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Abstract

The goal of this thesis is to apply modern field theory methods to understand the non-
linear elastic (NLE) response of solids. The NLE response contains a large number of
low-energy observable quantities, not always easy to derive from the microscopic com-
position of the material. An essential actor in the elastic response are the phonons,
which can be described as the Goldstone bosons of the spontaneously broken space-
time symmetries. As such, their low energy dynamics (including non-linearities) can be
captured systematically by standard low energy Effective Field Theory (EFT) meth-
ods. This offers naturally a novel approach to tackle NLE phenomenology. One main
conclusion is that indeed the low energy effective methods can provide nontrivial in-
formation, as relations among various different NLE observables. We illustrate this by
obtaining bounds on the maximum deformation that a material can tolerate, which
can be expressed in function of other NLE observables.

A case of special interest is that of scale invariant (SI) solids. This includes two
distinct sub-cases, since SI can be realized either as a manifest symmetry or a spon-
taneously broken symmetry. The former case corresponds to a non-trivial fixed point
and requires the use of holographic (AdS/CFT) techniques. The latter case instead
can be described with more standard EFT methods. We compare the results obtained
in the two cases, and find that the obtained elasticity bounds differ significantly in the
two sub-cases.

iv



v



List of publications

1. Elasticity bounds from Effective Field Theory
Lasma Alberte, Matteo Baggioli, Victor Cancer Castillo, Oriol Pujolas
arxiv.org/abs/1807.07474
Published in Phys. Rev. D 100, 065015 (2019)
This publication is covered in Section 4.

2. Scale invariant solids
Matteo Baggioli, Victor Cancer Castillo, Oriol Pujolas
arxiv.org/abs/1910.05281
Published in Phys. Rev. D 101, 086005 (2020)
This publication is covered in Section 5.

3. Black Rubber and the Non-linear Elastic Response of Scale Invariant
Solids
Matteo Baggioli, Victor Cancer Castillo, Oriol Pujolas
arxiv.org/abs/2006.10774
Published in J. High Energ. Phys. 2020, 13 (2020)
This publication is covered in Section 5 (mostly on subsections 5.2 and 5.3) and
an Appendix of the paper is reproduced in Section 4.3.

* In Appendix A I add some results that are not part of any publication.

vi



vii



Contents

Acknowledgments ii

Abstract iv

List of publications vi

1 Introduction 2

2 Gauge-gravity duality 7
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Geometrizing the renormalization group flow . . . . . . . . . . . 8
2.1.2 Holographic principle . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Weinberg-Witten no-go theorem . . . . . . . . . . . . . . . . . 11

2.2 About Anti de Sitter space-time and Conformal Field Theory . . . . . 12
2.2.1 Anti de Sitter space-time . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Conformal Field Theory . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Comparing degrees of freedom . . . . . . . . . . . . . . . . . . . 20

2.3 AdS/CFT correspondence: required tools and conjecture . . . . . . . . 22
2.3.1 Large N expansion in gauge theories . . . . . . . . . . . . . . . 22
2.3.2 String theory and D-branes . . . . . . . . . . . . . . . . . . . . 24
2.3.3 The conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 User’s guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Hydrodynamics and transport coefficients . . . . . . . . . . . . 50

3 Condensed matter and solid physics aspects 56
3.1 Elasticity theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Non-linear elastic response . . . . . . . . . . . . . . . . . . . . . 59
3.2 Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Coset construction . . . . . . . . . . . . . . . . . . . . . . . . . 62

viii



Contents ix

3.3 Quantum criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Effective field theory of solids 71
4.1 Elastic response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Benchmark potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 Monomial potential . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.2 Non-relativistic potential . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Three-phonon interaction terms . . . . . . . . . . . . . . . . . . . . . . 87

5 Scale invariant solids 91
5.1 Solids with spontaneously broken scale invariance . . . . . . . . . . . . 93

5.1.1 Benchmark potentials and non-linear elasticity . . . . . . . . . . 100
5.2 Solids with manifest scale invariance . . . . . . . . . . . . . . . . . . . 102

5.2.1 The holographic model . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.2 Linear elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Benchmark potential . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.3 Non-linear elasticity . . . . . . . . . . . . . . . . . . . . . . . . 114

Shear deformation . . . . . . . . . . . . . . . . . . . . . . . . . 118
Bulk deformation . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Elasticity bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Discussion 134

A Thermodynamic properties of solids with manifest scale invariance 141

B More on solid EFT in d dimensions 145

C Holographic Stress Tensor 149



1



Chapter 1

Introduction

Solids and its elastic properties have been thoroughly studied for many centuries due to
its many applications and uses. The theory of elasticity treats the mechanical response
of solids considering such material as a continuum media, including its sound wave
excitations - the phonons. We can consider this theory as an early example of an EFT.
Similarly to hydrodynamics, the theory of elasticity can be formulated as a derivative
expansion (low-energy expansion) of some effective degree of freedom - in this case, the
displacement vector of the solid elements from its equilibrium configuration.

The classic theory of elasticity can be extended in order to describe the non-linear
regime, dealing with the response of solids to finite deformations [168, 170, 222]. This
regime is characterized by the stress-strain relations at finite deformations (see Figure
1.1 as an example), which encodes a large number of observables and physical parame-
ters [170]. However, these parameters are not easy to derive from a microscopic theory,
thus we consider EFT methods that might help us understand the nonlinear elasticity
phenomena.

From the QFT perspective, it is a very interesting question whether one can apply
modern EFT methods to describe the non-trivial features of the non-linear elastic
response of materials. This particular issue is one of the central points that we want
to deal with throughout the thesis. We hope that via these methods we can have a
better understanding of the elastic response of solid materials at finite deformation.

As in any EFT we must require a clear separation of scales: here we regard low
frequency (acoustic) phonons as the only degrees of freedom, whereas heavier modes
are integrated-out. We can exploit the fact that phonons can be considered to be the
Goldstone bosons of translational symmetry breaking [74, 139, 163]. Due to this, we
can obtain the fully non-linear effective action through the coset construction [164].

Once we have constructed the form of the EFT out of the symmetry breaking pat-
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Chapter 1. Introduction 3

Figure 1.1: Cartoon of a typical stress-strain curve of a very elastic material. In blue we
have the linear region, where the stress-strain relation is σ ∼ ε. At large deformations,
displayed in pink, the stress-strain relation deviates from its linear form. Typically
materials break or fracture at some finite deformation, which translates in the stress-
strain curves to terminating at some point. This breaking point is indicated with a red
star.

tern we attempt to understand how materials that can sustain very large deformations
behave. These type of elastic materials are precisely the ones that allow us to explore
a large enough range of deformations in order to investigate their non-linear response.
By imposing self-consistency and stability conditions on the theory we will extract con-
straints on physical quantities, such as the maximum stress that can be applied to the
material. Remarkably, from such constraints we will be able to establish correlations
among multiple non-linear physical observables. This will show the predictive power
that these EFT methods can have when studying solid materials.

There is also a case of special interest that is provided by the set of materials that
exhibit scale invariance (SI). We will devote a large part of the manuscript on discussing
and studying this type of solids, which we consider to be a very intriguing subject.
Solids that exhibit SI represent a much more sophisticated scenario, but the problem is
a well defined one and it is worth dedicating some effort on figuring out their non-linear
elastic properties. Although it is not our goal to identify exactly which kind of physical
systems accomplishes this we should note that these cases appear to be similar to some
real world materials. Typical examples of materials related with these SI solids are
those which display criticality in the form of a Quantum critial point. Among these
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materials we can mention, for instance, the so-called high-Tc superconductors whose
non-linear mechanical characterization has got growing interest in the last years due
to their technological applications [189,191].

The way this SI is realized in the solid can be divided into two principal categories,
as we will see in Chapter 5: either the SI is a spontaneously broken symmetry (SBS)
or it is manifest. Depending on what case we focus on the methods we will need to
apply to describe them are going to be entirely distinct.

In the case of SI being a SBS we expect to have a gapped spectrum, where the
phonons will be isolated low energy excitations. Thus, in such a case, we are going to
be able to apply the EFT methods we described above, imposing SI in the theory. Let
us point out that being SI here does not translate into being conformally invariant, as
it usually happens. We must mention that this model represents a new example of SI
theory that does not realize the full conformal group, which is achieved by breaking
Lorentz invariance spontaneously.

On the other hand, if the SI is a manifest symmetry of the theory then we assume
there is a non-trivial infrared fixed point (IRFP) that realizes an emergent SI. Here
the phonon modes are no longer isolated degrees of freedom and we expect to have
dispersion relations with an imaginary part. To describe such a theory we are going
to take advantage of the gauge/gravity dualities, which through bottom-up AdS/CFT
constructions will allow us to study the theory very efficiently. These type of theories
are a bit more cumbersome to deal with, and we will need to introduce the methods of
such models in Chapter 2.

Therefore, we may classify the SI solids in these two categories

We are going to analyze the elastic response in these materials with SI from the
low energy perspective and compare the results between the options considered. It is
a very interesting question how does the elastic response of the solid depend on the
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SI realization on the system. The constrains we find imply nontrivial relations among
different physical observables of the material. To illustrate such constrains we have fo-
cused on the elasticity bounds of the solids, i.e. the maximum deformation a material
may sustain in a reversible way. Moreover, for both cases we aim to characterize solid
systems where the sound speeds can be realistic, that is, they are sufficiently small
compared to the speed of light.

The thesis will be organized as follows:

• An introductory chapter to the gauge/gravity duality in Chapter 2 which will be
useful to understand how the manifest SI solid theory is constructed.

• A short chapter with some condensed matter and solid physics aspects in Chapter
3. In this chapter we also introduce the Coset construction and how to derive
the solid EFT theory from it.

• In Chapter 4 we discuss particular cases of the solid EFT, showing the potential
of these methods. In this chapter we show the results obtained in [7]

• Chapter 5 is devoted to the study of SI solids, particularizing the results of
Chapter 4 for the SI case and introducing the holographic case for the manifest
SI solid. In this chapter we review the results from [23,24].

• We end the thesis with a discussion of the results in Chapter 6.

Throughout the manuscript we will use natural units if not stated otherwise.
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Chapter 2

Gauge-gravity duality

Gauge-gravity dualities have been an important field within theoretical physics in the
last few years. As we will see in this chapter, these dualities make use of string theory,
quantum field theory and general relativity and its applications are very diverse, from
condense matter theories to nuclear physics.

The basic idea behind gauge-gravity dualities is that we can relate a gravity theory,
defined in a D dimensional space-time (the so-called “bulk”), to a quantum field theory,
defined in a (D− 1) space-time located in the boundary of this bulk. Therefore gauge-
gravity dualities realise the holographic principle and that is why many people just
refer to these theories as holography.

The most prominent example of this kind of dualities is the AdS/CFT correspon-
dence, conjectured for the first time by Juan Maldacena [145]. Maldacena conjectured
that a Type II String Theory on a AdS5 × S5 background is equivalent to a N = 4
Super Yang Mills theory in four dimensions.

In this chapter I will give an introductory view on gauge-gravity dualities and more
particularly on AdS/CFT correspondence. There are plenty of reviews and references
that have already given a great introduction to this topic from which I have been
inspired by [13,57,73,100,123,149,160–162,181,225,226].

2.1 Motivation

It was the study of black holes and D-branes in string theory what led Maldacena
to propose the AdS/CFT correspondence. However, one can motivate its existence
by pointing out certain aspects of gauge theories and gravity. Let me go through
some of the most important motivations that led to the discovery of the AdS/CFT
correspondence.

7
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2.1.1 Geometrizing the renormalization group flow

During the 1960s Kadanoff, Wilson and others developed a new way of understanding
quantum field theories. They found that it was very useful to study a system in terms
of its energy (or length) scale. The idea is that if you are interested in the properties of
a system at a given length scale u it is not convenient to use a theory that is defined at
a length scale u′ � u. What they propose is to integrate-out all the short-distance (i.e.,
high energy) degrees of freedom to obtain an effective theory that describes your system
at the u scale that you are interested in. This procedure is known as renormalization
group (RG) flow and it allows us to define a family of theories at a continuum of
different scales (or energies). It is conceivable, then, to assume our quantum field
theory in d dimensions to have an extra dimension u which represents the RG scale of
the theory.

Let me consider a non-gravitational lattice system like the one Kadanoff firstly used
in 1966 [130]: the Ising model. The Hamiltonian of such model is

H = −
∑
{i,j〉

JijSiSj − µ
∑
j

hjSj (2.1)

where Si is the spin value at each lattice site i, Jij the interaction terms between sites,
µ the magnetic moment and hi the external magnetic field interacting with the lattice
site. The interesting thing that he did is to consider multiple sites by a single site and
averaging the value of the lattice variables. This process does not vary the form of the
Hamiltonian but it changes the values of the couplings, i.e. Jij and hj. We can do this
repeatedly, including more sites in each step defining some sort of RG flow by coarse
graining our lattice, as can be pictured in Fig. 2.1.

Therefore, we can define the evolution of a given coupling of a theory, g, which is
usually defined as a function of the energy scale

βg(µ) =
∂

∂ log µ
g(µ) (2.2)

where βg is the so-called beta function of the coupling g. These beta functions can
be easily computed when the couplings are small by perturbation theory, but it is not
the case for strong coupled systems, where AdS/CFT methods will be very helpful.
All in all, it seems that we can parametrize our theory as a function of a scale that
can play the role of a new dimension where the dynamics of the couplings will be
governed by some action, this is why we can think of the AdS/CFT correspondence as
a geometrization of the quantum dynamics by the RG.

Sometimes the dynamics of our theory can take our beta function to be βg = 0.
This special points are named fixed points and they describe a system that is invariant
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Figure 2.1: Representation of the RG flow of a lattice spin system. Figure from [149].

under scale transformation, sometimes also called self-similar. Scale invariance is a
necessary condition to have conformal invariance (although it is not always sufficient)
which is an important feature of conformal field theories that appear in the AdS/CFT
correspondence.

2.1.2 Holographic principle

The holographic principle was first proposed by Gerard ’t Hooft [204] and a couple
of years later Leonard Susskind gave a precise string theory interpretation of it [202].
Here we are mainly going to follow Bousso’s review of this principle [48].

The holographic principle claims, in essence, that the information stored in a volume
Vd+1 is encoded in its boundary area Ad. The origin of this claim comes, surprisingly,
from black hole thermodynamics.

Let us first take a look at the concept of black hole entropy, whose prediction has
its origin in a couple of general relativity results.

Area theorem: this theorem [102] affirms that the area of a black hole never
decreases with time, i.e. dA > 0. This also applies to the merge of two black holes: the
total area of the new black holes must exceed the sum of the two original ones. This
theorem resembles the second law of thermodynamics, that claims that the entropy
of an isolated system never decreases with time, giving a first glance on the relation
between entropy and the area of the black hole.



Chapter 2. Gauge-gravity duality 10

No-hair theorem: A stationary black hole is only characterized by three quantities:
charge, angular momentum and mass. The first version of this theorems comes from
Israel [121, 122] and was then thoroughly studied by Hawking, Carter and others [56,
102, 103]. This theorem suggest that all the information (the “hair”, as Bekenstein
decided to call it metaphorically) carried by the matter that falls into the black hole
disappears behind the black hole event horizon, inaccessible to an external observer.
From the point of view of this observer, this process seems to violate the second law of
thermodynamics as the entropy would seem to decrease over time.

These two theorems led Bekenstein to the idea that a black hole does carry an
entropy [39–41] which should be proportional to its area SBH = αA, where α should
be of order unity. It was Hawking [104] who ultimately proved that α = 1/4 leading
to the famous result

SBH =
kB A
4 `2

p

(2.3)

where kB is the Boltzmann’s constant and `p the Planck length, which we restore here
just to show that the entropy is given by the area in Planck units.

Moreover, using this result, Bekenstein proposed a generalized second law of ther-
modynamics (GLS)1, which states that the sum of black hole entropy, SBH , and the
ordinary entropy of matter and radiation in the exterior of the black hole, Sm, cannot
decrease

∆(SBH + Sm) ≥ 0. (2.4)

Now, if we want to claim that this SBH is actually the black hole entropy then it must
also respect some basic thermodynamics. The first law of thermodynamics states that
a black hole of mass M needs to have some temperature T

dM = T dSBH . (2.5)

It was Hawking [105] who resolved this mystery by proving that black holes do have a
temperature given by

T =
κ

2π
(2.6)

where κ is the surface gravity of the black hole.
With all these ingredients at hand we can arrive to the conclusion that the maximum

entropy contained in a volume V is given by the area that encloses it Smax = A/4, which
is known as the Bekenstein bound. We can arrive to this conclusion by a thought

1As a funny anecdote, it is said that this discovery began with a cup of tea between Professor
Wheeler and his student Bekenstein, who wanted to understand what would happen with the second
law of thermodynamics if he threw his cup down to a black hole [110].
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experiment. Let us consider an isolated matter system of mass M and entropy Sm.
This system is confined inside a spherical area A, which will be the smallest sphere
that can fit around it. The system’s mass cannot exceed the mass of a black hole of
the same area, otherwise it would have already formed a black hole. Now we start
throwing matter inside this area until the system collapses to a black hole. The initial
entropy is

Si = Sm + Sthrown (2.7)

And as the final entropy will be that of a black hole and using the GSL

Sf = SBH =
A
4
≥ Si = Sm + Sthrown ≥ Sm . (2.8)

We can deduce from here that the maximum entropy of this system is indeed given by
SBH . This result seems to be in contradiction with what we find in field theories in
the absence of gravity. In such cases we find that the number of degrees of freedom
of a system scales with the volume as N ∼ exp(V ). This leads us to the conclusion
that the entropy is an extensive property of the system using the Boltzmann’s entropy
formula S ∼ logN ∼ V . It can be shown that the field theory analysis overcounts the
available degrees of freedom as it fails to include properly the effects of gravity [48],
solving the apparent contradiction.

Finally, we can conclude that in a gravity theory in (d + 1)-dimensions there are
the same degrees of freedom that in a QFT with no gravity in d-dimensions. This is
an essential point for the AdS/CFT correspondence which explains why we may refer
to it as an holographic theory.

2.1.3 Weinberg-Witten no-go theorem

The Weinberg-Witten (WW) no-go theorem, as originally proposed [217] states:
All theories with a Lorentz-covariant energy-momentum tensor, such as all known
renormalizable QFTs, composite as well as elementary massless particles with j > 1
are forbidden. Also, in all theories with a Lorentz-covariant conserved current, such
as renormalizable theories with a symmetry that commutes with all local symmetries,
there cannot exist composite or elementary particles with non-vanishing values of the
corresponding charge and j > 1/2.

The first part of this theorem will place a great restriction to quantum gravities
(QG). By QG here we mean quantum theories with a dynamical metric. In these kind
of theories we find that the propagating mode of the metric is some spin-2 massless
particle, which is usually called “graviton”. Thus, the WW no-go theorem seems to
invalidate the possibility of having a QG. Fortunately there are ways to go around this
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theorem: it might be possible that the graviton, which has j > 1, is not living in the
same space as the QFT. This is yet another indication to the AdS/CFT duality.

2.2 About Anti de Sitter space-time and Conformal

Field Theory

After motivating the correspondence between gravity theories in anti de Sitter (AdS)
space-time and Conformal Field Theories (CFT) here we give a quick introduction to
both topics without going into much detail.

In the case of AdS space-time it is sufficient to follow the reviews cited about the
AdS/CFT correspondence.

For the case of CFTs, apart from the reviews mentioned, more specific introductions
are useful for this section [180,185,188].

2.2.1 Anti de Sitter space-time

The space-time that we are going to define here will be (d + 1)-dimensional so it can
ultimately be dual to a d-dimensional field theory.
What should we demand to our space time?
First, we must demand that the space-time is invariant under Poincaré transformations
in d dimensions. The most general metric in d+ 1 dimensions that fulfils this is

ds2 = Ω2(z)(−dt2 + d~x2 + dz2) (2.9)

where Ω can only depend on the spatial coordinate z if we want to demand transla-
tional symmetry in (t, ~x). Poincaré symmetry is a necessary condition to construct
a relativistic quantum field theory, but is not sufficient when describing a CFT. A
conformally invariant theory must also be invariant under scale transformations

(t, ~x)→ λ (t, ~x) ; z → λ z (2.10)

where λ is a constant. This condition forces the function in front of the metric to
respect

Ω(z)→ λ−1 Ω(z) . (2.11)

This leaves us with a unique solution

Ω(z) =
L

z
(2.12)
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where L is a constant that determines the curvature radius of the space. Thus, the
metric 2.9 has to be

ds2 =
L2

z2
(−dt2 + d~x2 + dz2) . (2.13)

This metric describes a (d + 1)-dimensional anti de Sitter space time or AdSd+1. We
have reached this conclusion by just asking the space-time to be scale-invariant and
invariant under Poincaré transformations. Moreover, this metric is also invariant under
special conformal transformations, as it also happens in a CFT.
Properties of an anti de Sitter space-time
The AdS metric (2.13) is a solution of the equations of motion of a gravity action

S =
1

16 π GN

∫
dd+1x

√
−g (R− 2Λ) (2.14)

where GN is the Newton constant, g = det gµν , R is the Ricci scalar and Λ is a
cosmological constant.
The anti de Sitter metric is a maximally symmetric space-time. That means that
our space-time has the maximal number of independent Killing vectors (or in other
words, the maximum number of isometries). In d dimensions the maximum number of
isometries a space-time can have is d(d+1)/2. There are only three possible space-time
metrics that are maximally symmetric and they depend on the sign of Λ: for Λ > 0 we
have a de Sitter space-time, Λ = 0 a flat (Minkowski) metric and Λ < 0 corresponds to
an anti de Sitter metric. This cosmological constant determines the curvature of the
space-time and manipulating the equations of motion from (2.14) we can find that for
an AdS space-time

Λ = −d(d− 1)

2L2
=

d− 1

2(d+ 1)
R . (2.15)

A (d+1)-dimensional AdS space may be embedded into (d+2)-dimensional Minkowski
metric with coordinates (X0, . . . , Xd+1) ∈ R2,d, with a metric η = (−,+, . . . ,+,−), so

ds2 = −(dX0)2 +
d∑
i=1

(dX i)2 − (dXd+1)2 . (2.16)

The AdSd+1 will be defined by the hypersurface

ηABX
AXB = −L2 (2.17)

where A,B ∈ (0, . . . , d+ 1) and L is the radius of curvature of the AdS space. Notice
that the hypersurface (2.17) is invariant under O(2, d) transformations acting on R2,d,
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thus the isometry group of AdSd+1 is O(2, d), which is the same as the conformal group
in d dimensions.
We can define a set of coordinates to parametrize the AdSd+1

X0 = L cosh ρ cos τ, (2.18)

Xd+1 = L cosh ρ sin τ, (2.19)

X i = LΩi sinh ρ, for i = 1, . . . , d (2.20)

where Ωi represent the angular coordinates and fulfill
∑

i Ω
2
i = 1. The other two

coordinates take the range ρ ∈ R+ and τ ∈ [0, 2π). These coordinates are the so-called
global coordinates of AdSd+1, this is because all points of the hypersurface (2.17) are
taken into account exactly once. This set of coordinates leads us to the next metric

ds2 = L2(− cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ2
d−1) (2.21)

In Fig. 2.2 we can see a representation of how an AdS2 would look like when
embedded into R2,1.
There is another set of coordinates that also parametrizes the hypersurface (2.17)

Figure 2.2: Representation of the embedding of an AdS2 into R2,1. Figure from [13].

X0 =
L2

2r

(
1 +

r2

L4
(~x2 − t2 + L2)

)
, (2.22)

X i =
r xi

L
, for i = 1, . . . , d− 1, (2.23)

Xd =
L2

2 r

(
1 +

r2

L4
(~x2 − t2 − L2)

)
, (2.24)

Xd+1 =
r t

L
. (2.25)
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where t ∈ R, ~x ∈ Rd−1 and r ∈ R+. Due to the restriction r > 0 we are only covering
half of the AdSd+1. This coordinates are the Poincaré patch coordinates and its metric
reads

ds2 =
L2

r2
dr2 +

r2

L2

(
−dt2 + d~x2

)
≡ L2

r2
dr2 +

r2

L2
ηµνdx

µdxν (2.26)

where µ, ν = 0, . . . , d and x0 ≡ t. Notice that by defining z = L2/r we recover exactly
the metric in (2.13).

In the metric (2.26) we can see that there is a Minkowski metric multiplied by a
factor r2, this means that at every point r there is a Minkowski space whose lengths are
re-scaled by this extra dimension. When this factor goes to infinity, r →∞, the space
metric gii diverges quadratically with r. In general, any asymptotic AdS space will
always have this quadratic divergence at a particular value r∗. The slice of space-time
at r = r∗ is the conformal boundary. On the other hand, at r = 0 we have a degenerate
Killing horizon (or Poincaré horizon). A Killing horizon is a null hypersurface defined
by kµk

µ = 0, where kµ is a Killing vector. A simple representation of an AdS space is
displayed at Fig. 2.3.
The Poincaré patch metric can be defined by other possible definition of coordinates

Figure 2.3: A schematic representation of an AdS space. Figure from [13].

as we saw. If we used the coordinate z the boundary would be located at z = 0 whereas
the horizon would be located at z →∞. Another typical possibility is z = e−r/L, where



Chapter 2. Gauge-gravity duality 16

we would have
ds2 = dr2 + L2e2r/Lηµνdx

µdxν . (2.27)

In summary, the most remarkable point that we should highlight about anti de
Sitter spaces is that the isometry group of (2.13) is SO(2, d), which as we will see
below coincides with the d-dimensional conformal group, giving more strength to the
idea that a CFT could have a string theory description in AdS spacetime.

2.2.2 Conformal Field Theory

Generally we demand to our QFT to be Poincaré invariant. The Poincaré group can
be extended to a more general group: the conformal group. This group consists of
transformations that preserve angles but not lengths. In a Minkoswki space-time the
conformal group defines the most general transformations that preserve local causality,
i.e. spacelike (or timelike/lightlike) separated points remain spacelike separated points
under a conformal transformation.

In a more practical sense, if we have a non-trivial line element ds2 = gµνdx
µdxν , a

conformal transformation will be that which leaves the metric gµν invariant up to an
overall positive factor, i.e. under a conformal transformation x→ x′ we would get

gµν → Λ(x)−2gµν ≡ e2σ(x)gµν . (2.28)

This transformation would then leave the angles constant but would re-scale the line
element at every point x, i.e. ds′2 = Λ(x)−2ds2. The special case where Λ(x) is a
constant corresponds to a scale transformation.

From now on, we will take the metric to be Minkowskian, i.e. gµν = ηµν . For an
infinitesimal transformation xµ → x′µ = xµ + εµ the metric would change as

ηµν → ηµν + ∂µεν + ∂νεµ. (2.29)

We demand this transformation to fulfill

∂µεν + ∂νεµ = (Λ(x)−2 − 1) ηµν = 2σ(x) ηµν (2.30)

where we use Λ(x) = 1−σ(x)+O(σ2). Taking the trace of (2.30) we get ∂ · ε = d σ(x),
where d are the space-time dimensions. Using this condition we can re-write equation
(2.30) as (

ηµν∂
2 + (d− 2) ∂µ∂ν

)
∂ · ε = 0. (2.31)

Notice that the equation simplifies a lot when considering d = 2. This particularity
has great consequences and conformal theories are usually decomposed between those
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with d = 2 and those with d > 2. Here we will focus on the second case. There are
reviews on CFTs that focus primarily on two dimensional ones [82].

For the case d > 2, the solution to equation (2.31) is given by

εµ(x) = aµ + ωµνx
ν + λxµ + bµ x2 − 2 (b · x)xµ. (2.32)

The trace of ε determines σ to be σ = λ− 2 b · x. Notice that the parameters aµ, ωµν ,
λ and bµ are determined by a finite number of components. Therefore the conformal
algebra has a finite dimension. This would not be the case if we were working in
d = 2, where the solutions would be infinite. This parameters determine the different
transformations of the group, which I summarize below along with the generators of
these transformations

εµ(x) Operator
Translation aµ Pµ = ∂µ
Lorentz transformation ωµνx

ν Jµν = (xµ∂ν − xν∂µ)/2
Dilatation λxµ D = xµ∂µ
Special conformal transformation bµx2 − 2 (b · x)xµ Kµ = x2∂µ − 2xµx

ν∂ν

where ωµν = −ωνµ. We have considered here just infinitesimal transformations, but
this can be extended to finite transformations. We have a particular interest in scale
transformations and special conformal transformations, which would transform as

xµ → λxµ , (2.33)

xµ → xµ + bµx2

1 + 2 b · x+ b2x2
. (2.34)

In order to define the special conformal transformation it is useful to introduce the
inversion

xµ → x′µ =
xµ

x2
. (2.35)

Thus, we can construct (2.34) by the composition of an inversion, a translation (of a
factor bµ) and another inversion.
The current of this special conformal transformation is given by

J (K)
µν = x2 Tµν − 2xν x

ρ Tµρ . (2.36)

By demanding that his current must be conserved we find a very remarkable property
of CFTs, which is the tracelessness of the stress energy

∂µJ (K)
µν = 0⇒ T µµ = 0 . (2.37)



Chapter 2. Gauge-gravity duality 18

This property is commonly assumed to be also correct in scale invariant theories, and
although it is generically true it is not a necessary condition for scale invariant theories2.

In a CFT we have a unitary action of the conformal group on the Hilbert space.
The generators P µ, Jµν , D and Kµ are represented by operators, as we can see above.
These generators close the following algebra

[Jµν , Jρσ] = i (ηµρJνσ + ηνσJµρ − ηνρJµσ − ηµσJνρ) (2.38)

[Jµν , Pρ] = i (ηµρPν − ηνρPµ) (2.39)

[Jµν , Kρ] = i (ηµρKν − ηνρKµ) (2.40)

[Kµ, Pν ] = −2 i (ηµνD − Jµν) (2.41)

[D,Pµ] = i Pµ (2.42)

[D,Kµ] = −iKµ (2.43)

where the rest of commutations vanish. The first line determines the algebra of the
Lorentz group SO(1, d− 1) with the generator Jµν and the P µ generator extends the
Lorentz algebra to the Poincaré algebra. Moreover, we can assemble the rest of the
generators in

JAB =

 Jµν
Kµ−Pµ

2
−Kµ+Pµ

2

−Kµ−Pµ
2

0 D
Kµ+Pµ

2
−D 0

 A,B = 1, . . . , d+ 2 (2.44)

and notice that JAB are the generators of the group SO(2, d). We can summarize the
relations through

[JAB, JCD] = i (ηACJBD + ηBDJAC − ηBCJAD − ηADJBC) , (2.45)

where the metric is ηAB = diag(−1, 1, . . . , 1,−1).
We generally identify a particle by its mass and by Lorentz quantum numbers,

which correspond to the Casimirs of the Poincaré group. In a conformal invariant the-
ory the mass operator PµP

µ does not commute anymore with other generators, such
as D. This means that mass and energy can be actually re-scaled. Thus if a represen-
tation of the conformal group contains a state with some energy, it will contain states
with arbitrary energy, from zero to infinity, as we are free to apply dilatations to our
theory. It is because of this that an S matrix formalism does not makes sense for CFT
and there are no well-defined particles. We are going to need different ways to label

2This will be more deeply discussed in Chapter 5. For the interested reader there are many
references that cover this issue such as [62,124,159,173,185].
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the states of our theory.

A simple example of a classically3 scale invariant scalar field theory is a massless
field with only quartic interaction in d = 4

S =

∫
dx4

(
(∂φ)2 +

λ

4!
φ4

)
. (2.46)

The action remains invariant if we make a dilatation in the space-time coordinates (i.e.
x→ x′ = Λx) and in the field with a specific weight

φ(x)→ φ′(x′) = Λ−∆ φ(x) (2.47)

where ∆ is called the scaling dimension of the field and here coincides with the canonical
dimension ∆ = 1. This scale invariance can be broken by just adding a mass m2 φ2

term to the action. It is generally assumed that a scale invariant theory is inevitably
conformal invariant as well, and usually this assumption leads us to the correct answer.

In a CFT we consider fields with good transformation properties under dilatation.
The quantum version of (2.47) in a CFT is given by

[D,φ(x)] = −i∆φ(0). (2.48)

This implies that the field φ has a scaling dimension ∆, which shall be an important
label for the field. Moreover, we can restrict to fields that are annihilated by the
operator Kµ at x = 0, i.e.

[Kµ, φ(0)] = 0. (2.49)

The fields that satisfy this condition are called primary fields. We can take a look
at equations (2.42)-(2.43) and realize that Pµ increases the scaling dimension of the
field while Kµ decreases it, therefore the fields annihilated by Kµ at x = 0 are the
ones with the lowest scaling dimension4. The rest of the fields are commonly called
descendant fields, and they are obtained by repeatedly acting on them with Pµ = ∂µ.
We can restrict our analysis to primary fields, which are classified according to the
scaling dimension ∆ and the Lorentz quantum numbers.

3Scale invariance here is broken by quantum corrections when the theory is quantized, so let us
keep the discussion at the classical level.

4This scaling dimension has actually a minimum value that is restricted by the unitarity bound
(i.e. by demanding the positivity of the norm of a state in a given representation) and particularly
for a scalar in d dimensions we can fin that ∆ ≥ d−2

2 . The proof of this can be found in [13]
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Conformal symmetry facilitates also the treatment of two and three-point correla-
tion functions by imposing some restrictions. For instance, if we use the invariance
under scale transformations we find that

〈φ1(x1)φ2(x2)〉 = Λ∆1+∆2〈φ1(Λx1)φ2(Λx2)〉 , (2.50)

where the φs are scalar conformal primary operators. Since the correlator can only
depend on (x1 − x2) due to Poincaré invariance we are restricted to

〈φ1(x1)φ2(x2)〉 =
C12

(x1 − x2)∆1+∆2
. (2.51)

A similar result is obtained for the three-point function.
In this small introduction to the CFT in d dimensions we have seen that the isom-

etry group of these theories is SO(2, d), which coincides exactly with what we find
in a gravity theory in an AdS space-time in d + 1 dimensions. Other properties and
details explained here shall be considered when comparing both sides of the AdS/CFT
correspondence.

2.2.3 Comparing degrees of freedom

Now that we have discussed both sides of the AdS/CFT correspondence we can go
back to the argument of section 2.1.2 to match the number of degrees of freedom of
both sides of the duality.

Let us start with the CFT side. First of all we need to regularize the theory by
putting a UV and IR regulator. Consider that the system is inside a box of side R
(which will restrict long-distance modes and thus will be an IR cutoff) and let us
introduce a lattice spacing δ that will play the role of a UV regulator. In d space-time
dimensions the system will have Rd−1/δd−1 cells. In each cell there will be cCFT degrees
of freedom, which we will refer to as the central charge. Therefore, the total number
of degrees of freedom is

NCFT =

(
R

δ

)d−1

cCFT . (2.52)

If the CFT we are studying is a SU(N) gauge field theory (like the one we will discuss in
the next section) the fields are going to be N×N matrices in the adjoint representation,
which for large N will contain N2 independent components. We can then say that the
central charge of a SU(N) CFT should scale as cCFT ∼ N2.

On the other hand, the number of degrees of freedom of the AdSd+1 gravity theory
can be deduced from the Bekenstein-Hawking formula (2.3). This formula tells us that
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the degrees of freedom contained in a certain region is given by

NAdS =
A

4 `d−1
P

, (2.53)

where A is the area of the region at the boundary of AdSd+1, i.e. z → 0, and we have
taken kB = 1. Let us evaluate the area of the space defined by the metric (2.13) at
z = δ → 0

A =

∫
Rd−1,z=δ

dxd−1√g =

(
L

δ

)d−1 ∫
Rd−1

dxd−1 (2.54)

The integral of the right hand side is the volume of Rd−1 and is infinite, so let us do
as we did with the CFT: we put the system inside a box of size R which will act as an
IR regulator ∫

Rd−1

dxd−1 = Rd−1 . (2.55)

With this we can already evaluate the number of degrees of freedom of the AdS space-
time gravity

NAdS =
1

4

(
R

δ

)d−1(
L

`P

)d−1

. (2.56)

Comparing this with the result we obtained for the CFT we can identify, considering
that the UV and IR cutoffs are the same,

1

4

(
L

`P

)d−1

= cCFT (2.57)

The gravity theory we are considering has to be at least semiclassical, which demands
that the AdSd+1 radius L has to be large compared to the Planck length, i.e.(

L

`P

)
� 1 . (2.58)

The conclusion we get from this is that a CFT will have a classical gravity dual only if
cCFT is large, i.e. if there is a large number of degrees of freedom per unit volume or a
large number of species (in a SU(N) gauge theory this would mean taking a large N
limit).
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2.3 AdS/CFT correspondence: required tools and

conjecture

We have seen in the last sections that the AdS/CFT correspondence relates gravity
theories in asymptotically Anti-de Sitter spacetimes in d + 1 dimensions to conformal
field theories in d dimensions. There are various examples5, but we will restrict our
discussion to the most prominent example which relates N = 4 Super Yang-Mills
theory in 3 + 1 dimensions and type IIB superstring theory on AdS4 × S5. This
correspondence was originally developed in the context of string theory, which we will
very briefly review here so we can have an understanding of this duality. Moreover,
we will take a look at the large N gauge theories mentioned before, which will have an
important role in the story.

We will not fully study string theory in all its details, just give a glimpse of its
properties, a more exhaustive review of it can be found in [90,174,228].

2.3.1 Large N expansion in gauge theories

A U(N) Yang-Mills gauge theory can be simplified in the limit where the number of
colors, N , is large. This was first discovered by ’t Hooft in the 1970s [203] and has
interesting consequences for the AdS/CFT duality.
We are going to consider a U(N) Yang-Mills theory, whose Lagrangian is

L = − 1

g2
YM

Tr[FµνF
µν ] , (2.59)

where the non-abelian gauge field strength is given by

Fµν = ∂µAν − ∂νAµ + i [Aµ, Aν ] . (2.60)

The gauge field Aµ is an N × N matrix whose elements are written as Aaµ,b where
a, b = 1, . . . , N . We can re-express our Lagrangian as

L = −N
λ

Tr[FµνF
µν ] , (2.61)

where λ ≡ g2
YMN is the so-called ’t Hooft coupling. It is a well known result that for

these theories the beta function scales as β(g) ∼ −g3
YMN , so in the large N limit the β

5E.g. other realizations of the correspondence are the one that states that M-theory in AdS7 × S4

is equivalent to the so-called (2, 0)-theory in six dimensions [145] or the one that claims that M-theory
on AdS4 × S7 is equivalent to the ABJM superconformal field theory in three dimensions [4].
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function would diverge and gYM would go to zero. However, if we take the limit where
N goes to infinity while keeping λ constant we can then find that the renormalization
group equation of λ has finite coefficients

β(λ) ∼ −λ2 . (2.62)

This type of expansion is called ’t Hooft expansion and in this limit it will be λ who
acts as the effective coupling constant and not gYM, which goes to zero.

We adopt a double line notation (see Fig. 2.4) for the gauge propagator that will

Figure 2.4: Double line representation of a diagram: (a) A gauge field propagator,
which scales as ∼ λ

N
(b) A vertex, which scales as ∼ N

λ
(c) A planar diagram with two

loops, which scales as ∼ N2λ. Figure from [3].

simplify the discussion of this non-abelian gauge theory. Feynmann diagrams will then
become networks of double lines where vertices will scale as g−2

YM = N
λ

and propagators
as g2

YM = λ
N

. Moreover, every loop contributes an N factor coming from the trace.
Therefore, it is easy to estimate how a given diagram D with no external lines will
scale. If there are P propagators, V vertices and L number of loops we conclude that
the diagram will scale as

D(P,L, V ) ∼
(
λ

N

)P (
N

λ

)V
NL = NL−P+V λP−V (2.63)

The power of the expansion parameter N is precisely the Euler characteristic

χ ≡ L− P + V = 2− 2 g (2.64)

related to a surface with the number of handles g (the genus) of a surface (see Fig. 2.5).
It is evident from equation (2.64) that in the large N limit the major contribution

will come from the terms with g = 0, which correspond to the planar diagrams: those
that can be drawn on a piece of paper without self-crossing. It is because of this that
the large N limit can also be found under the name of planar limit of the gauge theory.
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Figure 2.5: Two different vacuum amplitudes. The left one has genus g = 0 (it is a
planar diagaram) and scales as ∼ N2 for large N , the right one has genus g = 1 and
scales as ∼ N0. The planar diagram can be drawn on a sphere (no handles) whereas
the non-planar has to be drawn on a torus (one handle). Figure from [181].

Any physical quantity of this theory may be expressed as an expansion of N and g.
For instance, the partition function Z and the generating functional W for connected
Green functions have the structure

iW = logZ =
∞∑
g=0

N2−2g

∞∑
i=0

ci,gλ
i =

∞∑
g=0

N2−2gfg(λ) (2.65)

with fg(λ) a polynomial in the ’t Hooft coupling. This result will be important when
we want to compare the large N limit of gauge theories with string theory.

2.3.2 String theory and D-branes

The historical origin of string theory begins in the 1960s as an attempt to describe the
hadronic resonances of high spin observed in experiments. The squared mass of these
kind of particles was known to be linearly related to its spin J

M2 ∼ J . (2.66)

These hadrons are then distributed along Regge trajectories, as can be seen in Fig. 2.6.
Geoffrey Chew and Steven Frautschi were the first ones to conjecture that strong
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Figure 2.6: Mass and spin of hadrons, following a Regge trajectory, where squared
mass and spin are linearly related. Figure from [76].

interacting particles had this linear relation between mass and spin [60]. String theory
is then introduced to reproduce this relation of hadron properties. It is not very difficult
to verify (at least qualitatively) that a particle described as a string can exhibit the
relation shown in (2.66). Let us suppose that we have an open string of length L and
tension T that is rotating around its center of mass. The mass of this string would
be M ∼ T L, and its angular momentum would be J ∼ P L, where P is the angular
momentum. In a relativistic theory we have P ∼ M , thus J ∼ M L ∼ M2 T−1. This
reproduces exactly the Regge behaviour (2.66) with a slope proportional to the string
tension T .

The most basic difference between string theory and quantum field theory is what
kind of object is the responsible of describing the most fundamental particles. In string
theory these are, as the name already announces, one dimensional extended strings with
a characteristic length `s and a tension T which are related by

T =
1

2πα′
; α′ ≡ `2

s (2.67)

where α′ is actually the Regge slope we discussed above.
In order to construct the action that will control the dynamics of these strings we can
take a look at the special relativistic description of a point particle of mass m moving
in a flat space with a Minkowskian metric. The curve in space-time that describes
the trajectory of this particle (the worldline) can be represented by a function xµ(τ),
where xµ is the coordinate in the space where is moving and τ is the coordinate that
parametrizes the path of the particle. The action of this particle is proportional to the
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Figure 2.7: Strings can be either open or closed (strings with no boundaries). Here we
show worldsheets of a closed and open string in a 3-dimensional target space. Figure
from [13].

integral of the line element of the curve

S = −m
∫
ds = −m

∫
dτ
√
−ηµν ẋµẋν , (2.68)

where ẋµ = dxµ

dτ
.

On the other hand, a string moving will not describe a one-dimensional trajectory
but some sort of surface (the worldsheet). Therefore, the action we postulate is then
something proportional to the integral of such area, the so-called Nambu-Goto action:

SNG = −T
∫
dA . (2.69)

In this case there will be two coordinates, σα = (σ0, σ1) ≡ (τ, σ), that will describe the
worldsheet Σ (see Fig. 2.7) and then, if we assume that the worldsheet is embedded in
a flat space, there will be a mapping to the target space-time given by some function
Xµ(σα). Therefore the worldsheet will have an induced metric on Σ given by

gαβ ≡ ηµν∂αX
µ∂βX

ν . (2.70)

Finally we can write the action as

SNG = −T
∫
d2σ
√
− det gαβ (2.71)

Until now we have just worked with a classical theory, if we want to describe quantum
states we need to quantize the theory. The simplest way is through canonical quanti-
zation, i.e. by considering that the functions Xµ are in fact operators and imposing
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canonical commutation relations between Xµ and its conjugate momenta. Doing so we
find that there is an infinite tower of particles of different masses and spins (organized
in Regge trajectories) whose mass gap is of order 1/`s. This quantization also leads
us to many non-trivial properties of this theory. First of all, we find that there are
tachyon particles in the spectrum (i.e. particles with m2 < 0), which is a signal of
instability. This can be solved by considering fermionic strings, to do that we need
to require that the theory is supersymetric, i.e. that there is a symmetry between
bosonic and fermionic degrees of freedom. This generalization of string theory is the
so-called superstring theory. There are different types of superstring theories depend-
ing on the supersymmetries that we consider, whether strings are orientable or not,
etc. In particular, the type of superstring theory that will be of our interest goes under
the name of type IIB superstring theory, which only contains orientable closed strings
and has the maximum amount of supersymmetries in 10 dimensions. More details
about the different types of superstring theories go beyond the scope of this text, but
a nice description of them can be found in [172]. Other remarkable issues regarding
the (bosonic) string theory are related to the dimension of the target space D. In
summary, we find that in order to describe Lorentz invariant massless modes we need
to impose that this dimension is D = 26 in the bosonic description6.
In the spectrum of open string we find massless spin-one particles which are identified
with gauge bosons (photons, gluons,etc.) and scalars modes such as the dilaton Φ, but
one of the most astonishing results we find it when analysing the spectrum of closed
strings in superstring theory: the appearance of a massless spin-two string, which is
identified as the graviton. Moreover, when we go to the limit of low energies, i.e.
E � ms = `−1

s , we can integrate out the massive modes and obtain an effective low
energy theory for the massless particles and, lo and behold, we find that this effective
theory has the form of Einstein gravity coupled to other massless fields

S =
1

16πG

∫
dDX

√
−gR+ . . . . (2.72)

Einstein equations appear naturally in string theory! Therefore we get to the conclusion
that string theory is actually a quantum gravity theory and not a hadronic theory as
was originally intended. This is why sometimes this superstring theories go under the
name of supergravity theories.
To conclude, we need to discuss how strings interact with each other. In general, these

interactions between strings will be controlled by a small coupling constant gs which will
allow us to construct a perturbative expansion in terms of Feynmann diagrams, similar

6In the case of the type IIB superstring theory we find that D = 10 but in this case the condition
comes from demanding that there are no tachyonic states.
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Figure 2.8: We can think of diagrams in string theory as thickened versions of Feyn-
mann diagrams in quantum field theory. A three-(closed)-string vertex would look like
a slingshot and will be proportional to gs. Figure from [181].

Figure 2.9: Perturvative expansion for closed strings. For each loop we have a hole in
the worldsheet. Figure from [201].

to what is done in quantum field theory (see Fig. 2.8). When these strings interact by
splitting or joining with other strings we can represent it by a two dimensional surface
with holes and boundaries. Take as an example a closed string splitting into two strings
(whose diagram would look like a slingshot) and then rejoining. This would produce a
worldsheet that would be a surface with a hole in it. Thus, in general we can represent
higher order terms in perturbation theory as surfaces with more and more holes. This
means that perturbative expansion in string theory can be understood as a topological
expansion. Now, if the reader is feeling a deja vu is because we have seen something
very similar in the large N expansion above. In particular, the perturbative expansion
of these interactions would be of the type

A =
∞∑
g=0

g2g−2
s fg(α

′) (2.73)
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where A is the amplitude. Comparing this with (2.65) clearly suggests that there is
probably a relation with the expansion in large N if we identify gs to

gs ∼
1

N
(2.74)

The AdS/CFT correspondence is an explicit realization of this connection in the limit
(N, λ)→∞ (the planar limit in the strongly coupled regime).

Up until now we have commented (without going into much detail) the quantization of
open and closed strings, their spectrum and its effective theory of closed strings at low
energies. However, in string theory there are objects that lie in the non-perturbative
sector which are of great importance for the AdS/CFT correspondence. In this sec-
tor we have a variety of higher-dimensional solitonic objects and D-branes (short for
Dirichlet membrane) are a particularly important class of solitons that were discovered
by Dai, Leigh and Polchinski, [69] and independently by Hořava [111], in 1989. We
have two different ways of looking at a D-brane.
On one hand we can define them as hypersurfaces where open strings can end and are
fixed to. These open strings might deform this hypersurface and lead to non-trivial
excitations on the D-brane. Thus, the D-brane is not only a geometric construction
but a dynamical object.
On the other hand we can study D-branes as very massive objects which distort the
surrounding space-time. Both points of view will be reviewed in the next two sections.
We can see in Figure 2.12 when either of the perspectives are reliable.

D-branes: Open string perspective

Let us consider a Dp-brane that extends in the xµ (µ = 0, . . . , p) directions, with
yi (i = p + 1, . . . , 9 if we consider that D = 10) transverse directions, that specify
the (Dirichlet) boundary conditions of open strings, i.e. open strings are fixed to this
hypersurface. Dp-branes have a finite number of massless excitations. In particular,
the massless spectrum consists of a gauge field Aµ and 9 − p scalars φi (and their su-
perpartners). These scalar modes can be identified as the fluctuations in the transverse
directions yi of the Dp-brane, i.e. they describe the rigid body motion and the defor-
mation of its shape. On the other hand, since string endpoints are charged they are
coupled to a gauge field Aµ that lives in the Dp-brane, this gauge field will describe the
internal excitations of the Dp-brane. The action that describes Dp-branes and takes
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Figure 2.10: Left: Two D-branes with open strings attached to them. Figure from
[57]. Right: Open strings source a gauge field on the D-brane worldvolume. Figure
from [181]

into account these kind of excitations is the so-called Dirac-Born-Infeld (DBI) action:

SDBI = −TDp
∫
dxp+1

√
− det(gµν + 2π`2

sFµν) , (2.75)

where gµν is the induced metric on the worldvolume, Fµν is the field strength of the
gauge field Aµ and TDP is given by

TDp =
1

(2π)pgs`
p+1
s

(2.76)

and is the tension of the Dp-brane, i.e. its mass per unit spatial volume, which its de-
pendence scaling with the coupling constant∼ 1/gs makes evident the non-perturbative
nature of Dp-branes.

Notice that in the absence of a field strength (Fµν = 0) this is just a generalization
of the Nambu-Goto action (2.71) for an objected extended in p directions instead of
two. Scalar excitations seem to be absent in (2.75) but they are actually encoded inside
the induced metric. If we consider a Dp-brane in a flat space the induced metric would
take the form of

gµν = ηµν + (2π`2
s)(giµ∂νφ

i + gjν∂µφ
j) + (2π`2

s)
2∂µφ

i∂νφ
i , (2.77)

where the scalars φi parametrize the embedding of the brane. Finally, we can expand
the DBI action in the limit `s → 0

SDBI = − 1

g2
YM

(
1

4
Fµν F

µν +
1

2
∂µφ

i∂µφi + . . .

)
. (2.78)
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This expansion describes the system at its low energy limit (`s → 0) as juts an ordinary
gauge field action and 9 − p free scalar fields. Moreover we identify the Yang-Mills
coupling in (2.78) as a function of `s and gs

g2
YM = 2 (2π)p−2 `p−3

s gs (2.79)

Another astonishing feature of Dp-branes is the appearance of a non-abelian gauge field
when we set branes close to each other. Let us take as an example just two branes (see
Fig. 2.78): in this case we would have two massless gauge field in each brane, (Aµ)1

1 and
(Aµ)2

2, and two massive gauge fields that are attached to both branes, (Aµ)1
2 and (Aµ)2

1,
with a mass proportional to the distance between branes, i.e. m = r/2π`2

s. If we go
to the limit where branes are on top of each other, r → 0, these fields would become
massless and we would represent these fields as (Aµ)ab with a, b = 1, 2 corresponding
precisely to a U(2) non-abelian gauge field7. In general, for N branes, this gauge group
would be a U(N) group.
Now that we have seen some of the properties of Dp-branes, let us consider a (9 + 1)
type IIB supergravity theory where we embed N coincident D3-branes in the limit
of low energies, i.e. E � `−1

s , and for a small effective coupling constant gsN � 1,
which is the limit where this perspective is reliable. Perturbative string theory in this
background consists of two kinds of strings: open strings that begin and end on the
branes and closed strings. As we have seen, open string may be viewed as excitations
of a (3 + 1)-dimensional hyper plane, whereas closed string are the excitations of the
(9 + 1)-dimensional flat spacetime. At low energies only massless modes are taken into
account, so we may write the effective action for these massless string modes as

S = Sclosed + Sopen + Sint (2.80)

which we can summarize as

• Sopen defines a non-abelian gauge field as we have seen above, in particular it
contains the action of a N = 4 Super Yang-Mills theory with a gauge group
SU(N) and a constant gYM = 4πgs.

• Sclosed corresponds to the action of a ten dimensional type IIB supergravity.

• Sint contains the interaction between open and closed strings and is proportional
to α′2gs and so it vanishes in the low energy limit α′ → 0 if we keep gs finite.
This means that at low energies open and closed string are decoupled.

7A similar thing would happen to scalars, which would organize as 2×2 matrices (φi)ab transforming
in the adjoint representation of the U(2) gauge group.
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In conclusion, from the open string perspective we find two decoupled theories in the
low-energy limit: N = 4 Super Yang-Mills theory in four dimensions and type IIB
supergravity on R9,1.

D-branes: Closed string perspective

In a theory that contains gravity any form of matter affects the space-time metric
and D-branes are no exeption. Therefore, D-branes are massive dynamical objects
that will be a source of supergravity fields. In this case we are going to consider that
L/`s � 1 which will ensure that there is weak curvature, this means that this closed
string perspective is reliable only in the limit gsN � N . Let us take again N D3-
branes in a ten dimensional type IIB supergravity theory. It can be shown by solving
the supergravity equations of motion ( [83, 86, 112]) that the metric sourced by these
branes is given by8

ds2 = H−1/2dxµdxµ +H1/2dyidyi ; H(r) = 1 +

(
R

r

)4

(2.81)

R4 = 4πgsN`
4
s (2.82)

where the D3-branes extends over the xµ coordinates and the yi coordinates are the
transverse ones. There are two clear limits that correspond to different regions of the
space-time

• r � R: In this limit we find H ' 1 and the metric reduces to a flat ten dimen-
sional space.

• r � R: This is so-called near-horizon or throat. In this limit we find that the
space-time metric goes to

ds2 =
r2

R2
dxµdxµ +

R2

r2
dr2 +R2dΩ2

5 (2.83)

which is the geometry of an AdS5 × S5 spacetime.

It can be shown that closed strings propagating in these two regions are decoupled in
the low-energy limit. Notice that the from the point of view of an observer at infinity

8To be complete: there is also a field strength tensor F(5) living in the worldvolume which we can
omit as it will not affect the discussion.
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Figure 2.11: Space-time deformed by the N D3-branes. At r � R we are in the
throat, i.e. in a AdS5×S5 space-time, while in r � R we are in a flat ten-dimensional
space-time. Figure from [147].

the energy of a closed string, Es, gets redshifted by the time metric component gtt as
E∞ =

√
−gttEs. In the limit where r � R we would have

E∞ ∼
r

R
Es . (2.84)

Therefore an observer at infinity sees two different low-energy excitations:

• Supergravity modes propagating in a flat ten-dimensional space-time.

• String excitations in the near horizon region, which corresponds to an AdS5×S5

space-time.

In conclusion, from the closed string perspective we find two decoupled theories in the
low-energy limit: type IIB supergravity on AdS5 × S5 and type IIB supergravity on
R9,1.

2.3.3 The conjecture

Finally, we have all the motivation, tools and physical descriptions necessary to cope
with the so-called AdS/CFT correspondence. The strongest form of the AdS5/CFT4

correspondence can be summarized as
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N = 4 Super Yang-Mills (SYM) theory
with gauge group SU(N) and coupling gYM

is dynamically equivalent to
Type IIB superstring theory

with string length `s and coupling constant gs
on AdS5 × S5 with curvature radius R (and N units of F(5) flux on S5).

There are two free parameters at each side of the equivalence: in the field theory side
we have gYM and N while in the string theory case we have gs and the dimensionless
ratio R/`s. The first identification can be found in (2.79) which in our case is

g2
YM = 4πgs . (2.85)

Moreover, using (2.82) we may derive the second identification between the free pa-
rameters of both theories

2λ = (R/`s)
4 (2.86)

where λ ≡ g2
YMN is the ’t Hooft coupling.

As mentioned above, the open and closed perspective depend on the effective coupling
gsN . In the limit gsN � 1 we have that R � `s, thus the throat geometry effect
is smaller than the characteristic length of strings. In such limit the open and closed
strings are decoupled and the open string perspective is reliable, while the closed string
description is innaplicable since we would need to know the effects of gravity at scales
smaller than `s. On the other hand if we consider the limit gsN � 1 the backreaction
of branes over the background is large enough to consider the closed string perspective.
However the the open string perspective would not be reasonable as we would have to
deal with a strongly coupled gauge theory.

The AdS/CFT conjecture is no less than conjecturing that both perspectives in
the low energy limit should be equivalent. In this particular limit we find a mapping
between a strongly coupled field theory and a weakly curved supergravity theory. This
special limit is referred to as the weak form of the AdS/CFT conjecture.

The AdS/CFT correspondence stated above says that both sides of the correspon-
dence are dinamically equivalent. This means that the two theories are identical and
therefore describe the same physics from two very different perspectives. Thus, if the
AdS/CFT conjecture holds, the physics from one theory can be mapped to the other
one. This identification is particularly curious due to we would be mapping a quantum
gravity theory candidate, i.e. superstring theory, to a field theory that has no gravita-
tional degrees of freedom. This correspondence is also a realisation of the holographic
principle that we introduced at the beginning of this section once we do a dimensional
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Figure 2.12: A sketch of the AdS/CFT correspondence. Figure from [131].

Kaluza-Klein reduction on the sphere S5 and we map the five-dimensional superstring
theory to the four-dimensional field theory9.

2.4 User’s guide

Previously we have focused on the motivation and mathematical basis of the AdS/CFT
correspondence but we have not shown yet the most pragmatic aspect of it. Before
diving into this we must be aware that throughout this thesis we will restrict our-
selves to the so-called bottom-up holographic description. In general we can separate
holographic models as top-down or bottom-up models.

In the former case we know exactly the two sides of the duality we are dealing with.
On the field theory side we know the Lagrangian, which we may study in perturbation

9The reduction of the 5-sphere S5 will be omitted here but can be found in any of the AdS/CFT
reviews mentioned at the introduction of this section such as [181].
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theory at weak coupling, while the dual gravity theory is treatable in the supergravity
limit. This approach has the advantage that we can precisely identify operators on
each side and rely on its correspondence.

The latter case, however, does not need to know what is the exact Lagrangian of
the dual field theory, if it even exists. In this case we proceed as explained in [200]:

• Identify the minimal AdS gravity model with the desired features (symmetries,
operator content).

• Determine the background solution by solving the equations of motion subject
to the symmetries or other features asked.

• Perform the dual computations, such as correlation functions.

This approach has the advantages of not needing to know the two dual theories, we
have easier computations to carry out or that we may obtain more universal results.
Therefore, this will be the kind of holographic theories that we will consider throughout
the text.

Field ↔ operator correspondence

What we want to do now is to establish a mapping between the spectra of the two
sides of the duality. In a CFT the important observables are the correlators of local
observables O(x), whose generating functional is constructed out of sources. We can
identify the sources of these operators as the boundary values of some field φ(x, z) of
the gravity theory. To support this claim we make use of one of the most remarkable
equations of AdS/CFT, known as the GPKW equation10

Zgrav [φ(x, z → 0) = φ0(x)] =
〈
e
∫
φ0(x)O(x)

〉
CFT

= ZCFT[φ0] . (2.87)

On the left hand side we have the partition function of the gravity theory evaluated
over all functions with the value φ0 at the boundary. In the limit of weakly coupled
gravity we can just approximate by the classical action

Zgrav ' eS
sp
grav[φ0] (2.88)

where Ssp
grav[φ0] is the action of the gravitational theory at the saddle point, i.e. the

least action associated with the classical limit, evaluated at the boundary of AdS. On

10This equation was deduced by Witten [219] and independently by Gubser, Polyakov and Klebanov
[95] around 1998.
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the right hand side of (2.87) we have the generating functional of correlators in the
CFT with some sources φ0(x). This leads us to propose a correspondence between
fields in the bulk theory and operators in the boundary field theory. This mapping can
be determined based on the tensor structure, the dimension and some other quantum
numbers, some examples of this mapping are

gµν ←→ Tµν (2.89)

Aµ ←→ Jµ (2.90)

φ ←→ O (2.91)

where an example of operator O could be O = Tr(F µνFµν).

Let us now consider the most simple example: a scalar field theory with no inter-
actions. We will consider an AdSd+1 space in Euclidean signature

ds2 =
R2

z2

(
δµνdx

µdxν + dz2
)

(2.92)

and an action given by

S = −1

2

∫
dd+1x

√
g
(
∂Mφ∂Mφ+m2φ2

)
(2.93)

where µ, ν = 0, . . . , d − 1 and M = 0, . . . , d. The equations of motion for this scalar
field are

1
√
g
∂M
(√

ggMN∂Nφ
)
−m2φ = 0 . (2.94)

By plugging the metric these equations reduce to

zd+1∂z(z
1−d ∂zφ) + z2 ∂µ∂µφ−m2R2φ = 0 . (2.95)

We can now perform a Fourier transform of φ in the xµ coordinates

φ(z, xµ) =

∫
ddk

(2π)d
ei k·xfk(z) (2.96)

and the equation then becomes

zd+1∂z(z
1−d∂zfk) + z2k2fk −m2R2fk = 0 . (2.97)
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The exact solution of this equation is given by two Bessel functions whose asymptotic
behaviour near the boundary go as a power of z, i.e. fk ∼ zβ. Thus, keeping the
leading terms close to z ∼ 0 we obtain the equation

β (β − d)−m2R2 = 0 (2.98)

which has two solutions11

β± =
d

2
±
√
d2

4
+m2R2 . (2.99)

Let us express the solution as a sum of these two powers of z, back into the coordinate
space, as

φ(x, z) ' A(x) zβ− + B(x) zβ+ where z → 0 . (2.100)

We will only consider real exponents, thus we will impose m2R2 ≥ −d2/412. The role
that the functions A(x) and B(x) will have in the boundary theory can be determined
by their normalizability with respect to the inner product, i.e. to

(Ψ1,Ψ2) = −i
∫

Σt

dzdxd−1
√
−ggtt(Ψ∗1∂tΨ2 −Ψ2∂tΨ

∗
1) , (2.101)

where Σt is a constant time slice of space-time.
There are two regions we must distinguish in order to assign the role to each function.
On the one hand we have the region m2R2 ≥ −d2/4 + 1, which corresponds to the
so-called standard quantization. In this case we have that the function B(x) is nor-
malizable whereas A(x) is not. Just as we have said above, the boundary value of the
bulk field φ should correspond to the source of a boundary operator O. Therefore,
since the term that will be relevant at the boundary for the function φ(x, z) is A(x)
we conclude that this non-normalizable mode should correspond to the source of the
boundary operator and we will call it the leading mode. On the other hand, the nor-
malizable modes are elements of the bulk Hilbert space. The equivalence between bulk
and boundary theories must be applied to this Hilbert space as well, which leads us
to conclude that normalizable modes should be identified with states of the boundary
theory, and as we shall see below the mode B(x) determines the expectation value of

11This can be generalized for any p-form field of mass m, i.e. an antisymmetric tensor Aµ1,...,µp

with p indices, as: β± = d
2 ±

√(
d−2p

2

)2
+m2R2.

12Particles in AdS spaces might have negative mass squared particles and be stable, provided the
mass is not too negative. This bound is called Breitenlohner-Freedman bound, which tells us that we
need to respect R2m2 ≥ −d2/4. This result was first derived in [49,51].
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the dual operator O. This will be the so-called sub-leading mode.

The second region corresponds to −d2/4 ≤ m2R2 ≤ −d2/4 + 1. Here both modes
are normalizable, thus we may consider both modes to be identified with states of the
boundary [50, 52], and an alternative quantization where B(x) gets to be the source
might be considered, giving rise to two different possible CFTs [133]. Even a more
general quantization where both modes are used to build the physical states can be
considered [42,107,109,220]. For the moment we will just stick to the standard quan-
tization.

Let us now come back to the solution found in (2.100): it is trivial to notice that near
the boundary the power that will dominate is β−. Thus we need to impose boundary
conditions on the dominant solutions at some z = ε, which we will then send to ε→ 0,
so the solution does not diverge at the boundary

φ(x, z)|z=ε = εβ−Φ(x) . (2.102)

With this definition we have a scalar field Φ(x) which is finite and will be controlled
by A(x) near the boundary. These powers β± are of great importance for the CFT
operator O that the field φ(x, z) is sourcing. At the boundary action we can find

Sbdy ∼
∫
ddx
√
γε φ(x, ε)O(x, ε) (2.103)

where γε =
(
R
ε

)2d
is the induced metric at the z = ε boundary. By using (2.102) we

get

Sbdy ∼ Rd

∫
ddx ε−dΦ(x) εβ− O(x, ε) . (2.104)

We want Sbdy to be finite and independent of ε, thus the operator must have the next
form close to the boundary

O(x, ε) = εd−β−O(x) = εβ+ O(x) ≡ ε∆O(x) . (2.105)

The interpretation of this power ∆ is that it acts as the mass scaling dimension of the
operator O and similarly, for the field φ(x, z), we deduce that β− = d−∆ is the mass
scaling dimension of the source Φ(x). These parameters tell us how the source and the
operator transform under scale transformations, i.e.

x→ λx , z → z/λ =⇒ Φ→ λd−∆ Φ ,O → λ∆O (2.106)

Thus the parameter ∆ defines exactly the conformal dimension of the operator O. We
can divide the mass scaling dimensions in three categories depending on their values
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Figure 2.13: Relation between the conformal dimension ∆ and m2R2 in d = 3 with
unitarity and Breitenlohner-Freedman bounds represented in the graphic. Alternative
quantization belongs to the region 1/2 < ∆ < 3/2.

• Relevant operator: for ∆ < d. In this case the operator’s effect is going to be
significant for RG flows into the IR region. Relevant operators may be turned
on without spoiling the AdS boundary, as the bulk field φ will go to a constant
or zero at z → 0, or in other words, these operators will not spoil the UV fixed
point of the field theory. Here we have −(d/2R)2 < m2 < 0.

• Marginal operators: for ∆ = d. Here we have m2 = 0. In this case the
corrections would be, at most, logarithmic with energy.

• Irrelevant operators: for ∆ > d. These operators will not be important in the
IR regime but might change the UV structure of the field theory. Here we will
have m2 > 0.

Finally we can consider a bound to this conformal dimension coming from the so-called
unitarity bound. This bound comes from demanding that all states in a representation
of a quantum field theory have positive norm. In the case of scalars in d dimensions
one can find [151] that ∆ ≥ d−2

2
13 (see Fig. 2.13).

13See [16] for AdS/CFT examples beyond the unitarity bound
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Correlation functions

As stated above, correlation functions are important in CFTs and we can derive them
by using (2.87). In general we will need to take care of possible divergences and
renormalize the gravitational action by a holographic renormalization [197], thus we
will now consider the renormalized action Ssp

grav → Sren
grav. Using this identification it is

easy to derive that for a n-point correlation function we get

〈O(x1) . . .O(xn)〉 =
1

ZCFT

δnZCFT

δΦ(x1) . . .Φ(xn)

∣∣∣∣
Φ=0

=
δnSren

grav

δΦ(x1) . . .Φ(xn)

∣∣∣∣
Φ=0

. (2.107)

Notice that we are taking the derivative with respect to Φ, if we want to compute a
one point correlation function in terms of the field φ we would need to re-scale the
expression using the relation (2.102), i.e.

〈O(x)〉 = lim
z→0

zd−∆
δSren

grav

δφ

∣∣∣∣
φ=0

, (2.108)

where ∆ is the conformal dimension of the operator O.
This functional expression can be fairly simplified. Consider that the gravity action is
given by

Sgrav =

∫
dz ddxL[φ, ∂φ] , (2.109)

with a boundary located at z = ε. By performing an infinitesimal change φ→ φ+ δφ,
integrating by parts and using the equations of motion we obtain

δSsp
grav = −

∫
ddx

∂L
∂(∂zφ)

δφ

∣∣∣∣
z=ε

. (2.110)

Let us now define

Π(x, z) = − ∂L
∂(∂zφ)

(2.111)

which is the canonical momentum when z plays the role of the time coordinate.
Using this we can rewrite (2.110) as

δSsp
grav =

∫
ddxΠ(x, ε) δφ(x, ε) . (2.112)

Generally the full renormalized action is a combination of this on-shell action and the
counterterms, which are defined in the boundary. Therefore

Πren(x, z) = −
δSren

grav

δφ(x, z)
. (2.113)
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This expression in the boundary must be

Πren(x, ε) = − ∂L
∂(∂zφ)

+
δSct

grav

δφ(x, z)
(2.114)

which using (2.108) leads us to a nice expression for the one-point correlation function

〈O(x)〉 = lim
z→0

zd−∆Πren(x, z) . (2.115)

Linear response theory

Finally we can comment the use of these correlation functions for the so-called
linear response theory (see [108]). Let us write the one-point function as it is defined
in a QFT

〈O(x)〉 =

∫
dΨO(x) eSE [Ψ]+

∫
ddyΦ(y)O(y) (2.116)

where Ψ are the different fields in the QFT. We may expand this expression as a power
series of the source Φ up to linear order

〈O(x)〉 = 〈O(x)〉Φ=0 +

∫
ddy 〈O(x)O(y)〉Φ(y) + . . . . (2.117)

The two-point correlation function can be defined as the Euclidean two-point function
GE(x− y) as

GE(x− y) = 〈O(x)O(y)〉 . (2.118)

Moreover, let us consider 〈O(x)〉Φ=0 = 0. This can always be achieved as long as we
subtract to O its vacuum expectation value with no source. Using this parametrization
we can consider 〈O(x)〉 as the fluctuation away from the vacuum, so the linear response
of the system to an external source is

〈O(x)〉 =

∫
ddy GE(x− y) Φ(y) , (2.119)

by Fourier transforming this expression we can express it as

〈O(k)〉 = GE(k) Φ(k) . (2.120)

Finally, using (2.108) and (2.115), we arrive to the expression

GE(k) = lim
z→0

z2(d−∆) Πren

φ
. (2.121)



Chapter 2. Gauge-gravity duality 43

Let us use these results in the example presented in (2.93), which under partial
integration and using the equations of motion we can obtain the on-shell action

Ssp = −ζ
2

∫
dzddx∂M

[√
gφgMN∂Nφ

]
, (2.122)

where ζ is some normalization constant. The boundary of this space corresponds to
z = ε and we can then express the action as

Ssp = −ζ
2

∫
ddx
√
gφgzz∂zφ|z=ε . (2.123)

Using (2.111) we compute the conjugate momentum

Π = ζ
√
g gzz ∂z φ. (2.124)

and re-write the action as

Ssp =
1

2

∫
z=ε

ddxΠ(x, z)φ(x, z) . (2.125)

Let us now perform a Fourier transformation like we did in (2.96) on both φ and Π
and express the action as

Ssp =
1

2

∫
ddk

(2π)d
Π−k(z = ε)fk(z = ε) . (2.126)

The results from (2.100) and (2.124), expressed on terms of ∆, allow us to compute
the on-shell action in the limit ε→ 0

Ssp ≈ Rd−1

2

∫
ddk

(2π)d
(
εd−2∆(d−∆)A(−k)A(k) + dA(−k)B(k)

)
, (2.127)

The first term εd−2∆ is clearly divergent and one can find that an appropriate coun-
terterm to the action in order to cancel this divergence is

Sct = −d−∆

2R

∫
ddx
√
γφ2 . (2.128)

Performing again a Fourier transformation and adding the counterterm to the action
we derive the renormalized action

Sren = Rd−1 2∆− d
2

∫
ddk

(2π)d
A(−k)B(k) . (2.129)
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We would like to use the formulas we have derived to compute the one-point function
from this renormalized actions. To do that we need to take the functional derivative
with respect to the source Φ(x) = A(x). Due to the coefficient B(x) also depends
functionally onA(x) we will need to define the ratio B/A, which, as we will see below, is
uniquely determined in the deep IR (z →∞), as χ ≡ B/A. Therefore the renormalized
action in terms of Φ(x) is

Sren = Rd−1 2∆− d
2

∫
ddk

(2π)d
Φ(−k)χ(k) Φ(k) . (2.130)

From this we can finally obtain the one-point function

〈O(k)〉Φ = Rd−1 (2∆− d)χ(k)Φ(k) = (2∆− d)B(k) . (2.131)

This is a very important result: we have found that the subleading term of the field
φ is the one that determines the vev of the operator on the boundary! Moreover, using
(2.120) we can also compute the two-point function

GE(k) = Rd−1 (2∆− d)
B(k)

A(k)
. (2.132)

It is an interesting exercise to compute explicitly the ratio of the functions A and
B. We first need to define a new function gk through the relation fk = zd/2 gk, which
solving equation (2.97) lead us to two independent solutions

gk(z) ∼ I±ν(k z), ν ≡ ∆− d

2
. (2.133)

where I±ν are modified Bessel functions. Taking the limit z → 0 these modified Bessel
functions go as

I±ν ∼ z±ν . (2.134)

Thus, the functions in (2.100) can be identified with these solutions, so we finally get
that fk(z) is

fk(z) = zd/2

(
Γ(1− ν)

(
k

2

)ν
A(k) I−ν(kz) + Γ(1 + ν)

(
k

2

)−ν
B(k) Iν(kz)

)
.

(2.135)
The Bessel function, in the limit z →∞, goes as

I±ν ∼
ez√
2πz

. (2.136)
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We want to impose that the function fk(z) is finite in this limit, which will force us
to impose some condition on the functions A and B. Looking at the limit z → ∞ of
fk(z)

fk(z) =
zd/2 ekz√

2πkz

(
Γ(1− ν)

(
k

2

)ν
A(k) + Γ(1 + ν)

(
k

2

)−ν
B(k)

)
. (2.137)

This function will diverge in the IR unless we demand that

A(k)

B(k)
= −Γ(1− ν)

Γ(1 + ν)

(
k

2

)2ν

=
Γ(−ν)

Γ(ν)

(
k

2

)2ν

. (2.138)

which fixes the ratio of A and B. With this result we find that the Green function
scales with k as

GE(k) ∼ k2∆−d . (2.139)

Expressing this result in the coordinate space by an inverse Fourier transformation we
finally obtain14

GE(x) = 〈O(x)O(0)〉 ∼ 1

|x|2∆
. (2.140)

And this result is also of great importance, as it confirms that ∆ is actually the con-
formal dimension of the boundary operator O(x).

Holographic temperature

Let us now consider that our field theory is in a thermal bath at temperature T . The
correspondence to this property in the gravity theory is given by a bulk geometry with
an event horizon (i.e. a black hole or black brane) and the Hawking temperature we
discussed in Section 2.1.2 will be identified as the temperature of this thermal bath15.
This field theory that we are trying to identify to a gravity theory has now a scale, T ,
and thus is not completely conformal invariant. The temperature of the system will
represent an IR deformation of the theory due to at energies much higher than T , in

14Tip: to compute this Fourier transformation we need that∫
ddk

(2π)d
eikxkn ∼ 1

|x|d+n

15A finite temperature system in AdS may also be described by a solution with no horizon, the
so-called “thermal AdS”. Hawking and Page studied the transition between black hole and thermal
AdS in [106]. Here we will omit this discussion.
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the UV, this temperature will be negligible and the theory could be considered again
to be conformal.

Let us discuss the most simple example: the Schwarzschild black brane in AdS. In
this case the pure AdS space will be generalized to the next metric

ds2 =
R2

z2

(
−f(z)dt2 +

dz2

f(z)
+ d~x2

)
(2.141)

where f(z) is called the emblackening factor and goes as

f(z) = 1−
(
z

zh

)d
(2.142)

where zh is the position of the event horizon, where the metric component gtt will
vanish. Notice that in the limit z → 0 we will asymptotically go towards an AdS
space. This behaviour is already telling us something about the dual field theory.
As we discussed in Section 2.1.1 moving through the holographic coordinate z can
be considered as moving through an RG flow. In this case we have that in the limit
z → 0 we are going to the UV limit of the field theory, where we recover the conformal
symmetry. Inversely, when we move towards the black hole we leave this AdS space
and pointing out that there is a notion of IR deformation in the dual field theory.

We will use the definition of the Hawking temperature (see (2.6)) as the holographic
temperature

T =
κ

2π
(2.143)

where κ is the surface gravity. There is a simple argument by Gibbons and Hawking [85]
that helps us understand this formula. First of all we need to Wick rotate our time
coordinate to τ = i t. Then, in order to avoid (conical) singularities at zh we must
demand that this new time coordinates periodically identifies as

τ ∼ τ +
4π

|f ′(zh)|
. (2.144)

When studying a field theory with a periodically identified Euclidean time we know the
temperature is the inverse of this period. Since τ corresponds precisely to the Euclidean
time coordinate in the boundary theory we can safely say that the temperature is given
by the inverse of this period. Therefore in this case

T =
|f ′(zh)|

4π
(2.145)



Chapter 2. Gauge-gravity duality 47

which can be proved to be exactly (2.143)16. The temperature in the case of (2.142) is
then

T =
d

4π zh
. (2.146)

From this expression it seems we have a continuum of temperatures for different values
of zh, but notice that we can always perform a scale transformation of the space-time
coordinates of (2.141) as (xµ, t, z) → zh(x

µ, t, z), which fixes the temperature to be
T = d/4π. In more general metrics the temperature can be obtained by

T =
κ

2π
=

1

2π

√
−∇µnν∇µnν

2
(2.147)

where nµ is the timelike Killing vector at the horizon.
In the same spirit we may also define what is the entropy of the field theory by taking
a look at Section 2.1.2. There we see that the entropy of the black hole is related to
its area. The Bekenstein-Hawking formula says then

S =
AH
4GN

(2.148)

where GN is the Newton’s constant and AH is the area of the horizon. This will deter-
mine the entropy of the dual field theory.

Finite charges

Another feature that we would like to incorporate to our models is a U(1) charge, such
as the electromagnetic charge. We are going to consider field theories that have a global
U(1) symmetry, instead of a gauged one. What this means for an electromagnetic U(1)
symmetry is that we will neglect the effect of photons in our theory. This assumption
seems to be sensible as generally the coupling of the U(1) symmetry is small17 and the
electromagnetic interaction is screened in a charged medium.

Thus, the question now is how do we translate this global symmetry of the field
theory into our gravity theory. In order to incorporate a global symmetry in our field
theory we must impose this symmetry to be a gauge symmetry in the gravity side [57],

16The surface gravity κ of a static Killing horizon is defined through the next equation kµ∇µkν =
κkν evaluated at the horizon, where kµ is a normalized Killing vector.

17There are examples where this assumption might fail and photons are mediating a strong effective
coupling, such as [198].
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therefore let us consider an Einstein-Maxwell action, which respects this U(1) gauge
symmetry

S =

∫
dd+1x

√
−g
[

1

2

(
R +

d(d− 1)

R2

)
− 1

4g2
F 2

]
, (2.149)

where F = dA is the field strength.
We can introduce two new scales in this theory without breaking the rotational sym-
metry of our field theory. The first one is a chemical potential µ = A

(0)
t and the other

possible scale we can introduce that preserves rotational symmetry, at least in a 2 + 1
dimensional field theory, is a background magnetic field B = F

(0)
xy . Just like in the

case of finite temperature presented before, here we are introducing new scales which
will deform our space away from a pure AdS spacetime as we get closer to into the IR
region.
Here we will study only the case with a chemical potential and no magnetic field for
simplicity. In this case the Einstein equations of motion are

Rµν −
R

2
gµν −

d(d− 1)

2R2
gµν =

1

2g2

(
2FµσF

σ
ν −

1

2
gµνFσρF

σρ

)
(2.150)

to which we need to add also the Maxwell equations

∇µF
µν = 0 . (2.151)

The solutions to these equations of motion lead us to a Reissner-Nordstrom (RN) black
hole in AdS

ds2 =
R2

r2

(
−f(r)dt2 +

dr2

f(r)
+ d~x2

)
, (2.152)

f(r) = 1−
(

1 +
r2
hµ

2

γ2

)(
r

rh

)d
+
r2
hµ

2

γ2

(
r

rh

)2(d−1)

, (2.153)

γ2 =
(d− 1)g2R2

(d− 2)
(2.154)

where rh is the position of the black hole horizon. The scalar potential is

At = µ

[
1−

(
r

rh

)d−2
]
. (2.155)

From this solution we can extract already some information about the dual field the-
ory. Firstly, the background Maxwell potential of the field theory is read off from the
boundary value of the bulk Maxwell potential

Aµ(r) = A(0)
µ + . . . as r → 0 . (2.156)
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From this we can see that the chemical potential is µ. Moreover, the chemical potential
µ is the source of a charge response ρ which can be read off the subleading term of At.
Just as it happened when we introduced the temperature, this chemical potential is
deforming the IR physics of this theory, which will not be noticeable for high energies.
The temperature can also be found here as, we discussed in the last section, and in
this case we obtain

T =
1

4πrh

(
d− (d− 2)r2

hµ
2

γ2

)
. (2.157)

Notice a very remarkable feature of this temperature compared with the Schwarzschild
black hole: here we can reduce the temperature continuously to zero without the
horizon vanishing. In this space-time we can still scale out rh but in this scale we still
have the scale of the chemical potential and thus with the dimensionless ratio T/µ.
Due to we only have these two scales, in a scale invariant theory all dimensionless
quantities can only depend through the ratio of temperature to the chemical potential.
The zero temperature case is quite interesting and we want to point out a couple of
things about it:

• The zero temperature RN black hole has finite entropy. This seems to mean that
the ground state of this theory is degenerate (see [155] for a real example of finite
entropy at zero temperature system).

• In the limit of small temperature T � µ we find an example of a “holographic”
renormalization group flow between fixed points. In this limit the space-time
close to the horizon may be described by an AdS2 × Rd−1 space, thus we have
an interpolation between an AdSd+1 space close to the boundary to this new
AdS2 × Rd−1 space in the horizon. The presence of this AdS space close to the
horizon seems to indicate that at low temperature and low energies an emergent
scale invariant symmetry appears in our theory, which was originally broken by
both temperature and chemical potential. For more details see [80], where this
holographic flow was first discussed.

The holographic dictionary

There are many aspects of gauge/gravity dualities that have been omitted which can
be consulted in the references provided at the beginning of this section. To conclude,
let us summarize what we have learnt in this introduction about the AdS/CFT corre-
spondence as what is commonly known as a “holographic dictionary”.
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Anti de Sitter gravity theory Conformal field theory

d+ 1 dimensions d dimensions

gµν metric T µν stress-energy tensor

gauge field Aµ U(1) current Jµ

scalar field φ scalar operator O
gauged symmetry global symmetry

Hawking temperature QFT temperature

AdS scale r RG energy scale µ

mass m2 conformal dimension ∆

. . . . . .

2.4.1 Hydrodynamics and transport coefficients

Let us end this chapter by discussing the hydrodynamic description of strongly coupled
CFTs using the AdS/CFT correspondence. It has been known for a very long time
that finite temperature systems may be well described by an effective theory called
hydrodynamics. The main idea of hydrodynamics is to consider only perturbations
around the equilibrium whose wave-length is much larger than the mean free path,
which is the characteristic length in an interacting system,

λhydro � `mfp . (2.158)

We can consider that the hydrodynamic description of a system is some effective theory
where high energy modes have been integrated out.
In particular, the hydrodynamic equations of a fluid are determined by the conservation
of the stress-energy tensor Tµν (for an uncharged system)

∇µTµν = 0 (2.159)

where the stress tensor, up to first order in derivative expansion, with a fluid velocity
uµ is given by

Tµν = p (gµν + uµuν) + ρ uµuν − σµν (2.160)

where the first two terms describe an ideal or perfect fluid and the third, σµν , introduces
dissipative effects on the fluid. This dissipative term is

σµν = P µαP νβ

(
η∇(αuβ) +

(
ζ +

2

3
η

)
gαβ θ

)
. (2.161)
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The coefficients η and ζ are the shear and bulk viscosities, while θ is the divergence of
the fluid velocity, θ = ∇µu

µ.
In [44] (see also [115, 182]) it was found that the gravitational equations of black

holes in AdS space-time provided the exact same equations of a dissipative/viscous
fluid. Therefore, this black-hole is acting as some finite temperature fluid with some vis-
cosity that, through the AdS/CFT correspondence, might help us understand strongly
correlated viscous systems. This is the so-called fluid-gravity correspondence.

What we are interested in now is whether we are able to compute properties of this
fluid, such as η, by the holographic methods that we have introduced above.

First, we are going to consider the local rest frame, where the spatial part is going to
be zero uµ = (1, 0, 0, 0). This particular frame forces the stress tensor to have T µ0 = 0.
Notice also that taking a constant velocity does not lead us to a vanishing Tµν , as we
will have non-zero terms due to the covariant derivative of uµ. Let us take the next
space-time metric

g00(t, xi) = −1, g0i(t, x
i) = 0, gij(t, x

i) = δij + hij(t) (2.162)

where h is a perturbative element hij � 1 and is a traceless tensor hii = 0. This
perturbative term only depends on time and it will vary very slowly, as we expect in
the hydrodynamic limit.
It is a trivial excercise to compute the different Christoffel symbols which leads us to
the next covariant derivatives

∇0ui = ∇0u0 = 0, ∇iuj =
1

2
∂0hij, ∇ · u = 0 . (2.163)

With this result we can already find the off-diagonal term of the stress-energy tensor
as

T ij(t) = η ∂0hij(t), i 6= j (2.164)

which in the momentum space is

T ij(ω) = −iη ω hij(ω) . (2.165)

The source for this component of the stress-energy tensor is, then, hij. Therefore, the
one-point function of this element is given by18

〈Tij(x)〉 = −
∫
GR(x− y)hij(y)dy , (2.166)

18Here we use the real time coordinate, as opposed to the Euclidean one-point function expressed
in (2.116).
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where here GR(x− y) is the retarded Green’s function

i GR(x− y) ≡ θ(x0 − y0) (〈[Tij(x), Tij(y)]〉 . (2.167)

It is due to causality that the vev of the operator Tij is given by this retarded Green
function as it would not be possible to influence the system until the source has been
active. Now, going into the momentum space〈

Tij(ω,~k)
〉

= −GR(ω,~k)hij(ω,~k) . (2.168)

Comparing equations (2.165) and (2.168) we can the so-called Kubo formula

η = − lim
ω→0

lim
~k→0

1

ω
ImGR(ω,~k) . (2.169)

We would like to compute this shear viscosity in the case stated above, i.e. for an
AdS black hole. For a 4-dimensional space-time the metric is going to be

ds2 =
R2

z2

[
−f(z) dt2 +

dz2

f(z)
+ d~x2

]
, f(z) = 1−

(
z

zh

)3

(2.170)

where the boundary is at z = 0 and the horizon at z = zh. We are going to perturb the
off-diagonal term of the metric, gxy = hxy ≡ h � 1, and obtain the Einstein equation
at linear order which is, after a Fourier transformation,

h′′ + h′
(

2

z
+
f ′

f

)
+ h

(
ω2

f 2
− 2

z2
+

2 f ′

z f

)
= 0 (2.171)

where the prime denotes derivatives with respect to z. Now a nice trick is to define a
new variable such that H ≡ h z2, which will lead us to

H ′′ +H ′
(
f ′

f
− 2

z

)
+H

ω2

f 2
= 0 . (2.172)

The interesting thing about this equation is that is exactly the one you obtain from
the action of a massless scalar field

S = ζ
1

2

∫
ddx
√
−g ∂µH ∂µH (2.173)

in the limit where ~k → 0. Luckily, this allows us to use the results derived in (2.115)
and (2.124) with ∆ = d, obtaining

〈Txy〉 = Π = ζ
√
−g gzzH ′ = ζ

f

z2
H ′ (2.174)



Chapter 2. Gauge-gravity duality 53

and because ∆ = d the source for this vev is exactly H, thus

GR(ω,~k) = − Π

H

∣∣∣∣
z=0

. (2.175)

In principle we need to compute this term at the boundary, but it is trivial to check
that

∂zΠ = −ζ H

z2f
ω2 (2.176)

thus, in the limit where ω → 0 this quantity is going to be conserved (up to order ω2),
i.e. we can evaluate the momentum Π anywhere we want to. To find a solution for the
field H we are going to propose an ansatz which, close the the horizon, goes like

H ∼ H0 (zh − z)β (2.177)

which will be a solution when

β = ±i ω zh
3

. (2.178)

Only one of these solutions is going to respect causality and it is important to decide
which one we should choose. To do this let us define a new variable er ≡ (zh − z),
where the horizon will be located at r → −∞, and re-inserting the time dependence
we will have that

H ∼ e−i ω t±βr . (2.179)

If we consider a small time displacement t → t + δt we are going to need a positive
(negative) δr if we take the positive (negative) solution of β to keep the solution
constant. What this means is that the positive (negative) solution is the outgoing
(infalling) wave at the horizon. The infalling boundary conditions are the ones that
are naturally associated with the retarded Green’s function, as in order to influence
the horizon with a source at the boundary we need to locate this source in the past
(see [176,199] for more details).
Finally, we can compute the shear viscosity

η = − lim
ω→0

lim
~k→0

Im
Π

ωH

∣∣∣∣
z=zh

=
ζ

z2
h

. (2.180)

This result is very useful to derive the famous Kovtun-Son-Starinets (KSS) bound,
which states that the ratio of the shear viscosity to entropy density is bounded by
below as η/s ≥ 1/4π [175]. In our case the entropy density, which is given by the area
of the horizon (2.148), is

s =
S

V
=

1

4GN

1

z2
h

(2.181)
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Figure 2.14: Different experimental results for the η/s ratio. All systems considered
respect the bound η/s ≥ 1/4π. Figure from [67].

where V is the two dimensional spatial volume at the horizon. All in all, taking the
normalization constant ζ = 16π GN as the gravitational one, we arrive to

η

s
=

1

4π
, (2.182)

which saturates the KSS bound.
In [175] they conjectured that this bound should be always respected by all systems
and it indicates how strongly coupled a system is. So far this bound has been always
been proved to be respected in all experiments [65, 142, 158, 192, 196], as can be seen
in Fig.2.14. However, considering more complicated theories of gravity this bound
is certainly violated, such as in the Gauss-Bonnet theory [53] or in massive gravity
theories [9], among other examples (see [65] for a review). It is because of this that
other bounds, related to the diffusion constants of the systems might be more general
than the η/s ratio [27, 101,224].



55



Chapter 3

Condensed matter and solid physics
aspects

As we have pointed out in Chapter 2, one of the fields in which AdS/CFT correspon-
dence has been remarkably prominent is in the study of condensed matter physics. This
branch of physics is the one that deals with macroscopic and microscopic properties of
matter. Its main concern is the “condensed” phase of matter that appears when the
number of constituents is large and the interactions among them are strong. One of
the most familiar cases are solids (which will play a major role in this manuscript) and
liquids which emerge from electromagnetic interactions among atoms.

In this section we will focus on solid physics and more particularly on its elastic
properties. This will be a good way to introduce what we mainly studied in [7, 23,
24], where we examine the physical properties of solids, either scale invariant or not,
which we will analyze in Chapters 4 and 5. Furthermore, we will introduce the Coset
construction that will allow us to build up the EFT for a solid system from its symmetry
breaking pattern. Some references that have been useful for this chapter are [132,138,
144,152,193].

3.1 Elasticity theory

When we apply a finite stress to a solid body this will exhibit a deformation, either in
its shape or its volume. The elastic response describes necessary stress in a material
to produce a mechanical deformation, i.e. the strain. Let us define the position of any
point in the body by some vector Φi = xi, which can be used as the mapping of any

56
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mechanical deformation as
Φi = xi + φi(t, x) (3.1)

giving the positions of every given solid element. The deviations from equilibrium from
this solid (which we will take as isotropic and homogeneous) is then encoded in φi(t, x).
These φi are the displacement vectors (i.e. φi = x′i−xi, where x′i is the new position of
a particular element) and can be considered like a set of dynamic scalar fields. There is
a very useful way to parametrize deformations through these scalars and it is through
an object called the strain tensor

εij =
1

2
(∂iφj + ∂jφi) , (3.2)

that is symmetric by construction, i.e. εij = εji.
We are going to consider two particular types of deformation: bulk and shear

deformations. Bulk deformations physically correspond to an expansion/contraction
of a body, i.e. a change of the volume of the system. The bulk strain is defined by the
trace of the strain tensor

κ ≡ εii = ~∂ · ~φ (3.3)

and can be either positive (contraction) or negative (expansion). On the other hand,
a deformation that only affects the shape of the body but does not affect its volume
are called pure shear deformations and are given by

ε ≡ εik −
1

d
δikεjj (3.4)

with d spatial dimensions and i 6= k. Notice that the trace of this shear strain is
exactly zero. In general any mechanical deformation is a combination of shear and
bulk deformations.

We can now describe what response do these solid system exhibit under mechanical
deformations. At a linear level (for small external strains) we can find two elastic
moduli. In this linear response approximation the deviation of the stress tensor from
its equilibrium value is

σij ≡ Tij − p δij (3.5)

where p is the pressure at equilibrium. Then at linear level we can define it as

σij = K δij εkk + 2G
(
εij −

1

d
δij εkk

)
(3.6)
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Figure 3.1: The description of the mechanical deformations in terms of the displacement
vector Φi = xi + φi. Left: The equilibrium configuration for the solid system is
simply ΦI

eq = xI . Right: An example of a shear deformation and the geometrical
interpretation of the strain tensor εij. The configuration changes from Φi

eq to Φi such
that Φi − Φi

eq = (εxx dx + εxy dy, εyy dy + εxy dx).

where G and K are referred to as the linear shear and bulk elastic moduli respectively.
We can define the elastic bulk modulus also as the inverse of the compressibility β,
which will be a useful definition, as

K =
1

β
= −V ∂Tii

∂V
(3.7)

where V is the volume of the system.
Another simple and important parameter that allow us to characterize different kind

of materials (at small deformations) is the so-called Poisson’s ratio. It parametrizes
how much a material compresses (or dilates) in the transverse direction when under an
applied axial tensile strain,

R ≡ −εtrans

εaxial

. (3.8)

We can express this ratio in terms of elastic moduli, by re-writing the elastic strain as

εij =
σkk
d2K

δij +

(
σij −

1

d
δij σkk

)
1

2G
. (3.9)
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This may also be expressed differently, according to [208],

εij =
1

E
[(1 +R)σij −Rσkkδij] (3.10)

where E is the Young modulus (the linear moduli for an uniaxial deformation). Thus,
the Poisson’s ratio can be defined as a function of the shear and bulk moduli

R =
dK − 2G

d (d− 1)K − 2G
. (3.11)

This parameter allows us to classify models accordingly to their elastic properties. By
construction, in two spatial dimensions the Poisson’s ratio is bounded as −1 < R < 1.

Notice that this ratio can be negative, giving a rather exotic type of response where
the material actually dilates in the transverse directions. Materials of this type are
called “auxetic” and have a number of applications1.

3.1.1 Non-linear elastic response

The study of elasticity in solid materials must be extended beyond the linear regime,
where the Hooke’s law still holds, if we want to investigate their properties at finite
deformations. This is studied by the finite or nonlinear elasticity [81], whose theo-
retical developments were initiated particularly in the rubber industry because of the
importance of (natural) rubber in many engineering elements.

To introduce these finite deformations (either in the bulk or shear sectors) we con-
sider a new configuration for the set of scalar fields Φi(t, x), where now its deformations
φi(t, x) are not going to be infinitesimal. If we are dealing with a two dimensional solid
we will take as the strained configuration

Φi
str = Oi

j x
j , Oi

j = α

 √
1 + ε2

4
ε
2

ε
2

√
1 + ε2

4

 . (3.12)

From the definition of the shear and bulk strain in (3.4) and (3.3) we find that ε plays
the role of the shear strain, whereas the bulk strain is defined through α as

κ = 2 (α− 1) . (3.13)

1An example of a “real world” auxetic material is the sole material of some types of footwear,
which allows it to expand in size while walking or running, increasing its flexibility.
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Figure 3.2: A sketch of the non-linear stress-strain curve σ(ε) for different type of
materials: rubber (orange), brittle (blue) and ductile (green). All curves start with a
linear regime. The red star is the breaking point at which the fracture of the material
happens.

One of the physical observables that we are going to be interested in are the stress-
strain curves that will be produced when this strain is introduced in the solid material.
We will read the stress from the off-diagonal and diagonal terms of the stress tensor
for the shear and bulk strains respectively.

Experimentally, this curve is obtained by gradually applying load to the solid and
measuring the deformation produced, from which the stress and the strain can be
determined. We show a schematic classification of the type of material we are dealing
with depending on their stress-strain curve in Figure 3.2. Therefore, from that figure
let us classify the materials into: rubber (or elastomers), brittle and ductile.

Rubber materials can sustain very large deformations until reaching the breaking
point while also being able to go back to its equilibrium position once the stress is
no longer applied. In figure 3.2 the scaling is “softening”, meaning that the scaling is
smaller than linear, but this is not always the case and “stiffening” scaling may also
show up.

Brittle materials (e.g. a piece of chalk or a thin layer of glass) are materials that
cannot sustain large amounts of deformation. In these materials the breaking point is
found at small values of ε while the stress needed to get there can be large.

Ductile materials (e.g. steel and many other alloy of metals), on the other hand,
start with a linear relation between strain and stress but at some point they display
plastic deformations, which cannot be reversed back as elastic deformations do.
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The type of materials that we are going to describe with our EFT and AdS/CFT
methods are elastic, with no plastic effects, and we aim to find whether rubber-like
materials are achievable. As we will see in Chapter 4 and 5 there will be a clear
relation between the fact that materials are hyper-elastic and the strain scaling ν,
both in the shear and bulk sectors.

3.2 Phonons

The study of phonons plays a major role in condensed matter physics. Phonons are
defined as the collective excitations of the particles that form a solid (and even some
liquids [47, 143]). Solids materials consist of atoms arranged in a lattice that interact
among each other that allow to generate mechanical waves that carry heat and sound
through the system. From the point of view of quantum mechanics a phonon can be
described as a quasiparticle which represents an excited state of the mode of vibration
of the elastic structures of these interacting particles. Phonons are useful to determine
the thermal properties of a solid, which are related to its phonon structure, in particu-
lar the phonon density state determines the heat capacity and thermal conductivity of
a crystal [71]. Even more interestingly, the phonon-electron interaction was of major
importance in the BCS (Bardeen–Cooper–Schrieffer) theory that describe certain types
of superconductors [33,34].

These elastic excitations can be decomposed in different modes, depending on how
they oscillate. In particular, there is a mode that oscillates in the same direction of
propagation, called longitudinal mode, and modes that oscillate in the perpendicular
directions of propagation, called transverse modes. The dispersion relation for these
waves in the long wave-length limit

ω = cik (3.14)

where ci can be either refer to the transverse or the longitudinal mode. The fact that
for low values of k (i.e. long wavelength) this dispersion relation is almost linear means
that the speed of propagation for phonons with different wavelength propagate large
distances across the lattice without breaking apart. This is why the sound propagates
through solids without much distortion. Moreover, these speeds can be related to the
elastic moduli presented above
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c2
T =

G
ρ+ p

, c2
L =
K + 2 d−1

d
G

ρ+ p
(3.15)

where ρ is the energy density of the system.
For more details about phonon physics and its applications, such as in the Debye
model that estimates the contribution of phonons to the specific heat in a solid, we
refer to [152].

An interesting way of approaching phonon physics is by realizing that these quasi-
particles can be understood as the Goldstone bosons of some spontanously broken
symmetry, in particular of translations. This was first realized in [139] where the au-
thor studies the implications of these hidden symmetries for the properties of the sound
waves of solids. As a consequence of this symmetry phonons necessarily contain non-
linear terms, which describe phonon-phonon scattering.

This is the same mechanism that we use to study π π-scattering from the point
of view of an effective field theory at low energies. In that case we have that the
Lagrangian is invariant under SU(2) × SU(2) which is broken down to the diagonal
subgroup SU(2). The spontaneous breaking of the SU(2) × SU(2) symmetry leads
to a triplet of massless pions, which can be studied through a nonlinear sigma model.
This determines the form the Lagrangian must have, allowing us to know all possible
π π interactions without having to deal with QCD theory2.

As we will see below we can build up a theory for solids by coset construction
just like it is done for pions. In this case we will assume that fluctuations around the
equilibrium value

〈
ΦI
〉

= xI are the so-called phonons.

3.2.1 Coset construction

Firstly, let us state in which QFT sense we can treat elasticity theory as an EFT. The
first property that we must have is a clear separation of scales, as opposed to what we
have in a CFT, i.e. a continuum of states. In this case we will have that the low energy
modes are going to be phonons, and any other mode above this will be integrated-out
and will not participate in the EFT. This condition allows us to exploit the fact that
phonons can be considered as Goldstone bosons of translational symmetry breaking.

2This was pioneered in [54,61]. See [193] for a more recent discussion.
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When we have a symmetry broken spontaneously we can make use of the coset con-
struction that allows us to define a non-linear description of our theory just by knowing
the breaking symmetry pattern.

Consider a continuous global symmetry G that spontaneously breaks down to a
subgroup H. This means that the vacuum will be invariant under this subgroup H but
not under the rest of G, which in group theory is known as the coset and is labeled as
G/H. The Goldstone bosons of this symmetry breaking will transform linearly under
the unbroken subgroup H but non-linearly under the coset G/H.

As we have already commented, the iconic example of these type of theories is the
EFT of pions and we will summarize it here following [193]. Let us start by writing
the QCD Lagrangian (including only up and down quarks)

L = −1

4
(F a

µν)
2 + iū /Du+ id̄ /Dd−muūu−mdd̄d (3.16)

where we use the notation /D = Dµγ
µ where γµ are the Dirac matrices. This Lagrangian

is symmetric under a global SU(2) transformation that rotates up and down quarks
into each other only if the masses of these quarks are the same. These masses are
actually not equal, but they are very small compared to the QCD scale ΛQCD, so let
us take the limit mu = md = 0. In this case we have actually two independent SU(2)
symmetries, since left-handed and right-handed quarks are completely decoupled. We
can see this by writing the Lagrangian as a function of left and right handed spinors,
i.e. Ψ

R/L
q = 1

2
(1 +±γ5)Ψq

L = −1

4
(F a

µν)
2 + iūR /DuR + iūL /DuL + id̄R /DdR + id̄L /DdL (3.17)

This will be invariant under(
uL

dL

)
→ gL

(
uL

dL

)
,

(
uR

dR

)
→ gR

(
uR

dR

)
(3.18)

where gL ∈ SU(2)L and gR ∈ SU(2)R.
At some point this SU(2) × SU(2) symmetry spontaneously breaks. Presumably

this happened around 14 billion years ago, when the temperature of the universe cooled
below some critical temperature TC ∼ ΛQCD. Below this scale the thermal energy of
quarks was smaller than their binding energy, leading to the appearance of hadrons.
The ground states would be now quark bilinears

〈ūu〉 = 〈d̄d〉 = V 3 . (3.19)
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This cannot be proven by QCD itself, but the strength spontaneous symmetry breaking
is that we do not need to understand exactly how this works in QCD to be able to
describe an effective theory for the pions. This vacuum expectation value breaks the
symmetry SU(2)×SU(2) down to the diagonal subgroup, i.e. the unbroken symmetry
is now rotating simultaneously left and right-handed spinors the same way.

The idea now is to forget that pions are actually composite particles of quarks and
just focus on the symmetry breaking pattern.

We will model this breaking with a set of scalars Σij(x) that will transform under
SU(2)× SU(2) as3

Σ→ gLΣg†R, Σ† → gRΣ†g†L . (3.20)

Thus, an effective Lagrangian for this field is

L = |∂µΣ|2 +m2|Σ|2 − λ

4
|Σ|4 (3.21)

where |Σ|2 ≡ ΣijΣ
†
ij. This Lagrangian is commonly named linear sigma model and is

invariant under SU(2)× SU(2) transformations.
The potential in (3.21) is usually named “Mexican hat” potential and the interesting

point is that depending on the signature of the quadratic term the minimum of the
potential is either at Σ = 0 or at a finite value as can be seen in Fig. 3.3, which
spontaneously breaks the symmetry of the Lagrangian. Specifically, in this case the
potential is minimized for

〈Σij〉 =
v√
2

(
1 0
0 1

)
, v =

2m√
λ

(3.22)

which breaks the SU(2)× SU(2) symmetry down to the diagonal subgroup SU(2).
What we need to do now is expand our field around this vacuum expectation value

in terms of a modulus field σ(x) and some angular fields π(x) as

Σ(x) =
v + σ(x)√

2
exp

(
2 i
πa(x)τa(x)

Fπ

)
(3.23)

where τa are the Pauli matrices, which are the basis of the Lie algebra su(2), and used
Fπ = 2m√

λ
so the kinetic terms are normalized. If we transform our field as in (3.20) with

gL,R = exp(i θaL,Rτ
a) in the infinitesimal limit we get that σ does not change whereas

πa → πa +
Fπ
2

(θaL − θaR)− 1

2
fabc(θbL + θbR)πc + . . . (3.24)

3Notation: the superscript † means that we take the conjugate transpose of the matrix.
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Figure 3.3: Left: “Mexican hat” potential. The center point is an unstable point and
the equilibrium position is now away from it, sponteaneously breaking the symmetry.
Figure from [215]. Right: The quadratic term changes its signature and a new vacuum
expectation value arises. Figure from [64].

where fabc = εabc is the structure constant, which in the case of SU(2) is the Levi-Civita
symbol. Notice that for transformations with θaR = θaL, which are the transformations
of the unbroken diagonal subgroup SU(2)V , the π field transforms linearly at lead-
ing order but non-linearly for transformations with θaR = −θaL, which form the axial
transformations.

Due to the field σ does not transform under these symmetries we can consider it
irrelevant for this discussion, therefore we may take the limits m → ∞, λ → ∞ and
keep Fπ fixed in order to decouple the field σ. Thus, let us change our initial field as

√
2

v
Σ(x)→ Π(x) ≡ exp

[
2 i
πaτa

Fπ

]
= exp

[
i

Fπ

(
π0

√
2 π−√

2π+ −π0

)]
, (3.25)

where we have used π± ≡ 1√
2
(π1 ± iπ2) and π0 ≡ π3. The field Π(x) transforms as

Σ(x) in (3.20) and fulfills Π Π† = 1.
The idea now is to construct the most general Lagrangian invariant under a SU(2)×

SU(2) transformation. This is usually called a non-linear sigma model, and particularly
in this case a chiral Lagrangian, which is

LΠ =
F 2
π

4
Tr
[
(DµΠ)(DµΠ)†

]
+ α1Tr

[
(DµΠ)(DµΠ)†

]2
+ α2Tr

[
(DµΠ)(DνΠ)†

]
Tr
[
(DνΠ)†(DµΠ)

]
+ α3Tr

[
(DµΠ)(DµΠ)†(DνΠ)(DνΠ)†

]
+ . . .

(3.26)

Due to the field Π fulfills Π Π† = 1 only derivative terms appear on the Lagrangian,
which forbids π to acquire mass. We may expand the leading term in (3.26) to obtain
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the Lagrangian for the πa fields

F 2
π

4
Tr
[
(DµΠ)(DµΠ)†

]
=

1

2
(∂µπ

0)(∂µπ0) + (Dµπ
+)(Dµπ

−)†

+
1

F 2
π

[
−1

3
π0π0Dµπ

+Dµπ− + . . .

]
+

1

F 4
π

[
1

18
(π−π+)2Dµπ

0Dµπ0 + . . .

]
+ . . .

(3.27)

We have chosen the appropriate normalization so that the kinetic terms are canonically
normalized while the interactions will be suppressed by powers of 1

F 2
π

. On the other
hand, interaction terms of the field Π have four or more derivatives, and thus at low
energies are suppressed by powers of E

Fπ
. Then, at low energies, interactions among πa

fields are completely fixed from the leading term expansion, and we have determined
these interactions by knowing the symmetry breaking pattern!

To construct the EFT of a solid system we are going to need a similar approach
to what we have shown for the pion Lagrangian, which is precisely what is done in
[163,164]. There, they exploit the fact that phonons can be considered as the Goldstone
bosons of translational symmetry breaking and build up a Lagrangian by using the
coset construction. The dynamical degrees of freedom that will be responsible for the
spontaneous breaking of translations that take place in solids are the ones we already
introduced in (3.1). These fields acquire a vacuum expectation value given by

〈Φi〉 = xi , (3.28)

in the equilibrium configuration, while the phonons are identified as the perturbations
around this background.

We can formalize the EFT more sharply if we define these scalar fields with an
‘internal’ index, i.e. by defining them as ΦI(x). If we are working in d space-time
dimensions we will need d−1 scalars, thus the internal index runs over I = 1, . . . , d−1.
By introducing this index we can consider that there is an internal symmetry group
given by an Euclidean group, ISO(d− 1), acting on ΦI like standard translations and
rotations in the internal space. With this new definition let us re-write the vev from
(3.28) as

〈ΦI〉 = xi δIi , (3.29)

this vev breaks the symmetry group4 ISO(d−1)× ISO(d−1, 1) down to the diagonal
subgroup, i.e. by transformations on both ΦI and xi which leave (3.29) invariant, i.e.

4The group ISO(d− 1, 1) is the d dimensional Poincaré group.
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ISO(d− 1, 1)× ISO(d− 1)⇒ Rt × ISO(d− 1) . (3.30)

What we find is that the action describing this EFT of solids must be constructed
out of the matrix BIJ = ∂µΦI∂µΦJ , which in d + 1 dimensions can only build up a
limited amount of independent terms. If we define [Bn] ≡ Tr((BIJ)n), then for we can
obtain the next d independent terms

X1 = [B] , X2 = [B2] , . . . , Xd = [Bd] , (3.31)

then the action must be

S =

∫
dd+1xF (Xi) , i = 1, . . . , d . (3.32)

It is also interesting to note that this method can also be applied for a perfect fluid
system. For a perfect fluid we demand that the action for the scalars is invariant under
internal volume preserving diffeomorphisms, i.e.

ΦI → χI(ΦJ) where det

(
∂χI

∂ΦJ

)
= 1 . (3.33)

In this case we are restricted to an action that depends on the determinant of the
matrix BIJ , thus

S =

∫
dd+1xF (Z) , (3.34)

where Z = det(BIJ). Notice that this is a subset of actions that can be considered for
solids, as the determinant can be expressed as a function of the different Xi traces, e.g.
for d = 2 and d = 3 we find that

det(B) =
1

2
(X2

1 −X2) (3.35)

det(B) =
1

6
(X3

1 − 3X2X1 +X3) . (3.36)

In conclusion, in order to describe the low energy dynamics of a solid system we will
be able to do it by using the action (3.32), which may also be constructed with the
determinant Z and the set of traces Xi where i = 1, . . . , d− 1, i.e.

S =

∫
dd+1xF (Z,Xi) + . . . , i = 1, . . . , d− 1 . (3.37)
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The function F will depend on the physical properties of the solid, such as the
equation of state, while the dots indicate that there could be higher derivative terms
which are negligible at low energies.

This will be the kind of action that we are going to consider throughout Chapter 4.

3.3 Quantum criticality

A quantum phase transition is a phase transition between different matter states at
zero temperature [186]. Classically phase transitions are driven by temperature, but in
this case the transitions occur due to the variation of other physical parameters, such
as pressure or magnetic fields. The point between these phases is called a quantum
critical point and it is of major importance in condensed matter physics and its relation
with AdS/CFT.

Due to we this phase transition occurs at zero temperature the fluctuations that will
dominate are going to be quantum fluctuations rather than thermal ones. As in classical
phase transitions the correlation length of the system ζ diverges when approaching to
the point, so we can say there is a long range quantum entanglement in the system.
Moreover, as the continuous quantum critical point is approached, the energy of the
first excited state (the so-called mass gap) vanishes. Therefore, a quantum critical
theory is a scale invariant theory that needs to be treated with a CFT. Typically the
quantum critical theory is strongly coupled which makes it a very interesting candidate
to be treated by AdS/CFT methods.

Experimentally we cannot obtain an absolute zero temperature system, but this is

Figure 3.4: Typical phase transition diagram controlled by pressure and temperature.
Above the quantum critical point (QCP) there is a region where there is still a notion
of criticality and, thus, scale-invariance. Figure from [218].
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not important as the effects of this critical points are still present at finite temperature
T > 0. As long as we are in a region where quantum fluctuations, Q, are bigger than
thermal fluctuations Q > T we are still in a “critical region” where the effects of the
quantum critical point are still noticeable (see Fig. 3.4).

There are a variety of metallic (anti-)ferromagnetic materials that develop a quan-
tum critical behavior at very small temperature controlled by pressure, chemical doping
or magnetic fields. Their metallic properties change abruptly by the critical fluctua-
tions, departing from the Fermi liquid behavior to a state called non-Fermi liquid or
strange metal. These kind of materials have been studied deeply because they are
believed to exhibit superconducting properties. In particular, these strange metals
could be related to high temperature superconductors as is pointed out in [194] and
holographic examples have already been proposed [80].

Figure 3.5: Phase diagram for a cuprate superconductor controlled by a doping pa-
rameter and temperature. Notice that the quantum critical region above the super-
conducting phase is described by the non-Fermi liquid/strange metal state. Figure
from [183].
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Chapter 4

Effective field theory of solids

In this chapter we will introduce and study a description of a solid system applying
Effective Field Theory (EFT) methods with the action presented in Section 3.2.1. The
theory of elasticity is an outstanding and early example of an EFT, providing us a
continuum limit description of a solid’s mechanical response, including its sound wave
excitations, the so-called phonons we introduced in Section 3.2 (see [59,138]). The EFT
for this solids will be expressed as a derivative expansion of the displacement vector of
the solid elements with respect to its equilibrium position.

We prove the predictive power of these methods applying them on a particular case
of solid materials, i.e. those solids that display a power-law scaling in the stress-strain
relation σ ∼ εν .

The results that will be shown here are based on [7] and [23].

4.1 Elastic response

With the EFT action in our hands we can already start looking at the physical proper-
ties that these kind of systems have, in particular with the linear elasticity which has
been introduced already in Section 3.1.

In order to study the mechanical response we must compute the stress-energy tensor
of the action which has a rather simple form1

Tµν = − 2√
−g

δS

δgµν
= −ηµν V + 2

∂V

∂BIJ
∂µΦI∂νΦ

J . (4.1)

1Many computations presented in this Chapter are explained with more detail in Appendix B
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If we consider a potential that is a function of the determinant Z and the traces
xn ≡ Xn/Z

n/2 (which will simplify the expressions) we will get that the second term
can be expressed as

∂V

∂BIJ
=

∂Z

∂BIJ

∂V

∂Z
+

d−2∑
n=1

(
∂Tr(Bn)

∂BIJ

1

Zn/d−1
− ∂Z

∂BIJ

n

d− 1

xn
Z

)
∂V

∂xn
. (4.2)

The first thing we can extract from the stress-tensor are the elastic moduli of the
material, which tell us how the system responds to small deformations. For a pure
shear strain our background changes to

ΦI = (δIi + εIi )x
i (4.3)

where the tensor εIi can be taken to be symmetric. Taking a look at equation (3.6) we
see that we must look at the component Tij, with i 6= j, at first order in the deformation
εIj . The term ∂Z/∂BIJ that appears twice vanishes when is contracted with ∂iΦ

I∂jΦ
J ,

thus we are left with

Tij = 4 εij

d−2∑
n=1

n2 ∂V

∂xn
. (4.4)

Therefore the shear modulus is

G = 2
d−2∑
n=1

n2 ∂V

∂xn
. (4.5)

On the other hand, for a bulk deformation we will use

ΦI = α δIi x
i (4.6)

and thus, the bulk strain is
κ = (d− 1)(α− 1) . (4.7)

Looking at the diagonal component of the stress-tensor, Tii, we can arrive to a simple
form

Tii = −V + 2Z VZ . (4.8)

Finally, we obtain the bulk modulus through either of the definitions given in (3.6) or
(3.7)2 , thus we arrive to

K ≡ −V dTii
dV

=
dTii
dκ

= 4Z3/2 ∂Z

(√
Z VZ

)
. (4.9)

2For the second definition we use the fact that the volume scales as V ∝ α1−d.
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Therefore, we see that the potential that we choose to define our EFT already defines
the elastic moduli of the system. These moduli are related to the speed of the phonon
modes as we have seen in (3.15), which must be confirmed in this EFT.

We can, indeed, derive the speeds of the phonon modes from the action we have
considered assuming that the phonons are the perturbations around the background
configuration of the fields ΦI , i.e. ΦI = ΦI

b + πI where πI play the role of the phonons.
We must take a look at the action at quadratic order in πI , which is given by

δS(2) = −
∫
ddx

(
−N π̇2 + c2

1(∂iπ
L
i )2 + c2

2(∂iπ
T
j )2
)

(4.10)

where we have split the perturbation into transverse and longitudinal modes πI =
πIT + πIL, i.e. modes that satisfy

∂iπ
T
i = 0 , ∂[iπ

L
j] = 0 . (4.11)

What we found in Appendix B is that

N = Z VZ , (4.12)

c2
L =

c2
1

N
= 1 +

2VZZ Z

VZ
+

2 (d− 2)

d− 1
c2
T , (4.13)

c2
T =

c2
2

N
=

d−2∑
n=1

n2 Vxn
Z VZ

. (4.14)

Thus from here it is easy to check that the speeds of these phonon modes fulfill the
relation introduced in (3.15).

Up until now we have restricted ourselves to the infinitesimal limit of the defor-
mations, but we can go beyond this regime and explore what happens to the elastic
response at finite deformations. At this level of deformation we want to find what is
the stress-strain relations of both the shear and bulk channels which encode several
response parameters such as the proportional limit or the failure point (see [170] for
definitions) which are properties of materials that define their behavior deep into the
nonlinear response regime. These parameters are not easily derived from a microscopic
theory but from the EFT methods we can better understand these elastic phenomena.

In order to determine what potential characterizes the material that we want to
study we should look at the shape of the stress-strain function, taking into account that
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the materials that we can describe with these EFT methods are restricted to materials
without dissipative or plastic effects3 such as the so-called Cauchy hyperelastic solids
[169]. Ideally one could construct the potential describing a solid just from the shape
of the stress-strain function.

Another property that is inherent to real world solids is the fact that they can get
deformed up to a point of fracture or elastic failure of the material. One should then
wonder how is this breaking apparent in the EFT of the solid. Maybe the potential
becomes singular for some finite deformation? Or does the breaking show up in the
EFT as some dynamical process (e.g., an instability) that can be found in a regular
potential? As we shall see the latter possibility arises, allowing us to extract information
between the parameters of the potential that control the large deformation regime and
the point of fracture of this solid.

What we are going to do is analyze the stability properties of the strained configu-
ration, similar to what we did in (4.10) but this time allowing the strain to be finite.
Thus we would set our scalar fields to be

ΦI = ΦI
str + πI (4.15)

and expand the action for small perturbations πI , where ΦI
str is defined at (3.12). What

we find is that the speeds of the phonon modes, cL and cT , depend on the deforma-
tion of the solid. This dependence is long known and it is the so-called acoustoelastic
effect (see [1, 99, 116, 157, 205, 209]). From the relation between these speeds and the
deformation of the solid we can find that eventually the action undergoes some kind
of instability. When increasing the deformation we usually find that the speeds either
become imaginary or greater than the speed of light. The value of εmax shall be under-
stood as an upper bound on the maximal strain that the material can support, since
other effects not included here can enter before, thus lowering the actual maximum
deformation. For instance, typically in solid materials we expect plastic/dissipative
effect to enter at some point. This would only alter our results if εplastic < εmax.

In the case where εmax is determined by gradient instability one expects that, like in
any instability, it is physically resolved by a transition to another ground state, most
likely described by a different EFT. The nature of this transition is hidden to the low
energy EFT presented here.

Regarding superluminality, we must emphasize that in constrat to ghost and gra-
dient instabilities the issue of superluminal propagation relates to the possibility of
a Lorentz invariant UV completion, not to the stability of propagation [2]. In order
to apprehend the physical picture, it is instructive to recall a classic in field theory:

3There have been attempts to incorporate such effects to EFT-like models as can be seen in
[18,37,38,68,70,88,92,96–98,126,127,210,211].
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the example given by high spin fields where the problem of superluminality is known
to arise [214]. As discussed in [177, 178], there are two ways to resolve the problem,
which require to augment the EFT either by higher order operators or with additional
light degrees of freedom. Any of the two resolutions makes it manifest that the naive
EFT truncation breaks down. The possibility that higher order operators (with more
derivatives) can fix the superluminality problem while keeping the rest of the elastic
response properties is nontrivial and we leave it for future research. On the other hand,
the possibility that one needs to supplement the benchmark model with other light de-
grees of freedom seems quite reasonable – after all in real world materials phonons do
couple to many other modes. If this is the resolution, then the physical interpretation
of the bound given by superluminality is that εmax can be understood as an upper limit
on when these light degrees of freedom have to be taken into account.

4.2 Benchmark potentials

From symmetry conditions we cannot restrict the action of the solid much further that
what we have in (3.32), so in principal any potential that we want to choose should be
conceivable. However, in order to obtain results we are going to need to specify what
potential, or family of potentials, do we want to study. Therefore, we will consider
a particular class of materials, which are those whose stress-strain functions have a
power-law scaling at large deformations

σ ∼ εν for ε� 1 , (4.16)

where the exponent ν is what we are going to call strain exponent.

An example of elastic materials that display this type of stress-strain relation are
elastomers which are polymers that have very weak intermolecular forces and a high
failure strain (e.g. [114,134]). The classical example of synthetic material that is made
of elastomers is rubber. The shape of the stress-strain function of these types of mate-
rials is very characteristic and constraint the type of potentials that we might employ.
Our goal is to test whether by imposing this constraint to our solid system we might
be able to derive non-trivial results such as the possible relation between the elasticity
bounds and the strain exponents.

We will restrict ourselves to two different types of potentials whose stress-strain
function achieves something similar to what we have in (4.16). For simplicity we are
going to consider only theories with two spatial dimensions so the potentials that we
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can consider can only depend either on (X1, X2) or, equivalently, (X1, Z). We are going
to choose the latter variables and the two type of potentials studied are the same ones
considered in [7]:

• Monomial potentials: These are potentials consist only of a single monomial
term, i.e.

V (X,Z) = ρ0X
AZ

B−A
2 (4.17)

where we have X ≡ X1/2 and ρ0 is the dimensionful energy density set by the
equilibrium configuration. This potential displays a stress-strain curve of the
same nature of (4.16) and there are many phenomenological models [21, 84, 119,
128, 153, 167, 168, 212] that reduce to this particular kind of potentials at large
deformations. Notice that there are two particular limits of this potential that
must be mentioned: when A = 0 we are dealing with a perfect fluid [74,163,164],
as we saw in (3.34), and for A = B = 1 the model reduces to two free scalar
fields.

• Non-relativistic potentials: One caveat of the monomial potentials is that, as
we will see below, for generic values of A and B the speeds of the phonon modes
are of order of the speed of light. However, the typical speed of phonons is, at
most, of order 10−4 the speed of light (e.g. see [63]). The potential that we call
non-relativistic is of the form of

V (X,Z) = ρ0

(√
Z + v2XA Z

B−A
2

)
(4.18)

where v2 � 1 in order to obtain a small phonon speed. This potential ensures
that the stress-strain curve is still of the form (4.16) while keeping a small phonon
speed, due to the term

√
Z does not contribute to the spatial components of the

stress tensor Tij.

4.2.1 Monomial potential

The first physical properties that we can compute now that we have chosen the form
of the potential are the elastic moduli, which have been found in (4.5) and (4.9), where
we need to take into account that now the potential is not a function of x1 = X1/

√
Z

but X, which brings us to
G = VX = ρ0A , (4.19)

K = 2Z VZ + 4Z2VZZ + 4X Z VXZ +X2 VXX = ρ0B (B − 1) , (4.20)
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where we have evaluated these quantities in the equilibrium configuration, i.e. at X = 1
and Z = 1. We can observe that, indeed, for A = 0 the shear modulus is zero, which is
consistent with the interpretation of V (Z) being the potential of a fluid system rather
than a solid one.

Another elastic parameter that allows us to determine what kind of material we are
dealing with is the so-called Poisson’s ratio, that we defined in (3.11), which in d = 2
(spatial dimensions) takes the simple form of

R =
K − G
K + G

=
B(B − 1)− A
B(B − 1) + A

. (4.21)

From this expression we can see that for large values of B the system resembles to that
of a perfect incompressible elastic material. However, when A is larger than B (B− 1)
then the Poisson’s ratio R becomes negative, which is typical of exotic systems (“aux-
etic”) as we have commented in Section 3.1. In Figure 4.1 we can see that in general
the allowed values in this model are around −0.5 < R < 0.5, which is a common
Poisson’s ratio in steels and rigid polymers.

The monomial potential has only three free parameters that we can vary: A, B and
ρ0. However, due to this potential is a monomial the parameter ρ0 is only useful to
specify the dimensions, so it will only act as a re-scaling parameter. Therefore, we want
to know what constraints the values of A and B, which will come from demanding some
consistency and stability conditions: (i) no negative kinetic energy (i.e. no ghosts)
(ii) no imaginary sound speed (i.e. gradient instability) and (iii) no superluminal
propagation (i.e. modes that propagate faster than light).

Let us then evaluate the speeds and the kinetic term coefficient (see (4.12)-(4.14))
for the monomial potential, which take this simple form

N =
B

2
V (X,Z), (4.22)

c2
T =

A

B
, (4.23)

c2
L =

A

B
+B − 1 . (4.24)

With these expressions we can impose stability and consistency conditions to our theory

(i) No ghosts: This condition requires the sign of the kinetic term (4.22) to be
positive. Thus, demanding N > 0 gives us the condition of no ghosts, which is
fulfilled whenever B > 0.
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(ii) and (iii) No gradient instability and subluminality: For these two conditions we must take
a look at the speeds of the phonon modes. These two speeds are given by c2

T = A
B

and c2
L = B−1+A

B
. The gradient condition requires these speeds to obey c2

T,L ≥ 0,

thus this leads us to A ≥ 0 and B − 1 ≥ −A
B

. On the other hand the condition
that requires no superluminal modes leads us to A ≤ B and A ≥ B(B − 2).

(*) There is an extra condition that we will impose which is not strictly necessary
for the stability of the model, which is the positivity of both elastic moduli. The
positivity of the bulk modulus requires that B ≥ 1 while the shear modulus
needs A ≥ 0 (which is already fulfilled if there are no gradient instabilities).
Notice that there is a region where we could have negative bulk modulus while
being perfectly consistent from the EFT perspective: as long as K > −G we
will have c2

L > 0. The negativity of the bulk modulus has been studied in four
dimensional models [137,216] and observed experimentally [154], however we will
be conservative here and require K to be positive.

In summary we find that the parameters A and B are only allowed in the region

0 ≤ A ≤ 1 , 1 ≤ B ≤ 1 +
√

1− A . (4.25)

as can be seen in Fig. 4.1.

Figure 4.1: Poisson’s ratio R values within the allowed parameter region. The values
range between R = −1 (at B = 1) and R = 1 (at A = 0).

We can go beyond the linear limit and explore what happens for large deformations.
In order to do so we can use the configuration presented in (3.12) for a system under
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strain, which we repeat here for clearness

ΦI
str = OI

J x
J , OI

J = α

 √
1 + ε2

4
ε
2

ε
2

√
1 + ε2

4

 (4.26)

When the shear deformation is large enough the quadratic action (4.10) gets more
cumbersome as interaction terms such as NT,Lπ̇L π̇T and λT,L∂iπT∂iπL will appear, so
we will not show the full expression here (see [7] for the full expressions). Nonetheless
we are able to find something remarkable, which is that for some finite value of ε we
eventually will encounter either a gradient instability or a superluminal mode, giving
us an upper bound to the maximum deformation the system can sustain, i.e. an εmax.
This is indeed what we see in Fig. 4.2, where we observe the upper bounds to the
maximum shear deformation as a function of the parameters A and B. Notice that we
are not considering a maximum bulk deformation κ, just the shear one. This is because
the potential is a monomial and performing a bulk deformation can be interpreted
just as a re-scaling of the potential, i.e. if we take the configuration to change as
Φi = xi → Φi = αxi then the potential just changes as V (X,Z)→ α2B V (X,Z).
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Figure 4.2: Maximum shear deformation within the allowed parameter region. The
red line separates the regions where εmax (maximum shear deformation) is determined
by gradient instability (below the red line) and by subluminality condition (above the
red line).

Let us explore now the full non-linear response in both the bulk and shear channels.
We are going to study the shear response through the off-diagonal term of the stress-
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energy tensor, Tij, which we have computed in (4.4). In the case of our potential this
reduces to

σS(ε) ≡ Tij = ε

√
1 +

ε2

4
VX

(
1 +

ε2

2
, 1

)
(4.27)

= ρ0Aε

√
1 +

ε2

4

(
1 +

ε2

2

)A−1

. (4.28)

From here it is trivial to realize that for small deformations the shear response starts

Figure 4.3: Stress-strain curve σS(ε) for the benchmark model (4.17) for B = 1.6
and A = 0.05, 0.2, 0.35, 0.5, 0.61 (from bottom to top). The black dots represent the
‘breaking’ points of the material arising due to the onset of gradient instability. The
red star indicates the onset of superluminality. A and B are related to the non-linear
scalings as (νS, νB) = (2A, 2B).

linear with ε. However, at large deformations the stress scales as

σS ∼ Aε2A (4.29)

so the shear exponent is νS = 2A. The curves of the stress-strain relation that this
potential can mimic includes a large diversity of materials such as fibers, glasses or
elastomers [119]. The shear response that we have in (4.27) describes Neo-Hookean
systems that follow Hooke’s law at small strain (that is, it starts linearly) but at large
deformations it exhibits a power-law scaling [170].

The allowed range of values of this shear exponent is bounded to be 0 ≤ νS ≤ 2 as
can be seen in Fig. 4.2. Moreover, notice that the closer we are to the point (A,B) =
(1, 1) the larger is the deformation that can be performed on the system before it breaks
down.
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Demanding that there are no gradient instabilities we can actually find the analytic
solution for εmax, which has a different expression depending on what region of A and
B we are considering. In particular we find that for a region that includes the limit
A = 0 the expression is rather simple and it is given by

εmax =
√

2

(
(B − 1)B

A (1− A)−B (1−B)

)1/4

=
√

2

(
(νB − 2) νB

νS (2− νS)− νB (2− νB)

)1/4

(4.30)
where this expression only applies to certain values of A and B (see Figure 4.4). Sur-
prisingly we find that in the fluid limit (in the limit in which the shear exponent goes
to zero, νS = 2A = 0) the maximum shear deformation has a universal value

εmax =
√

2 for A→ 0 (νS → 0) . (4.31)

Figure 4.4: Analytic solution for εmax without imposing subluminality constraints. The
simple expression (4.30) applies in the shaded area above the blue line.

The expression outside the blue area from Figure 4.4 is too large to be expressed
here, but it allows us to find that close to the point (A,B) = (1, 1) the maximum shear
deformation grows as

εmax '
(

2

1− A

)1/4

=

(
4

2− νS

)1/4

for A . 1 . (4.32)
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Figure 4.5: Bulk stress σB at large deformation for the monomial potential for A = 1
and B = 1.1, 1.4, 1.7, 2.0. The large deformation regime is determined by a power-law
scaling νB = 2B.

We may also explore the non-linear response due to a pure bulk deformation κ,
which in this case we will read from the diagonal part of the stress-energy tensor.
From the definition (3.5) we obtain

σB(κ) = ρ0 (B − 1)

[(
1 +

κ

2

)2B

− 1

]
. (4.33)

Again we see that for small deformations (i.e. κ � 1) we obtain a linear dependence
on the strain. On the contrary, when this bulk deformation is large the stress-strain
dependence is a power-law dependence, just like in the case of the shear deformations.
In particular we find that at large strain

σB ∼ (B − 1)κ2B . (4.34)

Notice that this scaling appears for compression processes, i.e. for positive bulk strains
κ > 0, but not for expansion processes, i.e. negative bulk strains κ < 0. As we have
mentioned, there is no limit in the bulk strain from consistency and stability conditions
as it happens for the shear strain.

4.2.2 Non-relativistic potential

The monomial potential has an important downside if we want it to be a model for
realistic solids, which is related to the speeds of the phonons. These speeds have been
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computed in (4.23) and (4.24) but let us write them down here making explicit the
dependence of this speed with the speed of light c, which we have set to c = 1 in most
part of the text:

c2
L =

(
B − 1 +

A

B

)
c2 , (4.35)

c2
T =

A

B
c2 . (4.36)

From these expressions we can readily notice that for generic values of A and B the
speeds are of order of the speed of light. The only region that is safe from this issue
is around (A,B) → (0, 1), which substantially restricts the values of the power-law
scaling νB and νS due to realistic values of the speeds should be bounded by above
as c2

L,T . 10−8 c2 (needless to say, this concern does not affect relativistic solids such
as neutron star interiors [35]), thus we would conclude that materials are restricted
to have scaling of order νS ∼ 10−8 for the shear deformations and νB ∼ 2 for bulk
deformations. This does not seem to represent what we find in solids generically so we
expect that the monomial potential is a very restricted one.

The first proposal that deviates from the monomial potential is the one introduced
in (4.18). This potential has the nice property that speeds become much smaller than
(4.23),(4.24) while keeping the stress-strain function unaffected.

What we do is we add a new term to the monomial potential which is δV ∝
√
Z

with a coefficient in front much larger than the one in front of the monomial. This
potential has some very interesting properties that must be commented. First of all,
the extra term can be understood as the mass density of the material [139]. This fact
may explain why the coefficient in front of

√
Z is much larger than the one in front of

the monomial: the mass density contributes to the Lagrangian weighted by a c2 factor
and in principle it should be much larger than the typical stresses in solids.

Moreover, we can check in (4.4) and (4.8) that the extra term contributes neither
to the shear response Tij nor the bulk response Tii so the stress-strain function is not
altered at all. The only component where we will notice this term is in the energy
density T00. This is not surprising as this term contributes as some inertial mass and
thus acts as a pressureless fluid (or “dust” in the cosmologist lingo).

Therefore we consider this potential to be a good candidate to mimic the response
of a solid while still retaining some predictive and constricting power of the EFT while
just including a new parameter to vary, i.e. v2. At zero strain we find that the speed
of propagation of the phonon modes are

c2
L =

v2 (A+B(B − 1))

1 +B v2
, (4.37)
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Figure 4.6: Allowed parameter region for the non-relativistic potential with v2 = 0.2.
Below the red line the maximum shear stress is restricted by gradient instabilities
while above this line is constrained by subluminal conditions. The green dashed line
shows A = B. Above this line the maximum shear stress is always determined by
subluminality. A and B are related to the non-linear scalings as (νS, νB) = (2A, 2B).

c2
T =

v2A

1 +B v2
. (4.38)

Demanding that there are no gradient instabilities nor superluminal modes we find
that the parameter region allowed for A, B and v2 is given by

v2 (A+B(B − 2)) < 1 (4.39)

with A > 0 and B > 1. This region can be seen in Fig. 4.6 for a potential with v2 = 0.2,
where we can already see a significant difference with the monomial potential. This
region is pushed away to maximum values of the parameters A and B of the order
of A ∼

√
B ∼ v2, allowing materials to acquire very large exponents νS = 2A and

νB = 2B. In Fig. 4.7 this limit is way out of the scope of the graphic due to the
smallness of v2.

In Fig. 4.6 we can notice that for A > B the maximum shear strain is always
determined by subluminality conditions while for A < B there are two separate regions
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Figure 4.7: Allowed parameter region for the non-relativistic potential with v2 = 10−8.
The limits on A and B are pushed away to maximum values of the order of B ∼ 104

and A ∼ 108. A and B are related to the non-linear scalings as (νS, νB) = (2A, 2B).

governed by gradient instability and subluminality respectively. The most remarkable
result about the maximum shear deformation is that we only find sectors with very
large deformations close to the line A = B: a narrow line for A < B (whose thickness is
independent of the v2 parameter, as it does not affect the gradient instability condition)
and a larger region for A > B which is larger the smaller the value of v2 is. Thus,
generically very elastic materials should display similar exponents both in the shear
and bulk deformations, i.e. νS ' νB. Such maximum deformation is given by

εmax ∼
(

2A

B − A

)1/4

=

(
2 νS

νB − νS

)1/4

for νS . νB . (4.40)

In equations (4.37) and (4.38) we see that phonon speeds are of order v2 when the
strain deformations are infinitesimal. In this way it makes sense to call the potential
defined in (4.18) as “non-relativistic” whenever we are in the limit v2 � 1. However
the speeds of these phonon modes change substantially when we increase the strain
ε and they might not be small for finite values of the deformation. In particular we
can see in Figure 4.6 that there is a smooth transition between regions where εmax is
determined by gradient instability and regions where is determined by subluminality
conditions. This must mean that while one of the velocities, let us call it c−, decreases
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Figure 4.8: Speed ratio constraints for r = 10, 102. Dashed lines show where εmax = 3, 5
(Green, Red).

to small values (until reaching a gradient instability c2
−(εmax) = 0) the other speed, c+,

is actually growing. Thus, we need to look at the value of the speed that is growing
when we encounter this gradient instability so we can be sure that the speed can still
be considered to be small, i.e. we want to know how big is c2

+(εmax).
For this purpose let us define a parameter that will control how c+ grows from ε = 0

to εmax, which is

r ≡ c+(εmax)

c+(ε = 0)
. (4.41)

Let us demand this ratio to be small, of order r ∼ 10− 102, in order to be considered
realistic. This ratio only makes sense in A < B, as in A > B the maximum deformation
is not determined by gradient instabilities but from subluminal conditions.

We determine this ratio in the limit v2 � 1 which close to the region A = B scales
as

r ∼ (B − A)−A/4 . (4.42)

This ratio r is shown as a function of A and B−A in Figure 4.8. In this figure we can
see a finite region of values A and B that overlaps with a region with large values of
εmax, which then can be considered to be a region that could define realistic hyperelas-
tic materials.
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Finally, we should note that because this potential is not a monomial, here the
bulk strain does have a limit which can also be found by demanding consistency and
stability conditions at finite κ. However, to keep the discussion simpler, we have only
considered the maximum shear strain, εmax.

4.3 Three-phonon interaction terms

To further illustrate the predictive power of the low energy methods, we show here
another nontrivial powerful statement that follows from the EFT construction which,
as explained above, applies when translations (and possibly scale invariance) are broken
spontaneously.

The nontrivial statement contained in the EFTs (3.37) is simply that once the
stress-strain relations are known then the full Lagrangian is fixed. Let us illustrate now
how this impacts for instance in the determination of the cubic phonon interactions.
Assuming that the stress-strain relations both for bulk and shear deformations are
known, then one can reconstruct the full form of the function V (X,Z), up to an
irrelevant additive constant.

Then, the cubic phonon interactions (around the homogeneous, isotropic equilib-
rium configuration ΦI = xI) are obtained by expanding our Lagrangian around the
background solution, i.e. ΦI = xI + πI . At third order in πI we obtain

V (X,Z)⇒ C1 (∂iπ
i
L)3 + C2 (∂iπ

i
L) (π̇j)

2 + C3 (∂iπ
i
L) (∂jπk)

2

+ C4 π̇
i π̇j ∂iπj + C5 (∂iπ

i
L) (∂jπk) (∂kπj) ,

(4.43)

where πI = πIL + πIT . The terms we find are

C1 =
1

6
(8VZZZ + 12VXZZ + 6VXXZ + VXXX) + 4VZZ + 2VXZ + VZ , (4.44)

C2 = −2VZZ −
1

2
VXX − 4VZ − 2VXZ , (4.45)

C3 =
1

2
VXX + VXZ , (4.46)

C4 = 2VZ , (4.47)

C5 = −2VZZ − VZ − VXZ . (4.48)

In these expressions, the X, Z- derivatives of V are evaluated on the undeformed
configuration. Moreover, by obtaining the relation between V (X,Z) and the stress-
strain curve (such as e.g. Eq. (4.27)) one can relate all these V (X,Z) derivatives
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to derivatives of the stress strain curve at the origin, σ′S(0), σ′′S(0), etc, which are
measurable quantities. For instance, the bulk modulus is K = 4VZZ+2VZ+4VXZ+VXX ,
G = VX and ε+ p = VX + 2VZ .

This illustrates that the realization of symmetries implies nontrivial relations be-
tween distinct low energy observables. In this example, the strength of the phonon
cubic interactions are determined by the shape of the stress-strain curves.

We can write the 5 C’s as a function of these quantities and we would just need two
independent new parameters

C1 =
K
2

+N , (4.49)

C2 =
1

2
(3G − K − 3 (ε+ p))) , (4.50)

C3 =
1

4
(G +K − (ε+ p)) +M , (4.51)

C4 = ε+ p− G , (4.52)

C5 =
1

4
(G − K − (ε+ p)) +M . (4.53)

where the independent new parameters are

N =
1

6
(8VZZZ + 12VXZZ + 6VXXZ + VXXX)− 2VZZ −

1

2
VXX , (4.54)

M =
1

4
VXX − VZZ . (4.55)

We can compare our results with Ref. [139]. There he concludes that there are
3 independent new parameters, but we think the difference comes from the fact that
he is working in 3 space-dimensions instead of 2. Moreover, in Ref. [139] there are
6 independent operators in the cubic expansion. It is trivial to check that in two
dimensions the extra operator can be expressed as a function of the others

(∂iπj) (∂iπk) (∂jπk) = (∂iπ
i) (∂jπk)

2 +
(∂iπ

i)

2

(
(∂jπk)(∂kπj)− (∂iπ

i)2
)
. (4.56)

In the case of scale invariance these terms simplify considerably. Allow us to foresee
the form of the potential in the case of a solid action with a spontaneously broken SI,
which will be presented in (5.4). The potential will have the next form VSBSI(X,Z) =

Z
1
2

+ω f
(

X√
Z

)
, therefore we can express the parameters Ci as
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C1 =
ω

3

(
(2 + 6ω + 4ω2)f(1)− 3f ′(1)

)
, (4.57)

C2 =
1

2

(
−(3 + 8ω + 4ω2) f(1) + 3 f ′(1)

)
, (4.58)

C3 = ω f ′(1) , (4.59)

C4 = (1 + 2ω) f(1)− f ′(1) , (4.60)

C5 = ω (f ′(1)− (1 + 2ω) f(1)) . (4.61)

This implies that for a scale invariant potential there are no free parameters: we
can identify f(1), f ′(1) and ω with K, G and ε+ p

G = f ′(1) , (4.62)

K = 2ω (1 + 2ω) f(1) , (4.63)

ε+ p = (1 + 2ω) f(1) . (4.64)

Therefore cubic interactions are all fixed by these background or linear elasticity
quantities. This is true both for general SI as well as conformal solid limit (which, as
we shall see, is just a particular value of ω).
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Chapter 5

Scale invariant solids

In Chapter 4 we described how the elastic response of a solid can be described through
EFT methods. In this chapter, however, we will go beyond these methods in order to
describe certain types of solid systems, which we will name as scale invariant solids.
This type of solid exhibits scale invariance (SI) in addition to the broken symmetries
of a regular solid system. The question of whether we can describe the behaviour of
these solids is interesting per se, but this SI solids seem to be quite close to real world
materials that exhibit criticality in the form of a quantum critical point (see Section
3.3). As we will see, in order to deal with these kind of materials we will employ both
the solid EFT methods and the AdS/CFT correspondence.

When we cope with a scale invariant system we may consider two possible ways in
which SI can be realized generically. The main division that we can think of between
different SI solids is whether their low energy dynamics are controlled by a nontrivial
infrared fixed point (IRFP). In such a case, at low energies we would have an unbroken
symmetry of SI due to this IRFP. However, in the absence of this fixed point, the SI
can only be a spontaneously broken symmetry which is non-linearly realized, as we
discussed in Section 3.2.1.

Following this logic we assume that generically there are two possible cases of SI
solids, which are:

• Solids with spontaneously broken SI: In this kind of SI solids we expect
to have a gapped spectrum, thus at low energies phonons can be considerate as
isolated degrees of freedom. Due to existence of this energy gap EFT methods
should be applicable in order to describe the lightest excitations in the mechanical
sector as the Goldstone bosons of the spontaneously broken spacetime symme-
tries. The methods necessary for this are summarized in Chapter 4 but in Section
5.1 we will expand on aspects related to this SI behavior.
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Figure 5.1: Generically we can divide scale invariant (SI) solids in two separate groups
using the beta function β = µ dλ/dµ where λ is some coupling of the theory. We
indicate the direction of the flow towards low energies with an arrow.

• Solids with manifest SI: Here we will assume that there is a dynamical IRFP.
Contrary to the spontaneously broken case, here the spectrum is a continuum
rather than being gapped. Thus phonons cannot be treated as isolated degrees
of freedom and we expect that the dispersion relation of these phonons develop an
imaginary part. To cope with this type of solid we employ bottom-up AdS/CFT
methods, which are helpful to construct models with these kind of properties.
This will be fully developed in Section 5.2.

Due to we are talking about fixed points it comes very handy using renormalization
group (RG) terminology. One of the most important parameters in RG is so-called
beta function, which we already introduced in (2.2), which is

βg(µ) =
∂

∂ log µ
g(µ) , (5.1)

where µ is the energy scale and g is some coupling of the theory.
The two different cases of solids that realize SI can be identified depending on how

this function behaves as a function of the coupling. On the one hand the spontaneously
broken SI case can be understood as an RG flow from some UV fixed point caused by
the vacuum expectation value of some operator that breaks the SI symmetry. This
case is depicted in the left part of Fig. 5.1. On the other hand we have the case of the
solids with manifest SI, which can be linked to the presence of an IR fixed point. This
case is depicted in the right part of Fig. 5.1.
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One could propose a third option to the list, which would be a combination of both
cases, that is, a combination of both IR and UV fixed points. In this case we would have
some UV fixed point where the SI is spontaneously break but when going towards a
low energy regime we would encounter another fixed point, i.e. an IR fixed point which
would realize some emergent SI. Thus, we would have a combination of spontaneous
breaking and a manifest realization of SI. There are different examples that realize this
possibility in various ways including both Lorentz invariant and non-invariant theories
which are easily constructed through bottom-up holographic models.

In the case of Lorentz invariant theories we find both spontaneously broken SI, such
as in [45,150], and a mixing of spontaneous breaking and emergent SI, like in [31,113].
These examples of Lorentz invariant theories have a particular feature that non-Lorentz
invariant theories lack, which is the appearance of a massless dilaton. The appearance
of this massless dilaton requires some fine-tuning of the theory, but assuming this
tuning it can be found that the dilaton pole must show up.

However, in condensed matter set-ups we do not consider theories that respect
Lorentz invariance, as symmetries such as Lorentz boosts are broken, and therefore, in
such scenarios, the dilaton will not appear even if SI is broken spontaneously [79,141].
These theories realize conformal symmetry nonlinearly without this dilaton, as the
phonon fields πI will play the role of Goldstone bosons for various broken symmetries1

[164]. As far as we know, the only previous example of a SI solid effective theory is
presented in [79], but this model has a crucial problem which is that the speeds of
phonons are necessarily relativistic. If we are trying to study a real world material we
need to solve such issue.

The cases we study in this text are of the second nature: we will consider realizations
of SI in solid materials, which break Lorentz invariance, at low energies, with either a
SI spontaneously broken or as an emergent symmetry.

5.1 Solids with spontaneously broken scale invari-

ance

This type of solids can be implemented with the solid EFT described in Chapter 4
without much effort. We will demand that the solid EFT Lagrangian respects scale
invariant transformations, which will not be respected by the ground state of the the-
ory. In this model we can differentiate between two objects that will play the role of
coordinates in scale transformations: the (“external”) spatial coordinates xµ and the

1Generally when we are spontaneously breaking space-time symmetries there will be fewer Gold-
stone modes than broken symmetries [141].
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internal space coordinates (the solid element positions) ΦI . Scale transformations act
on coordinates as a rescaling and in this scenario we will consider the possibility that
the scale transformations act differently depending on the coordinate itself, meaning
that the way external and internal coordinates transform might be distinct. Specifically
let us define the scale transformation as

xµ → λ−1 xµ , (5.2)

ΦI → λ∆ ΦI (5.3)

where ∆ is some weight of the scale transformation on the internal coordinates ΦI .
The solid EFT that we considered in Chapter 4 demanded that the Lagrangian

describing the solid must be constructed out of the matrixBIJ which for a d dimensional
space-time can form d − 1 independent terms as we see in equation (3.37). Imposing
that the Lagrangian must be invariant under the scale transformations (5.2) and (5.3)
we find that the potential has to be of the next form2

VSBSI = Z
1+ω
2 F (x1, . . . , xn) , n = d− 2 (5.4)

where ω is some constant value that will depend on the weight ∆ and xn ≡ Xn/Z
n/(d−1),

which was already introduced in (4.2) to simplify the expressions. The virtue of the
terms xn is that they are already manifestly SI for any value of ∆, so we will only need
to play with ω and ∆ to define a potential that respects SI. Moreover, the function
F (xn) is an arbitrary function (up to consistency and stability conditions that we will
apply afterwards).

In order to have a SI potential we need to fulfill a specific relation between ω and ∆.
Demanding SI uniquely fixes ω as a function of ∆ by the relation (1+ω) (d−1) (1+∆) =
d, which can be expressed in two ways, depending on what we want,

ω =
1− (d− 1) ∆

(d− 1) (∆ + 1)
or ∆ =

1− (d− 1)ω

(d− 1) (ω + 1)
. (5.5)

The relation between the two terms is displayed in Figure 5.2 for the case of d = 4.
The ω parameter has a physical meaning that can be readily found by computing

the ratio between the pressure p and the energy density ρ

p

ρ
=
−V + 2Z VZ

V
= ω . (5.6)

2As we shall see below, this theory represents a new example of SI theory that does not realize
conformal invariance, other examples of these type of theories can be found in [159].
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Therefore ω plays the role of the equation of state of the system. Note that this relation
is true for arbitrary values of the pressure and the energy density and even out of the
equilibrium configuration of the scalar, thus the relation between p and ρ will always
be a linear relation

p(ρ) = ω ρ . (5.7)

Let us now apply consistency conditions to this equation of state parameter, such as
the Null Energy Condition (NEC), which demands that we must have ω > −1, as a
condition to be free of any ghost instability. This can be easily confirmed checking
equation (4.12).

Interestingly, the equation of state can be used to relate the speeds of the phonon
modes (4.13) and (4.14) as

c2
L = ω + 2

d− 2

d− 1
c2
T . (5.8)

From here we derive how ω and ∆ are restricted by stability constraints on the phonon
speeds. Demanding these constraints to the transverse sector places no constraints on
ω or ∆, only that

0 < G < ρ+ p . (5.9)

However, if we require that c2
L > 0 then we obtain that

ω > −2
d− 2

d− 1
c2
T (5.10)

which for the ∆ parameter translates to an upper bound ∆ < 1/(d− 1).
Requiring also that this speed is not superluminal, c2

L < 1, we find that we need
ω < 1 (or ∆ > − d−2

2 (d−1)
). Altogether we summarize the bounds for the weight ∆ as

− d− 2

2(d− 1)
< ∆ <

1

d− 1
. (5.11)

Focusing now on the weight ∆ we may also interpret it as a parameter that plays a
similar role as the scaling dimension for the field ΦI , just like scalar operators in a CFT
(see Eq.(2.47)). However we need to be careful when we compare this theory with a
CFT because is not in any way clear that (5.4) is actually defining a relativistic CFT,
as we shall see.

Thus, we wonder whether we can apply standard logic and results from CFTs. The
potential defined in (5.4) is formally relativistic and the fields ΦI play the role of some
scalar operator, so maybe we are actually dealing with a relativistic CFT. Nevertheless,
our impression is that this it not actually true.
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Firstly, this theory does not have a well defined Poincaré invariant ground state,
such as ΦI = 0 (or, using the shift symmetry of the theory, ΦI = const.). Studying
perturbations around this vacuum we realize that there is no analytic kinetic term for
the field ΦI (see the perturbation expansion in (4.10)). Thus, we need to demand that
the ground states have some finite gradient ∂ΦI in order to be able to quantize the
theory. The ground state that we take is of the form ΦI = αxI δiI , where now due
to SI the parameter α has only two possible values: either α = 1, which breaks part
of the Poincaré group but admits perturvative quantization, or α = 0, which would
be relativistic but is not well-defined. Therefore, we cannot approach the unbroken
symmetry case continuously in a controllable way by varying the parameter α and we
are restricted to take the non-relativistic solution.

Secondly, but related to the first point, there is an inquiring detail of the EFT that
makes us realize is not a relativistic CFT. By taking this configuration for the scalar
field we are in some way making the field ΦI play the role of spatial coordinates. Thus,
to some extent, for ∆ 6= 0 we have that time and space transform differently for scale
transformations, which is in contradiction to what one would expect from a CFT.

Beyond these aspects about the non-relativistic nature of the theory we may also
look at the trace of the stress-energy tensor, which is related to the equation state by

T µ
µ = (1− (d− 1)ω) ρ . (5.12)

This trace is generically non-zero, as it must be in a CFT (see (2.37)). As we already
pointed out in Section 2.2.2 it is not true that all scale invariant theories must have
a traceless stress energy tensor, whereas conformal invariant theories do. In order
to see this, let us consider a conformal transformation in D dimensions of the type
δxµ = vµ(x) that obeys

∂µvν + ∂νvµ =
2

D
gµν ∂ · v . (5.13)

This conformal symmetry leads to the current (for D ≥ 3) [171,173]

J (v)µ = vνT µν + ∂ · vKµ + ∂ν ∂ · vLµν (5.14)

where Kµ and Lµν are constructed of local operators. The conservation of this current
is equivalent to

T µµ = −∂µKµ and Kµ = −∂νLνµ (5.15)

which combined lead us to
T µµ = ∂µ∂νL

µν . (5.16)
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The interesting point is that the stress-energy tensor is not unique, we can propose
another tensor that still defines the same four-momentum and Lorentz generators.
Specifically

T ′µν = Tµν + ∂σ∂ρYµσνρ (5.17)

where Yµσνρ is antisymmetric on µσ and on νρ, but symmetric under the exchange of
µσ and νρ. Thus, as long as our stress energy tensor trace has the form of (5.16) we
can promote our stress-energy tensor to an improved tensor [55,62,75,124,159,173,185]
of the form

Θµν = Tµν+ (5.18)

1

D − 2

(
∂µ∂αL

α
ν + ∂ν∂αL

α
µ − ∂2Lµν − gµν∂α∂βLαβ

)
+ (5.19)

1

(D − 2)(D − 1)

(
gµν∂

2Lαα − ∂µ∂νLαα
)

(5.20)

which will obey Θµ
µ = 0.

Let us now consider the current of the dilatation transformation, which has the
form of

JDµ = xρ Tµρ − Vµ . (5.21)

The conservation of this current implies that the trace of the stress energy tensor must
be

T µ
µ = ∂µVµ (5.22)

where Vµ is known as the virial current [62] and is the same as Kµ plus some conserved
current. Therefore, we may have a theory that is scale but not conformal invariant with
a non-traceless stress-energy tensor if we have some current Vµ that is not conserved,
∂µV

µ 6= 0, and that cannot be expressed as a total derivative, like in (5.15). In scalar
theories where the ground state is Poincaré invariant and are perturvative around it
this cannot happen [173], as the only D − 1 dimensional term that we can write is
∼ ∂µφ

2, which is indeed a total derivative. However, this is not our case, just like in
the potential discussed in [171], where they find that that for a particular potential
V (X) = Xn the virial current is

Kµ = ∆nXn−1 ∂ µΦ2 (5.23)

which is not a total derivative (except for the case n = 1) and is only zero for ∆ = 0.
In their case they consider a SI superfluid where the scalar field’s vev is Ψ = αt, but
the solutions can be considered analogous, as the computations do not differ much.
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Figure 5.2: Equation of state parameter ω as a function of the weight of the scalars ∆
for d = 4, following the relation (5.5). The gray shaded area on the right is where by
the naive unitarity bound ∆ > 1 is fulfilled. In the red shaded area we have that the
longitudinal speed cL is superluminal and should be excluded. The red dot corresponds
to the Weyl invariant case, i.e. T µ

µ = 0, where ∆ = 0. The blue circle includes the
free theory, where an improved stress-energy tensor that is traceless is admitted. In
the blue region the theory suffers from gradient instability in the longitudinal mode if
cT � 1.

Before discussing this SI superfluid theory let us mention that the case of ∆ = 0
(and therefore ω = 1/(d− 1)) in our model is a special one indeed. We can verify that
this case is invariant under conformal (or Weyl) transformations of the metric

gµν → Λ2(xσ)gµν (5.24)

where Λ is an arbitrary function. This theory is the one considered in [79], and here is
just a particular case which we point with a red dot in Fig. 5.2.

Next in order we have the case of n = 1 in (5.23), which in our model can be gener-
alized to ∆ = d−2

2
(and thus ω = −d−3

d−1
) with F (xi) = x1, where the theory admits an

improved stress tensor that is traceless. This type of potential is basically the one of a
free theory of scalar fields and is marked with a blue disk in Fig. 5.2, which is known
to admit this improved stress tensor [124, 159, 185]. Indeed, in equation (5.23) we see
that the current is a total derivative in the case of n = 1.

In Figures 5.2 and 5.3 we have another shaded region, in grey, for the cases where
∆ > 1. This area shows how large the scaling dimension of the scalars should be if
this theory was actually a true CFT in order to obey unitarity conditions. For a gen-
eral d-dimensional CFT this bound is ∆ > (d − 2)/2. It is interesting to notice that
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Figure 5.3: Here we show the same relation displayed in Figure 5.2 for a SI superfluid.

the range where our potential obeys the NEC and the absence of gradient instability
corresponds to a considerable range in ∆ < 1. Moreover, not even the conformal solid
case (∆ = 0 or ω = 1/(d − 1)) is safe from this constraint. However, we must not
take this condition to be strictly necessary for us due to this theory does not have full
Lorentz invariance nor conformal invariance, which indicates that we should alleviate
this bound.

For completeness and in order to include the case discussed in [171] let us comment
that we can easily realize an “SI relativistic superfluid” by just considering a different
ground state for the scalar fields. In particular we take a single scalar field with
Ψ = t+ ψ whose most general action at leading order in derivatives is

S =

∫
ddxP (XΨ) (5.25)

where XΨ ≡ ∂µΨ∂µΨ. Due to scaling invariance we need to restrict this potential to
just power laws of XΨ, i.e. P (XΨ) = Xn

Ψ and this invariance allows us to define a
scaling dimension of Ψ, ∆Ψ. The relations between the scaling dimension ∆Ψ, ω and
the power n follows a different relation to what we have for the solid case. Similarly
to the solid case, the action must have a power n = 1+ω

2
and a relation between the

equation of state and the scaling dimension

∆Ψ =
(d− 1)ω − 1

ω + 1
, or ω =

1− (d− 1) ∆Ψ

(d− 1) (∆ + 1)
, (5.26)

which we show in 5.3 for the case of d = 4 dimensions. In this case we also need to
demand that ∆ = 0 in order to have Weyl/conformal-invariance, outside the naive
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bound of unitarity. To end the comparison we can look at the sound speed of sound,
which only consists of one speed cs = ω. Therefore, restricting the potential to one
that has neither gradient instabilities nor superluminal modes we need 0 < ω < 1, and
thus −1 < ∆ < d−2

2
.

5.1.1 Benchmark potentials and non-linear elasticity

Here we will concentrate in the case of a two dimensional solid system and particularly
in its non-linear elastic regime.

Firstly, the non-linear bulk scaling is determined by ω and is completely independent
of the function F (x). This scaling is given by

νB = 2 (1 + ω) . (5.27)

Moreover, the bulk strain κ is unconstrained, as opposed to the shear strain ε.

The results related to the shear response are potential dependent, so we will need
to specify what type of potential we want to study. In particular, we will take the two
cases considered in [7], which are:

1. The first possibility we will study is the case where F (x) is a monomial, i.e.

F (x) = xνS/2 (5.28)

with ω as a free parameter. This simple potential realizes a power-law scaling
in the stress for large deformations. This potentials will display a power-law
behaviour in the stress-strain relation for the shear channel, which will be deter-
mined by νS, i.e. we will have that at large deformations σS ∼ ενS .

2. The second possibility we are going to consider is taking both

F (x) = 1 + v2xνS/2 (5.29)

and the limit ω → 0. The advantage of this potential is that the speeds of the
phonon modes will be realistic (i.e. much smaller than the speed of light) as long
as v2 � 1, whereas the monomial potential has relativistic modes for generic
values of νS and ω. The shear response will only come from the x-dependent
term, so the power-scaling of the shear response will be determined by νS.

Looking at Fig. 5.4, we can see that the case of a monomial potential the bulk
scaling is restricted to satisfy 2 < νB < 4. For a more general F (x), we can find that
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Figure 5.4: Left: The maximum allowed strain εmax within the allowed region for
the monomial EFT case F (x) = xνS/2. The left, bottom and right edges are respec-
tively given by: gradient instability, positivity of the bulk modulus and subluminality.
The red line separates the region where εmax is controlled by gradient instability and
subluminality. This figure is the same as Fig. 4.2. Right: The maximum allowed
strain εmax within the allowed region. SSB case in the particular case where ω = 0 and
F (x) = 1 + v2 xνS/2. The left and bottom edges are respectively given by: gradient
instability and positivity of the bulk modulus. The maximum shear strain is deter-
mined by gradient instability for νS < 2, subluminality for νS > 2 and unconstrained
for νS = 2.

the limit is still the same, i.e. we cannot have ω > 1 without gradient instabilities or
superluminal modes. Thus, neither the non-linear bulk scaling nor the constraints of
it depend on the shape of F (x).

The discussion about the shear scaling νS of the spontaneous broken scale invariance
(SBSI) case is of course sensitive to the form of the function F (x). The simplest non-
trivial example of potential one can think of is a monomial, ie. F (x) = xνS/2, which
is shown in Fig.5.4. In this particular scenario both the bulk and shear scalings are
constrained, in particular we find that 2 < νB < 4 and 0 < νS < 2. The most elastic
region is found close to νS ∼ 2 and we find that for this scaling εmax reads as

εmax '
√

2

(
1

2− νS

)1/4

for νS . 2 . (5.30)
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As we saw in Chapter 4 the problem with this kind of potentials is that the speeds
of the phonons are excessively large. Typically one would expect that the speeds of
these modes are not bigger than ∼ 10−4 times the light speed in ‘earthly’ materials.
This constrains very much the possible scalings one can realize in a realistic scenario,
specifically we would be restricted to νS and νB − 2 not bigger than 10−8.

If we do not restrict ourselves to the most simple case, we can describe a solid with
slower phonon modes. For this, we are going to take ω → 0 and F (x) = 1 + v2 xνS/2

with v2 � 1 as proposed in Chapter 4.2.2. Because we are taking the limit ω → 0
we see from (5.27) that the bulk scaling is forced to be νB = 2. Moreover, this form
of potential ensures that the speed of the phonon modes are small at least for small
shear strain. The shear scaling is forced to be positive νS > 0 and the maximum shear
scaling is

νmaxS =
2 (1 + v2)

v2
, (5.31)

thus νmaxS � 1 for v2 � 1. The region with εmax large is found around νS . 2 and also
in the region where νS > 2 and v2 � 1, specifically

εmax '
√

2

(
1

2− νS

)1/4

for νS . 2 , (5.32)

εmax '
√

2

(
2

v2 (νS − 2)

) 1
νS

for νS & 2 , (5.33)

where we have taken the limit ω → 0 and the last εmax is valid for νS > 2 not necessarily
close to νS = 2 as long as v2 � 1, as can be seen in Fig.5.4.

5.2 Solids with manifest scale invariance

So far we have focused on EFTs that describe the behavior of solid systems, but in order
to realize a solid with manifest scale invariance we are going to employ the holographic
tools that we introduced in Chapter 2. This is because the low energy dynamics of solids
with manifest scale invariance are controlled by an IRFP, and therefore EFTs lose their
strength. It is a necessary condition for an EFT to work having a gapped spectrum
in order to integrate out heavier modes. However in a CFT the energy spectrum is a
continuum and the analysis gets more complex. Due to this the phonon modes are not
isolated energy modes we thus expect them to show some diffusive behaviour. This
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translates into the dispersion relation of the phonons acquiring an imaginary part

ω = csk − iΛ(k), (5.34)

where the diffusive part, Λ(k), scales as k2 at low momentum and thus in this limit
we can consider this dispersion relation as real, linear and propagating3. Therefore we
will assume phonons to propagate without taking into account diffusive modes4

5.2.1 The holographic model

Similarly to what we did with the EFT solid here we would like our theory to realize
some sort of translation symmetry breaking to describe our solid. It has been long
known [8] that in the bottom-up gravitational duals that can easily accomplish this
are massive gravity theories and more precisely Lorentz violating massive gravity.

The massive gravity theory that we are going to consider can be expressed as a the-
ory of general relativity coupled to some scalar fields. This type of formalism used in
these holographic theories was initiated in [17,207] and was contributory to identifying
these scalar degrees of freedom to phonon modes [6, 28], as we shall see below. These
models were originally proposed, however, to introduce momentum relaxation in the
holographic theories in order to obtain a finite DC conductivity.

The scalar fields that we will introduce in the gravity theory are some set of fields
ΦI which live and propagate in the bulk space. For simplicity we are going to consider
that the CFT that describes the solid is 2 + 1 dimensional, and thus we are going
to need an (asymptotic) AdS4 gravity dual. The scalar fields ΦI have an equilibrium
configuration ΦI = δIi x

i that breaks the 2 + 1 Poincaré group as in the EFT case,
breaking both translations and rotations, and also breaking SI.

The action of this gravity theory is given by

S =

∫
d4x
√
−g

[
R

2
− Λ−m2W (X,Z)

]
(5.35)

with BIJ = ∂µΦI∂µΦJ , X = 1
2

TrB, Z = detB and a cosmological constant fixed to
Λ = −3.

3This will be true until the momentum reaches some value which depends on how strong is the
dissipation. See [12] for more details.

4Using hydrodynamic techniques this modes can be considered to include these dissipative terms.
See [10,72,146] for more details.
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Let us then consider that the gravitational theory (5.35) lives in a space-time with
the metric of some some AdS black brane geometry

ds2 =
1

u2

(
−f(u) dt2 +

du2

f(u)
+ dxidx

i

)
(5.36)

f(u) = u3

∫ uh

u

dv
3−m2W (v2, v4)

v4
(5.37)

where we have assumed that this function f(u) vanishes at some u = uh where the
event horizon of a black brane is located, while the boundary is located at u = 0. We
have also taken the AdS radius to be ` = 1.

Following (2.145) we can determine the temperature as

T = − f ′(u)

4π

∣∣∣∣
u=uh

=
3−m2W (u2

h, u
4
h)

4 π uh
(5.38)

and the entropy density is, according to (2.148), s = 2π/u2
h.

It has been confirmed in [5, 6, 10, 25] the presence of gapless phonon modes in this
theory by computing the quasi normal modes (QNMs) of the system in both shear
and longitudinal sectors. These phonons modes coincide with the poles of the TijTkl
retarded’s Green function at finite momentum k. The conclusion that they arrive to is
that for potentials that fall-off faster than5 W ∼ u5 the theory contains gapless phonons
with a dispersion relation of the form of (5.34) for both transverse and longitudinal
modes. Moreover, it will be necessary that potentials fall off faster than W ∼ u3 in
order to have positive shear modulus.

For some particular forms of the potential W (X,Z) the holographic interpretation
of the Lorentz and SI breaking is that it is spontaneous [6]. This holographic model,
constructed through an AdS dual, represents the IRFP that controls the quantum
critical material at low energies. Thus, the AdS dual is acting as the effective theory
that controls the low energy dynamics where a new symmetry emerges, i.e. scale
invariance.

5.2.2 Linear elasticity

In Section 2.4.1 we introduced a gravitational theory consisting on an AdS Schwarzschild
black brane, which was useful to study the nature of conformaly invariant fluids. This

5This requirement might be avoided using alternative quantization [11,20,27].
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kind of gravity theories, however, are not suitable for solid systems due to their re-
sponse to static shear deformations is zero. The system only has a finite response in
the stress-energy tensor for dynamical shear deformations due to the shear viscosity η,
i.e. the shear response came from

σij ∼ η ε̇ij (5.39)

where εij is the strain tensor (3.2).
As we shall see now, the gravity theory (5.35) does have a finite response to static

shear deformations, in this case due to the shear elastic modulus G. In such a case, for
a static deformation we would essentially have

σij ∼ G εij for i 6= j . (5.40)

Just like we did in the case of the shear viscosity, here we may also derive the so-called
Green-Kubo formula for the shear modulus, which according to [8] is given by the
retarded two-point function of Txy Txy

G = lim
ω,k→0

Re 〈Txy Txy〉R . (5.41)

In order to compute this correlator we are going to need to study the perturbation
that sources Txy which is h ≡ u2δgxy. The quadratic action for this perturbation of the
metric for an homogeneous mode is

S(2) =

∫
d4x

1

4

1

u2

(
1

f(u)
(ḣ)2 − f(u) (h′)2 − 2m2WX(u2, u4)h2

)
. (5.42)

From here we can derive the equation of motion for this metric perturbation

h′′ +

(
f ′

f
− 2

u

)
h′ − 2m2WX(u2, u4)

f
h = 0 (5.43)

where we have taken the limit of static perturbation, i.e. ω = 0. In order to extract
the retarded Green’s function we need to impose infalling boundary conditions, like we
explained in (2.179) (see [9] for details). Near the AdS boundary the shear perturbation
goes as

h(u) = h0 (1 + . . . ) + h3 u
3(1 + . . . ) . (5.44)

On the one hand we can identify h0, the leading mode of this shear perturbation, with
the source of the Txy operator, and on the other hand the subleading mode h3 plays
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the role of the expectation value of such an operator, i.e. the vev of the stress tensor
〈Txy〉. Finally we can use (2.132) to determine the Green function

G =
2∆− d

2

h3

h0

=
3

2

h3

h0

(5.45)

where the conformal dimension is ∆ = 3. What this relation is telling us is that the
shear modulus of the system is derived by considering some geometrical deformation
h0. However, from the physical point of view we would like to consider the response of
the stress-energy tensory h3 in terms of the mechanical shear deformation εxy that we
defined in (3.2). In [28] they find that there is actually not much difference between
the two notions of shear deformation. This is a consequence of the fact that the gauge
invariant shear strain is in fact a combination of εxy and h0. In particular we may use
the next change of variables

h3

h0

→ − h3

2 εxy
. (5.46)

Thus, we can choose between both interpretations of the shear deformations, either
coming from geometrical or mechanical origin. When we study deformations at the
non-linear level it will be much more convenient to treat the shear perturbations just
from the scalar perturbations and thus we will fix h0 = 0, but for the moment we will
stick to the linear level.

In the limit where m = 0 we know that the shear modulus is zero, therefore we can
compute this elastic modulus perturbatively in the limit m� T

G = m2

∫ uh

0

WX(ζ2, ζ4)

ζ2
dζ +O(m4) , (5.47)

where the potential must fall-off faster than ζ3 in order to have a positive shear modulus.
To compute the shear modulus out of this small m/T regime we are going to need to
employ numerical computations.

In the case of the elastic bulk modulus the computation is much more trivial. First
we need to take into account that the pressure (Tii ≡ p) and the energy density (Ttt ≡ ρ)
in a conformal system are related as

p =
ρ

2
(5.48)

due to the tracelessness condition of the stress-energy tensor. This fixes the equation
of state of the system to be ω = 1/2. With this information we can already derive
what the bulk modulus is going to be. In general, we may consider an homogeneous
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system with equation of state ω and box volume V . In an adiabatic process the energy
density scales with the volume as ρ ∝ V−1−ω. Thus, in our case we should have

ρ ∝ V−3/2 . (5.49)

Finally, we can use (3.7), which leads us to

K =
3

4
ρ . (5.50)

These elastic moduli determine the speed at which the phonon modes travel through
the system, according to (3.15). Therefore, the speeds that are found in the QNMs of
the TijTij should coincide with these values. Indeed this is what is found [5, 6, 10, 25]
and is what allow us to identify these modes as phonons.

In equation (3.15) we can restore the dimension of the speeds in the phonon speed
formulas by taking back the speed of light c. Thus, using the result in (5.50) we get

c2
T =

G
ρ+ p

c2, c2
L = c2

T +
K

ρ+ p
c2 = c2

T +
c2

2
. (5.51)

In the form of the longitudinal speed we already detect a similar issue to what
we found in the solid EFT: we will have relativistic phonon speeds. Thus, we have
considered a possible way-out to this issue.

It is reasonable to consider that SI is not the only symmetry that emerges at low
energies, but we could also contemplate the possibility of having Lorentz symmetry as
an emergent symmetry in the low energy regime. Such a possibility has been already
studied in the past (see [14, 36, 58, 87, 91, 117, 165, 179, 213]), where the field theory is
characterized by a well defined light-cone ce, which in principle can be different from
the speed of light c but always ce < c in order to obey the fundamental principles of
relativity. We will not prove that this is the case here but rather assume that it is a
reasonable premise in order to construct our model.

Consequently we may consider that the theory does not only have the usual Minkowski
metric ηµν but it also contains (or is produced dynamically) a spin-2 object, that we
may call ηeµν , such that all CFT operators couple to it, acting as an emergent Minkowski
metric. This object allows us to define an emergent light-cone structure as

ds2 = −c2
edt

2 + dxi dx
i . (5.52)

We may re-define this light-cone with the usual space-time coordinates xµ = {c t, xi}
where all components have the same dimensions. In such a coordinate system the
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space-time metric will then be

ηeµν = diag

(
−c

2
e

c2
, 1, . . . , 1

)
. (5.53)

When we say that the CFT is invariant under this emergent Minkowski metric we mean
that, for instance, the operators of the theory will be constructed by objects such as
the distance as ∆xµ∆xνηeµν . This has evident consequences when defining operations
such as the trace, where now would be defined through this emergent metric. Let us
take as an example the trace of the stress-energy tensor Tµν . This particularity lead
us to re-define the notion of tracelessness in a conformaly invariant, due to now this
traceless now is defined through the new metric

T µν ηeµν = 0 . (5.54)

Using this we want to know how this new Lorentz invariance would affect the speeds
of the phonons. We can translate the result to the new Minkowski metric (5.52) by
re-scaling the time coordinate in the dispersion relation as6

∂

∂t
→ ∂

∂t

c

ce
, ω → ω

c

ce
. (5.56)

Using this we can get to the conclusion that

cL,T → cL,T
ce
c
, (5.57)

from where it follows that the relation between the transverse and the longitudinal
phonon speeds now are related between each other as

c2
L =

1

2
c2
e + c2

T . (5.58)

The re-scaling (5.56) also affects the form of the stress-energy tensor in the momentum
and energy density terms but not the pressure ones. Therefore, the speeds take the
next form

c2
T =

G
(ce/c)2 ρ+ p

c2
e, c2

L =
G +K

(ce/c)2 ρ+ p
c2
e . (5.59)

6We may also derive this result by noticing that the denominator of the phonon speed is the
momentum susceptibility χPP [6], which is computed as

χPP = lim
ω,k→0

〈TtxTtx〉R (5.55)

and therefore would scale as χPP → (c/ce)χPP , while the elastic moduli remain constant.
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Let us now re-express this speed in terms of the physical mass density, which is com-
monly defined as

ρm ≡ ρ/c2 . (5.60)

This definition allows us to re-express (5.59) as

c2
T =

G
ρm + p/c2

e

, c2
L =

G +K
ρm + p/c2

e

. (5.61)

In the case of the solids with spontaneously broken scale invariance this expression has
a similar form

c2
T =

G
ρm + p/c2

, c2
L =

G +K
ρm + p/c2

. (5.62)

Comparing (5.61) and (5.62) we notice that in the case of a manifest SI solid with a
small emergent light-cone speed ce � c the pressure contribution in the denominator
of the sound speed formulas gets considerably enhanced, which ultimately means that
the sound speeds get reduced. On the contrary, the spontaneously broken SI solid gets
a large suppression on the pressure p.

This is the moment to go back to the tracelessness condition (5.54) with the emer-
gent Minkowski metric. In such a metric the tracelessness condition for a homogeneous
solid, which has a stress-energy tensor of the form of T µν = diag(ρ, p, . . . , p), is

T µν ηeµν = −c
2
e

c2
ρ+ (d− 1) p = 0 , (5.63)

where in our case we have been working in d = 3 dimensions. Using this relation the
transverse speed of the phonons simplifies to

c2
T =

d− 1

d

G
ρm

=
2

3

G
ρm

for the manifest SI solid. (5.64)

On the other hand, let us consider the spontaneously broken SI solid in the non-
relativistic limit where the speeds of the phonons are small. In this limit the pressure
is much smaller than the mass density ρm (i.e. the equation of state must be very small
ω � 1 as we can see from (5.8)) we obtain

c2
T =

G
ρm + p/c2

' G
ρm

for the spontaneously broken SI solid, (5.65)

up to corrections of the order of O(p/ρmc
2), which are small in the non-relativistic

limit.
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The difference between the expressions in (5.64) and (5.65) is completely indepen-
dent of the value of the emergent speed ce. This could indicate that discrepancy in the
form of the two speeds depends on how SI is realized in the system. It is an intriguing
question whether from the relation among the values G, ρm and cT from a SI solid one
could actually infer how SI is realized in the IR. Moreover, we should note that this
type of discrepancy between the speeds is also present in the longitudinal sector.

There is one possibility that we have not considered yet. It is conceivable that in
the framework of the EFT solid we might also have a Lorentz invariance with some
light-cone speed ce different from the light speed c. In such a case the coset construc-
tion of the theory would be build up taking this different Lorentz group as the one
that is ultimately broken by the ground state. This scenario is beyond our scope, but
we would expect to have a speed of the form of (5.61). However, in the spontaneous
broken SI case the pressure is not determined by the tracelessness of the stress-energy
tensor, although its value would be enhanced by the c−2

e factor that comes with it.

Benchmark potential

After having discussed the model for generic potentials W (X,Z) now we would like to
have some quantitative results. We are going to consider a monomial potential as the
benchmark potential throughout this section

W (X,Z) = Xa Z
b−a
2 . (5.66)

Just like we did with the solid EFT, here we are going to demand some requirements
to the potential in order to be valid. We must demand that the theory has no ghost
and no gradient instabilities. The study of these stability conditions are analogous to
the ones performed for the monomial EFT case, i.e. we need

a ≥ 0 and b ≥ 1 . (5.67)

As we shall see, in order to have positive energy density and elastic moduli (see (5.70)
and (5.71)) we must impose more restrictive conditions on b

b ≥ 3

2
. (5.68)

Furthermore, as we said earlier, the potential should fall-off faster than ∼ u5 close to
the boundary in order to have gapless phonon modes, which in this potential translates
to

b ≥ 5

2
. (5.69)
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For potentials with smaller b the phonons will acquire some finite mass and thus the
dispersion relation (5.34) will have some gap. The presence of this mass in the phonon
modes might be due to the presence of some explicit breaking of translational invariance
[12].

These are requirements that we demand to the bulk fields, but on top of this con-
ditions we must also take into account that the phonon modes on the boundary should
obey 1 > c2

L,T > 0, i.e. no gradient instabilities and no superluminal propagation (e.g.
see 5.7). Notice however that we are allowing bulk modes to be superluminal as they
do not give a physical phonon speed.

We can finally compute different physical properties of the system for the benchmark
potential (5.66). The expressions for the energy density and the pressure are

ρ =
1

u3
h

+m2 u2 b−3
h

2 b− 3
, p =

1

2
ρ (5.70)

where the energy density is derived from the emblackening factor as ρ = −f ′′′(uh)/6.
The elastic moduli, on the other hand, may only be derived (analytically) in the limit
of small m/T for the case of the shear modulus

G =
a

2 b− 3
m2 u2 b−3

h +O (m4), K =
3

4
ρ . (5.71)

From this result we may already derive an interesting conclusion: the a parameter
determines whether the system is describing a solid of a fluid, as for a = 0 we have a
zero shear elastic modulus. We may also determine the form of the Poisson’s ratio R,
defined in (3.11), for this holographic model. In Fig.5.5 we can see how the Poisson’s
ratio R depends on the values of a, b in the low temperature limit, where we need to
compute G numerically.

In the limit T/m � 1 the Poisson’s ratio generically goes to R = 1, which means
that the system goes to a fluid state. This indicates that independently of the potential
W (X,Z) the systems tends to become a fluid at large temperatures. This can be
explained by noticing that in the limit T/m � 1 the mass of the graviton, and thus
the additional structure provided by the scalar fields ΦI , become negligible in this limit
and then the gravity theory passes to be the dual theory of some strongly coupled fluid
system. On the other hand, in the low temperature regime the Poisson’s ratio is highly
dependent on the form of the potential W (X,Z), taking it away from the fluid limit
R = 1. We can see this in Fig.5.6, where the values of the Poisson’s ratio for different
values of (a, b) are represented. In this figure we also see that the value of the ratio G/K
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Figure 5.5: Left: Elastic moduli ratio G/K for a potential with (a, b) = (3, 3), i.e.
W (X,Z) = X3, as a function of T/m. Right: The value of the Poisson’s ratio for
different potentials as a function of T/m. The values of (a, b) are indicated by the color
of the lines just like in Fig.5.6. In the large temperature limit the Poisson’s ratios go
to the fluid limit R = 1.

goes to zero as we increase the ratio T/m, so we can consider this as some “melting”
process that the system goes through.

From Fig.5.6 we may derive some conclusions about the properties of the system
depending on the (a, b) parameters:

• For small a we have the Poisson’s ratio close to the upper fluid-like limit R = 1.
These type of models represent thus incompressible and elastic materials such as
rubber.

• For values a ∼ b the Poisson’s ratio is of order −0.5 < R < 0.5. This Poisson’s
ratio is typical in steels and rigid polymers.

• In the large a and small b we find the most auxetic materials, i.e. we get closer
and closer to the lower limit of R = −1. As we can see in Fig.5.7 in this region
we generically have to deal with superluminal phonon modes.

The classification of different materials depending on their Poisson’s ratio presented
above is based on [89,156].

The elastic moduli are related with the phonon speeds, as we have explained above.
However, in a narrow sense, the formulae presented in (5.51) is only applicable for
massless phonon modes, with a dispersion relation ω = cL,T k, which is only the case
for b > 5/2. In Fig.5.7 we can see how these speeds depend on the ratio T/m and on
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Figure 5.6: Left: Poisson’s ratio R for the benchmark potential (5.66) at low tem-
peratures T/m � 1. From orange to blue, the ratio becomes smaller and smaller, to
the point it gets negative and thus auxetic. Above the purple line the phonons are
gapless. The red dashed line represents the potential W (X,Z) = Xa. Below the black-
dashed line the bulk fields are sub-luminal (see Fig.5.7 for the boundary speed values).
Right: Poisson’s ratio as a function of K/G for the benchmark potential (5.66). These
plots are made by varying T/m for some fixed (a, b) and all lines eventually get to the
fluid limit R = 1. In the inset we show, with colored dots, the values of (a, b) for its
correspondent plot.

the parameters (a, b). The first result that we can remark is that there is a relation
between the speeds that is conserved at all temperatures, which is

c2
L =

1

2
+ c2

T . (5.72)

This relation can be explained as a consequence of the theory being conformaly invari-
ant, as already proved in [79]. Therefore, this means that the longitudinal speed has a
minimum given by c2

L = 1/2, which as we can see is found at a = 0 and any b, exactly
where the shear modulus vanishes. At the same time, we may also find this result in
the large temperature limit, T/m� 1, where the speeds will change towards c2

L → 1/2
and c2

T → 0.
There is also a white region depicted in the right Fig.5.7 which shows where the

phonon speeds get superluminal, i.e. c2
L > 1. Interestingly, it is also in this white region

where the materials get more and more auxetic. This restriction can be surpassed if
we take into account that the light-cone speed can be the emergent one ce, and thus
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Figure 5.7: Left: We show the longitudinal (thick) and transverse (dashed) speeds as
a function of the ratio T/m. We take three different cases of (a, b): (3, 3), (3, 4) and
(4, 4) for the red, blue and green lines. Right: Longitudinal speed as a function of a
and b for the limit T/m � 1. The purple dashed line indicates the limit of massless
phonons, b = 5/2. The red dashed line indicates the potentials V (X,Z) = Xa. In the
white region we have cL > 1.

we may consider as a possibility that cL > ce. The relation between the longitudinal
speed and the Poisson’s ratio can be found to be

c2
L =

c2
e

R+ 1
. (5.73)

This shows us that in order to have an auxetic solid we will need to consider ce < c,
otherwise the theory would have superluminal phonon modes. The limit on how much
auxetic the material can be is then restricted by the value of ce/c. This relation is
shown in Fig.5.8, where we show the relation between cL and R depending on the
value of ce. A similar plot could be done for the case of spontaneously broken SI solid,
but replacing the ratio c2

e/c
2 with the equation of state ω (e.g. see (5.8)).

5.2.3 Non-linear elasticity

Next in order we are going to proceed as we did with the solid with spontaneous broken
SI, analyzing the behavior of the system when deformed by a finite strain. The strain
configuration will be determined by the scalar fields ΦI as

ΦI(u, xi) = OI
j x

j (5.74)
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Figure 5.8: The longitudinal speed c2
L as a function of the Poisson’s ratioR for different

emergent speeds ce. The ratios are ce/c = 1, 1/
√

2, 1/
√

10 for the orange, blue and red
lines, respectively. The orange line coincides with the values expected for a conformal
solid EFT, shown in green dots. Negative values of R are achieved for ce/c < 1. A
similar plot could be obtained by varying ω instead of ce/c for a spontaneously broken
SI solid.

where OI
j is the same matrix we used in (4.26). Just like in the linear case, we must

now find what is the stress-tensor produced by this strain deformation OI
j . In order

to do this we must find the solutions to our gravity + scalars theory with a nonzero
tensor mode, which plays the role of the strain tensor in the gravity theory. Thus, the
spatial part of the metric gij can no longer be just ∼ δij so that it contains finite shear
deformations.

This system can be solved by using an ansatz of the space-time metric for a non-
linear static7 deformation, which has the form of

ds2 =
1

u2

(
−f(u) e−χ(u) dt2 +

du2

f(u)
+ γij(u)dxidxj

)
(5.75)

where γij is a d− 1 dimensional tensor with unitary matrix. We are interested in the
d = 3 case, thus we can parametrize γij in terms of the usual tensor polarizations ×
and +, i.e.

γ̂ = exp [h+(u) σ̂+ + h×(u) σ̂×] (5.76)

where σ̂×,+ are the Pauli matrices, which are commonly called σ̂1,3 respectively and
thus the only u-dependent terms are the h×,+ functions.

7For a case of non-linear oscillatory deformations see [26].
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These two polarizations × and + are coupled only at the non-linear level, this
is why we could just focus on one of the two polarizations when treating the shear
deformations as infinitesimal. In order to simplify the problem we can switch variables
to

h+ = h sin θ , h× = h cos θ (5.77)

where both h and θ depend on the coordinate u. This variables are handy if we
want to separate the direction of the spin-2 mode polarization, dictated by θ, and
the magnitude, dictated by the function h. Physical solutions must have a vanishing
leading mode of h(u) at the boundary, while the subleading mode will encode the stress
tensor. We will see below that this leads us to a constant function of θ(u). Thus, in this
variables θ will be the polarization direction of the stress tensor and h the magnitude
of the response.

This same parametrization can be applied to the strain matrix OI
j of the scalar field

Ô = α exp

[
Ω

2
(cos θ0 σ̂× + sin θ0 σ̂+)

]
, (5.78)

where the α term determines the bulk strain whereas the magnitude and direction of
the shear strain are encoded in Ω and θ0, respectively. In particular, the shear strain
for the case θ0 = 0 is given by

ε = 2 sinh(Ω/2) . (5.79)

The equations of motion for the metric (5.75) in d = 3 take the form of

2χ′ − u
(
sinh2(h) θ ′ 2 + h′2

)
= 0, (5.80)

u f ′ − Λ − m2W (X̄, Z̄)− (6 + uχ′) f/2 = 0 , (5.81)

f
(

2u2 h′′ − u2 sinh(2h) θ ′ 2 − uh′ (4 + uχ′)
)

+ 2u2 f ′ h′

− 4m2Wh(X̄, Z̄) = 0 , (5.82)

f
(

2u2 θ ′′ + 4u2 coth(h) θ ′ h′ − u θ ′ (4 + uχ′)
)

+ 2u2 f ′ θ ′

− 4m2Wθ(X̄, Z̄) cosech2(h) = 0 , (5.83)

where we have fixed the cosmological constant to Λ = −3 and indicate the derivatives
with respect to θ and h with subscripts. The potentialW is evaluated at the background
values

Z̄ ≡ α4u4 , X̄ ≡ α2u2(cosh Ω coshh − cos(θ0 − θ) sinh Ω sinhh).
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From equations (5.80) and (5.81) we notice that the functions h(u) and θ(u) determine
the form of the functions χ(u) and f(u). Moreover, we can check that equation (5.82)
reduces to (5.43) when the function h(u) is treated as infinitesimal, as expected. We
assume there is a horizon located at u = uh defined by f(uh) = 0 where the function
h(u) reaches a value h(uh) ≡ hH . The entropy density does not vary from the one in
the linear regime (i.e. s = 2π/u2

h) but the temperature changes due to the new function
in the time metric component

T = −f
′(uh)

4π
e−χ(uh)/2 . (5.84)

On the boundary we impose that f(0) = 1 and χ(0) = 0. When approaching the
boundary the function h(u) takes the form of (5.44), i.e. there will be a constant
component h0 as a leading term and a cubic component h3 as the subleading term. We
will consider that the leading term is zero in order to have zero external space-time
deformation source, thus

h0 = 0 . (5.85)

Taking this as a condition the only source of strain for the system will come from the
scalar field ΦI , encoded in the terms α, Ω and θ0.

As mentioned above, we expect that for a zero space-time deformation we must have
a constant polarization direction θ(u). This is what one expects from a homogeneous
and isotropic material, where the elastic response is such that the strain and stress are
aligned in the same polarization direction. In our holographic model this translates to
having θ = θ0.

Let us look at the θ(u) equation (5.83). Because there is a cross-coupling between
h and θ in the second term, the two modes of θ near the AdS boundary will depend on
the value that h takes at the boundary, i.e. on the value of h0. In the case of h0 6= 0
the θ function has a constant mode and a cubic mode, like the h function. On the
other hand, if we have h0 = 0 the boundary mode changes and we would find that
θ has a constant mode and a u−3 mode. Demanding regularity at the AdS boundary
requires that the coefficient of the u−3 mode vanishes. In such a case we are left with
a constant mode and from (5.83) it is easy to notice that this constant function is
forced to be θ(u) = θ0. This result indicates that the elastic response in this model is
isotropic, since the strain in a given polarization only sources stress tensor in the same
polarization.

Thus, from now on we are going to consider θ = θ0 = 0 as a condition. Using this
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result the equations (5.80)-(5.83) are simplified substantially

2χ′ = uh′
2
,

2
(
u f ′ − Λ − m2W (X̄, Z̄)

)
− f

(
6 + u2 h′

2
/2
)

= 0 ,

f
(

2u2 h′′ − uh′ (4 + u2 h′
2
/2)
)

+ 2u2 h′ f ′ − 4m2Wh(X̄, Z̄) = 0, (5.86)

where now X̄ is
X̄ ≡ u2α2 cosh(h− Ω), (5.87)

which indicates more clearly that Ω acts as a ‘source’ term for the function h.

We are going to consider the same potential we presented in (5.66) which we expect
to display a power-law scaling stress-strain relation, σ ∼ εν , as the one we considered for
the spontaneously broken SI solid. We will see below that there appears two different
scalings for both the bulk and shear deformations, which for the sake of clarity we are
going to specify here as

νS1 , νS2 , νB1 , νB2 , (5.88)

where the 1 and 2 subscripts denote which one appears first and second and the su-
perscripts B and S denote that these are scalings for the bulk and shear strains,
respectively.

On top of the restrictions we imposed on the potential at zero shear deformation
(e.g. no ghosts, no gradient instabilities) we are also going to demand that this remains
to be true at finite shear deformations ε 6= 0, similarly to what we did in Chapter 4 for
the longitudinal and transverse speeds of the phonon modes.

Shear deformation

The nonlinear shear response is derived from the metric off-diagonal component gxy
from its subleading term

Txy = σS =
3

2
g(3)
xy (5.89)

when expressed in Fefferman-Graham coordinates, where the holographic coordinate
must be replaced with the next coordinate transformation

dz2

z2
=

du2

u2 f(u)
. (5.90)
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It can be checked in Appendix C that the final result for the case h0 = 0 is

σS =
3

2
h3 . (5.91)

where h3 is the subleading term of the function h(u) close to the AdS boundary
(5.44). On the other hand the shear strain is produced by the difference between the
background configuration of the scalar field (5.78) and its equilibrium configuration
ΦI = δIi x

i. Using the definition of the strain tensor (3.2) we get to

ε = 2 εxy = 2 sinh

(
Ω

2

)
. (5.92)

Now we can already derive an analytic expression of the shear response in the limit of
small m2, similar to what we did in (5.47), which should be a good approximation to
the shear response for not very large strains Ω & 1. At first order in m2 we find that

σS =
1

2
m2 ε
√

4 + ε2
∫ uh

0

WX

(
1
2
(2 + ε2) ζ2, ζ4

)
ζ2

dζ +O(m4) . (5.93)

As we mentioned, for the benchmark potential we are going to find two different scalings
for the shear stress-strain relation. Let us compute the integral for the benchmark
potential

σS(ε) ' a

2a(2 b− 3)
m2α2 b u2b−3

h ε
√

4 + ε2 (2 + ε2)a−1 (5.94)

which in order to have a convergent integral we must demand b > 3/2, the same
condition we demand for the positivity of the linear bulk modulus. In fact, in the limit
of infinitesimal shear strain ε� 1 we obtain the same result as in (5.47).

In (5.94) we can deduce that if uh does not vary significantly with ε then we must
find that the shear scaling is

σS ∼ ε2a ≡ εν
S
1 (5.95)

but numerically, for larger values of ε, a second scaling will show up, which this ap-
proximation does not anticipate, as we can see in Figure 5.9.

In order to obtain the full non-linear response we need to use numerical methods.
To do so we are going to use shooting methods, integrating from the IR horizon towards
the UV boundary. At the horizon we are going to impose as a boundary condition, to
ensure regularity, that [2u2 h′ f ′ − 4m2Wh(X̄, Z̄)]uh = 0 and h(uh) = hH , which will
play the role of the shooting parameter.

The numerical results are shown in Figure 5.9 for different potentials at different
values of m/T . At infinitesimal values of the strain we find that the shear response
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Figure 5.9: Left: Shear stress-strain relations for different potentials at fixed m/T = 1.
The chosen potentials display both stiffening and softening: νS1 = 2 a = 4, 2, 2, 0.2 and
νS2 = 3 a/b = 3/2, 1, 3/5, 1/7. The black dashed lines show these scalings. Here we
do not impose constraints on the potential. Right: Shear stress-strain relations for a
potential with a = 2 and b = 3 for different values of T/m (T/m = 0.1, 0.5, 1 for blue,
orange and green, respectively). Black dashed lines show the analytic result derived in
(5.94). As we expected, it coincides the closer we are to the limit m/T � 1 for some
finite range of ε.

scales linearly with the shear modulus G (5.47) as the slope. For larger values we find
an intermediate power-law scaling σS ∼ εν

S
1 of the shear response with

νS1 = 2 a. (5.96)

For much larger values of the strain we encounter a second power-law scaling σS ∼ εν
S
2 ,

in this case with
νS2 = 3

a

b
. (5.97)

Interestingly, the intermediate scaling does only show up when the temperature is high
enough, whereas at low T/m the shear stress-strain plot interpolates directly from a
linear relation to the second scaling νS2 as we see in Figure 5.9. Note that the interme-
diate scaling νS1 can be either softening or stiffening (smaller or larger than 1), but the
second scaling is always smaller than the first νS1 > νS2 due to the restrictions on the
potential (5.68).
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Although the second scaling cannot be derived from the analytic approximation in
(5.94) we can actually obtain the result taking an asymptotically large strain ε� 1 in
the equations of motion. Applying a large strain translates to taking a large Ω in our
system, which in addition implies that the function h(u) must explore a large range of
values from the black brane horizon to the AdS boundary, where it vanishes. In order
to simplify the analysis we are going to define a new variable

h̃(u) ≡ Ω− h(u) (5.98)

which is the combination the potential depends on. Due to near the boundary h(u)
vanishes, we expect that for a Ω � 1 we will also have h̃ � 1. Therefore, taking the
limit h̃� 1 we may also substitute the expressions sinh h̃ and cosh h̃ for its asymptotic
limit ∼ eh̃/2. Furthermore, we also expect that in this limit the derivative of the
function h̃′(u) must be large (e.g. compared to f ′(u)) somewhere in the bulk. Taking
this into consideration we can assume that there is a region where the function f(u) is
mostly constant, which at the same time implies that the shape of the function h̃(u)
must be logarithmic. In particular we find that the equations of motion (5.86) admit
a solution close to the boundary as

f(u) ' f0 =
3 a4

(a2 + b)(3 a2 + b2)
, h̃(u) ' −2

b

a
log

(
u

u0

)
, (5.99)

where m2 u2b
0 ≡ 3b 2a/(a2 + b). This behavior for the functions f(u) and h̃(u) shows

up for Ω� 1 for some finite region of u, as is clearly displayed in Figure 5.10.
We know that when reaching the boundary the function h(u) vanishes, therefore h̃(u)

must reach a large but finite value determined by h̃(0) = Ω. Thus, at some value u∗
the function h̃(u) must deviate from the logarithmic shape from (5.99) and stay at a
value Ω. Then, let us consider that through the region between u∗ and the horizon uh
the h̃(u) function goes like

h̃(u) ' Ω− 2
b

a
log

(
u

u∗

)
. (5.100)

From this equation we can derive what should be the value of the coordinate around
the “transition”

u∗ ' uh exp
( a

2 b
(h̃(uh)− Ω)

)
' uh exp

(
− a

2 b
Ω
)

(5.101)

where we have considered h̃(uh) � Ω, as the function h(u) will go from zero at the
AdS boundary to some large value close to the horizon (see Figure 5.10). From (5.101)
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Figure 5.10: Metric functions f(u) and h̃(u) as a function of u at fixed uh = 1 for
the benchmark potential with a = 2 and b = 4. We take Ω = 0.24, 2.93, 10.29 and
temperatures T/m = 0.15, 0.02, 10−5 for green, orange and blue, respectively.

is clear that the larger is the value of Ω, the closer is the transition point u∗ to the
boundary. Since u∗ represents the value where h(u) changes its shape from a constant
value to a logarithmic one we then can assume, by dimensional analysis, that the
value of the subleading term h3 must scale as h3 ∼ u−3

∗ . Finally, if the shear strain is
ε = 2 sinh Ω/2 ∼ exp(Ω/2) then we arrive to the conclusion that

σS ' h3 ∼ u−3
∗ ' exp

(
− 3a

2 b
Ω

)
' ε3a/b (5.102)

which is precisely the power-law scaling that we found numerically for very large shear
strain, i.e. νS2 = 3a/b, as we see in Figure 5.10.

Beyond proving how this intermediate scaling shows up it is also interesting noticing
how the space-time metric changes in this limit. Consider the coordinates x̃ and ỹ where
the metric is diagonal, then in the limit where f(u) and h(u) asymptote to (5.99) the
geometry goes as

ds2 ' 1

u2

(
du2

f0

− u−2b2/a2 dt2 + u2b/a dx̃2 + u−2b/a dỹ2

)
. (5.103)

We note that in this geometry there is a Lifshitz scaling between time and space and
also between the two spatial coordinates x̃ and ỹ, namely there is an anisotropic scaling.
Due to the large strain applied to the system it is natural to see that this anisotropy
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between spatial coordinates shows up. The geometry in (5.103) is acting as a new UV
(Lifhitz) fixed point. This fixed point seems to be attractive towards the UV, and the
configurations with large strains get close to it for a significant range of log u.

The fact that this Lifshitz scaling between the spatial and time coordinates shows
up might be surprising at first glance. We may explain why this happens if we remind
ourselves that the gravity theory we are considering a massive gravity theory in (5.35).
We can readily see this by going to the unitary gauge, where our scalar field takes the
configuration ΦI = δIi x

i, thus we get the terms X = Trgij and Z = det g−1 as the
variables of our potential W (X,Z), which now will play the role of the the potential
of the spatial components of the metric. We know that 1-spin massive theories serve
as theories that provide a Lifshitz geometry [66, 129, 206], therefore it does not seems
surprising that in a 2-spin massive theory this kind of geometry can also arise.

Having solutions of the type (5.99) is somewhat dependent on the choice of poten-
tial W (X,Z). By studying these equations of motion we first see that in order to have
f(u) = constant we are going to need a logarithmic h̃ function. As a consequence the
potential W (X,Z) has to be either mostly constant or vanishing towards the bound-
ary. Thus, with this condition we take a look at the second equation of motion, which
requires that Wh (which at large h we can substitute by XWX) also to be constant.
In order to keep both W (X,Z) and XW (X,Z) to be constant we are going to need a
special form for our potential in which the dependence on X and Z goes through the
combination Xp Zq with p and q constant values, just like it happens in our benchmark
potential (5.66). Nevertheless, any potential of the type W (X,Z) = W0(Xp Zq), with
W0 an arbitrary function, should also do the work8. Although we do not expect this
Lifshitz UV fixed point to appear for more generic potentials, it is conceivable that
some anisotropic solution might exist and dominate the large form of the response in
the large shear strain regime.

Nevertheless, these (near)-Lifshitz solutions are expected to influence other features
of the theory such as transport properties like the electric conductivity at finite strain
(e.g. see [43]). Such features hint the possibility of testing the appearance of this
anisotropic Lifshitz regime on real materials.

Other models where anisotropy has been considered by using a unidirectional scalar
field Ψ = αz have been studied broadly in the past [125, 148, 184]. Such models could
share some features with the holographic model proposed here in the limit Ω→∞ for
the scalar field configuration Φx = α eΩ and Φy = α e−Ω as long as we keep α eΩ fixed.

Let us also mention that the models (5.35) have an extremal near-horizon geometry

8To be even more general we could also add terms to the potential dependent on Z that vanish
when moving closer to the boundary.
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Figure 5.11: Shear stress-strain relation for an adiabatic process where we consider
uh = 1, 0.2 (blue, red), which at zero strain have a temperature T/m = 0.16, 1.19. We
use the benchmark potential with (a, b) = (2, 4).

of the type AdS2×R2 (we discussed a similar case in Section 2.4). This represents the
additional emergent scale invariance, this one with with Lifshitz dynamical exponent
z → ∞, and isotropic character. This scaling is expected to be manifested in the
lightest excitations, governed by the near horizon geometry.

Finally, let us comment that the shear deformations that we have considered above
have been studied in the case of constant temperature T/m = constant, meaning that
we have only considered isothermal processes. We can also apply this shear deformation
but instead of maintaining the temperature constant we will take a constant entropy
(or adiabatic) process S/m = constant, or equivalently uh/m = constant. What
we find is that the stress-strain relations are equivalent to those taken at constant
temperature. As we can see in Figure 5.11 we can observe both the intermediate
scaling νS1 and the large deformation scaling νS2 . While we are increasing the shear
strain ε the temperature decreases, thus it will depend on the value of uh that whether
we find the intermediate scaling νS1 or not: if the initial temperature is low enough,
there will not be an intermediate scaling.
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Bulk deformation

Just like we have extended the study of shear deformations beyond the linear level we
can do the same for the case of bulk deformations. As we just want to consider pure
bulk deformations we are going to restrict ourselves to the case of ε = 0 and use α as
the parameter that controls the bulk strain, or more concretely κ = ∂ · Φ which is the
bulk strain and is related to α as κ = 2 (α− 1).

Due to conformal invariance we can relate the pressure to the energy density as
p = Txx = Ttt/2. This will allow us to express the longitudinal stress as a function of

the bulk strain. In particular we define this longitudinal response as σB = Txx − T (eq)
xx .

For the benchmark potential this reduces to

σB =
m2

(
κ
2

+ 1
)2 b

u2 b−3
u,κ − u2 b−3

u,κ=0

2 (2b− 3)
+

1

2

(
1

u3
h,κ

− 1

u3
h,κ=0

)
, (5.104)

where uh,κ denotes that the position of the black brane horizon depends on the value of
κ, while uh,κ=0 is the position of the horizon at zero bulk strain, or equivalently α = 1.
The sign of the bulk strain κ can be either positive (a compression) or negative (an
expansion).

At large bulk strain we find a universal power-law scaling in the longitudinal re-
sponse

σB ∼ κ3 at κ� 1 , (5.105)

as we see in Figure 5.12. This universal scaling is a consequence of conformal invariance
and it can be generalized to D space-time dimensions at the boundary theory as σB ∼
κD. It is straightforward to derive (5.105) by noticing that if we take large κ and
we want to keep T/m constant, then we are forced to have uh ∼ 1/κ. Comparing to
the case of the spontaneously broken SI solid the scaling (5.105) coincides exactly if
we consider the conformal limit of the EFT (see (5.27), where the conformal limit is
ω = 1/2).

Thus, just like it happens for the shear deformation, there are two different scalings
that show up when increasing the bulk strain. One of the two scalings is an intermediate
scaling that only is present in the case of having a high enough temperature, while the
second scaling is always present at large enough deformation. Using the definitions in
(5.88) we then conclude that

νB1 = 2 b , νB2 = 3 , (5.106)

where due to the constraints on the benchmark potential (5.68) we always have that
the bulk response always gets stiffer, i.e. νB1 > νB2 .
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Figure 5.12: Left: Nonlinear bulk stress for different temperatures: T/m = 0.01
(blue lines) and T/m = 1 (red lines). We take different benchmark potentials (a, b) =
(3, 3), (2, 4), (1, 5). At large bulk strain there is a universal scaling ∼ κ3. At large
temperature and finite, but not large, strain the scaling goes as ∼ (κ

2
+ 1)2b = α2b.

Right: Absolute value of σB for a negative bulk strain κ for (a, b) = (3, 3) at T/m =
0, 1 (blue and red lines).

For completeness let us also explore what is the bulk response for the negative bulk
deformations (expansions). In this case the range of values that κ can explore is limited
by the lower limit α = 0, which coincides with κ = −2. In this case, taking a look
at (5.104) we see that at low temperatures we would have a response that scales as
σB ∼ (α3 − 1) = ((κ

2
+ 1)3 − 1), whereas for high temperatures the scaling would be

2 b instead of the cubic one. Unfortunately, due to the short range of values where
κ can be extended we do not get to see these scalings in the stress strain plots. A
couple of examples for high and low temperatures are displayed in Figure 5.12, where
a linear response dictated by the bulk modulus determines the small κ regime and the
response ultimately gets saturated at some finite value at κ = −2. Thus, we see that
the amount to stress needed to produce a full expansion is finite.

Notice that just like for the shear deformation here we may also consider either
an isothermal (T constant) deformation or an adiabatic (S constant) deformation, but
the discussion here is a bit trickier. This is because for a bulk deformation there is
a difference between the entropy and its density due to the volume of the system is
changing (either growing or reducing). To convince ourselves of this we just need to
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realize that
Φi = xi → Φi = α xi and xi → xi (5.107)

is equivalent to the next transformation

Φi = xi → Φi = xi and xi → 1

α
xi, (5.108)

as both X and Z (and the equations of motion) will take the same form in either case.
Therefore, as the entropy is proportional to the area of the black brane horizon it is
easy to find that the total entropy scales as

S =
s

V
∼ (uh α)−2 . (5.109)

Thus, in order to ensure that this process is adiabatic we must impose that the position
of the black brane horizon scales as

uh ∼
1

α
=

1

1 + κ
2

. (5.110)

Using this relation we can simplify (5.104) to

σB =
u2 b
h,κ=0

2

(
1 +

m2

2 b− 3

)(
1

u3
h,κ

− 1

u3
h,κ=0

)
, (5.111)

where uh,κ ∼ α−1. From this expression it is evident that in the case of the adiabatic
bulk deformation the only scaling that appear is the cubic scaling νB2 , whereas the
intermediate scaling νB1 does not appear for any value of uh. Moreover, from this
expression it is evident that the bulk modulus for an adiabatic process is

K =
dσB
dκ

∣∣∣∣
S

=
3

4
ρ, (5.112)

just like we showed in (5.50).

Elasticity bounds

Lastly, after having studied what are the nonlinear relations for both bulk and shear
deformations, we want to take a look on whether we can place a limit in the maximum
deformation a solid with manifest SI may sustain, just like we did for the EFT descrip-
tion in Chapter 4. The methods that we are going to employ are actually analogous
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to the ones presented for that case. We are going to demand to have stable perturba-
tions around our strained configurations and find whether there is a εmax where some
perturbation becomes unstable.

In order to be completely correct one should compute the dispersion relation of
the QNMs for the gravity theory considered. However, this was beyond our scope
in [23] and we decided to restrict ourselves to the so-called decoupling limit, which
already provides some intuition on what could be the limits for the deformations we
can perform on such models.

Therefore, what we will do to extract this limit is, on the one hand, computing
the speeds of propagation c(i) of the fields though the bulk. By increasing the shear
deformation9 we will eventually find that c2

i < 0, i.e. a gradient instability. One
could argue that even though we have an instability at some point in the bulk space
of the type c(i) < 0 this does not necessarily mean that the QNMs are unstable, and
thus the physical speeds of the perturbations on the solid. However, we assume that
this constraint is expected to place a conservative upper limit on the maximum shear
deformation εmax.

Due to we are going to work in the decoupling limit we must neglect the mixing
between scalar perturbations δΦI and the metric perturbations. Therefore, the com-
putations are going to be completely equivalent to those we performed in Chapter 4 for
the EFT case. What we found in that case was that there were two different phonon
speeds

c±(ε, ϕ, u) (5.113)

where ϕ is the angle direction in which the perturbation travels (with respect to the
principal axes) and the ± subscript indicates which one is larger and which one is
smaller. There is a third speed we could consider, which is the speed at which the
perturbations travel through the u direction, which is always 1. Notice that the speeds
now could depend on the holographic coordinate u, but because of the benchmark
potential that we have chosen is a monomial, the u-dependence disappears from the
equations of motion and the speeds become independent of it.

The limit we are going to impose to our speeds is

c2
− > 0 (5.114)

for any direction ϕ. The dependence of the speeds with respect to the parameters of
the potential a and b are going to be exactly the same as the dependence on A and
B for the EFT potential in (4.17), and thus we will have the same relation among

9Because we are considering a monomial as our benchmark potential there will not be instabilities
due to bulk deformations, as we saw in the case of monomial potentials in Section 4.2.1.
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parameters in (5.114). However, the physical role that these parameters represent is
different in these two different theories, so the relation to terms such as the scalings ν
will differ. Therefore, the discussion and comparison between the relation of εmax in
the two different SI solids will not be phrased using the parameters a, b and A,B but
with the physical parameters νB and νS.
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Figure 5.13: Left: Maximum shear strain εmax as a function of the scalings νS1 and
νB1 . Close to νS1 = νB1 there is a region where εmax asymptotically grows. Left and
right of this line the maximum shear strain is determined by the absence of gradient
instabilities and ghosts, respectively. White area shows where the longitudinal speed
becomes superluminal at the boundary. Purple line shows the massless condition of
the phonons (5.69). Right: Maximum shear strain εmax as a function of the scalings
νS1 and νS2 . Close to νS2 = 3 there is a region where εmax asymptotically grows, see
(5.115).

So far we have already mentioned the constraints placed at zero shear strain for a
and b in (5.67) and (5.68) but now we want to place limits on the maximum deformation
εmax as a function of (a, b). In Figure 5.13 we can see the bounds on this maximum
deformation, where the first thing we can comment is that the shear scalings fulfill
νS1 > νS2 , as we already expected. We can split the regions in this Figures depending
on the value of νS2 : for νS2 > 3 (or a > b) the limit on the shear deformation will be
due to the appearance of ghosts, whereas for νS2 < 3 (or a < b) it will be determined
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by gradient instabilities. There is a special case just in the middle of these two regions:
for a scaling νS2 ∼ 3 the maximum deformation grows asymptotically. More specifically
we can find that close to this line the maximum shear strain goes as

εmax ∼
(

6

|νS2 − 3|

)1/4

, (5.115)

where we use the relation νS2 = 3νS1 /ν
B
1 in order to explain the large strain region in

Figure 5.13 for νS1 ∼ νB1 . Surprisingly, the expression in (5.115) does not depend on
whether we are below or above the νS2 = 3 line and does not depend on νS1 .

There is a final detail that must be taken into account, as it was done for the
EFT case, which is the subluminal constraint on the phonon speeds. Firstly, we allow
superluminality on the local bulk speeds (5.113) as they are not strictly giving any
physical speeds to the phonons. Again, we should work out the computations on
the QNM dispersion relation at finite strain in order to place a more exact limit.
What we can do is use the QNM dispersion relation which has been computed at
zero strain [10, 25] in order to place some restriction. Thus, we display as a white
region in Figure 5.13 where the longitudinal phonon speed cL travels faster than light.
Nevertheless, we can guess what effect could have the more exact computation on the
physical phonon speeds. We can assume some continuity between the white area and
the colored one, smoothing out the values of εmax close to this area, such as close to
the large strain (blue) area around νS1 ∼ νB1 ∼ 6 for instance. Still, this does not
necessarily mean that the whole blue region should vanish, so we expect a large region
of hyperelasticity persisting.

5.3 Comparison

Let us end up this chapter comparing the results we have obtained for the case of
solids with spontaneous broken SI and manifest SI. For the purpose of simplifying the
comparison we are going to use as a comparison the physical non-linear scaling ν, both
in the shear and bulk deformations, and compare the bounds we have obtained for
both. In the manifest scenario we have found that there are actually two different
scaling for both bulk and shear responses, thus let us restrict the comparison to the
first (or intermediate) scaling νB,S1 as the second scaling will show up at very large
deformations (at finite temperature)10. We are going to restrict the comparison to the

10Moreover, another advantage of restricting to this intermediate scaling is that they allow for a
continuum range of bulk exponents νB1 whereas the second one is fixed by conformality to be νB2 = 3.
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monomial potential in the case of the spontaneous broken SI solid, as the model would
depend on an extra parameter in the case presented in Section 5.1.1.

Figure 5.14: Elasticity bounds for a spontaneosly broken (left) and manifest (right)
scale invariant solid. In both cases the response displays power-law stress-strain rela-
tions σ ∼ εν for pure-bulk and pure-shear deformations. There is a significant difference
between the two cases.

We summarize the results of these scaling and its elastic bound in Figure 5.14,
where we basically repeat the plots in Figures 5.4 and 5.13 in a comparable size, in
order to facilitate the comparison. It is straightforward to realize that the results found
make manifest that the universal elasticity bound that are obtained from low-energy
effective methods are significantly different depending on how SI is realized (either as
a manifest or spontaneous broken symmetry).

Observing the Figure 5.14 we already notice that there is a significant difference
both in the range of possible values for the scaling νS and νB with a finite maximum
deformation (εmax ≥ 1) and in the regions where the material becomes hyper-elastic
(εmax � 1). As a matter of fact, if we limit the analysis of the CFTs to the ones
with massless phonons (i.e. νB1 > 5) then the the areas allowed for νS and νB are
completely disconnected from the ones found in the EFT example, where the bulk
scaling is restricted to be in the range 2 < νB < 4.

Remember also that the second shear scaling is related to the intermediates as νS2 = 3 νS1 /ν
B
1
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Likewise, in the case of the shear response we find that for the EFT the range is
0 < νS < 2, whereas for the CFT there seems to be no limit in the shear scaling.
Another important discrepancy between the two cases is that the manifest case has
a significant area of very elastic models (the blue area in Figure 5.14) which is found
near the region where

νB1 ∼ νS1 . (5.116)

The solids that are in this region are dubbed as black rubber in [23] due to their very
large elastic bounds. There are two points that we can highlight from this solutions:

• The area of large elasticity begin around νB,S1 ∼ 5, which is denotes a very
stiff behavior. We should note here that this bound might be alleviated if we
considered an emergent light speed ce � 1, but we will stick with the case of
ce = 1 in order to not introduce an extra parameter.

• This area is far away from the free scalar case (a = b = 1, or equivalenty νS1 =
νB1 = 2). Therefore, black rubbers require the presence of scalar with non-
canonical kinetic terms.

On the other hand, in the case of the EFT the area of hyper-elasticity becomes much
more narrow and it merely represents a ‘dot’-like area. In this case this area could also
be enlarged if we considered the second potential of Section 5.1.1. Notice that here the
very elastic region is also located where νS ∼ νB and in this case the closer we are to
the free scalar action, the larger is the maximum deformation sustained by the solid.
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Chapter 6

Discussion

The first main result presented in this manuscript is that it is possible to extract
non-trivial information and bounds on the nonlinear elastic response of solid materials
by using low energy effective methods. We have shown that this is possible basically
because the (measurement of the) stress-strain relations already fix the nonlinear La-
grangian for phonon fields, at leading order in a derivative expansion. Among the
observables that are fixed once the stress-strain relations are known we may mention:
all n-point correlation functions, the phonon-phonon self-interactions1 and, most re-
markably, how these depend on the applied stresses (being the first example of this
the acoustoelastic effects, i.e. how the phonon speeds on an elastic material depend
on the stress). Such results are most directly relevant for materials that admit large
deformations and where dissipative effects are not important2.

The EFT methods presented in Chapter 4 show how just from the symmetry break-
ing pattern of a solid system we are able to derive non-trivial bounds on the non-linear
elastic properties without any information about the microscopic composition of the
material. These effective low energy methods (which usually go under the name of solid
EFT ) allow us to extract elasticity bounds of these solid materials, which we believe
is the first time such a computation has been performed. The results we obtain allow
us to relate different non-linear physical observables of solids, such as the maximum
stress tolerated by the material and the scaling of the stress-strain relation.

We illustrate the predictive power of the EFT methods through a specific type of
solid materials, studying how large can be the maximal strain sustained by a given
material and how it is constrained by the EFT. In particular we assume a class of

1See Section 4.3 where we compute the three-phonon interaction terms for the solid EFT.
2For recent EFT-like efforts to include dissipation in fluids and viscoelastic materials, see [18, 37,

38,68,70,88,92,96–98,126,127,210,211].
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Figure 6.1: As an illustrative example we choose potentials that display a power-law
scaling in the stress-strain relations at large deformations. The red star denotes the
fracture point of the solid.

materials which display a power-law stress-strain relation at large deformations σ ∼ εν

(such as the one in Figure 6.1). This leads to interesting relations between intrinsically
non-linear response parameters, such as the maximum strain εmax and the strain expo-
nents νS and νB. We define the maximum strain εmax of the material as the point where
some pathologies (gradient instabilities, ghosts or superluminal propagation) appear in
the theory.

We notice in Figures 4.2, 4.6 and 4.7 a result that is common in the different
potentials presented, which is that close to the region νS = νB we find the solids
with very large maximum stress. Additionally, in the region νS . νB we see that the
maximum stress has a simple form related to the power-law scalings

εmax ∼
(

2 νS
νB − νS

)1/4

. (6.1)

On the other hand, away from this region (at values νS < νB) the maximum stress is
usually εmax ∼ O(1). Therefore, solids with this non-linear scaling will not actually
display a power-law scaling in their stress-strain relation as we expect them to become
unstable before reaching the non-linear strain regime. For example, in (4.31) we find
that materials in the limit νS → 0 have a universal maximum stress εmax =

√
2.

It is worth spending some words on whether this behavior is similar to what is
found experimentally, even though a proper analysis of the experimental data on real
world solids is well beyond the scope of this work. The classical results summarized
in [222] shows some similarities to our results. The fits to the measured stress-strain
relations in the most elastic rubber-like materials indeed show properties in agreement
with our results. The best fit to rubber materials are the ones that at large deformation
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have νS ∼ νB. This similarity is promising because it confirms that the models near
the region νS = νB could actually correspond to these type of rubbers. It would be
interesting to check whether (4.40) or (4.42) hold in such materials, but we leave these
questions for the future.

We present another computation to exemplify the predictive power of the low energy
methods by extracting another non-trivial result of solid materials. In particular we
show that from the shape of the stress-strain curve it is trivial to determine the cubic
phonon interactions, as we see in (4.44)-(4.48). Interestingly, in the particular case of
SI being realized in the EFT we only need information from the linear elastic properties
to determine the cubic interactions of phonon modes, as displayed in (4.57)-(4.61).

We should also highlight the difference between the example of the Chiral La-
grangian presented in Section 3.2.1 to the solid EFT construction. In the case of the
Chiral Lagrangian we saw that the symmetry breaking pattern fixes the nonlinear La-
grangian up to one (or a few) constants, which are fixed experimentally. Naively, it
seems that the solid EFT action cannot be so predictive, as the symmetry arguments
seem to fix less the Lagrangian: up to some free functions. Nonetheless, we have re-
alized that the stress-strain curve of the solid fixes this function. Therefore, the solid
EFT model is much more predictive than it looks at first sight.

Another topic that we have addressed concerns the non-relativistic limit of phonon
modes to obtain realistic speeds. For generic values of νS and νB in the monomial poten-
tial presented in Section 4.2.1 we have speeds of order of the speed of light. However, it
is common that phonons propagating in solid materials have speeds much smaller than
c. Recall that typical bounds on the phonon speeds are of order cT,L ∼ 10−4 c, which
would restrict the monomial potential significantly. Thus, in Section 4.2.2 we propose
another potential that allow us to control the speeds of the phonons while leaving the
stress-strain curve unaltered. This is achieved by introducing a term ∼

√
Z, which is

proportional to the mass density of the material. This explains why the coefficient in
front of this term must be large in non-relativistic materials. Comparing Figures 4.2
and 4.6-4.7 we see that only in the non-relativistic potential we have a large region of
parameters where εmax � 1, whereas in the monomial potential the region with very
large deformations is reduced to a ‘dot’ in the area close to (νS, νB) = (2, 2).

Next in order we introduced the scale invariant solids, which we assume to be either
solids with spontaneously broken SI or with manifest SI, and studied the mechanical
response of such solid materials.

For the first case, it is consistent to consider that the mass-spectrum is gapped
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and then use the EFT methods mentioned above to study the gapless phonons as the
Goldstone bosons of the spontaneously broken space-time symmetries. The potential
of the most general solid with spontaneously broken SI in three space-time dimensions
is

VSBSI = Z
1+ω
2 F (x) (6.2)

which is a free function of only one variable (x = X/
√
Z) and the equation of state

parameter, ω. This family of EFTs includes the previously studied conformal solid EFT
[79] as a particular value of ω, however for other generic values the theory nonlinearly
realizes SI but not the full conformal group. We must mention that the theory presented
in (5.4) is a novel example of a SI theory that does not realize the full conformal group.
This is yet another example of SI theory, such as the ones presented in [159]. The
theory of the spontaneously broken SI solid avoids being conformally invariant since
its ground state breaks the Poincaré symmetry, as we discussed in Section 5.1.

The sub-case of the manifest SI solid needs to be treated with holographic methods
due to the dynamics of the phonon modes are controlled by an IRFP. In particular,
we use a massive gravity theory in an asymptotically AdS4 space-time, whose elas-
tic response was shown to be associated with the presence of massless propagating
phonons [6]. Contrary to the spontaneous case, here the phonon modes are part of a
continuum spectrum instead of being isolated degrees of freedom. This is the reason
why the EFT methods used in the first sub-case cannot be applied here.

We have found that the phonon speeds can be slow compared to the speed of light in
the SI solids, as long as we have ω small. In particular, we found that the longitudinal
and transverse speeds are related as

c2
L = ω c2 +

2 (d− 2)

d− 1
c2
T (6.3)

with ω being the equation of state and d are the space-time dimensions. It is a necessary
condition, as we can see, that the equation of state parameter is small in order to have
slow phonon speeds, which would be needed if we wanted to describe realistic materials.
This result shows that it is possible to have a SI solid with realistic (small) phonon
speeds, while conformal solids, such as the one presented in [79], are restricted to have
relativistic phonon speeds. Even in the case of the manifest SI solid we have proposed
a way to obtain non-relativistic speeds but further research in this direction is needed.

In both SI solids we compute several linear elastic response parameters, such as the
elastic moduli, the Poisson ratio or the propagation speed of the phonons in function
of the various parameters of the model. We find that in both cases maximally auxetic
solids (i.e. most negative Poisson ratio) may only arise in the limit of ω � 1, otherwise
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the theory will have superluminal phonon modes (e.g. see Figure 5.8).

In the case of the holographic model it is straightforward extract the temperature
dependence of elastic properties, which allows us to show that these models interopolate
between a fluid phase and a solid phase by decreasing the temperature. The crossover is
continous and very analogous to what happens to some extent in glasses and amorphous
materials. The behaviour of the vibrational modes in these holographic systems has al-
ready produced some developments in the study of the latter [29,30]. In the Appendix A
we also discuss some aspects involving the thermodynamic properties of the holographic
model, which we would like to extend in the future to introduce more acoustocaloric
effects, which seem to be having growing interest recently [78, 118, 140, 166, 221]. Fur-
thermore, it would be desirable to introduce dissipative and thermal effects within the
EFT picture of condensed matter systems [77,210].

In addition to the linear elastic properties we analyzed the non-linear mechanical
response of SI solids from both perspectives. In the case of the solids with spontaneously
broken SI we already worked out the stress-strain relations and the elasticity bounds
in the generic solid EFT case. For the case of the manifest SI solid we showed how
the elastic response can be extended to the full non-linear regime by obtaining the full
stress-strain curves. To our knowledge, this is the first time that the full non-linear
response of an AdS black brane geometry is presented by extracting the corresponding
stress-strain curve. Previous studies already discussed the linear approximation of this
elastic response, while [15, 26] discussed the viscoelastic oscillatory (i.e. non-static)
response and [46] an out-of-equilibrium similar set up. Let us highlight the three main
differences between the two SI solids in the non-linear response:

• The elasticity bounds for the two types of solids differ substantially from each
other as we clearly see in Figure 5.14. The range of the accepted strain scaling
are almost decoupled and the values of the deformability εmax disagree by O(1)
factors. This discrepancy seems to be physical and due to the fact that SI is
realized differently in the two cases considered, thus the non-linear constrains for
the theories must be different.

• The holographic model presents an interesting feature in the stress strain curves:
it exhibits two different regimes of power-law stress-strain curves. At finite tem-
perature we find a scaling at moderately large deformation (of order 1 < ε < 10)
and a second scaling at very large deformations, which is always smaller than the
first one. In the case of very low temperature only the second scaling controls the
stress-strain curve. The fact that this scaling appears is because these models
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contain a UV anisotropic Lifshitz fixed point. Whether this feature is specific to
the present model or whether it would appear in more generic elastic solids with
manifest SI remains unclear. However, we should note that for finite temperature
this second scaling could be rather irrelevant, as it appears at extremely large
deformations (i.e. ε > 10) where most solutions show already some instability.

• Similarly to what happens in the case of non-relativistic solid EFTs the holo-
graphic models that exhibit highest elasticity share features similar to familiar
real-world elastomers. Indeed, we find that the model allows black brane solu-
tions to be stable under large deformations where bulk and shear scalings are of
the same order νB ∼ νS (see Figure 5.14). This is similar to what happens for
natural rubber and other elastomers [81], thus it motivates us to call these type
of solutions black rubber.

There are some applications that could be derived from the study of these sys-
tems. We know that the electric transport properties of quantum critical materials
have been subject of recent efforts especially in connection to the anomalous scalings
found in strange metals. More recently there has been interest in whether phonons and
elastic properties can display surprising and interesting characteristics in these quan-
tum critical materials. In particular there are preliminary indications that phonons
in quantum critical systems may exhibit glassy or viscoelastic features [120]. Further-
more, the role of such viscoelastic properties of the materials has been discussed in
connection to the possible implications on high-Tc superconductivity [195] and some
experimental reasearch has also explored the elastic properties of high-Tc cuprates su-
perconductors [187].

There has been a particular interest recently related to the non-linear mechanical
characterization of critical materials (such as the high-Tc superconductors) due to the
technological applications these materials have [190, 191]. Hopefully the holographic
methods presented here may provide useful insights in the properties of these materials.
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Appendix A

Thermodynamic properties of solids
with manifest scale invariance

These results are not part of any publication.

Heat capacities

Due to this model of solids with manifest SI has a finite temperature description it is
worth taking a look at some of its thermodynamic properties, such as the heat capac-
ities of the system.

In thermodynamics, the heat capacity ratio is the ratio of the heat capacity at con-
stant pressure, CP , and the heat capacity at constant volume, CV . The heat capacity
of a system tells us how much heat ∆Q we need to add in order to raise its temperature
∆T

C = lim
∆T

∆Q

∆T
. (A.1)

This heat capacity can be defined also depending on the kind of process the system is
undergoing, whether we are doing it at constant pressure or constant volume. Thus,
let us define these two heat capacities (per unit volume) as

CV =
T

V

(
∂S

∂T

)
V

=
4π(3−m2 u2 b

h )

u2
h (3 + (2 b− 1)m2 u2 b

h )
, (A.2)

CP =
T

V

(
∂S

∂T

)
p

=
3π u

−2(1+b)
h (3−m2 u2b

h )(−3 + 2 b +m2 u2 b
h )

bm2 (−3 + 3 b +m2 u2 b
h )

(A.3)

where we have used the second law of thermodynamics δQ = T dS. These heat ca-
pacities grow with temperature, just like is expected for solid materials, and have a
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quadratic scaling for CV and a scaling of νB1 +2 = 2 (b+1) for CP , as we can observe in
Figure A.1. However, in solid materials it is also expected that at large temperatures
these heat capacities saturate at some constant value as we can see in [22].

Figure A.1: Heat capacity at constant volume CV (left) and constant pressure CP
(right) for a benchmark potential with b = 2, 3, 4 (blue, red, green) as a function of
the temperature T/m.

From these two heat capacities we can also construct another interesting thermo-
dynamical relation: the heat capacity ratio γ. The heat capacity ratio is defined as the
ratio between the heat capacities and for our benchmark potential we obtain

γ ≡ CP
CV

=
3 (2 b− 3 +m2 u2 b

h ) (3 + (2 b− 1)m2 u2 b
h )

u2 b
h 4 bm2 (−3 + 3 b +m2 u2 b

h )
. (A.4)

This heat capacity ratio is exactly γ = 1 for T/m = 0, as solids have very similar
pressure and volume heat capacities CP ∼ CV , and grows with temperature with a
power-law scaling of νB1 = 2 b.

Interestingly, this γ is related to two different notions of bulk moduli. Up until now
we have just considered the adiabatic bulk modulus (e.g. see (5.49)-(5.50) or (5.112))
-which now we are going to label KS to avoid confusion- but there is a second notion of
bulk modulus which is the isothermal bulk modulus. This second definition considers
a constant temperature process instead of an adiabatic one

KT = −V dp

dV

∣∣∣∣
T

. (A.5)
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However, the bulk modulus that controls the speed of phonon modes is KS as noted
in [138].
With this definition we can check that both the ratios of the heat capacities and the
bulk moduli are exactly the same, as expected,

γ ≡ CP
CV

=
KS
KT

. (A.6)

We should note here that the definition we are employing here is in tension with the
one considered in [11,19], where the bulk modulus is defined through a so-called lattice
pressure pl, an extra contribution to Txx as a result of working around a uniformly
strained equilibrium state. Therefore, using that definition for the bulk modulus the
form of the longitudinal speed changes substantially from (3.15).

The interested reader may read [19] for the exact definition of this lattice pressure.
Let us point here that pl is related to Txx and to the so-called thermodynamic pressure
pth which is defined through the thermodynamic potential Ω as

pth · V ≡ −Ω = −T SE (A.7)

where SE is the Euclidean on-shell boundary action. This pressure fulfills the thermo-
dynamical relation

pth + ρ = s T (A.8)

and differs from Txx as discussed in [9]. All in all, the relation among these three
pressure is

p = Txx = pth + pl . (A.9)

There is another thermodynamic relation that indicates us that working with the
mechanical pressure Txx seems to be the sane choice. According to [138] we should
have

CP − CV = T α2
T KT (A.10)

where αT is the thermal expansion coefficient

αT ≡
1

V

(
∂ V
∂ T

)
p

=
1

KT

(
∂ p

∂ T

)
V

. (A.11)

It is easy to check that (A.10) only holds if we consider the mechanical pressure p = Txx.
Using this definition we may obtain the thermal expansion coefficient

αT = −2 (2 b− 3) πu1−2 b
h (−3 +m2 u2 b

h )

bm2 (−3 + 3 b +m2 u2 b
h )

(A.12)
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which is positive and grows with temperature with a power-law scaling of νB1 − 1 =
2 b − 1. This result is completely different from the one in [19], where the thermal
expansion they obtain from (A.11) is negative, decreases with temperature as 1/T and
is independent of the potential chosen.

Grüneisen parameter

In solid state physics, the Grüneisen parameter γG was originally introduced to study
the effect of varying the volume of a crystal lattice in its vibrational frequency [135] and
has been used to investigate the characteristic energy scales of systems with respect to
changes of external potentials1.

The original formulation of γG was proposed by E. Grüneisten for the Einstein
model [93,94] and it was used to quantify the degree of anharmonicity of the structure
of the energy spectrum in volume changes:

γG ≡ −
V
ω0

∂ ω0

∂V
=
V
CV

(
∂S

∂V

)
T

=
αT V
CV
KT = −

(
∂ log T

∂ logV

)
S

(A.13)

where the excitations in a solid are described by N phonons with the same frequency ω0

(notice that for an harmonic model phonon frequencies would be volume independent).
The Grüneisen parameter for our model is remarkably simple, it is quite easy to

find that

γG =
1

2
(A.14)

so it does not depend on temperature or even the potential.
We should note that in [136,227] it was found that due to the temperature scaling of

Cp and αT the Grüneisen parameter diverges when approaching to a quantum critical
point.

1See [223] for a review on the Grüneisen parameter.
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More on solid EFT in d dimensions

In order to compute the speeds of the phonon modes we need to calculate the quadratic
action on the perturbations around the background of the fields ΦI = α (xI +πI) which
give us

IIJ = α2(δIJ + ∂IπJ + ∂JπI + ∂ µπI ∂µπJ). (B.1)

The most relevant expressions up to quadratic order are summarized below

Tr(I n) =α2n
(
(d− 1)− n π̇i2 + 2n ∂i π

L
i

+ n (2n− 1) (∂i π
L
i )2 + n2 (∂i π

T
j )2
)
, (B.2)

Z = α2(d−1)
(
1 + 2 ∂i π

L
i − π̇i2 + (∂i π

L
i )2
)
, (B.3)

xn ≡
Tr(I n)

Z
n
d−1

= d− 1 + n2 (∂i π
T
j )2 +

2(d− 2)

d− 1
n2 (∂i π

L
i )2, (B.4)

where we have split the perturbation into longitudinal and transverse modes

∂i π
T
i = 0 , ∂[i π

L
j] = 0. (B.5)

The action at second order is then

δS(2) = −
∫
ddx

(
−N π̇i

2 + c2
1 (∂i π

L
i )2 + c2

2 (∂i π
T
j )2
)

(B.6)

where
N = Z VZ , (B.7)
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c2
L =

c2
1

N
= 1 +

2VZZ Z

VZ
+

2(d− 2)

d− 1
c2
T , (B.8)

c2
T =

c2
2

N
=

d−2∑
n=1

n2 Vxn
Z VZ

. (B.9)

We would like to relate this to the bulk and shear moduli. The stress-energy tensor is

Tµν = − 2√
−g

δS

δgµν
= −ηµν V + 2

∂V

∂IIJ
∂µΦI ∂νΦ

J . (B.10)

Our potential is a function of Z and xn, so

∂V

∂IIJ
=

∂Z

∂IIJ
∂V

∂Z

+
d−2∑
n=1

(∂Tr(I n)

∂IIJ
1

Zn/d−1
− ∂Z

∂IIJ
n

d− 1

xn
Z

) ∂V
∂xn

. (B.11)

Let us start computing the shear modulus. The shear strain changes our background
to

ΦI = xI + εIkx
k (B.12)

where we can take εIJ = εJI with no loss of generality. We assume that εji 6= 0 for
i 6= j and look at the component Tij at first order in εji , and extract the shear modulus
comparing with equation (3.6). Notice that the term ∂Z

∂IIJ cancels with ∂iΦ
I∂jΦ

J . To
check this, first we make the derivative of Z with respect to IIJ using Jacobi’s formula

∂Z

∂IIJ
= adjT (I)IJ . (B.13)

Contracting this with

∂iΦ
I∂jΦ

J = (δIi δ
J
j + δIi ε

J
j + δJj ε

I
i )α

2 + O(ε2). (B.14)

At linear order we find that adjT (I)ij = −2 εij α
2d−4 (with i 6= j) and adjT (I)ii =

α2d−4(1 +O(ε)). Therefore

∂Z

∂IIJ
(δIi δ

J
j + δIi ε

J
j + δJj ε

I
i )α

2

= adjT (I)ij α
2 + 2α2(d−1) εij = 0. (B.15)
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The only non-zero term is then

Tij = 2
d−2∑
n=1

∂V

∂xn

∂Tr((IKL)n)

∂IIJ
1

Zn/d−1
∂iΦ

I ∂jΦ
J . (B.16)

For the derivative of the traces,
Tr(In) = II1 I2 II2 I3 . . . IIn−1 In IIn I1 , one finds

∂Tr(I)

∂IIJ
= δIJ ,

∂Tr(I2)

∂IIJ
= 2 IIJ ,

and
∂Tr(In)

∂IIJ
= n II I3 II3 I4 . . . IIn−1 In IIn J (B.17)

for n > 2, where we have used the cyclic property of the trace. Since IIJ = α2(δIJ +
εIJ + εJI ), finally we can find that at linear order

Tij = 4 εij

d−2∑
n=1

n2 ∂V

∂xn
= 2 εij G. (B.18)

For the bulk modulus we consider a purely volume deformation (zero shear), which can
be parametrized as

α = 1 +
κ

d− 1
(B.19)

where κ is the bulk strain, and we look at Tii.
Notice that Vxn does not appear here as we can easily check using ∂iΦ

I ∂iΦ
J =

α2δIi δ
J
i (

∂Tr(I n)

∂I ii
1

Zn/d−1
− ∂Z

∂I ii
n

d− 1

xn
Z

)
α2 = 0. (B.20)

Therefore we arrive to
Tii = −V + 2Z VZ (B.21)

and from the equation above we can already find the important result

ρ+ p = 2Z VZ . (B.22)

Finally, using the definition of the bulk modulus (3.7) together with V ∝ α1−d and
(B.19), one arrives at

K ≡ −V dp

dV
=

dp

dκ
=

dTii
dκ

(B.23)
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From (B.21), then, one finds

K = 2Z VZ + 4Z2 VZZ = 4Z3/2 ∂Z

(√
Z VZ

)
. (B.24)

It is also possible to rewrite, the bulk modulus in terms of the equation of state
of the solid, understood as the functional dependence of the pressure on the energy
density, that is P (ρ)|

2
, by changing only the density – that is at zero shear strain. Note

that

K =
dp

dρ

dρ

dZ

dZ

dκ
=

dp

dρ
2Z VZ , (B.25)

where we use ρ = V . Therefore we find

K
ρ+ p

=
dp

dρ

∣∣∣
2

, (B.26)

which leads to (5.8). The subscript |
2

stands to recall that the derivative is at vanishing
shear deformation.
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Holographic Stress Tensor

We can explicitely compute the boundary stress tensor T µν following [32]. In particular,
for asymptotic AdS4 spacetime, we have:

T µν =
1

8π G
(Θµν − Θ Ξµν − 2 Ξµν − Gµν

Ξ ) , (C.1)

where we set the AdS length l = 1. The metric Ξµν is the boundary metric and Θµν

the extrinsic curvature of the boundary surface, with Θ its trace. Our boundary metric
is given by

Ξij =
1

u2

e−χ(u) f(u) 0 0
0 coshh(u) sinhh(u)
0 sinhh(u) coshh(u)

 (C.2)

and it is clearly flat, implying Gµν
Ξ = 0. We can define the normal vector to the

boundary as:

nµ =

(
0 , 0 , 0 ,

1√
guu

)
, (C.3)

where guu = u2f(u). The extrinsic curvature can be defined as usual

θµν =
1

2
(∇µnν + ∇νnµ) , (C.4)

and it reads

θ =
u f ′(u) − f(u) (6 + uχ′(u))

2
√
f(u)

. (C.5)

Close to the boundary, we can expand the function h(u) as in (5.44) and f(u) =
1 −M(u)u3 (where M(0) would correspond to the energy density of the system) and
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find that the off-diagonal component of the stress-energy tensor is

Txy =
1

2
(3 C3 cosh (C0) + M(0) sinh(C0)) (C.6)

This result is a direct manifestation of the presence of a strain deformation in our
background and it will encode the corresponding response, i.e. the shear component
of the stress.
Interestingly one can also notice that

T y
x =

3

2
C3. (C.7)

Using the standard holographic renormalization techniques [197] we can also identify

Tµν =
3

2
g(3)
µν , (C.8)

where g
(3)
µν is the sub-leading term of the induced metric expressed in Fefferman-Graham

coordinates. As a first step we have to rewrite our ansatz in the FG form using the
coordinate transformation

dz2

z2
=

du2

u2 f(u)
(C.9)

where z will now be the holographic (FG) coordinate.
Again, using that the asymptotic behaviour of f(u) is 1−M(u)u3 we can find that

for small z we have u = z − M(z)z4

6
. Now we can already look at our metric and derive

the stress-energy tensor. For instance, for the off-diagonal term, we are interested in,
we have

gxy(z) =
1

u(z)2
sinh(h(u(z))) = (C.10)

=
1

z2

(
sinh(C0) + (3 C3 cosh (C0) + M(0) sinh(C0)) z3

)
, (C.11)

where higher orders in z have been suppressed. We can identify Txy easily in this
expression and see that the result is the same we found before in C.6. This result
give us a robust definition of the non-linear stress in our system which can be indeed
identified as:

σ =
1

2
(3 C3 cosh (C0) + M(0) sinh(C0)) (C.12)

Since we impose the boundary condition C0 = 0 the stress, we use in all our com-
putations, is simply defined by σ = 3

2
C3.



151



Bibliography

[1] Z. Abiza, M. Destrade, and R.W. Ogden. Large acoustoelastic effect. Wave
Motion, 49(2):364 – 374, 2012.

[2] Allan Adams, Nima Arkani-Hamed, Sergei Dubovsky, Alberto Nicolis, and Ric-
cardo Rattazzi. Causality, analyticity and an IR obstruction to UV completion.
JHEP, 10:014, 2006.

[3] Ofer Aharony, Yaron E. Antebi, Micha Berkooz, and Ram Fishman. ’Holey
sheets’: Pfaffians and subdeterminants as D-brane operators in large N gauge
theories. JHEP, 12:069, 2002.

[4] Ofer Aharony, Oren Bergman, Daniel Louis Jafferis, and Juan Maldacena. N=6
superconformal Chern-Simons-matter theories, M2-branes and their gravity du-
als. JHEP, 10:091, 2008.

[5] Lasma Alberte, Martin Ammon, Matteo Baggioli, Amadeo Jiménez, and Oriol
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