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Summary 

 

One of the main goals of this Thesis was to investigate the molecular 

basis of lactation in Murciano-Granadina goats from a transcriptomic perspective. 

Hence, we collected biopsies of mammary glands from seven Murciano-

Granadina goats at three time points, i.e. 78 d (T1, early lactation), 216 d (T2, 

late lactation) and 285 d (T3, dry period) after parturition. By using a RNA-Seq 

approach, a differential expression analysis was carried out resulting in the 

identification of 1,654 differentially expressed (DE) genes (q-value ≤ 0.05 and 

absolute log2FC > 1.5).  While the T1 vs. T2 contrast only yielded 42 DE genes, 

in the T1 vs. T3 and in the T2 vs. T3 contrasts 1,377 and 1,039 DE genes were 

detected, respectively. As expected, genes encoding milk protein components 

were significantly upregulated during lactation, i.e. CSN1S1, CSN1S2, CSN2, 

CSN3, PAEP, LALBA. Many of the DE genes were functionally linked to protein 

synthesis, lipid and carbohydrate metabolism, insulin signaling, calcium 

homeostasis, cell death, tissue remodeling and involution, as well as mammary 

immunity.  

In the first study of this Thesis, we also aimed to uncover the genomic 

polymorphisms affecting milk yield and composition in Murciano-Granadina 

goats. The performance of a genome-wide association study (GWAS) with the 

GEMMA software made it possible to identify 24 quantitative trait loci (QTLs). 

Out of 24 significant associations, only three QTLs showed significant 

associations at the genome-wide level, i.e. QTL1 (chromosome 2, 130.72-131.01 

Mb) for lactose percentage, QTL6 (chromosome 6, 78.90-93.48 Mb) for protein 

percentage and QTL17 (chromosome 17, 11.20 Mb) for both protein and dry 

matter percentages. By checking the overlapping of protein-coding genes 

detected in both the QTL mapping and the RNA-Seq analysis, we found 39 DE 

genes mapping to 14 genome-wide or chromosome-wide QTLs. The QTL6 

region, which showed significant associations with protein, fat and dry matter 
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percentages, co-localized with casein genes which are upregulated during 

lactation. According to our results, the variability of the casein genes seems to 

be the main determinant of milk protein and fat content in Murciano-Granadina 

goats. We have also observed a low positional concordance between the GWAS 

signals detected in our study and those reported in French breeds, a finding that 

could be due to the existence of a remarkable degree of genetic heterogeneity or 

to technical factors. 

The second paper aimed to address the question whether caprine casein 

polymorphisms emerged before (standing variation) or after (novel mutation) 

goat domestication. To this end, we collected 106 caprine whole-genome 

sequences from public databases and analyzed the distribution of single 

nucleotide polymorphisms (SNPs) mapping to the four casein genes (i.e. 

CSN1S1, CSN2, CSN1S2, CSN3) in bezoars and 4 groups of domestic goats from 

Europe, Africa, Far East, and Near East. A relevant fraction of casein SNPs were 

shared between domestic goats and bezoars i.e. from 36.1% (CSN2) to 55.1% 

(CSN1S2). Besides, more than 50% of the casein SNPs were shared by 2 or more 

domestic goat populations, and 18 to 44% are shared by all populations. This 

extensive sharing of polymorphisms in distant populations supports that they 

probably emerged before goat domestication and dispersal. The construction of 

haplotypes demonstrated that the majority of casein alleles present in domestic 

goats also segregated in the bezoar, e.g. A/B alleles of the CSN1S1 and CSN3 

genes, and A allele of the CSN2 gene. These alleles generally have been reported 

to have substantial effect on milk composition. We conclude that much of the 

extant diversity of the caprine casein locus is derived from standing variation 

which existed before goat domestication. 

Another goal of the current Thesis was to characterize copy number 

variations (CNV) in Murciano-Granadina goats (paper Ⅲ). To do so, we 

analyzed Goat SNP50 BeadChip data from 1,036 individuals. The use of the 

PennCNV and QuantiSNP software resulted in the discovery of 4,617 and 7,750 

autosomal CNV, respectively. By applying the EnsembleCNV algorithm, these 
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CNV were assembled into 1,461 CNV regions (CNVR), of which 486 (33.3% of 

the total CNVR count) were consistently called by PennCNV and QuantiSNP 

and used in subsequent analyses. Our data highlights the existence of a 

considerable degree of structural variation in Murciano-Granadina goats. 

Probably, the use of large goat population allowed us to detect low frequency 

CNV which otherwise would have been missed. 

In the set of 486 CNVR, we identified 78 gain, 353 loss and 55 gain/loss 

events. Their length (95.69 Mb) accounted for 3.9% of the goat autosomal 

genome (2,466.19 Mb), and the average size was estimated to be 196.89 kb, with 

sizes ranging from 2.0 kb to 11.1 Mb. Moreover, genes co-localizing with CNVR 

were functionally enriched in olfactory transduction, ABC transporters and 

embryo development. One of the most interesting copy number variable genes is 

ASIP, which encodes the agouti signaling protein that drives the synthesis of 

yellow/red pheomelanin. Increased copy number in the ASIP locus was 

associated with a white pigmentation in goats, so our finding that the ASIP 

CNVR was also segregating in the black/brown Murciano-Granadina goats was 

quite paradoxical. In the fourth paper, we quantified ASIP copy number in eight 

goat breeds with different pigmentation patterns. We observed an increased ASIP 

copy number not only in Saanen goats but also in brown/black Murciano-

Granadina and brown/blond Malagueña goats. These results preclude the 

existence of a simple linear relationship between ASIP copy number and white 

pigmentation. 

The final aim of the Thesis was to investigate the genomic architecture 

of coat color in Murciano-Granadina goats (paper Ⅴ). We carried out a genome-

wide association study comprising 387 black and 142 brown individuals. This 

analysis resulted in the identification of a single significant peak on chromosome 

18, which contains the melanocortin 1 receptor (MC1R) gene. Sequencing of the 

MC1R coding region and genotyping experiments evidenced that the c.801C>G 

(p.Cys267Trp) polymorphism tightly segregates with coat color, indicating that 
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the inheritance of coat color in Murciano-Granadina goats is essentially 

monogenic. 
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Resumen 

 

Uno de los principales objetivos de esta Tesis es el de investigar las bases 

moleculares de la lactación en cabras de la raza Murciano-Granadina desde una 

perspectiva transcriptómica. Por lo tanto, recolectamos biopsias de glándula 

mamaria de siete cabras Murciano-Granadinas en tres puntos temporales, ésto es 

78 días (T1, lactación temprana), 216 días (T2, lactación tardía) y 285 días (T3, 

período seco) después del parto. Mediante el uso de la tecnología RNA-Seq, se 

llevó a cabo un análisis de expresión diferencial que dio como resultado la 

identificación de 1654 genes diferencialmente expresados  (DE) (q-valor ≤ 0,05 

y log2FC absoluto> 1,5). El contraste T1 vs. T2 permitió identificar 42 genes DE, 

mientras que en los contrastes T1 vs. T3 y T2 vs. T3 se detectaron 1377 y 1039 

genes DE, respectivamente. La expresión de RNA mensajero de los genes que 

codifican las proteínas lácteas (CSN1S1, CSN1S2, CSN2, CSN3, PAEP y LALBA) 

se incrementó significativamente durante la lactación. Muchos de los genes DE 

estaban relacionados funcionalmente con el metabolismo de las proteínas, los 

lípidos y los carbohidratos, la ruta de señalización de la insulina, la homeostasis 

del calcio, la muerte celular programada, la remodelación e involución de los 

tejidos, así como la inmunidad mamaria. 

En el primer estudio de esta Tesis, también se planteó identificar los 

polimorfismos genéticos que están asociados a la producción y a la composición 

de la leche en cabras Murciano-Granadinas. La realización de un estudio de 

asociación del genoma completo (GWAS) con el software GEMMA permitió 

identificar 24 quantitative trait loci (QTLs). De las 24 asociaciones significativas, 

solo tres lo fueron a nivel genómico, ésto es QTL1 (cromosoma 2, 130,72-131,01 

Mb) para el porcentaje de lactosa, QTL6 (cromosoma 6, 78,90-93,48 Mb) para 

el porcentaje de proteína y QTL17 (cromosoma 17, 11,20 Mb) tanto para los 

porcentajes de proteína como de materia seca. Al verificar la concordancia entre 

genes localizados dentro de QTLs y genes expresados diferencialmente, 
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encontramos 39 genes que presentaban DE en alguno de los contrastes 

analizados y que además estaban localizados dentro o en la cercanía de 14 QTLs 

significativos a nivel genómico o cromosómico. La región QTL6, que mostró 

asociaciones significativas con los porcentajes de proteína, grasa y materia seca, 

contiene los genes de las caseínas cuya expresión aumenta durante la lactación. 

Nuestros resultados indican que la variabilidad de los genes de las caseínas es el 

principal determinante del contenido de proteína y grasa de la leche en las cabras 

Murciano-Granadinas. También hemos observado una baja concordancia 

posicional entre las señales GWAS detectadas en nuestro estudio y las descritas 

en razas caprinas francesas, lo que podría deberse a la existencia de un notable 

grado de heterogeneidad genética o bien a factores técnicos. 

El segundo artículo tenía como objetivo determinar si los polimorfismos 

de los genes de las caseínas caprinas surgieron antes o después de la 

domesticación de las cabras. Con este fin, recopilamos 106 secuencias 

genómicas caprinas procedentes de diversas bases de datos públicas y 

analizamos la segregación de polimorfismos nucleotídicos sencillos (SNPs) para 

los cuatro genes de las caseínas (CSN1S1, CSN2, CSN1S2 y CSN3) en bezoares 

(los ancestros salvajes de las cabras domésticas) y 4 grupos de cabras domésticas 

originarias de Europa, África, Lejano Oriente y Oriente Próximo. Una fracción 

relevante de SNPs de las caseínas segregó tanto en cabras domésticas como en 

bezoares, es decir, del 36,1% (CSN2) al 55,1% (CSN1S2). Por otra parte, más del 

50% de los SNPs de los genes de las caseínas fueron compartidos por 2 o más 

poblaciones de cabras domésticas, y del 18 al 44% fueron compartidos por todas 

las poblaciones. Estos resultados sugieren que una fracción importante de los 

SNPs de las caseínas ya estaba presente en el bezoar antes de su domesticación. 

Por otra parte, la reconstrucción de alelos a partir de datos SNP demostró que la 

mayoría de los alelos de las caseínas detectados en cabras domésticas también 

segregan en el bezoar, p.e. alelos A/B de los genes CSN1S1 y CSN3, y el alelo A 

del gen CSN2. En diversas publicaciones se ha descrito que estos alelos muestran 

asociaciones significativas con la composición de la leche, y en algunos casos 
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también se ha determinado la existencia de relaciones causales. En definitiva, 

concluimos que una parte importante de la diversidad existente en los genes de 

las caseínas caprinas deriva de la variación genética que ya segregaba en el 

bezoar antes de su domesticación. 

Otro objetivo de la Tesis consistía en caracterizar las variaciones del 

número de copias (CNV) en cabras Murciano-Granadinas (artículo 3). Así pues, 

analizamos los datos obtenidos a través del genotipado de 1036 cabras Murciano-

Granadinas con el Goat SNP50 BeadChip. Mediante la utilización de las 

herramientas PennCNV y QuantiSNP, se identificaron 4617 y 7750 CNV 

autosómicos, respectivamente. Al aplicar el algoritmo EnsembleCNV, estas 

CNV se ensamblaron en 1461 regiones CNV (CNVR), de las cuales 486 (33,3% 

del recuento total de CNVR) fueron identificadas consistentemente por 

PennCNV y QuantiSNP y utilizadas en análisis posteriores. Nuestros datos 

indican la existencia de un grado considerable de variación estructural en las 

cabras de la raza Murciano-Granadina. Probablemente, el uso de una gran 

población de cabras nos permitió detectar CNV de baja frecuencia que, de otra 

manera, no hubieran sido identificadas. En el conjunto de 486 CNVR, 

identificamos 78 eventos de ganancia del número de copias, 353 de pérdida y 55 

de ganancia/pérdida. Las CNVR cubrieron el 3,9% del genoma autosómico de la 

cabra (2466,19 Mb), y el tamaño medio de las CNVR fue de 196,89 kb, con un 

rango que oscilaba entre 2,0 kb y 11,1 Mb. Adicionalmente, los genes cuya 

posición coincidía con la de las CNVR estaban relacionados funcionalmente con 

la la transducción olfativa, los transportadores ABC y la desarrollo embrionario. 

Uno de los genes cuya posición coincidía con un CNVR fue el locus agouti 

signaling protein (ASIP), que codifica la proteína de señalización agouti que 

promueve la síntesis de feomelanina amarilla/roja. En algunas publicaciones, el 

aumento del número de copias del locus ASIP se asoció con una pigmentación 

blanca en el ganado caprino, por lo que nuestro hallazgo de que el ASIP CNVR 

también segrega en las cabras Murciano-Granadinas, que son negras o marrones, 

fue bastante paradójico. En el cuarto artículo, cuantificamos el número de copias 
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del gen ASIP en ocho razas de cabras con diferentes patrones de pigmentación. 

Observamos un aumento del número de copias del gen ASIP no solo en las cabras 

Saanen, que son blancas, sino también en cabras de las razas Murciano-

Granadina y Malagueña (son marrones o rubias). Estos resultados no concuerdan 

con la existencia de una relación lineal simple entre el número de copias del gen 

ASIP y la pigmentación blanca. 

El último objetivo de la Tesis consistió en investigar la arquitectura 

genómica del color de la capa en cabras Murciano-Granadinas (artículo 5). 

Llevamos a cabo un GWAS en el que se incluyeron datos de 387 individuos 

negros y 142 marrones. Este análisis dio como resultado la identificación de una 

asociación altamente significativa en el cromosoma 18, que contiene el gen del 

receptor de la melanocortina 1 (MC1R). La secuenciación de la región 

codificante del gen MC1R y los experimentos de genotipado evidenciaron que el 

polimorfismo c.801C> G (p.Cys267Trp) está asociado muy significativamente 

al color de la capa, lo que indica que la herencia del color  de la capa en las cabras 

Murciano-Granadinas es esencialmente monogénica. 
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Resum 

 

Un dels principals objectius d'aquesta Tesi és el d'investigar les bases 

moleculars de la lactació en cabres de la raça Murciano-Granadina des d'una 

perspectiva transcriptòmica. Amb aquesta finalitat, vam recollir biòpsies de 

glàndula mamària de set cabres Murciano-Granadines en tres punts temporals, 

és a dir 78 dies (T1, lactació primerenca), 216 dies (T2, lactació tardana) i 285 

dies (T3, període sec) després del part. Mitjançant l'ús de la tecnologia RNA-Seq, 

es va dur a terme una anàlisi d'expressió diferencial que va donar com a resultat 

la identificació de 1654 gens diferencialment expressats (DE) (q-valor ≤ 0,05 i 

log2FC absolut > 1,5). El contrast T1 vs T2 va permetre detectar 42 gens DE, 

mentre que, en els contrastos T1 vs T3 i T2 vs. T3 es van detectar 1377 i 1039 

gens DE, respectivament. L'expressió dels RNA missatgers que codifiquen les 

proteïnes làcties (CSN1S1, CSN1S2, CSN2, CSN3, PAEP i LALBA) es va 

incrementar significativament durant la lactació. Molts dels gens DE estaven 

relacionats funcionalment amb el metabolisme de les proteïnes, els lípids i els 

carbohidrats, la ruta de la senyalització de la insulina, l’homeòstasi del calci, la 

mort cel·lular programada, la remodelació i involució tisular, així com la 

immunitat mamària. 

En el primer estudi d'aquesta Tesi, també es va plantejar la identificació 

dels polimorfismes genètics que afecten la producció i la composició de la llet 

en cabres Murciano-Granadines. La realització d'un estudi d'associació del 

genoma complet (GWAS) amb el programari GEMMA va permetre identificar 

24 quantitative trait loci (QTLs). De les 24 associacions significatives, només 

tres ho van ser a nivell genòmic: QTL1 (cromosoma 2, 130,72-131,01 Mb) per 

al percentatge de lactosa, QTL6 (cromosoma 6, 78,90-93,48 Mb) per al 

percentatge de proteïna i QTL17 (cromosoma 17, 11,20 Mb) tant pels 

percentatges de proteïna com de matèria seca. Al verificar la concordança entre 

els gens localitzats dins de QTLs i gens expressats diferencialment, vam trobar 
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39 gens que presentaven DE en algun dels contrastos analitzats i que a més 

estaven localitzats dintre o en la proximitat de 14 QTLs significatius a nivell 

genòmic o bé cromosòmic. La regió QTL6, que va mostrar associacions 

significatives amb els percentatges de proteïna, greix i matèria seca, conté els 

gens de les caseïnes, l'expressió dels quals augmenta durant la lactació. Els 

nostres resultats indiquen que la variabilitat dels gens de les caseïnes és el 

principal determinant del contingut de proteïna i greix de la llet a les cabres 

Murciano-Granadines. També hem observat una baixa concordança posicional 

entre els senyals GWAS detectats en el nostre estudi i els descrits en races 

franceses, la qual cosa podria atribuir-se a l'existència d'un notable grau 

d'heterogeneïtat genètica o bé a factors tècnics. 

El segon article tenia com objectiu determinar si els polimorfismes dels 

gens de les caseïnes caprines van sorgir abans o després de la domesticació de 

les cabres. Amb aquesta finalitat, es van recopilar 106 seqüències genòmiques 

caprines procedents de diverses bases de dades públiques i es va analitzar la 

segregació de polimorfismes nucleotídics senzills (SNPs) localitzats en els 

quatre gens de les caseïnes (CSN1S1, CSN2, CSN1S2 i CSN3) tant en bezoars 

(els ancestres salvatges de les cabres domèstiques) com en 4 grups de cabres 

domèstiques originàries d'Europa, Àfrica, Orient Llunyà i Pròxim Orient. Una 

fracció rellevant dels SNPs de les caseïnes va segregar tant en les cabres 

domèstiques com en els bezoars, és a dir, del 36,1% (CSN2) al 55,1% (CSN1S2). 

D'altra banda, més del 50% dels SNPs dels gens de les caseïnes van ser 

compartits per 2 o més poblacions de cabres domèstiques, i del 18 al 44% van 

ser compartits per totes les poblacions. Aquests resultats suggereixen que una 

fracció important dels SNPs de les caseïnes ja estava present en el bezoar abans 

de la seva domesticació. D'altra banda, la reconstrucció d'al·lels a partir de dades 

de SNP va demostrar que la majoria dels al·lels de les caseïnes detectats en 

cabres domèstiques també segreguen en el bezoar, p.e. al·lels A/B dels gens 

CSN1S1 i CSN3, i al·lel A del gen CSN2. En diverses publicacions s'ha descrit 

que aquests al·lels mostren associacions significatives amb la composició de la 
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llet, i en alguns casos també s'ha determinat l'existència de relacions causals. En 

definitiva, vam concloure que una part important de la diversitat existent en els 

loci de les caseïnes caprines deriva de la variació genètica que ja segregava al 

bezoar abans de la seva domesticació.  

Un altre objectiu de la tesi consistia a caracteritzar les variacions del 

nombre de còpies (CNV) en cabres Murciano-Granadines (article 3). Així doncs, 

vam analitzar les dades generades a través del genotipat de 1036 cabres 

Murciano-Granadines amb el Goat SNP50 BeadChip. Mitjançant la utilització 

de les eines PennCNV i QuantiSNP, es van identificar 4617 i 7750 CNV 

autosòmiques, respectivament. Al aplicar l'algoritme EnsembleCNV, aquestes 

CNV es van acoblar en 1461 regions CNV (CNVR), de les quals 486 (33,3% del 

recompte total de CNVR) van ser identificades consistentment per PennCNV i 

QuantiSNP i utilitzades en els anàlisis posteriors. Els nostres resultats indiquen 

l'existència d'un grau considerable de variació estructural en les cabres de la raça 

Murciano-Granadina. Probablement, l'ús d'una gran població de cabres va 

permetre detectar CNV de baixa freqüència que d'altra manera no haguessin estat 

identificades. En el conjunt de 486 CNVR, vam detectar 78 esdeveniments de 

guany del nombre de còpies, 353 de pèrdua i 55 de guany/pèrdua. Les CNVR 

van cobrir el 3,9% del genoma autosòmic de la cabra (2.466,19 Mb), i la longitud 

mitjana de les CNVR va ser de 196,89 kb, amb un rang de mida que oscil·lava 

entre 2,0 kb i 11, 1 Mb. A més, els gens la posició dels quals coincidia amb la de 

les CNVR estaven relacionats funcionalment amb la la transducció olfactiva, els 

transportadors ABC i la desenvolupament embrionari.  

Un dels gens la posició del qual coincidia amb un CNVR va ser el locus 

agouti signaling protein (ASIP), que codifica la proteïna de senyalització agouti 

que promou la síntesi de feomelanina groga/vermella. En algunes publicacions, 

l'augment del nombre de còpies del locus ASIP es va associar amb una 

pigmentació blanca a les cabres domèstiques, així que la nostra troballa de que 

la CNVR que conté el gen ASIP també segrega en les cabres Murciano-

Granadines, que són negres o marrons, va ser força paradoxal. En el quart article, 
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quantifiquem el nombre de còpies del gen ASIP en vuit races de cabres amb 

diferents patrons de pigmentació. Observem un augment del nombre de còpies 

del gen ASIP no només en les cabres Saanen, que són blanques, sinó també en 

cabres de les races Murciano-Granadina i Malaguenya (marrons o rosses). 

Aquests resultats no concorden amb l'existència d'una relació lineal simple entre 

el nombre de còpies del gen ASIP i la pigmentació blanca en cabres. 

L'últim objectiu de la Tesi va consistir en investigar l'arquitectura genòmica del 

color de la capa en cabres de la raça Murciano-Granadina (article 5). Vam dur a 

terme un GWAS que abastava 387 individus negres i 142 marrons. Aquesta 

anàlisi va permetre la identificació d'una associació altament significativa en el 

cromosoma 18, que conté el gen de receptor de la melanocortina 1 (MC1R). La 

seqüenciació de la regió codificant del gen MC1R i els experiments de genotipat 

van evidenciar que el polimorfisme c.801C> G (p.Cys267Trp) està associat molt 

significativament amb el color de la capa, la qual cosa indica que l'herència del 

color de la capa en les cabres Murciano-Granadines és essencialment 

monogènica. 
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1.1 The importance of the dairy goat sector in Spain 

 

Goat milk production plays a key role in the economy of the developing 

world, being also an important asset in the food production system of high-

income countries (Pulina et al., 2018, Miller and Lu, 2019). In Europe, goats 

yearly yielded 2.7 million tonnes of whole fresh milk throughout 2014 to 2018 

according to the data released by the Food and Agriculture Organization of the 

United Nations database (FAOSTAT, http://www.fao.org/faostat). With 1.1 

million tonnes per year on average (2014-2018), Southern European countries 

were the largest contributors. With regard to Spain, it produces around 486 

thousand kilograms of whole fresh milk yearly, being the largest producer, 

followed by Greece (Figure 1). It is estimated that Spain currently has 2.66 

million goats over 12 months of age, mainly distributed in Andalucía (991,844 

heads), which is the main producing region, Castilla-La Mancha (410,162 heads), 

Extremadura (267,018 heads) and Región de Murcia (217,274 heads) (Figure 1). 

Females account for ~77.93% of the total census, and the majority of them (1.65 

million) have at least one parity (Figure 1). Indeed, most of Spanish goats are 

bred for milk production, being Murciano-Granadina (MUG) and Malagueña the 

two most prominent dairy breeds (Sepe and Argüello, 2019). 
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Figure 1. (a) The yield of whole fresh goat milk (tonnes) in Northern, Eastern, Western 

and Southern Europe in 2014-2018. (b) The yield of whole fresh goat milk in southern 

European countries in 2014-2018. Data presented in (a) and (b) have been retrieved from 

the Food and Agriculture Organization of the United Nations (FAOSTAT, 

http://www.fao.org, lastly accessed in April 8, 2020). (c) Census of goats and bucks in 

Spanish autonomous regions. (d) Number of female goats classified according to their 

lactation status in Spanish autonomous regions. The data of (c) and (d) have been 

retrieved from the Spanish Ministry of Agriculture, Fisheries and Food 

(https://www.mapa.gob.es, lasted accessed September 20, 2020). 

 

 

1.1.1 Main features of the Murciano-Granadina breed 

Murciano-Granadina is the Spanish goat breed with the largest census 

(112,000 heads) among the 22 caprine breeds officially recognized by the 

Ministry of Agriculture, Fisheries and Food (https://www.mapa.gob.es/). 

Generally speaking, MUG goats display a straight/sub-concave profile and 

medium proportions (Figure 2). The height and weight of MUG goats display 

sex-dependent differences, i.e. male (77 cm, 65 kg) and female (70 cm, 50 kg, 

respectively). Two main coat colors, black and brown, are distinguished (Figure 

2). Currently, this breed is distributed throughout Spain, but according to the 
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website of the Ministry of Agriculture, Fisheries and Food 

(https://www.mapa.gob.es), the largest populations can be found in Andalusia 

(37,808 heads) and Murcia (26,647 heads) (Table 1). Moreover, MUG goats 

have been also introduced in Morocco, Algeria, Greece, and South America due 

to their excellent adaptability to marginal environments with high temperatures 

and scarce food. Noteworthy, the MUG breed originated in mountainous areas 

of Murcia and Granada with extreme temperatures in summer and winter. 

Moreover, MUG goats are able to feed on agricultural by-products. Although 

MUG goats can be used for meat production, with an average daily gain of 166 

g/day and 7-10 kg of carcass weight for kids, it is primarily devoted to milk 

production. MUG herds raised in semi-intensive farms are milked once a day 

and each goat, on average, makes 6 lactations (250 days per lactation 

approximately) throughout its productive life. Moreover, MUG goats can 

produce 530 kg of milk per lactation, with 5.6 % of fat and 3.6% of protein 

content, a feature which is favorable for cheese production 

(https://www.mapa.gob.es). 

 

 

 

Figure 2. Pictures of black (a) and brown (b) Murciano-Granadina goats. These pictures 

were kindly provided Drs. Juan Manuel Serradilla (Universidad de Córdoba), Baltasar 

Urrutia (Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario) and 

Juan Carrizosa (Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario). 
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Table 1. Number of farms and MUG goats registered in the herd book throughout the 

Spanish geography 

Autonomous community Farm Female Male Both sexes 

Andalucía 86 36,379 1,429 37,808 

Aragón 3 2,303 72 2,375 

Cantabria 1 90 4 94 

Castilla La Mancha 18 14,877 534 15,411 

Castilla y León 12 7,898 369 8,267 

Cataluña 8 2,326 71 2,397 

Comunitat Valenciana 14 6,080 339 6,419 

Extremadura 19 8,240 221 8,461 

Madrid 2 4,272 113 4,385 

Murcia 29 25,505 1,142 26,647 

País Vasco 1 148 5 153 

Total 193 108,118 4,299 112,417 

These data have been retrieved from the Spanish Ministry of Agriculture, Fisheries and 

Food (https://www.mapa.gob.es, lasted accessed April 8, 2020). 

 

 

About the historical origin of Murciano-Granadina goats, they are the 

result of admixing two different Murciano and Granadina populations. This 

event was motivated by a decision from the Spanish government to integrate 

these two closed populations into a single breed in 1999, which could facilitate 

having a higher census for intensive selection (Delgado et al., 2017). The 

existence of two divergent gene pools was detected with a panel of 25 

microsatellites in 2010 (Martinez et al., 2010), but the Granadina component has 

been decreasing steadily and it is now nearing extinction (Delgado et al., 2017). 

The program of genetic improvement for MUG goats was established in 2012 

with the aim of estimating breeding values for phenotypes of economic interest, 

mainly milk production and, more secondarily, milk composition. This program 

is being performed by the Asociación Nacional de Caprino de Raza Murciano-
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Granadina (CAPRIGRAN), and the breeding goals for the MUG breed include 

the improvement of milk production and morphology. The former is achieved by 

taking into account four criteria: milk yield and protein and fat productions, 

which are measured in the autonomous milking control centers, and, on the other 

hand, casein genotypes (Delgado et al., 2017). Phenotype recording for 

morphology is achieved through the measurement of linear scores for body, 

udder and leg traits. In general, morphological criteria are complex and integrate 

a combination of different phenotypes: (1) Structure and capacity (height, thorax 

width, and angle of the rump); (2) Milk structure (angularity and bone quality); 

(3) Breast system (udder anterior insertion, middle suspensory ligament, udder 

width, udder depth, nipple insertion, and nipple diameter); and (4) Legs (rear 

view of the legs, lateral view of the legs, and mobility) (Delgado et al., 2017). 

The measurements of milk and morphological traits mentioned above are used 

for estimating breeding values by using the Best Linear Unbiased Prediction 

(BLUP) Animal Model implemented in the MTDFREML package (Boldman et 

al. 1993, Delgado et al., 2017). For measurements of milk production and quality, 

the statistical model takes into account as fixed effects the herd-year interaction, 

month of parturition and kidding size, doe age as a covariable, and random 

effects including the individual additive genotype effect on the trait and the 

environmental permanent effect (Delgado et al., 2017). For conformation traits, 

the univariate animal model considers several fixed effects including herd, year 

of qualification, month of qualification, and number of parturitions, doe days of 

lactation until qualification as a covariable and the random effect including the 

individual additive genotype effect on the trait (Delgado et al., 2017). By using 

these procedures, the breeding values of MUG individuals which are candidates 

to become breeders are estimated and selection is implemented. Two types of 

selection schemes are defined in the document “Programa de mejora de la raza 

caprina Murciano Granadina” 

(https://www.mapa.gob.es/es/ganaderia/temas/zootecnia/Programa%20de%20

Mejora%20de%20la%20Raza%20Murciano_Granadina.%20Definitivo._tcm30
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-114417.pdf). Intra-herd selection aims to select the mothers of the bucks 

which will become the future breeders. In this case, an Individual Multi-trait 

Selection Index is used to select the best females (less than 10% of population). 

This process is made once a year and it provides the males used for natural 

reproduction or artificial insemination. Subsequently, the male offspring of the 

mating between these selected females and elite bucks undergoes two cycles (at 

3 and 7 months of age) of phenotypic selection. Individuals overcoming this 

initial selection are sent to a testing station where they are trained for sperm 

collection. At this point, it begins the process of between-herd selection, where 

the male candidates are genetically evaluated, with a BLUP animal model, on 

the basis of phenotypic information provided by at least 80 daughters distributed 

in at least three farms. Of course, in the testing station the absence of observable 

defects, and the reproductive and growth ability of the candidates are also 

evaluated. The best individuals are integrated in the panel of elite breeders, and 

then they are genotyped for the casein loci to obtain a complementary view of 

their improving potential for dairy traits. These efforts have resulted in 

approximately 108,118 females and 4,299 males recorded in the Genealogical 

Book of the MUG breed up to now (Table 1). The availability of high throughput 

sequencing and genotyping methods in recent years makes it possible to improve 

animal productivity by using genomic selection (Hayes et al., 2009, Hayes et al., 

2013, Rupp et al., 2016). However, the genetic architecture of dairy and other 

relevant traits in MUG goats remains largely unknown, and from an economic 

point of view genomic selection might not be cost effective although the price of 

the SNP chips is decreasing each year. These factors limit the application of 

genomic selection technologies to the improvement of the MUG breed. 

 

1.2 Genomic technologies: theoretical basis and applications 
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1.2.1 RNA-Seq can be used to massively sequence transcriptomes 

In 2007, Emrich and colleagues reported for the first time an approach 

that significantly increased the sequencing throughput of the transcriptome by 

coupling laser capture microdissection (LCM) and 454 sequencing technologies 

(Emrich et al., 2007). The subsequent development of powerful sequencing 

platforms such as Roche 454 (Life Science), SOLiD22 (Applied Biosystems), 

and Illumina sequencers enhanced the performance of transcriptomic profiling 

experiments based on RNA sequencing (RNA-Seq) (Goodwin et al., 2016, Stark 

et al., 2019). RNA-Seq is able to profile the abundance and structure of all 

transcripts in a given sample, being widely used to construct atlas of gene 

expression as well as to detect differential gene expression in samples subjected 

to different experimental conditions (Emrich et al., 2007, Conesa et al., 2016, 

Stark et al., 2019). Other applications are related with the analysis of alternative 

splicing, co-regulation between genes, allele-specific expression and the 

identification of variants (Han et al., 2015). The RNA-Seq technology possesses 

important advantages over existing technologies, such as tiling microarray and 

cDNA sequencing (Wang et al., 2009). On the one hand, RNA-Seq is able to 

make use of small amounts of RNA samples with a relatively low cost, and it 

can be used in any organism and tissue (Wang et al., 2009, Han et al., 2015, Stark 

et al., 2019). On the other hand, RNA-Seq can measure gene expression in a 

much broader range than microarrays and, needless to say, it can be implemented 

to a much larger scale than quantitative polymerase chain reaction (qPCR) 

(Wang et al., 2009, Git et al., 2010). Therefore, RNA-Seq technology is 

employed as a routine tool in molecular biology to gain new insights into the 

physiology of many simple and complex traits (Han et al., 2015, Stark et al., 

2019).  

A typical workflow of a RNA-Seq experiment involves RNA 

preparation, cDNA synthesis and library construction, a procedure that includes 

fragmentation and adaptor ligation, and finally sequencing in a high throughput 
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platform (Figure 3). The initial step is to isolate RNA from either tissues or cells, 

being very important to take into account which type of RNA (basically short or 

long) needs to be sequenced. Indeed, different kinds of RNA require the use of 

different extracting methods in order to ensure that they can be adequately 

profiled (Hammerle-Fickinger et al., 2009). The sequencing methodology is 

different depending on the technology under consideration, so we will refer to 

Illumina sequencing platforms which have been used in the experimental work 

of the current thesis. After RNA purification, single stranded RNA is converted 

to cDNA by reverse transcription. Notably, third generation sequencing 

techniques, such as Nanopore, make it possible to sequence RNA molecules 

without the need of reverse transcription, thus improving many biases and 

artifacts resulting from this step (Ozsolak and Milos, 2011). After reverse 

transcription, cDNA needs to be fragmented into short sized molecules by using 

either enzymatic (e.g. transposase tagmentation reactions, non-specific 

endonuclease cocktails), or physical (e.g. sonication, acoustic shearing) methods 

(Kumar et al., 2012, Head et al., 2014). Subsequently, short oligonucleotide 

adaptors are ligated to either the 5’- or 3’-end of the cDNA fragments (Wang et 

al., 2009, Head et al., 2014, Hrdlickova et al., 2017, Stark et al., 2019). The 

quality of the resulting library is evaluated and, if satisfactory, it is loaded onto 

the flow cells of the sequencer machine (Figure 3). The Illumina sequencing 

method is essentially based on the principle of “sequencing by synthesis (SBS)”. 

With this technology, each molecule is clonally amplified by bridge PCR and 

subsequently sequenced by the cyclic addition of fluorescently labeled 

deoxynucleoside triphosphate (dNTP) reversible terminators. After the addition 

of each nucleotide, the clusters are excited by a light source and a characteristic 

fluorescence is emitted and recorded making it possible to infer the sequence of 

each DNA molecule (Shendure and Ji, 2008, Fuller et al., 2009). The sequencing 

bias is largely controlled because four types of dNTP are simultaneously present 

and they naturally compete to hybridize to their complementary base in each 

sequencing cycle (Shendure and Ji, 2008, Fuller et al., 2009). 
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Figure 3. Main steps in a RNA-Seq analysis. First the RNA is extracted and reversely 

transcribed to cDNA. Subsequently, cDNA is fragmented and ligated to adaptors and a 

library is built and loaded into the sequencer. Once data is generated, they are subjected 

to bioinformatics analysis. Please see the text for additional details. This picture has been 

created with BioRender.com. 

 

 

Once the transcriptome has been sequenced (Figure 3), sequence data 

needs to be analyzed with in silico bioinformatics methods (Conesa et al., 2016). 

Versatile tools have been developed for quality control, adaptor removal, 

alignment against a reference genome, and transcript assembly and 

quantification (Conesa et al., 2016). FastQC is commonly used to evaluate 

sequencing quality, 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc), and several tools 
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for trimming reads, such as FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit), Trimmomatic (Bolger et al., 2014), 

and Cutadapt (Martin, 2011) have been implemented. It is worthwhile to mention 

that Trimmomatic is especially suitable for Illumina sequencing data (Bolger et 

al., 2014), and trim_galore 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) is also a 

convenient pipeline that includes Cutadapt and FastQC, which can be 

consistently used for both quality control and adaptor trimming. Over sixty 

different computational approaches have been developed to align reads to a 

reference genome (Fonseca et al., 2012). However, the preference for using one 

read mapper or another greatly depends on the sequencing platform, data type 

and size (Fonseca et al., 2012, Yorukoglu et al., 2016). So far there are four 

broadly used mappers for RNA-Seq data, i.e. Bowtie (Langmead, 2010), STAR 

(Dobin et al., 2012), TopHat (Trapnell et al., 2009) and HISAT (Kim et al., 2015). 

Bowtie, which was developed by Langmead et al. in 2009, leverages the ability 

of both Burrows-Wheeler indexing (Burrows and Wheeler, 1994) and full-text 

minute indexing (Ferragina and Manzini, 2000) to achieve ultrafast and memory-

efficient alignment (Langmead et al., 2009). The newly extended Bowtie 2 tool 

allows gapped alignment, thus improving speed, sensitivity and accuracy 

(Langmead and Salzberg, 2012). The TopHat pipeline is able to identify splice 

junctions without the dependence of known splice sites based on aligned reads 

resulting from the Bowtie package (Trapnell et al., 2009, Langmead, 2010, 

Trapnell et al., 2012). A new version of this program (TopHat2) has been 

developed by achieving several enhancements, such as allowing for variable-

length INDEL (insertion or deletion) with respect to the reference genome, and 

increased sensitivity and accuracy (Kim et al., 2013). Likewise, the performance 

of the HISAT aligner (Kim et al., 2015) was improved in 2019, and now it can 

map both DNA and RNA sequencing reads by using a graph Ferragina Manzini 

index which reduces the impact of variant positions on mappability (Kim et al., 

2019). In this way, HISAT overperforms the STAR software package in handling 
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spliced sequences and coping with complex RNA sequences, such as those of 

chimeric and circular RNAs (Dobin et al., 2012, Dobin and Gingeras, 2015). In 

the step of RNA quantification, several metrics such as RPKM (reads kilobase 

per million reads), FPKM (fragments per kilobase per million reads), TPM 

(transcripts per million) are used. These quantitative metrics correct the estimates 

of gene expression for parameters such as sequencing depth and gene length, 

while the appropriate normalization of raw read counts eliminates additional 

biases (Conesa et al., 2016). There are several tools that were developed for 

counting RPKM, FPKM and TPM metrics, such as Kallisto (Bray et al., 2016), 

Cufflinks (Trapnell et al., 2010) and StringTie (Pertea et al., 2015). Others 

directly summarize raw reads, such as featureCounts (Liao et al., 2014) and 

HTSeq-count (Anders et al., 2015). In differential expression analysis, the 

expression of genes needs to be compared across two or more experimental 

conditions. Several methods implement statistical tools that correct different 

sources of bias before undertaking the differential expression analysis. For 

instance, edgeR (Robinson et al., 2009) introduces a Poisson model that corrects 

both technical and biological variability, while DESeq2 (Love et al., 2014) 

assumes a negative binomial distribution for gene expression estimates by fitting 

a generalized linear model for each gene on the basis of data from the read count 

matrix (Love et al., 2014, Conesa et al., 2016). Several other packages for RNA-

Seq differential expression analysis have been comprehensively compared and 

reviewed in Oshlack et al. (2010), Seyednasrollah et al. (2013), and Conesa et al. 

(2016). In order to achieve the fast and effective analysis of RNA-Seq data, 

software packages can be combined into a single pipeline. For instance, the 

coupling of HISAT (Kim et al., 2015), StringTie (Pertea et al., 2015) and 

Ballgown (Frazee et al., 2015), allows users to analyze RNA-Seq data in a 

straightforward manner (Pertea et al., 2016). Another pipeline incorporating 

TopHat (Trapnell et al., 2009, Kim et al., 2013) and Cufflinks (Trapnell et al., 

2010) was also widely used in previous years (Trapnell et al., 2012).  
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1.2.2 The development of high throughput SNP genotyping methods has 

enabled the performance of genome-wide association studies 

A single nucleotide polymorphism (SNP) can be defined as a single 

base-pair difference in the DNA sequence of individual members of a species. 

They are the most abundant type of polymorphism and they show a remarkably 

uniform genomic distribution. About 1.48 million SNPs were discovered by 

using reduced representation shotgun sequencing in humans (Altshuler et al., 

2000), while this number has increased up to 88 million due to the effort of the 

1000 Genomes Project (The 1000 Genomes Project Consortium, 2015). A high 

number of SNPs has been also identified in domestic species such as cattle (26.7 

million, Daetwyler et al., 2014), pigs (66.67 million, Groenen et al., 2012), and 

goats (10.70 million, Tosser-Klopp et al., 2014). High throughput genotyping 

systems have been implemented to characterize the variability of animal and 

plant populations. The identified SNP sites can be embedded into DNA 

microarrays that can be used to simultaneously type large numbers of SNPs 

(LaFramboise, 2009). Currently, there are two main companies which 

manufacture SNP chips, i.e., Affymetrix and Illumina, both of which essentially 

leverage the complementary mechanism of double stranded DNA (LaFramboise, 

2009). Generally, a probe containing the SNP site and several surrounding 

nucleotides is fixed onto a microarray, which is subsequently hybridized to a 

target DNA (LaFramboise, 2009). The resulting changes of the fluorescent signal 

reflect the pattern of nucleotide hybridization and they can be used for 

identifying genotypes (LaFramboise, 2009). In 1998, the first commercial human 

SNP chip including 1,494 SNPs (i.e. HuSNP assay) became available (Wang et 

al., 1998). In contrast, the first commercial SNP array for cattle, the Illumina 

BovineSNP50 BeadChip (Matukumalli et al., 2009), appeared much later. 

Currently, there are about eleven commercial SNP arrays available for cattle, 

with SNPs numbers ranging from 6 K to 777 K. There are also four porcine SNP 

arrays, from 10 K to 68 K, and two SNP chips for sheep (Nicolazzi et al., 2015). 

For goats, Tosser-Klopp et al. (2014) designed the first caprine SNP chip, which 
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included 53,347 markers, under the framework of the International Goat Genome 

Consortium. Later on, Qiao et al. (2017) reported a 66 K caprine SNP chip which 

took advantage of a solution hybrid selection (SHS)-based target enrichment 

strategy. These SNP chips have been also widely used to characterize copy 

number variations (CNV), which can be defined as genomic duplications or 

deletions, with sizes between 50 bp and several Mb, that are polymorphic 

amongst individuals of a given species. Only a few genome-wide CNV scans 

have been performed in goats. Liu et al. (2019) used Goat SNP50 BeadChip data 

to detect 6,286 putative CNV in 1,023 samples from 50 goat breeds using 

PennCNV. These CNV were assembled into 978 CNV regions, covering ~262 

Mb (~8.96%) of the goat genome. The segregation of CNV was concordant with 

the population history of goat breeds and several genes co-localizing with CNV 

had functions related with coat color, muscle development, metabolic processes, 

osteopetrosis, and embryonic development (Liu et al. 2019). Interestingly, 

genome-wide scans have also highlighted the existence of caprine CNV variants 

associated with growth and dairy traits (Kang et al. 2020, Liu et al. 2020) as well 

as with pigmentation patterns (Menzi et al. 2016, Henkel et al. 2019, see also 

section 1.5), indicating that variability in copy number could have important 

quantitative effects on simple and complex traits. 

The development of high throughput SNP genotyping technologies also 

made it possible to implement genome-wide association studies (GWAS) for 

dissecting the genetic factors determining the phenotypic variation of observable 

traits. In a GWAS, a panel of markers with a genome-wide distribution are 

genotyped in a population with recorded phenotypes, then the magnitude and the 

significance of the associations between marker genotypes and phenotypes are 

evaluated with statistical methods (Bush and Moore, 2012, Tam et al., 2019). 

The success of the GWAS essentially depends on the amount of linkage 

disequilibrium between markers and causal mutations as well as population size, 

which has a great impact on statistical power (Bush and Moore, 2012, Sved and 

Hill, 2018). When populations are small, it becomes very difficult to identify 
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causal mutations with small effects on the trait or mutations, that despite having 

moderate or even large effects, are very rare (Figure 4). In reality, there are many 

factors determining the ability of GWAS to detect causal mutations including the 

heritability of the trait and the existence of cryptic population structure 

(Evangelou and Ioannidis, 2013, Schaid et al., 2018, Tam et al., 2019). These 

difficulties explain why the SNPs genotyped in the GWAS very often only 

explain a fraction of the phenotypic variance (h2
SNP) that is lower than the 

heritability (h2) of the trait (Manolio et al., 2009). This gap between genealogical 

heritability, which measures which fraction of the phenotypic variance is 

explained by additive factors, and h2
SNP is often denominated as missing 

heritability. It should be taken into account, however, that genealogical 

heritability sometimes overestimates the magnitude of the additive component, 

so it should not be interpreted as an exact measurement of it. Last but not least, 

cryptic population structure and relatedness are important confounding factors 

that can result in spurious associations in GWAS. Therefore, adjusting 

population structure is critical in GWAS studies, and several tools have been 

developed to this end. For example, principal component analysis (PCA) data 

can be used to correct for population structure in GWAS (Price et al., 2006, Reich 

et al., 2008, Kang et al., 2010, Price et al., 2010, Bush and Moore, 2012, Pickrell 

and Pritchard, 2012). Other methods to infer population structure are 

multidimensional scaling (MDS), STRUCTURE, ADMIXTURE analysis and so 

on (Price et al., 2010, Alexander and Lange, 2011, Porras-Hurtado et al., 2013). 

In GWAS based on linear mixed models, individual relationships are accounted 

by the kinship matrix, so an additional correction based on PCA results would 

result in an overcorrection of the data (Kang et al., 2010, Price et al., 2010, Zhou 

and Stephens, 2012). In order to evaluate whether population stratification is well 

adjusted, Devlin and Roeder (1999) proposed the inflation factor λ, a genomic 

control parameter evaluating the impact of population stratification. If the λ value 

approximates 1, it means that population stratification does not exist; whilst 

anything below or above 1 means that population structure is not well corrected 
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(Devlin and Roeder, 1999, Price et al., 2010). Most recently, Wojcik et al. (2019) 

have found that the risk alleles responsible for a specific human disease differ 

from population to population, indicating that genetic heterogeneity is an 

important component of the inheritance of complex traits (Begum et al., 2012, 

Wojcik et al., 2019). 

 

 

Figure 4. The ability of GWAS to detect causal mutations depends on their allele 

frequencies (x-axis) and effect sizes (y-axis) (Manolio et al., 2009). In general, genome-

wide association (GWA) studies carried out in domestic species have a low statistical 

power due to constraints in sample size, making difficult the detection of causal alleles 

with small effects and/or very low frequencies. 

 

 

Since approaches based on the linear mixed model (LMM) are able to 

correct for population structure and individual relatedness in GWAS analysis, 

the implementations based on LMM have become very popular. Examples of 
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software implementing this approach are GenABEL (Aulchenko et al., 2007), 

EMMAX (Kang et al., 2010), FaST-LMM (Lippert et al., 2011) and GEMMA 

(Zhou and Stephens, 2012). Specifically, GEMMA implements a genome-wide 

efficient mixed-model analysis that is summarized below (Zhou and Stephens, 

2012): 

y = Wα + xβ + u + ε 

Where y represents the vector of phenotypic values; W is a matrix with 

a column of 1 s and the fixed effects; α is a c-vector of the corresponding 

coefficients including the intercept; x is a n-vector of marker genotypes in each 

individual; β is the effect size of the marker (allele substitution effect); u is a n-

vector of random effects with a n-dimensional multivariate normal distribution 

(0, λτ−1K), being τ−1 the variance of the residual error, λ the ratio between the 

two variance components and K is n × n relatedness matrix derived from marker 

genotypes (n is number of individuals); and ε is a vector of errors (Zhou and 

Stephens, 2012). The guidelines and protocols for GWAS analysis have been 

reviewed in several publications (Anderson et al., 2010, Ott et al., 2011, Barsh 

et al., 2012, Bush and Moore, 2012), so they will not be specified here. Moreover, 

it should be noted that due to the fact that thousands or millions of tests are 

carried out in a GWAS, it is absolutely necessary to correct for multiple testing 

with strategies such as the Bonferroni method, which can suffer from a high rate 

of false negatives (Haynes, 2013), or the false discovery rate (FDR) approach, 

that controls the expected proportion of falsely rejected hypotheses and it is less 

stringent (Benjamini and Hochberg, 1995). Obviously, GWAS data generated by 

different laboratories can be simultaneously analyzed by carrying out a meta-

analysis, thus increasing very significantly population size and statistical power. 

Recently, a meta-analysis for stature, using 58,265 cattle from 17 populations 

with 25.4 million imputed whole-genome sequence variants, made it possible to 

identify 163 significantly associated genomic regions which explained at most 

13.8% of the phenotypic variance (Bouwman et al., 2018). 
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At some instances, RNA-Seq and GWAS data are integrated to gain new 

insights into the genetic basis of complex traits. For instance, Deng et al. (2019) 

detected 1,420 differentially expressed (DE) genes across different lactation time 

points in buffaloes by using a RNA-Seq approach. Besides, they detected 976 

genes displaying genome-wide associations with milk yield. By integrating both 

sources of information through a system biology approach, these authors 

identified 12 promising candidate genes with potential effects on milk (Deng et 

al., 2019). GWAS and RNA-Seq can also be combined to detect expression 

quantitative trait locus (eQTL), i.e. regions of the genome with quantitative 

effects on gene expression (Gilad et al., 2008, Westra and Franke, 2014). 

However, the positional concordance of QTL and eQTL mapping seems to be 

low (van den Berg et al., 2019), probably due to the high biological complexity 

of metric traits. Additionally, eQTL mapping is cost-intensive because 

measuring gene expression in a large sample of individuals is quite expensive. 

 

 

1.3 Investigating the molecular basis of lactation through the analysis 

of gene expression 

 

In order to nourish young babies, mammals developed lactation, which 

is a unique process conducted in the mammary gland which produces a fluid rich 

in proteins, lipids and calcium which can be used by the newborn as a rich source 

of nutrients (Akers, 2016, Hassiotou and Geddes, 2013). In goats, an empty 

udder can weight 6 kg, so it is attached to the body by a complex and strong set 

of suspensory ligaments in the rear, foreudder, lateral sides, as well as the medial 

suspensory ligament. The mammary gland contains connective and secretory 

tissue, which is constituted by alveoli, in which milk is synthesized by epithelial 

mammary cells, and the ductal system which brings milk to the gland cisterns 
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and from here to the teat cisterns (Akers, 2016, Ferreira et al., 2013, Hassiotou 

and Geddes, 2013). The general physiology of the mammary gland and lactation 

are well known in cattle, sheep and goats, three species that have been selected 

for millennia to increase milk production (Gross and Bruckmaier, 2019). A 

mechanistic lactation model demonstrated that dairy goats had greater milking 

potential compared to sheep, though both performed worse than cows (Dijkstra 

et al., 2010). The lactation curve of dairy goats (total milk yield level, lactation 

persistency, milk yield in mid-lactation) is greatly affected by diverse genetic 

and environmental factors such as parity, age of the doe, kidding season, herd 

effect, level of production, feeding practice as well as the breed itself (Gipson 

and Grossman, 1990, Arnal et al., 2018). In the study carried out by León et al. 

(2012), the lactation curve of MUG goats was best modeled by the quadratic 

spline function, resulting in a total lactation yield of 434 kg at 210 days, a daily 

milk yield of 1.93 kg and 2.42 kg in the beginning and peak (day 45) of lactation, 

respectively, followed by a gradual decrease in milk production (Figure 5). This 

study has also analyzed the influence of geographical regions, type of kidding, 

number of lactation and season of kidding on the lactation curve, and found that 

these factors could affect the shape of the lactation curve, especially the initial 

level of milk yield (Figure 5, León et al., 2012). Moreover, the secretion of milk 

is, to a large extent, synchronized by the endocrine system that produces 

hormones regulating the development of the mammary gland, the initialization 

of lactation and the maintenance of milking (Tucker, 1981, Akers, 2016, Ferreira 

et al., 2013, Rezaei et al., 2016). There are eight types of hormones with 

important roles in mammary gland development and milk synthesis (Figure 6), 

i.e. estrogen, progesterone, prolactin, growth hormone, placental lactogen, 

glucocorticoids, thyroid hormones and insulin (Tucker, 2000). At the initial step 

of milk synthesis, the mammary gland needs to grow and to develop under the 

stimulation of growth hormone and prolactin, adrenocortical steroids, oestrogens 

and progesterone (Svennersten-Sjaunja and Olsson, 2005, Brisken and O’Malley, 

2010, Rezaei et al., 2016). Compared to cattle or even sheep, the physiology and 
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regulation of lactation of goats has been much less characterized. New and 

valuable knowledge could be obtained by using omics technologies (genomics, 

transcriptomics, metabolomics and proteomics) to understand the molecular 

events that make possible the production of milk in goats from a system biology 

perspective.  

 

 

 

Figure 5. The lactation curve of Murciano-Granadina goats (León et al., 2012). The 

graphs show the impact of geographical regions (a), type of kidding (b), number of 

lactation (c) and season of kidding (d) on the shape of the lactation curve. Generally, 

milk yield of MUG goats reaches the production peak at ~50 days after parturition and 

then gradually decreases until the end of lactation. The analyzed factors affect generally 

the initial point of milking with the exception of “geographic region”, which seems to 

have the same initial level of milking but reaches different peak levels at ~50 days.  
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Figure 6. The developmental stages of the mammary gland are regulated by hormones 

(Rezaei et al., 2016). This process involves mammogenesis, lactogenesis, apoptosis and 

autophagy. Mammogenesis begins in puberty, and involves the formation of the terminal 

end buds (TEBs) at the tip of mammary duct and of the ductal branch system. This stage 

is regulated by growth hormone (GH), insulin-like growth factor (IGF-I), estrogen (E2) 

and progesterone (P4). Since the onset of pregnancy, the lobules and alveoli of the 

mammary gland further develop to form alveolar buds and such transformation is 

modulated by E2, P4, prolactin (PL) and prolactin receptor (PRL). After that, the initiation 

of lactation facilitates the formation of mature alveoli responsible for producing and 

secreting milk, a process influenced by PL, PRL and cortisol. Once breast-feeding ends, 

the involution of the mammary gland starts, involving apoptosis and autophagy. 

LN: lymph node. 

 

 

1.3.1. Molecular analysis of lactation in cattle 

Since the first study generating expressed sequence tags from pooled 

bovine mammary glands (Sonstegard et al., 2002), so far 186 studies have been 

conducted to understand the relationship between gene expression and lactation, 

and almost 76% of them focused on the dairy cow (Figure 7). Cánovas et al. 

(2010) found that as much as 19,175 genes (70% of the total number of bovine 
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mRNA genes) are expressed in the milk somatic cells from Holstein cows at two 

stages of lactation (day 15 and day 250) by using a RNA-Seq approach. However, 

this study did not investigate the potential function of expressed genes but just 

focused on the discovery of SNPs mapping to transcripts expressed in milk 

somatic cells (Cánovas et al., 2010). Since that, RNA-Seq has been widely used 

for investigating gene expression in the bovine lactating mammary gland in the 

framework of a system biology perspective. For instance, Wickramasinghe et al., 

(2012) sequenced the transcriptomes of milk somatic cells sampled at days 15 

(transition), 90 (peak of lactation) and 250 (late lactation) of the lactation cycle 

of Holstein cows. They found that a total of 16,892 genes were expressed in 

transition lactation, 19,094 genes were expressed in peak lactation and 18,070 

genes were expressed in late lactation, which means that ~69% of genes 

annotated in the bovine genome are expressed in milk somatic cells 

(Wickramasinghe et al., 2012). Moreover, genes involved in the synthesis of 

caseins, whey proteins and lactose displayed augmented mRNA levels in early 

lactation, while lipid genes were maximally expressed in transition and peak 

lactation (Wickramasinghe et al., 2012). Specifically, protein synthesis in the 

bovine mammary gland is centrally regulated by ELF5 expression, and it is 

driven by the activities of glucose (e.g. SLC2A1, SLC2A3, SLC2A8) and amino 

acid transporters (e.g. SLC1A1, SLC1A5, SLC36A1, SLC3A2, SLC7A1 and 

SLC7A5), and by the interaction of insulin signaling (e.g. IRS1) and mTOR 

signaling pathways (e.g. FRAP1, EIF4E, EIF4EBP2, GSK3A and TSC1). In 

contrast, milk fat synthesis and secretion are mediated by the coordinated action 

of the SREBF1, SREBF2, and PPARG genes (Figure 8, Bionaz and Loor, 2008, 

Bionaz and Loor, 2011). Mammary fat metabolism involves many different 

processes (Figure 8), such as fatty acid (FA) absorption from blood (LPL and 

CD36), intracellular FA trafficking (FABP3), activation of intracellular long-

chain FA (ACSL1) and of short-chain FA (ACSS2), de novo FA synthesis 

(ACACA, FASN), FA desaturation (SCD, FADS1), triacylglycerol synthesis 

(AGPAT6, GPAM, LPIN1 ), lipid droplet formation (BTN1A1, XDH), ketone 
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body utilization (BDH1), and transcription regulation (INSIG1, PPARG, 

PPARGC1A). Moreover, Yang et al. (2015) profiled the gene expression of the 

milk fat globule at days 10 and 70 after calving via RNA-Seq and found 178 

significantly DE genes. They also observed a functional enrichment of the 

mammary gland development, protein and lipid metabolism process, signal 

transduction, cellular process, differentiation and immune function (Yang et al., 

2015). Besides, non-coding genomic elements are also important for bovine 

lactation, e.g. a total of 23,495 lncRNAs are expressed in the bovine mammary 

gland, and 3,746 show significant differences in expression between lactation 

and dry period (Yang et al., 2018). The comprehensive characterization of gene 

expression patterns in the bovine mammary gland provides an unprecedented 

systematic insight into the molecular dynamics of the lactation process. 

 

 

Figure 7. Number of scientific articles (y-axis) analyzing the lactation of dairy cattle, 

sheep and goats from a molecular perspective from 2010 to 2020 (x-axis). This graph is 

based on the results of a search in the PubMed database 

(https://pubmed.ncbi.nlm.nih.gov, the last accessed April 19, 2020) with terms 

“transcriptome + lactation” and “cattle/sheep/goats”.  

 



General Introduction 

53 

 

 

Figure 8. The proposed network of genes expressed in the bovine mammary gland that 

regulate and facilitate milk fat synthesis (Bionaz and Loor, 2008). This process involves 

de novo fatty acid (FA) synthesis, triacylglycerol (TAG) synthesis, FA import and 

trafficking, as well as lipid droplet secretion under the central coordination of the 

SREBF1, SREBF2 and PPARG genes, which are also regulated by SCAP, INSIG1, 

PPARGC1A and LPIN1 genes. More details can be found in the text. 

 

 

1.3.2. Molecular analysis of lactation in sheep 

In sheep, the first RNA-Seq study focused on the biology of late 

pregnancy and lactation was published in 2015, and revealed that about 13% of 

sheep genes were differentially expressed between the two studied time points 

(Paten et al., 2015). Genes related with cell proliferation, β-oxidation of fatty 

acids and translation were widely expressed in late pregnancy, while genes 
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mostly expressed during lactation were involved in the synthesis of fat and 

proteins, transportation, lipogenesis and remodeling (Paten et al., 2015). Another 

study carried out by Suárez-Vega et al. (2015) analyzed gene expression of milk 

somatic cells from four Assaf and four Churra ewes after lambing (days 10, 50, 

120 and 150), resulting in about 67% of the annotated genes expressed in milk 

somatic cells and 573 DE genes across lactation points (Suárez-Vega et al., 2015). 

In this study, besides observing the differential expression of genes encoding 

casein αS1 (CSN1S1), casein αS2 (CSN1S2), casein β (CSN2), casein κ (CSN3), α-

lactalbumin (LALBA) and progestagen-associated endometrial protein (PAEP), 

it was also found that the GLYCAM1 and B2M genes are highly expressed in 

days 10, 50, 120 and 150 after lambing (Suárez-Vega et al., 2015). While the 

GLYCAM1 gene encodes a protein that forms part of the fat globule; B2M is 

involved in the transfer of G immunoglobulins through the mammary epithelium 

(Suárez-Vega et al., 2015). Moreover, GABRB3 (17.29), COL4A2 (12.64), 

CPXM2F (12.58), AM13C (-11.78) and IL20 (-11.75) were amongst the genes 

with the largest fold changes (log2FC) in the late lactation stage (day 150) when 

compared to the beginning of lactation (day 50), possibly indicating their 

participation in mammary gland involution (Suárez-Vega et al., 2015). Very 

recently, the transcriptome profiling of the mammary gland has been performed 

in two Chinese ovine breeds, i.e. Small-Tailed Han and Gansu Alpine Merino 

sheep (Hao et al., 2019). This study has reported 407 and 373 breed-specifically 

expressed genes in the Small-Tailed Han and Gansu Alpine Merino breeds, 

respectively (Hao et al., 2019). Differentially expressed genes were enriched in 

functions related with catalytic activities, oxytocin signaling pathway and 

neuroactive ligand-receptor interaction (Hao et al., 2019).  

 

 

1.3.3. Molecular analysis of lactation in goats 
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Early transcriptome studies in goats used microarrays from cattle to 

investigate gene expression (Faulconnier et al., 2011, Li et al., 2012). The first 

high-throughput sequencing study only profiled the expression of miRNAs in 

the mammary glands of goats in the dry period and peak lactation (Wang et al., 

2017). Indeed, Wang et al. (2017) reported that miR-145 plays a critical role in 

fat metabolism by targeting insulin induced gene 1 (INSIG1), a key regulator of 

the expression of several genes linked to lipid synthesis during goat lactation. 

Likewise, Chen et al. (2018) identified another miRNA, chi-miR-3031, that by 

downregulating IGFBP5 mRNA could promote the expression of β-casein, a 

major component of milk proteins. Another study analyzing the expression of 

genes in colostrum milk vs. milk collected at 120 days of lactation resulted in the 

identification of 207 upregulated and 122 downregulated genes (Crisà et al., 

2016). As in dairy cow and sheep, genes with the highest expression during 

lactation are those encoding the main milk proteins, i.e. CSN1S1, CSN2, CSN1S2, 

CSN3, PAEP and LALBA. Moreover, Ji et al. (2019) profiled the gene expression 

of the caprine mammary gland across lactation and found DE genes related with 

biological regulation, cellular processes, metabolic processes, cells, organelles, 

binding, catalytic activity and transcriptional activity. Despite these efforts, the 

molecular basis of lactation in goats has not been characterized in depth yet.  

 

 

1.4 Genetic analysis of dairy traits in goats 

 

1.4.1 Heritability of dairy traits in goats 

Narrow sense heritability (h2) is the proportion of phenotypic variation 

explained by additive genetic variation segregating in the individuals of a given 

population (Visscher et al., 2008). Heritability is an important parameter in 
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animal breeding because it gives an idea of to what extent a trait can be modified 

by selection. Traits with high heritabilities will respond well to selection, while 

those with low heritabilities will be more difficult to improve because their 

inheritance, if any, is essentially non-additive. Generally, heritability values of 

dairy traits in goats are moderate. For instance, Gipson (2019) reported 

heritabilities for milk yield, fat and protein content of 0.26, 0.24 and 0.27, 

respectively. In MUG goats, heritabilities of 0.18, 0.16, and 0.25 for milk yield, 

fat content, and protein content have been reported, respectively (Analla et al., 

1996). More recently, Miranda et al. (2019) measured heritabilities of parameters 

related with the lactation curve such as peak yield (0.13), yield (0.16) and 

persistency traits (0.08) in MUG goats (Miranda et al., 2019), obtaining low 

values. In contrast, much higher heritability values have been described in the 

Alpine and Saanen breeds, with registers of 0.30-0.34 for milk yield and 0.60-

0.67 and 0.61-0.62 for protein and fat contents, respectively (Rupp et al., 2011). 

With regard to morphological traits, Rupp et al. (2011) have described moderate 

heritabilities for length (h2 = 0.46-0.50), width (h2 = 0.41-0.45), form (h2 = 0.26-

0.27), placement (h2 = 0.30-0.38), angle (h2 = 0.20-0.22) and orientation of the 

teats (h2 = 0.32 -0.35), as well as udder floor position (h2 = 0.34-0.37). With the 

availability of genome-wide genetic markers, the percentage of the phenotypic 

variance explained by SNPs (h2
SNP) can be estimated (Yang et al., 2011, Carillier 

et al., 2014). For instance, Carillier et al. (2014), with 46,959 SNPs from the 

Illumina Goat SNP50 BeadChip, estimated the h2
SNP values of traits indicated in 

Table 2, which ranged from 0.16 (somatic cell score) to 0.60 (protein content). 

In summary, there is a moderate degree of additive genetic variance for dairy and 

body conformation traits in goats, a feature that makes it possible to improve 

them by selection. 
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Table 2. Estimates of heritabilities of several dairy and morphological traits in Saanen 

and Alpine goats  

Trait Alpine goats Saanen goats 

Milk yield 0.31 0.26 

Fat yield 0.28 0.25 

Protein yield 0.31 0.25 

Fat content 0.48 0.51 

Protein content 0.60 0.56 

Somatic cell score 0.20 0.16 

Udder floor position 0.51 0.57 

Udder shape 0.40 0.47 

Rear udder attachment 0.47 0.52 

Fore udder 0.44 0.42 

Teat angle 0.42 0.45 

          Data presented in the current table are adapted from Carillier et al. (2014). 

 

 

1.4.2 Early studies investigating the effects of casein and whey protein 

genotypes on milk yield and composition   

The casein gene cluster is located in a 250 kb region of caprine 

chromosome 6. A total of 17 alleles have been identified in the CSN1S1 gene (A, 

B1, B2, B3, B4, C, D, E, F, G, H, I, L, M, 01, 02 and N), 8 alleles in the CSN2 

gene (A, A1, O’, O, B, C, D and E), 9 alleles in the CSN1S2 gene (A, B, C, D, E, 

F, 0, Sub A and Sub B), and 16 alleles in the CSN3 gene (A, B, B’, B”, C, C’, D, 

E, F, G, H, I, J, K, L, M) (Marletta et al., 2007, Amills et al., 2002, Amills, 2014, 

Selvaggi et al., 2014). A molecular description of the casein alleles is outlined in 

Figure 9. By taking into account the effects of the CSN1S1 alleles on the 

quantitative expression of the protein, they can be classified in four groups: 

strong alleles with ∼3.5 g CSN1S1/L per allele (A, B1, B2, B3, B4, C, H, L and 
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M); medium alleles with ∼1.1 g CSN1S1/L per allele (E and I); low alleles with 

∼0.45 g CSN1S1/L per allele (D, F and G); and null alleles (01, 02 and N) 

without CSN1S1 in milk (Table 3).  

 

 

Figure 9. Diagram depicting the allelic variation of the CSN1S1 (a), CSN2 (b), CSN1S2 

(c) and CSN3 (d) genes. This information is adapted from Marletta et al. (2007). Alleles 

that are differentiated just by silent mutations or that have not been well characterized 

are not included here. DEL: deletion; INS: insertion; AA: amino acid. 
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Table 3. The effect of CSN1S1, CSN1S2 and CSN2 alleles on the synthesis level of the 

corresponding proteins 

Gene Allele Synthesis level (g casein /L/allele) 

CSN1S1 

A, B1, B2, B3, B4, C, H, L, M 3.5 

E, I 1.1 

D, F, G 0.45 

01, 02, N 0 

CSN1S2 

A, B, C, E, F 2.5 

D ~1.25 

0 0 

CSN2 
A, A1, B, C, D, E 5 

O, O’ 0 

  Data presented in this table are adapted from Amills et al., (2002). 

 

 

In Spanish MUG goats, the CSN1S1BB genotype was associated with 

increased levels of the casein αS1 protein (Caravaca et al., 2008), but BB milk 

showed a lower curdling rate than EE milk (Caravaca et al., 2011). Notably, 

genotypes of the CSN1S1 gene were not reported to influence protein, casein, 

and fat concentrations (Caravaca et al., 2009). In contrast, the AB and BB 

genotypes of the CSN3 locus showed a tight association with increased levels of 

total casein and protein content in the MUG breed (Caravaca et al., 2009). Very 

recently, Pizarro Inostroza et al. (2019) genotyped 48 individual SNPs located in 

the casein loci of 159 MUG individuals and found associations between CSN1S1 

and CSN3 polymorphisms and the milk fat and protein contents. In French 

Alpine and Saanen goats, CSN1S1 genotypes showed highly significant effects 

on milk fat and protein contents and cheese yield (Carillier-Jacquin et al., 2016, 

Martin et al., 2002). Similar associations between CSN1S1 haplotypes and 
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protein percentage and fat kilograms were observed in Norwegian goats (Hayes 

et al., 2006). Moreover, Hayes et al. (2006) found that CSN3 haplotypes are 

associated with fat percentage and protein percentage (Hayes et al., 2006). 

Interestingly, they identified a unique deletion in the 12th exon of CSN1S1 gene 

from Norwegian goats, which showed significant associations with fat yield 

instead of protein production (Hayes et al., 2006). In Sarda goats, the CSN1S1 

AB and BB genotypes showed strong associations with protein and fat 

percentages, while associations between CSN2AA genotype and milk protein 

content and between CSN1S2AC genotype and fat and protein production were 

also observed (Vacca et al., 2014). All in all, the findings mentioned above 

indicate that caprine casein genes show a high polymorphism and that part of 

this diversity is associated with milk yield and composition traits. 

One of the major goat milk whey proteins is α-lactalbumin, which is 

encoded by the LALBA gene located on chromosome 5 (Selvaggi et al., 2014). 

For this gene, Cosenza et al. (2003) identified three variants in Italian goats, 

including a silent C>G substitution at the 5th position of the third exon (A2 allele), 

an intronic T>C polymorphism in the 13th position of the 1st intron, and a C>G 

transversion in the 3’ untranscribed region (Cosenza et al., 2003).  In 2007, Lan 

and coworkers identified a missense mutation (p.Leu100Pro) in the 3rd exon (Lan 

et al., 2007). Afterwards, Zidi et al. (2014) reported 19 SNPs in the LALBA gene 

by analyzing goats from two Spanish breeds (MUG and Malagueña), but no 

significant association with lactose content was found (Zidi et al., 2014). Another 

important whey protein is β-lactoglobulin, currently named as progestagen-

associated endometrial protein which is encoded by the PAEP gene located on 

caprine chromosome 11. Although many polymorphisms, including two 

missense mutations (p.Asp64Gly, p.Val118Ala) are found in the caprine PAEP 

gene (Yahyaoui et al., 2000, Ballester et al., 2005, Amills et al., 2002, Selvaggi 

et al., 2014), no association with milk phenotypes has been reported so far. 
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1.4.3 Using the genome-wide association study approach to elucidate the 

genomic architecture of dairy traits 

A quantitative trait locus (QTL) is a genomic region containing one or 

several polymorphisms with quantitative effects on a phenotype. Dairy traits, 

including milk yield, fat yield and percentage, and protein yield and percentage 

are polygenic and have a complex inheritance (Hu et al., 2013). For instance, in 

dairy cattle 22,427 QTLs for milk fat content, 19,782 QTLs for milk protein 

content, 5,104 QTLs for milk yield, 3,933 QTLs for udder morphology and 2,382 

QTLs for mastitis susceptibility have been detected so far (Cattle QTLdb, 

https://www.animalgenome.org/cgi-bin/QTLdb/BT/index). In dairy sheep, 234 

QTLs for milk yield, 358 QTLs for milk fat yield and 134 QTLs for milk protein 

production have been reported (Sheep QTLdb, 

https://www.animalgenome.org/cgi-bin/QTLdb/OA/index). In contrast, no QTL 

for goat dairy traits have been deposited in the QTLdb database (Hu et al., 2013). 

Historically this lack of caprine QTL in public databases was due essentially to 

the absence of reports describing microsatellite markers uniformly distributed 

throughout the caprine genome (Amills, 2014). Before the release in 2014 of the 

Goat SNP50 BeadChip (Illumina Inc., San Diego, CA), that encompasses 53,347 

SNPs (Tosser-Klopp et al., 2014), there was only one study mapping caprine 

QTL for milk production traits based on genotypic data provided by just 37 

microsatellite markers (Roldán et al., 2008). By using the half-sib regression 

interval mapping approach implemented in the QTL Express software (Roldán 

et al., 2008, Seaton et al., 2002), this very preliminary study resulted in the 

identification of QTLs for milk yield, fat and protein percentages. The possibility 

of performing GWAS with the Goat SNP50 BeadChip has considerably 

improved the identification of QTLs associated with dairy traits in goats (Table 

4). For instance, a total of 109 genomic regions have been associated with dairy 

traits in Saanen and Alpine goat populations, and the subsequent fine-mapping 

confirmed two missense polymorphisms in the DGAT1 gene with causal effects 
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on fat content (Martin et al., 2017). Noteworthy, two missense mutations in this 

gene explained ~6% (p.Arg251Leu) and ~46% (p.Arg396Trp) of the genetic 

variance of milk fat content (Martin et al., 2017). Interestingly, Liu et al. (2018) 

detected a copy number variation overlapping the DGAT1 gene which displayed 

a high frequency in a worldwide sample of goat breeds, but whether it plays role 

on milk fat production remains unknown. Another GWAS based on phenotypic 

and genotypic information provided by 2,381 goats made it possible to identify 

one genome-wide significant SNP on caprine chromosome 19 and four 

chromosome-wide significant SNPs for milk yield (Mucha et al., 2017). In the 

same study, four genome-wide significant QTLs, plus several chromosome-wide 

significant QTLs showed associations with conformation of udder attachment, 

udder depth, and front legs (Mucha et al., 2017). In a population of 810 Saanen 

and 1,185 Alpine goats, Martin et al. (2016a) also identified 17 genomic regions 

significantly associated with supernumerary teats, but only at the chromosome-

wide level. In terms of susceptibility to mastitis, a genomic region (33-42 Mb) 

on chromosome 19 was significantly associated with somatic cell count (SCC) 

in the Saanen breed (Martin et al., 2018). Another QTL on this chromosome (19: 

24.5-27 Mb) displayed negative pleiotropic effects on milk production (milk, fat 

yield, and protein yield) and udder traits (udder floor position and rear udder 

attachment) (Martin et al., 2018). 
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Table 4. Genomic regions showing associations with dairy and morphological traits in 

the Alpine (ALP) and Saanen (SAA) breeds and a composite populationa 

CHRb QTL(Mb) Phenotypesc Breedd Source 

1 18.7 Rear udder attachment ALP, SAA Martin et al., 2018 

1 20.5 Rear udder attachment ALP Martin et al., 2018 

1 29.6 Rear udder SAA Martin et al., 2018 

1 135.9-144.9 
Teat form, fat content, 

teat length 
ALP, SAA 

Martin et al., 2017, 

Martin et al., 2018 

2 88.6 Teat form ALP Martin et al., 2018 

3 87.9 Foot orientation ALP, SAA Martin et al., 2018 

4 71.2 Teat orientation SAA Martin et al., 2018 

5 6.9 Udder profile SAA Martin et al., 2018 

6 39.1-39.5 Chest depth ALP, SAA Martin et al., 2018 

6 43.7 Teat length SAA Martin et al., 2018 

6 74.3-87.2 
Protein content, Fat 

content 
ALP, SAA Martin et al., 2017 

8 38.83 Foot orientation CMP Mucha et al., 2017 

8 40.1 Rear udder attachment ALP, SAA Martin et al., 2018 

8 81.6 Chest depth ALP Martin et al., 2018 

8 105 Rear udder ALP, SAA Martin et al., 2018 

10 30.7 Chest depth ALP Martin et al., 2018 

14 2.5-4.6 Fat content ALP Martin et al., 2017 

14 9.2-16 Fat content ALP, SAA Martin et al., 2017 

14 57.2-57.5 Teat length ALP, SAA Martin et al., 2018 

14 79-79.9 Teat length, teat form ALP Martin et al., 2018 

16 13.5 Rear udder ALP, SAA Martin et al., 2018 

17 30.7-33.5 Fore udder ALP, SAA Martin et al., 2018 

19 26.07-28.5 

Udder attachment, 

udder depth, front 

legs, udder floor 

position, foot 

orientation 

SAA, CMP 
Mucha et al., 2017, 

Martin et al., 2018 

19 33-42 Somatic cell count SAA Martin et al., 2018 

19 58.2-58.3 Foot orientation ALP, SAA Martin et al., 2018 

21 62.7-64.0 Protein yield ALP, SAA Martin et al., 2017 

28 16 Rear udder attachment SAA Martin et al., 2018 

28 33 Rear udder attachment ALP, SAA Martin et al., 2018 

29 6.2 Teat length SAA Martin et al., 2018 

29 40.5-41.9 Fore udder, teat angle ALP, SAA Martin et al., 2018 

a: only those QTLs showing genome-wide significant associations and detected by 

GWAS are included here; b: Chromosome; c: milk traits are marked in bold; CMP: 

Composite population obtained by crossing Saanen, Toggenburg, and Alpine goats. 
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1.5. Genetic analysis of pigmentation in goats 

 

According to classical genetic studies, color patterns in goats are 

determined by 12 alleles at the Agouti locus, 3 alleles at the Brown locus, 2 alleles 

at the White Angora locus and 1 allele at the Extension locus (Adalsteinsson et 

al., 1994, Sponenberg and LaMarsh, 1996, Sponenberg et al., 1998). The Agouti 

locus includes a dominant white or tan allele (Awt), nine co-dominant alleles for 

black mask (Ablm), bezoar (Abz), badgerface (Ab), grey (Ag), light belly (Alb), swiss 

markings (Asm), lateral stripes (Als), mahogany (Amh), red cheek (Arc), and a 

recessive nonagouti allele (Aa) (Adalsteinsson et al., 1994). Very recently, 

Henkel et al. (2019) reported a new peacock allele (Apc) in this locus, which 

specifically exists in Peacock goats. At the Brown locus, the medium brown 

allele (Bb) is recessive to wild type (B+) that is further recessive to a dark brown 

allele (Bd) (Sponenberg and LaMarsh, 1996). An experiment crossing Angora 

and non-Angora goats documented a dominant white (WtaD) and a wild-type 

allele (Wta+), indicating that non-white color patterns in goats are genetically 

caused by other loci (Sponenberg et al., 1998). Interestingly, a dominant black 

allele in the Extension locus displayed an epistatic effect on the Agouti locus 

(Sponenberg et al., 1998). 

In mammals, the biosynthesis of melanin pigment takes place in 

melanocytes, which derive from the neural crest cells and migrate to hair follicles 

during embryonic development (Cichorek et al., 2013, Mort et al., 2015). The 

differentiation of melanocytes from the neural crests requires endothelin (END) 

signaling via homologous G-protein coupled, endothelin receptors (Figure 10, 

Saldana-Caboverde and Kos, 2010). Disruption of the process is expected to 

result in a diluted pigmentation due to the lack of mature melanocytes, e.g. 

mutated mice with EDNRBsl/sl genotype (piebald lethal) exhibited a white coat 

color (Saldana-Caboverde and Kos, 2010). Moreover, the maturation of 
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melanocytes is modulated by a complex array of regulatory factors including the 

melanocyte inducing transcription factor (MITF), KIT proto-oncogene, receptor 

tyrosine kinase (KIT), dopachrome tautomerase (DCT), the inactivation of 

which generally results in depigmentation (Cichorek et al., 2013, Mort et al., 

2015). For instance, several polymorphisms in the KIT gene have causal effects 

on the color sidedness of cattle (Durkin et al., 2012), and on the patch and white 

coat colors of pigs (Rubin et al., 2012, Bickhart and Liu, 2014, Georges et al., 

2018) and horses (Haase et al., 2007). In mature melanocytes, the synthesis of 

dark eumelanin and the red/yellow pheomelanin is controlled by a signaling 

pathway connected to the melanocortin 1 receptor (MC1R), which is located in-

between the plasma membrane (Cichorek et al., 2013, Wolf Horrell et al., 2016). 

When MC1R binds to proopiomelanocortin (POMC), the levels of the second 

messenger cAMP are increased, thus activating enzymes that are essential for 

the synthesis of eumelanin such as tyrosinase (TYR), tyrosine related proteins 1 

(TYRP1) and 2 (TYRP2), and MITF (Figure 10, Wolf Horrell et al., 2016). 

However, this pathway can be inhibited or blocked by the agouti signaling 

protein (ASIP). When ASIP, a negative agonist, binds to MC1R, it suppresses 

melanogenesis by decreasing melanocortin-induced cAMP production and 

further preventing expression of genes in downstream pathways including TYR, 

TYRP1, TYRP2 and MITF (Aberdam et al., 1998). Many studies support the 

causal roles of MC1R and ASIP on animal coat colors (Kijas et al., 1998, Norris 

and Whan, 2008, Georges et al., 2018, Li et al., 2019), e.g. a 190-kb tandem 

duplication affecting the expression of the ASIP gene causes dominant white 

pigmentation in sheep breeds (Norris and Whan, 2008). 

Several studies have investigated the causal factors determining 

pigmentation traits in goats by using a physiological candidate gene approach 

(Crepaldi and Nicoloso, 2007), but in general it has been difficult to associate 

genetic polymorphisms in pigmentation genes with color patterns (Feng et al., 

2009, Fontanesi et al. 2009a, Fontanesi et al. 2009b, Badaoui et al., 2011), 

probably due to the existence of complex inheritance patterns and genetic 



General Introduction 

66 

interactions (Badaoui et al., 2011). Fontanesi et al. (2009a) identified three 

missense mutations (p. Ala81Val, p. Val250Phe, and p.Cys267Trp) and one 

nonsense mutation (p.Glu225X) in the MC1R gene. These authors proposed a 

causal relationship between the p.Cys267Trp and the brown and black 

colorations of MUG goats (Fontanesi et al., 2009a). In another study performed 

by Wu et al. (2016), a relationship between a recessive allele in the MC1R gene 

and the red head and neck of Boer goats was established (Wu et al., 2016). The 

availability of high throughput technologies made it possible to investigate the 

genomic architecture of pigmentation traits with a much finer and 

comprehensive resolution than candidate gene studies. For instance, an 

undesirable coat “pink” color in the Saanen breed was associated with the 

genotype of the ASIP gene by performing a GWAS with 810 individuals (Martin 

et al., 2016b). Moreover, a 1 Mb copy number variant containing the EDNRA 

gene was tightly associated with a white coat color in Boer goats (Menzi et al., 

2016). Additionally, a missense mutation, p.Gly496Asp in the TYRP1 gene was 

identified in a GWAS as a causal factor for the brown (dominant) and black coat 

colors of Valais Blacknecked and Coppernecked goats (Becker et al., 2014, 

Dietrich et al., 2015). 
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Figure 10. Melanin biosynthesis in the melanocyte (modified from Wolf Horrell et al., 

2016). The binding of proopiomelanocortin (POMC, here indicated as α-MSH) to the 

melanocortin 1 receptor (MC1R) results in the activation of adenylyl cyclase (AC) and 

the accumulation of the second messenger cAMP. This would further activate the 

expression of downstream molecules including cAMP-dependent protein kinase (PKA), 

cAMP responsive binding element (CREB), melanocyte inducing transcription factor 

(MITF), tyrosinase (TYR), dopachrome tautomerase (DCT), as well as others (Wolf 

Horrell et al., 2016). In contrast, the binding of POMC to MC1R could be inhibited by 

agouti signaling protein (ASIP). If so, the ratio of eumelanin/pheomelanin would be 

changed affecting pigmentation. This image is created with BioRender.com.  

 

Structural variations (SVs) also have an important role in the 

determination of the coat coloration of pigs (Rubin et al., 2012), cattle (Durkin 

et al., 2012) and sheep (Norris and Whan, 2008). In goats, Fontanesi and 

colleagues found a CNV co-localizing with the ASIP gene by using an array 
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comparative genome hybridization (aCGH) approach (Fontanesi et al., 2009b). 

This result was further supported by two whole genome sequencing studies that 

confirmed the existence of a CNV encompassing the caprine ASIP gene (Dong 

et al., 2015, Zhang et al., 2018). These authors consistently indicated the 

existence of a relationship between increased ASIP copy number and white coat 

color (Fontanesi et al., 2009b, Dong et al., 2015, Zhang et al., 2018), yet no 

functional experiment was performed. In a recent study carried out by Henkel et 

al. (2019), complex SVs in the caprine ASIP locus have been reported, including 

ASIP-SV1 (63.23-63.38 Mb), ASIP-SV2 (63.13-63.14 Mb), ASIP-SV3 (63.16-

63.20 Mb) and ASIP-SV4 (63.13-63.25 Mb) (Figure 11). The ASIP-SV1 is a 

triplication spanning the ASIP, AHCY and part of ITCH loci (Figure 11a), which 

probably corresponds to a “white or tan” (AWt) allele segregating in the white 

Saanen and Appenzell breeds (Figure 11b-11d). The ASIP-SV2 is a tandem 

repeat with eight copies detected in Grisons Striped and Toggenburg goats (Asm), 

while another tandem repeat (ASIP-SV3) was inferred to have five copies in the 

St. Gallen Booted goat (Ab). In Peacock goats, both ASIP-SV3 and ASIP-SV4 (a 

triplication) were simultaneously identified (Henkel et al., 2019). Moreover, 

these authors have identified two SVs downstream the KIT gene, including KIT-

SV1 and KIT-SV2 (Figure 12). It is interesting to note that KIT-SV2 is a deletion 

but it is replaced by two copies of a triplication (89.21-89.23 Mb) located in the 

5’-end of RASSF6 gene (Henkel et al., 2019). Moreover, a CNV overlapping 

with the ADAMTS20 gene was detected by Dong et al. (2015) and Liu et al. 

(2018). This CNV could be associated with goat pigmentation since the 

ADAMTS20 gene plays a role in melanoblast survival (Silver et al., 2008) and 

co-localizes with a signature of selection detected when comparing white vs. 

colored goats (Bertolini et al., 2018). Despite these findings, the current 

knowledge about the genetic basis of color variation in goats, is still incomplete. 
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Figure 11. (a) The positional track of structural variations (SVs) in the caprine ASIP 

locus (Henkel et al. 2019). These authors reported four SVs in or near ASIP gene, i.e. 

ASIP-SV1 (63.23-63.38 Mb), ASIP-SV2 (63.13-63.14 Mb), ASIP-SV3 (63.16-63.20 Mb) 

and ASIP-SV4 (63.13-63.25 Mb). (b) Plotting of sequencing depth. The horizontal 

dashed line in red indicates the average sequencing depth. The positions of the ASIP gene 

and SV are shown in the upper part of the plotting. (c) and (d) Schematic pictures of coat 

coloration patterns associated with ASIP variation. The following abbreviations are used: 

BEZ, bezoar (Capra aegagrus, wild ancestor of domestic goat; APZ, Appenzell; SAN, 

Saanen; BST, Grisons Striped; TOG, Toggenburg; STG, St. Gallen Booted; GFG, 

Chamois Colored; PFA, Peacock.  
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Figure 12. (a) The positional track of structural variations (SVs) near the caprine KIT 

locus (Henkel et al., 2019). There are two SVs mapping to ~63 kb downstream the KIT 

gene, i.e. KIT-SV1 (70.86-70.96 Mb), KIT-SV2 (70.91-70.92 Mb). (b) Plotting of 

sequencing depth. Compared to wild ancestor (bezoar, BEZ), SVs were detected in Pak 

Angora (ANG, KIT-SV1) and Barbari (BAR, both KIT-SV1 and KIT-SV2) goats. The 

authors identified a deletion (KIT-SV2) that was replaced by two copies of a triplication 

(89.21-89.23 Mb).  
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This Ph.D. thesis was carried out under the framework of the project Genomic 

analysis of the genetic determination of milk yield, composition and body 

condition and viability in Murciano-Granadina goats (AGL2016-76108-R, 

2017-2019), funded by the Spanish Ministry of Economy and Competitiveness. 

The general goals of this thesis can be divided in three main thematic blocks: (1) 

Understanding the molecular basis of lactation in goats and identifying the 

genetic determinants of milk yield and composition, (2) Dissecting the landscape 

of copy number variation in Murciano-Granadina goats, and (3) Exploring the 

genetic basis of coat color in the Murciano-Granadina breed. In this context, the 

specific goals of the current Thesis are: 

 

• To investigate the molecular basis of lactation in Murciano-Granadina 

goats by using a RNA-Seq approach under the assumption that the 

elicitation and maintenance of lactation involves strong changes in the 

expression of genes involved in metabolism and other physiological 

processes (Paper Ⅰ).  

 

• Since, milk yield and composition traits have moderate heritabilities in 

goats, we wanted to identify the genetic determinants of these traits by 

performing a genome-wide association study comprising 822 Murciano-

Granadina individuals with available phenotypes (Paper Ⅰ). 

 

• There is broad evidence that casein variation in goats has a relevant role 

in the genetic determinism of dairy traits, so we aimed to catalogue such 

diversity at a global scale and to elucidate whether it originated either 

before or after goat domestication by using a comprehensive data set of 

published whole-genome sequences from bezoars and European, Asian 

and African goats (Paper Ⅱ). 

 

• As a first step towards elucidating the potential role of structural 
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variation in goat phenotypes, one objective of the current Thesis was to 

identify copy number variations (CNV) segregating in the Murciano-

Granadina breed by using SNP array data (Paper Ⅲ). 

 

• Copy number variation in the agouti signaling protein (ASIP) gene has 

been reported to influence coat color in goats. In the light of this, we 

were interested in quantifying the copy numbers of this gene in 

Murciano-Granadina goats as well as in other breeds with different 

pigmentation patterns to determine the relationship between ASIP CNV 

genotype and color (Paper Ⅳ).  

 

• We also wanted to explore the molecular basis of the coat color of 

Murciano-Granadina goats by performing a genome-wide association 

study with 529 individuals with black (N=387) or brown (N=142) coat 

colors (Paper Ⅴ). Our main interest was to dissect the genomic 

architecture of this trait (monogenic, oligogenic or polygenic) and to 

identify potential causal mutations.  
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Abstract 

 

Background 

In this study, we aimed to investigate the molecular basis of lactation as well as 

to identify the genetic factors that influence milk yield and composition in goats. 

To achieve these two goals, we have analyzed how the mRNA profile of the 

mammary gland changes in seven Murciano-Granadina goats at each of three 

different time points, i.e. 78 d (T1, early lactation), 216 d (T2, late lactation) and 

285 d (T3, dry period) after parturition. Moreover, we have performed a genome-

wide association study (GWAS) for seven dairy traits recorded in the 1st lactation 

of 822 Murciano-Granadina goats. 

 

Results 

The expression profiles of the mammary gland in the early (T1) and late (T2) 

lactation were quite similar (42 differentially expressed genes), while strong 

transcriptomic differences (more than one thousand differentially expressed 

genes) were observed between the lactating (T1/T2) and non-lactating (T3) 

mammary glands. A large number of differentially expressed genes were 

involved in pathways related with the biosynthesis of amino acids, cholesterol, 

triglycerides and steroids as well as with glycerophospholipid metabolism, 

adipocytokine signaling, lipid binding, regulation of ion transmembrane 

transport, calcium ion binding, metalloendopeptidase activity and complement 

and coagulation cascades. With regard to the second goal of the study, the 

performance of the GWAS allowed us to detect 24 quantitative trait loci (QTLs), 

including three genome-wide significant associations: QTL1 (chromosome 2, 

130.72-131.01 Mb) for lactose percentage, QTL6 (chromosome 6, 78.90-

93.48 Mb) for protein percentage and QTL17 (chromosome 17, 11.20 Mb) for 
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both protein and dry matter percentages. Interestingly, QTL6 shows positional 

coincidence with the casein genes, which encode 80% of milk proteins. 

 

Conclusions 

The abrogation of lactation involves dramatic changes in the expression of genes 

participating in a broad array of physiological processes such as protein, lipid 

and carbohydrate metabolism, calcium homeostasis, cell death and tissue 

remodeling, as well as immunity. We also conclude that genetic variation at the 

casein genes has a major impact on the milk protein content of Murciano-

Granadina goats. 

 

 

Background 

 

Understanding how genetic variation shapes the phenotypic diversity of milk 

traits not only implies the identification of such genetic determinants through 

genome-wide association studies (GWAS), but also a detailed knowledge about 

the genes playing a fundamental role in the progression of lactation. So far, very 

few GWAS have uncovered the genomic location and distribution of 

polymorphisms affecting milk yield and composition in goats. Martin et al. [1] 

genotyped, with the Goat SNP50 BeadChip, 2,209 Alpine and Saanen goats and 

performed association analyses with five dairy traits. Such work enabled the 

identification of 109 significant associations and further uncovered two 

polymorphisms in the DGAT1 gene that have major effects on fat content by 

modifying the activity of this enzyme [1]. In another recent study, Mucha et al. 

[2] detected a single nucleotide polymorphism (SNP) on goat chromosome 19 

displaying a genome-wide significant association with milk yield as well as a 

number of chromosome-wide significant associations with dairy traits on 
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chromosomes 4, 8, 14, and 29. Although these two studies represent a valuable 

step towards elucidating the genomic architecture of milk yield and composition 

traits in goats, analyzing a broader array of goat populations, as has been done 

in cattle [3], would provide a more comprehensive view of the genetic 

determinism of caprine dairy phenotypes. 

The events promoting the initiation, maintenance and abrogation of lactation 

have been barely analyzed from a transcriptomic perspective in goats. Only one 

RNA-Seq study has investigated the changes experienced by the caprine 

mammary gland transcriptome across the production cycle (lactation vs. dry 

period) [4], while another one has compared the gene expression profile of goat 

milk somatic cells in colostrum and mature milk [5]. A third study investigated 

the transcriptomes of goat somatic cells, milk fat globules and blood cells via 

using microarrays [6]. This situation contrasts strongly with that of cattle, in 

which several studies outlining how the gene expression profile of the mammary 

gland changes in response to different experimental conditions have been 

published so far [7, 8, 9, 10]. Indeed, RNA-Seq studies performed in dairy cattle 

[11] and also in sheep [12] have revealed that hundreds of genes are differentially 

expressed (DE) in the mammary gland when lactating vs. non-lactating 

individuals are compared. Multiple lines of evidence indicate that many of these 

genes are related to mammary gland development, protein and lipid metabolism 

processes, signal transduction, differentiation and immune function, being very 

significant the downregulation of the protein and lipid biosynthetic machinery 

[11, 12]. 

The work presented here had two main objectives: 1) Elucidating the changes in 

the mammary transcriptome associated with the lactation stage by sequencing 

total RNA from mammary gland biopsies retrieved from seven Murciano-

Granadina goats sampled at 78 d (early lactation), 216 d (late lactation) and 285 d 

(dry period) post-partum, and 2) Identifying the genetic determinants of milk 

yield and composition traits in Murciano-Granadina goats through a GWAS 
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approach comprising 822 individuals with records for 7 dairy traits registered 

during their 1st lactation. 

 

 

Methods 

 

Sequencing the mammary gland transcriptome along the lactation stage 

 

Transcriptome sequencing 

Mammary biopsies were retrieved from 7 Murciano-Granadina goats at each of 

the three time points, i.e. 78.25 ± 9.29 d (T1, early lactation), 216.25 ± 9.29 d (T2, 

late lactation) and 285.25 ± 9.29 d (T3, dry period) after parturition (Additional 

file 1: Table S1). The average age of the sampled goats was 5.88 ± 1.89 years 

and none of them was pregnant at T1, T2 or T3 (Additional file 1: Table S1). 

Mammary tissue was extracted with SPEEDYBELL 14G 150 mm semi-

automatic biopsy needles (EVEREST Veterinary Technology, Barcelona, Spain) 

after applying local anesthesia to the region to be punctured. Samples were 

immediately submerged in RNAlater stabilization solution (Thermo Fisher 

Scientific, Barcelona, Spain) and shipped back to the laboratory for storage at -

80 °C. 

For isolating total RNA, a small piece of mammary gland tissue was submerged 

into liquid nitrogen and grinded to a fine powder with a mortar and a pestle. 

Subsequently, this powder was homogenized in 1 mL TRIzol reagent (Thermo 

Fisher Scientific, Barcelona, Spain) with a homogenizer device (IKA T10 basic 

ULTRA-TURRAX, Barcelona, Spain). The Ambion RiboPure kit (Thermo 

Fisher Scientific, Barcelona, Spain) was used to purify total RNA in accordance 

with the instructions of the manufacturer. The concentration and purity of RNA 
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preparations were evaluated with a Nanodrop ND-1000 spectrophotometer 

(Thermo Fisher Scientific, Barcelona, Spain), while RNA integrity was checked 

in a Bioanalyzer-2100 (Agilent Technologies, Santa Clara, CA) by using an 

Agilent RNA 6000 Nano kit (Agilent Technologies, Inc., Santa Clara, CA). The 

RNA integrity number (RIN) ranged between 6.00-8.40, with an average of 

7.43 ± 0.58. 

Paired-end sequencing (2 × 76 bp) of the RNA was performed in the Centre 

Nacional de Anàlisi Genòmica (CNAG-CRG, http://www.cnag.crg.eu/). The 

RNA-Seq library was prepared with KAPA Stranded mRNA-Seq Illumina 

Platforms Kit (Roche). Briefly, 500 ng total RNA were used as the input material, 

the poly-A fraction was enriched with oligo-dT magnetic beads and the RNA 

was fragmented. The strand specificity was achieved during the second strand 

synthesis performed in the presence of dUTP. The blunt-ended double stranded 

cDNA was 3’-adenylated and Illumina platform compatible adaptors with 

unique dual indexes and unique molecular identifiers (Integrated DNA 

Technologies, Coralville, IA) were ligated. The ligation product was enriched by 

15 cycles of PCR amplification and the quality of the final library was validated 

on an Agilent 2100 Bioanalyzer with the DNA 7500 assay (Agilent Technologies, 

Inc., Santa Clara, CA). The libraries were sequenced with a HiSeq 4000 

instrument (Illumina, San Diego, CA) in a fraction of a HiSeq 4000 PE Cluster 

kit sequencing flow cell lane, following the manufacturer’s protocol for dual 

indexing. Image analysis, base calling and quality scoring of the run were 

processed using the Real Time Analysis (RTA 2.7.7) tool and subsequently 

FASTQ sequence files were generated. 

 

Bioinformatic analyses of gene expression 

Sequencing quality was evaluated with the FastQC software v0.11.7 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adaptors were 

automatically detected and removed by using the TrimGalore 0.5.0 tool 
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(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), and we 

also trimmed reads shorter than 30 bp or those with more than 5 ambiguous bases 

(N). We excised 15 bp from both ends of each read because sequencing errors 

are more frequent in these regions [13, 14]. Clean reads were aligned to the goat 

reference genome ARS1 [15] with HISAT2 [16] by following the pipeline 

reported in [17]. The counts of unambiguously mapped reads of “protein-coding” 

features annotated in the general feature format (GFF) file were summarized by 

using the featureCounts tool [18]. Differential expression analyses were 

subsequently carried out by using DESeq2 software [19]. Correction for multiple 

testing was performed with the false discovery rate (FDR) procedure reported by 

Benjamini and Hochberg [20]. We considered that differential expression across 

two time points as relevant when two conditions were met: an absolute value of 

log2 fold change (log2FC) > 1.5 and a q-value ≤ 0.05. Moreover, we analyzed the 

functional enrichment of DE genes by employing the DAVID Bioinformatics 

Resources 6.8 database [21, 22]. This analysis was based on human and goat 

background gene sets, and statistical significance was set to a q-value ≤ 0.05. 

 

Performance of a genome-wide association analysis for dairy traits 

 

Phenotype recording 

The population sampled in the current work comprised 1,023 Murciano-

Granadina goats raised in 15 farms affiliated to the National Association of 

Murciano-Granadina Goat Breeders (CAPRIGRAN). All farms selected for this 

study were connected by artificial insemination. Raw records of phenotypic traits 

were routinely collected by CAPRIGRAN. Phenotypes under study included 

milk yield at 210 d (MY210), somatic cell count (SCC), fat percentage (FP), 

protein percentage (PP), lactose percentage (LP), dry matter percentage (DMP) 

and length of lactation (LOL). Phenotypes were normalized to a standard 

lactation of 210 d with the exception of LOL, which was not standardized. By 
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filtering out individuals without complete phenotypic records, 822 goats 

remained for GWAS analyses. 

 

Genotyping with the goat SNP50 BeadChip 

Blood samples were collected in EDTA K3 coated vacuum tubes and stored at 

−20 °C before processing. Genomic DNA was isolated by using a modified 

salting-out procedure [23]. Briefly, 3 mL of whole blood were centrifuged at a 

speed of 2,000 × g in the presence of 4 volumes of Red Cell Lysis Solution (Tris-

HCl 10 mmol/L, pH = 6.5; EDTA 2 mmol/L; Tween 20 1%). The resulting white 

cell pellet was lysed with 3 mL lysis buffer (Tris-HCl 200 mmol/L, pH = 8, 

EDTA 30 mmol/L, SDS 1%; NaCl 250 mmol/L) and proteins were degraded by 

using 100 μL of proteinase K (20 mg/mL). After a 3-h incubation step at 55 °C, 

the lysate was chilled and 1 mL of ammonium acetate 10 mol/L was added to the 

lysate. After 10 min of centrifugation at 2,000 × g, the supernatant (~4 mL) was 

transferred to a new tube containing 3 mL of isopropanol 96%. Subsequently, 

samples were centrifuged at 2,000 × g for 3 min. Isopropanol was removed and 

the DNA pellet was washed with 3 mL of ethanol 70%. After a centrifugation 

step at 2,000 × g for 1 min, the DNA pellet was dried at room temperature and 

eluted with 1 mL of TE buffer (Tris-HCl 10 mmol/L, EDTA 1 mmol/L, pH = 8). 

All goats were typed with the Goat SNP50 BeadChip (Illumina, USA) [24] 

according to the instructions of the manufacturer. Markers mapping to sex 

chromosomes, with calling rates < 90%, or with minor allele frequencies 

(MAF) < 0.01, or that deviated significantly from the Hardy-Weinberg 

expectation (P ≤ 1 × 10− 6) were filtered out. Individuals with calling rates < 90% 

were also excluded. By integrating available phenotypic records, 48,722 SNPs 

and 822 goats passed the filtering criteria. 

 

Population structure and statistical analyses 
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We investigated population structure through the principal component analysis 

(PCA) approach implemented in the smartPCA program of the EIGENSOFT 

package (version 6.1.4) [25]. The proportion of the variance explained by each 

significant (P < 0.05) principal component was computed with the twstats 

program [26]. Association analyses were performed with the Genome-wide 

Efficient Mixed-Model Association (GEMMA, version 0.98) package [27] by 

fitting the following linear mixed model: 

 

Y = Wα + xβ + u+ ε 

 

where Y represents the vector of phenotypic values of the first lactation of 822 

Murciano-Granadina goats; W is a matrix with a column of 1 s and the fixed 

effects, i.e. farm (15 levels), year of birth (10 levels) and litter size (5 levels); α 

is a c-vector of the corresponding coefficients including the intercept; x is a n-

vector of marker genotypes in each individual; β is the effect size of the marker 

(allele substitution effect); u is a n-vector of random effects with a n-dimensional 

multivariate normal distribution (0, λτ−1K), being τ−1 the variance of the residual 

error, λ the ratio between the two variance components and K a n × n relatedness 

matrix derived from the 48,722 autosomal SNPs genotypes; and ε is a vector of 

errors. In this study, the GEMMA package performs likelihood ratio tests for 

each SNP by contrasting the alternative hypothesis (H1: β ≠ 0) against the null 

hypothesis (H0: β = 0). Moreover, population structure is corrected by 

considering the relatedness matrix, which is built by taking into account all 

genome-wide SNPs as a random effect. After carrying out a correction for 

multiple testing based on a FDR approach [20], statistical significance was set to 

a q-value ≤ 0.05. 

We retrieved a list of protein-coding genes that mapped within the genomic 

boundaries (± maximum distance of linkage disequilibrium decay, i.e. 988 kb) 

of leading SNPs (i.e. the SNP showing the most significant association with a 
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given trait) with the BEDTools v2.25.0 package [28]. The amount of linkage 

disequilibrium (LD) between adjacent SNPs was measured as the square of the 

correlation coefficient (r2) by using the “--r2” instruction implemented in PLINK 

v1.9 [29]. The objective of this analysis was to check whether protein-coding 

genes within or near quantitative traits loci (QTLs) are differentially expressed 

across lactation. 

 

 

Results 

 

An analysis of the mammary gene expression patterns across goat lactation 

 

Differential expression analysis 

We have individually sequenced 21 RNA samples representing three lactation 

time points (T1, T2 and T3, see Methods). This experiment generated 

approximately 120 gigabases of raw data, i.e. an average of 65 million reads were 

obtained for each sample. The overall alignment rate obtained with HISAT2 [16, 

17] was above 92%. The uniquely mapped reads were summarized by using the 

featureCounts tool [18]. To reduce the influence of transcriptional noise, we 

removed the features with a number of raw counts below 10 in all samples. 

Principal component analysis (Figure 1a) based on the expression profiles of 

each one of the 21 samples showed a clear separation between T3 (dry period) 

and T1/T2 (lactation) samples. Indeed, the first component explained 73% of the 

total variance. The only exception was sample T3-22, which clustered with 

T1/T2 samples (Figure 1a, Additional file 2: Figure S1). Our interpretation is 

that this sample was retrieved from a goat that was not successfully dried off, so 

we decided to remove it from the data set. Although T1 and T2 samples 
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represented two different time points of lactation (Figure 1a, Additional file 2: 

Figure S1), they clustered tightly. 

A total of 16,768 genes were found to be expressed in at least one of the 20 

samples corresponding to the three lactation time points (T1, T2 and T3, see 

Methods). By establishing as a threshold of significance a q-value ≤ 0.05 and an 

absolute log2FC > 1.5, we found 42 (T1 vs. T2), 1377 (T1 vs. T3) and 1,039 (T2 

vs. T3) DE genes (Figures 1b-d, Additional file 3: Tables S2-S4). The total set 

of 1,654 DE genes allowed us to differentiate T3 samples from the T1 and T2 

samples (Figure 2, Additional file 4: Figure S2). Moreover, there was a 

comparable number of upregulated and downregulated genes in the pairwise T1 

vs. T2 (22 upregulated and 20 downregulated) and T1 vs. T3 (649 upregulated 

and 728 downregulated) comparisons, while in T2 vs. T3 the number of 

downregulated genes (695) exceeded that of upregulated genes (344) (Figures 

1b-d, Additional file 3: Tables S2-S4). In summary, our data evidenced that 

once lactation ceased, a large number of genes were downregulated (Figures 1c-

d, Additional file 3: Tables S3 and S4). As expected, genes encoding the main 

milk protein constituents such as casein αS1 (CSN1S1), casein αS2 (CSN1S2), 

casein β (CSN2), casein κ (CSN3), lactalbumin α (LALBA) and progestagen-

associated endometrial protein (PAEP) were strongly downregulated at T3 

(Table 1). The insulin receptor 1 (IRS1) gene, a master regulator of carbohydrate, 

lipid and protein metabolism, also decreased in expression at T3 (Table 1). 
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Figure 1. (a) Principal component analysis (PCA) of mammary samples on the basis of 

read counts of “protein-coding” features annotated in the general feature format (GFF) 

file. These samples were obtained 78 d (T1, early lactation), 216 d (late lactation, T2) 

and 285 d (T3, dry period) after parturition. The red arrow indicates the sample T3-22, 

which clusters with T1 and T2 samples probably due to an unsuccessful dry-off 

(Additional file 2: Figure S1). b-d Volcano plots displaying differentially expressed 

genes in the pairwise comparisons T1 vs. T2 (b), T1 vs. T3 (c) and T2 vs. T3 (d). The 

red and green dots denote significantly downregulated and upregulated genes, 

respectively 

 

 

In T3, we also observed a marked downregulation of genes involved in lipid 

metabolic processes (Table 1), including: 1) Fatty acid synthesis, e.g. acetyl-

CoA carboxylase α (ACACA) and fatty acid synthase (FASN); 2) Triglyceride 

synthesis, e.g. glycerol-3-phosphate acyltransferase, mitochondrial (GPAM), 1-

acylglycerol-3-phosphate O-acyltransferase 1 (AGPAT1) and 4 (AGPAT4), 

glycerol-3-phosphate acyltransferase 2, mitochondrial (GPAT2) and 4 (GPAT4); 

3) Cholesterol synthesis, e.g. 7-dehydrocholesterol reductase (DHCR7), 24-

dehydrocholesterol reductase (DHCR24), lanosterol synthase (LSS), and 
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methylsterol monooxygenase 1 (MSMO1); 4) Sphingolipid synthesis, e.g. 

sphingolipid biosynthesis regulator 3 (ORMDL3), oxysterol binding protein like 

10 (OSBPL10) and 1A (OSBPL1A), serine palmitoyltransferase long chain base 

subunit 2 (SPTLC2) and 3 (SPTLC3); 5) Acetate synthesis and fatty acid 

activation, e.g. acetyl-coenzyme A synthetase 2 (ACSS2) and acyl-CoA 

synthetase long chain family member 1 (ACSL1); 6) Fatty acid desaturation, e.g. 

stearoyl-CoA desaturase (SCD) and fatty acid desaturase 1 (FADS1); 7) Fatty 

acid absorption and transportation, e.g. CD36 molecule (CD36), low-density 

lipoprotein receptor (LDLR), fatty acid binding protein 3 (FABP3) and 

apolipoprotein A5 (APOA5); 8) Formation of milk fat globules, e.g. butyrophilin 

subfamily 1 member A1 (BTN1A1), perilipin 2 (PLIN2), RAB18, member RAS 

oncogene family (RAB18), and milk fat globule-EGF factor 8 protein (MFGE8); 

9) Lipolysis, e.g. lipoprotein lipase (LPL), lipase G, endothelial type (LIPG), and 

pancreatic lipase related protein 2 (PNLIPRP2); 10) Transcriptional regulation 

of lipid metabolism, e.g. peroxisome proliferator activated receptor α (PPARA), 

estrogen receptor 2 (ESR2), leptin (LEP), and insulin-induced gene 1 (INSIG1). 
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Figure 2. Heatmap of read counts of 1,654 differentially expressed genes identified in 

the three available comparisons (T1 vs. T2, T1 vs. T3 or T2 vs. T3). Samples were 

clustered by their read counts. The color scale varying from blue to purple depicts the 

number of read counts of differentially expressed genes which range from low to high, 

respectively. 
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The ceasing of lactation (T3) also involved an important decrease in the gene 

expression of solute carrier genes (Table 1) involved in the transportation of: 1) 

Carbohydrates, e.g. solute carrier family 2 member 1 (SLC2A1) and solute carrier 

family 35 member C1 (SLC35C1); 2) Amino acids, e.g. solute carrier family 1 

member 1 (SLC1A1), solute carrier family 1 member 5 (SLC1A5), solute carrier 

family 7 member 14 (SLC7A14) and solute carrier family 36 member 2 

(SLC36A2); and 3) Minerals, e.g. zinc (solute carrier family 30 member 4, 

SLC30A4), copper (solute carrier family 31 member 1, SLC31A1), divalent 

metals (solute carrier family 39 member 14, SLC39A14), to mention a few. With 

regard to the absorption of calcium, one of the main minerals present in milk, we 

observed a reduction in the expression of transient receptor potential cation 

channel subfamily V members 1 (TRPV1), while there was an upregulated 

expression of transient receptor potential cation channel subfamily V members 

5 (TRPV5) and 6 (TRPV6). The gene expression of parathyroid hormone-like 

hormone (PTHLH) was reduced in the mammary gland at T3 but, at the same 

time, an increased expression of fibroblast growth factor 23 (FGF23) was also 

detected. 

In general, genes involved in apoptosis displayed an upregulated expression in 

the mammary gland of goats at T3 (Table 1). Examples of these genes are the 

insulin-like growth factor binding protein 5 (IGFBP5), leukemia inhibitory 

factor (LIF), suppressor of cytokine signaling 3 (SOCS3), BCL2 like 14 

(BCL2L14), oncostatin M (OSM), oncostatin M receptor (OSMR), Fos proto-

oncogene, AP-1 transcription factor subunit (FOS) and JunB proto-oncogene, 

AP-1 transcription factor subunit (JUNB) as well as several genes belonging to 

the TNF superfamily such as tumor necrosis factor (TNF) and TNF receptor 

superfamily members 8 (TNFSF8), 13 (TNFSF13), 18 (TNFRSF18) and 6b 

(TNFRSF6B), and TNF-α induced protein 6 (TNFAIP6). In contrast, well known 

survival factors such as leukocyte receptor tyrosine kinase (LTK) and Wnt family 

member 5A (WNT5A) displayed a reduction in their expression at T3. Moreover, 

several genes belonging to the family of A disintegrin and metalloproteinase with 
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thrombospondin motifs (ADAMTS), such as ADAMTS4, ADAMTS7, 

ADAMTS16 and ADAMTS17, which are involved in morphogenesis and tissue 

remodeling [30] increased in expression at T3. 

 

Table 1. List of differentially expressed genes mentioned in the main text 

Main Function 
Gene 

symbol 

T1 vs. T3 T2 vs. T3 

log2FC q-value log2FC q-value 

Milk protein composition CSN1S1 -8.17 1.31E-28 -8.03 8.28E-28 

CSN1S2 -8.00 1.83E-18 -8.18 1.50E-19 

CSN2 -7.24 5.06E-15 -7.23 9.68E-15 

CSN3 -5.16 2.76E-11 -5.12 4.67E-11 

LALBA -9.53 3.72E-24 -9.47 8.10E-26 

PAEP -4.67 8.16E-20 -4.41 1.61E-22 

Regulator of carbohydrate, 

lipid and protein metabolism 
IRS1 -1.85 1.60E-11 - - 

Fatty acid synthesis ACACA -3.10 3.26E-36 -2.69 1.31E-39 

FASN -4.46 4.34E-43 -4.06 5.25E-47 

Triglyceride synthesis GPAM -5.35 5.03E-23 -5.47 2.35E-17 

AGPAT1 -2.18 1.66E-23 -1.96 7.68E-27 

AGPAT4 -1.94 2.12E-02 -2.08 8.48E-03 

GPAT2 - - -2.80 3.49E-04 

GPAT4 -2.70 8.24E-19 -2.44 6.98E-35 

Cholesterol synthesis DHCR7 -2.53 1.57E-20 -2.91 1.40E-50 

DHCR24 -4.00 1.15E-33 -4.14 3.81E-49 

LSS -1.82 3.88E-19 -2.30 1.60E-40 

MSMO1 -2.47 1.01E-22 -2.93 3.50E-31 

Sphingolipid synthesis ORMDL3 -2.24 3.76E-19 -2.16 3.44E-30 

OSBPL10 -1.63 6.25E-06 - - 

OSBPL1A -1.62 4.00E-13 - - 

SPTLC2 -1.73 1.56E-18 - - 

SPTLC3 -1.54 2.92E-06 - - 
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Acetate synthesis and fatty acid 

activation 

ACSS2 -2.26 5.04E-26 -2.53 1.57E-31 

ACSL1 -1.98 7.21E-09 -1.97 7.05E-13 

Fatty acid desaturation SCD -6.30 4.75E-32 -6.43 2.17E-23 

FADS1 -2.23 5.87E-26 -2.41 4.70E-25 

Fatty acid absorption and 

transportation 

CD36 -2.64 5.12E-16 -2.59 6.81E-20 

LDLR -1.72 7.96E-08 -2.37 3.19E-20 

FABP3 -5.00 1.93E-09 -5.37 5.60E-12 

APOA5 -5.12 3.17E-07 -5.08 8.00E-08 

Milk fat globules BTN1A1 -6.43 1.02E-14 -6.46 5.80E-15 

PLIN2 -2.00 6.30E-11 -1.96 7.69E-15 

RAB18 -2.65 1.05E-16 -2.32 4.00E-15 

MFGE8 -3.84 1.67E-20 -4.09 5.24E-49 

Lipolysis LPL -5.60 3.33E-30 -5.78 2.29E-47 

LIPG -4.10 7.56E-11 -4.25 1.14E-11 

PNLIPRP2 - - -2.46 1.12E-02 

Transcriptional regulation of 

lipid metabolism 

PPARA -1.63 1.78E-18 - - 

ESR2 -1.62 8.77E-08 - - 

LEP -4.01 2.11E-04 -5.39 2.39E-08 

INSIG1 -4.35 1.29E-31 -5.18 9.72E-79 

Transportation of 

carbohydrates 

SLC2A1 -2.18 2.76E-19 -2.00 2.34E-17 

SLC35C1 -2.94 1.59E-22 -2.85 8.11E-23 

Transportation of amino acids SLC1A1 -2.14 4.08E-07 -2.01 3.14E-06 

SLC1A5 -2.29 3.79E-09 -2.28 5.58E-14 

SLC7A14 -1.83 4.38E-03 -1.84 4.00E-03 

SLC36A2 -1.53 2.19E-03 - - 

Transportation of minerals SLC30A4 -2.70 1.37E-11 -1.95 4.49E-12 

SLC31A1 -1.69 1.96E-10 -1.53 6.50E-09 

SLC39A14 -1.72 1.31E-09 -1.68 7.69E-11 

Absorption of calcium TRPV1 -3.43 4.50E-06 -2.83 2.64E-07 

TRPV5 4.66 7.54E-07 3.68 1.15E-06 

TRPV6 3.25 7.87E-06 3.25 8.06E-11 
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PTHLH -5.17 1.04E-20 -5.41 1.28E-26 

FGF23 3.48 1.21E-06 2.33 5.21E-03 

Apoptosis IGFBP5 - - -1.76 2.01E-05 

LIF 2.58 3.05E-05 1.86 4.80E-04 

SOCS3 2.65 2.64E-05 2.49 1.66E-06 

BCL2L14 1.53 1.55E-06 1.68 4.06E-12 

OSM 1.90 1.46E-04 - - 

OSMR 1.64 6.38E-04 1.56 6.14E-09 

FOS 1.67 5.82E-03 1.72 2.61E-04 

JUNB 2.06 4.59E-06 1.80 4.63E-11 

TNF 1.78 8.90E-06 - - 

TNFSF8 1.66 8.87E-12 - - 

TNFSF13 - - -2.48 3.33E-17 

TNFRSF18 2.10 6.21E-05 1.59 1.04E-04 

TNFRSF6B 1.64 6.44E-04 - - 

TNFAIP6 1.81 1.41E-05 - - 

LTK -2.45 2.59E-26 -2.31 2.79E-19 

WNT5A -2.50 5.73E-20 -2.28 5.87E-26 

Morphogenesis and tissue 

remodeling 

ADAMTS4 2.46 5.84E-05 1.61 2.64E-03 

ADAMTS7 1.59 2.43E-06 - - 

ADAMTS16 1.69 2.46E-03 - - 

ADAMTS17 -1.54 1.18E-09 -1.64 2.02E-09 

Immunity MUC1 -3.11 2.59E-05 -2.78 1.21E-04 

MUC4 -2.10 7.80E-05 -1.81 1.03E-05 

MUC20 -3.01 4.49E-15 -2.78 1.09E-13 

ABCA3 -2.61 7.95E-21 -1.94 3.98E-20 

SFTPD -5.47 6.59E-34 -5.35 6.57E-38 

BPIFA1 -4.41 2.67E-13 -3.86 5.54E-08 

BPIFA2 -8.53 5.70E-11 -6.61 1.56E-14 

BPIFA3 -5.11 1.34E-17 -4.08 6.36E-09 

BPIFB1 -4.32 3.14E-21 -4.28 3.16E-20 
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BPIFB4 -3.93 8.81E-03 - - 

CLDN6 3.09 1.68E-03 - - 

CLDND2 1.68 1.57E-08 1.72 1.61E-22 

Cytokines and/or their 

receptors 

IL5 1.76 8.96E-03 - - 

IL15RA 1.90 3.49E-07 - - 

IL22RA2 1.99 9.41E-03 - - 

Defensins DEFB116 2.75 2.34E-02 2.73 9.28E-03 

DEFB126 3.40 2.70E-03 3.55 2.21E-04 

Chemokines CXCR4 1.67 1.67E-05 - - 

Complement cascade C1QA 1.60 1.77E-07 - - 

C1S 1.69 8.27E-06 - - 

C1R 1.76 4.57E-05 - - 

C6 2.25 1.53E-07 1.83 2.36E-06 

C7 1.95 1.04E-03 - - 

CTSL 1.78 8.36E-03 - - 

The dash symbol indicates the absence of a significant differential expression; log2FC: 

log2 of the fold-change in expression. A negative log2FC value indicates that mRNA 

expression is downregulated in T3. 

 

 

With regard to genes involved in immunity, the dynamics of their expression 

profiles was quite heterogeneous (Table 1). Genes with key roles in mucosal 

immunity, e.g. mucin 1 (MUC1), 4 (MUC4) and 20 (MUC20), ATP binding 

cassette subfamily A member 3 (ABCA3), and surfactant protein D (SFTPD), 

were downregulated at T3. In this time point, we also detected a decreased 

expression of several genes, e.g. the BPI fold containing family A member 1 

(BPIFA1), member 2 (BPIFA2) and member 3 (BPIFA3), and the BPI fold 

containing family B member 1 (BPIFB1) and member 4 (BPIFB4), which have 

antimicrobial, surfactant and immunomodulatory properties, thus preventing the 

formation of bacterial biofilms [31]. In contrast, tight junction proteins claudin 
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6 (CLDN6) and D2 (CLDND2), which determine the permeability of the 

paracellular barrier [32], were highly upregulated at T3. 

Finally, we detected an upregulation of a broad variety of immune response 

genes at T3 (Table 1), including: 1) Cytokines (and/or their receptors), e.g. 

interleukin 5 (IL5), interleukin 15 receptor subunit α (IL15RA) and interleukin 

22 receptor subunit α2 (IL22RA2); 2) Defensins, e.g. defensin β116 (DEFB116) 

and β126 (DEFB126); 3) Chemokines, e.g. C-X-C motif chemokine receptor 4 

(CXCR4); and 4) Genes participating in the complement cascade, e.g. 

complement C1q A chain (C1QA), complement C1s (C1S), complement C1r 

(C1R), complement 6 (C6), complement 7 (C7) and cathepsin L (CTSL). 

 

Functional enrichment of differentially expressed genes 

Due to the incomplete annotation of goat genes, the functional enrichment 

analysis of the 1,654 DE genes was based on both human and goat background 

gene sets retrieved from the DAVID database [21, 22]. As a result, we identified 

10 pathways that were significantly enriched based on the human background 

gene set (q-value ≤ 0.05, Additional file 5: Table S5), and 11 significant 

pathways based on the goat background gene set (q-value ≤ 0.05, Additional file 

5: Table S6). Six pathways were consistently detected in both analyses, i.e. 

PPAR signaling, metabolic pathways, steroid biosynthesis, complement and 

coagulation cascades, biosynthesis of antibiotics and adipocytokine signaling 

(Table 2). Moreover, the gene ontology (GO) analysis based on human 

background genes allowed us to detect 45 significant terms, while no term was 

identified when the goat background genes were used (Additional file 5: Tables 

S5 and S6). 

 

 



 

 

Table 2. Enriched pathways in the set of 1,654 differentially expressed genes (T1-T2, T1-T3 and T2-T3) 

Name 

Human background gene set Goat background gene set 

Number P value 
Fold 

Enrichment 
q-value Number P value 

Fold 

Enrichment 
q-value 

PPAR signaling pathway 18 2.01E-06 3.86 2.65E-05 22 8.86E-08 3.84 1.16E-06 

Steroid biosynthesis 9 3.06E-05 6.46 4.03E-04 10 2.58E-05 5.63 3.38E-04 

Complement and coagulation cascades 16 5.85E-05 3.33 7.70E-04 18 2.78E-05 3.19 3.65E-04 

Metabolic pathways 116 1.75E-04 1.37 2.30E-03 141 6.68E-06 1.41 8.78E-05 

Biosynthesis of antibiotics 28 1.49E-03 1.90 1.95E-02 30 2.58E-03 1.78 3.34E-02 

Adipocytokine signaling pathway 13 2.89E-03 2.67 3.73E-02 14 3.46E-03 2.48 4.45E-02 

These are the pathways that were consistently detected in the analyses based on human and goat background gene sets 
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Identification of genomic regions associated with dairy traits 

Descriptive statistics of seven dairy traits recorded in Murciano-Granadina goats 

are shown in Additional file 6: Table S7. The average values of milk fat 

percentage, protein percentage and milk yield normalized to 210 d were 

5.20% ± 0.85%, 3.56% ± 0.41% and 387.65 ± 134.79 kg, respectively. Moreover, 

all traits showed a normal distribution with the exception of the somatic cell 

count (SCC), which was logarithmically transformed to achieve normality 

(Additional file 7: Figure S3). The analysis of the Murciano-Granadina 

individuals by PCA clustering based on the genotypes of the 48,722 available 

markers did not show any sign of population stratification (Additional file 8: 

Figure S4). 

By performing association analyses between SNP genotypes and dairy traits 

recorded in 822 Murciano-Granadina goats, we identified 24 quantitative trait 

loci (QTLs) that reached the threshold of significance (q-value ≤ 0.05, Table 3) 

either at the genome-wide or chromosome-wide levels. Quantitative trait locus 6 

(QTL6) on chromosome 6 was highly associated with protein percentage at the 

genome-wide level of significance (78.90-93.48 Mb, q-value = 1.54 × 10−06, 

Figure 3, Table 3), and also with dry matter (84.67-86.86 Mb, q-value 

= 2.66× 10−02) and fat percentages (86.86 Mb, q-value = 1.36 × 10−02) at the 

chromosome-wide level of significance. In addition, we found genome-wide 

significant associations for lactose percentage on chromosome 2 (QTL1, 130.72-

131.01 Mb, q-value = 7.26 × 10−03, Figure 4a), as well as for protein and dry 

matter percentages on chromosome 17 (QTL17, 11.20 Mb, Figures 3a and 4b). 

At the chromosome-wide level, we found 21 significant associations (Table 3) 

but only two of them were supported by more than 2 SNPs (QTL9 for somatic 

cell count and QTL24 for lactose percentage, Table 3). 

According to data presented in Additional file 9: Figure S5, the maximum 

distance at which r2 decays to its minimum value is 988 kb. Based on this, we 

retrieved 490 protein-coding genes mapping to ±988 kb of the leading SNP 

https://jasbsci.biomedcentral.com/articles/10.1186/s40104-020-00435-4#MOESM9
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corresponding to each QTL. This list of genes was compared with the list of 

genes DE across lactation time points. By doing so, we found 39 genes mapping 

to 14 QTLs that are also DE (Table 4). For instance, the QTL6 region, which 

shows significant associations with protein, fat and dry matter percentages, 

contains the casein genes, which are downregulated in T3 (Tables 3 and 4). 

 

 

 

Figure 3. (a) Manhattan plot depicting the genome-wide association between milk 

protein percentage and a genomic region on chromosome 6 containing the casein genes 

(QTL6). Negative log10P values of the associations between SNPs and phenotypes are 

plotted against the genomic location of each SNP marker. Markers on different 

chromosomes are denoted by different colors. The dashed line represents the genome-

wide threshold of significance (q-value ≤ 0.05). (b) A detailed view of the chromosome 

6 region associated with protein percentage. Significant SNPs within the QTL boundaries 

have been marked in red. (c) Quantile-quantile (QQ) plot of the data shown in the 

Manhattan plot. 

 

 

https://jasbsci.biomedcentral.com/articles/10.1186/s40104-020-00435-4#Tab4
https://jasbsci.biomedcentral.com/articles/10.1186/s40104-020-00435-4#Tab3
https://jasbsci.biomedcentral.com/articles/10.1186/s40104-020-00435-4#Tab4
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Figure 4. (a) Manhattan plot depicting the genome-wide significant associations 

between SNP markers and lactose percentage. The corresponding quantile-quantile (QQ) 

plot is shown at the right side of the Manhattan plot. (b) Manhattan plot depicting the 

genome-wide significant associations between SNP markers and dry matter percentage. 

The corresponding quantile-quantile (QQ) plot is shown at the right side of the 

Manhattan plot. Negative log10P values of the associations between SNPs and 

phenotypes are plotted against the genomic location of each marker SNP. Markers on 

different chromosomes are denoted by different colors. The dashed lines represent the 

genome-wide threshold of significance (q-value ≤ 0.05). 

 

 

 



 

 

Table 3. Quantitative trait loci (QTLs) associated with milk traits recorded in Murciano-Granadina goats 

QTL Chromosome Leading SNP Position (Mb) #SNPs MAF Trait β ± SE P value q-value 

1 2 rs268253425 130.72-131.01 2 0.20 LP -0.09±0.02 1.50E-07 7.26E-03 

2 3 rs268258472 113.47 1 0.38 LOL -14.20±3.21 1.04E-05 2.38E-02 

3 6 rs268259784 4.40 1 0.35 PP 0.07±0.02 8.21E-04 4.09E-02 

4 6 rs268251267 15.64 1 0.24 PP 0.08±0.03 7.85E-04 4.00E-02 

5 6 rs268259390 56.51 1 0.02 DMP 1.08±0.26 4.56E-05 3.56E-02 

PP 0.29±0.07 6.52E-05 8.48E-03 

6 6 rs268290907 78.90-93.48 12 0.43 PP -0.14±0.02 3.19E-11 1.54E-06 

6 rs268268356 84.67-86.86 2 0.40 DMP -0.35±0.08 1.14E-05 2.66E-02 

6 rs268290907 86.86 1 0.43 FP -0.18±0.04 5.79E-06 1.36E-02 

7 11 rs268250457 72.83 1 0.41 LOL 15.23±3.30 4.40E-06 9.13E-03 

8 12 rs268256521 68.10 1 0.12 LOL -20.35±4.76 2.07E-05 3.50E-02 

9 13 rs268236131 53.62-54.38 2 0.32 SCC 0.22±0.05 1.92E-05 3.05E-02 

11 14 rs268255959 46.10 1 0.09 LP -0.10±0.02 2.56E-05 4.77E-02 

10 14 rs268282962 56.92 1 0.01 FP 0.78±0.18 1.78E-05 3.32E-02 

12 15 rs268235117 34.69 1 0.06 MY210 -61.98±13.53 4.95E-06 7.91E-03 

13 15 rs268290053 35.51 1 0.07 FP 0.35±0.08 4.82E-06 7.69E-03 

14 15 rs268266747 63.95 1 0.23 SCC 0.23±0.05 1.63E-05 2.60E-02 



 

 

15 16 rs268236985 39.59 1 0.04 DMP 0.81±0.20 6.39E-05 4.93E-02 

16 16 rs268253363 47.67 1 0.21 DMP 0.42±0.10 1.70E-05 2.62E-02 

17 17 rs268238952 11.20 1 0.06 PP 0.22±0.05 4.84E-06 2.13E-02 

DMP 0.88±0.17 3.89E-07 1.88E-02 

18 18 rs268278435 29.64 1 0.04 DMP 0.84±0.19 1.33E-05 1.70E-02 

19 20 rs268277231 29.45 1 0.08 LP -0.11±0.03 3.35E-05 4.84E-02 

20 22 rs268253724 25.30 1 0.36 FP -0.18±0.04 4.14E-05 4.68E-02 

21 23 rs268243170 8.15 1 0.45 MY210 29.89±6.76 1.03E-05 1.01E-02 

22 24 rs268240589 49.71 1 0.32 LP 0.07±0.02 9.51E-06 1.23E-02 

23 28 rs268240830 23.02 1 0.42 LP -0.06±0.01 7.16E-05 1.66E-02 

24 28 rs268246445 41.15-41.42 4 0.51 LP -0.06±0.01 3.21E-05 1.51E-02 

QTL: Quantitative trait locus; Genome-wide significant associations are indicated in bold;  leading SNP: a SNP showing the most significant 

association with a given trait; #SNPs; number of SNPs; MAF: minor allele frequency; PP: protein percentage, FP: fat percentage, LP: lactose 

percentage, DMP: dry matter percentage, SCC: somatic cell count, LOL: length of lactation, MY210: milk yield normalized to 210 days; β and 

SE denote the effect size of the marker (allele substitution effect) and its standard error, respectively. 

 

 



 

 

Table 4. List of genes that are differentially expressed and that co-localize with dairy QTLs 

QTL 
Leading 

SNP 

Chrom- 

osome 
Start End Gene symbol 

T1 vs. T2 T1 vs. T3 T2 vs. T3 

log2FC q-value log2FC q-value log2FC q-value 

1 rs268253425 2 130227819 130232923 MSTN - - -2.17 3.30E-05 -1.66 1.14E-05 

2 rs268258472 3 113070996 113098602 SH2D1B - - 1.53 3.42E-04 - - 

3 113497530 113528836 HSD17B7 - - -2.18 1.87E-09 -2.08 5.91E-13 

3 113589998 113598576 CCDC190 - - 2.15 3.31E-02 - - 

3 113876670 113883784 RGS4 - - -3.45 1.10E-03 -3.25 1.73E-04 

4 rs268251267 6 15922309 15965996 CFI - - 2.20 4.46E-04 2.33 1.08E-05 

6 rs268268356, 

rs268290907 

6 84458894 84563377 LOC102185449 - - - - -2.04 2.62E-02 

6 84667577 84721849 LOC102186288 - - -4.57 7.95E-08 -3.96 5.03E-10 

6 85137434 85152951 LOC102172432 - - - - -3.91 3.79E-03 

6 85878003 85901026 LOC102169846 - - -6.10 4.46E-07 -6.24 6.03E-06 

6 85978463 85995270 CSN1S1 - - -8.17 1.31E-28 -8.03 8.28E-28 

6 86006250 86015321 CSN2 - - -7.24 5.06E-15 -7.23 9.68E-15 

6 86076845 86093539 CSN1S2 - - -8.00 1.83E-18 -8.18 1.50E-19 

6 86093738 86115903 LOC102178810 - - -6.50 4.36E-12 -5.91 2.77E-11 

6 86197263 86211376 CSN3 - - -5.16 2.76E-11 -5.12 4.67E-11 

6 86427932 86443025 AMTN 1.94 2.72E-02 -2.59 4.31E-06 -4.56 4.61E-12 



 

 

7 rs268250457 11 71885505 71909335 GCKR - - -1.96 5.40E-09 - - 

11 72204731 72208863 TCF23 - - 2.04 3.56E-03 1.56 2.26E-02 

11 72818025 72863960 DRC1 - - 2.55 2.54E-07 1.71 6.22E-04 

8 rs268256521 12 67360683 67392416 EBPL - - -2.05 6.24E-13 -2.32 7.71E-12 

12 68130994 68150636 CYSLTR2 - - 1.57 1.43E-06 - - 

9 rs268236131 13 53376787 53378322 TNFRSF6B - - 1.64 6.44E-04 - - 

13 53475687 53483660 EEF1A2 - - 2.07 2.39E-02 - - 

13 53771553 53785372 SLC17A9 - - - - -1.94 5.05E-10 

13 54495442 54974847 CDH4 - - 1.55 1.19E-08 - - 

11 rs268255959 14 45768357 46228322 KCNB2 - - - - -1.63 1.45E-02 

14 46685533 46688514 MSC - - 1.58 4.90E-07 - - 

13 rs268290053 15 34071717 34073359 LOC102175876 4.50 3.70E-04 -4.06 9.75E-04 -8.56 7.66E-10 

15 34118282 34119849 HBBC - - - - -3.72 6.30E-04 

14 rs268266747 15 63018327 63025893 C15H11orf87 - - 4.01 7.24E-05 - - 

15 rs268236985 16 39165138 39176197 TNFSF18 - - 1.71 1.23E-02 - - 

16 40049635 40096376 TNFRSF8 - - 1.53 5.39E-04 - - 

16 rs268253363 16 47058035 47175045 AJAP1 - - 2.42 2.31E-09 1.74 3.18E-05 

16 47851111 47857057 SMIM1 - - -1.53 3.69E-14 -1.52 2.29E-15 

16 47858258 47874280 CCDC27 - - -1.82 4.42E-03 - - 



 

 

16 48000776 48022801 LOC102183348 - - 1.70 1.01E-03 - - 

21 rs268243170 23 7662629 7687922 CD83 - - 1.58 1.78E-06 - - 

22 rs268240589 24 49397175 49422345 LIPG - - -4.10 7.56E-11 -4.25 1.14E-11 

24 50316631 50490273 MAPK4 - - -3.40 3.72E-15 -2.71 2.17E-12 

These DE genes were retrieved from an interval of ± 988 kb around leading SNPs (see Methods); Leading SNP: a SNP displaying the most 

significant association with a given trait; The dash symbol indicates the absence of a significant differential expression; log2FC: log2 of the fold 

change in expression. 
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Discussion 

 

The expression profiles of the goat mammary gland in early and late 

lactation are similar 

 

The number of DE genes in T1 vs. T2 was quite low (only 42 genes were DE), 

implying that the physiological and metabolic state of the mammary gland in 

these two time points is not remarkably different. In sheep milk, an analysis of 

differential expression revealed 22 (d 10 vs. 50), 20 (d 50 vs. 120), 277 (d 10 vs. 

120), 135 (d 50 vs. 150) and 578 (d 10 vs. 150) DE genes [12]. The comparison 

that more closely resembles ours (d 50 vs. 150, 135 DE genes) highlighted a 

higher number of DE genes than us. Many biological and technical factors might 

have produced this discrepancy. For instance, we have used mammary tissue 

while Suárez-Vega et al. [12] employed milk somatic cells as a source of RNA. 

Moreover, the shape and duration of the lactation curve is different in sheep and 

goats. Despite these differences, a steady increase was observed in the expression 

of the carboxypeptidase X, M14 family member 2 (CPXM2) gene by Suárez-

Vega et al. [12] and us. This gene might have an important role in mammary 

gland development and involution [12]. Moreover, Suárez-Vega et al. [12] and 

us observed an upregulation of the gene encoding γ-aminobutyric acid receptor 

subunit β3 (GABRB3) at T2, a change that has also been observed in rat lactation 

[33]. We have also detected an upregulation of the arylsulfatase family member 

I (ARSI), inhibin subunit β A (INHBA) and tenascin R (TNR) genes in T2, which 

might be indicative of the tissue remodeling and progressive involution that the 

mammary gland experiences through the progression of lactation [34,35,36]. In 

T2, the upregulated ST8 α-N-Acetyl-Neuraminide α-2,8-Sialyltransferase 6 

(ST8SIA6) and polypeptide N-acetylgalactosaminyltransferase 14 (GALNT14) 

genes respectively catalyze the formation of milk sialoglycoconjugates [37] and 

the O-glycosylation of mucins [38]. Finally, two molecules, i.e. adiponectin 
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(ADIPOQ) and hexokinase domain containing 1 (HKDC1), showed an increased 

and reduced expression in T2, respectively. These two molecules increase 

glucose utilization, reflecting the complex metabolic changes that the mammary 

gland undergoes throughout lactation. 

 

Remarkable differences in the mammary mRNA expression profiles of 

lactating and dried goats 

 

The mRNA expression of genes involved in milk protein synthesis is reduced 

during the dry period 

In contrast with the previous comparison, the gene expression profiles of the goat 

mammary gland are quite different when T1/T2 samples are compared to T3 

samples. At T3, we have observed a 5-8 fold downregulation of the genes 

encoding caseins (the major protein components of milk), while there was also a 

9.5-fold reduction in the gene expression of the milk whey LALBA protein, 

which is essential for the synthesis of lactose [39]. Likewise, the PAEP gene, 

which encodes the major whey protein β-lactoglobulin, was down-regulated 4.5-

fold at T3. Similar results have also been obtained in sheep and cattle [10,11,12, 

40]. The reduction in milk protein synthesis can be attributed to the fact that this 

is an energetically demanding process that is rapidly inhibited in the absence of 

proper hormonal and nutritional stimulation [41]. In rodents, milk protein 

synthesis appears to be under the control of the signal transducer and activator 

of transcription 5 (STAT5) factor [42], but in close similarity to what has been 

observed in cattle [43], we did not observe a change in the expression of the 

STAT5A or STAT5B genes. Conversely, there was a 2-fold reduction of the E74 

like ETS transcription factor 5 (ELF5), which was also detected in cattle by 

Bionaz and Loor [43]. The ELF5 gene is regulated by STAT5 and induced by 

insulin, which might be a major player in the activation of protein synthesis in 

the bovine mammary gland. Furthermore, and as discussed by Bionaz and Loor 
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[43], one of the factors that probably contributes to the strongly lowered milk 

protein synthesis during the dry period (T3) is the mRNA downregulation of 

major amino acid transporters, such as SLC1A1, SLC1A5, SLC7A14 and 

SLC36A2 [44, 45, 46]. 

 

The expression of genes involved in carbohydrate and lipid metabolism is 

downregulated in the dry period 

Carbohydrate metabolism is also affected by the ceasing of lactation and, as 

mentioned before, LALBA, an enzyme necessary for the synthesis of lactose [39], 

the major sugar in milk, was downregulated at T3. We also observed a decrease 

in the mRNA expression of the IRS1 gene, which mediates the effects of insulin 

[47]. Besides being fundamental for the absorption and storage of glucose [48], 

insulin also has important effects on the synthesis of milk proteins [49]. While 

the abundance of SLC2A1 mRNA, one of the main glucose transporters, 

decreased at T3, we did not observe the same trend for SLC2A4, which is another 

major insulin-responsive glucose transporter [50]. These results agree with data 

presented by Komatsu et al. [51] who showed that SLC2A1 has a more 

predominant role than SLC2A4 in the glucose metabolism of the mammary gland 

during lactation. 

The metabolic downregulation of the mammary gland that takes place during dry 

period has also a major impact on lipid metabolism. At T3, important 

transcriptional regulators were downregulated, such as PPARA, which is 

expressed in tissues with a high rate of fatty acid catabolism [52]; ESR2, which 

can inhibit ligand-mediated PPARG-transcriptional activity [53]; LEP, encoding 

a hormone that stimulates fatty acid oxidation; and INSIG1, encoding a protein 

that inhibits the proteolytic activation of sterol regulatory element-binding 

proteins (SREBPs). As mentioned by Bionaz and Loor [54], the case of INSIG1 

is quite counterintuitive because the mRNA expression of this gene is 

upregulated during lactation despite its inhibitory action on SREBPs and 
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lipogenesis. Our interpretation is that the increased expression of INSIG1 during 

lactation arises from the increased need to fine tune the activity of SREBPs. The 

pathway enrichment analysis also detected many biochemical routes related to 

lipid metabolism, including the PPAR signaling pathway. Indeed, PPARG is a 

master regulator of adipocyte differentiation and lipid and glucose homeostasis 

[55], and according to Bionaz and Loor [54], PPARG, PPARGC1A, and INSIG1, 

rather than SREBP1, have a pivotal role in milk fat synthesis in cattle. 

 

Alterations in the expression of genes modulating calcium homeostasis 

In mammals, maternal calcium homeostasis is often challenged by the high 

calcium demand associated with the lactation process [56]. In the epithelial 

mammary cell, calcium is stored in and around the Golgi apparatus, and it is 

secreted into milk in close association with caseins [56]. At T3, the mammary 

glands of Murciano-Granadina goats displayed reduced mRNA levels of PTHLH, 

a molecule that favors calcium mobilization through bone resorption during 

lactation [57], and in parallel, an increased mRNA expression of the FGF23 gene, 

which inhibits the synthesis of parathyroid hormone [58]. We also observed an 

upregulation of the TRPV5 and TRPV6 mRNAs, which favor calcium uptake in 

a broad array of tissues with predominance of kidney [59] and of intestine [60], 

respectively. From our perspective, the increased expression of these two 

channels at T3 is quite paradoxical because the abrogation of lactation implies a 

strong reduction of the calcium demand. A possible explanation is that the 

increased expression of TRPV5 and TRPV6 genes might contribute to replenish 

the exhausted mammary calcium pool, but this hypothesis needs to be verified. 

 

Increased mammary expression of genes related with cell death and tissue 

remodeling during the dry period 

During the dry period (T3), there is an extensive involution, apoptosis and 

remodeling of the mammary gland that involves the death and replacement of 
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senescent alveolar cells [61], transforming the udder from a milk factory to a 

quiescent organ [62]. Probably, one of the main cues that triggers this process is 

milk stasis [63]. The FOS and JUNB genes are upregulated in the mammary 

gland of Murciano-Granadina goats at T3, a finding that is relevant because they 

form part of the activator protein 1 (AP-1) dimeric transcription factor. This 

dimeric transcription factor is probably involved in the initiation or execution of 

apoptosis after mammary gland stops to milk [64]. We have also detected an 

increased expression of OSM and its receptor (OSMR), LIF, BCL2L14, IGFBP5 

and SOCS3 mRNAs, a set of molecules which are known to promote the death 

of mammary epithelial cells and to facilitate the involution of the mammary 

gland [65, 66, 67, 68]. Furthermore, metalloproteinases with aggrecanase 

(ADAMTS4) and cartilage oligomeric matrix protein-cleaving (ADAMTS7) 

activities [30] were also upregulated at T3, probably because of the extensive 

tissue remodeling takes place during mammary involution [69]. Indeed, 

metalloproteinases play a fundamental role not only in the remodeling of the 

epithelial ductal and vascular networks, but also in the correct synchronization 

of parenchymal, stromal and extracellular matrix homeostasis. 

 

Complex changes in the expression of genes with immunological functions 

Bacterial infections are seven times more prevalent during the early dry period 

than during lactation [70], thus increasing the risk to suffer mastitis in the 

subsequent lactation. The mammary gland can be considered as a temporal 

mucosal organ [71], and in this regard we have detected a downregulation, at T3, 

of several molecules that are involved in the synthesis of mucins (MUC1, MUC4 

and MUC20) or surfactant (ABCA3 and SFTPD) substances. These are two major 

components of the chemical barrier that protects mucosal surfaces against 

bacterial infection and biofilm formation. Mucins are large O-linked 

glycoproteins that form part of the gel-like extracellular matrix known as mucus 

[72]. This is considered to be the first line of defense against pathogens because 

it can trap bacteria and slow down the diffusion of large viruses and, moreover, 
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it holds immunoglobulin A and antimicrobial peptides that facilitate the 

elimination of pathogenic microorganisms [72]. Surfactant, which is mainly 

constituted by proteins and lipids, can also stimulate the clearance of 

microorganisms by increasing the membrane permeability of bacteria and by 

enhancing phagocytosis featured by cells of the innate immune system [73]. At 

T3, we have also detected a lowered mammary expression of the BPIFA1, 

BPIFA2, BPIFA3, BPIFB1 and BPIFB4 mRNAs. These molecules also play an 

essential role in mucosal immunity, being particularly well known the BPIFA1 

protein because of its abundance in respiratory secretions, its inhibitory effect on 

bacterial growth and biofilm formation and its immunomodulatory properties 

[31]. Our results might suggest that mucous and surfactant substances that 

protect the mammary epithelium from infectious agents are synthesized at lower 

levels during the dry period, but in the absence of protein data we cannot draw 

firm conclusions about this matter. 

In parallel, we have detected an increased mRNA expression, at T3, of several 

complement factors that are an important component of mucosal immunity by 

favoring immune bacteriolysis, neutralization of viruses, immune adherence, 

immunoconglutination and phagocytosis [74]. Two β-defensins (DEFB116 and 

DEFB126) were also upregulated at T3. Defensins are cationic antimicrobial 

peptides that bind the negatively charged outer membranes of bacteria and kill 

them through a variety of mechanisms including pore formation, interference 

with cell wall synthesis, and prokaryotic membrane depolarization [75]. 

Interleukin 5, CXCR4 and specific subunits of interleukins 15 and 22 receptors 

also showed an increase in mRNA expression at T3. Interleukin 5 is a survival 

factor for B-cells and eosinophils [76], while the chemokine receptor CXCR4 is 

a major contributor to B-cell homeostasis and humoral immunity [77]. With 

regard to interleukin 15, it is a pleiotropic cytokine involved in the establishment 

of inflammatory and protective immune responses against invading pathogens 

by regulating the functions of cells belonging to both the innate and adaptive 

immune systems [78]. In contrast, interleukin 22 promotes the proliferation of 
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epithelial and stromal cells, thus contributing to tissue regeneration, and also to 

the modulation of host defense at barrier surfaces [79]. 

 

About the genetic determinism of dairy traits in Murciano-Granadina goats 

 

The most significant association that we have detected in our study is that 

between the chromosome 6 region containing the casein genes (QTL6) and 

protein percentage. This result is relevant because caseins constitute ~80% of the 

total milk protein content [80]. Moreover, we have observed differential 

expression of the four casein genes when comparing T1/T2 vs. T3. By applying 

a physiological candidate gene approach, Caravaca et al. [81] found that the 

CSN3 genotype is significantly associated with casein and protein contents in 

Murciano-Granadina goats, while the CSN1S1 genotype did not show significant 

associations with protein, casein, and fat concentrations. In Norwegian goats, 

Hayes et al. [82] described significant associations between CSN1S1 (protein 

percentage and fat kilograms) and CSN3 genotypes (fat percentage and protein 

percentage) and the phenotypic variation of dairy traits. In 2016, Carillier-

Jacquin and colleagues [83] reported that CSN1S1 genotypes had a significant 

effect on milk yield and milk fat and protein contents in French goat breeds. 

Moreover, a GWAS for dairy traits in Alpine and Saanen goats detected highly 

significant associations between markers mapping to the casein cluster and milk 

protein and fat contents [1]. Indeed, we also detected a chromosome-wide 

significant association between QTL6 and fat percentage. The pleiotropic effects 

of the casein genotypes on milk protein and fat contents could be due to the fact 

that, in the mammary epithelial cell, the transport of proteins and lipids is 

coupled to a certain extent [84]. 

Another relevant genome-wide significant association was that between QTL1 

on chromosome 2 (130.72-131.01 Mb) and lactose percentage. This region 

overlaps the NGFI-A binding protein 1 (NAB1) gene, also known as EGR1 
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binding protein 1 gene. This gene shows an increased expression during mouse 

lactation and encodes a molecule that binds to the proximal promoter of the 

galactokinase gene, which is involved in galactose catabolism [85]. We also 

identified a third genome-wide significant association between a chromosome 

17 region (QTL17, 11.20 Mb) and protein and dry matter percentages. This 

region closely maps to the T-Box 3 (TBX3) gene, which is highly expressed in 

luminal cells during early mammary gland initiation by interacting with Wnt and 

fibroblast growth factor (Fgf) signaling [86, 87]. 

The comparison of the genome-wide and chromosome-wide significant 

associations detected by us vs. those reported by Martin et al. [1] revealed a low 

level of positional concordance, suggesting the existence of a remarkable level 

of genetic heterogeneity amongst caprine breeds with regard to the genetic 

determinism of milk traits. Indeed, in the GWAS carried out by Martin et al. [1] 

more than 50% of the associations were exclusively detected in one of the two 

breeds under analysis (Alpine and Saanen) despite their close genetic relatedness. 

This finding supports the proposal of using breed-specific reference genomes to 

increase the accuracy of genomic analyses [88]. Moreover, in humans a large 

amount of variants occurs at different frequencies in different populations, 

having variable effects on complex traits and producing a substantial level of 

genetic heterogeneity [89]. Technical and experimental factors related to 

population size and marker density may also influence statistical power to detect 

associations [90]. Many of the QTLs detected by us were represented by a single 

SNP, possibly due to the low LD between nearby markers [91, 92, 93, 94]. 

Finally, only a few genes located within or close to QTLs showed differential 

expression between T1/T2 and T3, suggesting that the set of DE genes in these 

two physiological states has a weak correspondence with the set of genes 

influencing the quantitative variation of milk traits. 

 

Conclusions 
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The ceasing of lactation in Murciano-Granadina goats involves the 

downregulation of the mRNA expression of many genes related to the synthesis, 

uptake and transportation of proteins, lipids and carbohydrates as well as changes 

in the mRNA expression of genes involved in the maintenance of calcium 

homeostasis. We also observed an increased expression of genes modulating cell 

death and tissue remodeling that probably mediate the involution and 

regeneration of the mammary gland during the dry period. From an 

immunological perspective, genes that contribute to the formation of mucous and 

surfactant barriers are downregulated in the dry period, possibly increasing the 

risk of infection. However, we have also observed an increase in the mRNA 

expression of defensin, cytokine and complement genes which should ensure the 

elicitation of an effective immune response against pathogens. Finally, the 

results obtained in the GWAS allows us to conclude that the casein genes, which 

are strongly downregulated during the dry period, are major genetic determinants 

of the phenotypic variance of milk protein and fat composition traits recorded in 

Murciano-Granadina goats, thus supporting the use of casein genotypes as a 

source of information to improve these two phenotypes. 

 

Supplementary Information 

 

Additional file 1: Table S1. Information about the Murciano-Granadina goats 

sampled in the RNA-Seq experiment 

Additional file 2: Figure S1. Similarity matrix of samples used for detecting 

differentially expressed genes. T1, T2 and T3 correspond to 78.25 ± 9.29 d (T1, 

early lactation), 216.25 ± 9.29 d (T2, late lactation) and 285.25 ± 9.29 d (T3, dry 

period) after parturition, respectively. The sample T3-22 (red arrow) clustered 

with T1/T2 samples probably because it was obtained from a goat that was not 

successfully dried-off at the time of sampling. 
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Additional file 3: Tables S2-S4. List of differentially expressed genes between 

the T1 and T2, T1 and T3, and T2 and T3 time points 

Additional file 4: Figure S2. Venn diagram depicting the overlaps of 

differentially expressed genes between pair-wise T1 vs. T2, T1 vs. T3 and T2 vs. 

T3 comparisons. T1 and T2 represent early (78.25 ± 9.29 d after parturition) and 

late (216.25 ± 9.29 d) lactation, respectively, while T3 (285.25 ± 9.29 d) 

corresponds to the dry period. 

Additional file 5: Table S5-S6. Pathways and gene ontology (GO) terms 

enriched in the set of 1,654 differentially expressed genes on the basis of human 

and goat background gene sets 

Additional file 6: Table S7. Descriptive statistics of seven dairy traits recorded 

in the first lactation of 822 Murciano-Granadina goats 

Additional file 7: Figure S3. Histograms of the phenotypic values of the 

percentage of protein (a), fat (b), lactose (c) and dry matter (d), milk yield 

normalized to 210 d (e), length of lactation (f), logarithmically transformed 

somatic cell count (g) recorded in the first lactation of Murciano-Granadina goats. 

The raw somatic cell count is (× 103 cells/mL) shown in (h). 

Additional file 8: Figure S4. Structure of the Murciano-Granadina population 

employed in the GWAS as assessed by principal component analysis (PCA) 

based on Goat SNP50 BeadChip genotypes. PC1 and PC2 indicate the principal 

components 1 and 2, respectively. Values in parentheses reflect the percentage 

of variance in the data explained by each principal component. 

Additional file 9: Figure S5. Linkage disequilibrium (LD) decay in 822 

Murciano-Granadina goats with available Goat SNP50 BeadChip genotypes. 

The scatter plot shows the decline of r2 between single nucleotide 

polymorphisms (y-axis) with distance expressed in bp (x-axis). The fitting line is 

depicted in red. 
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ABSTRACT 

 

The variation in the casein genes has a major impact on the milk composition of 

goats. Even though many casein polymorphisms have been identified so far, we 

do not know yet whether they are evolutionarily ancient (i.e., they existed before 

domestication) or young (i.e., they emerged after domestication). Herewith, we 

identified casein polymorphisms in a data set of 106 caprine whole-genome 

sequences corresponding to bezoars (Capra aegagrus, the ancestor of domestic 

goats) and 4 domestic goat (Capra hircus) populations from Europe, Africa, the 

Far East, and the Near East. Domestic and wild goat populations shared a 

substantial number of casein SNPs, from 36.1% (CSN2) to 55.1% (CSN1S2). 

The comparison of casein variation among bezoars and the 4 domestic goat 

populations demonstrated that more than 50% of the casein SNPs are shared by 

2 or more populations, and 18 to 44% are shared by all populations. Moreover, 

the majority of casein alleles reported in domestic goats also segregate in the 

bezoar, including several alleles displaying significant associations with milk 

composition (e.g., the A/B alleles of the CSN1S1 and CSN3 genes, the A allele 

of the CSN2 gene). We conclude that much of the current diversity of the caprine 

casein genes comes from ancient standing variation segregating in the ancestor 

of modern domestic goats. 

 

Key words 

Domestication, standing variation, next-generation sequencing, single 

nucleotide polymorphism 
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INTRODUCTION 

 

Caseins represent 80% of the protein content of milk and they have a major 

impact on dairy traits, as well as on cheese yield and texture (Remeuf et al., 1991). 

Goat caseins αS1, αS2, β, and κ are encoded by the CSN1S1, CSN1S2, CSN2, and 

CSN3 genes, respectively, which map to a 250-kb region on chromosome 6 in 

the order CSN1S1-CSN2-CSN1S2-CSN3 (Rijnkels, 2002). Polymorphisms in 

these 4 genes have been implicated in the variation of milk yield and composition 

(protein and fat contents) as well as in the determination of milk rheological 

properties and the yield and organoleptic attributes of cheese (reviewed in Martin 

et al., 1999; Moioli et al., 2007; Amills et al., 2012). 

The domestication of the bezoar (Capra aegagrus) in the Fertile Crescent 10,000 

yr before present resulted in the domestic goat (Capra hircus), an important 

economic resource in developing countries (Zeder and Hesse 2000; Naderi et al., 

2008). Even though many reports describing the variability of goat casein genes 

have been published (Martin et al., 2002; Moioli et al., 2007; Amills, 2014), we 

do not know yet whether casein polymorphisms are evolutionarily ancient (i.e., 

they existed before domestication) or young (i.e., they emerged after 

domestication). We addressed this question by identifying casein 

polymorphisms from 106 caprine whole-genome sequences and comparing the 

allelic variation of the 4 casein genes in (1) 2 populations: bezoars and domestic 

goats, (2) 5 populations: bezoars and 4 groups of domestic goats from Europe, 

Africa, the Far East, and Near East. We aimed to determine whether extant 

genetic variation in the goat casein genes was present before domestication (as 

standing variation segregating in the bezoar) or if it emerged in the context of 

the evolutionary processes that took place during and after domestication. 
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MATERIALS AND METHODS 

 

Retrieval of Goat Whole-Genome Sequences 

 

Whole-genome sequences from 110 wild and domestic goats (Becker et al., 2015; 

Benjelloun et al., 2015; Reber et al., 2015; Menzi et al., 2016; Wang et al., 2016; 

Li et al., 2017; Alberto et al., 2018) were retrieved from the National Center for 

Biotechnology Information (NCBI) Sequence Read Archive (SRA, 

https://www.ncbi.nlm.nih.gov/sra; Supplemental Table S1). Specifically, this 

data set included genome sequences from bezoars (n = 22) as well as 4 domestic 

goat populations from Europe (Alpine, n = 2; Chamois Colored, n = 2; Grisons 

Striped, n = 1; Saanen, n = 6; Coppernecked, n = 1; Tessin Grey, n = 1), Africa 

(local Moroccan population, n = 20), the Far East (Inner Mongolia Cashmere 

goat, n = 9, Liaoning Cashmere goat, n = 10; Tibetan goat, n = 16), and Near 

East (local Iranian breed, n = 20). We retrieved all goat genome sequences that 

were available at the time of initiating our experiment. All raw data in SRA 

format were converted into the fastq format by using the fastq-dump 2.8.2 tool 

available in the SRA-toolkits package 

(https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/). 

 

Discovery and Annotation of Genomic Variants 

 

To obtain high-quality single nucleotide polymorphism (SNP) and 

insertion/deletion (INDEL), fastq files were filtered with the Trimommatic 

software (version 0.36, Bolger et al., 2014). Only paired-end reads were used in 

the alignment step. Sequences were aligned to the goat reference genome (ARS1, 

Bickhart et al., 2017) with the BWA MEM algorithm with default settings (Li, 

2013). Files in sequence alignment map (SAM) format were sorted and 
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converted into binary format to remove PCR duplicates and to realign INDEL 

regions with the Picard tool (https://broadinstitute.github.io/picard/). The 

HaplotypeCaller function of the Genome Analysis Toolkit (GATK, version 3.8) 

was used to generate vcf (variant call format) files by considering default 

parameters (McKenna et al., 2010). Finally, a hard filtering step was performed 

by following the GATK best practices recommendations. The SNP data set was 

then imputed and phased by using the Beagle 4.1 software (Browning and 

Browning, 2016) to improve genotype calls based on genotype likelihoods. 

 

Investigation of Population Structure 

 

We used the autosomal SNP identified with GATK (McKenna et al., 2010) to 

investigate the population structure of bezoars and domestic goats. A thinned set 

of autosomal SNPs was selected with the command “--hwe 0.001 --maf 0.05 --

geno 0.3 --indep-pairwise 50 5 0.2” of the PLINK v1.9 software (Purcell et al., 

2007). Beforehand, individuals with pi-hat values, estimated based on an 

identity-by-descent (IBD) matrix, above 0.4 were removed from the data set to 

avoid biases produced by relatedness. By doing so, 4 individuals (2 EU and 2 FE 

goats) were excluded and the final data set was based on 106 caprine genomes. 

A neighbor-joining tree was constructed with the MEGA7 software (Kumar et 

al., 2016) based on an identity-by-state (IBS) distance matrix (Purcell et al., 

2007). Principal components analyses (PCA) based on 11,226,125 SNPs with a 

whole-genome distribution and 1,221 SNPs mapping to the casein genes were 

performed with PLINK v1.9 software (Purcell et al., 2007) by using the flag “--

pca” with default parameters. In addition, the Admixture software (version 1.3.0, 

Alexander et al., 2009) was used to estimate population structure with a block 

relaxation algorithm. The number of clusters (K-value) went from 2 to 5, and the 

K-value with the lowest cross-validation error was identified by using the 
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method of Alexander and Lange (2011). Moreover, we repeated the Admixture 

analysis considering just the data set of 1,221 SNPs mapping to the casein genes. 

 

Annotating the Variation of Caprine Casein Genes 

 

The genomic coordinates of the goat casein genes (CSN1S1, CSN2, CSN1S2, and 

CSN3) in the ARS1 reference genome (Bickhart et al., 2017) were used to 

retrieve polymorphisms mapping to these 4 loci with VCFtools 1.8 (Danecek et 

al., 2011; https://samtools.github.io/bcftools/bcftools.html). Casein 

polymorphisms were classified and their effects were predicted with the SnpEff 

4.3 software (Cingolani et al., 2012). Moreover, the SIFT Annotator (Vaser et 

al., 2016) was used to predict deleteriousness of missense SNP. When the SIFT 

predicted score is < 0.05, an AA substitution is classified as deleterious (Vaser 

et al., 2016); otherwise, it is tolerated or neutral. By following the strategy 

outlined in Supplemental Figure S1, we were able to convert sequence data into 

casein alleles or groups of alleles. This classification, which was based on 

information provided by Marletta et al. (2007), took into account several 

missense mutations that are outlined in Supplemental Figure S1. We were 

unable to discriminate between the B4 and E alleles of the CSN1S1 gene because 

we could not trace the presence of the LINE insertion characteristic of the E 

allele (repetitive elements are usually filtered out before the alignment step). The 

SnpEff 4.3 software did not detect any mutation introducing a premature stop 

codon, so we did not identify null alleles in the casein genes. It is difficult to 

know whether this was due to a biological reality (absence of null alleles in the 

analyzed populations) or to an annotation problem associated with SnpEff 4.3. 

In contrast, the O1 and O2 alleles of the CSN1S1 gene are large copy number 

variants whose genomic coordinates have not been reported at a fine resolution. 

They might be detectable using software such as Cn.MOPS or CNVnator, but 

the main limitation of our experiment was that we had a very heterogeneous data 
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set composed of whole-genome sequences generated with different types of 

libraries, platforms, and, more importantly, coverages, so detecting copy number 

variants based on read depth would be inaccurate. We did not use INDEL 

information to classify alleles because we believe that INDEL calling from 

sequence data can be quite unreliable. Indeed, O'Rawe et al. (2013) compared 

the concordance rates among INDEL detected by the GATK Unified Genotyper 

(v1.5), SOAPindel (v1.0), and SAMtools (v0.1.18) and concluded that there was 

just 26.8% agreement across all 3 software programs. Hasan et al. (2015) 

compared the performance of 7 INDEL calling tools and reported that the 

number of common INDELs called by all 7 tools was very low. For this reason, 

we decided to report the B2, F, and D alleles as a group. 

The nucleotide diversity (π value, average number of pairwise differences 

between all individuals in the population) of the casein loci (based on 1,221 

SNPs mapping to casein genes) was calculated with the VCFtools software 

(Danecek et al. 2011) by using the “--site-pi” command. The same conditions 

were used to estimate nucleotide diversity at the whole-genome level. All results 

in this study were visualized under the R software environment (https://www.r-

project.org/). 

 

 

RESULTS 

 

Genome-Wide Analysis of Population Structure 

 

By using a data set of 106 whole-genome sequences (Supplemental Table S1) 

from domestic goats and bezoars, a total of 31 billion paired-end reads were 

mapped to the goat reference genome ARS1 (Bickhart et al., 2017). The average 

sequencing depth was 9.92× and the average mapping rate > 99% 
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(Supplemental Table S1). Analysis of the sequence data with the GATK 

package (McKenna et al., 2010) made it possible to identify 51 million SNPs. 

The majority of these SNPs were biallelic, and only 509,001 sites displayed 3 or 

more alleles. Moreover, 35.17% of SNPs had minor allele frequencies (MAF) > 

0.05 (17.94 million), whereas rare (MAF between 0.01 and 0.05) and very rare 

(MAF < 0.01) SNPs displayed frequencies of 29.72 and 36.74%, respectively. 

The average ratio of transitions to transversions was 2.11 for the whole data set, 

a result consistent with previous reports (Guan et al., 2016; Li et al., 2017).  

After filtering, 11,226,125 autosomal SNPs were used to assess the population 

structure of the 106 bezoars and domestic goats (4 highly related individuals with 

pi-hat values > 0.4 were removed). The PCA and the neighbor-joining tree 

(Figures 1a and 1b) showed that individuals clustered according to their 

geographic origin. In the PCA, bezoars and domestic goats from the Near East 

occupied an intermediate position between Far East goats and those from Europe 

and Africa. Moreover, Far East domestic goats formed a tight cluster, whereas 

bezoars had a more scattered distribution (Figure 1b). At K = 2, the Admixture 

analysis showed the existence of 2 different backgrounds in domestic goats: 

Africa/Europe and Far East, whereas Near East goats displayed an intermediate 

or admixed background (Figure 2). At the K-value with the lowest cross-

validation error (K = 3), bezoars formed a distinctive group clearly differentiated 

from domestic goats (Figure 2). At K = 4, we observed the existence of 2 

genetically differentiated subgroups in Far East goats, whereas at K = 5, 

European and African goats displayed different genetic backgrounds (Figure 2). 

When we repeated the PCA and Admixture analysis by using a panel of 1,221 

SNPs mapping to the casein genes, we observed a substantial weakening of 

population structure (Supplemental Figure S2). This result might be because 

this second analysis was based on a very reduced set of SNPs (1,221 SNPs versus 

11,226,125 SNPs used in the first analysis). 
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Figure 1. (a) Neighbor-joining tree, and (b) principal components analysis (PCA) of 106 

bezoars (BE) and domestic goats from Europe (EU), Africa (AF), Near East (NE), and 

Far East (FE) based on a data set of 11,226,125 autosomal SNPs. The neighbor-joining 

tree was built according to an identity-by-state (IBS) distance matrix constructed with 

the PLINK software (Purcell et al., 2007) with default parameters. The PCA considered 

principal components (PC) 1 and 2, which explained 14.20% (6.20/eigenvalues) and 

13.54% (5.91/eigenvalues) of the variance, respectively. 
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Figure 2. Analysis using Admixture software (version 1.3.0, Alexander et al., 2009) of 

106 bezoars (BE) and domestic goats from Europe (EU), Africa (AF), Near East (NE), 

and Far East (FE) based on a data set of 11,226,125 autosomal SNPs. Each colored bar 

represents one individual and the length represents the proportion of the goat genome 

inherited from each ancestral population. In the Far East group, the following 

subpopulations are indicated: Tibetan (TB), Inner Mongolia Cashmere goats (IMCG), 

and Liaoning Cashmere goats (LNCG). The K-value defines the number of clusters. 

 

 

Characterization of Variation in Goat Casein Genes 

 

We identified hundreds of SNPs in the CSN1S1 (455 SNPs, 6 missense), CSN2 

(194 SNPs, 5 missense), CSN1S2 (292 SNPs, 11 missense), and CSN3 (280 SNPs, 

9 missense) genes (Table 1, Supplemental Tables S2, S3, and S4). In the 4 

casein genes, most SNPs were intronic, and the second most abundant category 

was represented by SNPs located in upstream and downstream genic regions 
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(Supplemental Table S4). Annotation of SNPs with the SnpEff software 

(Cingolani et al., 2012) showed that the majority of casein polymorphisms were 

expected to have low or moderate effects. Indeed, only 1 SNP (g.85982647G > 

A), affecting a splice site in the CSN1S1 gene (G allele), was predicted to have a 

high impact (Supplemental Tables S2 to S4). The SIFT annotator (Vaser et al., 

2016) captured additional missense SNPs predicted to be functionally relevant 

(Supplemental Tables S2 to S4). Additionally, most casein SNPs identified in 

our investigation had MAF > 0.05 (47.1%), a result consistent with that obtained 

in the analysis of genome-wide diversity. With regard to INDEL, we found 81 

in CSN1S1, 25 in CSN2, 59 in CSN1S2, and 49 in CSN3 (Supplemental Table 

S2). However, we did not use INDELs in subsequent analyses because INDEL 

calling remains an error-prone process and the rate of false positives might be 

high because of alignment artifacts and to the fact that most of the INDEL calling 

tools lack accurate methods for checking sequencing errors before calling 

INDEL (Hasan et al. 2015). Indeed, concordance rates of INDEL calls between 

algorithms and sequencing platforms are reportedly low (Fang et al. 2014). 

We analyzed casein SNP variation of bezoars and domestic goats (Figure 3). 

Domestic and wild populations shared a substantial number of casein SNPs, from 

36.1% (CSN2) to 55.1% (CSN1S2). The comparison of casein variation among 

the 5 populations (bezoars and domestic goats from Europe, Africa, Near East, 

and Far East) also showed that more than 50% of casein SNPs are shared by 2 or 

more populations and 18% (CSN3) to 44% (CSN1S1) of SNPs are shared by all 

populations (Figure 3). Nucleotide diversity in the casein loci was similar in 

bezoar and domestic goat populations (Figure 4a), with the exception of Far East 

goats, which showed a reduced level of variation (t-test, P < 0.05). Moreover, 

the nucleotide diversity of the casein loci was higher (t-test, P < 0.001) than that 

observed along the autosomal genome (Figure 4b). 
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Figure 3. (a-d) Venn diagrams depicting the αS1- (CSN1S1), αS2- (CSN1S2), β- (CSN2), 

and κ- (CSN3) casein SNPs shared between bezoars (BE) and domestic goats (DG); (e 

to h) Venn diagrams depicting CSN1S1, CSN1S2, CSN2, and CSN3 SNPs shared 

between bezoars (BE) and domestic goats from Europe (EU), Africa (AF), Near East 

(NE), and Far East (FE). 

 

We used the pipeline reported in Supplemental Figure S1 to detect casein 

alleles or groups of alleles based on sequence data (Table 1). In the CSN1S1 

gene, the A/I/N/O group of alleles was quite frequent in all populations, with an 

average frequency > 0.5. Moreover, we were able to detect combinations of 

SNPs that did not correspond to any of the CSN1S1 alleles cataloged by Marletta 

et al. (2007); for example, H8P16Q77R100A195, H8L16Q77R100A195, H8P16Q77R100T195, 

and H8L16E77K100A195. These novel haplotypes were especially frequent in Far 

East goats. In the CSN1S2, CSN2, and CSN3 genes, the most abundant alleles 

were A (average frequency = 0.54), C (average frequency = 0.67), and A/B 

(average frequency = 0.68), respectively. We also identified certain alleles in 

CSN1S1 (B1, C and G), CSN1S2 (E), and CSN3 (I, K, and M) that are rare 

(average frequency < 0.05) or very rare (average frequency < 0.01). Five of these 

rare alleles were present in Far East goats at low frequencies, and 2 (K and I 

alleles of the CSN3 gene) segregated exclusively in this population. We were 

unable to identify the D allele of the CSN1S2 gene, and the null alleles plus the 

A1 allele of the CSN2 gene remained undetected in our data set. 
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Figure 4. Nucleotide diversity of (a) the casein loci in bezoars (BE) and domestic goats 

from Africa (AF), Europe (EU), Near East (NE), and Far East (FE), and (b) the casein 

loci compared with the autosomal genome. Each bar represents the mean nucleotide 

diversity and its standard error. The standard error (2.08 × 10−5) of the estimate of the 

nucleotide diversity corresponding to the autosomal genome is very small, so it is not 

depicted in the graph. *The nucleotide diversity of the Far East population was 

significantly lower (P < 0.05) than those of the other populations. **Nucleotide 

diversities of whole-genome and casein genes were significantly different (P < 0.01). 

 

 

In certain cases, frequencies of casein alleles were quite divergent among 

populations. For instance, the H allele of the CSN3 gene was relatively common 

in Far East goats but rare in goats from Africa, Europe, or the Near East (Table 

1), and the D allele of the CSN3 gene was quite frequent in goats from the Near 

and Far East but completely absent in the remaining caprine populations (Table 

1). In the CSN1S1 gene, the B3 allele segregated at moderate frequencies in 

African goats but did not segregate in the European population. Importantly, we 

found that the majority of casein alleles were present in the population of bezoars, 

indicating that their existence probably predates domestication. This finding was 

further supported by the segregation of the majority of casein alleles in two or 

more of the analyzed populations (Table 1), despite the fact that the populations 

are separated by considerable geographic distances. 
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Table 1. Frequencies of alleles or groups of alleles identified in the bezoars (BE) and 

domestic goats from Europe (EU), Africa (AF), Near East (NE) and Far East (FE) in 

current study 

 Allele 
AF 

(N=20) 

BE 

(N=22) 

EU 

(N=11) 

FE 

(N=33) 

NE 

(N=20) 

Total 

(N=106) 

CSN1S1 

A-I-N-O1-O2 0.30 0.55 0.27 0.57 0.67 0.51 

B1 0 0.02 0 0.03 0 0.01 

B2-D-F 0.13 0.11 0.41 0.02 0 0.09 

B3 0.27 0.16 0 0.02 0.10 0.11 

B4-E 0.30 0.09 0.27 0.06 0.05 0.13 

C 0 0 0 0.03 0.08 0.02 

G 0 0 0.05 0 0 0.01 

Unreported 0 0.07 0 0.27 0.1 0.12 

CSN1S2 

A 0.45 0.62 0.64 0.59 0.43 0.54 

B 0 0.02 0 0.14 0 0.05 

C 0.43 0.10 0.09 0.18 0.50 0.26 

E 0 0.02 0 0.05 0 0.02 

F 0.12 0.24 0.27 0.04 0.07 0.13 

CSN2 

A 0.58 0.22 0.25 0.24 0.25 0.30 

C 0.39 0.75 0.60 0.76 0.75 0.67 

C1 0.03 0.03 0.15 0 0 0.03 

CSN3 

A 0.50 0.25 0.05 0.19 0.30 0.27 

B 0.45 0.52 0.95 0.23 0.25 0.41 

D 0 0 0 0.24 0.28 0.13 

G-L 0 0.14 0 0 0.10 0.05 

H 0 0.09 0 0.23 0 0.09 

I 0 0 0 0.08 0 0.02 

K 0 0 0 0.03 0 0.01 

M 0.05 0 0 0 0.07 0.02 
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DISCUSSION 

 

A relevant evolutionary question that we aimed to answer in the current study 

was whether extant casein genetic variation segregating in domestic goats comes 

from standing variation (already present in bezoars before their domestication) 

or whether it emerged after goat domestication and dispersal (novel variation). 

Before analyzing casein variation, we investigated the genetic relationships and 

population structure of the 5 caprine populations under analysis (bezoars and 

goats from Europe, Africa, Near East, and Far East). Our results showed that 

individuals clustered according to their geographic origin (Figure 1). Goats were 

domesticated in a geographic area from the Central Zagros Mountains (Iran) to 

Eastern Anatolia (Zeder and Hesse, 2000; Naderi et al., 2008; reviewed in Pereira 

and Amorim, 2010) and subsequently spread into Europe, Africa, and Asia 

(Pereira and Amorim, 2010). The existence of genetic differentiation between 

the 5 populations analyzed in our study (Figure 1) is compatible with the 

hypothesis that different gene pools migrated through the Mediterranean and 

Danubian corridors in Europe, the Central Steppe and the Indus Valley in Asia, 

and North Africa (Pereira and Amorim, 2010). Indeed, the analysis of goat 

ancient genomes has shown that goats were domesticated at multiple locations 

(and time periods) in the Fertile Crescent (Daly et al., 2018). Genetic drift 

combined with the existence of differences in breed management, reproductive 

isolation, and selection goals probably contributed to the establishment of 

genetic differences between Asian, European, and African goats. 

The analysis of population structure using Admixture analysis showed the 

existence of Western (Africa and Europe) and Eastern (Far East) genetic 

backgrounds, whereas the genetic background of Near Eastern domestic goats 

shared both components (K = 3, Figure 2). The third distinctive genetic 

background was represented by bezoars from the Near East (K = 3, Figure 2). 

Analysis of mitochondrial variation of Iranian wild boars revealed segregation 



Paper Ⅱ 

 

147 

not only of Middle East haplotypes but also of haplotypes that are typically found 

in wild boars from the West (Europe and Africa) and Far East (Khalilzadeh et 

al., 2016). These results highlight that Iran has been an important contact zone 

between the East and the West, and also a key hotspot of genetic diversity 

(Khalilzadeh et al., 2016). Moreover, we also detected the existence of 2 

different backgrounds in Far East goats, reflecting the existence of 2 different 

populations (K = 5, Figure 2); that is, Tibetan goats and 2 Cashmere breeds 

(Wang et al., 2016; Li et al., 2017). Inner Mongolia Cashmere goats displayed a 

genetic background intermediate between that of Tibetan and Liaoning 

Cashmere goats (Figure 2). This result points to the Mongolian Plateau being a 

critical hub for the dispersal of goats across East Asia (Pereira and Amorim, 

2010), as reported for cattle (Ajmone-Marsan et al., 2010) and sheep (Zhao et al., 

2017). 

We annotated casein polymorphisms according to the genomic coordinates 

provided in the ARS1 assembly of the goat genome (Bickhart et al., 2017). 

Obviously, this annotation may differ from that used in previous publications. 

For instance, the missense CSN3 Asn74Ser and Val86Ile polymorphisms 

identified by us (Supplemental Table S2) correspond to the Asn53Ser and 

Val65Ile substitutions reported by Marletta et al. (2007). These differences might 

be due, for instance, to the fact that AA residue numbering in a protein sequence 

may begin with the first AA of either the leader peptide or the mature protein 

sequence. Moreover, whole-genome sequencing with a modest coverage 

(average of 9.92 × in the current work) can yield thousands of false 

polymorphisms that are produced by sequencing errors (Robasky et al., 2014). 

However, these drawbacks should not have a major effect on the main 

conclusions of our study because we did not intend to build a curated catalog of 

casein variation in goats, which will eventually be reported in the Ensembl 

database (https://www.ensembl.org). Rather, we aimed to investigate the 

geographic distribution of caprine casein variation to make inferences about the 
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origins of such variation (i.e., to ascertain whether it arose from standing or novel 

variation). 

The comparison of the nucleotide diversity of the casein loci in bezoars versus 

domestic goats showed that they have similar levels of variation (Figure 4a). 

However, goats from the Far East displayed lower levels of diversity, a feature 

that might be due to an ancient founder effect associated with goat dispersal after 

domestication. Moreover, the nucleotide diversity of the casein loci was higher 

than that observed in the autosomal genome (Figure 4b). Two preferential 

recombination sites have been reported in the casein cluster (Bevilacqua et al., 

2002; Hayes et al., 2006), a circumstance that is known to promote the generation 

of diversity. Moreover, the casein genes are not essential to sustain life, so 

purifying selection is probably less intense than in other genomic regions that 

contain housekeeping genes. 

In the 4 casein genes, a substantial number of SNPs (36-55%) were shared 

between the wild and domestic forms. Importantly, the number of analyzed 

bezoars was relatively low, so we cannot rule out the possibility that the 

percentage of shared variation between bezoars and domestic goats will increase 

if sample size is augmented. The variation shared between wild and domestic 

goats might have an ancestral origin, but such a pattern could also be produced 

by an introgression of the bezoar population with domestic goats. However, the 

analysis of Figure 1 does not provide evidence of introgressed bezoars in our 

data set. Moreover, the comparison of casein polymorphisms across the 5 

populations showed that more than 50% of the polymorphisms were shared 

between 2 or more populations, and that between 18 and 44% were shared by all 

populations. Casein diversity shared by all 5 populations probably has an 

ancestral origin (i.e., its existence probably predates the post-domestication 

dispersal of goats). These results indicate that a considerable proportion of casein 

variation might have been present in the bezoar before the domestication process. 

Our findings agree well with other studies demonstrating that genetic variants of 

agricultural importance such as those related to tomato fruit size, maize plant 
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architecture (e.g., teosinte branched 1), seasonality controls, and seed size were 

already present as standing variation in the wild progenitors of domestic plant 

species (Larson et al., 2014). One exception to this general trend would be that 

of mutations that could be deleterious in the wild but not in a domestic context; 

however, in principle, mutations with functional consequences on the casein 

genes are not expected to have any effect on the biological efficacy of the 

individuals harboring them. These results contrast strongly with those obtained 

in dogs, where several mutations with large phenotypic effects are present in 

dogs but not in wolves, implying that these mutations emerged during or after 

domestication and reached detectable allelic frequencies because they were 

selected for (Boyko et al., 2010; Larson et al., 2014). We also observed that a 

relevant fraction of casein diversity is not shared across populations (Figure 3). 

This variation might be represented by mutations that emerged after the 

domestication and dispersal of goats or may be caused by insufficient sampling 

or to sequencing errors (because of limited genomic coverage). 

The allelic frequencies of the casein genes reported in Table 1 were consistent 

with those of previous studies, although it is important to emphasize that such 

frequencies can be very variable even when comparing breeds reared in the same 

geographic location; for example, the CSN1S1 A and E alleles are the most 

frequent alleles in Italian Saanen and Alpine breeds (Frattini et al., 2014), 

whereas the most abundant CSN1S1 allele in Sarda goats is B (Vacca et al., 2014). 

In the CSN1S1 gene, we observed that the A-I-N-O1-O2, B2-D-F, and B4-E 

groups of alleles were well represented in the European and African populations 

(Table 1). Genotyping of CSN1S1 in French (Grosclaude et al., 1994; Pepin, 

1994; Carillier-Jacquin et al., 2016) and Italian (Sacchi et al., 2005; Caroli et al., 

2006; Gigli et al., 2008; Mastrangelo et al., 2013; Frattini et al., 2014) goats 

showed that the A and F alleles are quite abundant, whereas in Spanish (Jordana 

et al., 1996; Caravaca et al., 2008) and African (Caroli et al., 2007) goats, the 

B/E and A/B pairs of alleles are the most frequent, respectively. In contrast, the 

C, G, N, and O1 alleles tend to have low frequencies in Italian (Sacchi et al., 
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2005; Caroli et al., 2006; Gigli et al., 2008; Mastrangelo et al., 2013; Frattini et 

al., 2014) and African breeds (Caroli et al., 2007). According to our results 

(Table 1), the A-I-N-O1-O2 group of alleles is prevalent in Near East and Far 

East domestic goats as well as in bezoars. A previous study on Indian and 

Turkish goats (Chessa et al., 2007) reflected the same trend, with high 

frequencies of the A allele in the majority of the analyzed populations. With 

regard to the CSN1S2 and CSN2 genes, we found that the A and C alleles, 

respectively, were predominant, a finding consistent with what has been 

published in European, African, Turkish, and Indian goats (Sacchi et al., 2005; 

Caroli et al., 2006, 2007; Chessa et al., 2007; Gigli et al., 2008; Vacca et al., 

2014; Tortorici et al., 2014; Kusza et al., 2016; Grobler et al., 2017). In the CSN3 

gene, the A and B alleles were predominant in most populations (Table 1), as 

previously published in a broad array of caprine breeds (Yahyaoui et al., 2003; 

Prinzenberg et al., 2005; Caroli et al., 2007; Chessa et al., 2007; Kiplagat et al., 

2010; Di Gerlando et al., 2015). Interestingly, the D allele was frequent in Far 

East and Near East goats, and the G/L group of alleles was found in Near East 

goats and bezoars (Table 1). The genetic analysis of the CSN3 locus in Turkish 

and Indian goats shows that the D allele is relatively frequent, and that the G 

allele also segregates in these 2 populations but at lower frequencies 

(Prinzenberg et al., 2005; Chessa et al., 2007). The CSN3 D and G alleles, in 

contrast, are rare in African (Caroli et al., 2007) and most European breeds 

(Yahyaoui et al. 2003; Prinzenberg et al., 2005), with the exception of several 

Italian populations (Sacchi et al., 2005; Di Gerlando et al., 2015). 

In summary, our main finding was that a significant number of casein alleles (or 

groups of alleles) are present in the bezoar, suggesting that they existed before 

domestication. Of note, several of the casein alleles detected in the bezoar have 

been associated with dairy traits in domestic goats. For instance, the A and B 

alleles of the CSN1S1 gene determine a high content of αS1-casein in milk and 

they increase milk protein, casein, and fat contents and improve cheese yield 

(reviewed in Martin et al., 1999; Moioli et al., 2007; Amills et al., 2012; Amills, 
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2014). The A allele of the CSN2 gene and the B allele of the CSN3 gene are also 

associated with a higher protein content (Caravaca et al., 2009; Vacca et al., 

2014). We found that several CSN3 polymorphisms that are very rare in 

European breeds were more frequent in goat populations from other continents, 

emphasizing the need to investigate their effects on dairy traits. 

 

CONCLUSIONS 

 

The main conclusion of this work is that a relevant fraction of the casein variation 

segregating in domestic goats probably emerged before the domestication 

process. 
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Supplementary Figure S1. The strategy used for inferring alleles of CSN1S1 

(a), CSN2 (b), CSN1S2 (c) and CSN3 gene (d), which was based on information 

provided by Marletta et al. (2007). 

Supplementary Figure S2. Principal components analysis (PCA, a) and 

ADMIXTURE analysis (b) based on 1,221 SNPs mapping to casein genes in 

bezoars (BE) and four domestic goat populations corresponding to Europe (EU), 

Africa (AF), Near East (NE) and Far East (FE). 

Supplementary Table  S1. List of the caprine whole-genome sequences used in 

the current study 

Supplementary Table S2. Polymorphisms (SNPs in black, INDEL in red) 

detected in the goat casein genes 

Supplementary Table S3. Distribution and numbers of SNPs mapping to casein 

genes identified in a data set of 106 genomes of domestic goats and bezoars 

Supplementary Table S4. Classification of the casein SNPs identified in the 

current work 
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Abstract 

 

Background: In this work, our aim was to generate a map of the copy number 

variations (CNV) segregating in a population of Murciano-Granadina goats, the 

most important dairy breed in Spain, and to ascertain the main biological 

functions of the genes that map to copy number variable regions.  

 

Results: Using a dataset that comprised 1,036 Murciano-Granadina goats 

genotyped with the Goat SNP50 BeadChip, we were able to detect 4,617 and 

7,750 autosomal CNV with the PennCNV and QuantiSNP software, respectively. 

By applying the EnsembleCNV algorithm, these CNV were assembled into 

1,461 CNV regions (CNVR), of which 486 (33.3% of the total CNVR count) 

were consistently called by PennCNV and QuantiSNP and used in subsequent 

analyses. In this set of 486 CNVR, we identified 78 gain, 353 loss and 55 

gain/loss events. The total length of all the CNVR (95.69 Mb) represented 3.9% 

of the goat autosomal genome (2,466.19 Mb), whereas their size ranged from 2.0 

kb to 11.1 Mb, with an average size of 196.89 kb. Functional annotation of the 

genes that overlapped with the CNVR revealed an enrichment of pathways 

related with olfactory transduction (fold-enrichment = 2.33, q-value = 1.61 × 10-

10), ABC transporters (fold-enrichment = 5.27, q-value = 4.27 × 10-04) and bile 

secretion (fold-enrichment = 3.90, q-value = 5.70 × 10-03).  

 

Conclusions: A previous study reported that the average number of CNVR per 

goat breed was ~20 (978 CNVR/50 breeds), which is much smaller than the 

number we found here (486 CNVR). We attribute this difference to the fact that 

the previous study included multiple caprine breeds that were represented by 

small to moderate numbers of individuals. Given the low frequencies of CNV 

(in our study, the average frequency of CNV is 1.44%), such a design would 
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probably underestimate the levels of the diversity of CNV at the within-breed 

level. We also observed that functions related with sensory perception, 

metabolism and embryo development are overrepresented in the set of genes that 

overlapped with CNV, and that these loci often belong to large multigene 

families with tens, hundreds or thousands of paralogous members, a feature that 

could favor the occurrence of duplications or deletions by non-allelic 

homologous recombination.  

 

 

Background 

 

Copy number variations (CNV) encompass genomic deletions or duplications, 

with sizes ranging from 50 base pairs (bp) to several megabases (Mb), and which 

display polymorphisms (in terms of copy number) among individuals of a 

particular species [1, 2, 3]. In livestock, a broad array of phenotypes related with, 

among others, morphology [4, 5], pigmentation [6, 7, 8, 9], sexual development 

[10] and susceptibility to disease [11] is caused by the segregation of CNV. 

Genome scans to detect structural variations in cattle have revealed that CNV 

regions (CNVR) are often enriched in genes that are involved in immunity [12, 

13, 14, 15], metabolism [12, 13], embryo development [12, 15] and sensory 

perception [13, 14]. There is evidence that the dN/dS ratios of genes that map to 

taurine CNV are generally higher than those of genes that do not overlap with 

CNV, which indicates that CNV genes probably evolve under reduced selective 

constraint [13]. The analysis of gene networks has also shown that genes that co-

localize with duplications tend to have fewer interactions with other genes than 

loci that do not overlap with CNV, reinforcing the idea that genes mapping to 

duplicated regions have fewer essential housekeeping functions than non-CNV 

genes, and also have reduced pleiotropy [13]. 
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Although structural chromosomal variations can have strong effects on gene 

expression and phenotypic variability, technical limitations and the moderate 

quality of genome assemblies have hampered CNV mapping in livestock [1]. 

Until recently, this has been particularly true for goats. In 2010, Fontanesi et al. 

[16] published the first caprine CNV map by identifying, with the Bovine 385 k 

aCGH array, 127 CNVR including 86 and 41 copy loss and gain variants, 

respectively. Later on, resequencing the genome of individuals from several 

caprine breeds made it possible to identify CNV that overlap with 13 

pigmentation genes and to detect an association between increased ASIP copy 

number and light pigmentation [17]. The first worldwide survey of copy number 

variation in goats was performed within the Goat ADAPTmap Project 

(http://www.goatadaptmap.org), and involved the genome-wide genotyping of 

1,023 goats from 50 breeds [18]. This study resulted in the identification of 978 

CNVR among which several overlapped with genes that are functionally related 

with local adaptation such as coat color, muscle development, metabolic 

processes, and embryonic development [18]. Moreover, the patterns of the 

diversity of CNV differed according to geographic origin, which indicates that 

they have been influenced by population history [18]. In another study on 433 

individuals from 13 East African goat breeds, Nandolo et al. [19] detected 325 

CNVR. More recently, Henkel et al. [8] demonstrated the existence of complex 

patterns of structural variation in the regions containing the caprine ASIP and 

KIT genes, with potential causal effects on pigmentation. In spite of these efforts, 

the description of structural chromosomal variation in goats is still lagging 

behind that of other domestic species. Most of the CNV surveys in goats have 

analyzed large populations that represent a mixture of different breeds each with 

a limited number of individuals [18, 19], thus making it difficult to assess the 

magnitude of the CNV diversity at the within-breed level. Our goal was to fill 

this gap by analyzing a population of 1,036 individuals from a single Spanish 

breed (Murciano-Granadina), and to investigate the functional roles of genes that 
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map to CNVR and compare these results with data obtained in composite goat 

populations. 

 

 

Methods 

 

Genomic DNA extraction and high-throughput genotyping 

 

Blood samples from 1,036 Murciano-Granadina female goats from 15 farms that 

are connected through the use of artificial insemination were collected in EDTA 

K3 coated vacuum tubes and stored at -20 °C before processing. Genomic DNA 

was isolated by a modified salting-out procedure [20]. Four volumes of red cell 

lysis solution (Tris-HCl 10 mmol/L, pH = 6.5; EDTA 2 mmol/L; Tween 20 1%) 

were added to 3 mL of whole blood, and this mixture was centrifuged at 2000×g. 

Pelleted cells were resuspended in 3 mL lysis buffer (Tris-HCl 200 mmol/L, 

pH = 8, EDTA 30 mmol/L, SDS 1%; NaCl 250 mmol/L) plus 100 µL proteinase 

K (20 mg/mL). The resulting mixture was incubated at 55 °C for 3 h followed 

by centrifugation at 2000×g in the presence of 1 mL of ammonium acetate (10 

mol/L). The supernatant (~4 mL) was mixed with 3 mL of isopropanol 96%, 

which was subsequently centrifuged at 2000×g for 3 min. The supernatant was 

removed and the DNA pellet was washed with 3 mL of ethanol 70%. After 

centrifuging at 2000×g for 1 min, the DNA precipitate was dried at room 

temperature and resuspended in 1 mL of TE buffer (10 mmol/L Tris, pH = 8.0; 1 

mmol/L EDTA, pH = 8). 

High-throughput genotyping of the 1,036 Murciano-Granadina DNA samples 

was carried out with the Goat SNP50 BeadChip [21] according to the 

manufacturer’s instructions (Illumina). Signal intensity ratios i.e. log R Ratio or 

LRR (the total probe intensity of a SNP referred to a canonical set of normal 
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controls [22]), and B allele frequencies or BAF (relative quantity of one allele 

compared to the other one) [22], were exported for each single nucleotide 

polymorphism (SNP) with the GenomeStudio software 2.0.4 (Illumina, 

https://emea.illumina.com). Then, SNP coordinates were converted to the latest 

version of the goat reference genome (ARS1) [23]. After filtering out unmapped 

and non-autosomal SNPs and those with a call rate lower than 98%, a set of 

50,551 SNPs remained for CNV mapping. 

 

Copy number variant calling with PennCNV and QuantiSNP 

 

Based on their excellent performance in comparative studies, we selected two 

software packages, PennCNV v1.0.5 [24] and QuantiSNP v2 [25], to call CNV 

in the Murciano-Granadina population [26, 27]. The PennCNV software [24] 

detects CNV by applying the default parameters of the Hidden-Markov model. 

Population frequencies of B alleles were compiled based on the BAF of each 

SNP in the population. We used the “--gcmodelfile” option to adjust “genomic 

waves” [28]. The number of goat chromosomes was set with the “--lastchr 29” 

instruction. The QuantiSNP analysis [25] assumes an objective Bayes hidden-

Markov model to improve the accuracy of segmental aneuploidy identification 

and mapping. This CNV calling software was run under default parameters by 

modifying the “--chr 1:29” option. The CNV that were supported by less than 

three SNPs were removed from the filtered set used here.  

 

Definition and functional annotation of copy number variant regions 

 

We used the EnsembleCNV algorithm (beta version) [29] to assemble CNVR. 

All CNV called by PennCNV and/or QuantiSNP were combined to generate a 

set of initial CNVR by using the heuristic algorithm (threshold of minimum 
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overlap = 30%) described in [29]. Subsequently, CNVR boundaries were refined 

by considering the local correlation structure of the LRR values of the SNPs 

mapping to CNVR [29]. Then, we reassigned the CNV calls that were initially 

obtained with PennCNV and QuantiSNP to each refined CNVR, so that the final 

set of CNVR comprised only those that were simultaneously detected by both 

callers. The resulting CNVR were matched to gene features that are annotated in 

the National Center for Biotechnology Information (NCBI, 

https://www.ncbi.nlm.nih.gov) by using BEDTools v2.25.0 [30]. In addition, we 

performed gene ontology (GO) enrichment and pathway analyses using the 

DAVID Bioinformatics Resources 6.8 [31, 32] based on human and goat 

background gene sets. The statistical significance was set to a q-value ≤ 0.05. 

 

Confirmation of copy number variant regions by quantitative real-time 

PCR 

 

In order to evaluate the rate of false positives in our experiment, we conducted 

quantitative real-time PCR (qPCR) experiments to obtain an independent 

estimate of the copy number of four putative CNVR (CNVR_371_chr5, 

CNVR_506_chr6, CNVR_160_chr2 and CNVR_1229_chr21). Primers were 

designed with the Primer Express software (Applied Biosystems) to amplify 

specific regions of the ADAMTS20, BST1, NCKAP5 and TNFAIP2 genes (see 

Additional file 1: Table S1). As reference genes, we used the melanocortin 1 

receptor (MC1R) and glucagon (GCG) genes (see Additional file 1: Table S1) 

loci [18, 33, 34, 35]. Quantitative PCR reactions contained 7.5 ng genomic DNA, 

7.5 µL 2 × SybrSelect Master mix (Applied Biosystems), 4.5 pmol of each 

forward and reverse primer, and ultrapure water to a maximum final volume of 

15 µL. Each sample was analyzed in triplicate in order to obtain averaged copy 

number estimates. Reactions were loaded onto 384-well plates and run in a 

QuantStudio 12 K Flex Real-Time PCR System instrument (Applied 
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Biosystems). The specificity of the PCR reactions was evaluated with a melting 

curve analysis procedure, and the efficiency (96.2-105.4%) was assessed with 

standard curves. Thus, relative copy number was inferred with the 

qbase + software (Biogazelle, Ghent, Belgium) by using the 2-ΔΔCt approach [36]. 

Copy number values were calibrated by taking as a reference, four samples 

which, according to Goat SNP50 BeadChip data, had two copies of the 

investigated genomic loci. 

 

 

Results  

 

Detection of copy number variation in Murciano-Granadina goats 

The initial calling with PennCNV and QuantiSNP yielded 4,617 and 7,750 

autosomal CNV, respectively. By using the EnsembleCNV tool [29], we 

assigned these CNV into 1,461 CNVR with refined boundaries, of which 486 

(33.3% of the total CNVR count) were detected simultaneously by PennCNV 

and QuantiSNP. The resulting CNVR included 78 copy gain, 353 copy loss and 

55 copy gain/loss variants (Figure 1, and Table 1) and (see Additional file 2: 

Table S2). The total length of the CNVR covered 95.69 Mb (3.9%) of the goat 

autosomal genome (2,466.19 Mb), whereas their individual size ranged from 2.0 

kb to 11.1 Mb, with an average of 196.9 kb (Figure 2a and Table 1). Moreover, 

we found that 72.6% of the CNVR showed minimum allele frequencies lower 

than 0.01, with an average frequency of 1.44% (Figure 2b). In addition, 10 

CNVR with frequencies higher than 10% were distributed over seven caprine 

chromosomes. With a frequency of 41%, CNVR_1229_chr21 was the CNVR 

with the highest frequency in the whole dataset (see Additional file 2: Table 

S2). By using the BEDTools v2.25.0 program [30], 212 of the CNVR that we 

detected overlapped with 191 unique CNVR published by Liu et al. [18] (Figure 
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1) and (see Additional file 2: Table S2). The CNVR that were detected in both 

studies are referred to as “shared CNVR”, whereas those that were identified in 

our study only are referred to as “non-shared CNVR” (Figure 1). Six of the ten 

“shared CNVR” with frequencies higher than 0.1 show positional concordance 

with six CNVR detected by Liu et al. [18] (see Additional file 2: Table S2). 

 

Table 1. Main features of copy number variation regions (CNVR) detected in 1,036 

Murciano-Granadina goats 

Summary statistics Total Gain Loss Gain/Loss 

Total length (Mb) 95.69 26.52 61.17 8 

Total number of CNVR 486 78 353 55 

Number of CNVR (< 10 kb) 1 1 0 0 

Number of CNVR (10-50 kb) 4 2 1 1 

Number of CNVR (50-100 kb) 152 25 113 14 

Number of CNVR (100-500 kb) 313 47 227 39 

Number of CNVR (500 kb-1 Mb) 10 0 9 1 

Number of CNVR (≥ 1Mb) 6 3 3 0 

Average number of SNP per CNVR 5.59 9.01 5.03 4.35 

Minimum size of CNVR (kb) 2.04 2.04 23.2 43.1 

Maximum size of CNVR (kb) 11,124 11,124 1,629.39 534.16 

Average CNVR size (kb) 196.89 339.99 173.28 145.49 

Standard deviation of CNVR size (kb) 539.35 1299.49 156.89 91.51 
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Figure 1. Genomic distribution of 486 CNVR detected with the PennCNV and 

QuantiSNP software on the 29 caprine autosomes. Squares, triangles and circles 

represent copy number gain, loss and gain/loss events, respectively. Red and black colors 

represent shared and non-shared CNVR, respectively. Shared CNVR are those detected 

both in our study and in Liu et al. [18], while non-shared CNVR are those identified only 

in our study. 
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Figure 2. Histograms displaying the distribution of CNVR according to their size (a) 

and frequency (b). CNVR that were longer than 1000 kb were included in the 1000-kb 

bin, whereas those with frequencies above 0.1 were grouped in the 0.1 bin. The 

histograms were drawn by using the ggplot2 package (http://ggplot2.tidyverse.org/) 

implemented in R (https://www.r-project.org/).  

 

 

Functional annotation of the genes that are located in copy number variable 

regions 

 

Within the CNVR defined in our study, we detected 779 protein-coding genes 

according to the goat reference genome annotation (ARS1) [23] from the NCBI 

database (see Additional file 2: Table S2 and Additional file 3: Table S3). In 

a survey of the diversity of CNV in goats with a worldwide distribution, Liu et 

al. [18] detected 1,437 copy number variable genes, of which 116 were also 
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identified in our study and are referred to as “shared copy number variable genes” 

(see Additional file 3: Table S3). Among the “shared copy number variable 

genes”, the ASIP and ADAMTS20 genes are particularly relevant: they are 

involved in pigmentation [6, 8, 17, 35, 37, 38, 39] and co-localize with selection 

signals detected in a worldwide sample of goats [40]. In addition, we found that 

about 11.4% (89) of the annotated genes that co-localize with CNVR are 

olfactory receptors or olfactory receptor-like genes (see Additional file 3: Table 

S3). Consistently, the most significantly enriched pathway was “Olfactory 

transduction” (q-value = 1.61 × 10−10, Table 2), followed by “ABC transporter” 

(q-value = 4.27 × 10−4, Table 2). A significant pathway related with immunity 

(i.e. Fc epsilon RI signaling, q-value = 0.02) was also identified based on a 

human background gene set (Table 2). Several overrepresented GO terms were 

related with embryonic skeletal system morphogenesis (q-value = 1.22 × 10−3) 

and G-protein coupled purinergic nucleotide receptor activity (q-

value = 6.22 × 10−3, Table 2). Interestingly, the copy number variable genes were 

also enriched in pathways with metabolic significance, such as prolactin 

signaling and insulin signaling, as well as GO terms related with feeding 

behavior, but none of these pathways reached the significance threshold (q-

value ≤ 0.05) after correction for multiple testing (see Additional file 4: Table 

S4). Several of the pathways outlined in Additional file 4: Table S4 play 

important roles in immunity (e.g. chemokine signaling, B cell receptor signaling 

and T cell receptor signaling), cancer (e.g. endometrial cancer, proteoglycans in 

cancer, thyroid cancer), as well as in oncogenic signaling (e.g. Ras and ErbB 

signaling) (see Additional file 4: Table S4), but most of them are not significant 

after correction for multiple testing. 

 



 

 

Table 2. Functional enrichment of genes co-localizing with CNVR detected in 1,036 Murciano-Granadina goats 

Background 

gene set 
Category ID Term 

Number 

of genes 

Fold 

Enrichment 
P value q-value 

Goat KEGG chx04740 Olfactory transduction 69 2.33 1.26E-11 1.61E-10 

Goat KEGG chx02010 ABC transporters 11 5.27 3.33E-05 4.27E-04 

Goat KEGG chx04976 Bile secretion 11 3.90 4.46E-04 5.70E-03 

Human KEGG hsa04664 Fc epsilon RI signaling pathway 8 4.71 1.40E-03 1.76E-02 

Human GO/BP GO:0009952 Anterior/posterior pattern specification 12 5.56 9.36E-06 1.61E-04 

Human GO/BP GO:0048704 Embryonic skeletal system morphogenesis 8 7.60 7.13E-05 1.22E-03 

Human GO/BP GO:0035589 
G-protein coupled purinergic nucleotide 

receptor signaling pathway 
5 13.24 4.18E-04 7.16E-03 

Human GO/CC GO:0016020 Membrane 81 1.40 1.45E-03 1.98E-02 

Human GO/MF GO:0003677 DNA binding 67 1.48 1.10E-03 1.60E-02 

Human GO/MF GO:0045028 
G-protein coupled purinergic nucleotide 

receptor activity 
5 13.19 4.24E-04 6.22E-03 

KEGG: Kyoto encyclopedia of genes and genomes pathway; GO/MF: gene ontology (GO) term related with molecular function; GO/BP: GO term 

related with biological process; GO/CC: GO term related with cellular component.  



 

 

 

Figure 3. Relative quantification of four copy number variation regions by real-time quantitative polymerase chain reaction analysis: a 

CNVR_371_chr5 (ADAMTS20), b CNVR_506_chr6 (BST1), c CNVR_160_chr2 (NCKAP5), d CNVR_1229_chr21 (TNFAIP2). The x and y axes 

represent sample ID and relative quantification of CNVR (mean ± standard error, with each sample analyzed in triplicate), respectively. As 

calibrator, we used the average of four samples estimated to have two copies (diploid status) based on the Goat SNP50 BeadChip analysis. 
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Validation of four copy number variants by real-time quantitative 

polymerase chain reaction 

 

In order to confirm our results, we selected four CNVR (i.e. CNVR_371_chr5, 

CNVR_506_chr6, CNVR_160_chr2 and CNVR_1229_chr21) that co-localized 

with the ADAMTS20, BST1, NCKAP5 and TNFAIP2 genes, respectively (the 

primers used to amplify these CNVR are listed in Additional file 1: Table S1). 

As shown in Figure 3, the estimated copy numbers obtained by qPCR analysis 

of Murciano-Granadina goat samples were: 0.93 to 2.38 copies relative to the 

calibrator (ADAMTS20), 1.06 to 2.96 copies (BST1), 1.51 to 2.39 copies 

(NCKAP5) and 1.83 to 3.28 copies (TNFAIP2). According to D’haene et al. [36], 

copy number estimates between 1.414 and 2.449 most likely correspond to a 

normal copy number of 2, whereas any number below or above these thresholds 

could represent a deletion or a duplication, respectively. Thus, based on these 

values, evidence of copy number variation was inferred for three of the four 

genes analyzed by qPCR.  

 

 

Discussion 

 

In this work, our aim was to characterize copy number variation in Murciano-

Granadina goats, a native Spanish breed used for milk production. By genotyping 

1,036 Murciano-Granadina goats with a SNP array, we were able to identify 486 

CNVR covering 3.9% of the goat genome, whereas Liu et al. [18] identified 

CNVR that covered ~9% of the goat genome. The latter higher percentage 

reported by Liu et al. [18] can be explained by the fact that they analyzed 50 

breeds with different geographical origins, i.e. a composite population that is 

probably much more diverse than that used in our work. Besides, the pipeline 
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that we used to identify CNVR is more stringent than that employed by Liu et al. 

[18], removing CNVR that were not consistently detected by PennCNV and 

QuantiSNP. In the literature, estimates of 4.8 to 9.5% for CNVR coverage in the 

human genome are reported [2]. Our results and those obtained by Liu et al. [18] 

are consistent with these values. 

Indeed, when Liu et al. [18] calculated the CNVR length for each breed 

normalized by the goat genome size, their results agreed well with our estimate 

of 3.9%. For instance, this parameter reached values of 3.94% in goats from 

Southeastern Africa and 3.13% in goats from Northwestern Africa and Eastern 

Mediterranean, whereas it was lowest (0.70%) for individuals from West Asia 

[18]. The number of CNV detected at the within-breed level by Liu et al. [18] 

was on average 126 CNV per breed and ranged from 6 to 714, whereas the 

average number of CNVR was only ~20 per breed [18]. Since the number of 

detected CNVR is proportional to population size, for most of the breeds 

investigated in [18], the level of within-breed CNV variation is probably 

underestimated. In summary, one important conclusion from our study is that the 

magnitude of CNV diversity at the within-breed level is likely to be much larger 

than that previously reported in studies that analyzed multiple populations, each 

represented by a small or moderate number of individuals. 

Most of the CNVR that we report here ranged in size from 50 to 500 kb, with a 

mean size of 196.89 kb. Similarly, the average CNVR size reported by Liu et al. 

[18] was 268 kb. Both estimates are quite large and reflect that medium-density 

SNP arrays are not well suited to detect small CNVR in spite of their high 

abundance. In cattle, the average sizes of CNVR detected with the Illumina 

BovineHD Genotyping BeadChip (777 K SNPs) [14], Illumina whole-genome 

sequencing and PacBio sequencing [41] were 66.15, 10 and 0.81 kb, respectively. 

Another consistent feature of CNVR is that, in general, their frequencies are low 

or very low. In our study, approximately 73% of the CNVR had frequencies 

lower than 1% and the average frequency was 1.44%. Liu et al. [18] reported 

lower CNVR frequencies ranging from 0.34% (Alpine and Northern European 



Paper Ⅲ 

180 

goats) to 0.98% (Northwestern African goats). This decreased average CNVR 

frequency is not very significant and probably reflects differences in sampling 

size and the use of composite populations with multiple breeds, each one with 

its specific CNVR frequencies. 

The CNVR detected in our study covered 779 protein-coding genes. Pathway 

analyses reflected a substantial enrichment of genes that are involved in olfactory 

perception, which is consistent with previous reports in cattle [13, 14]. In this 

regard, there is an important difference between our results and those by Liu et 

al. [18]. Whereas in the study of Liu et al. [18], the term “sensory perception” 

was underrepresented among the CNV genes (fold enrichment = 0.21), in our 

work the terms “olfactory transduction” (fold enrichment = 2.33) and “G-protein 

coupled purinergic nucleotide receptor activity” (fold enrichment = 13.19) were 

overrepresented, and many CNV genes were olfactory receptors. The two terms 

mentioned before are closely related because a broad array of purinergic 

receptors are differentially expressed in the olfactory receptor neurons that 

modulate odor responsiveness [42]. Moreover, purinergic nucleotides are 

important neuromodulators of peripheral auditory and visual sensory systems 

[42]. In cattle, Keel et al. [13] reported that “sensory perception of smell” and 

“G-protein coupled receptor signaling pathway” were significantly 

overrepresented in the protein-coding genes that overlapped with CNVR. 

Similarly, Upadhyay et al. [14] showed that “sensory perceptions of smell” and 

“chemical stimuli” are enriched in their set of CNV genes. A potential 

explanation for the underrepresentation of the “sensory perception” functional 

category among the genes overlapping CNV reported by Liu et al. [18] could be 

that in goats these genes are not well annotated yet, so the majority of them are 

identified with a LOC prefix and a number and, as a consequence of this, they 

are not correctly detected by PANTHER [43], thus biasing the results obtained 

in the gene ontology enrichment analysis. 

Loci belonging to large multigene families might be more prone to co-localize 

with CNV because paralogous genes can act as templates in non-allelic 
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homologous recombination events, which promote increases or reductions in 

copy number [44]. It should be noted that olfactory receptor genes constitute the 

largest gene superfamily, and in humans more than 900 genes and pseudogenes 

have been identified [45]. In cattle, 1,071 olfactory receptor genes and 

pseudogenes are distributed in 49 clusters across 26 bovine chromosomes [46], 

and similar numbers have been reported for pigs [47]. Moreover, purifying 

selection against CNV is probably less intense in regions that contain olfactory-

receptor genes than in genomic regions that contain genes with essential 

functions [48]. Interestingly, copy number changes in the olfactory receptor 

genes of wild and domestic mammals might have consequences on food foraging 

as well as on mate and predator recognition [49, 50]. 

In the set of genes that co-localize with CNVR, we also detected an enrichment 

of loci related with the multigene family of ATP binding cassette (ABC) 

transporters, a result that agrees well with previous findings in humans [51, 52, 

53, 54] and cattle [14, 56]. In mammals, ABC transporters fulfill the mission of 

carrying a broad array of endogenous substrates, such as amino acids, peptides, 

sugars, anions and hydrophobic compounds and metabolites across lipid 

membranes. At least 49 ABC genes that belong to eight subfamilies have been 

identified in the human genome [52]. Copy number variation in the human 

ABCC4 and ABCC6 genes is associated with susceptibility to esophageal 

squamous cell carcinoma [51] and to the rare autosomal recessive disease 

pseudoxanthoma elasticum [54], respectively. Moreover, large-scale deletions of 

the human ABCA1 gene are a causative factor for hypoalphalipoproteinemia [53], 

a disease that is characterized by the complete absence of the apolipoprotein AI 

and extremely low levels of plasma high-density lipoprotein (HDL) cholesterol. 

We also found a highly significant enrichment of pathways related with embryo 

development (anterior/posterior pattern specification, embryonic skeletal system 

morphogenesis), as previously reported [18]. These pathways are featured by 

genes that belong to the Hox multigene family of transcription factors, possibly 

reflecting the genomic instability of certain homeobox gene clusters as 
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evidenced by the existence of many synteny/paralogy breakpoints and assembly 

gaps as outlined in comparative studies [55]. 

Although not significant after correction for multiple testing, we detected an 

enrichment of pathways with metabolic significance, such as prolactin and 

insulin signaling, which could have an impact on milk production and growth 

[57, 58, 59]. Interestingly, the comparison of our work with that of Liu et al. [18] 

revealed 116 protein-coding genes that co-localize with the set of shared CNVR. 

One of the most relevant shared genes encodes ASIP, a protein that increases the 

ratio of pheomelanin to eumelanin by binding to the melanocortin 1 receptor and 

delivering an antagonist signal that blocks the downstream expression of 

eumelanogenic enzymes [60]. Mutations in the ASIP gene play critical roles in 

animal pigmentation [39]. For instance, the causal factor of the white color 

typical of many sheep breeds is the ubiquitous expression of a duplicated copy 

of the ASIP coding sequence, which is regulated by a duplicated promoter 

corresponding to the itchy E3 ubiquitin protein ligase gene [6, 39]. Although 

some studies proposed that the ASIP CNV might be associated with different 

pigmentation patterns in goats [8, 17, 37], no functional assay has verified an 

association of ASIP copy number with ASIP mRNA levels. Another interesting 

shared copy number variable gene is ADAMTS20, which was also identified in 

two previous CNV surveys [17, 18]. This gene encodes a metalloproteinase with 

an important role in melanoblast survival by mediating Kit signaling [38] and in 

palatogenesis [61]. Bertolini et al. [40] performed a selection scan in white vs. 

colored (black and red) goats and detected a selective sweep in the ADAMTS20 

gene. In the light of these results, the potential involvement of a structural 

variation in ADAMTS20 in goat pigmentation should be explored further. 

Moreover, it is worthwhile to mention that several CNVR genes have functions 

related with production and reproduction traits. For instance, the NCKAP5 gene, 

which co-localizes with CNVR_160_chr2 (frequency = 0.1), is associated with 

milk fat percentage in cattle [62]. Taking the above evidence into account, the 

implication of structural chromosomal variations in the genetic determinism of 
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traits of economic interest with a complex inheritance deserves further 

exploration by designing tools that allow inferring CNVR genotypes with high 

confidence. 

 

 

Conclusions 

 

With the PennCNV and QuantiSNP software, we detected 486 CNVR in the 

genome of the Murciano-Granadina breed. In a previous study [18] that used a 

less stringent pipeline (only PennCNV was used) and included multiple 

populations with small to moderate sample sizes, the average number of CNVR 

events per breed was ~20. One conclusion of our study is that CNV surveys, 

which are based on a broad array of breeds represented by only a few individuals, 

underestimate the true levels of the CNV diversity at the within-breed level. The 

main reason for this outcome is that since the majority of CNV have very low 

frequencies, they cannot be detected efficiently when sample size is small and, 

in consequence, much of the existing variation is missed. We have also found 

that genes that overlap with CNV are functionally related with olfactory 

transduction, embryo development, ABC transporters and G-protein coupled 

purinergic nucleotide receptor activity. Most of these genes belong to large 

multigene families encompassing tens, hundreds or thousands of paralogous 

genes that could act as substrates in non-allelic homologous recombination 

events, which is one of the main mechanisms generating duplications and 

deletions in humans and other species. Finally, we detected CNV that co-localize 

with the ASIP and ADAMTS20 pigmentation genes, which according to previous 

studies have been subjected to positive selection for coat color in goats. 
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Abstract 

The agouti signaling protein (ASIP) gene has a crucial role in pigmentation by 

encoding a protein that binds the melanocortin 1 receptor and stimulates the 

synthesis of pheomelanin rather than eumelanin. Several studies have suggested 

that an increased copy number of the ASIP gene might explain the white 

pigmentation of certain goat breeds, as previously demonstrated in sheep. In the 

current work, we have identified the segregation of the ASIP CNV in Murciano-

Granadina (black or brown coat), Malagueña (brown, blond or white coat) and 

Saanen (white coat) goats with available Illumina Goat SNP50 BeadChip 

(Illumina Inc., San Diego, CA) genotypes by using the PennCNV v1.0.5 and 

QuantiSNP v2 tools. This result shows that the ASIP CNV segregates in dark-

colored breeds. To gain new insights into this issue, we have estimated the copy 

number of the ASIP gene in 83 goats from 8 breeds with different coloration 

patterns using a real-time quantitative PCR approach. Our results showed an 

increased ASIP copy number not only in Saanen (3.50 ± 0.23 copies relative to 

the calibrator) and white Malagueña (3.51 ± 0.51 copies) goats, but also in the 

Murciano-Granadina breed (3.33 ± 0.58 copies) as well as in blond/brown 

individuals from the Malagueña (3.58 ± 0.73 copies) breed. The number of ASIP 

copies was not significantly different in these four caprine populations (P value > 

0.05). Moreover, we did not observe a trend towards increased ASIP copy 

number in breeds with predominantly white colors, such as Maltese (2.85 ± 0.28 

copies), Jonica (2.82 ± 0.39 copies) and Blanca de Rasquera (2.37 ± 0.33 copies). 

Our results, combined with recent findings demonstrating the high structural 

complexity of the ASIP locus, indicate that additional functional and expression 

studies should be performed in order to fully understand the role of ASIP 

structural variation in goat pigmentation.  

 

Keywords: copy number variation, pigmentation, real-time quantitative PCR 
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1. Introduction 

 

Copy number variations (CNV) play a key role in the genetic 

determinism of several pigmentation phenotypes in domestic species (Freeman 

et al., 2006; Clop et al., 2012; Bickhart and Liu 2014; Zarrei et al., 2015). For 

instance, the loss of white pigmentation in the South African Boer breed is 

associated with a 1 Mb CNV mapping to the endothelin receptor type A (EDNRA) 

gene (Menzi et al., 2016). In sheep, the causal factor of the dominant white/tan 

(AWt) coat was mapped to a 190 kb tandem duplication encompassing the whole 

agouti signaling protein (ASIP) gene (Norris and Whan 2008). The transcription 

of the second copy of the ovine ASIP gene is controlled by the promoter of the 

itchy homolog E3 ubiquitin protein ligase (ITCH) gene and it shows a 

deregulated and ubiquitous pattern of expression associated with a white 

coloration (Norris and Whan 2008).  

Classical genetic studies carried out in crossed goats revealed that the 

white color might be caused by the dominant AWt (white/tan) allele of the ASIP 

locus (Adalsteinsson et al., 1994). Fontanesi et al. (2009) identified one CNV in 

the caprine ASIP gene encompassing at least 100 kb, and they showed that in 

Saanen and Girgentana goats this CNV might have a correspondence with the 

AWt allele associated with the white pigmentation characteristic of these two 

breeds. Noteworthy, Fontanesi et al. (2009) detected an ASIP copy gain in one 

individual from the Murciano-Granadina breed, which can be black or brown but 

never white, and they also demonstrated that not all the analyzed Saanen goats 

carried 2 additional ASIP copies. They interpreted these findings in the light that 

there might be some degree of genetic heterogeneity in the ASIP locus and that 

the expression of the ASIP alleles could be modulated by epistatic interactions 

(Fontanesi et al. 2009). In a subsequent study based on whole-genome 

resequencing data, Dong et al. (2015) showed that black Yunnan Black goats and 

brown Australian Rangeland goats carry a single ASIP gene copy, while light 

colored Cashmere and Boer goats harbor multiple ASIP copies. However, the 
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reach of this experiment was limited by the low number of analyzed individuals. 

Zhang et al. (2018) also compared ASIP copy number in two white (Saanen and 

Liaoning) vs. two black (Leizhou goats and Dera Din Panah) goat breeds and 

inferred a lower ASIP copy number in the latter, suggesting that this CNV has 

causal effects on pigmentation. Indeed, a selection scan performed in white vs. 

colored (black and red) goats made it possible to detect a selective sweep co-

localizing with the ASIP gene (Bertolini et al., 2018). More recently, Henkel et 

al. (2019) identified four different CNV, close to or encompassing the ASIP locus, 

that showed correspondence with the white or tan (AWt), Swiss markings (Asm), 

badgerface (Ab), and peacock (Apc) alleles of the ASIP locus. Moreover, 

transcriptomic analyses indicated that variation in copy number might involve 

changes in ASIP mRNA expression between eumelanistic and pheomelanistic 

body areas. 

In a previous study (our unpublished data), we performed a CNV scan 

in a population of 1,036 Murciano-Granadina goats and found evidence of a 

CNV mapping to the ASIP locus. The goal of the current work is to characterize 

the segregation of the ASIP CNV in several goat breeds with different coat colors 

in order to find out whether dark-colored breeds have lower ASIP copy numbers 

than the ones with white coats. 

 

 

2. Materials and Methods 

 

2.1. CNV calling based on Goat SNP50 BeadChip genotyping data 

 

In order to investigate the segregation of a CNV in the caprine ASIP 

locus and its potential association with coat color, we performed an initial 

experiment exclusively focused on three breeds for which Illumina Goat SNP50 

BeadChip (Illumina Inc., San Diego, CA) data had been generated in previous 

experiments. Our initial data set comprised 1,036 Murciano-Granadina goats 
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which had been genotyped with the chip in the context of a genome-wide CNV 

scan (our unpublished data). From these, we selected 559 individuals with 

coloration records. We also obtained Illumina Goat SNP50 BeadChip (Illumina 

Inc., San Diego, CA) genotypes corresponding to 42 Saanen goats that were 

kindly provided by Dr. Gwenola Tosser-Klopp from INRA (Castanet-Tolosan). 

Finally, we generated Illumina Goat SNP50 BeadChip (Illumina Inc., San Diego, 

CA) genotypes for 54 Malagueña goats. We considered that this breed is of great 

interest because Malagueña goats can display white, light blond, dark blond and 

brown coat colors. Genomic DNA of Malagueña goats were genotyped by using 

the Illumina Goat SNP50 BeadChip (Tosser-Klopp et al., 2014) in accordance 

with the instructions of the manufacturer (Illumina Inc., San Diego, CA). 

Following Attiyeh et al. (2009), B allele frequencies (BAF) and signal intensity 

ratios (log R Ratio or LRR) were obtained with the GenomeStudio software 2.0.4 

(Illumina, https://emea.illumina.com). Mapping of CNV was independently 

carried out for the datasets of 54 Malagueña goats and 42 Saanen goats. 

Specifically, we employed the EnsembleCNV pipeline (Zhang et al., 2019) to 

assemble initial calling data from PennCNV v1.0.5 (Wang et al., 2007; Diskin et 

al., 2008) and QuantiSNP v2 (Colella et al., 2007) into CNV regions (CNVR) 

with a heuristic algorithm (threshold of minimum overlap = 30%). The CNVR 

boundaries were subsequently refined by considering the local correlation 

structure of the LRR values of the SNPs mapping to CNVR (Zhang et al., 2019). 

Then, we reassigned CNV calls initially obtained with both PennCNV and 

QuantiSNP to each refined CNVR, so the final set of CNVR only comprised 

those simultaneously detected by both callers. 

 

2.2. Estimating ASIP copy number by quantitative real time PCR 

 

We performed a second experiment based on quantitative real-time PCR 

(qPCR) to estimate ASIP copy number in three breeds mentioned before plus 

five additional populations for which DNA was available. Goats under analysis 
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(N=83) belonged to the following breeds: Saanen (white, N=10), Jonica (white 

or rosy, sometimes with tawny spots in the head and neck, N=9), Carpathian 

(polychromatic, N=9), Maltese (white, with a raven-black area on the top and 

sides of the head, N=6), Blanca de Rasquera (white or white with black spots, 

N=9), Derivata di Siria (brown/blond, sometimes white pied, N=10), Malagueña 

(white, N=10; blond/brown, N=10) and Murciano-Granadina (black/brown, 

N=10) (Figure S1). 

Primers were designed with the Primer Express Software (Applied 

Biosystems) to amplify specific regions of the caprine ASIP gene and two 

reference genes (Table S1): melanocortin 1 receptor (MC1R, Fontanesi et al., 

2009; Liu et al., 2018) and glucagon (GCG, Ballester et al., 2004; Ramayo-

Caldas et al., 2010). Specifically, polymerase chain reactions (PCR) were carried 

out in a final 15 µL volume containing 7.5 ng genomic DNA, 7.5 µL 2 × 

SybrSelect Master Mix (Applied Biosystems), 300 nM of each forward and 

reverse primer and ultrapure water. Each sample was analyzed in triplicate. 

Assays were loaded in 384-well plates and run in a QuantStudio 12K Flex Real-

Time PCR System instrument (Applied Biosystems). The thermal cycling was 

50°C for 2 min, 95°C for 10 min, 40 cycles of 95°C for 15 seconds and 60°C for 

1 min. The specificity of the PCR reactions was assessed with a melting curve 

analysis procedure based on the following thermal profile:  95°C for 15 seconds, 

60°C for 15 seconds and a gradual increase in temperature with a ramp rate of 

1% up to 95°C. By performing ten-fold serial dilutions of a goat DNA pool 

template, the generated standard curves showed a comparable amplification with 

efficiencies ranging from 107.2% to 108.8%. The relative copy number of the 

ASIP gene was inferred with the qbase+ software (Biogazelle, Ghent, Belgium) 

by using the 2-ΔΔCT method (Livak and Schmittgen 2001). The average of the four 

samples with the lowest ASIP copy numbers was employed as calibrator for 

relative quantification. 
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Table 1. The number of individuals carrying copy number variation mapping to the 

caprine ASIP gene based on the analysis of Illumina Goat SNP50 BeadChip data 

(Illumina Inc., San Diego, CA) 

Breed Coat color 
Number of 

individuals 

Number of individuals 

carrying ASIP CNV 

Saanen White 42 28 

Malagueña 

White 16 8 

Light blond 17 4 

Dark blond 11 3 

Brown 10 2 

Murciano-Granadina2 
Brown 159 32 

Black 400 83 
2only those with known coat colors were included here. 

 

 

3. Results and discussion 

 

By performing CNV mapping, we confirmed the existence of a CNVR 

co-localizing with the ASIP gene in white Saanen, black/brown Murciano-

Granadina and white/blond/brown Malagueña goats (Table 1). This is a clear 

indication that, as pointed out by Fontanesi et al. (2009) there is increased copy 

number of the ASIP locus not only in goats from white breeds, such as Saanen, 

but also in Murciano-Granadina individuals that are black or brown (Table 1). 

To gain new insights into this issue, we decided to carry out a qPCR 

quantification of ASIP copy number in a panel of 83 goats from 8 breeds with 

diverse coat colors (Figure S1). The averaged estimates of ASIP relative copy 

number per breed and relative to the calibrator are shown in Figure 1 and Table 

2. It is important to emphasize that our data should not be interpreted in terms of 

absolute copy numbers. As previously said, all copy number estimates are 

calibrated with regard to the four individuals with lowest copy numbers. As 

expected, we observed high ASIP copy numbers in the Saanen breed (3.50 ± 0.23 

copies, relative to the calibrator), a result that is consistent with data reported by 
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Fontanesi et al. (2009). Likewise, a similar high copy number was observed in 

pure white individuals from the Malagueña breed (3.51 ± 0.51 copies). However, 

we also detected high ASIP copy numbers in brown/blond Malagueña goats (3.58 

± 0.73 copies) and in black/brown Murciano-Granadina goats (3.33 ± 0.58 

copies). Interestingly, the highest copy number was found in a light blond 

Malagueña goat (5.00 ± 0.18 copies). Performance of an ANOVA test with the 

“aov” function implemented in R (https://www.r-project.org/) revealed that ASIP 

copy numbers are not different amongst the four populations cited above (P > 

0.05, Table 2). Moreover, several breeds, which exhibit a white or 

predominantly white coat (e.g. Jonica, Maltese and Blanca de Rasquera), showed 

lower ASIP copy numbers than brown/blond Malagueña and black/brown 

Murciano-Granadina goats (Figure 1). In a previous study, Zhang et al., (2018) 

reported that white Liaoning Cashmere goats have higher average ASIP copy 

numbers than black Leizhou goats, but several black Leizhou goats harbored 

higher ASIP copy numbers than their white Liaoning Cashmere counterparts. 

Similarly, Fontanesi et al. (2009) indicated that not all Saanen goats investigated 

in their experiment carried 2 additional copies of the ASIP gene and, even more, 

they also identified a Murciano-Granadina individual (MGb7) with an increased 

ASIP copy number similar to that estimated in Saanen goats. So, our data and 

results presented by other authors (Fontanesi et al. 2009, Zhang et al. 2018) do 

not evidence a perfect correlation between ASIP copy number and white coat 

color. As pointed out by Fontanesi et al. (2009), this could be due to a complex 

inheritance pattern involving epistasis and other genetic factors modulating 

pigmentation. Recently, Henkel et al., (2019) detected, with short-read 

resequencing data, at least four CNV located near or encompassing part of the 

caprine ASIP gene, which might be associated with different color patterns. 

These authors showed that in Grisons Striped goats (Asm), Chamois Colored 

goats (Ab) and Peacock goats (Apc), the eumelanistic skin displayed a weak ASIP 

mRNA expression, while the pheomelanistic skin regions in these three goats 

had at least 10-fold higher ASIP expression than the corresponding eumelanistic 
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samples. Moreover, the uniformly white Saanen goat (AWt) had the highest ASIP 

mRNA expression. In summary, these authors were able to correlate the 

eumelanistic/pheomelanistic pigmentation of skin with ASIP mRNA expression, 

but evidence correlating ASIP copy number estimates with ASIP mRNA 

expression in the skin were not provided. In the absence of evidence linking copy 

number with mRNA expression levels, it is difficult to assume that the CNV has 

a causal role on pigmentation because it is unknown whether increased copy 

number translates into an increased function. Indeed, the duplication of a gene 

does not necessarily involve a duplication of its expression due to compensatory 

mechanisms or to the loss of regulatory elements during the duplication process 

(Clop et al. 2012).  
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Figure 1. Boxplot depicting the relative copy number of the ASIP gene in eight goat 

breeds. The y-axis represents the median and the distribution of ASIP copy number in 

eight goat breeds (x-axis). The average of the four samples with the lowest ASIP copy 

numbers was used as calibrator. The following abbreviations have been used: SAA, 

Saanen (white, N=10); ION, Jonica (white or rosy, sometimes with tawny spots in the 

head and neck, N=9); CAR, Carpathian (polychromatic, N=9); RAS, Blanca de Rasquera 

(white or white with black spots, N=9); MAL, Maltese (white, with a raven-black area 

on the top and sides of the head, N=6); DER, Derivata di Siria (brown or blond, 

sometimes white pied, N=10); MUG, Murciano-Granadina (brown/black, N=10); 

Malagueña (white, W_MLG, N=10; blond or brown, NW_MLG, N=10). The 

pigmentation patterns of these populations are reported in Figure S1. 

 



 

 

Table 2. Estimates of ASIP relative copy number in eight goat breeds 

Coloration pattern 
 

Population1 

 

Code 

 

Country 

Number of 

individuals 
CN range2 Mean ± SD3 

Pure white 
Saanen SAA Switzerland 10 3.04-3.82 3.5 ± 0.23a 

White Malagueña W_MLG Spain 10 2.57-4.42 3.51 ± 0.51a 

Predominantly white 

Blanca de Rasquera RAS Spain 9 1.89-3.04 2.37 ± 0.33c 

Jonica ION Italy 9 2.08-3.33 2.82 ± 0.39bc 

Maltese MAL Italy 6 2.56-3.36 2.85 ± 0.28abc 

Solid dark-colored 

Murciano-Granadina MUG Spain 10 2.68-4.7 3.33 ± 0.58ab 

Non-white Malagueña NW_MLG Spain 10 2.84-5 3.58 ± 0.73a 

Derivata di Siria DER Italy 10 2.03-3.27 2.42 ± 0.40c 

Polychromatic Carpathian CAR Romania 9 2.01-3.16 2.63 ± 0.33c 

1The specific colors of each breed can be found in Figure S1. Among them, Blanca de Rasquera goats are white or white with black spots; Jonica 

goats are white or rosy, sometimes with tawny spots in the head and neck; Maltese goats are white, with a raven-black area on the top and sides 

of the head; Murciano-Granadina goats are black or brown; Non-white Malagueña goats are blond or brown; Derivata di Siria goats have a light 

red coat, possibly white pied; Carpathian goats can be white, gray, reddish, black, or spotted.2For each individual, ASIP copy number (CN) was 

measured in triplicate and the average of the four samples with the lowest ASIP copy numbers was used as calibrator. 3ASIP copy number averages 

with different letters are significantly different (P < 0.05) according to an ANOVA test. SD: standard deviation. 
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4. Conclusion 

 

As a whole, our results and those published by other authors (Fontanesi 

et al., 2009; Dong et al., 2015; Zhang et al., 2018; Henkel et al., 2019) evidence 

that the potential role of structural variation in the ASIP locus on pigmentation 

has not been fully elucidated yet. In our study, we have not detected a consistent 

pattern by which light colored breeds display higher ASIP copy numbers than 

those observed in dark-colored breeds such as Murciano-Granadina. This could 

be due to the existence of genetic factors masking the effects of increased ASIP 

copy number or, alternatively, to the fact that increased ASIP copy number does 

not imply an increase in ASIP expression or function. For the four CNV mapping 

close or overlapping the ASIP gene, it would be crucial to investigate if copy 

number correlates with ASIP mRNA expression in the skin. 

 

Supplementary Information 

 

Table S1. List of primers used for the relative quantification of ASIP copy 

number by real-time qPCR. 

Figure S1. Pictures of several goat breeds used in the qPCR experiment. The 

picture of the Saanen breed was retrieved from: https://commons.wikimedia.org/, 

and the remaining pictures were provided by Dr Jordi Jordana, Dr Juan Manuel 

Serradilla, Dr Baltasar Urrutia and Dr Juan carrizosa. Moreover, the 

pigmentation patterns of additional breeds can be found at the following links:  

Carpathian: https://www.iga-

goatworld.com/uploads/6/1/6/2/6162024/03_grosu_h_romania_ 

09.04.2014.pdf .  

Derivata di Siria: http:// www.agraria.org/caprini/derivatadisiria.htm.  

Jonica: http://www. agraria.org/caprini/jonica.htm.  

Maltese: http://eng.agraria.org/goat/maltese.htm. 
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Abstract 

 

The inheritance of pigmentation patterns in domestic animals is often determined 

by one or several genes with large effects that, in some instances, can interact 

through epistasis or other complex mechanisms. The genomic architecture of the 

black/brown color of Murciano-Granadina goats has not been investigated yet at 

the genome-wide level, although one candidate gene study reported the 

involvement of the MC1R gene. Herewith, we have carried out a genome-wide 

association study comprising 529 Murciano-Granadina goats with available coat 

color records and Goat SNP50 BeadChip genotypes. Statistical analysis of the 

data with the GEMMA software revealed a strong association between a 

chromosome 18 region containing the MC1R gene and coat color (q-value = 2.03 

× 10-18). This result is consistent with previous data and demonstrates that the 

inheritance of coat color in Murciano-Granadina goats is very simple, being 

determined by a single locus. Sequencing of the MC1R coding region and 

genotyping experiments evidenced that the c.801C>G (p.Cys267Trp) 

polymorphism tightly segregates with coat color, a result concordant with that 

generated in the aforementioned candidate gene study. In contrast with other 

pigmentation phenotypes, such as white spotting in cattle or pink coloring in 

goats, which are determined by several loci, our results clearly demonstrate that 

the inheritance of coat color in Murciano-Granadina goats is essentially 

monogenic. 

 

Keywords: Coat color, Goat, GWAS, MC1R, Murciano-Granadina 
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1 Introduction 

 

Coat color has important physiological functions related with camouflage from 

predators, protection from UV radiation and communication (Linderholm and 

Larson, 2013). More than 300 genes with effects of pigmentation have been 

reported, and many of them are dedicated to control the synthesis of eumelanin 

and pheomelanin (Montoliu et al., 2020). In this regard, the role of the 

melanocortin 1 receptor (MC1R) is essential. Binding of proopiomelanocortin 

(POMC) to MC1R activates a series of biochemical events, fundamentally 

regulated by the cAMP secondary messenger, which promote an increase in the 

activity of tyrosinase (TYR), the rate-limiting enzyme synthesizing melanin 

from tyrosine (Linderholm and Larson, 2013). This event, combined with higher 

levels of TYR and of tyrosinase-related proteins 1 (TYRP1) and 2 (TYRP2), 

enhances the synthesis of black/brown eumelanin (García-Borrón et al., 2014). 

In contrast, agouti signaling protein (ASIP) antagonizes the effect of MC1R and 

induces the production of red/yellow pheomelanin (Gracía-Borrón et al., 2014). 

Another key locus in animal pigmentation is the KIT proto-oncogene, receptor 

tyrosine kinase (KIT), which is crucial for melanoblast differentiation and 

proliferation and melanogenesis (Linderholm and Larson, 2013). 

The majority of complex traits are controlled by a broad array of polymorphisms 

with very small quantitative effects, but coat color is considered to have a much 

simpler genetic basis, being usually controlled by a few loci with large effects 

(Hayes et al., 2010). In mice, at least ten genes have been reported to influence 

white spotting (Baxter et al., 2004). Moreover, a meta-analysis of genome-wide 

association studies (GWAS) for skin color in 17,262 Europeans highlighted nine 

significantly associated SNPs, making it possible to identify several candidate 

genes (Liu et al., 2015). Similarly, the inheritance of pigmentation patterns in 

domestic animals is often oligogenic. For instance, in cattle two highly 

significant quantitative trait loci (QTLs) on chromosomes 6 and 22, and co-

localizing with the KIT and melanocyte inducing transcription factor (MITF) 
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genes, have been associated with white spotting (Jivanji et al., 2019). Moreover, 

a third signal co-localizing with the paired box 3 (PAX3) gene, which has a 

crucial role in melanogenesis, was also detected by the same authors. Indeed, 

PAX3 has been reported as a potential causal factor for the splashed white coat 

phenotype in horses (Hauswirth et al., 2012). Similarly, in goats the genetic basis 

of the PINK and PINK NECK phenotypes, which are considered as a defect, was 

investigated through a GWAS approach (Martin et al., 2016). Four and five 

significant associations were detected for PINK and PINK NECK, respectively, 

and the ASIP gene was proposed as a causal factor for the PINK phenotype 

(Martin et al. 2016). Altogether, these findings indicate that the genomic 

architecture of coat color can be quite complex, involving the participation of 

several loci acting cooperatively to generate a specific pigmentation pattern. In 

the current work, we aimed to study the genomic architecture of coat color in 

Murciano-Granadina goats, which can be black or brown. A previous candidate 

gene study reported that MC1R genotype is associated with this phenotype 

(Fontanesi et al., 2009), but sample size was low and no genome-wide study was 

performed precluding the detection of additional genetic factors. 

 

2 Materials and Methods 

 

2.1 Ethics Statement 

The collection of blood is a routine procedure carried out by trained veterinarians 

working for the CAPRIGRAN association, so it does not require a permission 

from the Committee on Ethics in Animal and Human Experimentation of the 

Universitat Autònoma de Barcelona. 

 

2.2 Sample Collection and Genotyping 
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Blood samples from 529 Murciano-Granadina goats were collected in EDTA K3 

coated vacuum tubes and stored at -20 ºC before processing. Genomic DNA was 

isolated using a previously reported salting-out procedure (Guan et al., 2020) and 

resuspended in 1 mL TE buffer (Tris-HCl 10 mmol/L, EDTA 1 mmol/L, pH = 

8). These 529 goats were phenotyped for coat color by visual assessment, since 

the two pigmentation patterns (black and brown) are discernible to the naked eye 

(Figures 1A and 1B). The Goat SNP50 BeadChip (Tosser-Klopp et al., 2014), 

which contains 53,347 single nucleotide polymorphisms (SNPs), was used to 

genotype the 529 goats in accordance with the instructions of the manufacturer 

(Illumina, San Diego, CA). Data normalization and genotype calling were 

performed with the GenomeStudio software 2.0.4 (Illumina, 

https://emea.illumina.com). The PLINK v1.9 software (Purcell et al., 2007) was 

used to filter out unmapped and non-autosomal SNPs, as well as those with a 

low call rate (< 90%) and low frequency (< 1%). After applying these filtering 

criteria, 43,240 SNPs were selected to perform subsequent analyses. 

 

2.3 Genome-wide association study 

The genome-wide association study (GWAS) was carried out with the GEMMA 

software (version 0.98.1), which implements the Genome-wide Efficient Mixed 

Model Association algorithm (Zhou and Stephens, 2012). The following 

statistical model was used: 

 

Y = xβ + u + ε 

 

where Y is a vector of phenotypic values coded as 1 (black) or 2 (brown); x is a 

n-vector of marker genotypes harbored by each individual; β is the effect size of 

the marker (allele substitution effect); u is a n-vector of random effects with a n-

dimensional multivariate normal distribution (0, λτ-1K), being τ-1 the variance of 

the residual error, λ the ratio between the two variance components and K a n × n 
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relatedness matrix derived from the 42,793 valid SNPs. Finally, ε is a vector of 

errors. In this model, we did not include the fixed factors defined in Guan et al. 

(2020) because they are not expected to have any effect on coat color. The 

GEMMA software contrasts the alternative hypothesis (H1: β ≠ 0) against the 

null one (H0: β = 0) by carrying out likelihood ratio tests for each marker. Besides, 

the relatedness matrix, which is constructed by accounting all genome-wide 

SNPs as a random effect, is employed to correct for population structure. 

Multiple testing was implemented through a false discovery rate approach 

(Benjamini and Hochberg, 1995), and a q-value ≤ 0.05 was established as a 

threshold of significance in the GWAS.  

 

2.4 Sanger sequencing  

Two pairs of primers were designed with the Primer-BLAST tool 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi) in order to amplify 

the coding region of the MC1R gene (Supplementary Table S1) in 9 black and 

13 brown Murciano-Granadina individuals. The polymerase chain reaction (PCR) 

contained 50 ng of genomic DNA, 1× BIOTAQ PCR buffer (Bioline, Barcelona, 

Spain), 200 µmol/L of dNTPs, 0.2 µmol/L of each primer, 1.5 mmol/L MgCl2, 

and 0.65 units of BIOTAQ DNA Polymerase (Bioline, Barcelona, Spain). 

Nuclease-free water was added to a final volume of 25 µL. The thermal cycle 

was as follows: a hot-start step at 95°C for 2 minutes, followed by 34 cycles of 

95°C for 45 seconds (denaturation), 60°C for 45 seconds (annealing) and 72°C 

for 45 seconds (extension), plus a final extension at 72°C for 5 minutes. Five µL 

of the PCR were mixed with 1.5 µL of a mixture containing 1.13 µL PCR buffer 

1× (composition for 1 mL: 100 µL PCR Gold Buffer 10× + 100 µL MgCl2 25 

mmol/L + 800 µL H2O), 0.12 µL Exonuclease I (20 units/uL, Thermo Fisher 

Scientific, Barcelona, Spain) and 0.25 µL FastAP Thermosensitive Alkaline 

Phosphatase (1 unit/µL, Thermo Fisher Scientific, Barcelona, Spain). This 

mixture was incubated at 37ºC for 15 minutes plus 85ºC during 15 minutes. 

Purified amplicons were sequenced with the BigDye Terminator Cycle 
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Sequencing Kit v1.1 (Applied Biosystems, Foster City, CA). Sequencing 

reactions were run on ABI 3730 DNA analyzer (Applied Biosystems, Foster City, 

CA). Finally, sequences were viewed and aligned with the Molecular 

Evolutionary Genetics Analysis software (MEGA X) (Kumar et al., 2018). 

 

2.5 TaqMan genotyping experiment 

In order to further confirm the causality of the c.801C>G mutation, we used a 

Custom Taqman SNP Genotyping Assay (Applied Biosystems) to genotype 49 

black and 41 brown individuals. TaqMan probes are shown in the 

Supplementary Table S2. Five samples with GG (N=1), CC (N=2) and GC 

(N=2) genotypes ascertained by Sanger sequencing were used as positive 

controls. The genotyping reaction was carried out in a final volume of 15 μL 

containing 1× Taqman Universal PCR Master Mix (Applied Biosystems, Foster 

City, CA), 1× Taqman Custom Genotyping Assay designed for rs669694251 

(Applied Biosystems, Foster City, CA) and 18 ng of genomic DNA. Real-time 

PCRs were performed in 96-well reaction plates and they were run in a 7900-HT 

Real Time PCR system (Applied Biosystems, Foster City, CA). The thermal 

profile was: 50°C for 2 min, 95°C for 10 min and 40 cycles of 95°C for 

15 seconds and 60°C for 1 min. Genotypes were obtained using the Genotyping 

Analysis Module of the Applied Biosystems Analysis Software accessible in the 

Thermofisher Cloud (https://www.thermofisher.com/es/es/home/digital-

science.html, accessed March 20, 2020). 

 

3 Results and Discussion 

 

Through GWAS analysis, we detected 25 SNPs on chromosome 18 (12.18-22.30 

Mb) showing significant associations with coloration (Figures 1C and 1D). The 

marker showing the highest significance was rs268287597 (q-value = 2.03 × 10-



Paper Ⅴ 

 

219 

18, Figure 1D). The analysis of the gene content of the aforementioned 

chromosome 18 region revealed the presence of a single peak coinciding with 

the position of the MC1R gene. In principle, this would indicate that the 

inheritance of the black/brown color in Murciano-Granadina goats is monogenic. 

This result contrasts that obtained in humans and domestic animals, in which 

color is determined by multiple loci. For instance, a GWAS focused on skin 

pigmentation pinpointed the existence of fifteen of major genes in Eurasians, but 

the analysis of the KhoeSan populations indigenous to southern Africa revealed 

that these genes explain only a minimal part of skin color and that there are many 

other loci yet to be discovered, evidencing that the genomic architecture of skin 

color in humans is much more complex than what was previously thought 

(Martin et al., 2017). Moreover, in humans more than 200 markers have been 

independently associated with a broad array of hair colors going from blond to 

black (Morgan et al., 2018). In cattle the MC1R genotype is the main determinant 

of the black, red and wild type color, but the KIT gene has been recently involved 

in the reddening of the black pigmentation indicating that it acts as a modifier 

gene (Hulsman Hanna et al., 2014). White spotting or proportion of black seem 

also to have an oligogenic inheritance in cattle, being the KIT and MITF genes 

two key players in the determination of these phenotypes (Jivanji et al., 2019; 

Hayes et al., 2010), and similar conclusions have been obtained when analyzing 

the PINK and PINK NECK phenotypes in goats (Martin et al., 2016). 
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Figure 1. Murciano-Granadina goats with black (A) and brown (B) coat colors, which 

were respectively coded as 1 and 2 in the genome-wide association study (GWAS). (C) 

Quantile-quantile (QQ) plot of the expected versus observed P values in the GWAS 

analysis. (D) Manhattan plot depicting the associations between coat color and Goat 

SNP50 BeadChip genotypes in 387 black and 142 brown Murciano-Granadina goats. 

Negative log10P values (y-axis) of the associations between SNPs and phenotypes are 

plotted against the genomic location of each SNP marker (x-axis). Markers on different 

chromosomes are denoted with different colors. The horizontal dashed line indicates 

statistical significance after correction for multiple testing by using the false discovery 

rate approach reported by Benjamini and Hochberg (1995). The arrow indicates the 

leading SNP that shows the highest association with phenotype (rs268287597, q-value = 

2.03 × 10-18). 

 

The coincidence of the only genome-wide significant association with the MC1R 

locus agreed well with data reported in a candidate gene study for coat color in 

goats (Fontanesi et al., 2009), which indicated that MC1R genotype is associated 

with the pigmentation of Murciano-Granadina goats. Sanger sequencing 

revealed two missense mutations c.748G>T (p.Val250Phe) and c.801C>G 

(p.Cys267Trp) in the MC1R gene. These two mutations were also identified by 

Fontanesi et al. (2009) and they are registered in the Ensembl database 

(https://www.ensembl.org) with identifiers rs657434682 and rs669694251, 

respectively. Visual inspection of the sequences revealed a single G peak (GG 
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genotype) at position 748 in 9 black and 10 brown goats, while only 3 brown 

goats showed a double GT peak at this location and no goat displayed a single T 

peak (TT genotype). Altogether, these results rule out c.748G>T (p.Val250Phe) 

as a causal mutation for the black/brown coat color of Murciano-Granadina goats. 

With regard to c.801C>G, black goats showed either a single G peak (GG 

genotype, N=1) or a GC double peak (GC genotype, N=8), while all brown goats 

(N=13) displayed a single C peak (CC genotype, Figure 2A). By performing a 

TaqMan genotyping experiment in 49 black and 41 brown individuals, we found 

that all brown goats were CC and all black goats were either GG or GC (Figure 

2B), indicating that the G-allele has a dominant inheritance. Moreover, a second 

GWAS was carried out by using a SNP data set comprising the 43,240 SNPs 

contained in the Goat SNP50 BeadChip plus the rs669694251 (c.801C>G) 

marker. The GEMMA software (Zhou and Stephens, 2012) was employed to 

investigate the association of these 43,241 markers and color phenotypes in 90 

Murciano-Granadina goats as previously explained. In Figure 2C, it can be 

appreciated that marker rs669694251 displays the most significant association 

with coat color (c.801C>G, q-value = 2.91 × 10-25). Fontanesi et al. (2009) 

investigated the association of the MC1R c.801C>G genotype with coat color in 

28 Murciano-Granadina goats and found a fully consistent result. The G-allele 

would be a dominant gain-of-function mutation that is located in the extracellular 

loop 3 of the MC1R molecule and probably disrupts a disulfide bond between 

Cys267 and Cys275, thus altering the three-dimensional structure and activity of 

the protein towards an increased production of eumelanin. We have examined 

the genotype of 22 bezoars at genomic position 16,105,786 (which corresponds 

to c.801C>G) on chromosome 18 by using a data set of whole-genome sequences 

reported in Guan et al. (2019). This analysis revealed that all bezoars display CC 

genotypes at position 801 of the MC1R coding region, suggesting that the G-

allele emerged during or after goat domestication. 
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Figure 2. (A) Sequence electropherograms showing the region containing the c.801C>G, 

(p.Cys267Trp) SNP for individuals with CC, GC and GG genotypes. (B) Cluster plots 

of TaqMan genotyping results obtained with the Genotyping Analysis Module 

implemented in the ThermoFisher Cloud computing application (Applied Biosystems). 

The horizontal and vertical axes correspond to alleles C and G, respectively. The dots 

with red, green and blue colors represent CC, CG and GG genotypes, respectively. The 

negative control is indicated by an orange dot. (C) Manhattan plot depicting associations 

between coat color (41 brown and 49 black Murciano-Granadina goats) and the 

genotypes of marker rs669694251 (red dot) plus 1,134 additional Goat SNP50 BeadChip 

markers mapping to goat chromosome 18. The dashed line represents the negative log10P 

value defining the threshold of significance (q-value ≤ 0.05) after correcting for multiple 

testing with a false discovery rate approach (Benjamini and Hochberg, 1995). Significant 

SNPs are indicated with blue dots. 

 

4 Conclusion 

 

Coloration seems to have a complex genetic basis in the majority of goat breeds, 

with patterns of association that are often difficult to interpret (Fontanesi et al., 

2009). In this work, we have demonstrated that the genomic architecture of the 

black or brown coat color of the Murciano-Grnadina goat breed is very simple, 

being determined by a single locus: the MC1R gene. Likely, the Cys267Trp 

substitution alters substantially the three-dimensional structure of MC1R, but 
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instead of abolishing its function triggers an increase in its activity leading to an 

enhanced synthesis of eumelanin. In our GWAS we did not find any additional 

genome-wide significant association, confirming the monogenic inheritance of 

this trait. This result contrasts strongly with findings made in other domestic 

species in which pigmentation is determined by the concerted action of several 

genes. 
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The main aim of this Thesis is to investigate the genomic architecture of 

dairy and pigmentation traits in Murciano-Granadina (MUG) goats through the 

utilization of high throughput technologies, such as Illumina Goat SNP50 

BeadChip genotyping and next generation sequencing approaches. The results 

obtained in this research have been discussed in the five papers which constitute 

the core of this Thesis, while in the General Discussion section we will provide 

a global view about the main findings and conclusions generated in the present 

work. One of the main reasons for analyzing dairy and pigmentation phenotypes 

in the same Thesis is that, according to the literature, they are expected to have 

a very different genetic basis. While the determinism of pigmentation traits is 

usually monogenic or oligogenic and environmental influences are in general 

negligible, the inheritance of dairy traits tends to be highly polygenic, with many 

loci involved, and there is also an important environmental component. This 

feature gives us the opportunity to investigate and compare phenotypes with 

highly divergent genomic architectures, enriching our perspective about how 

goat phenotypes are genetically determined. We have also characterized copy 

number variation in MUG goats as a first step to understand their impact on 

phenotypic variation. 

 

4.1 Molecular basis of lactation in Murciano-Granadina goats 

 

4.1.1 Mammary gene expression in early and late lactation is similar but 

there are important changes in the mRNA levels of several genes related 

with proliferation and cell death 

The performance of RNA-Seq analysis in paper Ⅰ resulted in the 

identification of 42 differentially expressed (DE) genes between T1 vs. T2, a 
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significantly lower number than that obtained in the T1 vs. T3 (1,377), and T2 

vs. T3 (1,039 DE genes) comparisons. In the study carried out by Bhat et al. 

(2019), a higher number of DE genes was observed in Kashmiri (455) and Jersey 

cattle (418 DE genes) when comparing early (90 days) and late (250 days) 

lactation (Bhat et al., 2019). One potential explanation for this discrepancy is 

that this study applied a less stringent threshold of significance than ours, only 

considering as a threshold of significance a q-value < 0.05 (instead of also taking 

into account the fold-change as we did). As mentioned in paper Ⅰ, 135 DE genes 

were detected when comparing 50 days vs. 150 days of lactation in sheep 

(Suárez-Vega et al., 2015), but in this case the threshold of significance was the 

same as ours (an absolute log2FC >1.5 and a q-value < 0.05). In another study 

focusing on the lactation of buffaloes, Arora et al. (2019) compared early (30-54 

d) vs. late lactation (250-273 d) and detected 125 upregulated and 32 

downregulated DE genes, but they employed a threshold of significance that was 

more stringent than ours (absolute log2FC ≥ 2.0 and q-value ≤ 0.05). These 

findings indicate that the threshold of significance is probably not the main factor 

explaining why in early and late lactation we have detected less DE genes than 

what has been published in other studies. One potential explanation would be 

methodological, being especially important the use of different pipelines for 

differential expression analysis. For instance, Arora et al. (2019) carried out 

differential expression analysis using the CLC transcriptomics analysis tool 

implemented in the CLS Genomics Workbench 6.5.1 (CLC Bio, Aarhus, 

Denmark), while Bhat et al. (2019) used the Cuffdiff software. On the other hand, 

Suárez-Vega et al. (2015) performed differential expression analysis with two R 

packages: DESeq2 and edgeR. Both analyses yielded a variable number of DE 

genes, with concordance rates between these two tools fluctuating between 6% 

to 65%. Another reason explaining this discrepancy would be physiological, as 

it is well known that the lactation curve of goats tends to be flatter, with a less 

prominent peak and greater persistency than that of cattle 

(http://www.fao.org/dairy-production-products/production/dairy-animals/small-
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ruminants/en/), thus suggesting that the molecular basis of lactation in these two 

species is probably similar but not identical. Moreover, the sample source used 

for isolating RNA is also different. The studies carried out in cattle, sheep and 

buffalo (Suárez-Vega et al., 2015, Arora et al., 2019, Bhat et al., 2019) used RNA 

extracted from milk somatic cells, while we isolated RNA from biopsies of 

mammary gland tissues. In healthy goats, neutrophils, macrophages and 

lymphocytes constitute 45-74%, 15-41% and 9-20% of the somatic cell fraction, 

while epithelial cells represent a small portion of somatic cells in goat milk 

(Paape et al., 2001). This is the reason why we used mammary biopsies instead 

of extracting RNA from milk somatic cells, which can have a very heterogeneous 

composition. 

Amongst the 42 DE genes detected by us when comparing T1 vs. T2, 

we have discussed several genes in paper Ⅰ that participate in metabolism (e.g. 

ST8SIA6, GALNT14, ADIPOQ, HKDC1) as well as in mammary gland 

development and involution (e.g. GABRB3, ARSI, INHBA, TNR). There are also 

several genes that have been also identified in lactation studies focusing on 

buffaloes, dairy sheep and cattle, such as INHBA, CPXM2, CCDC152 and NOV, 

which are known to participate in cell proliferation and apoptosis (Seder et al., 

2009, Suárez-Vega et al., 2015, Yao et al., 2015, Lin et al., 2017). Moreover, a 

substantial 4-fold downregulation was observed in the mRNA expression of the 

ATP4A gene encoding ATPase H+/K+ transporting subunit α, which modulates 

proton pumps and ion channels (Singh et al., 2013). In the end of pregnancy, and 

also at the beginning and middle lactation, the caprine mammary gland 

experiences a steady growth, with a significant augmentation in the number of 

secretory cells and lumen area which result in a marked increment of the 

parenchyma tissue and mammary gland volume (Lérias et al., 2014). In contrast, 

in late lactation there is an important reduction of secretory epithelial cells due 

to involution and apoptosis (Lérias et al., 2014). The genes mentioned above 

might play a fundamental role in this process. For instance, the INHBA gene 

(log2FC = 1.63, q-value = 2.57 × 10-3) encodes inhibin subunit beta A that is a 
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subunit of both activin and inhibin, which regulate mammary epithelial cell 

differentiation through mesenchymal-epithelial interactions (Robinson and 

Hennighausen, 1997). The NOV gene (log2FC = 1.57, q-value = 0.03) encodes 

cellular communication network factor 3 (CCN3), a matricellular protein of the 

CCN family involved in the lactogenic differentiation of mammary epithelial 

cells (Perbal, 2004, Morrison and Cutler, 2010). Moreover, the CCN3 protein 

has a role in calcium ion signaling (Li et al., 2002). Other genes with strong 

expression changes between T1 and T2 encode haemoglobin subunits, such as 

LOC102168680 (log2FC = 4.57, q-value = 4.24 × 10-4), LOC102175876 (log2FC 

= 4.5, q-value = 3.7 × 10-4), LOC102168959 (log2FC = 4.34, q-value = 1.63 × 

10-4), a finding consistent with previous data (Bhaskaran et al., 2005, Newton et 

al., 2006, Chang et al., 2010). Mammary remodeling involves changes in the 

microvasculature and the expression of endothelial cells, thus ensuring the 

continuous supply of nutrients and oxygen to mammary epithelial cells and the 

removal of waste products (Safayi et al., 2010). 

 

4.1.2 Molecular mechanisms modulating lactation are similar across species  

4.1.2.1 Metabolic changes associated with lactation 

Protein metabolism 

In paper Ⅰ, we mentioned that genes encoding caseins (CSN1S1, 

CSN1S2, CSN2, CSN3) and whey proteins (PAEP, LALBA) are significantly 

upregulated in T1/T2 (lactation) vs. T3 (dry-off), a result consistent with what 

has been observed in dairy cattle, sheep and buffalo (Bionaz et al., 2012b, 

Suárez-Vega et al., 2015, Arora et al., 2019, Bhat et al., 2019). The synthesis of 

milk proteins is mainly regulated by insulin signaling and mTOR signaling-

related genes in the bovine mammary gland (Bionaz and Loor, 2011, Bionaz et 

al., 2012a). When we compared our results with those obtained by Bionaz et al. 
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(2011), we found that both the SLC1A5 and SLC7A5 genes are upregulated in T1 

and T2 compared to T3. The SLC1A5 and SLC7A5 genes mediate the uptake of 

the essential Leu and Ile amino acids. Interestingly, in the bovine lactating 

mammary gland these two genes also play a central role in activating the 

downstream mTOR signaling pathway (Bionaz and Loor, 2011), because amino 

acids are fundamental activators of the mammalian target of rapamycin (mTOR) 

kinase which modulates protein translation, cell growth, and autophagy (Nicklin 

et al., 2009).  

In rodents, the STAT5 protein, encoded by the STAT5A and STAT5B 

genes, is a critical player in the Jak2-Stat5 pathway regulating CSN3 synthesis 

(Wakao et al., 1994, Barash, 2006). In mice, STAT5 phosphorylation is high 

during late pregnancy, but very low in immature and non-lactating tissues, which 

is directly linked to the transcription of milk protein genes (Liu et al., 1996). In 

our study, however, these two genes did not reach the threshold of significance 

in any of the pairwise comparisons for differential expression analysis. It is 

important to emphasize, however, that in cattle the Jak2-Stat5 signaling pathway 

seems to play a minor role in milk protein synthesis (Bionaz and Loor, 2011). In 

contrast, we observed a downregulation of the ELF5 mRNA at T3. This gene 

encodes a transcription factor with an essential role in the control of milk protein 

synthesis in cattle and mice (Zhou et al., 2005, Bionaz and Loor, 2011). Bionaz 

and Loor (2011) found that the ELF5 mRNA is highly upregulated during 

lactation, being insulin the main modulator of its expression. In mouse mammary 

alveolar epithelial cells, ELF5 mRNA expression appears to be regulated by 

prolactin, thus triggering the initiation of lactogenesis (Zhou et al., 2005). Our 

data combined with previous reports suggest that the ELF5 transcription factor 

is a major player regulating the metabolic changes associated with lactation in a 

broad array of species, while the exact role of STAT5 in ruminants needs to be 

further clarified. In this respect, it would be worth to look into the occurrence of 

post-translational modifications (mainly phosphorylation) associated with the 

lactation status.  
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Lipid metabolism 

Many genes related with lipid metabolism showed an enhanced 

expression during lactation, being particularly important FASN which catalyzes 

the synthesis of fatty acids. We have also detected increased mRNA levels of 

genes related with fatty acid synthesis, triglyceride synthesis, cholesterol 

synthesis, sphingolipid synthesis, acetate synthesis and fatty acid activation, fatty 

acid desaturation, fatty acid absorption and transportation, formation of milk fat 

globules, lipolysis, and transcriptional regulation of lipid metabolism, a result 

consistent with those of Bionaz et al. (2012b). Pathway enrichment analysis also 

detected many biochemical routes related to lipid metabolism, including the 

PPAR signaling pathway. The PPARG transcription factor is an essential 

regulator of lipid metabolism in the bovine and mouse lactating mammary glands 

(Bionaz and Loor, 2008, Osorio et al., 2016). In bovine mammary cells, PPARG 

controls the expression of key lipid-related genes such as ACACA, FASN, LPIN1, 

AGPAT6, DGAT1, SREBF1, SREBF2 and INSIG1 (Bionaz and Loor, 2008, 

Kadegowda et al., 2009). Moreover, Shi et al. (2013) proposed that in lactating 

goat mammary epithelial cells, PPARG regulates the expression of the lipogenic 

SCD gene and contributes to monounsaturated fatty acid synthesis. According to 

our data, the expression of the PPARG gene did not reach the threshold of 

significance in the three pairwise comparisons, but as previously said PPARG 

signaling was detected in the pathway analysis. One important limitation of our 

study is that we just analyze mRNA expression, so changes in protein expression 

or post-translational modifications go unnoticed. Interestingly, we also found a 

significant downregulation of PPARA in T1 vs. T3 (log2FC = -1.63, q-value = 

1.78 × 10-18). This gene encodes another isotype of peroxisome proliferator-

activated receptors (PPAR) (Bionaz et al., 2013). Indeed, Tian et al. (2020) 

demonstrated that PPARA was able to promote the synthesis of monounsaturated 

fatty acids in primary goat mammary epithelial cells by stimulating the 
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expression of genes related to fatty acid synthesis, oxidation, transport, and 

triacylglycerol synthesis.  

In the set of enriched pathways, we did not find any pathway regulated 

by the SREBP transcription factors 1 (SREBP1) and 2 (SREBP2), although they 

play central roles in regulating fatty acid import and trafficking, triacylglycerol 

and de novo fatty acid synthesis both in dairy cattle and sheep (Bionaz and Loor, 

2008, Carcangiu et al., 2013, Osorio et al., 2016). Bionaz and Loor (2008) 

observed that the change of SREBF1 mRNA expression during bovine lactation 

was ≤ 2-fold in magnitude, and suggested that PPARG, PPARGC1A, and 

INSIG1 might have a more pivotal role in milk fat synthesis. Noteworthy, the 

knockdown of caprine PPARG involves a 50% downregulation of key lipid 

genes, such as SCD, DGAT1, AGPAT6, SREBF1, ACACA, FASN, FABP3, ATGL 

(Shi et al., 2013), but Xu et al. (2016) also demonstrated that the overexpression 

of SREBP1 in the goat mammary gland resulted in the increased mRNA 

expression of genes participating in the de novo synthesis of fatty acids, e.g. 

ACSS2, ACLY, IDH1, ACACA, FASN, ELOVL6; long-chain fatty acid activation, 

e.g. ACSL1; fatty acid transportation, e.g. FABP3; desaturation, e.g. SCD; lipid 

droplet formation, e.g. LPIN1, triglyceride synthesis, e.g. DGAT1, and 

transcriptional regulation, e.g. NR1H3, PPARG, INSIG1, SCAP. Therefore, in 

the absence of complementary proteomic data it is hard to figure out the relative 

importance of PPARG vs. SREBF in the control of lipid metabolism in the 

lactating mammary gland of goats. 

Another key regulatory factor of lipid metabolism in goat mammary 

epithelial cells is the insulin-induced gene 1 (INSIG1). In our study, the INSIG1 

gene displayed a 4 to 5-fold upregulation during lactation (T1 and T2), a result 

consistent with that presented by Li et al. (2019). This finding is very consistent 

because Bionaz and Loor (2008) detected a 12-fold upregulation of the 

expression of this gene close to the peak of lactation. As we mentioned in paper 

I, the upregulated expression of the INSIG1 gene during lactation is 
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counterintuitive because it would result in the decreased expression of genes 

participating in triacylglycerol, cholesterol synthesis, and lipid droplet 

accumulation (Li et al., 2019). Binding of SREBF Chaperone (SCAP) to INSIG 

proteins inhibits the delivery of SCAP/SREBP complex to the Golgi and 

downregulates the expression of SREBP target genes, leading to a reduction in 

cholesterol synthesis and uptake (Dong and Tang, 2010). Moreover, binding of 

HMG-CoA reductase to INSIG proteins leads to the degradation of the former 

(Dong and Tang, 2010). On the other hand, hepatic over-expression of INSIG1 

in transgenic mice inhibits SREBP processing and reduces insulin-stimulated 

lipogenesis (Dong and Tang, 2010). So, INSIG1 has antilipogenic effects and 

paradoxically its expression is augmented during lactation, not only in goats but 

also in cattle (Bionaz and Loor, 2008). Our interpretation is that INSIG1 plays a 

key role in fine tuning lipid homeostasis in ruminants, thus ensuring that lipids 

are synthesized at adequate levels. Indeed, mutant hamster cells that are deficient 

in INSIG1, but not INSIG2, show partial defects in the regulation of reductase 

degradation and SREBF processing (Dong and Tang, 2010). 

The expression of the GLYCAM1 gene is also highly upregulated during 

lactation (T1 vs. T3: log2FC = -6.5, q-value = 5.72 × 10-14; T2 vs. T3: log2FC = 

-6.93, q-value = 8.76 × 10-16). This gene encodes glycosylation-dependent cell 

adhesion molecule-1, which was also highly expressed in the mammary gland of 

dairy cattle (Ibeagha-Awemu et al., 2016, Bu et al., 2017) and sheep (Suárez-

Vega et al., 2015). The GLYCAM1 protein belongs to the glycoprotein mucin 

family and it is expressed in the ruminant mammary gland in a lactogenic-

dependent manner under the influence of hormones such as prolactin, insulin, 

and steroids (Dowbenko et al., 1993, Le Provost et al., 2003). This molecule is a 

key component of the milk fat globule membrane (MFGM) (Sørensen et al., 

1997, Lu et al., 2016a). Moreover, Lu et al. (2016a) found a high concentration 

of the GLYCAM1 and PP3 complex, which is able to inhibit lipolysis, in the 

large milk fat globule fraction. Other highly expressed genes during lactation are 

XDH, which encodes xanthine dehydrogenase; and BTN1A1, which encodes 
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butyrophilin subfamily 1 member A1. The XDH molecule could interact with 

the BTN1A1 protein and further contribute to lipid droplet secretion according 

to data presented by Bionaz and Loor (2008). Such interaction would also 

include the ADFP and MFGE8 proteins, which are major components of the 

MFGM in mammary gland epithelial cells. Due to the fact that XDH represents 

the most abundant protein in goat MFGM (~25%), and the ratio of expressed 

XDH/BTN1A1 in MFGM is higher than in other species, it could be concluded 

that XDH had a key role in the secretion of milk lipids from the goat mammary 

gland (Zamora et al., 2009, Lu et al., 2016b). 

 

Carbohydrate metabolism and insulin signaling 

The major sugar in milk is lactose, which is synthesized by using glucose 

and galactose as precursors. Lactose is an important energy-carrier and because 

of its osmotic properties it largely determines the amount of milk produced 

(Mardones and Villagrán, 2020). The synthesis of lactose is catalyzed by lactose 

synthase that is formed by α-lactalbumin and β-galactosyltransferase (Kuhn et 

al., 1980, Shendurse and Khedkar, 2016). Consistent with this fact, in paper Ⅰ we 

observed a significant downregulation of the LALBA gene at T3. The expression 

of many genes encoding galactosyltransferases (B3GALT1, B4GALT1, 

B3GALT5 and B4GALT6) was also downregulated during the dry period, 

reflecting the strong reduction in lactose synthesis that takes place during the 

dry-off period. Genes with key roles in glucose transport, such as SLC2A1, 

SLC2A9, also showed a decreased mRNA expression at T3. For instance, the 

SLC2A1 gene encodes the insulin-dependent glucose transporter 1 (GLUT1) that 

mediates the transportation of glucose across the plasma membrane in order to 

synthesize lactose (Kuhn et al., 1980, Shendurse and Khedkar, 2016). Given that 

the role of glucose transporters is mostly tissue-specific, GLUT1 would be a 

predominant glucose transporter in the ruminant mammary gland (Nielsen et al., 

2001, Zhao and Keating, 2007), and SLC2A9 might fulfill a similar function. 
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This probably explains why we did not observe a significant differential 

expression for other glucose transporters (e.g. GLUT3, GLUT4, GLUT5, 

GLUT8, GLUT12).  

Insulin signaling through its receptor (INSR), insulin receptor substrate-

1 (IRS1) as well as mTOR signaling pathway are critical for the coordinated 

metabolism of proteins, lipids and carbohydrates in the mammary gland. In this 

regard, we observed significant differences in the expression of the insulin 

receptor substrate 1 (IRS1) mRNA, which transfers insulin signals to insulin-like 

growth factor-1 receptors. More specifically, IRS1 mRNA was downregulated in 

the comparison of T1 vs. T3 (log2FC = -1.85, q-value = 1.6 × 10-11) but not of 

T2 vs. T3. This latter result could be attributed to the stringent threshold used in 

our study because the downregulation of IRS1 mRNA expression almost reaches 

significance in T2 vs. T3 (log2FC = -1.45, q-value = 3.62 × 10-7). Coincident 

results were presented by Bionaz and Loor (2011), who showed that IRS1 was 

2-fold upregulated during cattle lactation while insulin receptor followed a 

similar but less pronounced trend. Our findings and those of Bionaz and Loor 

(2011) are consistent with the fundamental role of insulin in lactogenesis. In this 

way, the mammary gland of knockout mice for the insulin receptor gene had 50% 

fewer alveoli at mid-pregnancy; and casein and lipid droplets were reduced by 

60 and 75%, respectively, evidencing a role for insulin signaling both in alveolar 

development and differentiation (Neville et al., 2013). From a carbohydrate 

metabolism perspective, the increased expression of insulin-related genes during 

lactation would imply an increased uptake of glucose in the mammary gland 

through the augmented expression of the GLUT1 transporter (Bionaz and Loor 

2011), thus enhancing lactose synthesis. 

 

Mineral homeostasis 
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One of the essential components of milk is calcium, that is secreted by 

mammary epithelial cells and prevents the softening and the weakening of the 

bones of the newborn by ensuring an adequate mineralization. The transfer of 

calcium from blood to milk requires an optimal balance between the transport of 

calcium across the mammary epithelium and the supply of calcium (VanHouten, 

2005). In cattle, there is substantial evidence that dietary calcium cannot 

maintain maternal calcium concentrations during lactation, so normocalcemia 

fundamentally relies on bone resorption (Hernandez, 2017). In our study, we 

have detected changes in the expression of several genes related with calcium 

homeostasis. Indeed, the increased expression of the PTHLH gene in the caprine 

lactating mammary gland might be interpreted as evidence of the mobilization 

of maternal skeletal calcium through the mechanism of increasing bone turnover 

(VanHouten, 2005). In cattle, serotonin enhances PTHLH function during 

bovine lactation to maintain maternal calcium homeostasis through bone 

resorption (Hernandez, 2017). We hypothesize that a similar mechanism 

operates in goats, but such assertion needs to be demonstrated yet. We have also 

detected a significantly upregulated (e.g. TRPV5, TRPV6) or downregulated (e.g. 

TRPV1) mRNA expression of members of the transient receptor potential 

channel family during the dry period. The decreased expression of TRPV1 would 

be consistent with the abolishment of lactation and the consequent reduction of 

calcium uptake by the mammary gland, while the increased mRNA levels of 

TRPV5 and TRPV6 are less obvious to interpret from a biological point of view. 

Indeed, very little information (if any) exists about the role of transient receptor 

potential channel family members in lactation and mammary gland physiology.  

Another fundamental component of milk is phosphorus, which, as 

calcium, is necessary for the mineralization of the skeleton of the neonate. Indeed, 

the major constituent of bones is hydroxyapatite, which is a mineral complex 

between calcium and phosphorus. In T3 (dry-off), we detected a 2 to 3-fold 

upregulation of the FGF23 mRNA, that encodes fibroblast growth factor 23. In 

mice, increased levels of the FGF23 mRNA result in phosphaturia, 



General Discussion 

 

242 

hypophosphatemia, low serum 1,25-dihydroxyvitamin D levels, and rickets and 

osteomalacia as well as hyperparathyroidism (Martin et al., 2012). So, the lower 

levels of FGF23 mRNA in the mammary gland of the lactating goat would be 

consistent with the physiological need of ensuring the retention of as much as 

phosphorus as possible. There are indications that insulin promotes the 

downregulation of FGF23 (Bär et al., 2018), thus reinforcing the notion that this 

hormone is crucial in all aspects of lactation. 

 

4.1.2.2 Tissue remodeling, cell death and involution  

The cessation of milking triggers mammary gland involution, a process 

involving cell death and extensive tissue remodeling in order to bring the 

mammary gland back to a non-lactating state (Zhao et al., 2019). The prerequisite 

of a successful mammary gland involution is to break down milk components 

and remove them from the mammary gland (Zhao et al., 2019). In this regard, 

we found an upregulated mRNA expression of the 5-hydroxytryptamine receptor 

1D (HTR1D) in the comparison of T1 vs. T3 (log2FC = 2.85, q-value = 3.77 × 

10-3), and of the plasminogen activator (PLAT) in the comparisons of T1 vs. T3 

(log2FC = 1.93, q-value = 5.58 × 10-16) and T2 vs. T3 (log2FC = 1.6, q-value = 

2.70 × 10-6). The HTR1D gene encodes a serotonin receptor that is able to inhibit 

milk synthesis (Hernandez et al., 2008), while the PLAT molecule is an activator 

in the plasmin-plasminogen-plasminogen system, which promotes the 

breakdown of casein subtypes (Zhao et al., 2019). Consistently, the expression 

of plasmin, plasminogen, and plasminogen activator also increases in response 

to mammary gland involution at drying-off in dairy cattle (Aslam and Hurley, 

1997, Athie et al., 1997). 

It is reported that the activator protein 1 (AP-1) plays key roles in 

initiating and executing apoptosis to ensure an adequate mammary gland 

involution (Jaggi et al., 1996, Marti et al., 1999). In this regard, we observed the 
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upregulated mRNA expression of the FOS and JUNB genes at T3, both encoding 

subunits of the AP-1 dimeric transcription factor (Marti et al., 1999). The early 

stage of mammary gland involution is an apoptosis-only process, which would 

be promoted by the Jak/Stat pathway. Two important transcription factors in this 

pathway, STAT5 and STAT3, showed downregulated and upregulated mRNA 

expression during the dry period in cattle, respectively. The STAT5 protein plays 

a key role in regulating the synthesis of milk components during lactation as 

mentioned above, while STAT3 generally induces mammary involution and 

apoptosis at drying-off (Stein et al., 2007, Zhao et al., 2019). However, our study 

did not detect the existence of differential expression for these two transcription 

factors. It is quite possible that the activity of STAT3 and STAT5 is mostly 

mediated by post-translational changes rather than by modifications in their 

mRNA levels (Johnston et al., 1995). During mice mammary involution, the 

expression of STAT3 is activated by the leukemia inhibitory factor (LIF), 

suggesting that LIF is a key upstream regulator of STAT3 and a mediator of 

mammary epithelial cell death (Hughes and Watson, 2018). In paper Ⅰ, we have 

observed that the LIF gene is significantly upregulated in the mammary gland of 

MUG goats at T3, an observation consistent with such role. Moreover, we found 

a downregulation of the IGFBP5 gene (T2 vs. T3: log2FC = -1.76, q-value = 2.01 

× 10-5), which encodes insulin-like growth factor-binding protein 5, a target of 

the STAT3 molecule. Indeed, the IGF-IGFBP system is another essential 

regulator of mammary gland involution, and IGFBP5 seems to be a fundamental 

mediator that regulates IGF1 hormonal signaling and stimulates cell proliferation 

(Allan et al., 2004).  

The progression of mammary gland involution induces morphological 

changes in epithelial cells and mammary tissue, which includes degradation of 

the extracellular matrix and basement membrane (Zhao et al., 2019). This is a 

key step in which the size and number of ducts in the mammary gland decrease 

markedly, and epithelial cell numbers also become drastically reduced, finally 

resulting in the loss of approximately 50% of epithelial cells (Zhao et al., 2019). 
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During the dry period, we observed increased mRNA levels of genes encoding 

matrix metalloproteinases (MMP), such as MMP1, MMP2, MMP3, MMP7, 

MMP12, MMP13, MMP14, MMP17, and MMP19, a result also reported in dairy 

cattle, sheep and buffaloes (Rabot et al., 2007, Suárez-Vega et al., 2015, Arora 

et al., 2019, Bhat et al., 2019). Indeed, matrix metalloproteinases (MMP) play a 

major role in degrading extracellular matrix and basement membranes, as well 

as in remodeling mammary gland architecture. For instance, MMP3 is able to 

degrade the basement membrane, thus causing a substantial enhancement of 

apoptosis (Uria and Werb, 1998, Zhao et al., 2019). Similarly, both MMP2 and 

MMP9 possess gelatinolytic activity and lead to the degradation of the basement 

membrane (Uria and Werb, 1998). However, the activation of these MMP can 

be inhibited by the tissue inhibitor of metalloproteinases (TIMP) (Zhao et al., 

2019). Indeed, the MMP:TIMP ratio decides the fate of the basement membrane 

and the extracellular matrix as well as the remodeling process of the mammary 

gland after abrogation of lactation (Zhao et al., 2019). In this way, an increased 

MMP:TIMP ratio would enhance the process of mammary gland degradation 

and remodeling (Zhao et al., 2019). Murphy (2011) demonstrated that the TIMP 

molecule can inhibit the action of disintegrin metalloproteinases (ADAM and 

ADAMTS). Although we did not find differential expression for TIMP mRNA 

in our study, we detected an upregulated expression of the ADAMTS4, 

ADAMTS7, ADAMTS16 genes during the dry period. This suggests that 

disintegrin metalloproteinases might play a key role in the apoptosis of 

mammary epithelial cells (Murphy, 2011).  

The proteolytic degradation of the extracellular matrix by MMP would 

result in reduced communication between epithelial cells and the extracellular 

matrix, which induces and accelerates the impairment of tight junction integrity 

(Zhao et al., 2019). The loss of communication between mammary epithelial 

cells and the extracellular matrix is generally promoted by the downregulation 

of integrins (Zhao et al., 2019). In paper Ⅰ an upregulation of the ITGB6 gene 

(log2FC = 2.18, q-value = 4.27 × 10-9) was found at T3. This gene encodes β6-
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integrin that generally forms complexes with integrin alpha-V inducing active 

proliferation and impairing apoptosis (Liang et al., 2017). However, its 

upregulation is often coupled with the downregulation of αvβ5 integrin complex 

(Janes and Watt, 2004). The final step of mammary involution involves the 

removal of casein micelles, lipid droplets, and cellular debris. In paper Ⅰ, we 

observed a 3 to 4-fold downregulation of the glycoprotein milk fat globule 

epidermal growth factor 8 (MFGE8) mRNA at T3, which has antiapoptotic 

effects (Gao et al., 2018) but also regulates the clearance of apoptotic epithelial 

cells (Atabai et al., 2005). It should be emphasized that the clearance of apoptotic 

cells largely relies on phagocytosis, a process mainly driven by cells of the 

immune system, thus we will discuss it in the next section (“Mammary 

immunity”).   

 

4.1.2.3 Mammary immunity 

After the abrogation of lactation, mammary gland enters into the dry 

period, during which the mammary gland is particularly vulnerable to pathogens 

and easily suffers from new infections, especially in the beginning of the drying-

off (Jain, 1979, Sordillo and Streicher, 2002). The infection of the mammary 

gland results in the development of an inflammatory response (mastitis), which 

can have adverse consequences on both health and production. It is reported that 

the main factor increasing the rate of mastitis is the invasion of bacterial 

pathogens into the mammary gland (Jain, 1979, Katsafadou et al., 2019).  

To protect the mammary gland against infection, both innate and specific 

immunity work together in a synergistic way. As previously mentioned, the 

abrogation of lactation initiates mammary gland involution, during which casein 

micelles, lipid droplets, and cellular debris are removed, and the mammary 

epithelium is renewed (Zhao et al., 2019). After the migration and recruitment 

of neutrophils into the mammary gland, proinflammatory cytokines (IL1β, IL6, 
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and IL17) promote the initiation of inflammatory responses (Alnakip et al., 2014). 

In this regard, we found an upregulation of the mRNA expression of the CCL20 

chemokine in the non-lactating mammary gland of MUG goats, possibly 

supporting a role of the immune system in the clearance of apoptotic epithelial 

cells (Zhao et al., 2019). In paper Ⅰ, the upregulation of the TNF mRNA 

expression at T3 (T1 vs. T3: log2FC = 1.78, q-value = 8.9 × 10-6) evidences its 

key role in mammary involution. In mice, TNF is deeply involved in the 

apoptosis of mammary cells after weaning (Kojima et al., 1996), but this 

proinflammatory cytokine is also essential in the host defense against pathogens 

(Pfeffer, 2003) and it has also been reported to promote the growth and 

development of the mammary gland (Varela and Ip, 1996), thus illustrating its 

multifunctional role in mammary physiology. 

The cessation of lactation is usually followed by the enhancement of 

humoral defenses, which leads to an increased expression of genes related with 

the complement cascade (e.g. C6, C7, C1R, C1QA, C1S, CTSL), cytokines (e.g. 

IL5, IL15RA, IL22RA2), lysozymes (e.g. LYG2), and chemokines (e.g. CXCR4). 

It is reported that the concentration of complement is lowest in healthy milk 

during lactation, but at drying-off higher concentrations are reached (Alnakip et 

al., 2014). Complement has versatile effects on the immune response, including 

the recruitment of phagocytes, opsonization of bacteria, initiation of 

inflammation, and the digestion and killing of microorganisms (Wellnitz and 

Bruckmaier, 2012, Alnakip et al., 2014, Katsafadou et al., 2019). Moreover, we 

observed a 9 and 3-fold downregulation of lactoperoxidase (LPO) and 

myeloperoxidase (MPO) mRNAs at T3, respectively. Lactoperoxidase accounts 

for 0.5% of the total whey proteins and it has antibacterial effects on gram-

negative and gram-positive bacteria (Alnakip et al., 2014). Myeloperoxidase is a 

peroxidase enzyme which is mainly located in neutrophil granulocytes and it has 

a strong antimicrobial activity mediated through the generation of hypohalous 

acids (Alnakip et al., 2014). Since these two enzymes are secreted into milk, it is 
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logic that the expression of these two genes decreases markedly in the dry-off 

period. 

In paper Ⅰ, we also observed the downregulation of genes related with 

mucins (e.g. MUC1, MUC4, MUC20) and surfactant molecules (e.g. ABCA3, 

SFTPD) at T3. Surfactant is a lipoprotein complex that plays a critical role in 

immunity (Pastva et al., 2007). Surfactant-D (SFTPD) is related to the inhibition 

of inflammation and enhancement of pathogen clearance (Pastva et al., 2007). 

On the other hand, mucins are a family of highly glycosylated glycoproteins 

expressed in the epithelial surface of the mammary gland (Patton et al., 1995). 

Though mucins constitute in many tissues (e.g. intestine) a chemical barrier to 

protect mucosal surfaces against bacterial infection, they are also able to inhibit 

bacterial invasion of epithelial cells (Liu et al., 2012). In this respect, mucins act 

as adhesion decoys thus exerting an antimicrobial activity, both MUC1 and 

lactadherin maintain their integrity in the stomachs of infants to prevent infection 

(Peterson et al., 1998, Liu et al., 2012). This may be relevant because in our study 

we observed a consistent downregulation of the MUC1 and lactadherin (i.e. 

MFGE8) mRNAs. Possibly, low levels of mucins are associated with the 

cessation of lactation because mucins are part of the milk fat globule membrane 

(Schroten, 2001). On the other hand, aberrantly secreted mucins might impair 

the efficacy of the antimicrobial response, thus suggesting a potential role of 

mucins in mammary immunity (Linden et al., 2008). 

 

4.2 Genetic determinism of milk traits in Murciano-Granadina goats  

 

4.2.1 The casein gene cluster is strongly associated with milk protein content 

In our GWAS study, the most significant quantitative trait locus (QTL) 

was associated with protein percentage and mapped to a caprine chromosome 6 
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region containing the casein gene cluster (Martin et al., 2017). A study carried 

out in 89 MUG individuals with 316 phenotypic records revealed that CSN1S1 

genotype was not associated with total casein and protein contents, while CSN3 

genotypes (AB and BB) had significant effects on total casein and protein 

contents (Caravaca et al., 2009). Caravaca et al. (2011) reported that the BB, EE 

and EF genotypes of the CSN1S1 locus display similar associations with cheese 

yield, but the CSN1S1EE genotype was associated with a higher milk curdling rate 

when compared to the CSN1S1BB genotype. These findings suggested that the 

CSN1S1 locus has a weak effect on milk traits in MUG goats, a result that is not 

concordant with what has been observed in French goats (Mahé et al., 1994, 

Manfredi et al., 1995). In the French Saanen and Alpine breeds, genetic 

polymorphisms in the CSN1S1 locus were reported to have significant effects on 

protein, casein, and fat production, as well as on milk rheology and organoleptic 

properties of cheese (Mahé et al., 1994, Manfredi et al., 1995, Caravaca et al., 

2009). It should be noticed that sample sizes used by Caravaca et al. (2009, 2011) 

were modest, so their results might not be completely conclusive. As a matter of 

fact, Caravaca et al., (2008) demonstrated that the BB genotype in the CSN1S1 

locus significantly increased CSN1S1 levels by performing an association study 

comprising 138 MUG goats with 460 phenotypic records. By carrying out a non-

parametric association analysis between 48 single nucleotide polymorphisms 

(SNPs) mapping to the four casein genes (CSN1S1, CSN1S2, CSN2 and CSN3) 

and dairy phenotypes recorded in 159 MUG goats, Pizarro Inostroza et al. (2019) 

were able to conclude that SNPs in the CSN1S1 and CSN3 genes have major 

effects on protein percentage. Our GWAS does not allow us to identify exactly 

which polymorphisms in the casein cluster have causal effects on protein 

percentage, but an experiment to finely map these causal mutations is currently 

under way. Moreover, Pizarro Inostroza et al. (2019) identified an effect of 

CSN1S1 genotype on fat percentage, a finding concordant with ours. The effects 

of casein loci on fat content in caprine milk was also observed in Saanen goats 

(Martin et al., 2017), suggesting that the synthesis of milk protein and lipid 
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components is, to some extent, coupled in the mammary gland (Bionaz and Loor, 

2008, 2011). As inferred by systems biology analysis, a cross regulation of milk 

fat, protein and carbohydrate synthesis exists, being a central hub the mTOR 

signaling pathway (Osorio et al., 2016). 

 

4.2.2 Other loci related with milk traits  

At the genome-wide level, we obtained two additional significant 

associations, i.e. QTL1 on chromosome 2 (130.72-131.01 Mb) for lactose 

percentage and QTL17 on chromosome 17 (11.20 Mb) for both protein and dry 

matter percentages. The QTL1 region contains the NGFI-A binding protein 1 

(NAB1) gene that shows an increased expression during mouse lactation (Yang 

et al., 2004) and it is involved in the metabolism of lactose, a disaccharide formed 

by glucose and galactose. Interestingly, NAB1 is a corepressor of the EGR-1 

transcription factor (Swirnoff et al., 1998), and in mouse the promoter of the 

galactokinase gene, which forms part of the Leloir pathway converting galactose 

into glucose, has binding sites for EGR-1 (Yang et al., 2004). The QTL17 region 

is represented by a single SNP (rs268238952), that is located in the downstream 

part of the T-Box 3 (TBX3) gene. This gene is highly expressed in luminal cells 

during early mammary gland initiation and its inactivation is associated with the 

ulnar mammary syndrome characterized by hypoplastic or aplastic breasts and 

supernumerary, inverted, or absent nipples with an inability to lactate (Eblaghie 

et al., 2004, Platonova et al., 2007, Douglas and Papaioannou, 2013). However, 

no direct link with milk protein metabolism has been reported and, moreover, 

QTLs represented by a single SNP are sometimes statistical artifacts, so this 

result should be interpreted with caution. 

At the chromosome-wide level, we identified QTLs related with lactose 

percentage, including QTL11 on chromosome 14 (46.1 Mb); QTL19 on 

chromosome 20 (29.45 Mb), which co-localizes with the HCN1 gene; QTL22 on 
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chromosome 24 (49.71 Mb), which is supported by a single SNP (rs268240589) 

located in the MYO5B gene; and QTL23 on chromosome 28 (23.03 Mb), which 

physically overlaps the CTNNA3 gene. Among them, the MYO5B gene encodes 

myosin VB, which regulates glucose metabolism genes and thus affects blood 

glucose levels (Cartón-García et al., 2015, Tomić et al., 2020). In bovine 

mammary epithelial cells, glucose upregulates the expression of genes such as 

GLUT1, SLC35A2, and SLC35B1, thus enhancing its own uptake and favoring 

lactose synthesis (Lin et al., 2016). In addition, we found two genes with 

important roles in fatty acid metabolism in the upstream region of the QTL22, 

i.e. LIPG (~400 kb) and ACAA2 (~45 kb). The latter gene encodes an acyl-CoA 

transferase, which is able to catalyze fatty acid β-oxidation (Dunning et al., 2014). 

Increased fatty acid β-oxidation provides substrates for the gluconeogenesis 

pathway that yields glucose, one of the components necessary for lactose 

synthesis in the mammary gland (Orford et al., 2012). In dairy sheep, the 

polymorphism of this gene has been associated with milk yield in the Chios breed 

(Orford et al., 2012).  

Regarding to somatic cell count, we would like to highlight QTL14 

(rs268266747, chromosome 15: 63.95 Mb), which maps to the DEAD-box 

helicase 10 (DDX10) gene that plays a key role in innate immunity (Morerio et 

al., 2006) and in viral resistance (Lee et al., 2015); and QTL9 which mapped to 

chromosome 13 (53.62-54.38 Mb). This latter genomic region contains the ADP 

ribosylation factor GTPase activating protein 1 (ARFGAP1) gene that plays a 

critical role in regulating rearrangements of the actin cytoskeleton to impede the 

entry of mycobacteria into epithelial cells (Song et al., 2018). With regard to the 

length of lactation, we detected QTL2 on chromosome 3 (113.47 Mb), QTL7 on 

chromosome 11 (72.83 Mb) and QTL8 on chromosome 12 (68.1 Mb). The QTL7 

overlaps the dynein regulatory complex subunit 1 (DRC1) gene, encoding an 

essential cell cycle-regulated molecule required for DNA replication (Wang and 

Elledge, 1999). This gene showed a significant differential expression in early 

lactation (T1) vs. drying-off (T3) (log2FC = 2.55, q-value = 2.54 × 10-7), as well 
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as in T2 (end of lactation) vs. T3 (log2FC = 1.71, q-value = 6.22 × 10-4) (paper 

Ⅰ). In addition, DRC1 forms part of the dynein regulatory complex which plays 

a major regulatory role in the motility of cilia and flagella (Wirschell et al., 2013). 

It has been proposed that primary non-motile cilia may intervene in the 

involution of the bovine mammary gland by transducing chemosensory and 

mechanosensory signals produced by milk accumulation, and the consequent 

distension of the udder (Biet et al., 2016). 

 

4.2.3 Genetic heterogeneity of milk traits in Murciano-Granadina goats 

The concordance rate of the 24 QTLs associated with milk traits in MUG 

goats and those identified in French goats is quite low (Martin et al., 2017, 

Mucha et al., 2017, Martin et al., 2018). Consistently, the positional overlapping 

of QTLs identified in Alpine and Saanen breeds by Martin et al. (2017) was 

lower than 50% despite the fact that these two breeds are closely related. Through 

a functional approach, Martin et al. (2017) demonstrated that missense mutations 

p.Arg396Trp and p.Arg251Leu in the DGAT1 gene affect activity the DGAT1 

enzyme which is fundamental for triglyceride synthesis, and this is why these 

two missense polymorphisms are highly associated with milk fat content in 

Saanen and Alpine goats. However, we did not find any association with milk 

fat content at or near the DGAT1 locus, thus suggesting that these two 

polymorphisms do not segregate (or segregate at very low frequencies) in MUG 

goats. One of the reasons for the heterogeneity in the genetic determinism of 

dairy traits in different goat breeds could be genetic differentiation amongst 

breeds due to drift and demographic factors. By analyzing Y-chromosomal 

markers, Vidal et al. (2017) found that Spanish goats displayed quite different 

haplotypes (mainly Y2) than those harbored by goats from Central and East 

Europe (Y1A, Y1B1, Y1B2 and Y1C). Based on autosomal markers genotyped 

with the Illumina Goat SNP50 BeadChip, Colli et al. (2018) showed that French 

and Spanish goats are clustered into two different clades, and a different genomic 
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composition was observed in the ADMIXTURE analysis. Another reason for 

low positional concordance between GWAS signals across breeds and 

populations could be limited sample size. In other words, by increasing sample 

size GWAS hits could be more concordant when comparing the results obtained 

in different populations. Wojcik et al. (2019) made a GWAS for 26 clinical and 

behavioral phenotypes in 49,839 non-European individuals and 1,444 were 

concordant with those obtained in Europeans, while only 27 novel loci and 38 

secondary signals at known loci were identified (Wojcik et al., 2019). 

 

4.2.4 Modest positional concordance between differentially expressed genes 

and GWAS signals 

We found that the positional concordance between protein-coding genes 

identified as DE in the RNA-Seq analysis and GWAS signals is low. Many 

factors could contribute to this result. For instance, we used a medium density 

Goat SNP50 BeadChip and sample size was also modest, thus limiting our ability 

to fully discover all dairy QTLs. Indeed, 20 out of 24 QTLs are only supported 

by a single SNP, meaning that further studies will be needed to confirm their 

existence. Limited number of samples in the RNA-Seq experiment and the high 

stringency of the differential expression analysis may also cause this low 

concordance. Another explanation is that the set of genes that triggers and 

maintains lactation and the set of genes containing polymorphisms with causal 

effects on dairy traits is, to some extent, different. For instance, a SNP or an indel 

could create or suppress a phosphorylation site changing drastically the activity 

of a protein, but this would not be detected in a differential expression analysis. 

On the other hand, it is clear to us that understanding the effects of 

polymorphisms on phenotypes requires the generation of massive amounts of 

biological information, either through differential expression analysis or by 

using many other techniques and integrating different sources of information. 
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4.3 A substantial fraction of the variation of the goat casein genes was 

generated before domestication 

 

We have investigated extant casein diversity in goats and bezoars (paper 

Ⅱ) by using 106 whole genome sequences and 51 million SNPs. By exclusively 

focusing on casein loci, we found that a substantial part of polymorphisms was 

shared between goats and bezoars. This extensive sharing of variations between 

bezoars and domestic goats could be due to introgression events, which are 

common in Capra species. For instance, a recent study carried out by Zheng et 

al. (2020) demonstrated an ancient gene flow from a West Caucasian tur species 

to bezoars. These authors identified an introgressed locus encompassing the 

MUC6 gene which affects resistance to gastrointestinal nematodes (Zheng et al., 

2020). Likewise, Alpine ibex (Capra ibex ibex) was also introgressed by 

domestic goats (Grossen et al., 2014). In our study (paper Ⅱ) we did not detect 

ancestral gene flow between goats and bezoars, but it should be noticed that the 

ADMIXTURE tool is designed to detect recent admixture events (Alexander et 

al., 2009, Alexander and Lange, 2011, Lawson et al., 2018). Nevertheless, the 

most plausible reason for the extensive sharing of polymorphisms between goats 

and bezoars is recent divergence. Indeed, goats diverged from their wild ancestor 

only 10,000 YBP, which is a very short time on an evolutionary scale (Amills et 

al., 2017). Certainly, many studies have demonstrated that standing genetic 

variation substantially contributes to adaptation to new environments and to 

animal domestication (Larson et al., 2014, Ramos-Onsins et al., 2014, Lai et al., 

2019).  

By reconstructing allelic variants of the casein genes, we found 

differences in the frequencies of casein alleles in goats with different geographic 

origins. Especially, we found several unreported casein alleles in Far Eastern 
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goats. Although the low number of samples (~20 samples per geographic group) 

could be one of the reasons for the observed differences in allele frequencies, it 

should be noted that goat domestication took place in several different locations 

in the Near East (i.e. there were multiple centers of domestication) and different 

gene pools were dispersed into Africa, Europe and Asia (Daly et al., 2018). This 

is reflected in the ADMIXTURE analysis of modern goat breeds based on 46,654 

autosomal SNPs (Colli et al., 2018) as well as in the principal component 

analysis (PCA) and neighbor-joining (NJ) tree presented in paper Ⅱ. The 

dispersal of different gene pools to Africa, Europe and Asia would partly explain 

the differences in allelic frequencies that we have detected amongst goats with 

different continental origins. Moreover, differences in allelic frequencies could 

be also due to selection for different production purposes. Chinese breeds are 

bred for cashmere (northern) and meat (southern) production, while many 

European breeds are devoted to the production of milk to manufacture cheese. 

While the associations of casein alleles with dairy traits have been extensively 

studied in European breeds, there is a large gap in our knowledge about the 

associations of casein polymorphisms and milk yield and composition traits in 

African and Asian breeds. Filling this gap could be a future avenue of research 

that could have relevant practical applications in the selection of genotypes with 

beneficial effects on dairy traits. 

 

4.4 A first assessment of copy number variation in the Murciano-

Granadina breed 

 

4.4.1 Experimental factors influencing the discovery of copy number 

variations 
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Although we have used a more stringent pipeline than that reported by 

Liu et al. (2018), who described approximately 20 copy number variations 

regions (CNVR) per breed (Liu et al., 2018), we have been able to identify 486 

CNVR in the MUG breed. This difference could be explained by the lower 

sample size (N=4-53) used by Liu et al. (2018) to characterize each one of the 

breeds included in their study, while in our survey we have investigated 1,036 

MUG individuals. We conclude that Liu et al. (2018) underestimated the true 

levels of CNV diversity in goat breeds, but our measurement is also probably an 

underestimate. This is because SNP arrays have a very low power to detect small 

CNV, which are the most abundant ones, and, at the same time, the rate of false 

positives can be also high (Yau et al., 2009, Pinto et al., 2011). Based on pooled 

whole genome sequences, Zhang et al. (2019) identified 2,056 and 2,153 CNV 

respectively in low (N = 20 with a single offspring) and high fertility goats (N = 

14 with litter size of 3 or 4) from the Laoshan dairy breed. Moreover, Dong et al. 

(2015), on the basis of individual whole genome sequences of six domestic goats 

and two wild counterparts, reported 13,347 CNV. Likewise, a genomic 

resequencing study detected a total of 2,317 CNV in three individuals from 

Saanen, Liaoning cashmere, Leizhou goat, and two Sindh ibex (Capra aegagrus 

blythi) and Markhor (Capra falconeri) individuals (Zhang et al., 2018). These 

studies detected a higher number of CNV than those reported by us despite the 

fact that they just included a few individuals (Dong et al., 2015, Zhang et al., 

2018, Zhang et al., 2019). This implies that experimental resolution is a critical 

factor determining the discovery of CNV. In this respect, we could expect that 

long-read sequencing technologies would substantially contribute to the 

discovery of structural variations (SVs) in the near future (Ho et al., 2019, 

Mahmoud et al., 2019). In paper Ⅲ, we also found that the majority of the CNVR 

(72.6%) showed allele frequencies lower than 0.01, an estimate that exceeds 

values obtained in cattle (Upadhyay et al., 2017) but that is similar to that 

described in sheep (Yang et al., 2018) and goats (Liu et al., 2018). This difference 

could be due to the fact that studies by Yang et al. (2018), Liu et al. (2018) and 
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us included 2,254, 1,023 and 1,036 samples, respectively, while Upadhyay et al., 

(2017) only employed 196 animals from 38 different cattle breeds (so they were 

unable to detect CNV with low or very low frequencies). This outcome evidences 

that low-frequency CNV events, which are the most abundant ones, cannot be 

discovered unless large populations are used. 

 

4.4.2 Landscape of copy number variation in Murciano-Granadina goats 

Copy loss (353) is more prevalent than both copy gain (78) and copy 

gain/loss (55) events in MUG goats, a finding concordant with results obtained 

in sheep and cattle (Komura et al., 2006, Liu et al., 2010, Zarrei et al., 2015, 

Yang et al., 2018). This is probably caused by the existence of a mutational bias 

toward deletions, as shown in the analysis of Drosophila melanogaster genomes 

(Leushkin et al., 2013). One relevant observation drawn in paper Ⅲ is that the 

majority of copy number variable genes belong to large multigene families, such 

as olfactory receptors and ABC transporters. This may be caused by the fact that 

genomic regions with highly similar paralogous sequences (probably segmental 

duplications) would facilitate the emergence of CNV by non-allelic homologous 

recombination (NAHR). This process makes it possible to transfer a copy from 

a chromosome to its sister chromosome and simultaneously remove the original 

copy (Bickhart and Liu, 2014). It is reported that paralogs derived from gene 

duplications can have important roles in the adaptation to new environments by 

generating new functions once they diverge from the original copy (Kondrashov 

et al., 2002, Sudmant et al., 2015). Moreover, fork stalling and template 

switching (FOSTES), mobile element insertion (MEI), and non-homologous 

end-joining (NHEJ) could also mediate the emergence of CNV (Hastings et al., 

2009, Bickhart and Liu, 2014). Noteworthy, CNV tend to occur in complex 

genomic regions (i.e. hotspots), rather than having a uniform distribution in the 

genome (Hastings et al., 2009). One of the most interesting copy number variable 
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genes is ASIP, which encodes the agouti signaling protein. This molecule has an 

essential role in the synthesis of yellow/red pheomelanin by binding to the 

melanocortin 1 receptor (Wolf Horrell et al., 2016, Caro and Mallarino, 2020). 

The segregation of an ASIP CNVR in MUG goats is not fully consistent with the 

hypothesis that increased ASIP copy number is associated with a white 

pigmentation in goat breeds (Fontanesi et al., 2009b, Dong et al., 2015, Zhang et 

al., 2018), as previously demonstrated in sheep (Norris and Whan, 2008). Our 

qPCR experiment (paper Ⅳ) demonstrated the existence of increased ASIP copy 

number in black/brown MUG goats and blond/brown Malagueña goats, 

indicating that the involvement of ASIP SV in goat pigmentation has not been 

fully clarified. A potential interpretation is that the extra copies of the caprine 

ASIP locus could have combinatorial effects with other mutations. A similar case 

was reported for the porcine KIT locus, in which at least four types of SVs and a 

splice mutation were detected, and the solid white coat would appear only when 

two types of duplications and the splice mutation are present concurrently (Rubin 

et al., 2012, Wu et al., 2019). Indeed, there are at least four types of SVs reported 

in the caprine ASIP locus, possibly associated with different pigmentation 

patterns (Henkel et al., 2019). Due to this high structural complexity, the 

expression pattern of the caprine ASIP gene becomes very complex, with at least 

nine different transcripts detected by using a RNA-Seq approach (Henkel et al., 

2019). Our data, in summary, indicate that a simple and linear relationship 

between ASIP copy number and white pigmentation in goats does not exist, and 

that further studies need to be carried out in order to understand whether ASIP 

SV affects the ASIP mRNA levels and melanin synthesis. 

 

4.5 Coat color in the Murciano-Granadina breed is explained by 

MC1R genotype 
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In addition to the discovery of the CNV co-localizing with the ASIP gene, 

we detected a CNV overlapping with the ADAMTS20 gene, which was also 

found by Dong et al. (2015) and Liu et al. (2018). The ADAMTS20 gene is 

essential for melanoblast survival (Silver et al., 2008) and co-localizes with a 

signature of selection when comparing white vs. colored goats (Bertolini et al., 

2018). These evidences indicate that both ASIP and ADAMTS20 could have a 

key role in goat pigmentation. Fontanesi et al. (2009a) reported that the MC1R 

genotype (c.801C>G, p.Cys267Trp) is tightly associated with the color of MUG 

goats, but they performed a candidate gene study with a low number of MUG 

goats making it impossible to discern the existence of additional genetic factors 

influencing the pigmentation pattern of this breed. Therefore, we conducted a 

GWAS comprising 529 MUG goats with brown and black colors, and by doing 

so we obtained a very clear GWAS signal encompassing the MC1R gene on 

chromosome 18 (paper Ⅴ). Indeed, the MC1R gene is quite polymorphic and 

plays an essential role in regulating the synthesis of eumelanin/pheomelanin 

pigments (Wolf Horrell et al., 2016, Andersson, 2020, Orteu and Jiggins, 2020). 

By carrying out a sequencing experiment, we identified a missense mutation 

(c.801C>G, p.Cys267Trp) fully explaining the pigmentation patterns of MUG 

goats (paper Ⅴ). Although the nature of our results is fundamentally 

confirmatory of previous data published by Fontanesi et al. (2009a), we 

demonstrate that the inheritance of coat color in MUG goats is fundamentally 

monogenic (Fontanesi et al., 2009a). Generally, animal pigmentation patterns are 

explained by one or few loci rather than having a polygenic basis (Georges et al., 

2018). The inheritance of pigmentation can be quite complex and it is often 

oligogenic or, more rarely, polygenic. For instance, Menzi et al. (2016) revealed 

that the white pigmentation pattern in Boer goats could be explained by a CNV 

mapping to the EDNRA gene that regulates the levels of this molecule in a dose 

dependent manner. In contrast, the white spotting of cattle was associated to 

three QTLs in chromosomes 2, 6 and 22, respectively co-localizing with the 

PAX3, KIT and MITF genes (Jivanji et al., 2019). In humans, blond hair 
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pigmentation was explained by at least 200 loci (Morgan et al., 2018), illustrating 

that in certain cases the inheritance of pigmentation can be very complex. A next 

step for our study would be to demonstrate the causality of the Cys267Trp 

missense substitution by carrying out a functional test measuring the activity of 

MC1R in cultured cells with alternative genotypes for this mutation and the 

consequences of differential activity, if any, on melanin synthesis. 
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The main conclusions of the present Ph.D. Thesis are as follows: 

1. The abrogation of lactation in goats involves an important reduction in 

the mRNA expression of genes related with protein, lipid and 

carbohydrate biosynthesis and transportation. We have also detected an 

increased mRNA expression of genes involved in apoptosis and tissue 

remodeling, while the mRNA levels of several known survival factors 

were reduced, an observation consistent with the physiological changes 

associated with mammary involution and the extensive loss of epithelial 

cells associated with it. With regard to mammary immunity, the 

cessation of lactation involved changes in the mRNA expression of 

complement, cytokine, mucin and surfactant genes. 

2. The performance of genome-wide association studies resulted in the 

identification of 3 genome-wide significant QTLs on chromosomes 1 

(lactose percentage), 6 (protein percentage) and 17 (protein and dry 

matter percentages). The QTL6 region contains the casein genes, the 

polymorphism of which has been associated with the variation of milk 

traits in French and Spanish breeds. We have also identified 21 QTLs 

that were significant at the chromosome-wide level. Comparison of our 

QTL data with previous results obtained in French goats revealed a low 

level of positional concordance, a feature that could be due to technical 

factors (mainly limited sample size) and/or to the existence of a 

substantial degree of genetic heterogeneity.  

3. The substantial sharing of single nucleotide polymorphisms (SNPs) and 

haplotypes mapping to casein loci between bezoars and domestic goats 

as well as between goat populations with different continental origins 

indicates that an important fraction of the extant diversity in the casein 

genes of domestic goats is derived from standing variation segregating 

in bezoars well before domestication. 
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4. The assessment of copy number variations (CNV) in a population of 

1,036 Murciano-Granadina goats revealed a substantial degree of 

diversity. The set of genes mapping to CNV regions was functionally 

related with sensory perception, metabolism and embryo development, 

and in general these genes belonged to large multigene families with tens, 

hundreds or thousands of paralogs, a feature that might favor the 

emergence of CNV by nonallelic homologous recombination.  

5. Measuring the copy number of the agouti signaling protein (ASIP) gene 

in eight goat breeds with different pigmentation patterns revealed the 

segregation of an ASIP CNV not only in white breeds, such as Saanen, 

but also in the black/brown Murciano-Granadina and the blond/brown 

Malagueña breeds. These results evidence the lack of a simple linear 

relationship between increased ASIP copy number and goat white 

pigmentation.    

6. Performance of a genome-wide association study for coat color in 

Murciano-Granadina goats demonstrated that the inheritance of this trait 

is fundamentally monogenic, and confirmed a tight association between 

the missense mutation c.801C>G, p.Cys267Trp in the melanocortin 1 

receptor gene and the black (GG or GC) or brown (CC) colorations.   
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