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ABSTRACT

The field of spintronics aims at using the spin degree of freedom of the electron to store,

transport and manipulate information in next-generation electronic devices. While stor-

ing information as a magnetization in ferromagnets has already found great applications

in magnetic-based memories, communicating and processing spins in nonmagnetic ma-

terials is a more challenging task because the spin in these materials is not a conserved

quantity. A central aspect of spintronics is to determine the nature and strength of spin-

orbit coupling (SOC) phenomena. On the one hand, SOC allows the manipulation of

spins with electric fields, which is appealing for practical applications; but on the other

hand it increases the rate of spin relaxation. A great variety of materials has been scruti-

nized in the last decades, including metals, semiconductors and two-dimensional electron

gases, with both strong or weak SOC. With the discovery of graphene in 2004 and the

rise of the field of two-dimensional materials, a myriad of new compounds with appealing

properties have opened novel possibilities for spintronics.

In this thesis, I use quantum transport methodologies to simulate spin dynamics

in devices made of two-dimensional materials. The first part of the thesis focuses on

spin transport in graphene, while the second part deals with charge-to-spin interconver-

sion effects and topological phenomena in low-symmetry transition metal dichalcogenides

(TMDs). The Landauer-Büttiker formalism has been employed, as implemented in the

open-source Kwant package, to simulate different kinds of electronic devices, including

nonlocal spin valves. In graphene, I reveal that the full geometry of nonlocal spin valves

should be taken into account when analyzing experiments in the diffusive regime when the

spin transport is very efficient; otherwise spin diffusion lengths might be underestimated.

Furthermore, I predict the experimental outcome of a Hanle spin precession measurement

when the material quality drives the system towards a (quasi)ballistic transport regime,

a regime that is not captured by the typical spin diffusion theory used to interpret exper-
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iments. For TMDs, I show that the low symmetry present in some phases of this class

of materials directly affects their spin texture, which in turn impacts the spin transport,

as well as charge-to-spin interconversion processes such as the spin Hall effect. The spin

polarization of electrons in these TMDs displays a momentum invariant (persistent) spin

texture fixed in a direction along the yz plane, and as a result, anisotropic spin relax-

ation is found. The spin Hall effect exhibits an unconventional component, with spin

accumulation generated in the plane, which together with the conventional out-of-plane

polarization, forms an oblique or canted spin Hall effect. Near the band gap region, the

charge-to-spin interconversion efficiency reaches values as large as ∼ 80% and, when the

Fermi level is placed in the topologically nontrivial gap, a canted quantum spin Hall effect

is predicted. The corresponding topologically protected edge states are robust to disorder

and carry spins polarized in the same direction as the persistent spin texture found at

the bottom of the conduction bands. The findings presented in this thesis open a new

perspective to predict and scrutinize spin transport in high-quality graphene devices and

topological, low-symmetry two-dimensional materials.
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CHAPTER 1

INTRODUCTION

The continuous miniaturization of silicon-based complementary metal-oxide-semiconductor

(CMOS) devices faces fundamental physical limits and engineeering problems as their

components reach the size of a few nanometers [266, 282]. To overcome these issues,

research on other architectures, materials or even completely different approaches to

computer logic extensively began in the last decades [195]. Examples of such propos-

als include using resonant tunneling diodes as building blocks [141], molecular elec-

tronics [46, 110, 182], two-dimensional material-based electronics [87, 196], spintronics

[12,39,122,179,287], neuromorphic computing [224,314] or quantum computation [88,161].

Among the aforementioned routes, spintronics (or spin electronics) aims at using the

electron’s spin in addition to (or instead of) the electron’s charge in order to store, pro-

cess and communicate information. The addition of the spin degree of freedom could

result in several advantages such as low-power consumption, faster data processing speed

or increased integration densities compared to conventional charged-based semiconduc-

tors [287]. It is said that the field started with the discovery of giant magnetoresistance

(GMR) in the late 80’s [13, 28], a phenomenon where the electrical resistance of two

magnetic layers (separated by a nonmagnetic one) dramatically depends on their relative

magnetization orientation, allowing in this way the realization of two disting states (high

or low resistance) and hence carrying binary information (“0” or “1”). This effect, to-

gether with tunneling magnetoresistance, has been widely exploited in storage devices in

modern computers such as hard disk drives or magnetoresistive random access memories

(MRAM) [27,287], and its impact has been so large than the Nobel prize in physics was

awarded in 2007 to the physicist that discovered the GMR.

Since that first step, the number of materials used in spintronics increased to not

only metals and ferromagnets, but also to semiconductors, insulators, superconductors
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and topological materials, either being magnetic or nonmagnetic [12, 74]. In addition,

numerous phenomena have been discovered, like the spin and quantum spin Hall ef-

fects [26, 112, 138, 139, 192, 234, 235, 243, 303], spin-transfer torque [23, 30, 217, 245], spin-

orbit torque [42,177,185], spin Seebeck effect [272], spin-pumping [47,270], persistent spin

textures [232] or hidden spin polarizations [304], among others. Such a combination of ma-

terials and effects sparked the emergence of new fascinating fields within spintronics such

as spin-orbitronics (based on the spin-orbit coupling (SOC)) [178], skyrmions [75, 193],

antiferromagnetic spintronics [14,135] or topological spintronics [206,212,247]. However,

most of these achievements have been in fundamental science and it is not yet clear how

these phenomena can be successfully applied to areas other than information storage,

such as for example information processing in an active logic device [12].

Therefore, today the challenging task of spintronics is to communicate and process

information, as storing is already accomplished. In simple terms, we can understand that

communicating refers to transporting spin from one place to another, while processing

entails manipulating the spin orientation or its trajectory in a controlled manner. Thus,

since all these actions require a change in the spin over space or time, we can also refer

to them as spin dynamics. Many of the phenomena described above are spin dynamics

phenomena, which highlights the large efforts done by the research community in recent

years to find a way to communicate and process spin.

One of the fundamental aspects regarding spin dynamics, as well as a limiting factor

for further applications, is the fact that the spin angular momentum is not, in general,

a conserved quantity. This is because an arbitrary spin state is not an eigenstate of the

Hamiltonian that describes the electronic structure of a material (except for spins aligned

along the magnetization axis of a ferromagnet). Therefore, a spin eventually changes its

polarization after some time or length (i.e. the spin relaxes), defining in this way a spin

relaxation time (τs) or length (λs)
1 and imposing an upper limit in time and length over

which the spin information can be preserved. The same can be applied when referring to

an ensemble of spins initially polarized in the same direction: after some time or length,

the average polarization vanishes. Spintronics is based on the fact that different spin

orientations may result in different outputs for the same physical effect, and hence the

spin is what carries the information instead of the electron’s charge. If, however, the spin

is not conserved, then the information is lost, rendering a spin-based memory or logic

device unusable.

This suggests that a clear path for improving spin communication is to enhance the

spin relaxation time [287]. There exist different spin relaxation mechanisms [67,122], but

in general, magnetism and large SOC together with charge scattering are mechanism that

1τs and λs are also called spin lifetime and spin diffusion length, respectively.

2



cause spin relaxation2. The less perturbed the spin is, the larger the spin relaxation time

and length, and consequently, typical materials for spin transport are nonmagnetic and

comprised of light elements with small SOC [67,122].

The main mechanisms of spin relaxation arise from charge scattering in the diffusive

regime of transport. Hence, it is commonly speculated that in the ballistic regime, where

no scattering occurs, the spin can be preserved for a much longer time. In fact, the

first proposal for a spin field-effect transistor by Datta and Das in 1990 [55] was based

on a ballistic transport channel for the spin. However, fabricating a ballistic conductor

over large distances in conjunction with all other device components (e.g. gates, metallic

contacts, insulating layers, etc.) is a formidable task. Consequently, not much progress

has been made in spin dynamics in ballistic devices [154,205].

Before introducing the important concept of spin injection and detection, it is in-

structive to enumerate the distinct ways electrons and spins flow in a material. In the

simple but useful two-current model [122,189], the conductivity of electrons can be sepa-

rated into two independent contributions, one for each spin. If n↑ and n↓ are the charge

densities associated with up and down spins in their corresponding quantization axis,

respectively, then the charge and spin densities, n = n↑ + n↓ and s = n↑ − n↓, quantify

the amount of charge and net spin, respectively. Similarly, one can define the charge and

spin currents, Ic and Is, that measure the flow of charge and spin densities. Based on

this picture, different scenarios are possible, as depicted in Figure 1.1. In nonmagnetic

materials, the number of up and down electrons is the same, and therefore Ic 6= 0 and

Is = 0. In materials with different spin population, like in ferromagnets, the two spin

contributions of the current are unequal and hence Ic 6= 0 and Is 6= 0. However, there is

a special case when up and down spins have the same contribution but flow in opposite

directions (see right panel in Figure 1.1), in which Ic = 0 and Is 6= 0. The first situation

is known as unpolarized charge current; the second one is dubbed spin-polarized current

and the latter is called pure spin current. Due to the common usage of these terms, the

unpolarized charge current is simply called charge current and the name spin current

is also used to refer to the pure spin current scenario. Long-lasting pure spin currents

are highly desirable in spintronics because they carry zero charge current and therefore

heat dissipation due to Joule heating is expected to be absent. This provides a great

motivation for the electronics industry since heat dissipation in microchips is one of the

major challenges to overcome.

In addition to spin relaxation, another fundamental issue for spin communication is

how to generate the spins in the transport material and how they are later detected to

2Hyperfine interaction is also a spin relaxation mechanism, but is not the most relevant in the solids
we are going to study.
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Ic ≠ 0
Is = 0

Spin-up

Spin-down

Direction of charge 
propagation

Ic ≠ 0
Is ≠ 0

Ic = 0
Is ≠ 0

Figure 1.1: From left to right: (unpolarized) charge current, where spin-up and spin-down
electrons flow in the same direction and n↑ = n↓; spin-polarized current, where spin-up
and spin-down electrons flow in the same direction and n↑ 6= n↓; and (pure) spin current,
where n↑ = n↓ and spin-up and spin-down electrons flow in opposite directions.

‘read’ the spin information [67]. Since nonmagnetic compounds do not possess a net

spin polarization, a nonequilibrium spin accumulation or density is what is transported,

manipulated and measured. The principal ways to create spins in nonmagnetic mate-

rials include transport, optical and resonance methods [122]. Transport methods are

attractive for applications as they allow for all-electrical devices compatible with current

CMOS technologies. In particular, the electrical spin injection method has been widely

employed [67,122,131]. This method consists of connecting a ferromagnet to the nonmag-

netic material and driving current through it, resulting in the formation of a nonequi-

librium spin density due to the flow of a spin-polarized current. Ferromagnetic (FM)

electrodes are also commonly used as detectors as their chemical potential is sensitive

to the nonequilibrium spin accumulation present in the nonmagnetic material [131,132].

However, the efficiency of spin injection and detection is to a first order proportional to

the polarization of the ferromagnets, defined as P = s/n, which is usually of the order

of 10 to 50%. Also, utilizing ferromagnetic materials complicates the device fabrication

process and might introduce magnetic contaminants that can decrease the spin lifetime.

To overcome such problems, the spin Hall effect (SHE) and the inverse spin Hall effect

(ISHE) may be used [61, 62, 112, 243, 244, 303]3. The spin Hall effect converts a charge

current into a transverse pure spin current by deflecting spins with opposite polarization in

opposite directions. In contrast, the inverse spin Hall effect converts a pure spin current

into an electrical current. Thus, with the combination of both effects, one could in

principle generate, transport, and detect spin information purely electrically, without the

need for magnetic materials. The SHE and ISHE can arise from a variety of mechanisms

[278], but the common and important ingredient is the presence of spin-orbit coupling.

The figure of merit characterizing the efficiency of such charge-to-spin interconversion

3Another pair of phenomena, called spin galvanic and inverse spin galvanic effects were also proposed
to inverconvert charge and spin [64,81].
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(CSI) is the spin Hall angle (SHA), and materials with large SHA with preferably long

λs have long been sought for their use as building blocks of active spintronics devices.

Looking at both spin relaxation and the spin Hall effect, one can easily see a fun-

damental problem regarding material choice. On the one hand, small SOC is needed

to allow spin communication, but on the other hand, large SOC is required for efficient

charge-to-spin interconversion. Therefore, although progress in obtaining materials with

large spin relaxation times or SHA has been made separately, the difficult task at hand

is to find materials suitable for both spin transport and manipulation. Alternatively, one

could combine different materials, each performing a different function. However, this

adds complexity to the device fabrication as well as an extra design variable, the inter-

face physics between different materials. Overall, it is clear that material science together

with a good understanding of physics is paramount to engineer useful active spin-based

devices.

While conventional materials used for spin transport and manipulation are semicon-

ductors and metals [67, 122, 288]; quantum materials [90] such as superconductors [171],

topological semimetals [246, 256] and topological insulators [109, 206] have gained great

attention in recent years due to their unique properties. For instance, topological insula-

tors offer the possibility to carry dissipationless spin currents with the quantum spin Hall

effect [26, 139, 192, 235] while also presenting large SHA [56, 68, 146, 184, 221]. However,

probably the biggest advance with respect to novel materials for spintronics is the advent

of two-dimensional (2D) materials [5, 10,170].

The discovery of graphene, a monolayer of carbon atoms arranged in a honeycomb

lattice [198], and other two-dimensional compounds soon after [199], expanded all areas

of research with the fascinating possibility of exploring truly 2D materials. In spintron-

ics, graphene was quickly identified as an excellent material for spin transport as its

low spin-ortbit coupling and hyperfine interaction [115,138,186,300] suggested long spin

relaxation times. Nonetheless, experiments in nonlocal spin valves, the most common

device geometry to study spin transport in 2D materials, showed that the spin lifetimes

were orders of magnitude smaller than the theoretical expectations [66,83,117,268,313];

and since then great efforts have been made by the community to understand and im-

prove spin transport in this material [10, 101, 219, 220]. In parallel, a vast array of 2D

materials such as transition metal dichalcogenides (TMDs), 2D magnets, phosphorene,

silicene or hexagonal boron nitride, also show great potential for active spin logic devices

and CSI [5, 10, 170]. Moreover, the stacking of multiple 2D materials forming van der

Waals heterostructures [86, 200] further broadened the spectrum of possible phenomena

and applications, as combining two materials may give rise to new properties absent in

the individual layered compounds. Likewise, owing to the high surface area of 2D ma-
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terials, the properties of a material (either as a substrate or forming a van der Waals

heterostructure) can be partially induced in another one by just placing them in close

contact; this is known as the proximity effect [317]. These concepts are illustrated in

Figure 1.2, where a few of the many 2D materials are depicted and stacked on top of each

other.

One of the reasons for the large impact of 2D materials is the fact that they can

realize some properties that were not possible before with bulk or thin film materials.

Graphene is a primary example of this, in which electrons behave as massless Dirac

fermions [197], something that was never observed before in a condensed matter system.

As far as spintronics is concerned, continuous improvements in device fabrication have

allowed for ballistic charge transport in graphene with mean free paths reaching hundreds

of nanometers at room temperature and even tens of micrometers when the temperature

is decreased [16, 17, 283]. These achievements give hope to fabricate, at last, a ballistic

spin channel for efficient spin communication. To date, spin transport has been limited

to the diffusive regime (either in conventional or in two-dimensional materials), and thus

not much theory exists on how to analyze spin transport experiments in the ballistic

regime, and in particular how to characterize the spin relaxation time and spin relaxation

mechanisms.

Another natural question to ask is whether there are 2D materials with good spin Hall

Figure 1.2: Schematics of some of the existing two-dimensional materials and how they
can be stacked on top of each other and stabilized due to van der Waals interactions.
Reprinted by permission from Springer Nature Customer Service Centre GmbH: Nature
Publishing Group, Nature, Ref. [86], copyright (2013).
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angles. In this regard, various crystal phases of TMDs, with formula MX2 (M =transition

metal atom; X =calchogen) have been predicted to exhibit a large SHE [73,311] owing to

their large spin-orbit coupling [214, 315]. Very recently, experiments reported the gener-

ation of large charge-to-spin interconversion by the SHE in multilayers of low-symmetry

MoTe2 and WTe2 [227, 251, 307, 308]. In parallel, same nonlocal measurements of spin

transport extracted anomalously long spin relaxation lengths (λs ∼ 1µm) in MoTe2 at

room temperature [251], as well as an unconventional SHE that produces spins colinear

with the charge current [227,251]4. These novel results suggest that this class of materials

holds great potential for spintronics. It is worth noting that the so-called 1T′ and 1Td

phases of MoTe2 and WTe2 are classified as type-II Weyl semimetals [130, 168, 249, 255],

and when they are thinned towards the monolayer limit become topological insula-

tors [214]. However, little is known about the impact of their topology on CSI, nor

their combination of a large SHA together with a supposedly long spin relaxation length.

4The symmetries of typical metals and semiconductors where the SHE is studied restrict the spin
polarization of the spin current to be perpendicular to both the charge and the spin current.
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1.1 Objectives and outline

The objective of this thesis is expanding the theoretical knowledge in these two current

challenges:

• Understanding the crossover from diffusive to ballistic spin transport in ultraclean

graphene devices as well as the main spin relaxation mechanisms in such clean limit.

• Exploring spin transport and charge-to-spin interconversion in two-dimensional low-

symmetry transition metal dichalcogenides.

To this end, in this thesis I will present numerical calculations to simulate realistic

spin transport experiments. The thesis is organized as follows.

Chapter 1 introduces the field of spintronics, some of the current unresolved problems

and the potential of two-dimensional materials to overcome them.

Chapter 2 establishes the fundamental theoretical concepts of spin dynamics such as

spin-orbit coupling, spin relaxation, charge-to-spin interconversion and the role of topol-

ogy in spintronics. It also introduces more deeply the field of 2D spintronics, especially

the state-of-the-art of graphene and TMDs.

In Chapter 3, the theoretical and numerical methodologies for studying spin dynamics

are presented. This includes the description of the electronic structure and spin textures

with tight-binding models. The basics of the quantum transport Landauer-Büttiker for-

malism [54] are outlined as well as its implementation in the open-source Kwant pack-

age [94]. Finally, I show how to set up the spin transport devices for the simulations.

Chapters 4 and 5 present the main results of this thesis. In the former, I study

graphene nonlocal spin valve devices. Such devices are widely used to infer the spin

relaxation times and lengths of materials as they separate charge and spin currents [125,

131, 132]. First, I simulate such devices in the diffusive regime of transport in order to

validate the implementation, and then I vary the degree of disorder to tune the mean

free path and achieve ballistic transport. From explicit calculations of all voltages and

transmission probabilities, I show that in the diffusive regime the nonmagnetic electrodes

limit spin transport in the graphene channel when the spin relaxation length is comparable

to the device size. Being unaware of this effect may result in an underestimation of the

spin relaxation length when the typical formulas are used. In the crossover from diffusive

to ballistic transport, I explicitly demonstrate that the spin diffusion formulation fails

in both the ballistic and quasiballistic regimes (defined as a transition regime between

diffusive and ballistic transport) and I explain the numerical results with alternative

analytical formulas and clear physical arguments. This new formulation of spin transport

will be crucial for the analysis of future ultra-clean spintronic devices, both for extracting
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correct values of spin diffusion lengths in diffusive transport and in guiding experiments

in the (quasi)ballistic regime.

In Chapter 5, I simulate nonlocal spin valves in MoTe2 to study the spin relaxation

lengths and also the spin Hall effect by calculating the spin accumulation at the sample

boundaries. The spin polarization of the conduction bands presents a persistent spin

texture canted in the yz plane, which is responsible for a spin relaxation anisotropy

between the different spin orientations. Furthermore, I demonstrate the presence of an

unconventional SHE with both out-of-plane and in-plane spin polarization, as found in

experiments [227, 251], and derive a formula to extract the spin Hall angles. The spin

Hall angle reaches unprecedented values as large as ≈ 80% with reasonably long λs in

the range of 10 − 100 nm. Both quantities scale in the same way with varying carrier

density, suggesting that these materials can be good for both spin communication and

manipulation. Importantly, I reveal that the origin of the relative magnitudes of the

spin textures, spin relaxation lengths and the SHAs for each spin component are dictated

by the specific crystal symmetries of such TMDs. Finally, I simulate the spin transport

in the topological gap of WTe2. I find that the unconventional SHE transforms into a

canted quantum spin Hall effect, in which the spin polarization of the topological edge

states deviates from the common z-polarized spins into an angle in the yz plane, as in

the bulk bands, dictated by the symmetries of the crystal. The new spin polarization

found in both the spin Hall effect and the quantum spin Hall effect, together with the

large spin diffusion lengths and spin Hall angles, open new avenues for utilizing the spin

degree of freedom to transport and process information in topological, low-symmetry

two-dimensional materials.

Chapter 6 draws the conclusions of the thesis and present and outlook for future

research directions.
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CHAPTER 2

FUNDAMENTALS OF SPIN DYNAMICS IN

TWO-DIMENSIONAL MATERIALS

2.1 Physics of spin dynamics

In this section, I review some of the principal physical phenomena involved in spin dy-

namics.

2.1.1 Spin-orbit coupling

The spin-orbit coupling or spin-orbit interaction couples an electron’s spin with its orbital

angular momentum, and is a fundamental concept in spintronics. It is at the root of many

phenomena such as the SHE, spin-orbit torques and spin relaxation, among others. The

physical origin of the SOC is relativistic in nature, as it appears directly in the Dirac

equation with the term

HSOC = − e~
4m2

0c
2
√

1− v2/c2
(∇V × (p+ eA)) · sσ, (2.1)

where ~ is the reduced Planck constant, c is the speed of light in vacuum, V is the

electrostatic potential, p = m0v is the linear momentum with m0 and |v| = v the rest

mass of the electron and its velocity, respectively, e is the electron’s charge and A the

vector potential due to a magnetic field. The term sσ = (sx, sy, sz) is a vector containing

the Pauli matrices and relates to the spin angular momentum operator as S = ~
2
sσ. To

understand the meaning of the term above, it is useful to set A = 0 and rewrite it as

HSOC =
e~

2m0

E × v
2c2
√

1− v2/c2
· sσ = µBB0 · sσ. (2.2)
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Here, µB = e~/2m0 is the Bohr magneton, B0 = E×v

2c2
√

1−v2/c2
is the magnetic flux density

according to Einstein’s relativity theory and E = −∇V is the electric field. One can

clearly see that the SOC Hamiltonian can be expressed as a Zeeman interaction between

the electron’s spin and a magnetic fieldB0, whose origin is the orbital motion of electrons.

This can be seen more clearly by considering an atom, which is usually described as a

static nucleus with orbiting electrons. However, in the rest frame of the electron it is the

nucleus that orbits, and the electron feels a magnetic field due to this moving positive

charge. Consequently, the spin-orbit coupling describes an intrinsic magnetic field (SOC

field), arising due to the orbital motion of electrons, that interacts with the electron’s

spin.

Depending on the system, the SOC can manifest in different ways. For instance, in

atomic physics, one can write the magnetic field using the Biot-Savart law in terms of

the radius of the electron orbit and its velocity, which allows the magnetic field to be

expressed in terms of the quantum mechanical orbital angular momentum operator, L.

This results in a SOC of the form

HSOC ∝ L · S, (2.3)

highlighting the fact that B0 is related to the orbital motion of electrons. In general, the

strength of the spin-orbit coupling interaction is proportional to the atomic number, so

the heavier the element, the larger the SOC. In solids, equation (2.3) takes different forms

depending on the symmetries of the system. For example, the Dresselhaus SOC [57] or

the Rashba SOC [34] may appear when inversion symmetry is broken due to the crystal

structure or an external electric field. Such spin-orbit interactions are very important in

spintronics because they allow to manipulate spins via an electric field-induced magnetic

field.

2.1.2 Spin texture of Bloch bands

The spin texture or spin polarization of the bands is given by the expectation value of

the spin operator applied to the Bloch wave functions. As it will be seen in Chapter 5,

this quantity is fundamental to understand spin transport and relaxation. For a given k,

the spin texture at band n is:

〈sαn(k)〉 =
~
2
〈n, k|sα|n, k〉, (2.4)

where sα is the spin Pauli matrix with α = x, y, z. Usually, the different components

of the spin polarization are related to each other via the norm of the spin polarization,
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|〈sn(k)〉|, which is equal to:

|〈sn(k)〉| =
√
|〈sxn(k)〉|2 + |〈syn(k)〉|2 + |〈szn(k)〉|2. (2.5)

It is also useful to define the k-resolved spin texture at a given energy, since an electron

that scatters samples the whole Fermi surface. In this way, we define:

〈sαn(k)〉E =
~
2

δ(En(k)− E)〈n, k|sα|n, k〉
δ(En(k)− E)〈n, k|n, k〉 . (2.6)

Here, δ(En(k)−E) is a Dirac delta centered at the given energy E, En(k) is the eigenvalue

of band n, and the denominator normalizes the sum since otherwise the value of the spin

texture would depend on the number of k-points used for the sum. Numerically, one can

replace the single-valued delta by a probability distribution (a Gaussian, Lorentzian or a

derivative of a Fermi-Dirac distribution are typically employed). This generates a finite

broadening (e.g. kBT for the Fermi-Dirac distribution) that will add the contribution of

other energies to the spin texture. Nevertheless, this does not pose a problem as long as

the spin texture does not change abruptly in a window of energies on the order of the

broadening 1.

Unless stated otherwise, calculations of the spin texture will always be done for a

single band, and therefore the subscript n can be dropped.

2.1.3 Spin relaxation

Spin relaxation is the process by which a nonequilibrium spin density decays to its equi-

librium population. As commented in Chapter 1, this sets an upper limit on the time and

length in which spins can carry information, which are characterized by the spin lifetime,

τs, and the spin diffusion length, λs. Here, we will briefly summarize the main mechanisms

of spin relaxation before focusing on how spin relaxation is studied experimentally.

Spin relaxation mechanisms

There are several mechanism of spin relaxation in solids [67,122,288]. The most typical are

the ones related to semiconductors and metals, namely the Elliot-Yafet mechanism [65,

296], the D’Yakonov-Perel’ mechanism [63], the Bir-Aronov-Pikus mechanism [122, 288]

and the hyperfine-interaction mechanism [122, 288]. Among these, the former two have

been the most used to interpret spin relaxation in 2D materials. Although distinct, they

have two common ingredients: SOC and charge scattering.

1These broadenings can also have physical meaning. For example, the derivative of the Fermi-Dirac
distribution is used to account for thermal broadening at a finite temperature.
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In the Elliot-Yafet mechanism, up and down spins that would normally be independent

of each other are coupled by the SOC. The result is that an electron’s spin has a finite

probability of flipping during a scattering event, leading to a spin relaxation time that is

proportional to the momentum scattering time (τp), τs ∝ τp. Thus, spin relaxation in this

case can be thought of as a sudden process where a single spin changes its polarization

upon scattering. On the other hand, the D’Yakonov-Perel’ mechanism can be understood

as a continuous evolution of an electron’s spin. It occurs in systems where inversion

symmetry is broken, and, together with SOC, leads to a spin splitting of the bands.

This splitting is proportional to the induced SOC field, which usually is momentum-

dependent. In this way, the SOC field produces spin precession whose direction changes at

each scattering event, resulting eventually in spin dephasing of the ensemble polarization.

When the scattering time is shorter than the precession time, electrons tend to maintain

their spin orientation, in what is known as motional narrowing. Consequently, the spin

relaxation time is inversely proportional to the momentum scattering time, τs ∼ 1/τp.

Measuring spin relaxation: lateral nonlocal spin valves

Introduction Two kinds of experiments can be used to study spin relaxation in a

sample [122]: experiments measuring spectroscopic features that are spin-dependent, and

experiments measuring explicitly the change of the nonequilibrium spin density with

time or distance. We will focus on the latter, specifically on the Hanle effect [106] in

lateral nonlocal spin valves (NSV) [131], which is the standard procedure to measure spin

lifetimes in 2D materials.

The NSV was developed by Johnson and Silsbee [131] and is depicted in Figures

2.1(a) and 2.1(b). The device consists of two ferromagnetic contacts2 (the injector (F1)

and detector (F2)) and at least two nonmagnetic (NM) leads (N1 and N2). They are

placed on top of a nonmagnetic sample (N), whose spin transport properties are to be

characterized, separated by distances on the order of micrometers. The order of the leads

is important: the FM contacts are in the middle whereas the nonmagnetic ones are at

opposite ends of the device. We can distinguish three sections in the device: the closed

circuit where a charge current I0 is driven between F1 and N1; the channel where spins

propagate over the distance L between F1 and F2 (see Figure 2.1(a)); and the open circuit

where voltage is measured between F2 and N2. Probably the most fundamental aspect

of a NSV is the fact that the voltage is measured far from the path of charge current,

thus the name nonlocal spin valve and nonlocal voltage, Vnl.

One of the key aspects that makes NSV so practical is that they can separate spin from

charge signals. Charge-related backgrounds, which may appear in two-terminal devices

2Contacts can also be called electrodes or leads.
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When a metallic contact is used for the N/F2 junction, a
large spin current injection into F2 is realized owing to strong
spin absorption (spin sink) by F2 with a short spin diffusion
length as in, for example, permalloy (Py). The latter effect is
important for a nonlocal spin manipulation by nonlocal spin
injection. We discuss the spin Hall effect (SHE), caused by
the spin–orbit scattering of conducting electrons in nonmag-
netic metals, by which the spin (charge) current is converted
to charge (spin) current using a nonlocal spin device.

2. Spin injection and spin accumulation

Johnson and Silsbee [5, 6] first reported that nonequilibrium
spin injected from a ferromagnet diffuses into an Al
film over the spin diffusion length of the order of 1µm
(or even several hundred µm for pure Al). This rather
long spin diffusion length led to the proposal of a
spin injection technique using a F1/N/F2 structure (F1
is an injector and F2 a detector) [7, 8], in which the
output voltage at F2 depends on the relative orientation
of the magnetizations of F1 and F2. Recently, Jedema
et al performed spin injection and detection experiments
with a nonlocal measurement in a lateral structure of
permalloy/copper/permalloy (Py/Cu/Py) and observed a
clear spin accumulation signal at room temperature [9].
Subsequently, they measured a large spin-accumulation signal
in a cobalt/aluminum/cobalt (Co/I/Al/I/Co) structure with
tunnel barriers (I= Al2O3) [10]. Nonlocal spin injection
and detection experiments have been conducted by many
groups [11–25].

We consider a spin injection and detection device
that consists of a nonmagnetic metal N connected to the
ferromagnets of the injector F1 and detector F2, as shown in
figures 1(a) and (b). F1 and F2 are ferromagnetic electrodes
with width wF and thickness dF, and are separated by
distance L . N is a normal-metal electrode with width wN and
thickness dN. The magnetizations of F1 and F2 are aligned
either parallel or antiparallel. In this device, by sending
the bias current I from F1 into the left side of N, spin-
polarized electrons are injected from F1 into N, and the spin
accumulation is detected by F2, at distance L from F1, by
measuring the voltage V2 between F2 and N. Because of the
absence of a voltage source on the right side of the device,
there is no charge current in the electrodes that lie on the
right side of F1. By contrast, the injected spins are diffused
equally in both directions, creating spin accumulation on the
right side (figure 1(c)). Accordingly, the spin and charge
degrees of freedom are transported separately in the device.
The advantage of the nonlocal measurement is that F2 probes
only the spin degrees of freedom.

The electrical current density j� for spin channel �
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Figure 1. Nonlocal spin injection and detection device. (a) Top
view. (b) Side view. Current I is sent from F1 to the left end of N.
The spin accumulation at x = L is proved by measuring voltage V2
at F2. (c) Spatial variation of the ECP for up- and down-spin
electrons in N. (d) Densities of states for the up- and down-spin
bands in N (center) and F2 (left and right). (e) Nonlocal resistance
V2/I as a function of in-plane magnetic field B, where P and AP
represent the parallel and antiparallel orientations of magnetizations
in F1 and F2.
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Figure 2.1: (a) Top view of a lateral nonlocal spin valve. Two ferromagnets (F1, F2) are
placed on top of a nonmagnetic material of width w, separated by a distance L. A current
I0 is driven from F1 to the left side of the device and a voltage Vnl is measured between F2
and the right part of the sample. (b) Side view of the NSV. The application of a charge
current in the left generates a spin current diffusing to the right. The ferromagnets are
separated from the sample by tunnel barriers (green) to prevent spin absorption. (c)
Charge and spin electrochemical potential profiles in the sample. Green, red and blue
denotes charge, spin-up and spin-down ECP, respectively. (d) Schematics showing how
the spin-dependent ECP of F2 aligns with the nonequilibrium spin density of the non-
magnet. (e) Experimental signature of a NSV. When the relative polarization direction
of the injector and detector is parallel, Rnl > 0. When the magnetic field flips one of
the FM electrodes so their polarization is antiparallel, Rnl < 0. Figure extracted from
Ref. [258]: Spin current, spin accumulation and spin Hall effect, Saburo Takahashi and
Sadamichi Maekawa (2008), Science and Technology of Advanced Materials, copyright c©
National Institute for Materials Science, reprinted by permission of Taylor & Francis Ltd,
http://www.tandfonline.com on behalf of c© National Institute for Materials Science.
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where spin is transported via a spin-polarized current, might mask the spin-dependent

effects. In a NSV, the way the voltage and currents are set up plays a crucial role in

achieving good spin sensitivity. Different combinations are possible, but a simple and

common configuration is the following: while a voltage is applied between F1 and N1

(which is grounded), contacts F2 and N2 are left floating since they are used as voltage

probes. In this way, the left side of the device is closed and current flows between F1 and

N1, but to the right of the injector the circuit is open, so electrical current does not flow

towards F2 nor N2. However, as explained below, pure spin current does flow from F1

to the right.

Before delving further into the processes occurring in a NSV, it is important to in-

troduce the concept of spin electrochemical potential (ECP), since this is what is probed

by the FM detector, and its relationship with the spin density. Similar to the charge

and spin densities, we can use the spin-dependent electrochemical potentials, µ↑/↓, to

define a charge ECP, µc =
µ↑+µ↓

2
, and a spin ECP, µs = µ↑ − µ↓3. Furthermore, the

spin-dependent Einstein relation states that σ↑/↓ = e2N↑/↓D↑/↓, where σ↑/↓, N↑/↓, D↑/↓ are

the spin-dependent electrical conductivity (or sheet conductivity in two-dimensions), the

spin-dependent density of states and the spin-dependent spin diffusion coefficient, respec-

tively. Noting that a small change of density is related to a variation in electrochemical

potential as δn↑/↓ = N↑/↓δµ↑/↓, we obtain, by using the Einstein relation,

δn↑/↓ =
σ↑/↓
e2D↑/↓

δµ↑/↓ =
σ

2e2Ds

δµ↑/↓, (2.7)

where we have used the formulas σ↑ = σ↓ = σ/2 and D↑ = D↓ = Ds that apply to

nonmagnetic materials (σ = σ↑ + σ↓ is the total electrical conductivity and Ds the spin

diffusion coefficient or constant). By subtracting the up and down components, we get:

δs =
σ

2e2Ds

δµs. (2.8)

Here, we have explicitly accounted for the fact that the spin density and the spin electro-

chemical potential are vectors (s = (sx, sy, sz) and µs = (µx, µy, µz)) since the spin can

be polarized in any Cartesian direction. Equation (2.8) converts the spin accumulation,

in units of inverse area or volume, into the spin ECP that has units of energy, and will

prove useful later on when deriving the expression for the nonlocal voltage. Likewise, it

is important to introduce the relation between the spin accumulation, the spin electro-

chemical potential and the spin current. From diffusive theory, the current density of an

3Sometimes a factor of 1/2 is used when defining the spin ECP, µs =
µ↑−µ↓

2 . It is just a convention
and both choices are widely used in the literature [67,122,273].
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up or down spin (J↑/↓) is:

J↑/↓ = eDs

∂n↑/↓
∂x

=
σ

2e

∂µ↑/↓
∂x

, (2.9)

and consequently, the spin current density along the x direction is4:

Js,x = (Jxs,x, J
y
s,x, J

z
s,x) = eDs

∂s

∂x
=

σ

2e

∂µs
∂x

. (2.10)

Working principle The complete working principle of a NSV can be divided into three

processes: spin injection, spin transport and spin detection. For spin injection, as just

mentioned, a bias difference is imposed between F1 and the N1, so a current I0 flows

in that device region (see Figures 2.1(a) and 2.1(b)). Importantly, this current is spin-

polarized, and creates a nonequilibrium spin accumulation in the sample underneath F1.

The sign of this spin density is the same as the polarization of F1.

Because of a gradient in the spin accumulation, the spins diffuse to the right along

the channel until they reach F2. To understand the transport and relaxation of spins in

a NSV, it is insightful to view the profile of the spin accumulation or spin ECP along the

device. A representative example is shown in Figure 2.1(c). The green line depicts the

charge ECP, while red and blue lines show the spin-up and spin-down ECP, respectively.

From the position of F1 (set at x = 0) to the left, both charge and spin ECPs display a

slope in the profile. Such a variation of ECP with distance indicates (see equations (2.9)

and (2.10)) a spin-polarized current from F1 to N1. On the other hand, from x = 0 to

the right, the charge ECP is constant, but the spin ECPs are not. The most relevant

aspect to remark from this profile is the opposite slopes of the up and down spin ECPs

for x > 0. Not only does this mean that there is a spin current, but also that there is

the same amount of spin-up and spin-down electrons flowing in opposite directions, thus

canceling out the charge current (i.e. (µ↑ − µc) = −(µ↓ − µc)). Consequently, the charge

ECP is constant throughout x > 0, as marked by the flat green curve.

Finally, the spins reach the F2 electrode and are detected by means of the so-called

spin-charge coupling. This concept, developed by Silsbee [240], states that a nonequi-

librium spin accumulation in a nonmagnetic material produces a spin-dependent elec-

tromotive force which can be measured as a spin-dependent voltage. This is the reason

why a ferromagnetic material is needed as a detection probe, as only materials with a

net spin magnetization are sensitive to such spin-dependent voltage. A schematic of this

measurement process is displayed in Figure 2.1(d), in which the FM is idealized to be

4The spin current (density) is in fact a tensor including both the direction of the spin polarization
and the direction of propagation. See List of Acronyms and useful Symbols for the different definitions
used in this thesis.
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100% polarized to simplify the explanation. The F2 detector can measure only spins that

are aligned with its magnetization axis. In this manner, if we assume that the spin den-

sity profiles shown in Figure 2.1(c) are parallel to the detector’s magnetization, F2 will

detect a voltage proportional to µ↑ or µ↓. This voltage arises because the spin-dependent

chemical potential of F2 aligns with that of the nonmagnetic sample (red or blue line in

Figure 2.1(c)), thus giving VF2 = µ↑/↓/(−e). On the other hand, lead N2 is nonmagnetic

and as such does not align with the spin-dependent ECP, but rather with µc. Therefore,

the measured nonlocal voltage Vnl = VF2 − VN2 will be just Vnl = (µ↑/↓ − µc)/(−e). After

the voltage is measured, it is typically normalized by the injected current I0, defining in

this way the nonlocal resistance Rnl = Vnl/I0. 5

An important caveat of this detection method is that the above explanation assumes

that the spins do not flow into F2. The specific conditions of voltage and currents in a NSV

ensure that there is no charge current flowing into F2, but do not prevent spin current from

flowing between the sample and the detector. When this occurs, F2 acts as a spin sink and

suppresses all the nonequilibirum spin accumulation in N, reducing in this way the value of

Vnl. This phenomenon is known as spin absorption [67,76,122,126,218,257] and takes place

when the contact resistance between F2 and the conducting channel is small. Because of

the larger conductivity and smaller spin relaxation length of a ferromagnet, spins find less

resistance in going into the detector than continuing propagating in the sample. In this

scenario, since F2 perturbs the spin transport, VF2 becomes dependent on the interface

resistance [257,258]. Although we just mentioned spin absorption at the F2/N interface,

it applies as well to the injector, where the created spin accumulation returns back to

F1 instead of diffusing along the channel. Naturally, this effect is something that needs

to be avoided as it hinders spin transport and communication, and hence high-resistive

tunnel barriers are normally placed between FM contacts and the sample [10,101].

Since both the injector and detector have the same polarization direction due to the

magnetocrystalline (or shape) anisotropy, two different outputs of nonlocal voltage can be

measured: when F1 and F2 have parallel alignment, and when F1 and F2 have antiparallel

alignment. Assuming that F1 injects up-spins, a parallel measurement would correspond

to measuring the µ↑ component of the spin ECP. Conversely, in the antiparallel setup, µ↓

is detected. By looking at the spin accumulation profile (Figure 2.1(c)), one can easily

observe that the former case will lead to a positive Vnl (µ↑−µc > 0), whereas the latter one

renders a negative nonlocal voltage (µ↓ − µc < 0). A typical experimental measurement

is shown in Figure 2.1(e), where Vnl is probed while applying an in-plane magnetic field

to switch the FM polarizations. The abrupt and reversible change of sign in the nonlocal

5This nonlocal resistance is not a resistance in the usual sense. It can take positive and negative
values and normalizes the output voltage by the input current.

17



voltage is a smoking gun of a true spin signal generated, transported and detected in a

NSV.

Spin diffusion equations

After understanding how NSV works, the next step is to extract the spin relaxation time

and length from a nonlocal resistance measurement. For that, the dynamics of spins

moving along the NSV channel is modeled with the so-called spin drift-diffusion equation

(also called diffusive Bloch equations) [67, 125, 131, 132], which describes the time and

space dependence of the spin density. This equation reads

∂s

∂t
= Ds∇2s+ µE∇s+ s× ω − s

τs
. (2.11)

Here, µ is the carrier mobility, E the electric field applied along the channel in the NSV,

ω = gµBB/~ is the Larmor precession frequency associated with an applied external

magnetic field B (with g the Landé g-factor). Ds and τs are tensors describing the spin

diffusion coefficient and spin lifetime in each Cartesian direction for each spin component.

The first term in the r.h.s of equation (2.11) describes the spin diffusion, the second term

the spin drift due to an applied electric field, the third term models spin precession and

the last term spin relaxation. In NSV devices, a few simplifications can be made in the

equation above. First, the electric field is typically absent, as highlighted in Figure 2.1(c),

which allows separation of the spin from the charge background contribution. Second,

the channel in the device has a large aspect ratio, such that transport is usually assumed

one-dimensional and the gradient becomes a simple derivative. Finally, the spin diffusion

tensor Ds is assumed to be isotropic in both spin and direction, thus becoming a scalar.

Importantly, equation (2.11) assumes diffusive transport for both spin and charge, and

because of this, some authors assume that the spin diffusion constant is the same as the

charge diffusion contant, Dc. However, this is still a controversial topic and a distinction

between spin and charge diffusion coefficients is sometimes made [15, 67, 134]. With the

above approximations, and also assuming steady state (∂s
∂t

= 0), one can express equation

(2.11) as

0 = Ds
∂2s

∂x2
+ s× ω − s

τs
, (2.12)

where we have assumed that the spin transport direction is along x.

There are two experimental procedures to extract the spin lifetime. One is to track

the decay of the spin accumulation with length in absence of magnetic field by using

multiple FM detectors and measuring several nonlocal voltages. The other involves just

one detector and what is measured is the variation of the spin accumulation with an
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applied magnetic field. The latter method, called the Hanle effect [106], is generally

preferred since fabricating many FM contacts with similar tunnel barriers and contact

resistances is complicated. Because of the magnetocrystalline or shape anisotropy of the

FM contacts, their polarization is in-plane and perpendicular to the transport direction

(i.e, along y in the current case) and consequently, the injected spin density in the channel

is along y too. Depending on the direction of the applied field, different components of the

spin lifetime tensor can be inferred, and if the material presents spin lifetime anisotropy,

that is, the spin lifetime for different spin components is not equal, a combination of

measurements with several directions of the field is needed to disentangle each individual

spin lifetime. Here, we will focus on the simplest and most studied case for 2D materials,

which is a magnetic field perpendicular to the plane (i.e. along z) and isotropic spin

lifetime. A derivation of the Bloch equations with other field directions and anisotropy

can be found in Refs. [83,216]. Taking ω = (0, 0, ωz), the Bloch equation reads

∂2

∂x2



sx

sy

sz


 =




1/λs −ωz/Ds 0

ωz/Ds 1/λs 0

0 0 1/λs






sx

sy

sz


 , (2.13)

where we have used the relation λs =
√
Dsτs. The components of the spin density have

solutions of form:

sx = −A i
κ
e−κx +B

i

κ
eκx + C

i

κ∗
e−κ

∗x −D i

κ∗
eκ
∗x

sy = −A1

κ
e−κx +B

1

κ
eκx − C i

κ∗
e−κ

∗x +D
i

κ∗
eκ
∗x (2.14)

sz = Ee−x/λs + Fex/λs ,

with κ =
√

1
λ2s
− i ωz

Ds
. Because of the out-of-plane magnetic field, the in-plane components

of the spin density are coupled to each other, whilst the z-component is not. Nevertheless,

we are only interested in sy since this is what the detector can measure.

To solve the system of equations, boundary and/or initial conditions have to be con-

sidered. Although spin flows in the whole NSV depicted in Figure 2.1(a), equations (2.14)

are usually solved only on the right side of the injector. First, it is assumed that the spin

is completely relaxed at +∞ and at lead N2,

sx(+∞)→ 0 (2.15)

sy(+∞)→ 0. (2.16)

Second, the spin current at the injection point (x = 0) is described by equation (2.10)
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and is polarized along y, implying:

∂sx

∂x
= 0 (2.17)

∂sy

∂x
=

Jys,x
2eDs

, (2.18)

where the factor of 2 appears because the right-propagating spin current at the injector

is assumed to be half the value of the total injected spin-polarized current. Although

these assumptions may be reasonable for most cases, we will see in Chapter 4 that other

boundary conditions for equations (2.14) need to be taken into account to describe certain

regimes of spin transport. Applying these conditions, one obtains:

sy = − Jys,x
2eDs

Re

{
e−κx

κ

}
. (2.19)

To convert the spin accumulation into the nonlocal resistance, a few extra steps are

required. First, we convert the spin density into the spin electrochemical potential using

equation (2.8),

µy = −eJ
y
s,x

σ
Re

{
e−κx

κ

}
= −eI0Pi

wσ
Re

{
e−κx

κ

}
, (2.20)

where we have used Jys,x = PiI0/w, with Pi and w being the injector polarization and the

cross section (in three dimensions) or the width (in two dimensions) of the spin conducting

channel, respectively. Then, by inspecting the spin density profile (Figure 2.1(c)), one

can see that µ↑ − µc = −(µ↓ − µc) = µs/2. Hence, Vnl = Pdµs/(−2e), where we have

introduced the polarization of the detector, Pd, to account for non-ideal ferromagnets.

With these relations, the nonlocal resistance becomes:

Rnl =
Vnl

I0

=
PiPd
2wσ

Re

{
e−κx

κ

}
=
PiPd
2wσ

Re




e
−x

√
1

λ2s
−i ωz

Ds

√
1
λ2s
− i ωz

Ds



 . (2.21)

The polarization of the leads take values in the interval [−1, 1], with 1 (−1) representing

a fully polarized ferromagnet along the spin-up (spin-down) direction, while 0 denotes

a nonmagnetic contact. Therefore, equation (2.21) shows that the sign of the nonlocal

resistance depends on the relative polarization direction of the FM leads, as illustrated in

Figure 2.1(e). To extract the spin diffusion time or length, one measures the dependence

of the nonlocal resistance with the out-of-plane magnetic field, and fit it to equation

(2.21). Tipically, the fitting parameters are the polarization, which is assumed to be

the same for both electrodes (Pi = Pd = P ) and the spin diffusion time or length. The

spin diffusion coefficient is also usually fitted, although the value of the charge diffusion
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constant may be used, if known. An example of a typical Hanle curve is shown in Figure

2.2(a) for different values of spin diffusion length. One advantage of this technique is

the relatively low magnetic field needed to observe the Hanle oscillation, as it avoids the

presence of orbital-related effects, such as Landau levels.

As commented earlier, another way to obtain the spin transport properties is by

measuring the length dependence of the nonlocal resistance. Taking the limit ωz = 0, Rnl

becomes

Rnl(B = 0) = PiPd
λs

2wσ
e−x/λs , (2.22)

which indicates that the spin accumulation decays exponentially with length. In contrast

to the Hanle oscillations, a fit with equation (2.22) does not allow for the extraction of the

spin diffusion coefficient. An example of such exponential decay is illustrated in Figure

2.2(b) for several values of λs.

To complement the derivation presented above, it is worth mentioning that there is

an alternative procedure to obtain an expression equivalent to equation (2.21) [67, 125].

Diffusive theory tells us that an electron density n that satisfies the initial condition

n(x, 0) = N0δ(x), evolves in time and space as a normal probability distribution [67]

P (x, t) =
N0√

4πDct
e−x

2/(4Dct), (2.23)

where N0 is the total number of electrons. If we now apply this result to the spin density

along an in-plane component and consider that spins precess about an out-of-plane field

(a) (b)

Figure 2.2: (a) Hanle curves for different values of spin diffusion length modeled with
equation (2.21). The parameters used are: L = 10 µm, Ds = 0.05 m2/s, Pi = Pd = 1,
σ = 100 S, w = 3 µm . (b) Length dependence of the nonlocal resistance for different
values of spin diffusion lengths modeled with equation (2.22). The parameters used are
the same as in (a).
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and also relax exponentially with time, one obtains [67]:

sy(x, t) ∼
N0√

4πDst
e−x

2/(4Dst) cos(ωzt)e
−t/τs = P (x, t) cos(ωzt)e

−t/τs . (2.24)

To relate this to the spin accumulation underneath the FM detector (and therefore to

Rnl), we need to integrate over all possible transport times so we account for all spins

reaching the detector,

Rnl ∝
∫ ∞

0

sy(x = L, t)dt =

∫ ∞

0

P (x = L, t) cos(ωzt)e
−t/τsdt = (2.25)

=

∫ ∞

0

N0√
4πDst

e−L
2/(4Dst) cos(ωzt)e

−t/τsdt. (2.26)

It can be easily verified numerically that equations (2.21) and (2.25) are equivalent. The

advantage of this equation over equation (2.21) is that one can directly see what physical

effects are taking place. Namely, a spin density that diffuses (P (x, t)), precesses (cos(ωzt))

and relaxes (e−t/τs). It is to be noted that the combination of precession and diffusion

reduces the magnitude of the nonlocal signal. Although all spins precess coherently

with frequency ωz, the diffusive motion makes the spins reach the detector at different

times, and therefore with different spin polarization. Importantly, this is just a dephasing

process and is independent of spin relaxation.

In this section, we have presented two procedures to obtain an equation describing

the spin dynamics (diffusion, rotation and relaxation) of spins. In Chapter 4 we will

make use of both approaches to derive other equations suitable for describing NSV in

unconventional spin transport regimes.

2.1.4 Charge-to-spin interconversion

The interconversion of the charge and spin degrees of freedom is another key ingredient

for realizing active spintronic devices. Here, we define CSI to those phenomena that

involve the generation of spin (charge) currents due to the transport of charge (spin). In

this category, we include the SHE and ISHE [61, 62, 112, 143, 238, 243, 274, 290, 303]; and

so-called inverse spin galvanic effect (ISGE) and spin galvanic effect [64,81,142,239]; and

motion of magnetic textures (skyrmions) [75,193], magnetic domain walls [210,265,297],

and magnons [44, 45, 136] induced by (spin-polarized) charge currents. In this thesis,

we will focus only on nonmagnetic materials where the CSI is driven by the spin-orbit

coupling, and specifically on the SHE and ISHE, which are described in the following.

For completeness, we also briefly explain the inverse spin galvanic effect and its inverse

in this section.
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The SHE and ISHE produce, respectively, a spin current from a transverse charge

current, and a charge current from a transverse spin current, both phenomena being

related to each other via the Onsager reciprocal relations. Two main types of SHE can be

distinguished, namely, the intrinsic SHE [243] and the extrinsic SHE [61,62,112,303]. In

the intrinsic SHE, the spin-orbit coupling inherent to the lattice generates an anomalous

spin-dependent velocity (with equal magnitude but opposite direction) transverse to the

charge current and proportional to the so-called Berry curvature (see section 2.1.5). In

this way, the resulting total velocity of a k-state at band n becomes [83,291]:

vn(k) =
1

~
∇En(k)− e

~
E ×Ωn(k). (2.27)

Here, En is the energy of the electron at band n, e is the electron charge, E is the electric

field and Ωn(k) is the Berry curvature of band n. The second term in equation (2.27)

thus generates a velocity that is perpendicular to the applied electric field. Conversely,

in the extrinsic SHE, it is the SOC induced by localized impurities that produce spin-

dependent scattering leading to a transverse spin current. Both effects are illustrated in

Figure 2.3(a). The symmetries of the lattice or the local impurities (and hence the SOC

Hamiltonian) dictate the relative direction of the spin polarization (sα) with respect to

the charge and spin currents. Typically, charge current, spin current and spin polarization

are perpendicular to each other (i.e. Ic ⊥ Is ⊥ sα). However, this is not rooted in a funda-

mental constrain, and less restrictive combinations of the aforementioned quantities can

be allowed provided some lattice symmetries are broken, as in the case of low-symmetry

TMDs discussed in section 2.2.2. Such effects will be the basis of the results in Chapter

5.

In the SHE, one can define the charge-to-spin conversion efficiency for spins generated

along the α direction as

θαij =
Jαs,i
Jc,j

, (2.28)

where Jαs,i is the spin current density flowing in the i direction, Jc,j is the charge current

density along j, and θαij is the so-called spin Hall angle (SHA). Because of the reciprocity

between the SHE and ISHE, the SHA takes the inverse form in the ISHE and defines the

efficiency of spin-to-charge conversion. For disordered systems in the diffusive regime,

the spin Hall angle can also be defined as the ratio of the spin Hall conductivity (SHC),

σαij, and the longitudinal charge conductivity, σjj:

θαij =
σαij
σjj

. (2.29)

This formula is useful for numerical calculations as both conductivities can be easily
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+𝑣
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(a) (b)
𝛼

𝛼

Figure 2.3: (a) Schematics of the spin Hall effect produced by intrinsic (top) and extrinsic
(down) mechanisms. In the intrinsic SHE, spin-up and spin-down electrons in a charge
current density flowing along j, Jc,j, acquire opposite transverse velocities from a uniform
SOC in the material (denoted as a shaded gray background), resulting in a transverse
spin current density along i, Js,i. In the extrinsic SHE, up and down electrons scatter in
opposite transverse directions due to an impurity with SOC. (b) Spin polarization or tex-
ture of a Rashba system, without (left) and with (right) an applied in-plane electric field.
The electric field shifts the Fermi surface, resulting in a net spin density. Reprinted fig-
ure with permission from Ref. [244]. Copyright (2015) by the American Physical Society,
https://doi.org/10.1103/RevModPhys.87.1213.

computed with the Kubo-Bastin formula (see next section and section 3.2.2).

While the SHE generates pure spin currents, the ISGE produces a spin density or

accumulation sα from the application of a charge current. Likewise, its reciprocal effect,

the spin galvanic effect, converts a spin density into a charge current. The origin of the

ISGE resides again in the SOC, specifically in how the Fermi surface and the spin texture

of the bands are displaced upon the application of an electric field (i.e. a drift charge

current). For the ISGE to occur, the spin texture of the bands needs to arise from a

broken inversion symmetry, as in the case of Rashba SOC [244]. Figure 2.3(b) shows the

ISGE in one of the chiral Rashba bands. When the electric field is absent, the total spin

polarization at the Fermi surface is zero. However, an in-plane electric field along the

x direction displaces the Fermi surface and as a result there are more filled states with

positive wavevector than negative wavevector. Because of the spin-momentum locking

of the Rashba SOC, a spin density in the y direction develops, sy, which can further

spread as a spin current. In the literature, the inverse spin galvanic effect is also called

current-induced spin polarization or Rashba-Edelstein effect [64].
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2.1.5 Topology in spintronics

In condensed matter physics, topology is used to classify distinctive phases of matter. The

quantum Hall effect [148] revealed that the insulating phase of a two-dimensional electron

gas subjected to a strong magnetic field is topologically different than a typical band

insulator. Insulating materials can be classified according to a topological invariant [107],

which is associated to an integer number that depends on the different topological phases.

These classifications allows us to distinguish materials possessing nontrivial topology (as

in the quantum Hall state) from trivial ones. One of the main consequences of topology is

that small perturbations and smooth variations of the Hamiltonian, induced for instance

by disorder, leave unaffected the topological invariant, which is related to a measurable

quantity (such as the Hall resistance). To modify the topological order, a transition from

the two inequivalent insulators must occur. In other words, the band gap must close

and reopen again, with the consequence that at the transition point the system becomes

metallic. This has the direct implication that at the interface of two topologically different

materials, nontrivial metallic state emerges [100, 107, 108]. Importantly, its propagation

is chiral (i.e. it flows along only one direction) and it is resilient to disorder because

the nontrivial insulator is very robust against perturbations. This relation between the

topology of a bulk crystal and the manifestation of gapless edge states is known as bulk-

boundary correspondence [107].

The first topological invariant used to describe the quantum Hall effect was the Chern

number, C. Its value is related to the number of gapless states propagating along the

edge as well as to the magnitue and quantization of the Hall conductivity [267],

σxy = C e
2

h
, (2.30)

with C = 1
2π

∫
BZ

Ω(k) · d2k. The quantity Ω is the Berry curvature and has many

implications for the electronic properties of electrons [291]. The Berry curvature can be

calculated as the sum of the partial Berry curvature of each occupied band with the Kubo

formula as follows [69,215,291,299]. For a 2D Brillouin zone in the xy plane, d2k = d2k ẑ

such that only Ωzẑ needs to be considered, and one has [291]

Ωz(k) = Ωxy(k) =
∑

n

fnΩn,xy(k), (2.31)

with

Ωn,xy(k) = −2~2
∑

n6=m
Im

{〈nk|vx|mk〉〈mk|vy|nk〉
(En(k)− Em(k))2

}
. (2.32)

Here, n and m are band indices, |nk〉 is a Bloch eigenstate with energy En, fn is the
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distribution function of electrons and vi = 1
~
∂En(k)
∂ki

is the velocity operator, with i = x, y.

Equation (2.32) measures a topological property of the electronic spectrum, which derives

from an invariant of a correlation function between velocity operators [151].

In 2005, Kane and Mele proposed a different topological classification for time-reversal-

invariant systems [139], the Z2 invariant (equivalent to the later on defined spin Chern

number, Cs [234]), in which spin-orbit coupling, instead of a real magnetic field, leads to

a nontrivial topological phase. This state of matter is called a topological insulator and

in two dimensions exhibits the quantum spin Hall effect (QSHE) [26, 138, 192, 234, 235].

Because of the nontrivial bulk topology, the quantum spin Hall (QSH) regime must also

display in-gap states localized at the sample boundary. In this scenario, however, each

spin state propagates along opposite directions (see Figure 2.4), forming therefore a pair

of helical edge states carrying a pure spin current, in contrast with the chiral nature seen

in the quantum Hall regime. This picture can also be understood as the motion of a

Kramers pair, with opposite chirality owing to time-reversal symmetry [98,138].

The topology of the QSHE implies that these spin-polarized helical channels are robust

against disorder and imperfections in the material, and therefore propagate ballistically.

Consequently, these modes hold great potential in spintronics, as they can in principle be

used to carry spin currents over long distances. Because of the intrinsic one-dimensional

(1D) nature of the edge states, only forward and backward scattering of electrons is pos-

sible. However, backscattering is only allowed if the spin is flipped during the scattering

Figure 2.4: Illustration of the helical transport carried by the spin-polarized edge states
of the quantum spin Hall effect in a HgTe quantum well. From [152]. Reprinted with
permission from AAAS.
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event, as the state that propagates in the opposite direction has opposite spin. In other

words, time-reversal-symmetry must be broken to destroy the ballistic transport in the

QSHE. Because of that, it is said that these gapless modes are topologically protected

against disorder that preserves time-reversal-symmetry, while magnetic fields and mag-

netic impurities are detrimental to such long-range ballistic propagation. An exception

would be the case of very strong nonmagnetic interactions that couple edge states from

opposite edges through the bulk. In a ribbon geometry, if spin-up electrons move from left

to right along one edge, they are counterpropagating in the opposite edge. Therefore, if

the material is not wide enough, connecting these states could be induced by nonmagnetic

disorder, yielding backscattering in absence of time-reversal symmetry breaking.

While the QSHE exhibits a vanishing Hall conductivity, the spin Hall conductivity is

finite inside the gap. However, the SHC is quantized to an integer value defined by the

spin Chern number only when the spin is conserved [139,234]6. The elements of the SHC

tensor can be calculated in a similar way to the Hall conductivity using the α-spin Berry

curvature as [69]

σαxy =
e2

h

1

2π

∫

BZ

∑

n

fnΩα
n,xy(k) d2k, (2.33)

with

Ωα
n,xy(k) = −2~2

∑

n 6=m
Im

{〈nk|1
2
{sα, vx}|mk〉〈mk|vy|nk〉
(En(k)− Em(k))2

}
. (2.34)

Here we have chosen to define the spin Berry curvature with the Pauli matrix, resulting

in the spin Hall conductivity with units of e2/h. Thus, the value of the SHC defined in

equation (2.33) indicates the number of helical channels propagating along the sample

edges. We note, however, that other units are found in the literature [191,234].

Figure 2.5 gives an example of the band structure of a Kane-Mele quantum spin

Hall insulator together with the SHC and conductance expected in the bulk and ribbon

geometry, respectively. The bulk bands (i.e. with periodic boundary conditions and thus

no edge termination) seen in Figure 2.5(a) are gapped. The corresponding SHC, shown

in Figure 2.5(b), displays a finite and quantized value of 2e2/h precisely in the gap region,

proving the existence of the QSHE with conserved spins. An important remark is that

the SHC decays outside the gap but is still finite. This feature will play an important

role in describing the results in Chapter 5. If this system is indeed a 2D topological

insulator, its band structure should display in-gap states when the system is cut into a

quasi-1D ribbon. This is in fact the case in Figure 2.5(c): two pairs of degenerate bands

with opposite velocity (one for each spin) appear in the band gap region. Although

such states are helical and carry a pure spin current, if a bias voltage is applied in a

6Although the nontrivial topological phase can remain even without spin conservation [139,234].

27



two-terminal setup, the conductance will show a value of 2e2/h due to two right- (or

left-) propagating modes (one spin at each edge). Figure 2.5(d) illustrates exactly this

situation. In the gap, the total conductance is quantized to 2e2/h, while the conductance

of the spin-up and spin-down channels is equal to e2/h.

(a) (b) (c) (d)

G2T

G2T+G2T

G2T

↑↑

↓↓

↑↑ ↓↓

Figure 2.5: (a) Bulk band structure of the Kane-Mele QSH insulator. (b) Spin Hall
conductivity of the system in (a), showing a quantized value in the gap. (c) Band structure
of the Kane-Mele QSH insulator of a quasi-1D system. Helical in-gap states appear as
a consequence of having a finite system. (d) Two-terminal conductance, G2T, of the
system in (c), showing a total two-terminal conductance of 2e2/h (and of e2/h for each
spin component) for all energies in the gap. The horizontal dashed lines denote, in all
plots, the extension of the band gap.

Since the spin Hall conductivity is not directly experimentally accessible (in contrast

to the charge conductivity or the spin Hall angle obtained by measuring currents and

voltages in a device), experiments usually rely on the observation of a plateau of conduc-

tance of 2e2/h to determine the existence of the QSHE. However, the QSHE has another

unique fingerprint in multi-terminal devices that can be used to unambiguously detect

it [222]. The theory behind such effect is given by the Landauer-Büttiker formalism and

is explained in Appendix F.

Finally, we note that the field of topological insulators and topological matter is

extremely vast, including for example topological insulators in three dimensions [80,305]

or with higher-order topology [231].
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2.2 State-of-the-art in two-dimensional spintronics

In this section, we focus on the recent developments of the fields relevant for this thesis.

Namely, the progress on graphene spin transport and the transition towards ballistic spin

communication, and the spin transport characteristics and charge-to-spin interconversion

in low-symmetry TMDs.

2.2.1 Graphene

The potential of graphene as a conducting spin channel stems from its small spin-orbit

coupling (∼ µeV) and hyperfine interaction [92,101,116,153,186,286], which should result

in long spin relaxation times and lengths. Indeed, the first theoretical studies predicted

τs exceeding the µs range [66, 118, 313], which is orders of magnitude larger than in

typical metals and semiconductors [122]. These estimates were based on traditional

mechanisms of spin relaxation in metals and semiconductors, namely the Elliott-Yafet

and D’yakonov-Perel’ mechanisms. The typical scattering events considered in these

calculations are collisions with charged impurities [66, 313], ripples [79, 116, 118, 277],

phonons [66, 79, 202, 277, 313] and other electrons [313]. However, from the experimental

side, early measurements of graphene nonlocal spin valves revealed a large discrepancy

with the theoretical expectations, with τs < 1 ns [11,96,134,194,268,269,316], remaining

orders of magnitude shorter than earlier predictions. This intriguing difference between

theory and experiment initially suggested that the traditional application of Elliott-Yafet

and D’yakonov-Perel’ mechanisms may not be fully appropriate for graphene. As a result,

several mechanisms, either from extrinsic sources or intrinsically from graphene, have been

proposed to explain this discrepancy.

The first graphene NSVs consisted on exfoliated graphene with FM contacts directly

on top [102] or with tunnel barriers [268]. It was rapidly seen that the quality and homo-

geneity of the tunnel barrier was extremely important in order to prevent spins sinking

and decrease spin relaxation [103]. Consequently, a lot of efforts were made in that direc-

tion and it was found that the contact resistance between graphene and the FM contacts

was equally relevant [211, 280, 281]. This was accompanied by theoretical models that

included contact-induced spin relaxation by the FM electrodes in the spin diffusion equa-

tion [6,120,121,174,201,253,254]. Another source of extrinsic spin relaxation, scattering

by magnetic impurities (likely originating during the device fabrication), was experimen-

tally [172] and theoretically [149, 252] studied. In parallel, the use of hexagonal boron

nitride (hBN) as a substrate or protective layer, in addition to other improvements of

device fabrication, revealed an increase of spin lifetimes up to 12 ns due to the protection

of graphene from contaminants and better interface quality [58–60, 95, 137, 241]. Figure
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2.6 illustrates the evolution of all these improvements in material growth and fabrication

techniques that have established graphene as an excellent spin transport material.

Although these results already made clean graphene a suitable platform for achieving

longer coherent spin propagation than in typical metals or semiconductors, τs remained

several orders of magnitude below the initial theoretical predictions [66,118,313], a puz-

zling result which remains open to discussion and interpretation [219, 220]. Thus, other

sources of (intrinsic) spin relaxation, that are unique to graphene, were proposed. The

role of the hyperfine interaction between the nucleus and electrons was proven negligible

because of the low abundance of 13C and the weak hyperfine coupling in graphene [286].

Ripples and corrugation, where local curvature increases the effective spin-orbit cou-

pling, or gauge fields, were also investigated [118,202,277]. However, calculations of this

phenomenon in experimentally-relevant situations revealed spin lifetimes in the range of

hundreds of ns up to µs, indicating that this mechanism is not likely to be a limiting

factor in experiments to date. Finally, another mechanism, known as spin-pseudospin

coupling, predicted the increase of spin dephasing near the graphene Dirac point due to

the entanglement of these degrees of freedom [271], resulting in spin lifetimes on the order

of the nanosecond range [276].

All these works suggest that the extrinsic effects on spin transport can be eventually

avoided by increased sample quality and device fabrication, while intrinsic mechanisms

such spin-pseudospin coupling could represent the upper limit of spin lifetime in the

ultraclean limit. Nevertheless, enhanced spin transport is not the only improvement

from such better device quality. The increased mean free path up to tens of micrometers

at lower temperatures [16, 17, 283] has also resulted in ballistic charge transport in the

µm range. Therefore, it is expected that spin propagation becomes ballistic too provided

such long mean free paths are reached in nonlocal spin valves.

Ballistic spin transport research has been limited to theoretical works and only few

experiments on two-dimensional electron gases (2DEGs) have been carried out due to

the short mean free paths (in comparison with graphene) of just a few µm at most

[31, 169, 205]. Many of the theoretical contributions have focused on either one of these

two following aspects: ballistic spin injection from a ferromagnet into a nonmagnetic

conductor [40, 155] and the modulation of spins by the Rashba SOC in a ballistic two-

terminal channel [128,165,187] to realize the Datta-Das spin transistor [55]. An important

result from these works that may be relevant for NSVs is the prediction of increased spin

accumulation when spins are injected in a material with spin diffusion length shorter than

the mean free path [40]. In fact, this work explained the results from a few experiments

in 2DEGs where signs of ballistic spin transport were detected [31, 169, 205]. However,

in these studies the width of the FM leads was equal or larger than the channel length,
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(a)

(b)

(c)

(d)

Figure 2.6: (a) First NSV made of graphene. Tunnel barriers made of Al2O3 were used.
(b) NSV with hBN-encapsulated graphene, where the top hBN covers the transport
channel only. (c) NSV with hBN-encapsulated graphene, where the top hBN covers the
transport channel and is also the tunnel barrier between graphene and the FM elec-
trodes. (d) Inverted NSV where graphene is deposited on top of the electrodes and
then hBN is used to cover the whole device, protecting graphene from residues and sol-
vents needed during the fabrication procedure. Figures reprinted with permission from:
(a) Spinger Nature Customer Service Centre GmbH: Nature Publishing Group, Nature,
Ref. [268], copyright (2007). (b) Ref. [95]. Copyrighted (2014) by the American Phys-
ical Society, https://doi.org/10.1103/PhysRevLett.113.086602. (c) Ref. [97], with
license https://creativecommons.org/licenses/by/4.0/. (d) Reprinted with permis-
sion from [58]. Copyright (2016) American Chemical Society.
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so all ballistic effects were attributed to spin injection (rather than spin transport or

precession) in the region underneath the FM contacts.

Nonetheless, a few works did study spin transport in nonlocal geometries or mecha-

nisms of spin relaxation unique from the ballistic regime. Tang et. al. [262] performed

semiclassical Monte Carlo simulations of nonlocal spin valves in a ballistic channel. Scat-

tering was present during spin injection and detection, leading to spin dephasing with

magnetic field due to different paths taken by the electrons to travel along the channel.

However, the dependence of the signal with varying disorder strength as well as the limits

of diffusive or completely ballistic transport were not investigated. On the other hand,

Zainuddin et. al. [301] performed Landauer-Büttiker simulations of a NSV in the ballistic

regime, but they primarily focused on the modulation of the signal with the Rashba SOC

and the effect of the Hanle precession and spin relaxation was barely studied.

A common generality in all these articles is the assumption of a finite spin relaxation

length in the ballistic regime without specifying the spin relaxation mechanism, which

is not obvious since the typical D’Yakonov-Perel’ or Elliot-Yaffet mechanisms should not

apply. This issue was finally investigated in Ref. [51], where the authors showed that

spins can relax during ballistic transport if spins precess at different frequencies during

propagation. This phenomenon could occur in a system where SOC leads to an energy-

dependent spin splitting (and thus into an energy-dependent precession frequency) and

electrons occupy a distribution of energies due to e.g. thermal broadening. This work,

however, was based on bulk transport calculations and thus it is not clear how this

mechanism can impact a nonlocal transport experiment.

Finally, another common feature of all studies based on quantum transport calcula-

tions is the fact that none of them focused on the diffusive regime. The reason is likely to

be the large computational time required to average over many disorder configurations

in order to capture the randomness present in diffusive transport. This has an important

consequence, which is that a global picture of the crossover from diffusive to quasiballis-

tic and to ballistic transport regimes has not yet been deeply investigated. Furthermore,

characterizing the quasiballistic regime is specially important for providing experimental

guidance, as it is the most likely scenario to be found in a real device, as opposed to the

fully ballistic transport.

2.2.2 Transition metal dichalcogenides

Transition metal dichalcogenides are layered materials with formula MX2, with M being

a transition metal atom and X a chalcogen atom. Their weak van der Waals interlayer

interaction allows one to exfoliate them in two-dimensional crystals, down to a monolayer

crystal [199]. Different crystal structures are stable depending on the elements composing
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the material. Two common structures are the hexagonal (2H in bulk and 1H in two-

dimensions) and the tetragonal (1T) phases [43, 180], which are illustrated in Figure

2.7(a). The 1T phase (central panel in Figure 2.7(a)) can be distorted into a monoclinic

structure, the 1T′ phase (space group P21/m), which contains a mirror plane, a two-

fold screw rotation axis, and an inversion center in both the bulk and the monolayer.

This 1T′ can be further distorted into a very similar structure, the so-called 1Td phase

(space group Pmn21), but with different symmetry operations. In the bulk, it possesses

a mirror plane, a two-fold screw rotation axis and a glide mirror with both operations

involving a translation in the out-of-plane direction. However, in two-dimensions, the

lack of tranlational symmetry in the perpendicular direction results in the absence of

both the screw-rotation axis and the glide plane, leaving the 1Td phase with only a single

mirror plane [251, 295]. This reduction of symmetry with dimensionality is depicted in

Figures 2.7(b) and 2.7(c).

TMDs have received a lot of attention for their potential in spintronics and topological

transport due to their strong SOC inherent from the heavy atoms. In the hexagonal phase,

SOC produces a spin splitting of the valence band on the order of hundreds of meV and

locks the spin polarization of these bands with the valley degree of freedom [292], allowing

one to selectively excite up or down spins by the chirality of circularly polarized light [35,

176,302]. On the other hand, the 1T′ and 1Td phases accommodate the interesting class

of Weyl semimetal candidates MX2 (M = Mo, W; X = S, Se, Te) [130, 168, 249, 255, 294],

which have been advanced as platforms for realizing exotic phenomena such as topological

superconductivity [71,213,229], non-linear Hall effect [140,173,242,295,306], anisotropic

spin Hall transport [311] or out-of-plane spin-orbit torque [175]. When thinned towards

the monolayer limit, they transition from the Weyl semimetal phase characteristic of the

bulk to the quantum spin Hall regime [41, 72, 129, 214, 237, 264, 289] with strain-tunable

topological gap [309].

Recently, large charge-to-spin interconversion generated by the spin Hall effect has

been reported in multilayers of MoTe2 and WTe2 [227, 251, 307, 308] with indication of

long spin diffusion lengths on the order of micrometers [251]. The efficiency of the SHE

is determined by the spin Hall angle θαxy which indicates the percentage of spin current

produced by a driving charge current; θαxy depends on the magnitude of SOC and is typi-

cally no more than a few percent at room temperature in heavy metals [244]. Usually, the

stronger the SOC, the shorter the spin diffusion length is, so achieving long λs concur-

rently with large SHA is a long-standing challenge for spintronics. To date, the best trade-

off obtained with heavy metals amounts to λsθ
α
xy ∼ 0.1–0.2 nm [113, 123, 160, 228, 244].

Interestingly, hints of unconventional SHE have been detected in 1T′ [227] and 1Td phases

of MoTe2 multilayers [251] as well as 1Td-WTe2 multilayer [307]. This is not surprising

33



(b)

(a)

(c)

Figure 2.7: (a) Crystal structure of different TMD pahses. Top and bottom rows corre-
spond to a top and side view, respectively. From left to rigth: hexagonal structure (2H),
rhombohedral (1T) and monoclinic (1T′). (b) Crystal structure of bulk 1Td-MoTe2, pos-
sessing a mirror symmetry in the yz plane (Mx) and a glide mirror symmetry (My) along
the perpenidcular z direction. (c) In two-dimensions, 1Td-MoTe2 only has Mx due to the
lack of translational symmetry along the z direction. Figures reprinted with permission
from: (a) Spinger Nature Customer Service Centre GmbH: Nature Publishing Group,
Nature Reviews Materials, Ref. [180], copyright (2017). (b) Spinger Nature Customer
Service Centre GmbH: Nature Publishing Group, Nature Materials, Ref. [251], copyright
(2020).
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since, in contrast to bulk crystals of 1Td, the absence of the glide mirror symmetry in

few-layer slabs is expected to generate additional nonzero components of the spin Hall

conductivity tensor, resulting in spin current with polarization collinear with the charge

current [251]. Indeed, Figures 2.8(a) and 2.8(b) show, respectively, the components σzxy

and σzxz of the SHC tensor of bulk 1Td-MoTe2. While a the former is nonzero, the latter

is absent, as the symmetries present in the bulk crystal do not allow the spin polarization

to be parallel to the charge current. However, the situation changes when the SHC is

calculated for a 5-layer slab (Figures 2.8(c) and 2.8(d)), in which both components be-

come finite. In Appendix C, we give a more detailed explanation of why elements of the

SHC tensor become finite upon breaking certain symmetries. Moreover, we also provide

all the elements of the SHC for both bulk and layer 1T′ and 1Td phases. Interestingly,

while the unconventional components of the SHC only appear in 2D for the 1Td phase,

the different symmetries of the 1T′ phase allow them to appear in the bulk.

(a)

(c) (d)

(b)

𝜎𝑥𝑧𝑧

𝜎𝑥𝑧𝑧

Figure 2.8: Spin Hall conductivity of bulk (a, b) and 5-layer (c, d) 1Td-MoTe2 for the
conventional (a, c) and unconventional (b, d) component. The unconventional element of
the SHC tensor is only allowed in the 2D limit. Reproduced by permission from Spinger
Nature Customer Service Centre GmbH: Nature Publishing Group, Nature Materials,
Ref. [251], copyright (2020).

Spin Hall materials that do not have the restriction of mutually perpendicular charge

current, spin current and spin polarization are very attractive as they bring more flexibil-

ity in the design of spintronic devices as well as for spin torque applications [175]. These

materials would be even more promising if they possessed large spin relaxation lengths,
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Figure 2.9: Ashby plot of spin diffusion length and spin Hall angle of common spin
Hall materials. MoTe2 in Ref. [251] was found to posses large λs and θαxy. Reprinted
by permission from Spinger Nature Customer Service Centre GmbH: Nature Publishing
Group, Nature Materials, Ref. [251], copyright (2020).

usually incompatible with strong SOC. Nevertheless, Song et. al. have estimated spin

diffusion lengths in few-layer 1Td-MoTe2 on the order of micrometers together with large

SHAs [251]. When compared to other spin Hall materials (Figure 2.9), low-symmetry

TMDs appear to be superior spintronic materials with large charge-to-spin interconver-

sion efficiencies, λsθ
α
xy.

In addition to the spin Hall effect, monolayers of such low-symmetry TMDs were pre-

dicted to be 2D topological insulators exhibiting the quantum spin Hall effect [214]. Such

predictions have been recently confirmed experimentally by several groups [41,72,129,237,

264, 289], with most of the experiments being carried out in WTe2. In contrast to other

quantum spin Hall materials where the QSHE was observed only at milikelvin tempera-

tures [152, 222], the effect in WTe2 persists up to 100 K [289], establishing these TMDs

as great candidates for utilizing the QSHE in applications. Figures 2.10(a) and 2.10(b)

show the band structure and edge states of 1T′ TMDs and the measured quantization of

the two-terminal conductance distinctive of the QSHE.

The prototypical models of the QSHE are based on z-polarized spins [24, 138]. How-

ever, if we combine the results of the unconventional spin Hall effect with the presence

of topological helical edge states, we may ask ourselves the following question: what is

the effect of the symmetry reduction of monolayer TMDs on the QSHE? To date, lit-

tle is known about the imprint of the inherently low symmetry in the quantum spin
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(b)

(a)

Figure 2.10: (a) Top, middle and bottom panel correspond to the band structure, edge
density of states and spin texture of the edge modes, respectively, for 1T′-MoS2. (b)
Two-terminal conductance of in-gap states of 1T′-WTe2 as a function of temperature.
Different colors represent different gate voltages. Inset: Voltage-dependence of the two-
terminal conductance at various temperatures. Figures from: (a) Ref. [214], reprinted
with permission from AAAS. (b) Ref. [289], reprinted with permission from AAAS.

Hall regime. Correlations and substrate effects were found to induce localization of edge

modes [203], and resilient in-plane spin-states [52], but the impact of low symmetries and

the possibility of multiple spin Hall components in the QSHE remains to be determined.
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CHAPTER 3

QUANTUM TRANSPORT METHODOLOGIES FOR SPIN

TRANSPORT

Numerical simulations are an important tool to study physical and chemical properties

of materials and, with the continuous improvement of modern computers, realistic cal-

culations can be carried out even on a laptop. Although computer simulations imply

approximating a real material to a set of physical equations, they offer unique advan-

tages. One can calculate properties without performing an experiment and thus it is

possible to make predictions about uncharacterized materials, undiscovered physical ef-

fects or obtain microscopic insights into physical phenomena that experiments cannot

unveil.

In this thesis, I aim at describing spin transport in electronic devices made of two-

dimensional materials. In other words, I am not only interested in the intrinsic properties

of a material, but also in the effects arising from the application of voltages and currents

with metallic leads. In this manner, I am able to simulate a mesoscopic transport experi-

ment and predict, at least qualitatively, the output of experimental measurements in the

laboratory. Among the theoretical frameworks of charge and spin transport [69,78,288],

the Landauer-Büttiker (LB) formalism is very well suited to carry out these types of

simulations.

This chapter addresses all methodological aspects needed to prepare, simulate and

interpret spin transport in mesoscopic devices made of 2D materials such as graphene or

TMDs. In section 3.1, the different methods available and used to obtain the Hamiltoni-

ans and the electronic structure are presented. Such quantum mechanical description of

the electrons is needed in the LB formalism and is essential to capture the physics of the

spin transport. Section 3.2 reviews the theory of the LB formalism and the Kubo-Bastin

formula, presents the Kwant code [94] that performs the LB calculations, and describes
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the theoretical modeling of the devices, including how to set up a NSV in Kwant.

3.1 Electronic structure modeling

The knowledge of the Hamiltonian and consequently of the electronic structure (also

referred to as band structure or energy dispersion) is paramount to quantum transport as

it provides the information of the energy levels of electrons in solids. There are different

levels of approximation in computing band structures, ranging from all-electron, first

principles methods to single-orbital, k·p models. The simulations performed in this thesis

are done in large real-space systems, aiming at describing realistic materials. This means

that employing high-level methods such as first-principles or ab-initio calculations that

accounts for many of the orbitals in an atom would be too time-consuming and memory-

demanding. Therefore, the typical procedure is to describe the electronic structure with a

simple Hamiltonian in a tight-binding (TB) form which reproduces well that of high-level

methods for a particular range of energies. Thus, as long as the transport calculations

are carried out in this range of energies, the results should be reasonably reliable.

In what follows, we briefly describe the fundamentals of ab-initio density functional

theory (DFT), which will be used to benchmark the tight-binding models of graphene

and TMDs.

3.1.1 Density Functional Theory

First principles or ab-initio calculations are a method to compute quantum mechanical

properties of materials without needing any sort of parametrization or knowledge of that

given compound. Different levels of approximation exist within first principles methods,

from mean-field, one-particle theories such as DFT, to GW or dynamical mean-field

theory that accounts more explicitly for many-body interactions. Nevertheless, DFT is

a very extended method for calculating band structures since it is faster and often good

enough for describing most materials.

In DFT, a system of interacting electrons is mapped onto a system of non-interacting

ones described by the Kohn-Sham equations, in which the energy is a functional of the

electron density [48, 127]. These equations are solved in a variational manner until the

energy is minimized and the ground-state electron density is found. In the Kohn-Sham

equations, the so-called exchange-correlation functional takes into account the many-body

interactions, and because its exact form is not known, different levels of approximation

exist based on the type of such functional.

The DFT calculations carried out in this thesis for the low-symmetry TMDs are
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performed using the VASP package [156–158] with the PBE exchange-correlation func-

tional [208]. More details of the simulations can be found in previous works [38,251,295].

From the DFT calculations, a tight-binding model was interpolated in the Wannier basis

via Wannier90 [188] and applied for calculating the spin texture.

3.1.2 Tight-binding models

In the following, we introduce the tight-binding models of graphene and TMDs in their

1Td and 1T′ phases. We also compare them to the DFT band structures and show the

features arising in the electronic structure when the systems are cut into a 1D ribbon.

Graphene

2D graphene tight-binding and DFT fit Graphene is made of a monolayer of car-

bon atoms arranged in a honeycomb lattice, as pictured in Figure 3.1(a). The honeycomb

structure is a triangular or hexagonal lattice with a basis of two atoms, which are com-

monly labeled as A and B sublattices. The lattice vectors (a1, a2) read

a1 = a(

√
3

2
,
1

2
), a2 = a(

√
3

2
,−1

2
), (3.1)

where a =
√

3ac, with ac = 1.42 Å being the carbon-carbon distance. The reciprocal

lattice, with its Brillouin zone shown in Figure 3.1(b), is also hexagonal with reciprocal

lattice vectors

b1 = b(
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2
,

√
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2
), b2 = b(

1

2
,−
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3

2
) (3.2)

that satisfy ai · bj = 2πδij, with b = 4π/(
√

3a). Importantly, the high-symmetry points

at the vertices of the Brillouin zone are the so-called K and K′ points (red dots in Figure

3.1(a)), with coordinates:

K =
4π

3a
(

√
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2
,
1

2
), K′ =

4π

3a
(

√
3

2
,−1

2
). (3.3)

The s, px and py orbitals of carbon hybridize forming σ-type bonds whereas electrons

in the pz orbital are delocalized and form a π bond that contributes to electronic transport.

Hence, the graphene tight-binding model is usually comprised of a single pz orbital in

each sublattice and one can write the wave function as a linear combination of periodic

Bloch functions,

Ψ(k, r) = cA(k)pAz (k, r) + cB(k)pBz (k, r), (3.4)

where |cA(k)|2 (|cB(k)|2) is the probability of finding the electron in sublattice A (B),
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Figure 3.1: (a) Crystal structure of graphene. Orange (blue) atoms correspond to the A
(B) sublattice of the honeycomb lattice. The shaded cyan region denotes the rhombohe-
dral unit cell. (b) First Brillouin zone of the honeycomb lattice with the corresponding
high-symmetry points.

and pAz (k, r) and pBz (k, r) are Bloch functions of the pz orbitals in the A and B sublattice,

respectively. Taking these two sublattice states as a basis, the typical real-space tight-

binding Hamiltonian of graphene is given by [20,36,78]

H = ε0
∑

i

c†ici + t
∑

〈i,j〉
c†jci. (3.5)

The first term is the on-site energy (with magnitude ε0) that dictates the position of the

Fermi level and c†i (ci) is the creation (annihilation) operator of an electron at atom or

site i. The second term is the nearest-neighbor hopping between different sublattices with

t the strength of the transfer integral between neighboring π orbitals, and 〈i, j〉 denotes

nearest-neighbor hopping. Further next-nearest-neighbor hoppings can be included, but

are not essential to capture the low-energy dispersion. By taking the Fourier transform

of equation (3.5), one arrives at the Hamiltonian

H(k) =

(
ε0 tf(k)

tf(k)∗ ε0

)
, (3.6)

with f(k) = 1 + e−ik·a1 + e−ik·a2 . Then, by solving the Schrödinger equation, the energy

spectrum has the form (± stands for conduction and valence band dispersion, respec-

41



tively)

E(kx, ky) = ±t|f(k)| = ±t

√√√√1 + 4 cos

(√
3kxa

2

)
cos

(
kya

2

)
+ 4 cos2(

kya

2
). (3.7)

By comparing such energy dispersion to DFT calculations, one finds that ε0 = 0 and

t ∈ [−2.6,−3.1] [78], indicating that the Fermi level lies at the charge neutrality point

located at K and K′. As sees from Figure 3.2(a), a nearest-neighbor tight-binding model

suffices to reproduce the DFT bands at low energies near the Fermi level. Adding extra

hoppings results in a modification of the linear dispersion, known as trigonal warping, as

well as in electron-hole asymmetry [78].

If equation (3.6) is expanded near these K and K′ points as k→ K(′) ± q, the Hamil-

tonian resembles that of electrons described by the relativistic massless Dirac equation,

HK = ~vFσ ·q, where σ = (σx, σy, σz) is a vector containing the Pauli matrices acting on

the sublattice degree of freedom and vF =
√

3ta/(2~) is the Fermi velocity, which is ap-

proximately 300 times smaller than the speed of light. This result is of high importance

to understand the exceptional electronic properties of graphene such as Klein tunnel-

ing [78, 144] or high electron mobility [36, 53]. Moreover, this low-energy Hamiltonian is

symmetric around K and K′, forming a cone-shaped linear energy dispersion known as a

Dirac cone (see Figure 3.2(b)). Because of the degeneracy of K and K′, these regions are

called valleys, defining in this way a valley degree of freedom for electrons (or holes).

(a) (b)
E

0

K, K’

Figure 3.2: (a) DFT (red) and tight-binding (blue and black) band structure of graphene.
Graphene tight-binding models inluding only nearest-neighbor hoppings and up to third-
nearest-neighbor hoppings are shown in blue and black, respectively. Reprinted figure
with permission from Ref. [167]. Copyright (2012) by the American Physical Society,
10.1103/PhysRevB.86.075402. (b) Three-dimensional band structure of graphene, with
an schematic showing the linear dispersion of the Dirac cones at K and K′. Adapted
figure with permission from Ref. [93]. Copyright (2011) by the American Physical Society,
10.1103/RevModPhys.83.1193.
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The fact that the sublattices A and B can be described by Pauli matrices allows one

to treat them as mathematically equivalent to spins, and for this reason the term (lattice)

pseudospin is often used to refer to the sublattice degree of freedom. Likewise, the K and

K′ valleys can be treated in the same way, thus defining a so-called valley pseudospin.

Graphene nanoribbons The above description of graphene applies to 2D graphene;

however, any material forming a device has a finite size with edges and boundaries. Stripes

of very narrow graphene are called graphene nanoribbons (GNRs), and due to their

finite width, finite size effects appear in the electronic structure [49]. Strictly speaking,

graphene nanoribbons are quasi-1D graphene, where one direction preserves translational

symmetry whereas the other does not. Depending on the crystalline orientation that is

periodic, nanoribbons are classified as armchair graphene nanoribbons (aGNR) or zig-

zag graphene nanoribbons (zGNR), as shown in Figures 3.3(a) and 3.3(b). The fact that

the system considered is quasi-1D implies that the unit cell is no longer made by only

two atoms, but by 2N atoms (N atoms from each sublattice) comprising the width of

the ribbon. Such N number of A-B atom pairs is used to label the GNR: for example,

the structures ploted in Figures 3.3(a) and 3.3(b) correspond to a 9-aGNR and 6-zGNR,

respectively.

Since spin transport experiments deal with large graphene samples that are effectively

2D, and we want to model realistic experimental conditions, we want to remove any

(a) (b)

(c) (d)
Periodic direction Periodic direction

Figure 3.3: (a) Structure of a 9-aGNR with its band structure shown in (c). (b) Structure
of a 6-zGNR with its band structure shown in (d).
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quasi-1D feature whenever possible. Nevertheless, it is important to understand the

peculiarities in the electronic structure of GNRs so as to identify their effects in the LB

simulations. The tight-binding model of equation (3.5) can be used to describe both

types of GNR; one only needs to consider the termination of the ribbon appropriately

when connecting the atoms with the hoppings. In this way, the band structures of the

9-aGNR and 6-zGNR are plotted in Figures 3.3(c) and 3.3(d), respectively.

The first difference to notice with respect to 2D graphene is the appearance of sub-

bands, arising from the confinement in the transverse direction of the ribbon. More

importantly, since the system is quasi-1D, the Brillouin zone has changed, and the K and

K′ points are folded at Γ for aGRN and at ±2π/(3a) for the zGNR, as seen in Figures

3.3(c) and 3.3(d). The usage of a nearest-neighbor only tight-binding model presents cer-

tain limitations when compared to DFT calculations. For aGNRs, DFT always predicts

them to be semiconductors, whereas equation (3.5) renders aGNRs gapless for specific

ribbon widths. zGNRs always appear metallic in the TB model owing to the presence

of two zero-energy modes whose real-space projection is localized at the ribbon edges.

Meanwhile, in DFT it was found that correlation and magnetism at the edges make the

system semiconducting as well. All these limitations can be overcome by using a more

complete tight-binding model that accounts for up to third-nearest-neighbor hoppings

and adds a mean-field Hubbard term [104]. However, as stated above, we focus on 2D

graphene physics where it is not necessary to use such a rigorous model.

Disorder, magnetism and SOC

Electronic disorder The tight-binding model mentioned above describes well pris-

tine graphene. However, real materials are more complex. First of all, device fabrication

techniques may generate defects in the graphene lattice or contaminants on top of it,

and the presence of a substrate and charge inhomogeneities at the interface produces

electron-hole puddles, which are electrostatic potential fluctuations within the graphene

plane [181]. These imperfections produce elastic scattering of electrons in graphene, and

have been shown to be the main factor limiting the mean free path [3,53,119]. Therefore,

it is necessary to include some sort of elastic scattering in the TB model of equation (3.5).

Although vacancies and puddles can be implemented in the tight-binding (by removing

atoms [68] and adding long-range potential profiles [4,276], respectively), here we chose to

use Anderson potential disorder to define the mean free path [166,279]. In this thesis we

are not focused on studying the consequences of a specific realistic disorder in graphene,

but just to be able to tune the mean free path from ballistic to diffusive regime (see

section 3.3.4), and Anderson disorder is the simplest way to do so. The tight-binding
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form of Anderson disorder is given by

HA =
∑

i

Uic
†
ici, (3.8)

where Ui ∈ [−U/2, U/2] is a potential added at each site i with values randomly chosen

from a uniform distribution.

Magnetic exchange Zeeman splitting can occur in the electronic energy levels

when an external magnetic field is applied or when a magnetic material is placed in close

contact (e.g. as a substrate) with graphene [298]. Since graphene has the pseudospin

degree of freedom, it can occur that different graphene sublattices experience different

exchange fields, Bi, with i = A,B. In this way, the corresponding TB term to be added

to equation (3.5) is

HZ = µB

∑

i

∑

ss′

c†is[sσ ·Bi]ss′cis′ . (3.9)

Here, µB is the Bohr magneton, sσ = (sx, sy, sz) is a vector containing the Pauli matrices

acting on the real spin, and the summation runs over the spin index s and both sublattices.

To understand the effect of such sublattice-dependent exchange field, it is useful to write

Bex = BA+BB

2
and Bs−ex = BA−BB

2
. The first term produces the typical Zeeman splitting

of up and down spins, whereas the second one creates a sublattice-dependent exchange

field with opposite spin-splittings in each sublattice. While an external magnetic field only

induces a nonzero Bex because BA = BB, a magnetic substrate, either ferromagnetic [99]

or antiferromagnetic [114], usually allows for both terms to appear.

Spin-orbit coupling Albeit small, SOC in graphene is responsible for spin relax-

ation. In addition, different substrates, adatoms and symmetry breaking can induce extra

SOC terms that otherwise are absent in freestanding graphene. In this thesis, although

we will not make use of SOC-induced spin relaxation (see Rashba SOC below), we will

still briefly describe the TB of such SOC terms as they are important to understand the

state-of-the-art of spin relaxation in graphene and graphene heterostructures.

Intrinsic and Valley-Zeeman SOC. According to the symmetries of graphene, the

intrinsic atomic SOC arising from the coupling of the orbital and spin angular momentum

manifests in tight-binding as a spin-conserving, next-nearest-neighbor hopping [115,138,

150,153,186,300],

HSOC =
i

3
√

3

∑

〈〈i,j〉〉

∑

ss′

λiIνijc
†
i,s[sz]ss′cj,s′ . (3.10)

Since a next-nearest-neighbor couples atoms with the same pseudospin, we can define a
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sublattice resolved intrinsic SOC, λiI , with i = A,B. In equation (3.10), νij = ±1 with +1

(−1) for a hopping counterclockwise (clockwise), and sz is a Pauli matrix. As similarly

done for the exchange field, we can define λI =
λAI +λBI

2
and λV Z =

λAI +λBI
2

. The former is

typically called intrinsic SOC and opens a topological gap of size 2λI in K and K′ [92,138],

whereas the latter is the so-called valley-Zeeman SOC that produces an exchange field

with opposite signs at K and K′ [91].

Rashba SOC. When the inversion symmetry z → −z is broken due to for example the

presence of a substrate, adatoms or a gate voltage, an electric field perpendicular to the

graphene plane develops and generates a finite Rashba SOC [92, 150, 153, 186], which in

TB appears as a spin-mixing, nearest-neighbor hopping,

HR =
2i

3

∑

〈i,j〉

∑

ss′

λRc
†
i,s[(sσ × l̂ij) · ẑ]ss′cj,s′ . (3.11)

Here, λR is the strength of the Rashba SOC, l̂ij is a vector pointing from site i to j, and

ẑ is a unit vector along the z direction. Rashba SOC spin-splits the bands and locks

the effective spin-orbit field (BSOC) perpendicular to the momentum of the electron,

producing an in-plane helical spin texture. Therefore, in a diffusive 2D system, when

the momentum is randomized, so is the effective spin-orbit field However, in a quasi-

1D system, the Fermi surface is not circular because the ky component is quantized (if

periodicity is along x). This leads to two consequences: a net spin-orbit field along y

that remains even when momentum is randomized, and different spin relaxation rates

in the diffusive regime for spins pointing along x and y. This is a direct consequence of

the quasi-1D nature of the GNR and cannot be easily solved, and it is the reason why

Rashba SOC, although quite common in the literature [67, 101, 122], is not used in this

thesis to study spin relaxation with the LB formalism in graphene.

Staggered potential For completeness, we also mention the so-called staggered

potential, which usually appears in graphene tight-binding models when inversion sym-

metry is broken due to different potentials in the A and B sublattices,

H∆ =
∑

i

∆ξic
†
ici. (3.12)

Here, ∆ is the staggered potential and ξi = +1 (−1) when i = A (i = B). The effect of

this Hamiltonian is to open a topologically-trivial gap of magnitude 2∆ at K and K′.
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Transition metal dichalcogenides

4-band tight-binding model Whereas graphene’s tight-binding model is widely known

and used, only a few models describing the low-symmetry TMDs exist in the literature,

and they all slightly differ from one another [9,164,190,203,214,236,293,295]. Because of

that, we derive a tight-binding model of these materials and fit it to DFT calculations (see

section 3.1.1) to obtain the tight-binding parameters. Low-symmetry TMDs encompass

the 1T′ and 1Td phases of MX2, with M = Mo, W and X = S, Se, Te [180, 214], which are

2D topological insulators in the monolayer limit [214]. Their crystal structure is shown

in Figure 3.4(a), with a rectangular unit cell. Therefore, in contrast to graphene, the

real-space tight-binding description of such low-symmetry TMDs will be mapped onto a

rectangular lattice with lattice parameters axx̂ and ayx̂. This unit cell has a rectangular

Brillouin zone, as pictured in Figure 3.4(b).

We begin by describing a 4-band k · p model based on the symmetries of 1T′ and

1Td MX2 monolayers, belonging to the space groups P21/m and Pmn21, respectively.

Both phases possess mirror symmetry in the yz plane (Mx) but only 1T′ has inversion

symmetry I. We consider the point group symmetry C2h of the 1T′ phase and additional

Te
Mo

x

y

z

y

Te
M
o

x

y

z

yy

x

(a)

(b) Y

XQ’

ax

ay

Γ

Y

X
Q

bx

by

Figure 3.4: (a) Crystal structure of 1Td-MoTe2, with a red rectangle denoting the unit
cell. The arrow denotes how the tight-binding of such low-symmetry TMD is mapped
into a rectangular lattice. (b) First Brillouin zone of the rectangular lattice shown in (a)
with the corresponding high-symmetry points.
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terms are added to reduce it to 1Td.

The low-energy band structure of 1Td-MoTe2 is shown in Figure 3.5(a), together with

the irreducible representations (irreps) at Γ. Our 4-band k · p model will capture the

states near Γ. For the C2h point group, we choose two irreps for the py (Bu) and dyz (Ag)

orbitals, as they form the valence and conduction bands, respectively 1 [214]. This allows

us to assign τz as the inversion operator (I) for this basis, where τ = (τx, τy, τz) is a vector

of Pauli matrices acting on the orbital space (py and dyz). The parabolic conduction and

valence bands can be expressed as mpk
2τ0 + (mdk

2 + δ) τz, where mp −md and mp +md

are effective masses of py and dyz, and δ is the strength of band inversion at Γ. Away

from Γ, any generic k-points have time-reversal T = isyK symmetry, where T 2 = −1 for

a spinor. At kx = 0, states have the mirror symmetry Mx = isx ⊗ τ0; at ky = 0, states

have the rotational symmetry C2x = IMx = isx ⊗ τz. By considering these symmetries,

the Hamiltonian with additional symmetry-allowed terms up to first order in k is

Hkp(kx, ky) = mpk
2τ0 +

(
mdk

2 + δ
)
τz + βkys0 ⊗ τy

+Λxkysx ⊗ τx + Λykxsy ⊗ τx + Λzkxsz ⊗ τx
+ηs0 ⊗ τx, (3.13)

where the third term ∝ β in the first line gives the crystalline anisotropy between x and

y. Terms Λα in the second line are the spin-orbit coupling terms for spin-α, and the last

term breaks the inversion symmetry, describing in this way either 1T′ (η = 0) or 1Td

(η 6= 0) TMDs.

To map Hkp onto a rectangular lattice, the k-vectors are restored back to periodic

functions via the expansions sin (k) ≈ k + O (k3) and cos (k) ≈ 1− k2/2 + O(k4). Using

sin(k) =
(
eik − e−ik

)
/2i and cos(k) =

(
eik + e−ik

)
/2, the tight-binding model can be

written down according to the phase Ceik·a, where a = axx̂+ ayŷ. Thus,

Hk(kx, ky) = mp [4− 2cos (kxax)− 2cos (kyay)] τ0 + (md [4− 2cos (kxax)− 2cos (kyay)] + δ) τz

+Λxsin (kyay) sx ⊗ τx + Λysin (kxax) sy ⊗ τx + Λzsin (kxax) sz ⊗ τx
+βsin (kyay) s0 ⊗ τy + ηs0 ⊗ τx. (3.14)

1As explained below, the two irreps need to have opposite parity at Γ to describe the topological gap.
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In the second quantization representation, Hk becomes

H =
∑

i,s

(∆ + 4md + δ)c†i,sci,s −
∑

〈ij〉,s
(mp +md)c

†
i,scj,s

+
∑

i,s

(∆− 4md − δ)d†i,sdi,s −
∑

〈ij〉,s
(mp −md)d

†
i,sdj,s

−
∑

〈ij〉,s

β

2
(l̂ij · ŷ) c†i,sdj,s +

∑

i,s

ηc†i,sdi,s

−
∑

〈ij〉

∑

ss′

i

2
(Λss′ × l̂ij) · (ŷ + ẑ)c†i,sdj,s′ . (3.15)

Here, c†i,s(ci,s) and d†i,s(di,s) are the creation (annihilation) operators of an electron in the

pz and dyz orbitals at the i-th position with spin s. As in the graphene tight-binding

model, the symbol 〈i, j〉 denotes summation over the nearest-neighbors of site i, with

l̂ij being a unit vector connecting site i with its nearest neighbor in j and ŷ (ẑ) is a

unit vector pointing in the y (z) direction. The spin-orbit coupling terms are included

in Λss′ = (Λxsx,−Λysy,Λzsz). Finally, ∆ is a constant energy shift (also absorbing the

factor 4mp from equation (3.14)) to match the Fermi level from the DFT results.

Finally, Anderson disorder and magnetic exchange fields can also be included with

the following TB terms:

HA =
∑

i

Uic
†
i,sci,s +

∑

i

Uid
†
i,sdi,s, (3.16)

HZ = µB

∑

i

∑

ss′

c†is[sσ ·Bi]ss′cis′ + µB

∑

i

∑

ss′

d†is[sσ ·Bi]ss′dis′ . (3.17)

It should be noted that the Anderson disorder is applied equally to both orbitals, so for

the same site i, the same value of Ui is assigned. Likewise, the Zeeman field acts in the

same manner on both orbitals.

DFT fit Next, we fit equation (3.14) to the DFT calculations of 1Td-MoTe2 and 1Td-

WTe2. We have focused on the 1Td phase in DFT calculation because the 1T′ counterpart

exhibits practically the same features except for showing no spin-split bands (as a conse-

quence of preserving inverion symmetry). In this manner, we can generally describe both

phases depending on whether we set η = 0 or not. The fits presented here include not

only the band dispersion, but the spin splitting and importantly, the spin texture (see

section 2.1.2). The band dispersion is enough if one is interested in charge transport, but

the spin splitting and especially the spin texture are crucial since they dictate the mag-

nitude and orientation of the spin-orbit field, thus being crucial for spin transport [250].
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For example, in graphene/TMD heterostructures, different tight-binding Hamiltonians

may describe the same band dispersion but with strikingly different spin textures [83].

Consequently, neglecting the spin texture might result in incorrect parametrization of the

TB model.

The bands and spin splitting of 1Td-MoTe2 can be seen in Figure 3.5(b). From DFT,

one observes that there are two electron pockets (from Γ to X and near Y) and one

hole pocket at Γ. However, the hole pocket and the electron pocket at Y present a

very small Fermi surface and hence it is expected that the states along the Γ − X path

dominate the transport properties. The k-point where the conduction band minimum

occurs along such Γ − X path is sometimes called the Q point (marked with a red dot

in Figure 3.4). The tight-binding reproduces well this band, both in dispersion and in

magnitude of the spin splitting. We note that our model does not capture the topmost

valence band, but rather the second topmost band. However, such topmost valence band

(with irreducible representation Bg) is not important to model the band inversion and

nontrivial topology, as we need bands with opposite parity at Γ to that end [80]. On

the other hand, the DFT and TB results for 1Td-WTe2 (Figure 3.5(c)) show a band

gap in the band dispersion, with the topmost valence band not crossing the Fermi level.

These fits indicate that our 4-band model is capable of describing both MoTe2 and WTe2.

Although it is true that the topmost valence band of MoTe2 may contribute to transport

when the Fermi levels lies in the conduciton band, we note that the absence or presence

of a band gap in monolayers of 1Td-MoTe2 is still a controversial issue both in DFT

calculations (results are very sensitive to the exchange-correlation functional and lattice

parameters) [147,214,255,284] and in experiments [145,207,250,259,263], and even if the

gap is closed, it can be opened using strain engineering [309]. Hence, our 4-band model

is sufficient to describe MoTe2 since it models well the conduction band near the Fermi

level and correctly reproduces the nontrivial topology and band inversion. Extensions

to an 8-band model could help describe better the topmost valence band [164, 190, 203]

but would also prevent their deployment in large-scale transport calculations due to the

higher computational cost associated with having more orbitals in the model.

Next, we present the comparison of the spin texture calculated with the 4-band model

and DFT. For MoTe2, two distinct energies are shown: at the Fermi level (E = 0) and

near the bottom of the conduction band (E = −100 meV). For WTe2, since the Fermi

level is very close to the conduction band minimum, we just show the comparison at

the Fermi level. A broadening of T = 300 K using the derivative of the Fermi-Dirac

distribution has been applied. The results are presented in Figure 3.6, where the spin

textures of both conduction bands are shown. For all cases, our tight-binding model

correctly reproduces the DFT features, namely, a spin texture pointing mainly along
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Figure 3.5: (a) DFT band structure of monolayer 1Td-MoTe2 and the irreducible repre-
sentation of states near Γ. (b) Comparison of band structure of monolayer 1Td-MoTe2

obtained from DFT (blue) and 4-bands tight-binding model (red). (c) Same as in (c) but
for 1Td-WTe2. For all three plots, the horizontal dashed line at energy E = 0 denotes
the position of the Fermi level.

y and z with small x contribution and with opposite signs for each band. The fitted

parameters for both MoTe2 and WTe2 are listed in Table 3.1.

TMD ribbons Because equation (3.15) is to be used in a ribbon geometry, it is in-

structive to calculate the band structure of the quasi-1D TMD. The bands of a 1Td- and

1T′-MoTe2 ribbon periodic along the x direction with width w = 50 nm are shown in

Figures 3.7(a) and 3.7(b). Similar results are found for WTe2. The k-path runs from

X to Γ to X, and therefore the two conduction band minimum appear at Q and its

time-reversal-symmetric point at Q′.

One key difference between the two low-symmetry phases is the band splitting, arising

from the conservation or absence of inversion symmetry. Indeed, the 1Td phase breaks

inversion symmetry (characterized by η = 5.4 meV) whereas the 1T′ phase does not.

Table 3.1: DFT-fitted parameters for the 4-band tight-binding model (equations (3.13) -
(3.15)); units are in meV.

Material mp md δ β η Λx Λy Λz ∆
MoTe2 -67.1 -417.0 415.3 432.3 5.4 94.8 159.2 -89.6 -467.8
WTe2 -105.0 -544.9 424.8 449.4 1.7 59.1 77.7 -115.9 -473.2
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Figure 3.6: (a) Spin texture of 1Td-MoTe2 at the Fermi level (E = 0) computed with the
tight-binding model (left) and DFT (right) for the two conduction bands (CB1, CB2)
and broadening of ≈ 26 meV. (b) Same as (a) but at E = −100 meV. (c) Same as (a)
but for 1Td-WTe2.
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Such splitting manifests even in the in-gap states, shown in orange in Figure 3.7. These

bands arise due to the nontrivial topology and carry counter-propagating spin-polarized

states, localized at the sample boundary, and give rise to the QSHE [214].

(a) (b)

Figure 3.7: (a) Band structure of a 1Td-MoTe2 ribbon with finite width w = 50 nm in
the y direction. Orange bands depict the topological edge states. (b) Same as (a) but for
1T′-MoTe2.
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3.2 Quantum transport

With the knowledge of the Hamiltonian of our system, we now can compute observ-

ables such as conductances, voltages or current densities by means of quantum transport

methods. The theoretical background of the Landauer-Büttiker formalism will be re-

viewed first, with the subsequent introduction of the Kubo-Bastin formula to compute

the spin Hall conductivity with real-space methods. Then, we introduce the Kwant code

and explain how to model nonlocal devices such as nonlocal spin valves so as to extract

experimentally relevant quantities.

3.2.1 Landauer-Büttiker formalism

In the Landauer-Büttiker formalism, the electrical current in a conductor is expressed in

terms of the transmission probability. The relationship between current and transmission

probabilities was first introduced by Landauer [162,163], and later on Büttiker expanded

the formulas to describe multi-terminal devices [32, 33]. Since then, this formulation

has been extensively used in describing transport in mesoscopic systems [54]. In this

section, we will briefly review the two-terminal formulas for current and conductance

and then proceed to the generic case of multi-terminal devices and how the transmission

probabilities are computed using the scattering matrix approach.

The Landauer formula

Let us consider a quasi-1D conductor contacted by two electrodes, as sketched in Fig-

ure 3.8(a), forming a two-terminal (2T) device. Because of the confinement along the

transverse direction, the band structure of the conductor is made by a finite number of

subbands or transverse modes, M , as shown in Figure 3.8(b) (here we do not assume spin

degeneracy). The wider the conductor is, the smaller is the energy separation between

subbands and the higher the number of modes at a certain energy. The left and right

electrodes, or lead p and lead q in this example, act as reservoirs and consequently are

assumed to have a greater number of modes than the conductor (Mp > M and Mq > M).

This assumption often also implies that the contacts are reflectionless, meaning that there

is not backscattering when electrons travel from the conductor to the contact.

The Landauer formula for the electric current reads

Iqp =
e

h

∫
fp(E, µp)Mp(E)Tqp(E)− fq(E, µq)Mq(E)Tpq(E)dE. (3.18)

Here, fp(E, µp) and fq(E, µq) are the Fermi-Dirac distributions in lead p and q, respec-

tively, with µp and µq the ECP of each lead. In addition, Tqp (Tpq) is the transmission
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Figure 3.8: (a) Sketch of a two-terminal device, where leads p and q are attached to a
quasi-1D conductor with width w. The transmission Tqp is related to the current flowing
in the device. (b) Schematic of the band dispersion of a quasi-1D system, in which several
subbands or transverse modes are present. The dashed line shows the Fermi level, which
cuts through three left- and right-propagating modes.

probability per mode (thus it has values between 0 and 1) that an electron injected

from lead p (lead q) goes trough the conductor and reaches lead q (lead p), which it is a

paramount quantity in the LB formalism. It can be shown that in the absence of inelastic

scattering [54], Mp(E)Tqp(E) = Mq(E)Tpq(E), and hence

Iqp =
e

h

∫
Mp(E)Tqp(E)[fp(E, µp)− fq(E, µq)]dE. (3.19)

This equation says that if contacts p and q are in equilibrium, that is, µp = µq = EF

(with EF the Fermi level), there is no current flowing. For small variations from that, for

example when a small bias voltage is applied, such that Mp(E)Tqp(E) is approximately

constant over the interval µp − µq, the linear response regime can be used. In this way,

expanding fp and fq near EF, we obtain

Iqp =
e

h

∫
Mp(E)Tqp(E)(µp − µq)

(
−∂f0

∂E

)
dE, (3.20)

with f0 being the Fermi-Dirac distribution at equilibrium (centered at µ = EF). Working

in linear response allows us to define the concept of two-terminal conductance, Gqp or G2T,

that relates the current with the voltage difference between leads, Vqp = (µp− µq)/|e|, as

Gqp =
Iqp
Vqp

=
e2

h

∫
Mp(E)Tqp(E)

(
−∂f0

∂E

)
dE. (3.21)

In addition to the linear response regime, if low temperature is considered such that
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(
−∂f0

∂E

)
→ δ(E − EF), we arrive at

Iqp =
e

h

∫
Mp(E)Tqp(E)(µp − µq)δ(E − EF)dE

=
e

h
Mp(EF)Tqp(EF)(µp − µq) (3.22)

Gqp =
e2

h
Mp(EF)Tqp(EF) = G0T qp. (3.23)

Equation (3.23) is the linear-response, low-temperature, two-terminal conductance and

will be widely employed throughout this thesis. Before proceeding to the the case of

multi-terminal conductors, a few technical remarks are in order. We have introduced the

unit of conductance, G0 = e2/h, which is often defined as 2e2/h. The factor of 2 arises

due to the inclusion of the spin degree of freedom and spin degeneracy. However, if bands

are spin-split, as they will be in many cases in this thesis because of SOC or magnetic

fields, then each spin subband must be counted independently. Also, we have replaced

MpTqp by the transmission function T qp. Many times, not all modes from lead p have the

same transmission probability to reach lead q, so we cannot define a unique Tqp. Instead,

T qp accounts for the transmission probability of each mode n in lead p to arrive to each

mode m in lead q:

T qp =

Mp∑

n∈p

Mq∑

m∈q
Tmn. (3.24)

The transmission probability Tmn has values ranging between 0 and 1, with 1 meaning a

perfect transmission from mode n to mode m. Two main effects exist that decrease the

value of the transmission. One is electron scattering inside the sample, which produces

backscattering or reflection of the electrons and decreases the transmission probability.

The other factor is associated with the fact that both leads have a higher number of

modes than the conductor; this imposes a maximum number of modes capable of being

transmitted. For instance, if both contacts have 20 modes, but the conductor only 5, then

the total maximum transmission will be 5 (assuming ballistic transport in the conductor),

indicating that many modes do not have a perfect tranmission. This “bottleneck” effect

is known as contact resistance since it appears because of the mode mismatch between

the leads and the conductor. Thus, the associated conductance is

Gqp =
e2

h
M. (3.25)

This is the maximum value of conductance, determined by the total number of modes in

the conductor, and corresponds to the case of totally ballistic transport. Therefore, even

in the absence of scattering inside the sample, a finite resistance exists, called contact
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resistance G−1
c = h/(e2M). Another effect also associated with the contact resistance

exists, and may further decrease the conductance. If the band dispersion of the leads

and the conductor differs, their energy levels mismatch at the interface, resulting in

backscattering of lead modes at the interface, and thus not populating all modes M in

the channel. As a consequence, Gqp < Gc. In this way, the contact resistance can be

generally written as G−1
c = Ah/(e2M), with A ≥ 1 being some parameter quantifying

the effect of such mode mismatch. Importantly, when A = 1, the contact resistance is

minimum and is called the Sharvin resistance [29,225]

RS = G−1
S =

h

e2M
. (3.26)

Therefore, the upper bound of the two-terminal conductance is the Sharvin conductance

GS (or equation (3.25)), and this value is reduced by decreasing the transmission prob-

ability, either by introducing scattering in the conductor or by mode mismatch at the

lead-conductor interface.

The Büttiker formula

Next, we extend equations (3.22) and (3.23) to multi-terminal geometries, such as the one

depicted in Figure 3.9. In a two-terminal device, all the current that is injected by lead

p, Ip, is absorbed by lead q, so we can write Ip = Iqp and calculate it using Iqp = GqpVqp.

For more than 2 electrodes, Ip is simply the sum of currents from lead p to all other leads,

Ip =
∑

q

Iqp =
∑

q

(GqpVp −GpqVq) =
∑

q

Gqp(Vp − Vq), (3.27)

where we have used the relation
∑

q Gqp =
∑

q Gpq that ensures that the current is zero

in equilibrium. In contrast, Gpq 6= Gqp in general.

As an example that will prove useful for investigating nonlocal spin valves later on,

let us apply equation (3.27) to the four-terminal device shown in Figure 3.9. Because

there are 4 leads, we have a system of 4 linear equations:

I1 = G21(V1 − V2) +G31(V1 − V3) +G41(V1 − V4) (3.28a)

I2 = G12(V2 − V1) +G32(V2 − V3) +G42(V2 − V4) (3.28b)

I3 = G13(V3 − V1) +G23(V3 − V2) +G43(V3 − V4) (3.28c)

I4 = G41(V4 − V1) +G42(V4 − V2) +G43(V4 − V3). (3.28d)

57



1 4

2

3

I21

V34

Figure 3.9: Sketch of a multi-terminal device consisting of a conductor contacted to more
than two leads. In this example, current flows from lead 1 to 2, and a voltage is measured
between leads 3 and 4.

In matrix form, we can rewrite them as




I1

I2

I3

I4




=




G21 +G31 +G41 −G21 −G31 −G41

−G12 G12 +G32 +G42 −G32 −G42

−G13 −G23 G13 +G23 +G43 −G43

−G14 −G24 −G34 G14 +G24 +G34







V1

V2

V3

V4



,

(3.29)

or in compact notation,

I = G ·V, (3.30)

where G is referred to as the conductance matrix. Once each pair of two-terminal con-

ductance Gqp is known, we can calculate the current at each lead if we assume a value

for each voltage in V, or calculate the voltage at each lead if we know how the current

is driven in the device. To illustrate this, let us consider the device configuration drawn

in Figure 3.9. There, a current I is driven between lead 1 and lead 2 only, and voltage

is measured between probes 3 and 4, which are left floating so no current flows in them.

We are interested in the nonlocal resistance

Rnl =
V34

I21

=
V3 − V4

I1

=
V3 − V4

−I2

=
V3 − V4

I
. (3.31)

It is worth noting that the four currents are not independent. As stated earlier,
∑

q Gqp =∑
q Gpq so no current flows in equilibrium, and this leads to the Kirchoff’s law I1+I2+I3+

I4 = 0. Hence, the four equations above are not linearly independent, and we can delete

one current component and one row of G. Likewise, since currents depend on voltage

differences and not on absolute values, we can ground one of the leads, set that voltage
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to zero and in this manner delete the corresponding column of G. Given that the drain

electrode is lead 2, we choose V2 = 0, although this is arbitrary. With I = (I,−I, 0, 0)

we obtain:



I

0

0


 =



G21 +G31 +G41 −G31 −G41

−G13 G13 +G23 +G43 −G43

−G14 −G34 G14 +G24 +G34






V1

V3

V4


 , (3.32)

where we have chosen to delete the I2 component to remove both the second row and

column of G. Since usually Gqp 6= Gpq, the analytical solution for V is too cumbersome

to be shown here. In fact, usually one solves the above equations numerically to obtain

each voltage value and compute the nonlocal resistance with equation (3.31).

The scattering matrix approach

Thus far we have sho that in order to obtain the currents, voltages and conductances in

the LB formalism, one needs to calculate the transmission function accounting for the

transmission probability that a mode n in lead p arrives at mode m in lead q. In the

following, we describe how these transmissions are calculated.

For a fixed energy E, the scattering matrix, or S-matrix, relates the wave function

(WF) of modes entering the scattering region (SR) or device (incoming WF) to the wave

function of modes exiting the scattering region (outgoing WF), and its matrix elements

are related to the transmission and reflection probabilities. The probability that a mode

n transmits from lead p to another mode m in lead q is Tmn = |tmn|2, where t is the

transmission amplitude. Likewise, a mode can be reflected back to the same lead with

reflection probability Rnn = |rnn|2, with r being the reflection amplitude. In this way,

the elements of the scattering matrix are composed of smn = tmn and snn = rnn.

Let us consider the simple case of a two-terminal device with one mode per lead, as

shown in Figure 3.10. The S-matrix and and wave functions can be written as [55]

(
ψout
n

ψout
m

)
=

(
rnn tnm

tmn rmm

)(
ψin
n

ψin
m

)
. (3.33)

The vector multiplying the S-matrix is composed of WFs that enter the scattering re-

gion, ψin
n,m, and they can be reflected back or transmitted through the conductor. The

combination of reflection and transmission of modes form the outgoing WFs that go from
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Figure 3.10: Sketch of a two-terminal device, where leads p and q, with modes n and m,
respectively, are attached to a quasi-1D conductor. The wave function associated with
each mode can be classified as incoming (i.e. going from the lead to the SR, ψin

n,m) or
outgoing (i.e. going from the SR to the lead, ψout

n,m).

the SR to the leads, ψout
n,m. This is seen by writing out the matrix equation above

ψout
n = rnnψ

in
n + tnmψ

in
m (3.34a)

ψout
m = tmnψ

in
n + rmmψ

in
m. (3.34b)

For the general case of multi-terminal devices with many modes per lead, the reflection

and transmission amplitudes become matrices, rpp and tqp, whose elements are sn′n and

smn, respectively (note that now there can be reflection between two modes belonging to

the same lead, rn′n). These matrices include all the possible reflection and transmission

amplitudes between all modes in p and q. Thus, the size of tqp (rpp) is Mq×Mp (Mp×Mp).

Consequently, the size of the S-matrix is MT ×MT , where MT =
∑

pMp is the total

number of modes obtained by summing all modes in each lead. We illustrate this matrix

representation in Figure 3.11(a).

Finally, we can obtain the transmission function T qp =
∑Mp

n∈p
∑Mq

m∈q Tmn (equation

t12

t21

t13

t31 t32

t23r22

r11

r33

q = 1

q = 2

q = 3

p = 1 p = 2 p = 3

M = 2

M = 7

M = 1

↑↑ ↑↓
↓↑ ↓↓

Figure 3.11: Left: illustrative representation of the matrix elements of the scattering
matrix. This S-matrix describes a system with 3 leads with different number of modes:
M1 = 2, M2 = 7, M3 = 1. Therefore, the S-matrix is a 9× 9 matrix. Right: Division of
an element smn into 4 spin sectors.
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(3.24)) from the S-matrix as

T qp = Tr[t†qptqp]. (3.35)

When the spin-degree of freedom is included, we can further subdivide each transmission

and reflection amplitude smn into spin sectors, as shown in Figure 3.11(b). Equation

(3.35) automatically takes this into account to obtain the total transmission from p to q.

However, it is also possible to write the total transmission as a sum of transmissions of

each spin sector:

T qp = T
↑↑
qp + T

↑↓
qp + T

↓↑
qp + T

↓↓
qp, (3.36)

with T
ss′

qp = Tr[tss
′

qp

†
tss
′

qp ] being the transmission of modes with spin s′ of lead p to the modes

in lead q having spin s. The cases T
↑↑
qp and T

↓↓
qp preserve the spin, while T

↑↓
qp and T

↓↑
qp denote

spin mixing. The spin-mixing components are zero in absence of magnetic field and SOC,

but might become finite when these interactions are present in the Hamiltonian.

So far we have shown the relation of the transmission coefficients with the S-matrix.

To actually compute the scattering matrix and its elements, two distinct methods exist:

the non-equilibrium Green’s function method via the Fisher-Lee relation [77], and the

wave function method [94]. Since Kwant utilizes the latter, we will restrict ourselves to

this approach in the following.

We start by defining the Hamiltonian of both the scattering region and the leads

and solve the Schrödinger equation. Without loss of generality, we restrict ourselves to

the case of a single lead since multiple leads can be mapped onto a single lead [94, 124].

A schematic of this system is depicted in Figure 3.12. The Hamiltonian of the SR is

described by HS, with size NS ×NS. Here, NS is the number of orbitals used to describe

the SR, and in a tight-binding representation it corresponds to the number of lattice sites

times the degrees of freedom (such as spin or orbital) per site. Whereas the scattering

region is finite, the lead is semi-infinite. Therefore, the description of a lead is made by

a unit cell which is repeated periodically along a translationally-invariant direction. As

shown in Figure 3.12, each unit cell is labeled by an index j, which starts with j = 1 in

the unit cell contiguous to the SR and increases as the unit cell is repeated away from the

SR. Because of the periodicity, the Bloch theorem can reduce the infinite Hamiltonian of

the lead to the Hamiltonian of one unit cell, HL, with size M ×M , where M is the total

number of modes in the lead. VL denotes the coupling from j to j + 1, while V †L is the

hopping from j + 1 to j. Likewise, the SR couples to the lead j = 1 with the terms VLS

and V †LS. Hence, in the basis in which the leads are ordered from infinity to j = 1 and
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then the scattering region, we can write the following total Hamiltonian:

H =




. . . VL

V †L HL VL

V †L HL VLS

V †LS HS




(3.37)

To obtain the elements of the scattering matrix, we need to solve M systems of

equations, one per each mode n in the lead. Such system of equations is the coupling

between HS and only the first unit cell of the lead (due to the transnational symmetry

of HL). Because the unit cell j = 1 couples with j = 2, we just need to consider the last

three rows of equation (3.37), which results in the following Schrödinger equation:



HL − E VL 0

V †L HL − E VLS

0 V †LS HS − E







Ψn,E(2)

Ψn,E(1)

ΨS
n,E


 = 0, (3.38)

where ΨS
n,E is the wave function in the SR due to the propagating mode n in the lead at

energy E and Ψn,E(j) is the scattering wave function of mode n in the j-th unit cell in the

HL

VLS VL VL VL VL

VLS
†VL

† VL
† VL

† VL
†

HLHLHLHL

Periodic 
direction

1 2 3 4 5 = j

HS

Figure 3.12: Schematic of a lead (red lattice) connected to a scattering region (black
region). The lead is composed of a unit cell (marked with a rectangle) that is repeated
infinitely along a periodic direction. The position of each unit cell with respect to the SR
is indicated by an index j, with j = 1 the closest unit cell to the SR and increasing up to
j →∞ as the unit cell is repeated away from the SR. The Hamiltonian of each unit cell
is HL and the hopping between j (j + 1) to j + 1 (j) is VL (V †L). Likewise, the coupling
between the scattering region and the first unit cell is VLS and its conjugate transpose.
Finally, the Hamiltonian of the scattering region is HS.
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lead at energy E. Since all the quantities are going to be calculated at a fixed energy, we

drop the index E hereafter in all wave functions. The scattering WF is a state composed

of the incoming and outgoing wave functions2 (the WFs depicted in Figure 3.10) in the

following way [94,124]:

Ψn(j) = ψin
n (j) +

M∑

m

smnψ
out
m (j), (3.39)

where ψ
in/out
n (j) is the incoming/outgoing wave function at the unit cell j and has the

form of a Bloch state,

ψin/out
n (j) = eikjauin/out

n , (3.40)

with k and a being the crystal momentum of mode n at energy E and the lattice constant

along the periodic direction, respectively. Combining both equations, the scattering wave

function can be expressed as

Ψn(j) = eikaj(uin
n +

M∑

m

smnu
out
m ). (3.41)

The periodic function u
in/out
n is nothing else than the eigenvector of the Hamiltonian of

the infinite lead. Therefore, it satisfies the Schrödinger equation,

[
(HL − E) + VLe

−ika + V †Le
ika
]
un = 0. (3.42)

By calculating the group velocity of each eigenstate, we can then make the distinction be-

tween uin
n and uout

n depending on whether the velocity is negative or positive, respectively.

This is because the positive direction of the periodic direction is taken to be from the SR

to infinity, independent of the relative orientation of the leads with the Cartesian axes.

By examining equation (3.41), the scattering WF of mode n can be understood as the

sum of the incoming WF of this n mode and all possible outgoing m states originating

from the scattering from n to m, with probability |smn|2. This must not be confused with

the outgoing WF of mode n: ψout
n (j) =

∑M
m snmψ

in
m(j).

2Actually, the so-called bound or evanescent states also contribute to the scattering wave function
[94, 124]. These states are localized in the SR and decay exponentially in the leads. Importantly, these
states do not contribute to transport and consequently are omitted here without affecting the final
result in order to keep the explanation consise and free from excessive information that may obscure the
derivation.
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We proceed by recasting equation (3.38) as a linear system of equations,

(HL − E)Ψn(2) + VLΨn(1) = 0 (3.43a)

V †LΨn(2) + (HL − E)Ψn(1) + VLSΨS
n = 0 (3.43b)

V †LSΨn(1) + (HS − E)ΨS
n = 0, (3.43c)

where only the last two equations are actually needed to obtain the coefficients of the

S-matrix. By using equation (3.41), one arrives at

V †Le
ik2a(uin

n +
M∑

m

smnu
out
m ) + (HL − E)eika(uin

n +
M∑

m

smnu
out
m ) + VLSΨS

n = 0 (3.44a)

V †LSe
ika(uin

n +
M∑

m

smnu
out
m ) + (HS − E)ΨS

n = 0. (3.44b)

Next, we group the common terms of uin
n and uout

m in the first equation and use equation

(3.42) to arrive at

−VL(uin
n +

M∑

m

smnu
out
m ) + VLSΨS

n = 0 (3.45a)

V †LSe
ika(uin

n +
M∑

m

smnu
out
m ) + (HS − E)ΨS

n = 0, (3.45b)

which can be rewritten as

(
−VL

∑M
m uout

m VLS

V †LSe
ika
∑M

m uout
m HS − E

)



s1n

...

sMn

ΨS
n




(
VLu

in
n

−V †LSeikauin
n

)
. (3.46)

This is the matrix operation that needs to be computed, and as a result, the elements smn

and ΨS
n are obtained (note that uin

n and uout
m are obtained from equation (3.42)). Because

there are M coefficients and ΨS
n is a vector of size NS, the total number of equations to

solve is M +NS. Yet, this procedure needs to be repeated a total of M times, as only a

single column of the S-matrix is obtained after solving equation (3.46) for a given n.

3.2.2 Kubo-Bastin formula for the spin Hall conductivity

In section 2.1.5, we provided a formula to compute the spin Hall conductivity, equation

(2.33). Here, we introduce an equivalent formula in which the velocity operators are
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written in real space, which allows one to break the periodicity of the Hamiltonian by

e.g. introducing Anderson potential disorder. The elements of the SHC tensor can be

calculated in the linear response regime using the Kubo-Bastin formula [18],

σαij = −2~Ω

∫ EF

−∞
dE Im

(
Tr

[
δ(E −H)Jαs,i

dG+

dE
Jj

])
, (3.47)

where Ω is the volume of the sample, Jj is the j-th component of the charge current

density operator and is defined in a localized tight-binding basis by [69]

Jj =
ie

Ω~
[H,Rj], (3.48)

with Rj the jth-component of the position operator. The operator Jαs,i is the spin current

density operator, which is defined in terms of the current density as Jαs,i ≡ {Ji, sα}/2.

The spectral operators δ(E − H) and G+ ≡ limη→0 1/(E − H + iη) are the Dirac delta

and retarded Green’s function, respectively, and are approximated numerically by using

the kernel polynomial method [285]. More details about the numerical real-space imple-

mentation can be found in Refs. [50, 69, 82, 83]. In a similar manner, the longitudinal

charge conductivity, σjj, can also be obtained by replacing Jαs,i by Jj in equation (3.47).

With both the spin and charge conductivities, the spin Hall angle can be obtained as

θαij = σαij/σjj.

3.2.3 The Kwant package

Kwant [94] is an open-source python package that makes use of other scientific-based

python libraries, such as NumPy [204] and SciPy [133], to carry out Landauer-Büttiker

calculations on tight-binding Hamiltonians. In this section, we briefly outline the main

aspects of Kwant that are related to this thesis, and we refer to the original article for

an in-depth explanation of the program [94].

One of the unique features of Kwant is its objective of being both flexible and user-

friendly, so that a wide range of systems can be studied while the user focuses on the

physics instead of algorithm implementation, while at the same time being efficient and

fast in solving the scattering problem. To achieve this seemingly complicated task,

Kwant’s workflow is divided in two steps. The first one is the creation of a Kwant

system, that is, formulating the tight-binding model that describes the scattering region

and the leads. Because this is a task where the user has to interact with the code the

most, the program uses a high-level language (e.g. Python) to facilitate the tight-binding

implementation. The second step is solving equation (3.46) or any other operation to

compute other physical quantities. To achieve high efficiency, the program uses carefully
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optimized Python algorithms as well as routines written in Cython and C/C++, like the

so-called nested dissection algorithm implemented in sparse linear algebra libraries, such

as MUMPS [7]. These processes are run internally and automatically, without needing

the users’ commands.

Kwant allows one to create systems of any arbitrary form and with any number of

leads. As an example, we show in Figure 3.13 a triangle-shaped scattering region with

three leads connected to it along different directions. As commented in the previous

section, the leads are semi-infinite; this is denoted by the fading red color. The the tight-

binding sites are represented by the dotted circles, whereas the lines connecting them are

the hoppings. In Kwant, each site has two attributes, the so-called family and tag. The

family represents the sublattice degree of freedom in a unit cell, or in crystallographic

terms, the basis applied to each lattice site to form a crystal. Within a family, a unique

tag is associated to each site, so it can be identified. In fact, the way the values of onsite

and hopping energies are implemented is by mapping every tag to a value. A very useful

resource is that these values are not restricted to numbers, but they can be a function

or even a matrix. This becomes really helpful when working with spinful systems, as one

can simply use the term µBBsz (with sz a Pauli matrix) as an onsite term to model the

Zeeman exchange field.

The lead is an important part of a Kwant system since its scattering wave functions

dictate the transmission through the scattering region. Likewise, the interface between

both regions is fundamental, and this interface is formed when Kwant “attaches” the

lead to the SR. In Kwant, attaching a lead means adding hoppings connecting the lead

Figure 3.13: Example of a Kwant system. The black (red) region denotes the scattering
region (leads). The leads extend to infinity, as illustrated by the fading red color.
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to the scattering region, forming in this way the matrix VLS entering in equation (3.37).

By default, the added hoppings are the lead’s hoppings, but this does not have to be the

case, and can be defined manually if necessary.

With regard to the numerical solving procedure of Kwant, it is worth noting that

the scaling of the computational time for a system of length L and width W is of order

O(LW 2) [94]. This contrasts with the O(LW 3) scaling of Green’s function-based methods

typically used in the Landauer-Büttiker formalism. This faster computation comes at the

expense of a higher memory requirement, and hence the typical limitation in terms of

system size is the memory demand. Nonetheless, with computers commonly available

nowadays, Kwant is able to simulate systems with millions of orbitals.

As explained before, the main outputs of Kwant are the scattering matrix and the

wave function inside the scattering region. From these, several physical observables can

be obtained. In this thesis, we will calculate the conductance, the (spin) density response

function and the (spin) current response function:

• The linear response, low-temperature conductance is computed with equation (3.23),

Gqp = G0T qp.

• The (charge) density response function calculates the electron density at each site

i of the scattering region, ni, per unit energy or bias, Vb, due to the incoming WFs

of lead p:

np,i =
δni
δVb

=

Mp∑

n

ψSn,p,i
†
ψSn,p,i, (3.49)

where ψSn,p,i is the wave function of the scattering region at site i due to an incoming

mode n. We can also introduce the spin density response function as

sαp,i =
δsαi
δVb

=

Mp∑

n

ψSn,p,i
†
sαψ

S
n,p,i, (3.50)

with sαi being the spin density at site i and sα once again the Pauli matrix with

α = x, y, z. We note that this quantity is not restricted to be a spin density, but

rather the density of the degree of freedom described by the Pauli matrix.

• The (charge) current response function computes the local or bond current (i.e.

between two sites i and j) per unit energy or bias due to the incoming WFs of lead

p:

Ic;p,ij =
δIc;ij
δVb

= i

Mp∑

n

(
ψSn,p,j

†
H†ijψ

S
n,p,i − ψSn,p,i

†
Hijψ

S
n,p,j

)
, (3.51)
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where Hij is the matrix element 〈i|H|j〉. Similarly, we can also define a spin current

response function with the following expression:

Iαs;p,ij =
δIαs,ij
δVb

= i

Mp∑

n

(
ψSn,p,j

†
H†ijsαψ

S
n,p,i − ψSn,p,i

†
sαHijψ

S
n,p,j

)
. (3.52)

We note that both the charge and spin bond currents are vectorial quantities with

the same dimension as the lattice (e.g. a 2D system will have an x and y component

of the bond currents).

From these 4 response functions, we can also define the total densities and bond

currents in the device. Taking the spin bond current as an example, but noting that the

following expression applies to the other quantities as well, we can write

Iαs;ij =
∑

p

Iαs;p,ijVp, (3.53)

where the sum runs over all leads p in the device and Vp is the voltage at that lead. This

expression is very useful in multiterminal devices to understand how the current flows as

a result of a specific set of current and voltage conditions in the leads, given by equation

(3.30). For a two-terminal device, because one of the leads can be grounded, equation

(3.52) is recovered.

Finally, Kwant can also compute other quantities such as the band structure of the

leads using their translational symmetry. From that, the wave functions (un in equation

(3.42)), momenta and velocities are obtained at a given energy. Moreover, Kwant can

also add periodic boundary conditions in the transverse direction of the scattering region

to calculate its 2D band structure.
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3.3 Implementation of nonlocal devices in Kwant

In this section we will put together the notions of the previous sections to implement

tight-binding models of nonlocal spin valves in Kwant. We can divide the process in four

steps:

• Building a two-terminal device.

• Attachment of the ferromagnetic leads.

• Optimization of parameters and geometry.

• Tuning the transport regime: localized, diffusive, quasiballistic or ballistic.

In the following, we describe the physics and technical aspects of such steps, but before

proceeding, let us standardize the notation that will be used for a NSV from this point on.

The geometrical aspects and lengths, as well as the notation for the leads, are shown in

Figure 3.14. The scattering region is depicted with a black lattice, the nonmagnetic leads

with a red lattice, and the FM contacts, whose polarization is represented by arrows,

with red squares positioned on top of the SR. Following the numbered notation of leads

used in section 3.2.1, the leads N1, F1, F2 and N2 will be labeled as leads 1, 2, 3 and 4,

respectively. In addition, we will name them according to their function, so leads 1, 2, 3

and 4 will be referred to as drain, injector, detector and reference, respectively.

2

1

3

4

Ll1 l2

wy

x d1 d2

l

Figure 3.14: Schematics of the nonlocal spin valve. Black (red) regions denote the device
(leads). Leads 1 and 4 are nonmagnetic, and leads 2 and 3 are ferromagnetic, with the
polarization represented by the arrow direction. L is the injector-detector distance; w
is the channel width; d1 and d2 are the width of leads 2 and 3, respectively; l1 and
l2 are the separation between leads 1 and 2, and between 3 and 4, respectively; and
l = L+ d2 + l2 ≈ L+ l2.
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3.3.1 Building a two-terminal device

We can understand a NSV as a two-terminal device in which two extra FM leads are

attached from the top. Thus, the first step is to ensure that the TB model is well

implemented in a 2T setup so the transport in the NSV is correct. The TB model is

implemented in the scattering region as described in section 3.2.3 and two leads are

attached at opposite ends of the device, as shown in Figure 3.15. The TB of the leads

does not need to be the same as the one in the SR as long as it has more modes than

the SR for all energies. However, we choose to utilize the same TB as the scattering

region because in this manner we can use the band dispersion of the leads that we obtain

with Kwant to extract information about the scattering region (such as the number of

propagating modes). Moreover, if the bands of the lead are faithful to the material we

want to describe, the SR will then also be correctly modeled. To validate the correct

implementation of the models, we compare Kwant’s output to some known results. For

graphene, we calculate the bands of the semi-infinite leads, as mentioned at the end of

section 3.2.3, and compare them with the bands obtained from the tight-binding model

of graphene nanoribbons (which gives the band structures of Figures 3.3(c) and 3.3(d)).

For the TMD models, we calculate the 2D or bulk band structure of the scattering region

and compare it with the bands obtained from equation (3.14).

Furthermore, these two contacts will play the role of the nonmagnetic contacts of the

NSV. One could argue that this is not the most realistic setup for the NSV, as the NM

contacts are also placed on top of the sample in experiments, as schematically shown in

Figure 3.15. However, as explained in more detail later, using top leads generates addi-

tional contact resistances difficult to quantify. In addition, in this setup the scattering

region ends sharply, causing backscattering of electrons and likely generating quantum

interferences in the ballistic regime. Since we want to study the effects of the transition

from diffusive to ballistic spin transport in the nonlocal resistance, we try to avoid any

additional contribution to Rnl coming from unknown contact resistances and extra in-

terference patterns. This could be examined later on when trying to replicate identical

experimental conditions after understanding the main physical aspects.

.  .  . .  .  .

Figure 3.15: Two possible ways to attach the nonmagnetic leads to the scattering region.
On the left, they are attached from the side of the sample, and on the right, they are
attached from the top in the same way as the FM leads.
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3.3.2 Attachment of the ferromagnetic leads

The most difficult technical aspect of building a NSV is the implementation of the fer-

romagnetic contacts. Because Kwant is very flexible, there are different ways to achieve

this; here we describe the method used in this thesis. The implementation of FM leads

consists of two parts: the modeling of the ferromagnetism and the attachment to the

scattering region.

As far as the magnetism is concerned, rather than using a giant exchange field in

the lead’s Hamiltonian (as in real ferromagnets), a spin-dependent hopping, ts⊥, at the

interface between the leads and the sample is used to filter a desired spin component. This

means that the lead’s Hamiltonian is not modified at all even though we are effectively

modeling a FM contact. The form of this interfacial spin-dependent hopping is [94,301]

ts⊥ =
1

2
t⊥(s0 + Psα), (3.54)

where s0 is the identity matrix, sα the α-spin Pauli matrix, P ∈ [−1, 1] models the FM

polarization and t⊥ is the hopping amplitude. Using this method instead of applying a

Zeeman field to the lead’s Hamiltonian has the advantage that one can easily tune the

polarization.

If P = 1 and sα = sz, we obtain ts⊥ =

(
t⊥ 0

0 0

)
, showing that only spin-up electrons

can transmit to this lead. Similarly, if P = −1, we revert the polarization and only

spin-down electrons can flow through the interface: ts⊥ =

(
0 0

0 t⊥

)
. Recalling equation

(3.36), if both the injector and detector have P = 1, the transmission function will read

T 32 = T
↑↑
32. It is interesting to note that the transmission function from lead 4 to 2 is

not exactly the same as the one from 2 to 4: the former has the form T 24 = T
↑↑
24 + T

↑↓
24

whereas the latter is T 42 = T
↑↑
42 + T

↓↑
42. For polarizations along x and y, the hopping

acquires off-diagonal elements in spin space, indicating nonzero up-to-down and down-

to-up transmission probabilities. This is expected since we use the z direction as the basis

of the spin space, and hence x and y spins are a linear combination of z-up and z-down

spins.

In regard to the attachment, similar to real devices, the FM leads are attached from

the top. In this case, however, the FM leads are not connected to the SR, but instead

to an interfacial layer placed above the SR, as illustrated in Figure 3.16. The reason

for that is that when leads attach to the scattering region, they attach using the lead’s

hopping. Because at the SR-lead interface we need to define another hopping, equation

(3.54), we can attach the lead to the interfacial layer and then manually define the spin-
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Figure 3.16: Schematic of the attachment of the FM lead to the scattering region. The
lead attaches to an interfacial layer, whose coupling ts⊥ between the scattering region is
spin-dependent.

dependent hopping from the layer to the SR. The hoppings within this interfacial layer

and to the lead can be the same of those of the lead, so effectively this layer has the same

physical behavior as the lead. However, within Kwant’s classification, this layer belongs

to the scattering region and not to the lead. This adds complexity to this implementation

because while Kwant automatically connects a lead with the scattering region, it does

not do that between two regions of the SR (the interfacial layer and the SR itself). To

do so, the kd -tree algorithm from SciPy is employed, which searches the nearest sites of

the SR for each site in the interfacial layer [94].

Next, we present a few tests to validate the correct implementation of the FM leads

and the precession of spins due to the magnetic field. To that end, we compute the

transmissions between the injector and detector and the nonlocal resistance for different

combinations of FM polarization and magnetic fields, without disorder, in a graphene

NSV. Since the purpose of these simulations is just to test the implementation, unreal-

istically small sizes (and hence unrealistically large magnetic fields) have been used to

speed up the calculation.

Figure 3.17 displays the total and spin-dependent transmission functions (recall equa-

tion (3.36)) between leads 2 and 3 in two distinct situations: the lead polarization points

along z while a finite magnetic field is applied along y, and the opposite case where the

leads are polarized along y and the field has only a z component. Furthermore, both

parallel and antiparallel magnetic configurations of the leads are presented. When spins

are injected in the z direction, for parallel (antiparallel) alignment we expect only T
↑↑
32
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(T
↓↑
32) to contribute to the total transmission. Indeed, Figures 3.17(a) and 3.17(b) show

exactly that. In contrast, when the leads are y-polarized, the spin-dependent hopping

(equation (3.54)) includes both diagonal and off-diagonal components, indicating that

all spin-dependent transmission functions are responsible for the total transmission. In

Figures 3.17(c) and 3.17(d) we observe exactly this, with all spin-dependent transmis-

sions having the same value since there is not any spin mixing in the scattering region.

Furthermore, the values of the transmission when changing from parallel alignment to

antiparallel are correct: in the parallel configuration (Figures 3.17(a) and 3.17(c)), the

transmission is maximum at B = 0, while it is completely 0 when the leads are antiparallel

(Figures 3.17(b) and 3.17(d)).

To understand the trend of the transmission function with the magnetic field, it is

necessary to know how many and which modes contribute to transport. Therefore, we

plot in Figure 3.17(e) the band structure of lead 1, and since it has the same Hamiltonian

as the scattering region, we are in fact plotting the energy dispersion that an infinite

scattering region would have. The calculations are performed at E = 1 eV, thus only one

mode with Fermi velocity vF contributes to transport. Because only one mode is present

and the transport is completely ballistic, it is reasonable to expect that the transmission

will have a sine or cosine dependence with B as a consequence of a single coherent

precession frequency. In fact, it is insightful to calculate the magnetic field needed for

a state with constant velocity to precess 2π for a fixed length (in our case, the channel

length L). Combining |ω| = γB = gµB
~ B, ω = 2π/T and v = L/T , we obtain

B2π =
2π~vF

gµBL
. (3.55)

Plugging in the channel length for the calculations (L = 100 nm) and the Fermi velocity

of the mode at E = 1 eV, we obtain B2π = 295 T, which agrees with the period displayed

by the transmission functions in Figure 3.17. Importantly, at periods of B = B2π/2, the

spin has rotated 180◦ and hence the transmission becomes minimum (maximum) for the

parallel (antiparallel) setup.

In addition to the transmission, the effect of the polarization and magnetic field is

tested on the nonlocal resistance. Figure 3.18(a) shows Hanle curves for the same device

and energy as in Figure 3.17 when the two FM are in parallel or antiparallel alignment,

as well as when either electrode is set to be nonmagnetic. Both parallel and antiparallel

cases present the same oscillatory period with magnetic field (marked with a vertical

dashed line) as the transmission functions. Also, at zero field, the parallel alignment

shows maximum Rnl, whereas for antiparallel leads the nonlocal resistance is minimum.

Here, however, the minimum value is not 0 but has the same magnitude as the parallel
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Figure 3.17: (a-d) Total and spin-dependent transmission functions from lead 2 to lead
3. In (a) and (b), the FM leads are z-polarized and the magnetic field is applied along y,
while in (c) and (d) the FM leads are y-polarized and the magnetic field is applied along
z. Panels (a) and (c) correspond to a parallel alignment of the leads, while (b) and (d) to
an antiparallel configuration. (e) Band structure of a 5-aGNR; the dashed line indicates
the energy at which the calculation is performed, and the blue dot the k-state carrying
the current with Fermi velocity vF . The vertical dashed line in (c) shows the magnetic
field required for the k-state to rotate 2π for a fixed L. The device has the dimensions
w = 0.5 nm, d1 = d2 = 1 nm, l1 = l2 = 2 nm and L = 100 nm.

case with a negative sign, in agreement with the theory of nonlocal detection explained

in Chapter 2 (see equation (2.21)). The results change when one of the two electrodes is

set to be nonmagnetic by setting P = 0 in equation (3.54). In either case, the nonlocal

signal is 0 independently of the magnetic field, also in agreement with what is expected

in a NSV.

A final remark about the magnetic field dependence is in order here. One has to be

careful when the energy at which the nonlocal resistance is calculated is close to another

subband, as illustrated in Figures 3.18(b) and 3.18(c). For small fields, the precession

frequency is given by a single Fermi velocity as only band 1 in Figure 3.18(b) propagates.

However, when the Zeeman splitting is large enough, one of the spin-split states of band

2 also adds contribution to the transport. As a consequence, the precession frequency

varies due to different Fermi velocities and the magnitude of Rnl increases because there

are more modes carrying the current.

We note that all these tests have been performed with a single transverse mode. For

multi-mode transport, the qualitative results are similar but the effect of the magnetic
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Figure 3.18: Hanle curves (Rnl vs B) for parallel (solid black) and antiparallel (dashed
red) configuration of the FM electrodes, for the injector being nonmagnetic (dot-dashed
blue) and for the detector being nonmagnetic (dotted orange). The energy and device
geometry is the same as in Figure 3.17. The vertical dashed line shows the magnetic field
required for the k-state to rotate 2π for a fixed L. (b) Band structure of a 25-aGNR;
the dashed line indicates the energy at which the calculation is performed. The bands
crossing the dashed line and right above it are labeled as bands 1 and 2, respectively. (c)
Hanle curve of the 25-aGNR shown in (b). For low fields, only band 1 contributes to the
nonlocal signal and precession, but at high fields, the Zeeman splitting lowers band 2 in
energy and contributes as well to transport. As a result, the magnitude of Rnl does not
present a single precession frequency.
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field is more difficult to analyze because multiple precession frequencies are present, as

just shown in this latter example. We will examine this case again in Chapter 4 with

more realistic parameters.

3.3.3 Optimization of parameters and geometry

Once the physics of the NSV is well reproduced, the different parameters need to be

optimized. These include the interfacial hopping (equation (3.54)) and the length scales

in the device, namely, the device width, w; the width of the injector and detector, d1

and d2, respectively; the separation between the injector and the drain, l1; the separation

between the detector and the reference electrode, l2; and the channel length, L. We also

define the distance between the injector and the reference lead, l = L + l2, which will

prove useful in Chapter 4. Knowing the effects of all these parameters on the NSV is

very important since it allows us to optimize the computational cost of the simulations

and understand which features in the nonlocal signal are artifacts and which ones are

comparable to experiments.

We begin with the strength (t⊥) and polarization (P ) of the interfacial hopping, which

do not affect the computational time, but can have a great impact on the magnitude of the

nonlocal resistance. Physically, the hopping amplitude t⊥ can be related to the contact or

interface resistance between the scattering region and the FM leads. It is well known that

both the interface resistance and the polarization affect the value of Rnl [257, 258], and

to avoid spin sinking by the FM leads, large contact resistances are needed. In this limit,

one obtains the widely used formulas given by equations (2.21) and (2.22). In our case,

we also want to prevent spin sinking, as we are interested in the spin relaxation in the

nonmagnetic material. It turns out that using large contact resistance is not the only way

to achieve so, but utilizing perfectly polarized ferromagnets (i.e. P = ±1) also allows for

a non-invasive effect of the FM leads [258]. The explicit effects of the interface resistance

and FM polarization on the nonlocal resistance will be presented later in Chapter 4 and

Appendix A, where we extend equations (2.21) and (2.22) using less restrictive boundary

conditions in solving the spin diffusion equations. Here, we show the presence or absence

of spin sinking in a NSV by calculating the bond spin current with different values of t⊥

and P . This visual and direct calculation will aid us in choosing the correct values of t⊥

and P to be used in modeling NSV.

Figure 3.19 displays the total charge and spin bond currents flowing in a clean

graphene NSV calculated with equation (3.53), in addition to a sketch of the geome-

try of the NSV. We performed 4 calculations with large and small values of t⊥ and P ,

namely, t⊥ = t and t⊥ = t/10 (with t being the graphene nearest-neighbor hopping,

see equation (3.5)) and P = 1 and P = 0.4. It is seen that the charge current flows
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only in the left side of the device (in agreement with the theory of NSV, see Chapter 2),

between the injector and the drain electrodes. This result is found to be independent

of the parameters used. On the other hand, the bond spin current does depend on the

parameters, and flows from the injector to both left and right ends of the device. It

can be seen that when the polarization is perfect, P = 1, the magnitude of t⊥ does not

qualitatively change the flow of the spin current. In contrast, when P = 0.4, only when

we select a large interface resistance (i.e. a small interfacial hopping), do the spins reach

all the way to lead 4. When the hopping is large, the spin current ends at the detector,

indicating that spin sinking is taking place.

Based on these results, the most convenient choice of parameters is a small hopping

and a large polarization. However, we also found that the shape of the Hanle curve was

sometimes sensitive to the value of t⊥. For the graphene tight-binding model, if t⊥ was

too small, the nonlocal resistance was suppressed while t⊥ = t and t⊥ = t/10 gave similar

results. On the other hand, for the TMD model, larger values of hopping suppressed

the signal. Therefore, after some numerical convergence tests, we chose t⊥ = t and

t⊥ = 25 meV (smaller than the other hoppings, see Table 3.1) for graphene and TMDs,

respectively.

Next, we describe the impact of each length scale on both the computation time and

their physical implications for spin transport in a NSV. Regarding the physical effects, the

width of the device mainly varies the number of modes in the scattering region for a fixed

energy. As will be explained below, a wider device is desired as it allows one to obtain

diffusive transport for a larger range of distances, in contrast to narrow channels where

electrons transition almost directly from ballistic to localized transport. The width also

changes the number of modes in the leads, although this does not matter substantially

because the only requirement is that they possess an equal or greater number of modes

than the scattering region, and this is always accomplished3. The distances d1 and d2,

in addition to also modifying the number of modes in leads 2 and 3, can have a spurious

effect on the shape of the Hanle signal if they are large enough. Both the injection

and detection of spins occur at the entire surface beneath these contacts. This means

that if the magnetic field is strong enough so the spins precess considerably within a

length ∼ d1,2, the injected or detected spins will not present a single polarization but

rather a distribution. Consequently, the magnitude of the nonlocal signal is suppressed,

in agreement with other theoretical works [301]. The different lengths of the device (L,

l1 and l2) determine how much distance the electrons and spins propagate. Section 3.3.4

explains how the variation of these parameters can be utilized to choose the transport

3Because leads 1 and 4 have the same band structure as the SR, and leads 2 and 3 have a larger unit
cell than that from leads 1 and 4, resulting in a larger number of modes.
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regime. In practice, however, only L is varied because l1 and l2 can have spurious effects

on the nonlocal signal. This effect is actually not trivial and will be revisited in detail in

Chapter 4.

In regards to the scaling of the computation time with the different length scales in

the system (see Figure 3.14), w, d1 and d2 are the lengths that scale less efficiently. This is

because by increasing w, both the scattering region and the unit cells of all leads increase,

resulting in a larger size of the matrices in equation (3.46). The scaling is particularly bad

Figure 3.19: Charge and spin bond currents in a 15-aGNR NSV. From top to bottom:
schematic of the NSV geometry, total charge bond current (abbreviated as Ic) and total
spin-y bond current (abbreviated as Iys ) calculated with equation (3.53). The spin bond
currents are computed with different values of injector and detector polarizations (P )
and interfacial hopping (t⊥). The arrows denote the direction of the current, and their
thickness and the background color its magnitude: orange (white) and red (blue) show
large (small) charge and spin currents, respectively.
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Figure 3.20: (a) Computation time of Rnl in a graphene NSV for a single energy and
magnetic field versus device width w for different values of the FM leads’ width (d1 =
d2 = d). The other device parameters are l1 = l2 = 4 nm and L = 20 nm. (b)
Computation time of Rnl for a single energy and magnetic field versus channel length L.
The other device parameters are l1 = l2 = 10 nm, d1 = d2 = 1 nm and w = 7.6 nm.

for the FM leads, since their unit cell is proportional to wd1,2 due to their rectangular

cross section. In Figure 3.20(a), we present an example of how the computation time

scales with w for fixed d1 = d2 = d. The important conclusion is the fact that if we want

to simulate a wide NSV, the FM leads need to be extremely narrow; otherwise the cost

becomes prohibitive very fast. Fortunately, the same conclusion about d1 and d2 was

found above when discussing the physical implications of varying the FM width. On the

other hand, the scaling of L is more favorable, as expected since new orbitals are added

only to the scattering region whereas the leads are left unaffected. As expected from a

Landauer-Büttiker calculation, the increase of computation time with L is linear, and is

shown in Figure 3.20(b). A similar trend was found for l1 and l2, also expected since

these parameters just increase the total length of the device.

3.3.4 Tuning the transport regime

After the simulations of NSVs are physically correct and can be performed with a reason-

able amount of time, the final aspect is to tune the regime of charge and spin transport,

that is, localized, diffusive, quasiballistic or ballistic. Being in one regime or another is

dictated by the relative values of the mean free path (le), localization length (lloc) [2, 8]

and the dimensions of the device. Both le and lloc depend on the energy, device width

(both quantities also affect the number of modes) and strength and type of disorder [166].

When a given length x is larger than lloc, the electrical conductivity σ decays with

increasing x, with a functional form that depends on the type of localization [70,78]. On

the opposite end of the spectrum, when le � x, that is, electrons have barely scattered,
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the transport is ballistic. In this case, the conductivity increases linearly with length.

On the other hand, if le � x < lloc, there are many scattering events and the transport

is diffusive. In this situation, the conductivity is independent of x and is related to the

conductance G through the typical textbook formula G = σw
x

, with w being the cross

section or width of a three-dimensional (3D) or 2D conductor, respectively [54, 78]. The

transition between ballistic to diffusive is continuous and smooth, and therefore when

le ∼ x a distinct qualitative regime, dubbed quasiballistic transport, occurs in which

some scattering has taken place. The conductance, on the other hand, can be described

by the formula G = M
1+x/le

G0 [19, 78].

These four regimes are depicted in Figure 3.21, where σ as a function of the system

length is plotted. The plot shows the linear, constant and decay of σ with increasing

length. Such a plot is very convenient as one can visually tell the range in which the

transport is diffusive just by looking at the conductivity plateau. From a 2T conductance

simulation with varying channel length, the conductivity is obtained as σ = G2T
x
w

[248].

Very importantly, in NSVs there are several length scales, as shown in Figure 3.14,

comprising the distance between each pair of leads. This might make achieving the diffu-

sive regime for the whole device complicated. If the window of diffusive regime is not very

large, it could happen that from the injector to drain the transport is quasiballstic, diffu-

x

𝜎
Ballistic Quasi-

ballistic Diffusive Localized

Figure 3.21: Schematic dependence of the conductivity σ as a function of a system’s
length for a fixed strength of disorder (i.e. mean free path and localization length).
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sive from injector to detector, and localized from drain to the reference lead. Therefore,

the task here is to maximize the “diffusive window” by varying the energy, device width

and Anderson strength. However, a few aspects need to be considered. For instance,

increasing w usually helps in obtaining a larger range of diffusive transport (as it more

closely resembles a 2D system), but this comes at the expenses of a higher computational

cost. Also, the energy dependence of le and lloc depends on the energy dispersion of

the transverse modes for a specific device width. In other words, the number of modes

changes with energy and hence so do the transport properties (e.g. the more modes in

the scattering region, the stronger the disorder effects), leading to an energy-dependent

“diffusive window”.

Finally, in addition to identifying the diffusive regime through a plateau of the con-

ductivity, it is also useful to directly calculate the values of the mean free path and the

localization length. For the former, the length dependence of the two-terminal conduc-

tance is fitted to [19,78]

G2T =
Mle
x
G0, (3.56)

but only in the lengths corresponding to a conductivity plateau of σ. Consequently, the

plot of σ versus x needs to be done prior to fitting. Furthermore, we can also extract a

precise value of the conductivity by fitting with the formula

G2T =
σw

x
. (3.57)

This that implies the following relationship holds: Mle = σw, with σ in units of G0.

To obtain lloc, if the conductance decays exponentially with length, we can fit it to

〈ln(G2T/G0)〉 ∼ −x/lloc [166], where 〈· · · 〉 denotes averaging over disorder configurations.

Again, the fit must be done only in the region where localization occurs, that is, when the

plateau of σ in Figure 3.21 ends. It is worthwhile to validate the fits by using the Thou-

less relationship [19, 49] that relates le and lloc in quasi-1D systems. For time-reversal-

symmetric systems and spin conservation, it reads lloc = le

(
M
2
−1

2
+ 1
)

= le
(
M+2

4

)
,

whereas for time-reversal-symmetric systems with spin-mixing it takes the form le(M−1)

[19].
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CHAPTER 4

NONLOCAL SPIN DYNAMICS IN THE CROSSOVER FROM

DIFFUSIVE TO BALLISTIC TRANSPORT IN GRAPHENE

This Chapter focuses on the simulation of nonlocal spin transport in graphene NSVs using

the Landauer-Büttiker formalism. We intend to provide a global picture of how the dif-

fusive spin transport, typically studied in experiments, evolves towards a (quasi)ballistic

regime when the material becomes cleaner.

4.1 Diffusive regime conditions

As explained in section 3.3.4, in order to determine the charge transport regime, the mean

free path le and localization length lloc need to be estimated. To that end, we calculate

the two-terminal transmission of a device modeled by the graphene tight-binding model

(equation (3.5)) with Anderson disorder (equation (3.8)). We choose a metallic armchair

ribbon with width w = 20.1 nm (164-aGNR) so it resembles more the band structure

of 2D grapehen [275], Anderson disorder of U=1.04 eV and Fermi level EF = 0.4 eV

for which there are M=18 total propagating modes (i.e. 9 per spin). As shown in the

following, these parameters allow to minimize le whereas lloc remains the larger length

scale of the system.

In Figure 4.1, we plot 〈ln(G2T/G0)〉 and G2T versus channel length. From the first

quantity we extract lloc = 880 nm by fitting with the downscaling law 〈ln(G2T/G0)〉 ∼
−x/lloc for x > 1000 [166]. Here, the average has been performed over 200 disordered

realizations. From the Thouless relationship lloc = le
(
M+2

4

)
, a mean free path of le = 176

nm is inferred. To further validate this approach, the 2T conductance in the diffusive

regime is also fitted with the formula G2T = e2/h×Mle/x in the region 500 < x < 1000,

from which le ∼ 117 nm, in good agreement with the estimation from the Thouless
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relationship. The diffusive regime is also concomittant to a plateau of the conductivity [78]

(see Figure 4.1 inset), computed using σ = G2T
x
w

, and which extends approximately from

a few mean free paths till the localization length.

Figure 4.1: 2T conductance scaling of a graphene device (average made over 200 disorder
configurations). Top panel shows the logarithmic fit to extract lloc and le, while the
bottom panel gives the direct fit of le. Inset: conductivity versus channel length.
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4.2 Diffusive spin relaxation: new insights

We proceed to study the behavior of graphene NSVs using the Landauer-Büttiker formal-

ism to the device setup in Figure 4.2. The graphene layer is described in a single-π-orbital

tight-binding basis, with a Hamiltonian given by

H = t
∑

〈i,j〉
c†iηcjη +

∑

i

Uic
†
iηciη + µB

∑

iss′

c†is[sσ ·Bi]ss′cis′

+
∑

iss′

c†is[sσ · Ji]ss′cis′ . (4.1)

All the terms are described in section 3.1.2, except the last one, which is a random mag-

netic disorder mainly affecting the spin dynamics. It is defined as a magnetic exchange

coupling with strength J and random orientation at each site i, Ji = J [sin(θi) cos(φi), sin(θi)

sin(φi), cos(θi)], with θ and φ spherical angles and sσ the spin Pauli matrices. In general,

U is taken to be much larger than J , such that U dictates the charge transport regime,

whereas the spin relaxation is driven by J . Finally, we note that orbital effects of the

magnetic field are neglected, but these are not relevant in experimental conditions due

to the low magnetic fields typically applied.

The calculation of Rnl is performed by evaluating all transmission probabilities be-

tween different leads, as described in section 3.2.1. Namely, we construct the conductance

matrix G [54] and solve the linear system I = G ·V, where I and V are vectors including

l1

L

Figure 4.2: Sketch of the lateral nonlocal spin valve. Red (black) regions denote the
contacts (sample). The injector and detector contacts, labeled 2 and 3 respectively, are
ferromagnetic with their magnetization indicated by arrows. Contacts 1 and 4 represent
the drain and reference electrodes, respectively.
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the current and voltage conditions at each electrode. We fix a current I0 from lead 2

(injector) to lead 1 (drain) while enforcing that no current flows in leads 3 (detector) and

4 (reference). This ensures zero charge current in the channel since any current going to

the right from the injector will be compensated with an oppositely spin-polarized current

injected by the reference lead. We also ground the drain (V1 = 0) and solve the system to

obtain the other voltages. The nonlocal resistance is then calculated as Rnl = (V3−V4)/I0.

We first investigate spin dynamics in the diffusive regime of charge transport. We

take l1 = 250 nm and l = 1000 nm so that most of the transport occurs between le

and lloc, and we compute Rnl vs. the channel length L at B = 0 for different magnetic

disorder strengths J . Also, unless noted otherwise, the FM leads are fully polarized and

with width d1 = d2 = 1 nm. The results are plotted in Figure 4.3. For large values of J ,

Rnl decays exponentially with channel length, as predicted by the typical spin diffusion

formula with1:

Rnl =
PiPd
2wσ

Re




e
−L

√
1

λ2s
−i ωz

Ds

√
1
λ2s
− i ωz

Ds



 , (4.2)

where Pi (Pd) is the polarization of the FM injector (detector), κ =
√

1
λ2s
− i ωz

Ds
with

ωz and Ds the Larmor spin precession frequency and the spin diffusion, respectively.

However, as spin relaxation slows with decreasing J , the decay of Rnl becomes linear

instead of exponential. Even for J = 0 (see Figure 4.4, solid line), corresponding to

λs → ∞, there is a loss of spin signal with channel length, a result not captured by

equation (2.22). Conventional spin diffusion theory assumes that the spin accumulation

vanishes at x→ +∞, or at least at x = l [67,288]. However, this condition is violated for

the lowest values of J in our simulations, and may also be the case in recent experiments

for which λs reaches tens of µm [58].

To describe the proper length dependence of Rnl, in Appendix A we solve the spin

diffusion equations taking the full device geometry into account; not only are spins in-

jected from lead 2, but leads 1 and 4 are explicitly included (lead 3 does not perturb the

system). From this, Rnl becomes

Rnl =
PiPd
2wσ

Re

{
[β cosh(l1κ) + 4 sinh(l1κ)] · [β cosh(κ(L− l))− 4 sinh(κ(L− l))]

κ[4β cosh((l1 + l)κ) + (8 + β2/2) sinh((l1 + l)κ)]

}
,

(4.3)

where β = Rcwσκ with Rc the contact resistance between leads 1 and 4 and graphene. In

the case of perfectly transparent contacts, the interface resistance is not zero but dictated

by the Sharvin resistance RS = h/(e2M) [29, 225]. If one takes the limits λs � l1, l,

1This equation is the same as equation (2.21) in section 2.1.3, but is repeated here for clarity.
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L

Figure 4.3: Rnl as a function of injector-detector distance for different strengths of mag-
netic disorder, with le = 117 nm. Error bars result from the averaging of several disorder
configurations (> 130). All curves have similar error bars. Black dot-dashed lines are the
fits using equation (4.3). Inset: comparison of λs extracted from equation (2.22) (gray
squares) and equation (4.3) (black circles). The red line indicates 1/J scaling of λs (see
Appendix B for details).

L

Figure 4.4: Rnl as a function of the channel length L for the case without spin relaxation
J = 0 (solid line) and equation (4.4) (dot-dashed line), with U = 1.04 eV. Error bars
result from the averaging of 50 disorder configurations.
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equation (2.22) is recovered. Importantly, equation (4.3) becomes linear when λs →∞,

Rnl =
PiPd
2wσ

(4Rl1 +Rc)(−4L+ 4l +Rcwσ)

8Rl1 + 8Rl + 4Rc

, (4.4)

where Rl1 = l1/(wσ) and Rl = l/(wσ) are the sheet resistance of the left and right

device regions, respectively. The black dot-dashed lines in Figure 4.3 show the fits of the

numerical results to equation (4.3), indicating that this expression is able to capture the

scaling of Rnl for any value of J . Moreover, the analytical result of equation (4.4) agrees

very well with the numerical calculation of J = 0, shown in Figure 4.4, without the need

of any fitting parameter, suggesting that our formulas work well in such extreme limit.

Equation (4.4) shows that when λs ≥ l1, l the nonlocal spin signal still decays with

length. This decay is no longer related solely to spin relaxation but also to charge diffusion

and the presence of the leads. Recall that Rnl depends on the conductance matrix G,

which consists of the transmission between all leads and the imposed current/voltage

conditions. In the limit of long λs, the drain and reference electrodes act as spin sinks,

fixing the value of Rnl in order to meet the conditions I = I0 and I = 0 at leads 1 and

4, respectively. We note that this spin sinking effect occurs despite the absence of spin

relaxation in the leads (they conserve spin). Rather it is the result of these leads absorbing

and reinjecting spin current under the imposed boundary conditions, as the spins in the

channel propagate under the influence of how the voltages and currents were set up. In

other words, the condition of zero charge current in the channel forces the injection of

spin-down current from lead 4 to 1 so that lead 2 can inject up-spins that diffuse towards

lead 3. If lead 4 (1) is unable to inject (absorb) down-spins to (from) the system, up-spins

will not be able to diffuse along the channel and Rnl will be suppressed. Therefore, lead

4 absorbs up-spins from the channel so that it can reinject down-spins; this affects the

spin accumulation in the channel and reduces Rnl. The fact that the spin sinking effect

increases as L becomes longer is because the transmissions in the channel decay with

length due to diffusive transport, inclduing the transmission from lead 4 to lead 1. This

type of spin sinking contrasts with the contact-induced spin dephasing from FM leads,

as mentioned in seciton 2.1.3, where it is the low contact resistance together with the low

spin diffusion length in the ferromagnet that produces the spin sink [6, 120,174].

Equation (4.4) also shows that at the reference electrode (L = l) Rnl is proportional

to Rc to leading order. Thus, in the limit of weak spin relaxation a small Rc will suppress

the nonlocal spin signal. Another consequence of long λs is that, as mentioned, the

transmission between the drain and reference electrodes becomes crucial. In Figure 4.5(a)

such effect is evidenced further by changing lead 1 from nonmagnetic to FM, which

reduces Rnl by more than three orders of magnitude. This effect can be traced back to
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the transmission, where the main difference between these two lead configurations is the

reduction of the reference-drain transmission (T41) when lead 1 becomes magnetic (see

Figure 4.5(b)). This originates from the fact that now the reference contact 4 cannot inject

down-spins because all other contacts are spin polarized in the opposite spin direction

and cannot absorb them. This impacts directly on the amount of up-spins allowed to flow

from the injector to the detector, as needs to be the same as the amount of down-spins

being injected from lead 4. Consequently, the nonlocal signal drops dramatically. These

results suggest not employing FM materials for leads 1 and 4 in experiments. We note

that this calculation was done without spin mixing (i.e. J = 0) and perfectly polarized

electrodes, and although finite spin relaxation or partially polarized leads will decrease

such suppression of Rnl to a certain extent, these effects are likely to become relevant in

ultraclean devices where the spin diffusion length is large.

L

(a)

(b)

qp

Figure 4.5: (a) Rnl for the normal NSV configuration (NFFN) and with setting the drain
contact ferromagnetic (FFFN). (b) Transmission probability between leads as a function
of the channel length L for such two lead configurations.
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Another important consequence is that since equation (4.2) does not account for this

extra decay induced by leads 1 and 4, this reduction is absorbed in the value of λs, which

will be therefore underestimated by equation (4.2). This is shown in Figure 4.3 (inset),

where λs is plotted vs. spin relaxation strength. The gray squares are extracted from

fits to equation (4.2), while the black circles are from equation (4.3). The spin diffusion

length is the same when λs < l1, l (large J), but for small J equation (4.2) significantly

underestimates the value of λs. According to the theory of spin relaxation arising from

exchange fluctuations (see Appendix B for details), λs should scale as 1/J [67], which is

captured by the fits to equation (4.3).

We now extend the analysis to Hanle precession and plot Rnl vs. B in Figure 4.6

using a channel length of L = 500 nm. We note that large magnetic fields are required

for computational convenience (our device is smaller than in experiments) but no spurious

effect is introduced since the Zeeman splitting remains much smaller than the subband

energy separation and orbital effects are excluded. The simulation data are fitted with

equations (4.2) and (4.3) using Ds = Dc = 1
2
vFle and the resulting λs are compared

in Figure 4.6 (inset). Similar to Figure 4.3, in the limit of weak spin relaxation λs is

Figure 4.6: Hanle spin precession curves for different strengths of magnetic disorder, with
le = 117 nm and L = 500 nm. Error bars result from the averaging of several disorder
configurations (> 90). All curves have similar error bars. Black dot-dashed line is the
fit using equation (4.3). Inset: comparison of λs extracted from equation (4.2) (gray
squares) and equation (4.3) (black circles).
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underestimated when using the conventional equation.

To estimate how strong the underestimation of λs may be in state-of-the-art devices,

we calculate a Hanle curve with equation (4.3) using realistic parameters (l1 = 5 µm,

l = 20 µm, L = 15 µm, λs = 10 µm, Ds = 0.05 m2/s) and fit it with equation (4.2). We

obtain λs = 7.26 µm, about 25% less than the real value. More importantly, the spin

lifetime (τs = λ2
s/Ds) is underestimated by nearly 100%; the real value is 2 ns while the

fit gives 1.05 ns. These results thus call for a revised analysis of Hanle spin precession

measurements taking into account the device geometry and our more general formula

(equation (4.3)).

4.2.1 Effect of the injector and detector polarizations

To test how equation (4.3) holds when the FM polarization is finite, we simulate the

length dependence of nonlocal spin valves keeping all parameters the same as in Figure

4.3 with J = 70 meV and varying both the injector and detector polarization from totally

polarized (100%) to slightly polarized (20%). The results are shown in Figure 4.7.

One can observe that the smaller the polarization, the weaker is the nonlocal signal,

fully consistent with the polarization entering as a prefactor in equation (4.3). We note

that when we fit these curves (dot-dashed lines) with equation (4.3) using values of

Pi = Pd = 1, 0.8, 0.6, 0.4 and 0.2, and when the polarization is small, equation (4.3)

L

Figure 4.7: Rnl as a function of injector-detector distance for different injector and de-
tector ferromagnetic polarization, with le = 117 nm and J = 70 meV. Black dot-dashed
lines are the fits with equation (4.3).
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clearly underestimates the spin diffusion length. The values are reported in Table 4.1.

This underestimation is expected because for low contact resistance between the elec-

trodes and graphene, spin sinking occurs for small polarization of spin injector and de-

tector [257,258]. Our simulations are in the low contact resistance regime, since the used

interfacial hopping is comparable to the in-plane graphene hopping. Noteworthy, this spin

sinking reduces the total nonlocal spin signal, but occurs concurrently with the effects

of magnetic disorder (J) and the nonmagnetic spin sinking of electrodes 1 and 4. Since

equation (4.3) does not take into account the spin sinking of leads 2 and 3 (see Appendix

A for details), this extra decay is not captured by the formula. Nevertheless, equation

(4.3) can be applied in state-of-the-art experiments as they employ tunnel barriers that

increase the contact resistance and prevent spin sinking.

Table 4.1: Extracted spin diffusion length for a given polarization of spin injector and
detector.

Polarization (%) λs (nm)
100 262
80 247
60 203
40 182
20 180
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4.3 Quasiballistic and ballistic spin transport regimes

Finally, we examine the quasiballistic limit. When le ∼ L, only a few scattering events

occur during transport through the channel. This situation has been discussed for spin

relaxation in ultraclean graphene [51], but little is known about its impact on Hanle

measurements. We keep all simulation parameters the same as before, including the

channel length L = 500 nm, and reduce the Anderson disorder to U = 0.52 eV, giving a

mean free path le ∼ 500 nm. The solid lines in Figure 4.8 show the Hanle curves for this

quasiballistic regime, and the dashed lines show fits using equation (4.3). The behavior

of Rnl is now substantially different, especially with respect to the dependence on B. The

unit B0 corresponds to the magnetic field needed for spin to precess 2π radians upon

reaching the detector, B0 =
2πvavF
γL

, which is the multi-mode version of equation (3.55).

Here, γ = gµB/~ is the gyromagnetic ratio and vav
F =

∑M
i vF,i/M is the averaged Fermi

velocity from all modes i with velocity vF,i at the Fermi level.

The first rotation of the spins occurs at B0 = 1, but is followed by a dispersion

of frequencies for larger B. This can be understood if we examine the origin of such

oscillations. By performing a simulation in a purely ballistic regime, U = J = 0, we

observe in Figure 4.8 (inset) that the main oscillation has the same period, but is

Figure 4.8: Hanle spin precession curves in the quasiballistic regime, with le = 487
nm and L = 500 nm. Solid lines correspond to simulations (averaged over 12 disorder
configurations), while dashed lines are fits using equation (4.3). Inset: Case with U =
J = 0, solid (dashed) line shows the simulation (Rnl ∝

∑M
i cos (γBL/vF,i)).

92



superimposed with other frequencies. This arises because the nonlocal signal is the sum of

each propagating mode moving at a different velocity. To verify this, we follow Ref. [125]

and express the nonlocal resistance as the sum of all contributions of electron spins i over

all transport times t:

Rnl ∝
M∑

i

∫ ∞

0

si(x = d, t)dt =

=
M∑

i

∫ ∞

0

Pi(t) cos (γBt) e−t/τsdt, (4.5)

where Pi(t) is the probability that of an electron i injected at x = 0 reaches the detector

at x = L at time t. Importantly, the functional form of Pi(t) depends on the transport

regime. In the diffusive regime, it follows the normal distribution equation (2.23) [67,125],

but in the purely ballistic regime (i.e. no scattering), we can write Pi(t) = δ(t− ti), with

ti = L/vF,i and vF,i the Fermi velocity from mode i. Hence, the expression reads

Rnl ∝
M∑

i

∫ ∞

0

δ(t− ti) cos (γBt) dt =

=
M∑

i

∫ ∞

0

δ(t− L

vF,i

) cos (γBt) dt = (4.6)

=
M∑

i

cos

(
γBL

vF,i

)
. (4.7)

In this way, by taking only the Fermi velocities of each mode of the system (com-

puted with Kwant as vF,i = 1
~
∂En(k)
kx

for the modes in lead 1), the simulations are very

well reproduced. From these results in the ballistic limit we can conclude that in the

quasiballistic regime the scattering is weak enough for the precession to follow that of

ballistic transport, but is also strong enough to average the beating pattern to one main

frequency. This explains why neither equation (4.3) nor the sum of cosines is able to

fit the quasiballistic Hanle curves. In fact, the difficulty in obtaining an analytical for-

mula for the quasiballitic regime lies in the functional form of Pi(t) which is no longer

a Dirac delta nor a normal distribution. This difficulty in capturing the crossover from

diffusive to ballistic transport in a single expression highlights the importance of brute

force quantum simulations to understand such a regime.

Finally, in the limit of a 2D graphene flake, with most electrons moving at the same

Fermi velocity, one would expect the signal to be determined by a single frequency.

To observe this effect at low magnetic fields (B ≤ 0.5 T), the channel length needs
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to be L ≥ 2πvF
γB
≈ 50 µm. We highlight the fact that this analysis can be applied to

other materials as well; depending on whether there are electrons moving at the same

or different Fermi velocities, one can expect single or multiple precession frequencies,

respectively.

4.3.1 Detailed transition from diffusive to quasiballistic regime

Since the quasiballstic regime is a transition regime, it is important to quantify how

the mean free path should compare with device geometry to identify the crossover from

diffusive to the quasiballistic case. Therefore, we have performed additional simulations

of Hanle curves with different values of disorder ranging between U = 1.04 eV (diffusive)

and U = 0.52 eV (quasiballistic), while keeping all parameters the same as in Figures

4.6 and 4.8. We have used U = 0.65, 0.78 and 0.91 eV, which results in mean free paths

of 312, 212 and 151 nm, respectively. We recall that the channel length is kept constant

(L = 500 nm), as well as the magnetic disorder, for which we choose J = 10 meV (this

value does not affect the transport regime, as seen by the same quasiballistic oscillations

from both J = 10 meV and J = 70 meV in Figure 4.8).

We present these results in Figure 4.9, where we plot two Hanle curves which corre-

spond to situations with varying mean free paths lying in between the values correspond-

ing to Figures 4.6 and 4.8. We fit these curves with equation (4.3), although it is not able

to correctly capture the oscillations of the signal for either of the curves. In the inset,

we plot all Hanle curves simulated (including the ones from Figures 4.6 and 4.8). With

decreasing mean free path, not only does the maximum of the oscillation begins to shift

towards values B < B0, indicating a transition from ballistic to diffusive regime, but also

the amplitude of those oscillations decreases until they disappear for the case of le = 117

nm, which is in fact the same curve as in Figures 4.6. From these calculations, we can

conclude that for our numerical model, once the mean free path becomes equal or larger

than 1/3 the channel length, the spin dynamics enters a quasiballistic regime. Impor-

tantly, we recall that the quasiballistic regime defines the transition zone from a diffusive

to a purely ballistic case, and thus different curves fall into this regime; for example the

curves with le = 151 nm and le = 487 nm have their first precession at different B and

with different amplitude, but both belong to this transition regime.

Finally, it is interesting to evaluate the effect of spin sinking produced by electrodes

1 and 4 in the ballistic regime. To that end, we simulate the length dependence of the

nonlocal resistance for J = 0, as we did in Figure 4.4, but varying the Anderson disorder

strength. We plot the results in Figure 4.10. Interestingly, we see that in all cases the

decay is linear and that the spin sinking effect disappears with decreasing the disorder, up

to a point where the signal is constant with length when the transport is purely ballistic
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Figure 4.9: Hanle spin precession curves for different disorder strengths leading to differ-
ent le, with L = 500 nm and J = 10 meV. Solid lines correspond to simulations (averaged
over 25 disorder configurations), while dashed lines are fits using equation (4.3). Inset:
more simulations with different mean free paths, showing the qualitative change of the
Hanle curve when entering the quasiballistic regime. Black and orange lines correspond
to the cases shown in Figures 4.6 and 4.8, respectively.

(U = 0). Although equation (4.4) is valid only in the diffusive regime, it appears that the

linear decay with channel length also occurs in the quasiballistic regime. Moreover, the

fact that the spin sinking effect is absent in the ballistic regime illustrates once more that

the origin of this effect resides in the transmission between leads. Now such transmissions

do not depend nor decay with length, and therefore neither does the nonlocal signal.
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L

Figure 4.10: Rnl as a function of the channel length L for the case without spin relaxation
J = 0 and varying the Anderson disorder strength. The results are averaged over 50
disorder configurations (all curves have similar error bars than the plot in Figure 4.4).
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4.4 Conclusions

In conclusion, we have performed fully quantum simulations that provides a more global

picture of nonlocal spin transport when the material quality drives the system towards

the quasiballistic regime, as well as an extended theoretical frame to analyze systems

with long spin diffusion lengths. In this limit, the drain and reference electrodes become

the limiting factors, and one should aim for these to be nonmagnetic and optimize their

contact resistance to reach the upper limit for spin information transfer. Beyond guiding

future nonlocal spin transport measurements in graphene devices, the developed methods

and findings should be also relevant for other types of two-dimensional materials and van

der Waals heterostructures.
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CHAPTER 5

SPIN DYNAMICS IN LOW-SYMMETRY TRANSITION

METAL DICHALCOGENIDES

This chapter devotes to the spin dynamics of MoTe2 and WTe2, namely, spin relaxation,

spin Hall effect (SHE) and quantum spin Hall effect (QSHE). The first two phenomena will

be studied for MoTe2 given the recent experimental findings concerning unconventional

SHE and large spin diffusion lengths [227, 251]. On the other hand, since WTe2 has

received more attention in the topic of QSHE [41, 72, 129, 237, 264, 289], our simulations

of this effect will focus on WTe2.

5.1 Diffusive regime conditions

Similarly than in Chapter 4, we begin by determining the charge transport properties so

we can study spin transport in the diffusive regime. We implement the real-space tight-

binding model of 1Td-MoTe2 on a rectangular lattice (equation (3.15)), add Anderson

disorder (equation (3.16)), and calculate the two-terminal conductance, G2T. We use the

DFT values ax = 3.4607 Å and ay = 6.3066 Å for the lattice parameters. Unless stated

otherwise, we chose the x axis as the semi-infinte transport direction so our system has

a finite width w and length L as indicated in Figure 5.1.

The mean free path depends on the Anderson strength, U , but also on the energy,

E, and we need to chose a wide enough device (le << w) so the system behaves more

like a two-dimensional system. In addition, we found that upon varying the value of U ,

the mean free path varies much strongly than the spin diffusion length. This dictates

our device lengths L on the order of the spin relaxation, and we tune U to achieve mean

free paths much shorter than L. In this way, we can achieve diffusive transport for both

charge (le << L) and spin. To that end, we use U = 2 eV and w = 50 nm.
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Figure 5.1: Schematics of the two-terminal device modeled with equation (3.15). Black
(red) regions denote the scattering region (leads).

In contrast to Chapter 4, here we perform simulations at different energies. The range

of energies studied are listed in Table 5.1, and they vary from slightly above the Fermi level

until the bottom of the conduction band. In Figure 5.2 we plot the length dependence

of the two-terminal conductance and conductivity for two representative energies: E = 0

and E = −105 meV. As seen from the conductivity plateaus and shaded regions, only the

lengths between 25 and 55 nm are diffusive for the case E = 0, and between 45 and 90

nm for E = −105 meV. For all energies studied (see Table 5.1), the length at which the

transport is diffusive varies slightly, but in general ranged from a few tens of nanometers

to around 100 nm. In Table 5.1, we report the mean free paths for all energies, as well

as the number of modes, M , the conductivity, σ, and the charge diffusion coefficient, Dc.

Both the mean free path and the conductivity are extracted as explained in section 3.3.4

and the diffusion coefficient by Dc = 1
2
vFle, where vF is the averaged Fermi velocity of

all modes at that energy extracted from the band structure of the semi-infinite lead. For

energies E ≤ −95 meV, there are not many modes and therefore we removed the Sharvin

resistance h
e2M

from G2T to account properly for the bulk values of σ and le. As seen from

Table 5.1 and Figure 5.2, the mean free path is much shorter than the crossover length

to the diffusive transport and the plateau of conductivity just comprises a few tens of

nanometers. This forces us identifying the “diffusive window” visually from Figure 5.2

instead of comparing le and lloc.
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Figure 5.2: Two-terminal conductance G2T (top) and electrical conductivity σ (bottom)
as a function of channel length, L, of 1Td-MoTe2 at E = 0 (left) and E = −105 meV
(right). Dashed, red lines are fits with equation G2T = Mle

x
G0 (see section 3.3.4). Shaded,

gray regions denote the lengths at which the transport is diffusive, as shown by the
conductivity plateaus.

Table 5.1: Values of the mean free path (le), number of modes in the system (M),
electrical conductivity (σ) and diffusion coefficient (Dc) for different values of energy E
(with respect to the Fermi level). The states at E = −140 meV lie in the bulk gap and
arise due to the nontrivial band inversion of our model.

E (meV) le (nm) M σ (e2/h) Dc (cm2/s)
30 0.88 64 1.12 0.9
0 1.02 54 1.10 1.2

-30 1.55 42 1.30 1.5
-60 1.89 32 1.21 1.6
-80 3.00 22 1.32 2.3
-95 4.50 14 1.25 2.5
-100 6.90 10 1.38 3.4
-105 10.8 6 1.30 4.5
-110 15 4 1.20 4.8
-140 50 2 2 17
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5.2 Spin relaxation

The energy dispersion and specially the spin texture will be key for the results of this

Chapter. Therfore, in Figure 5.3 we plot part of the energy bands and spin texture

presented earlier in section 3.1.2. The band structure near the Fermi level, EF, is shown

in Figure 4.2(a). The valence and conduction band extrema present a small splitting

and occur at the time-reversal-symmetric Q and Q′ points. Figure 5.3(b) shows the spin

texture at the Fermi level, 〈sα〉EF
, with two crucial observations: the existence of an

approximate persistent spin texture (PST) through the whole Fermi contour [25,232,233]

and canted spins with 〈sy〉EF
> 〈sz〉EF

� 〈sx〉EF
, consistent with prior studies [236,295].

We simulate the nonlocal spin valve illustrated in the inset of Figure 5.4, where

contacts 2 and 3 are ferromagnetic to allow injection and detection of spin-polarized

currents [67, 125, 131]: FM electrode 2 injects a spin-polarized current Iα0 with spins

polarized along α ∈ {x, y, z}; this creates a spin accumulation that diffuses along the

channel and is detected as a nonlocal voltage Vnl = V3 − V4 at electrodes 3-4, located a

distance L from the source and far from the path of charge current between electrodes 1-

2. This effect is quantified by the nonlocal resistance Rα
nl ≡ Vnl/I

α
0 and the spin diffusion

length for α-pointing spins, λαs , is obtained from the decay of Rα
nl with L in the diffusive

regime. As mentioned above, since the “diffusive window” change with energy, we had

to choose different distances between leads for different energies. In general, l1 ∼ 50

nm and l ∼ 150 nm, while the width of the FM leads is kept as narrow as possible with

TB TB-DFT

Con1

Con2

Te
Mo

x

y

z

y Q

Figure 5.3: (a) Close-up of the bandstructure near EF for a 1Td-MoTe2 monolayer (model
of equation (3.15)). The blue-shaded region indicates the energy range covered in the
spin transport calculations. Inset: monolayer crystal structure. (b) Spin texture of one
of the bands of the electron pocket near Q at EF (Fermi-broadened with T = 300 K); the
solid line marks the Fermi contour, arrows depict the in-plane spin projection and the
color indicates the spin projection along z.
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d1 = d2 = d = 1 nm and with perfect polarization. Also, in the TMD tight-binding model

(equation (3.15)) we do not need to add additional terms to produce spin relaxation, such

as random magnetic disorder as we did for graphene in Chapter 4, since the intrinsic SOC

of the TMD is large enough to produce significant spin relaxation.

Figure 5.4 shows Rα
nl(L) for the three spin orientations at EF. We see clear differences

in the magnitude of the nonlocal signals and their relaxation distances for different orien-

tations of the injected spins, ranging from tens of nanometers to the sub-nanometer scale.

By fitting the length dependence of Rα
nl to equation (4.3) (dashed lines in Figure 4.3),

we obtained λys ≈ 30 nm and λzs ≈ 10 nm, while λxs has a negligible value. The finite

values are comparable with strong-SOC metals such as Pt, β-W or β-Ta [123, 244]. It is

significant that the spin diffusion lengths follow the trend λys > λzs � λxs , in correspon-

dence to that of the spin texture. The upper inset of Figure 5.4 shows that this hierarchy

holds over the entire range of energies analyzed, from E = 30 meV to the band edge at

∼ −110 meV. Both λys and λzs increase about threefold as EF moves towards the band

2

1

3

4

L

y

x

𝑉"#

Figure 5.4: Rα
nl (solid lines) against the channel length, L, for spins polarized along x,

y and z. Error bars result from averaging over 150 disorder configurations (w = 50
nm). Dashed lines are fits to equation (4.3) in Chapter 4. Left inset: Scheme of the
nonlocal spin valve. Black (red) regions denote the device (leads), with leads 2 and 3
being ferromagnetic. Current Iα0 flows from lead 2 to 1 and Vnl is measured between
leads 3 and 4. Right inset: Energy dependence of λy,zs . The dot-dashed line marks the
conduction band minimum.
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edge (dot-dashed line). Details of how the (persistent) spin texture impacts λαs and its

scaling with energy are discussed in the next section.

Once the energy lies in the gap and the transport is mediated by the topological edge

states, the spin diffusion length is expected to diverge as these states are topologically

protected against nonmagnetic disorder and they propagate ballistically without scatter-

ing. To explore this effect, we calculate how the nonlocal resistance varies with channel

length for energies in the gap (shown as dashed lines in Figure 5.5), namely E = −140

meV and E = −320 meV. The former corresponds to an energy in the gap but relatively

close to the conduction band, whereas the latter lies deep in the gap. Figure 5.6 shows the

length dependence of Rα
nl for spins injected with polarization along x, y and z directions.

For E = −140 meV (Figure 5.6(a)), the behaviour is similar to that of energies in the

conduction band; the disorder is strong enough to perturb these edge states lying close

to the bulk bands and inducing spin relaxation. Nevertheless, the obtained spin diffusion

lengths are much larger than those reported for the conduction band: λys = 156 nm and

λzs = 56 nm. On the other hand, for E = −320 meV, the nonlocal resistance presents a

length-independent value (i.e. no spin sinking is taking place), consistent with the onset

of ballistic transport of topologically protected edge states.

Figure 5.5: Band structure of a 1Td-MoTe2 ribbon with finite width w = 50 nm in the y
direction. Orange bands depict the topological edge states. Horizontal dashed lines mark
the energies E = −140 meV and E = −320 meV.
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(a) (b)

Figure 5.6: Rα
nl (solid line) as a function of channel length, L, for spins injected along

x, y and z for (a) E = −140 meV and (b) E = −320 meV. Error bars result from the
averaging of 50 disorder configurations. Dashed lines in (a) are fits to equation (4.3).
The device lengths are l1 = 100 nm, L+ l2 = 350 nm whereas s1, s2, w and the Anderson
disorder is kept the same as in the calculations presented in the main text.

5.2.1 Origin of the spin diffusion length anisotropy

In general, the relaxation of spins is related to the spin texture of the eigenstates [67].

In our case, the spin texture of conducting electrons (see Figures 3.6(a) and 3.6(b) in

section 3.1.2 and Figure 5.3) present two key characteristics:

• The spins mainly lie on the yz plane because the projection along x is negligible,

with magnitudes obeying 〈sy〉E > 〈sz〉E � 〈sx〉E. That is, to a very good approx-

imation, the spins are canted along one direction in the yz plane. Specifically, the

spins present an angle of θ ∼ −29◦ with respect to y and θ ∼ 61◦ with respect to

−z. Moreover, the y and z projections have opposite sign and the projection along

x diminishes as E moves towards the bottom of the conduction band.

• The spin orientation is mostly unchanged throughout the whole Fermi contour. In

other words, when “traveling” along the Fermi contour, one sees an approximately

persistent spin texture [25,232,233] with the above-stated canting of the spins. The

PST is not perfect because of the small but finite 〈sx〉E.

The canted spin texture contrasts with the out-of-plane spin polarization in two-

dimensional centrosymmetric systems, and also with the in-plane spin-momentum locking

in systems with broken inversion symmetry [83], but follows from straightforward sym-

metry considerations. The SOC Hamiltonian of the TMD tight-binding model derived in

section 3.1.2 reads

HSOC = (Λxkysx + Λykxsy + Λzkxsz)⊗ τx. (5.1)
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In systems with multiple vertical mirror symmetries the coefficient Λz of equation (5.1)

vanishes, thereby reducing equation (5.1) to a Rasha-like spin-orbit interaction with in-

plane spin-momentum locking. Additionally, in this case, all the nonzero elements of the

spin Hall conductivity tensor describe spins pointing out of the plane. Such symmetry-

constraints are absent in MoTe2 monolayers where only a mirror point symmetry Mx

remains, allowing for different spin polarizations in the spin texture as well as multiple

components of the spin Hall conductivity tensor, as observed below in section 5.3. More

details on how the symmetry of the crystal affects the spin texture and the SHC can be

found in Appendix C.

The second characteristic is crucial to understand the hierarchy we observe for the

spin relaxation lengths in the diffusive regime. It is convenient to reason in terms of the

natural spin quantization axis in this system, which is precisely that defined by the canting

direction of the PST. The (approximate) PST here implies an (approximate) conservation

of spin along the canting direction: if we describe the spin orientation with reference to

a rotated coordinate system where the z′ axis points along the canting direction, the

Hamiltonian is (approximately) diagonal with a SOC term proportional to the spin Pauli

matrix in that direction, sz′ . Consequently, when spins are injected collinear to that

direction, they enter the system as spin eigenstates. Moreover, the disorder potential,

being diagonal in the spin and orbital indices, does not change that - neither at the

moment of injection nor during the spin transport in the material -, with the implication

that those spins retain a large lifetime (in fact, if the PST were strictly exact, there

would be no spin relaxation at all for collinear injection). Conversely, maximum (faster)

relaxation is expected for spins injected perpendicularly to z′. The case of spins injected

parallel to x is one such case, for which we obtain only numerical noise in the nonlocal spin

signal. Therefore, we can correlate the trend in relaxation rate observed in the simulations

with the injected spins’ projection along z′. Accordingly, the hierarchy λys > λzs is a

natural reflection of that trend: spins injected along y have a slightly larger spin diffusion

length than those spins injected along z because the y direction lies ∼ 30 degrees away

from z′ compared with ∼ 60 degrees for the z direction. Furthermore, because the

x component of the spin texture decreases monotonically towards the band edge, the

canting direction becomes more aligned with the yz plane, resulting in the increase of

both λys and λzs when E approaches the bottom of the conduction band.
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5.3 Spin Hall effect

The SHE is investigated by computing the spin accumulation sα with equation (3.50) in

the device illustrated in the inset of Figure 5.7. The charge current along y generates a

transverse spin current parallel to x by the SHE, which results in spin accumulation at

the open lateral boundaries. The efficiency of such sharge-to-spin interconversion (CSI)

is characterized by the spin Hall angle (SHA), defined in equations (2.28) and (2.29) in

section 2.1.4. To numerically determine the SHA, we calculate the spin accumulation

response function per unit of current applied to the lead, and fit it to the solution of the

spin drift-diffusion equations (see Appendix D for details):

sα(x)

Jc,y
= −θ

α
xyλ

α
s

|e|Ds

sinh
(
w−2x
2λαs

)

cosh
(

w
2λαs

) , (5.2)

where w is the device width, e the electron’s charge and Ds is the spin diffusion coefficient

obtained from the charge diffusion coefficient (see Table 5.1).

Figure 5.7 shows the averaged spin accumulation along the channel cross-section,

sα(x), for each spin orientation. In a typical SHE scenario, the electrical current, spin

current, and the spin polarization are all mutually orthogonal (for this geometry, that

would generate a finite sz only). However, we observe a nonzero sy as well. In fact,

|sz| ∼ |sy|, implying that the accumulated spins point obliquely in the yz plane, with

significant projection parallel to the electrical current. Interestingly, note that the spin

accumulation displays the hierarchy sy > sz � sx, echoing the trend seen above for the

spin texture and spin diffusion lengths.

We determine θαxy by fitting the numerically calculated spin accumulation to equa-

tion (5.2), using the values of Ds extracted from the two-terminal conductance of this

device and λαs from Figure 5.4. The results are displayed in the inset of Figure 5.7. We

note that while the charge conductivity along x and y is slightly anisotropic, resulting in

an equally anisotropic SHA, |θαxy| and |θαyx| are still very similar (see section 5.3.2). At EF,

the SHA for spins pointing along y and z have magnitudes of ≈ 10% (but opposite sign).

Remarkably, both increase substantially when approaching the band edge, at which point

|θyxy| overcomes |θzxy| with values as large as |θyxy| ≈ 80%. We also compute the SHC and

the SHA with the Kubo-Bastin formula and obtain the same result both qualitatively

and quantitatively (see section 5.3.2). This increase of θαxy is attributed to hotspots of

spin Berry curvature near the bottom of the electron pockets [251, 295], which directly

determine the SHC/SHA magnitude [243,261,311]. More details about the effects of the

spin Berry curvature is found in the next section. Importantly, our combined results
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Figure 5.7: Spin accumulation (solid lines) as a function of position across the channel
width, of spins along x, y and z. Error bars result from averaging over 200 disorder con-
figurations (w=50 nm). Dashed lines are fits to equation ((5.2)). Bottom inset: Scheme
of the two-terminal device, where a current flowing along y creates a spin accumula-
tion in the x direction. Top inset: Energy dependence of the spin Hall angles, with the
conduction band minimum marked by a dot-dashed line.

yield CSI efficiencies λαs θ
α
xy ∼ 1–50 nm, with larger values near the band edge and for y

spins. The upper limit exceeds that of traditional SOC materials (Pt, β-W, β-Ta or Au)

for which λαs θ
α
xy ∼ 0.1− 0.2 nm [123,223,244], and is up to 2 to 3 times larger than that

induced by proximity in graphene [21, 111, 226]. Such remarkable CSI efficiency stems

from the combination of large spin Berry curvature and the persistent spin texture near

the MoTe2 band edges.

5.3.1 Origin of the large spin Hall effect

The monolayer nature of TMDs and their nontrivial band topology are both important

ingredients for the existence of a large and unconventional spin Hall effect (SHE). As

discussed in section 2.2.2, specific symmetry reductions with respect to that of the 3D

bulk form of these crystals are essential conditions for the existence of nonzero elements

of the spin Hall conductivity (SHC) tensor, σαij, beyond the conventional one, i.e. σzxy

and its cyclic permutations; such symmetry reduction is ensured in the monolayers we
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consider. This constraint is explicitly illustrated in Figure 2.8 which compares the SHC

of 1Td-MoTe2 calculated for a 3D bulk crystal with a 5-layer slab.

In this sense, having a mono- or few-layer slab is a necessary condition to observe

the anomalous SHC components irrespective of the underlying nontrivial band topology

(in contrast to the conventional component σzxy which is finite in the 3D bulk as well).

But it is not a sufficient condition because the magnitude of the SHC, when allowed, is

determined by the spin Berry curvature (SBC, see section 2.1.5). The essential topological

aspect here arises from the band inversion that occurs at the Γ point, as illustrated in

the schematic of Figure 5.8.

While the spin-orbit coupling lifts the degeneracy at the Q points where the inverted

pair of bands intersect, the regions near Q retain locally large spin Berry curvatures. The

SBC associated with band n corresponds to the quantity described by equation (2.34)

in section 2.1.5, and is plotted in Figure 5.9. For definiteness, we look here specifically

at the case relevant for the anomalous component σyxy of the SHC. Each panel of Figure

5.9 shows the k-resolved SBC in the vicinity of the Q point in the Brillouin zone, at two

representative values of Fermi level: the ground-state EF we obtain in DFT and very near

the bottom of the two conduction bands (E = −100 meV). The important observation

to make is that, as conveyed by the color scale, the magnitude of the SBC increases when

E approaches the bottom of the conduction pockets (the magnitude is higher in the right

plot). This is even better illustrated in Figure 5.10, where we show the same quantity,

++

-

-
-

Γ
QQ′

+

Egap

no SOC Strong SOC Weak SOC

Figure 5.8: Illustration of the band inversion at the Γ point and the emergence of the
electron pockets at Q and Q′ as a result of degeneracy lifting by SOC. The symbols
“+” and “-” refer to the parity eigenvalues at Γ. See Figure 3.5 for the actual DFT
bandstructure of MoTe2 and WTe2.
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but as a function of energy along a cut with ky = 0. It can be clearly seen that the

magnitude of the SBC is maximal at the bottom of the conduction pockets and decreases

relatively quickly to zero when we increase the energy. We refer to this behavior as SBC

hotspots associated with the band minima.

Figure 5.9: Momentum-resolved spin Berry curvature, defined in equation ((2.34)) above,
near the Q point in the Brillouin zone, at two representative values of Fermi level: the
ground-state EF (left) and very near the bottom of the two conduction bands, E = −100
meV (right).

Figure 5.10: Superimposing the total spin Berry curvature (see equation ((2.34)) above;
color scale) onto the TB-effective band dispersion. It progressively diminishes when
moving away from the local extrema at the Q points.
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5.3.2 Comparison with Kubo-Bastin simulations

The values of the SHA presented above obtained with the Landauer-Büttiker formalism

are now compared with the values obtained with the Kubo-Bastin formula with the

formula θαij = σαij/σjj (see section 3.2.2). These calculations are carried out using 1000

Chebyshev expansion moments, which is equivalent to a broadening of 10 meV for this

particular system, and with a system size of 4× 1000× 1000 orbitals.

We plot the values of the SHA as a function of the energy in Figure 5.11(a), where a

good agreement is clearly seen between both quantum transport methodologies, support-

ing the validity of our results. Moreover, in Figure 5.11(b) we plot the ratios between the

charge and spin Hall conductivities obtained with the Kubo-Bastin formula. On the one

hand, there is a slight charge transport anisotropy, with the charge conductivity along y

being a factor 1.2-1.6 of that of the charge conductivity along x in the energy range stud-

ied. On the other hand, the spin Hall conductivity shows an almost isotropic behavior

for both spin components. These results imply that the SHA is also slightly anisotropic,

with the same factor of the ratio σyy/σxx, but nevertheless |θy,zxy | and |θy,zyx | have the same

order of magnitude.

The residual difference between the two methods seen in Figure 5.11(a) is expected due

to the averaging over disorder realizations that is performed in LB calculations, in addition

to a smaller system size required in the LB case with respect to Kubo-Bastin because of

a higher computational cost. The LB calculations were performed for disordered systems

with 22750 unit cells, while the Kubo-Bastin calculation of the SHC was performed on a

clean system with 106 unit cells.
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Figure 5.11: (a) Spin Hall angles as a function of energy for spins in y and in z. Solid
lines with circles and squares correspond to Landauer-Büttiker calculations (θy,zxy ). Solid
(dashed) lines correspond to Kubo-Bastin calculations for θy,zxy (θy,zyx ). The positive con-
vention for the SHA is taken when the spin current flows to the right with respect to the
charge current (see Appendix D for details). (b) Ratio of charge (black) and spin Hall
conductivities (orange and blue).
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5.4 Detection of the oblique spin Hall effect

Such a peculiar spin response should become evident in suitably designed nonlocal spin-

precession experiments [21,37,227,230]. To probe this oblique SHE, we propose the device

concept pictured in the insets of Figure 5.12, which relies on the reciprocal/inverse SHE

(ISHE) [244]. It consists of a Hall bar comprising a graphene channel and a transversely

aligned monolayer TMD crystal.

A non-equilibrium spin accumulation is induced in the graphene channel through a

FM electrode whose magnetization direction determines that of the spin density injected

into graphene underneath. This generates a pure-spin current that diffuses toward —

and is absorbed by — the remote TMD. It is assumed that the spin current is absorbed

by the TMD at its edge and continues to follow the diffusion direction, given that the

spin resistance in the TMD is two orders of magnitude lower than in graphene for λys =

30 nm or λzs = 10 nm (see Appendix E for details). By ISHE, a transverse voltage

VISHE develops on the TMD, which can be measured along its length as illustrated in

Figure 5.12. In experiments, the diffusing spins can be controlled by spin precession in

a non-collinear magnetic field B. To capture this situation, we generalized the Bloch

diffusion equations to account for anisotropic spin diffusion and calculat VISHE(B) using

the approach described in Ref. [21] (which accurately reproduces CSI in real devices).

This procedure is detailed in Appendix E. Figure 5.12 shows the precession response for

two selected orientations of the TMD crystal in the limit of full absorption (RISHE ≡
VISHE/I

y
0 ). We observe magnitudes of RISHE nearly three orders of magnitude larger

than the values reported for graphene/TMDs [21,89,111,226] and graphene/bulk-WSMs

[227, 308]. This is a direct consequence of the extremely large SHA predicted here for

MoTe2
1.

The essence of the experiment is that the precession response depends strongly on

the crystal orientation. As evidenced in Figure 5.4, the spin relaxation in the TMD is

anisotropic, and the CSI depends crucially on both the majority spin orientation and

crystalline orientation. In Figure 5.12(a), the TMD’s crystallographic y-axis is transverse

to the spin propagation. A magnetic field parallel to z causes spins to precess in the

graphene plane but, according to Figure 5.7, only the y spin projection contributes to the

ISHE signal with an efficiency of |θyxy|; RISHE is symmetric with respect to the sign of B

because the magnetization at the FM injector is parallel to y, resulting in the maximum

signal at B = 0. When the field is parallel to x, the spins acquire a z component (in

1In experiments, RISHE also depends on the TMD’s electrical resistance (see Appendix E for details)
and the Fermi level, as seen in Figure 5.7. Interfacial barriers between graphene and the TMD can
suppress the spin sink effect and cause a more distributed spin absorption across the TMD width, in
which case the observed signal might be partially reduced.
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addition to that in y), which is asymmetric with respect to B and adds a contribution to

the ISHE with an efficiency of |θzxy|; because |θyxy| ≥ |θzxy|, the signal remains roughly sym-

metric. In Figure 5.12(b), the crystallographic y-axis is parallel to the spin propagation.

As the y and z directions are now orthogonal to the FM magnetization, the lineshapes

are antisymmetric. The signal is zero at B = 0 and, by sweeping B from negative to pos-

itive along z (x), the spin component along y (z) changes sign. Therefore, two combined

observations in this proposed experiment represent a “smoking gun” demonstration of

the intrinsic oblique SHE predicted in this work: (i) RISHE(B) should display a different

lineshape under different field orientations for a fixed TMD crystal; (ii) rotation of the

crystal converts the lineshapes from predominantly symmetric to antisymmetric.
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Figure 5.12: Simulated response of the inverse SHE (RISHE) to spin precession for two
orientations of the TMD crystal (coordinate axes in the insets). The device geometry
is shown in the insets, with the TMD depicted in yellow and the FM injector in red
(magnetization indicated by an arrow). The polarization of the spin current reaching
the TMD (Jαs ) is controlled externally with a magnetic field, B, oriented either along
the graphene channel (dashed lines) or out-of-plane (solid lines). Typical experimental
device dimensions were used in the simulation, as described in Appendix E.
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5.5 Comparison between 1T′ and 1Td phases of MoTe2

In this section, we compute the nonlocal resistance and spin accumulations for 1T′-MoTe2.

This is obtained by using the same model (equation (3.15)) but setting η = 0. In this

way, inversion symmetry is now preserved, and the bands do not display spin splitting

(see Figure 3.7(b)). All the other parameters, both from the model and from the device

geometry, are kept the same.

In Figure 5.13 we plot the length dependence of the nonlocal resistance calculated

in a nonlocal spin valve, and compare it to the corresponding simulation performed in

the 1Td phase. We focus on two energies, one at the Fermi level E = 0 (Figure 5.13(a))

and the other near the band edge at E = −105 meV (Figure 5.13(b)). The two phases

present the same scaling of the nonlocal resistance for both y and z polarization of injected

spins. Finally, in Figure 5.14 we compare the spin accumulations arising due to the spin

Hall effect between the two phases at these two energies. The results indicate that the

creation of spins along the sample width in 1T′-MoTe2 is similar to that in 1Td-MoTe2.

Although both phases present different symmetries which could lead to different spin

transport properties, the distortion that drives 1T′-MoTe2 to 1Td-MoTe2 is small [295],

and therefore any difference in the spin dynamics between the two phases is expected to

also be small.
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(a)

Figure 5.13: Rα
nl as a function of channel length, L, for spins injected along y and z for

(a) E = 0 and (b) E = 105 meV. Solid (dashed) lines correspond to a simulation of the
1Td (1T′) phase. Error bars result from the averaging of 150 disorder configurations.
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(b)

(a)

Figure 5.14: Spin accumulation as a function of position across the channel width of spins
along y and z for (a) E = 0 and (b) E = 105 meV. Solid (dashed) lines correspond to a
simulation of the 1Td (1T′) phase. Error bars result from the averaging of 200 and 100
disorder configurations for (a) and (b), respectively.
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5.6 Canted quantum spin Hall effect

From the results obtained in the previous sections, it is natural to ask what will happen

to spin transport for energies in the gap, where the quantum spin Hall effect is expected.

To address this question, we now focus on the model for WTe2, as it is the TMD more

studied in the quantum spin Hall regime.

Figure 5.15 shows a close-up of the band structure of 1Td-WTe2 near the Fermi level,

which is located closer to the bottom of the conduction band than the Fermi level of

MoTe2. As in 1Td-MoTe2, each band presents a tiny spin splitting and features two

charge pockets symmetrically located away from Γ at the point labeled Q and its time-

reversal counterpart (not shown). In the inset, we compare the spin textures at EF for one

of the Q-centered electron pockets obtained by DFT with that arising from the model.

The spin orientations in the yz plane are represented by the orange arrows (despite not

strictly zero, the x component is omitted for clarity, as it was found comparatively much

smaller in magnitude). In addition to the obvious agreement, it is noteworthy that the

spin texture is uniform to a very good approximation. Hence, WTe2 is also a material

with a naturally present persistent spin texture which is invariant upon changing EF

within the range of energies shown (i.e low electronic densities). The spins cant at an

angle θ ≈ −56◦ with respect to t and θ ≈ 34◦ with respect to −z.
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Figure 5.15: Band structure of WTe2 around the charge pockets formed by the band
inversion at Γ. The inset compares the spin textures computed from DFT and the
effective model; the color represents the energy with respect to the Fermi level and the
arrows the spin orientation in the yz plane (spin projection along x is negligible). The
white dots marks the position of the Q point.
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Spin Hall conductivity

We next explore the nature of spin transport as EF is varied across the band gap by

computing different elements of the spin Hall conductivity tensor (σαij, α = x, y, z) using

the Kubo-Bastin formula implemented as described in section 3.2.2. Figure 5.16 shows

the nonzero components of the transverse spin Hall conductivity tensor, σαxy, α ∈ {y, z},
as EF is varied near and within the band gap. Although both σzxy and σyxy display a

plateau in the gap region, their values are −1.65 e2/h and 1.1 e2/h, respectively. This

is intriguing since usually, within a topological gap, quantized spin Hall conductivities

are integer multiple of the conductance quantum, reflecting the existence of a definite

(integer) number of helical edge channels [139,159,183,234].

However we note that, by definition, each component α of σαxy provides only a measure

of the projection of the spin onto the Cartesian direction α, because σαij ∝ Jαs,i/Jj where

Jαs is the spin current density2 carrying spins polarized parallel to α in response to a

driving charge current J . But the choice of Cartesian directions is arbitrary — in fact,

the results in Figure 5.16 show that a Cartesian system fixed by the orthorhombic axes of

the crystal obscures the adequate spin quantization axis in this problem. This is readily

confirmed by the fact that, in the gap, |σαxy| ≡
√

(σyxy)2 + (σzxy)
2 is indeed quantized

at 2e2/h (Figure 5.16, solid curve), where the factor of 2 reflects the existence of two

counter-propagating modes per edge.

This shows that the interdependence among the magnitudes of the spin Hall conduc-

tivity components seen in Figure 5.16 has a fundamental origin, namely the presence

of spin-canted topological edge states which sustain a quantum spin Hall effect in WTe2

monolayer. From the values of each plateau, we determine that the spin quantization axis

is canted at θ = arctan (σzxy/σ
y
xy) ≈ −56◦ with respect to the y axis. Notably, this angle

matches perfectly with the orientation of the persistent spin texture near the bottom of

the conduction band, shown earlier in the inset of Figure 5.15.

The existence of a quantized plateau at 2e2/h is an indication of spin conservation [138,

159,183,234]. To demonstrate this more explicitly, we unitarily transform the k ·p Hamil-

tonian in equation (3.13) with a rotation in spin space about x, which is effected by the

matrix U(θ) ≡ cos[ (2θ−π)/4 ]s0− i sin[ (2θ−π)/4 ]sx , where θ≡ arctan (Λz/Λy)≈− 56◦

is an angle defined by the SOC parameters in equation (5.1). While the spin-independent

part of the WTe2 tight-binding model remains invariant, the SOC term transforms into

H′SOC ≡ U †(θ)HU(θ) = Λxkysx + Λrkxsz′τx, (5.3)

2Here, Jαs = (Jαs,x, J
α
s,y, J

α
s,z), in contrast to the definition given in equation (2.10). See List of

Acronyms and useful Symbols for the different definitions of the spin current.
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with Λr ≡
√

Λ2
z + Λ2

y and sz′ ≡ U †(θ)szU(θ). We now note that Λx is numerically

smaller than Λr in WTe2 and, more importantly, |ky| � |kx| near the bottom of the

Q-centered electronic pockets. The combined effect is that, over the range of energies

shown in Figure 5.15, the first term in equation (5.3) is two orders of magnitude smaller

than the second and thus negligible in practice. Consequently, [H′, sz′ ] ≈ 0 so that spin

is preserved along the canted z′ direction to a very good approximation, which has two

physical consequences: (i) when EF lies in the conduction band, the carriers have a

persistent spin texture directed along z′ over the entire Fermi contour; (ii) the canting

angle is preserved in the quantum spin Hall regime (when EF lies in the gap), which

supports the quantization of the spin Hall conductivity and defines a canted QSHE. For

completeness and further corroboration, we include in Figure 5.16 (open circles) the spin

Hall conductivity σz
′
xy computed explicitly with the rotated Hamiltonian in equation (5.3),

and also show in Figure 5.17 the explicit spin texture of the edge states in a WTe2 ribbon.
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Figure 5.16: Spin Hall conductivities σyxy and σzxy. The solid line shows the norm of |σαxy| ≡√
(σyxy)2 + (σzxy)

2, the grey area highlights the bandgap; the open black circles correspond

to σz
′
xy. Inset: orientation of the spin of the helical edge states. The calculations were

done considering a broadening of 5 meV on a system with 1000× 1000× 4 orbitals.
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Figure 5.17: Band structure of a 1Td-WTe2 ribbon with width of 63 nm where the color
represents the spin texture along the canting direction, sz′ . The pair of helical states with
canting spin polarization are readily visible.

Helical transport of spin at the edges

The topological nature of the electronic states can be unequivocally confirmed by prob-

ing nonlocal resistances, Rnl, in a Hall-bar geometry under different bias conditions: If

the nonlocal signal is due only to helical edge states, Rnl should display plateau values

uniquely determined by the specific combination of contacts chosen for current injection

and nonlocal voltage detection [222]. We employ our effective tight-binding model to

compute the nonlocal resistance using the device geometry illustrated in Figure 5.18(b).

To obtain Rnl, we proceed in a similar faishon as we did for the nonlocal spin valve:

from the transmission probabilities between each pair of leads and build the conductance

matrix G and then require the current to flow from lead i to j by setting Ii = −Ij and

Ik = 0, k 6= i, j, and calculate the resulting voltages V. The nonlocal resistance is defined

as Rij,kl = (Vk − Vl)/Iij, i.e., current flows from lead i to j and voltage is measured

between leads k and l. Furthermore, to test the robustness of the nonlocal signal, we

include Anderson disorder with equation (3.16) in the tight-binding Hamiltonian.

The results are plotted in Fig 5.18(a), where solid (dashed) lines show Rnl for a system

with (without) disorder. Each curve represents a different calculation of Rnl, that is, a

different choice of current paths and probes used to calculate Rij,kl. The quantized values

obtained at the plateaus precisely correspond to those expected in the QSHE state for
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the chosen injection and detection contacts, as explained in Appendix F. That different

choices of electrical contacts yield distinct — yet precisely defined — plateau values stems

from the equilibration of the chemical potential at the leads [222]; therefore, the chosen

voltage probes and the current path uniquely determine the value of Rij,kl. Note however

that such nonlocal setup is unable to discern the y and z projections of the spin in the

edge states; for that, one may need to use magnetic electrodes.

We also computed the bond-projected spin currents with equation (3.52) for spins

polarized along the (rotated) z′ and y′ directions, i.e., J z
′
s and Jy

′
s . The former is shown

in Figure 5.18(b) as horizontal arrows at the top/bottom edges, evidencing the fingerprint

of helical transport in the QSH regime. In contrast, Jy
′

s was found to be negligible,

which is consistent with the form of H′SOC in equation (5.3). Finally, we also observe

a strong resilience of the plateaus to nonmagnetic disorder in Figure 5.18(a), consistent

with time-reversal topologically protected states (U = 2 eV, much larger than any other

energy scale of the Hamiltonian). These nonlocal results clearly establish that the canted

QSH effect, inferred above from a bulk Kubo-Bastin calculation, is characterized by

robust helical spin transport at the edges, a fact fully consistent with the bulk-boundary

correspondence [108].

122



I62
1

2 3

4

56

(a)

(b)

Figure 5.18: Nonlocal resistances Rij,kl = (Vk − Vl)/Iij calculated in the 6-terminal Hall-
bar device shown in the inset. The two plateau values 2h/3e2 and h/2e2 seen here
unequivocally attribute the nonlocal signal to QSH edge states (see Appendix F for
details). Solid (dashed) lines correspond to simulations with (without) Anderson disorder
(with strength U = 2 eV). In the inset, the solid (lattice) regions delineate the device
(leads). The device is defined on a rectangular lattice (parameters ax = 3.4607 Å and
ay = 6.3066 Å). The device width, inter-lead separations, and lead widths are all 50 nm.
The small horizontal arrows along the top and bottom edges mark the direction of the
local, bond-projected spin current density J z

′
s arising as the response to driving charge

current from lead 6 to lead 2.
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5.7 Conclusions

Numerical calculations for 1T′- and 1Td TMD monolayers like MoTe2 reveal a novel,

oblique SHE which reflects the unconventional spin textures allowed by their reduced

symmetry and strong SOC. The obtained CSI figure of merit λsθxy ∼ 1–50 nm is up to

two orders of magnitude superior than in traditional spintronic materials such as Pt, Au,

W, and Ta [123,244]. Furthermore, calculations of spin Hall conductivities and nonlocal

resistances in multi-probe configurations of 1Td-WTe2 revealed a so-far-unique quantum

spin Hall effect defined by a canted spin quantization axis, fixed by the SOC symmetries.

The oblique spin polarization of topological edge states in the QSHE continuously evolves

into a persistent spin texture when EF enters the conduction band.

Our findings also call for a careful analysis of both the SHE and QSHE measurements.

The interpretation of all-electrical detection in Hall bars [1, 105,222,251] usually ignores

the possibility of multiple nonzero components of the spin Hall conductivity tensor. As a

result, erroneous values for the spin Hall angle may be estimated and non-integer quan-

tization might be erroneously inferred. We show how the presence of oblique SHE can

be experimentally identified by reciprocal SHE, and how the different SHC contributions

may be isolated in a spin precession setup. A similar procedure and/or using magnetic

contatcts in nonlocal measurements could disentangle as well the different spin contri-

butions in the quantum spin Hall regime. Interestingly, such non-integer QSH plateaus

associated to a single spin component of the SHC tensor were theoretically discussed for

square and hexagonal lattices [183], suggesting the possible existence of a canted QSHE

in those systems as well.

The low-symmetry phases of TMDs may thus provide fascinating avenues to design

new topological nanodevices for spin transport beyond the current paradigm of the (quan-

tum) spin Hall effect with z-polarized spins. In the context of spin-orbit torque, such

canted spin polarization allows for torques with different symmetries, which could fa-

cilitate the current quest for magnetic-field-free switching of magnets with out-of-plane

magnetic anisotropy, a feature that is forbidden using high-symmetry 2D materials. Fi-

nally, a QSHE whose canting angle depends on the ratio of SOC parameters could enable

electrically tunable dissipationless spin currents with controllable spin orientation in the

absence of magnetic fields.
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CHAPTER 6

CONCLUSIONS AND OUTLOOK

In this thesis I explored the spin dynamics in two-dimensional quantum materials such as

graphene and transition metal dichalcogenides (TMDs). To that end, I have adapted an

existing quantum transport computational platform (the open source code Kwant [94])

to implement spin transport physics. The deployment of tight-binding models has al-

lowed me to simulate realistic device geometries and explore the crossover from diffusive

to ballistic spin transport in ultraclean graphene devices as well as charge-to-spin inter-

conversion and the quantum spin Hall effect in low-symmetry TMDs.

In graphene, I discovered a new extrinsic source of spin relaxation which is driven by

the nonlocal setup geometry of nonlocal spin valves. When the transport is diffusive and

the spin diffusion length comparable to the device size, the nonmagnetic electrodes that

are usually neglected in the analysis of nonlocal signals start limiting the spin current

in the graphene channel. By extending the formulation of the spin diffusive equations,

I derived a formula to capture this effect and correctly extract the values for the spin

diffusion length. Such an effect occurs only when transport is diffusive and disappears in

the absence of scattering. By varying the degree of disorder in the devices, I could follow

the evolution of the Hanle spin precession curves from diffusive to quasiballistic and to

purely ballistic. When the mean free path is only a few times shorter than the channel

length, the spin diffusive equations used to interpret the Hanle curves in the diffusive

regime fails dramatically. The nonlocal signal now presents several oscillations with

magnetic field. The origin and period of these oscillations is traced back to the ballistic

propagation of electrons and their Fermi velocity, respectively. While analytical formulas

are derived to interpret the numerical simulations of both the diffusive and ballistic

transport, they fail to fully capture the nonlocal resistance profiles in the quasiballistic

regime, mainly due to the complex and unknown distribution of transit times of the
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electrons propagating through the graphene channel.

It is interesting to compare our numerical results obtained in the ballistic transport

for quasi-1D devices to the predictions made by 2D spin transport calculations, where

spins relax due to an inhomogeneous precession from the Rashba SOC [51]. In our

case, the dephasing process occurs because there are electron spins precessing with the

same frequency but with different Fermi velocities, while in 2D, the Fermi velocity is

constant but there is a well-defined distribution of precession frequencies. Such spread in

frequencies originates from the Rashba SOC, likely present in experiments, and absent

in our calculations due to its complex spin dynamics for quasi-1D systems. However, the

bulk calculation lacks the quantization of the transverse momenta which is relevant in a

ballistic scenario. Therefore, further studies should clarify whether the quasi-1D Rashba

SOC can transition into a 2D-Rashba SOC for wide enough ribbons or in contrast the 2D

picture of spin relaxation fails in the ballistic limit independently of the channel width.

Finally, in the same lines as Ref. [262], it would be useful for experimental guidance to

investigate ballistic spin transport but with scattering localized underneath the contacts,

which mimics more realistic experimental conditions. However, it may be computationally

too demanding to study this with the Landauer-Büttiker formalism since this would

require to simulate wider ferromagnetic contacts than the ones modeled in this thesis.

In TMD monolayers, I found that the low-symmetry of the 1T′ and 1Td crystal phases

produces an approximate persistent spin texture in the conduction bands with a canting

angle in a direction in the yz plane. The values of this angle with respect to the yz

Cartesian axes are ∼ −29◦ for MoTe2 and ∼ −56◦ for WTe2, and is given by the ratio

of the SOC parameters Λy and Λz from the model in equation (3.13). Such persistent

spin texture can explain the spin relaxation anisotropy observed from the nonlocal spin

valve simulations. Furthermore, I computed the spin accumulation at the edges of a

1Td-MoTe2 device, which displays both out-of-plane and in-plane spin polarization, and

from which the spin Hall angles can be determined by an analytical formula I derived.

This is attributed to the extra components of the spin Hall conductivity tensor allowed

by the reduced symmetry of the 1Td monolayer. The presence of both spin polarizations

implies an oblique spin Hall effect with spins lying in the yz plane. Importantly for

technological applications, both the spin diffusion lengths and the spin Hall angles are

large, reaching values of tens of nanometers and at least ∼ 10%, respectively, both y and

z-polarized spins. The simulations revealed that both quantities are gate-tunable, being

maximum near the minimum of the conduction band, leading to spin Hall angles up to

∼ 80%. Therefore, the charge-to-spin interconversion efficiency λαs θ
α
xy reaches values as

large as 50 nm, suggesting low-symmetry TMDs as an excellent class of materials for

spin generation, manipulation and transport of spins. I also found similar results for the
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1T′ phase of MoTe2 for spin transport and charge-to-spin interconversion. The increased

spin Hall conductivity near the band edge is reminiscent from the underlying nontrivial

topology. Indeed, the spin Hall effect transitions into a quantum spin Hall effect, which I

investigated for 1Td-WTe2. I found that the canting angle of the persistent spin texture

remains for the topological helical edge states, thus forming a canted quantum spin Hall

effect. Moreover, I demonstrated that such canting of the spins is not incompatible with

spin conservation, and therefore the norm of the spin Hall conductivity presents a well

defined quantized integer value.

The results concerning the spin Hall effect in low-symmetry TMDs provide further

guidance to the recent experimental results in few-layer MoTe2 and WTe2 [227, 251,

307, 308]. In these works, similar charge-to-spin interconversion efficiencies have been

estimated. However, experimental control on layer thickness is complicated, which makes

the investigation of spin relaxation and spin Hall effect down to the monolayer limit

elusive. Here, I provide such information and importantly I show how the spintronic

potential can be increased by proper tuning of the Fermi level. Further studies should

investigate in more depth the specific spin relaxation mechanism and how the persistent

spin texture can be utilized to enhance the spin diffusion lengths (e.g. by injecting

spins along the canting direction). In regards of the quantum spin Hall phase, it is

worth mentioning the very recent experimental findings of the canted quantum spin Hall

effect in WTe2 monolayer with canting angles of ∼ −60◦ [260, 310]. This demonstrate

that our calculations predict both qualitatively and quantitatively this topological effect

and establishes the validity of our tight-binding model to be used in future studies,

for example, in the interaction of the edge states with magnetic fields to realized other

topological states of matter such as the quantum anomalous Hall effect.
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APPENDIX A

DERIVATION OF THE SPIN-DIFFUSION EQUATION IN

NSVS INCLUDING THE DRAIN AND REFERENCE

ELECTRODES

In this Appendix, we derive equation (4.3) from Chapter 4. We will start by solving

the generalized form of the spin diffusion equations in a 1-dimensional (1D) channel (x

direction) with a magnetic field in the z direction [209]1:

∂2s

∂x2
=

1

λ2
s

s− 1

lLle
(ẑ× s). (A.1)

Here, le is the mean free path, lL is the Larmor precession length lL = vF/ω with vF

the Fermi velocity and ω the precession frequency and λs is the spin diffusion length.

The spin accumulation is defined as s = s↑ − s↓ = (sx, sy, sz). We are interested in the

in-plane components of the spin accumulation since it is the one usually measured in the

NSV. The above equation has solutions of the form:

sx = −A i
κ
e−κx +B

i

κ
eκx + C

i

κ∗
e−κ

∗x −D i

κ∗
eκ
∗x

sy = −A1

κ
e−κx +B

1

κ
eκx − C i

κ∗
e−κ

∗x +D
i

κ∗
eκ
∗x (A.2)

(A.3)

with κ =
√

1
λ2s
− i ω

Ds
where Ds is the spin diffusion coefficient. To describe the length-

dependent nonlocal resistance or Hanle precession, one often assumes diffusion only to the

1Note that we are using here a different notation than that from equation (2.12).
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right part of the injector and that the spin decays far away from it (sx(+∞) = sy(+∞) =

0) and that it is injected in the magnetization direction of the FM source electrode:

∂sx(0)/∂x = 0, ∂sy(0)/∂x = −J0/2Ds, where J0 = I0/w (w the channel width) and Ds

are the the injected spin polarized current density and diffusion coefficient, respectively

[67, 122, 125, 131, 132]. These conditions leads to equation (4.2), but fails to describe

situations where λs becomes comparable with the device size (λs ≥ l1, l), which is the

case of our simulations and possibly state-of-the-art graphene NSV [58,85,137]. Therefore,

we need to consider the continuity of s and spin current density (Jαs ) conservation at all

electrodes, leading to a more complicated set of equations. To simplify this, we want that

the injector and detector do not perturb the system. Experimentally, one can achieve

this by placing tunnel barriers between graphene and the FM contacts, thus avoiding

spin absorption and relaxation [101]. This condition allows us to exclude the injector

and detector from the equations and just have their polarization as a constant prefactor

[257,258]. In the simulation, the same effect can be obtained by setting the injector and

detector to be fully spin polarized (i.e. only inject/detect one spin component), as seen in

Figure 3.19. This, together with the condition of no net charge current at the detector,

assures that there is no spin current being absorbed in these leads2. This keeps the

set of equations simpler and let us focus on the main physics without loss of generality.

Eventually, the conditions at the electrode-graphene interface are [209]:

sα(−l1) = −eRc

2
Jαs,1 (A.4)

eDs
∂sα(−l1)

∂x
= Jαs,1 (A.5)

sα(0−) = sα(0+) (A.6)

eDs(−
∂sx(0−)

∂x
+
∂sx(0+)

∂x
) = 0 (A.7)

eDs(−
∂sy(0−)

∂x
+
∂sy(0+)

∂x
) = J0 (A.8)

eDs
∂sα(l)

∂x
= Jαs,4 (A.9)

sα(l) = −eRc

2
Jαs,4 (A.10)

where Jαs,p is the spin current density at lead p with spin polarization α = x, y3 and Rc

is the contact resistance between graphene and electrodes 1 and 4. Although Rc may be

smaller than the system resistance in the diffusive regime, its inclusion in equations (A.5)

2If the total charge current is set to Ic = I↑ + I↓ = 0, and because of perfect FM polarization I↓ = 0,
it follows that I↑ = 0 and consequently the spin current is Is = I↑ − I↓ = 0

3Here we have dropped the subscript x indicating the direction of the spin current for clarity.
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and (A.10) assures that the spin accumulation is not forced to be zero at x = −l1 and

x = l, avoiding in this way contact-induced spin relaxation [59]. As shown in Figure 5.3,

lead 2 (injector) is placed at x = 0, while lead 1 (drain) and 4 (reference) are located

at x = −l1 and x = l, respectively. Since there is no spin current flowing in to or out

from the detector, the nonlocal resistance becomes simply half of the spin accumulation

divided by the incoming current I0:

Rnl =
µy

−2eI0

=
PiPd
2wσ

Re

{
[β cosh(l1κ) + 4 sinh(l1κ)] · [β cosh(κ(L− l))− 4 sinh(κ(L− l))]

κ[4β cosh((l1 + l)κ) + (8 + β2/2) sinh((l1 + l)κ)]

}
,

(A.11)

where we used equation 2.8, Pi (Ps) is the injector (detector) polarization and β = Rcwσκ,

with σ being the electrical conductivity. By taking the appropriate limits, we can restore

equation (4.2). Namely, if λs << l1, l such that sy(−l1)→ 0 and sy(l)→ 0, Rnl becomes

Rnl =
PiPi
2wσ

Re

{
e−Lκ

κ

}
. (A.12)

Importantly, we can also take the limit in equation (4.3) of λs → ∞ resulting in a

linear scaling of the nonlocal resistance with the injector-detector distance:

Rnl =
PiPd
2wσ

(4Rl1 +Rc)(−4L+ 4l +Rcwσ)

8Rl1 + 8Rl + 4Rc

, (A.13)

with Rl1 = l1/(wσ) and Rl = l/(wσ) being the sheet resistance of the left and right-

handed device region, respectively. This limit allows as to treat the cases λs ≥ l1, l and

reveals that even when there is no sources of spin relaxation, the nonlocal resistance does

decrease with length in the diffusive regime.
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APPENDIX B

SPIN RELAXATION INDUCED BY RANDOM MAGNETIC

FLUCTUATIONS

Here, we derive the scaling of the spin diffusion length with the magnetic disorder strength

J . We start by considering an initial spin state in the y direction, whose relaxation rate
1
τys

induced by a fluctuating magnetic fields reads [67]

1

τ ys
= ω2

zτc + ω2
x

τc
ω2

0τ
2
c + 1

, (B.1)

with ωα being the time-averaged precession frequency in the α = x, y, z direction originat-

ing from the fluctuating field, ω0 is the constant precession frequency from the external

field (here in the z direction) and τc is the correlation time, that is, the time it takes

for the spin to experience a change in the fluctuating field. In our case, the fluctuating

field arises from each atom having an exchange term J with random orientation, thus

ω2
z = ω2

x = ω2 =
(
g|J |
~

)2

. In addition, for the length dependence of Rnl, ω0 = 0. Our

model is not actually time-dependent but length-dependent, with the correlation length

being the carbon-carbon distance ac. Therefore, we can express τc as τc = ac/vF. After

these considerations, the spin relaxation rate can be simplified to:

1

τ ys
= ω2

zτc + ω2
xτc = 2ω2τc = 2

(
g|J |
~

)2
ac

vF

∝ |J |2. (B.2)

This shows a dependence of 1/J2 in the spin lifetime. Since in the diffusive regime

λs =
√
Dτs, we eventually obtain the 1/J trend showed in Figure 5.4.
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APPENDIX C

SYMMETRY-ALLOWED SPIN HALL CONDUCTIVITY OF

1T′ AND 1TD TMDS

A crystal symmetry is a transformation that leaves the electronic properties and observ-

ables invariant. Thus, to characterize the implications of the physical symmetries, it is

sufficient to analyze under which conditions they leave the spin-orbit interaction and the

trace above unaltered. To do this, let us define the yz-plane as Mx, the zx-plane as My,

and the xy-plane as Mz. These three planes are mutually orthogonal. Now, suppose that

the only symmetries of the system are reflections.

The charge current and momentum operators are polar vectors, while the spin is a

pseudo-vector. These mathematical objects behave differently under symmetry opera-

tions. A polar vector subject to a reflection on a mirror plane changes the direction

of the components that are perpendicular to it. Meanwhile, under the same operation,

pseudo-vectors invert the direction of all components lying on the mirror plane only.

From these properties, if pα, Jα and sα are the α = x, y, z component of the momentum,

current and spin operators, respectively, we readily obtain how

(px, py)
Mx−−→ (−px, py), (px, py)

My−−→ (px,−py),

(Jx, Jy)
Mx−−→ (−Jx, Jy), (Jx, Jy)

My−−→ (Jx,−Jy),

(sx, sy, sz)
Mx−−→ (sx,−sy,−sz), (sx, sy, sz)

My−−→ (−sx, sy,−sz) (C.1)

These transformation properties imposed on crystals having the two orthogonal mirror

planes constrain the spin-orbit interaction to, at most, have the form

HSOC = Λykxsy + Λxkysx, (C.2)
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with Λα and kα the SOC strength and the momentum, respectively. This Hamiltonian will

give rise to a spin texture lying in xy-plane similar to the Rashba coupling. Additionally,

it also imposes constraints on the spin Hall conductivity (SHC), namely, σxxy
Mx−−→ −σxxy,

and σyxy
My−−→ −σyxy, which means that the presence of these two orthogonal mirror planes

allows only for a finite σzxy, i.e., an SHC tensor that generates only out-of-plane (along z)

spin polarization. Repeating the procedure for all the SHC components shows that only

the components σαij are allowed. Consequently, in such a system, the spin Hall effect can

only generate mutually orthogonal charge current, spin current, and spin polarization.

Bulk multilayers of 1Td TMDs contains the two mirror symmetries discussed above,

Mx which is a true point symmetry, and My that is a glide-mirror symmetry. However,

in the monolayer, the loss of translation symmetry along the layer-stacking z direction

implies the concomitant loss of the glide mirror My. Repeating the above arguments

without this symmetry element permits demonstrating that the spin-orbit coupling takes

the generic form

HSOC = Λykxsy + Λxkyσx + Λzkxsz (C.3)

which allows for an spin texture with both in- and out-of-plane spin components and also

enable the components of the SHC tensor with spins polarized in the y direction, σyxy.

Overall, in a 2D crystal in the presence of both Mx and My, the only allowed compo-

nents of the SHC are σzxy and its cyclical permutations. Lowering the symmetry removes

certain constraints that prohibit specific components, as in the monolayer (or few-layer)

1Td-MoTe2 and 1Td-WTe2 where only Mx is left, thus enabling unconventional directions

of spin textures and SHC. On the other hand, the different symmetries of the 1T′ phase

with respect to 1Td (see section 2.2.2) allows for unconventional terms of the SHC tensor

even in the bulk. We summarize all the possible terms of the SHC tensor for both 1Td

and 1T′ phases in the following tables1:

1Courtesy of C.-H. Hsu.
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Table 1: SHC tensor form of Td-MoTe2
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APPENDIX D

DERIVATION THE SPIN HALL ANGLE FORMULA IN

TWO-TERMINAL DEVICES

In this section we derive an expression connecting the spin accumulation at the edges

(x = 0 and x = w) of the device described in Figure D.1(a), with the spin Hall angle;

and then adapt it to fit the spin accumulation obtained in Kwant [94]. We note that in

this case, we drive current along the y direction, in contrast to the previous calculations.

This is because we want the spin transport to be along x, so the obtained spin diffusion

lengths from the nonlocal spin valve can be taken into account. To start, let us cast the

constitutive relations for the charge Jc and spin Jαs current densities

Jc = (σ − σ αsH)E − eDc∇n

Jαs = σ αsHE − eD
α

s∇sα, (D.1)

where E the electric field, σ the electrical conductivity tensor which due to time-reversal

symmetry is diagonal

σij = δijσii, (D.2)

n the charge density in units of inverse of area, Dc the charge diffusion tensor which is

proportional to the conductivity by the Einstein’s relations, D
α

s the spin diffusion tensor

which we assume to be the same as the charge Dc because we consider diffusive transport

(thus we drop the superscript α), and σαsH the spin Hall conductivity tensor

σ αsH =

(
0 σαxy

σαyx 0

)
(D.3)
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where the matrix element σαij represents the formation of a spin current flowing along the

i = x, y direction with spins polarized in α = x, y, z due to a charge current flowing along

j = x, y. The difference in the sign of the spin Hall conductivity in the charge and spin

equations (equation (D.1)) is a consequence of Onsager’s relations, while the absence of

diagonal elements in the spin conductivity originates from time-reversal symmetry.

L
𝑱"#

𝑱$

wx = 0 x = w
x

y

(b)(a)

Figure D.1: (a) Schematics of the device geometry. Grey (white) regions depict the
semiinfinite leads (scattering region). The positive convention for the spin Hall angle is
taken when the spin current flows to the right with respect to the charge current. (b)
Calculated spin accumulation sα=x,y,z in a device with width 50 nm and length 100 nm.
Red (blue) color denotes positive (negative) values of the spin accumulation.

In our device configuration, charge current is mostly driven by the electric field Jc,y ≈
σyyEy, and although there is an additional contribution coming from the inverse spin

Hall effect, it is a second order effect which we will neglect. Since there is only charge

current along the y direction, we will drop the y index henceforth. Likewise, the absence

of diagonal terms in the spin Hall conductivity imposes that Jc and Jαs are perpendicular

to each other. This allows us to focus only in a single element of the spin diffusion

tensor (Ds)xx → Ds and the spin Hall conductivity σ αsH → σ αxy. The spin density or

accumulation, sα, can be computed by combining equation (D.1) with the continuity

equation

∇ · Jαs = −e s
α

ταs
, (D.4)

leading to the following diffusion equation

∇2sα =
sα

λαs
2 , (D.5)
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where we have introduced a spin relaxation time ταs for describing the spin relaxation

processes, which is related to the spin diffusion length by λαs
2 ≡ Dsτ

α
s . In our case,

the spin density varies only along the x direction, therefore, a general solution for the

diffusion equation is

sα(x) = Ae−x/λ
α
s +Bex/λ

α
s , (D.6)

which stills needs to be supplemented by the boundary conditions

Jαs (x = 0) = 0, Jαs (x = w) = 0, (D.7)

which by equation (D.1) implies

eDs
dsα

dx

∣∣∣∣
0,w

= θαxyJc (D.8)

at the edges, where we have introduced the spin Hall angle (SHA) θαxy ≡ σαxy/σyy. Using

these boundary conditions one finally finds the spin density

sα(x) = −θ
α
xyλ

α
s Jc

eDs

sinh
(
w−2x
2λαs

)

cosh
(

w
2λαs

) . (D.9)

This spin density has units of m−2 since Jc has units of A/m, λαs has units of m, Ds has

units of m2/s, e has units of Coulomb and θαxy is unitless. However, Kwant calculates the

spin accumulation response function locally at site i per unit bias voltage Vb at energy

E [94]:

sαK,i(E) =
δsαi (E)

δVb
=

M∑

j

ψj†i (E)σαψ
j
i (E), (D.10)

thus having units of V−1. Here, ψji (E) is the wave function at energy E at site i, orig-

inating from the incoming wave function of mode j of one of the leads; σα is the Pauli

matrix and M is the total number of modes at energy E. We note that in equation (D.9),

θαxy, λ
α
s and Ds are also energy-dependent, but we drop the E dependence to keep the

equations more compact.

In Figure D.1(b), we show sαK,i(E = 0). We chose w = 50 nm and L = 100 nm so the

transport was diffusive for the most part for all energies studied. It is clearly seen that a

spin accumulation arises for spins in the y and z direction, but not in x. As commented

in Appendix C, the appearance of an unconventional in-plane component of the spin Hall

effect (sy) is rooted in the low symmetry of the layer group of 1T′ and 1Td TMDs [251].

Since equation (D.9) describes the spin accumulation along the x direction only, we now
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need to average the y component of sαK,i(E):

sαK(x) =

∑N
i s

α
K,i(x, yi)

N
, (D.11)

where we have also dropped the E dependence for simplicity. Here, N is the number of

sites i along the y direction.

We can finally equate equation (D.9), embodying the spin transport parameters we

are interested in, with the averaged simulation output, sαK(x). If A is the area of site i

(corresponding to the area of the rectangular unit cell in our case), we have:

sα(x)A = sαK(x)
Vb
2π
, (D.12)

with the factor 2π appearing naturally in the Landauer-Büttiker formalism [54, 84]. We

can relate the bias voltage to the current in the linear response regime by Ic = e2

h
TVb,

where T = MT is the two-terminal transmission function (with T the transmission

probability per mode) obtained from the two-terminal conductance of the device in Figure

D.1(a) (G2textT = e2

h
T ). Together with Ic = wJc, we obtain:

sα(x)A = sαK(x)
Jc~w
e2T

. (D.13)

By rearranging the terms and using equation (D.9), we finally arrive at:

sα(x)

Jc
= sαK(x)

~w
e2AT

= −θ
α
xyλ

α
s

eDs

sinh
(
w−2x
2λαs

)

cosh
(

w
2λαs

) , (D.14)

or alternatively:

sαK(x) = −θαxyλαs
eAT

Ds~w

sinh
(
w−2x
2λαs

)

cosh
(

w
2λαs

) , (D.15)

Hence, we find that we need to add the prefactor ~w
e2AT

(~ in units J·s) to the output

of Kwant to fit it to the solution of the spin drift-diffusion equations. To fit the spin

Hall angle, we also need the values of the spin diffusion coefficient and the spin diffusion

lengths. The former is taken as the value of Dc obtained from the two-terminal conduc-

tance (see values in Table 5.1), as we consider diffusive transport, and the latter is taken

from the nonlocal spin valve simulations by fitting the nonlocal resistance to equation

(4.3).
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APPENDIX E

EXPERIMENTAL SETUP FOR MEASURING THE

OBLIQUE SPIN HALL EFFECT

In this section, we present the formulation to calculate the output voltage in a realistic

nonlocal device, allowing in this way the measurement of the oblique SHE. The one-

dimensional steady-state Bloch diffusion equation is used to calculate the spin density

s = (sx, sy, sz) over the graphene channel and reaching the TMD [21,22], according to the

experimental setup described in the main text. In the presence of an external magnetic

field B, the diffusion equation reads:

Ds
d2s

dx2
+ γ s×B − τ−1

s · s = 0. (E.1)

The three components of s describe the spin density projected along the corresponding

Cartesian axes. γ = 2µB/~ is the electron gyromagnetic ratio with µB the Bohr magneton

and τ−1
s is a 3× 3 diagonal matrix containing the spin relaxation times in x, y and z.

Within this model, the spin transport in the device (schematic in Figure 5.12 in

Chapter 5) is characterized by simultaneous diffusive and precessional motion under a

magnetic field that is chosen to be either along the x or z direction. All the components

of s are calculated at any position and, therefore, the spin-current densities that generate

the SHE. The solution of equation (E.1) is adapted from Ref. [21]. When the TMD

crystal is oriented in the configuration shown in Figure 5.12(a) (configuration a), the spin

current density flowing in the x direction with spins in the yz plane, Jy,zs,x , generates a

transverse charge current density, Jc,y, that is detected as a RISHE = VISHE/I
y
0 due to the

inverse SHE. Here, Iy0 is the injected current, which is polarized along the direction of the

ferromagnetic injector (y in this case, see insets in Figure 5.12). If the TMD crystal is

oriented in the configuration shown in Figure 5.12(b) (configuration b), Jc,y is generated
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by the spin current density with spins along z and x directions (y in the TMD’s system of

coordinates, which have been rotated with respect to those in Figure 5.12(a)). In general,

Jαs,x is [21],

Jαs,x = |Js,x| =
1

e lw R�

∫ x0+lw

x0

d sα(x)

dx
dx =

∆sα

e lw R�
, (E.2)

where sα(x) is given by equation (E.1) and ∆sα = sα(x0 + lw) − sα(x0). x0, lw, R�

are the distance of the TMD to the injector, the TMD width and its square resistance,

respectively. In the simulations presented in Figure 4 of the main text, we use x0 =

3.9µm, lw = 1.6µm and R� = 3.3 kΩ, and a spin polarization of the FM injector of 10%.

Once the spin current of each spin component is known, the generated charge current can

be easily obtained given that Jc,x = θαxy J
α
s,y and RSHE = Jc lw Ra/I

y
0 . We note that here

the relation between the charge and spin current densities is opposite to that of equation

(D.8) since we are dealing with the inverse SHE, which is reciprocal to the SHE. In this

way,

RSHE = θαxy c∆sα; with c =
Ra

eR�I
y
0

, (E.3)

with Ra the resistance of the TMD channel. The conversion efficiency is related to the

spin Hall angle, θαxy , which depends on the spin orientation, α. The total charge current

density is calculated from the independent contributions of Jz,ys .

In the configuration (a) with Bz, RSHE = −θyxy c∆sy, θyxy = 0.8. In an experiment the

sign depends on the voltage polarity. Here we choose that RSHE = |θyxy| c∆sy, which

switches the sign for θzxy. For Bx, RSHE = |θyxy| c∆sy − |θzxy| c∆sz, with θzxy = 0.5

and according to the chosen polarity convention. For the configuration (b) with Bz,

RSHE = |θyxy| c∆sy, and with By, RSHE = −|θzxy| c∆sz. Note that here we are referring

according to the TMD system of coordinates (see Fig 4 (b) in the main text).

Finally, we present arguments that show that the spin current flowing in the graphene

channel will be absorbed by the TMD. The spin resistance of a material is defined as

Rs = ρλs/A, ρ is the resistivity and A the cross area in which the spins flow. An

alternative to this definition in terms of the square resistance, is Rs = R�λs/wN , where

wN is the width of the nonmagnetic material. In the device proposed, the cross width

where spins propagate is the same for graphene (g) and TMD. The ratio of the graphene’s

spin resistance and the TMD’s spin resistance reads as,

RTMD
s

Rg
s

=
RTMD

�

Rg
�

λTMD
s

λg
s

(E.4)

Using reported values of Rg
� ≈ 2 kΩ [22] and RTMD

� ≈ 3.3 kΩ for 1T’ MoTe2 [312]
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RTMD
s

Rg
s
∼ λTMD

s

λg
s

(E.5)

Comparing the calculated λys ≈ 30 nm with the typical λg
s ≈ 1.6µm [22], we have that

RTMD
s ∼ 0.01Rg

s , and of the same order for λzs.

143



APPENDIX F

NONLOCAL RESISTANCE QUANTIZATION IN THE

QUANTUM SPIN HALL EFFECT

In the following, we calculate the analytical values of the expected nonlocal resistances in

a 6-terminal Hall bar geometry, as shown in Figure F.1, where it is assumed that the only

conducting channels are the topological helical states of the quantum spin Hall effect.

The results are the same obtained in the pioneering work of Roth et. al. [222].

We begin by writing the relationship between the current and voltage I = G ·V in

the QSHE regime. In such a case, we can distinguish at least 2 counterpropagating states

located at the sample edge, as drawn in Figure F.1, with opposite spin polarization.

Because the conduction is solely along the edge, a spin-up state injected by lead p = i

will be transmitted only to lead p = i + 1 and a spin-down mode will go to p = i − 1.

Furthermore, because of the topological protection, the transport in these channels is

1

2 3

4

56

Figure F.1: Sketch of a 6-terminal Hall bar device with the leads numerated from 1 to 6.
Red and blue arrows represent opposite spin polarization of the topological states of the
QSHE.
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assumed ballistic and hence the transmission is unity. In this way, we can write:




I1

I2

I3

I4

I5

I6




=




2 −1 0 0 0 −1

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

−1 0 0 0 −1 2







V1

V2

V3

V4

V5

V6




. (F.1)

By applying the current and voltage conditions, we can now obtain the values of the

nonlocal resistances showed in Figure 5.18 in Chapter 5. When the current is applied

between leads 1 and 4, and we ground lead 4, we have the equations (after removing the

4th row and column):




I

0

0

0

0




=




2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 0 0

0 0 0 2 −1

−1 0 0 −1 2







V1

V2

V3

V5

V6



, (F.2)

which result in the following voltages:

V1 =
3I

2
, V2 = I, V3 =

I

2
, V4 = 0, V5 =

I

2
, V6 = I. (F.3)

Consequently, the resistances plotted in Figure 5.18 are:

R14,23 =
V2 − V3

I
=

1

2
(F.4)

R14,35 =
V3 − V5

I
= 0. (F.5)

To obtain R62,53, we need to construct again the system of equations I = G · V with

another condition for the currents, namely I = (0,−I, 0, 0, 0, I):




0

0

0

0

0




=




2 0 0 0 −1

0 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 2







V1

V3

V4

V5

V6



, (F.6)
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where now we have removed the 2nd row and column. This gives the following voltages:

V1 =
2I

3
, V2 = 0, V3 =

I

3
, V4 =

2I

3
, V5 = I, V6 =

4I

3
, (F.7)

and the resistance is

R62,53 =
V5 − V3

I
=

2

3
. (F.8)
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LIST OF ACRONYMS AND USEFUL SYMBOLS

• DFT - Density functional theory

• SOC - Spin-orbit coupling

• NSV - Nonlocal spin valve

• TB - Tight-binding

• LB - Landauer-Büttiker

• QSH - Quantum spin Hall

• QSHE - Quantum spin Hall Effect

• 1D - One-dimensional

• 2D - Two-dimensional

• 3D - Three-dimensional

• 2DEG - Two-dimensional electron gas

• 2T - Two-terminal

• TMD - Transition metal dichalcogenide

• ECP - Electrochemical potential

• FM - Ferromagnetic

• ISGE - Inverse Spin galvanic effect

• (I)SHE - (Inverse) Spin Hall effect
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• SHA - Spin Hall angle

• SHC - Spin Hall conductivity

• SHC - Spin Berry curvature

• SR - Scattering Region

• sσ = (sx, sy, sz) - vector of spin Pauli matrices

• sα - spin-α Pauli matrix

• s - nonequilibrium spin accumulation or density

• sα - nonequilibrium spin accumulation along α.

• 〈sα(n)(k)〉 - spin texture of spin-α at k (implicit band n)

• 〈sα(n)〉E - spin texture of spin-α at energy E (implicit band n)

• Js,α - Spin current vector in the α direction with components (Jxs,α, J
y
s,α, J

z
s,α)

• Jαs - Spin current vector for α-spins with components (Jαs,x, J
α
s,y, J

α
s,z)
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from the averaging of 200 and 100 disorder configurations for (a) and (b),

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.15 Band structure of WTe2 around the charge pockets formed by the band

inversion at Γ. The inset compares the spin textures computed from DFT

and the effective model; the color represents the energy with respect to

the Fermi level and the arrows the spin orientation in the yz plane (spin

projection along x is negligible). The white dots marks the position of the
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5.16 Spin Hall conductivities σyxy and σzxy. The solid line shows the norm of

|σαxy| ≡
√

(σyxy)2 + (σzxy)
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5.17 Band structure of a 1Td-WTe2 ribbon with width of 63 nm where the color
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5.18 Nonlocal resistances Rij,kl = (Vk − Vl)/Iij calculated in the 6-terminal

Hall-bar device shown in the inset. The two plateau values 2h/3e2 and

h/2e2 seen here unequivocally attribute the nonlocal signal to QSH edge

states (see Appendix F for details). Solid (dashed) lines correspond to
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In the inset, the solid (lattice) regions delineate the device (leads). The
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ay = 6.3066 Å). The device width, inter-lead separations, and lead widths

are all 50 nm. The small horizontal arrows along the top and bottom

edges mark the direction of the local, bond-projected spin current density

J z
′
s arising as the response to driving charge current from lead 6 to lead 2. 123

D.1 (a) Schematics of the device geometry. Grey (white) regions depict the

semiinfinite leads (scattering region). The positive convention for the spin

Hall angle is taken when the spin current flows to the right with respect to

the charge current. (b) Calculated spin accumulation sα=x,y,z in a device

with width 50 nm and length 100 nm. Red (blue) color denotes positive

(negative) values of the spin accumulation. . . . . . . . . . . . . . . . . . 138

F.1 Sketch of a 6-terminal Hall bar device with the leads numerated from 1

to 6. Red and blue arrows represent opposite spin polarization of the
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[222] A. Roth, C. Brüne, H. Buhmann, L. W. Molenkamp, J. Maciejko, X.-L. Qi,

and S.-C. Zhang. Nonlocal transport in the quantum spin hall state. Science,

325(5938):294–297, 2009.

[223] K. Roy. Estimating the spin diffusion length and the spin hall angle from spin

pumping induced inverse spin hall voltages. Phys. Rev. B, 96:174432, 2017.

[224] K. Roy, A. Jaiswal, and P. Panda. Towards spike-based machine intelligence with

neuromorphic computing. Nature, 575(7784):607–617, Nov 2019.

[225] V. S. Rychkov, S. Borlenghi, H. Jaffres, A. Fert, and X. Waintal. Spin torque

and waviness in magnetic multilayers: A bridge between Valet-Fert theory and

quantum approaches. Phys. Rev. Lett., 103:066602, Aug 2009.

[226] C. K. Safeer, J. Ingla-Aynés, F. Herling, J. H. Garcia, M. Vila, N. Ontoso, M. R.

Calvo, S. Roche, L. E. Hueso, and F. Casanova. Room-temperature spin hall effect

in graphene/MoS2 van der Waals heterostructures. Nano Lett., 19(2):1074–1082,

Feb 2019.

[227] C. K. Safeer, N. Ontoso, J. Ingla-Aynés, F. Herling, V. T. Pham, A. Kurzmann,

K. Ensslin, A. Chuvilin, I. Robredo, M. G. Vergniory, F. de Juan, L. E. Hueso,

M. R. Calvo, and F. Casanova. Large multidirectional spin-to-charge conversion in

low-symmetry semimetal MoTe2 at room temperature. Nano Lett., 19(12):8758–

8766, Dec 2019.
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[281] F. Volmer, M. Drögeler, E. Maynicke, N. von den Driesch, M. L. Boschen,

G. Güntherodt, C. Stampfer, and B. Beschoten. Suppression of contact-induced

spin dephasing in graphene/MgO/Co spin-valve devices by successive oxygen treat-

ments. Phys. Rev. B, 90:165403, Oct 2014.

[282] M. M. Waldrop. The chips are down for moores law. Nature, 530:144147, 2016.

[283] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watan-

abe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R.

Dean. One-dimensional electrical contact to a two-dimensional material. Science,

342(6158):614–617, 2013.

[284] Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer,

R. J. Cava, and B. A. Bernevig. MoTe2: A type-II Weyl topological metal. Phys.

Rev. Lett., 117:056805, Jul 2016.

[285] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske. The kernel polynomial method.

Rev. Mod. Phys., 78:275–306, Mar 2006.

[286] M. Wojtaszek, I. J. Vera-Marun, and B. J. van Wees. Transition between one-

dimensional and zero-dimensional spin transport studied by hanle precession. Phys.

Rev. B, 89:245427, Jun 2014.

[287] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár,

M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger. Spintronics: A spin-based

electronics vision for the future. Science, 294(5546):1488–1495, 2001.

[288] M. Wu, J. Jiang, and M. Weng. Spin dynamics in semiconductors. Phys. Rep.,

493(2):61 – 236, 2010.

186



[289] S. Wu, V. Fatemi, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and

P. Jarillo-Herrero. Observation of the quantum spin hall effect up to 100 kelvin in

a monolayer crystal. Science, 359(6371):76–79, 2018.

[290] J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth. Experimental observation

of the spin-hall effect in a two-dimensional spin-orbit coupled semiconductor system.

Phys. Rev. Lett., 94:047204, Feb 2005.

[291] D. Xiao, M.-C. Chang, and Q. Niu. Berry phase effects on electronic properties.

Rev. Mod. Phys., 82:1959–2007, Jul 2010.

[292] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao. Coupled spin and valley

physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev.

Lett., 108:196802, May 2012.

[293] Y.-M. Xie, B. T. Zhou, and K. T. Law. Spin-orbit-parity-coupled superconductivity

in topological monolayer WTe2. Phys. Rev. Lett., 125:107001, Sep 2020.

[294] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar,

G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez,

B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan.

Discovery of a weyl fermion semimetal and topological fermi arcs. Science,

349(6248):613–617, 2015.

[295] S.-Y. Xu, Q. Ma, H. Shen, V. Fatemi, S. Wu, T.-R. Chang, G. Chang, A. M. M.

Valdivia, C.-K. Chan, Q. D. Gibson, J. Zhou, Z. Liu, K. Watanabe, T. Taniguchi,

H. Lin, R. J. Cava, L. Fu, N. Gedik, and P. Jarillo-Herrero. Electrically switch-

able berry curvature dipole in the monolayer topological insulator WTe2. Nature

Physics, 14(9):900–906, 2018.

[296] Y. Yafet. g factors and spin-lattice relaxation of conduction electrons. volume 14

of Solid State Physics, pages 1 – 98. Academic Press, 1963.

[297] A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T. Shinjo. Real-space

observation of current-driven domain wall motion in submicron magnetic wires.

Phys. Rev. Lett., 92:077205, Feb 2004.

[298] H. X. Yang, A. Hallal, D. Terrade, X. Waintal, S. Roche, and M. Chshiev. Proximity

effects induced in graphene by magnetic insulators: First-principles calculations on

spin filtering and exchange-splitting gaps. Phys. Rev. Lett., 110:046603, Jan 2013.

187



[299] Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D.-s. Wang,

E. Wang, and Q. Niu. First principles calculation of anomalous hall conductivity

in ferromagnetic bcc fe. Phys. Rev. Lett., 92:037204, Jan 2004.

[300] Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, and Z. Fang. Spin-orbit gap of graphene:

First-principles calculations. Phys. Rev. B, 75:041401, Jan 2007.

[301] A. N. M. Zainuddin, S. Hong, L. Siddiqui, S. Srinivasan, and S. Datta. Voltage-

controlled spin precession. Phys. Rev. B, 84:165306, Oct 2011.

[302] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui. Valley polarization in mos2 mono-

layers by optical pumping. Nature Nanotechnology, 7:490–493, 2012.

[303] S. Zhang. Spin hall effect in the presence of spin diffusion. Phys. Rev. Lett., 85:393–

396, Jul 2000.

[304] X. Zhang, Q. Liu, J.-W. Luo, A. J. Freeman, and A. Zunger. Hidden spin polar-

ization in inversion-symmetric bulk crystals. Nature Physics, 10(5):387–393, May

2014.

[305] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie,

Y. R. Shen, and F. Wang. Direct observation of a widely tunable bandgap in bilayer

graphene. Nature, 459(7248):820–823, 2009.

[306] Y. Zhang, J. van den Brink, C. Felser, and B. Yan. Electrically tuneable nonlinear

anomalous hall effect in two-dimensional transition-metal dichalcogenides WTe2

and MoTe2. 2D Mater., 5(4):044001, jul 2018.

[307] B. Zhao, B. Karpiak, D. Khokhriakov, A. Johansson, A. M. Hoque, X. Xu, Y. Jiang,

I. Mertig, and S. P. Dash. Unconventional charge-to-spin conversion in Weyl-

semimetal WTe2. Advanced Materials, 32(38):2000818, 2020.

[308] B. Zhao, D. Khokhriakov, Y. Zhang, H. Fu, B. Karpiak, A. M. Hoque, X. Xu,

Y. Jiang, B. Yan, and S. P. Dash. Observation of charge to spin conversion in Weyl

semimetal WTe2 at room temperature. Phys. Rev. Research, 2:013286, Mar 2020.

[309] C. Zhao, M. Hu, J. Qin, B. Xia, C. Liu, S. Wang, D. Guan, Y. Li, H. Zheng, J. Liu,

and J. Jia. Strain tunable semimetal–topological-insulator transition in monolayer

1t
′−wte2. Phys. Rev. Lett., 125:046801, Jul 2020.

[310] W. Zhao, E. Runburg, Z. Fei, J. Mutch, P. Malinowski, B. Sun, X. Huang, D. Pesin,

Y.-T. Cui, X. Xu, J.-H. Chu, and D. H. Cobden. Determination of the helical edge

and bulk spin axis in quantum spin Hall insulator WTe2. arXiv:2010.09986, 2020.

188



[311] J. Zhou, J. Qiao, A. Bournel, and W. Zhao. Intrinsic spin Hall conductivity of the

semimetals. Phys. Rev. B, 99(6):60408, feb 2019.

[312] L. Zhou, A. Zubair, Z. Wang, X. Zhang, F. Ouyang, K. Xu, W. Fang, K. Ueno, J. Li,

T. Palacios, J. Kong, and M. S. Dresselhaus. Synthesis of High-Quality Large-Area

Homogenous 1T-MoTe2 from Chemical Vapor Deposition. Adv. Mater., 28:9526–

9531, 2016.

[313] Y. Zhou and M. W. Wu. Electron spin relaxation in graphene from a microscopic

approach: Role of electron-electron interaction. Phys. Rev. B, 82:085304, Aug 2010.

[314] J. Zhu, T. Zhang, Y. Yang, and R. Huang. A comprehensive review on emerging

artificial neuromorphic devices. Applied Physics Reviews, 7(1):011312, 2020.

[315] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl. Giant spin-orbit-induced spin

splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys.

Rev. B, 84:153402, 2011.
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