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Embedded 3D Reconstruction for Autonomous Driving

by Daniel HERNÁNDEZ JUÁREZ

The objective of this thesis is to study 3D reconstruction algorithms suitable for
autonomous driving. In order to do so, we need fast implementations and represen-
tations of the 3D environment that take into account geometric and semantic infor-
mation. The use of CUDA and GPU parallelization allows to leverage flexible and
programmable high performance hardware to fulfill the strong time requirements.

The thesis presents three main contributions. First, we describe the paralleliza-
tion of the well-known stereo matching algorithm based on Semi-Global Matching
(SGM), which estimates depth from two stereo images. We deploy an efficient par-
allelization design that runs on top of low-energy consumption GPUs and achieves
real-time performance.

As our second contribution, we present an improvement of the 3D representation
model called the Stixel World that accounts for slanted surfaces. The extension of the
model helps representing real scenes that fail under the previous assumptions, and,
by an efficient model regularization, keeps the same accuracy of the previous model.
We also propose an algorithmic strategy to speed up the process, which reduces the
amount of Stixel combinations tested by the dynamic programming approach.

Finally, we explain our parallelization strategies for the Stixel segmentation algo-
rithm. We propose a parallelization strategy that fits the massively parallel architec-
ture of GPUs. We also study the different speed up techniques available for Stixels
and how they can be implemented efficiently for this architecture. Additionally, our
approach reduces the computational complexity of the algorithm by reformulating
the measurement depth model, relying on the confidence of the depth estimation
and the identification of invalid values to handle outliers.
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Chapter 1

Introduction

1.1 Problem Description

In this dissertation, we will investigate fast 3D reconstruction and scene understand-
ing for autonomous driving through stereo vision. As this problem must be solved
in real-time, we focus on fast algorithms and low-energy consumption devices, and
also devise GPU-accelerated designs for these algorithms. In this introduction, we
present the basic concepts of the topics and discuss the objectives of this work.

To this end, we start with an introduction to stereo vision in section 1.2, and their
importance for autonomous driving applications. Next, we talk about the Stixel
World algorithm in section 1.3. Then, we introduce the GPU architecture and its
massively-parallel programming model in section 1.4. Finally, we present our main
objectives in section 1.5 and contributions in section 1.6.

1.2 Stereo vision

The aim of stereo vision is to infer the depth of each pixel in the scene from two
camera images. Both images must contain the same objects from a different view
point. In the typical binocular stereo configuration, one camera is translated (not
rotated) with respect to the other.

An object visible in both cameras will be projected in the image plane in a slightly
different location: this difference in position is called disparity, and the closer an
object is from the stereo rig, the higher the disparity will be. When the object is
too far away, the disparity will be zero. Note that one can estimate more distance
by increasing the baseline (i.e. distance between the cameras), with the added noise,
computational and memory complexity associated with it.

Stereo vision algorithms are designed to estimate the disparity of each individual
pixel. Typically, algorithms try to match each pixel in the image obtained from one
camera to the corresponding pixel in the image from the other camera, using the
neighbor pixels to improve the matching accuracy and reduce the effect of noise in
the inputs.

Figure 1.1 describes the epipolar geometry [29] of the process: a point in 3D is
projected onto the left and right images. For any point in the left image, i.e. IBase,
the depth is unknown. But we know that according to epipolar geometry, the cor-
responding point in the right image, c.f . IMatch, can be found somewhere on the
epipolar line.

The problem is then reduced to a search along the epipolar line, which makes
it faster and less prone to noise, since it is less likely to fail when you reduce the
amount of matching candidates. Typically, there is a small rotation between the
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FIGURE 1.1: Each pixel of IBase corresponds to one pixel of IMatch, and the epipolar
geometry of the two cameras limits the search of the matching pixel to the ones
contained in a single line. The distance z between the 3D point and the baseline
of the camera is computed from the disparity d using triangulation, where f is the

focal length and T is the baseline of the camera pair.

cameras (even when the set up was only a translation) and cameras have to be rec-
tified [29]. After the rectification process, the epipolar line goes through the image
row. Once the disparity has been recovered, we can derive the distance of each pixel
by using the focal length and baseline (i.e. distance between the cameras).

Dense, robust and real-time computation of depth information from stereo-camera
systems is a requirement in many industrial applications such as advanced driver
assistance systems (ADAS), robotics navigation and autonomous vehicles. An ef-
ficient stereo algorithm has been a research topic for decades [2]. It has multiple
applications, for example, Alejandro González et al. [20] uses stereo information to
filter candidate windows for pedestrian detection and provides better accuracy and
performance.

Disparity estimation is a difficult task because of the high level of ambiguity that
often appears in real situations. For those, a large variety of proposals have been
extensively presented [48]. Most of the high-accuracy stereo vision pipelines [60]
include the semi-global matching (SGM) consistency-constraining algorithm [29].
The combination of SGM with different kinds of local similarity metrics is insensi-
tive to various types of noise and interferences (like lighting), efficiently deals with
large untextured areas and is capable of retaining edges. Recently, deep learning ap-
proaches have also been proposed [60, 61], providing state-of-the-art results. How-
ever, the neural networks used are still too complex to provide real time results on
low-energy consumption embedded devices.

1.3 Stixel Model

The Stixel world is a compressed representation of a 3D scene that preserves its rel-
evant structure. Given that the vertical dimension dominates the structure of street
environments, the Stixel world segments the image into independent columns com-
posed of stick-like super-pixels with a 3D planar depth model and semantic labels.

The Stixel model has been successfully used for automotive vision applications
either to decrease parsing time, increase accuracy or both. We can find examples of
works using the Stixel representation in different topics such as object recognition [6,
36], building a grid map over time [39] and for autonomous driving [63]. Specifically,
for motion planning in the context of autonomous driving, the Stixel model has been
used c.f . [63, 64] to model the geometric constraints of a given scene.

There are three structural classes derived exclusively from depth data: ground
(Stixels with a slant similar to the expected ground plane), object (almost vertical
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FIGURE 1.2: Example of the Stixel segmentation and labeling of a column in a
typical scene (on the right). The input disparity measurements (black thin lines)
and output Stixels encoded with semantic colors (colored thick lines) are shown on

the left. Taken from [27].

Stixels, usually lying on the ground), and sky (Stixels at infinite distance). Semantic
classes are refinements to those structural classes (e.g. road or sidewalk are ground
classes, whereas building and vehicle are object classes). Prior to the segmenta-
tion, the per-pixel input images are downsized to the desired vertical and horizontal
Stixel resolution.

An example of Stixel segmentation is presented in fig. 1.2. The column high-
lighted in the image on the right is downsized, and the disparity measurements
(inverse of depth) for each Stixel on the column are shown on the left. The resulting
Stixel segmentation and labeling are defined by the colored thick lines.

A Stixel column segmentation S consists of an arbitrary number N of Stixels,
si, each representing four random variables: the Stixel extent via bottom row Vb

i
and top row Vt

i , as well as its semantic class Ci and depth model Di (slope and
intercept). Thereby, the number of Stixels itself is a random variable that is optimized
jointly during inference. The joint segmentation and labeling problem is carried out
independently for each image column via optimization of the posterior distribution
P(S | M), a Maximum A Posteriori estimation problem (MAP) defined over a Stixel
segmentation S given all measurements M from that particular column.

As described in [42], we can design a recursive definition of the optimization
problem in order to solve the problem using a Dynamic Programming scheme. The
computational complexity is O(w × h2), where w is the image width and h is the
image height.
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1.4 GPU Parallelization

GPUs are massively-parallel devices containing tens of throughput-oriented pro-
cessing units called streaming multiprocessors (SMs). Compute and memory opera-
tions are executed as vector (SIMD) instructions and are highly pipelined in order to
save energy and transistor budged. SMs can execute several vector instructions per
cycle, selected from multiple independent execution flows: the higher the available
instruction-, vector- and thread-level parallelism, the better the pipeline utilization.

The CUDA programming model merges vector-level and thread-level parallelism,
and allows defining a very large number of potentially concurrent execution in-
stances (called threads) of the same program code. A unique two-level identifier
(ThrId, CTAid) is used to specialize each thread for a particular data and/or func-
tion. A CTA (Cooperative Thread Array) comprises all the threads with the same CTAid,
which run simultaneously and until completion in the same SM, and can share a fast
but limited memory space: the so-called Shared Memory.

The CUDA 9.0 specification introduces cooperative groups to dynamically orga-
nize groups of threads to perform collective operations involving communication
and synchronization, which enable complex patterns of parallel cooperation. The
hardware scheduler maps threads in the same cooperative group to vector instruc-
tions, which are executed efficiently, specially when the size of the group matches
the hardware warp size.

Each thread has its own private Local Memory space, commonly mapped to reg-
isters by the compiler. A large space of Global Memory is public to all execution in-
stances, and is mapped into a large-capacity but long-latency device memory, which
is accelerated using a two-level hierarchy of cache memories.

The parallelization scheme of an algorithm and the data layout determine the
available parallelism at the instruction, vector and thread level and the memory ac-
cess pattern. A large amount of parallelism is required for hiding operation latencies
and achieving high resource usage. Additionally, efficient memory performance re-
quires that the set of addresses generated by a group of consecutive threads refer to
consecutive positions that can be coalesced into a single, wider memory transaction.
Since the bandwidth of the device memory is often a performance bottleneck, an
efficient CUDA code should promote data reuse on the internal caches, the shared
memory, and the registers.

This thesis focuses on embedded GPU-accelerated systems, like the NVIDIA
Jetson and DrivePX platforms, that allow low-cost and low-energy consumption,
massively parallel computation. Because of these features, they are a better fit for
autonomous driving than more powerful high-end GPUs. We have designed the
parallelization to extract inherent parallelism, or to augment the parallelism and
to maximize temporal (and spacial) locality of the algorithms to use the GPUs effi-
ciently.

1.5 Objectives and motivation

The objective of this thesis is to study 3D reconstruction algorithms suitable for
autonomous driving. In order to do so, we need fast implementations and repre-
sentations of the 3D environment that take into account geometric and semantic
information. The use of CUDA and GPU parallelization provides flexible and pro-
grammable high performance hardware that can be used to fulfill those low-latency
requirements.
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1.6 Main Contributions

The contributions of this thesis are organized in three chapters. The research pre-
sented in each chapter has been published in peer-reviewed conferences and jour-
nals.

1.6.1 Parallelization of SGM for GPU

Chapter 2 presents the parallelization of the well-known stereo matching algorithm
Semi-Global Matching (SGM). We provide an efficient parallelization strategy that
achieves real-time performance on low-energy consumption GPUs. This work was
published in:

[25] Daniel Hernandez-Juarez et al. “Embedded Real-time Stereo Estimation via
Semi-Global Matching on the GPU”. in: International Conference on Computational Sci-
ence 2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA. 2016, pp. 143–153.
DOI: 10.1016/j.procs.2016.05.305. URL: http://dx.doi.org/10.1016/j.procs.
2016.05.305

1.6.2 Slanted Stixels

Chapter 3 presents our proposal to improve the Stixel model to account for slanted
surfaces. This model modification helps representing real scenes that fail under the
previous assumptions while keeping the accuracy by an efficient model regulariza-
tion. We also propose an algorithmic speed up to reduce the amount of Stixel com-
binations tested by the dynamic programming approach. This work was published
in:

[28] Daniel Hernandez-Juarez et al. “Slanted Stixels: Representing San Fran-
cisco’s Steepest Streets”. In: British Machine Vision Conference 2017, BMVC 2017, Lon-
don, UK, September 4-7, 2017. BMVA Press, 2017. URL: https://www.dropbox.com/
s/m0n8ujh1sxvge1q/0406.pdf?dl=1

[27] Daniel Hernandez-Juarez et al. “Slanted Stixels: A Way to Represent Steep
Streets”. In: International Journal of Computer Vision (Sept. 2019), pp. 1–16. ISSN: 0920-
5691. DOI: 10.1007/s11263-019-01226-9. URL: https://doi.org/10.1007/
s11263-019-01226-9

1.6.3 Parallelization of Stixels for GPU

Chapter 4 presents our work on parallelization of the Stixel algorithm. We propose
a parallelization strategy that fits the massively parallel architecture of GPUs. We
also study the different speed up techniques available for Stixels and how they can
be implemented efficiently for this architecture. Additionally, our approach reduces
the computational complexity of the algorithm by reformulating the measurement
depth model, relying on the confidence of the depth estimation and the identification
of invalid values to handle outliers. This work was published in:

[26] Daniel Hernandez-Juarez et al. “GPU-Accelerated Real-Time Stixel Compu-
tation”. In: 2017 IEEE Winter Conference on Applications of Computer Vision, WACV
2017, Santa Rosa, CA, USA, March 24-31, 2017. 2017, pp. 1054–1062. DOI: 10.1109/
WACV.2017.122. URL: https://doi.org/10.1109/WACV.2017.122

And the paper under review:
[24] Daniel Hernandez-Juarez et al. “3D Perception with Slanted Stixels on GPU”.

in: under review on IEEE Trans. Parallel Distrib. Syst. (forthcoming)

https://doi.org/10.1016/j.procs.2016.05.305
http://dx.doi.org/10.1016/j.procs.2016.05.305
http://dx.doi.org/10.1016/j.procs.2016.05.305
https://www.dropbox.com/s/m0n8ujh1sxvge1q/0406.pdf?dl=1
https://www.dropbox.com/s/m0n8ujh1sxvge1q/0406.pdf?dl=1
https://doi.org/10.1007/s11263-019-01226-9
https://doi.org/10.1007/s11263-019-01226-9
https://doi.org/10.1007/s11263-019-01226-9
https://doi.org/10.1109/WACV.2017.122
https://doi.org/10.1109/WACV.2017.122
https://doi.org/10.1109/WACV.2017.122
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Chapter 2

Semi-global Matching
Parallelization

2.1 Introduction

Dense, robust and real-time computation of depth information from stereo-camera
systems is a requirement in many industrial applications such as advanced driver
assistance systems (ADAS), robotics navigation and autonomous vehicles. An ef-
ficient stereo algorithm has been a research topic for decades [2]. It has multiple
applications, for example, [20] uses stereo information to filter candidate windows
for pedestrian detection and provides better accuracy and performance.

Fig. 2.1 illustrates how to infer the depth of a given real-world point from its pro-
jection points on the left and right images. Assuming a simple translation between
the cameras (otherwise, images must be rectified using multiple extrinsic and intrin-
sic camera parameters), the corresponding points must be in the same row of both
images, along the epipolar lines. A similarity measure correlates matching pixels
and the disparity (d) is the similarity distance between both points.

Disparity estimation is a difficult task because of the high level of ambiguity that
often appears in real situations. For those, a large variety of proposals have been
extensively presented [48]. Most of the high-accuracy stereo vision pipelines [60]
include the semi-global matching (SGM) consistency-constraining algorithm [29].
The combination of SGM with different kinds of local similarity metrics is insensitive
to various types of noise and interferences (like lighting), efficiently deals with large
untextured areas and is capable of retaining edges.

The high computational load and memory bandwidth requirements of SGM pose
hard challenges for fast and low energy-consumption implementations. Dedicated
hardware solutions (e.g. FPGA or ASIC) [4, 41] achieve these goals, but they are very
inflexible regarding changes in the algorithms. Implementations on desktop GPUs
can assure real-time constraints [4], but their high power consumption and the need
to attach a desktop computer makes them less suitable for embedded systems.

Recently, with the appearance of embedded GPU-accelerated systems like the
NVIDIA Jetson TX1 and the DrivePX platforms (incorporating, respectively, one
and two Tegra X1 ARM processors), low-cost and low-consumption real-time stereo
computation is becoming attainable. The objective of this chapter is to implement
and evaluate a complete disparity estimation pipeline on this embedded GPU-accelerated
device.

We present simple, but well-designed, baseline massively parallel schemes and
data layouts of each of the algorithms required for disparity estimation, and then op-
timize the baseline code with specific strategies, like vectorization or CTA-to-Warp
conversion, to boost performance around 3 times. The optimized implementation
runs on a single Tegra X1 at 42 frames per second (fps) for an image size of 640×480
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FIGURE 2.1: Each pixel of IBase corresponds to one pixel of IMatch, and the epipolar
geometry of the two cameras limits the search to a one dimensional line. The dis-
tance z between the 3D point and the baseline of the camera is computed from the
disparity d using triangulation, where f is the focal length and T is the baseline of

the camera pair.

FIGURE 2.2: Stages of the GPU-accelerated Disparity Estimation Pipeline

pixels, 128 disparity levels, and using 4 path directions for the SGM method, pro-
viding high-quality real-time operation. While a high-end desktop GPU improves
around 10 times the performance of the embedded GPU, the performance per watt
ratio is 2.2 times worse.

The rest of the chapter is organized as follows. Section 2.2 presents the algo-
rithms composing the disparity estimation pipeline. In section 2.3 we describe each
algorithm and then propose and discuss a parallel scheme and data layout. Finally,
section 2.4 provides the obtained results and section 2.5 summarizes the work.

2.2 Disparity Estimation Pipeline

Fig. 2.2 shows the stages of the disparity computation pipeline: (1) the captured
images are copied from the Host memory space to the GPU Device; (2) features are
extracted from each image and used for similarity comparison to generate a local
matching cost for each pixel and potential disparity; (3) a smoothing cost is aggre-
gated to reduce errors (SGM); (4) disparity is computed and a 3×3 median filter is
applied to remove outliers; and (5) the resulting disparity image is copied to the
Host memory.

2.2.1 Local Matching Cost and Semi-Global Matching (SGM)

Different similarity metrics or cost functions have been proposed in the literature.
The less computationally-demanding, and modest quality providers, are Sum of Ab-
solute Differences, ZSAD and Rank Transform. According to [30], Hierarchical Mu-
tual Information and the Census Transform (CT) features [59] provide similar higher
quality, being CT substantially less time-consuming. Recently, costs based on neural
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networks have outperformed CT [60], but at the expense of a higher computational
load.

A CT feature encodes the comparisons between the values of the pixels in a win-
dow around a central pixel. After empirically evaluating different variants we se-
lected a Center-Symmetric Census Transform (CSCT) configuration with a 9×7 win-
dow, which provides a more compact representation with similar accuracy [53]. The
similarity of two pixels is defined as the Hamming distance of their CSCT bit-vector
features. Two properties provide robustness for outdoor environments with uncon-
trolled lighting and in front of calibration errors: the invariance to local intensity
changes (neighboring pixels are compared to each other) and the tolerance to out-
liers (an incorrect value modifies a single bit).

In order to deal with non-unique or wrong correspondences due to low texture
and ambiguity, consistency constraints can be included in the form of a global two-
dimensional energy minimization problem. Semi-global matching (SGM) approxi-
mates the global solution by solving a one-dimensional minimization problem along
several (typically 4 or 8) independent paths across the image. For each path direc-
tion, image point and disparity, SGM aggregates a cost that considers the cost of
neighboring points and disparities. The number of paths affects both the quality
and the performance of the results.

2.2.2 Related work

A reference implementation of SGM on CPU [54] reached 5.43 frames per second
(fps) with 640×480 image resolution and 128 disparity levels. They applied SGM
with 8 path directions ad an additional left-right consistency check and sub-pixel
interpolation. A modified version with reduced disparity computation (rSGM) was
able to reach 12 fps.

Early GPU implementations [16] and [47] present OpenGL/Cg SGM implemen-
tations with very similar performance results peaking at 8 fps on 320×240 resolution
images.Versions designed for early CUDA systems and proposed specific modifica-
tions of the SGM algorithm. Haller and Nedevschi [21] modified the original cost
aggregation formula removing the P1 penalty and using 4 path directions for cost
aggregation. In this way, they reduced computation and memory usage, but also
reduced accuracy. Their implementation reached 53 fps on a Nvidia GTX 280 with
images of 512×383.

The most recent implementation [4] stated very fast results: 27 fps on 1024×768
images using a NVIDIA Tesla C2050, with 128 disparity levels. By using Rank Trans-
form [59] as matching cost function, their proposal provides lower accuracy [30]. We
will notice some differences in the parallel scheme on the following discussion.

As far as we know this is the first evaluation of disparity estimation in a Nvidia
GPU-accelerated embedded system, as well as in the last Maxwell architecture. We
propose better parallelization schemes to take advantage of the hardware features
available in current systems.

2.3 Algorithm Description and Massive Parallelization

This section describes the algorithms used for disparity computation and discusses
the alternative parallelization schemes and data layouts. We present the baseline
pseudocode for the proposed massively parallel algorithms and explain additional
optimizations.
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2.3.1 Matching Cost Computation

A 9×7-window, Center-Symmetric Census Transform (CSCT) concatenates the com-
parisons of 31 pairs of pixels into a bit-vector feature. Equation 2.1 defines the CSCT,
where ⊗ is bit-wise concatenation, I(x, y) is the value of pixel (x,y) in the input im-
age, and s(u,v) is 1 if u ≥ v, or 0 otherwise. The matching cost MC(x, y, d) between a
pixel (x, y) in the base image and each potentially corresponding pixel in the match
image at disparity d is defined by equation 2.2, where ⊕ is bit-wise exclusive-or and
bitcount counts the number of bits set to 1.

CSCT9,7(I, x, y) =
⊗


4⊗
i=1

3⊗
j=−3

s(I(x + i, y + j), I(x− i, y− j))

3⊗
j=1

s(I(x, y + j), I(x, y− j))
(2.1)

MC(x, y, d) = bitcount(CSCT9,7(Ibase, x, y)⊕ CSCT9,7(Imatch, x− d, y)) (2.2)

The data access patterns inherent in both equations exhibit different data reuse
schemes, which prevent both algorithms to be fused. The 2D-tiled parallel scheme
shown in Fig. 2.3 matches the 2D-stencil computation pattern of CSCT, and maxi-
mizes data reuse: the attached table shows how a tiled scheme using shared memory
reduces the total global data accesses by (62 + 4)/(1.5 + 4) = 12 times with respect
to a straightforward, naïve, embarrassingly parallel design, where each thread reads
its input values directly from global memory.

The 1D-tiled parallel scheme for computing matching cost (MC) exploits data
reuse on the x-dimension (see Fig. 2.4). As proposed in [4], we can represent match-
ing cost using a single byte without losing accuracy, which reduces 4 times the mem-
ory bandwidth requirements in comparison to using 32-bit integers. The attached
table shows that the read-cooperative scheme, compared to the naïve design, sacri-
fices parallelism (divides the number of threads by D, the maximum disparity con-
sidered) by higher data reuse (around 8 times less global memory accesses). The
low arithmetic intensity of the algorithm (2 main compute operations every 9-Byte
memory accesses) advises for this kind of optimization.

Algorithms 1 and 2 show the pseudocode of both parallel algorithms, not includ-
ing special code for corner cases handling image and CTA boundaries. In both cases,
threads in the same CTA cooperate to read an input data tile into shared memory,
then synchronize, and finally perform the assigned task reading the input data from
shared memory. The first algorithm assumes a CTA size of WarpSize×WarpSize
threads and the second algorithm a CTA of D threads. They are both scalable de-
signs that use a small constant amount of shared memory per thread (1.5 and 12
Bytes, respectively).

FIGURE 2.3: CSCT: 2D-tiled CTA-parallel scheme and computational analysis



2.3. Algorithm Description and Massive Parallelization 11

input : I[H][W], H, W
output: CSCT[H][W]
parallel for y=0 to H step WarpSize do

parallel for x=0 to W step WarpSize do
CTA parallel for yCTA, xCTA=(0,0) to (WarpSize,WarpSize) do

copy (WarpSize + 8)×(WarpSize + 6) tile of I[][] into SharedI[][];
CTA Barrier Synchronization;
CSCT[y+yCTA][x+xCTA] = CSCT9,7(SharedI, xCTA, yCTA);

end
end

end
Algorithm 1: CSCT: 2D-tiled, read-cooperative parallel scheme

There are two memory-efficient layout alternatives for algorithm 2. Each CTA
generates a D×D slice in the y-plane of the MC matrix, and threads can generate
together the cost for (1) all the disparity levels for the same pixel or (2) all the pixels
in the block for the same disparity level. We chose the first option, and adapt the
data layout so that the indexes of disparity levels vary faster on the MC cube and
global write instructions are coalesced. The second solution, used in [4], provides
similar performance on this algorithm but compromises the available parallelism
and the performance of the following SGM algorithm.

2.3.2 Smoothing Cost Aggregation (SGM) and Disparity Computation

The SGM method solves a one-dimensional minimization problem along different
paths r=(rx, ry) using the recurrence defined by equation 2.3 and a dynamic pro-
gramming algorithmic pattern. Matrix Lr contains the smoothing aggregated costs
for path r. The first term of equation 2.3 is the original matching cost, and the second
term adds the minimum cost of the disparities corresponding to the previous pixel
(x− rx,y− ry), including penalties for small disparity changes (P1) and for larger dis-
parity discontinuities and (P2). P1 is intended to detect slanted and curved surfaces,
while P2 smooths the results and makes abrupt changes difficult. The last term en-
sures that aggregated costs are bounded. For a detailed discussion refer to [29]. The
different Lr matrices must be added together to generate a final cost and then select
the disparity corresponding to the minimum (winner-takes-all strategy), as shown

FIGURE 2.4: Matching cost: 1D-tiled CTA-parallel scheme and computational anal-
ysis
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input : CSCTbase[H][W], CSCTmatch[H][W], H, W, D
output: MC[H][W][D]

parallel for y=0 to H do
parallel for x=0 to W step D do

CTA parallel for ThrId=0 to D do
SharedM[ThrId] = CSCTmatch[y][x+ThrId-D];
SharedM[D+ThrId] = CSCTmatch[y][x+ThrId];
SharedB[ThrId] = CSCTbase[y][x+ThrId];
CTA Barrier Synchronization;
for i=0 to D do

MC[y][x+i][ThrId] = BitCount ( SharedB[i] ⊕
SharedM[ThrId+1+i] );

end
end

end
end

Algorithm 2: Matching Cost computation: 1D-tiled, read-cooperative parallel
scheme; Data layout: MC[y][x][d] (d indexes vary faster)

by equation 2.4.

Lr(x, y, d) = MC(x, y, d)+min


Lr(x− rx, y− ry, d)
Lr(x− rx, y− ry, d− 1) + P1

Lr(x− rx, y− ry, d + 1) + P1

miniLr(x− rx, y− ry, i) + P2

−minkLr(x− rx, y− ry, k)

(2.3)

D(x, y) = mind ∑
r

Lr(x, y, d) (2.4)

Equation 2.3 determines a recurrent dependence that prevents the parallel pro-
cessing of pixels in the same path direction. Parallelism can be exploited, though,
in the direction perpendicular to the path, in the disparity dimension, and for each
of the computed path directions. Our proposal exploits all the available parallelism
by creating a CTA for each slice in the aggregated cost matrix along each particular
path direction.

Fig. 2.5 illustrates the case of the top-to-bottom path direction and algorithm
3 shows the pseudocode. Each of the W slices is computed by a different CTA of
D threads, with each thread executing a recurrent loop (line 4) to generate H cost
values along the path. Computing the cost for the current pixel and disparity level
requires the cost of the previous pixel on neighboring disparity levels: one value
can be reused in a private thread register but the neighboring costs must be com-
municated among threads (lines 7,8 and 12). Finally, all threads in the CTA must
collaborate to compute the minimum cost for all disparity levels (line 11).

The case for horizontal paths is very similar, with H slices computed in paral-
lel. Diagonal path directions are a little more complex: W independent CTAs pro-
cess the diagonal slices moving in a vertical direction (assuming W ≥ H). When a
CTA reaches a boundary, it continues on the other boundary. For example, a top-
to-bottom and right-to-left diagonal slice starting at (x,y) = (100,0) will successively



2.3. Algorithm Description and Massive Parallelization 13

input : MC[H][W][D], H, W, D
output: L[H][W][D]

parallel for x=0 to W do
CTA parallel for ThrId=0 to D do

Initialize aggr, min and SharedAggr[] with MAX_VALUE;
for y=0 to H do

cost = MC[y][x][ThrId];
CTA Barrier Synchronization;
le f t = SharedAggr[ThrId];
right= SharedAggr[ThrId+2];
aggr = cost + minimum( aggr, le f t+P1, right+P1, min+P2 ) - min;
L[y][x][ThrId] = aggr;
min = CTA_Minimum_Reduce ( aggr ); *** includes Barrier
Synchronization SharedAggr[ThrId+1] = aggr;

end
end

end
Algorithm 3: Aggregated Cost computation: top-to-bottom path direction

process pixels (99,1), (98,2) ... (0, 100), and then will reset the costs corresponding to
the previous pixel and continue with pixels (W-1,101), (W-2,102) ...

The cost aggregation and disparity computation defined by equation 2.4 have
been fused in Algorithm 4 in order to reduce the amount of memory accesses (avoids
writing and then reading the final cost matrix). A CTA-based parallel scheme is
proposed so that each CTA produces the disparity of a single pixel (line 7): first,
each CTA thread adds the costs corresponding to a given disparity level for all path
directions (line 4), and then CTA threads cooperate to find the disparity level with
minimum cost (line 5).

2.3.3 Additional Optimizations

We have applied three types of optimizations to the baseline algorithms that pro-
vided a combined performance improvement of almost 3×. We have vectorized the
inner loop of algorithm 3 (lines 4-12) to process a vector of 4 cost values (4 bytes)
per instruction (requiring a special byte-wise SIMD instructions for computing the
minimum operation). We have also modified the parallel scheme so that a single
warp performs the task previously assigned to a CTA, which we call CTA-to-warp
conversion. It (1) avoids expensive synchronization operations, (2) allows using
fast register-to-register communication (using special shuffle instructions) instead

FIGURE 2.5: Aggregated cost, Top-to-Bottom: CTA-parallel scheme with recur-
rence in the y-dimension and computational analysis
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input : L0[W][H][D], L1[W][H][D], L2[W][H][D] ... W, H, D
output: Disp[W][H]

parallel for x=0 to W do
parallel for y=0 to H do

CTA parallel for ThrId=0 to D do
cost = L0[x][y][ThrId]+L1[x][y][ThrId]+L2[x][y][ThrId]+...;
MinIndex = CTA_Minimum_Reduce(cost, ThrId);
if ThrId == 0 then

Disp[x][y] = MinIndex;
end

end
end

Algorithm 4: Summation of all path costs and Disparity Computation

of shared-memory communications, and (3) reduces instruction count and increases
instruction-level parallelism. A drawback of both strategies is a reduction of thread-
level parallelism, as shown in [9]. This is not a severe problem in the embedded
Tegra X1 device, with a maximum occupancy of ≈ 4 thousand threads.

Finally, to reduce the amount of data accessed from memory, the computation
of the aggregated cost for the last path direction (Alg. 3 Bottom-to-Top) is fused
with the final cost summation and disparity computation (Alg. 4), providing a 1.35x
performance speedup on the Tegra X1. Also, fusing the computation of the initial
matching cost (Alg. 2) with the aggregate cost computation for the horizontal path
directions (Alg. 3) improves performance by 1.13x.

2.4 Results

We have measured execution time and disparity estimation accuracy for multiple
images, 128 disparity levels, and 2, 4 and 8 path directions. Apart from executing on
a NVIDIA Tegra X1, which integrates 8 ARM cores and 2 Maxwell SMs with a TDP
of 10W, and for comparison purposes, we have also executed on a high-end NVIDIA
Titan X, with 24 Maxwell SMs and a TDP of 250W. We ignore the time for CPU-GPU
data transfers (less than 0.5% of the total elapsed time) since it can be overlapped
with computation. Since performance scales proportional to the number of image
pixels, we will restrict our explanation to 640×480 images.

The legend in Fig. 2.6 indicates the disparity estimation accuracy, measured us-
ing the KITTI benchmark-suite [19], when using different SGM configurations, and
not considering occluded pixels and treating more than 3 pixel differences as errors.
Using 4 path directions (excluding diagonals) reduces accuracy very slightly, while
using only the left-to-right and top-to-bottom directions reduces accuracy more no-
ticeably.

The left and right charts in Fig. 2.6 show, respectively, the performance through-
put (frames per second, or fps) and the performance per watt (fps/W) on both GPU
systems and also for different SGM configurations. The high-end GPU always pro-
vides more than 10 times the performance of the embedded GPU (as expected by
the difference in number of SMs), but the latter offers around 2 times more perfor-
mance per Watt. It is remarkable that real-time rates (42 fps) with high accuracy are
achieved by the Tegra X1 when using 4 path directions.
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FIGURE 2.6: Performance (fps), performance per Watt and accuracy results for
640×480px images, 128 disparity levels, and 2, 4 and 8 SGM path directions

Finally, an example of the disparity computed by our proposed algorithm can be
seen in Fig. 2.7b.

(A) Image obtained from the left camera of the car (B) Disparity computed with SGM described here

FIGURE 2.7: Example of disparity computation

2.5 Conclusions

The results obtained show that our implementation of depth computation for stereo-
camera systems is able to reach real-time performance on a Tegra X1. This fact in-
dicates that low-consumption embedded GPU systems, like the Tegra X1, are well
capable of attaining real-time processing demands. Hence, their low-power enve-
lope and remarkable performance make them good target platforms for real-time
video processing, paving the way for more complex algorithms and applications.

We have proposed baseline parallel schemes and data layouts for the dispar-
ity estimation algorithms that follow general optimization rules based on a simple
GPU performance model. They are designed to gracefully scale on the forthcom-
ing GPU architectures, like NVIDIA Pascal. Then, we have optimized the baseline
code and improved performance around 3 times with different specific strategies,
like vectorization or CTA-to-Warp conversion, that are also expected to be valid for
forthcoming architectures.

We plan to prove the higher performance potential of the new embedded NVIDIA
Pascal GPUs to enable real-time implementations with larger images and a higher
number of disparity levels, and more complex algorithms that provide better es-
timation results. In this sense, we are going to include post-filtering steps such as
Left-Right Consistency Check, subpixel calculation, and adaptive P2, which are well-
known methods of increasing accuracy.
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Chapter 3

Slanted Stixels

3.1 Introduction

Autonomous vehicles, advanced driver assistance systems, robots and other intel-
ligent devices need to understand their environment. For this purpose, both geo-
metric (distance) and semantic (classification) sources of information are useful. We
want to represent these inputs in a very compact model and compute them in real-
time to serve as a building block of higher-level modules, such as localization and
planning.
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FIGURE 3.1: The proposed approach: pixel-wise color, semantic and depth infor-
mation serve as input to our Slanted Stixels model, which is a compact semantic
representation of a 3D scene that accurately handles arbitrary scenarios such as
San Francisco city. The optional over-segmentation in the top-right yields signifi-

cant speed gains while nearly retaining the depth and semantic accuracy.

This success has led to increased interest in the model from the intelligent vehi-
cles community over the past years The Stixel world has been successfully used for
representing traffic scenes, as introduced in [44]. It has shown its potential particu-
larly in the Bertha-Benz drive [63], where it has been successfully applied for visual
scene understanding in autonomous driving. This success has led to increased in-
terest in the model from the intelligent vehicles community over the past years [5, 8,
10, 12, 26, 28, 31, 35, 51].

The Stixel world defines a compact medium-level representation of dense 3D
disparity data obtained from stereo vision using rectangles, the so called Stixels, as
elements. Stixels are classified either as ground-like planes, upright objects or sky,
which are important geometric elements found in man-made environments. This
representation transforms millions of disparity pixels to hundreds or thousands of
Stixels. At the same time, most scene structures, such as free space and obstacles,
which are relevant for autonomous driving tasks, are adequately represented.
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(A) Disparity representation of Stixels. The coloring encodes the distance from close (red) to far (green)

(B) Semantic representation of Stixels. The coloring encodes the semantic class following [11]

FIGURE 3.2: Scene representation obtained by our method of a challenging street
environment with a slanted road. Both geometric (top) and semantic (bottom) rep-

resentations are shown.

The idea behind the Stixel model is that planar surfaces are dominant in man-
made environments and they can be modeled using this assumption. Scene struc-
ture found in urban environments can be modeled with certain constraints, e.g. the
sky is above the horizon line and objects usually lie on the ground. Generally, the
geometric constraints of a scene are tied to the vertical direction. Hence, the envi-
ronment can be modeled as a column-wise segmentation of the image with a 3D
stick-like shape, i.e. a set of Stixels, c.f . fig. 3.1. The segmentation of the image is es-
timated by solving a column-wise energy minimization problem, taking depth and
semantic cues as inputs as well as a priori information that is used to regularize the
solution c.f . fig. 3.1.

The Stixel model has been successfully used for automotive vision applications
either to decrease parsing time, increase accuracy or both. We can find examples of
works using the Stixel representation in different topics such as object recognition [6,
36], building a grid map over time [39] and for autonomous driving [63]. Specifically,
for motion planning in the context of autonomous driving, the Stixel model has been
used c.f . [63, 64] to model the geometric constraints of a given scene.
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We propose a new depth model that is able to accurately represent arbitrary
kinds of slanted objects and non-flat roads. The improved Stixel representation out-
performs the original Stixel model in scenarios with non-flat roads, while keeping
the same accuracy on flat road scenes. The induced extra computational complexity
is reduced by incorporating an over-segmentation strategy that can be applied to any
Stixel model proposed so far. An earlier version of our work [28] proposed a simple
over-segmentation strategy that provided faster execution at the expense of decreas-
ing the accuracy of the model. This chapter introduces a novel over-segmentation
approach based on a Fully Convolutional Network (FCN) that outperforms the pre-
vious strategy, and achieves similar speedup results but retaining most of the accu-
racy of the original version. An overview of our method is shown in fig. 3.1.

Our main contributions are: (1) a novel depth model to accurately represent
arbitrary kinds of slanted surfaces into the Stixel representation; (2) a novel over-
segmentation prior designed to reduce the run-time of the method; (3) an effective
over-segmentation strategy based on a shallow Fully Convolutional Network; (4)
a new synthetic dataset with non-flat roads that includes pixel-level semantic and
depth ground-truth, which is publicly available1; and (5) an in-depth evaluation in
terms of run-time as well as semantic and depth accuracy carried out on this novel
dataset and several real-world benchmarks. Compared to the existing state-of-the-
art approaches, our method substantially improves the depth accuracy in non-flat
road scenarios.

3.2 Related Work

Our proposed method introduces a novel Stixel-based scene representation that is
able to account for non-flat roads, c.f . fig. 3.2. We also devise an approximation
to reduce the computational complexity of the underlying Dynamic Programming
algorithm.

First, we will comment on works proposing different road scene models. Occu-
pancy grid maps are models used to represent the surroundings of the vehicle [13,
39, 40, 55]. Typically, a grid in bird’s eye perspective is defined and used to detect
occupied grid cells and then, from this information, to extract the obstacles, drivable
area, and unobservable areas from range data. These grids and the Stixel world both
represent the 2D image in terms of column-wise stripes allowing to capture the cam-
era data in a polar fashion. Also, the Stixel data model is similar to the forward step
usually found in occupancy grid maps [12]. However, the Stixel inference method in
the image domain presents important differences compared to classical grid-based
approaches.

Our work builds upon the proposal from [51]: they use semantic cues in addition
to depth to extract a Stixel representation, which is able to provide a rich yet com-
pact representation of the traffic scene. However, their model assumes a constant
road slant and is therefore limited to flat road scenarios. In contrast, our proposal
overcomes this drawback by incorporating a novel plane model together with effec-
tive priors on the plane parameters.

Our proposal of using Stixels cuts is related to [10]: they use fast object detec-
tors for different object classes, e.g. Viola-Jones cascade detector [56], to produce top
and bottom Stixel cuts that are used as prior information, which is then integrated
into the Stixel algorithm. They prove that using object-level knowledge provides
significant accuracy improvements. Instead, we leverage semantic information as

1http://synthia-dataset.net
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pixel-level knowledge in our model for the same purpose of improving accuracy.
Semantic segmentation identifies the objects and other elements of the image, e.g.
walls or sidewalks, providing pixel-level information, instead of boxes around the
objects. Also, semantic segmentation requires a single predictor, while the method
proposed by [10] needs a detector trained for each object class. In contrast, we define
a Stixel cut prior to generate an over-segmentation of the optimal Stixel cuts in order
to speed up the execution of the algorithm.

There are some methods [5, 31, 35], that represent simplified scene models with
a single Stixel per column. The advantage of these approaches is that the computa-
tional complexity of the underlying algorithms is linear, but they cannot represent
some complex scenarios found in the real world, e.g. a pedestrian and a building in
the same column.

Recent work by [8] uses edge-based disparity maps to compute Stixels. Their
method is fast but they show that it gives inferior accuracy compared to the original
Stixel model [45].

[35] firstly introduced the use of an FCN in Stixel-based methods. A single RGB
image feeds the FCN to estimate the bottom of the first non-road Stixel, i.e. closest
obstacle. We use an FCN for a entirely different objective: to extract a Stixel cut over-
segmentation that accelerates the execution of the algorithm. Moreover, the input of
our FCN is a disparity map obtained from a stereo camera.

Finally, there are some works proposing fast implementations for Stixel compu-
tation. The FPGA implementation from [39] runs at 25 Hz with a Stixel width of
5 pixels, but the authors do not indicate the image resolution. [26] present a GPU-
accelerated implementation that runs at 26 Hz for a Stixel width of 5 pixels and im-
age resolution of 1024× 440 pixels, computed using a Semi-Global Matching (SGM)
[29] stereo algorithm. We propose a novel approximation that accelerates the com-
putation by reducing the algorithmic complexity. Accordingly, our proposal could
benefit from the aforementioned FPGA- or GPU-accelerated implementations.

3.3 Stixel Model

The Stixel world is a compressed representation of a 3D scene that preserves its rele-
vant structure. Since the structure in street environments is dominant in the vertical
domain, the Stixel world leverages this idea to model a scene without taking into ac-
count the horizontal neighborhood. This assumption leads to an efficient inference
method and also allows the inference to be performed on all columns in parallel.

The Stixel world is defined as a segmentation of image columns into stick-like
super-pixels with class labels and a 3D planar depth model c.f . fig. 3.3. We consider
three structural classes: object, ground and sky. These classes have properties that
are derived from an underlying 3D model: for object Stixels the distance is roughly
constant and usually lie on the ground, for sky Stixels the distance is infinite and for
ground Stixels we favor planes with accordance to the expected ground.

The Stixel world has several properties that are useful for higher-level process-
ing stages: (1) it is a medium-level scene representation that significantly reduces
the quantity of elements, e.g. from millions of pixels to hundreds of Stixels, while
keeping an abstract representation of physical extent, depth and semantics; (2) the
representation is based upon a street model; (3) the representation is not high-level
because an object is represented by more than one Stixel horizontally and it can be
split in more than one Stixel vertically too, e.g. occlusions and slanted objects such
as cars viewed from behind.
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FIGURE 3.3: Example of input disparity measurements (black lines) and output
Stixels encoded with semantic colors (colored lines) for a typical scene column

(right). Adapted from [12].

The joint Stixel segmentation and labeling problem is carried out via optimiza-
tion of the column-wise posterior distribution P(S: | M :) defined over a Stixel seg-
mentation S: given all measurements M : from that particular image column. In the
following, we drop the column indexes for ease of notation. We obtain Stixel width
> 1 as illustrated e.g. in fig. 3.1 by down-sampling of the inputs, this width is fixed
and is chosen to reduce the computational complexity during inference, however
heavy down-sampling leads to degradation in accuracy [12].

A Stixel column segmentation consists of an arbitrary number N of Stixels Si,
each representing four random variables: the Stixel extent via bottom Vb

i and top Vt
i

row, as well as its class Ci and geometric depth model Gi. Thereby, the number of
Stixels itself is a random variable that is optimized jointly during inference. To this
end, the posterior probability is defined by means of the unnormalized prior and
likelihood distributions

P(S | M) =
1
Z

P̃(M | S) P̃(S) (3.1)

where Z is the normalizing partition function. Transformed to log-likelihoods via

P(S = s | M = m) = − log(e−E(s ,m)) (3.2)

where E(·) is the energy function, Edata(·) is the likelihood term and Eprior(·) is
the prior term.

E(s, m) = Edata(s, m) + Eprior(s) (3.3)
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3.3.1 Data term

The likelihood term Edata(·) thereby rates how well the measurements mv at pixel v
fit to the overlapping Stixel si

Edata(s, m) =
N

∑
i=1

Estixel(si, m)

=
N

∑
i=1

vt
i

∑
v=vb

i

Epixel(si, mv) .

(3.4)

This pixel-wise energy is further split in a semantic and a depth term

Epixel(si, mv) = Edisp(si, dv) + wl · Esem(si, lv) . (3.5)

The parameter wl controls the influence of the semantic data term. The input is
provided by an FCN that delivers normalized semantic scores lv(ci) with ∑ci

lv(ci) =
1 for all classes ci at pixels v. The semantic energy favors semantic classes of the Stixel
that fit to the observed pixel-level semantic input [51]. The semantic likelihood term
is

Esem(si, lv) = −log(lv(ci)) . (3.6)

The depth model is designed to represent the different characteristics of the dif-
ferent geometric classes, i.e. object, ground and sky Stixels. Furthermore, the model
enforces multiple stacked Stixels in cases of objects with the same class but different
depths.

Our depth input is a dense disparity map, each pixel is assigned a disparity value
or is masked as invalid i.e. dv ∈ {0...dmax, dinvalid}. The depth term is defined by
means of a probabilistic and generative sensor model Pv(·) that considers the accor-
dance of the depth measurement dv at row v to the Stixel si

Edisp(si, dv) = − log(Pv(Dv = dv | Si = si)) . (3.7)

Invalid dinv disparity measurements have to be handled, therefore, a prior prob-
ability of a valid disparity value is defined as pval

Pv(Dv | Si) =

{
pval Pv,val(Dv | Si) if dv 6= dinv

(1− pval) otherwise
(3.8)

where Pv,val(Dv | Si) is the measurement model of valid disparities only. It is
comprised of a constant outlier probability pout and a Gaussian sensor noise model
for valid measurements with confidence cv

Pv,val(Dv | Si) =
pout

ZU
+

1− pout

ZG(si)
e
−
(

cv(dv−µ(si ,v))
σ(si)

)2

(3.9)

that is centered at the expected disparity µ(si, v) given by the depth model of the
Stixel, where ZU and ZG(si) normalize the distributions. Similarly to [45], we use the
confidence of the depth estimates cv to influence the shape of the distribution. The
Gaussian models the typical disparity noise and the uniform distribution makes the
model more robust to outliers, which is weighted by pout. The standard deviation
σ(si) models the noise of the stereo matching algorithm and depends on the class ci.
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New depth model

The depth model defines the 3D outline of a Stixel using very few parameters per
Stixel and reflects our assumptions on the surrounding scene. Both, data term (c.f .
eq. (3.9)) and priors (c.f . section 3.3.2) have a significant impact on the inferred depth
model. In previous formulations, the three different geometric classes were designed
using restrictive constant height (ground Stixels) and constant depth (object and sky
Stixels), assumptions per Stixel, e.g. for object Stixels: µ(si, v) = constant.

This chapter introduces a new plane depth model that relaxes the previous as-
sumptions in favor of a more accurate depth representation. The new model is for-
mulated such that it nicely interacts with this well founded and experimentally vali-
dated depth sensor model. To this end, we formulate the depth model µ(si, v) using
two random variables defining a plane in the disparity space that evaluates to the
disparity in row v via

µ(si, v) = bi · v + ai . (3.10)

Note that we assume narrow Stixels and thus can neglect one plane parameter,
i.e. the roll.

This model is a generalization of the previous class-specific depth models used in
previous works, allowing for a more flexible representation of the scene because of
the extra free parameter c.f . fig. 3.4. The way of modeling the different Stixel classes
i.e. object, ground and sky is through priors, as explained in section 3.3.2. Also, to com-
pletely understand the details about the inference, we suggest to read section 3.3.3.

FIGURE 3.4: Comparison of original [51] (top) and our Slanted Stixels (bottom):
due to the fixed slant in the original formulation, the road surface is not well rep-
resented as illustrated on the top-left figure. The novel model is capable of recon-

structing the whole scene accurately.

3.3.2 Prior term

The prior captures knowledge about the segmentation independent from measure-
ments, in this section we define the priors used for this model, they are based on
[12]. The Markov property is used so that the prior reduces to pair-wise relations
between subsequent Stixels. Accordingly, the prior is computed as

Eprior(s) =
N

∑
i=2

Epair(si, si−1) + E f irst(s1) . (3.11)
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In the next sections, where different priors are introduced, Epair(si, si−1) is the
summation of all these priors. However, E f irst(s1) does not include pairwise terms,
i.e.

E f irst(s1) =Emc(s1) + Eseg f irst(s1) + Eseglast(s1)

+ Etop≥bottom(si) + Eplane(s1)
(3.12)

Model complexity prior

A model complexity term favors solutions composed of fewer Stixels and thus in-
vokes costs for each Stixel in the column segmentation S:

Emc(si) = Cmc . (3.13)

There is a trade-off between compactness and accuracy. A high Cmc parameter
would lead to a very compact segmentation i.e. few Stixels. However, a representa-
tion with few Stixels is more likely to have lower accuracy, e.g. a solution comprised
of one Stixel the size of the whole column would result in a huge disparity and se-
mantic error.

Segmentation priors

The model has to enforce that all pixels are assigned to exactly one Stixel, i.e. non-
overlapping Stixels, Stixels extend over all the column and Stixels are connected.
Therefore, the first priors are defined to comply with the following rules: The first
Stixel must begin in row 1 and the last Stixel must end in row h, i.e.

Eseg f irst(si) =

{
∞ if vb

i 6= 1, i = 1
0 otherwise

(3.14)

Eseglast(si) =

{
∞ if vt

i 6= h, i = n
0 otherwise

. (3.15)

Furthermore, every Stixel must be connected to the next one and the Stixel top
row must be greater than the bottom row, i.e.

Econnection(si, si−1) =

{
0 if vb

i = vt
i−1 + 1

∞ otherwise
(3.16)

Etop≥bottom(si) =

{
0 if vb

i ≤ vt
i

∞ otherwise
. (3.17)

Structural priors

The gravity prior penalizes a flying object i.e. an object Stixel not lying on top of the
previous ground Stixel,

Egravity(si, si−1) =


α−gravity + β−gravity∆g if ∆g < 0

α+
gravity + β+

gravity∆g if ∆g > 0

0 otherwise

(3.18)
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where ∆g = µs(vb
i , gi)− µs(vt

i−1, gi−1) is the difference between the object Stixel
disparity µs(vb

i , gi) at it’s bottom pixel vb
i and the disparity of the ground Stixel µs(vt

i−1, gi−1)
at the top row vt

i . It only applies for si being an object and si−1 being a ground Stixel.
The depth ordering prior penalizes a combination of two staggered object Stixels

when the upper of the two is closer (in distance to the car) than the lower one.

Eord(si, si−1) =

{
αord + βord(gi − gi−1) if gi > gi−1

0 otherwise
. (3.19)

A novel prior is introduced in this chapter: the ground gap prior penalizes two
consecutive ground Stixels when the bottom disparity of the upper Stixel i.e. disparity
at row vb

i and the disparity of the lower Stixel at row vb
i do not match.

Egap(si, si−1) =


α−gap + β−gap∆gap if ∆gap < 0
α+

gap + β+
gap∆gap if ∆gap > 0

0 otherwise

(3.20)

where ∆gap = gs(vb
i , gi) − gs(vb

i , gi−1). These structural priors do not enforce
their assumptions. Instead, they penalize unusual combinations, e.g. a flying object
(gravity prior), traffic signs (ordering prior).

Transition priors

These priors define the knowledge regarding the transition between a pair of Stixels.

Etransition(si, si−1) = γci ,ci−1 (3.21)

where γci ,ci−1 is the transition cost between previous Stixel class ci−1 to current
Stixel class ci. This is defined via a two-dimensional transition matrix for all com-
binations of classes γci ,ci−1 . Only first order relations are modeled in order to infer
efficiently.

Plane prior

In this chapter, we propose a new additional prior term that uses the specific prop-
erties of the three geometric classes. We expect the two random variables A, B rep-
resenting the plane parameters of a Stixel to be Gaussian distributed, i.e.

Eplane(si) =

(
ai − µa

ci

σa
ci

)2

+

(
bi − µb

ci

σb
ci

)2

− log(Z) . (3.22)

This prior favors planes in accordance to the expected 3D layout corresponding
to the geometric class. For instance, object Stixels are expected to have an approx-
imately constant disparity, i.e. µb

object = 0. The expected road slant µb
ground can be

set using prior knowledge or a preceding road surface detection. For sky Stixels we
expect infinite distance i.e. 0 disparity, therefore, we set µa

sky = µb
sky = 0.

The standard deviations σa
ci

and σb
ci

are used in order to enforce the assumptions
for each Stixel class, i.e. the more confident we are that object Stixels have constant
distance, the closer to 0 we would set σb

object. The same applies for ground Stixels: if
we know the road is not slanted, we can rely on the expected previous road model
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and set σb
ground → 0. For sky Stixels, it does not make sense to have a disparity

different to 0. Therefore, we set σa
sky → 0 and σb

sky → 0.
Note that the novel formulation is a strict generalization of the original method,

since they are equivalent, e.g. if the slant is fixed, i.e. σb
object → 0, µb

object = 0.

3.3.3 Inference

The sophisticated energy function defined in section 3.3 is optimized via Dynamic
Programming as in [44]. However, we must also optimize jointly for the novel depth
model. When optimizing for the plane parameters ai, bi of a certain Stixel si, it be-
comes apparent that all other optimization parameters are independent of the actual
choice of the plane parameters. We can thus simplify

argmin
ai ,bi

E(s, m) = argmin
ai ,bi

Estixel(si, m) + Eplane(si) . (3.23)

Thus, we minimize the global energy function with respect to the plane param-
eters of all Stixels and all geometric classes independently. We can find an optimal
solution of the resulting weighted least squares problem in closed form. However,
we still need to compare the Stixel measurements to our new plane depth model.
Therefore, the complexity added to the original formulation is another quadratic
term in the image height.

3.3.4 Stixel Cut Prior

The Stixel inference process described so far requires the estimation of the cost for
each possible Stixel in an image. However, many Stixels can be trivially discarded,
e.g. in image regions with homogeneous depth and semantic input, making it possi-
ble to avoid the computation steps associated to the calculation of these.

We propose a novel prior that exploits hypothesis generation to significantly re-
duce the computational burden of the inference task. To this end, we formulate a
new prior similar to [10]; however, instead of Stixel bottom and top probabilities, we
incorporate generic likelihoods for pixels being the cut between two Stixels.

We leverage this additional information adding a novel prior term for a Stixel si

Ecut(si) = − log(cvi(cut)) (3.24)

where cvi(cut) is the confidence for a cut at vi, thus cvi(cut) = 0 implies that there is
no cut between two Stixels at row v.

As described in [42], we can design a recursive definition of the optimization
problem in order to solve the problem using a Dynamic Programming scheme. In
order to simplify our description, we use a special notation to refer to Stixels: obt

b =
{vb, vt, object}. Similarly, OBk is defined as the minimum aggregated cost of the
best segmentation from position 0 to k. The Stixel at the end of the segmentation
associated with each minimum cost is denoted as obk. We next show a recursive
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definition of the problem:

OBk = min



Edata(obk
0) +Eprior(obk

0)

Edata(obk
x) +Eprior(obk

x, obx−1)

+OBx−1∀x ∈ cuts, x ≤ k
Edata(obk

x) +Eprior(obk
x, grx−1)

+GRx−1∀x ∈ cuts, x ≤ k
Edata(obk

x) +Eprior(obk
x, skx−1)

+SKx−1∀x ∈ cuts, x ≤ k

. (3.25)

We only show the case for object Stixels, but the other cases are solved similarly. Also,
GRk and SKk stand for ground and sky respectively. The base case problem, i.e. seg-
menting a column of the single pixel at the bottom, is defined: OB0 = Edata(ob0

0) +
Eprior(ob0

0). Our method trusts that all the optimal cuts will be included in our over-
segmentation (cuts in eq. (3.25)), therefore, only those positions are checked as Stixel
bottom and top. This reduces the complexity of the Stixel estimation problem for
a single column to O(h′ × h′), where h′ is the number of over-segmentation cuts
computed for this column, h is image height and h′ � h.

The computational complexity reduction becomes apparent in fig. 3.5. As stated
in [12], the inference problem can be interpreted as finding the shortest path in a
directed acyclic graph. Our approach prunes all the vertices associated with the
Stixel’s top row not included according to the Stixel cut prior, c.f . fig. 3.5b.

3.4 Generation of the Stixel cut prior

The previous section explained how to use a Stixel cut prior to reduce the compu-
tational complexity of the Stixel inference. The idea is that many Stixel cuts could
be trivially discarded, e.g. in image regions with homogeneous depth and semantic
input. We can save a lot of computation by not processing those unlikely Stixel cuts.
The goal is to devise a fast method to generate an over-segmentation of the optimal
Stixel cuts. And, if those optimal cuts are included in the generated hypothesis, then
the Stixel algorithm will provide the same output as in the original case, but doing
much fewer computation steps.

We propose two methods to generate Stixel cuts. The first method is a simple
strategy that uses some mathematical concepts to identify points of interest c.f . sec-
tion 3.4.1. It is a very fast approach, but misses some of the optimal Stixel cuts and,
therefore, the final accuracy of the Stixel inference is reduced. The second method
uses a shallow Fully Convolutional Network (FCN) that is trained on the disparity
map to infer likely Stixel cuts c.f . section 3.4.2. This strategy is also very fast, since
the FCN is small, and is able to provide almost all of the optimal Stixel cuts. For both
methods, we leverage semantic segmentation information by including the edges of
the semantic image into the set of the generated Stixel cuts.

3.4.1 Time Series Compression

The first method to generate Stixel cuts is based on the work of [31], and has linear
time complexity and linear memory requirements. In their work, each column of
the disparity map is treated independently as a time series, i.e. a signal with mea-
surements on equal intervals of time. They first perform an extreme points detection
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FIGURE 3.5: Stixel inference illustrated as shortest path problem on a directed
acyclic graph: the Stixel segmentation is computed by finding the shortest path
from the source (left gray node) to the sink (right gray node). The vertices represent
Stixels with colors encoding their geometric class, i.e. ground, object and sky. Only
the incoming edges of ground nodes are shown for simplicity. Adapted from [12].

step that generates a list of possible Stixel cuts, and then apply subsequent filters to
this list in order to generate the final Stixel segmentation. As we want to obtain an
over-segmentation containing all the optimal Stixel cuts, we only use the first step
of their proposal.

The detection of extreme points is based on techniques for time series compres-
sion [18]. A time series can be compressed by selecting local extreme points, i.e.
maxima and minima of a function within a range. The assumption is that local ex-
treme points are enough to find the important parts of the signal, and the rest would
be unimportant points or noise.

In [31] only left and right extrema are selected, while other kinds of extrema are
discarded. Given a time series {t1, t2, . . . , ti, . . . , tn−1, tn} and point ti with 1 < i < n,
the definition of left and right minimum is as follows (the definition of maxima is
symmetric):

• ti is left minimum if ti < ti−1 and there is tj such that j > i and ti = . . . = tj <
tj+1.

• ti is right minimum if ti < ti+1 and there is tj such that j < i and tj−1 > tj =
. . . = ti.

Similarly, we generate Stixel cuts by finding left and right extrema and the first
and last points of the sequence of pixels in the column. The example in fig. 3.6
illustrates the method. The predicted Stixel cuts are indicated in red color. In the
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example the vertical resolution is reduced around 3.3 times, which implies reduced
computational work for the Stixel inference task.

FIGURE 3.6: Generated Stixel cuts (highlighted in red) using the left and right
extrema as defined in [31], and also cuts generated from semantic segmentation.

Stixel cut density is 30%, equivalent to a 3.3× reduction in vertical resolution.

3.4.2 FCN-based method

We propose a novel shallow deep neural network c.f . fig. 3.8 that generates a set of
promising Stixel cuts from depth images c.f . fig. 3.7. We follow the proposal in [32]:
we use disparities instead of depth. We have experimentally found that adding the
RGB image to the input of the neural network does not improve the accuracy of the
method, compared to the simpler and faster strategy of directly adding the edges of
the semantic image into the set of the generated Stixel cuts.

FIGURE 3.7: Generated Stixel cuts (highlighted in red) for the FCN-based method.
Stixel cut density is 31.5%, equivalent to a 3.2× reduction in vertical resolution.

We design the network to provide an over-segmentation of the optimal Stixel cuts
that should be significantly smaller than the total number of potential Stixel cuts
(which is the height of the image). Also, the computational work required for the
network inference must be small, ideally similar to the Time Series method proposed
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in section 3.4.1. In the remainder of this section, we will first discuss the proposed
network architecture, and then describe the data and training strategy.

Network architecture

Our proposal is based on the architecture described by [50]. They present a multi-
modal FCN designed for semantic segmentation with a mid-level fusion architecture
that exploits complementary input cues, i.e. RGB and disparity data. Their design
includes the Network in Network (NiN) method proposed by [37]. Our proposal
inherits the network branch that processes the disparity data and discards the branch
on the RGB data, which is described in detail in fig. 3.8. The proposed FCN is a
very shallow network with three consecutive NiNs, and a final deconvolution that
recovers the desired resolution of the Stixel cuts. The output of the FCN is a binary
image indicating whether or not there is a Stixel cut for that pixel.

Training data

We trained the proposed FCN using disparity maps generated from images in the
Synthia synthetic dataset [46] and from images in a real-data sequence (6757 images)
recorded in San Francisco, c.f . fig. 3.9. In both cases, the disparity maps are gener-
ated from the left and right RGB images using a stereo matching algorithm [29]. This
is the expected situation in a realistic scenario, where the SGM algorithm in the per-
ception pipeline generates the disparity map and feeds the FCN that produces the
Stixel over-segmentation.

The ground-truth for the training data (the expected Stixel cuts) is generated as
a combination of methods. In the case of the annotated synthetic dataset, which
contains both pixel-level semantic and instance-level annotations, the ground-truth
includes, as desired Stixel cuts, the boundaries of the instances and the seman-
tic classes in the image (as in [12]). Finally, the Stixel cuts associated to disparity
changes are obtained by running the Stixel inference method. In the real-data se-
quence, we only perform this last step because we lack ground-truth.

As discussed previously c.f . section 3.3.2, the definition of the parameters of the
Stixel model represent a trade-off between compactness and accuracy. Since we need
an over-segmentation of the optimal Stixel cuts, we adjust the parameters of the
model to be conservative and to favor accuracy versus compactness.

The idea of using the Stixel model as a way to train a fast and simple neural
network to approximate the optimal Stixel segmentation is inspired by model dis-
tillation techniques [7]. The comparatively slow Dynamic Programming method to
solve the probabilistic model is used to transfer the knowledge inside the complex
model to a fast and compact FCN that approximates the optimal Stixel cuts.

Training strategies

Since our problem is to classify each pixel of our input disparity map as cut or not-cut,
we use cross-entropy as the loss function that must be minimized. The distribution
of cut/not-cut is strongly biased in our input and, accordingly, we introduce a class-
balancing weight in the loss function, similarly to [57]. These weights cause the FCN
to generate wider edges c.f . fig. 3.7. This is useful, since the FCN roughly detects the
Stixel cut positions, and the precise detection is left to the Stixel inference.

We set the learning rate to 10−8 and the batch size to five: four of those inputs
are Synthia images and one of them is a real-data image. The missing disparities are
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FIGURE 3.8: Definition of the proposed Fully Convolutional Network for generat-
ing Stixel cuts.



32 Chapter 3. Slanted Stixels

FIGURE 3.9: Sample image from the real-data sequence used for Stixel cut genera-
tion. Stixel cut ground-truth is highlighted in red.

encoded as −1. Input normalization is done by subtracting the mean value from the
disparity map. We initialize the FCN with the weights used in [50], since semantic
segmentation is a similar problem.

3.5 Experiments

We will assess the accuracy and run-time of our method. We need to verify that our
proposal improves the accuracy for scenes with non-flat roads, as well as maintain-
ing the accuracy for flat road scenes. To accomplish this, we present synthetic and
real-data datasets to evaluate our method in section 3.5.1. The experimental details
such as inputs, metrics and baselines are presented in section 3.5.2. Our quantitative
and qualitative results are presented in section 3.5.3.

3.5.1 Datasets

sidewalk building vegetation trafficlight traffic sign bicycle motorcycle road lines

terrain road wall pole rider truck bus train fence person sky car

FIGURE 3.10: The SYNTHIA-SF Dataset. A sample frame (left) with its depth (cen-
ter) and semantic labels (right).

We must evaluate accuracy for both geometric and semantic information. In or-
der to do that, we use Ladicky [34], an annotated subset of KITTI [19], which contains
both dense semantic labels and depth ground-truth. It is a set of 60 images with 0.5
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mega-pixel resolution, we evaluate Stixel semantic and depth accuracy. We ignore
the three rarest object classes (as suggested in [34]), which leaves us with 8 classes.

The training data used for our semantic segmentation FCN, is collected from
publicly available semantic annotations on other parts of KITTY [23, 33, 52, 58, 62].
Our amalgamated training set contains 676 images, the labels are harmonized as
suggested by [34]. The harmonization and data processing is consistent with previ-
ous work [51] to allow for fair comparison.

To further evaluate disparity accuracy, we use the training data of KITTI 2015 [19]
stereo challenge. The dataset contains 200 images with associated sparse disparity
ground-truth generated by a laser scanner. No semantic segmentation ground-truth
is available for this dataset.

To evaluate our semantic accuracy, we use Cityscapes [11], a complex dataset with
dense semantic segmentation annotations of 19 classes on∼ 3000 images for training
and 500 images for validation, we use this validation set for testing our method.

All the datasets we presented are collected in flat road environments. Then, they
help us validate we are not decreasing accuracy with respect to previous approaches
in this kind of scenes. However, we need to evaluate our hypothesis that our method
does better in non-flat environments, therefore, we need a new dataset.

To that end, we introduce a new synthetic dataset inspired by [46]. We generated
this dataset in order to evaluate our model; but it contains enough information to be
useful in other related tasks, such as semantic and instance segmentation.

SYNTHIA-San Francisco (SYNTHIA-SF) contains 2224 images that we use to
evaluate both semantic and disparity accuracy in non-flat road environments. This
synthetic dataset was rendered from a virtual city with photo-realistic quality and
provides precise pixel-level depth and semantic annotations for 19 labels c.f . fig. 3.10.
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FIGURE 3.11: Frame-rate of our method (measuring only Stixel computation step
and corresponding over-segmentation approach) compared to Semantic Stixels [51]
for SYNTHIA-SF (image resolution of 1920×1080) on a multi-threaded CPU im-
plementation (Intel i7-6800K) computed with a Stixel width of 8 pixels and same
Stixel height. Two over-segmentation approaches are compared: Time Series c.f .

section 3.4.1, FCN c.f . section 3.4.2.

3.5.2 Experiment details

Metrics

Our goal is to evaluate our method both in terms of semantic and depth accuracy us-
ing two metrics. The depth accuracy is generated as a rate of outliers of the disparity
estimates, it is the standard metric used on the KITTI benchmark [19]. An outlier is
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TABLE 3.1: We report frame-rate for each stage of our pipeline for
a stereo pair of 1242 × 375 image resolution. OS stands for Over-
segmentation. Stixel methods and SGM run-time is obtained using a
CPU Intel i7-6800K. A NVidia Maxwell Titan X is used for obtain-
ing Semantic Segmentation frame-rate. Note that Stixel frame-rate is
variable when using an over-segmentation method, a representative
run-time is provided. The total frame-rates are reported for the whole

pipeline.

Stage Frame-rate (Hz)

SGM 55
Semantic Segmentation 47.6
Our Stixels (OS: Time Series) 116
Our Stixels (OS: FCN) 130
Our Stixels (No OS) 61
Total (OS: Time Series) 20.92
Total (OS: FCN) 21.33
Total (No OS) 18

TABLE 3.2: Accuracy of our approach compared to Semantic Stixels
[51], raw SGM and FCN. We provide results on four datasets: Ladicky
[34], KITTI 15 [19], Cityscapes [11] and SYNTHIA-SF using metrics:
Disparity Error (less is better) and Intersection over Union (more is
better) c.f . section 3.5.1 and section 3.5.2. Fast (over-segmentation)
methods are presented in section 3.4.1 and section 3.4.2. Significantly

best results are highlighted in bold.

Input No over-segmentation Fast: Time Series Fast: FCN
Metric Dataset SGM FCN Sem. Stixels Ours Sem. Stixels Ours Sem. Stixels Ours

Disp Error (%)
Ladicky 16.66 - 17.38 16.84 17.60 17.01 17.44 16.84
KITTI 15 11.01 - 11.05 11.21 11.9 11.9 11.21 11.24
SYNTHIA-SF 11.06 - 29.33 12.99 30.60 14.20 31.12 14.19

IoU (%)
Ladicky - 69.8 66.2 66.1 66.0 66.0 66.2 66.1
Cityscapes - 66.7 65.4 65.8 64.9 65.0 65.5 65.6
SYNTHIA-SF - 48.1 46.0 48.5 45.7 48.0 47.0 48.6

defined as a disparity with an absolute error larger than 3 pixels or a relative devia-
tion larger than 5% with respect to the ground-truth. The metric used for semantic
accuracy is the standard average Intersection-over-Union (IoU) over all classes [17].
To evaluate the complexity of the representation, we provide the number of Stix-
els per image. Finally, inference speed is shown as Frame-rate (Hz), this is useful
to evaluate if we meet our real-time performance requirements. Executation times
of Stixels and SGM are generated using a multi-threaded CPU implementation on
standard off-the-shelf hardware: Intel i7-6800K. Frame-rate is also measured for the
semantic segmentation neural network, the FCN is run using NVidia Maxwell Titan
X GPU. The over-segmentation approach is included in the Stixel frame-rate. Note
that the Stixel frame-rate is variable because of the over-segmentation method, i.e. it
will depend on the number of Stixel cuts removed, therefore we provide a represen-
tative frame-rate. Similarly to [12], we compute SGM and semantic segmentation in
parallel to maximize the throughput, however, we will have one frame delay.
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TABLE 3.3: Number of Stixels (103) obtained by our methods com-
pared to Semantic Stixels [51] and raw input (total number of pix-
els). We provide results on four datasets: Ladicky [34], KITTI 15 [19],
Cityscapes [11] and SYNTHIA-SF c.f . section 3.5.1. Fast (oversegmen-

tation) methods are presented in section 3.4.1 and section 3.4.2.

Input No over-segmentation Fast: Time Series Fast: FCN
Dataset SGM/FCN Sem. Stixels Ours Sem. Stixels Ours Sem. Stixels Ours

Ladicky 454 0.6 0.6 0.6 0.6 0.6 0.6
KITTI 15 452 0.7 0.7 0.7 0.7 0.7 0.7
Cityscapes 2 k 1.4 1.5 1.3 1.4 1.4 1.5
SYNTHIA-SF 2 k 1.5 1.7 1.2 1.3 1.3 1.3

Baseline

Our baseline for comparison is Semantic Stixels [51], because they are the state-of-
the-art in terms of Stixel accuracy. We provide accuracy of our new model, c.f . sec-
tion 3.3. Finally, we evaluate the complexity of our Stixel cut approach section 3.3.4,
we evaluate our two proposed over-segmentation methods presented in section 3.4.1
(labeled as Time Series) and section 3.4.2 (labeled as FCN).

Input

The inputs of our method are disparity maps via SGM [29] and semantic segmenta-
tion for each pixel computed by a CNN [38]. To allow fair comparison of results, we
use the same neural network as [51] without retraining. For the same reason, we set
Stixel width to 8 pixels with the same down-sampling in the vertical direction. All
hyperparameters are extracted from [51].

We use the camera parameters obtained after calibration to set the expected val-
ues of µa

ground and µb
ground. For object Stixels, we set σb

object → 0, µb
object = 0 because the

disparity is too noisy for the slanted object model. Finally, since sky Stixels can not
have slanted surfaces, we set: µa

sky = 0, µa
sky = 0, σa

sky → 0, σb
sky → 0.

3.5.3 Results

We provide quantitative results of our method and baseliens are presented in ta-
bles 3.2 and 3.3 and fig. 3.11.

We can see that our method obtains comparable or slightly better results on all
flat-road datasets c.f . compare Semantic Stixels to Ours for Ladicky, KITTI 15 and
Cityscapes datasets in table 3.2. With this results, we verify that our more flexible
approach does not get worse results for these scenarios.

The second observation is that our model accurately models non-flat scenes in
contrast to the original Stixel approach, substantially improving depth accuracy by
more than 16% c.f . compare Semantic Stixels to Ours for the SYNTHIA-SF dataset
in table 3.2. We experimentally show that this holds for real-data by providing a
video of the Stixel 3D representation of a challenging non-flat scene as supplemen-
tary material. As a consequence of the joint semantic and depth inference of Stixels,
semantic accuracy is also improved because of our new depth model.

Our Fast: FCN over-segmentation approach provides an accuracy almost equal to
not using over-segmentation in all cases but one. Note that a perfect over-segmentation
method would find the optimal cuts, then, it would provide the same accuracy of not
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RGB Image Original Stixels [51] Our Stixels

FIGURE 3.12: Some results on real data: with non-flat roads our model correctly
models the scene, while retaining accuracy on objects. We show a failure case in
the last row, our approach detects part of the road as sidewalk because of incorrect
semantic input. As we highlight with a read circle, the original approach detects a

wall, this could lead to an unnecessary emergency break.

using over-segmentation. This means that our Fast: FCN method is close to that hy-
pothetical perfect approach. As expected, Fast: FCN is superior to Fast: Time Series
method in all cases c.f . when comparing both methods for the SYNTHIA-SF dataset
in table 3.2.

Both over-segmentation approaches obtain higher error for our SYNTHIA-SF
dataset; this could be because of the more difficult road Stixel cuts of these scenes,
that are more difficult to predict, c.f . compare No over-segmentation to Fast methods
in table 3.2.

All methods are a compact model of the scene, because the complexity of Stixel
representation is small compared to high resolution of the inputs, c.f . table 3.3.

As last remark, we want to highlight that the proposed Fast methods improve
run-time with respect to the original Stixel approach by up to 2×, and 7× with re-
spect to the Slanted Stixel method, while maintaining competitive accuracy, only a
slight drop in depth accuracy c.f . fig. 3.11. The speed-up increases with higher res-
olution of inputs because of the quadratic and cubic computational complexity of
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original and Slanted Stixel methods, respectively. For the interested reader, we also
provide per-stage run-time measurements c.f . table 3.1.

We also provide a qualitative evaluation on real data between our proposal and
previous work. Figure 3.12 shows some of these examples, we can see that our
method is capable of correctly representing non-flat roads as well as objects. The
previous Stixel model produces an incomplete road representation and in one in-
stance generates a false object that could cause an emergency break.

3.6 Conclusions

This chapter presented a novel depth model for the Stixel world that is able to ac-
count for non-flat roads and slanted objects in a compact representation that over-
comes the previous restrictive constant height and depth assumptions. This change
in the way Stixels are represented is required for difficult environments that are
found in many real-world scenarios. Moreover, in order to significantly reduce the
computational complexity of the extended model, a novel approximation has been
introduced that consists of checking only reasonable Stixel cuts inferred using fast
methods. We showed in extensive experiments on several related datasets that our
depth model is able to better represent slanted road scenes, and that our approxima-
tion is able to reduce the run-time drastically, with only a slight drop in accuracy.

As future work, we would like to focus on circumventing the limitations of our
method. Namely, (1) the vertical/column independence assumed by the model is
clearly not true. A more global representation, e.g. super-pixels that span vertically
and horizontally, would be more compact and less prone to errors; (2) some sur-
faces are not well represented by a linear model, e.g. cars. A more complex depth
model and specific models for each semantic class could represent more faithfully
the scene. Nonetheless, a model with more free variables could also lead to a bad
representation because of the noise; (3) the proposed over-segmentation algorithm
has a non-predictable run-time. And this is a bad characteristic for a real-time sys-
tem. The worst-case scenario, i.e. no Stixel cuts removed, is as slow as not using
over-segmentation at all (although very unlikely); (4) in case of movement of the
stereo rig during operation, there could be an offset in roll effectively breaking the
vertical world assumption.
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Chapter 4

Stixels on the GPU

4.1 Introduction

Advanced driver assistance systems (ADAS), autonomous vehicles, robots and other
intelligent devices need to understand their environment. Stereo camera systems
provide geometric (distance) and semantic (classification) data to estimate both the
semantic class and the distance of objects and the free space in a given scene. The
large amount of low-level per-pixel data is very costly to transmit and process and
commonly a medium-level representation known as the Stixel World [3, 44] is used.
It relies on the fact that man-made environments mostly present horizontal and ver-
tical planar surfaces, like roads, sidewalks or soil (horizontal), and buildings, pedes-
trians or cars (vertical). This medium-level representation must be computed in real-
time to serve as a building block of higher-level modules, such as localization and
planning.

The Stixel world has been successfully used for representing traffic scenes, as
introduced in [44]. The intelligent vehicles community has shown an increasing in-
terest in this model over the last years [5, 8, 10, 12, 26–28, 31, 35, 51]. It defines a
compact representation of the dense 3D disparity data obtained from stereo vision
that uses rectangles, the so called Stixels, as elements. Stixels are classified either
as ground-like planes, upright objects or sky, which are the primitive geometric ele-
ments found in man-made environments. This representation transforms millions
of disparity pixels to hundreds or thousands of Stixels. At the same time, most scene
structures, such as free space and obstacles, which are relevant for autonomous driv-
ing tasks, are adequately represented.

The Stixel world can model the scene structures found in urban environments
with certain constraints, e.g. sky is above the horizon line and objects usually lie
on the ground. Generally, the geometric constraints of a scene are tightened to the
vertical direction. Hence, the environment can be modeled as a column-wise seg-
mentation of the image with a 3D stick-like shape, i.e. a set of Stixels, c.f . fig. 4.1. The
segmentation of the image is estimated by solving a column-wise energy minimiza-
tion problem, taking depth and semantic cues as inputs as well as a priori information
that is used to regularize the solution. The Stixel model has been successfully used
for automotive vision applications either to decrease parsing time, increase accuracy
or both [6, 14, 15, 36, 39, 43, 49].

Stixel estimation is a problem with a high computational complexity. As a con-
sequence, the algorithm implemented on a multi-core CPU by [27] does not fulfill
the real-time nor the energy-efficiency requirements of autonomous driving appli-
cations. Dedicated hardware designs (e.g. FPGA or ASIC) may achieve these goals,
but are very inflexible and expensive regarding changes in the algorithms.

Embedded GPU-accelerated systems, like the NVIDIA Jetson and DrivePX plat-
forms, allow low-cost and low-energy consumption, real-time Stixel computation.
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(A) Geometric representation of
Stixels

(B) Semantic representation of
Stixels

(C) 3D representation of Stixels

FIGURE 4.1: Scene representation of a challenging street environment obtained by
our method. Geometric (left), semantic (center) and 3D (right) representations are
shown. In fig. 4.1a, color encodes the distance from close (red) to far (green). In

fig. 4.1b, color encodes the semantic class following [11].

GPUs are very well suited for algorithms exhibiting massive parallelism, but may
suffer high performance inefficiencies with algorithms that contain inherent depen-
dencies, as those using dynamic programming techniques like the Stixel algorithm
presented by [27, 44]. Careful work distribution and task cooperation, coupled with
an appropriate data layout design, may overcome those difficulties and achieve com-
petitive performance.

This work describes and evaluates a GPU-accelerated software design of the
Slanted Stixel world recently proposed in [27, 28], that achieves real-time on cur-
rent low-power embedded systems. Slanted Stixels generalize the original proposal
with a more flexible depth model that defines a plane in the disparity space by using
two random variables (line slope and intercept). This reformulation overcomes the
previous restriction of having constant depth models for object and ground Stixels
and accurately represents arbitrary kinds of slanted objects and non-flat roads. It
has been proved to provide substantially better quality on scenarios with non-flat
roads. The better accuracy, though, comes at the price of a higher computational
complexity; for example, on a six-core Intel i7-6800K processor, disparity images of
2048× 1024 pixels are segmented with a Stixel resolution of 8 pixels at 6.6 frames
per second (fps) [27].

The proposed fine-grained parallelization is based on our previous work done
for the original Stixel model [26]. This paper modifies parts of the GPU-accelerated
design and extends the description, the experimental data and the performance anal-
ysis. We show that on an embedded Tegra Xavier GPU, the same disparity images
are segmented at 102.4 fps (15.5× faster).

In this work, we propose a reformulation of the measurement depth model that
reduces the computational complexity of Slanted Stixels to the level of the original
Stixels proposal, with a slight accuracy drop. Instead of using a uniform distribution
to make the model robust to outlier measurements, we rely on using the confidence
of the depth estimation and the identification of invalid values to handle outliers.
The proposed reformulation leads to a more efficient GPU parallelization, which
runs the same example 3.4 times faster on the same GPU.

The remainder of this paper is structured as follows. Section 4.2 reviews the state
of the art. Section 4.3 presents the Slanted Stixel formulation, while the modification
of the measurement model and its rationale is detailed in section 4.3.4. Section 4.4
explains basic concepts for efficient GPU acceleration and describes our proposed
GPU-based optimizations for real-time Stixel computation. Section 4.5 presents the
experiments we carried on and analyzes the accuracy and execution speed of our
proposed method. Finally, we state our conclusions in section 4.6.
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4.2 Related work

We will first comment on works proposing different road scene models. Occupancy
grid maps are models used to represent the surrounding of the vehicle [13, 39, 40,
55]. Typically, a grid in bird’s eye perspective is defined and used to detect occu-
pied grid cells and then, from this information, to extract the obstacles, navigable
area, and unobservable areas from range data. These grids and the Stixel world both
represent the 2D image in terms of column-wise stripes allowing to capture the cam-
era data in a polar fashion. Also, the Stixel data model is similar to the forward step
usually found in occupancy grid maps [12]. However, the Stixel inference method in
the image domain presents important differences compared to classical grid-based
approaches.

Our work builds upon the proposal from [51]: they use semantic cues in addition
to depth to extract a Stixel representation, which is able to provide a rich yet compact
representation of the traffic scene. We also base our method on [27]: the Slanted
Stixels model incorporates a novel plane model together with effective priors on the
plane parameters, and it is able to represent scenes with complex non-flat roads.

There are some methods [3, 5, 31, 35], that represent simplified scene models with
a single Stixel per column. The advantage of these approaches is that the computa-
tional complexity of the underlying algorithms is linear, but they cannot represent
some complex scenarios found in the real world, e.g. a pedestrian and a building in
the same column.

A recent work [8] uses edge-based disparity maps to compute Stixels. Their
method is fast but they show that it gives inferior accuracy compared to the orig-
inal Stixel model [45].

Finally, there are some works proposing fast implementations for Stixel compu-
tation. The FPGA implementation from [39] runs at 25 Hz with a Stixel width of 5
pixels, but the authors do not indicate the image resolution.

Our proposed method introduces a novel Stixel-based scene representation that
overcomes the high computational complexity of Slanted Stixels [27], c.f . fig. 4.1.

Our GPU parallelization proposal is based on our previous work [26], however,
we incorporate a richer Stixel method by using more cues e.g. semantic segmenta-
tion [51], disparity confidence [45], as well as, the enhanced depth model for slanted
scenes [27], this increases memory requirements and bandwidth usage and com-
putational complexity. Compared to [26], we use registers (thread local memory)
instead of shared memory to store the cost and index tables. This is possible be-
cause each loop iteration of the Dynamic Programming process only one thread has
to send information to the rest of the threads and, then, the shared memory is neces-
sary only to share information from one thread. Also, the index table is allocated into
local registers and is moved to shared memory just before the backtracking stage, so
that we can overwrite the SATs (Summed Area Table) used on the previous stage.

Our previous work [27, 28] proposed to use an over-segmentation of the opti-
mal Stixel cuts in order to speed up the execution of the algorithm. First, the over-
segmentation has to be computed in linear time so that the added run-time is not
high. The biggest drawback of this approach is that even if we can guarantee that
most of the time the number of Stixel cuts in the over-segmentation is significantly
lower than the original cuts, the run-time of the algorithm is variable and then non-
predictable, which is a must for building a real-time system. Anyway, our method
is orthogonal to the over-segmentation idea, and both methods could be combined.
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Our main contributions are: (1) a novel depth measurement model that over-
comes the high computational complexity of Slanted Stixels [27, 28] and is also in-
herently GPU-friendly in contrast to the previous model; (2) a more efficient par-
allelization of the GPU; (3) an in-depth evaluation in terms of run-time as well as
semantic and depth accuracy carried out on several benchmarks. Compared to the
existing state-of-the-art approaches, our method provides a faster and predictable
run-time proposal with only a slight drop in accuracy.

4.3 The Stixel Model

The Stixel world is a compressed representation of a 3D scene that preserves its rel-
evant structure. Given that the vertical dimension dominates the structure of street
environments, the Stixel world segments the image into independent columns com-
posed of stick-like super-pixels with a 3D planar depth model and semantic labels.
There are three structural classes derived exclusively from depth data: ground (Stix-
els with a slant similar to the expected ground plane), object (almost vertical Stixels,
usually lying on the ground), and sky (Stixels at infinite distance). Semantic classes
are refinements to those structural classes (e.g. road or sidewalk are ground classes,
whereas building and vehicle are object classes). Prior to the segmentation, the per-
pixel input images are downsized to the desired vertical and horizontal Stixel reso-
lution.

An example of Stixel segmentation is presented in fig. 4.2. The column high-
lighted in the image on the right is downsized, and the disparity measurements
(inverse of depth) for each Stixel on the column are shown on the left. The resulting
Stixel segmentation and labeling are defined by the colored thick lines.

FIGURE 4.2: Example of the Stixel segmentation and labeling of a column in a
typical scene (on the right). The input disparity measurements (black thin lines)
and output Stixels encoded with semantic colors (colored thick lines) are shown on

the left. Taken from [27].



4.3. The Stixel Model 43

The rest of this section defines the mathematical formulation of the Stixel model
and how to solve the problem of joint optimization through dynamic programming.
The last subsection presents our proposal for modifying the mathematical model in
order to reduce the computational complexity of the problem.

4.3.1 Mathematical formulation

A Stixel column segmentation S consists of an arbitrary number N of Stixels, si,
each representing four random variables: the Stixel extent via bottom row Vb

i and
top row Vt

i , as well as its semantic class Ci and depth model Di (slope and inter-
cept). Thereby, the number of Stixels itself is a random variable that is optimized
jointly during inference. The joint segmentation and labeling problem is carried out
independently for each image column via optimization of the posterior distribution
P(S | M), a Maximum A Posteriori estimation problem (MAP) defined over a Stixel
segmentation S given all measurements M from that particular column.

Applying the Bayes’ theorem, the posterior probability can be rewritten using
the unnormalized likelihood and prior distributions as 1

Z P̃(M | S) P̃(S). In order
to avoid numerical problems with small magnitudes of the individual probabilities,
the likelihoods are transformed to log-likelihoods via P(S | M) = e−E(s,m), and the
MAP estimation problem is then converted to a cost minimization problem, where
E(·) is the energy (or cost) function.

The energy function is the summation of the energies of the whole Stixel seg-
mentation, which can be separated into the likelihood or data term, Edata(·), and
the prior term, Eprior(·).

E(s, m) =
N

∑
i=1

(Edata(si, m) + Eprior(si)) . (4.1)

The likelihood or data term Edata(·) rates how well the measurements m fit to the
overlapping Stixel si. This energy is further split in a semantic term and a depth
term

Edata(si, m) = Edepth(si, d) + wl · Esem(si, l) . (4.2)

The parameter wl controls the influence of the semantic data term. The input is
provided by a fully convolutional network (FCN) that delivers normalized semantic
scores lv(ci) with ∑ci

lv(ci) = 1 for all classes ci at pixels v. The semantic energy
favors semantic classes of the Stixel that fit to the observed pixel-level semantic input
[51]. The semantic likelihood term is

Esem(si, l) =
vt

i

∑
v=vb

i

−log(lv(ci)) . (4.3)

The depth term is defined by a probabilistic and generative sensor model Pv(·) that
considers the accordance of the depth measurement dv at row v to the depth model
of Stixel si

Edepth(si, d) =
vt

i

∑
v=vb

i

− log(Pv(Dv = dv | Si = si)) . (4.4)

Following Slanted Stixels [27], we use a plane depth model that overcomes the
previous rather restrictive constant depth and constant height assumptions for object
and ground Stixels, respectively. To this end, we formulate the depth model µ(si, v)
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using two random variables defining a plane in the disparity space (slope and inter-
cept) that evaluates to the disparity in row v via

µ(si, v) = bi · v + ai . (4.5)

Note that we assume narrow Stixels and thus can neglect one plane parameter, i.e.
the roll.

The measurement model for disparities is then defined as a combination of a
Gaussian and a uniform distribution

Pv(Dv | Si) =
pout

ZU
+

1− pout

ZG(si)
e
−
(

cv(dv−µ(si ,v))
σ(si)

)2

. (4.6)

The Gaussian distribution models the typical disparity noise and the uniform distri-
bution, weighted by a constant probability for outliers pout, makes the model more
robust to outliers. The Gaussian sensor noise model is centered at the expected dis-
parity µ(si, v) given the depth model of the Stixel and has confidence cv. ZU and
ZG(si) normalize the distributions. Similarly to [45], we use the confidence of the
depth estimates cv to influence the shape of the distribution σ(si).

The prior or smoothness term captures the knowledge about the traffic scene,
such as, sky Stixels are unlikely below the horizon line, objects tend to be close to the
ground, or there is a small number of objects in the scene. In order to model the com-
plexity of the segmentation, we include a constant term for each segment to favor
configurations composed of fewer Stixels. The Markov property is used to reduce
the prior definition to pairwise mutual dependencies of each pair of adjacent Stixels
and the likelihood of the bottom Stixel. Refer to [12, 27] for a more comprehensive
definition of the priors.

We define a prior term for the depth model of Stixels, Eplane(si), that expects
the two random variables A, B representing the plane parameters of a Stixel to be
Gaussian distributed, i.e.

Eplane(si) =

(
a− µa

ci

σa
ci

)2

+

(
b− µb

ci

σb
ci

)2

− log(Z) . (4.7)

This prior favors planes in accordance to the expected 3D layout corresponding
to the particular geometric class ci. E.g. object Stixels are expected to have an approx-
imately constant disparity, i.e. µb

object = 0. The expected road slant µa
ground can be set

using prior knowledge or by means of an specific method for road surface detection.

4.3.2 Algorithm based on dynamic programming

Dynamic Programming (DP) solves a complex problem by dividing it into simpler
sub-problems and storing the partial solutions on memory. This way, when the same
sub-problem appears computation time is saved by retrieving the partial solution
from memory instead of solving the sub-problem repeatedly.

We apply the DP strategy to compute the column segmentation with minimum
global cost. In order to express the optimization problem as a recursive resolution
of smaller sub-problems we use a special notation for the three different structural
classes: obt

b = {vb, vt, object}, grt
b = {vb, vt, ground}, and skt

b = {vb, vt, sky}. OBk (re-
spectively, GRk and SKk) refers to the aggregated cost corresponding to the optimal
Stixel segmentation from position 0 to k of the given column, assuming that the last
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Stixel is an object (respectively, ground and sky). Given the previous notation, we
next show the recursive definition of the problem:

OB0 = Edata(ob0
0) + Eprior(ob0

0)

GR0 = Edata(gr0
0) + Eprior(gr0

0)

SK0 = Edata(sk0
0) + Eprior(sk0

0)

(4.8)

OBk = min



Edata(obk
0) + Eprior(obk

0)

Edata(obk
1) + Eprior(obk

1, ob0) + OB0

Edata(obk
1) + Eprior(obk

1, gr0) + GR0

Edata(obk
1) + Eprior(obk

1, sk0) + SK0

...
Edata(obk

k) + Eprior(obk
k, obk−1) + OBk−1

Edata(obk
k) + Eprior(obk

k, grk−1) + GRk−1

Edata(obk
k) + Eprior(obk

k, skk−1) + SKk−1

(4.9)

Equation (4.8) defines the solution for the base case problem, which is the case
of one Stixel made by the first single pixel. Equation (4.9) indicates how to solve
a problem of size k, i.e. how to compute the partial solutions OBk, GRk, and SKk,
using the solutions for smaller problems. We only show the case for object Stixels,
but the other cases are solved similarly. All the possible object Stixels ending at po-
sition k (and starting at positions from 1 to k) are connected with the last Stixel of
the segmentation with minimal cost of the corresponding size, which were previ-
ously computed and memorized in C. Connections are evaluated for the three Stixel
structural classes using the prior term.

Once the cost table C is completely computed, a backtracking procedure retrieves
the resulting Stixel segmentation by starting from the top row of C and computing
the successive minimum value Ck

min = min(OBk, GRk, SKk).

4.3.3 Reduce the Algorithm’s Complexity using SATs

The time complexity of the algorithm is estimated by noticing that, as shown by
eq. (4.9), solving a sub-problem of size k requires computing the minimum cost of all
the k possible positions of a cut between Stixels for the 3 possible structural classes.
Since the number of structural classes is constant and k ranges from 0 to the total
number of pixels in a column, h, then the Stixel segmentation problem for a single
column requiresO(h2) steps. The backtracking phase can be done in a linear number
of steps, O(h), by creating an index table linking each Stixel and the next Stixel with
minimum cost during the DP solving phase.

Each step of the DP process must compute the prior and data terms of one single
Stixel. The prior term is a function of the parameters of one or two Stixels, and can be
computed in a constant number of operations. The data term, though, depends on
the depth, confidence, and semantic class measurements of all the pixels composing
the Stixel, and therefore requires a number of operations proportional to the Stixel
length, which ranges between 1 and h. The challenge is to express the computation
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of the data term as a constant number of operations. We achieve this goal by pre-
computing partial results derived from the measurement data (similarly to [26, 42])
and by a slight modification of eq. (4.6) that facilitates the parallelization.

The semantic cost of a Stixel is the summation of the logarithm of the proba-
bilities corresponding to the individual pixels (c.f . eq. (4.3)). We pre-compute the
values corresponding to each pixel and store them into a Look-Up Table (LUT), one
for each semantic class. Then, we pre-compute the prefix sum or Summed-Area Ta-
ble (SAT [56]) of each LUT, i.e. the successive accumulated costs corresponding to all
the previous pixels. The computation of the semantic data term of a Stixel is then
performed in constant time as follows:

Esem(si, l) = SATci(v
t
i)− SATci(v

b
i − 1) . (4.10)

Notice that the total computation complexity for creating the SATs corresponding
to an image column is O(h), which is lower than the computation complexity of the
DP algorithm: O(h2).

The data term of sky Stixels only depends on the disparity and confidence of the
pixel individually, and can be computed in constant time by using SATs. But the
data term of ground and object Stixels depends not only on the measurements but
also on the depth model used.

In a previous work [26, 42], they implemented a non-slanted depth model with
a pre-determined constant road slant and a constant depth for objects. For ground
Stixels they substituted the depth model µ(si, v) in eq. (4.6) and pre-computed the
LUTs and the corresponding SATs for each image column. Object Stixels, though,
have a constant model that is set as the mean disparity of the Stixel. They solved
the problem by creating a separate SAT for each possible integer value for µ(si, v);
i.e. they quantized the mean disparities into integer values. This approach proved
empirically to be both accurate and efficient, with time and memory complexities
proportional to O(h × dmax), where dmax is the maximum disparity measurement,
which in practice is lower than h.

4.3.4 Modified measurement model for slanted Stixels

Compared to the model used in [26], the Stixel model considered here and described
in section 4.3.1 is much more elaborated. One crucial drawback is that, since the
slanted plane depth model defined by eq. (4.5) depends on two random variables
(slant and intercept) and not one, the quantization approach is no longer viable, for
the time and memory complexity to create the SATs would exceed the work saved.
The advantage of the new model is that it incorporates semantic cues and confidence
for the disparity measurements, that can be used to slightly modify the measurement
model without significantly affecting accuracy.

First, we will describe how to compute the optimal parameters a, b for a given
Stixel in constant time. Next we will explain the modification in eq. (4.6) that allows
computing the data term cost in constant time.

Similarly to [28], when optimizing for the plane parameters ai, bi of a certain
Stixel si, all other optimization parameters are independent of the actual choice of
the plane parameters, and we can simplify

argmin
ai ,bi

E(s, m) = argmin
ai ,bi

Estixel(si, m) + Eplane(si) . (4.11)
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and minimize the global energy function with respect to the plane parameters
of all Stixels and all geometric classes independently. By deriving the mathematical
expressions we can find an optimal solution of the resulting weighted least squares
problem in closed form. The calculation of the solution in constant time relies on the
pre-computation of multiple SATs.

The optimal plane parameters of a Stixel si can be substituted in eq. (4.6) to com-
pute the depth cost of each pixel and then compute the summation of the cost to
obtain the overall cost of the Stixel, Edepth(si, d), as in eq. (4.4). This is how the com-
putation is implemented in [27, 28], giving raise to a total algorithm complexity of
O(h3) steps per image column, which is very expensive.

Equation (4.6), in its current form, cannot be formally derived to apply the same
kind of mathematical and computational transformations as the ones done for com-
puting in constant time the plane parameters. The problem is due to the uniform
distribution that was proposed in the original Stixel world, and was critical to model
the occurrence of disparity measurement outliers. Our model, though, includes al-
ternatives to soften the effect of those outliers, like the usage of confidence for the
disparity measurements (invalid disparities are modelled as having zero confidence)
and the usage of semantic cues. Our proposal, then, is to remove the uniform distri-
bution from the depth model

Pv(Dv | Si) =
1

ZG(si)
e
−
(

cv(dv−µ(si ,v))
σ(si)

)2

(4.12)

The logarithm of the previous equation can be computed in constant time by
using multiple pre-computed SATs. An additional advantage of this computational
design versus the proposal in [26] is that all the required SATs have time and mem-
ory complexity O(h), instead of O(h × dmax), and that the disparity range is not
quantized.

If the input image contains w columns, then the time complexity for the proposed
algorithm is O(w × h2). If outlier disparity measurements get a low confidence
estimation, cv, or the semantic data is robust for those outliers, then the accuracy
provided by the proposed depth model, eq. (4.12), will be similar to the accuracy
provided by the original model, eq. (4.6).

4.4 Massive Parallelization

This section describes and discusses the massively parallel organization and data
layouts designed for the Stixel computation pipeline. We first start with a brief ex-
planation of the performance-critical elements of a GPU architecture and then fol-
low with a description of the GPU-accelerated design and the analysis of the design
trade-offs.

4.4.1 Downsampling and transpose

The input to the Stixel segmentation pipeline is a collection of z dense images of
width W and height H (c.f . fig. 4.3). The first image contains the disparity for each
pixel, the second image holds the disparity confidence, and the remaining images
contain the probabilities corresponding to each semantic class. The first stage in the
algorithm pipeline downsizes the inputs, both in the horizontal and vertical dimen-
sions, to produce a more compact representation and also to reduce the computa-
tional load of the subsequent stages. Since the downsized 3D output matrix will be
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Computational Analysis
compute work H ×W × z
memory reads H ×W × z
memory writes h× w× z
arithmetic intensity constant

Parallel Scheme Analysis
work per thread s + log2(t)
# of threads h×W × z
global memory loads H ×W × z
global memory stores h× w× z

FIGURE 4.3: Downsampling and Transpose: computational analysis and parallel
scheme. The width and height of the input images are W and H. There are z chan-
nels corresponding to disparity map, disparity confidence and semantic probabili-
ties. The horizontal and vertical Stixel resolution is defined by s and t, respectively.

Accordingly, h = H
s and w = W

t .

later processed by columns, the output data is transposed on the fly, stored as con-
secutive columns of memory (column-wise) instead of consecutive rows of memory
(row-wise). Fusing the downsampling and transposition stages saves expensive in-
termediate reads and writes to global memory.

The left table in fig. 4.3 depicts the computational analysis of the algorithm. Each
input data element must be read once, and must be added to its neighbor elements
to provide a mean value written to the output matrix. Since the amount of input and
output data on practical scenarios is too large to fit into the last-level cache of a GPU,
memory operations will be solved on the device memory. Although the theoretical
arithmetic intensity (ratio of abstract compute operations to memory operations) is
constant, since device memory accesses are more expensive than the involved com-
pute operations, the performance of executing this stage on a GPU will be limited by
the performance of the device memory. Since there are much more memory reads
than writes, this analysis encourages a thread layout aimed at maximizing the read
bandwidth from the device memory.

The proposed parallel scheme, depicted in the upper part of fig. 4.3, distributes
the processing of data tiles of size s× t (where s and t are the horizontal and vertical
Stixel resolution, respectively) to cooperative groups of t threads, with each group
operating independently to calculate a single output value. Each thread first accu-
mulates the values corresponding to a column of s pixels, then the t threads in the
group perform a cooperative horizontal reduction, and finally the first thread in the
group writes the average result in the transposed position. The reduction operation
is implemented using shuffle operations when t is a power of two, or else using
Shared Memory.

The CTA size have been set to 256 threads and the SM occupancy is 70%, limited
by the available register storage. However, the performance bottleneck has been
empirically measured to be the read bandwidth to the device memory, which ap-
proaches between 70% and 90% of the peak bandwidth. The most important per-
formance issue is to make consecutive threads (from the same group and from con-
secutive groups) to read data from consecutive pixels (row-wise) from the device
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memory, and then promote the coalescing of memory read operations.

4.4.2 Computation of Summed Area Tables

As explained in section 4.3, our implementation makes extensive use of Summed
Area Tables (SATs). There are five SATs per input image column for computing
the plane parameters a and b determining the depth model of a stixel, and three
additional SATs for computing the depth term cost for the three structural classes.
The semantic term cost requires one SAT per semantic class; we use 18 classes in the
experiments presented in section 4.5.

The generation of each SAT involves three steps: (1) read values from the input
3D matrix generated in the previous pipeline stage; (2) compute the data terms and
storing them in a LUT; and (3) calculate the prefix sum of the LUT to generate the
SAT. The arithmetic intensity is constant but relatively high (c.f . left table on fig. 4.4),
due to the expensive mathematical operations that are applied to compute the data
term costs.

There are several parallel configurations that are efficient for this stage. However,
we opt to fuse this and the following stages in order to save the intermediate reads
and writes to global memory, and reuse data on the Shared Memory. Then, the best
thread configuration is determined by the computational characteristics of the next
stage.

The proposed parallel scheme (upper-left part of fig. 4.4) consists of w coopera-
tive groups of h threads. Each cooperative group generates the 26 SATs correspond-
ing to one image column and stores them into the Shared Memory. Threads read the
input (transposed) column data from Global Memory in a coalesced way, compute
the LUT values in parallel and write them to Shared Memory.

The prefix sum is computed on the Shared Memory and involves a cooperative
parallel pattern, requiring communication and synchronization. We use the parallel
scan algorithm proposed by Harris et al. [22], but modify the original implementa-
tion using register-to-register shuffle instructions, in order to afford Shared Memory
reads and writes. The collective prefix sum operations involve log2(h) extra com-
putation steps with respect to the serial computation. Using less than h threads
improves the work-efficiency of the algorithm, and using warpsz=32 threads is the
best option, thanks to the fast hardware support for synchronization and communi-
cation at the warp level. However, in practice, since the prefix sum stage involves a
very small percentage of the total computation load, we do not see any performance
difference.

The GPU implementation of the original Stixels, [26], used a very large SAT that
did not fit into the Shared Memory and provoked a large amount of accesses to
the device memory that reduced the performance. The proposals described in sec-
tion 4.3.3 and section 4.3.4 to implement the Slanted Stixels model reduce the mem-
ory requirements for the SATs and allows storing them completely into the Shared
Memory.

4.4.3 Dynamic Programming stage

The Dynamic Programming (DP) computation stage, both on the original model of
Slanted Stixels [27] and our proposal, has the higher computational complexity (c.f .
left table on fig. 4.4), and for practical cases is the most time-consuming step. Our
proposed design exploits the locality of the data accesses to move most memory
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Computational Analysis
SAT gen. DP [27] DP Ours Backtrack

comp. work w× h× C w× h3 w× h2 w× n
mem. reads w× h× z 0 0 0
mem. writes w× h× z 0 0 w× n
arith. intens. const h2 h const

Parallel Scheme Analysis
[27] Ours

work per thread up to h2 up to h
# of threads w× h w× h
glob. mem. loads w× h× z w× h× z
glob. mem. stores w× h w× h

FIGURE 4.4: Fused stages for generating SATs, Dynamic Programming (DP) com-
putation, and Backtracking. The computational analysis and parallel scheme are
shown for the original proposal [27] and our proposal. w, h, z are defined in fig. 4.3.
vbottom, vtop, dslope, dintercept, and C define the Stixel properties: bottom & top row,

depth model and semantic class.

accesses to the Shared Memory and the Local Memory, making the arithmetic in-
tensity proportional to h and, therefore, we can ignore the device memory accesses.
However, this stage is the most elusive for massive parallelization.

The parallel processing of each input column is simple, but not enough to effi-
ciently exploit current GPUs for the image sizes considered in typical applications.
The challenge is to extract fine-grain parallelism when processing each column, since
there are data dependencies and irregular parallelism that complicate the task. To
this end, we assign a Cooperative Thread Array (CTA) of h threads to a DP task
associated with each column (see fig. 4.4).

The DP recurrence shown in eq. (4.9) defines how to calculate the minimum cost
of a problem OBk with k pixels using the results computed for smaller problems. The
most straightforward parallel design option (A) is to use k+1 of the CTA threads to
cooperatively compute OBk (and GRk and SKk) for each problem size k (0 ≤ k < h).
An alternative option (B) is to assign each CTA thread, i, the task of computing OBi

(and GRi and SKi). Both parallel schemes, A and B: (1) do not balance the compu-
tation work evenly; and (2) involve data dependencies that reduce parallelism and
require additional synchronization.

The first parallel design (A) starts using a single thread and increases the num-
ber of running threads progressively. Each step requires a cooperative parallel mini-
mum operation. Option B starts using h threads and decreases the number of active
threads on every step of the DP solving process. Each step involves a broadcast of
the cost values computed by the running thread with minimum identifier. This last
option is the one selected, and depicted on fig. 4.4.

Both parallel options involve multiple reads to consecutive positions or to the
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same position on the 26 SATs. As explained before, the SATs are stored into Shared
Memory, which provides efficient accesses. Only option B allows each thread to
hold into the thread-private registers (or Local Memory) its corresponding portion of
both the cost table and the index table. In each iteration, the thread with minimum
identifier computes the final value in the corresponding cost table entry, and then
uses the Shared Memory to broadcast that value; a barrier is used to enforce the
required synchronization; and finally, that thread becomes idle. Option A is slower
because it requires more synchronization operations and data movements.

The performance of this stage is latency-bounded due to the lack of parallelism.
There are three causes for the limited parallelism: (1) the relatively high memory
requirements on the Shared and Local Memory; (2) the decreasing amount of inde-
pendent work as the recurrence loop advances; and (3) the synchronization barriers
between recurrent steps, which reduce the effective parallelism.

Specifically, each thread holds an average of 26 float numbers in the Shared Mem-
ory and uses 79 local registers. The best thread block configuration contains 256
threads, which requires 19.75 Ki registers and 26 KiB of Shared Memory per block.
Both Pascal and Volta CUDA architectures provide 64 Ki registers per SM (see ta-
ble 4.3), which pose a limit of three 256-thread blocks per SM (3× 19.75 = 59.25 Ki
registers out of 64). However, the Pascal architecture only provides 64 KiB of Shared
Memory, which allows allocating two blocks of threads, while the Volta architec-
ture provides 96 KiB of Shared Memory, and allows reaching the limit of 3 blocks
of threads. Overall, the maximum GPU occupancy is 512 threads out of 2048 (25%)
in a Pascal GPU, and 768 out of 2048 threads (37.5%) in a Volta GPU. The effective
average GPU occupancy is almost half of the peak values, due to the reduction of
parallelism in the algorithm (2), and the synchronization operations (3). Even with
this hard limitations, the GPU computation cores have an utilization between 30%
and 50%. Moving some data to Global Memory releases space on the Shared and
Local Memory and increases the potential thread-level parallelism, but results in
a much higher instruction count and performance becomes limited by the device
memory latency.

The computational complexity of the original model of Slanted Stixels [27, 28]
is higher (O(w× h3)) than that of our novel depth model (O(w× h2)), described in
section 4.3.4. Also, since the original algorithm computes the cost of a Stixel with
linear time complexity on the Stixel height, it suffers from a high load unbalance,
which reduces the effective parallelism and, therefore, the utilization of the GPU
resources.

4.4.4 Backtracking and Data compaction

The backtracking step is an inherently sequential process for each column. As de-
scribed in section 4.3.2, the program navigates back on an index table created during
the DP solving stage and produces a variable-size list of Stixels, c.f . fig. 4.4. The lack
of parallelism seems to discourage a GPU implementation, but the time to transfer
the index tables to the CPU, or even from Shared Memory to Global Memory, is
higher than the time to perform the task on the GPU (less than 0.5% of the overall
execution time).

As shown in fig. 4.4, we fuse the backtracking stage with the two previous stages.
The CTA threads copy the index table from local registers to Shared Memory (reusing
the space devoted to the SATs, not needed in the backtracking stage), and then a sin-
gle thread processes the index table and generates the final output. A fixed (and
conservatively large) amount of Global Memory is allocated per column to hold the
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variable-size lists of Stixels. A final and very fast execution kernel is used to compact
the information into a contiguous region of Global Memory.

4.5 Experiments

This section assesses the accuracy and performance of our proposal. We first verify
that our method maintains the same accuracy level as the previous Slanted Stixel
model [27]. For that purpose, we evaluate on both synthetic and real data, c.f . sec-
tion 4.5.1, and report quantitative and qualitative results, c.f . section 4.5.1. We also
show and discuss the performance advantage of our novel depth model for GPUs
and show quantitative results, c.f . section 4.5.2.

4.5.1 Accuracy and Compression experiments

Datasets

We use two datasets with real images, KITTI 2015 [1, 19] and Cityscapes [11], and
one dataset with synthetic images, SYNTHIA-SF (SYNTHIA San Francisco) [28].

The well-known stereo challenge KITTI 2015 contains images with sparse dispar-
ity ground truth obtained from a laser scanner and semantic segmentation ground
truth. Cityscapes is a highly complex dataset with dense annotations of 19 classes.
SYNTHIA-SF (SYNTHIA San Francisco) is a synthetic dataset that consists of photo-
realistic frames rendered from a virtual city, with precise pixel-level depth and se-
mantic annotations.

We evaluate depth accuracy on the training images of KITTI (200) and all the
images of SYNTHIA-SF (2224). The semantic accuracy is measured on KITTI, the
validation images of Cityscapes (500), and SYNTHIA-SF.

Experiment Details

Slanted Stixels [27] serves as baseline for the comparison with our proposal, c.f . sec-
tion 4.3, because it represents the state-of-the-art results in terms of Stixel accuracy.

As input, we use disparity maps obtained via semi-global-matching (SGM) [29]
and pixel-level semantic labels computed by a fully convolutional network (FCN)
[38]. The parameters are taken from [51] for fair comparison.

Following [27], we use the known camera calibration to obtain expected µa
ground

and µb
ground. We assume that objects are vertical and set σb

object → 0, µb
object = 0, be-

cause the disparity is too noisy for the slanted object model. Sky Stixels are assumed
to be vertical and very far.

We use three metrics to evaluate our proposed method in terms of depth and
semantic accuracy, and also in terms of data compression.

The depth accuracy is defined as the same standard metric used to evaluate on
KITTI [19], which is the outlier rate of the disparity estimates. We generate back the
dense disparity image from the segmentation obtained from our method and from
[27]. Then, an outlier is a disparity estimation with an absolute error larger than 3
px or a relative deviation larger than 5% compared to the ground truth.

The semantic accuracy is evaluated as the average Intersection-over-Union (IoU)
over all 19 classes, which is also a standard measure for semantics [17].

Data compression is measured as the average number of pixels per Stixel, and
quantifies the complexity of the obtained representation.
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Results

The quantitative results of our proposal and baseline as described in section 4.5.1 are
shown in table 4.1 and table 4.2 .

The first observation, taken from table 4.1, is that both variants provide compact
representations of the surrounding, with a compression larger than 100× compared
to the high resolution input images. Segmentations generated by our proposal are
around 5% less compact for KITTI and SYNTHIA-SF, and 36% and 45% less compact
for Cityscapes, which is the more complex scenario.

Second, results from table 4.2 indicate that our method achieves very similar ac-
curacy results on all datasets, with an increase of less than 3.5% of the disparity error
and a decrease of less than 1% of the IoU. We consider that this slight degradation of
the accuracy results is a small price to pay for the speed improvement that we will
show on the next section.

Finally, a 4× higher Stixel resolution (4× 4 versus 8× 8) decreases the compres-
sion of the representation between 2 and 3 times but, in return, is more accurate.
Note that the disparity error of the compact representation is lower than the one of
the input generated by the SGM algorithm. The Stixel world model helps removing
input noise thanks to the joint inference of semantic and depth data.

TABLE 4.1: Data compression measured in pixels per Stixel of our
method and [27]. We evaluate on three datasets: KITTI 2015 [19],

Cityscapes [11] and SYNTHIA-SF [28], c.f . section 4.5.1.

Stixel resolution: 8× 8 Stixel resolution: 4× 4
Dataset Slanted [27] Ours Slanted [27] Ours

KITTI 2015 587 572 254 242
Cityscapes 1105 877 475 331
SYNTHIA-SF 1439 1379 637 606

TABLE 4.2: Accuracy of our method compared to Slanted Stixels [27],
input SGM and FCN. We evaluate on three datasets: KITTI 15 [19],
Cityscapes [11] and SYNTHIA-SF [28] using these metrics: Disparity
Error (lower is better) and Intersection over Union (higher is better),

c.f . section 4.5.1 and section 4.5.1. Ours is detailed in section 4.3.4.

Input Stixel resolution: 8× 8 Stixel resolution: 4× 4
Metric Dataset SGM FCN Slanted Stixels [27] Ours Slanted Stixels [27] Ours

Disp Error (%)
KITTI 15 8.51 - 8.53 8.72 7.81 7.93
SYNTHIA-SF 10.26 - 8.55 8.85 7.56 7.83

IoU (%)
KITTI 15 - 44.51 43.97 43.63 44.54 44.23
Cityscapes - 68.22 66.87 66.75 67.92 67.78
SYNTHIA-SF - 34.01 33.41 33.39 33.82 33.83

The observations from the quantitative evaluation are confirmed also in the qual-
itative results, c.f . fig. 4.5.

4.5.2 Performance experiments

The main goal of our performance analysis is to evaluate run-time and efficiency on
embedded devices such as the NVIDIA Tegra X2 and Tegra Xavier c.f . table 4.3. All
the metrics are measured using NVIDIA performance tools. We assume the input
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RGB Image Slanted Stixels [27] Our Stixels

FIGURE 4.5: Exemplary outputs on real data (KITTI 2015): RGB Image (left),
Slanted Stixels [27] (center) and Our Stixels (right) representations are shown.
Color encodes the distance from close (red) to far (green). As we can see, the repre-

sentation of our proposal is visually similar to the baseline.

data for Stixel segmentation is already into the GPU memory, and we do no add the
time for moving these data from the CPU memory: Stixel estimation is just a stage
in a computer-vision pipeline that receives the semantic segmentation and disparity
map from stages (stereo matching and FCN) that are expected to be both executed
on the GPU (e.g. using SGM implemented on the GPU [25]). The list of Stixels gen-
erated by the computation could be post-processed on the GPU, or is small enough
to discard the time for transferring the data to the CPU memory.

Results

Figures 4.6a and 4.6b show the performance throughput (frames per second, or fps)
on the two GPU systems considered, using an image size of 2048× 1024 and for both
8× 8 and 4× 4 Stixel resolution.

It is remarkable that real-time rates higher than 90 fps are achieved by the Tegra
Xavier GPU for both Stixel resolutions (see fig. 4.6a), and even the older Tegra X2
GPU is able to achieve real-time rates for Stixel resolution of 8× 8 pixels (76 fps, c.f .
fig. 4.6b). On the Tegra Xavier and for a low Stixel resolution (8× 8), our method
is 3.4× faster than Slanted Stixels [27] (344.3 fps vs 102.4 fps). A higher resolu-
tion (4× 4) provides more accurate segments (c.f . table 4.2), but while our proposal
achieves practical frame rates (92.3 fps), the implementation following [27] is 8.5×
slower, which impedes real-time execution. In fact, the bigger the problem size (ei-
ther increasing the Stixel resolution or the image size), the higher the advantage of
our proposal.

A multi-threaded implementation of the original Slanted Stixels model was eval-
uated for the same images and a Stixel resolution of 8 pixels, and reached 6.6 fps on
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TABLE 4.3: Specifications of GPUs employed in our experiments.

Tegra X2 Tegra Xavier

architecture Pascal Volta
clock frequency 1465 MHz 1377 MHz
number of SMs 4 8
number of cores 256 512
registers per SM 64 Ki 64 Ki
shared memory per SM 64 KiB 96 KiB
device memory size 8 GB 32 GB
device memory bandwidth 59.7 GB/s 136.5 GB/s
L2 cache size 4096 KiB 6144 KiB
GFLOPS (single precision) 750 1410
TDP 15 W 30 W

a six-core Intel i7-6800K CPU [27]. Our implementation reaches 344.3 fps on a Tegra
Xavier, i.e. more that 50 times faster, with a reduced cost and power envelop (TDP
of 30 Watt compared to 140 Watt). The alternative over-segmentation variant that
selects promising Stixel cuts by means of a FCN runs at an average of 27.5 fps on
the same six-core CPU. This approach has the drawback that the execution time is
dependent on the image content (not predictable), with a worst-case scenario were
all the Stixel cuts must be evaluated and runs even slower than the original version.
Our GPU-accelerated design runs 12 times faster and with predictable times.

Figure 4.7 presents a breakdown of the elapsed time and the IPC (ratio of ma-
chine instructions executed per clock cycle and per SM). For low Stixel resolution
(8× 8), the time for the common Down-sampling & Transpose stage represents a sub-
stantial portion of the total time: 62% on the Tegra Xavier, and 47% on the Tegra
X2. The performance bottleneck of this stage is the GPU memory bandwidth and its
execution time is proportional to the size of the original and down-sampled images.
Increasing the Stixel resolution makes the time of the Dynamic Programming stage to
dominate on both GPUs, since the computational complexity of the DP stage with
respect to the image height after down-sampling is quadratic for our proposal, while
it is cubic for the original Slanted Stixels proposal.

Considering only the Dynamic Programming stage, our proposal executes 7.2 times
(8× 8) and 10.9 times (4× 4) faster than [27] on the Tegra Xavier. Our implementa-
tion achieves higher IPC ratios (1.31× and 1.33× better) on each SM, which means
that our approach exhibits more parallelism. But most of the speedup is due to a
5.8× and 8.7× reduction on the total number of machine instructions executed by
the GPU (these data can be derived from the results in fig. 4.7). This corroborates the
better algorithmic scalability of our approach.

We now assess the performance differences when using both GPUs. The Tegra
Xavier contains 8 Volta SMs (512 cores) running at a slightly lower clock frequency
than the 4 Pascal SMs (256 cores) in the older Tegra X2 (c.f . table 4.3). This means a
potential raw performance advantage of 1.88×. The speedup on the execution time
of the Dynamic Programming stage is around 6.5 times for both resolutions, which
means that our implementation is using the Volta cores more efficiently than the
Pascal cores, partially due to a higher GPU occupancy (see section 4.4.3), which im-
proves the IPC ratio (from 1.34× to 1.48×), and partially due to a better low-level
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codification efficiency (less machine instructions to implement the same basic op-
erations) of around 2.2 times (derived fig. 4.7). The speedup of the Down-sampling
& Transpose stage is around 3.6×, closer but higher than the 2.3× improvement on
the device memory bandwidth (from 59.7 to 136.5 GB/s). Therefore, our proposal
achieves very good scalability when ported to the new GPU Xavier architecture.
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FIGURE 4.6: Frame-rate of our method compared to Slanted Stixels [27] for 2048×
1024 image resolution on the NVIDIA Tegra Xavier and Tegra X2 embedded GPUs.

4.6 Conclusion

We have described and assessed the performance of the first GPU-accelerated imple-
mentation of Slanted Stixels and we show that our algorithmic proposal is efficient
for GPU parallelization. Our proposal achieves real-time performance for realistic
problem sizes, proving that the low-power envelope and remarkable performance
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Stixel resolution: 8× 8 Stixel resolution: 4× 4
GPU Kernel Time (ms) IPC Time (ms) IPC

Down-sampling & Transpose 1.80 1.94 2.65 2.14
Dynamic Programming [27] 7.97 1.81 89.47 1.56
Dynamic Programming (Ours) 1.11 2.38 8.20 2.08

(A) Computed on NVIDIA Tegra Xavier

Stixel resolution: 8× 8 Stixel resolution: 4× 4
GPU Kernel Time (ms) IPC Time (ms) IPC

Down-sampling & Transpose 6.38 3.26 9.85 3.68
Dynamic Programming [27] 72.77 1.05 1029.83 0.73
Dynamic Programming (Ours) 6.74 1.78 53.80 1.41

(B) Computed on NVIDIA Tegra X2

FIGURE 4.7: Breakdown of low-level performance metrics for the two main stages
of our method: Down-sampling & Transpose stage (common) and Dynamic Program-
ming stage (ours vs. [27]). IPC is the ratio of machine instructions executed per

clock cycle and per SM. Image size is 2048× 1024.

of embedded CPU-GPU hybrid systems make them good target platforms for most
real-time image processing tasks.

The reformulation of the measurement depth model proposed for Slanted Stix-
els improves the performance and scalability of the original proposal, while slightly
reducing precision. However, in a real environment with run time limitations, the
shorter execution time with respect to the original proposal allows to increase the
resolution of the stixels and then improve the overall accuracy of the segmentation
process. Compared to the over-segmentation proposal, our approach is more accu-
rate, faster and with predictable run-times.

The proposed parallel scheme and data layout for the irregular computational
pattern corresponding to the Dynamic Programming stage follows general opti-
mization rules based on a simple GPU performance model. We have shown that the
parallel implementation scales from a previous generation embedded GPU system
to a new generation GPU, and we expect it to scale gracefully on the forthcoming
GPU architectures. Our parallelization strategy is general enough to be applied to
similar Dynamic Programming computational patterns, where parallelism may de-
crease along the processing task.
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Chapter 5

Conclusions

This thesis presents a set of algorithmic modifications to 3D reconstruction methods
(Semi-Global Matching and Stixel World algorithm) as well as efficient GPU paral-
lelizations.

Our first contribution addresses the limitations of state-of-the-art GPU and FPGA
parallelizations of Semi-Global Matching (SGM), and is described in chapter 2. We
proposed baseline parallel schemes and data layouts for the SGM that follow general
optimization rules based on a simple GPU performance model. They are designed to
gracefully scale on the forthcoming GPU architectures. Then, we optimized the base-
line code and improved performance around 3 times with different specific strate-
gies, like vectorization or CTA-to-Warp conversion, that are also expected to be valid
for forthcoming architectures. We show that our implementation of depth computa-
tion for stereo-camera systems is able to reach real-time performance on a NVIDIA
Tegra X1 embedded GPU, proving that this kind of low-consumption systems are
well capable of attaining real-time processing demands.

In chapter 3, we analyzed the limitations of the Stixel World algorithm, i.e. the
inability to accurately represent challenging slanted roads. We presented a novel
depth model for the Stixel world that is able to account for non-flat roads and slanted
objects in a compact representation that overcomes the previous restrictive constant
height and depth assumptions. This change in the way Stixels are represented is re-
quired for difficult environments that are found in many real-world scenarios. More-
over, in order to significantly reduce the computational complexity of the extended
model, a novel approximation has been introduced that consists of checking only
reasonable Stixel cuts inferred using fast methods. We showed in extensive exper-
iments on several related datasets that our depth model is able to better represent
slanted road scenes, and that our approximation is able to reduce the run-time dras-
tically, with only a slight drop in accuracy.

In chapter 4, we have described and assessed the performance of the first GPU-
accelerated implementation of Slanted Stixels and we show that our algorithmic
proposal is efficient for GPU parallelization. Our proposal achieves real-time per-
formance for realistic problem sizes, proving that the low-power envelope and re-
markable performance of embedded CPU-GPU hybrid systems make them good
target platforms for most real-time image processing tasks. The reformulation of the
measurement depth model proposed for Slanted Stixels improves the performance
and scalability of the original proposal, while slightly reducing precision. However,
in a real environment with run time limitations, the shorter execution time with re-
spect to the original proposal allows to increase the resolution of the stixels and then
improve the overall accuracy of the segmentation process. Compared to the over-
segmentation proposal, our approach is more accurate, faster and with predictable
run-times. The proposed parallel scheme and data layout for the irregular compu-
tational pattern corresponding to the Dynamic Programming stage follows general
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optimization rules based on a simple GPU performance model. We have shown that
the parallel implementation scales from a previous generation embedded GPU sys-
tem to a new generation GPU, and we expect it to scale gracefully on the forthcom-
ing GPU architectures. Our parallelization strategy is general enough to be applied
to similar Dynamic Programming computational patterns, where parallelism may
decrease along the processing task.

Overall, the three contributions of this thesis represent the main algorithms re-
quired to implement a Stixel-based autonomous driving system. Our parallelization
and algorithmic improvements make a high performance, real-time, GPU-based im-
plementation feasible. Some code used for the thesis is freely available. It is worth
noting that parallelization discussions of this thesis are also useful for other archi-
tectures, because we described all parallel and non-parallel stages of the studied
algorithms.

5.1 Future work

Regarding the SGM parallelization, a suitable future exploration would be to ex-
plore real-time implementations with larger images and a higher number of dispar-
ity levels. Also, interesting extensions could be post-filtering steps such as Left-Right
Consistency Check, subpixel calculation, and adaptive P2, which are well-known
methods of increasing accuracy.

Regarding the Stixel representations, an interesting future work could be to focus
on circumventing the limitations of the method. Namely, (1) the vertical/column in-
dependence assumed by the model is clearly not true. A more global representation,
e.g. super-pixels that span vertically and horizontally, would be more compact and
less prone to errors; (2) some surfaces are not well represented by a linear model,
e.g. cars. A more complex depth model and specific models for each semantic class
could represent more faithfully the scene. Nonetheless, a model with more free vari-
ables could also lead to a bad representation because of the noise; (3) the proposed
over-segmentation algorithm has a non-predictable run-time. And this is a bad char-
acteristic for a real-time system. The worst-case scenario, i.e. no Stixel cuts removed,
is as slow as not using over-segmentation at all (although very unlikely); (4) in case
of movement of the stereo rig during operation, there could be an offset in roll effec-
tively breaking the vertical world assumption.

Regarding Stixel parallelization, the exploration of the usage of alternative hard-
ware, such as FPGA or ASIC, would be interesting. Also, studying the accuracy-
speed trade off in more detail is interesting to provide real-time and high quality
representations of the scene.
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