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Abstract

The emergence of shared cultural conventions in a population is shaped by
the interaction between individuals’ cognition and the structure of the soci-
ety. Humans, more than any other species in the animal kingdom, are able
to learn and transmit vast amounts of information, through language and
other cultural products. Individual cognitive constraints include cognitive
biases, value systems and memory among others. Additionally, humans
have an extraordinary capacity to build developmental environments and
construct social niches that can be modelled as complex systems. We are
born into particular societies with specific social structures, which consti-
tute our ecological niches. Societies are shaped by the structure of the so-
cial network and other high-level hierarchical entities that constitute inte-
grated systems of rules that structure social interactions (e.g. institutions).
In this thesis I formalise some of the relationships between these factors
using a variety of approaches. In particular, I explore the following three
main research questions:

(1) How do the interactions between individual cognitive traits and the
temporal dynamics of social network connectivity, i.e. the order in
which individuals in a population interact with each other, affect the
spread of cultural variants?

(2) How do the interactions between individual cognitive traits and insti-
tutions affect the evolution of cultural diversity and the emergence of
cultural conventions?

(3) How might current iterated learning models, niche construction and
evolutionary developmental biology be synthesised into a compatible
framework for language evolution?

Chapter 1 contains a review of the literature and an introduction to the as-
sumptions underlying the models presented in this thesis. In Chapter 2,
I present an agent-based model manipulating specific network connectiv-
ity dynamics, cognitive biases and memory. I show that connectivity dy-
namics affect the time-course of variant spread, with lower connectivity
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slowing down convergence of the population onto a single cultural variant.
I also show that, compared to a neutral evolutionary model, content bias
(i.e. a preference for variants with high value) is the main driver of con-
vergence and amplifies the effects of connectivity dynamics, whilst larger
memory size and coordination bias, especially egocentric bias, slow down
convergence. In Chapter 3, I report on an experiment in the lab in which
participants engage in a Pictionary-like graphical communication task as
members of a 4-participant micro-society. The experiment has two main
goals: First, to evaluate the effect of two network connectivity dynamics
(early and late) on the evolution of the convergence of micro-societies on
shared communicative conventions under controlled conditions. Second,
to compare the predictions of the agent-based model described in Chap-
ter 2 against experimental data, and calibrate the model to find the best-
fitting parameter setting. Our experimental data shows that, as predicted
by the model, an early connectivity dynamic increases convergence and
a late connectivity dynamic slows down convergence. Expanding on the
model developed in Chapter 2, Chapter 4 explores how the interactions
between content bias, value systems and institutional performance affect
cultural diversity and the emergence of cultural conventions at the popu-
lation level. Simulation results show that high hegemony (i.e. one or few
variants are strongly preferred over the others) and homogeneity of value
systems among agents accelerate the extinction of cultural traits and thus
erode cultural diversity. In certain regions of the parameter space, insti-
tutions that do not reinforce original value systems tend to be effective
at preserving cultural diversity. However, an important limitation of this
model is that institutional performance remains fixed over time. In Chap-
ter 5, I attempt to overcome previous shortcomings of the model by devel-
oping a co-evolutionary model of value systems, institutions and choice.
To the best of my knowledge, this model constitutes the first attempt to
quantify the propagation of cultural variants by incorporating a compre-
hensive parameter combination of compliance, confirmation, content and
frequency biases into the learning and production algorithm. Results show
that, in general, institutional power facilitates the emergence of cultural
conventions when compliance biases increase. In general, a compliance
bias pushes diversity up when institutions are diverse, and pushes diver-
sity down when institutions convey value systems with strong dominance
of one or few cultural variants. In some regions of the parameter space,
global conventions can also emerge in the absence of institutional power
and therefore of institutions that are in place to guide convergence. On a
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more conceptual level and applied to the case of language, Chapter 6 re-
views the literature on iterated learning and ecological evolutionary devel-
opmental biology to explore their compatibility. I use the concept of niche
construction to build bridges between eco-evo-devo accounts for cogni-
tive capacities and cultural evolution guided by iterated learning processes.
Additionally, based on recent insights from both domains, I propose an in-
tegrated conceptual model that might be useful to connect biological and
cultural approaches, as well as act as a hypothesis-generating framework
around which cognitive scientists can structure new triple-inheritance for-
mal models. In Chapter 7, I summarise the most relevant findings of this
thesis and I discuss some potential implications.
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Gracias mamá, papá, Edu, abuelas Elvira y Eugenia, Petra y demás
frimos y gansos por el apoyo que siempre me dais para que siga adelante

vii



con mis locas aventuras. En especial, gracias Edu por la implicación y
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Chapter 1

Cultural diversity and cultural conventions are the foundation for hu-
man life. Whether linguistic, social, political, ethical or religious, human
cultural conventions have the unique power to capture and share thoughts,
meanings and traditions, which in turn has played a major role in the devel-
opment of civilisations and the spread of human culture all across the globe
and even beyond. Although we are not the only species with the ability to
copy and transmit culture, everything indicates that there is no case in the
animal kingdom comparable to the vast human capacity to conventionalise,
that is, to create languages, technology, norms or political systems.

Human life is thus shaped by our culture, that is, by socially transmitted
information that determines our behaviour, attitudes and values (Boyd &
Richerson, 1985). Language, technology or beliefs propagate in popula-
tions following evolutionary dynamics (Cavalli-Sforza & Feldman, 1981).
Since conventions imply selection of one variant from among two or more
alternatives, by definition, the more conventional a cultural variant, the
less diversity for that variant. For example, the processes of language shift
are a paradigmatic example of cultural loss: Although language birth and
death are natural processes, it is estimated that 90% of the about 6000 lan-
guages currently spoken may become extinct by the end of this century
(Krauss, 1992). However, conventions can also facilitate the formation of
different in-groups, which in turn would rise global cultural diversity. The
idea that social influence combined with certain social structures might be
a prominent mechanism for the preservation of cultural diversity has been
studied in the past empirically. Indeed, if there is enough heterogeneity
in the society, the formation of conventions in similar groups can lead to
the emergence of dissimilar cultural groups, and in turn, the maintenance
of cultural diversity (Axelrod, 1997; Centola, Gonzalez-Avella, Eguiluz, &
San Miguel, 2007).

Yet the formation of human conventions is not a simplistic process
where each level of analysis is disentangled from each other. Instead,
they are subject to complex networks of interactions between individual-
level and society-level features (Labov, 2011). Individuals’ learning and
production cognitive mechanisms (Acerbi, Van Leeuwen, Haun, & Ten-
nie, 2016; Boyd & Richerson, 1985; Fay, Garrod, Roberts, & Swoboda,
2010; Ferdinand, Thompson, Kirby, & Smith, 2013; Kirby, 2017; Tama-
riz, Ellison, Barr, & Fay, 2014) affect humans’ cultural choices. From
such choices, complex niches emerge, giving rise to social structures that
are shaped by population network structures (Becker, Brackbill, & Cen-
tola, 2017; Centola & Baronchelli, 2015) and other high-level hierarchi-
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Chapter 1

cal entities that constitute ecological niches, such us human institutions
(Bowles, 2000; Bowles, Choi, & Hopfensitz, 2003; J. Kendal, Tehrani, &
Odling-Smee, 2011). Both, individuals and cultural structures co-evolve in
dynamic developmental process where the boundaries of each process can
not be easily unraveled from the others (Balari & Lorenzo, 2013; Laland,
Odling-Smee, & Feldman, 2000; R. C. Lewontin, 1983). Individual un-
derlying cognitive mechanisms bring about patterns of collective action at
the population level, promoting the construction of complex niches. These
human niches in turn yield additional pressures that alter the way in which
cultural evolution proceeds (Laland, 2017a).

The complex dynamics that shape the formation of human conventions
are therefore related with the preservation of cultural diversity, and due
to their crucial role in the evolution of human behavior and culture, these
patterns of collective behavior are one of the most interesting and useful
human processes to be understood. Not only because of their intrinsic re-
search value, but because a better knowledge of these patterns is crucial to
develop more integrated and coherent theoretical models of cultural evo-
lution, and in turn help to better structure the bases upon which public
policies for cultural preservation stand.

The purpose of this thesis is to explore some specific relationships in
the formation and spread of cultural conventions. Although I will use a
broad definition of culture where cultural variants can be thought of as a
proxy for words, opinions, beliefs, norms or even artistic tastes (music,
painting), an important part of the models I will construct throughout this
thesis derive from a tradition of mathematical and theoretical frameworks
grounded in the fields of linguistics and cultural evolution. For this reason,
the reader of this thesis will find that certain discussions are more focused
on the emergence and formation of communicative conventions and lan-
guage. However, all models I will present here are built with an eminently
practical and general intention.

1.1 Complex dynamical systems: society and individuals

The idea that these patterns of collective behavior are shaped by vary-
ing selection pressures at both the individual and the population level has
been largely put forward by several theorists in the social, behavioral and
cognitive sciences (Boyd & Richerson, 1985; Lass, 1997; Lewis, 2008;
Young, 1993). Social evolutionary theories maintain that cultural evolu-
tion is constrained by individual traits and social structures (Labov, 2011;
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R. C. Lewontin, 1983). However, although there is a widespread inter-
est in approaching the study of the evolution of culture form an integrated
perspective, the complexity of the social process has prevented the devel-
opment of models of dissemination of culture that include both a compre-
hensive set of cognitive traits and specific features of the social structures
at the population level.

Here I ground my exploration in two main sources of variation: Society
and individuals. Firstly, the transmission of cultural features in a popula-
tion (e.g. language variants) depends on a number of characteristics of the
society. One of these features is the arrangement of connections among in-
dividuals in the social network (Centola, 2018). For example, who speaks
to whom, how often people exchange information or how many neighbour-
hoods there are in a population are all important characteristics of a social
network. Social networks shape the spread of cultural information by con-
necting or disconnecting people over time and in turn they can affect the
dissemination of cultural variants and the emergence of cultural conven-
tions. Previous models have successfully shown how the co-evolutionary
dynamics of social influence and network structures can affect cultural
change (Becker et al., 2017; Centola, 2010; Centola & Baronchelli, 2015;
Centola et al., 2007; Muthukrishna & Schaller, 2019). Inspired by those
models and expanding on previous work in cultural evolution (Fay et al.,
2010; Tamariz et al., 2014), here I focus on a specific manipulation of the
social network: The order in which connections between individuals un-
fold over time. I present a micro-scale model of dissemination of culture
and I apply my simulations to a number of specific social learning scenar-
ios.

Secondly, societies are formed by individuals. And individuals may be
disproportionately in favour or against an idea, a norm or a word (Boyd &
Richerson, 1985). For example, individuals can be biased towards adopt-
ing one particular word just because it is more iconic or easy to remember,
or against one particular institutional norm just because it was promoted
by an unpopular government. People also have personal beliefs or value
systems, and they can be more prone or reluctant to use new informa-
tion, such as scientific information, institutional information or religious
information to update their prior beliefs or value systems. In this thesis,
I am particularly interested in the construction of models that include a
comprehensive set of cognitive biases that have been shown to be crucial
mechanisms underlying the adoption of cultural variants at the individual
level, and therefore critical for explaining cultural diversity at the popu-
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lation level. In particular, throughout this thesis I explore the effects of a
general content bias, or a preference for variants with high value (Boyd
& Richerson, 2008; J. Henrich & McElreath, 2007; Tamariz et al., 2014),
an egocentric bias, or a preference for self-produced variants (Tamariz et
al., 2014), an allocentric bias, or a preference for others-produced vari-
ants (Garrod & Pickering, 2007; Pickering & Garrod, 2004; Tamariz &
Kirby, 2015), a compliance bias, or a tendency to conform to institutions
(Cialdini & Goldstein, 2004), a confirmation bias, or a tendency to process
new information in a way that confirms one’s prior beliefs (Del Vicario,
Scala, Caldarelli, Stanley, & Quattrociocchi, 2017; Nickerson, 1998; Quat-
trociocchi, Scala, & Sunstein, 2016) and a memory-frequency bias, or a
preference for variants that are more frequent in the agents’ history (Ferdi-
nand et al., 2013; Hudson Kam & Chang, 2009; Hudson Kam & Newport,
2005; Tamariz & Kirby, 2015). My models, thus, require also the imple-
mentation of memory, which is operationalised as the maximum amount of
history that can affect agents’ variant choice at a given moment. All these
cognitive traits are, therefore, important selection pressures that can affect
the way in which cultural variants spread out in a population. Throughout
my exploration, I examine the impact of these parameters using different
versions of my agent-based models.

Human societies, however, are not just a number of individuals or groups
learning and sharing information within a social network. Humans have
an extraordinary capacity to build developmental environments and com-
plex niches. Niche construction is particularly relevant to human evolution
because by modifying the environment, humans create artifacts that act
as additional sources of biological and cultural selection (Laland, 2017a;
Laland et al., 2000). Human institutions are a paradigmatic example of
these human artifacts (Bowles, 2000). Institutions have been defined by re-
searchers on institutionalism as ‘integrated systems of rules that structure
social interactions’ (Hodgson, 2015, p. 501). Similarly, Boyd and Rich-
erson (2008) define social institutions as norms and conventions that give
durable structure to social interactions within a population. These institu-
tions are now recognised to have played important roles in the co-evolution
of individual cognition and human culture by creating norms, spreading be-
liefs, establishing language rules or promoting ideas. In the later versions
of the computational models I present in this thesis, I pay special attention
to the emergence of representative institutions and how they interact with
human cognition, value systems and the selection and production of cul-
tural variants in a population. On a more conceptual level, the notion of
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niche construction will be also used in the last part of this thesis to propose
a conceptual model applied to the case of the emergence of language regu-
larities. I gather evidence from iterated learning models (Chater, Reali, &
Christiansen, 2009; Kirby, 2017; Kirby, Dowman, & Griffiths, 2007; Smith
et al., 2017; Zuidema, 2002) and ecological evolutionary developmental bi-
ology (Gilbert & Epel, 2009, 2015; R. C. Lewontin, 1983; Müller, 2020;
Sultan, 2015, 2017) to show that these two frameworks are compatible on
the basis of recent interdisciplinary studies that are stressing the necessity
to construct more integrated and less simplistic models of cultural evo-
lution (e.g. Balari & Lorenzo, 2013; Charbonneau, 2016; Deacon, 2010;
Fisher & Vernes, 2015; Laland, Odling-Smee, Hoppitt, & Uller, 2013; La-
land, Odling-Smee, & Turner, 2014; Mesoudi, Whiten, & Laland, 2006,
among others).

The processes of cultural transmission are therefore shaped by social
structures (e.g. network connectivity dynamics and emergent institutions)
and by individual cognitive traits (e.g. cognitive biases, value systems and
memory). All these factors take part in complex dynamic systems that
require an integrated treatment of the different levels of the evolutionary
process.

1.2 Plan of the thesis

This thesis aims to formalise some of the relationships between the social
and cognitive features outlined above. In particular, I will explore three
main research questions:

(1) How do the interactions between individual cognitive traits and the
temporal dynamics of social network connectivity, i.e. the order in
which individuals in a population interact with each other, affect the
spread of cultural variants?

(2) How do the interactions between individual cognitive traits and insti-
tutions affect the evolution of cultural diversity and the emergence of
cultural conventions?

(3) How might current iterated learning models, niche construction and
evolutionary developmental biology be synthesised into a compatible
framework for language evolution?

Broadly speaking, question 1 will be addressed in Chapters 2 and 3, ques-
tion 2 in Chapters 4 and 5, and question 3 in Chapter 6. In my research
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I will adopt a variety of approaches, such as modelling, experiments and
theory. Although there are obvious connections between chapters, each
chapter of this thesis can be read independently, because each of them cor-
responds to an independent study that has been written as an independent
academic article. Both Chapter 2 (a model) and Chapter 3 (an experiment)
are devoted to the same topic: Network connectivity dynamics, memory
and cognitive biases. Chapters 4 and 5 are two models of dissemination of
culture that aim to explore the interactions between institutions and value
systems. Finally, Chapter 6 proposes a conceptual model of language evo-
lution that attempts to integrate iterated learning, evo-devo and niche con-
struction.

In Chapter 2, I construct an agent-based model to explore how the in-
teractions between population network connectivity dynamics (i.e. the or-
der in which agents interact over time), content bias, coordination bias
and memory affect the evolution of social conventions and cultural diver-
sity. This study starts with an explanation of drift and selection pressures
in cultural and language evolution. It then reviews the relevant literature
on social networks and proposes a specific manipulation of the connec-
tivity dynamic according to how many agents could potentially share the
same cultural variant at a given round. Then, I describe an agent-based
model that includes the parameters mentioned above. Simulations show
that content bias is the main driver of cultural diversity and that it am-
plifies the effect of network connectivity dynamics on the time-course of
variant spread. Chapter 2 then continues with a discussion and stresses
the necessity of testing the model against experimental data obtained from
multiple connectivity dynamics.

Chapter 3 reports an experiment in the lab in which participants engage
in a Pictionary-like game as members of 4-agent micro-societies. This
study has two goals. First, to assess the effect of two specific network con-
nectivity dynamics on the evolution of communicative conventions; and
second, to compare the predictions of the model developed in Chapter 2
against experimental data. Experimental results support the hypothesis that
the convergence of a small-scale society of human participants on shared
communicative conventions can be affected by the order in which connec-
tions between individuals unfold over time.

In Chapter 4 I develop an agent-based model to explore the effects of the
interactions between content biases, value systems and institutional perfor-
mance on cultural diversity. Value systems are operationalised as the set
of values that each agent assigns to each cultural variant at each time step,
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and they can evolve according to the agents’ choices and the type of in-
stitutional pressure. However, one limitation of the model developed in
Chapter 4 is that institutions are fixed and hence they are not part of a
co-evolutionary model of cumulative culture. In Chapter 5, I construct an
agent-based model that attempts to overcome those limitations. The co-
evolutionary model includes value systems, institutions and a comprehen-
sive set of cognitive biases. Simulations show that institutions modulate
the emergence of cultural conventions and the evolution of cultural diver-
sity. They are, however, dependent on the particular combination of value
systems and cognitive biases in the population.

Chapter 6 proposes a conceptual integrated framework for language
evolution that includes insights from iterated learning, evo-devo and niche
construction. I start by challenging the idea of domain specificity with a
review of some relevant iterated learning models. These models show that
the emergence of near universal properties of language do not require the
preexistence of strong specific constraints. Then I provide a brief review
of the history that led to the development of eco-evo-devo models. Finally,
I revisit a variety of studies that might be adding evidence to support the
main hypothesis of the study: The conceptual apparatus of eco-evo-devo is
compatible with the findings of iterated learning models. Chapter 7 sums
up the most relevant findings of this thesis and discusses several impli-
cations for the cognitive and social sciences, such us the link to studies
of social influence, dissemination of culture and language history among
others. This discussion should prompt some serious thinking by those re-
searchers working on collective behavior, social networks and institutions,
as it might help to develop more coherent theoretical models of cultural
evolution and better structure the bases upon which public policies for cul-
tural preservation and information management stand.

Due to the particular nature of this thesis, which can be defined as a
compilation of related but also independent studies, some of which are
versions of submitted articles to academic journals, the reader of this thesis
might find that language and terminology in some chapters are used for
such purpose. That is, in order to acknowledge the contribution of my
supervisors and collaborators I generally use plural forms. In the end, this
thesis consists of a number of studies that I have developed throughout my
PhD in Cognitive Science and Language, and therefore maintaining the
original attributes of each study helps present each piece of work, albeit in
chapter form, in a more fluent and less forceful way.

In particular, Chapters 2 and 4 are revised versions of two papers that
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were developed as independent studies, on which the work reported on
Chapters 3 and 5 builds upon. The work presented in Chapter 6 also ma-
terialised as an independent study and as a corollary of the material that
precedes it in this thesis. All these works have been submitted for publi-
cation and are currently either under revision or accepted. For the sake of
completeness, the full credits for these articles are, respectively:

• José Segovia-Martı́n, Bradley Walker, Nicolas Fay & Mónica Tama-
riz, (in press). Network connectivity dynamics, cognitive biases and
the evolution of cultural diversity in round-robin interactive micro-
societies. Cognitive Science. An early version of this paper is avail-
able online at arXiv.

Affiliations: Universitat Autònoma de Barcelona, University of West-
ern Australia & Heriot-Watt University.

JSM conceived, designed the study, coded, performed and analysed
simulations, and wrote the manuscript. MT contributed in designing
the study and writing the manuscript. BW and NF contributed useful
comments.

• José Segovia-Martı́n & Mónica Tamariz, (2020). Value systems, con-
tent bias and institutional performance: a micro-scale model of cul-
tural diversity. Manuscript submitted for publication.

Affiliations: Universitat Autònoma de Barcelona & Heriot-Watt Uni-
versity.

JSM conceived, designed the study, coded, performed and analysed
simulations, and wrote the manuscript. MT contributed in designing
the study and writing the manuscript.

• José Segovia-Martı́n & Sergio Balari, (2020). Eco-evo-devo and it-
erated learning: Towards an integrated approach in the light of niche
construction. Manuscript submitted for publication

Affiliations: Universitat Autònoma de Barcelona.

JSM conceived, designed the study, developed the mathematical and
conceptual explanations and wrote the manuscript. SB contributed in
designing the study and writing the manuscript.
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Abstract

The distribution of cultural variants in a population is shaped by both neutral evo-
lutionary dynamics and by selection pressures. The temporal dynamics of social
network connectivity, i.e. the order in which individuals in a population interact with
each other, has been largely unexplored. In this chapter we investigate how, in a fully
connected social network, connectivity dynamics, alone and in interaction with dif-
ferent cognitive biases, affect the evolution of cultural variants. Using agent-based
computer simulations, we manipulate population connectivity dynamics (early, mid
and late full-population connectivity); content bias, or a preference for high-quality
variants; coordination bias, or whether agents tend to use self-produced variants (ego-
centric bias), or to switch to variants observed in others (allocentric bias); and mem-
ory size, or the number of items that agents can store in their memory. We show
that connectivity dynamics affect the time-course of variant spread, with lower con-
nectivity slowing down convergence of the population onto a single cultural variant.
We also show that, compared to a neutral evolutionary model, content bias accel-
erates convergence and amplifies the effects of connectivity dynamics, whilst larger
memory size and coordination bias, especially egocentric bias, slow down conver-
gence. Furthermore, connectivity dynamics affect the frequency of high quality vari-
ants (adaptiveness), with late connectivity populations showing bursts of rapid change
in adaptiveness followed by periods of relatively slower change, and early connec-
tivity populations following a single-peak evolutionary dynamic. We evaluate our
simulations against existing data collected from previous experiments and show how
our model reproduces the empirical patterns of convergence.

Keywords: cultural evolution, convergence, adaptiveness, connectivity, network topol-
ogy, content bias, coordination bias, memory, punctuational evolution

2.1 Introduction

Human life is shaped by our culture, that is, by socially transmitted infor-
mation that determines our behaviour, beliefs, attitudes and values (Rich-
erson & Boyd, 2008). Cultural variants such as technology, language and
beliefs propagate in populations following evolutionary dynamics (Boyd
& Richerson, 1988; Cavalli-Sforza & Feldman, 1981; Neiman, 1995)—
individuals inherit cultural traits from ancestors or peers and occasionally
generate new trait variants. Over generations, cultures evolve: some vari-
ants are lost, while others spread in a population, sometimes to the point
of fixation, when we can say the population has converged on a variant.

In the absence of innovation, drift may cause cultural variants to disap-
pear and, in turn, reduce cultural variation. Drift models can thus lead, over
generations, to convergence on a single variant. This is particularly true for
smaller populations because random sampling can remove variants faster,
resulting in a change of variant distributions over generations. A variant
has been fixed when its frequency is 1, and has been extinguished when
its frequency is 0. Therefore, since the influence of stochastic variation is
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higher for small populations, the probability of fixation is also higher in
smaller populations (Frankham, Briscoe, & Ballou, 2002). Interestingly,
it is well known that drift may explain the propagation of cultural variants
including baby names, pottery decorations and patents (Bentley, Hahn, &
Shennan, 2004), dog breeds (Herzog, Bentley, & Hahn, 2004) and some di-
achronic changes in language (DeGraff, 2001; Komarova & Nowak, 2003;
Kroch, 1989). These applications and properties make drift models usable
as null models against which other models can be tested (Hahn & Bent-
ley, 2003; Lipo, Madsen, Dunnell, & Hunt, 1997; Neiman, 1995; Reali &
Griffiths, 2009; Shennan & Wilkinson, 2001).

2.1.1 Cognitive biases and memory

Some variants spread more rapidly than others. In these cases, evolution is
not neutral, but subject to biases, or selection pressures. Content bias, also
termed direct bias by Boyd and Richerson (1985), relates to individuals’
sensitivity to intrinsic properties of traits, and results in the more learnable,
efficient or effective variants having a higher probability of being adopted
by others (Hagen & Hammerstein, 2006; J. Henrich & McElreath, 2007;
Vale et al., 2017), and therefore spreading faster through a population than
a neutral, drift model would predict (Gong, Shuai, Tamariz, & Jäger, 2012;
Tamariz et al., 2014). Coordination biases may involve a preference to use
variants we have used before (egocentric bias) or variants produced by oth-
ers (allocentric bias). In communicative tasks, for instance, an allocentric
bias can be observed under certain mechanistic accounts of dialogue, since
speakers tend to adopt labels used by their interlocutors (Garrod & Picker-
ing, 2007; Pickering & Garrod, 2004), which in turn favours cooperation
and coordination (Fusaroli et al., 2012; Fusaroli & Tylén, 2016). Con-
tent and coordination biases also interact with each other: Egocentric bias
maintains variation, which improves the chances that content bias will se-
lect for the most adaptive variant in a population (Segovia-Martı́n, Walker,
Fay, & Tamariz, 2019).

Cultural transmission is also affected by the memory record of cultural
variants. Some authors claim that the type of variation that learners pro-
duce can be explained by memory limitations: for example, memory can
affect language regularisation (Hudson Kam & Chang, 2009; Hudson Kam
& Newport, 2005), compressibility (Chater & Vitányi, 2003) or conven-
tionalisation (Tamariz & Kirby, 2015). In general, memory limitations
reduce variation (Tamariz & Kirby, 2015). Because frequency learning is
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a prominent aspect of social learning in linguistic and non-linguistic tasks,
regularisation behaviour is consistent with a domain-general account of the
observed regularisation bias and it might be attributable to limited work-
ing memory (Ferdinand et al., 2013). Ferdinand et al. (2013) also suggest
that a tendency to produce representative variants can lead to high-fidelity
reproduction of the training set of variants under low memory constraints.
This idea is very relevant to the scenarios that we aim to model, in which
there is production and reproduction of a discrete number of variants with
high-fidelity. In addition, it allows us to model memory as a cognitive
feature that constraints regularisation on the basis of frequency learning.

The effects of content and coordination biases on variant propagation
were studied by Tamariz et al. (2014), who constructed a parameterised
model of cultural variant transmission to analyse the patterns of variant
spread obtained in an experimental study by Fay et al. (2010). Fay et al.
(2010) had groups of eight individuals playing a Pictionary-like communi-
cation game in pairs. During each game, the director produced a drawing
to represent each of 16 meanings, one at a time. For each of these, the
matcher tried to guess which of 20 possible meanings the director was try-
ing to communicate. Participants played this game six times with each
partner, with roles reversing for each game, so each participant drew and
matched each meaning three times with each partner. For a given meaning,
directors could invent their own ways to depict the meaning (that is, pro-
duce a novel variant) or produce a variant that was produced by a partner or
by themselves in a previous game. After six games, participants swapped
partners within their group and played another six games with their new
partner. This partner-swapping was repeated until the populations were
fully connected, with every participant having played with every other par-
ticipant. This meant that, by the end of the experimental simulation, for
each meaning, a particular variant could spread to the whole population.
In other words, the population could converge on a single variant for each
meaning. Tamariz et al. (2014) found that this convergence was best ex-
plained by a combination of egocentric bias and content bias, where partic-
ipants would stick with variants they had produced previously, unless they
encountered a better variant, in which case they would switch to that.
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2.1.2 Population structure, network dynamics and specific
social learning scenarios

Demographic factors also add selection pressures (e.g. J. Henrich, 2004;
Mesoudi, 2011b; Mesoudi et al., 2006; Richerson & Boyd, 2008; Shennan
& Wilkinson, 2001; Vaesen, 2012): The degree of adaptiveness, complex-
ity and cumulative cultural evolution of cultural and communicative vari-
ants can be affected by population size (Cuskley, Loreto, & Kirby, 2018;
Derex, Beugin, Godelle, & Raymond, 2013; J. Henrich, 2004; Kempe &
Mesoudi, 2014; Kline & Boyd, 2010; Kobayashi & Aoki, 2012; Shennan
& Wilkinson, 2001), by the degree of contact and migration between pop-
ulations (Creanza, Kolodny, & Feldman, 2017; Muthukrishna, Shulman,
Vasilescu, & Henrich, 2014; Powell, Shennan, & Thomas, 2009) and by the
structure of the social network (Gong, Minett, & Wang, 2008; Lee, Stabler,
& Taylor, 2005; Lupyan & Dale, 2010; Mueller-Frank, 2013; Olfati-Saber
& Murray, 2004). An additional demographic variable, namely the con-
nectivity between individuals within or across populations, also enhances
adaptiveness and complexity because it affects the degree of diversity each
individual has access to (J. Henrich, 2004; Kobayashi & Aoki, 2012; Pow-
ell et al., 2009; Shennan & Wilkinson, 2001). However, a recent study
suggests that access to diversity is not the only variable at play, and that
if we take into consideration the potential for an innovation to be adopted
and spread, then an intermediate degree of connectivity may be optimal
for cumulative culture, as too much connectivity stifles innovation, whilst
too little cannot maintain complex traits (Derex & Boyd, 2016; Derex, Per-
reault, & Boyd, 2018).

In the evolution and history of human populations, the structure of the
population might have played an important role in cultural change in an-
cestral and historical periods (Derex & Boyd, 2016). Critically, it should
be noted that population fragmentation and cultural isolation have been
identified as crucial factors to explain the spread of cultural variants such
as high quality ideas (Björk & Magnusson, 2009), technology (Hovers &
Belfer-Cohen, 2006) or research (March, 2005). Furthermore, it has been
suggested that inter-population connectivity may be more than just a sim-
ple reflection of cultural accumulation, and that it may be a critical driver
of cultural change (Creanza et al., 2017).

Important efforts to model the effects of social structures and network
dynamics on the spread of cultural variants have been made in recent years.
Particularly interesting for the present study is the work that follows Axel-
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rod’s model of dissemination of culture (Axelrod, 1997). This model was
based on the assumption that people are more likely to interact with oth-
ers who share the same cultural variants, and this in turn tends to increase
the number of variants they share. These mechanisms, named homophily
and influence, have been shown to be prominent explanations for the per-
sistence of cultural diversity. Expanding on Axelrod’s (1997) model, re-
searchers have explored social learning and network connectivity effects
by implementing new manipulations, which in general involve complex in-
teractions of agents’ cognition and social structures. Particularly relevant
for us are agent-based models that contemplate an interaction between im-
itation choice rules and dynamic networks, such as the modelling of the
co-evolution of networks and agent’s preferences (Centola et al., 2007),
network efficiency and conformity biases (Barkoczi & Galesic, 2016) and
network connectivity and group performance (Lazer & Friedman, 2007).
All these models manipulate specific features of the network topology and
agent’s cognition in order to predict the spread of cultural variants and the
convergence on shared cultural variants. It is important to recognise that
each of these agent-based models is based on a number of tractability as-
sumptions that, depending on the focus of the study, lead to paying more
attention to either macro processes or micro processes. The ability of many
of these models to make global predictions takes focus away from micro-
processes such as the composition of the pairings at the most elementary
level, limiting the tractability of each of the agents that take part in the
cultural process.

In the real world, the order in which individuals pair over time is some-
times determined by stochastic events that govern path dependencies, that
is to say, a limited record of experiences that one has experienced in the
past. When individuals in a community are carriers and transmitters of in-
formation, different orderings can yield different levels of sub-population
isolation at different times, which in turn affects the probability of dissemi-
nation of information in social groups. For example, the specific pair com-
position within a micro-society determines the number of agents that can
potentially share the same variant at different times. To be more specific,
the present study can be applied to a number of socio-cultural scenarios
that are governed by turn-based interventions (Sacks, Schegloff, & Jeffer-
son, 1978), in which the organisation of turn taking might play an impor-
tant role in, for example, the formation of sides during jury deliberations
(Manzo, 1996; Stone, 1969), computer mediated communication (Garcia
& Baker Jacobs, 1999), the evolution of communicative conventions in the
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lab (Bloom, Russell, & Wassenberg, 1987; Fay, Garrod, & Roberts, 2008;
Fay et al., 2010), or communication in group decision-making (Bormann,
1996; Stasser & Taylor, 1991). This might include certain group dynam-
ics in the work place, job selection processes or strategies in team games.
What these scenarios have in common is that they usually

(a) occur in relatively short period of time;

(b) take a relatively small population;

(c) consist of a relatively small number of interactions between actors;

(d) are systematically structured by a prefixed scheduled algorithm; and

(e) have a tendency to require convergence as an outcome (e.g. jury verdict
or final outcome of a decision-making process).

These properties make these socio-cultural scenarios sensitive to subtle
changes in the network structure, which can potentially enhance the im-
pact of the formation of short-term clusters (i.e. groups of agents with
strong ties or who interact more frequently with one another) and indi-
vidual biases on the outcome of the process. The formation of short-term
clusters can lead to differential information concentration that can dramat-
ically affect the spread of highly valued variants within the group (Axel-
rod, 1997; Centola, 2018; González-Avella, Cosenza, Klemm, Eguı́luz, &
San Miguel, 2007).

It is important to stress that given similar outcomes, differential tem-
poral pathways towards convergence might have dramatic effects on spe-
cific social learning scenarios. When there is increasing pressure on actors
to accelerate decision making, the importance of partial states increases.
For example, time-dependent decision making models have shown partial
outcomes to be crucial to determine the quality of research when schol-
ars face the exploration-exploitation dilemma (Chavalarias, 2017). These
time-dependent learning metrics can be amplified in multiple choice tasks
in which opinion is based on one-shot experience per option, such as wine
tasting (Mantonakis, Rodero, Lesschaeve, & Hastie, 2009), or even af-
fect juror’s decision making after a sequence of systematically organised
sequence of speeches (Shteingart, Neiman, & Loewenstein, 2013; Stone,
1969). Although these scenarios can vary widely, in this study we explore
how the time to convergence can be affected by connectivity dynamics.

Using the computer model described below we attempt to model social
network structures such that they are characterized by a different sched-
ule, which leads to the formation of differential short-term clusters that
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might serve as a reasonable proxy for scenarios as those mentioned above.
While clustering and social influence in social networks has been studied
empirically (Becker et al., 2017; Centola & Baronchelli, 2015), there are
relatively few formal models that examine the combined effect of clus-
ter formation and individual influence (Centola et al., 2007; Muthukrishna
& Schaller, 2019). These models have successfully shown how the co-
evolutionary dynamics of social influence and network structures can affect
cultural change. In our model, we explore specific evolutionary dynamics
of network structures and individual biases. We implement content biases,
coordination biases and memory, three parameters that have been shown
as crucial in the acquisition of variants under controlled conditions when
using small-scale societies (Tamariz et al., 2014).

2.1.3 Connectivity dynamic and path dependencies

A key innovation of the present study is that we aim to address the effect
of different orderings by focusing on a particular microscale manipulation
of the social network that remains largely unexplored: The order in which
connections between individuals unfold over time. We call this the net-
work connectivity dynamic. The most basic network topology is a fully
connected network, in which all nodes are interconnected. In a popula-
tion of individuals, this means that, over time, each individual interacts
with every other individual. However, the same fully connected network
may follow different temporal patterns of connectivity, and this may have
consequences for variant spread. For instance, a pattern may lead to tem-
porary isolation of one or more sub-populations, generating path depen-
dencies that affect the dissemination of information in the social network,
in a similar way to how long-range ties might affect the population dy-
namics of beliefs, opinions and polarization (Turner & Smaldino, 2018) or
stochastic events the evolution of cooperation (Smaldino & Schank, 2012).
Importantly for the present study, Turner and Smaldino (2018) show that
the order in which agents interact, all else being equal, has a dramatic in-
fluence on the long-term polarization of the population. This finding moti-
vates us to propose a reevaluation of a specific small-scale cultural evolu-
tionary model of dissemination of variants by systematically manipulating
the effect of the temporal network connectivity dynamics on a range of
various outcomes and how this interacts with other previously established
factors, such as content-based bias, coordination bias and memory size.
In such small sub-populations, drift can reduce diversity, disproportion-
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ately favouring variants that happen to be present in the population, and
which are not necessarily adaptive (J. Henrich, 2004). A different con-
nectivity pattern may never yield pockets of isolation, which would lead
to different evolutionary dynamics. In this chapter, we address how the
connectivity dynamic, alone and in combination with content and coordi-
nation biases, affects the spread of cultural variants in a population. In
order to manipulate the connectivity dynamic, we draw on a well-known
pairing methodology called round-robin tournament, which allows us to
optimally control that the probability of contribution of each agent to the
evolutionary process is the same. This strict control of the connectivity
dynamic condition is important to then examine the robustness of our find-
ings by experimenting with the manipulation of agents’ cognition. Three
different connectivity dynamics are used in this study, each of which yields
a different level of temporal sub-population isolation at a given time (see
Section 2.2).

To our knowledge, the specific manipulation that we propose here has
not been taken into account in experimental work or models on cultural and
language evolution, and it would be especially relevant to those researchers
that use dynamic interactive micro-societies of agents switching partners
over time (e.g. communicative games, cooperative games or tournaments:
Baum, Richerson, Efferson, and Paciotti (2004); Byun, De Vos, Roberts,
and Levinson (2018); Caldwell and Smith (2012); Fay et al. (2008, 2010);
Mesoudi and Whiten (2008); Raviv, Meyer, and Lev-Ari (2019b); Tamariz
et al. (2014). In most cases, experimental designs of micro-societies of
interacting actors only include one pair composition out of all the possible
combinations of pair shuffling, and therefore, outcomes are related with
only one specific population connectivity dynamic, potentially affecting
the accuracy of the generalizations made by these studies.

We use the experimental design of Fay et al. (2008, 2010) and Tamariz
et al. (2014) as a starting point for constructing our model. Tamariz et al.’s
(2014) study was designed to test whether the observed variant distribu-
tions obtained by Fay et al. (2010) were best explained by neutral drift or
showed evidence of selection and adaptation mediated by content and/or
coordination biases. Their results indicated an interaction of both biases:
Participants displayed egocentric bias and content bias; they tended to pro-
duce the variants they had previously produced themselves except when
they encountered a better (simpler, cleverer, etc.) variant (through muta-
tion/innovation or via a partner), in which case they tended to adopt it. Ad-
ditionally, participants seemed to have short memory and tended to produce
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mostly variants that they had seen or produced in the preceding couple of
games. Although the model in Tamariz et al. (2014) was useful to show an
interaction between content and coordination biases and depict the number
of data structures explained by the biases in the experiment, predictions on
the specific weight of each bias on the spread of variants were not deter-
mined due to the explanatory nature of the model implemented, which took
as input the history of the representational variants that the participants had
used or seen during the experiment. The interactions between memory and
the cognitive biases examined were not explored either.

For the present study, we extend Tamariz et al.’s (2014) study in two
important ways. First, we add a new manipulation: Population connectiv-
ity dynamic, in addition to content, coordination biases and memory size.
We will evaluate the importance of individual parameters and their inter-
actions on the evolution of convergence. Our model does not take experi-
mental data as input, but will be initialised with a random computationally
generated distribution of cultural variants. Importantly, we use our model
to produce data that can be later used to make predictions or compared
to the experimental datasets that have been mirrored. Second, our model
aims to be a valid tool to find the best-model fit of connectivity conditions
associated to existing experimental datasets that use interactive pairwise
micro-societies based on round-robin tournaments applied to the dissemi-
nation of cultural variants. This is done by exactly imitating the schedule
algorithm of existing experimental designs with human participants. These
two innovations allow us to establish causal links between properties at the
level of individual agents (content and coordination biases, memory size)
and of the population (connectivity dynamics and population size) on one
hand, and properties of the culture (evolution and adaptiveness of variants)
on the other.

In light of previous research, two important questions are addressed in
this chapter. On the one hand, to what extent do the interactions between
content bias, coordination bias and memory affect the evolution of cul-
tural diversity in round-robin interactive micro-societies? These analyses
replicate and extend previous work. On the other hand, do connectivity dy-
namics affect cultural diversity in a population, and do they interact with
the cognitive biases and memory size, modifying the rate of convergence
and the adaptiveness of cultural variants during cultural evolution?
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2.2 Methods

We constructed an agent based model that simulates micro-societies of
agents who interact in pairs for a number of rounds. We look at the spread
of n competing variants, each of which is originally unique and produced
by each agent in the simulation. We systematically manipulated the values
of several global and individual parameters, including connectivity dynam-
ics and cognitive biases (see Section 2.2.4), and quantified the resulting
changes in the evolution of the convergence and diversity of cultural vari-
ants (see Section 2.2.5). We also provide comparison of our model by
testing our simulated data against the real experimental data collected by
Fay et al. (2010) and coded by Tamariz et al. (2014) (see Section 2.4).

2.2.1 Purpose

The purpose of the model is to understand how the interaction between
cognitive biases, memory and the order in which agents pair with each
other over time affect convergence. It also aims at evaluating the relative
importance of each parameter combination and make predictions on the
evolution of cultural diversity. Finally, it is tested against experimental
data to find the best model-model fit associated to different connectivity
conditions.

2.2.2 The model

We consider a simplified micro-society of agents, each of whom is charac-
terized by a number of state variables as described in Table 2.1 on page 28.
The micro-society initially contains N agents, who pair-up and interact in
pairs for a number of rounds (R). Each interaction consists of a cultural
variant exchange (Figure 2.1). We simulated pairwise interactive micro-
societies of N = 8,16 and 32 agents, allowing us to track all agent pairings
during N−1 rounds according to the pair composition illustrated in Figure
2.2. This type of scheduling algorithm is called round-robin tournament,
and it allows every agent to be paired with every other agent for exactly one
round. In our micro-societies, N is even, which means that in each N− 1
rounds, N/2 games (or pairwise interactions) can be run concurrently.

Different algorithms can be used in order to create a schedule for a
round-robin tournament and all of them contain the same number of games
N(N− 1)/2. In our model, agents interact in each game by exchanging

21



Chapter 2

information, therefore not all the schedules allow the same spread of adap-
tive information, because different schedules can pair-up agents forming
different levels of sub-population isolation at different times. We imple-
ment three different connectivity dynamics that differ with regards to how
many agents could potentially share the same variant at a given time. In
other words, each connectivity dynamic examined (early, mid, late) differ
from the others in how fast a cultural variant could potentially spread out
among the agents of the micro-society (Figure 2.2).

In our model, each agent i has its individual cultural attributes defined
as a matrix of cultural variants. The state of an agent i is a 2× r matrix of
cultural variants, which we call A,

A =

[
σie1 σie2 ... σier
σia1 σia2 ... σiar

]
(2.1)

where σier corresponds to a cultural variant produced by agent i in round
r, and σiar corresponds to a cultural variant observed by agent i in round
r. Thus, the state of agent i is its record of produced and observed cultural
variants, which are stored in a two-row and r-column matrix. Produced
variants are stored in the memory as egocentric, designated as e. Observed
variants are stored in the memory as allocentric, designated as a.

2.2.3 Model dynamics

The dynamics of the model are defined by the following steps. In the ini-
tial state each agent i is randomly assigned a cultural variant σi selected
from a pool of n distinct cultural variants without repetition. Each variant
originally assigned to each agent is unique, and it is the first variant they
produce in their first interaction at round 0,r0. The initial pool of variants
in the micro-society can be defined as a V vector of length N, that contains
one cultural variant for each agent (σi0,σ j0, . . . ,σn0), where σi0 is the vari-
ant initially assigned to agent i, σ j0 the variant initially assigned to agent
j, and so on.

At the beginning of each round r, agents are paired using one of the
three connectivity dynamics (early, mid, late) represented below (see pop-
ulation connectivity dynamics), each of which describes a different sched-
ule to pair-up agents. Each connectivity dynamic examined differ from
the others with respect to how many agents can potentially share the same
cultural variant at one given round.

Once agents are paired, at each round r, they interact by presenting and
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observing one cultural variant. Within each pair (Figure 2.1), each agent
in turn samples its memory to produce a variant (Figure 2.1, top) accord-
ing to the probabilistic function defined in Equation (2.2) on page 27. At
this point, there is a small probability of innovation, in which case, the
variant produced will be randomly sampled from one of the n variants the
population was initialised with. Then, both agents add both variants to
their memories (Fig. 2.1, bottom). That is to say, at round r, when agent
i and agent j interact, i produces variant σi and j variant σ j. Both agents
store the two variants in memory. Agent i stores variant σi in its egocentric
memory as σier and σ j in its allocentric memory as σiar. Agent j stores
variant σ j in its egocentric memory as σ jer and σi in its allocentric memory
as σiar.

aie1

bie2

biɑ1
ciɑ2

cje1

cje2

djɑ1

ajɑ2

Agent i Agent j
b

d

1. Production

aie1

bie2

biɑ1
ciɑ2

cje1

cje2

djɑ1

ajɑ2

Agent i Agent jb

d

2. Storage

Round 3

dje3bjɑ3
bie3 diɑ3

r1

r2

e a

…

Figure 2.1: Illustration of the interaction between a pair of agents at one round of the
simulation. At round 3, agents have already some variant tokens in memory, which they
have stored in previous rounds. For each variant in memory, the letter represents the type
(e.g. a, b). The first index represents the agent’s identity; the second index represents
whether the variant token is stored as allocentric (variant produced by other agent) or
egocentric (produced by self). (Note that if an agent produces a token of a variant type
that in the past was stored as allocentric, the token is stored as egocentric in the present
round.) The third index indicates the round at which the variant was stored. During
the round depicted (round 3), first, one variant token in each agent’s memory is selected
for production (in the figure, the tokens surrounded by a star). Once both agents have
produced a new token of the selected variant, they proceed to store them in their memory.
Their own variant is marked as egocentric, and as produced at round 3; the other agent’s
variant is marked as allocentric and also as produced at round 3.
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2.2.4 State variables and probability distribution of variants

The model takes several parameters as described below:

(a) Number of agents (N): we simulate micro populations of N = 8, N =
16 and N = 32 agents.

(b) Number of rounds (R): This depends on the number of agents. A run
of the simulation includes N− 1 rounds, which allows every agent to
be paired with every other agent for exactly one round. A single round
is designated as r.

(c) Population connectivity dynamics. This reflects the order in which the
agents are paired with each other. Different orderings yield different
levels of sub-population isolation at different times (Figure 2.2). For
example, in our 8-agent micro-societies, three different connectivity
dynamics can be described with reference to how many agents could
potentially share the same variant by round 3: In the early connectivity
condition, all 8 agents could share the same variant by round 3; in
the mid connectivity condition, 6 agents could share same variant by
round 3; in the late connectivity condition, 4 agents could share the
same variant by round 3. We examine 3 connectivity dynamics: Early
(E), mid (M), late (L), in 8, 16 and 32-agent micro-societies. Due to the
wide range of possible permutations for mid connectivity in the larger
micro-societies, in this case, for each run, we use a random selection
among possible permutations.

(d) Coordination bias (c) captures the extent to which an agent has a pref-
erence for self-produced variants or partner-produced variants. It fixes
the likelihood of a variant being produced depending on whether it
originates in others or the agent itself. It takes values from 0 (fully
egocentric: Preferring self-produced variants over other-produced vari-
ants) to 1 (fully allocentric: Preferring other-produced variants over
self-produced variants). The strength of the coordination model is de-
termined by the combined mathematical complement of the content
bias and the innovation rate. That is, for each agent and round, variants
are selected for production using the probability of the complement of
each of the other cognitive features. When coordination bias is 0.5, we
have a neutral coordination model where variants in the egocentric and
the allocentric memory are equally likely to be produced. Coordination
bias values from 0 to 1 in steps of 0.1 are examined.

24



Chapter 2

A

B
Round Early Mid Late

1

2

3

Agent

Agent with red variant

Transmission

Transmission of red variant

Figure 2.2: A. Examples of agent pairings for each type of connectivity dynamic, in
a micro-society of 8 agents. In red, agents who may, in the current round, potentially
have in their memory the variant produced by agent 1 in round 1. B. Three different
network connectivity dynamics can be described within a pairwise interaction account for
a dynamic fully connected network of 8 agents. By round 3, potentially 8 (in the early
connectivity dynamic), 6 (in the mid connectivity dynamic) or 4 (in the late connectivity
dynamic) agents share the red variant.

(e) Content bias (β) and variant quality (s) are two closely related param-
eters that determine variants selection due to their intrinsic value. Pa-
rameter s corresponds to the intrinsic value of each communicative
variant and it indicates to what extent the variant is preferred over the
other variants (s is 1 if the signal is preferred over the others, 0 other-
wise). Variant quality is a binary trait and the population is initialized
with one preferred variant, which is determined at random at the initial
state of each simulation. This is motivated by the types of scenarios we
aim to simulate, in which, in general, there is a tendency to converge
on one or few shared variants. We assume all the agents have the same
initial preference. However, this assumption does not mean that agents
always choose high quality variants, since variant choice is defined
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by a probability distribution function which, in addition to content bi-
ases, is determined by other cognitive parameters and the frequency
of variants in agents’ history (see Equation (2.2) on the facing page).
In the present study, we assume that the preferred variant is adaptive,
that is, it has (by definition) higher probability of being produced. In
real life, adaptiveness may be due to a variant being easy to produce,
to memorise or to process, attractive, effective or efficient for a desir-
able function, etc. For adaptiveness measures, the frequency of high
quality variants (s = 1) is considered (see Section 2.2.5). Parameter β

captures agents’ sensitivity to variant quality (s), and ranges from 0—
not sensitive at all—to 1—fully sensitive—in steps of 0.1. Parameter
β is operationalised only if the target variant σi has been produced or
seen at least once—in other words, one cannot prefer to re-produce a
variant due to its quality until one has been exposed to that particular
representation. Thus, given a variant σi, the product β× si determines
the probability that variant σi is selected due to its intrinsic value, and
this product ranges from 0 to 1, in steps of 0.1. Note that, at each
round, as explained in the model dynamics, each agent stores two vari-
ants in its memory (the one that was produced by the agent itself and
the one that was produced by its partner). Thus, content bias does not
affect the storage process in our model (agents store in memory all the
variants they encounter), it only affects agents’ production. In simple
words, the higher the value of β, the higher the probability of produc-
ing a cultural variant due to its quality. When content bias is 0, we have
a content drift model. Content bias values from 0 to 1 in steps of 0.1
are examined.

(f) Memory size. We manipulate memory size (m) by limiting agents’ ac-
cess to their memory store. It corresponds to the maximum amount of
history that can affect the variant choice. At each round, when an agent
has to produce a variant, it can only choose between the variants that
were stored in the preceding rounds. A memory size of m means that
the model remembers at most the last m egocentric entries h | E,m and
the last m allocentric entries h | A,m from any history h. The relative
frequencies of variants in h | E,m define the egocentric initial distribu-
tion f (h | E,m) and in h | A,m the allocentric distribution f (h | A,m).

(g) Innovation rate (µ). Agents can generate novel variants. We fix the
innovation probability at 0.02 by using a flat distribution φ(x) weighted
by innovation rate, which means that 98% of variant choices reflect the
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probability distribution yielded by all the parameters described above,
while 2% is a random choice among all 8 initial variants. We have
chosen this value for two main reasons. First, for consistency with the
innovation rate found in Fay et al. (2010) experimental data by Tamariz
et al. (2014). Second, because in the present study we attempt to find
the best model fit associated to that same dataset.

For each round in the simulation, for each agent, the model yielded a
probability distribution of variants (x) for a given history (h) of previous
rounds, according to the following equation. We use the apostrophe (′) to
denote the probabilistic complement: a′ = 1−a.

Pr(x | h) = µ′β′c′ f (x | h|E,3)+µ′β′ f (x | h|A,3)+µ′βs+µφ(x) (2.2)

We run the simulation with 1452 different parameter value combina-
tions. For each parameter combination, we ran the simulation 1000 times.
For each model run we assume that all agents have the same connectivity
dynamic, biases and memory sizes. The results below show the average
and standard deviations of the number of runs of each parameter combina-
tion examined. All parameters and state variables can be found in Table 2.1
on the next page.
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Model parameters 

Entity Parameter Symbol Number of levels Value(s) 

Agent Content bias β 11 

 

0.0 to 1.0 in steps of 0.1 

 

Coordination bias c 11 0.0 to 1.0 in steps of 0.1 

Memory m 4    1, 3, 5, 7 

Innovation μ 1    0.02 

Variant quality s 2    [0,1] 

Agents’ sensitivity to variant quality b 11 0.0 to 1.0 in steps of 0.1 

Variant in agent’s memory record d 2    [0,1] 

Flat distribution of variants  φ(x)   

Egocentric entries for a given history h|E,m   

Allocentric entries for a given history h|A,m   

Distribution of egocentric variants for a given 

history 

f(h|E,m)   

Distribution of allocentric variants for a given 

history 

f(h|A,m)   

Probability distribution of variants for a given 

history 

P(x|h)   

Agent state (agent cultural attributes) A   

Cultural variant σ   

Agent ID i,j,…,n   

Produced variant by agent i σi   

Stored variant in egocentric memory by agent i σie   

Stored variant in allocentric memory by agent i σie   

Global Number of agents per group N 3 8,16,32 

Initial pool of variants V 3 8,16,32 

Number of competing variants n 3 8,16,32 

Number or rounds R=N-1 3 7,15,31 

Round r   

Initial round r0   

Number of games per round N/2 3 4,8,16 

Number of games per run N(N-1)/2 3 28,120,496 

Connectivity dynamic Early (E) 

Mid (M) 

Late (L) 

3 E, M, L 

Table 2.1: Parameters, state variables and scales.
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2.2.5 Quantifying convergence and adaptiveness

At its most general level, evolution is defined as a change in the fre-
quencies of different variants in a population over time. We are there-
fore interested in the composition of the pool of 8, 16 or 32 variant tokens
produced by the agents at each round, and how it changes over rounds.
We examine the level of convergence in this pool, or the extent to which
agents used the same variant. Following others (e.g. Fehér, Wonnacott, &
Smith, 2016; Smith & Wonnacott, 2010), we quantify convergence using
the information-theoretic notion of entropy (H) (Shannon, 1948):

H(V ) =−∑
viεV

p(vi) log2 p(vi) (2.3)

where V corresponds to the set of variants, and p(vi) is the probability
of ith variant in that set. Entropy is a well-established alpha diversity index
that has been used to measure cultural diversity. High entropy corresponds
to low convergence.

Evolution, even by drift, may increase convergence (and decrease en-
tropy), as random sampling at each round gradually eliminates variants
from the pool (and our low level of innovation is not enough to compen-
sate for that). For example, at round 0, where each agent produced its
own unique variant, the probability distribution over the 8 variants was
flat (each variant had a probability of 1/8) and the entropy was maximal
(H = 3 bits). Over time, as agents converged, entropy would decrease; if,
say, by round 7, the probability of 1st variant was 0.75, the probability of
2nd variant was 0.25 and the probability of the remaining variants was 0,
the entropy would be 0.811 bits.

To better understand the mechanics of evolutionary algorithms, a num-
ber of studies have investigated time to convergence (TC). The number of
rounds until convergence has been used to analyze convergence properties
of genetic algorithms in studies about population sizing, network struc-
tures and theory of convergence (e.g. Mueller-Frank, 2013; Olfati-Saber
& Murray, 2004; Pelikan, Goldberg, & Cantú-Paz, 2000). This additional
measure is important because it allows us to predict more accurately the
moment at which one population will reach convergence under different
conditions. Additionally, it gives us more information about how relevant
agents’ choices were in the first rounds. Therefore, in some analyses we
will also present time to convergence (TC) or the number of rounds it takes
for the population to reach full convergence (defined as H = 0 bit) for the

29



Chapter 2

first time.
Researchers on cultural evolution have developed models that link de-

mography and cultural adaptiveness, using a variety of mathematical ap-
proaches (J. Henrich, 2004; Mesoudi, 2011b; Shennan & Wilkinson, 2001).
These models describe how a trait changes in frequency over time. We cal-
culated the adaptiveness (A) of the cultural system at each round (t) as the
frequency of high-quality variants (quality is measured by s, see above) at
that round,

A(t) =
nh(t)
N(t)

(2.4)

where nh(t) is the number of high quality variants at round t and N(t) is
the total set of variants produced in round t.

Two considerations apply to our study when we calculate average change
in high quality variants. First, we use relative fitness equations to account
for the adaptiveness of high quality variants, that is to say, we only consider
the frequency of cultural variants having s = 1. Second, we assume that
cultural variants are distributed, and therefore transmitted at each round,
according to our parametrized model, as defined in Equation 2.2. Thus, in
our case, the change in the adaptiveness (∆A) of high quality variants due
to selection follows immediately from our definition of adaptiveness. This
tractability assumption simplifies our equation considerably, because now
the change in adaptiveness equation reduces to:

∆A = A(t +1)−A(t) (2.5)

where change in adaptiveness (∆A) takes the difference between the adap-
tiveness in the subsequent round A(t+1) and the adaptiveness in the earlier
round A(t). Therefore, a change in adaptiveness above 0 (∆A > 0) indi-
cates that the fitness of high quality variants produced by agents increased
from one round to the next. When ∆A = 0, variant frequency was stable
from round to round.

2.3 Results

In this section we offer a summary of the results of two selection mod-
els (content bias and coordination bias) against a drift model, and how
they interact with each other (Section 2.3.1). Next, we show the effects
of memory limitations (Section 2.3.2). Figures for these analyses can be
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found at the end of each section. Additional analyses on conditional en-
tropy distributions can be found in Appendix A. In Section 2.3.3, we focus
on the effects of population connectivity dynamics on entropy, time to con-
vergence and change in adaptiveness of the cultural system from round to
round. We also pay special attention to the interplay between connectiv-
ity and two strong drivers of convergence: Content bias and population
size. We use linear and non-linear regressions to fit models to our data to
establish the relationships between variables (see Appendix A). However,
following White, Rassweiler, Samhouri, Stier, and White (2014), we use
frequentist statistical models only to calculate effect sizes in our multifac-
torial simulations, but we do not report p-values, which can be meaning-
less when applied to simulation model output. In the following analyses
we show mean values and standard deviations (Mean ± SD).

2.3.1 Cognitive biases

We ran simulations manipulating the level of content bias (β). When com-
pared with a neutral content bias model (β = 0), content bias increased
convergence (decreasing entropy). Mean entropy was greatest when β = 0
(2.451±0.448 bits) and lowest when β= 1 (1.020±1.136 bits). Similarly,
when keeping coordination bias at a neutral level level (coordination bias=
0.5), mean entropy was greatest when β = 0 (2.277±0.478 bits) and low-
est when β = 1 (1.015±1.137 bits).

When we considered coordination bias (c) alone (β= 0), egocentric bias
reduced convergence. Mean entropy was greatest when c = 0 (strongest
egocentric bias) (2.013±1.060 bits) and lowest when c = 0.5 (neutral co-
ordination) (1.768±0.956 bits). Similarly, when keeping a neutral content
bias (β = 0), mean entropy was greatest when coordination bias was fully
egocentric, 0 (2.906±0.171 bits) and lowest when coordination bias was
neutral, 0.5 (2.277±0.478 bits).

Both β and c had effects on convergence that differ from a drift model;
see Figure 2.3. The effect of c on entropy was different for each level of
β, revealing an interaction. Average entropy was highest when β = 0 and
c was also 0 (weakest content bias and strongest egocentric bias) (2.906±
0.171 bits) and lowest when β = 1 and c = 0.5 (1.015±1.136 bits). When
agents’ behavior was strongly content-biased, the rate of convergence in-
creased, masking the effect of c. Conversely, weaker content biases al-
lowed c to show its effect on convergence, which can be characterized by a
distinctive asymmetric distribution. The slowing effect of c on the rate of
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convergence becomes hidden as β rises.
Our main result here, which establishes a baseline for posterior analy-

ses, is that the population reaches more convergence when agents are more
sensitive to the intrinsic value of variants. It is obvious that a content bias,
as implemented in our model, dramatically affects the spread of variants in
a population and that this result is consistent with previous studies show-
ing the crucial effects of the individuals’ direct assessment of the value of
traits on adoption and transmission (Fay et al., 2010; J. Henrich & McEl-
reath, 2007; Stubbersfield, Tehrani, & Flynn, 2015; Vale et al., 2017); for a
review see R. L. Kendal et al. (2018). It is also interesting to note how the
effect of β is modulated by c, which plays an important role in maintaining
variation. There are two ways in which c acts against convergence:

(1) A strong egocentric bias preserves sign variation at the level of the pop-
ulation by inhibiting the adoption of others-produced variants (i.e. fully
egocentric agents keep producing their original egocentric variant in-
definitely, unless innovation occurs). This increases diversity globally
because each agent tends to over-produce their own individual variant,
reducing the probability of local convergence.

(2) A strong allocentric bias preserves sign variation at the level of the
population by inhibiting the production of variants stored as egocentric
(i.e. fully allocentric agents keep producing other-produced variants).
This increases diversity globally because each agent tends to over pro-
duce variants that are stored in their allocentric memories.

Here, it is important to note that an intermediate level of coordination bias
facilitates convergence by allowing agents to align more easily on common
shared representations. Too allocentric or egocentric scenarios make these
conventions unlikely. However, fully egocentric agents are more efficient
than allocentric agents at preserving variation. This is because the allocen-
tric memory of allocentric agents contains more shared variants with other
agents (there are seven other agents) than the egocentric memory of ego-
centric agents (there is only one ego). Consequently, the probability that
allocentric agents converge is higher than the probability that egocentric
agents converge, which explains the asymmetry of the coordination model
(Figure 2.3).

However, as β increases, it overrides the capacity of egocentric and al-
locentric biases to preserve diversity. This effect is important as it high-
lights both the importance of coordination when the adoption of variants
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is not based on competition for variant quality, and its irrelevance in sce-
narios that encourage variant adoption based on the intrinsic properties
of the variants. Our model, therefore, assigns different weights and roles
to each selection pressure, with β as the main driver of convergence—
encouraging selection owing to intrinsic variant quality, and c as a modu-
lating pressure—favouring variation when β is weaker. Given these base-
line dynamics, in the next sections we will analyse how model outcomes
are modulated by agents’ memory size and network connectivity dynam-
ics.
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Figure 2.3: Convergence (measured as Sahnnon entropy H) by round by each combination
of biases. Examples for content bias 0, 0.5 and 1. A drift model has a content bias of 0 and
a coordination bias of 0.5. X-axis represents rounds from 1 to 7, Y-axis represents entropy
in bits. In this and subsequent boxplots: middle line is median, 50% quantile; lower hinge,
25% quantile; upper hinge, 75% quantile; lower whisker is smallest observation greater
than or equal to lower hinge− 1 ∗ IQR; upper whisker is largest observation less than or
equal to upper hinge−1∗ IQR.
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2.3.2 Memory

Memory size increased entropy and therefore decreased convergence. Av-
erage entropy was greatest in the absence of memory limitations, when
agents kept in memory all the variants they had been exposed to (1.935±
0.920 bits). In contrast, when we limited the agents’ memory to the most
recent 5 rounds (1.920± 0.930 bits), 3 rounds (1.834± 0.990 bits) or 1
round (1.675±1.081 bits), entropy decreased noticeably.

This effect of memory on entropy was more noticeable for intermediate
values of content bias (β = 0.5). When content bias was strongest, mem-
ory effects tended to be masked by a floor effect at the lower end of the
entropy distribution in the last rounds. On the other hand, when content
bias was neutral (β = 0), memory effects were greater for neutral values
of coordination bias (c = 0.5), when compared with strongly egocentric or
allocentric bias (Figure 2.4).

In our analysis of how memory interacted with cognitive biases and
influenced convergence, our initial expectation was that, in general, mem-
ory limitations would reduce variation. These predictions were based on
studies showing that memory limitations can lead to regularisation in con-
current frequency learning tasks, which is possibly attributable to limited
working memory (Ferdinand et al., 2013; Hudson Kam & Chang, 2009;
Hudson Kam & Newport, 2005; Kareev, Lieberman, & Lev, 1997). Our
model is consistent with those findings, suggesting that a larger memory
size decreases convergence by delaying social learning and, in turn, the
spread of variants with high intrinsic value. Interestingly, however, our re-
sults show that a reduction in variation seems to be true in all scenarios ex-
cept when the population is fully allocentric in a null content-biased model.
This pattern of inversion suggests that allocentric agents with larger mem-
ory sizes might increase the probability of convergence on shared variants
in scenarios where variant adoption is not encouraged on the basis of in-
trinsic variant quality.

As with coordination bias, the effect of memory fades when β rises
to levels close to 1. This is because when the population is fully biased
towards the current value of a given variant, memory size became less
important as a selection mechanism for variants adoption. In contrast, as β

decreases, agents begin to increasingly activate coordination as a selection
mechanism, by paying more attention to whether variants are stored in
egocentric and allocentric memories. The effect of memory size, thus,
becomes crucial to determine which variant is chosen by each agent at each
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time step since it determines the size of the pool of variants that each agent
can track back in time in its memory from a given moment. Since variation
in convergent processes is in general greater in larger pools, a reduction in
memory size yields higher levels of convergence in our model, suggesting
an increased reliance in social learning, which helps variants with high
intrinsic value to propagate.

As we have shown in the previous section, extreme coordination biases
preserve variation by inhibiting the adoption of variants produced by others
or by the agent itself. This explains why convergence is lower when β = 0,
regardless of the level of memory implemented. However, the effect of
memory is more noticeable for intermediate values of β. This is simply
because in this intermediate scenario in which both β and c coexist, β is
high enough to substantially increase convergence (yielding a large range
of possible mid-convergence outcomes) but not strong enough to eliminate
the effect of memory.
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Figure 2.4: Convergence (measured as Shannon entropy H) by round by memory. Exam-
ples for content bias 0, 0.5 and 1 and for coordination bias 0, 0.5 and 1. X-axis represents
rounds from 1 to 7, Y-axis represents entropy in bits. In this and subsequent boxplots:
middle line is median, 50% quantile; lower hinge, 25% quantile; upper hinge, 75% quan-
tile; lower whisker is smallest observation greater than or equal to lower hinge−1∗ IQR;
upper whisker is largest observation less than or equal to upper hinge−1∗ IQR.
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2.3.3 Connectivity dynamic of the population

A key finding in this study is that population connectivity dynamic affected
the spread of variants. Convergence was delayed in populations that took
longer to reach full connectivity. But this socio-structural effect was only
manifested under certain conditions related to the cognition of individual
agents. When running simulations using a null content bias model, entropy
remained similar for all levels of connectivity (Figure 2.5). Interestingly,
however, increasing content bias in the agents revealed a substantial effect
of the connectivity dynamic on convergence. Mean entropy differences
between conditions were greatest at round 3: 0.805±0.730 bits under late
connectivity, 0.464±0.498 bits under mid connectivity, 0.133±0.286 bits
under early connectivity. Contrary to what happens with memory and co-
ordination bias, the modulating effect of the network connectivity dynamic
was stronger for high-moderate content bias. This is because the spread of
variants with high intrinsic value is facilitated by the assessment of vari-
ants value based on the nature of the information itself but restricted by
the conditions of accessibility to that same information imposed by the
network connectivity dynamic. Thus, connectivity dynamics are almost ir-
relevant in scenarios with null or very low content bias, while they yield
substantial effects on the pathways towards convergence for moderate and
high content bias, with late connectivity delaying convergence and main-
taining variation in the population for a longer time period. The effect of
connectivity dynamic was more pronounced in larger populations, where
we can observe that the delay due late connectivity dynamic lasts for a
larger number of rounds when we increase population size (Figure 2.5).
In content-biased populations, as population size increases, mean entropy
differences between conditions remained significantly high for longer time
periods (e.g. when β = 0.8, the relative difference between conditions re-
mained above 10% for more than 6 rounds in 16-agent micro-societies, and
for more than 11 rounds in 32-agent micro-societies).

Summarising, both content bias (by strengthening the selection of high
quality variants) and population size (by lengthening the time to conver-
gence) amplified the effect of the connectivity dynamic, and this in turn
resulted in a deep alteration of the evolutionary trajectory of convergence.
In these scenarios, late connectivity populations clearly show periods of
rapid convergence followed by periods of relatively slower convergence,
resembling punctuational evolutionary dynamics. In contrast, convergence
in early connectivity populations was not affected by these evolutionary
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bursts and tended to be shaped by a monotonic sigmoid curve.
Although the effects of network connectivity dynamics examined here

tend to vanish in the long run, it is important to characterize how fast a
group of agents reach the state of convergence. Time to convergence (TC)
is a widely used performance indicator in processes that require conver-
gence as an outcome. Differential temporal pathways towards convergence
between conditions might have dramatic effects on social learning scenar-
ios in which outcomes are

(a) either time-dependent or based on intermediate states (e.g. strategic or
argumentative scenarios in which the first consensus is the one that is
considered), or

(b) affected by outcome primacy (e.g. the jurors’ decision after a sequence
of argumentative speeches where earlier data have more impact on be-
havior than later data).

Although these scenarios can vary widely, we hypothesised that TC can
inform how connectivity dynamics may alter the outcome of such social
processes. We examined the effect of connectivity on the TC in those
simulations where full convergence (H = 0) was reached. Figure 2.6 de-
picts how fast micro-societies converged on a shared cultural convention in
those simulations. The time required for a population to reach full conver-
gence was longer in the late connectivity condition when compared to the
mid and early connectivity conditions. This shows that the effects of the
network connectivity dynamics examined here are strong enough to alter
convergence performance in scenarios in which a common consensus is
reached in the population. In other words, the outcome of social learning
processes that are strongly restricted by time is substantially affected by
these changes in the network connectivity dynamic. This is particularly
true for moderate-high levels of β. However, coordination bias and mem-
ory do not seem to interact with the connectivity dynamic when it comes
to explaining time to convergence (Appendix A, Figures A.12 and A.13).
This is because the effect of these cognitive parameters on convergence is
very limited compared to that of content bias, which is the main driver of
convergence.

Similarly, the adaptiveness (A) of the cultural system increased more
rapidly in populations with early connectivity. The change in adaptiveness
of high quality variants remained above 0 across rounds, indicating that the
proportion of high quality variants always increased from round to round.
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However, changes in adaptiveness followed different patterns in popula-
tions with early, mid and late connectivity (Figure 2.7). Populations with
late connectivity evolved in punctuated bursts of change followed by peri-
ods of slower change. For instance, in 8-agent micro-societies, at least
2 rapid bursts of change in the proportion of high quality variants can
be observed before the population became a fully connected network in
7 rounds. As above, these patterns can be better observed when we in-
crease population size. Bursts of rapid change are related to the evolu-
tionary moments in which the pockets of isolated agents created by the
late connectivity become connected. On the other hand, populations with
early connectivity dynamics followed a single-peak evolutionary dynamic.
This is due to the fact that high-quality variants could spread in the sys-
tem continuously (and without any additional restriction imposed by the
connectivity dynamic) until the population reached its equilibrium.
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Figure 2.5: Convergence (measured as Sahnnon entropy H) averaged over each level of
connectivity and content bias, for population size = 8 (A), population size = 16 (B) and
population size = 32 (C). The x-axis represents rounds, and the y-axis represents entropy
in bits. Drift models are shown in the top-left (β = 0). We ran 1000 simulations for each
parameter combination. Error bars indicate 95% CIs.
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population size = 8 (A), population size = 16 (B) and population size = 32 (C). We only
considered micro-societies that reached full convergence. Scenarios like this did not oc-
curred during the round-robin simulation when content bias was relatively low and pop-
ulation size was 16 or 32 agents. Late and mid connectivity delay time to convergence
when compared to early connectivity. This is particularly true for high-moderate levels of
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Figure 2.7: Change in adaptiveness ∆A of high quality variants by round, averaged over
each level of connectivity and content bias, for population size = 8 (A), population size =
16 (B) and population size = 32 (B). Results above 0 indicate that the proportion of high
quality variants increased relative to the previous round. When ∆A = 0, variant frequency
was stable from round to round.
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2.4 Model comparison against experimental data

We collect simulated data that includes the parameter combination of the
best fit-models for the 64 data structures coded by Tamariz et al. (2014).
The coded data structures correspond to the experimental data collected by
Fay et al. (2010) from four distinct 8-person communities and 16 concepts
used in a Pictionary-like game, yielding a total of 64 data structures. A
verification of the model and its explanatory power is provided in Tamariz
et al. (2014). The data coded in Tamariz et al. (2014) for each generation
is equivalent to the data produced by the simulator just after the interaction
of the agents in each round, that is to say, once the agents have in mem-
ory the variants produced by their partners. This can be easily verified by
observing the relatively high levels of convergence (2 < entropy < 3) in
the first generation of the graphical examples of data structures provided
in Tamariz et al. (2014). For this reason, the first generation of Tamariz et
al.’s data is equivalent to the first round of ours, and so on for subsequent
generations. The initial state of our data (r = 0) (where all variants are
unique) is therefore excluded from the model comparison. Absolute en-
tropy was calculated for both datasets (simulated and experimental) using
the information-theoretic notion of entropy (H) (Shannon, 1948). For a
detailed explanation of the coding process see Tamariz et al. (2014).1

We run 1000 simulations under three different conditions: early (E),
mid (M) and late (L) connectivity, and test them against the experimental
data coded (T ). Our model with early connectivity exactly mirrors the pair
composition and connectivity dynamic used in Fay et al. (2010). Thus, we
predict to find the best fit model for the 64 data structures in the early con-
nectivity. According with Tamariz et al. (2014), most data structures (95%)
were best accounted for without β = 0, and using a wide combination of
content-biased models. Thus, using this model fit as a reference for our
analysis, we also predict that a distribution of entropy yielded by models
including a range of content bias parameters will fit the experimental data
set better than models using extreme configurations of biases. Our simu-
lated data structure includes 1452 different parameter value combinations
in each round. In this analysis we choose to evaluate the predictive power
of our model applied to Fay et al. (2010) by testing, against the experi-
mental data, simulations using (A) the best-fit parameter combinations in
Tamariz et al. (2014) (without β = 0), (B) all parameter combinations, (C)

1For reproducibility reasons, the experimental entropy data set used for the present analysis can be found
at: https://github.com/jsegoviamartin/network connectivity dynamics model.
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a content biased model of β = 1 and, (D) drift model. As a benchmark for
illustration, a graphical representation of these model tests against the ex-
perimental data (T ) can be found in Figure 2.7. Table 2.2 on the following
page summarizes model abbreviations.

EA model was associated with better model fit, in particular from round
2 onwards, when the three different connectivity dynamics begin to di-
verge. Mean distance between EA simulated data and experimental data
was M = 0.056,SD = 0.14. Figures 2.8 and 2.9 show that (i) our model
reproduces the experimental patterns of convergence, and (ii) the version
of the model with parameter combination EA that most closely matches
the assumptions of the experiment is the best fit model of the versions ex-
amined.

These results suggest that EA model qualitatively reproduces the em-
pirical data-pattern for the acceptable range of accuracy under the set of
experimental observations. As predicted, the model with early connectiv-
ity, which mirrors the connectivity dynamic and pair composition used in
Fay et al. (2010), outperforms its alternatives. Additionally, our results are
consistent with Tamariz et al. (2014), who found that 95% of data struc-
tures were best accounted for within a range of content biases. We show
that as long as we add β = 0 to the models (see models B in Figure 2.8)
they lose predictive power, because they underestimate the decrease of en-
tropy in the experiment. Similarly, but due to an overestimation of entropy
decline, models with only β = 1 (models C in Figure 2.8) are far from the
reality shown by Fay et al. (2010). Thus, we think that there is substantial
evidence to conclude that content bias (in a wide range of levels) was an
important driver of the spread of the culturally transmitted variants in the
experiment. Our results are also consistent with a variety of studies about
the role of content biases. In particular, two studies (Fay & Ellison, 2013;
Fay et al., 2008) have used the same corpus of data collected by Fay et
al. (2010) to examine the transmission of the communication systems that
we model in this chapter. These studies found functional adaptations of
the selected variants that are exactly the same that would be predicted if a
critical level of content bias were operating on the communication system
(Tamariz et al., 2014). We know that content biases have a strong impact
on the adoption of variants. Crucially, for the purpose of the present study,
connectivity dynamics, amplified by content biases, may have important
consequences for the evolution of cultural variants in populations. Failing
to take into account the role of connectivity dynamics in experiments and
in real life may preclude a full understanding of the data observed.
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over rounds. The simulated early connectivity (EA) model was associated with better
model fit, in particular from round 2 onwards, when the three different connectivity dy-
namics begin to diverge. Models with β = 0 (B) lose predictive power when compared to
A, because they underestimate the decrease of entropy in the experimental data. Models
with only β = 1 (C) underestimate the decrease of entropy. Lines indicate mean entropy
and ribbons indicate 95% CIs.
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2.5 Discussion

Using a computational approach, the present study extends formal and ex-
perimental findings about learning in social networks by simulating pair-
wise interactive micro-societies based on round-robin tournaments, where
individual cognitive biases, memory constraints and population connec-
tivity dynamics are systematically manipulated. Our results extend previ-
ous studies on social learning showing that content biases are important
drivers of convergence. We also show that connectivity dynamics affect
the time-course of the spread of variants in moderate-high content biased
populations: When populations take longer to reach full connectivity, con-
vergence onto a single cultural variant is slowed. Content bias accelerates
convergence and amplifies the effects of connectivity dynamics. Larger
memory size and coordination bias, especially egocentric bias, are also
shown to slow down convergence, especially in moderate-low content bi-
ased populations. Finally, connectivity dynamics are shown to affect the
frequency of high quality variants (adaptiveness), with late connectivity
populations showing bursts of rapid change in adaptiveness followed by
periods of relatively slower change, and early connectivity populations fol-
lowing a single-peak evolutionary dynamic.

While content bias is the main predictor of convergence, in some cir-
cumstances its effect can be modulated by the population connectivity dy-
namic (Figure 2.5 and Figure 2.6). This means that adding connectivity
dynamics may improve the predictive power of models based on cognitive
biases and social networks, especially in cases of strong content biases.
Population convergence on shared cultural conventions is driven by the
agents’ content bias, and the time required to reach a certain degree of con-
vergence (or time to convergence) can be deeply affected by the specific
order of interactions between agents, that is, by the population connectiv-
ity dynamic: In general, the less connectivity the more time is needed to
converge. Furthermore, the effects of these different dynamics in the order
of interactions of the agents can be observed even if we maintain the same
network topology, in our case a fully connected network.

It is important to note that even though previous work in the field has
frequently used fully connected networks (Fay et al., 2010; Komarova,
Niyogi, & Nowak, 2001; Tamariz et al., 2014), this type of network topol-
ogy is unrealistic because it restricts the interaction between agents to a
particular pattern of interconnectedness, reducing the complexity of the
system. Therefore, population connectivity dynamics might play a differ-
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ent role in other networks, such as scale-free networks (Barabási, Albert, &
Jeong, 1999; Barabâsi et al., 2002). Furthermore, it is well established that
people do not contribute equally to group discussions, leading to different
degrees of network connectivity (Fay, Garrod, & Carletta, 2000; Stasser &
Taylor, 1991). Both factors might potentially motivate future extensions of
our current investigation.

Our results also identify a general tendency for adaptiveness to change
over time and for cultural variants to converge on high quality variants, in
such a way that it is possible to identify causal links between connectivity
dynamics and evolutionary trajectories. In this way, in late connectivity dy-
namics several punctuational bursts occur in the course of a complete cycle
of interactions between agents. In contrast, early connectivity dynamics
follow a single-peak evolutionary trajectory. These computational results
extend a number of studies that, under a variety of assumptions, have pro-
posed punctuational or rapid bursts of change as a feature of cultural and
language evolution (Atkinson, Meade, Venditti, Greenhill, & Pagel, 2008;
Dixon & Robert Malcolm Ward, 1997; Fitch, 2008; Janda & Joseph, 2003;
Sabherwal, Hirschheim, & Goles, 2001). Punctuational changes in our
model may provide insight into processes underlying the human ability to
adapt quickly to cultural variants introduced by new agents (e.g. due to
migration), showing that these changes can be induced merely by manipu-
lating the order of interactions in a population.

In high content-biased populations, the effect of the connectivity dy-
namic is amplified (Figure 2.5 and Figure 2.6), while coordination bias
and memory size effects are masked (Figure 2.3 and Figure 2.4). Inter-
estingly, in low content-biased populations the effect of these parameters
became visible: when compared with a drift model, egocentric and allocen-
tric biases both reduce convergence (Figure 2.3). This is because cultural
diversity can more easily be maintained over time in the presence of be-
haviours that maximise the occurrence of either self-produced signals—in
the case of egocentric agents—or partner-produced signals—in the case of
allocentric agents. The effect of egocentric bias is stronger than that of
allocentric bias. This is due to the fact that fully egocentric agents stick
to their own variant, which is always the same in the egocentric mem-
ory, unless there is an innovation. At the population level, this means that
each agent has a different variant, returning maximum entropy—which
can only decrease through mutation. Fully allocentric agents, in contrast,
always adopt variants produced by others. High variation is thus main-
tained, but to a lesser extent than in the egocentric case because allocentric
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agents choose variants from among all the variants stored in their allocen-
tric memories—variants produced by current or previous partners. This
sometimes leads to more than two agents converging on the adoption of a
variant, and therefore reducing entropy.

Memory also shows its effect more markedly when content bias is low
or intermediate (Figure 2.4). The longer the memory span, the more vari-
ation is maintained, as variants from earlier rounds, that might not appear
at one round, are kept in memory and may reappear. Our study is con-
sistent with previous literature showing that memory limitations lead to
a reduction in variation (Ferdinand et al., 2013; Tamariz & Kirby, 2015).
Nevertheless, we show that this reduction could be masked in high content-
biased populations, when agents have a strong preference for signals with
high intrinsic value.

Our results also agree with recent studies showing that population struc-
ture and population interaction can be strong predictors of cultural evolu-
tion (Creanza et al., 2017; Derex & Boyd, 2016; Derex et al., 2018). In ad-
dition, our model shows that cognitive biases and population connectivity
dynamics may interact in important ways. When content-biased popula-
tions evolve in high isolation (late connectivity dynamic), convergence is
slower than when they evolve in moderate (mid connectivity dynamic) or
low isolation (early connectivity dynamic). This is because more isolated
subpopulations cannot benefit from wider cultural exchange during the first
rounds, those in which agents are acquiring the basis of their culture and
storing it into their respective memories. This suggests that population
structure and, in particular, the connectivity dynamics of the population,
can have important effects on cultural convergence and should be taken
into account when it comes to research on the interactions between cogni-
tive biases, network structures and cultural evolution.

2.6 Implications

Our results are relevant to social learning scenarios governed by turn-based
interventions in which convergence on shared conventions is crucial (e.g.
Bloom et al., 1987; Fay et al., 2008, 2010; Manzo, 1996; Shteingart et al.,
2013; Stone, 1969). Our computational model can be used to fit real data
obtained from turn-based cultural processes and might be helpful to im-
prove the organisation of the turn taking by mitigating undesirable effects
linked with one particular connectivity.

In light of evolutionary theory applied to cultural evolution (Atkinson
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et al., 2008; Fitch, 2008), our results also suggest that, in some scenarios,
bursts of change in the cultural system may be partly explained by the or-
der in which individuals interact over time. This demonstrates, for the first
time, a direct connection between convergence, adaptiveness and popula-
tion connectivity dynamics for a fixed range of combinations of individual
cognitive biases.

Our findings are consistent with scientific models and with theoretical
and experimental studies of human communication showing that conver-
gence is driven by content biases (Gong et al., 2008; Tamariz et al., 2014),
and also agree with studies on rational learning in social networks show-
ing that the level of convergence is partially determined by the degree of
connectivity in the social network (Barkoczi & Galesic, 2016; Centola &
Baronchelli, 2015; Centola et al., 2007; Lazer & Friedman, 2007; Mueller-
Frank, 2013; Olfati-Saber & Murray, 2004). The specific manipulation of
the network connectivity dynamic that we have studied here has not been
taken into account in previous experimental work and it would be espe-
cially relevant to those researchers that use dynamic interactive microso-
cieties of agents switching partners over time (e.g. communicative games,
cooperative games or tournaments; Baum et al., 2004; Byun et al., 2018;
Caldwell & Smith, 2012; Fay et al., 2008, 2010; Mesoudi & Whiten, 2008;
Raviv et al., 2019b; Tamariz et al., 2014). In most cases, experimental de-
signs of microsocieties of interacting actors only include one pair compo-
sition out of all the possible combinations of pair shuffling, and therefore,
outcomes are related with only one specific population connectivity dy-
namic, potentially affecting the accuracy of the generalisations made by
these studies. Our results suggest that this type of research would bene-
fit from experimental designs that control the probability of occurrence of
each possible connectivity dynamic.

Our agent-based model is a simplification of a specific problem. Each
agent is characterized by a combination of biases towards the quality and
origin of a set of variants. The network topology is complete and organised
in dyads. Thus, following Rubinstein (2006), in the dilemma of responding
to reality, we regard our model as a very limited set of assumptions which
is inevitably inapplicable to many contexts.

In this chapter we have presented an innovative small-scale simulation
project and a comparison of the simulations against experimental data col-
lected from existing experiments, which allowed us to run a high resolution
test of the specific parameters examined within a small but highly con-
trolled dataset. However, given that previous experiments only considered
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one specific connectivity dynamic (i.e. early connectivity), our attempt to
provide a comprehensive evaluation of the predictive power of our model
is still missing a complete dataset with at least two connectivity dynamics
to compare with. In Chapter 3, with the aim of verifying the assumptions
and conclusions of the present study, we will conduct an experiment in the
lab to collect data from early and late connectivity dynamics.

To conclude the present chapter, properties of populations can be im-
portant predictors of cultural evolution, and our model has shown that con-
vergence can be altered by the connectivity dynamic. This may help im-
prove the experimental design of ongoing research in the field of cultural
evolution and better explain the interactions between network topologies,
cognitive biases and cultural transmission.
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Testing early and late connectivity
dynamics in the lab
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Abstract

How does the order of individuals’ interactions affect the emergence of shared con-
ventions at the population level? The answer to this question is relevant for a number
of fields, such as cultural evolution, linguistics, cognitive science or behavioral eco-
nomics. In this chapter we investigate experimentally how two different network
connectivity dynamics affect the evolution of the diversity of cultural variants of the
communication system. We report an experiment in the lab in which participants en-
gage in a Pictionary-like graphical communication task as members of a 4-participant
micro-society, interacting in pairs with the other three members of the community
across 4 rounds. The experiment has two main goals: First, to evaluate the effect
of two network connectivity dynamics (early and late) on the evolution of the con-
vergence of micro-societies on shared communicative conventions under controlled
conditions. Second, to compare the predictions of the agent-based model described
in the previous chapter against experimental data, and calibrate the model to find the
best-fitting parameter setting. Our experimental data shows that, as predicted by the
model, an early connectivity dynamic increases convergence and a late connectivity
dynamic slows down convergence. We found significant differences between condi-
tions in round 3 and round 4. We estimate the best-fit parameter combination for the
96 data structures coded. Medium to high content bias, neutral to egocentric coordi-
nation bias and memory size of 3 rounds was associated with a better model fit. In
the light of the model evaluation and the experiment outcome, we discuss the impact
of our predictions on social influence research and possible factors that might help to
improve model precision.

3.1 Introduction

Cultural conventions shape most of the aspects of our social life. The
emergence of these patterns of collective behaviour has been investigated
in different fields (Christiansen & Kirby, 2003; Garrod & Doherty, 1994;
Lass, 1997; Lewis, 2008; Young, 1993). However, more research is still
needed to clarify the extent to which subtle variations in the patterns of
interaction between individuals combined with biased learning give rise
to the emergence of these social conventions (Barkoczi & Galesic, 2016;
Boyd & Richerson, 1988; Derex & Boyd, 2016; Mason & Watts, 2012).
For example, simple changes in the network structure of human commu-
nities can drive the dynamics of norm formation (Centola & Baronchelli,
2015), health behaviour (Centola, 2010), group estimates (Becker et al.,
2017), beliefs and polarisation (Turner & Smaldino, 2018). Using graph-
ical communication tasks, researchers have also studied the emergence of
communicative conventions in dyadic and small communities (Branigan,
Pickering, McLean, & Cleland, 2007; Fay et al., 2010; Galantucci, 2005;
Garrod & Anderson, 1987; Garrod & Doherty, 1994; Selten & Warglien,
2007). These prior experimental studies have nonetheless been limited to
studying a limited number of pair compositions, which made difficult to
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evaluate the extent to which a simple change in the order in which connec-
tions between individuals unfold over time (so-called network connectivity
dynamic) can lead to different rates and dynamics of convergence. As a
result, the quantification of the state of specific features of individual cog-
nition (e.g. cognitive biases and memory) and how they are affected by
the network connectivity dynamic over time remains restricted to a lim-
ited number of experimental observations (Tamariz, Ellison, Barr, & Fay,
2014).

In this chapter, we investigate how a simple manipulation of the order
in which connections between individuals unfold over time (network con-
nectivity dynamic) affect the cultural diversity of graphical variants in a
communication system. In particular, how two different network connec-
tivity dynamics (early and late) affect the convergence of micro-societies
on shared communicative conventions. First, we review the experimental
and computational work analysing cultural and communicative accounts
of convergence and network structures. Tereafter, we describe a graphical
experimental design that permits a direct test of our theoretical hypothesis.
Next, we use an agent-based model (ABM) that mirrors the logic behind
the experiment to simulate convergence over time. Finally, we report the
results of the experiment and calibrate our model to find the best-fit param-
eter combination for the data structures coded.

3.1.1 Experiments

Theories of collective behavior suggest that diversity can be affected by
social influence (Page, 2008). For example, experiments in the lab have
shown that convergence on shared interpretations increased when individ-
uals observed other’s beliefs, which resulted in a fall in diversity (Lorenz,
Rauhut, Schweitzer, & Helbing, 2011). Diversity of shared conventions
can also be affected by the structure of the communication network. For
example, an experiment where participants were asked to estimate numer-
ical quantities in a number of visual stimuli (e.g. caloric content on a plate
of food, or number of candies in a container) showed that social influ-
ence in decentralised networks (i.e. where all individuals have the same
number of ties) reduced diversity of estimates and improved individual
accuracy when compared to centralised networks (i.e. where some indi-
viduals have more ties) (Becker et al., 2017). Interestingly, the emergence
of spontaneous globally shared social conventions from local interactions
can be caused by simple changes in the network connectivity. Centola
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and Baronchelli (2015) show that an increase in network connectivity can
accelerate convergence on shared conventions. Crucially, these global con-
ventions can emerge even though participants do not have access to global
information.

When it comes to explaining the evolution of communicative conven-
tions, both iterated learning and collaborative accounts play important and
distinguishable roles (Fay et al., 2010). Iterated learning accounts pre-
dict that prior biases combined with vertical and unidirectional transmis-
sion (i.e. parent to offspring) lead to the emergence of regularities in the
communicative system that reflect the individuals’ learning biases. This
effect has been shown in a variety of experiments and linguistic levels
(e.g. Kalish, Griffiths, & Lewandowsky, 2007; Kirby, Cornish, & Smith,
2008; Kirby, Tamariz, Cornish, & Smith, 2015). By contrast, collaborative
accounts assume that communicative conventions are an emergent prop-
erty of horizontal and bidirectional transmission (i.e. the agents’ local and
vertical interactions). This interactive alignment has also been examined
in a variety of experiments and linguistic levels (e.g. Branigan, Pickering,
McLean, & Cleland, 2007; Garrod & Doherty, 1994; Raviv, Meyer, & Lev-
Ari, 2019a; Steels, 2006).

Fay et al. (2010) showed in an experiment that different micro-societies
converged on different communicative conventions. However, they only
used one possible network connectivity dynamic in their experimental com-
munities—one possible order in which connections between individuals
unfold over time. Since a different network connectivity dynamic can give
rise to pockets of isolated pairs that do not share information with the rest
of the community during a number of rounds, we hypothesised in a previ-
ous study that an increase in the network connectivity dynamic might ac-
celerate the rate of convergence on communicative conventions, especially
under moderate and high content biased populations (see Chapter 2). Fur-
thermore, by contrasting the specific network connectivity conditions that
we propose, we can evaluate whether convergence exceeds the maximum
convergence that horizontal alignment alone can explain.

3.1.2 Formal and computational models

The evolution of cultural diversity has been typically studied through for-
mal and computer modelling across different disciplinary traditions. In
the 1950’s and the 1960’s researchers developed formal models of social
influence—the agents’ tendency to adopt cultural variants from influential

56



Chapter 3

agents—that showed that there is a tendency towards convergence on a
shared cultural convention in fully connected networks (e.g. French, 1956;
Harary, 1959). Later on, a number of models that took into account ge-
ographic isolation (Schelling, 1978), polarisation (Latané, Nowak, & Liu,
1994; Nowak, Szamrej, & Latané, 1990) and the agents’ capacity to re-
tain original cultural variants (e.g. Friedkin & Johnsen, 1990; Marsden &
Friedkin, 1993), showed that full convergence is not always the expected
outcome. In 1997, Axelrod proposed an innovative agent-based model
that included homophily—the agents’ tendency to interact more frequently
with similar agents. Axelrod’s results showed that the combination of in-
fluence and homophily produces changes in the network connectivity that
may favour local convergence and in turn a global diverse equilibrium.
These models use a broad definition of culture where cultural variants can
be thought of as a proxy for opinions, beliefs, artistic tastes (music, paint-
ing) or communicative variants.

In these early models, however, the network of social interactions re-
mained fixed, and the agents’ cognitive evolution was limited to a num-
ber of evolving traits. More recently, researchers on social influence have
addressed many of these issues by modelling new interactions between
the agents’ imitation rules and social dynamic networks: For example, by
analysing network efficiency and conformity biases (Barkoczi & Galesic,
2016), network connectivity and group performance (Lazer & Friedman,
2007) and the co-evolution of social networks and the agents’ ties in the
presence of cultural drift (Centola et al., 2007). These models have suc-
cessfully shown the effect of a number of interactions between specific
features of the network topology and the agent’s cognition.

A different and more specific tradition of agent-based computer simula-
tions has been used to investigate the evolution of convergence of variants
within a communication system (Gong et al., 2012; Tamariz et al., 2014).
These models use a combination of previously identified selective pres-
sures to break down communicative influence into several parameters, such
as content bias, coordination bias, prestige bias or variant value. Broadly
speaking, these models show that in order to understand the spread of vari-
ants in a micro-society, it is necessary to take into account the interaction
between different, sometimes antagonist, cognitive biases and the social
conditions underpinning their relative importance for explaining diversity.
For example, if variants show heterogeneity of content values, transmis-
sion error can delay diffusion and help preserve cultural diversity (Gong et
al., 2012). In another study, a model that was used to explain experimen-
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tal data showed that content bias consistently increased convergence, and
interacted with coordination (Tamariz et al., 2014).

In the previous chapter, we combined these two ABM’s traditions to
construct a micro-scale model of dissemination of culture that took into
account network connectivity dynamics, content and coordination biases,
memory size and innovation rates. Our goal was to construct a compre-
hensive ABM to simulate convergence over time for all the possible value-
parameter combinations included in the model. Using this ABM we ex-
amined the effect of the order in which connections between individuals
unfold over time (network connectivity dynamic), and how it interacts with
the rest of the individual parameters. Three different network connectivity
dynamics (early, mid, late) were examined according to how many agents
could potentially share the same variant system at a given time. We showed
that connectivity dynamics can affect the time-course of variant spread,
with lower connectivity slowing down convergence of the population onto
a single cultural variant. Furthermore, we also showed that, compared to
a neutral evolutionary model, content bias accelerated convergence and
amplified the effect of the connectivity dynamic, whilst larger memory
size and coordination bias, especially egocentric bias, slowed down con-
vergence.

Although we contrasted our model against the experimental data col-
lected by Fay et al. (2010), these data corresponded only to one of the
modelled network connectivity dynamics (i.e. early connectivity). Thus,
little has been said so far about the real effect of the connectivity dynamic
on the evolution of cultural diversity, and on how valid our model predic-
tions are to fit an experimental case in which two different conditions of
connectivity are examined. Our model predicts that, when compared to an
early connectivity, late connectivity delays global convergence in small-
scale micro-societies

3.1.3 Purpose of the study

In the present chapter we report an experiment in which micro-societies
of 4 participants play a Pictionary-like game in pairs. Participants were
allocated to one of two conditions: early connectivity dynamic and late
connectivity dynamic.

We also constructed a version of our ABM mirroring the network con-
nectivity dynamic of the experiment, and used it to find the parameter com-
bination associated with better model fit.
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The present chapter has two main goals: First, to test directly, under
controlled experimental conditions, the hypothesis that a late connectivity
dynamic delays the convergence of participants on shared variants when
compared to an early connectivity dynamic. We will also evaluate the rate
of convergence on shared communicative conventions before agents have
access to complete information in the late connectivity condition. This will
tell us to what an extent convergence on shared conventions occurs without
horizontal transmission. Second, to test the robustness of the predictions
of our model by running simulations that closely mirror the experiment
and finding the best-fit parameter combination. In this manner, we propose
the most likely combination of parameters that might have been operating
during the experiment.

3.2 Experiment

3.2.1 Task and procedure

The experimental task is based on the graphical communication task devel-
oped by Fay et al. (2010). In our task, participants play a Pictionary-like
game in pairs. In each pair, one participant acted as the director and its
partner as the matcher. In each trial, the director’s task was to communi-
cate to its partner a specific concept from an ordered list of 20 concepts
(16 target items and 4 distracters). The matcher’s task was to identify the
referent of each drawing from an unordered list containing the same 20
concepts. We used the same concepts as Fay et al. (2010). The complete
list of concepts can be found in Table 3.1.

Places People Entertainment Objects Abstract
Art Gallery Arnold Schwarzenegger Cartoon Computer Monitor Homesick
Parliament Brad Pitt Drama Microwave Loud
Museum Hugh Grant Sci-Fi Refrigerator Poverty
Theatre Russell Crowe Soap Opera Television Sadness

Table 3.1: Set of concepts used in the experiment.

Participants played 4 rounds. In each round, they played the game 6
times. Each game consisted of 20 trials—the same number of trials as
concepts. Throughout the 20 trials, partners alternated roles every 10 con-
cepts. Each participant acted as the director on half of the trials and as
the matcher on the other half. Participants used the same concepts on each
game. The order of the list of concepts was randomised on each game.
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The task was conducted on computer terminals using the open-source
virtual whiteboard tool GUESS-A-SKETCH (Lonely Star Software, 2017).
Each participant sat at a computer terminal in an independent booth, so
they could not identify their partners. Drawing input was made via a stan-
dard mouse. Concepts to be drawn by the director and to be guessed by the
matcher were presented on separate sheets. Following Fay et al. (2010),
director drawing was restricted to black ink, while the matchers were al-
lowed to ask for further information by circling a part of the drawer’s il-
lustration using green ink. Participants were also allowed to erase parts of
their drawings during the course of each trial by using an erase button. All
the drawing activity was displayed simultaneously on the shared white-
boards. When the matchers considered they had identified the director’s
intended referent, they typed ‘Got it’ in an integrated board chat and made
their selection. At this moment, directors initiated the next trial by clicking
a clear board button and typing the number of the trial to be played. The
integrated chat was only used by the director to communicate trial number
and by the matcher to communicate ‘Got it’. Director and matcher roles
were switched each 10 concepts. During the experiment, participants re-
ceived no feedback on their communication success. Whiteboard activity
was recorded using HYPERCAM 4.0 by Hyperionics and Solveig Multi-
media.

3.2.2 Participants and design

Forty undergraduate students participated in exchange for payment. Partic-
ipants were recruited via MYCAREERHUB at the University of Edinburgh.
Ethical approval was granted by the Research Ethics Committee of the
University of Edinburgh.

Participants were randomly allocated to one of two conditions:

(i) early connectivity dynamic; and

(ii) late connectivity dynamic.

Participants were organized into groups of 4 participants with testing last-
ing approximately 2 h and 30 min.

Participants played six consecutive games with their partner in each
round. Then, participants switched partners and played a further six games
with the new partner. In the two conditions, each participant interacted
once with two other members of the micro-society and twice with their first
partner. In the early connectivity dynamic, each participant re-encounters
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its first partner in the last round, while in the late connectivity dynamic,
they re-encounter their first partner in the second round. The pair compo-
sition in each condition can be found in Table 3.2.

Round Pair composition Pair composition
(early connectivity) (late connectivity)

1 1&2 3&4 1&2 3&4
2 1&4 2&3 1&2 3&4
3 1&3 2&4 1&4 2&3
4 1&2 3&4 1&3 2&4

Table 3.2: Pair composition in each laboratory condition. Within each ‘Round’ partici-
pants played six consecutive games of the communicative graphical task with their part-
ner.

In the early connectivity dynamic, participants could potentially share
the same communicative variant system by round 3, while in the late con-
nectivity dynamic participants could potentially share the same variant
system one round later. For example, in the early connectivity condition,
if participant 2 adopts the variant system of participant 1 during the first
round, and participant 3 is influenced by participant 2 during round 2, then
participant 3 and participant 1 will share the same variant system at some
moment during round 2, despite never having interacted in the past. If we
also assume that participant 4 adopts the variant system of participant 1 in
round 2, then everyone could share the same variant system by round 3.
Thus, in the early connectivity dynamic, rounds 1–2 constitute prealign-
ment partner interactions, whereas rounds 3–4 are postalignment partner
interactions. In contrast, in the late connectivity dynamic, rounds 1–3 are
prealignment partner interactions and the remaining one (round 4) the only
postalignment partner interaction. We contrasted variant diversity in the
early connectivity condition against the late connectivity condition.

3.2.3 Video coding

Among the 10 experimental micro-societies, 2 micro-societies experienced
connection problems during the task, and in 2 other groups one participant
did not consistently follow the order of the concepts to be drawn. These
groups were excluded by necessity, leaving us with 6 distinct 4-person
groups. The data to be evaluated are structured by micro-society—6 in
total: 3 groups in the early connectivity condition and 3 groups in the late
connectivity condition—and by concept—16 target concepts, totalling 96
data structures. Each data structure includes 16 drawings, one drawing per
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participant in each of the four rounds.1

Because participants used a variety of distinct variants to communicate
each meaning, and because different micro-societies used different variants
to communicate the same meaning, a unique coding scheme was developed
for each data structure. Firstly, it was established the initial state of the
variant system, labelling the variants produced in round 1 as unique. Sec-
ondly, the spread of each variant type was tracked across the subsequent
generations. The coding scheme was specified as follows:

1. Only the relevant traits of each variant (the ones that remained in the
drawing across rounds) were traced back.

2. New relevant traits and ambiguities were treated as innovations.

3. If a participant combined or drew two relevant traits in the same draw-
ing, we traced back those traits and labelled the drawing as the variant
where the most preserved trait appeared.

4. Analogies (traits that look alike but do not have a common evolutionary
origin within the experiment) were labeled as the variant where the trait
first appeared.

5. For each round, the first drawing of each participant was considered.

The 96 data structures were coded by myself. A second coder (MT) inde-
pendently coded 16.6% (one micro-society) of the data structures in order
to assess inter-coder reliability as quantified by Cohen’s kappa coefficient
(Cohen, 1960). Inter-coder reliability was κ = 0.883, which corresponds
to good reliability as reported by Carletta (1996, p. 252). An illustrative
data structure can be found in Figure 3.1.

1Coded data and code to run the analyses described in this paper are available at:
https://github.com/jsegoviamartin/network connectivity dynamics model.
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Figure 3.1: Cultural evolution of the signs used to represent CARTOON in a 4-person
micro-society. Columns correspond to participants (P1–P4) and rows to rounds (R1–R4).
Capital letters (A, B) indicate the different participant pairings in a given generation,
and colours indicate the different variant types. When participants played with their first
partner (round R1), they used a variety of different signs: At the beginning of round R1,
participants tended to use a unique variant. As they interacted with the other members
of their micro-society, some traits of the red variant (‘animal funny face with big ears
and pointed nose’) propagates until everyone use a refined version of this sign (either
‘big ears’, ‘pointed nose’ or both). An ambiguity arose when tracking the evolutionary
origin of the drawing produced by participant 2 in round 4, and it was classified as a new
variant (innovation). Note that participants tend to retain their initial variant until they
encounter the red variant, and sometimes even after. According to (Tamariz et al., 2014)
this suggests a strong content bias for the red variant such that it was more likely to be
adopted by participants compared with its competitors in this particular micro-society.
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3.3 Quantifying cultural diversity in the communication
system

We are interested in the composition of the pool of variant tokens produced
by the participants at the beginning of each round, and how it changes over
rounds. We examine the level of convergence in this pool. As in Chapter 2,
we quantify convergence using the information-theoretic notion of entropy
(H) (Shannon, 1948). However, we normalise entropy by log2 n to obtain
Hn(V ) ∈ [0,1]:

Hn(V ) =−∑
viεV

p(vi) log2 p(vi)

log2 n
(3.1)

where V corresponds to the set of variants, p(vi) is the probability of the
ith variant in that set, and n is the number of variants. Entropy is a well-
established alpha diversity index that has been used to measure cultural
diversity. High entropy corresponds to low convergence. In the following
analyses we show mean values and standard deviations (Mean±SD).

3.4 Mirror model predictions

We constructed a version of the model described in Chapter 2 mirroring the
network structure of the experiment. We simulated 4-agent micro-societies
with the same network connectivity dynamics as those described in section
Section 3.2.2: Early connectivity and late connectivity. For our measure-
ments, we averaged across 1000 runs for each condition.

The best-fitting parameter values for the data collected by Fay et al.
(2010) and coded by Tamariz et al. (2014) included a range of content bi-
ases (0.1 to 1) (Segovia-Martı́n et al., 2019). Here, we ran the model with
the same parameter combination to predict the evolution of the cultural di-
versity of the communication system in 4-person micro-societies. Model
prediction using this parameter combination can be found in Figure 3.2. It
is possible that this prediction does not accurately describe the observed
convergence of the experimental micro-societies on shared communicative
conventions, but it might provide a general forecast under a reasonable set
of assumptions of connectivity and content bias. Simulated late connectiv-
ity decreased convergence when compared to simulated early connectivity.
Our predictions show a maximum difference in entropy between condi-
tions at the beginning of round 3—mean normalised entropy 0.35 in the
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simulated early connectivity condition and 0.65 in the simulated late con-
nectivity condition. This difference between conditions is predicted to be
reduced in round 4—mean normalized entropy 0.25 in the simulated early
connectivity condition and 0.34 in the simulated late connectivity condi-
tion. Since the first structural difference between both connectivity dy-
namic conditions occurs in round 2 (see Table 3.2 on page 61), the model
does not predict differences in entropy levels either at the beginning of
round 1 or in the first production of variants of round 2.
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Figure 3.2: Predicted entropy (Hn) averaged over each level of connectivity and
round. Parameter combination used: Content bias range = [0.1,1],coordination bias =
0.5,memory size = 3, innovation rate = 0.02.

3.5 Experimental results

The cultural diversity levels of the communication system at each round
show that micro-societies in the experimental late connectivity condition
indeed decreased convergence, and micro-societies in the experimental
early connectivity condition increased convergence, both in round 3—
mean normalized entropy 0.35 in the experimental early connectivity con-
dition and 0.45 in the experimental late connectivity condition—and round
4—mean normalized entropy 0.24 in the experimental early connectivity
condition and 0.35 in the experimental late connectivity condition; see Fig-
ure 3.3.

We ran a mixed-effects linear model predicting entropy levels with fixed
effects of condition—early connectivity dynamic or late connectivity dy-
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Figure 3.3: Observed entropy (Hn) averaged over each level of connectivity and round.
Error bars indicate 95% CIs.

namic—and round (1 to 4), with random intercepts per concept and micro-
society. Condition was sum-coded and Round was transformed so that
the model intercept corresponds to mean entropy across conditions and
Round 1. Likelihood ratio testing confirms that our model performs sig-
nificantly better than the null model with random effects only (χ2(2) =
396.81, p < 0.001). Normalized entropy levels were higher by 0.02 (s.e.
0.010) in the late connectivity condition relative to the model intercept of
0.91 (s.e. 0.028). Comparisons to reduced models with each fixed effect
removed confirm a main effect of condition (χ2(1) = 4.766, p< 0.029) and
round (χ2(1) = 395.19, p < 0.001).

In order to assess the differences in cultural diversity of the communica-
tive system from the moment the two connectivity conditions diverge, we
ran mixed-effects regressions on the round 3 and round 4 data only. Using
round 3 data only, we ran a mixed effects linear model predicting entropy
levels with fixed effects of condition and random intercepts per concept
and micro-society. Likelihood ratio testing confirms that our model per-
forms significantly better than the null model with random effects only
(χ2(1) = 7.7397, p = 0.005). Normalized entropy levels were higher by
0.052 (s.e. 0.018) in the late connectivity condition relative to the model in-
tercept of 0.401 (s.e. 0.038). Using round 4 data only, we also ran a mixed
effects linear model predicting entropy levels with fixed effects of condi-
tion and random intercepts per concept and micro-society. Likelihood ratio
testing confirms that our model performs significantly better than the null
model with random effects only (χ2(1) = 6.8081, p = 0.009). Normalized
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entropy levels were higher by 0.058 (s.e. 0.022) in the late connectivity
condition relative to the model intercept of 0.296 (s.e. 0.044).

3.5.1 Model evaluation

We used the experimental 96 data structures coded for the present study
to obtain best-fitting parameter values in our simulations. A total of 968
parameter combinations were evaluated—11 levels of content bias, 11 lev-
els of coordination bias, 2 levels of memory, 2 levels of connectivity and 2
levels of value across variants; see Table 3.3.

Parameter Number of levels Values
Content bias 11 0 to 1 in steps of 0.1
Coordination bias 11 0 to 1 in steps of 0.1
Memory 2 1 & 3
Variant value distribution 2 [1,0,0,1] & [1,0,0,0]
Connectivity 2 Early & Late
Innovation rate 1 0.02

Table 3.3: Parameters examined.

Bayesian factors have become increasingly common for model selec-
tion (e.g. Baele, Li, Drummond, Suchard, & Lemey, 2012; Suchard, Weiss,
& Sinsheimer, 2001; Tamariz et al., 2014; Xie, Lewis, Fan, Kuo, & Chen,
2010). In the present study, the strength of evidence for a particular pa-
rameter combination was evaluated by estimating a Bayes factor using
Bayesian Information Criteria (Wagenmakers, 2007): The likelihood ratio
of the marginal likelihood of two competing hypothesis. The likelihood
of the data was considered under both the null hypothesis—mean nor-
malised entropy in the selected parameter combination and in the exper-
imental condition are equal—and the alternative hypothesis—mean nor-
malised entropy in the selected parameter combination and in the exper-
imental condition are different. One of the benefits of this Bayesian ap-
proach is that it quantifies support for both the null (labelled BF01) and the
alternative hypothesis (labelled BF10), thereby providing a clearer estimate
of the strength of evidence in the data for model selection (Jarosz & Wiley,
2014). This contrast can be expressed as follows:

BF01 =
likelihood of data given H0

likelihood of data given H1
(3.2)

where BF01 =
1

BF10
. The higher BF01 the higher the strength of evidence in

support of the null hypothesis, and the lower in support of the alternative.
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Inversely, BF10 yields the strength of evidence in support of the alternative
hypothesis.

Statistical analyses were conducted using the BAYESFACTOR package,
version 0.9.12–4.2 (Morey, Rouder, Jamil, & Morey, 2015), using default
priors of

√
2

2 for consistency with Rouder, Morey, Speckman, and Province
(2012). Figure 3.4 shows Bayes factors of 4 relevant model comparisons
between experimental and simulated data using:

A. Base line parameter combination.

B. Reference parameter combination.

C. Best fitting parameter combination with constant values.

D. Best fitting parameter combination with dynamic values.

Table 3.4 shows the values of these parameter combinations. For illustra-
tion purposes, Figure 3.5 shows line plots of experimental and simulated
normalized entropy for each parameter combination selected.

Using normalized entropy levels in simulated and experimental early
connectivity dynamics, we conducted two sample tests between groups for
each round. Parameter combination D was associated with a better-model
fit. In round 2, an estimated Bayes factor (null/alternative) of BF01 = 6.4
in favor of the null hypothesis suggested that the mean observed values are
6.4 times more likely to occur under a model with parameter combination
C, rather than a model with any other parameter combination. In round
3, BF01 was 6 : 1 in favor of the null hypothesis, and in round 4, 6.4 : 1 in
favor of the null hypothesis. According to Jeffreys (1961), these Bayes fac-
tors suggest ‘substantial’ evidence for the values of parameter combination
D to produce entropy levels like those observed in the experimental data.
A model including all the rounds yielded a BF01 of 12.31 : 1, suggesting
‘strong’ evidence for Parameter combination D. All these results together
could be said to provide substantial to strong evidence that convergence
in the experimental early connectivity condition might have been driven
by a relatively strong content bias (0.8 during prealignment and 0.7 dur-
ing postalignment), a slight egocentric bias (0.3), a dynamic variant value
distribution (individuals went from two preferred variants [1,0,0,1] during
prealignment to one preferred variant [1,0,0,0] during postalignment) and
a memory size of about 3 rounds.

Using normalized entropy levels in simulated and experimental late
connectivity dynamics, we conducted two sample tests between groups for
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Figure 3.4: Comparison between simulated and experimental data. Diversity of commu-
nicative variants (measured as Normalized Shannon Entropy) over rounds and conditions.
The lower and upper hinges correspond to the first and third quartiles—the 25th and 75th

percentiles. Boxplot with whiskers with maximum 1.5 Interquartile Range (IQR). A.
Base line parameter value combination against experimental data. B. Reference param-
eter value combination—best-fit model for Fay et al. (2010)—against experimental data.
C. Best fitting parameter value combination (using constant values) against experimental
data. D. Best fitting parameter value combination (using dynamic values) against experi-
mental data
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Figure 3.5: Comparison between simulated and experimental convergence trajectories
over rounds and conditions. Error bars indicate 95% CIs.

each round. Parameter combination D was associated with a better-model
fit. In round 2, an estimated Bayes factor (null/alternative) of BF01 = 5.1
in favor of the null hypothesis suggested that the data are 5.1 times more
likely to occur under a model with parameter combination C, rather than a
model with any other parameter combination. In round 3, Bayes factor was
BF10≥ 1000 : 1 in favor of the alternative hypothesis, and in round 4, 6.3 : 1
in favor of the null hypothesis. These Bayes factors suggest ‘substantial’
evidence for the values of parameter combination D in round 2 and 4, and
‘very strong’ evidence for another parameter combination during round 3.
A model including all the rounds yielded a BF01 of 6.6 : 1, suggesting ‘sub-
stantial’ evidence for Parameter combination D. Broadly, all these results
together could be said to provide substantial evidence that convergence
in the experimental late connectivity condition might have been driven by
a relatively strong content bias (0.9 during prealignment and 0.6 during
postalignment), an intermediate coordination bias (0.5), a dynamic variant
value distribution (individuals went from two preferred variants [1,0,0,1]
during prealignment to one preferred variant [1,0,0,0] during postalign-
ment) and a memory size of about 3 rounds. The model, however, did not
accurately simulate the observed mean values of convergence in round 3
under late connectivity conditions.
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In the next section, we discuss possible explanations for these results
and suggest directions for future work.

3.6 Discussion

This study supports the hypothesis that the convergence of a small-scale
society of human participants on shared communicative conventions can
be affected by the order in which connections between individuals unfold
over time. In particular, we have shown that a late connectivity dynamic
can slow down convergence and an early connectivity dynamic can accel-
erate convergence when there is a preference for communicative variants
with high adaptive value. Although our study differs from previous work
on network connectivity dynamics in several respects (population size and
experimental procedure), and it might be limited by the number of inde-
pendent observations collected, our results are consistent with previous
findings regarding some important points:

(i) Subtle changes in a population network structure can affect the for-
mation of social conventions (Centola & Baronchelli, 2015).

(ii) Social influence seems to reduce diversity in networks where every
agent has equal connectivity, when compared to networks where the
agents’ access to information is not equal (Becker et al., 2017).

Previous network experiments on larger groups (e.g. Judd, Kearns, &
Vorobeychik, 2010; Kearns, Judd, Tan, & Wortman, 2009) have success-
fully addressed important questions related with these decision-making is-
sues. However, those studies based on social-agreement tasks do not focus
on the open-ended nature of human communication. In our experimen-
tal design, participants engaged in an open-ended, continuous, graphical
communication task, allowing them to dynamically develop, negotiate and
agree upon their own communicative conventions, much like human com-
munication in the real world.

We also suggest that a key advantage of our experiment when com-
pared to previous studies is that by testing the effects of a simplest net-
work change in the smallest possible pairwise, interactive, fully-connected
collaborative micro-society (4 participants, two pairs, 4 rounds with one
repetition), we have been able to identify specific changes yielded by one
specific and experimentally controlled change in the network connectiv-
ity dynamic. This small-scale experimental design allowed us to minimise
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the number of confounding variables, and facilitated the establishment of
causality between the specific manipulation of the network connectivity
dynamic and the convergence subsequently observed.

The basic structure of the agent-based model used in the present chap-
ter was developed and described in Chapter 2. There, we compared our
model against existing experimental data from one possible connectivity
condition—early connectivity dynamic. In the work presented here, we
have used the same model to exactly mirror the two network connectivity
dynamics—early and late—implemented in the experiment. Mirror model
predictions were useful to generate a testable hypothesis. To be sure, the
prediction that an increase in global connectivity during the first rounds—
early connectivity—would accelerate the formation of communicative con-
ventions was proven to be statistically accurate for the experimental data
analysed.

One of the most prominent explanations for the maintenance of cultural
diversity is that individuals may have interests that are resistant to social
influence (e.g. Friedkin & Johnsen, 1990; Marsden & Friedkin, 1993). In-
terestingly, contrary to model predictions, differences between conditions
did not tend to reduce during postalignment. This suggests that subtle
changes in the connectivity dynamic during the first interactions might af-
fect the individuals’ attachment to local variants in a fundamental way.
Crucially, in the late connectivity condition, individuals interact with the
same partner during two consecutive rounds. This isolation exposes indi-
viduals to the same conventions longer than in the early connectivity dy-
namic. By the time they encounter other individuals, they might have de-
veloped a stronger resistance to change their first conventions (even if the
new observed variants have high adaptive value), which in turn decreases
convergence and increases diversity in the form of polarization. In con-
trast, individuals under early connectivity conditions have been exposed
to a higher diversity of conventions starting from an earlier round, which
might weaken their resistance to adopt variants with high adaptive value.
This might explain the maintenance of the differences in convergence be-
tween experimental conditions from round 3 to round 4 (see Figure 3.5).

We also present an attempt at evaluating the predictive accuracy of our
model by conducting a Bayes Factor analysis. Our model evaluation shows
that the model is able to accurately predict convergence under the set of
experimental observations using an early connectivity dynamic. Notwith-
standing, none of the parameter combinations examined under the late con-
nectivity condition were able to accurately predict convergence across all
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rounds. Even if we successfully identified the best parameter combination
from a pool of candidates, these parameters might be inadequate to gen-
eralise to other datasets or real situations. For example, our results agree
with those reported by Tamariz et al. (2014) that a content bias and an ego-
centric bias were operating on the experiment. Also, that low memory size
(3 rounds in our study, between 2 and 4 rounds in Tamariz et al. (2014)),
was associated with better model fit. We nevertheless found differences
in best-fit parameter values between these studies, with the present experi-
ment generally showing a higher content bias. These differences might be
due to individual cognitive variation combined with key differences in the
experimental design of both studies (network structure, population size,
sample size and coding method). Further experiments to collect data using
different connectivity dynamics and samples that are representative of the
whole population are needed.

Be that as it may, it is interesting to observe that at the beginning of
round 3, under late connectivity, diversity falls bellow 0.5. Technically, this
means that there is convergence between participants of different dyads be-
fore they interact. This suggests that at least part of the convergence is not
driven by alignment between partners, but by either learning biases (Kalish
et al., 2007; Kirby et al., 2008, 2015) or intrinsic properties of the variant
representations that participants shared before the experiment. These in-
trinsic properties might be iconic affordances of the concepts used in the
experiment for which participants already share a cultural basis: That is,
common mappings between forms and meanings that are present in par-
ticipants inventories of conceptual representations. Such a finding would
suggest evidence of convergent cultural evolution, that is the emergence of
similar forms across different communities (e.g. Caldwell & Millen, 2008;
Dingemanse, Torreira, & Enfield, 2013; Mesoudi et al., 2006), although
this result might be somewhat skewed by the application of the coding
scheme, which is inevitably subject to a certain degree of subjectivity in
the evaluation of analogies. Note that in the present study we performed
a functional analysis, that is, two variants with similar form and function
were considered as the same variant, even if that implies convergent evo-
lution prior to the participant’s first encounter. Otherwise, we could not
have discerned whether two agents converged or continued with their own
variant after interacting, because the variant would have had a similar form
prior to the participants’ first encounter anyway.

Here, we have shown that researchers should not neglect the role of the
micro-scale connectivity dynamics when doing microcosm studies, as it
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may influence the spread of variant outcomes. Our research might be of
interest to those researchers investigating the effects of network topologies,
social networks or collaborative behavior. In particular, to those that use
dynamic interactive micro-societies of agents switching partners over time
(e.g. Baum et al., 2004; Caldwell & Smith, 2012; Fay et al., 2010; Mesoudi
& Whiten, 2008).

In Chapters 4 and 5, we will build on our agent-based model to develop
more sophisticated reinforcement mechanisms between agents’ cognition
and their social environment. These models will primarily be focused on
the inclusion of institutional mechanisms and additional individual biases
that affect social influence, along with a more realistic implementation of
distributions of value across cultural variants in the population. By doing
so, we will try to overcome some of the limitations of the current state of
the ABM.
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Fixed institutions, homogeneity,
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Abstract

Cultural diversity is crucial to maintaining healthy societies and is related to eco-
nomic growth, social cohesion, productivity and biodiversity indices. A number of
studies of cultural evolution have shown that agents’ choices and value systems co-
evolve affecting diversity. But little is still known about how the interactions between
individual cognitive biases, the distribution of values across variants and institutional
reinforcement affect cultural diversity under global connectivity. High hegemony of
cultural systems—where one variant is strongly preferred over others—and homo-
geneity of value systems among agents in the population may accelerate the extinc-
tion of cultural traits and thus detract from cultural diversity, as may institutions that
impose or reinforce certain value systems. This chapter explores these and related
hypotheses using agent-based models to simulate micro-societies where cognitive bi-
ases, value systems and institutional reinforcement are systematically manipulated.
Our findings indicate that both hegemony and homogeneity of the value system ac-
celerate the extinction of cultural variants, and that content-based transmission bias
amplifies those effects. In certain regions of the parameter space, institutions that
do not reinforce original value systems tend to be effective preserving cultural diver-
sity, especially for intermediate levels of content bias. We extend previous work that
shows that, under certain cognitive constraints, external pressures may dramatically
and non-monotonically affect the way in which cultural evolution proceeds. We dis-
cuss a number of potential implications of these findings in the context of a globalised
society.

Keywords: cultural evolution; cultural diversity; variant value; homogeneity; het-
erogeneity; content bias; agent based models

4.1 Introduction

4.1.1 Cultural diversity and selection pressures: a brief recap

Cultural diversity, the variety of cultural traits in a society, is the outcome
of cultural transmission and evolution. As people use and interact with
culture, certain variants of a tradition persist, while others die out, and this
often results in sets of cultural variants that are shared by groups of indi-
viduals in a population at a given time. Although some processes, such
as conformity, tend to limit diversity to make society functional (Newson,
Richerson, & Boyd, 2007), cultural diversity is essential on many dimen-
sions to maintain healthy societies, and it has been largely correlated with
economic growth (Ager & Brückner, 2013; Ashraf & Galor, 2011), devel-
opment (Montalvo & Reynal-Querol, 2005), productivity (Bellini, Otta-
viano, Pinelli, & Prarolo, 2013) and biodiversity indices (Loh & Harmon,
2005; Maffi, 2005). Cultural diversity can also be perceived as a threat
to social cohesion and trust (e.g. Huntington & Dunn, 2004; Twigg, Tay-
lor, & Mohan, 2010), which has historically been a topic of preoccupation
for governments and policy makers. However, some of these negative ef-
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fects are not widely accepted (Letki, 2008), and have fuelled the debate on
how to manage cultural diversity (Verkuyten, 2006). Certainly, the man-
agement of cultural diversity and cultural convergence, that is, the balance
between the preservation of differences and equality over time, requires the
development of cultural evolutionary models that systematically manipu-
late group identities and the role of internal and external selection pressures
in order to make more useful predictions about the spread of behavior.

In recent times, we have witnessed considerable interest in the research
of these dynamics of culture in different domains. There is an increasing
number of studies seeking to identify the key parameters of diffusion using
different approaches: for example, diffusion research tradition (Rogers,
2010), which focuses on the spread of innovations, dual-inheritance the-
ories (J. Henrich & McElreath, 2007), which focus on gene-culture co-
evolution, and social network analysis (Centola, 2018), which focuses on
how changes in people’s social networks alter their behaviors. However,
diversity is difficult to quantify because: (i) it can refer to different scales
(local vs. inter-local) or dimensions (richness, evenness and distance)
(Van Parijs, 2011; Whittaker, 1960), and (ii) different cultural traits spread
following different dynamics (e.g. Boyd & Richerson, 1985).

Different cultural traditions have been explained by distinct evolution-
ary models. As mentioned in Chapter 2, some cultural traits are best
explained by neutral (drift) models. These include patterns, decorations,
pottery and baby names (Bentley, Hahn, & Shennan, 2004), dog breeds
(Herzog, Bentley, & Hahn, 2004) and a number of diachronic changes in
language (Komarova & Nowak, 2003; Kroch, 1989). Drift models are ap-
propriate null models against which other models can be tested (Hahn &
Bentley, 2003; Lipo, Madsen, Dunnell, & Hunt, 1997; Neiman, 1995; Re-
ali & Griffiths, 2009; Shennan & Wilkinson, 2001).

Other cultural traits are best modelled by selection models. These mod-
els involve internal and external factors. Internal factors include cognitive
biases that affect the individuals’ likelihood of adopting a given variant.
For example, content-based biases, also termed direct biases by Boyd and
Richerson (1988), refer to the individuals’ preference for intrinsic proper-
ties of cultural traits; as a consequence of this, some variants have higher
probability of being adopted than others (J. Henrich & McElreath, 2007;
Vale et al., 2017). If a method to solve a problem is particularly easy, or
simple, or effective, all else being equal, people will tend to adopt this
method over others. For example, violin sound hole shapes that maximise
air-resonance power efficiency (Nia et al., 2015), or Edison’s innovations
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to early telephone models towards maximising effectiveness (Ziman, 2000)
have come to prevail. Model biases are related to the individuals’ prefer-
ence for cultural variants due to the prestige, skills, success or similarity
to self of the individual displaying a behaviour (J. Henrich & McElreath,
2007). For instance, we preferentially buy the products or adopt the habits
used or endorsed by celebrities, experts or people that we identify with.
Other biases related to the individuals’ cognition, such as frequency biases,
payoff-biases, coordination bias and conformist biases, have been used ap-
plied to the the evolution of social learning rules (Acerbi et al., 2016; Boyd
& Richerson, 1985; J. Kendal, Giraldeau, & Laland, 2009).

External factors that exert selection pressures include population size
(J. Henrich, 2004; Kline & Boyd, 2010; Shennan & Wilkinson, 2001),
degree of contact between agents in a population (Derex & Boyd, 2016;
Muthukrishna et al., 2014; Powell et al., 2009), social network structure
(Lee et al., 2005) and network connectivity dynamic (Centola & Baronchelli,
2015, Chapter 2). Environmental conditions and genes also play a part in
the spread of cultural variants, with culture being an important mecha-
nism to modify sources of natural selection by humans in their environ-
ment, through processes such as niche construction and gene-culture co-
evolution (Laland et al., 2000; Mesoudi, 2011a). Crucially, in human en-
vironments, social institutions (broadly defined as a system of rules, such
as organizations (Hodgson, 2015)), have been suggested to constitute a
prominent external mechanism that controls behavior, transcending indi-
viduals primary intentions by constraining agent’s actions and beliefs at
each particular moment (Giddens, 2013). In this chapter, we are particu-
larly interested in the external influence exerted by hypothetical institutions
that affect how much individuals’ interactions shape value systems.

4.1.2 Content bias and dissimilar values

Selection models of dissemination of culture capture how these internal
and external factors affect cultural diversity and its opposite, convergence.
A number of models have done this for cases in which all agents in a
population share the same content bias and the same distribution of value
across cultural variants in each simulation run—e.g. Gong et al. (2012);
Segovia-Martı́n et al. (2019); Tamariz et al. (2014) show how content bias
shared across the population operates against diversity. However, in real
life not everyone shares the same values, and different sub-populations
may develop dissimilar value systems (e.g. opposing interests), which in
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turn might affect the spread of cultural variants. Using a computational
approach, researchers on social behavior have shown that a complete con-
flict of interest, that is, when agents have different preference orderings
over acts, can affect the maintenance of communication in signaling games
(Godfrey-Smith & Martı́nez, 2013; Martı́nez & Godfrey-Smith, 2016).

The idea that different value systems can lead to different distributions
of variants in a population and affect cultural diversity has already been
explored in the past. For example, Axelrod’s (1997) model of dissemina-
tion of culture was based on the assumption that people are more likely to
interact with others who share the same cultural variants, and this in turn
tends to increase the number of variants they share. These mechanisms,
which he named homophily and influence, are prominent explanations for
the persistence of cultural diversity (Axelrod, 1997). When combined with
dynamic co-evolving networks, they can lead to stable cultural diversity in
the face of cultural drift (Centola et al., 2007). Building on Axelrod (1997),
researchers have found that several factors affect the dynamics of cultural
change and cultural diversity, including globalisation (Greig, 2002), tech-
nological innovation (Leydesdorff, 2001), mass media (González-Avella
et al., 2007; Shibanai, Yasuno, & Ishiguro, 2001), political institutions
(Bhavnani, 2003) and cultural drift (Klemm, Eguı́luz, Toral, & San Miguel,
2005).

The mathematical modelling of culture is a rapidly developing and high-
ly productive discipline. Notwithstanding, the complex network of inter-
actions between value systems, population biases and other types of rein-
forcement (such as institutional reinforcement) has received comparatively
little attention. While the goal of Axelrod’s model was to study why cul-
tural diversity persists even though agents approach each other through a
self-reinforcement mechanism of more interaction, our goal here is to in-
vestigate how the spread of cultural variants in a population is affected by
three main factors: value systems in the population, agent content biases
and institutional reinforcement of value systems. Specifically, we aim at
modelling the extent to which cultural diversity can be best maintained
under enforced global connectivity, and make predictions about the effec-
tiveness of external reinforcement in different scenarios.

4.1.3 Value systems

In our study, an agent’s value system, S, is operationalised as the set of
values that the agent assigns to each cultural variant. Value systems can
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remain fixed, or they can evolve depending on the agents’ choices or exter-
nal reinforcement. Value systems encompass two variables: The number
of independent value systems in use in a population, and the pattern of
dominance between variants.

Regarding value systems, populations can be either homogeneous, when
all agents share the same variant inventory and also the same value system—
e.g. a population of mathematicians, who share the same mathematical
conventions, and assign the same value, or meaning, to each of them—
or heterogeneous, when the agents share the same variant inventory but
there are two or more value systems—e.g. agents from different groups
such as employers and employees may assign different value to variants
such as flexibility and precarity, even when they refer to the same payoff
matrix. Readers should therefore not confound heterogeneity of value sys-
tems (number of independent S) with the heterogeneity of the population
(number of traits, q) as defined in related literature (Centola et al., 2007).

Regarding hegemony, or the relative dominance between variants in a
value system, different scenarios include one variant being preferred over
all the others—high hegemony, e.g. there is only one correct way to address
the Queen; two variants that are preferred over all the rest of variants—
e.g. bilingual speakers are happy to use either of the languages they are
proficient in, but not other languages; or all variants being equally likely to
be produced—low hegemony, e.g. if we are happy to greet our friends in
any way, by shaking hands, saying hello, embracing, kissing, and so on.

We predict that high hegemony (one preferred variant over the others)
and homogeneity (one value system shared by the whole population), will
accelerate the extinction of cultural traits, lowering cultural diversity, while
low hegemony (two or more preferred variants) and heterogeneity (two
or more independent value systems across the population) will contribute
to maintaining cultural diversity. We aim to explore the effect of value
systems S, in combination with the degree of individual (content) bias in a
population, on cultural diversity.

4.1.4 Institutions

Institutions have been defined by researchers on institutionalism as ‘inte-
grated systems of rules that structure social interactions’ (Hodgson, 2015,
p. 501). Similarly, Boyd and Richerson (2008) define social institutions
as norms and conventions that give durable structure to social interactions
within a population. Institutions are not only mere providers of goods and
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services, they also influence the evolution of values, tastes, and person-
alities (Bowles, 1998; Frank, Gilovich, & Regan, 1993; J. Henrich et al.,
2005).

In the present chapter, we will use the notion of institutional reinforce-
ment, which models the effort on the part of an institution to favor a par-
ticular value system, and may lead to changes in the value systems of in-
dividuals. Examples of institutional reinforcement include the approval or
condemnation of particular usages of grammar and vocabulary by national
linguistic academies and the prescriptions of a moral code that encourages
people to do what is right and not to do what is wrong.

Theories of collective behavior suggest that institutional mechanisms
(e.g. the introduction of collective incentives) reduce cultural diversity by
facilitating the formation of social conventions (David, 1994; Kearns et
al., 2009; Voigt & Kiwit, 1998; Young, 2001), although it has been shown
that social conventions can also emerge without the intervention of in-
stitutional mechanisms (Becker et al., 2017). Institutions are not always
group-beneficial (Boyd & Richerson, 2008); regarding this issue, impor-
tant progress was made in the past as researchers developed agent-based
simulations to explore under which circumstances co-evolutionary pro-
cesses generate high levels of group-beneficial behaviors along with insti-
tutions (Bowles et al., 2003). However, how the evolution of variant values
in the presence of institutional reinforcement affects the emergence of so-
cial conventions in a population when individuals have different degrees of
sensitivity towards variant value has remained relatively under-explored.

In the current chapter we will use simulated micro-societies of agents
in which we systematically manipulate the degree of preference for vari-
ants with high value (content bias), the number of value systems in the
population (homogeneity/heterogeneity), the degree of relative dominance
between variants (hegemony) and the degree of institutional reinforcement
of value systems. We aim to establish the effect of these variables on the
cultural diversity of a population.

4.2 Methods

We address the research aims presented above by analysing the spread dy-
namics of n competing variants of a cultural trait within a micro-society.
Next we compare alpha diversity levels in micro-societies that differ in the
properties of their values systems and the level or institutional reinforce-
ment. In the next following we describe the probabilistic model.
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4.2.1 The probabilistic model

The present study uses an extended version of the agent-based model we
developled in Chapter 21, in which 8 agents play recurring games in a pair-
wise interactive micro-society. A description to obtain the mathematical
model can be found in Appendix B. The initial state consists of 8 agents,
and each agent i is randomly assigned a cultural variant σi selected from
a pool of variants without replacement. The dynamics of the model are
described as follows:

At the beginning of each round r, agents are assigned a partner. Each
pair interacts, and an interaction involves the following: First, each agent
produces a variant sampled from its memory according to equation Equa-
tion (4.2) on page 86. There is a small probability of mutation, in which
case the variant is not sampled from memory, but it is a novel one sampled
from the pool of possible variants. For example, when agent i and agent j
interact, i produces variant σi and j variant σ j. Next, both agents store the
two variants in their memory stores. At each round, agents switch partners
so that by the end of the final round every agent has been paired with every
other agent. Each agent is initialised with a value system S, which is a
vector of floating points that indicate the value s assigned to each variant
and indicates to what extent the variant is preferred over the other variants
—s takes values ranging from 0 (null value) to 1 (highest value)—.

The model takes several parameters as described below:

Heterogeneity: In the heterogeneous condition, the population is divided
into two sub-populations (formed by agents 1–4, and agents 5–8, re-
spectively). Each sub-population is assigned a different value system.
In the homogeneous condition, all agents are initialised with the same
value system.

Hegemony: It is operationalised as the distribution of value across vari-
ants, and has three levels:

(i) One-takes-all (OTA) simulates a fully hegemonic cultural sys-
tem. One preferred variant (σ1) has value = 1, the others, 0.

(ii) Competition (C), where two competing variants (σ1 and σ2) have
intrinsic value 1, and the rest, 0.

(iii) Pseudo-random (PR), where values were assigned to variants in
the set {σ1, . . . ,σ8} using random sampling without replacement
from a list containing values from 0 to 1 in steps of 0.1.

1Code available at https://github.com/jsegoviamartin/network connectivity dynamics model

84

https://github.com/jsegoviamartin/network_connectivity_dynamics_model


Chapter 4

Institutional performance (ε): Is a parameter identifying to what extent
the institution reinforces the agents’ S. It reflects the extent to which
institutions limit how much the agents’ interactions can shape their
own value systems (S). Technically, for each agent i and round r, if a
variant σi ∈ h (where h stands for the agent’ history), then the value
assigned by an agent i to a variant σi at round r+1 is a function of the
current variant value sir, choice |σir| and insitutional performance ε.
At each round, |σir| is 1 if σir is produced by an agent i, 0 otherwise.
Two conditions of institutional performance were examined:

(i) Reinforcement (Rf), where a global institution favours a fixed
value system (ε = 1) (which is the original system the agents are
initialised with).

(ii) Responsiveness (Rp), where the global institution weakens the
original value system (ε = 1

2), allowing value systems to evolve
according to the agents’ choices.

The value assigned by a typical agent i to a cultural variant σi at each
round r is updated according to the following equation:

sir+1(sir,σir,ε) =

{
sirε+ |σir|(1− ε) if σi ∈ h

si0, otherwise
(4.1)

where sir+1 stands for the value of variant σi at round r+1.

Content bias (β): Identifies the degree of preference for variants with high
value. It encompasses two parameters (b,d). Parameter b is the
agents’ sensitivity to variant value (s), and ranges from 0 (not sen-
sitive at all) to 1 (fully sensitive) in steps of 0.1. Parameter d specifies
whether the variant is in the agent’s memory record, and equals 1
if the variant is in memory, and 0 otherwise. Parameter β is equal to
b ·d. Thus, content bias (β) assigns a value from 0 to 1 to each variant.
When content bias is 0, we have a model of drift, or neutral evolution.
Content bias values from 0 to 1 in steps of 0.1 were examined.

For each parameter combination examined we ran 1000 simulations. In
each simulation, the pair composition was randomized without repetition.
All networks generated were fully connected networks. Our model in-
cludes two other parameters, which, for the purposes of this study, take
fixed values: First, memory size (m) represents the agents’ access to their
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memory store, and it was limited to 3 rounds in the memory (h|M,3). Mem-
ory sizes between 2 and 4 were associated with better model fits in Tamariz
et al. (2014). Second, mutation rate (µ), or the probability that when agents
produce a variant, they do not sample from their memory store, but from
the initial set of 8 variants in the micro-society. We fixed the innovation
probability at 0.02 by using a flat distribution φ(σ) of variants weighted
by mutation rate. This reflects the innovation rate fitted by Tamariz et al.
(2014) for Fay et al. (2010) experimental data (Tamariz et al., 2014).

The model described above can be formalized as follows:

Pr(σir | hir) = µ′β′ f (σi | h|M,3)+µ′βsir +µφ(σ) (4.2)

where Pr(σir | h) yields a probability of production of variant (σi) by a
typical agent i at round r for a given history hir of previous rounds. The
over-bar denotes the probabilistic complement (e.g. a′ = 1−a).

4.2.2 A numerical example

Let P = (pi,r) be a matrix where each element in the matrix represents the
probability of production of a variant σi at round r by a given agent:

P =


p11 p12 . . . p18
p21 p22 . . . p28
... ... . . . ...

p81 p82 . . . p88

 (4.3)

Thus, P∗3 refers to the column vector that contains the probability of pro-
duction of each variant at round 3 by such typical agent:

P∗3 =


p13
p23
...

p83

 (4.4)

Here, p13 is the probability that the agent produces variant σ1 at round 3,
p23 is the probability that the agent produces variant σ2 at round 3, and so
on.

In order to calculate S, we need information about the frequency and the
value of each variant for that agent. Regarding frequencies, assume that the
current relative frequency of variants in the agent’s memory is defined by
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the following vector:

F1 =


f13
f23
...

f83

=


0.5

0.25
...

0.25

 (4.5)

where f13 stands for the number of times the agent has added σ1 to its
memory divided by the total number of variants in memory by round 3,
and so on. In the present example, the agent has stored σ1 twice in its
memory, which means that the relative frequency of σ1 is 0.5. Our typical
agent has also stored σ2 and σ8 once, which means those are all the variants
the agent has in memory by round 3. Note that at each round, agents store
two variants in memory, the one they produce and the one they observe.

By round 3, let’s consider that the value system of the agent is defined
by the following vector:

S =


s13
s23
...

s83

=


0.8
0.2

...
0

 (4.6)

where s13 stands for the relative value assigned by the agent to σ1 at round
3, s23 stands for the value assigned to σ2 at round 3, and so on. Variant
values are determined in the previous round (Equation (4.1) on page 85).
In our example, if we consider a situation in which content bias is quite
strong (e.g. β = 0.9), then we have:

P∗3 = 0.98 ·0.1


0.5

0.25
...

0.25

+0.98 ·0.9


0.8
0.2

...
0

+


0.0025
0.0025

...
0.0025

 (4.7)

Thus, the operation yields:

P∗3 =


0.7571
0.2034

...
0.0027

 (4.8)

which corresponds to the probability of production of each variant as de-
termined by the state attained in the previous round in the Markov chain.
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Thus, at round 3, the probability of σ1 being produced by the agent is
p13 = 0.7571, while p23 = 0.2034 and p83 = 0.0027. The probability of
the rest of the variants is 0.0025.

4.2.3 Quantifying cultural diversity

Cultural evolutionists have developed quantitative measures of cultural di-
versity by borrowing related alpha diversity indices from biology (Kandler
& Laland, 2009). In the present study, we use two complementary mea-
sures, Shannon’s entropy (H) which represents the distribution of variant
tokens of each type in a population, and Simpson’s Evenness (E), which is
sensitive to the number of different types present in the population.

Entropy (H). This is the same metric used in Chapter 2. For the conve-
nience of the reader we reproduce the formula below:

H(V ) = ∑
viεV

p(vi) log2 p(vi) (4.9)

where V corresponds to the set of variants, and p(vi) is the probability
of ith variant in that set. High entropy corresponds to high cultural
diversity.

Evenness (E). We also use a common index of evenness called Simpson’s
evenness (E), to quantify how equal the distribution of variants are
(Simpson, 1949). In order to calculate E, first we obtain dominance,
which is defined as:

Dom =
S

∑
i=1

p2
i (4.10)

where (pi) stands for the proportion of the entire community that vari-
ant i represents. Now, evenness (E) can be calculated by taking the
reciprocal of dominance (Dom) and expressing it as a proportion the
total number of variants present:

E =
1

Dom
S

(4.11)

where S corresponds to the total number of existing variants in the
system (richness). Evenness (E) takes a value between 0 and 1, with
1 being complete evenness. When E is complete, all the surviving
variants are equally abundant in the system.

88



Chapter 4

Extinction. We also borrow from biology a well established survival es-
timator to calculate extinction probability (Jolly, 1965; Seber, 1965).
We define extinction probability as the probability that a cultural vari-
ant present in the community during round i is not present at some
later round j. We first compute the number of variants observed in
round i (Ri), and then the number of these variants still present in
round j (R j). Extinction probability is then calculated as:

1− φ̂i j = 1−
R j

Ri
(4.12)

where φ̂i j is the complement of extinction probability and denotes the
probability that a variant present in i is still present in j.

4.3 Results and discussion

We first present the results of simulation runs with institutional reinforce-
ment, in which agents’ value system are fixed (Rf model), in different sce-
narios of homogeneity, hegemony and content bias. Then we compare sim-
ulations with institutional reinforcement against those with an institutional
responsiveness (Rp model) in the same scenarios.

At the beginning of the first round r1, each agent produces a unique
signal, so that at that point of the simulation, diversity indices are highest
in all conditions. From then on, diversity decreases as agents begin to
converge on a shared or conventional cultural variant. The rate of diversity
loss will depend on the parameter combination selected.

4.3.1 Entropy

The entropy of the variants in the population is affected by homogeneity,
hegemony and content bias (Figure 4.1). Highly hegemonic systems (one-
take-all, henceforth OTA) lose entropy the fastest, followed by competition
between two highly valued variants (C) and finally pseudo random ones
(PR). Homogeneous systems lose entropy faster than heterogeneous ones.
And content bias amplifies the effects of both homogeneity and hegemony.
PR maintained diversity better than OTA and C.

While drift models remain indifferent to changes in the homogeneity
of value systems in all the scenarios examined, content-biased models are
highly sensitive to it. The higher the content bias the less diversity, and
the more heterogeneity contributes to the maintenance of diversity levels.

89



Chapter 4

β=0.6 β=0.8 β=1

β=0 β=0.2 β=0.4

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0

1

2

3

0

1

2

3

Round

E
nt

ro
py

 (
bi

ts
)

Condition

Homogeneity OTA
Homogeneity C
Homogeneity PR

Heterogeneity OTA
Heterogeneity C
Heterogeneity PR

Figure 4.1: Entropy (H) of the distribution of cultural variants in the population averaged
over each level of content bias (β), homogeneity and hegemony. Drift models (β = 0) are
shown in the top-left throughout the study. Error bars indicate 95% CIs throughout the
study.
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With high hegemony of one variant over the others (OTA), the popula-
tion tends towards local convergence in heterogeneous populations, and to-
wards global convergence in homogeneous populations. The reason is that
in heterogeneous increases, the different agent sub-populations converge
on their own cultural convention, and this can lead to global polarization
even under high hegemony. This is because agents within a sub-population
share the same value system (S) but agents across sub-populations have
different systems. Interestingly, these results are similar to the effects
yielded by homophily in Axelrod’s (1997) model of dissemination of cul-
ture, where homophily leads to local convergence and an increase in po-
larization. This suggests that institutional reinforcement in fully connected
micro-societies plays a similar role to that of self-reinforcement in dynamic
social networks when it comes to explaining the maintenance of cultural
diversity.

4.3.2 Simpson’s evenness

The evenness of the cultural variants E is affected by hegemony, in inter-
action with homogeneity and content bias (Figure 4.2). In high-hegemony
(OTA) homogeneous conditions, E decreased in the first rounds. It in-
creased later on as the population resettled an equilibrium over the shared
surviving variants, which were fewer in number, but more equally dis-
tributed in the system than in the previous rounds. These effects are strongly
amplified by content bias. At very high levels of content bias (β = 0.8 and
β = 1), in the last rounds, E was higher in homogeneous than the heteroge-
neous condition. This is because when there are few competing variants,
it is more likely that an equitable balance of variants will be reached if the
whole population share the same value system. In high-hegemony (OTA),
heterogeneous conditions, the effects on E are qualitatively similar, but
weaker than in the homogeneous conditions.

In the competition hegemony condition (C), the effects of homogeneity
and content bias are qualitatively similar, but weaker again. In the pseudo-
random (PR) hegemony condition, homogeneity and content bias do not
change the evolution of E over rounds. Interestingly, at high levels of con-
tent bias, OTA and C yield higher E levels than PR in both conditions in the
last rounds. This is because in OTA and C the selective pressure is stronger
than in PR, which leads to greater extinction, reducing the number of vari-
ants and therefore increasing the probability of an equitable distribution
among the surviving variants.
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Figure 4.2: Simpson’s evenness (E) of the distribution of cultural variants in the popula-
tion averaged over each level of content bias (β), homogeneity and hegemony.
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4.3.3 Extinction

Homogeneity, hegemony and content bias affect extinction rate, or the
probability that a variant type is lost at each round. Figure 4.3 clearly
shows two distinct periods in dynamics of extinction over time. In the ini-
tial period (r1,r2) we observe a high extinction probability. This is driven
by the loss of variants with low intrinsic value, which only occasionally
reappear later on with negligibly low frequencies due to mutation. Dur-
ing the late extinction period (r3, . . . ,r7), the surviving variants compete.
Here, homogeneity in combination with high hegemony (OTA) accelerated
extinction when compared with the other conditions. The subsequent de-
cline observed after the peak in extinction happens when there is only one
variant type left and extinction is not possible any more.

Summing up, our model shows that in highly hegemonic systems with
high individual content biases (both pushing diversity down), the contri-
bution of heterogeneity to entropy and evenness level is higher because
it remains as the only force pushing diversity up. In competitive (C) or
pseudo-random (PR) scenarios, heterogeneity is no longer the only pres-
sure helping to maintain diversity, and this is why its contribution to di-
versity is lower. In the PR conditions, the persistent overabundance of
cultural variants and the heterogeneity of S in agents actually prevent the
formation of distinct cultural sub-populations with different distributions
of variants, and thus cultural diversity must be explained by the relaxation
of constraints on the agents’ value system.
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Figure 4.3: Extinction probability of cultural variants in the population averaged over
each level of content bias (β), homogeneity and hegemony.
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4.3.4 Institutional reinforcement

In the results presented so far, the value system S remained fixed, that is
to say, regardless of the type of variant one agent chose to produce in one
particular round, the original S for that agent remained the same. We inter-
pret those as cases in which a prescriptive global institution reinforce the
agent’s original value system (or, in heterogeneous populations, systems).
We label those cases as reinforcement (Rf).

We now consider an alternative scenario in which the agents’ value sys-
tems (S) change depending on their behavior (the choices they make). We
use for these cases the label responsiveness (Rp). Responsiveness can be
interpreted as the outcome of a dynamic institution that promotes the val-
ues emerging from social interaction and use. Examples of emerging val-
ues include the changing attitudes towards gender violence or environmen-
tal protection and the shifting values attached to terms for disabled people.
In this scenario, the agents’ choices (behaviour) co-evolve both with the
agents’ value systems and with the level of reinforcement applied by the
global institution. We address the question: How does institutional perfor-
mance that responds to the agents’ choices affect cultural diversity?

In the comparison of Rf and Rp we examine only Shannon entropy (H)
as the measure of diversity and consider the three levels of hegemony sep-
arately for clarity. As seen in Figures 4.4, 4.5 and 4.6, cultural diversity
is significantly influenced by the type of institutional performance. Com-
pared with reinforcement, a responsive institution maintains higher levels
of diversity, but this effect depends on the degree of hegemony of preferred
variants, the level of context bias β and the level of homogeneity of value
systems S in the population.

Figure 4.4 shows the results for the fully hegemonic condition (OTA).
The effect of institutions is stronger under homogeneity than heterogene-
ity. Diversity (measured as entropy) differences between conditions (Rf vs.
Rp) are higher in homogeneous than heterogeneous populations, particu-
larly for intermediate values of β. Thus, non-interventionist, responsive
institutions are more effective at maintaining cultural diversity in moder-
ately biased populations where all agents share the same variant values.
When β = 1, the difference across institutional performance is reduced.
Here, agents are extremely biased towards the high value variant, and this
reduces the probability that they change their behavior and choose another
variant. In this scenario, since the agents’ choices are strongly driven by
their value system, choices remain mostly constant over time. Thus, even
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if agents are potentially able to evolve an alternative value system, they
simply do not do it, which explains the limited effect under a responsive
institution.
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Figure 4.4: Cultural diversity (measured as Shannon Entropy) averaged over each level
of content bias and homogeneity under OTA, comparing institutional reinforcement (Rf,
solid line) and institutional responsiveness (Rp, dashed line).

Figure 4.5 shows that, in a competitive scenario (C), the results are sim-
ilar as far as homogeneity is concerned. However, in contrast to OTA, here
the loss of cultural diversity is very limited. This is due to the dispersion
of value across the two competing variants: the less hegemony in the cul-
tural system, the smaller the effect of the institutions. In other words, Rp is
more effective in facilitating social conventions and Rf is more effective in
increasing cultural diversity. The effect of β = 1 here is more pronounced
under the competitive (C) than in the OTA hegemony condition. Since
there are now two equally preferred variants, even if, under responsive-
ness, agents change their choice (which has a low probability in the first
place), they will simply change from one preferred variant to the other.
This means that their choices change very little, similarly to what happens
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under reinforcement, which maintains the original value distribution.
In contrast with OTA and C, the effect of the institutional model is not

noticeable in the pseudo-random scenario (PR) (Figure 4.6). This indi-
cates that a great dispersion of value across the variants in the initial state
drastically inhibits the institutional effect implemented in the model and
maintains high diversity, reducing the convergence of the population on a
shared, conventional cultural variant. In the responsive scenario, in the ab-
sence of one or a pair of preferred variants, variants are lost more slowly
and randomly across the population (some agents will lose a variant, other
agents will lose another). This means the frequency distribution of variants
across agents does not change. Therefore, the outcomes of responsiveness
Rp and reinforcement Rf are very similar.
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Figure 4.5: Cultural diversity (measured as Shannon Entropy) averaged over each level
of content bias and homogeneity under C, with institutional reinforcement (Rf, solid line)
and institutional responsiveness (Rp, dashed line).
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Figure 4.6: Cultural diversity (measured as Shannon Entropy) averaged over each level of
content bias and homogeneity under PR, with institutional reinforcement (Rf, solid line)
and institutional responsiveness (Rp, dashed line).
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4.4 Conclusions

In this chapter we have extended an existing model of dissemination of
cultural variants in a micro-society (see Chapter 2) to study the evolution
of cultural diversity. The new model manipulates the hegemony of value
systems (the degree to which a minority of variants are preferred over the
rest), the agents’ content bias (how sensitive agents are to hegemony), the
homogeneity of value systems in the population, and whether institution-
ally promoted values are sensitive to the agents’ choices.

Our simulation results show that diversity is lower in populations with
homogeneous value systems and in highly hegemonic value systems. These
effects are amplified by content bias. Regarding the effect of institutions,
in scenarios with responsive institutions in which the value systems emerge
from the choices of the population, diversity is maintained to a higher de-
gree than in institutions that reinforce an existing value system. However,
the effect of institutions interacted with hegemony, homogeneity and con-
tent bias: Diversity differences between conditions (Rf vs. Rp) are greater
in high-hegemony value systems and homogeneous populations, particu-
larly for intermediate levels of content bias. This latter point suggests that
institutional intervention is more effective at maintaining cultural diversity
when the agents’ behaviours are not extreme. In addition, the effect of
institutions may coexist with other local processes (e.g. coordination and
transmission) and can vary over time and across levels of analysis (Bishop
& Wößmann, 2004; Dacin, 1997).

Our results are consistent with existing theories of collective intelli-
gence suggesting that institutions play an important role on the emergence
on cultural conventions (David, 1994; Kearns et al., 2009; Voigt & Kiwit,
1998; Young, 2001), although we agree that conventions can also emerge
without the intervention of institutional mechanisms that facilitate these
processes (Becker et al., 2017). In our simulations, this was the case espe-
cially in the presence of extreme individual biases.

An obvious limitation of our model is that institutional performance re-
mains fixed over time. This assumption can be relaxed by constructing
a more comprehensive co-evolutionary model which includes a dynamic
system of institutional values and agents’ value systems. That will be
precisely what Chapter 5 will be devoted to. We will construct an agent
based model which includes a more realistic dynamic system of institu-
tions, value systems and agents’ choices. Additional individual biases that
affect social influence (e.g. conformity and confirmation biases) will also
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be examined.
What we presented in Chapter 4, therefore, is the simplest possible

model that allows us to examine the dynamics of cultural variant choice
and value systems in different scenarios of institutional performance. Our
model can be useful to inform how the interaction between institutional
power and individual biases affect cultural diversity and human cognition.
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A co-evolutionary model of institutions,
value systems and cognitive biases
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Abstract

In the previous chapter we developed a model of the joint evolution of value systems
and choice in different scenarios of institutional performance. Although such model
can be useful to inform how the interaction between institutional power and individ-
ual biases affects cultural diversity and human cognition, an obvious limitation was
that institutional performance remains fixed over time. In the present chapter we de-
velop a co-evolutionary model of value systems, institutions and choice to explore
how the dynamics of cultural diversity in populations with different levels of cogni-
tive biases and institutional power evolve. To the best of our knowledge, our mathe-
matical model is the first attempt to quantify the propagation of cultural variants by
incorporating a comprehensive parameter combination of compliance, confirmation,
content and frequency biases into the learning and production algorithm. Results
show that, in some regions of the parameter space, institutional power facilitates the
emergence of shared cultural conventions when compliance biases increase. In gen-
eral, a compliance bias pushes diversity up when institutions are diverse, and pushes
diversity down when institutions convey value systems with strong dominance of one
or few cultural variants. Interestingly, in some scenarios, a decrease in institutional
power and compliance bias allows the emergence of cultural conventions from the
mutual reinforcement of local interactions and institutional values. We asses the ro-
bustness of these results by examining how sensitively they depend on different initial
conditions of variant assignment, population sizes and alpha diversity indexes. Key-
words: cultural evolution; co-evolution; institutions; value systems; cognitive biases;
compliance bias; confirmation bias;

5.1 The co-evolution of institutions and value systems

One thing that makes humans special is their remarkable capacity to co-
operate and build complex niches (Fuentes, Wyczalkowski, & MacKin-
non, 2010; Kobayashi, Wakano, & Ohtsuki, 2019; Laland et al., 2000).
As a result of social learning, which involves learning through copying
and sharing information with others, humanity has succeeded to construct
institutional environments which interact with the individuals’ cognition,
affecting evolutionary dynamics and the distribution of culturally trans-
mitted traits in a population (Bowles et al., 2003). Yet there are very few
models that explore the co-evolutionary dynamics of institutional diversity
and population cultural conventions at individual, institutional and histori-
cal levels by incorporating a comprehensive set of relevant learning biases.
Therefore, it remains unclear how populations with a different characteri-
zation of biases and institutions with different degrees of power and inter-
ests, all together, co-evolve social conventions and cultural diversity over
time.

Although it has been shown that social conventions can emerge without
the intervention of institutional mechanisms (Becker et al., 2017), promi-
nent theories of collective behavior suggest that institutions reduce cul-
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tural diversity by facilitating the emergence of social conventions (David,
1994; Kearns et al., 2009; Voigt & Kiwit, 1998; Young, 2001). It is widely
recognised that these variance-reducing institutions constitute niches, that
is, modified environments which in turn are capable of altering sources of
variation such as individual cognition and collective behaviours (Bowles
et al., 2003; J. Kendal et al., 2011; R. Lewontin, 1965). Notwithstanding,
the nature of the institution itself (i.e. whether the institution conveys di-
verse values or hegemonic values) and the institutional capacity to transmit
values to the population might interact in ways that potentially amplify or
reverse the mentioned sources of variation and the formation of social con-
ventions over time. In this chapter, we seek to answer these questions by
using a co-evolutionary model.

Evidence gathered over recent decades overwhelmingly indicates that
cognitive diversity varies substantially across human populations (J. Hen-
rich et al., 2005; J. Henrich, Heine, & Norenzayan, 2010; Levinson &
Levinson, 2003). Understanding such source of variation implies under-
standing how transmission biases affect the spread of cultural variants dur-
ing transmission processes (Boyd & Richerson, 1985; Feldman & Cavalli-
Sforza, 1976). We know that biased reasoning strategies can be adaptive
and yield fitness advantages when compared to unbiased ones. A num-
ber of these biases have been defined and modelled (Boyd & Richerson,
1985; J. Henrich & McElreath, 2003). However, despite the importance
of biased transmission in cultural evolution, there is a lack of formal co-
evolutionary models integrating a diverse range of cognitive tendencies for
the exploration of the complex dynamics of value systems and institutions.

Related to biased adoption and transmission of variants, we investigate
three relevant oppositions between biases which play an important role in
the maintenance of cultural diversity, namely:

(1) A disproportionate tendency to copy the institutional value system (cap-
tured by an emergent institution) vs. a tendency not to conform to in-
stitutional values;

(2) Deeply-entrenched beliefs vs. weak beliefs; and

(3) A preference for content vs. a preference for variants that are more
frequent in memory.

We operationalise these oppositions in terms of mathematical comple-
ments. The first opposition is characterised here as a bias to resist or con-
form to institutional values. The term compliance has been used in so-
cial influence studies to characterise the individuals’ adherence to social
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norms, beliefs, acts and values in a broad sense; for a review see Cialdini
and Goldstein (2004). A related factor used in social science is authority
bias, but in this study we will use compliance because it does not imply
that the institution is necessarily authoritarian. Compliance bias is also re-
lated to positive frequency-based biases, such as conformist bias—‘follow
the majority’ (Acerbi et al., 2016; Asch, 1956; T. J. Morgan, Acerbi, &
Van Leeuwen, 2019; T. J. H. Morgan & Laland, 2012). In scenarios where
our agents share cultural values to a high extent, compliance is very simi-
lar to conformity; however, when different sub-populations have different
value systems, the analogy does not apply.

We also examine the tendency to adhere to one’s personal beliefs, which
play an important role in the dissemination of culture (Del Vicario et al.,
2017; Quattrociocchi et al., 2016). A value system can be thought of as
a set of personal beliefs or hypotheses that affect behaviour. It can be
operationalised as a set of values that agents assign to each cultural vari-
ant they encounter throughout their life and that they are capable to re-
call. When agents have deeply-entrenched beliefs they develop a tendency
to recall information in a way that confirms their personal value system
(henceforth confirmation bias), as opposed to agents that are more prone
to consider new information to update their value systems. In this study,
we operationalise confirmation bias as a tendency to process new informa-
tion in a way that confirms one’s prior beliefs (Nickerson, 1998). There-
fore, a non-confirmation bias corresponds to informational influence, that
is a tendency to copy and reproduce information from others (Centola &
Baronchelli, 2015).

In a previous model (Chapter 4), we developed a model in which we
simulated micro-societies of agents in which we systematically manipu-
lated the degree of preference for variants value (content bias) and for the
most frequent variants in memory (frequency bias in memory), a number
of distributions of value systems in the population and the degree of insti-
tutional reinforcement of value systems. However, institutions were fixed
and hence they were not part of a co-evolutionary model of cumulative
culture. In the present study, we develop a co-evolutionary model of insti-
tutions, value systems and choice that integrates a much richer variety of
relevant cognitive biases and social influence processes. We aim to estab-
lish the effect of these variables on the evolution of cultural diversity and
the emergence of shared cultural conventions.
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5.2 Methods

5.2.1 The model

We consider a simplified micro-society of agents, each of whom is char-
acterized by a number of state variables as described in Table 5.1. The
micro-society initially contains N agents, who pair-up and interact for a
number of rounds (R). Each interaction consists of an exchange of cultural
variants selected from an initial pool of variants (V ) (Figure 5.1).

Agent pairings are scheduled using a method that takes the sequence of
agents of the population after each round, shuffles the order of agents and
then aggregates the agents into pairs, so that the order of scheduling was
randomized at each time step. Each simulation begins with N agents, each
initialised with a unique cultural variant and a value system. Agents’ pro-
duction of variants and their value systems evolve according to the model
dynamics described in section 5.2.2. Population size was kept constant.
Model runs proceeded in discrete time steps, called ”rounds”. For illustra-
tion purposes, a flowchart depicting relevant activity during one round is
diagrammed in Figure 5.1.

Agents 
Initialization

Agents 
pair-up

Agents
present and 

observe 
cultural 
variants

Agents store 
variants in 
memory

Institution 
initialization

Agents 
choose a 
variant 

Agents value 
system 
update

Institution 
update

Probabilistic 
function of 

variant 
choice

Figure 5.1: Flowchart depicting relevant activity during one round. Arrow direction rep-
resents the time-flow of events. Plain lines represent transition from one event to the
following one. Dashed lines represent new data that is used to update agents prior infor-
mation, affecting agents’ variant choice over time.
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5.2.2 Standard model dynamics

Let X = {x1,x2, . . . ,xV} be a vector of V cultural variants (each variant rep-
resents a different kind of property, taste or behavior of an agent regarding
a particular trait (e.g., language, norm, religion, music choice, etc.) and
takes its value from the combination of a range of parameters (see Equa-
tion 5.3)), and let A = {ai,a j, . . . ,aN} be the set of agents in a population.
In the initial state each agent n ∈ A is randomly assigned a cultural variant
v∈ X selected from X with replacement, so that the model is not initialised
with maximum diversity. Then, xnv0 is a random variant v assigned to an
agent n at round 0 (r = 0). For example, at round 0, xiv0 is a random variant
initially assigned to agent i, x jv0 is a random variant initially assigned to
agent j, and so on.

At the beginning of each round r, agents are paired randomly. Once
agents are paired, they interact by presenting and observing one cultural
variant (Figure 5.2). Agents’ choice of variant xnvr to produce is sampled
from its history (Figure 5.2, top) according to the probabilistic function
defined in Equation 5.2. At this point, there is a small probability of in-
novation, in which case, the variant produced will be randomly sampled
from one of the V variants the population was initialised with. Both agents
add both the produced and observed variants to their memories (Figure 5.2,
bottom). That is to say, at round r, when agent i and agent j interact, agent
i produces variant xivr and agent j variant x jvr. Thus, at each round r, the
total set of produced variants Xr in the population is a vector of N (one
per agent) cultural variants (xivr,x jvr, . . . ,xNvr), where xivr is the variant
produced by agent i, x jvr is the variant produced by agent j, and so on.
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Figure 5.2: Illustration of the interaction between a pair of agents at one round of the
simulation. At round 3, agents have already some variant tokens in memory, which they
have stored in previous rounds. For each variant in memory, the letter represents the
type (e.g. a = x1, b = x2,. . . ). Index p represents variant tokens that were produced by
self, while index o are variants that were observed by the agent (variant produced by
other agent). Index r indicates the round at which the variant was stored. During the
round depicted (round 3), first, one variant token in each agent’s memory is selected
for production (in the figure, the tokens surrounded by a star). Once both agents have
produced a new token of their selected variant, they each proceed to store both in memory.

State variables and probability distribution of variants

The model takes several parameters as described below:

(a) Number of agents (N): We simulate micro populations of N = 10 and
N = 100 agents. Each agent is initialised with a cultural variant ran-
domly selected from a pool of V distinct cultural variants with replace-
ment, where V =N at the beginning of each simulation. We also assess
the robustness of our findings with respect to the initial variant assign-
ment by examining random assignment without replacement.

(b) Number of rounds (R): Model runs proceeded in 100 rounds r. At each
round, the pairing is randomized in such a way that each agent pairs up
with another agent (N/2 pairs are formed).

(c) Value system (S): Each agent n has a value system S, which is a vector
of length V , which assigns a numerical value to each possible variant-
choice. The state of the value system S of agent n at round r can be
defined as a vector that contains one value for each V possible variant-
choices, (sn1r,sn2r, . . . ,snV r), where sn1r is the value assigned by agent
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n to variant x1 at round r, and sn2r is the value assigned by agent n to
variant x2 at round r, and so on. Thus, snvr is the value assigned by a
random agent n to a cultural variant xv at round r. S assigns a number
between 0 and 1 to each variant in V (that is, there is a preference on V
represented by s : V ). For example, if at round 0, S is (1,0, . . . ,0), then,
at round 0, agent n assigns value 1 to variant x1, value 0 to variant x2,
and so on. We examine two conditions:

1. Pseudo-random (PR): In the initial state, each agent n is assigned a
value system S so that the value of each variant is a random floating
point number N such that 0≤ N ≤ 1.

2. One takes all (OTA): Agents in the population are initialised with
a hegemonic value system S so that the value assigned to one pre-
ferred variant is 1, and to the others 0.

(d) Institution (G): We assume that the micro-society is governed by a
global institution G, which is a vector of length V . The state of the
institution G at round r can be defined as a vector that contains one
value for each V possible variant-choices, (g1r,g2r, . . . ,gV r), where g1r
is the value assigned by the institution to variant x1 at round r, and
g2r is the value assigned by the institution to variant x2 at round r, and
so on. G assigns a numerical value between 0 and 1 to each possible
variant-choice. For example, if at round 0, G is (1,0.5, . . . ,0), then,
institution G assigns value 1 to variant x1, value 0.5 to variant x2, and
so on. At each round r, the institutional value gvr assigned to each
possible variant-choice xvr is calculated as an arithmetic mean of the N
values sivr,s jvr, . . . ,sNvr, where sivr corresponds to the value assigned
by agent i to variant xvr, and s jvr corresponds to the value assigned by
agent j to variant xvr, and so on. That is:

gvr =
1
N

N

∑
nvr=1

snvr =
sivr + s jvr + . . .+ sNvr

N
(5.1)

(e) Institutional power (ε): It is a parameter that captures the capacity of
the institution to effectively communicate its values to the agents. It
takes values from 0 (null capacity) to 1 (full capacity).

(f) Compliance bias (κ): It is a parameter that identifies the agent’s bias
to conform to institutional values. Its complement (a non-compliance
bias κ′) identifies a preference for the agents’ own choice and value
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system, which can be (or not) different than institutional preferences.
It takes values from 0 (null compliance) to 1 (full compliance).

(g) Confirmation bias (γ): It captures the tendency of agents to give stronger
weight to their prior beliefs or hypotheses, which are encoded in the
current value system of each agent. Thus, γ identifies the tendency
of an agent n to assign value to a cultural variant xv according to its
current value system snvr. Its complement γ′ identifies a tendency of
agent n to assign value to a cultural variant xv according to its current
choice, regardless of the current value system snvr. That is, when γ is
low, agents that are more prone to consider new information to update
their value systems; γ takes values from 0 to 1.

(h) Content bias (β) encompasses two parameters (b, d). Parameter b is
the agents’ sensitivity to variant value (s), and ranges from 0—not sen-
sitive at all—to 1—fully sensitive—in steps of 0.1. Parameter d speci-
fies whether the variant is in the agent’s memory record, that is to say,
whether the variant has been produced or seen at least once; d is 1 if
the variant is in memory, and 0 otherwise—in other words, one cannot
prefer to re-produce a variant due to its quality until one has been ex-
posed to that particular representation. Parameter β is equal to b× d.
Thus, content bias (β) assigns a value from 0 to 1 to each variant. Note
that, at each round, as explained in the model dynamics, each agent
stores two variants in its memory (the one that was produced by the
agent itself and the one that was produced by its partner). Thus, con-
tent bias does not affect the storage process in our model (agents store
in memory all the variants they encounter), it only affects the agents’
production. In simple words, the higher the value of β, the higher the
probability of producing a cultural variant due to its quality. When
content bias is 0, we have a neutral content model. Content bias values
from 0 to 1 in steps of 0.1 are examined.

(i) Frequency bias (β′): It is a parameter identifying an agent’s preference
for variants that are more frequent in its history. It corresponds to the
complement of β. This parameter is limited by the agents’ memory
size m, that is, the maximum amount of history (in rounds) that can in-
fluence the variant choice. Each variant found in the history is a variant
that was either produced or observed by the agent. A memory size of
m means that the model remembers the last M variants h |M,m from
the history h. Given an agent n and a variant xv, then f (xnv | hnr|M,m)
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is the relative frequency of variant xv in the memory of an agent n by
round r. Thus, f (xnv | hnr|M,3) corresponds to the relative frequency of
variant xv in an agent memory for the last 3 rounds. Memory size be-
tween 2 and 4 rounds was associated with better model fit in Tamariz
et al. (2014).

(j) Innovation rate (µ): Agents can generate novel variants. We fix the in-
novation probability at 0.02 by using a flat distribution φ(X) weighted
by innovation rate, which means that 98% of variant choices would re-
flect the combined distribution (probability distribution yielded by all
the parameters described above), while 2% would be a random choice
among all V initial variants in X . The probability level selected re-
flects the innovation rate found in Fay et al. (2010) experimental data
by Tamariz et al. (2014).

Model parameters
Entity Parameter Symbol Number of levels Value(s)

Agent

Content bias β 11 0.0 to 1.0 in steps of 0.1
Confirmation bias γ 11 0.0 to 1.0 in steps of 0.1
Compliance bias κ 11 0.0 to 1.0 in steps of 0.1

Memory m 1 3
Innovation µ 1 0.02

Value system of an agent n S = {sn1r,...,snV r}
Variant value (assigned by an agent) s Eq.5.3
Agents’ sensitivity to variant value s b 2 [0,1]

Variant in agent’s memory record d 2 [0,1]
Agent’ history h

Flat distribution of variants φ(X)
Typical variant xv
Typical agent n

Round r

Global

Initial set of agents A = {ai, . . . ,aN}
Initial number of agents per micro-society N 3 10,50,100

Initial vector of cultural variants X = {x1, . . . ,xV}
Initial number of variants per population V 3 10,50,100

Number of rounds R 1 100
Number of games per round N/2 3 5,25,50

Institution G = {g1r, . . . ,gV r}
Institutional value (assigned by G) g Eq.5.1

Institutional power ε 11 0.0 to 1.0 in steps of 0.1

Table 5.1: Parameters, state variables and scales.

For each round in the simulation, for each agent, the model yielded a
probability distribution of variants (x) for a given history (h) of previous
rounds, according to the following equation. We use the apostrophe (′) to
denote the probabilistic complement: a′ = 1 - a.

Pr(xnvr | hnr) = µ′β′ f (xnv | hnr|M,3)+µ′βsnvr +µφ(X) (5.2)

where Pr(xnvr | hnr) corresponds to the probability that an agent n produces
variant v at round r given the specific history of agent n by round r.
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We run each simulation with 14641 different parameter value combina-
tions. For each parameter combination, we ran the simulation 200 times.
For each model run we assume that all agents have the same connectivity
dynamic, biases and memory sizes. The results below show the average
and standard deviations of the number of runs of each parameter combi-
nation examined. All parameters and state variables can be found in Table
5.1.

The co-evolution of variant-choice, value system and institutions

The model is initialised with each agent having a cultural variant and a
value system (Section 5.2.1). At each round, the value assigned by each
agent n to variant-choice xv is updated according to the following equa-
tion, where, as already noted, the apostrophe (′) denotes the probabilistic
complement: a′ = 1−a:

snvr+1 = gvrεκ+(xvrγ
′+ snvrγ)κ

′ (5.3)

where snvr+1 is the value assigned by an agent n to a variant xv in the next
round r + 1, gvr is the institutional value assigned by an institution to a
variant xvr, ε stands for institutional power, κ for compliance bias, γ is a
parameter that captures the relative weight of the current value system snvr
in its future value system snvr+1, in a way that affirms the agent’s prior
value system or hypothesis (or confirmation bias), and xvr represents the
target variant, which takes value 1 if it has been produced in the current
round, and 0 otherwise. Since one agent might eventually produce cultural
variants which do not match its current value system but which inform its
future value system, γ′ captures the relative weight of current choices in the
future variant value snvr+1 at round r+1, regardless of the current variant
value snvr. For illustration purposes, Figure 5.3 shows some characteristic
parameter combinations that satisfy three different solutions for Equation
5.3.

As explained above, by implementing this algorithm our model is able
to update agent’s value systems from round to round. In turn, the form
of the institutional value system is also updated at the beginning of each
round. The co-evolution of institutional value systems and individual value
systems model the value s assigned by each agent to each possible variant
over time.
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snvr=0 snvr=0.5 snvr=1

gvr=0

gvr=0.5

gvr=1

0.25

0.50
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snvr+1

Figure 5.3: Illustration of some parameter combinations in the 3D space. Given that an
agent n produces variant xv at round r, plots show all possible combinations of values of
institutional power (ε), compliance bias (κ) and confirmation bias (γ) that satisfy snvr+1 =
0.25, 0.5 and 0.75, according to Equation 5.3, for three different levels of gvr and snvr. For
example, if at round r a variant xv is assigned value gvr = 0 by an institution and value
snvr =1 by an agent n with compliance bias κ = 0.5, that means that the value assigned
by the agent to variant xv at round r+1 will be snvr+1 = 0.50. Lower compliance bias (κ)
tends to contribute more with variant value when institutional values (g) are weak (see top
right). When institutional values are stronger and agent’ values (s) are weak, confirmation
bias and institutional power tend to invert the pattern of contribution to variant value (see
bottom left).
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Quantifying cultural diversity

In the present chapter, we are interested in the diversity of agents’ produced
variants and in the diversity of institutional values at each time step. As in
previous chapters, we use Shannon’s entropy to quantify diversity. In order
to facilitate the comparison with other metrics and to eliminate the effect
of different population sizes and time series, we normalise entropy in the
same way as in Chapter 3 by log2 n to obtain Hn(V ) ∈ [0,1]:

Hn(V ) =−∑
viεV

p(vi) log2 p(vi)

log2 n
(5.4)

where V corresponds to the set of variants, and p(vi) is the probability
of ith variant in that set, and n is the number of variants. High entropy
corresponds to high diversity and also to low convergence on shared con-
ventions.

We also use a Simpson’s index. However, unlike in Chapter 4, instead
of taken the Simpson’s reciprocal index, we use the Simpson’s diversity
index in order to facilitate the comparison with normalise entropy when
testing robustness. Simpson’s diversity index (D) is commonly used to
measure the degree of dominance of variants in the community (Simpson,
1949). It is a simple mathematical measure that characterizes diversity in a
data set. The proportion of variants relative to the total number of variants
(pi) is calculated and squared. The squared proportions for all the variants
are summed, and the complement is taken:

D = 1−
R

∑
i=1

p2
i (5.5)

where R corresponds to the total number of existing variants in the system
(richness). D ranges from 0 (one variant dominates the cultural system
completely) to 1 (all variants are equally present).

5.3 Results

5.3.1 Standard model: Initial random assignment of variants with
replacement (wR)

We first considered a model in which agents were initially assigned a cul-
tural variant selected from a pool of variants with replacement. Simulation
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outcomes show that the co-evolutionary processes of value systems, cogni-
tive biases and institutions implemented in the model tend to stabilize the
diversity of the produced variants over time.

Figures 5.4 and 5.5 show the evolution of the cultural diversity of the
set of produced variants at each round for a selection of representative
parameter combinations of institutional power (ε), compliance bias (κ),
confirmation bias (γ) and content bias (β). Figures 5.6 and 5.7 show the
evolution of the diversity of institutional values over time.

In general, ε facilitates the emergence of shared cultural conventions
when κ > 0. This effect is amplified or minimised depending on how di-
verse institutions are at each time step. When ε = 1, institutions have an
immense capacity to convey their values effectively to the agents. In this
scenario, when institutions are less diverse, convergence on shared cultural
conventions is faster and diversity reduction stronger. This can be observed
when we compare results of simulations using PR, where each agent was
initialised with a randomised value system, against simulations using OTA,
where agents where initialised with an homogeneous and hegemonic value
system. As figures 5.4 and 5.5 show, diversity of produced variants is lower
under OTA, and this is due to the reinforcing role of institutions, which
push diversity up (PR) or down (OTA) according to how diverse their own
value systems (the ones that they convey to the society) are. In general,
content bias (β) amplifies the effect of any parameter combination that al-
lows the emergence of asymmetries in the dispersion of values among the
set of existing cultural variants.

Interestingly, under PR and ε = 1, fully conformist populations (κ = 1)
yield lower levels of convergence than populations with intermediate levels
of κ. This result seems counterintuitive, but it is explained by the intrin-
sic properties of the institution: the emergent institution in this scenario
is highly diverse and also has capacity to influence the agents’ choices,
resulting in a relatively high diversity of produced variants for all levels
of content bias β. In other words, a compliance bias pushes diversity up
when institutions are diverse, and pushes diversity down when institutions
convey value systems with low diversity and strong dominance of one or
few cultural variants.

Intermediate values of ε drastically reduce the formation of cultural
conventions when compared to high levels of ε, and this effect increases
with κ. Interestingly, a decrease in ε increases diversity in both scenarios,
PR and OTA, regardless of the diversity of institutional values promoted by
the institution. Indeed, we can expect diverse institutions, like those that
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emerge in PR, to boost diversity. But, how is it possible that institutions
in OTA, which convey extremely unambiguous and hegemonic value sys-
tems, also increase diversity. The answer lies in the strength with which
these values, whether diverse or not, are transmitted to the population by
the institutions. When ε = 0.5 and κ = 1, institutions are just partially
successful conveying their values. This leads to a weaker transmission of
institutional values over time (i.e. on average, the institutional value as-
signed to each existing cultural variant loses value at each time step). This
combined with a population of agents willing to nevertheless keep adopt-
ing institutional values, ends up weakening agents’ value systems too. The
result is a society where values fade over time, leading to a limit in which
the change in the frequency of an existing variant in the population is due
to random sampling of variants. However, when ε = 0.5 and agents do not
fully conform, κ < 1, alternative options for the emergence of cultural con-
ventions arise. This is the case when κ = 0.5 and γ < 1: In this scenario,
cultural conventions can emerge from the mutual reinforcement of local
interactions and institutional values. This is because as agents cease to
fully conform with the social norms promoted by the institution, they be-
gin to assign value to variants according to what is produced in their local
interactions, which produces a stable convergence equilibria according to
β. In a relatively wide range of these intermediate situations the model can
be thought of as the most realistic example of most human communities,
where neither are institutions fully powerful to direct the agents’ choices,
nor are agents fully conformist or fully non-conformist.

When ε = 0, institutions have no capacity to convey their values to the
agents, so agents end up converging due to local interactions or not con-
verging at all. For example, agents can attain moderately to high levels of
convergence on cultural conventions without any institutional intervention
when ε is 0 and γ is very high. In this scenario, agents converge due to
their capacity to coordinate in their local interactions. On the other hand, a
reduction in γ implies that the agents’ value systems become more volatile
and less dependent on their individual experiences, resulting in a decrease
in convergence.

An unusual simulated case is when agents are fully conformist, κ = 1,
and institutions have no power at all. In this scenario, the system tends to
high diversity of produced variants because variant selection ends up being
similar to a random choice among variants with null value. A model that
can be thought of as a society of believers drifting around and looking for
something to believe in. On the other extreme, when κ = 0 and γ = 1,

117



Chapter 5

we have a society where agents do not conform at all but are fully biased
towards their prior beliefs. In this case, convergence on shared conventions
is dependent on the degree of initial similarity between the agents’ value
systems.
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Figure 5.4: Cultural diversity (measured as Normalised Shannon Entropy Hn) of the set of
produced variants over each level of institutional power (ε), compliance bias (κ), confir-
mation bias (γ) and content bias (β). Simulations with initial random assignment of vari-
ants selected from X with replacement (wR) and initial randomised value system (PR).
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Figure 5.5: Cultural diversity (measured as Normalised Shannon Entropy Hn) of the set of
produced variants over each level of institutional power (ε), compliance bias (κ), confir-
mation bias (γ) and content bias (β). Simulations with initial random assignment of vari-
ants selected from X with replacement (wR) and initial randomised value system (OTA).
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Figure 5.6: Diversity (measured as Normalised Shannon Entropy Hn) of institutional val-
ues over each level of institutional power (ε), compliance bias (κ), confirmation bias (γ)
and content bias (β). Simulations with initial random assignment of variants selected
from X with replacement (wR) and initial randomised value system (PR).
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Figure 5.7: Diversity (measured as Normalised Shannon Entropy Hn) of institutional val-
ues over each level of institutional power (ε), compliance bias (κ), confirmation bias (γ)
and content bias (β). Simulations with initial random assignment of variants selected
from X with replacement (wR) and initial randomised value system (OTA).
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5.3.2 Assumptions concerning initial variant assignment: Assignment
without replacement

Our model makes an important assumption about the initial state of diver-
sity of cultural variants in the society, which depends on the method used
to assign variants to agents at time 0. In the simulations examined so far,
each agent is initialised with a cultural variant randomly selected from a
pool of V distinct variants with replacement. This means that agents might
share some variants in the initial state, resulting in a reduction of entropy.
On average, this method yielded an initial diversity of around 0.75 (mea-
sured as Normalised Shannon Entropy, Hn). While we have shown that the
co-evolution of value systems and institutions affect cultural diversity in
different types of populations according to particular combinations of cog-
nitive biases, we aim to asses the robustness of these findings and to what
extent the model remains unchanged under different initial conditions of
diversity. When agents are initialised with a cultural variant selected form
a pool of variants without replacement, they start the simulation with a
unique cultural variant, which means that diversity is the highest at time
0 (Hn=1). However, in both conditions (with and without replacement),
convergence on shared cultural conventions remains unchanged. Although
diversity is initially lower when agents share variants from the beginning,
mean diversity at equilibrium was the same in both conditions and re-
mained unchanged in response to diversity perturbations, which implies
that the system behaves consistently against these different assumptions;
compare Figures 5.4 and 5.5 with Figures 5.8 and 5.9. The same consis-
tency can be observed in regard to diversity of institutional values; compare
Figures 5.6 and 5.7 with Figures 5.10 and 5.11).
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Figure 5.8: Cultural diversity (measured as Normalised Shannon Entropy Hn) of the set
of produced variants over each level of institutional power (ε), compliance bias (κ), con-
firmation bias (γ) and content bias (β). Simulations with initial random assignment of
variants selected from X without replacement (woR) and initial randomised value system
(PR).
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Figure 5.9: Cultural diversity (measured as Normalised Shannon Entropy Hn) of the set
of produced variants over each level of institutional power (ε), compliance bias (κ), con-
firmation bias (γ) and content bias (β). Simulations with initial random assignment of
variants selected from X without replacement (woR) and initial randomised value system
(OTA).
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Figure 5.10: Diversity (measured as Normalised Shannon Entropy Hn) of institutional
values over each level of institutional power (ε), compliance bias (κ), confirmation bias
(γ) and content bias (β). Simulations with initial random assignment of variants selected
from X without replacement (woR) and initial randomised value system (PR).
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Figure 5.11: Diversity (measured as Normalised Shannon Entropy Hn) of institutional
values over each level of institutional power (ε), compliance bias (κ), confirmation bias
(γ) and content bias (β). Simulations with initial random assignment of variants selected
from X without replacement (woR) and initial randomised value system (OTA).
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5.3.3 Population size

When population size increases, the emergence of shared cultural conven-
tions is delayed, but the model yields qualitatively similar results for the
population sizes examined. Figure 5.12 shows that the relative diversity of
cultural variants remains higher in bigger populations until they eventually
find their equilibrium. After 100 rounds, diversity outcomes are similar
in both conditions. This is particularly true when content bias is greater
than 0 (β > 0), because it allows agents to be sensitive towards variants
value and, in turn, find similar equilibria under conditions of small and
big population sizes. In contrast, for neutral content models (β = 0) dif-
ferences between conditions are greater, with smaller populations reaching
higher convergence. This is simply because the smaller the population,
the higher the probability of sharing a variant by chance. Interestingly, in
100 agent micro-societies, when institutional power is limited (intermedi-
ate values of ε), time to equilibrium is longer. This is due to the com-
bined effect of interacting forces that simultaneously push diversity up and
down, which results in a complex system that delays the formation of con-
ventions even longer. In the present example, institutions are diverse and
weak (which pushes diversity up) and agents individual biases are mod-
erate (which slightly pushes diversity down due to alignment in the local
interactions). In other words, in bigger populations, intermediate levels
of institutional power combined with intermediate levels of individual bi-
ases produce complex dynamics of antagonistic forces which translate into
more time to reach consensus. This result implies that population size has
an effect on model outcome. However, model results are still very similar
qualitatively, which means that they hold for the range of populations sizes
considered under the aforementioned assumptions.

5.3.4 Alternative alpha diversity indexes

A possible concern with the results of our study is that different diver-
sity indexes might yield opposite trends. So far, we have used Shannon
entropy (Hn) as a measure of diversity. Richness (i.e. simply a count of
variant types) and Simpson’s diversity index, are also widely used in ecol-
ogy studies. While the Shannon index stresses the richness component and
the unpredictability of variant types, the Simpson index gives more weight
to the evenness component and the degree of dominance of variant types.
These differential emphases on different aspects of diversity might give
rise to the possibility of non-conformance of diversity indexes, as has been
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Figure 5.12: Cultural diversity (measured as Normalised Shannon Entropy, Hn) of the
set of produced variants over time in 10 and 100 agents micro-societies. Results of three
representative scenarios of institutional power (ε). Each scenario shows three different
levels of content bias. Other cognitive biases were fixed at 0.5. Simulations were ini-
tialised with a random assignment of variants selected from X with replacement (wR) and
a randomised value system (PR).

demonstrated in the past (Hurlbert, 1971; Nagendra, 2002).
In order to address this potential issue we also computed on Richness

(R) and Simpson’s diversity index (D) for a number of representative sce-
narios using the standard model (Figures 5.13 and 5.14). Results using
these alternative alpha diversity indexes are fully consistent with our pre-
vious analyses. Model outcomes do not show opposite trends in response
for the Shannon, Simpson and Richness indexes. Nevertheless, these addi-
tional analyses add relevant information about the evolution of the compo-
sition of the pool of cultural variants at each time step. Differences between
highest and lowest R(' 0.5) are smaller than differences in Hn(' 0.68)
(e.g. see R and Hn when ε = 1, κ = 0.5 and γ = 0.5), which suggests in-
tense competition among the surviving cultural variants over time, along
with a contained extinction probability in most of the scenarios examined.
Simpson’s D also confirms our previous analyses. Parameter combinations
that facilitate the emergence of social conventions (measured as a decrease
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in Hn) coincide with those where there are few dominant variants at equi-
librium (low D). Although with several important exceptions we have al-
ready explained, this happens mostly for moderate and high values of ε, κ

and β.
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Figure 5.13: Richness (measured as the number of variants -operational taxonomic units-
at each round) over each level of institutional power (ε), compliance bias (κ), confirma-
tion bias (γ) and content bias (β). Simulations with initial random assignment of variants
selected from X without replacement (wR) and initial randomised value system (PR).
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Figure 5.14: Diversity (measured as Simpson’s diversity index D) of the set of produced
variants over each level of institutional power (ε), compliance bias (κ), confirmation bias
(γ) and content bias (β). Simulations with initial random assignment of variants selected
from X without replacement (wR) and initial randomised value system (PR).
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5.4 Discussion

We have provided the first detailed analysis of the co-evolution of diversity
of cultural variants, institutional values and agents’ value systems for vary-
ing conditions of compliance, confirmation, content and frequency biases,
and for different levels of institutional power.

Institutional values and their capacity to convey those values to the
population affects the agents’ choices and in turn the diversity of cul-
tural variants. In general, institutional power facilitates the emergence
of shared cultural conventions. These results generally confirm previous
studies suggesting that institutions facilitate the emergence of social con-
ventions (David, 1994; Kearns et al., 2009; Voigt & Kiwit, 1998; Young,
2001), but they also show that powerful institutions can play an important
role in the maintenance of cultural diversity. When institutions promote
diversity and agents conform to the values promoted by institutions, the
institutional capacity to transmit values efficiently becomes a prominent
mechanism for the persistence of cultural diversity.

These results, however, are dependent on the institutional power and the
cognitive biases of the population. In order to achieve high levels of con-
vergence, societies with powerful institutions require agents to be at least
moderately compliant, moderately content biased and moderately prone to
consider new information to update their value systems. In the absence of
institutional power and therefore of institutions that are in place to guide
convergence, strong conventions can also emerge. This is consistent with
previous studies showing that social conventions can emerge without the
intervention of institutional mechanisms (Becker et al., 2017). However,
in this scenario, high levels of convergence require a totally different com-
bination of cognitive biases and value systems. Our model shows that, in
the absence of institutional power, societies require more hegemonic and
homogeneous values at the population level, higher levels of confirmation
bias and lower levels of compliance to form strong cultural conventions.
In this scenario, the agents’ value systems are similar and they are addi-
tionally reinforced by a confirmation bias in the local interactions. Agents,
therefore, end up having strong and similar values. As a result of this, pop-
ulation convergence on shared conventions increases quickly as content
bias increases.

Institutional diversity arises from the diversity of the agent’s value sys-
tems. The more diverse the agents’ values are the more diverse institutions
are. This is unsurprising, because it responds to the way in which the model
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is constructed. What is noteworthy is that institutions with unambiguous
and hegemonic value systems can also increase diversity. However, this
only happens when institutions are partially successful at conveying their
values: When transmission weakens institutional values and agents have
a moderate-high compliance bias, the result is that population value sys-
tems also fade over time and in turn cultural diversity skyrockets. Never-
theless, societies with moderately powerful institutions (either diverse or
hegemonic) can stabilize the diversity of the produced variants at interme-
diate levels when agents are moderately compliant, especially when agents
have a moderate-high tendency to consider new information to update their
prior value systems. These results show that institutions, the agents’ values
and biases interact affecting the dynamics of social conventions: Different
institutions can yield different or similar levels of diversity depending on
how they interact with the agents’ cognition.

Formal models show that conformity with institutional norms or beliefs
can safeguard cultural diversity from erosion (Boyd & Richerson, 1985).
In particular, strong conformity seems to affect human culture by facilitat-
ing stable in-group uniformity, which then stabilises between-group cul-
tural diversity over time (J. Henrich & Boyd, 1998; N. Henrich & Henrich,
2007). In our model, compliance with institutional value systems works in
a similar way in some scenarios: For example, when ε = 1 and the popula-
tion behaves as an in-group (homogeneous and hegemonic value systems
(OTA), an increase in diversity tends to increase convergence. In this con-
text, when the population forms an out-group (PR), cultural diversity tends
to increase when we move from intermediate levels to high levels of κ. Our
model, therefore, suggests that compliance can be considered a prominent
mechanism underlying the stabilization of cultural diversity.

However, our results also show that cultural diversity can be maintained
without an individual compliance bias. This is particularly true when γ< 1,
that is, when agents are more prone to use new information to update
their value systems. Previous studies have suggested the possibility that
the maintenance of the stability of cultural diversity could occur without
a conformity bias (Acerbi et al., 2016). An interesting direction for fu-
ture research would be to implement a conformity bias (disproportionate
tendency to copy the majority) and test the results against the compliance
bias implemented here. This would allow us to check whether a lack of
confirmation bias, in combination with other evolutionary pressures, is a
candidate for the preservation of cultural diversity in scenarios without an
individual-level conformity bias.

133



Chapter 5

Interestingly, in some scenarios (intermediate values of ε and κ), our
study is consistent with recent studies showing that confirmation bias is
determinant for the formation of communities of common interests, which
in turn rises cultural variation (Del Vicario et al., 2017). In contrast to
these results, in particular in PR scenarios, our simulations show that a
strong confirmation bias without a compliance bias tends to increase con-
vergence. It is still unclear, however, whether a confirmation bias alone
can drive convergence on shared conventions without endowing individu-
als with other cognitive biases related to the intrinsic value of the cultural
traits—in our case, a general individual-level content bias.

To ensure that our results were not dependent on the range of initial
values of cultural diversity, we ran simulations using an initial assignment
of variants without replacement. For all conditions the results were qual-
itatively identical to the runs with initial assignment of variants with re-
placement. We also ran simulations using a populations of 10 and 100
agents. Simulations results were again very similar between conditions.
Additionally, we quantified diversity outputs using a number of alternative
well-established alpha diversity indexes and we verified that all the differ-
ent metrics yielded similar results. All these robustness tests mean that our
model holds for a wide range of critical assumptions.

5.5 Conclusions

This chapter has introduced institutions, value systems and a set of cog-
nitive biases into the dynamics of cultural evolution. This co-evolutionary
model formalises the idea that cultural diversity changes with the processes
of cognitive and institutional interaction. The interaction between cogni-
tive biases, value systems and institutions reveal a complex relationship
between individual-level compliance, confirmation bias and value systems
and institutional-level values and power. In general, institutional power
facilitates the formation of cultural conventions. However, institutional
power can increase cultural diversity when agents are compliant and insti-
tutions promote diverse values.

In the absence of institutions that guide convergence strong conventions
can also emerge. In our simulations, this occurs when populations of non-
compliant agents have similar value systems and are endowed with strong
individual-level confirmation bias. In more realistic scenarios, where insti-
tutional power is intermediate, a moderate compliance bias can be a potent
mechanism underlying the stabilization of cultural diversity at intermediate
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levels.
The results presented in this chapter might be of interest to researchers

investigating the impact of representative institutions on the evolution of
linguistic, cultural, economic or social behavior (Becker et al., 2017; Bowles
et al., 2003; Boyd & Richerson, 2008; Centola & Baronchelli, 2015; J. Hen-
rich et al., 2005). In particular, an interesting research question for future
work will be to explore in a formal model the relationships between con-
formity and compliance biases, how they interact and how they drive the
emergence of cultural conventions in in-groups and out-groups. Future
work using our co-evolutionary model will also be focused on mathemati-
cal modelling for a wider range of institutions.

The work hitherto developed in this thesis (Chapters 2 to 5) formalise
into agent-based models (ABMs) a number of specific individual and so-
cial parameters to explore the evolution of cultural patterns. So far, we have
modelled individual-level cognitive traits and society-level structures, run
simulations and obtained averaged metrics of cultural products at the level
of the population for both individual and collective features. Indeed, in the
field of cultural evolution, agent-based models are recognised as essential
tools to explore the effects of individual variation at the individual and pop-
ulation levels. The sources of individual variation are, however, more com-
plex than what we can capture today with mathematical models. In spite of
that, the utility of agent-based models is that they are versatile enough to
include new sources of variation. That is probably why, in recent years, the
use of ABMs have also expanded in the fields of ecology and evolutionary
biology. This widespread use of ABMs has also led to the emergence of
interdisciplinary collaborations between fields that have been traditionally
separate, as well as to the use of complex systems approaches to unify con-
ceptual frameworks. According to (DeAngelis & Mooij, 2005), five major
types of individual variation can be identified in ABMs: spatial, ontoge-
netic, phenotypic, cognitive and genetic. In Chapters 2 to 5 we have used
a number of state variables and parameters that capture general individual
cognitive biases and other types of cognitive traits in addition to higher
level society features. In Chapter 6 we also consider the importance of
ontogenetic and phenotypic variation. In doing so we attempt to conceptu-
alise a compatible framework for iterated learning, niche construction and
ecological evolutionary developmental biology without needing to rely on
strong genetic constraints.
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Iterated learning and evo-devo
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Abstract

In this chapter we argue that ecological evolutionary developmental biology (eco-
evo-devo) accounts of cognitive modernity are compatible with cultural evolution
theories of language built upon iterated learning models. Cultural evolution models
show that the emergence of near universal properties of language do not require the
preexistence of strong specific constraints. Instead, the development of general abil-
ities, unrelated to informational specificity, like the copying of complex signals and
sharing of communicative intentions is required for cultural evolution to yield spe-
cific properties, such as language structure. We argue that eco-evo-devo provides the
appropriate conceptual background to ground an account for the many interconnected
genetic, environmental and developmental factors that facilitated the emergence of an
organic system able to develop language through the iterated transmission of infor-
mation. We use the concept of niche construction to connect evolutionary develop-
mental accounts for sensory guided motor capacities and cultural evolution guided
by iterated learning models. This integrated theoretical model aims to build bridges
between biological and cultural approaches.

Keywords: language evolution; cultural evolution; extended evolutionary synthesis;
niche construction; eco-devo

6.1 Introduction

Cultural evolution and biological evolution share a number of similarities
that have long been recognised (e.g. Boyd & Richerson, 1985; Darwin,
1871/1981; Durham, 1991; Lumsden & Wilson, 1981). But since cultural
inheritance and biological inheritance also encompass necessarily different
features (e.g. Boyd & Richerson, 2005; Mace & Holden, 2005; Tëmkin &
Eldredge, 2007), the study of both disciplines has followed relatively in-
dependent paths in terms of the methodologies and approaches used by
each. Notwithstanding a number of scholars have argued that studying
cultural phenomena within a unifying framework that takes insights from
evolutionary biology is potentially useful to integrate separate disciplines
(Charbonneau, 2016; Mesoudi et al., 2006). Cross-disciplinary approaches
have also been defended for the field of language evolution (e.g. Bicker-
ton, 2003; Christiansen, Dale, Ellefson, & Conway, 2002), although the
uniqueness of human languages has undoubtedly delayed the construc-
tion of theoretical integrated frameworks incorporating both the findings
in computational modelling and state-of-the-art empirical knowledge in
evolutionary developmental biology.

Human languages are different from other animal communication sys-
tems. For example, they exhibit a semantically compositional structure that
enables humans to manipulate long and complex chains of signals. This
feature is known as Fredge’s Principle of Compositionality, which essen-
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tially boils down to the fact that the meaning of a complex expression is a
function of the meaning of its parts (for an overview: Krifka, 1999; Szabó,
2017, and references therein). Compositionality of meaning is generally
assumed to be intimately connected to two other distinguishing proper-
ties of natural languages, namely their productivity and their systematicity
(Fodor & Lepore, 2002), which in turn are related to a property of the syn-
tactic principles responsible for the construction of complex expressions.
This distinctive feature of language is often referred to as recursion (e.g.
Hauser, Chomsky, & Fitch, 2002). Other properties of languages are dual-
ity of pattern, convexity, linearity or displacement (Hockett, 1960, 1966).
The simultaneous presence of these distinctive features makes human lan-
guages open-ended communication systems (Kirby, 2017).

A common way to explain the origins of these features and, more gen-
erally, language structure, is natural selection (e.g Pinker & Bloom, 1990).
But, as Eric Lenneberg pointed out, this approach can be problematic if
it intends to explain evolution as a simplistic and unidirectional mapping
of genotypes onto phenotypes, and it only pays attention to ‘the biological
usefulness of certain features of animal communication’ (Lenneberg, 1967,
p. 253). Firstly, because evolutionary biological dynamics can be radi-
cally altered by other external pressures such as the environment (Gilbert
& Epel, 2009; Sultan, 2015) or, in the case of linguistic phenotypes, cul-
ture (Kirby, 2017); secondly, because dependencies between genes and
phenotypes can not be drawn unidirectionally or attending to a single lo-
cus (Fisher & Vernes, 2015; Marcus & Fisher, 2003) when it comes to
explaining language; and finally, because it has been shown that a constel-
lation of processes that bias selection and modify the frequency of heritable
variation, such as developmental biases and niche construction, can alter
the way in which natural selection proceeds (Deacon, 2010; Laland et al.,
2000; Lewens, 2019; Robert, 2004).

This chapter is structured as follows. In the next section, we will fo-
cus on the definition of domain specificity and we will propose a revision
of the concept in light of alternative models that eschew traditional ver-
sions of genetic determinism. Then, in Section 6.3 we will review some
relevant models suggesting that language regularities can be successfully
acquired and transmitted without the need for strong genetic encoding. In
Section 6.4, we expound the minimum requirements for iterated learning to
work in the light of recent controversies. Then, in Section 6.5 we provide
a brief review of the history that led to the development of eco-evo-devo
models and argue for the need to abandon traditional dichotomies in order
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to better account for the linguistic phenotype. Finally, in Section 6.6 we
will revisit a variety of studies that might be adding evidence to support
the main hypothesis of this study: The conceptual apparatus of eco-evo-
devo models is compatible with the findings of iterated learning models
and helps dissolving the boundaries between a traditional dichotomy that
has been limiting our understanding of the evolution of language. Using
the notion of niche construction, where individual organisms play a much
central role than in standard approaches, we will propose an integrated
theoretical framework that stresses the need to connect the development of
sensory-guided motor capacities and the requirements for iterated learning.
Our conceptual model intends to help fill gaps in our knowledge about how
variational explanations (changes due to variation within the population)
and developmental explanations (changes due to variation within the indi-
vidual) relate, as well as to provide a framework for language and cultural
evolution to advance in the construction of new hypotheses upon which
triple-inheritance models can be developed.

6.2 Domain specificity

The modularity of mind is a hypothesis about the architecture of mind ac-
cording to which a number of cognitive systems, typically associated to
perception, operate in characteristic ways that makes them, among other
things, domain-specific and mostly impermeable to the operation of other
modules and cognitive systems (Fodor, 1983, 1985). There is no concep-
tual or logical connection between the notion of modularity and nativism;
but it is often the case that their proponents, on the basis of such con-
siderations as the poverty of stimulus argument, assume that such func-
tionally defined modules are associated to the corresponding Chomskyan-
modules—that is, innate repositories of domain-specific information that
are supposed to underlie our cognitive abilities in various domains. Ac-
cordingly, a system is domain specific if the class of objects and proper-
ties that it computes information about is restricted within narrow limits
(Fodor, 2000; Robbins, 2017). Under this definition, humans would be en-
dowed with systems of knowledge which serve as specialised evolutionary
devices for specific tasks. For example, knowledge of language would be
a domain-specific system that gives humans the ability required for the ac-
quisition and use of language (Chomsky, 1986; Spelke & Kinzler, 2007).
A particularly radical version of this stance is exemplified by evolution-
ary psychology and its massive modularity thesis according to which all
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extant human cognitive abilities (not just the peripheral ones) are modular
and, also, adaptations to the environment of the Stone Age (Barkow, 1992;
Plotkin, 1997). Differences as to the extent of modularity notwithstand-
ing and focusing our attention on language, it is certainly true that both
stances appear to be committed to some form of nativism according to
which neurally specific modules for language are shaped by specific genes
(Berwick & Chomsky, 2016; Pinker & Jackendoff, 2005). Researchers
have found support for domain specificity in many different ways, e.g.
looking at the competencies of infants, comparing human capacities with
other animals or using the poverty of the stimulus argument as evidence
for universal grammar (Berwick, Pietroski, Yankama, & Chomsky, 2011;
Chomsky, 1967; Pinker, 1991).

But attempts to address key questions such us ‘why only us?’ (see
Berwick & Chomsky, 2016) or, how do children acquire language with-
out sufficient evidence in the primary linguistic data (Chomsky, 1965),
have not always ended up proposing models that verify the existence of a
domain-specific module for language. To be sure, even the human- and
language-specificity of the computational operation Merge, the only puta-
tive genetically determined residue of UG in Chomsky’s Minimalist Pro-
gram (Chomsky, 1995, and later work), has been called into question on
the grounds of a detailed analysis from the perspective of the notion of
biological homology (Balari & Lorenzo, 2013, 2015). In the field of cul-
tural evolution, these same questions have been addressed using a variety
of experimental and computational methods that, without relying on strong
genetic constraints or domain specificity, model the successful acquisition
and emergence of universal properties of language (e.g. Chater et al., 2009;
Culbertson & Kirby, 2016; Kovas & Plomin, 2006; J. L. Morgan, Meier,
& Newport, 1989; Scerif & Karmiloff-Smith, 2005; Smith & Wonnacott,
2010; Zuidema, 2002).

The notion of domain specificity has traditionally been linked with in-
nateness in different ways, causing significant confusion in the field. How-
ever, if proponents of innateness argue that language acquisition is deter-
mined by genetic factors, and proponents of domain specificity claim that
language is processed in localised modules that deal exclusively with a sin-
gle information type, then we can no more argue that these two issues are
automatically interchangeable in the debates about the evolution of lan-
guage (Bates, 1994; Elman et al., 1996).

It is relatively common ground in the field of cultural evolution stud-
ies that domain-specific constraints, when genetically wired, might have
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evolved to take the form of weak biases or general capacities that, ampli-
fied by culture, interact with the linguistic system in domain-specific ways
(Culbertson & Kirby, 2016). Be that as it may, we suspect that the whole
debate may acquire a totally different flavor as soon as one adopts a de-
velopmental view. Firstly, because of the fact, firmly established already
by 19th century embryologists like Karl Ernst von Baer, that all develop-
ment follows a pattern going from the less specific to the particular and is
hardly a matter of master control genes (Minelli, 2003). Secondly, because
the traditional interpretation of the innate-acquired distinction, where what
is innate is typically assumed to be internal to the object in question and,
consequently, genetic, is most probably misleading (Keller, 2010; Wimsatt,
1986). We see no reason why the case of language should be different.

In the next section we will review some models that show how lan-
guage features can emerge in the absence of strong genetic constraints,
and demonstrate how such abilities as copying and sharing might be suffi-
cient, when combined with iterative learning, to yield outputs that appear
domain-specific without the need for strong language-related biological
predispositions.

6.3 Challenging domain-specificity

The argument from the poverty of stimulus (henceforth, POS) states that
children are not exposed to sufficient data within their linguistic environ-
ment to induce their native language. In 1967, Mark Gold provided a for-
mal proof that has usually been interpreted as evidence for this argument
(Gold, 1967). Gold’s proof showed that, given a context-free grammar,
regardless of the number of samples from an infinite language are pre-
sented to a learning algorithm, the algorithm can not accurately determine
whether the samples belong to an infinite language or to a finite subset
thereof containing the samples in question.

To investigate how a grammar that would be unlearnable by Gold’s
method could be acquired successfully, Zuidema (2002) constructed a model
that uses cultural evolution. The model implements linguistic abilities us-
ing context-free grammars and three operations called incorporation, com-
pression and generalization. When the algorithm is initiated it produces
random strings, simulating transmission from the parent to the child. In
these randomly generated strings some regularities may appear, for exam-
ple: aab, bab, cab. In this example, the child can compress the substring
ab into the non-terminal X : S 7→ aX , S 7→ bX , S 7→ cX , X 7→ ab. Then, say
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the child obtains another rule from another set of strings: Y 7→ d. Now,
the generalization operation can equate the non-terminals X and Y . This
means that the child can obtain the unobserved strings ad, bd, cd from the
resulting grammar. Over generations, in a population of agents, language
becomes more structured and unseen strings more learnable, increasing
communicative success. With this elegant model, Zuidema (2002) showed
that POS is not necessarily a hindrance for learners to successfully acquire
grammars from a class that is unlearnable by Gold’s criterion.

To explore the extent to which language genes in the form of a highly
specialised module could have co-evolved with language properties, an-
other well known computational model was constructed by Chater et al.
(2009). They simulated a population of language learning agents where
arbitrary linguistic principles could become genetically encoded via the
Baldwin effect (Baldwin, 1896; Weber & Depew, 2003, for a contempo-
rary perspective). In evolutionary biology, the Baldwin effect describes a
process where individuals have the ability to acclimatise to new pressures
during their lifespan by learning a new behaviour. This mechanism would
affect the individuals’ reproductive success and the new trait could become
gradually encoded in the genome over generations. However, Chater et al.
(2009) showed in their study that this genetic encoding gets significantly
reduced when the rate of language change is high enough. Therefore, they
concluded, since language changes much more rapidly than genes, genetic
evolution of domain-specific constrains is unlikely. As pointed out by Cul-
bertson and Kirby (2016), there is nonetheless room for a more nuanced
thesis that supports the existence of weak biases—that is, soft constraints
that can impose a continuum of weak preferences—affecting language ac-
quisition. And it could be the case that these weak biases of the individuals
were not reflected in the spoken language.

Kirby et al. (2007) investigated this by testing how innate biases are
related to universal properties of language. Their model shows that cul-
tural transmission can amplify weak biases and end up producing language
properties which are near universal. If this is the case, cultural transmission
would have produced ‘apparent adaptations’, that prevented the evolution
by natural selection of strong constraints in the form of domain-specific
genes, mainly because those genes would be highly prone to drift.

We know, however, that the relationship between learners’ biases and
language structure is not straightforward when it comes to explaining lin-
guistic variation. In a recent study that uses both a Bayesian model of
learning and transmission and collected data from an artificial language
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learning experiment that mirrors the model, Smith et al. (2017) showed
that weak biases can have a wide range of effects on language structure,
from strong to weak, or even no effects whatsoever. Therefore, transmis-
sion and use are essential for understanding the interactions between biases
and statistical learning.

For the purpose of this chapter, the examined models constitute suffi-
cient evidence to illustrate the discussion for the next section. For a more
detailed review of this line of work see Kirby (2017).

6.4 What does iterated learning actually require?

Berwick and Chomsky (2017, p. 172ff ) argue that cultural evolutionary
approaches have generally mistaken the word ‘universal’ as a property of
the faculty of language with Greenberg’s linguistic universals (Greenberg,
1966), or properties of externalised languages. They claim that what ulti-
mately evolves in these models is a population of learning agents’ choices
and agents that already had the ability to choose between two alternative
concept representations. In their words, this would not solve the problem
of where a universal comes from (e.g. compositionality) because the abil-
ity to build context free grammars, generate infinite languages and/or even
something like Merge is presupposed. Thus, they conclude, iterated learn-
ing models do not satisfactorily attempt to delimit any pre-existing innate
universal grammar (UG) related with the language faculty.

But this might not be the case. Iterated learning models of language evo-
lution define stochastic processes that can be mathematically characterised
using Markov chains. To analyse the requirements for iterated learning, it
is necessary to understand the core concepts that define the properties of
Markov chains. In Appendix C, we provide an accessible summary that
includes a brief presentation of Markov chains, along with a numerical ex-
ample applied to language transmission. For now, it is important to note
that Markov chains are very useful to analyse iterated learning processes
by computing a transition matrix (a square matrix that gives the proba-
bilities of different languages going from one to another) and finding the
stationary probability of each language. For more detailed explanations of
Markov chains see Kemeny and Snell (1983), Brémaud (1999, Ch. 2), or
Griffiths and Kalish (2007), for example.

However, in the real world, learners have individual biases that affect
the results of the predictions of an iterated learning process that has been
reduced to a Markov chain. In order to construct learning algorithms that
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incorporate a wide characterization of these biases for a wide set of cogni-
tive features, a number of researchers have used bayesian agents applied to
human cognition (e.g. J. R. Anderson, 1990; Oaksford & Chater, 1998) and
the emergence of linguistic regularities (e.g. Brighton, 2002; Kirby, 2001;
Smith, Kirby, & Brighton, 2003). Interestingly, the predictions of these
computational approaches have been successfully reproduced and tested
against data obtained from psychology experiments with human partici-
pants (Kirby et al., 2008; Tamariz & Kirby, 2015).

Here, we review Bayes’ rule applied to language acquisition. For a
detailed analysis of iterated learning using learning algorithms based on
Bayesian inference, see Griffiths and Kalish (2007).

The Bayesian framework used in iterated learning models computes the
posterior probability of an event according to Bayes’ theorem:

P(h | d) = P(d | h)P(h)
P(d)

(6.1)

where P(h), named prior probability distribution, is the estimate of the
probability of the hypothesis h∈H before d is observed—it encodes learner’s
biases. P(h | d) is the posterior probability, the probability of h after d is
observed. P(d | h), named the likelihood, is the probability of observing d
given h, and P(d), named the marginal likelihood, is the probability of d
averaged over all hypothesis,

P(d) = ∑
h∈H

P(d | h)P(h) (6.2)

Applied to language acquisition, h is a language, and d the set of ut-
terances sampled from the target language. Additionally, each learner has
a learning algorithm (LA) that specifies the procedure for choosing h af-
ter observing d, and a production algorithm (PA) that specifies how they
choose d given h.

Now, if we assemble this rule from generation to generation by forming
an iterated learning process based on the principles of Bayesian inference,
we have a Markov chain where each learner produces a set of data (a pos-
terior distribution over languages) by combining a prior (representing their
inductive biases) with the data produced by the previous generation. Then,
this data is supplied to the next generation, and so on, as illustrated in
Figure 6.1.

As stressed by Griffiths and Kalish (2007), a prior should not be in-
terpreted as reflecting innate predispositions to language acquisition, but
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𝑑𝑑0

𝑃𝑃𝐿𝐿𝐿𝐿 ℎ 𝑑𝑑 ℎ1

𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑 ℎ 𝑑𝑑1

𝑃𝑃𝐿𝐿𝐿𝐿 ℎ 𝑑𝑑 ℎ2

𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑 ℎ 𝑑𝑑2

Figure 6.1: Iterated learning has been proposed as an explanation for the emergence of
linguistic regularities and the existence of linguistic universals. Each learner sees a set
of utterances (d) produced by the previous generation, forms a hypothesis (h) about the
language from which those utterances were produced, and uses this hypothesis to produce
the data that will be supplied to the next generation. Figure adapted from Griffiths and
Kalish (2007)

.

as a collection of factors, not necessarily domain-specific constraints, that
affect the agents’ own hypothesis. So, although there might be a sense in
which we could correctly say that there are basic functionalities built into
the model, none of them are language related. In fact, these models re-
quire only two skills: The ability to learn data and the ability to produce
data (for transmission). The mechanisms underlying these abilities may be
quite elaborate, but, to make the point clearer, not innately determined (in
the traditional sense) to deal with specifically linguistic data.

We can observe, then, that the concept of a pre-existing biological con-
dition leading our species alone to possess language is not in fact dis-
cussed in the above computational models. Instead, what is challenged
is the specificity and language-related origin of that genetic basis. In this
line of thought, Kirby (2017) pointed out that if we want to look for hu-
man adaptations related to a precondition for language, then we might bet-
ter look at the biological origin of these two traits: The ability to copy
vast sets of behaviours, and our predisposition to share. These two non-
language-specific predispositions seem to be the basic requirements for
iterated learning models to work. It is important to stress here that the out-
come of iterated learning is not simply built in into the properties of the
learning algorithms (Griffiths & Kalish, 2007; Kirby et al., 2007; Smith et
al., 2003). The Bayesian approach does not imply that there are not bio-
logical factors that play a role in the emergence of language regularities,
but puts the emphasis on the interaction between agents’ cognition and
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transmission.
If this is true, the relevant question to ask now if we are looking for hu-

man adaptations that biologically configured the so called language-ready
brain in our species, is which current biological approach accounts best
for the emergence of the key necessary biological changes that brought
about the mentioned abilities (to copy and share). In the next section, we
will suggest that evo-devo can be seen as the best general perspective to
be taken when approaching this question, and we will discuss which im-
plementation of evo-devo best fits the requirements of iterated learning to
operate.

Throughout this investigaton, we will aim at showing that such tradi-
tional distinctions as general vs. specific or Faculty of Language (Narrow
sense; FLN) vs. Faculty of Language (Broad sense; FLB) of Hauser et al.
(2002), should be abandoned in order to construct a less simplistic devel-
opmental approach to the complex cognitive capacities that serve as the
basis for iterative learning processes to give rise to language universals.

6.5 Which approach should we take to account for the
preconditions for iterated learning?

The Modern Synthesis, a term popularised by Huxley (1942), gave rise
to modern biology by gathering a number of postulates from natural se-
lection, population genetics and Mendelian inheritance into an articulated
corpus of empirical evidence and mathematical laws. Ernst Mayr, a key
evolutionary biologist of the past century, was one of the main figures
of this conceptual revolution in the field. Among his contributions, ar-
ticulating the biological species concept and studying different forms of
allopatric speciation stand out. Mayr’s open skepticism towards what he
called ‘beanbag genetics’ notwithstanding (Mayr, 1963), he nonetheless
contributed to the consolidation of a biological thought centered on the
notion of a ‘genetic program’ (Mayr, 1982) and on a neat separation of
‘proximate’ vs. ‘ultimate’ causes (Mayr, 1961). As a direct consequence
of this stance, the mainstream orientation of the Modern Synthesis tended
to ignore developmental processes and their role in evolutionary dynam-
ics (Amundson, 2005; Maynard Smith, 1982; Robert, 2004), while, at
the same time, organisms disappeared from the explanatory apparatus of
evolutionary biology (Walsh, 2015). However, such a view on causality
has often been considered as highly problematic (e.g. Laland et al., 2013;
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R. C. Lewontin, 1974; Oyama, 2000b; Walsh, 2019), and Mayr’s genetic
program has also been shown to be unable to reflect the environmental
context-dependency of phenotypic outcomes (e.g. Gilbert & Epel, 2009,
2015; R. C. Lewontin, 1983; Sultan, 2015).

In light of the discovery of the toolkit genes—highly conserved genes
whose products regulate gene expression and control the organism’s em-
bryonic development—developmental geneticists and evolutionary biolo-
gists have been forced to confront each other’s ideas in a more intercon-
nected way. This filled the gap between both levels of analysis and gave
rise to evo-devo, a new discipline that, since its origins, has been expanding
upon the evolutionary synthesis (Carroll, 2008; Pigliucci & Müller, 2010,
for two slightly different perspectives of this new synthesis).

Evo-devo, however, is not a unified theory (Benı́tez-Burraco & Longa,
2010; Hall, 2003), but a theoretical trend or general perspective where dif-
ferent evo-devo models fall here or there. Balari and Lorenzo (2013, chap-
ter 6) describe three main categories of evo-devo approaches:

(i) those that encompass genome deterministic models;

(ii) those that include developmental factors beyond the genes but main-
tain a gene-centered approach; and

(iii) those that hold that disparate factors interact to bring about ontoge-
netic outcomes.

The last category approximates what may be categorised as the ‘eco-evo-
devo’ approach, which shares a fair number of assumptions with the frame-
work of the extended evolutionary synthesis (henceforth EES; Müller, 2020;
Sultan, 2017). According to the proponents of the EES, developmental
processes, including cellular products, intermediate phenotypic states, en-
vironmental inputs and behavioural practices, share with inclusive inher-
itance and niche construction, the potential to drive individual variation
and, ultimately, evolution (Laland et al., 2015; Müller, 2017). Given this
classification, it is not difficult to tell a priori which evo-devo category
fits better with the concept of a strong domain-specific faculty of language
and which one explains human motor capacities as the result of a complex
architecture of interconnected developmental levels.

For example, as pointed out by Benı́tez-Burraco and Longa (2010),
Chomsky has recently suggested non-trivial analogies between the biolin-
guistic approach (BA) and evo-devo (Chomsky, 2007, 2010). According
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to Benı́tez-Burraco and Longa, however, Chomsky’s analogies mostly re-
fer to that version of evo-devo that fully assumes a gene-centered perspec-
tive (e.g. Carroll, 2005), a stance that might have been appropriate as re-
gards the Principles-and-Parameters Theory, but that, as these authors ex-
tensively argue, does not even fit well with a minimalist BA. Be that as it
may, Chomsky has also advocated for a tripartite causal model according
to which different aspects of the linguistic phenotype may be neatly at-
tributed to well-delimited factors, namely genetic endowment, experience
(i.e. the environment), and general principles not specific to the faculty of
language like principles of data analysis, computational efficiency, or de-
velopmental constraints, among others (Chomsky, 2005). This is precisely
the kind of analysis of causes that R. C. Lewontin (1974) showed to be im-
possible and that today still survives in the nature vs. nurture debate under
its different guises (Keller, 2010).

Chomsky’s views are direct heirs of a tradition where such dichotomies
as internal vs. external, inherited vs. acquired, and genes vs. environment
(or culture) have played an important explanatory role. But this stance rad-
ically comes into conflict with the idea, widely shared by most supporters
of view (iii) above, that nature is not genetic but phenotypic; that nature
is not a self-contained internal program but rather the open-ended product
of a dynamic developmental interaction between internal factors including
genes with external, environmental ones (Oyama, 2000a). Development
thus arises from a complex network of causal interactions in which organ-
ism and environment co-construct each other (Laland et al., 2013, 2014)
through reciprocal influences that effectively break the supposed barrier
between the internal and the external (Sultan, 2015, 2019). An immediate
consequence of this is that the genetic regulatory systems of developmental
genetics loose their causal primacy in favour of the causal complex made
up by the organism and its environment. Similarly, the concept of inheri-
tance also changes to embrace an extended form of inheritance where the
developmental ‘resources’ range from DNA sequence, to environmentally-
induced epigenetic marks, to the location and ecological niche the organ-
ism inhabits (Bonduriansky & Day, 2018; Laland et al., 2015).

We have focused on Chomsky’s attitudes towards a number of crucial
issues that eco-evo-devo invites us to look at through a different prism, but
it should be clear that some of these criticisms also apply to other frame-
works, not necessarily friendly to Chomskyan thought. To be sure, since—
and paraphrasing R. C. Lewontin (1974, p. 401)—the relevant questions
are not whether the phenotype of an individual is the result of either en-

149



Chapter 6

vironment or genotype, or of either biology or culture, or of either nature
or nurture, because the phenotype, to the extent that all these dichotomies
make real sense, is the result of both. Accordingly, the framework we are
advocating for here definitely shares a number of central points with Ce-
cilia Heyes’s ‘Cogntive Gadgets’ (Heyes, 2018). Indeed, we agree that
when the cognitive equipment of newborn humans is exposed to ‘culture-
soaked’ human environments, it changes dramatically. Similarly, in this
study we propose that we are born endowed with complex cognitive mech-
anisms that emerge as part of our development and that these mecha-
nisms continue to develop throughout life within our deeply social and
anthropised environments. These social environments constitute diverse
human niches, which are in turn affected by horizontal and vertical trans-
mission processes in which the ability to copy and share information at a
fast rate play a crucial role (Laland, 2017a; Tomasello & Carpenter, 2007;
Tomasello, Carpenter, Call, Behne, & Moll, 2005). But our approach here
also differs from Heyes (2018), at least, in denying the necessity, if not
the possibility, of retaining the nature vs. nurture dichotomy and of neatly
identifying the causal contribution of each. The cognitive equipment of
newborn humans may not differ substantially from the minds of closely
related species. Yet, human cognitive diversity and evolved predisposi-
tions might be the product of observable causal processes whose causes
can not be depicted as totally disentangled, because that would lead to
epistemological contradictions when it comes to clearly delimiting objects,
causes and effects. For example, DNA is both inherited and environmen-
tally responsive, and we know this in enough detail to move beyond the
nature-nurture debate (Robinson, 2004). Thus, in the model we propose
here, the contingencies of those traditional categories are reduced to mere
instrumental categories.

To the extent that this new paradigm constitutes the recognition of the
need to adopt a pluralistic attitude toward the complex nature of the lan-
guage faculty, the emergence of which can not be clearly quantified in
terms of internal versus external structures, nor characterised as a unique
object, we think that eco-evo-devo and EES approaches are also demand-
ing the abandonment of such traditional distinctions as FLN/FLB and oth-
ers we already referred to above. Many of these arguments that we will
not expand here have been amply analysed using a variety of biolinguistic
approaches (Balari & Lorenzo, 2018; Boeckx, 2014).

Having droppend such distinctions, we think, the search for the faculty
of language is also freed, to some extent, from the metaphor of speci-
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ficity/generality, facilitating the construction of a non-reductionist, less
simplistic, general theory of language that encompasses a complex mul-
tifactorial cognitive human capacity that does not yield specific linguistic
outputs by itself, but is required subsequently to give rise to the phenotype
through learning and transmission.

In the next section we will revisit some studies that add evidence to sup-
port such an interconnection of factors underlying the so-called ‘language-
ready brain,’ without the need for strong straight dependencies between
specific genes and specific language properties—even if key genes have
obvious subsequent dramatic effects on the development of language. We
will focus on the relationship between genetic factors, such as FOXP2,
and cognitive abilities. Then, in the light of niche construction, we will
argue in favour of a general theory of language evolution that integrates
the developmental architecture of cognitive abilities and iterated learning
models.

6.6 Towards an integrated theory: insights from compar-
ative genomics and niche construction

As soon as we depart from a simplistic gene-centered approach that relies
on an incredibly lucky mutation or behaviourally assimilated trait to ex-
plain language complexity and our capacity to acquire it, we face the need
to expand our approach to incorporate developmental processes that ex-
plain how complex functional phenomena evolve. During the last decades,
neuroscientists have gathered evidence that some cognitive domains can
operate as overlapping functional architectures. For example, language
processing has traditionally been associated to Broca’s area, but fMRI
studies have also identified activation patterns in Broca’s area associated
with recognition, imitation or movement preparation (e.g. M. L. Anderson,
2010). These neural reuse theories seem to be incompatible with strong
conceptions of structural or functional modularity and offer an interest-
ing perspective for the conception of more comprehensive evolutionary-
developmental models.

Recent evo-devo approaches have focused on the molecular analysis of
behavioural traits such as learning and memory applied to the evolution of
language. For example, genes relevant for language, including the tran-
scription factor FOXP2, have been identified. FOXP2 was initially identi-
fied as a genetic factor of a speech disorder in a family known as KE, and
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was thus the first gene to be associated with speech and language (Fisher,
Vargha-Khadem, Watkins, Monaco, & Pembrey, 1998; Lai et al., 2000).

Despite the strong correlation between a FOXP2 variant and develop-
mental verbal dyspraxia (DVD) (Lai, Fisher, Hurst, Vargha-Khadem, &
Monaco, 2001), it must be noted that FOXP2 belongs to a complex molec-
ular network of genes that build proteins that in turn regulate the expression
of other genes. In particular, FOXP2 is controlled by a set of upstream reg-
ulators, and it in turn regulates a vast set of target downstream genes, by
repressing or activating them (Shu, Yang, Zhang, Lu, & Morrisey, 2001;
Vernes et al., 2007).

Although FOXP2 is the best known gene in the field of language evolu-
tion, it doesn’t work alone. A huge variety of gene products regulate neu-
ronal development and function, including ‘proliferation, migration, neu-
rite outgrowth, and axon guidance, as well as development, maintenance,
and plasticity of synapses’ (Fisher & Vernes, 2015). From an evo-devo
point of view, human speech can be described as a form of auditory-guided,
learned vocal motor behaviour, and FOXP2 and its regulatory molecular
network might be key factors to ‘shape neural plasticity in cortico-basal
ganglia circuits underlying the sensory-guided motor learning in animal
models’ (Scharff & Petri, 2011). Indeed, the connection between vo-
cal learning abilities in several species including humans and a number
of homologous gene networks and brain structures is today incontestable
(Jarvis, 2019, for a review). Since language is culturally transmitted, a
cognitive impediment within these molecular networks would affect the
emergence of language properties in a community through iterative learn-
ing processes. Actually, the emergence of language properties through cul-
tural transmission requires both ingredients: The adequate development of
neural circuits and the adequate social structure. Note that neither of these
components by themselves would be able to result in linguistic specific
outcomes.

So, to what extent have these two processes—the emergence of a reg-
ulatory neural network and the social requirements for iterated informa-
tion transmission—developed independently one from the other? In Sec-
tion 6.4, we showed that iterated learning does not require innately de-
termined abilities to account for the emergence of linguistic regularities
and in Section 6.5 we showed that an eco-evo-devo approach is a valid
framework to account for the preconditions for iterated learning without
the need of relying on strong genetic constraints. Both, iterated learn-
ing processes by generating novel linguistic phenotypes, and eco-evo-devo
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processes—such as developmental plasticity, genetic accommodation and
extragenic inheritance—by facilitating evolutionary transitions and the al-
teration of environments and niche construction (Gilbert, Bosch, & Ledón-
Rettig, 2015), shape evolution by constructing ‘extended phenotypes ’(Si-
mon & Hessen, 2019), which in turn promote niche construction, that is,
the ability to produce better nests, houses, institutions or environments (in-
cluding linguistic ones).

Niche construction, therefore, can be thought of as an emergent prop-
erty of triple-inheritance systems that take into account all the three trans-
mission pathways of genes, culture and environment (Kobayashi et al.,
2019). Just as adaptive behavioural phenomena results from iterative pro-
cesses at different scales, niche construction selects the behaviour of the or-
ganisms in an iterative process during ontogeny (Simon & Hessen, 2019).
Organisms’ traits develop by interacting with the environment, and in turn
increasing the expression of synergistic relationships between different
levels of development (R. C. Lewontin, 1983). A similar argument was
originally offered by Deacon (1997) and Bickerton (2009), where it is
suggested that the repetitive use of symbolic communication can create
socially artificial niches that in turn enforce new pressures on human cog-
nition.

Using ideas originally developed by R. C. Lewontin (1983), Laland et
al. (2000) constructed a version of this conceptual model by mapping the
causal relationship between biological evolution and cultural change. This
model proposes that biological evolution depends not only on natural se-
lection and genetic inheritance but also on niche construction. According
to this framework, phenotypes have a more active role in development and
culture amplifies the human capacity to alter sources of natural selection.
Cultural traits affect the environment and may have additional effects on
how evolution proceeds. These changes, in turn, may persist throughout
generations, beyond the lifespan of an individual organism. Crucially, cul-
tural change can occur at a much faster rate than biological change. Cul-
ture, therefore, can relax or intensify selection and create new demands
by changing ecology, which favours new adaptations (Whitehead, Laland,
Rendell, Thorogood, & Whiten, 2019). Interestingly, a relaxation of selec-
tion at the organism level may have given rise to new complex synergistic
features of the human language capacity, which may explain why so much
language information is ‘inherited’ socially (Deacon, 2010). At the level
of the population, as our species constructed its niche for enhanced social
relations, ‘self-domestication’ or ‘self-control’ might have driven the se-
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lection of anatomical and behavioural traits whose functionality is related
with mild neural crest cell deficits during embryonic development (Shilton,
Breski, Dor, & Jablonka, 2020; Thomas & Kirby, 2010; Wilkins, Wrang-
ham, & Fitch, 2014).

Niche construction can result from different sources (genetic, ontoge-
netic, and cultural processes) and affect both biological and cultural evo-
lution (Laland et al., 2000); for a number of examples, see Naiman, John-
ston, and Kelley (1988), for beavers, Laskowski and Pruitt (2014), for so-
cial spiders, and Feldman and Cavalli-Sforza (1976) and Lotem, Halpern,
Edelman, and Kolodny (2017), for some cases concerning humans. As
regards communication, niche construction has also been invoked in hy-
potheses about language evolution (e.g., Bickerton, 2009, 2014; Deacon,
2010; Laland, 2017b, among others). A number of learning biases and
sensory-guided motor capacities (e.g. vocal control) evolved in response
to new environmental and social pressures. Since this new communicative
feature became extremely important within human populations for suc-
cessful integration in human societies and, in turn, reproduction, it also
could have brought about selection favouring better acquisition and trans-
mission. This would obviously include our capacity to copy and share large
sets of communicative variants. However, unlike deterministic and Bald-
winian models, niche construction does not assume genetic assimilation
of linguistic features, nor innate or language-specific knowledge. Instead,
niche construction favours selection of motor capacities, cognitive biases
and environments (e.g. social structures) that in turn facilitate the mainte-
nance of such a niche.

Using a version of the previous niche construction framework, a general
causal graph can be constructed by putting together all the interactions be-
tween the relevant variables (Figure 6.2). A key feature that differentiates
our model is the inclusion of insights from both iterated learning models
and current eco-evo-devo theoretical approaches. The model is constructed
in the light of comparative genomics and niche construction: In our inte-
grated version, niche construction processes, which are in continuous in-
teraction with both the individual motor capacities of individuals and the
environment, favour transmission trough iterative learning processes, re-
sulting in a particular language phenotype. Thus, niche construction is
considered as a key feature of the model, since it has a prominent role al-
tering two main sources of variation that are directly related with iterated
learning processes. On the one hand, sensory guided motor capacities from
neural development, and on the other, environmental structures such as so-
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cial structures, rules or cultural conventions. In turn, a change in these
two sources of variation can modify the agents’ learning and production
algorithms during cultural transmission. This consequently connects neu-
ral development and the agents’ own hypotheses in a way that could be
potentially implementable by using iterated learning models. To capture
this idea in an integrated model, each learner’s learning algorithm (LA)
and production algorithm (PA) should be constructed as a function of the
variables altered by niche construction. Since cultural transmission of lan-
guage occurs at a much faster rate than organic evolution, it can quickly
create new pressures that, in fast iterative cycles, accelerate the emergence
of new linguistic adaptations. This effect would relax selection at the level
of the individual, due to a large redistribution of selective pressures and a
diversification of social traits inheritance mechanisms.

We agree with Odling-Smee and Laland (2009) that niche construction
will fail to account for the evolution/development of human language until
we take into account the exceptionally powerful role of human cultural pro-
cesses and the mutual scaffolding effects between them, cognitive abilities,
and individual biases in our species (Wimsatt, 2014; Wimsatt & Griesemer,
2007). For example, since language change occurs at a faster rate than
genetic changes, neural development selected for language might reflect
‘the most persistent and invariant demands of the highly variable linguistic
niche’ (Chater et al., 2009; Deacon, 2010). This idea is coherent with a
model that incorporates niche construction, organic and cultural evolution,
where phenotypes (such as the language phenotype) have a much more
active role in evolution (Gilbert & Epel, 2009, 2015; Laland et al., 2000;
Sultan, 2015).

Moreover, since the construction of human cultural niches is able to
favour effective cultural responses beyond the lifetime of individuals, with
impact, or absence thereof, on human genetics, it adds more uncertainty
into the evolutionary process. Depending on the time-frame used, the so-
cial and environmental structure, and the specific communicative feature
examined, researchers might find different niche construction effects. In-
dividual cases will require individual explanations, and they are showing
little by little that overcoming the limitations of models based on general
observations is more necessary than ever before. Here, computer mod-
elling of language evolution that simulates population dynamics using it-
erative learning may be helpful to expand upon theoretical frameworks for
language development like the one that we present here.

There are several reasons to think that cultural niche construction can
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Figure 6.2: Integrated causal graph for the emergence of a language phenotype through
developmental interactions. A change in the source variable causes a change in the desti-
nation variable. The area of the square in the middle represents learning and production
through iterated learning processes. Learning and production algorithms interact with the
environment and the neural plasticity underlying the individual sensory-guided motor ca-
pacities. Niche construction from all ontogenetic processes modifies human selective en-
vironments. In turn, individual motor capacities within a population with social structures
favouring transmission through iterative processes would result in a particular language
phenotype. This integrated theory does not assume that acquired language regularities
became innate or specific. Instead, language phenotypes would have evolved due to se-
lection affecting multiple levels of all these mechanisms (this is represented in the graph
with the right hand bracket). From generation to generation, language change occurs
faster than other biological processes (this is represented in the causal graph with arrow
thickness). Dashed lines represent permeability between developmental categories. Some
relations of this causal graph have been designed following an EES framework (Lewens,
2019).

offer an alternative framework to understand language evolution and bring
about new hypotheses to test the compatibility of biological and cultural
explanations of language. First, cultural niche construction itself is a use-
ful eco-evo-devo approach to fill the gap between different approaches to
language evolution (e.g. biological/cultural). Second, it does not assume
that acquired language regularities themselves ever become innate (Dea-
con, 2003, 2010) nor cultural responses automatically genetically encoded
(Odling-Smee & Laland, 2009). And third, it gives room to integrate un-
der the same umbrella the developmental molecular processes leading to
the language capacity and the iterated learning processes of language trans-
mission leading to the emergence of language universals.
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In recent decades, advances in molecular biology and computational
modelling have incredibly narrowed down the processes of ecological in-
heritance related with language structures. Language is endowed with
complex regularities that can not be explained by learning nor transmis-
sion alone, nor by genetic encoding of human behaviours. And such com-
plexity will probably remain unsolved for several more decades, or more.
In the meantime, one observation seems clear, whatever approach we take
to explain language development and evolution, it will necessarily have to
consider the vast interconnectedness of genetic, ontogenetic and cultural
factors that shape language.

6.7 Conclusions

In this chapter we have reviewed a number of studies that show that iter-
ated learning does not require strong genetic constraints in the form of a
domain-specific module to give rise to near language universals. Instead,
general abilities unrelated with informational specificity, such as the ability
to copy and to share, are required to develop language through cultural evo-
lution. These general abilities can nevertheless yield specific properties,
and might have emerged from a complex multifactorial cognitive human
capacity that includes genes, cellular products, phenotypic states, environ-
mental inputs and behavioural practices. Here we have argued that the de-
velopmental explanation of human abilities and iterated learning through
cultural transmission are mutually dependent processes and therefore com-
patible, insofar as both are common processes and interact stabilising se-
lection at different levels. We have used the notion of niche construction
to sketch an integrated framework that builds bridges between evolution-
ary developmental accounts for sensory-guided motor capacities and cul-
tural evolution guided by iterated learning models. This integrated model
aims to overcome traditional boundaries between biological and cultural
approaches in the debates of language evolution.
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In this thesis I used a variety of approaches to explore some specific
interactions betwe individual’s cognition and their environment. In partic-
ular, I developed computational models to investigate how the relationship
between individual cognitive biases, value systems and memory (at the
individual-level) and network connectivity dynamics and institutions (at
the society-level) affect cultural diversity and the emergence of cultural
conventions in a population. The aim of this thesis was to formalise some
of the relationships between the social and cognitive features mentioned
above in agent-based models, as well as to test some preliminary predic-
tions against experimental data. Additionally, using a conceptual frame-
work, I aimed at exploring to what extent recent findings from iterated
learning, ecological evolutionary developmental biology and niche con-
struction are consistent with each other and can be used to formulate more
integrated frameworks for the explanation of general language regularities.

For this purpose, I first presented in Chapter 2 an agent-based model
to explore how the interactions between population network connectivity
dynamics, content bias, coordination bias and memory affect the spread of
cultural variants in pairwise interactive micro-societies. Simulation results
extend previous studies in social learning showing that content biases are
important drivers of convergence. I also showed that connectivity dynam-
ics affect the time-course of the spread of variants in moderate-high con-
tent biased populations: When populations take longer to reach full con-
nectivity, convergence onto a single cultural variant is slowed. This effect
is amplified by content bias. In addition, results show that larger mem-
ory size and coordination biases, especially egocentric bias, slow down
convergence, in particular for moderate-low content biased populations.
The results presented here are consistent with theoretical and experimental
studies showing that convergence is driven by content biases Gong et al.
(2012); Tamariz et al. (2014), and also agree with studies on rational learn-
ing in social networks showing that convergence is partially determined by
the degree of connectivity in the social network (Barkoczi & Galesic, 2016;
Centola & Baronchelli, 2015; Centola et al., 2007; Mueller-Frank, 2013;
Olfati-Saber & Murray, 2004). A practical application of the model is that
it can be used to fit real data obtained from turn-based cultural processes
and might be helpful to improve the organisation of the turn taking by
mitigating undesirable effects linked with one particular connectivity. Im-
portantly, the specific manipulation of the network connectivity dynamic
that we have studied here has not been taken into account in previous ex-
perimental work, and it is especially relevant for those researchers that use
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pairwise interactive micro-societies of agents switching partners over time
(e.g. Baum et al., 2004; Byun et al., 2018; Caldwell & Smith, 2012; Fay et
al., 2008, 2010; Mesoudi & Whiten, 2008; Raviv et al., 2019b; Tamariz et
al., 2014).

In Chapter 3, I reported on an experiment in the lab in which partici-
pants engaged in a Pictionary-like graphical communication task as mem-
bers of a 4-participant micro-society. The experiment had two main goals:
First, to evaluate the effect of two network connectivity dynamics (early
and late) on the evolution of the convergence of the micro-societies on
shared communicative conventions. Second, to compare the predictions of
the agent-based model described in Chapter 2 against experimental data,
and calibrate the model to find the best-fitting parameter setting. Experi-
mental results support the hypothesis that the convergence of a small-scale
society of human participants on shared communicative conventions can be
affected by the order in which connections between individuals unfold over
time. In particular, late connectivity dynamic can slow down convergence
and early connectivity dynamic can accelerate convergence. Although the
study presented here differs from previous work on network connectivity
dynamics in several respects (e.g. population size and experimental proce-
dure), and it might be limited by the number of independent observations
collected, results are consistent with previous findings regarding some im-
portant points:

(i) subtle changes in a population network structure can affect the for-
mation of conventions (Centola & Baronchelli, 2015); and

(ii) social influence seems to reduce diversity in networks where every
agent has equal connectivity, when compared to networks where agent’s
access to information is not equal (Becker et al., 2017).

Experimental results also show, contrary to model predictions, that dif-
ferences between network connectivity dynamics did not tend to reduce
during postalignment, suggesting that participants who are exposed to the
same convention for longer develop greater resistance to change their vari-
ants. Finally, model evaluation against experimental data shows that the
agent-based model developed in Chapter 2 is able to accurately predict
convergence under the set of experimental observations using an early con-
nectivity dynamic. However, model predictions were less accurate for late
connectivity dynamics because they underestimated convergence during
prealignment. This suggested that a more realistic implementation of val-
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ues across cultural variants along with additional selection pressures at the
population level would be useful to improve model performance.

Chapter 4 expands on the agent-based model developed in Chapter 2
by implementing additional features related to the agents’ value systems
and external reinforcement. I systematically manipulated the hegemony
of value systems, the homogeneity of value systems in the population and
institutional sensitivity to agents’ choices. Simulation results show that
diversity is lower in populations with homogeneous value systems and in
highly hegemonic value systems. These effects are amplified by content
bias. In scenarios with responsive institutions, in which the value sys-
tems emerge from the choices of the population, diversity is maintained
to a higher degree than in institutions that reinforce an existing value sys-
tem. Interestingly, diversity differences between institutional conditions
are greater in high-hegemony value systems and homogeneous popula-
tions, particularly for intermediate levels of content bias. This latter point
suggests that institutional intervention is more effective when the agents’
behaviours are not extreme. However, one limitation of the model devel-
oped in Chapter 4 is that institutions are fixed and hence they are not part
of a co-evolutionary model of cumulative culture.

In order to overcome some of the limitations of the model described
in Chapter 4, in Chapter 5 I presented a co-evolutionary model that in-
cludes value systems, institutions and a comprehensive set of cognitive
biases. This co-evolutionary model formalises the idea that cultural di-
versity changes with the processes of cognitive and institutional interac-
tion. In general, institutional power facilitates the formation of cultural
conventions, although it can increase cultural diversity when agents are
compliant and institutions promote diverse values. In the absence of in-
stitutions, strong conventions can also emerge when agents have similar
value systems and are endowed with strong individual-level confirmation
biases. In some scenarios, where institutional power is intermediate, a
moderate compliance bias was shown to be an important mechanism un-
derlying the stabilization of cultural diversity at intermediate levels. These
results might be of interest to researchers investigating the impact of rep-
resentative institutions on the evolution of linguistic, cultural, economic or
social behaviour (Becker et al., 2017; Bowles et al., 2003; Boyd & Rich-
erson, 2008; Centola & Baronchelli, 2015; J. Henrich et al., 2005). In par-
ticular, an interesting research question for future work will be to explore
in a formal model the relationships between conformity and compliance
biases, how they interact and how they drive the emergence of cultural
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conventions in in-groups and out-groups. Future work will also be focused
on mathematical modelling for a wider range of emergent institutions.

At the current historical moment, and in the midst of a health, eco-
nomic and social crisis, one cannot help but think about the implications
that the models presented here have for the transmission of behaviors and
the strategies to manage the dissemination of information in the context of
a globalised society. The spread of infections (e.g. simple contagion of a
virus) has a clear connection with the particular behavior of each individual
and with the dynamics of complex behavior (complex contagion) (Centola,
2018). The creation of models that have the ability to integrate particular
aspects of the culture of each country, the social networks in which cul-
tural conventions emerge and the actions of local and global institutions
and governments will undoubtedly be fundamental tools to develop more
effective public policies for information management in the near future.

I suggest that my models of co-evolution of value systems and institu-
tions are very relevant for research projects concerning the preservation of
cultural diversity. In recent years, the processes of cultural shift and the
extinction of languages have accelerated (Krauss, 1992). The models that
I have presented here are a useful tool to explore the interaction between
individual biases and the behavior of institutions such as policy makers,
crucial to understand the implications of globalization on the conservation
of cultural forms, such as endangered languages. These models, in com-
bination with experimental verification and validation are one way to look
for possible ways to estimate the economic and social trade-offs involved
in preserving cultural diversity. In other words, the present line of research
is crucial to develop more integrated and coherent theoretical models of
cultural evolution, and in turn help to better structure the bases upon which
public policies for cultural preservation stand.

The work developed in this thesis (Chapters 2 to 5) build on a number
of mathematical frameworks that couple individual and social parameters
to construct models that yield population outcomes. These models can
be used to explore the co-evolution of individual cognition and society-
level structures, and yield simulation results that correspond to averaged
metrics at the level of the population for both individual and collective
patterns of behavior. Indeed, the use of population-level outcomes have
dominated recent explanations of how cultural and biological phenomena
evolve. In particular, evidence gathered using agent-based computer sim-
ulations have overwhelmingly shown that cultural evolution plays a more
potent role than usually assumed, which implies less dependence on biases
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or innate structures (Steels, 2011). Agent-based models are also recog-
nised as very useful tools that allow the explicit inclusion of individual
variation in greater detail than do classical differential-equation models
(DeAngelis & Mooij, 2005). However, despite the growing number of
studies using agent-based models in recent years for simulating cultural
processes, the inclusion of such variation in model parametrization re-
mains a crucial issue for continued progress in ecological and evolutionary
theory. According to DeAngelis and Mooij (2005), five major types of
individual variation can be integrated in agent-based models: spatial, onto-
genetic, phenotypic, cognitive, and genetic. While Chapters 2 to 5 placed
the interaction between individuals’ cognition and social structures at the
centre of the picture to explaining the emergence of collective patterns of
behavior at the population level, in Chapter 6 I also considered the impor-
tance of ontogenetic and phenotypic sources of variation. This approach
implied an acknowledgement of what R. C. Lewontin (1983) defined as
variational explanations (changes due to variation within the population)
and developmental explanations (changes due to variation within the in-
dividual). Individuals have highly complex responses to the environment,
and these responses include the incorporation of phenotypical changes that
may affect individual learning and production algorithms over time. The
reviewed literature from iterated learning, niche construction and ecologi-
cal evolutionary developmental biology allowed an in-depth exploration of
the compatibility between eco-evo-devo accounts for cognitive capacities
and cultural evolution guided by iterated learning processes. By doing so,
I showed how iterated learning models do not require strong genetic con-
straints in the form of a domain-specific module to give rise to language
regularization. I also showed how this idea is coherent with a model that
incorporates both niche construction (as a developmental process in which
organisms and environment co-construct each other), and cultural evolu-
tion, where phenotypes (such as the language phenotype) have a more ac-
tive role in evolution. The proposed conceptual model might be useful to
act as a hypothesis-generating framework around which cognitive scien-
tists can structure new triple-inheritance formal models.

In sum, this thesis explored the relationships between specific features
of human cognition and specific features of the social structure. I for-
malised some of the relationships between a number of relevant cognitive
biases in social influence, memory and value systems (at the individual
level) and specific network connectivity dynamics and institutions (at the
level of the social structure). The results summarised above suggest two
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potential positive correlations that could drive the co-evolution of human
cognition and human niches. Firstly, cognitive biases, and in particular
content bias, are important drivers of the convergence of the population on
shared cultural conventions, and they can dramatically amplify the effects
of the network connectivity dynamics on the time-course of the spread
of variants. Secondly, the co-evolution of institutions and value systems
reveals a complex relationship between cognitive biases and cultural di-
versity. Institutions can facilitate or inhibit the emergence of cultural con-
ventions depending on the diversity of the value systems they promote and
the combination of cognitive biases in the population. Confirmation bias
in the absence of institutions and compliance bias in the presence of strong
institutions, seem to act as potent mechanisms for the formation of cultural
conventions.

Finally, as mentioned above, this thesis formalised complex systems
into agent based models and explored the possibility of new approaches
with an integrative spirit. Indeed, culture and language are shaped by in-
terrelated features at the individual and the socio-ecological level that can
not be easily unraveled. Much remains to be discovered in the coming
future about how these different levels interact affecting the evolution of
cultural conventions. And one thing is sure, we will need more models,
experiments and theory to keep learning about ourselves and others. In the
end, the evolution of cultural conventions necessarily depends on us and
on the things we do with others again and again.

165



Chapter 7

166



Appendices

167





Appendix A

Content bias, coordination bias and
memory

A.1 Content bias
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Figure A.1: Entropy (H) by round by content bias. Data subset of neutral coordination
bias. In this plot, a drift model corresponds to content bias = 0. In this and subsequent
boxplots: middle line is median, 50% quantile; lower hinge, 25$ quantile; upper hinge,
75% quantile; lower whisker is smallest observation greater than or equal to lower hinge−
1.5 ∗ IQR; upper whisker is largest observation less than or equal to upper hinge+ 1.5 ∗
IQR.

One of the advantages of our model is that the agents’ responses are limited
to a set of signals, so the number of permitted values of entropy is finite. It
is therefore possible to accurately estimate conditional densities describing
how the distribution of entropy changes over levels of content bias and
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over time. We compute conditional probability distributions of entropy by
calculating the probability distribution of three entropy groups: high (H ≥
2 bits), medium (1 bit≤ H < 2 bits) and low (H < 1 bit). The probability
of a non-convergent communication system (entropy higher than 2 bits)
when content bias is 0 is approximately 99% by round 2:

P(H high | Cont = .0,Gen = 2) = 0.994,

and it drops to 50% by round 7:

P(H high | Cont = .0,Round = 7) = 0.504.

When the content bias is 1, the probability of a non-convergent commu-
nication system is 68% by round 2, and almost 0% by round 7. On the
contrary, the probability of a conventionalised communication system (en-
tropy lower that 1 bit) when content bias is 0 goes from 0% to approx-
imately 0.04%, whereas when content bias is 1 goes from 0% to 99%.
More details in Figure A.2.
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Figure A.2: Conditional distributions of entropy across levels of content bias: P(y | x)
against x. Bars represent conditional distributions of entropy (H): In blue high en-
tropy (H ≥ 2 bits), in yellow medium entropy (1 bit ≤ H < 2 bits), in red low entropy
(H < 1 bit). X-axis represents level of content bias, and y-axis represents conditional
probability. For example, the probability of high entropy (low convergence) given that
content bias is 0.5 (P(H high | Cont = .5)) goes from 0.9833 in round 2, to 0.0525 in
round 7.
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A.2 Coordination bias

Over rounds, the relationship between entropy and coordination bias re-
mains characterised by a clear asymmetric distribution. When compared
with neutral coordination, strong egocentric and allocentric behaviours re-
duce the entropy drop, and maintain variant diversity in the system. In
the absence of content bias, entropy decreases only slightly towards its
horizontal asymptote, which is highest when egocentric bias is strongest
(Figure A.3 and Figure A.4 on the next page). Our results agree with
Segovia-Martı́n et al. (2019) in recognizing a weak effect of coordination
bias when content bias is strong, and a stronger effect of coordination bias
when content bias is weak. Also, in both models, egocentric bias main-
tains diversity better than allocentric bias. However, when compared with
a neutral model, allocentric bias reduced convergence in the current model,
while increased it in Segovia-Martı́n et al. (2019). This is likely due to dif-
ferent implementations of variant quality distributions. We will explore the
effect of variant quality on convergence in future research.
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Figure A.3: Entropy (H) by round by coordination bias. Data subset of neutral content
bias. In this plot, a drift model corresponds to coordination bias = 0.5.

The probability of a non-convergent communication system—entropy
lower than 1 bit—when coordination bias is 0 (fully egocentric) remains
close to 100% over rounds. When coordination bias is 1 (fully allocentric)
the probability of a non-convergent communication system is lower but
still quite high (79.33% by round 7). The probability of a non-convergent
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communication system is lowest when coordination bias is neutral (Fig-
ure A.4).
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Figure A.4: Conditional distributions of entropy across levels of coordination bias: P(y |
x) against x. Bars represent conditional distributions of entropy: In blue high entropy
(H ≥ 2 bits), in yellow medium entropy (1 bit ≤ H < 2 bits), in red low entropy (H <
1 bit). X-axis represents level of coordination bias, and right axis represents conditional
probability.

A.3 Interactions between Content bias and Coordination
bias

In all the rounds, the probability of a non-convergent communication sys-
tem is higher when content bias is 0 (i.e. neutral) and coordination bias is
0 (i.e. strong egocentric bias). In contrast, the probability of a convention-
alised communication system is higher when content bias is 1 (i.e., strong
content bias) and coordination bias is 0.5 (i.e. neutral). Conditional dis-
tributions of entropy for all levels of coordination bias tend to equalise as
content bias increases. A detailed multi-graph of conditional distributions
can be found in Figure A.8 on page 174.
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Figure A.5: Entropy by round by type of bias, averaged over the global data set, error bars
indicate 95% CIs. Red: Strongest egocentric bias when content bias is neutral. Purple:
Strongest allocentric bias when content bias is neutral. Blue: Strongest content bias when
coordination bias is neutral. Black: Drift model (neutral content bias and neutral coordi-
nation bias). When compared to a drift model, content bias increases convergence while
coordination bias, especially egocentric bias, decreases convergence.
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Figure A.6: Adaptiveness by round by type of bias, averaged over the global data set,
error bars indicate 95% CIs. Red: Strongest egocentric bias when content bias is neutral.
Purple: Strongest allocentric bias when content bias is neutral. Blue: Strongest content
bias when coordination bias is neutral. Black: Drift model (neutral content bias and
neutral coordination bias). When compared to a drift model, only content bias increases
adaptiveness.
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Figure A.7: Entropy (H) by round by each combination of biases. Examples for content
bias 0, 0.5 and 1. A drift model has a content bias of 0 and a coordination bias of 0.5.
X-axis represents rounds from 1 to 7, Y-axis represents entropy in bits.
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Figure A.8: Conditional distributions of entropy across levels of coordination bias: P(y |
x) against x. Bars represent conditional distributions of entropy: In blue high entropy
(H ≥ 2 bits), in yellow medium entropy (1 bit ≤ H < 2 bits), in red low entropy (H <
1 bit). X-axis represents level of coordination bias, and right axis represents conditional
probability.
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A.4 Memory

The probability of a non-convergent communication system given a mem-
ory of 1 round drops from 96.04% in round 2 to 10.53% in round 7. Given
memories of 3, 5 and 7 rounds, it drops from about 96% in round 2 to
16.46%, 24.40% and 28.62% in round 7, respectively. Differences be-
tween levels of memory are higher at round 7. The probability of a conver-
gent communication system given a memory span of one round is 69.10%.
Given a memory span of 3 rounds, it is 55.26%, 5 rounds 42.58% and 7
rounds 37.54% (see Figure A.11 on the following page).
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Figure A.9: Entropy (H) by round by each level of memory. X-axis represents rounds
from 1 to 7, Y-axis represents entropy in bits. Coordination bias = 0 is fully egocen-
tric and Coordination bias = 1 is fully allocentric. A drift model is represented by
Coordination bias = .5 and Content bias = 0.
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Figure A.10: Adaptiveness by round by each level of memory, averaged over the global
data set, error bars indicate 95% Cis. Memory size decreases adaptiveness of the cultural
system when compared with memory = 1.
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Figure A.11: Conditional distributions of entropy across levels of memory: P(y | x)
against x. Bars represent conditional distributions of entropy: In blue high entropy
(H ≥ 2 bits), in yellow medium entropy (1 bit ≤ H < 2 bits), in red low entropy
(H < 1 bit). X-axis represents level of coordination bias, and right axis represents condi-
tional probability.
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A.5 Time to convergence
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Figure A.12: Time to convergence (number of rounds until entropy is lower than 0) av-
eraged over each level of connectivity and coordination bias after 7 rounds. Error bars
indicate 95% CIs.

1

3

5

7

0 2 4
Time to convergence (rounds)

M
em

or
y

Connectivity Late Mid Early

Time to entropy=0 by connectivity by memory

Figure A.13: Time to convergence (number of rounds until entropy is lower than 0) aver-
aged over each level of connectivity and memory after 7 rounds. Error bars indicate 95%
CIs.
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Probabilistic model

Tamariz et al. (2014) constructed a parametrised model of participant vari-
ant choice. The model takes as input the history of the representational
variants the participant had used or seen a partner use and returns a distri-
bution over how they might next represent that concept.

Pr(σ | h) = µ′β′c′ f (σ | h|E,3)+µ′β′c f (σ | h|A,3)+µ′βsε+µφ(σ) (B.1)

The model takes four parameters as described in the main text, plus a
coordination bias (c) which fixes the likelihood of being copied ascribed
to variants produced by others and witnessed by the participant, and the
variants produced by the participant themself. It takes values ranging from
0 (fully egocentric: Preferring self-produced variants over other-produced
variants) to +1 (fully allocentric: Preferring other-produced variants over
self-produced variants). Zero coordination bias treats variants in h|E,m and
in h|A,m as equally worthy of reproduction, i.e. unbiased.

Together the parameters define the probability distribution shown in
equation B.1, varying over potential representational variants x, for a given
history h.

In this study, we control for coordination bias by using a drift model
(coordination bias 0.5), which means that variants in h|E,3 and in h|A,3 were
equally likely to be produced. This is equivalent - if we consider a neutral
coordination bias - to:

Pr(σ | h) =
µ′β′ f (σ | h|E,3)

2
+

µ′β′ f (σ | h|A,3)
2

+µ′βs+µφ(σ) (B.2)

And, if we unify allocentric and egocentric memories, we have:

Pr(σ | h) = µ′β′ f (σ | h|M,3)+µ′βs+µφ(σ) (B.3)
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where s encompasses a variable that that takes one out of the 9 value
systems examined, β corresponds to the level of content bias examined and
Pr(σ | h) yields a probability distribution of variants (σ) for a given history
(h) of previous rounds. The overbar denotes the probabilistic complement
(e.g. ā = 1−a).
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Markov chains and language
transmission

A Markov chain is a sequence of random variables X0,X1, . . . ,Xn such that,

P(Xn+1 = xn+1 | X1 = x1,X2 = x2, ...,Xn = xn) (C.1)

and,

P(Xn+1 = xn+1 | Xn = xn) (C.2)

This means that the distribution of the forthcoming state Xn+1 depends only
on the current state Xn and is independent of all its predecessors.

The set of possible states of the Markov chain is S = {s1,s2, . . . ,sr},
and the probability to move from state si to state s j is named transition
probability pi j:

pi j = P(X1 = s j | X0 = si) (C.3)

If the Markov chain is homogeneous, meaning that the underlying tran-
sition probabilities remain constant over time, then:

P(Xn+1 = s j | Xn = si) = P(Xn = s j | Xn−1 = si) (C.4)

We can represent the distribution of transition probabilities with a tran-
sition matrix T = (pi j), where each element in the matrix represents the
transition probability pi j from state si to s j:

T =

[
p11 p12
p21 p22

]
(C.5)

To provide a numerical example of an iterated learning process, con-
sider a Markov chain with 2 possible states (e.g. two possible languages l1
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and l2):

T =

[
0.8 0.2
0.1 0.9

]
(C.6)

Here, p11 = 0.8 is the probability that X1 = s1 given that we observed
X0 = s1, and so on. In the case of language transmission, p11 represents
the probability that a learner acquires l1 from data produced form l1. p12
represents the probability that a learner acquires l1 from data produced
form l2, and so on.

Assume that the current language of the chain is X0 = l2, e.g. l0 =(
0 1

)
. Then, the probability distribution of languages after 1 step is:

l1 =
(
0 1

)[0.8 0.2
0.1 0.9

]
=
(
0.1 0.9

)
(C.7)

After 2 steps, since ln = ln−1T , we have:

l2 =
(
0.1 0.9

)[0.8 0.2
0.1 0.9

]
=
(
0.17 0.83

)
(C.8)

which means that the stationary probability of each of the two languages
is determined by the fidelity of transmission in the Markov chain. Thus,
the stationary probability of l1 in the second step is 0.17, P(X2 = l1 | X0 =

l2) = 0.17, while the probability of l2 is P(X2 = l2 | X0 = l2) = 0.83.
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González-Avella, J. C., Cosenza, M. G., Klemm, K., Eguı́luz, V. M., & San Miguel, M.
(2007). Information feedback and mass media effects in cultural dynamics. Journal
of Artificial Societies and Social Simulation, 10(3), 9. Retrieved from http://
jasss.soc.surrey.ac.uk/10/3/9.html

Greenberg, J. H. (1966). Some universals of grammar with particular reference to the
order of meaningful elements. In J. H. Greenberg (Ed.), Universals of language
(pp. 73–113). Cambridge, MA: The MIT Press.

Greig, J. M. (2002). The end of geography? globalization, communications, and culture
in the international system. Journal of Conflict Resolution, 46(2), 225–243.

Griffiths, T. L., & Kalish, M. L. (2007). Language evolution by iterated learn-
ing with Bayesian agents. Cognitive Science, 31(3), 441–480. doi: 10.1080/
15326900701326576

Hagen, E. H., & Hammerstein, P. (2006). Game theory and human evolution: A critique of
some recent interpretations of experimental games. Theoretical population biology,
69(3), 339–348.

Hahn, M. W., & Bentley, R. A. (2003). Drift as a mechanism for cultural change: an
example from baby names. Proceedings of the Royal Society of London. Series B:
Biological Sciences, 270(suppl 1), S120–S123.

Hall, B. K. (2003). Evo-devo: evolutionary developmental mechanisms. Interna-
tional Journal of Developmental Biology, 47(7-8), 491–495. Retrieved from
http://www.ijdb.ehu.es/web/paper/14756324/evo-devo-evolutionary
-developmental-mechanisms

Harary, F. (1959). A criterion for unanimity in french’s theory of social power.
Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What

is it, who has it, and how did it evolve? Science, 298(5598), 1569–1579. doi:
10.1126/science.298.5598.1569

Henrich, J. (2004). Demography and cultural evolution: how adaptive cultural processes
can produce maladaptive losses—the tasmanian case. American Antiquity, 69(2),
197–214.

Henrich, J., & Boyd, R. (1998). The evolution of conformist transmission and the emer-
gence of between-group differences. Evolution and human behavior, 19(4), 215–

189

http://jasss.soc.surrey.ac.uk/10/3/9.html
http://jasss.soc.surrey.ac.uk/10/3/9.html
http://www.ijdb.ehu.es/web/paper/14756324/evo-devo-evolutionary-developmental-mechanisms
http://www.ijdb.ehu.es/web/paper/14756324/evo-devo-evolutionary-developmental-mechanisms


References

241.
Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H., . . . others (2005).

“economic man” in cross-cultural perspective: Behavioral experiments in 15 small-
scale societies. Behavioral and brain sciences, 28(6), 795–815.

Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world?
Behavioral and brain sciences, 33(2-3), 61–83.

Henrich, J., & McElreath, R. (2003). The evolution of cultural evolution. Evolutionary
Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 12(3), 123–
135.

Henrich, J., & McElreath, R. (2007). Dual-inheritance theory: the evolution of human
cultural capacities and cultural evolution. In Oxford handbook of evolutionary psy-
chology.

Henrich, N., & Henrich, J. P. (2007). Why humans cooperate: A cultural and evolutionary
explanation. Oxford University Press.

Herzog, H. A., Bentley, R. A., & Hahn, M. W. (2004). Random drift and large shifts in
popularity of dog breeds. Proceedings of the Royal Society of London. Series B:
Biological Sciences, 271(suppl 5), S353–S356.

Heyes, C. (2018). Cognitive gadgets: The cultural evolution of thinking. Cambridge,
MA: Harvard University Press.

Hockett, C. F. (1960). The origin of speech. Scientific American, 203, 88-111.
Hockett, C. F. (1966). The problem of universals in language. In J. H. Greenberg (Ed.),

Universals of language (pp. 1–29). Cambridge, MA: The MIT Press.
Hodgson, G. M. (2015). On defining institutions: rules versus equilibria. Journal of

Institutional Economics, 11(3), 497–505.
Hovers, E., & Belfer-Cohen, A. (2006). “now you see it, now you don’t”—modern

human behavior in the middle paleolithic. In Transitions before the transition (pp.
295–304). Springer.

Hudson Kam, C. L., & Chang, A. (2009). Investigating the cause of language regular-
ization in adults: Memory constraints or learning effects? Journal of Experimental
Psychology: Learning, Memory, and Cognition, 35(3), 815.

Hudson Kam, C. L., & Newport, E. L. (2005). Regularizing unpredictable variation:
The roles of adult and child learners in language formation and change. Language
learning and development, 1(2), 151–195.

Huntington, S. P., & Dunn, S. (2004). Who are we?: The challenges to america’s national
identity. Simon and Schuster.

Hurlbert, S. H. (1971). The nonconcept of species diversity: a critique and alternative
parameters. Ecology, 52(4), 577–586.

Huxley, J. (1942). Evolution: The modern synthesis. London: George Allen & Unwin.
Janda, R. D., & Joseph, B. D. (2003). On language, change, and language change; or, of

history, linguistics, and historical linguistics. The handbook of historical linguistics,
3–180.

Jarosz, A. F., & Wiley, J. (2014). What are the odds? a practical guide to computing and
reporting bayes factors. The Journal of Problem Solving, 7(1), 2.

Jarvis, E. D. (2019). Evolution of vocal learning and spoken language. Science,
366(6461), 50–54. doi: 10.1126/science.aax0287

Jeffreys, H. (1961). The theory of probability (3rd ed.). OUP Oxford.
Jolly, G. M. (1965). Explicit estimates from capture-recapture data with both death and

immigration-stochastic model. Biometrika, 52(1/2), 225–247.

190



References

Judd, S., Kearns, M., & Vorobeychik, Y. (2010). Behavioral dynamics and influence
in networked coloring and consensus. Proceedings of the National Academy of
Sciences, 107(34), 14978–14982.

Kalish, M. L., Griffiths, T. L., & Lewandowsky, S. (2007). Iterated learning: Intergener-
ational knowledge transmission reveals inductive biases. Psychonomic Bulletin &
Review, 14(2), 288–294.

Kandler, A., & Laland, K. N. (2009). An investigation of the relationship between inno-
vation and cultural diversity. Theoretical population biology, 76(1), 59–67.

Kareev, Y., Lieberman, I., & Lev, M. (1997). Through a narrow window: Sample size
and the perception of correlation. Journal of Experimental Psychology: General,
126(3), 278.

Kearns, M., Judd, S., Tan, J., & Wortman, J. (2009). Behavioral experiments on biased
voting in networks. Proceedings of the National Academy of Sciences, 106(5),
1347–1352.

Keller, E. F. (2010). The mirage of a space between nature and nurture. Durham, NC:
Duke University Press.

Kemeny, J. G., & Snell, J. L. (1983). Finite markov chains. New York: Springer-Verlag.
Kempe, M., & Mesoudi, A. (2014). An experimental demonstration of the effect of group

size on cultural accumulation. Evolution and Human Behavior, 35(4), 285–290.
Kendal, J., Giraldeau, L.-A., & Laland, K. (2009). The evolution of social learning rules:

payoff-biased and frequency-dependent biased transmission. Journal of theoretical
biology, 260(2), 210–219.

Kendal, J., Tehrani, J. J., & Odling-Smee, J. (2011). Human niche construction in inter-
disciplinary focus. The Royal Society.

Kendal, R. L., Boogert, N. J., Rendell, L., Laland, K. N., Webster, M., & Jones, P. L.
(2018). Social learning strategies: Bridge-building between fields. Trends in cog-
nitive sciences, 22(7), 651–665.

Kirby, S. (2001). Spontaneous evolution of linguistic structure-an iterated learning model
of the emergence of regularity and irregularity. IEEE Transactions on Evolutionary
Computation, 5(2), 102–110. doi: 10.1109/4235.918430

Kirby, S. (2017). Culture and biology in the origins of linguistic structure. Psychonomic
Bulletin & Review, 24(1), 118–137. doi: https://doi.org/10.3758/s1342

Kirby, S., Cornish, H., & Smith, K. (2008). Cumulative cultural evolution in the lab-
oratory: An experimental approach to the origins of structure in human language.
Proceedings of the National Academy of Sciences, 105(31), 10681–10686. Re-
trieved from https://www.pnas.org/content/105/31/10681 doi: 10.1073/
pnas.0707835105

Kirby, S., Dowman, M., & Griffiths, T. L. (2007). Innateness and culture in the evolution
of language. Proceedings of the National Academy of Sciences, 104(12), 5241–
5245. doi: https://doi.org/10.1073/pnas.0608222104

Kirby, S., Tamariz, M., Cornish, H., & Smith, K. (2015). Compression and communica-
tion in the cultural evolution of linguistic structure. Cognition, 141, 87–102.

Klemm, K., Eguı́luz, V. M., Toral, R., & San Miguel, M. (2005). Globalization, po-
larization and cultural drift. Journal of Economic Dynamics and Control, 29(1-2),
321–334.

Kline, M. A., & Boyd, R. (2010). Population size predicts technological complexity
in oceania. Proceedings of the Royal Society B: Biological Sciences, 277(1693),
2559–2564.

191

https://www.pnas.org/content/105/31/10681


References

Kobayashi, Y., & Aoki, K. (2012). Innovativeness, population size and cumulative cul-
tural evolution. Theoretical population biology, 82(1), 38–47.

Kobayashi, Y., Wakano, J. Y., & Ohtsuki, H. (2019). Evolution of cumulative culture for
niche construction. Journal of theoretical biology, 472, 67–76.

Komarova, N. L., Niyogi, P., & Nowak, M. A. (2001). The evolutionary dynamics of
grammar acquisition. Journal of theoretical biology, 209(1), 43–59.

Komarova, N. L., & Nowak, M. A. (2003). Language dynamics in finite populations.
Journal of theoretical biology, 221(3), 445–457.

Kovas, Y., & Plomin, R. (2006). Generalist genes: implications for the cognitive sciences.
Trends in Cognitive Sciences, 10(5), 198–203. doi: 10.1016/j.tics.2006.03.001

Krauss, M. (1992). The world’s languages in crisis. Language, 68(1), 4–10.
Krifka, M. (1999). Compositionality. In R. A. Wilson & F. C. Kiel (Eds.), The mit

encyclopedia of the cognitive sciences (pp. 152–153). Cambridge, MA: The MIT
Press.

Kroch, A. S. (1989). Reflexes of grammar in patterns of language change. Language
variation and change, 1(3), 199–244.

Labov, W. (2011). Principles of linguistic change, volume 3: Cognitive and cultural
factors (Vol. 36). John Wiley & Sons.

Lai, C. S. L., Fisher, S. E., Hurst, J. A., Levy, E. R., Hodgson, S., Fox, M., . . . Monaco,
A. P. (2000). The SPCH1 region on human 7q31: genomic characterization of
the critical interval and localization of translocations associated with speech and
language disorder. The American Journal of Human Genetics, 67(2), 357–368.
doi: https://doi.org/10.1086/303011

Lai, C. S. L., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A
forkhead-domain gene is mutated in a severe speech and language disorder. Nature,
413(6855), 519. doi: 10.1038/35097076

Laland, K. N. (2017a). Darwin’s unfinished symphony. Princeton University Press Prince-
ton, NJ.

Laland, K. N. (2017b). Darwin’s unfinished symphony: How culture made the human
mind. Princeton, NJ: Princeton University Press.

Laland, K. N., Odling-Smee, J., & Feldman, M. W. (2000). Niche construction, biological
evolution, and cultural change. Behavioral and Brain Sciences, 23(1), 131–146.
doi: https://doi.org/10.1017/S0140525X00002417

Laland, K. N., Odling-Smee, J., Hoppitt, W., & Uller, T. (2013). More on how and why:
Cause and effect in biology revisited. Biology & Philosophy, 28(5), 719–745. doi:
10.1007/s10539-012-9335-1

Laland, K. N., Odling-Smee, J., & Turner, S. (2014). The role of internal and external
constructive processes in evolution. Journal of Physiology, 592(11), 2413–2422.
doi: 10.1113/jphysiol.2014.272070

Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., . . .
Odling-Smee, J. (2015). The extended evolutionary synthesis: its structure, as-
sumptions and predictions. Proceedings of the Royal Society B: Biological Sci-
ences, 282(1813), 20151019. doi: https://doi.org/10.1098/rspb.2015.1019

Laskowski, K. L., & Pruitt, J. N. (2014). Evidence of social niche construction: persistent
and repeated social interactions generate stronger personalities in a social spider.
Proceedings of the Royal Society B: Biological Sciences, 281(1783), 20133166.
doi: https://doi.org/10.1098/rspb.2013.3166

Lass, R. (1997). Historical linguistics and language change (Vol. 81). Cambridge Uni-

192



References

versity Press.
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