monitoring purposes. Provided that the variation in the threshold limits among
our study areas may have been affected by different flight dates, weather conditions,
stand structures, and species composition which are not distinguishable by land
cover map, the estimated average limits in Table 5.3 are not yet well established
to be directly applied to new study areas on a large scale. Whether the similarity
in the range of threshold limits can be achieved in similar forest types should be
explored by applying the average or optimal threshold values (Figure 5.10a,b) to
additional study areas.

Nevertheless, the enhanced UAS technology enabled us to achieve flights with
both RGB and NIR multispectral cameras simultaneously in one platform. In con-
trast to conducting separate flights with each type of camera individually, our ap-
proach should have contributed to the consistency of reflectance between RGB and
NIR images recorded at the same time of the day without any temporal delay,
which was evidently visible in shadow areas (Cardil et al., 2019). Ultimately, such
continuous advances in technology may improve our methodology and hence the
classification results as well.

5.5 Conclusions

Using various VIs derived from very high spatial resolution UAS multispectral im-
agery, our study demonstrated quantitative assessments with high overall accuracies
in small operational areas in Catalonia for detecting insect defoliation and potential
host tree species in pine-dominated stands mixed with evergreen oak. With the aim
of seeking a simple and robust monitoring tool for forest practitioners, we explored
nested histogram thresholding analyses that achieved the highest overall accuracy of
95% with NDVI as well as NDVIRE for defoliation detection in the total study area,
while accuracy results for foliated tree species discrimination were only achievable
with GNDVI in two of the four study areas. In addition, the estimated average
thresholds of NDVI and NDVIRE to detect defoliation were highlighted for evaluat-
ing accuracy and uncertainty in sensitivity analyses. Provided that the robustness
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of selected VIs is sound, applying the average thresholds may become a promising
simple tool to monitor forest defoliation and an alternative classification method to
complex object-based Random Forest. In future studies, the robustness of the best
performed indices for differentiating specific vegetation features should be explored
in new study areas and repeated at multiple dates to contribute to regional forest
health monitoring at the operational level.

5.6 Appendix

Figure 5.11: The valley detection thresholding to separate foliated class towards the
highest VI values in a multimodal distribution, with pixel intensity on the x-axis
and frequency on the y-axis, in the Hostal study area with: (a) NDVI; (b) GNDVI;
(c) GRNDVI; and (d) NDVIRE.
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Figure 5.12: The valley detection thresholding to separate foliated class towards the
highest VI values in a multimodal distribution, with pixel intensity on the x-axis
and frequency on the y-axis, in the Bosquet study area with: (a) NDVI; (b) GNDVI;
(c) GRNDVI; and (d) NDVIRE.

Figure 5.13: The valley detection thresholding to separate foliated class towards the
highest VI values in a multimodal distribution, with pixel intensity on the x-axis
and frequency on the y-axis, in the Olius study area with: (a) NDVI; (b) GNDVI;
(c) GRNDVI; and (d) NDVIRE.
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Figure 5.14: The valley detection thresholding to discriminate pine class towards
lower VI values from evergreen oak class, with pixel intensity on the x-axis and
frequency on the y-axis, in the Olius study area with: (a) NDVI; (b) GNDVI; (c)
GRNDVI; and (d) NDVIRE.
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General discussion and conclusions

The impact of insect defoliation on forest dynamics is complex in the current global
change context. We need to consider that this impact cannot always be measured
for one single disturbance driver but is often the result of combined causes in which
insects interact with other biotic and/or abiotic factors (Rullan-Silva et al., 2013;
Sangüesa-Barreda et al., 2014; Roques, 2015). Moreover, some indicators to be
measured are not always quantitative but can often be qualitative, descriptive or
categorical. Due to an increasing concern with climate change and extreme distur-
bance events (Jactel et al., 2006; Cardil et al., 2014, 2015; Robinet et al., 2014),
continuous monitoring forest health with time-series analysis using a combination
of remote sensing technologies including UAV is critical to detect any change in the
current state and mitigate potential damages intensified due to the delayed detec-
tion.

With this research interest, I started my thesis with a systematic literature review
(Chapter 2) on tree defoliation caused by insects throughout the world at any
spatial scale, assessing the past and current impact of defoliation on forest ecosystem
dynamics during the period of 1996-2016. Although the review was systematically
conducted without limiting to any geographic extension, the spatial distribution
of insect defoliations was reported and published in some regions concentrating in
Europe and North America. This spatial data gap may be explained by the regional
differences in economic, political and educational conditions between developed and
developing countries (Morán-Ordóñez et al., 2018; Muller et al., 2018). Thus, it
is critical to consider the high uncertainty in the rest of the world’s forests, which
may remain unreported or unobserved even if they have been defoliated. That said,
nowadays earth observations from satellite images can easily capture burned and
disturbed forests, which are being monitored through Global Wildfire Information
System collaborated by GEO, NASA and Copernicus. Although the majority of
developing countries may not afford to conduct annual or routine forest surveys,
opportunities for increasing international projects on monitoring gap areas may be
encouraged and collaborated by the world’s leading space agencies such as NASA
and ESA.

Despite the effort of advanced monitoring systems, it is predicted that the fu-
ture impact of insect defoliations on forest dynamics may increase the intensity
and extension. The intensity may be accelerated by a combination of complex and
interacting disturbance factors such as climate change (e.g. IPCC scenarios with
increased temperatures and extreme climate events). The extension of defoliated
forests also may increase once we begin to account for previously unreported or un-
observed forests that have been already affected. Moreover, the currently expanding
biogeographical range of host tree distribution towards higher latitudes and higher
elevations (Battisti et al., 2005; Roques, 2015) may favor pest invasion and survival
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due to the future trend of climate change scenarios.
Based on the review in Chapter 2, temporal data gaps using remote sensing

images became evident in the defoliation estimates prior to 1972. Future solutions
include that the timeline of available satellite images will increase with Landsat
(posterior to 1972, at 30m every 8 days), MODIS (posterior to 2000, at 200m every
16-day), and Sentinel (posterior to 2015, at 10-20m every 5 days), which may be
combined to enhance the temporal resolution as well. Temporal data gaps often exist
in the current defoliations since the satellite images are provided at a regular interval
(every 5-8-16 days), however, calibrating UAV-based observations with the satellite-
based VIs may fill those monitoring gaps (Chapter 3). Integration with UAV
flights by training forest practitioners to complement their annual health survey
may also contribute to increasing the survey frequency. Moreover, the potential
of including citizen science to local mapping applications should be considered for
increasing the frequency and extension of monitoring forests with additional UAV
images uploaded by citizens although such voluntary participation by citizens may
not guarantee effective monitoring systems since temporal resolutions are not fixed
but rather random.

Evaluation on research approaches

For effective detection and monitoring, I argue that the methods should be se-
lected according to the spatial and temporal scales, forest types and structures,
classification techniques, and pest-host tree relationships. One of the technological
limitations observed was inconsistency among multiple spatial scales and heteroge-
neous data sources, mainly between spaceborne Landsat or Sentinel and airborne
UAV (Chapter 3). As the spectral resolution of spaceborne sensors is still much
higher than airborne, the use of satellite imagery has the advantage of more options
and combinations among a large number of spectral bands (e.g. Near Infrared (IR),
Shortwave IR, Middle IR, Thermal IR) for selecting VIs and detecting more features
with narrower and/or specific bandwidths. Such medium-resolution satellite images
may be sufficient for standard monitoring as a coarse filter to observe the trend in
the forest state and detect any significant change (Rullan-Silva et al., 2013; Näsi
et al., 2015).

On the other hand, once research requires an additional analysis with high spa-
tial and/or temporal resolution images, options of using airborne sensors such as
LiDAR, ALS and UAV can provide fine-scale information as well as 3D structure
data (Kantola et al., 2013; Rullan-Silva et al., 2013; Roncat et al., 2014). In particu-
lar, the spatial and temporal resolutions of UAV imagery are generally much higher
and more flexible than spaceborne imagery. However, current limitations of UAV
technology with quadcopters include battery duration for up to 30 minutes, resulting
in small area coverage per flight, while the latest model with fixed-wing UAV is ad-
vancing to fly longer and farther than quadcopters (Lehmann et al., 2015; Torresan
et al., 2017). To cover a large area at landscape and regional scales, it would require
multiple flights that may not be consistent with the time, sensor and weather con-
ditions, therefore, it would not replace satellite-based imagery. Nonetheless, where
high spectral resolution is not required for small operational areas, instead of using
satellite-based imagery, UAV flights would greatly increase the time-efficiency and
cost-effectiveness as well as flexibility in planning imagery acquisition (Lehmann
et al., 2015; Dash et al., 2017; Brovkina et al., 2018).
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An additional inconsistency was observed among different dates, times and sites
in processed images (Chapter 3, 4 and 5) despite the effort of applying atmo-
spheric and/or radiometric corrections. This may be explained by some differences
in reflectance due to the season of the year and/or the time of the day as well as
the site topography. One of the advantages for using UAVs enables to conduct
flights under clouds (Chapter 3, 4 and 5), which often cannot be controlled by
satellite orbit scheduling and also can be difficult to extract cloud shadows from
tree and topographic shadows. Another advantage is that the latest UAVs enable
to capture RGB and NIR imagery simultaneously with both cameras on the same
flight (Chapter 5), which can mitigate potential differences and errors in capturing
images due to the delay at the time of the day and ultimately reduce the uncertainty
in shadow areas shifting over time. In contrast to conducting separate flights with
each type of camera individually, this approach shall contribute to the consistency
of reflectance between RGB and NIR images recorded at the same time of the day
without any temporal delay (Cardil et al., 2019), which was evidently visible in
shadow areas as observed in Chapter 5.

As forest types and structures are mainly determined by species age and compo-
sition, the difficulty in analyzing mixed forest stands remains where the phenology
of each tree species is different (Chapter 3). The issue of overestimating or un-
derestimating damage degrees on host trees can be minimized by discrimination
of non-host species through detecting spectral variations due to vegetation phe-
nology with Landsat time-series approach such as LandTrendr, which can monitor
cumulative defoliation as well as annual defoliation (Senf et al., 2017) although the
Landsat spatial resolution is not high enough to identify individual trees. Nonethe-
less, integration of modelling species phenology and stand complexity and diversity
in response to insect disturbances may be modelled by monitoring indicative pa-
rameters such as LAI and biomass production as a function of effects of defoliation
severity at the stand level (Flower and Gonzalez-Meler, 2015). In addition, some
VIs are more suitable for predicting the health of trees, depending on whether the
species is coniferous or deciduous (higher GNDVI than coniferous Chapter 5). Re-
cent studies used a larger sample size for species identification (Gini et al., 2014;
Lisein et al., 2015; Michez et al., 2016), determining when is the best time window
to achieve an optimal species discrimination, provided information of the pest life
cycle. Therefore, the development of time-series analysis models with airborne im-
agery (e.g. LiDAR, ALS, and UAV) may be encouraged following the examples of
TIMESAT with MODIS and LandTrendr with Landsat imagery. At the tree level,
especially in mixed stands with the composition of multiple species, a point cloud
density may be more suitable for monitoring individual trees over time (Harwin and
Lucieer, 2012; Dandois and Ellis, 2013; Mathews and Jensen, 2013; Näsi et al., 2015;
Wallace et al., 2016; Hentz and Strager, 2017). For further 3D tree research, the
structural change in individual trees may be detected and monitored for cumulative
defoliation in time series imagery where the density of points on defoliating trees
may start to decrease over time (Wallace et al., 2016).

Beside the above technological variation, inconsistency in classification among
forest practitioners including surveyors, interpreters and observers should be ac-
counted for potential human errors (Chapter 2 and 3) due to manual and/or
subjective data entry, which can be minimized by standardized measurements and
automated image processing techniques (Chapter 4 and 5). Especially, improve-
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ments in algorithms to identify and delineate individual trees (i.e. ITDe in Chapter
4) may enhance the accuracy of the defoliation estimations at tree level. Yet, there
is no standardized accuracy assessment procedure for ITDe, therefore, it is still dif-
ficult to compare ITDe algorithms unless multiple approaches are tested on a single
study area using the same datasets and metrics (Zhen et al., 2016; Cardil et al.,
2019).

Solutions to methodological limitations

For establishing robust classification techniques, it still requires increasing the num-
ber of sample study areas captured by UAVs for standardizing the threshold values
of detecting defoliation with robust VIs. Thus, average and/or optimal threshold
values (Chapter 5) should be tested on a large number of pine dominated stands
in the Mediterranean region. One of the limitations in pixel-based thresholding
analysis should be noted that spatially fragmented pixels can be too small to iden-
tify the class and assess the accuracy against the referenced orthomosaic image
(Chapter 3 and 5), unless pixels with similar digital number (DN) values were
aggregated. To restrict pixels at a very high spatial resolution from being dispersed,
object-based classification techniques with Random Forest (Chapter 5) enable to
merge them with adjacent segments according to certain minimum segment size
or shape (Blaschke, 2010). Another disadvantage in histogram thresholding analy-
sis (Chapter 5) is the ambiguity for discriminating classes when the multimodal
distribution is unclear, which may result in lowering the classification accuracy.

Despite the need to establish robust models for pest population dynamics, diffi-
culty in predicting pest outbreaks involves the interpretation of ecological processes
as well as hierarchical process-level understanding of biological interactions (An-
deregg et al., 2015; Flower and Gonzalez-Meler, 2015). Increasing uncertainty and
variability in prediction models is significant, due to the absence of robust indices
and the increased number of predictive variables interacted (Chapter 2). Sensitiv-
ity analysis for testing the model robustness by increasing and decreasing predictive
values, including the frequency and severity of outbreaks as well as extreme cli-
mate events, may reduce the uncertainty of response values (Chapter 5). Starting
with the baseline scenario complemented with a sensitivity analysis may be encour-
aged by using nationally or internationally standardized data scales as inputs, if
available, to generate comparable outputs such as the indicators defined by CICES
(Chapter 2). In addition to innovatively developed models, well-established ex-
isting methods may be tested as the baseline scenarios using forest inventory data,
dendrochronological analysis, statistical analysis, geospatial analysis, classification
and/or time-series algorithm, as summarized in Chapter 2.

Currently, monitoring the expanding biogeographical range of host tree distri-
bution towards higher latitudes and higher elevations plays an important role in
detecting any pest invasion due to the future trend of climate change scenarios
(Battisti et al., 2005; Roques, 2015). However, the costs are also high with remote
sensing (Hall et al., 2016), or worse, it may not be easily accessible to those large re-
mote areas using only UAVs due to the limited access to road networks and the short
flight duration. Moreover, there are ongoing controversial discussions regarding the
use of UAV orthomosaic images as ground-truth data without field measurements
although this trend is increasing in recent scientific articles (Hentz and Strager, 2017;
Mohan et al., 2017; Pla et al., 2017; Otsu et al., 2018; Cardil et al., 2019). Thus,
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data validation between canopy-level observations and ground-level measurements
may also be encouraged.

Future research directions

Overall findings highlighted that the effort on improving methods for pest detection
and monitoring has been significantly increased over the past decade. Depending on
the spatial and temporal scales and types of defoliation in question, the latest mod-
elling and remote sensing techniques, including an emerging UAV technology, are
currently available to be combined with conventional ground surveys and statistical
analyses. Further exploration should address how such spaceborne and airborne
remote sensing images may be integrated with aerial and field surveys into a multi-
scale, multi-source monitoring system for the forest health (Hall et al., 2016). Since
it is challenging to distinguish a single defoliation driver combined with other biotic
and/or abiotic factors and also identify their relationships with specific host trees,
continuous monitoring changes in several potential factors based on climate, forest
inventory, and remote sensing data may be able to separate the causes. In particular,
UAV high-resolution data can be a great source of information to calibrate medium
resolution remote sensing information derived from satellites to map information in
coarser scales (Fraser et al., 2017; Pla et al., 2017). Thus, calibration of stand-level
satellite data (e.g. Landsat-derived NDVI) with tree-level UAV-derived NDVI will
enable to enhance efficiency and potential accuracy of mapping information.

Future researches should consider the integration of process-based prediction
models at various temporal scales as well as spatial scales (Anderegg et al., 2015;
FAO, 2018), at the tree, stand and landscape levels, which can be transparent to
other users by incorporating their output indicators as provisioning and regulating
ecosystem services. Furthermore, those quantitative indicators (e.g. wood pro-
duction, carbon and nutrient cycling) to measure changes in ecosystem services,
considered as a function of stand resilience and response to forest disturbances,
are therefore encouraged to follow international standards such as CICES so that
the discrepancy due to incomparable and/or inconsistent measuring schemes can
be avoided. I conclude that optimal detection and monitoring methods are often
specific to each pest agent associated with host tree species. Therefore, the advance-
ment in prediction models linked to ecosystem services in pest and disease control
would be promising for mitigating the future damage to our forests under climate
change from short-term to long-term trends.

Conclusions

• Chapter 2

– The systematic literature review quantifying the past and present im-
pact of major defoliators on forest dynamics revealed some study trends
during the period of 1996-2016 throughout the world’s forests. The im-
pact assessment parameters such as pest drivers, tree effects, spatial and
temporal distributions, detection methods, and ecosystem service types
were identified then summarized in a database. It is highlighted that ac-
cording to defoliation types and scales, the latest modelling and remote
sensing techniques, including an emerging UAV technology, have been
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increasingly combined with conventional ground surveys and statistical
analyses.

– As optimal methods for detection and monitoring may be specific to each
pest agent associated with host tree species, recent technology advance-
ments are promising for mitigating the future damage to high ecological,
social and economic values of forests. For future research, predictive
models based on those monitoring methods may be linked to ecosystem
services in pest and disease control in compliance with the IPCC scenar-
ios.

• Chapter 3

– A recent outbreak of the pine processionary moth in Mediterranean forests
has been an increasing threat to extensive pine dominated stands in Cat-
alonia, Spain. For estimating the damage severity, the difference in veg-
etation index (dVI) between pre-outbreak and post-outbreak images de-
rived from Landsat imagery was calculated as the change detection in-
dicator. Although satellite data was calibrated with the limited number
of UAV images, dVI using Moisture Stress Index (MSI) resulted in the
best-fit logistic regression model with an acceptable overall accuracy of
72% for the severity classification.

– As an alternative cost-effective method to other conventional ground-
truth data, the use of UAV imagery may hold great potential for esti-
mating the severity of defoliation in affected areas where ground-truth
data is limited. Combining UAV images with satellite data may be con-
sidered to validate model predictions of the forest condition for developing
ecosystem service tools.

• Chapter 4

– Multispectral high-resolution UAV imagery was used to quantitatively
assess defoliation caused by the pine processionary moth at the tree level
within a pine-oak mixed forest in Catalonia. Multispectral orthomosaics
and canopy height model (CHM) generated from the UAV imagery en-
abled to automate individual tree delineation (ITDe) for counting tree
crowns and calculate NDVI for assessing defoliation degrees of canopy
cover as well as estimating tree species.

– Classifying pines that are non-defoliated, partially defoliated and com-
pletely defoliated resulted in an overall accuracy of 81% with the auto-
mated ITDe. The automated methodology highlighted the future poten-
tial of UAV multispectral imagery and structure-from-motion algorithms
for individual tree detection, quantifying and monitoring defoliation.
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• Chapter 5

– To cost–effectively monitor temporal and spatial damages by the pine
processionary moth in pine–oak mixed stands using UAV multispectral
imagery, a simple thresholding classification tool for forest practitioners
was explored as an alternative method to complex classifiers such as Ran-
dom Forest (RF). With the aim of seeking a simple yet robust monitoring
tool, nested histogram thresholding analyses with four UAV-derived ND-
VIs were conducted over small operational areas in Catalonia to detect
defoliation and further distinguish pine species.

– Standard NDVI and NDVIRE performed the best in thresholding clas-
sification for detecting defoliation with an overall accuracy of 95%. For
discriminating pine species, accuracy results of 93–96% were only achiev-
able with GNDVI in the partial study area, where the RF classification
combined for defoliation and tree species resulted in 91–93%. In addi-
tion, the estimated average thresholds of NDVI and NDVIRE over the
total area to detect defoliation were highlighted for evaluating accuracy
and uncertainty in sensitivity analyses, which may be applicable across
similar Mediterranean pine stands.
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(Doǧanlar & Avćı) (Lepidoptera: Notodontidae)] outbreaks on radial growth of
Lebanon cedar (Cedrus libani A. Rich.) trees in Turkey. J. Pest Sci. (2004).,
78(2):91–98.

Babst, F., J. Esper, and E. Parlow
2010. Landsat TM/ETM+ and tree-ring based assessment of spatiotemporal pat-
terns of the autumnal moth (Epirrita autumnata) in northernmost Fennoscandia.
Remote Sens. Environ., 114(3):637–646.

Baena, S., J. Moat, O. Whaley, and D. S. Boyd
2017. Identifying species from the air: UAVs and the very high resolution challenge
for plant conservation. PLoS One, 12(11):1–21.

Baldridge, A. M., S. J. Hook, C. I. Grove, and G. Rivera
2009. Remote Sensing of Environment The ASTER spectral library version 2 . 0.
Remote Sens. Environ., 113(4):711–715.

Barbedo, J. G. A.
2019. A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for
Monitoring and Assessing Plant Stresses. Drones, 3(2):40.

Barbosa, P., J. Hines, I. Kaplan, H. Martinson, A. Szczepaniec, and Z. Szendrei
2009. Associational Resistance and Associational Susceptibility: Having Right or
Wrong Neighbors. Annu. Rev. Ecol. Evol. Syst., 40(1):1–20.

Barron, E. S. and W. A. Patterson
2008. Monitoring the effects of gypsy moth defoliation on forest stand dynamics
on Cape Cod, Massachusetts: Sampling intervals and appropriate interpretations.
For. Ecol. Manage., 256(12):2092–2100.

90



Battisti, A.
2008. Forests and climate change - Lessons from insects. iForest - Biogeosciences
and Forestry, 1(1):1–5.

Battisti, A. and S. Larsson
2015. Climate Change and Insect Pest Distribution Range. In Clim. Chang. Insect
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Garćıa, M. J. L. and V. Caselles
1991. Mapping burns and natural reforestation using thematic mapper data.
Geocarto Int., 6(1):31–37.

Garcia-Ruiz, F., S. Sankaran, J. M. Maja, W. S. Lee, J. Rasmussen, and R. Ehsani
2013. Comparison of two aerial imaging platforms for identification of
Huanglongbing-infected citrus trees. Comput. Electron. Agric., 91:106–115.

Gilichinsky, M., H. Olsson, and S. Solberg
2013. Reflectance changes due to pine sawfly attack detected using multitemporal
SPOT satellite data. Remote Sens. Lett., 4(1):10–18.

Gini, R., D. Passoni, L. Pinto, and G. Sona
2014. Use of unmanned aerial systems for multispectral survey and tree classifica-
tion: A test in a park area of northern Italy. Eur. J. Remote Sens., 47(1):251–269.

Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak
1996. Use of a green channel in remote sensing of global vegetation from EOS-
MODIS. Remote Sens. Environ., 58(3):289–298.
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2013. Classification of needle loss of individual scots pine trees by means of
airborne laser scanning. Forests, 4(2):386–403.

Kantola, T., M. Vastaranta, X. Yu, P. Lyytikainen-Saarenmaa, M. Holopainen,
M. Talvitie, S. Kaasalainen, S. Solberg, and J. Hyyppa
2010. Classification of defoliated trees using tree-level airborne laser scanning
data combined with aerial images. Remote Sens., 2(12):2665–2679.

Kapeller, S., H. Schroeder, and S. Schueler
2011. Modelling the spatial population dynamics of the green oak leaf roller
(Tortrix viridana) using density dependent competitive interactions: Effects of
herbivore mortality and varying host-plant quality. Ecol. Modell., 222(7):1293–
1302.

Kattenborn, T., M. Sperlich, K. Bataua, and B. Koch
2014. Automatic single palm tree detection in plantations using UAV-based pho-
togrammetric point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
- ISPRS Arch., 40(3):139–144.

Kautz, M., A. J. H. Meddens, R. J. Hall, and A. Arneth
2017. Biotic disturbances in Northern Hemisphere forests – a synthesis of recent
data , uncertainties and implications for forest monitoring and modelling. Global
Ecology and Biogeography, 26(5):533–552.

99



Kirschbaum, A. A., E. Pfaff, and U. B. Gafvert
2016. Are U.S. national parks in the Upper Midwest acting as refugia? Inside vs.
outside park disturbance regimes. Ecosphere, 7(9):1–15.

Koricheva, J., S. Larsson, and E. Haukioja
2002. Insect Performance on Experimentally Stressed Woody Plants: A Meta-
Analysis. Annu. Rev. Entomol., 43(1):195–216.

Koukl, J., D. G. McCullough, and L. D. Marshall
1997. Effect of forest stand and edge characteristics on the vulnerability of jack
pine stands to jack pine budworm (Choristoneura pinus pinus) damage. Can. J.
For. Res., 27(11):1765–1772.

Kozlov, M. V.
2008. Losses of birch foliage due to insect herbivory along geographical gradients
in Europe: A climate-driven pattern? Clim. Change, 87(1-2):107–117.

Kramer, P. J. and T. T. Kozlowski
1979. Physiology of Woody Plants. In Acad. Press, P. 826. New York, USA:
Academic Press.

Kraus, K. and N. Pfeifer
1998. Determination of terrain models in wooded areas with airborne laser scanner
data. ISPRS J. Photogramm. Remote Sens., 53(4):193–203.

Krause, C., B. Luszczynski, H. Morin, S. Rossi, and P. Y. Plourde
2012. Timing of growth reductions in black spruce stem and branches during the
1970s spruce budworm outbreak. Can. J. For. Res., 42(7):1220–1227.

Kretchun, A. M., R. M. Scheller, M. S. Lucash, K. L. Clark, J. Hom, and S. Van
Tuyl
2014. Predicted effects of gypsy moth defoliation and climate change on forest
carbon dynamics in the New Jersey Pine Barrens. PLoS One, 9(8).
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Torres-Sánchez, J., F. López-Granados, and J. M. Peña
2015. An automatic object-based method for optimal thresholding in UAV im-
ages: Application for vegetation detection in herbaceous crops. Comput. Electron.
Agric., 114:43–52.

Torresan, C., A. Berton, F. Carotenuto, S. Filippo, D. Gennaro, B. Gioli, A. Matese,
F. Miglietta, C. Vagnoli, A. Zaldei, and L. Wallace
2017. International Journal of Remote Sensing Forestry applications of UAVs in
Europe: a review Forestry applications of UAVs in Europe: a review. Int. J.
Remote Sens., 38(June):8–10.

Townsend, P. A., A. Singh, J. R. Foster, N. J. Rehberg, C. C. Kingdon, K. N. Esh-
leman, and S. W. Seagle
2012. A general Landsat model to predict canopy defoliation in broadleaf decid-
uous forests. Remote Sens. Environ., 119:255–265.

Van Der Sanden, J. J., A. Deschamps, S. J. Thomas, R. Landry, and R. J. Hall
2006. Using MERIS to assess insect defoliation in Canadian aspen forests. Int.
Geosci. Remote Sens. Symp., Pp. 4149–4152.
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