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Abstract

Computer vision has gone through considerable changes in the last decade as neural
networks have come into common use. As available computational capabilities have
grown, neural networks have achieved breakthroughs in many computer vision tasks,
and have even surpassed human performance in others. With accuracy being so high,
focus has shifted to other issues and challenges. One research direction that saw
a notable increase in interest is on lifelong learning systems. Such systems should
be capable of efficiently performing tasks, identifying and learning new ones, and
should moreover be able to deploy smaller versions of themselves which are experts
on specific tasks. In this thesis, we contribute to research on lifelong learning and
address the compression and adaptation of networks to small target domains, the
incremental learning of networks faced with a variety of tasks, and finally the detection
of out-of-distribution samples at inference time.

We explore how knowledge can be transferred from large pretrained models to
more task-specific networks capable of running on smaller devices by extracting the
most relevant information based on activation statistics. Using a pretrained model
provides more robust representations and a more stable initialization when learning a
smaller task, which leads to higher performance and is known as domain adaptation.
However, those models are too large for certain applications that need to be deployed
on devices with limited memory and computational capacity. In this thesis we show
that, after performing domain adaptation, some learned activations barely contribute
to the predictions of the model. Therefore, we propose to apply network compression
based on low-rank matrix decomposition using the activation statistics. This results in
a significant reduction of the model size and the computational cost.

Like human intelligence, machine intelligence aims to have the ability to learn
and remember knowledge. However, when a trained neural network is presented with
learning a new task, it ends up forgetting previous ones. This is known as catastrophic
forgetting and its avoidance is studied in continual learning. The work presented in
this thesis extensively surveys continual learning techniques (both when knowing the
task-ID at test time or not) and presents an approach to avoid catastrophic forgetting in
sequential task learning scenarios. Our technique is based on using ternary masks in
order to update a network to new tasks, reusing the knowledge of previous ones while
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not forgetting anything about them. In contrast to earlier work, our masks are applied
to the activations of each layer instead of the weights. This considerably reduces the
number of mask parameters to be added for each new task; with more than three orders
of magnitude for most networks. Furthermore, the analysis on a wide range of work
on incremental learning without access to the task-ID, provides insight on current
state-of-the-art approaches that focus on avoiding catastrophic forgetting by using
regularization, rehearsal of previous tasks from a small memory, or compensating the
task-recency bias.

We also consider the problem of out-of-distribution detection. Neural networks
trained with a cross-entropy loss force the outputs of the model to tend toward a one-
hot encoded vector. This leads to models being too overly confident when presented
with images or classes that were not present in the training distribution. The capacity
of a system to be aware of the boundaries of the learned tasks and identify anomalies
or classes which have not been learned yet is key to lifelong learning and autonomous
systems. In this thesis, we present a metric learning approach to out-of-distribution
detection that learns the task at hand on an embedding space.

Keywords: computer vision, machine learning, neural network compression,
out-of-distribution detection, continual learning
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Resum

La visió per computador ha experimentat canvis considerables en l’última dècada, ja
que les xarxes neuronals han passat a ser d’ús comú. A mesura que les capacitats
computacionals disponibles han crescut, les xarxes neuronals han aconseguit avenços
en moltes tasques de visió per computador i fins i tot han superat el rendiment humà
en altres. Donada l’elevada precisió d’aquestes xarxes, l’atenció s’ha desplaçat cap a
altres problemes i reptes. Un camp de recerca que ha experimentat un notable augment
de l’interès és la dels sistemes d’aprenentatge continuat. Aquests sistemes haurien de
ser capaços de realitzar tasques de manera eficient, identificar-ne i aprendre’n de noves,
a més de ser capaços de desplegar versions més compactes d’ells mateixos que siguin
experts en tasques específiques. En aquesta tesi, contribuïm a la investigació sobre
l’aprenentatge continuat i abordem la compressió i adaptació de xarxes a dominis més
petits, l’aprenentatge incremental de xarxes enfrontades a diverses tasques i, finalment,
la detecció d’anomalies i novetats en temps d’inferència.

Explorem com es pot transferir el coneixement des de grans models pre-entrenats a
xarxes amb tasques més específiques, capaces d’executar-se en dispositius més limitats
extraient la informació més rellevant. L’ús d’un model pre-entrenat proporciona
representacions més robustes i una inicialització més estable quan s’aprèn una tasca
més específica, cosa que comporta un rendiment més alt i es coneix com a adaptació
de domini. Tanmateix, aquests models són massa grans per a determinades aplicacions
que cal desplegar en dispositius amb poca memòria i poca capacitat de càlcul. En
aquesta tesi demostrem que, després de realitzar l’adaptació de domini, algunes
activacions apreses amb prou feines contribueixen a les prediccions del model. Per
tant, proposem aplicar la compressió de xarxa basada en la descomposició de matrius
de baix rang mitjançant les estadístiques de les activacions. Això es tradueix en una
reducció significativa de la mida del model i del cost computacional.

Igual que la intel·ligència humana, el machine learning pretén tenir la capacitat
d’aprendre i recordar el coneixement. Tot i això, quan una xarxa neuronal ja entrenada
aprèn una nova tasca, s’acaba oblidant de les anteriors. Això es coneix com a oblit
catastròfic i s’estudia la seva prevenció en l’aprenentatge continu. El treball presentat
en aquesta tesi estudia àmpliament les tècniques d’aprenentatge continu (tant quan es
coneix o no l’identificador de tasca) com una aproximació per evitar oblits catastròfics
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en escenaris d’aprenentatge seqüencial. La nostra tècnica es basa en l’ús de màscares
ternàries per tal d’actualitzar una xarxa a tasques noves, reutilitzant el coneixement
d’altres anteriors sense oblidar res d’elles. A diferència dels treballs anteriors, les
nostres màscares s’apliquen a les activacions de cada capa en lloc dels pesos. Això
redueix considerablement el nombre de paràmetres que s’afegiran per a cada nova
tasca; amb més de tres ordres de magnitud per a la majoria de xarxes. A més, analitzem
l’estat de l’art en aprenentatge incremental sense accés a l’identificador de tasca. Això
proporciona informació sobre les direccions de recerca actuals que se centren a evitar
l’oblit catastròfic mitjançant la regularització, l’assaig de tasques anteriors des d’una
petita memòria externa o compensant el biaix de la tasca més recent.

També considerem el problema de la detecció d’anomalies. Les xarxes neuronals
entrenades amb una funció de cost basada en entropia creuada obliguen les sortides
del model a tendir cap a un vector codificat de sortida única. Això fa que els models
tinguin massa confiança quan intenten predir imatges o classes que no estaven presents
a la distribució original. La capacitat d’un sistema per ser conscient dels límits de les
tasques apreses i identificar anomalies o classes que encara no s’han après és clau
per a l’aprenentatge continu i els sistemes autònoms. En aquesta tesi, presentem un
enfocament d’aprenentatge mètric per a la detecció d’anomalies que aprèn la tasca en
un espai mètric.

Paraules clau: visió per computador, aprenentatge automàtic, compressió de
xarxes neuronals, detecció d’anomalies, aprenentatge continu
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Resumen

La visión por computador ha experimentado cambios considerables en la última déca-
da a medida que las redes neuronales se han vuelto de uso común. Debido a que las
capacidades computacionales disponibles han ido aumentando, las redes neuronales
han logrado avances en muchas tareas de visión por computador e incluso han supera-
do el rendimiento humano en otras. Dado que la precisión es tan alta, el enfoque se ha
desplazado a otros problemas y desafíos. Una dirección de investigación que ha expe-
rimentado un aumento notable en interés son los sistemas de aprendizaje continuado.
Estos sistemas deben ser capaces de realizar tareas de manera eficiente, identificar y
aprender otras nuevas y, además, deben poder implementar versiones más compactas
de sí mismos que sean expertos en tareas específicas. En esta tesis, contribuimos a la
investigación sobre el aprendizaje continuado y abordamos la compresión y adaptación
de redes a pequeños dominios, el aprendizaje incremental de redes ante una variedad
de tareas y, finalmente, la detección de anomalías y novedades durante la inferencia.

Exploramos cómo se puede transferir el conocimiento de grandes modelos pre-
entrenados a redes con tareas más específicas capaces de ejecutarse en dispositivos
más pequeños, extrayendo la información más relevante basada en estadísticas de
las activaciones. El uso de un modelo pre-entrenado proporciona representaciones
más robustas y una inicialización más estable al aprender una tarea más pequeña, lo
que conduce a un mayor rendimiento y se conoce como adaptación de dominio. Sin
embargo, esos modelos son demasiado grandes para ciertas aplicaciones que deben
implementarse en dispositivos con memoria y capacidad computacional limitadas.
En esta tesis mostramos que, después de realizar la adaptación de dominio, algunas
activaciones aprendidas apenas contribuyen a las predicciones del modelo. Por lo tanto,
proponemos aplicar compresión de redes basada en la descomposición matricial de
bajo rango utilizando las estadísticas de las activaciones. Esto da como resultado una
reducción significativa del tamaño del modelo y el coste computacional.

Al igual que la inteligencia humana, el machine learning tiene como objetivo tener
la capacidad de aprender y recordar conocimientos. Sin embargo, cuando una red neu-
ronal ya entrenada aprende una nueva tarea, termina olvidando las anteriores. Esto se
conoce como olvido catastrófico y su prevención se estudia en el aprendizaje continuo.
El trabajo presentado en esta tesis analiza ampliamente las técnicas de aprendizaje
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continuo (tanto cuando se conoce el ID de la tarea durante inferencia como cuando no)
y presenta un enfoque para evitar el olvido catastrófico en escenarios de aprendizaje
secuencial de tareas. Nuestra técnica se basa en utilizar máscaras ternarias cuando la
red tiene que aprender nuevas tareas, reutilizando los conocimientos de las anteriores
sin olvidar nada de ellas. A diferencia otros trabajos, nuestras máscaras se aplican a
las activaciones de cada capa en lugar de a los pesos. Esto reduce considerablemente
el número de parámetros que se agregarán para cada nueva tarea; con más de tres
órdenes de magnitud para la mayoría de las redes. Además, el análisis de una amplia
gama de trabajos sobre aprendizaje incremental sin acceso a la identificación de la
tarea, proporciona información sobre los enfoques actuales del estado del arte que se
centran en evitar el olvido catastrófico mediante el uso de la regularización, el ensayo
de tareas anteriores con memorias externas, o compensando el sesgo hacia la tarea
más reciente.

También consideramos el problema de la detección de anomalías. Las redes neuro-
nales entrenadas con una función de coste basada en entropía cruzada obligan a las
salidas del modelo a tender hacia un vector de salida única. Esto hace que los modelos
tengan demasiada confianza cuando se les presentan imágenes o clases que no estaban
presentes en la distribución del entrenamiento. La capacidad de un sistema para cono-
cer los límites de las tareas aprendidas e identificar anomalías o clases que aún no se
han aprendido es clave para el aprendizaje continuado y los sistemas autónomos. En
esta tesis, presentamos un enfoque de aprendizaje con métricas para la detección de
anomalías que aprende la tarea en un espacio métrico.

Palabras clave: visión por computador, aprendizaje automático, compresión de
redes neuronales, detección de anomalías, aprendizaje continuo
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1 Introduction

We live in the epoch of big data. Especially visual data is playing a rapidly growing
role in our lives. Every day large amounts of images and videos are uploaded to
social media. Also, machines store and analyze petabytes of visual data for industrial,
health and robotics applications. The field of computer vision studies methods to
unlock the potential of this data with the goal to extract the information available in it.
Helped by the ongoing revolution in artificial intelligence, this has resulted in dramatic
improvements over the last decade.

Traditionally, hand-crafted algorithms have dominated computer vision. Hand-
crafting refers here to the process in which computer vision scientists design the
various parts of an algorithm, typically designing the features(e.g. SIFT) and classifier
(e.g. an SVM) separately [42, 99]. The hand-crafted approach has been superseded
by deep learning algorithms which allow for the end-to-end training of both feature
extractors and classifiers. As a consequence, deep learning has replaced a wide variety
of features that were designed for different computer vision applications. The ability
of deep learning to jointly optimize the feature extractor and classifier has resulted in
large performance improvements throughout the field of computer vision, including
a large variety of classical problems such as object detection, scene classification or
image classification [48, 78, 121, 189].

The theory of deep learning was actually developed already in the previous century.
In 1998, a gradient-based learning technique was proposed consisting of a multilayer
neural network trained with a backpropagation algorithm [80]. However, computa-
tional limitations at the time and the availability of labelled data were not sufficient to
make the method suitable for complex computer vision problems. It was not until 2012
that technology caught up and deep features significantly improved state-of-the-art
results for object recognition [78]. In the field of object recognition, fine-tuning of
convolutional neural networks trained on large datasets made it possible to improve
state-of-the-art performance also for small datasets like PASCAL VOC [121]. Ex-
cellent results were achieved on image classification, scene recognition and object
detection [48, 121, 189]. Later, several network architectures trained on the ImageNet
dataset were introduced [60, 78, 157]. The increase in dataset size and availability of
data made possible the training of large networks on large-scale datasets, and thus the
learning of rich representations that could later be exploited via feature extraction or
transfer learning.
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Chapter 1. Introduction

Deep learning initially focused on training single networks from large datasets
in a single training session. However, at first deep neural networks did not perform
very well on small domains: the millions of weights typically present in deep neural
networks would overfit to the few available samples. Very soon it was found that one
of the main advantages of deep learning is its ability to transfer knowledge to other
domains. In this case, rather than training a neural network from scratch, the weights
are initialized with the weights of a network trained on a large dataset – called the
source dataset. Next, the weights are fine-tuned on the new labelled data – called the
target dataset. This process allows the knowledge learned on a large domain to be
transferred to new, often smaller, domains. Originally this was investigated mainly for
supervised models [11], but later also for generative models [173].

However powerful training on massive labeled datasets or transfer learning may
be, they still have several restrictions. Typically, networks are trained to be optimal
in a closed world, meaning that they have to perform well on data from a known
distribution. However, in the real-world this assumption can be often too restrictive. It
is therefore believed important to enhance algorithms with lifelong learning capability
which allows them to operate on an open world, i.e. learning new tasks while not
forgetting previous tasks, adapting to new domains, joining knowledge from multiple
models, detecting data which is not within the training data distribution, etc.

Therefore, in this thesis we explore some desirable characteristics for computer
vision systems that should scale properly. When trying to learn large corpus of
knowledge that expands or changes over time, it is useful to have a large system that
contains all the knowledge acquired so far. However, when deploying the system
for specific tasks or devices with limited computational processing, the knowledge
specific to the task should be easily accessible without the interference of other non-
related knowledge. When new data becomes available, the system should be able to
integrate the knowledge without forgetting previously learned tasks. Furthermore, it is
desirable that the learning of a new task would benefit from previously learned related
knowledge to make the learning process easier and further understand the connections
between those tasks to exploit them later on. Finally, as the system expands, it should
be aware of the extend of its knowledge and the tasks that is capable of performing.
This way, we avoid having a system that would claim high confidence in tasks that it
has never seen. In summary, the characteristics that we aim to address in this thesis
are:

• network compression: the ability to compress the system to a specific task, re-
ducing the computational cost of deployment by removing unuseful information
(chapter 2).

• continual learning: the ability to learn new tasks without forgetting any of the
previously learned knowledge, while scaling gracefully (chapter 3 and 4).
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1.1. Network compression

• out-of-distribution detection: the ability to detect when an input is outside of
the learned distributions, knowing the boundaries of the possessed knowledge
(chapter 5).

In the following sections, we introduce each of those characteristics and identify the
objectives we will pursue in this thesis.

1.1 Network compression
An advantage of the increase on large datasets availability is that there exist several
models from different architectures pretrained on those datasets. Deep neural networks
trained on those large datasets can be easily transferred to new domains with far
fewer labeled examples by a process called fine-tuning. This has the advantage that
representations learned in the large source domain can be exploited on smaller target
domains [121]. However, networks designed to be optimal for the source task are
often prohibitively large for the target task. Network compression aims to solve that
issue by allowing for transfer to a reduced version of the network (see Fig. 1.1).

Network compression has received a great deal of attention recently due to the
wide usage of mobile devices, which have limited computational capacities. Sev-
eral approaches have addressed the problem of reducing computational resources
by modifying the internal representation of each layer taking into account the in-

task-specific compressed models

large pretrained 
model

small target
domain

large multi-purpose 
dataset

Figure 1.1 – Large networks trained on large datasets can be compressed into task-
specific models that can be deployed to smaller devices with lower computational
memory and cost.
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herent redundancy of its parameters. Common approaches exploit linear structures
within convolutional layers and approach each convolutional kernel using low-rank
kernels [9, 37, 69]. The main idea relies on the fact that performing a convolution
with the original kernels is equivalent to convolving with a set of base filters followed
by a linear combination of their output. In this thesis, we study the use of activation
statistics to compress models for a domain transfer classification task. When going
from the source domain to the target domain, some filters might be focusing on aspects
that were present in the source domain, but are irrelevant or non-existent in the target
domain. Therefore, with that information we can reduce the number of parameters of
the neural network and compress the model without performance loss. Based on this
analysis we propose the following research objective:

Objective 1: Pretrained networks contain large amounts of knowledge but
are often too large to be used on certain devices. We aim to study com-
pression in the context of domain adaptation, where knowledge unrelated
to the target task can be dropped in exchange for computation efficiency.

More specifically, we address the compression of networks after domain transfer.
We focus on compression algorithms based on low-rank matrix decomposition. Ex-
isting methods base compression solely on learned network weights and ignore the
statistics of network activations. We show that domain transfer leads to large shifts in
network activations and that it is desirable to take this into account when compress-
ing. We demonstrate that considering activation statistics when compressing weights
leads to a rank-constrained regression problem with a closed-form solution. Because
our method takes into account the target domain, it can more optimally remove the
redundancy in the weights. Experiments show that our proposed method significantly
outperforms existing low-rank compression techniques. With our approach, the fc6
layer of VGG-19 can be compressed more than 4x more than using truncated SVD
alone – with only a minor or no loss in accuracy. When applied to domain-transferred
networks it allows for compression down to only 5-20% of the original number of
parameters with only a minor drop in performance.

If we create computer vision systems capable of extending their knowledge, those
will be able to perform a large number of tasks and will grow over time. However, ap-
plications for specialized on specific tasks will always be necessary, and will probably
need to be deployed efficiently. Therefore, it becomes useful to have large systems
capable of doing large amounts of tasks and exploit the connections between them,
while being able to compress specific knowledge into an easily deployable network
for a specific task.
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1.2 Continual learning
As more larger datasets become available and computational costs are reduced, models
capable of solving larger tasks become also available. However, training a model
each time that a new task is required to be learned might become unfeasible. Older
data might be unavailable, new data might not be able to be stored due to privacy
issues, or the frequency at which the system needs to be update cannot support training
a new model with all data frequently enough. A solution to these problems can be
found in continual learning (also known as lifelong learning, incremental learning or
neverending learning). The objective of continual learning is to be able to learn new
tasks without the need to access data from previously learned tasks, except for maybe
a small buffer of data.

When neural networks learn a new tasks, if no special measures are used, the new
knowledge will be prioritized over the older knowledge, usually causing to forget
the latter. This issue is commonly referred to as catastrophic forgetting [50, 74, 111]
(see Fig. 1.2). As observed in humans presented with a new task to learn, new
knowledge is acquired or integrated by leveraging knowledge from previous ones
(forward transfer) as well as integrating the newly acquired knowledge into previous
tasks (backward transfer) [44]. This makes for two desirable properties of continual
learning systems. Continual learning methods must balance retaining knowledge
from previous tasks while learning new knowledge for the current task. This problem
is called the stability-plasticity dilemma [113]. However, it usually is difficult to
estimate how much forgetting will happen when learning a new task even when having
a stability-plasticity trade-off. Based on this we propose another research objective:

Objective 2: For many practical applications which aim for continual
learning, allowing for a variable amount of forgetting is undesirable.
Therefore, we aim to design a learning system that can adapt to new tasks,
while using previous knowledge, but without any forgetting.

In this thesis, we propose an approach without any forgetting to continual learning,
where at inference the task-label is known. By using ternary masks on the activations
we can upgrade a model to new tasks, reusing knowledge from previous tasks while
not forgetting anything about them. Using masks prevents both catastrophic forgetting
and backward transfer. We argue, and show experimentally, that avoiding the former
largely compensates for the lack of the latter, which is rarely observed in practice. In
contrast to earlier works, our masks are applied to the features (activations) of each
layer instead of the weights. This considerably reduces the number of mask parameters
to be added for each new task; with more than three orders of magnitude for most
networks. The encoding of the ternary masks into two bits per feature creates very
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Figure 1.2 – Illustration of catastrophic forgetting of previous learned knowledge when
learning new classes that have not been seen for a while are forgotten (represented as
slowly fading away).

little overhead to the network, avoiding scalability issues. Our masks do not permit any
changes to features which are used by previous tasks. As this may be too restrictive
to allow learning of new tasks, we add task-specific feature normalization. This way,
already learned features can adapt to the current task without changing the behavior
of these features for previous tasks. Extensive experiments on several fine-grained
datasets and ImageNet show that our method outperforms current state-of-the-art while
reducing memory overhead in comparison to weight-based approaches.

In both Chapters 2 and 3 we take advantage of the memory reduction that comes
from applying our proposed methods on the activations instead of the weights. In
the first chapter, we use the information on the activations to reduce the amount of
weights needed to perform a task. While in the second chapter we apply masks on the
activations instead of weights to significantly reduce the memory overhead. This will
show the benefits of activation-based methods over weight-based methods.

Although having no forgetting is desirable, in some cases it is not possible, spe-
cially when the task is not known at inference time. Because of that, class-incremental
learning has been gathering more attention in the continual learning community. Class-
incremental focuses on scenarios where a sequence of tasks is learned one at a time.
However, unlike task-incremental learning, the task-ID is not known at inference time.
This leads to our third research objective:

Objective 3: As some systems become more dynamical and data becomes
accessible in streams, systems should be able to learn while mitigating
catastrophic forgetting. This desire has resulted in a wave of recent works,
however a comprehensive comparison of their performance is currently
lacking. Therefore, a survey of current state-of-the-art on incremental
learning is needed.
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For future learning systems continual learning is desirable, because it allows for:
efficient resource usage by eliminating the need to retrain from scratch at the arrival of
new data; reduced memory usage by preventing or limiting the amount of data required
to be stored – also important when privacy limitations are imposed; and learning that
more closely resembles human learning. The main challenge for incremental learning
is catastrophic forgetting, which refers to the precipitous drop in performance on
previously learned tasks after learning a new one. Incremental learning of deep neural
networks has seen explosive growth in recent years. Initial work focused on task
incremental learning, where a task-ID is provided at inference time. Recently we
have seen a shift towards class-incremental learning where the learner must classify
at inference time between all classes seen in previous tasks without recourse to a
task-ID. In this thesis, we provide a complete survey of existing methods for incre-
mental learning, and in particular we perform an extensive experimental evaluation on
twelve class-incremental methods. We consider several new experimental scenarios,
including a comparison of class-incremental methods on multiple large-scale datasets,
investigation into small and large domain shifts, and comparison on various network
architectures.

1.3 Out-of-distribution detection
Over time, computer vision systems should be able to accumulate a broad range of
knowledge. However, it is important that the system is aware of the boundaries of
such knowledge (see Fig. 1.3). In recent works [61, 82, 88], it was shown that current
cross-entropy-based losses tend to promote too high confidence on predictions of data
outside of the learned knowledge.

When neural networks process images which do not resemble the distribution seen
during training, so called out-of-distribution images, they often make wrong predic-
tions, and do so too confidently. The capability to detect out-of-distribution images
is therefore crucial for many real-world applications. We divide out-of-distribution
detection between novelty detection (images of classes which are not in the training
set but are related to those), and anomaly detection (images with classes which are
unrelated to the training set). By related we mean they contain the same type of
objects, like digits in MNIST [80] and SVHN [117]. Most existing work has focused
on anomaly detection, and has addressed this problem considering networks trained
with the cross-entropy loss. Differently from them, we propose to use metric learning
which does not have the drawback of the softmax layer (inherent to cross-entropy
methods), which forces the network to divide its prediction power over the learned
classes.
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Objective 4: we aim to apply metric learning to the out-of-distribution
detection problem, thus evading the problems introduced by using a cross-
entropy loss. Metric learning can naturally be extended to new classes
whereas classification networks are forced to produce an answer in terms
of known classes.

To address this objective, we present an approach which consists on learning an
embedding that can measure out-of-distribution samples using an Euclidean distance.
The proposed loss learns an embedding which forms clusters out of the in-distribution
classes using a contrastive loss [53]. When presented with out-of-distribution samples,
they are not enforced to form a separate cluster but to separate from all in-distribution
clusters instead. This forces the distance between out-of-distribution samples and the
in-distribution classes to be larger and easier to detect. The use of metric learning
instead of a cross-entropy loss and corresponding softmax scores is shown to be
beneficial for more consistent out-of-distribution detection. Furthermore, by creating
the embedding space, we allow to better distinguish between novel and anomalous
samples and show that research should focus on the more challenging problem of
novelty detection. The detection of new unseen classes can be easily used in continual
learning pipelines to detect which tasks should be learned next. Finally, to illustrate
that we present a new benchmark dataset which is closer to a real-world classification
problem and in which we compare to the state-of-the-art.

!

Figure 1.3 – When presented with a new sample outside of the learned distribution,
neural networks will predict a class from the learned distribution with great confidence.
Out-of-distribution detection proposes algorithms to address this problem.
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2
Domain-adaptive
deep network compression*

2.1 Introduction
One of the important factors in the success of deep learning for computer vision is
the ease with which features, pretrained on large datasets such as Imagenet [36, 143]
and Places2 [189], can be transferred to other computer vision domains. These new
domains often have far fewer labeled samples available but which, due to the high
correlation which exists between visual data in general, can exploit an already learned
representation trained on large datasets. The most popular method to transfer the
representations is by means of fine-tuning, where the network is initialized with the
pretrained network weights, after which they are further adjusted on the smaller target
domain [121]. These fine-tuned networks, which have the same size as the originally
trained network, can then be applied to the task of the target domain (see Fig. 2.1).
However, one must question whether a target domain task requires such a large network
and whether the resulting network is not highly redundant.

Figure 2.1 – Domain transfer main pipeline. Could we compress the network without
losing accuracy on the target domain?

*This chapter is based on a publication in the IEEE International Conference in Computer Vision
(ICCV), 2017 [110].
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A drawback of Convolutional Neural Networks (CNNs) is that they generally
require large amounts of memory and computational power (often provided by GPU).
As a result they are less suitable for small devices, like cell phones, where require-
ments for energy efficiency limit CPU, GPU, and memory usage. This observation
has motivated much research into network compression. Approaches include methods
based on weight quantization [54, 133], weight removal from fully-connected [190] or
convolutional layers [10], compact representations of convolutional layers through ten-
sor decompositions [9,37,69], as well as training of thinner networks from predictions
of a larger teacher network [63, 141].

One efficient method for the compression of fully-connected layers is based on
applying singular value decomposition (SVD) to the weight matrix [37, 179, 190].
Compression is achieved by removing columns and rows related to the least significant
singular values. Then, the original layer is replaced by two layers which have fewer
parameters than the original layer. The method has been successfully applied to
increase efficiency in detection networks like Fast R-CNN [46]. In these networks the
truncated SVD approach is applied to the fc6 and fc7 layers, and the authors showed
that with only a small drop in performance these layers can be compressed to 25%
of their original sizes. In the original paper [37, 179, 190] the compression is always
applied on the source domain, and no analysis of its efficiency for domain transfer
exists.

In this chapter we investigate network compression in the context of domain
transfer from a network pretrained on a large dataset to a smaller dataset representing
the target domain. To the best of our knowledge we are the first to consider network
compression within the context of domain transfer, even though this is one of the
most common settings for the application of deep networks. Our approach is based
on weight matrix decomposition that takes into account the activation statistics of the
original network on the target domain training set†. We first adapt a pretrained network
with fine-tuning to a new target domain and then proceed to compress this network. We
argue that, because the statistics of the activations of network layers change from the
source to the target domain, it is beneficial to take this shift into account. Most current
compression methods do not consider activation statistics and base compression solely
on the values in the weight matrices [37,54, 81,133,179]. We show how the activation
statistics can be exploited and that the resulting minimization can be written as a
rank-constrained regression problem for which there exists a closed-form solution.
We call our approach Domain Adaptive Low Rank (DALR) compression, since it
is a low-rank approximation technique that takes into account the shift in activation
statistics that occurs when transferring to other domains. As an additional contribution,

†With activation statistics we refer to their direct usage during compression, but we do not explicitly
model the statistical distribution.
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we show that the original SVD algorithm can be improved by compensating the bias
for the activations.

The chapter is organized as follows. In the next section we discuss work from
the literature related to network compression. In section 2.3 we discuss in detail the
motivation behind our network compression approach, and in section 2.4 we show
how network compression can be formulated as a rank constraint regression problem.
In section 2.5 we report on a range of compression experiments performed on standard
benchmarks. Finally, we conclude with a discussion of our contribution in section 2.6.

2.2 Related work
Network compression has received a great deal of attention recently. In this section
we briefly review some of the works from the literature relevant to our approach.
Network pruning. A straightforward way to reduce the memory footprint of a neural
network is by removing unimportant parameters. This process can be conducted while
training [10, 56, 81, 190], or by analyzing the influence of each parameter once the
network has been trained [89]. For instance, in [190], the authors use tensor low-rank
constraints to (iteratively) reduce the number of parameters of fully-connected layers.
Computationally efficient layer representations. Several approaches have ad-
dressed the problem of reducing computational resources by modifying the internal
representation of each layer taking into account the inherent redundancy of its parame-
ters. Common approaches exploit linear structures within convolutional layers and
approach each convolutional kernel using low-rank kernels [9, 37, 69]. The main idea
relies on the fact that performing a convolution with the original kernels is equivalent
to convolving with a set of base filters followed by a linear combination of their output.
In [75], the authors propose two network layers that are based on dictionary learning to
perform sparse representation learning, directly within the network. In general, these
approaches show significant reduction in the computational needs with a minimum
drop of performance.
Parameter quantization. Previous works mentioned above on efficient representa-
tions focus on modifying the representation of a complete layer. Parameter quantization
is slightly different as it aims at finding efficient representations of each parameter
individually (i.e., representing each parameter with fewer bits). A common practice
to minimize the memory footprint of the network and reduce the computational cost
during inference consists of training using 32-bits to represent the parameters while
performing inference more efficiently using 16-bits without significantly affecting the
performance. More aggressive quantization processes have been also analyzed in [49]
where the authors propose an approach to directly thresholding values at 0 resulting
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in a decrease of the top-1 performance on ImageNet by less tan 10%. More recently,
several works have adopted quantization schemes into the training process [133]. For
instance, in [133], the authors propose an approach to train a network directly using
binary weights resulting in very efficient networks with a very limited accuracy.

In [54] the authors propose an approach to combine pruning, quantization and
coding to reduce the computational complexity of the network. The authors first
analyze the relevance of each parameter pruning the irrelevant ones and then, after
fine-tuning the pruned network, the remaining parameters are quantized. Results show
a significant reduction in the number of parameters (up to 35x) without affecting the
performance of the network.
Network distillation. These approaches aim at mimicking a complicated model
using a simpler one. The key idea consists of training an ensemble of large networks
and then use their combined output to train a simpler model [19]. Several approaches
have built on this idea to train the network based on the soft output of the ensemble [62],
or to train the network mimicking the behavior not only of the last layer but also of
intermediate ones [141].

All these methods for pruning, quantization, or compression in general, have
shown results for reducing the footprint of networks and for reducing its computational
complexity. However, they are usually applied to the same target domain as the
one used for training the original network. In contrast, in this chapter we investigate
network compression in the context of domain transfer. That is, compressing a network
that has been trained on a generic large dataset in order to reduce its computational
complexity when used in a different target domain using a smaller dataset. In this
context, the most related work is the approach presented in [51] exploring non-negative
matrix factorization to identify an interesting set of variables for domain transfer.
However, the work in [51] does not consider network compression and focuses on
unsupervised tasks.

2.3 Motivation
Training networks for a specific task starting from a network pretrained on a large,
generic dataset has become very common practice, and to the best of our knowledge
we are the first to consider compression of these types of domain-adapted networks.
We investigate the compression of fully-connected layers by means of matrix decom-
position. The basic principle is to decompose a weight matrix into two matrices which
contain fewer parameters than the original weight matrix. This decomposition can
then be applied to the network by replacing the original layer with two new layers
(see Fig. 2.2). An existing approach is based on truncated Singular Value Decomposi-
tion [37, 179]. The decomposition of that method is determined solely by the weight
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Figure 2.2 – Example of compressing last two layers of the VGG-16 network (fc6,
fc7). The original weight matrix is approximated by two matrices. The main novelty
in this chapter is that we consider the input X of each layer when compressing the
corresponding weight matrix W . This is especially relevant when doing domain
transfer from pretrained networks where activation statistics can be significantly
skewed in the target domain.

matrix and ignores the statistics of layer activations in the new domain.
To gain some insight into this shifting of the activation distributions in deep

networks when changing domain, we take a closer look at the inputs to the two fully-
connected layers fc6 and fc7 (which are the output of pool5 and fc6, respectively), of
the VGG-19 network [157]. We analyze the activation rate of neurons which is the
fraction of images in which a neuron has non-zero response. A value of 0.3 means that
the neuron is activated in 30% of the images in the dataset. In Fig. 2.3 we show the
activation rates of the VGG-19 network on ImageNet, on the CUB-200-2011 Birds
dataset [170], on the Oxford 102 Flowers dataset [120] and on the Stanford 40 actions
dataset [180].

The first thing to observe is that the activation rate is fairly constant across all the
input dimensions (i.e. activation rate of neurons in the previous layer) when computed
on the ImageNet dataset (i.e. source domain). Apparently the network has optimized
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Figure 2.3 – Activation rates (ranked in decreasing order) of the input to (top) fc6,
and (bottom) fc7 for the Birds, Flowers and Stanford datasets in the VGG-19 trained
on ILSVRC2012. The dimensions of the inputs are 7×7×512 = 25,088 (output of
pool5) and 4,096 (output of fc6), respectively. Note the more uniform distribution for
ILSVRC2012 (no domain change).

its efficiency by learning representations which have a similar frequency of occurrence
in the ImageNet dataset. However, if we look at the activation rates in the three
target domains we see that the distributions are significantly skewed: a fraction of
neurons is much more frequent than the rest, and the activation rates are lower than
in the source domain. This is especially clear for the input to fc7 where activation
rates vary significantly. If we consider the percentage of input dimensions which
accumulates 50% of the activations (which is the point where the area under the curve
to the left is equal to the area under the curve to the right), we see a clear shift from
ImageNet with 41.38% to 19.51% in Flowers, 24.93% in Birds and 29.44% in Actions
(and from 32.29% to 14.61%, 19.13% and 25% for fc6, respectively). This clearly
shows that there exists a significant change in the relative importance of neurons from
previous layers, optimized for a source domain, when applied on new domains. Given
this significant shift, we believe that it is important to take these activation statistics
into account when compressing network layers after domain transfer. Keeping lower
weights connected to high activation neurons can lead to more efficient compression
rather than only focusing on the value of the weights themselves as is done by current
compression methods.
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2.4 Compression by matrix decomposition
We start by introducing some notation. Consider a single fully-connected layer, with
input and bias x,b ∈Rn , output y ∈Rm and layer weights W ∈Rm×n , related according
to:

y = W x +b, (2.1)

or when considering a set of p inputs to the layer:

Y = W X +b1Tp , (2.2)

where 1p is a vector with ones of size p × 1, Y ∈ Rm×p is the set of outputs, and
X ∈Rn×p is the set of p inputs to the layer.

Several compression works have focused on compressing W into Ŵ so that
||W − Ŵ ||F is minimized [37, 81, 179]. The novelty of our work is that we also
consider the inputs X . As a consequence we will focus on compressing W into Ŵ in
such a way that ||Y − Ŷ ||F is minimal.

2.4.1 Truncated SVD and Bias Compensation (BC)

One approach to compression is to apply SVD such that W =U SV T where U ∈Rm×m ,
S ∈Rm×n , V ∈Rn×n [81, 179]. The layer weights W can be approximated by keeping
the k most significant singular vectors, Ŵ = Û ŜV̂ T where Û ∈ Rm×k , Ŝ ∈ Rk×k ,
V̂ ∈Rn×k . Compression is obtained by replacing the original layer by two new ones:
the first with weights ŜV̂ T and the second with weights Û . Note it is crucial that
the two new layers contain fewer parameters than the original network (i.e. that
nm > (n +m)k).

In this truncated SVD approach the bias term b of the original network is added to
the second layer. We propose an alternative bias term which takes into account the
inputs X . We define W = Ŵ + ^

W , where
^

W is the residual which is lost due to the
approximation. We want to find the new bias that minimizes ||Y − Ŷ ||F given inputs X .
Accordingly:

||Y − Ŷ ||F = ||W X +b1Tp − (Ŵ X + b̂1Tp )||F = ||b̂1Tp − (b1Tp + ^

W X )||F . (2.3)

The bias which minimizes this is then:

b̂ = b + ^

W X 1p = b + ^

W x̄ (2.4)
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where x̄ = X 1p is the mean input response. Note that if X were zero centered, then x̄

would be zero and the optimal bias b̂ = b. However, since X is typically taken right
after a ReLU layer, this is generally not the case and SVD can introduce a systematic
bias in the output which in our case can be compensated by using Eq. 2.4.

2.4.2 Domain Adaptive Low Rank (DALR) matrix decomposition
In the previous subsection we considered the inputs to improve the reconstruction error
by compensating for the shift in the bias. Here, we also take into account the inputs
for the computation of the matrix decomposition. In contrast, the SVD decomposition
does not take them into account. Especially in the case of domain transfer, where the
statistics of the activations can significantly differ between source and target domain,
decomposition of the weight matrix should consider this additional information. A
network trained on ImageNet can be highly redundant when applied to for example
a flower dataset; in this case most features important for man-made objects will be
redundant.

The incorporation of input X is done by minimizing ||Y − Ŷ ||F . We want to
decompose the layer with weights W into two layers according to:

W ≈ Ŵ = ABT, (2.5)

where Ŵ ∈ Rm×n , A ∈ Rm×k and B ∈ Rn×k again chosen such that m×n > (m+n)×k.
We want the decomposition which minimizes:

min
A,B

||Y − Ŷ ||F = min
A,B

||W X − ABTX ||F , (2.6)

where we have set b̂ = b and subsequently removed it from the equation. Eq. 2.6 is a
rank constrained regression problem which can be written as:

argmin
C

||Z −C X ||2F + λ||C ||2F
s.t. rank(C ) ≤ k,

(2.7)

where C = ABT and Z =W X , and we have added a ridge penalty which ensures that
C is well-behaved even when X is highly co-linear. We can rewrite Eq 2.7 as:

argmin
C

||Z∗−C X ∗||2F
s.t. rank(C ) ≤ k,

(2.8)

16



2.4. Compression by matrix decomposition

where we use

X ∗
n×(p+n) = (

X
p
λI

)
, and (2.9)

Z∗
m×(p+n) = (

Z 0
)

. (2.10)

In Ashin [116] the authors show that there is a closed form solution for such
minimization problems based on the SVD of Z . Applying SVD we obtain Z =U SV T.
Then the matrices A and B in Eq. 2.5 which minimize Eq. 2.8 are:

A = Û

B = ÛTZ XT
(
X XT+λI

)−1 (2.11)

where Û ∈ Rm×k consists of the first k columns of U .
Network compression is obtained by replacing the layer weights W by two layers

with weights B and A, just as in the truncated SVD approach. The first layer has no
biases and the original biases b are added to the second layer. Again we could apply
Eq. 2.4 to compensate the bias for the difference between W and Ŵ . However, this
was not found to further improve the results.

2.4.3 Reconstruction error analysis
We discussed three different approaches to compressing a weight matrix W . They lead
to the following approximate outputs Ŷ :

SVD : Ŷ = Û ŜV̂ TX +b

SVD+BC : Ŷ = Û ŜV̂ TX + b̂ (2.12)

DALR : Ŷ = ABTX +b

To analyze the ability of each method to approximate the original output Y we perform
an analysis of the reconstruction error given by:

ε = ||Y − Ŷ ||F . (2.13)

We compare the reconstruction errors on the CUB-200-2011 Birds and the Oxford
102 Flowers datasets. The reconstruction error is evaluated on the test set, whereas the
inputs and outputs of the layers are extracted from the training set for computing the
matrix approximations Ŷ . We provide results for fc6 and fc7, the two fully-connected
layers of the VGG-19 network.

In Figure 2.4 we show the results of this analysis. We see that bias compensation
provides a drop in error with respect to SVD for layer fc6, however the gain is
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insignificant for layer fc7. Our DALR method obtains lower errors for both layers
on both datasets for most of the compression settings. This shows the importance of
taking activation statistics into account during compression.

2.5 Experimental results
Here we report on a range of experiments to quantify the effectiveness of our net-
work compression strategy. Although experiments are done using the MatConvNet
library [169], we facilitate code in both matlab and python (Tensorflow [1]).‡

2.5.1 Datasets
We evaluate our DALR approach to network compression on a number of standard
datasets for image recognition and object detection.
CUB-200-2011 Birds: consists of 11,788 images (5,994 train) of 200 different bird
species [170]. Each image is annotated with bounding box, part location (head and
body), and attribute labels. Part location and attributes are not used in the proposed
experiments. However, bounding boxes are used when fine-tuning the model from
VGG-19 pretrained on ImageNet in order to provide some data augmentation for the
existing images.
Oxford 102 Flowers: consists of 8,189 images (2,040 train+val) of 102 species of
flowers common in the United Kingdom [120]. Classes are not equally represented
across the dataset, with the number of samples ranging from 40 to 258 per class.
Stanford 40 Actions: consists of 9,532 images (4,000 for training) of 40 categories
that depict different human actions [180]. Classes are equally represented on the
training set and all samples contain at least one human performing the corresponding
action.
PASCAL 2007: consists of approximately 10,000 images (5,011 train+val) contain-
ing one or more instances of 20 classes [40]. The dataset contains 24,640 annotated
objects, with the training and validation sets having a mean of 2.52 objects per image,
and the test set a mean of 2.43 objects per image. This dataset is used to evaluate our
approach for object detection.
ImageNet: consists of more than 14 million images of thousands of object classes.
The dataset is organized using the nouns from the WordNet hierarchy, with each class
having an average of about 500 images. We use CNNs pretrained on the 1,000-class
ILSVRC subset.

‡Code available at: https://mmasana.github.io/DALR
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2.5. Experimental results

Figure 2.4 – Reconstruction error as a function of dimensions kept k for (top) fc6 and
(bottom) fc7 layers on CUB-200-2011 Birds and Oxford 102 Flowers depending on
the degree of compression.
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dim kept 32 64 128 256 512 1024
params 0.91% 1.82% 3.64% 7.27% 14.54% 29.08%

SVD 79.44 50.82 36.44 34.80 34.40 34.18
SVD + BC 73.41 46.54 36.21 34.82 34.33 34.22
DALR 66.43 44.50 36.06 34.63 34.28 34.20

Table 2.1 – Top-1 error rate results on ImageNet when compressing fc6 in the source
domain. We report the dimensions k kept in the layer and the percentage of parameters
compressed. The uncompressed top-1 error rate is 34.24%.

2.5.2 Compression on source domain
Before performing experiments on domain adaptation, we applied Bias Compensation
and DALR compression on the source domain and compare it to the truncated SVD
method as baseline. We used the original VGG-19 network trained on the 1,000
ImageNet classes. Since ImageNet is a very large dataset, we randomly selected
50 images from each class to build our training set for DALR and truncated SVD
compression. Then, we extracted the activations of this training set for the fc6 and
fc7 layers to compress the network using DALR at different rates. The compressed
networks were evaluated on the ImageNet validation set.

Results are provided in Tables 2.1 and 2.2. Results on fc6 show a slight perfor-
mance increase for the most restricting compression settings (k = 32,64,128). However
the gain is relatively small. On fc7 the results are even closer and the best results are
obtained with bias compensation. Even though the proposed compression methods
outperform standard SVD the gain is small when done on the source domain. This is
most probably due to the fact that the inputs have relatively uniform activation rates
and considering them does not significantly change the matrix decomposition (see
also the discussion in Section 2.4.3). In general these results suggest that compressing
a model without changing the domain can be done effectively with decompositions
of filter weights (e.g. truncated SVD), and does not benefit significantly from the
additional information coming from the inputs, in contrast to when there is a domain
change involved (see the following sections).

2.5.3 Image recognition
Here we use the Birds, Flowers and Actions datasets to evaluate our compression
strategies. We apply the Bias Compensation and the DALR compression techniques
to fine-tuned VGG-19 models. For all image recognition experiments we used the
publicly available MatConvNet library [169].
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dim kept 32 64 128 256 512 1024
params 1.56% 3.13% 6.25% 12.5% 25% 50%

SVD 57.07 40.68 35.50 34.63 34.40 34.35
SVD + BC 55.57 39.75 35.14 34.51 34.35 34.30
DALR 56.32 40.25 35.26 34.54 34.40 34.33

Table 2.2 – Top-1 error rate results on ImageNet when compressing fc7 in the source
domain. The uncompressed top-1 error rate is 34.24%.

Fine-tuning: The VGG-19 [157] is trained on ImageNet. Since this network excelled
on the ImageNet Large-Scale Visual Recognition Challenge in 2014 (ILSVRC-2014),
it is a strong candidate as a pretrained CNN source for the transfer learning. Very
deep CNNs are commonly used as pretrained CNNs in order to initialize the network
parameters before fine-tuning. For each dataset, a fine-tuned version of VGG-19 was
trained using only the training set. Although initialized with the VGG-19 weights,
layers fc6 and fc7 are given a 0.1 multiplier to the network’s learning rate. The number
of outputs of the fc8 (last) layer is changed to fit the number of classes in the dataset.
All the convolutional layers are frozen and use the VGG-19 weights.
Evaluation metrics: All results for image recognition are reported in terms of classi-
fication accuracy. The compression rate of fully-connected layers is the percentage of
the number of parameters of the compressed layer with respect to the original number
of parameters.
Baseline performance: We first apply truncated SVD to the fc6 and fc7 weight
matrices. In the original VGG-19 and fine-tuned models, Wfc6 has 25088× 4096
parameters and Wfc7 has 4096×4096 parameters. Applying truncated SVD results
in a decomposition of each weight matrix into the two smaller matrices. If we keep
the k largest singular vectors, those two matrices will change to (25088+4096)k and
(4096+4096)k parameters for fc6 and fc7 respectively. Since SVD does not take into
account activations, and there is no compression method to our knowledge that uses
activations in order to reduce the number of parameters in the weight matrices, we also
show results for activation-based pruning. The pruning strategy consists of removing
the rows or columns of the weight matrices which are less active for that specific
dataset, following our earlier work in [109].
Results: Tables 2.3 to 2.8 show the performance of compressing the fc6 and fc7
layers using SVD and pruning baselines, as well as the proposed Bias Compensation
and DALR techniques. Results confirm the tendency observed in the analysis of
the L2-error reconstruction curves in Figure 2.4. DALR compression has a better
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dim kept 32 64 128 256 512 1024
params 0.91% 1.82% 3.64% 7.27% 14.54% 29.08%

SVD 16.83 36.47 51.74 54.47 54.85 55.25
SVD + BC 27.91 46.00 53.50 54.83 55.21 55.44

Pruning (mean) 4.30 8.06 12.57 25.82 37.25 50.41
Pruning (max) 4.06 7.01 15.26 25.27 36.69 48.95

DALR 48.81 54.51 55.78 55.85 55.71 55.82

Table 2.3 – Birds fc6 compression - original accuracy: 55.73%.

dim kept 32 64 128 256 512 1024
params 1.56% 3.13% 6.25% 12.5% 25% 50%

SVD 26.86 44.13 52.19 54.30 54.80 55.13
SVD + BC 28.72 47.07 53.62 54.45 55.02 55.30

Pruning (mean) 2.49 3.45 9.15 18.31 34.05 47.24
Pruning (max) 6.46 9.60 13.84 22.63 33.28 45.67

DALR 51.21 54.16 55.21 55.59 55.71 55.85

Table 2.4 – Birds fc7 compression - original accuracy: 55.73%.

performance than the other methods at the same compression rates on both fc6 and
fc7 for Birds, Flowers and Actions. In all our experiments DALR provides a slight
boost in performance even when compressing to 25% of the original parameters. Bias
compensation slightly improves the original SVD method on both layers except on
Flowers for fc7. Since the fc6 layer has more parameters, it is the layer that allows
for more compression at a lower loss in performance. The advantages of DALR are
especially clear for that layer, and for a typical setting where one would accept a loss
of accuracy of around one percent, truncated SVD must retain between 4x and 8x the
number of parameters compared to DALR to maintain the same level of performance.
Finally, both pruning methods are consistently outperformed by compression methods,
probably due to the effect pruning has on subsequent layers (fc7 and fc8).

In the previous experiment we evaluated the layer compression separately for fc6
and fc7. To get a better understanding of the potential joint compression, we perform
a compression experiment with DALR on both layers simultaneously. In order to
find suitable compression pairs for both layers at the same time, we implemented an
iterative solution. At each step, we slightly increase the compression on both layers.
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dim kept 32 64 128 256 512 1024
params 0.91% 1.82% 3.64% 7.27% 14.54% 29.08%

SVD 14.00 47.37 59.90 75.07 77.72 78.61
SVD + BC 29.55 57.93 71.96 75.91 78.00 78.63

Pruning (mean) 1.42 4.91 19.74 49.07 71.23 77.64
Pruning (max) 1.81 4.96 10.36 33.99 60.14 74.78

DALR 72.17 76.42 77.95 78.22 78.94 78.94

Table 2.5 – Flowers fc6 compression - original accuracy: 78.84%.

dim kept 32 64 128 256 512 1024
params 1.56% 3.13% 6.25% 12.5% 25% 50%

SVD 58.14 70.30 75.10 77.02 78.01 78.58
SVD + BC 57.07 70.14 75.53 77.15 78.00 78.50

Pruning (mean) 19.13 25.81 37.26 55.80 67.54 75.33
Pruning (max) 8.18 18.91 27.06 42.95 62.69 72.63

DALR 72.32 76.55 77.79 78.48 78.86 78.86

Table 2.6 – Flowers fc7 compression - original accuracy: 78.84%.

dim kept 32 64 128 256 512 1024
params 0.91% 1.82% 3.64% 7.27% 14.54% 29.08%

SVD 38.18 55.59 66.59 67.97 68.38 68.94
SVD + BC 46.76 60.14 66.96 68.17 68.40 69.00

Pruning (mean) 3.98 7.27 13.70 32.14 52.02 62.46
Pruning (max) 5.44 13.12 26.72 46.11 53.40 63.16

DALR 64.70 68.33 69.31 69.65 69.54 69.52

Table 2.7 – Actions fc6 compression - original accuracy: 68.73%.
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dim kept 32 64 128 256 512 1024
params 1.56% 3.13% 6.25% 12.5% 25% 50%

SVD 50.98 62.27 66.72 68.08 68.44 68.60
SVD + BC 53.62 62.74 67.32 68.37 68.67 68.82

Pruning (mean) 12.46 17.57 25.23 34.20 51.05 61.19
Pruning (max) 14.84 20.37 22.90 36.35 49.30 59.33

DALR 63.87 67.46 68.44 68.75 68.78 68.78

Table 2.8 – Actions fc7 compression - original accuracy: 68.73%.

Then, both options are evaluated on the validation set, and the compression rate with
better performance is applied to the network and used on the next iteration. When both
steps in compression exceed a defined drop in performance (here set to a 1% accuracy
drop), the iterative process stops and the compressed network is evaluated on the test
set. Results are shown in Figure 2.5. This implementation tends to compress fc6 more
because it has more room for compression than fc7, as seen also in the experiments
reported in Tables 2.3 to 2.8. The results show that we can compress the parameters of
the fully-connected layers to as few as 14.88% for Flowers, as few as 6.81% for Birds,
and as few as 29.85% for Actions while maintaining close to optimal performance.

2.5.4 Object detection
One of the most successful approaches to object detection is RCNN [47] (including
its Fast [46] and Faster [137] variants). This approach is also an example of the
effectiveness of the fine-tuning approach to domain transfer, and also of the importance
of network compression for efficient detection. The authors of [46] analyzed the
timings of forward layer computation and found that 45% of all computation time
was spent in fc6 and fc7. They then applied truncated SVD to compress these layers
to 25% of their original size. This compression however came with a small drop in
performance of 0.3 mAP in detection on PASCAL 2007.

For comparison, we have also run SVD with bias compensation and our com-
pression approach based on low-rank matrix decomposition. Results are presented
in Table 2.9. Here we apply compression at varying rates to fc6 (which contains
significantly more parameters), and compress fc7 to 256 pairs of basis vectors (which
is the same number used in [46]). What we see here is that at the same compression
rate for fc6 (1,024) proposed in [137], our low-rank compression approach does not
impact performance and performs equal to the uncompressed network. When we
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SVD + BC @ 1024 73.9 77.8 65.9 55.0 38.5 76.7 78.3

DALR @ 1024 74.6 77.7 66.4 53.7 37.6 77.0 78.1

SVD @ 768 74.2 77.5 65.8 53.5 37.8 76.6 78.3
SVD + BC @ 768 74.4 77.5 65.6 53.8 38.0 77.3 78.2

DALR @ 768 74.2 77.5 66.7 53.8 37.8 77.4 78.1
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No Compression 80.9 40.6 74.0 67.2 79.4 82.4 74.9

SVD @ 1024 81.6 40.0 73.0 65.9 78.9 81.9 75.7
SVD + BC @ 1024 81.5 40.1 72.6 66.4 79.1 82.2 75.7

DALR @ 1024 81.7 40.5 73.3 67.4 79.7 81.9 74.8

SVD @ 768 82.3 39.8 72.5 66.1 79.4 81.5 74.2
SVD + BC @ 768 82.2 39.7 72.5 66.3 79.7 82.1 75.4

DALR @ 768 82.0 40.1 72.7 66.2 79.0 81.7 75.5
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mAP
No Compression 66.2 33.4 66.0 67.3 73.3 67.1 66.9

SVD @ 1024 65.6 33.7 65.3 67.3 72.4 65.7 66.6
SVD + BC @ 1024 65.7 33.9 65.5 67.5 72.1 66.1 66.7

DALR @ 1024 65.9 34.0 65.9 66.9 73.7 66.3 66.9

SVD @ 768 65.6 33.8 64.7 67.9 71.7 66.3 66.5
SVD + BC @ 768 65.7 34.0 65.1 68.1 71.7 66.0 66.7

DALR @ 768 66.1 33.9 65.8 66.7 73.2 66.0 66.7

Table 2.9 – Compression and bias compensation on Fast-RCNN on PASCAL 2007.
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Figure 2.5 – Reduction in number of parameters for both fc6 and fc7.

increase the compression rate of fc6 (768) we see a drop of 0.4% mAP for standard
SVD and only half of that for both SVD with bias compensation and DALR.

2.6 Conclusions
We proposed a compression method for domain-adapted networks. Networks which
are designed to be optimal on a large source domain are often overdimensioned for the
target domain. We demonstrated that networks trained on a specific domain tend to
have neurons with relatively flat activations rates, indicating that almost all neurons
are equally important in the network. However, after transferring to a target domain,
activation rates tend to be skewed. This motivated us to consider activation statistics
in the compression process. We show that compression which takes activations into
account can be formulated as a rank-constrained regression problem which has a
closed-form solution. As an additional contribution we show how to compensate the
bias for the matrix approximation done by SVD. This is consistently shown to obtain
improved results over standard SVD.

Experiments show that DALR not only removes redundancy in the weights, but also
balances better the parameter budget by keeping useful domain-specific parameters
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while removing unnecessary source-domain ones, thus achieving higher accuracy
with fewer parameters, in contrast to truncated SVD, which is blind to the target
domain. On further experiments in image recognition and object detection, the DALR
method significantly outperforms existing low-rank compression techniques. With our
approach, the fc6 layer of VGG-19 can be compressed 4x more than using truncated
SVD alone – with only minor or no loss in accuracy.

The Bias Compensation and DALR techniques were applied to fully-connected lay-
ers. To show the effectiveness of those methods we applied them to standard networks
with large fully-connected layers. On more recent networks, like ResNets [60], most
of the computation has moved to convolutional layers, and the impact of the proposed
method would be restricted to the last layer. However, VGG-like networks are very
much used in current architectures [12,136,189]. Extending the proposed compression
method to convolutional layers is an important research question to address in future
works.

This chapter shows that domain transferred networks can be significantly com-
pressed. The amount of compression seems to correlate with the similarity [11, 181]
between the source and target domain when we compare it to the ordering proposed
in [11] (see Table II). According to this ordering, the similarity with respect to Ima-
geNet in descending order is image classification (PASCAL), fine-grained recognition
(Birds, Flowers) and compositional (Actions). We found that higher compression rates
can be applied in target domains further away from the source domain.
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3
Continual learning
without any forgetting*

3.1 Introduction
Fine-tuning has been established as the most common method to use when learning a
new task on top of an already learned one. This works well if you no longer require
the system to perform the previous task. However, in many real-world situations one
is interested in learning consecutive tasks, all of which, in the end, the system should
be able to perform all. This is the setting studied in lifelong learning, also referred to
as sequential, incremental or continual learning. In this setting, the popular approach
of fine-tuning suffers from catastrophic forgetting [44, 50, 86, 111, 113]: all network
capabilities are used for learning the new task, which leads to forgetting of the previous
ones.

A popular strategy to avoid this is to use weight-importance loss proxies or reg-
ularizers [4, 74, 83]. These approaches compute an importance score for each of the
weight parameters of the model based on previous tasks and use this to decide which
weights can be modified for the current one. A drawback of these methods is that they
need to store an extra variable (the importance score) for each weight. This leads to
an overhead of a float per weight parameter, i.e. double the number of parameters
which have to be stored. Other methods work with a binary mask to select part of
the model for each task [101, 102]. This leads to an overhead of one bit per task per
weight parameter. Finally, some methods directly make a copy of the network [144]
or rely on the storage of exemplars [26, 97, 135, 138], which again increases memory
consumption and renders these methods unsuitable when privacy requirements forbid
storing of data.

In this chapter, we advocate computing a mask at the level of features† (activations)
instead of at the level of the weights. We need the mask to be ternary, i.e. adding a
third state for allowing features to be used during the forward pass while being masked
during the backward pass. That allows the model to reuse the representations from
previous tasks without modifying them and introducing forgetting. This drastically
reduces the number of extra parameters that must be stored. As an example, the

*This chapter is based on a submission to a journal, 2020 [107].
†With features or activations we refer to the inputs of a layer that are also the output of a previous layer.

The input images can be considered features for the network to perform the task at hand, but here we only
use the term features for the activations between layers.
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Figure 3.1 – Task-incremental learning comparison of methods depending on how
much forgetting they allow and how much overhead they need.

popular Alexnet architecture [78] has around 60 million weights, while having fewer
than 10k features. One earlier method that builds on this idea is HAT [153], which
stores an attention value for each feature for each task. Recently, SSL [8] also brings
attention to the activation neurons by promoting sparsity with different losses inspired
by lateral inhibition in the mammalian brain. Those two recent works stress the
importance of focusing on the features instead of the weights, not only because of the
reduction in memory overhead, but also because they allow for better performance and
less forgetting. However, both methods still allow some forgetting as new tasks are
learned.

Over time, forgetting typically increases with the number of tasks [4, 74, 83, 97,
135, 153]. However, for many practical systems, it is undesirable that the accuracy
of the system deteriorate over time as the system learns new tasks. Moreover, under
these settings, the user typically has no control on the amount of forgetting, i.e. there
are no guarantees on the performance of the system after new tasks have been added.
Even worse: to the user, it is unknown how much the system has actually forgotten or
how well the system still performs on older tasks.

For these reasons, some works have studied systems which perform continual
learning without any forgetting at all. Currently, apart from the methods that make
copies of the network for each task [144], mask-based approaches are the only ones
that guarantee no-forgetting [101, 102]. Indeed, all methods that allow backward
propagation into the parameters of previously learned tasks have no control on the
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amount of forgetting. Not updating the weights used for previous tasks using a binary
mask prevents any forgetting. In the case of recent approaches PackNet [102] and
PiggyBack [101], this is enforced by binary-masking weights or learning masks that
will be binarized after the task is learned. However, both these non-forgetting methods
mask weights and therefore have a larger memory overhead than methods which would
put the masks on the features instead. Another drawback of [101] is that it requires a
backbone network as a starting point.

Compared to previous work, we propose a method for continual learning which
does not suffer from any forgetting while introducing minimal overhead (see Fig. 3.1).
Due to the nature of our proposed mask-based approach, we will only focus on
evaluation of task-aware experimental setups. Instead of applying masks to all weights
in the network, we propose to move the masks to the feature level, thereby significantly
reducing the memory overhead. Our initial method requires only a 2-bit mask value for
each activation for each task. In addition, we introduce a task-dependent normalization
on the features. This allows adjustment of previously learned features to be of more
optimal use for later tasks, without changing the performance or weights assigned
to previous tasks. This introduces an additional memory overhead of two floats per
activation per task. Nevertheless, this method still has a significantly lower memory
overhead than any method which stores additional parameters per weight [4, 74, 83, 90,
101, 102, 185].

The remainder of the chapter is organized as follows. In the next section we
review existing continual learning methods. In Section 3.3, we discuss masks on the
features and introduce the proposed method Ternary Feature Masks (TFM). Then, we
present the experimental setup and analysis of the results in Section 3.4 and conclude
in Section 3.5.

3.2 Related work
Lifelong learning in the proposed continual learning setup has been addressed in
multiple prior works. A large number of these use regularization-based techniques to
reduce catastrophic forgetting without having to store raw input. They can be divided
into two main families. Distillation approaches use teacher-student setups that aim at
preserving the output of the teacher model on the new data distribution [72, 87, 131,
144,188]. The output for each of the previous tasks is encoded using targets, exemplars
or other representations and constrained when learning the new task. Model-based
approaches [4, 8, 24, 74, 83, 90, 185] focus on overcoming catastrophic forgetting by
defining the importance of the weights in the network. By penalizing changes to
important weights, that have a big impact on the network output or performance, the
loss protects previous information.
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Learning without Forgetting (LwF) proposes to use the knowledge distillation
loss [87] to preserve the performance of previous tasks. However, if the data distri-
bution of the new task is very different from the previous tasks, performance drops
drastically [6]. In order to solve this, [135] (iCaRL) stores a subset of each task’s
data as exemplars; while [131] (EBLL) solves the issue by learning undercomplete
autoencoders for each task. Less Forgetting Learning (LFL) is also similar to LwF,
preserving the previous tasks’ performance by penalizing changes on the shared rep-
resentation [72]. This approach is based on the assumption that the task-specific
decision boundaries should not change, and freezes the last layer instead of mitigating
the change with a loss. Expert Gate [6] (EGate) learns a model for each task and an
autoencoder gate which will choose the model to be used. Recently, Deep Model
Consolidation (DMC) proposes to learn new classes separately and then learn a final
model with double distillation and extra unlabelled data [188]. However, most of these
methods need a pre-processing step before each task. Furthermore, a main issue is
also the scalability when learning many tasks, since the described methods have to
store data, autoencoders, or larger models for each new task.

When learning a new task, most model-based approaches apply a smooth penalty
for changing weights, proportional to their importance for previous tasks [4, 74, 83,
90, 185]. One of the main issues for these methods is that, depending on the task
relatedness and the capacity of the network, they might over or under-estimate the
importance of those weights. The main difference among these methods is how the
importance of weights is calculated. In Elastic Weight Consolidation (EWC) an
approximation of the diagonal of the Fisher Information Matrix (FIM) is used [74].
Rotated EWC proposes a rotation of the weight space to get a better approximation of
the FIM [90]. In Incremental Moment Matching (IMM) the moments of the posterior
distribution are matched incrementally [83]. They assume a diagonal covariance matrix
which means that there is no correlation among the parameters, and selectively balance
between two weights using variance information. Synaptic Intelligence (SI) computes
the importance weights in an online fashion by storing how much the loss would
change for each parameter over the training [185]. However, this method is prone to
under-estimating when using pretrained networks, while over-estimating by relying
too much on the gradient descent of some batches. Memory Aware Synapses (MAS)
computes the weight importance in an online unsupervised way, connecting their
approach with Hebbian learning [4]. It promotes the importance of those weights that
even with small changes have a big effect on the network predictions. Finally, those
approaches that learn an importance parameter for each weight can be combined with
Selfless Sequential Learning (SSL) which imposes sparsity or local neuron inhibition
on the neuron activations with a loss term [8].

Other works use different underlying methods. Progressive Neural Networks
(PNN) add lateral connections at each layer of the network to a duplicate of that

32



3.2. Related work

Fa
m

ily
M

et
ho

d
R

ev
is

it
da

ta
R

eq
ui

re
B

ac
kb

on
e

ne
t

E
as

ily
ex

pa
nd

ab
le

O
ve

rh
ea

d
Fo

rg
et

tin
g

Fo
rw

ar
d

tr
an

sf
er

Fe
at

ur
es

or
w

ei
gh

ts

B
as

el
in

e
Fi

ne
tu

ne
N

o
N

o
Y

es
N

on
e

Y
es

L
itt

le
ne

ith
er

Jo
in

t
Y

es
N

o
Y

es
N

on
e

N
o

L
itt

le
ne

ith
er

Fr
ee

ze
N

o
Y

es
Y

es
N

on
e

N
o

B
ac

kb
on

e
on

ly
ne

ith
er

D
is

til
la

tio
n

L
w

F
[8

7]
N

o
N

o
N

o
1

flo
at

pp
So

m
e

Y
es

w
ei

gh
ts

L
FL

[7
2]

N
o

N
o

N
o

1
flo

at
pp

So
m

e
Y

es
w

ei
gh

ts
PN

N
[1

44
]

N
o

N
o

Y
es

du
pl

ic
at

e
pt

So
m

e
Y

es
w

ei
gh

ts
P&

C
[1

51
]

N
o

N
o

N
o

ex
tr

a
ne

tw
or

k
So

m
e

L
itt

le
w

ei
gh

ts

M
od

el
-b

as
ed

E
W

C
[7

4]
N

o
N

o
N

o
1

flo
at

pp
So

m
e

Y
es

w
ei

gh
ts

R
-E

W
C

[9
0]

N
o

N
o

N
o

1
flo

at
pp

So
m

e
Y

es
w

ei
gh

ts
IM

M
[8

3]
N

o
N

o
N

o
1

flo
at

pp
pt

So
m

e
Y

es
w

ei
gh

ts
SI

[1
85

]
N

o
N

o
N

o
1

flo
at

pp
So

m
e

Y
es

w
ei

gh
ts

M
A

S
[4

]
N

o
N

o
N

o
1

flo
at

pp
So

m
e

Y
es

w
ei

gh
ts

SS
L

[8
]

N
o

N
o

N
o

1
flo

at
pf

p
So

m
e

Y
es

bo
th

M
as

k-
ba

se
d

Pa
ck

N
et

[1
02

]
N

o
N

o
N

o
1

in
tp

p
pt

N
o

Y
es

w
ei

gh
ts

Pi
gg

yB
ac

k
[1

01
]

N
o

Y
es

N
o

1
bi

tp
p

pt
N

o
B

ac
kb

on
e

on
ly

w
ei

gh
ts

H
A

T
[1

53
]

N
o

N
o

N
o

1
flo

at
pf

pt
So

m
e

Y
es

fe
at

ur
es

T
FM

w
/o

FN
(O

ur
s)

N
o

N
o

Y
es

2
bi

ts
pf

pt
N

o
Y

es
fe

at
ur

es
T

FM
(O

ur
s)

N
o

N
o

Y
es

2
bi

ts
+

2
flo

at
s

pf
pt

N
o

Y
es

fe
at

ur
es

Table 3.1 – Summary of related work characteristics. pf : per feature, pp: per parameter,
pt: per task, pfp: per feature and parameter.
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layer [144]. Then, the new column learns the new task while the old one keeps
the weights fixed, meaning that resources are duplicated each time a task is added.
This approach leads to non-forgetting while making the knowledge of previous tasks
available during the learning of a new one through distillation. However, as each
new task adds a column with the corresponding connections, the overhead scales
quadratically with the number of tasks. Progress and Compress (P&C) expands the
idea of PNN with the use of EWC but keeping the number of parameters constant [151].
They propose a two-component setup with a knowledge base and an active column that
follows a similar setup as PNN with lateral connections. Learn to Grow (LtG) proposes
a two-part approach with a neural structure optimization component and a learning
component which fine-tunes the parameters [85]. The neural structure component
allows for each layer to reuse existing weights, adapt them or grow the network. In
the worst case scenario, layers have to be added which makes the growth linear in the
number of tasks. The fine-tuning component does parameter optimization and can be
fixed or use an existing approach such as EWC to avoid catastrophic forgetting.

Apart from the above mentioned families, some recent works use masks to di-
rectly influence or completely remove forgetting for each parameter. We refer to this
family of approaches as mask-based. These approaches give better control on the
flow of gradients through the network and have the benefit of reducing or removing
catastrophic forgetting more than the previously mentioned alternatives, at the cost
of depleting network capacity faster as new tasks are learned. PathNet uses evolu-
tionary strategies to learn selective routing through the weights [43]. However, it is
not end-to-end differentiable and computationally very expensive. PackNet trains the
network with available weights, then prunes the less relevant weights and retrains
with a smaller subset of them [102]. Those weights are then not available for further
learning of new tasks, which quickly reduces the capacity of the network. This results
in lower number of parameters being free and performance dropping quickly on longer
sequences. Piggyback proposes to use a pretrained network as a backbone and then
uses binary masks on the weights to create different sub-networks for each task [101].
The main drawback with that approach is the backbone network itself, which is crucial
to being able to learn each task on top of it and cannot have a too different distribution
from them. In the case of PackNet, the use of a backbone network is not needed but
recommended since it becomes more difficult to learn tasks from scratch (especially
with larger networks) than it is from a network fine-tuned on a large-scale dataset. In
these last two methods, although the binary mask for each parameter has almost no
overhead for the network usage, storing a mask for each task does not scale very well
after a certain number of tasks. Finally, Hard Attention to the Task (HAT) proposes
a hard attention mechanism on the features after each layer [153]. The attention
embeddings are non-binary and are learned together with each task and conditioned
by the previous tasks’ attentions. Because of the annealing of the slope of the sigmoid

34



3.3. Learning without any Forgetting

used on the embeddings, [153] also define a different backward propagation through
their attention mechanism with gradient compensation. This approach offers plasticity
to the embeddings in order to learn them, but also allows the possibility to forget
previous tasks during the backpropagation step. A no-forgetting idea is discussed
in the appendices of their manuscript with a note on binary masks, connecting the
removal of plasticity to the inhibitory synapses idea [112].

In our proposed approach we take the latter side of that balance, using rigid masks
that reduce plasticity but also ensure non-forgetting of previous tasks. Our approach
also focuses on a natural expansion of the capacity of the network, which is not
addressed in HAT and most of the previous related work. Our proposed approach
uses masks on the features of the network to have a better control over which weights
can be modified while learning new tasks. At the same time, the mask being ternary
allows weights fixed for previous tasks to be used on new tasks without modifying
those weights. This masking strategy allows the network to not forget anything from
previous tasks and reduce the computational overhead in comparison to masking the
weights.

We show in Table 3.1 a comprehensive overview of some of the characteristics that
we consider most relevant to the experimental setup we propose. Our proposed method
is unique in that it combines being expandable, having low overhead, and having no
forgetting. All other methods have to choose only one of those three characteristics,
if any. Finally, we want to mention that there have been some methods proposed
that consider a memory budget [135], or an online setup [98], and methods with
exemplars where each sample is used only once [26, 97, 138]. However, those setups
are significantly different from the sequential setup we propose and therefore we do
not compare to these. The same is true of Learn to Grow, which belongs to the optimal
architecture search setup and can be mixed or extended with the above mentioned
approaches.

3.3 Learning without any Forgetting
Here we propose our method for task-aware continual learning, which is designed to
learn new tasks without any forgetting of previously learned ones. As discussed in the
introduction, in order to enforce non-forgetting of previous tasks, the use of masks that
create rigid states is efficient. Freezing the weights once learned allows keeping the
knowledge fixed without the possibility of forgetting. Works which have addressed
this problem have focused on weight-masks where an additional parameter is learned
for each weight in the network [101, 102]. From a network overhead point of view, we
argue that it is, however, better to work with feature-masks which learn an additional
parameter for each feature in the network. In Table 3.2 we compare the number of
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Network #weights #features

LeNet [80] 59,956 226
AlexNet [78] 54,547,712 9,344

VGGNet [157] 119,579,904 10,880
ResNet-50 [60] 19,330,304 22,720

Table 3.2 – Difference between weights and features for different common network
architectures. Last fully-connected is not taken into account since it depends on the
number of classes.

weights and features in several popular networks. The table clearly shows that the
overhead is significantly lower: on average weight-masks are a quadratic factor bigger
than feature-masks.

First, we will discuss binary masks and how those can easily encode the parts that
we want to learn and the parts that we want to fix. Afterwards, we will explore what
happens when we want to learn more than one task and how the binary masks need to
be extended to ternary masks to make room for a new state. Finally, we will explore
the use of feature normalization to allow for less rigid learning of new tasks.

3.3.1 Binary feature masks
Using binary feature masks on neural networks means that the masked neuron will
have one of two states (0 or 1). When the masks are directly multiplied by the neuron
activations, it will either use the corresponding filters or not (same for the backward
pass, which will either be applied or not). Then, for each task we have a binary mask
with the neurons that can be used or not. Since we do not allow for any forgetting,
those masks will have to be disjoint. In Fig. 3.2 we show an example with two tasks
where each is only allowed to use neurons not used by the other. A large number of
connections are completely unused, making the two sub-networks totally separable
from one another.

Consider a fully-connected layer (the theory can easily be extended to convo-
lutional layers). The output of the layer is y = W x where y ∈ Rp×1, x ∈ Rq×1 and
W ∈Rp×q . The binary feature mask for the forward pass is defined as follows:

y = (W x)¯mt ,l , (3.1)

where mt ,l ∈ Rp×1 refers to the mask for task t at layer l and ¯ is an element-wise
multiplication. Masks from different tasks are forced to select different features

36



3.3. Learning without any Forgetting

Figure 3.2 – Binary masks encode two states: used or unused. In this case, neurons in
grey are learnable for task 1 but neurons in green are not, and the opposite is true for
task 2. All grey weights are unused by both tasks.

(
(
ms,l

)T· mt ,l = 0 ∀ s 6= t )). The backward pass for training task t is defined as:

∂L

∂Wi j
= (mt ,l

i ∧ mt ,l−1
j )x j

∂L

∂yi
, (3.2)

where ∧ is the AND logical operator and there are only non-zero gradients for those
weights which join in a feature which is masked for task t .

This setup allows the associated weights to a neuron to be either used-and-learnable,
or neither. If used, they will contribute forward to the next layers (which is good,
as it promotes forward transfer, i.e. sharing of knowledge from previous tasks). Yet
at the same time this also implies that it will be possible to modify them (which is
bad, as it introduces catastrophic forgetting on the previous tasks). With only binary
masks, you cannot have one without the other. Alternatively, one could also define
two separate binary states: “used" and ‘learnable". This has been used for a long time
in deep learning by freezing weights [121]. Freezing weights is a mask-based way of
switching on and off the learning of a layer. In this case, in both states the layer would
contribute to the outcome of the network, but the update of the weights would only
be done on those layers that are not masked. Here, we further explore this idea. We
advocate that, in a sequential setup where the capacity of the network might increase
when learning new tasks, the best way to mask the neurons is by having three states:
“used", “learnable" and “unused". This can be achieved by using ternary masks on the
neurons.
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3.3.2 Ternary feature masks (TFM)
Being able to use the connections between the neurons of the previous tasks and the
neurons of the newly added task is important to reuse learned information and reduce
the capacity that must be added. By using a ternary mask we can define three states:

• forward only: the features are used during the forward pass so that the learned
information from previous tasks is used; but the backward pass step is removed
in order to keep the weights and prevent forgetting. This state is used on the
features from previous tasks.

• normal: forward and backward passes are applied as usual in order to learn the
task at hand. This state is used on the new features created by the expansion of
the network.

• masked: neither forward nor backward passes are allowed, the features do not
contribute to the network inference and the weights associated to it are frozen.
This state is used at test time only when evaluating an old task after a new task
is added. When extending the capacity of the network, the new features will not
be used when doing inference on the previous tasks since those did not exist at
the moment of their training.

Similar as in the case of the binary mask we assign features to tasks with a mask mt ,l

(with l the corresponding layer). Again overlap in the selected features is not allowed.
However, different than before, we now define a second mask nt ,l per task t which is
defined as:

nt ,l
i =

{
1, if ∃ s ≤ t : ms,l

i = 1

0, otherwise.
(3.3)

The forward and backward pass are now given by:

y = (W x)¯nt ,l (3.4)

and

∂L

∂Wi j
= (nt ,l−1

j nt ,l
i −nt−1,l−1

j nt−1,l
i )x j

∂L

∂yi
, (3.5)

respectively. During the forward pass, features which were selected by previously
learned tasks can be used in the current task. During the backward pass, we make
sure that all new weights can be updated while forcing the existing ones from previous
tasks to remain the same. In Fig. 3.3 we show an example with two tasks, where
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Figure 3.3 – Ternary masks encode three states: masked (frozen), forward only or
normal (forward and backward). Compared to Fig. 3.2, all unused connections can
now be learned without forgetting previous knowledge.

adding features to the layer allows for more connections to be used than in the
binary case. The part of the mask corresponding to nt ,l−1

j nt ,l
i corresponds to all

available connections at task t . In a similar way, the part of the mask corresponding to
nt−1,l−1

j nt−1,l
i corresponds to all available connections at task t−1. Subtracting both

terms allows us to mask the connections that contain the already learned content and
apply backpropagation only on the new connections.

Note that this definition also allows to use the same forward and backward pass
in case we would want to re-train one of the previous tasks. However, since we do
not contemplate this option for our proposed setup, we can simplify equation 3.5 to
non-revisiting task incremental learning. In this case, the forward pass remains the
same as in equation 3.4, and the backward pass can be rewritten as:

∂L

∂Wi j
= (mt ,l

i ∨ mt ,l−1
j )x j

∂L

∂yi
, (3.6)

where ∨ is the OR logical operator which makes the mask active when either operands
are active.

Since nt ,l
i can never be 0 if one of the current or previous m1..t ,l

i is 1, both masks
mt ,l and nt ,l can be combined in a single ternary mask. This is because weights
associated to a feature that is not used in the forward pass are never updated. With this
ternary mask, the states are associated as follows: when mt ,l

i =1 and nt ,l
i =1 the neuron

is used and learnable (normal state), when mt ,l
i =0 and nt ,l

i =1 the neuron is used and
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contributes to the backward pass but the associated weights are not updated (forward
only state), and finally when mt ,l

i =0 and nt ,l
i =0 the neuron is unused, not taking part

in the inference or the update of the network (masked state). In our implementation
we assign these three states to a ternary mask as 2, 1 and 0 respectively‡.

Allowing previously learned parameters to be used in the forward pass, but only
updating network parameters assigned to the current task in the backward pass, is also
applied in Packnet [102] and HAT [153]. However, in contrast to us, Packnet has the
masks on the weights and not on the features. HAT applies a soft activation mask,
which permits forgetting of previous tasks. We further differ from these methods
by the task-specific feature normalization (discussed in the next section) which is a
crucial ingredient of our method, and which not only allows exploitation of previously
learned features, but also their adaptation to the current task. This is not possible in
Packnet or HAT.

3.3.3 Task-specific feature normalization (FN)
Since binary or ternary masks freeze related weights learned on previous tasks, those
weights have no room for flexibility to small changes in features. This means that even
when being very similar to the ones needed for a new task, they will tend to learn a
similar version of those filters with shifted or scaled operators. This phenomenon is
similar to the one observed when learning several styles for style transfer networks. A
way of reusing learned filters in a more efficient way but still keeping the non-forgetting
property would be to use a similar approach to conditional instance normalization [39],
which consists in transforming a set of features x into a normalized version x̂ depending
on the task.

Let xl ,1..I be the features of layer l , and γt , βt the learnable parameters for
each feature of each layer given a fixed task t . We define the task-specific feature
normalization of xl ,i as:

x̂l ,i = γt ,l ,i xl ,i + βt ,l ,i , (3.7)

where we apply a conditional normalization on the task without applying an instance
normalization on the mean and standard deviation across the spatial dimensions. These
parameters allow slight adjustments to the new tasks in learned activations without
modifying existing parameters (thus no forgetting happens) and with little overhead to
the network capacity since the γ and β parameters are for each feature and not for all
weights.

‡Code available at: https://github.com/mmasana/TernaryFeatureMasks

40

https://github.com/mmasana/TernaryFeatureMasks


3.3. Learning without any Forgetting

3.3.4 Growing Ternary Feature Masks
One of the core characteristics of our proposed method is that it can easily grow and
expand the capacity of the network as is required. Methods that allow the weights to
be modified, with the addition of more tasks will eventually modify them, regardless
of which approach is chosen to define the importance weights. Capacity is limited, and
when the network is close to running out of it for learning the new task, the trade-off
will allow for forgetting to take place. It is at this point that most methods are not
easily expanded to accommodate more weights and grow the network before too much
forgetting happens. This is because most approaches cannot predict the performance
drop on previous tasks before learning the new one. With our approach, we enforce
this to be a core part of the system. This provides the capacity to be able to not forget
at a very small cost, while allowing the network to grow in parameters only when
necessary.

Given a network with L layers, any layer with the corresponding yl ,1..I learned
features can be expanded if those learned features are not enough to represent the new
task. When expanding a layer by N new features, the output of the layer grows to
yl ,1..I+N . That affects only the newly added forward mask values:

nt ,l
j =

{
1, for current task, if 1 ≤ j ≤ I+N

0, for previous tasks, if I < j ≤ I+N ,
(3.8)

so that all features can be seen while learning the new task but ignored by previous
tasks. And then the backward mask:

mt ,l
j =


0, for current task, if 1 ≤ j ≤ I

1, for current task, if I < j ≤ I+N

0, for previous tasks, if I < j ≤ I+N ,

(3.9)

so that it only affects the new connections without modifying previous knowledge.
Training small tasks on large networks at the beginning of a continual learning

setup usually leads to overfitting or too much repetition of filters. Feature usage on
the new tasks look very unbalanced in comparison to learning larger tasks [110] (see
Chapter 2). We believe that learning tasks in an efficient capacity and growing as more
is needed is a much better approach to avoid overfitting. This observation is backed by
the better results some other approaches have when pruning and retraining on smaller
sub-networks than when directly pruning or learning in larger sub-networks [102,144].
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Algorithm 1 : Growing Ternary Feature Masks

Input: ternary mask m for each task and layer
Input: s number of features to add per layer
Require: Network with L layers
Require: Tasks 1, . . . ,T , current task t > 1
# Loop for each layer
for l = 1, . . . ,L

old_size ← current_output_size(l )
new_size ← old_size + sl

# For each previous task
for k = 1, . . . , t−1

mk,l [old_size:new_size] ← 0
end for
# For the current task
mt ,l [0:old_size] ← 1
mt ,l [old_size:new_size] ← 2

end for

3.3.5 Ternary Mask Implementation
The formulation of our proposed method in Sec. 3.3.2 states that we can combine both
masks mt and nt into a ternary mask. In order to make the implementation easier
and more efficient, this is done by creating a ternary mask that is set to be state 2 for
all features at task 1. This means that the first task will work as a normal network
that allows for learning the task at hand as if we were using fine-tuning. Then, when
moving to task 2, we will grow the network and add new features. The masks for task
1 associated with the new features will be set to state 0, therefore these are not used
when evaluating nor are they learnable for task 1. The masks for task 2 will then be
created by setting the previous existing features to state 1 and the new added features
to state 2. This would allow the features with state 1 to be used during the forward
pass for mask nt=2, while the features with state 2 will contribute to both forward
pass for mask nt=2 and backward pass for mask mt=2 (using Eq. 3.6). This process is
explained in Algorithm 1.

3.3.6 A note on choosing expansion rates
The continual learning philosophy states that data from previous tasks should not be
used when learning new ones; only data of the current task can be used in each training
session. It is also common in machine learning to use a part of the training set as
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Figure 3.4 – Network growth with ternary feature masks over three tasks.

validation in order to choose the best hyper-parameters. Therefore, when learning
each task, a validation set of that specific task at hand can be used to train the network
avoiding over-fitting, but no other data can be used (neither from test nor from other
previous or future tasks). It is important to state that we strictly comply to these rules
in the experiments we propose.

As explained in Section 3.3.4, our proposed approach can be expanded as needed
in order to learn the new tasks without having to change the connections from previous
tasks. However, this flexibility of choosing how many features will be added to each
layer can easily become a rabbit-hole of architecture optimization. Because of that,
we decide to propose a simple setup for how we apply our proposed approach to
be comparable to the other state-of-the-art. We take the maximum layer size for all
approaches to be the same as the VGGnet or AlexNet architectures for the experiments
in the following Section 3.4. This way, all approaches will have a similar number of
parameters.

The differences between Figs. 3.2 and 3.3 are further explained in Fig. 3.4 During
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the first task, the only used features are those that have a grey-border in them. This
means that for the two shown layers, task 1 is learned by using 8 features (with 12
connections). Once task 2 arrives, we fix the grey-border features and expand the
network with the green-border ones. The new task then uses the existing network and
expands it with 5 features (with 24 new connections). The masks for the green-border
features are set to unused for masks of task 1, while they are learnable for task 2.
Finally, as task 3 comes, 5 features are also added (with 36 new connections). Masks
corresponding to the new features are set to unused for tasks 1 and 2, while set to
learnable for task 3. This way of expanding the network also shows that as we learn
more tasks, more knowledge is available from previous ones. This opens the possibility
of having to add less and less features over time since the addition of each feature
creates more connections to learn. In practice, one can imagine that when learning new
tasks that are very similar to previous ones, no new features will have to be added and
the current network knowledge and a specific head for the task will be enough. Further
research and analysis on the specific details for each layer expansion and architecture
is left for future work.

3.4 Experimental results
In this section we report on a range of experiments to quantify the effectiveness of our
proposed approach and compare with other state-of-the-art methods and baselines.

3.4.1 Experimental Setup

Datasets. We evaluate our approaches on a larger, lower resolution dataset (Tiny
ImageNet ILSVRC2012 [36]), on a large-scale dataset (ImageNet [143]) and some fine-
grained classification datasets: Oxford 102 Flowers [120], CUB-200-2011 Birds [170]
and Stanford Actions [180]. Statistics over those datasets are summarized in Table 3.3.
For all experiments we take a fixed random set of 10% of images for validation. The
validation set is equally distributed among the number of classes and fixed for each
experiment to ensure the fairness of the comparison. Since the test set is not labelled
for ImageNet ILSVRC2012, we use the validation set for test instead.

Tiny ImageNet is a 64×64×3 resized version of ImageNet with 200 of the classes.
ImageNet uses 256×256×3 inputs that use random cropping to 224×224×3 during
training for data augmentation. In the case of Birds we resize the bounding box
annotations of the objects to 224×224×3 for all splits. We do the same for Actions but
without using the bounding box annotations. For Flowers we resize to 256×256×3 and
also do data augmentation by random cropping 224×224×3 patches during training
and using the central crop for evaluation. In all experiments we perform random
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horizontal flips during training for data augmentation.
We decide to not do experiments on permuted MNIST since they have been shown

to not allow a fair comparison between different approaches [83]. The MNIST data
contains a too large amount of zeros on each input, which leads to an easy identification
of the important weights that can be frozen so that they do not overlap with the other
tasks. Furthermore, the MNIST data might be too simple to represent more realistic
scenarios. We do not consider other low resolution datasets than Tiny ImageNet for
the same reason.

The semantically similar splits used for the experiments with Tiny ImageNet are
grouped as described in Table 3.4.
Network architectures. For Tiny ImageNet we use VGG-16, which has been shown
to provide high performance [157]. Since Tiny ImageNet is low resolution, the last
max-pool layer and the last three convolutional layers from the feature extractor
are removed. For ImageNet and the fine-grained datasets we use AlexNet [78]. No
pretrained weights are used and the models are trained from scratch using only samples
from the training set. All approaches except ours have access to the full network from
the beginning. However, our proposed TFM starts with a network that is smaller than
the proposed ones at each layer (reduced number of output filters). Then, it grows as
explained in Sec. 3.3.4 as more features are added every time a new task is learned. We
limit the growth of the network to the total size of the one used by all other approaches.
Therefore, at the end of learning all tasks, all approaches will have had access to the
same amount of network capacity besides the extra parameters or regularizers that
each method requires (see Caption in Table 3.1).
Training details. All experiments are trained using backpropagation with plain
Stochastic Gradient Descent following a similar setup to HAT [153]. With a batch
size of 64, learning rate starts at 0.05, decaying by a factor of 3 when 5 consecutive
epochs have no improvement on the validation loss, until either the learning rate is
reduced below 10−4 or 200 epochs have passed. Data splits, task sequence, data loader

Dataset #Train #Eval #Classes

Tiny ImageNet [36] 100,000 10,000 200
ImageNet ILSVRC2012 [143] 1,280,861 50,000 1000

Oxford Flowers [120] 2,040 6,149 102
CUB-200-2011 Birds [170] 5,994 5,794 200

Stanford Actions [180] 4,000 5,532 40

Table 3.3 – Summary of datasets used.
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Task Semantic group Classes

1 Animals scorpion, black widow, tarantula, spider web, centipede, trilobite,
grasshopper, stick insect, cockroach, mantis, ladybug, dragonfly,
monarch butterfly, sulphur butterfly, fly, bee, goose, black stork, king
penguin, albatross.

(flying & insects)

2 Artifacts abacus, binoculars, candle, chain, chest, compass, dumbbell, nail,
hourglass, lampshade, pill bottle, computer keyboard, acorn, plunger,
syringe, teddy bear, torch, comic book, remote control, umbrella.

(smaller)

3 Music, Sport basketball, punching bag, rugby ball, scoreboard, stopwatch,
volleyball, CD player, drumstick, iPod, oboe, organ, refrigerator, cask,
plate, wooden spoon, teapot, frying pan, beaker, bucket, dining table.

and Kitchen

4 Animals brown bear, red panda, koala, pig, ox, bison, bighorn sheep, gazelle,
dromedary, elephant, orangutan, chimpanzee, baboon, cougar, lion,
fire salamander, bullfrog, tailed frog, alligator, boa constrictor.

(land)

5 Artifacts altar, maypole, bannister, flagpole, fountain, parking meter,
pay-phone, pole, cash machine, birdhouse, bathtub, rocking chair,
potter’s wheel, sewing machine, space heater, turnstile, memorial
tablet, desk, vestment, reel.

(bigger)

6 Food water jug, wok, guacamole, ice cream, lollipop, pretzel, cauliflower,
bell pepper, mashed potato, mushroom, orange, lemon, pomegranate,
banana, meat loaf, pizza, potpie, espresso, soda bottle, beer bottle.

7 Animals dugong, goldfish, jellyfish, brain coral, American lobster, spiny
lobster, sea slug, sea cucumber, guinea pig, snail, slug, poodle,
Chihuahua, Yorkshire terrier, golden retriever, Labrador retriever,
German shepherd, tabby cat, Persian cat, Egyptian cat.

(water & pets)

8 Clothes and academic gown, poncho, apron, backpack, bikini, bow tie, cardigan,
fur coat, gasmask, kimono, military uniform, miniskirt, neck brace,
Christmas stocking, sandal, snorkel, sock, sombrero, sunglasses,
swimming trunks.

wearables

9 Transport bullet train, station wagon, freight car, go-kart, rickshaw, limousine,
lifeboat, moving van, police van, school bus, convertible, trolleybus,
missile, crane, sports car, tractor, gondola, broom, cannon, mower.

10 Buildings barbershop, barn, lighthouse, butcher shop, candy store, water tower,
triumphal arch, suspension bridge, steel arch bridge, viaduct, thatched
roof, cliff dwelling, dam, obelisk, picket fence, cliff, coral reef,
lakeside, seacoast, alp.

and scenes

Table 3.4 – Semantically similar splits for tiny ImageNet.
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shuffle and network initialization are fixed for all approaches given a seed. Following
the results in [34], we use dropout with p = 0.5.
Baselines. Fine-tuning has no extra hyperparameters and simply uses the cross-
entropy loss to learn each task as it comes, without using data from previous tasks
nor avoiding catastrophic forgetting. Joint training breaks the no-revisiting data rule
and learns with data from the current task as well as all the previous tasks, serving as
an upper-bound to compare all approaches. Finally, we propose to use Freezing as a
baseline where we learn the first task and then freeze all layers except the head for the
remaining tasks.
Hyperparameters. Distillation and model-based approaches use hyperparameters
to control the trade-off between forgetting and intransigence on the knowledge of
previous tasks. On top of that, LwF has a temperature scaling hyperparameter for the
cross-entropy loss. From the mask-based models, HAT has a trade-off hyperparameter
too and a maximum for the sigmoid gate steepness. PackNet has a prune percentage
of the layers.

TFM has a growth percentage which is equal for all layers. This percentage is set
on the validation set according to the following protocol. For each new task, several
growth percentages are evaluated without the knowledge of previous or future tasks.
Rather than choosing the growth rate with best performance, we pick the lowest growth
rate which obtains a performance within a margin of the best performance (we set the
margin to be 1.5% for Tiny ImageNet and 0.1% for fine-grained). For ImageNet this
scheme would be computationally demanding and we use a fixed growth schedule,
starting from 55% of the weights for the first task and add 5% for all remaining tasks.
Then, we fix that hyperparameter and we run the final experiment on train and evaluate
on the test set.

3.4.2 Fine-grained datasets
A common setup to evaluate continual learning over a number of learning sessions are
disjoint splits (tasks) inside the same classification dataset. However, some approaches
report results on only two tasks [43, 72, 83], which becomes too similar to transfer
learning setups and does not allow to evaluate the true potential of continual learning.
Because of that, we choose to evaluate our proposed approach and its variations on
more than two tasks. It should be noted that we start training from scratch resulting in
lower scores than reported by papers which train from a pretrained network. However,
because of the large number of classes in ImageNet (including a subset of Birds) we
consider training from scratch provides a more natural setting for continual learning.

We compare our proposed method (TFM) and an ablation version of it without the
task-specific feature normalization (TFM w/o FN) with the mask-based approaches
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(HAT, PackNet), a well-known model-based approach (EWC) and the baselines (Fine-
tuning, Freezing, Joint) on three fine-grained datasets (Flowers, Birds, Actions). As
explained earlier, to make the comparison fair our approach will learn the first task on
a smaller network and then grow and learn the next tasks with a maximum growth the
size of the network other approaches use.

As shown in Table 3.5, our proposed approach outperforms the other approaches
for the three datasets. For these datasets only on Flowers a considerable performance
gain is observed when adding task-specific feature normalization. Only PackNet
manages to obtain competitive results. However, on both Birds and Flowers TFM
does significantly better, while having a much lower memory overhead than PackNet
(0.2Mb versus 27.3Mb respectively). It is also interesting how well Freezing works as
a non-forgetting baseline.

3.4.3 Task-similarity effects on Tiny ImageNet
Next we experiment on several ten-task splits of Tiny ImageNet. We compare our
proposed approach (TFM) with two distillation methods with low overhead (LFL [72],
LwF [87]), two of the best known model-based methods (EWC [74], IMM [83]) and
two of the most recent mask-based methods (HAT [153], PackNet [102]). We also
compare the approaches to three baselines (Fine-tuning, Freezing, Joint). The setup
uses the VGGnet introduced in Sec. 3.4.1. The model is trained from scratch on 10
tasks with the same number of classes. We propose to evaluate those approaches under
the same conditions on a random Tiny ImageNet partition (see Table 3.6) and on a
semantically similar partition (see Table 3.7).

In the case of the random splits (see Table 3.6), most methods have quite good
results on the last tasks with minor to no forgetting. LFL, IMM and EWC provide
some improvement over Fine-tuning. LwF has a very good performance due to tasks
being quite similar. All mask-based models have a very similar performance, with
PackNet having the better performance.

In the semantically similar splits (see Table 3.7), which has a more different
distribution for each task than the random case, some approaches have difficulties
avoiding catastrophic forgetting as the sequence gets longer. It is interesting to see,
that the good results of LwF on the random split are not repeated when we have
semantic splits. As observed before, LwF fails when there exists large changes in the
distributions of the features between the tasks [6]. Mask-based models outperform all
other approaches again, with TFM having the better performance.

Both Tables 3.6 and 3.7 show accuracy and forgetting of each task after training
the 10 tasks, and thus having learned the 200 Tiny ImageNet classes. Results show
that mask-based approaches achieve better overall performance than other approaches
on both splits, getting close to the joint training baseline. Freezing the network after
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Oxford 102 Flowers
Method Task 1 Task 2 Task 3 Task 4 Avg.

Fine-tuning 10.0 (-20.3) 5.1 (-17.1) 6.7 (-13.6) 17.3 (0.0) 9.8
Freezing 30.3 (0.0) 39.8 (0.0) 32.0 (0.0) 33.1 (0.0) 33.8

Joint 54.6 (+24.3) 58.9 (+11.5) 57.7 (+4.5) 47.0 (0.0) 54.6

EWC [74] 12.1 (-18.2) 11.6 (-38.1) 9.3 (-24.4) 25.8 (0.0) 14.7
HAT [153] 17.2 (-12.7) 19.3 (-28.5) 28.6 (+1.4) 31.6 (0.0) 24.2

PackNet [102] 32.0 (0.0) 53.7 (0.0) 43.6 (0.0) 37.9 (0.0) 41.8
TFM w/o FN 36.4 (0.0) 54.1 (0.0) 38.6 (0.0) 39.0 (0.0) 42.0

TFM 36.4 (0.0) 53.8 (0.0) 45.5 (0.0) 37.6 (0.0) 43.3

CUBS 200 Birds
Method Task 1 Task 2 Task 3 Task 4 Avg.

Fine-tuning 7.4 (-30.2) 2.6 (-30.0) 29.7 (-3.4) 43.1 (0.0) 20.7
Freezing 37.6 (0.0) 35.1 (0.0) 35.4 (0.0) 38.4 (0.0) 36.6

Joint 48.7 (+11.1) 52.1 (+6.0) 50.7 (+1.5) 51.9 (0.0) 50.8

EWC [74] 16.2 (-21.4) 19.0 (-21.2) 24.2 (-14.0) 41.7 (0.0) 25.3
HAT [153] 18.7 (-1.8) 19.4 (-0.4) 28.5 (-0.6) 31.2 (0.0) 24.4

PackNet [102] 35.3 (0.0) 42.8 (0.0) 44.4 (0.0) 45.9 (0.0) 42.1
TFM w/o FN 42.9 (0.0) 44.1 (0.0) 48.3 (0.0) 49.1 (0.0) 46.1

TFM 42.9 (0.0) 43.1 (0.0) 49.9 (0.0) 48.8 (0.0) 46.2

Stanford 40 Actions
Method Task 1 Task 2 Task 3 Task 4 Avg.

Fine-tuning 24.4 (-10.5) 26.5 (-7.7) 17.6 (-16.8) 28.9 (0.0) 24.4
Freezing 34.9 (0.0) 29.4 (0.0) 30.1 (0.0) 30.5 (0.0) 31.2

Joint 45.7 (+10.8) 40.3 (+4.8) 43.2 (-1.1) 40.2 (0.0) 42.4

EWC [74] 24.2 (-10.7) 28.2 (-2.0) 25.2 (-5.6) 34.3 (0.0) 28.0
HAT [153] 25.7 (-1.0) 25.5 (-2.7) 30.1 (-2.1) 34.4 (0.0) 28.9

PackNet [102] 32.5 (0.0) 32.9 (0.0) 36.7 (0.0) 34.3 (0.0) 34.1
TFM w/o FN 35.3 (0.0) 38.3 (0.0) 39.2 (0.0) 38.0 (0.0) 37.7

TFM 35.3 (0.0) 37.2 (0.0) 42.0 (0.0) 37.2 (0.0) 38.0

Table 3.5 – Comparison with the state-of-the-art. Accuracy after learning 4 tasks on
AlexNet from scratch. Number between brackets indicates forgetting.
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Tiny ImageNet - classes randomly split

Approach Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Avg.
(1-20) (21-40) (41-60) (61-80) 81-100) (101-120) (121-140) (141-160) (161-180) (181-200) all

Fine-tuning 38.1 (-13.6) 36.0 (-13.7) 43.2 (-16.0) 44.1 (-18.6) 45.5 (-12.6) 54.5 (-13.6) 50.3 (-15.7) 50.5 (-13.4) 51.0 (-13.1) 61.2 (0.0) 47.4
Freezing 51.7 (0.0) 36.4 (0.0) 39.5 (0.0) 41.7 (0.0) 42.9 (0.0) 46.2 (0.0) 45.7 (0.0) 41.1 (0.0) 41.2 (0.0) 40.9 (0.0) 42.7

Joint 58.6 (+6.9) 53.9 (+8.3) 59.1 (+3.7) 61.8 (+7.9) 57.7 (+2.9) 66.0 (+2.6) 64.0 (+3.1) 60.2 (+5.9) 57.9 (+1.0) 53.8 (0.0) 59.3

LfL [72] 32.4 (-18.9) 35.4 (-17.0) 43.4 (-15.7) 44.1 (-20.2) 45.0 (-15.0) 55.9 (-14.5) 49.4 (-16.1) 51.1 (-12.4) 58.6 (-8.0) 61.4 (0.0) 47.7
LwF [87] 45.1 (-6.6) 45.5 (-2.2) 53.5 (-4.6) 57.6 (-2.6) 56.2 (0.0) 65.7 (+0.4) 63.5 (-0.3) 58.4 (-1.9) 59.6 (-0.3) 58.5 (0.0) 56.4
IMM [83] 50.6 (-1.1) 38.5 (+0.3) 44.7 (-0.1) 49.2 (+0.3) 47.5 (+1.1) 51.9 (-1.4) 53.7 (-0.6) 47.7 (-0.4) 50.0 (-2.2) 48.7 (0.0) 48.3
EWC [74] 33.9 (-17.4) 35.4 (-14.4) 43.6 (-15.4) 46.7 (-15.9) 49.5 (-9.1) 52.5 (-15.8) 47.8 (-20.0) 50.2 (-13.8) 56.6 (-9.9) 61.4 (0.0) 47.8
HAT [153] 46.8 (-0.2) 49.1 (+0.8) 55.8 (+0.2) 58.0 (-0.2) 53.7 (+0.3) 61.0 (+0.1) 58.7 (0.0) 54.0 (-0.1) 54.6 (-0.1) 50.3 (0.0) 54.2

PackNet [102] 52.5 (0.0) 49.7 (0.0) 56.5 (0.0) 59.8 (0.0) 55.0 (0.0) 64.7 (0.0) 61.7 (0.0) 55.9 (0.0) 55.2 (0.0) 52.5 (0.0) 56.4

TFM w/o FN 49.6 (0.0) 47.2 (0.0) 54.8 (0.0) 58.2 (0.0) 55.0 (0.0) 64.0 (0.0) 59.3 (0.0) 53.6 (0.0) 55.5 (0.0) 51.9 (0.0) 54.9
TFM 48.2 (0.0) 47.7 (0.0) 56.7 (0.0) 58.2 (0.0) 54.8 (0.0) 62.2 (0.0) 61.5 (0.0) 57.3 (0.0) 58.5 (0.0) 54.8 (0.0) 56.0

Table 3.6 – Comparison with the state-of-the-art. Tiny ImageNet on VGGnet from
scratch. Accuracy of each task after learning all tasks. Number between brackets
indicates forgetting. Classes are randomly split and fixed for all approaches.

Tiny ImageNet - classes semantically split

Approach Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Avg.
fly anim. small artif. hobbies land anim. big artif. food pets/aquatic wearables transport scenes all

Fine-tuning 17.1 (-34.2) 19.7 (-17.7) 20.9 (-24.5) 16.7 (-30.5) 20.8 (-28.7) 29.2 (-22.0) 30.7 (-21.0) 25.2 (-17.8) 40.2 (-18.9) 59.9 (0.0) 28.0
Freezing 51.3 (0.0) 28.5 (0.0) 27.2 (0.0) 29.6 (0.0) 29.0 (0.0) 35.0 (0.0) 31.7 (0.0) 23.9 (0.0) 37.0 (0.0) 34.7 (0.0) 32.8

Joint 55.0 (+3.7) 41.9 (+7.9) 46.2 (+6.3) 44.9 (+4.9) 44.7 (+7.1) 49.0 (+4.8) 46.6 (+4.9) 36.4 (+4.7) 51.2 (+5.7) 51.1 (0.0) 46.7

LfL [72] 17.2 (-34.1) 18.4 (-21.0) 21.5 (-24.0) 18.7 (-30.5) 20.2 (-28.6) 27.4 (-23.9) 28.4 (-22.3) 26.0 (-18.4) 41.2 (-17.6) 59.1 (0.0) 27.8
LwF [87] 34.0 (-13.9) 18.4 (-14.5) 32.6 (-0.8) 36.5 (-5.6) 40.1 (-0.5) 43.1 (-2.5) 41.8 (-1.3) 32.7 (-1.1) 50.3 (-0.5) 48.1 (0.0) 37.8
IMM [83] 42.3 (-9.0) 28.8 (+0.1) 26.5 (-3.1) 30.7 (-3.6) 32.5 (-3.1) 28.8 (-13.0) 35.4 (-6.2) 27.3 (-3.7) 43.6 (-4.9) 42.7 (0.0) 33.9
EWC [74] 20.2 (-31.1) 18.5 (-19.3) 20.2 (-26.3) 20.9 (-28.9) 24.7 (-22.8) 25.5 (-27.5) 28.7 (-23.4) 23.0 (-19.6) 39.8 (-20.2) 56.8 (0.0) 27.8
HAT [153] 44.6 (+0.4) 34.8 (+0.2) 40.8 (-0.1) 45.4 (+0.4) 40.8 (-2.5) 49.8 (0.0) 44.9 (-0.2) 33.1 (-1.7) 51.9 (0.0) 53.8 (0.0) 44.0

PackNet [102] 47.0 (0.0) 35.7 (0.0) 42.7 (0.0) 48.6 (0.0) 45.8 (0.0) 48.1 (0.0) 45.9 (0.0) 38.3 (0.0) 51.2 (0.0) 49.1 (0.0) 45.2

TFM w/o FN 46.4 (0.0) 34.7 (0.0) 38.8 (0.0) 44.1 (0.0) 42.0 (0.0) 48.3 (0.0) 46.5 (0.0) 35.7 (0.0) 52.0 (0.0) 54.8 (0.0) 44.3
TFM 46.4 (0.0) 37.2 (0.0) 40.4 (0.0) 44.1 (0.0) 44.2 (0.0) 48.2 (0.0) 46.4 (0.0) 37.5 (0.0) 53.5 (0.0) 54.7 (0.0) 45.3

Table 3.7 – Comparison with the state-of-the-art. Tiny ImageNet on VGGnet from
scratch. Accuracy of each task after learning all tasks. Number between brackets indi-
cates forgetting. Classes are split by semantic closeness and fixed for all approaches.

Tiny ImageNet - larger first task

Approach Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Avg.
(1-110) (111-120) (121-130) (131-140) (141-150) (151-160) (161-170) (171-180) (181-190) (191-200) (111+)

Finetuning 18.4 (-33.2) 39.6 (-34.4) 56.6 (-21.0) 58.0 (-23.8) 44.6 (-32.8) 63.0 (-21.8) 51.0 (-27.2) 51.4 (-19.0) 70.4 (-14.0) 80.0 (0.0) 57.2
Freezing 51.6 (0.0) 68.6 (0.0) 70.2 (0.0) 77.9 (0.0) 68.1 (0.0) 78.8 (0.0) 72.9 (0.0) 64.2 (0.0) 76.7 (0.0) 70.2 (0.0) 69.9

LfL [72] 16.7 (-33.9) 58.3 (-6.6) 59.5 (-2.9) 64.6 (-2.2) 58.2 (-1.4) 64.7 (-0.6) 63.4 (+0.5) 54.4 (+0.1) 61.0 (0.0) 56.5 (0.0) 60.0
LwF [87] 10.8 (-40.0) 29.5 (-43.5) 44.6 (-30.4) 61.2 (-21.2) 55.5 (-15.1) 73.3 (-8.8) 71.7 (-3.5) 62.3 (-1.8) 77.8 (-2.2) 74.3 (0.0) 61.1
IMM [83] 26.1 (-26.3) 50.4 (-13.8) 59.5 (-19.3) 61.6 (22.8) 54.0 (-21.8) 63.2 (-22.5) 58.2 (-19.9) 56.0 (-13.9) 75.0 (-6.7) 79.9 (0.0) 62.0
EWC [74] 51.8 (-0.7) 24.8 (-0.1) 43.3 (-1.2) 61.8 (-0.5) 55.5 (-0.3) 70.8 (-0.7) 67.6 (-0.1) 53.8 (-0.6) 70.1 (-1.2) 61.7 (0.0) 56.6
HAT [153] 46.1 (0.0) 60.1 (-0.1) 68.2 (+0.2) 73.2 (+0.1) 63.2 (+0.1) 76.2 (+0.1) 67.4 (0.0) 58.1 (-0.1) 73.2 (0.0) 59.1 (0.0) 66.5

PackNet [102] 47.6 (0.0) 74.0 (0.0) 74.2 (0.0) 79.0 (0.0) 65.2 (0.0) 76.2 (0.0) 69.4 (0.0) 61.4 (0.0) 73.4 (0.0) 64.8 (0.0) 70.8

TFM w/o FN 49.6 (0.0) 69.8 (0.0) 71.1 (0.0) 79.8 (0.0) 68.4 (0.0) 78.4 (0.0) 72.9 (0.0) 64.8 (0.0) 75.9 (0.0) 70.2 (0.0) 72.4
TFM 49.9 (0.0) 70.4 (0.0) 71.4 (0.0) 80.8 (0.0) 70.5 (0.0) 79.4 (0.0) 73.9 (0.0) 64.4 (0.0) 76.5 (0.0) 72.1 (0.0) 73.3

Table 3.8 – Comparison with the state-of-the-art. Tiny ImageNet on VGGnet from
scratch. Accuracy of each task after learning all tasks. Numbers between brackets
indicates forgetting. Average on the smaller tasks 2 to 10.
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ImageNet - classes randomly split

Approach Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Avg.
(1-100) (101-200) (201-300) (301-400) (401-500) (501-600) (601-700) (701-800) (801-900) (901-1000) all

Finetuning 25.8 (-43.0) 32.2 (-36.2) 31.4 (-35.3) 37.8 (-27.7) 39.1 (-27.7) 43.7 (-25.7) 46.0 (-22.8) 50.0 (-16.5) 53.4 (-12.1) 63.7 (0.0) 42.3
Freezing 68.8 (0.0) 53.5 (0.0) 52.0 (0.0) 51.2 (0.0) 51.3 (0.0) 53.9 (0.0) 52.2 (0.0) 53.9 (0.0) 51.7 (0.0) 51.2 (0.0) 54.0

LwF [87] 27.6 (-41.2) 37.2 (-19.9) 42.0 (-22.6) 44.4 (-20.9) 50.5 (-14.1) 56.6 (-11.3) 57.9 (-9.1) 61.2 (-5.0) 62.0 (-1.3) 62.7 (0.0) 50.2
IMM [83] 68.5 (-0.3) 53.6 (0.0) 52.1 (0.0) 51.7 (-0.1) 52.5 (+0.3) 55.5 (+0.2) 54.7 (+0.1) 53.5 (0.0) 54.2 (+0.1) 51.8 (0.0) 54.8
EWC [74] 21.8 (-47.0) 26.5 (-41.7) 29.5 (-36.5) 32.9 (-32.6) 35.6 (-30.9) 40.4 (-28.1) 40.0 (-26.2) 44.7 (-20.7) 47.8 (-16.2) 61.1 (0.0) 38.0

PackNet [102] 67.5 (0.0) 65.8 (0.0) 62.2 (0.0) 58.4 (0.0) 58.6 (0.0) 58.7 (0.0) 56.0 (0.0) 56.5 (0.0) 54.1 (0.0) 53.6 (0.0) 59.1
TFM (Ours) 63.6 (0.0) 62.2 (0.0) 60.1 (0.0) 61.6 (0.0) 62.6 (0.0) 64.5 (0.0) 64.0 (0.0) 63.7 (0.0) 63.0 (0.0) 59.9 (0.0) 62.5

Table 3.9 – Comparison with the state-of-the-art. ImageNet on AlexNet from scratch.
Accuracy of each task after learning all tasks. Number between brackets indicates
forgetting.

the first task and learning only the head for the remaining tasks works better in the
semantically similar splits than in the random splits. Furthermore, in Table 3.7, the
Freezing baseline offers better results than LFL, and is better or competitive enough
with the model-based approaches.

3.4.4 Effect of starting-task size on Tiny ImageNet
We propose an experimental setup where the first task of Tiny ImageNet uses 110
classes (55%) while the remaining 9 tasks use 10 classes (5%) each. This allows
most of the methods to start with a rich representation after learning the first task. In
this setup, comparing existing methods with the Freezing baseline is interesting. In
Table 3.8 we show the results of this scenario. Note that in the last column we average
only over the smaller tasks (T2-T10). EWC shows little forgetting, keeping knowledge
while learning new tasks. However, keeping the first task from forgetting causes the
model to become too rigid and learn the rest of the tasks with more difficulty and
having a lower overall performance. Trying to lower the trade-off hyperparameter
shows a stronger forgetting of the first tasks and causes severe catastrophic forgetting.
Distillation approaches try to keep representations the same as new tasks are learned.
However, small changes in the weights cause forgetting later into the sequence. HAT
works fine, but with a limited capacity to make changes, ends up not learning the
new tasks as easily. Freezing the network after the first task seems to be one of the
best options in this setup, since the rich representation of the first 110 classes is a
good starting point to learn the rest of the tasks with a simple classifier. We therefore
advocate that the Freezing baseline should always be included in continual learning
comparisons since it often provides a much harder baseline than Fine-tuning. Only
PackNet and TFM are able to improve over that baseline even if they start from a
smaller capacity, with TFM having the best results.
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Figure 3.5 – Per task accuracy for ImageNet on AlexNet from scratch.

3.4.5 ImageNet
Most of the compared task-aware approaches have not been evaluated using a large-
scale dataset such as ImageNet. We therefore compare our proposed method (TFM)
with some of those state-of-the-art approaches. In Table 3.9 we can see that TFM
outperforms all the other approaches at the end of learning ImageNet split into 10
tasks of random classes. An evolution of the results for each task is shown in Fig. 3.5.
LwF does well when learning each new task with the help of the representation of the
previous tasks. However, as more tasks are included, the older tasks start forgetting
more. IMM (mode) has the opposite effect, it focuses on intransigence and tries to
keep the knowledge of the older tasks, running out of capacity for the newer tasks.
This allows for the approach to not forget much and even have a small backward
transfer, but at the cost of performing worse with newer tasks. EWC has one of the
worse performances, possibly due to the difficulty of having a good approximation of
the FIM when there is so many classes per task. Both PackNet and TFM have a good
overall performance with non-forgetting, and rely on the amount of capacity of the
network more than the other approaches. As shown in Fig. 3.6, PackNet has a better
performance during the first three tasks, taking advantage of the compression power
of the pruning and fine-tuning. However, as the remaining capacity of the network
gets smaller, TFM is capable of growing at a more scalable pace, getting a better
performance on the remaining seven tasks and achieving the best results overall.

3.4.6 Comparison of memory usage
Previous experiments show that mask-based approaches are better at overcoming
catastrophic forgetting on task-aware settings. However, unlike most distillation and
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Figure 3.6 – Average accuracy progress after learning each task from ImageNet on
AlexNet from scratch.

model-based approaches, they make use of some overhead memory during inference.
In Fig. 3.7 we visualize (in log scale) the absolute memory overhead used by the
mask-based approaches on the ImageNet experiment in Sec 3.4.5. Considering that
the network used is around 220Mb, we can observe that the approaches that focus on
using embeddings or masks on the features (HAT, TFM) have a negligible overhead
in comparison to the weight-masked approaches (PackNet). It should also be noticed
that mask-based approaches keep the same overhead during training, while distillation
and model-based approaches usually duplicate the network size at least. In conclusion,
our method has similar memory usage as HAT, however, we outperform this method
on all proposed experiments, and our method is significantly more memory efficient
than PackNet whose performance we either match or outperform.

3.5 Conclusions
For many practical applications, it is important that network accuracy on tasks does
not deteriorate when learning new tasks. Therefore, in this chapter, we propose
a new method for continual learning which does not suffer from any forgetting.
Differently than previous methods which apply masks to the weights, we propose
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Figure 3.7 – Log scale overhead growth for ImageNet on AlexNet.

to move the mask to the features (activations). This greatly reduces the number of
extra parameters which are added per task and reduces the overhead of the network
which other approaches incur. In addition, we propose to apply a task-specific feature
normalization of features, which allows adjusting previously learned features to new
tasks. In ablation experiments this was found to improve results of the ternary feature
masks. Furthermore, when compared to a wide range of other continual learning
techniques, our method consistently outperforms those on a variety of datasets.
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4 Class-incremental learning*

4.1 Introduction
Incremental learning, also often referred to as continual or lifelong learning, aims
to develop artificially intelligent systems that can continuously learn to address new
tasks from new data while preserving knowledge learned from previously learned
tasks [135, 164]. In most incremental learning (IL) scenarios, tasks are presented to
a learner in a sequence of delineated training sessions during which only data from
a single task is available. After each training session, the learner should be capable
of performing all previously seen tasks on unseen data. The biological inspiration
for this learning model is clear, as it reflects how humans acquire and integrate new
knowledge: when presented with new tasks to learn, we leverage knowledge from
previous ones and integrate newly learned knowledge into previous tasks [44].

This contrasts markedly with the prevailing supervised learning paradigm in which
labeled data for all tasks is jointly available during a single training session of a deep
network. Incremental learners only have access to data from a single task at a time
while being evaluated on all learned tasks so far. The main challenge in incremental
learning is to learn from data from the current task in a way that prevents forgetting
of previously learned tasks. The naive approach of fine-tuning, so fruitfully applied
to domain transfer problems, suffers from the lack of data from previous tasks and
the resulting classifier is unable to classify data from them. This drastic drop in
performance on previously learned tasks is a phenomenon known as catastrophic
forgetting [50, 74, 111]. Incremental learning aims to prevent catastrophic forgetting,
while at the same time avoiding the problem of intransigence which inhibits adaptation
to new tasks [24].

In addition to the biological motivations for study, there are numerous practical
advantages to incremental learning. Incremental learners optimize computational
resources better than classical supervised learning. In the classical supervised learning
approach, when presented with new tasks to incorporate into the scope of an artificially
intelligent system, the best (often only) option is to jointly retrain over all tasks,
previous and new. However, in many scenarios data from previous tasks may not be
available due to privacy considerations.

*This chapter is based on a submission to a journal, 2020 [105].
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We adopt the viewpoint on continual learning first proposed along with the iCaRL
approach [135] and the terminology used in [167]. In incremental learning the training
is divided into a sequence of tasks, and in any training session the learner has only
access to the data of the current task (optionally, some methods can consider a small
amount of stored data from previous tasks). Most early methods for incremental
learning considered the scenario, known as task-incremental learning (task-IL), in
which the algorithm has access to a task-ID at inference time. This has the clear
advantage that methods do not have to discriminate between classes coming from
different tasks. More recently, methods have started addressing the more difficult
scenario of class-incremental learning (class-IL),† where the learner does not have
access to the task-ID at inference time, and therefore must be able to distinguish
between all classes from all tasks. In the last few years a wide variety of methods
for class-incremental learning have been proposed, and we believe the time is ripe to
provide a broad overview and experimental comparison of them in one place.

In this chapter we set out to identify the main challenges for class-IL, and we orga-
nize the proposed solutions in three main categories: regularization-based solutions
that aim to minimize the impact of learning new tasks on the weights that are important
for previous tasks; exemplar-based solutions that store a limited set of exemplars to
prevent forgetting of previous tasks; and solutions that directly address the problem of
task-recency bias, a phenomenon occurring in class-IL methods that refers to the bias
towards recently-learned tasks. In addition to an overview of progress in class-IL in
recent years, we also provide an extensive experimental evaluation of existing methods.
We evaluate several of the more popular regularization methods (often proposed for
task-IL), and extend them with exemplars for a more fair comparison to recently
developed methods. In addition, we perform extensive experiments comparing twelve
methods on several scenarios and also evaluate class-IL methods on a new, more
challenging multi-dataset setting. Finally, we are the first to compare these methods
on a wide range of network architectures. We also provide code for our extensible
class-IL evaluation framework that ensures reproducibility of all results.

This chapter is organized as follows. In Sec. 4.2 we describe related work, focusing
mainly on the IL literature not included in the experiments. In Sec. 4.3 we define
class-IL and the main challenges which need to be addressed. In Sec. 4.4 we start by
defining the scope of methods we consider for our experimental evaluation based on a
list of desiderata. Then we introduce the main approaches that have been proposed for
class-IL. In Sec. 4.5, we outline our experimental setup and follow with an extensive
experimental evaluation in Sec. 4.6. In Sec. 4.7 we discuss several emerging trends in
class-IL and then finish with conclusions in Sec. 4.8.

†We do not refer to the scenario where each task only contains a single class, but consider adding a
group of classes for each task.
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4.2 Related work
In this section we broadly review related work from the literature on incremental
learning. Detailed discussion of class-incremental methods specifically covered by
this chapter is deferred until Sec. 4.4.
Existing surveys. The problem of catastrophic forgetting has been acknowledged
for many years. Already in the eighties, McCloskey and Cohen [111] showed that
while human subjects suffered from gradual forgetting of previously learned tasks,
algorithms trained with backpropagation suffered from catastrophic forgetting. Rad-
cliff [134] confirmed this finding on a wider range of tasks trained with backpropaga-
tion. An excellent review on early approaches to mitigating catastrophic forgetting is
by French [44]. This review also discusses how the brain prevents catastrophic forget-
ting and lays out possible solutions for neural network design. With the resurgence of
deep learning from around 2011 [78], after breakthroughs in hardware (GPUs) and
availability of large labeled datasets (like ImageNet [36]), the problem of catastrophic
forgetting quickly gained renewed attention [50, 74]. This led to a surge of work in
incremental learning, continual learning and lifelong learning.

This surge of new research has also resulted in recent surveys on the subject.
Parisi et al. [124] provide an extensive survey on lifelong learning. This review
is especially valuable because of its in-depth discussion of how biological systems
address lifelong learning. They thoroughly discuss biologically-motivated solutions,
such as structural plasticity, memory replay, curriculum and transfer learning. Another
review [84] focuses on continual learning for robotics, and puts special effort into
unifying evaluation methodologies between continual learning for robotics and non-
robotics applications, with the aim of increasing cross-domain progress in continual
learning. These reviews, however, do not provide an experimental performance
evaluation of existing methods in the field.

Some recent surveys do include evaluation of methods. Pfulb and Gepperth [127]
propose a training and evaluation paradigm for task-IL methods. Their evaluations are
limited to two tasks. Lomonaco and Maltoni [94] evaluate several strategies on weight
initialization: random initialization, starting from a pretrained network and starting
from a pretrained but only learning the classifier. De Lange et al. [34] perform an
extensive survey of task-IL with an experimental evaluation, including an analysis of
model capacity, weight decay, and dropout regularization within context of task-IL. In
addition, they propose a framework for continually determining the stability-plasticity
trade-off of the learner – which we also apply in our evaluation. Existing surveys focus
on task-IL, and to the best of our knowledge there is no survey which categorizes and
broadly evaluates class-IL approaches. Given the increased attention to class-IL in
recent years, we think such a survey is timely.
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Task-incremental learning. As discussed in [34], most task-IL methods can be
grouped into families of techniques having similar characteristics. Most regularization-
based and replay-based methods can be applied to both task-IL and class-IL. Those are
described more in depth in Sec. 4.4. Parameter isolation methods are usually applied
to task-IL problems since they become computationally expensive or under-perform
without access to the task-ID.

Mask-based methods, as seen in Chapter 3, reduce or completely eliminate catas-
trophic forgetting by applying masks to each parameter or to each layer’s represen-
tations. However, by learning useful paths for each task in the network structure,
the simultaneous evaluation of all learned tasks is not possible. This forces several
forward passes with different masks, which makes such methods very effective for
task-aware evaluation, but impractical for task-agnostic settings [34, 107]. Piggyback
learns masks on network weights while training a backbone [101]. PackNet learns
weights and then prunes them to generate masks [102]. HAT [153] applies attention
masks on layer activations to penalize modifications to those that are important for
a specific task. TFM [107], our work detailed in Chapter 3, applies masks on the
activations during training so that weights can be reused but not modified if they
relate to already learned tasks. DAN [142] combines existing filters to learn filters for
new tasks. Finally, PathNet [43] learns selective routing through the weights using
evolutionary strategies.

Architecture growing methods dynamically increase the capacity of the network
to reduce catastrophic forgetting. They rely on promoting a more intransigent model
capable of maintaining previous task knowledge, while extending that model in order
to learn new tasks. This makes some of these methods impractical when the task-
ID is not known, or adds too many parameters to the network which makes them
unfeasible for large numbers of tasks. EG [6] duplicates the model for each new task
in order completely eliminate forgetting. PNN [144] duplicates each layer and adds
lateral connections between duplicates for each task. Old weights are fixed, allowing
access to that information while learning the new task. However, at each task the
networks grows quadratically. To solve that issue, P&C [151] proposes duplicating
the network only once to keep the number of parameters fixed, and use Elastic Weight
Consolidation (EWC [74]) to mitigate forgetting. RCL [178] adaptively expands each
layer of the network and uses an RNN controller to determine the number of filters to
add for each task. In LtG [85], the authors propose an architecture search approach. A
network structure optimization component allows each individual layer to be reused,
extended or duplicated, while a learning component fine-tunes parameters.
Online learning. Online methods are based on streaming frameworks where learn-
ers are allowed to observe each example only once instead of iterating over a set of
examples in a training session [125]. Instances are non-i.i.d and usually have temporal
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correlation. Lopez-Paz [97] establishes definitions and evaluation methods for this
setting and describes GEM, which uses a per-task exemplar memory to constrain gra-
dients so that the approximated loss from previous tasks is not increased. A-GEM [26]
improves on GEM in efficiency by constraining based on the average of gradients from
previous class exemplars. However, the authors of [27] show that simply training on
the memorized exemplars, similar to the well-established technique in reinforcement
learning [115], outperforms previous results. GSS [7] performs gradient-based ex-
emplar selection based on the GEM and A-GEM procedure to allow training without
knowing the task boundaries. MIR [5] trains on the exemplar memory by selecting
exemplars that will have a bigger loss increase after each training step. In [140] the
memory is used to store discrete latent embeddings from a Variational Autoencoder
that allows generation of previous task data for training. MER [139] combines experi-
ence replay with a modification of the meta-learning method Reptile [119] to select
replay samples which minimize forgetting.
Variational continual learning. Variational continual learning is based on the
Bayesian inference framework. VCL [118] proposes to merge online and Monte Carlo
variational inference for neural networks yielding variational continual learning. It is
general and applicable to both discriminative and generative deep models. VGL [41]
introduces Variational Generative Replay, a variational inference generalization of
Deep Generative Replay (DGR), which is complementary to VCL. UCL [3] proposes
uncertainty-regularized continual learning based on a standard Bayesian online learn-
ing framework. It gives a fresh interpretation of the Kullback-Leibler (KL) divergence
term of the variational lower bound for the Gaussian mean-field approximation case.
FBCL [29] proposes to use Natural Gradients and Stein Gradients to better estimate
posterior distributions over the parameters and to construct coresets using approxi-
mated posteriors. IUVCL [161] proposes a new best-practice approach to mean-field
variational Bayesian neural networks. These methods normally consider only the
task-aware setting. BGD [186] updates the posterior in closed form and that does not
require a task-ID.
Pseudo-rehearsal methods. In order to avoid storing exemplars and privacy issues
inherent in exemplar rehearsal, some methods learn to generate examples from previ-
ous tasks. DGR [154] generates those synthetic samples using an unconditional GAN.
An auxiliary classifier is needed to assign ground truth labels to each generated sample.
An improved version is proposed in MeRGAN [175], where a label-conditional GAN
and replay alignment are used. DGM [122] combines the advantages of conditional
GANs and synaptic plasticity using neural masking. A dynamic network expansion
mechanism is introduced to ensure sufficient model capacity. Lifelong GAN [187]
extends image generation without catastrophic forgetting from label-conditional to
image-conditional GANs. As an alternative to exemplar rehearsal, some methods
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perform feature replay [73, 177], which need a fixed backbone network to provide
good representations.
Incremental Learning beyond image classification. Shmelkov et al. [155] propose
to learn object detectors incrementally. They use Fast-RCNN [46] as the network and
propose distillation losses on both bounding box regression and classification outputs.
Additionally, they choose to distill the region proposal with the lowest background
scores, which filters out most background proposals. Hao et al. [55] extend Faster-
RCNN [137] with knowledge distillation. Similarly, Michieli et al. [114] propose to
distill both on the output logits and on intermediate features for incremental semantic
segmentation. Recently, Cermelli et al. [23] model the background by revisiting
distillation-based methods and the conventional cross entropy loss. Specifically,
previous classes are seen as background for the current task and current classes are
seen as background for distillation. Incremental semantic segmentation has also been
applied to remote sensing [163] and medical data [123].

Catastrophic forgetting has been mainly studied in feed-forward neural networks.
Only recently the impact of catastrophic forgetting in recurrent LSTM networks was
studied [146]. In this work, they observe that catastrophic forgetting is even more
notable in recurrent networks than feed-forward networks. This is because recurrent
networks amplify small changes of the weights. To address catastrophic forgetting an
expansion layer technique for RNNs was proposed in [32]. A Net2Net technique [28]
was combined with gradient episodic memory in [158]. In addition, they propose a
benchmark of tasks for training and evaluating models for learning sequential problems.
Finally, preventing forgetting for the task of captioning was studied in [35].

4.3 Class-incremental learning
In this section, we define the specifics of the class-incremental learning setup we
consider and discuss the main challenges that class-IL methods must address.

4.3.1 General class-incremental learning setup
Our investigation focuses on class-incremental learning scenarios in which the algo-
rithm must learn a sequence of tasks. By task, we refer to a set of classes disjoint from
classes in other (previous or future) tasks. In each training session the learner only
has access to data from a single task. We optionally consider a small memory that
can be used to store some exemplars from previous tasks. Tasks consist of a number
of classes, and learners are allowed to process the training data of the current task
multiple times during the training session. We do not consider the online learning
setting used in some papers [97] in which each data sample is only seen once.
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More formally, an incremental learning problem T consists of a sequence of n
tasks:

T = [(C 1,D1), (C 2,D2), . . . , (C n ,Dn)], (4.1)

where each task t is represented by a set of classes C t = {c t
1,c t

2...,c t
nt } and training data

D t . We use N t to represent the total number of classes in all tasks up to and including
task t : N t =∑t

i=1 |C i |. We consider class-incremental classification problems in which
D t = {(x1,y1), (x2,y2), . . . , (xmt ,ymt )}, where x are input features for a training sample,
and y ∈ {0,1}N t

is a one-hot ground truth label vector corresponding to xi . During
training for task t , the learner only has access to D t , and the tasks do not overlap in
classes (i.e. C i∩C j =; if i 6= j ).

Our incremental learners are deep networks parameterized by weights θ and we
use o(x) = h(x;θ) to indicate the output logits of the network on input x. We further
split the neural network in a feature extractor f with weights φ and linear classifier g
with weights V according to o(x) = g ( f (x;φ);V ). We use ŷ =σ(h(x;θ)) to identify the
network predictions, where σ indicates the softmax function. After training on task t ,
we evaluate the performance of the network on all classes

⋃t
i=1 C i . This contrasts with

task-IL where the task-ID t is known and evaluation is only over task C t at inference
time.

Most class-IL classifiers are trained with a cross-entropy loss. When training only
on data from the current task t , we can consider two cross-entropy variants. We can
consider a cross-entropy over all classes up to the current task:

Lc (x,y;θt ) =
N t∑

k=1
yk log

exp(ok )∑N t

i=1 exp(oi )
. (4.2)

Note that in this case, since the softmax normalization is performed over all previously
seen classes from all previous tasks, errors during training are backpropagated from all
outputs – including those which do not correspond to classes belonging to the current
task.

Instead, we can consider only network outputs for the classes belonging to the
current task t and define the following cross-entropy loss:

Lc∗ (x,y;θt ) =
|C t |∑
k=1

yN t-1+k log
exp(oN t-1+k )∑|C t |

i=1 exp(oN t-1+i )
(4.3)

This loss only considers the softmax-normalized predictions for classes from the
current task. As a consequence, errors are backpropagated only from the probabilities
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Figure 4.1 – A network trained continually to discriminate between task 1 (left) and
task 2 (middle) is unlikely to have learned features to discriminate between the four
classes (right). We call this problem inter-task confusion.

related to these classes from task t .
When using exemplars representing data from previous tasks, it is natural to apply

Eq. 4.2 which considers the estimated probabilities on both previous and new classes.
However, in the results we will show that when no exemplars are used, Eq. 4.3 results
in significantly less catastrophic forgetting. Interestingly, fine-tuning with Eq. 4.3
leads to a much stronger baseline than fine-tuning with Eq. 4.2, which is generally
reported in literature.

4.3.2 Challenges of class-incremental learning
The fundamental obstacles to effective class-incremental learning are conceptually
simple, but in practice very challenging to overcome. These challenges originate from
the sequential training of tasks and the requirement that at any moment the learner
must be able to classify all classes from all previously learned tasks. Incremental
learning methods must balance retaining knowledge from previous tasks while learning
new knowledge for the current task. This problem is called the stability-plasticity
dilemma [113]. A naive approach to class-IL which focuses solely on learning the
new task will suffer from catastrophic forgetting: a drastic drop in the performance on
previous tasks [50,111]. Preventing catastrophic forgetting leads to a second important
problem of class-IL, that of intransigence: the resistance to learn new tasks [24]. There
are several causes of catastrophic forgetting in class-incremental learners:

• Weight drift: While learning new tasks, the network weights relevant to old
tasks are updated to minimize a loss on the new task. As a result, performance
on previous tasks suffers – often dramatically.
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• Activation drift: Closely related to weight drift, changing weights result in
changes to activations, and consequently in changes to the network output.
Focusing on activations rather than on weights can be less restrictive since this
allows weights to change as long as they result in minimal changes in layer
activations.

• Inter-task confusion: in class-IL the objective is to discriminate all classes
from all tasks. However, since classes are never jointly trained the network
weights cannot optimally discriminate all classes (see Fig. 4.1). This holds for
all layers in the network.

• Task-recency bias: Separately learned tasks might have incomparable classifier
outputs. Typically, the most dominant task bias is towards more recent task
classes. This effect is clearly observed in confusion matrices which illustrate
the tendency to miss-classify inputs as belonging to the most recently seen task
(see Fig. 4.2).

Figure 4.2 – Examples of task and class confusion matrices for fine-tuning (top row)
and fine-tuning with 2,000 exemplars (bottom row) on CIFAR-100. Note the large
bias towards the classes of the last task for fine-tuning. By exploiting exemplars, the
resulting classifier is clearly less biased.
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The first two sources of forgetting are related to network drift and have been broadly
considered in the task-IL literature. Regularization-based methods either focus on
preventing the drift of important weights [4, 24, 74, 185] or the drift of activations [72,
87].

The last two points are specific to class-incremental learners since they have no
access to a task-ID at inference time. Much of the research in class-IL has focused
on reducing task imbalance [13, 66, 176], which addresses the task-recency bias. To
prevent inter-task confusion and learn representations which are optimal to discriminate
between all classes, rehearsal [22,135] or pseudo-rehearsal [154,175,177] is commonly
used.

4.4 Approaches
In this section, we describe several approaches to address the above mentioned chal-
lenges of class-incremental learning. We divide them into three main categories:
regularization-based methods, rehearsal-based methods, and bias-correction methods.
First, we discuss the scope of this chapter by articulating and motivating the prop-
erties that class-incremental learning methods should have for consideration in our
experimental evaluation.

4.4.1 Scope of our experimental evaluation
The literature on IL is vast and growing, and several definitions and interpretations of
class-IL have been proposed in recent years [34, 135, 151, 167]. In order to narrow the
scope of this survey to a broad group of usefully comparable methods, we consider
class-IL methods that are:

1. Incremental: methods that are trainable from a stream of data drawn from a
non-stationary distribution.

2. Task transferable: class-incremental learners capable of exploiting knowledge
from previous classes to improve learning of new ones (forward transfer), as
well as exploiting new data to improve performance on previous tasks (backward
transfer).

3. Task-agnostic: incremental learners able to predict classes from all previously
learned tasks in a task-agnostic way (i.e. without recourse to an task oracle
providing a subset possible classes).

4. Offline: methods in which data is presented in training sessions whose data is
i.i.d and can be processed multiple times before moving on to the next task.
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5. Fixed network architecture: methods using a fixed architecture for all tasks,
without adding significant amount of parameters to the architecture for new
tasks.

6. Tabula rasa: incremental learners trained from scratch which do not require
pretraining on large labeled datasets. This property eliminates potential biases
introduced by the class distributions seen during pretraining and any exploits
derivable from that knowledge.

7. Mature: methods applicable to complex image classification problems.

Properties 1 and 2 are intrinsic characteristics of IL methods, and property 3 distin-
guishes class-incremental from task-incremental learning. While properties 4–7 are
characteristics that we use to select methods for our evaluation.

Finally, we consider one additional property:

8. Exemplar-free: methods not requiring storage of image data from previous
tasks. This is an important characteristic of methods which should be privacy-
preserving (optional).

Our evaluation considers methods requiring image exemplars as well as those which
do not and can therefore be applied in systems having stricter privacy considerations.
Methods not requiring any data storage are seeing increased attention in a world where
data privacy and security are fundamental for many users and are under increased
legislative control.

4.4.2 Regularization approaches
Several approaches use regularization terms together with the classification loss in
order to mitigate catastrophic forgetting. Some regularize on the weights and estimate
an importance metric for each parameter in the network [4, 24, 74, 83, 90, 185], while
others focus on the importance of remembering feature representations [72, 87, 131,
156, 188]. Most of these approaches have been developed within the context of task-
IL and have been reviewed by other works [34]. Because of their importance also
for class-IL, we discuss them briefly. Regularization of feature representations in
particular is widely used in class-IL. Finally, we will describe several regularization
techniques developed recently specifically for class-IL.
Weight regularization. The first class of approaches focuses on preventing weight
drift determined to be relevant for previous tasks. They do so by estimating a prior
importance of each parameter in the network (which are assumed to be independent)
after learning each task. When training on new tasks, the importance of each param-
eter is used to penalize changes to them. That is, in addition to the cross-entropy
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classification loss, an additional loss is introduced:

Lreg(θt ) = 1

2

|θt-1|∑
i=1

Ωi (θt-1
i −θt

i )2, (4.4)

where θt
i is weight i of the network currently being trained, θt-1

i is the value of this
parameter at the end of training on task t -1, |θt-1| is the number of weights in the
network, and Ωi contains importance values for each network weight.

Kirkpatrick et al. [74] proposed Elastic Weight Consolidation (EWC) in which Ωi

is calculated as diagonal approximation of the empirical Fisher Information Matrix.
However, this captures the importance of the model at the minimum after each task is
learned, while ignoring the influence of those parameters along the learning trajectory
in weight space. In [90], they improve EWC by rotating the parameter space to one that
provides a better approximation of the Fisher Information Matrix. However, the model
has to be extended with fixed parameters during training, which does not increase the
capacity of the network but incurs in a computational and memory cost.

In contrast, [185] proposed the Path Integral approach (PathInt), that accumulates
the changes in each parameter online along the entire learning trajectory. As noted by
the authors, batch updates to the weights might lead to overestimating the importance,
while starting from pretrained models might lead to underestimating it. To address
this, Memory Aware Synapses (MAS) [4] also proposes to calculate Ωi online by
accumulating the sensitivity of the learned function (the magnitude of the gradient).
In [24], the Riemanian Walk (RWalk) algorithm is proposed: both Fisher Information
Matrix approximation and online path integral are fused to calculate the importance
for each parameter. In addition, RWalk uses exemplars to further improve results.
Data regularization. The second class of regularization-based approaches aims
to prevent activation drift and is based on knowledge distillation [19, 62] which was
originally designed to learn a more compact student network from a larger teacher
network. Li et al. [87] proposed to use the technique to keep the representations of
previous data from drifting too much while learning new tasks. Their method, called
Learning without Forgetting (LwF) applies the following loss:

Ldi s
(
x;θt ) =

N t-1∑
k=1

πt-1
k (x) logπt

k (x), (4.5)

where πk (x) are temperature-scaled logits of the network:

πk (x) = eok (x)/T∑N t-1

l=1 eol (x)/T
, (4.6)
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and o(x) is the output of the network before the softmax is applied, and T is the
temperature scaling parameter. We use πt-1 to refer to the predictions of the network
after training task t -1. The temperature scaling was introduced in [62] to help with
the problem of having the probability of the correct class too high. Many methods
use T =2 [22, 66, 87, 176] and we also apply that in the experiments. It is important
to note that when using exemplars the distillation loss is typically also applied to the
exemplars of previous classes [22, 66, 135, 176].

A very similar approach, called less-forgetting learning (LFL), was proposed by
Jung et al. [72]. LFL preserves previous knowledge by freezing the last layer and pe-
nalizing differences between the activations before the classifier layer. However, since
this can introduce larger issues when the domain shift is too large, other approaches
introduced modifications to deal with it. Encoder-based lifelong learning [131] ex-
tends LwF by optimizing an undercomplete autoencoder which projects features to a
manifold with fewer dimensions. One autoencoder is learned per task, which makes
the growth linear, although the autoencoders are small compared to the total model
size.

The learning without forgetting loss in Eq. 4.5 was originally proposed for a task-
IL setting. However, it has since been a key ingredient of many class-IL methods [22,
66, 93, 135, 176, 188]. Some works have observed that the loss works especially well
when the domain shift between tasks is small (as is typically the case for class-IL),
however, when domain shifts are large its efficacy drops significantly [6].
Recent developments in regularization. Several new regularization techniques
have been proposed in recent work on class-IL. Zagoruyko and Komodakis [184]
proposed to use the attention of the teacher network to guide the student network.
Learning without Memorizing (LwM) [38] applies this technique to class-IL. The
main idea is that the attention used by the network trained on previous tasks should
not change while training the new task. Features contributing to the decision of a
certain class label are expected to remain the same. This is enforced by the attention
distillation loss:

LAD
(
x;θt ) =

∥∥∥∥ Q t−1 (x)

‖Q t−1 (x)‖2
− Q t (x)

‖Q t (x)‖2

∥∥∥∥
1

, (4.7)

where the attention map Q is given by:

Q t (x) = Grad-CAM
(
x,θt ,c

)
(4.8)

Q t-1 (x) = Grad-CAM
(
x,θt-1,c

)
(4.9)

and is generated with the Grad-CAM algorithm [152]. Grad-CAM computes the
gradient with respect to a target class c to produce a coarse localization map indicating
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the image regions which contributed to the prediction. Here we cannot use the target
class label, because this label did not exist when training the previous model θt−1.
Instead, the authors propose to use the previous class predicted with highest probability
to compute the attention maps: c = argmax h

(
x;θt−1

)
.

Another recent method building upon LwF is Domain Model Consolidation
(DMC) [188]. It is based on the observation that there exists an asymmetry be-
tween previous and new classes when training: new classes have explicit and strong
supervision, whereas supervision for old classes is weaker and communicated by
means of knowledge distillation. To remove this asymmetry, they propose to apply
a double distillation loss on the model θt-1 trained on previous classes and a newly
trained model θt for the new classes (allowing this model to forget previous tasks):

LDD (u;θ) = 1

N t

N t∑
k=1

(ok (u)−o̊k (u))2 , (4.10)

where o̊k are normalized logits:

o̊k (u) =


ot-1

k (u)− 1

N t-1

N t-1∑
l=1

ot-1
l (u) if 1 ≤ k ≤ N t-1

ot
k (u)− 1

N t

N t∑
l=1

ot
l (u) if N t-1 < k ≤ N t .

(4.11)

Here ot-1(u) refers to the logits from the network trained on previous tasks, and ot (u)
the ones trained on the the new classes. Because the algorithm does not have access
to data of previous tasks, they propose to use auxiliary data u, which can be any
unlabeled data from a similar domain.

Finally, the less-forget constraint proposed by Hou et al. [66] in their method is a
variant of LwF. Instead of regularizing network predictions, they propose to regularize
on the cosine similarity between the L2-normalized logits of the previous and current
network:

Ll f (x;θ) = 1− 〈ot-1(x),ot (x)〉
||ot-1(x)||2||ot (x)||2

, (4.12)

where 〈·, ·〉 is the inner product between vectors. This regularization is less sensitive to
task imbalance because the comparison is between normalized vectors. The authors
show that this loss reduces bias towards new classes.
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4.4.3 Rehearsal approaches
Rehearsal methods keep a small number of exemplars [22, 135, 176] (exemplar
rehearsal), or generate synthetic images [122, 154] or features [73, 177] (pseudo-
rehearsal). By replaying the stored or generated data from previous tasks rehearsal
methods aim to prevent the forgetting of previous tasks. Most rehearsal methods
combine the usage of exemplars to tackle the inter-task confusion with approaches
that deal with other causes of catastrophic forgetting. The usage of exemplar rehearsal
for class-IL was first proposed in Incremental Classifier and Representation Learning
(iCaRL) [135]. This technique has since been applied in the majority of class-IL meth-
ods. In this section, we focus on the choices which need to be taken when applying
exemplars.
Memory types. Exemplar memory must be extended at the end of a training session
after the model has already been adapted to the new task. If the memory has a fixed
maximum size across all tasks (fixed memory), some exemplars must first be removed
to make space for new ones. This ensures that the memory capacity stays the same and
the capacity is fixed. The more tasks and classes that are learned, the less representation
each class has for rehearsal. After learning a certain amount of tasks, the memory
could be expanded to better accommodate the new distributions. However, previously
removed samples will be lost, thus the decision of when to expand is an important
one. If the memory is allowed to grow (growing memory), then only new samples
from the current task need to be added. This enforces the classes to have a stable
representation during rehearsal across all tasks, at the cost of having a linear increase of
memory, which might not be suitable in some applications. In both cases, the number
of exemplars per class is enforced to be the same to ensure an equal representation of
all classes.
Sampling strategies. The simplest way to select exemplars to add to the memory is
by randomly sampling from the available data (random), which has been shown to be
very effective without much computational cost [24, 135].

Inspired by [174], iCaRL proposes to select exemplars based on their correspond-
ing feature space representations (herding). Representations are extracted for all
samples and the mean for each class is calculated. The method iteratively selects
exemplars for each of the classes. At each step, an exemplar is selected so that, when
added to the exemplars of its class, the resulting exemplar mean is closest to the real
class mean. The order in which exemplars are added is important, and taken into
account when some need to be removed. Although this iterative selection procedure
usually outperforms random, it increases computational cost.

In RWalk [24], two other sampling strategies are proposed. The first one calculates
the entropy of the softmax outputs and selects exemplars with higher entropy (entropy).
This enforces selection of samples that have more distributed scores across all classes.
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Similarly, the second one selects exemplars based on how close they are to the decision
boundary (distance), assuming that the feature space and the decision boundaries do
not change too much. For a given sample (xi ,yi ), the pseudo-distance to the decision
boundary is calculated by f (xi ;φ)T Vyi , meaning that the smaller the distance, the
closer to the decision boundary.

For these sampling strategies (except for random), the order which exemplars are
chosen is recorded following a decreasing order of importance. If a fixed memory is
used and some memory must be freed to make space for new exemplars, the exemplars
with the lower importance are the ones removed first.
Task balancing. When applying rehearsal during the training of a new task, the
weight of the new classes compared to the previous ones is defined by the trade-off
between the two parts of the loss, as well as the number of samples from each class at
each training step. Most approaches sample the training batches from the joint pool
between new data and rehearsal exemplars [24, 66, 135, 176]. This means that batches
are clearly over-represented by new samples and rely on the trade-off between the
cross-entropy loss and the other losses that prevent forgetting. In contrast [22] proposes
having a more balanced training where batches are equally distributed between new
and previous classes. This seems to have quite beneficial effects in compensating for
the task imbalance during training.
Combining rehearsal and data regularization. Several methods [22, 66, 135,
176] use the distillation loss from Learning without Forgetting [87] to deal with the
activation drift in combination with exemplars. However, Beloudah and Popescu [13]
do the important observation that this distillation term actually hurts performance
when using exemplars. We will confirm this in our results, however, we will show that
in some scenarios a combination of weight regularization and exemplar rehearsal can
be beneficial.

4.4.4 Bias-correction approaches
Bias-correction methods aim to address the problem of task-recency bias, which refers
to the tendency of incrementally learned network to be biased towards classes in
the most recently learned task. This is mainly caused by the fact that, at the end of
training, the network has seen many examples of the classes in the last task but none
(or very few in case of rehearsal) from earlier tasks. One direct consequence of this, as
observed by Hou et al. [66], is that the classifier norm is larger for new classes than
for the previous ones and that the classifier bias favors the more recent classes. This
effect is shown in Fig. 4.3, where the lower biases and reduced norm of the classifier
make less likely for the network to select any of the previous classes. In this section,
we discuss several approaches to address this problem.

70



4.4. Approaches

Figure 4.3 – Bias and weight analysis for iCaRL with 2,000 exemplars on CIFAR-100.
We show the ordered biases and norm of the last classification layer of the network for
different tasks. Note how the bias and the norm of the weights are higher for the last
tasks. This results in a task-recency bias.

The earlier mentioned iCaRL method [135] combines exemplars and Learning
without Forgetting, using a classifier layer and cross-entropy loss during training. To
prevent the task-recency bias, they do not use the classifier at inference. Instead they
compute the class mean of the exemplars in the feature representation, and then apply
a nearest exemplar-mean for classification. Since this process is independent of the
weights and biases of the final layer, the method was shown to be much less prone to
the task-recency bias.

One simple yet effective approach to prevent task-recency bias has been proposed
by Castro et al. [22] in their method End-to-End Incremental Learning (EEIL). They
suggest introducing an additional stage, called balanced training, at the end of each
training session. In this phase an equal number of exemplars from all classes is used
for a limited number of iterations. To avoid forgetting the new classes, they introduce
a distillation loss on the classification layer only for the classes from the current task.
Balanced training could come at the cost of overfitting to the exemplars that have been
stored, when these do not completely represent the distribution.

Another simple and effective approach to preventing task-recency bias was pro-
posed by Wu et al. [176], who call their method Bias Correction (BiC). They add an
additional layer dedicated to correcting task bias to the network. A training session
is divided into two stages. During the first stage they train the new task with the
cross-entropy loss and the distillation loss (see Eq. 4.5). Then they use a split of a
very small part of the training data to serve as a validation set during the second phase.
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They propose to learn a linear transformation on top of the logits, ok , to compensate
for the task-recency bias. The transformed logits are given by:

qk = αs ok + βs , ck ∈C s (4.13)

where αs and βs are the parameters which compensate for the bias in task s. For
each task there are only two parameters which are shared for all classes in that task
(initialized to α1 = 1 and β1 = 0). In the second phase, all the parameters in the
network are frozen, except for the parameters of the current task αt and βt . These are
optimized with a standard softmax on the transformed logits qk using the set-aside
validation set. Finally, they only apply a weight decay on β parameters and not on the
α parameters.

As mentioned earlier, task-recency bias was also observed by Hou et al. [66]. In
their method Learning a Unified Classifier Incrementally via Rebalancing (LUCIR),
they propose to replace the standard softmax layer σ with a cosine normalization layer
according to:

Lcos (x;θt ) =
N t∑

k=1
yk log

exp(η〈 f (x)
|| f (x)|| ,

Vk
||Vk || 〉)∑N t

i=1 exp(η〈 f (x)
|| f (x)|| ,

Vi
||Vi || 〉)

(4.14)

where f (x) are the feature extractor outputs, 〈·, ·〉 is the inner product, Vk are the
classifier weights (also called class embedding) related to class k, and η is a learnable
parameter which controls the peakiness of the probability distribution.

Hou et al. [66] also address the problem of inter-task confusion. To prevent new
classes from occupying a similar location as classes from previous tasks, they apply
the margin ranking loss. This loss pushes the current embedding away from the
embeddings of the K most similar classes according to:

Lmr (x) =
K∑

k=1
max

(
m − 〈 f (x)

|| f (x)|| ,
Vy

||Vy || 〉 + 〈 f (x)
|| f (x)|| ,

Vk
||Vk || 〉, 0

)
(4.15)

where V̂y refers to the ground truth class embedding of x, V̂k refer to the embedding
of the closest classes, and m is the margin.

Finally, another approach that addresses task-recency bias was proposed by Be-
louadah and Popescu [13] with their method called Class-IL with dual memory (IL2M).
Their method is similar to BiC [176] in the sense that they propose to rectify the
network predictions. However, where BiC learns to rectify the predictions by adding
an additional layer, IL2M rectifies based on the saved certainty statistics of predictions
of classes from previous tasks. Defining m = argmax ŷ(x), they compute the rectified
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Figure 4.4 – Relation between class-incremental methods.

predictions of the previous classes k as:

ŷ r
k (x) =

ŷk (x)× y
p
k

y t
k
× y t

y p if m ∈C t

ŷk (x) otherwise.
(4.16)

Here y p
k (superscript p refers to past) is the mean of the predictions ŷk for all images

of class ck after training the task in which class ck is first learned (ck ∈C p ), and y p

is the mean of the predictions for all classes in that task. Both y p
k and y p are stored

directly after their corresponding training session. y t
k is the mean of the predictions

ŷk for all images of class ck after training the new task (this is computed based on the
exemplars). Similarly, y t is the mean of the predictions for all classes in the new task.
As can be seen the rectification is only applied when the predicted class is a new class
(m ∈C t ). If the predicted class is an old class, the authors argue that no rectification is
required since the prediction does not suffer from task-imbalance.

4.4.5 Relation between class-incremental methods
In previous sections we discussed the main approaches to mitigating catastrophic
forgetting by incremental learning methods. We summarize the relations between
the discussed methods in Fig. 4.4 starting from the naive fine-tuning approach. In
the diagram we show all methods which we compare in Sec. 4.6. The diagram

73



Chapter 4. Class-incremental learning

distinguishes between methods using exemplars to retain knowledge (blue, orange)
and exemplar-free methods (green).

Most notably, the huge impact of Learning without Forgetting (LwF) [87] upon
the whole field of class-incremental learning is clear. However, we expect that with
the recent findings of [13], which show that when combined with exemplars fine-
tuning can outperform LwF, could somewhat lessen its continuing influence. Weight
regularization methods [4, 74, 185], applied frequently in the task-IL setting, are
significantly less used for class-IL. They can also be trivially extended with exemplars
and we include results of this in our experimental evaluation. Finally, Fig. 4.4 also
shows the influence of iCaRL [135] in the development of more recent methods [66,
176].

4.5 Experimental setup
In this section, we explain the experimental setup and how we evaluate the approaches.
We also introduce the baselines and the experimental scenarios used to gather the
results presented in Sec. 4.6.

4.5.1 Code framework
In order to make a fair comparison between the different approaches, we implemented
a versatile and extensible framework. Datasets are split into the same partitions and
data is queued in the same order at the start of each task. All library calls related to
randomness are synchronized and set to the same seed so that the initial conditions for
all methods are the same. Data from previous tasks (excluding exemplar memory) is
not available during training, thus requiring selection of any stability-plasticity-based
trade-off before a training session of a task is completed (see also Sec. 4.5.6). All
methods were implemented using the original author implementations (when available)
which we adapted to work under the different experimental setups proposed below (i.e.
different datasets and networks).

The current version of the code includes implementations of several baselines
and the following methods: EWC, MAS, PathInt, RWalk, LwM, DMC, LwF, iCaRL,
EEIL, BiC, LUCIR, and IL2M. The framework includes extending most exemplar-free
methods with the functionality of exemplars. The framework facilitates using these
methods with a wide variety of network architectures, and allows to run the various
experimental scenarios we perform in this chapter. As such, our framework contributes
to the wider availability and comparability of existing methods, which will facilitate
future research and comparisons of class-IL methods‡.

‡Code available at: https://github.com/mmasana/FACIL
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Dataset #Train #Eval #Classes

CIFAR-100 [77] 50,000 10,000 100
Oxford Flowers [120] 2,040 6,149 102

MIT Indoor Scenes [129] 5,360 1,340 67
CUB-200-2011 Birds [170] 5,994 5,794 200

Stanford Cars [76] 8,144 8,041 196
FGVC Aircraft [100] 6,667 3,333 100

Stanford Actions [180] 4,000 5,532 40
VGGFace2 [21] 491,746 50,000 1,000

ImageNet ILSVRC2012 [143] 1,280,861 50,000 1,000

Table 4.1 – Summary of datasets used.

4.5.2 Datasets
We study the effects of CL methods for image classification on nine different datasets
whose statistics are summarized in Table 4.1. First, we compare the three main
categories of approaches described in Sec. 4.4 on the CIFAR-100 dataset [77]. It
contains 32×32 colour images for 100 classes, with 600 samples for each class divided
into 500 for training and 100 for testing. For data augmentation, a padding of 4 is
added to each side, and crops of 32×32 are randomly selected during training and
the center cropped is used during testing. Input normalization and random horizontal
flipping are also performed.

Next, we use a variety of fine-grained classification datasets: Oxford Flowers [120],
MIT Indoor Scenes [129], CUB-200-2011 Birds [170], Stanford Cars [76], FGVC
Aircraft [100], and Stanford Actions [180]. These provide higher resolution and allow
studying the effects on larger domain shifts when used as different tasks. To study the
effects of the different approaches on smaller domain shifts we use the VGGFace2
dataset [21]. Since the original dataset has no standard splits for our setting, we keep
the 1,000 classes that have the most samples and split the data following the setup
from [13]. This means that this dataset is not totally balanced, but at least all used
classes have a large enough pool of samples.

Finally, the ImageNet dataset [143] is used as a more realistic and large-scale
scenario. It consists of 1,000 diverse object classes with different numbers of samples
per class. Since this dataset takes time and needs a lot of resources, we also use the
reduced ImageNet-Subset, which contains the first 100 classes from ImageNet as
in [135].

In order to apply a patience learning rate schedule and an hyperparameter selection
framework, an additional separate split of 10% from training is assigned to validation
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to those datasets that do not provide one. For all datasets except CIFAR-100, images
are resized to 256×256 with random crops of 224×224 for training and center crops
for testing. Input normalization and random horizontal flipping are also performed.

4.5.3 Network architectures
As suggested in [60], ResNet-32 and ResNet-18 are commonly used in the literature
for CIFAR-100 and datasets with larger resolution (input sizes of around 224×224×3),
respectively. However, it is not so common to see other networks being used in class-
IL. In this work, we also perform experiments with different networks and evaluate the
effects they have on performance. Specifically, we use AlexNet [78], ResNet-18 [60],
VGG-11 [157], GoogleNet [162] and MobileNets [67,145]. We use different networks
on different scenarios and make a wider comparison on ImageNet subset in Sec. 4.6.6).
All experiments done on CIFAR-100 are trained on ResNet-32 from scratch.

We have selected the networks to represent a wide variety of network architectures
commonly used in deep learning, allowing us to compare them within a continual
learning setting. We have chosen AlexNet and VGG-11 as architectures which start
with a number of initial convolutional layers followed by several fully connected layers.
ResNets have achieved superior performance in many different computer vision tasks,
and we therefore consider ResNet-18. We have also included GoogleNet which uses
skip-connection and 1×1 convolutions are used as a dimension reduction module
to reduce computation. We are also interested to evaluate incremental learning on
compact networks. We have therefore selected MobileNet, which, to better trade off
latency and accuracy, propose to replace standard convolution layers by depthwise
separable convolutions. This makes them suitable to run on mobile devices.

4.5.4 Metrics
In incremental learning, at ,k ∈ [0,1] denotes the accuracy of task k after learning task
t (k ≤ t), which provides fine-grained information about the incremental process. In
order to compare the overall incremental learning process, the average accuracy is
defined as At = 1

t

∑t
i=1 at ,i at task t . This measure is commonly used to compare

performances of different methods with a single value. It has to be noted that when
tasks have different number of classes, a weighted version needs to be used. Moreover,
though average accuracy can be easily compared since it is a single value, it can also
hide many insights. The more tasks that are learned, the more information that can be
hidden. To address this, additional metrics focusing on selected key aspects of IL such
as forgetting and intransigence [24] are needed.

Forgetting estimates how much the model forgot about previous task k at current
task t and is defined as ft ,k = maxi∈{1,...,t−1} ai ,k−at ,k . As with accuracy, this measure
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can be averaged over all tasks learned so far: Ft = 1
t−1

∑t−1
i=1 f t

i . The lower the Ft

is, the less forgetting is happening during incremental learning. In a similar way,
intransigence quantifies a model’s inability to learn a new task. Both can be considered
complementary measures that help understand the stability-plasticity dilemma. The
borderline case of a model that is never trained after first task will have no forgetting at
all, but will be unable to learn new tasks. Intransigence for the t-th task is calculated
as It =a∗

t −at ,t , where a∗
t is the accuracy of a reference model for task t trained jointly

on all data. The lower the It ∈[−1,1], the better the model for that task.
To gain more insight about the classifier performance, a confusion matrix can

be used, which gives information of miss-classification between each pair of classes.
Despite the fact that it is not a single-value metric, it is often used to summarize the
behavior of a classifier across many incremental tasks.

4.5.5 Baselines
Training with only a cross-entropy loss (see Eq. 4.2) is the default Fine-tuning (FT)
baseline common in most IL works. This learns each task incrementally while not
using any data or knowledge from previous tasks and is often used to illustrate the
severity of catastrophic forgetting. However, when moving to a class-IL scenario
where all previous and new classes are evaluated, other fine-tuning variants can be
considered. We might not update the weights corresponding to the outputs of previous
classes (FT+), which avoids the slow forgetting due to not having samples for those
classes (see Eq. 4.3). As seen in Table 4.2, this simple modification has an impact
on the baseline performance. Since previous classes will not be seen, freezing the
weights associated with them avoids biased modifications based only on new data.
Furthermore, in the proposed scenarios approaches usually make use of an exemplar
memory, which helps improve overall performance and avoid catastrophic forgetting
by replaying previously seen classes. Therefore, as an additional baseline we also
consider extending FT with the same exemplar memory as exemplar-based approaches
(FT-E). The result of this is quite clearly more beneficial than the other FT baselines,
and makes the baseline more comparable with approaches using the same memory.

In the case of Freezing (FZ), the baseline is also simple: we freeze all layers except
the last one (corresponding to the classification layer or head of the network) after the
first task is learned. Similarly to FT, we can also make the simple modification of not
updating the weights directly responsible for the previous classes outputs (FZ+). This
extends freezing to that specific group of weights which we know will not receive a
gradient from previous class samples. As seen in Table 4.2, this leads to a more robust
baseline. However, if we add exemplars (FZ-E) the performance decreases. We have
also observed that, when starting from a larger or more diverse first task, freezing can
achieve much better performance since the learned representations before freezing are
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T2 T3 T4 T5 T6 T7 T8 T9 T10

FT 33.9 27.9 19.1 17.7 12.2 11.6 10.2 9.0 7.9
FT+ 39.7 32.4 25.5 20.7 16.4 14.3 12.7 11.0 9.7
FT-E (fixed) 59.4 55.2 46.6 49.1 45.9 42.3 38.2 39.5 36.5
FT-E (grow) 48.0 42.5 33.1 36.5 35.8 31.8 33.5 31.6 32.0

FZ 24.1 18.4 12.8 12.7 9.2 8.2 7.8 6.3 5.3
FZ+ 40.5 31.1 24.4 24.0 21.1 18.9 17.2 16.1 14.8
FZ-E (fixed) 44.9 36.3 22.9 21.7 18.0 17.4 13.6 13.2 9.3
FZ-E (grow) 37.1 29.7 19.5 19.1 14.7 15.5 12.3 12.5 9.4

Table 4.2 – Average accuracy for different baseline variants on CIFAR-100 (10/10).
E denotes using 2,000 exemplars (fixed memory) or 20 exemplars per class (grow)
selected with herding. All baselines start with 75.3 accuracy after task 1.

more robust.
Finally, we also use as an upper bound the joint training over all seen data (Joint). In

order to have this baseline comparable over all learned tasks, we perform incremental
joint training which uses all seen data at each task, starting from the model learned for
the previous one. This baseline gives us an upper bound reference for all learned tasks.

4.5.6 Hyperparameter selection
For a fair comparison of IL methods, two main issues with non-IL evaluation need
to be addressed. The first is that choosing the best hyperparameters for the sequence
of tasks after those are learned is not a realistic scenario in that information from
future tasks is used. A better comparison under an IL setting is to search for the best
hyperparameters as the tasks are learned with the information at hand for each of them.
Second, it makes the comparison very specific to the scenario, and in particular to the
end of the specific sequence of tasks. It provides a less robust evaluation of the results
over the rest of tasks, which means that other task sequence lengths are not taken into
account. We feel that a broader evaluation of CL methods should include results over
all tasks as if each of them were the last one for hyperparameter selection purposes.

In order to provide this more robust evaluation, we use the Continual Hyperparam-
eter Framework (CHF) proposed in [34]. This framework assumes that at each task,
only the data for that task is available, as in a real scenario. For each task, a Maximal
Plasticity Search phase is used with Fine-tuning, and a Stability Decay phase is used
with the corresponding method. This allows to establish a reference performance first
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and find the best stability-plasticity trade-off second [34].
General hyperparameters: the CHF is used for the stability-plasticity trade-off
hyperparameters that are associated to intransigence and forgetting when learning a
new task. It first performs a learning rate (LR) search with Fine-tuning on the new
task. This corresponds to the Maximal Plasticity Search phase.

The LR search is limited to {5e-1, 1e-1, 5e-2} on the first task since all experiments
are trained from scratch. For the remaining tasks, the LR search is limited to the three
values immediately lower than the one chosen for the first task from this set: {1e-1,
5e-2, 1e-2, 5e-3, 1e-3}. We use a patience scheme as a LR scheduler where the
patience is fixed to 10, the LR factor to 3 (LR is divided by it each time the patience
is exhausted), and the stopping criteria is either having a LR below 1e-4 or if 200
epochs have passed (100 for VGGFace2 and ImageNet). We also do gradient clipping
at 10,000, which is mostly negligible for most training sessions except the first one.
We use SGD with momentum set to 0.9 and weight decay fixed to 0.0002. Batch size
is 128 for most experiments except 32 for fine-grained datasets and 256 for ImageNet
and VGGFace2. All code is implemented using Pytorch.

Once the shared hyperparameters are searched, the best ones are fixed and the
accuracy for the first phase is stored as a reference. The hyperparameter directly
related to the stability-plasticity trade-off is set to a high value which represents
a heavy intransigence to learn the new task, close to freezing the network so that
knowledge is preserved. At each search step, the performance is evaluated on the
current task and compared to the reference accuracy from the Maximal Plasticity
Search phase. If the method accuracy is above the 80% of the reference accuracy, we
keep the model and trade-off as the ones for that task. If the accuracy is below the
threshold, the trade-off is reduced in half and the search continues. As the trade-off
advances through the search, it becomes less intransigence and slowly converges
towards higher forgetting, which ultimately would correspond to the Fine-tuning of
the previous phase. This corresponds to the Stability Decay phase.
Specific hyperparameters: the hyperparameters that have no direct correspondence
with the intransigence-forgetting duality are set to the recommended values for each
of the methods. The methods have the following implementations:

• LwF: we implement the Ldi s distillation loss following Eqs. 5-6, and fix the
temperature scaling parameter to T = 2 as proposed in the original work (and
used in most of the literature). This loss is combined with the Lc cross-entropy
loss from Eqs. 2-3 with a trade-off that is chosen using the CHF and starts with
a value of 10. In our implementation we choose to duplicate the older model for
training to evaluate the representations (instead of saving them at the end of the
previous session) to benefit from the data augmentation. That older model can
be removed after the training session to avoid overhead storage.
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• EWC: the fusion of the old and new importance weights is done with α =
0.5 to avoid the storage of the importance weights for each task. The Fisher
Information Matrix is calculated by using all samples from the current task
based on the predicted class. The loss introduced in Eq. 4 is combined with the
Lc cross-entropy loss with a trade-off chosen using the CHF and with a starting
value of 10,000.

• PathInt: we fix the damping parameter to 0.1 as proposed in the original work.
As in LwF and EWC, the trade-off between the quadratic surrogate loss and the
cross-entropy loss is chosen using the CHF with a starting value of 1.

• MAS: we implement MAS in the same way as EWC, with α = 0.5 and the
same Fisher Information Matrix setting. The trade-off between the importance
weights penalty and the cross-entropy loss is chosen using the CHF and a starting
value of 400.

• RWalk: since it is a fusion of EWC and PathInt, the same parameters α= 0.5,
Fisher Information Matrix setting and damping = 0.1 are fixed.The starting
value for the CHF on the trade-off between their proposed objective loss and
the cross-entropy loss is 10.

• DMC: we implement the LDD double distillation loss from Eqs. 10-11. We set
the auxiliary dataset batch size to 128, and the student is neither initialized from
the previous tasks or new task models but random, as proposed in the original
work.

• LwM: We combine the cross-entropy loss with the distillation loss and LAD

attention distillation using the β and γ trade-offs respectively. The β trade-off
is the one that balances the stability-plasticity dilemma and we chose it using
the CHF with a starting value of 2. The γ trade-off is fixed to 1 since it does
not directly affect the stability-plasticity dilemma. Since there is no mention in
the original work on which are the better values to balance the three losses, that
last value was chosen after a separate test with values γ ∈ (0,2] and fixed for all
scenarios in Section 6.

• iCaRL: we implement the five algorithms that comprise iCaRL. The distillation
loss is combined with the cross-entropy loss during the training sessions and
chosen using the CHF with a starting value of 4. However, during evaluation,
the NME is used instead of the softmax outputs.

• EEIL: we implement EEIL with the balanced and unbalanced training phases.
The unbalanced phase uses the hyperparameters shared across all methods.
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However, for the balanced phase the LR is reduced by 10 and the number of
training epochs to 40. As with LwF, T = 2 and the trade-off is chosen using
the CHF starting at 10. However, we apply a slight modification to the original
work by not using the addition of noise to the gradients. Our preliminary results
with this method showed that it was consistently detrimental to performance,
which provided a worse representation of the capabilities of the method.

• BiC: the distillation stage is implemented the same as LwF, as in the original
paper, with T = 2. However, the trade-off between distillation and cross-entropy
losses is not chosen using the CHF. The authors already propose to set it to

n
n+m , where n is the number of previous classes, and m is the number of new
classes, and we keep that decision. On the bias correction stage, also following
the original work, we fix the percentage of validation split used from the total
amount of exemplar memory to be 10%.

• LUCIR: for this method we make two changes on the architecture of the model.
First, we replace the classifier layer by a cosine normalization layer following
Eq. 14; and second we remove the ReLU from the penultimate layer to allow
features to take both positive and negative values. However, since this procedure
is only presented in the original work for ResNet models, we do not extend it to
other architectures. The original code used a technique called imprint weights
during the initialization of the classifier. However, since it was not mentioned in
the original paper, and preliminary experiments showed no significant difference,
we decided to not include it in our implementation.

The cross-entropy loss is combined with the Ll f less-forget constraint from
Eq. 12 and the Lmr margin ranking loss from Eq. 15. The number of new
class embeddings chosen as hard negatives and the margin threshold are fixed to
K = 2 and m = 0.5 as in the original work. The margin ranking loss is combined
with the cross-entropy loss in a one-to-one ratio, while the less-forget constraint
is chosen using the CHF with a starting value of 10, as is the trade-off related to
the stability-plasticity dilemma.

• IL2M: since it only stores some statistics on the classes and applies them after
the training is done in the same way as Fine-tuning, there is no hyperparameter
to tune for this method.

Finally, the Fine-tuning, Freezing and Joint training baselines have no hyperpa-
rameters associated to them, reducing the Continual Hyperparameter Framework to
only performing the learning rate search for each task before doing the final training.
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4.5.7 Experimental scenarios
To make the following results section easier to read, we define a few experimental
scenarios here. We denote a dataset with B tasks and A classes on the first task as
(A/B). For example, a CIFAR-100 (10/10) experiment refers to splitting the dataset
into 10 tasks with the first task having 10 classes. This corresponds to an equal split
among tasks and classes, making for the total amount of 100 total classes. Another
setting that we use is CIFAR-100 (50/11), which means that the first task has 50
classes, and the remaining 50 classes are divided into 10 tasks of 5 classes each.
Among others, these are the two main proposed settings for evaluating the different
approaches and their characteristics on simpler scenarios, before moving into larger
and more realistic ones.

4.6 Experimental results
In this section, we discuss different aspects of continual learning approaches on
CIFAR-100 being the default dataset for comparisons and we extend the experiments
to larger datasets, such as VGGFace2, different fine-grained datasets and ImageNet.
It includes analysis on different regularization methods with and without exemplars.
Then we demonstrate how bias-correction methods perform through both task and
class confusion matrices. We analyze how different aspects of exemplar usage affect
performance, such as memory properties and sampling strategies. Additionally, we
evaluate different methods on two popular scenarios whether the first task starts
with half of classes. We also demonstrate how domain shift can result in different
performance for continual learning. Next, we compare the most prominent methods
on a wide range of network architectures. Then we experiment different methods on
the large scale dataset ImageNet.

4.6.1 On regularization methods
Most of the regularization approaches have been proposed for a task-IL setting where
the task-ID is known at inference time [72, 74, 83, 87, 131]. Since regularization is
applied to weights or representations, they can be easily extended to a class-IL setting
without much or any modification. This makes for a more challenging problem, and
several more recent regularization methods already show results for class-IL [24, 38,
188]. Similarly to the baselines in Sec. 4.5.5, when not using exemplars, methods
can freeze the weights of the final layer associated with previous classes to improve
performance based on the assumption that only data from new classes is used during a
training session. This helps the problem of vanishing weights from learned classes
and the task-recency bias, especially when using weight decay.
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avg. acc. after FT LwF EWC PathInt MAS RWalk DMC LwM

No exemplars
(task-IL)

task 2 55.9 73.2 61.6 62.0 64.8 63.2 71.5 73.6
task 5 47.3 73.8 59.8 60.4 62.8 57.4 72.7 75.2
task 10 37.3 65.8 56.4 56.6 53.9 46.6 67.0 69.1

No exemplars
(Class-IL)

task 2 30.8 56.1 39.5 36.2 42.3 45.4 57.9 53.9
task 5 13.1 40.9 24.0 21.8 24.4 23.9 42.2 37.3
task 10 7.8 29.7 12.3 12.2 11.5 12.9 26.7 20.4

2,000 exemplars
fixed memory (Class-IL)

task 2 59.4 59.9 56.8 56.0 56.2 56.5 - 64.7
task 5 49.1 44.8 39.3 30.7 31.2 46.4 - 52.9
task 10 36.5 31.8 25.8 10.5 19.1 31.4 - 38.1

20 exemplars per class
growing memory (Class-IL)

task 2 48.0 51.4 43.2 42.0 41.4 41.3 - 52.1
task 5 36.5 33.1 30.6 25.2 22.9 27.2 - 39.7
task 10 32.0 27.4 23.9 15.8 16.8 18.9 - 33.5

Table 4.3 – Average accuracy for regularization-based methods on CIFAR-100 (10/10)
on ResNet-32 trained from scratch.

In Table 4.3 we compare regularization-based methods for both task-IL and class-
IL. Three methods that apply data regularization (LwF, DMC, LwM) and three weight
regularization methods (EWC, PathInt, MAS) are compared on CIFAR-100 (10/10).
The ten tasks are learned sequentially, and each method and setting shows average
accuracy at the second, fifth and final tasks to illustrate different sequence lengths.
We start by comparing the regularization methods without using exemplars. Results
clearly show a significant drop in performance due to the lack of the task-ID, especially
after 5 and 10 tasks. LwF obtains better results than weight-based regularization
methods, which might explain why distillation has been the dominant approach for
most rehearsal methods [22, 66, 135, 176].

We also expand the regularization methods with exemplars to see how it affects
their performance. Note that these methods are originally proposed without exemplars,
except for RWalk. In Table 4.3 we include results with a fixed memory of 2,000
exemplars, and with a growing memory of 20 exemplars per class. When using a fixed
memory of exemplars, all methods improve after each task. However, that is not true
in all cases for the growing memory. The reduced number of exemplars available
when learning the first tasks in comparison to a fixed memory has some impact on the
results. In this case, LwF outperforms EWC, PathInt and MAS, while having a similar
performance than RWalk for fixed memory. Note how RWalk without exemplars
does not show much improvement over other weight-based regularization methods,
but that changes when a fixed memory is used. One of the most interesting results
of this experiment is that LwM obtains the best results in all cases when combined
with exemplars, even though the method was originally not proposed with exemplars.
Furthermore, FT-E performs the second best in this scenarios, in front of LwF, as also
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iCaRL EEIL BiC LUCIR IL2M

Figure 4.5 – Task (top) and class (bottom) confusion matrices. CIFAR-100 (20/5) with
2,000 exemplars selected with herding.

noticed in [13]. It should be noted that in some of the next experiments we find that
weight regularization and exemplars can actually achieve good results.

Finally, DMC uses a large memory based on an auxiliary dataset (300 classes
from ImageNet-32, as described in [188]), we provide task-IL and class-IL results
while using said extra memory, and no exemplars from the learned classes are stored.
The method provides privacy-preserving properties at the cost of some performance.
However, we found that in these experiments the gain obtained by distillation from an
additional dataset is rather small.

Given these results, in the following experiments we will mainly compare to the
best performing regularization methods, namely LwF, LwM and EWC.

4.6.2 On bias-correction
As seen in Fig. 4.2, there exists a clear bias towards recent tasks. Here we evaluate
the success of class-IL methods to address the task-recency bias. To allow for a better
visualization, we use a CIFAR-100 (20/5) split with ResNet-32 trained from scratch
and a fixed memory of 2,000 exemplars. In the text, we will also give in brackets the
average accuracy after the last task for all methods we considered.

We show the task and class confusion matrices for different bias-correction ap-
proaches in Fig. 4.2 and Fig. 4.5. The FT-E baseline, despite having improved
performance due to the use of rehearsal strategies (40.9), still has a clear task-recency
bias. iCaRL clearly benefits from using the NME classifier, removing most task-
recency bias, although at the cost of having slightly worse performance (43.5) than
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the other approaches. EEIL ignores the task-recency bias during training of new tasks,
however at the end of each training session it performs balanced training based only
on the exemplars. This method obtains good performance (47.6), as balanced training
calibrates all outputs from previous classes and thus removes a large part of the task-
recency bias. BiC does a very good job at avoiding the bias while maintaining a good
performance (45.7). It is clear that the newer tasks have less inter-task classification
errors. However, it seems like the small pool of samples used for learning the α and
β parameters (see Eq. 4.13) leads to having the opposite effect, and BiC appears to
over-compensate toward previous tasks. LUCIR shows a more gradual task-recency
bias while maintaining good performance (47.3). This could be related to the change
in experimental scenario. LUCIR was shown to work better when having a larger
first task followed by some smaller ones. In the more challenging setup used here
their bias-correction struggles to obtain good results. Finally, IL2M clearly overcomes
task-recency bias while improving on iCaRL (45.6). The class confusion matrix looks
similar or better than iCaRL, but the task confusion matrix seems to point towards
more inter-task miss-classifications.

These results show that the two methods that have better performance (EEIL,
LUCIR) still suffer from task-recency bias, while approaches that have a better solution
for it (iCaRL, BiC, IL2M) still have a margin for performance improvement. This
leaves room for future work to better combine or create new approaches that can both
have better overall performance while simultaneously addressing the bias-correction
issue.

4.6.3 On exemplar usage
After establishing that most methods can benefit from exemplars or use them as
their main tool to avoid catastrophic forgetting, we study the effects of different
characteristics related to them. The number of exemplars to store is limited by the
type and amount of memory available, and exemplars are selected at the end of each
training session following a sampling strategy.
On memory size: We first analyze how the number of exemplars per class affects
performance as we expand the exemplar memory. In Figure 4.6 we compare several
rehearsal methods with different numbers of exemplars per class in a growing memory.
As expected, in almost all cases performance increases as more exemplars are added.
LUCIR and iCaRL always perform equal to or better than FT+ and FZ+. When using
few exemplars per class, the weights of the last layer can be modified by large gradients
coming from new classes while very little to no variability of gradients comes from
previous ones. We found that the freezing of the last layer weights as used in FT+
provides a larger advantage than is obtained with only a few exemplars (see results
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Figure 4.6 – Results for CIFAR-100 (10/10) on ResNet-32 trained from scratch with
different exemplar memory sizes.

with fewer than five exemplars for EEIL, BiC, and IL2M).
Adding more samples becomes more costly after 20 exemplars per class in com-

parison to the gain in performance obtained. As an example, expanding the memory
from 10 to 20 samples per class on BiC yields a 6.2 point gain in average accuracy.
Expanding from 20 to 40 yields a 4.8 point gain at the cost of doubling the memory
size. For the other methods, these gains are similar or worse. Although starting with
better performance spot with fewer exemplars per class, iCaRL has a slight slope
which makes the cost of expanding the memory less beneficial. LUCIR follows with
a similar curve, and both seem to be further away from Joint training (upper bound),
probably due to the differences in how the classification layer is defined (NME and co-
sine normalization, respectively). Finally, BiC, IL2M and EEIL are quite close to Joint
training when using a third of the data as memory (160 out of 500 maximum samples
per class). To maintain a realistic memory budget, and given the lower performance
gains from increasing said memory, we fix growing memories to use 20 exemplars per
class.
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avg. acc. sampling FT-E LwF-E EWC-E EEIL BiCafter strategy

task 2

random 67.3 60.8 55.2 62.9 62.2
herding 59.4 61.9 56.8 67.2 62.4
entropy 57.9 57.8 56.4 57.7 64.2
distance 55.5 56.5 51.0 56.0 61.9

inv-entropy 57.6 57.6 56.4 62.6 61.7
inv-distance 55.8 54.6 57.4 61.7 59.9

task 5

random 51.3 48.6 39.6 54.7 53.4
herding 49.1 47.8 41.7 53.4 54.9
entropy 38.7 36.3 33.3 45.3 43.6
distance 41.1 38.1 27.7 45.5 42.7

inv-entropy 40.6 41.0 36.6 47.4 45.8
inv-distance 38.9 39.5 36.6 45.5 44.4

task 10

random 37.1 30.5 26.1 40.8 39.9
herding 36.5 30.9 26.8 42.1 42.9
entropy 21.8 18.8 14.4 28.7 29.3
distance 20.4 16.9 10.6 27.4 25.3

inv-entropy 29.0 25.1 22.9 31.3 34.7
inv-distance 27.1 24.2 23.1 31.3 35.8

Table 4.4 – CIFAR-100 (10/10) for different sampling strategies with fixed memory of
2,000 exemplars on ResNet-32.

On sampling strategies: As introduced in Sec. 4.4.3, for rehearsal approaches there
are different strategies to select which exemplars to keep. In Table 4.4 we compare the
FT-E baseline, the two most common regularization-based methods (LwF-E, EWC-E),
and two of the latest bias-correction methods (EEIL, BiC). We use the four different
sampling strategies introduced in Sec. 4.4.3: random, herding (mean of features),
entropy-based, and plane distance-based. We also add a variation of the last two which
chooses the samples furthest away from the task boundaries to observe the effect of
choosing the least confusing samples instead. We denote these as inv-entropy and
inv-distance. These methods and strategies are evaluated under our two main proposed
scenarios: CIFAR-100 (10/10) and (50/11).

Results on the CIFAR-100 (10/10) scenario show a clear preference across all
approaches for the herding sampling strategy, except for FT-E which prefers random.
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acc. sampling FT-E LwF-E EWC-E EEIL BiCafter strategy

task 2

random 42.4 49.0 47.2 44.5 55.5
herding 48.0 51.7 45.1 47.9 53.5
entropy 39.6 43.6 38.6 38.4 46.1
distance 36.0 44.0 33.3 37.4 43.6

inv-entropy 41.4 44.5 45.5 43.3 55.6
inv-distance 44.3 48.2 43.9 40.3 47.9

task 5

random 38.5 34.2 30.4 41.3 43.2
herding 36.5 36.6 34.1 40.8 44.6
entropy 27.3 24.4 20.2 28.2 31.4
distance 25.1 25.2 20.0 27.6 31.2

inv-entropy 34.5 32.4 30.0 35.9 41.6
inv-distance 33.1 32.5 30.0 37.0 38.3

task 10

random 32.5 26.0 22.7 37.3 36.1
herding 32.0 26.3 23.6 38.8 39.1
entropy 16.1 14.8 10.7 23.0 25.9
distance 17.1 13.5 8.5 23.0 22.7

inv-entropy 28.7 22.2 21.8 30.1 32.8
inv-distance 29.2 23.3 20.6 27.1 35.4

Table 4.5 – CIFAR-100 (50/11) with different sampling strategies and fixed memory
of 20 exemplars per class on ResNet-32 trained from scratch.

The second best strategy in some cases, and generally close to herding, is random.
Both these strategies clearly outperform the others when evaluating after 5 and 10
tasks in both scenarios. When only evaluating after two tasks for the (10/10) scenario,
the gap between them is much smaller, probably due to the large number of exemplars
available at that point (2,000). It is notable that for shorter task sequences, entropy-
and distance-based perform similar to the proposed inverse versions. However, for
larger sequences of tasks, the inverse versions perform better. This could be due to
samples further away from the boundaries (and closer to the class centers) becoming
more relevant when the number of exemplars per class becomes smaller.

The better performance achieved by using herding in comparison to other sampling
strategies is also very clear in the CIFAR-100 (50/11) scenario. As seen in Table 4.5,
for longer task sequences herding has a clear benefit over the other sampling strategies
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when using class-incremental learning methods. In the case of shorter sequences,
similar to transfer learning, performance does not seem to specifically favour any
sampling strategy.
On different starting scenarios: We explore two scenarios with different numbers
of classes in the starting task. The first one compares a large number methods on
CIFAR-100 (10/10), with classes equally split across all tasks. For the second scenario,
we compare the same methods on CIFAR-100 (50/11) which is similar to having
the first task being a pretrained starting point with more classes and a richer feature
representation before the subsequent 10 smaller tasks are learned. Both those scenarios
are further extended and presented under the two described types of memory: fixed
(2,000 total exemplars) and growing (20 exemplars per class), with herding as the
sampling strategy. DMC uses an external dataset (reduced ImageNet-32 [188]) that
is already larger than the memories, so no exemplars are stored. All other methods
which were not originally proposed with exemplars have been adapted to use them
and show better performance overall than their original versions.

In Figure 4.7, BiC, EEIL and IL2M achieve the best results after learning 10 tasks
with both fixed and growing memories. They are followed by iCaRL, LwM-E, and then
LUCIR. LUCIR and BiC have different starting points on task 1 since they do not have
the same initial conditions as the other approaches (LUCIR uses cosine linear layers,
while BiC uses fewer data during training because it stores some for the later training
of the bias-correction parameters). It is quite clear that the approaches that tackle
task-recency bias have an overall better performance than the others. Furthermore, as
already noted by [13], FT-E achieves competitive performance similar to the lowest
performance of that family. In general, most methods seem to suffer less catastrophic
forgetting when using a fixed memory that allows storing more exemplars during early
tasks. For some approaches, the difference is quite considerable after learning 5 tasks
and slightly better after the full 10-task sequence.

In Figure 4.8 the results are quite different. In general, starting from a larger
number of classes makes all methods perform better, probably due to anchoring to
the first task making the features already more diverse. This is specially noticeable
in the case of FZ-E, which benefits significantly from freezing after a much more
representative first task. This shows the importance of comparing to this baseline when
doing experiments with pretrained models or a very strong first task. In this scenario,
LUCIR and iCaRL have a much better performance with a fixed memory, followed by
MAS-E, RWalk and BiC.
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Figure 4.7 – CIFAR-100 (10/10) with 2,000 exemplar fixed memory (top), and 20
exemplars per class growing memory (bottom).
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Figure 4.8 – CIFAR-100 (50/11) with 2,000 exemplar fixed memory (top), and 20
exemplars per class growing memory (bottom).
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4.6.4 On semantic tasks
The popularity of iCaRL and the interest in comparing with it makes it quite common
to utilize the random class ordering for experiments based on CIFAR-100 [77]. The
authors of iCaRL use a random order of classes which is fixed in the iCaRL code by
setting the random seed to 1993 just before shuffling the classes. However, this gives
very little insight on class orderings which make use of the coarse labels from that
dataset to group classes into sharing similar semantic concepts. This was explored in
our earlier work for the tinyImageNet (Stanford, CS231N [165]) dataset in [34, 107],
showing that some methods report different results based on different semantics-based
class orderings. In [34], the iNaturalist [168] dataset is split into tasks according
to supercategories and are ordered using a relatedness measure. Having tasks with
different semantic distributions and learning tasks in different orders is interesting for
real-world applications where subsequent tasks are based on correlated data instead of
fully random. In another of our recent works, [108] brings attention to the learning
variability between using different class orderings when learning a sequence of tasks
incrementally.

In joint training, specific features in the network can be learned that focus on
differentiating two classes that are otherwise easily confused. However, in an IL
setting those discriminative features become more difficult to learn or can be modified
afterwards, especially when the classes belong to different tasks. Thus, the difficulty of
the task can be perceived differently in each scenario. Depending on the method, this
issue may be handled differently and therefore lead to more catastrophic forgetting.
This setting is different from the one proposed in Curriculum Learning [15], since
the objective here is not to find the best order to learn tasks efficiently, but rather to
analyze incremental learning settings (in which the order is not known in advance)
and analyze the robustness of methods under different task orderings.
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Figure 4.9 – Class ordering results for CIFAR-100 on ResNet-32 trained from scratch.
For FT-E and BiC, 20 exemplars per class are sampled using herding. Error bars
indicate standard deviation over six runs.

92



4.6. Experimental results

In order to investigate robustness to class orderings, we use the 20 coarse-grained
labels provided in the CIFAR-100 dataset to arrive at semantically similar groups
of classes. Then, we order these groups based on their classification difficulty. To
assess performance we trained a dedicated model with all CIFAR-100 data in a
single training session and use this model accuracy as a proxy value for classification
difficulty. Finally, we order them from easier to harder (Dec. Acc.) and the other
way around (Inc. Acc.). Results are presented in Fig. 4.9 for two methods without
exemplars (FT+, LwF), and two methods with exemplars (FT-E, BiC). Performance
can be significantly lower when using a semantics-based ordering compared to random
one. In the examplar-free cases, special care of the used task ordering should be taken
as the final performance after learning all classes can have quite some variability as
seen in the LwF case. However, the variation with respect to the orderings is mitigated
by the use of exemplars. Therefore, evaluating methods which use exemplars with
randomized task orderings often suffices.

4.6.5 On domain shift effects
Up to this point all experiments were performed on a dataset with a small input size
and a wide variety of classes from a similar distribution. In this experiment, we study
the effects of using tasks which have different degrees of domain shifts between them
and whose images also have higher resolution.
Smaller domain shift: We first conduct experiments on very small domain shifts
between different classes and tasks, as is the case for VGGFace2 [21]. We divide
the 1,000 classes equally into 25 tasks of 40 classes, store 5,000 exemplars in a fixed
memory and train ResNet-18 from scratch. In Fig. 4.10 we see that LUCIR, BiC and
IL2M perform the best among all methods. In particular, LUCIR achieves 73.0 average
accuracy after 25 tasks, which is relatively high compared to previous experiments on
CIFAR-100, which indicates that this approach might be more indicated for smaller
domain shifts. Surprisingly, FT-E performs only 4.2 points lower than LUCIR and
above all the other remaining approaches except for EWC-E, which also performs
well with small domain shifts between tasks. EEIL shows competitive performance
on the first 13 tasks, but starts to decline for the remaining ones. On the other hand,
iCaRL has a larger drop in performance during early tasks, maintains the performance
quite well afterwards, and ends up with similar results as EEIL and LwM-E. Of the
regularization-based methods, EWC-E is superior to both LwF-E and LwM-E. FZ+
has better performance when starting from a larger first task (due to more robust feature
representations), which we assumed would translate into a good performance when
having small domain shifts between tasks and classes. However, the initial frozen
representations are not discriminative enough to generalize to new classes.
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Figure 4.10 – Small domain shifts on VGGFace2 (40/25) on ResNet-18 trained from
scratch and 5,000 exemplar fixed memory.

Larger domain shift: We are the first to compare class-IL methods to incrementally
learn classes from various datasets. As a consequence tasks have large domain shifts
and different number of classes. We use six fine-grained datasets (Flowers, Scenes,
Birds, Cars, Aircraft and Actions) learned sequentially on ResNet-18 from scratch
with a growing memory of 5 exemplars per class. The number of classes varies
among the tasks (see Table 4.1), but the classes inside each of them are closely related.
In Fig. 4.11 we see that most approaches have a similar performance, much unlike
previous experiments. It is noticeable that bias-correction methods do not have a
clear advantage compared to other approaches. It seems that when the domain shift
between tasks is large, inter-task confusion becomes the major cause for catastrophic
forgetting. Solving the task-recency bias provides a lower performance advantage
than in other scenarios and only improves the outputs of the corresponding task.
The forgetting which is caused by the large weight and activation drift originated
from the large domain shifts seems to dominate in this scenario. The fact that no
method clearly outperforms the FT-E baseline shows that scenarios with large domain
shifts, where catastrophic forgetting is caused by inter-task confusion, are still an
important direction of study since most proposed methods focus on weight drift
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Figure 4.11 – Large domain shifts with multiple fine-grained datasets (Flowers, Scenes,
Birds, Cars, Aircraft, Actions).

(EWC-E, MAS-E), activation drift (LwF-E, LwM-E, iCaRL, EEIL, BiC, LUCIR) or
task-recency bias (iCaRL, BiC, LUCIR, IL2M).

Another interesting effect we visualize in Fig. 4.11 is the behaviour when learning
Actions. The other datasets have a very clear focus on color and shape features to
discriminate between their classes. However, for Actions, context is very relevant to
identify which action the human is portraying in the image. Some features from the
Scenes dataset can be helpful to identify an indoor or outdoor action, but in general
this dataset is less related to the others. And we see that already Joint training lowers
a bit the average accuracy when learning this task, as do most of the methods. Only
EWC-E and MAS-E maintain or improve when learning that task, raising the question
whether weight regularization-based methods have an advantage in these scenarios.
On “interspersed” domains: We propose another scenario that is not explored in
class-IL: revisiting learned distributions to learn new classes. We propose to learn
four fine-grained datasets split into four tasks of ten classes each for a total of 16
tasks. A group consists of four tasks, one from each dataset in this order: Flowers,
Birds, Actions, Aircraft. The experiment consists of four group repetitions, where
each group contains different classes (for a total of 160). This allows us to analyze
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Figure 4.12 – Forgetting when revisiting old domains with new classes from different
fine-grained datasets on AlexNet.

how class-IL methods perform when similar tasks re-appear after learning different
tasks. We refer to this scenario as “interspersed” domains since classes from each
domain are distributed across tasks.

Results of forgetting on the first group during the whole sequence are presented in
Fig. 4.12. We clearly see a difference between LUCIR and other methods. LUCIR
suffers quite a large loss on the first task at the beginning of the sequence and after
the second group is learned, never recovering any performance for that task. However,
LUCIR shows very little forgetting for the remaining tasks in the sequence. This seems
to be related to the preference of LUCIR to have a larger first task with more diverse
feature representations, as also observed in earlier experiments. For the remaining
methods, the first task has a lot of variation with a general decaying trend. BiC has
an initial drop right after learning each of the other tasks, but manages to prevent
further forgetting, though with some variability on the first Aircraft task. LwF-E and
EEIL have a more cyclic pattern of forgetting and recovering. Forgetting is more
pronounced when the task being learned is of the same dataset as the current one, and
seems to slightly recover when learning less similar tasks. Finally, the forgetting of
IL2M shows a lot of variation, which might be related to the lack of a distillation loss
keeping new representations closer to previous ones.

4.6.6 On network architectures
We compare the four most competitive methods over a range of different network
architectures in Table 4.6. An interesting observation is that for different networks,
the performance rankings of the methods can change completely. For instance, in
architectures which do not use skip connections, iCaRL performs the best when
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task 2 task 5 task 9 A10

AlexNet
60m params

2012

iCaRL 39.6 (-23.2) 30.0 (-8.4) 33.0 (-5.2) 38.8
EEIL 27.4 (-55.0) 25.2 (-49.0) 22.6 (-49.4) 35.6
BiC 30.6 (-31.8) 26.4 (+14.0) 21.2 (+16.8) 34.4

IL2M 27.4 (-52.4) 21.6 (-41.2) 44.0 (-25.2) 35.2

VGG-11
133m params

2014

iCaRL 32.4 (-30.0) 34.0 (-24.8) 42.6 (-8.2) 43.2
EEIL 29.6 (-56.0) 29.0 (-50.4) 32.8 (-45.6) 40.9
BiC 32.4 (-33.8) 19.6 (+3.4) 31.0 (-3.2) 32.1

IL2M 27.8 (-58.2) 31.0 (-19.6) 54.0 (-17.4) 42.2

GoogleNet
6.8m params

2014

iCaRL 35.0 (-30.0) 29.2 (-24.0) 43.6 (-12.2) 43.7
EEIL 18.2 (-68.4) 26.0 (-49.2) 31.8 (-45.0) 36.1
BiC 27.2 (-51.2) 39.8 (-14.2) 49.0 (-4.4) 44.5

IL2M 23.6 (-59.0) 23.0 (-36.6) 40.0 (-36.0) 38.2

ResNet-18
11m params

2015

iCaRL 38.4 (-31.8) 29.6 (-21.8) 43.8 (-9.8) 43.6
EEIL 26.0 (-59.4) 26.8 (-52.8) 28.2 (-48.8) 36.6
BiC 31.2 (-48.6) 41.0 (+0.4) 49.4 (+4.4) 45.6

IL2M 26.2 (-60.8) 24.0 (-47.8) 35.0 (-44.4) 37.2

MobileNet
4.2m params

2017

iCaRL 38.4 (-33.4) 33.6 (-21.6) 40.2 (-23.8) 43.5
EEIL 21.2 (-68.4) 29.0 (-52.4) 25.4 (-54.8) 37.4
BiC 39.4 (-44.2) 41.2 (-11.4) 45.2 (-14.0) 44.7

IL2M 35.0 (-46.6) 24.2 (-24.2) 42.6 (-30.0) 42.1

Table 4.6 – ImageNet-Subset-100 (10/10) with different networks trained from scratch.
Task accuracy when the task was learned and forgetting after learning all classes
(between brackets). Final column reports the average accuracy after 10 tasks.

using AlexNet and VGG-11. On the other hand, BiC performs worse without skip
connections, but performs the best with architectures that have them (ResNet-18,
MobileNet and GoogleNet). BiC exhibits the least forgetting among all methods,
even having positive forgetting which indicates that performance improves on some
tasks after learning them. However, this result comes at the expense of having slightly
lower performance for each task just after learning them. IL2M is more consistent
compared to other methods using different networks, never having the best nor the
worst performance. Networks without skip connections seem to reduce forgetting for
iCaRL and IL2M. EEIL suffers more forgetting compared to other methods across
different networks.
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ResNet-18 obtains the best result among all networks with BiC. Note that in
most of the literature, ResNet-18 is used as the default network for this scenario
and similar ones. However, as shown above, it seems that methods benefit from
architectures differently. Another interesting observation is that MobileNet, which has
the lowest number of operations and can run on devices with limited capacity, has very
competitive results compared to the other networks. These results show that existing
IL approaches can be applied to different architectures with comparable results to the
scenarios presented in the literature.

4.6.7 On large-scale scenarios
Finally, we compare different methods using ResNet-18 on ImageNet (40/25) with a
growing memory of 20 exemplars per class. Figure 4.13 shows that BiC and iCaRL
achieve the best performance with 32.4% and 30.2% average accuracy after 25 tasks,
respectively. Surprisingly, EWC-E and FT-E outperform some methods, such as EEIL
and LUCIR, in this setting. Note that in other settings, EEIL and LUCIR often perform
better than EWC-E and FT-E. LwF-E and LwM-E obtain worst results compared to
how they previously performed. We note that BiC, iCaRL, IL2M and LUCIR avoid a
larger initial drop in performance during the first four tasks compared to other methods
and continue learning without major drops in performance except for LUCIR. Of the
rest of the methods, EWC-E, FT-E and EEIL seem to stabilize after the initial drop
and show less forgetting as new tasks are added. RWalk, LwF-E and LwM-E continue
having a larger drop in performance after task four, which only RWalk slightly recovers
from. In this scenarios with a larger number of classes and more variability, methods
which can easily handle early tasks will perform better afterwards. On the second half
of the sequence, most approaches have the same stable behaviour since the network
has learned a robust representation from the initial tasks.

4.7 Emerging trends in class-IL learning
Here we briefly discuss some recent developments in class-IL we think will play an
important role in the coming years.
Exemplar learning. Recently, an exciting new direction has emerged that parametrizes
exemplars and optimizes them to prevent forgetting [25, 93]. This enables much more
efficient use of available storage. Liu et al. [93] propose Mnemonics Training, a
method that trains the parametrized exemplars in a two-phase procedure. During the
first phase, the model is optimized on the new data and exemplars of previous tasks
while preventing forgetting with a distillation loss. In the second phase, the exemplars
are optimized to prevent the forgetting when evaluated on the current task data (i.e.
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Figure 4.13 – ImageNet (40/25) on ResNet-18 with growing memory of 20 exemplars
per class and herding sampling.

when finetuning on these exemplars the increase of the cross-entropy loss on the
current data is minimal). The proposed method is combined with weight transfer [126]
to reduce the number of parameters that are learned for each task. Chaudry et al. [25]
generalize the theory to a streaming setting, where the learning of the exemplars does
not require multiple loops over the data for every task. They propose learning a single
anchor exemplar that prevents forgetting on future tasks. Because there is no access to
future data, preventing forgetting on future tasks is approximated by preventing it on
previous tasks (represented by exemplars).

Both methods [25,93] show that they can outperform random and herding strategies.
Optimizing the available storage by computing more efficient exemplars is expected to
be one of the main future research directions, and more efficient use of limited storage
in IL systems in general is expected to attract more research in the coming years.
Feature rehearsal. Pseudo-rehearsal is a good alternative to storing exemplars [122,
154, 175]. It learns a separate network that generates images of previous tasks. How-
ever, current state-of-the-art image generation methods still struggle to realistically
generate complex image data, and therefore this approach has been mainly applied
to relatively simple datasets and is known to obtain unsatisfying results on complex
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ones. To address this problem, some recent works have proposed to perform feature
replay instead of image replay [68, 92, 177], where instead a generator is trained to
generate features at some hidden layer of the network. In this way rehearsal can also
be applied to complex datasets. Another closely related line of research is based on
the observation that storing feature exemplars is much more compact than storing
images [58]. Moving away from image replay towards different variants of feature
replay is expected to gain traction.
Explicit task classification. The majority of class-IL methods incrementally learn
a classifier over all classes up until those in the current task. Another approach is to
learn one classifier head per task that only distinguishes between the classes within
the task, and another classifier that predicts the task label. This would allow to extend
any task-IL method to a class-IL method. An early version of this idea was proposed
by Aljundi et al. [6] where gating autoencoders are used to predict the task label. A
recent work extends a mask-based method (similar to [153]) with an explicit task
classifier [2]. It is yet unclear why and when explicit task classification is expected to
outperform learning one joined classifier. Further study and comparison between these
two fundamentally different strategies to the problem of class-IL is needed. A recent
work of Rajasegaran et al. [130] convincingly shows that for the plausible scenario
where images at inference time are processed in batches with the same task-ID, this
knowledge can significantly improve the quality of the explicit task classifier.
Self- and unsupervised incremental learning. Being able to incrementally learn
representations from an unsupervised data stream is a desirable feature in any learning
system. This direction applied to class-IL has received relatively little attention to date.
Rao et al. [132] propose a method that performs explicit task classification and fits
a mixture of Gaussians on the learned representations. They also explore scenarios
with smooth transitions from one task to another. Still in its infancy, more research on
unsupervised incremental learning is expected in coming years. In addition, leveraging
the power of self-supervised representation learning [71] is only little explored within
the context of IL, and is expected to gain interest.
Meta-learning. Meta-learning aims to learn new tasks leveraging information
accrued while solving related tasks [148]. Riemer et al. [139] show that such a method
can learn parameters that reduce interference of future gradients and improves transfer
based on future gradients. Javed and White [70] explicitly learn a representation for
continual learning that avoids interference and promotes future learning. These initial
works have shown the potential of meta-learning on small datasets. However, we
expect these techniques to be further developed in the coming years, and will start to
obtain results on more complex datasets like the ones considered in our evaluation.
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4.8 Conclusions
We performed an extensive survey of class-incremental learning. We organized the
proposed approaches along three main lines: regularization, rehearsal, and bias-
correction. In addition, we provided extensive experiments in which we compare
twelve methods on a wide range of incremental learning scenarios. Here we briefly
enumerate the main conclusions from these experiments:

• When comparing exemplar-free methods, LwF obtains the best results (see
Table 4.3). Among the other regularization methods, data regularization (LwM)
obtains superior results compared to weight regularization (EWC and MAS).
Exemplar-free methods can currently not compete with exemplar rehearsal
methods, and given the more restrictive setting in which they operate, we
advocate comparing them separately.

• When combining LwF with exemplars, we confirm the results in [13] showing
that the added regularization does not improve results and the baseline method
of finetuning with exemplars performs better (see Table 4.3). However, using
LwM for data regularization does perform better than the baseline.

• We found that in several scenarios weight regularization outperforms the base-
line FT-E significantly (see Figs. 4.8 and 4.10), showing that the IL community
choice of data regularization with LwF (see Fig. 4.4) instead of weight regular-
ization should be reconsidered.

• Herding is a more robust exemplar sampling method than random for larger se-
quences of tasks, but is not better than others for short sequences (see Table 4.4).

• Methods that explicitly address the task-recency bias obtain better performance
for class-IL (see Figs. 4.7, 4.8, 4.10, 4.11, 4.13): we found that BiC obtains
state-of-the-art on several experiments (notably on ImageNet). IL2M obtains
consistent good performance on most datasets. Also, iCaRL and EEIL obtain
good performance on several datasets, but fail to outperform the baseline FT-E
on others. Methods like LUCIR require a good starting representation – for
example in the scenario with the larger first task or smaller domain shifts,
LUCIR can be state-of-the-art.

• Current methods have mainly presented results on datasets with small domain
shifts (typically random class orderings from a single dataset). When consid-
ering large domain shifts none of the methods significantly outperform the
baseline FT-E (see Fig. 4.11). Large domain shift scenarios have been consid-
ered for task-IL, but our results show that they require new techniques to obtain
satisfactory results in class-IL settings.
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• We are the first to compare class-IL methods on a wide range of network archi-
tectures, showing that current class-IL works on variety of networks. Results
show that most are sensitive to architecture and rankings change depending on
the network used. It is quite clear that using a network with skip connections
favors some methods, while their absence favors others.
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5
Metric learning for
novelty and anomaly detection*

5.1 Introduction
Deep neural networks have obtained excellent performance for many applications.
However, one of their known shortcomings is that they can be overly confident when
presented with images (and classes) not present in the training set. Therefore, a
desirable property of these systems is the capacity to not produce an answer if an
input sample belongs to an unknown class, that is, a class for which it has not been
trained. The field of research dedicated to this goal is called out-of-distribution detec-
tion [61,82,88]. Performing out-of-distribution detection is important not only to avoid
classification errors but also as the first step towards lifelong learning systems [30].
Such systems would detect out-of-distribution samples in order to later update the
model accordingly [74, 90].

The problem of out-of-distribution detection has also been called one-class clas-
sification, novelty and anomaly detection [128]. More recently, associated to deep
neural network classifiers, some works refer to it as open-set recognition [14]. In
this chapter, we distinguish two cases of out-of-distribution which we believe are
quite different: we propose to term as novelty an image from a class different from
those contained in a dataset used for training, but that bears some resemblance to
them (for instance because it shows the same kind of object from untrained points
of view). This is a very important problem in many computer vision applications.
For example, imagine a system that classifies traffic signs on-board a car and takes
automatic decisions accordingly. It can happen that it finds a class of local traffic signs
which was not included in the training set, and this must be detected to avoid taking
wrong decisions. We reserve the word anomaly for completely unrelated samples, like
different type of objects, images from another unrelated dataset, or background patches
in the case of traffic sign classification. This is also relevant from the point of view of
commercial applications. In fact, most previous works focus on anomaly detection.
Novelty detection remains rather unexplored. To the best of our knowledge only [150]
and [88] perform some intra-dataset out-of-distribution detection experiments. The
three previous works closest to ours [61, 82, 88], revolve around one idea: given a
discriminative neural network model, use the output probabilities to take the decision

*This chapter is based on a publication in the British Machine Vision Conference (BMVC), 2018 [106].
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of seen/unseen class. These networks are optimized to distinguish between the classes
present in the training set, and are not required to explicitly model the marginal data
distribution. As a consequence, at testing time the system cannot assess the probability
of the presented data, complicating the assessment of novel cases.

Here we explore a completely different approach: to learn an embedding where
one can use Euclidean distance as a measure of “out-of-distributioness”. We propose a
loss that learns an embedding where samples from the same in-distribution class form
clusters well separated from the space of other in-distribution classes and also from
out-of-distribution samples. The contributions to the problem of out-of-distribution
detection presented in this chapter are the following. First, the use of metric learning
for out-of-distribution detection, instead of doing it on the basis of the cross-entropy
loss and corresponding softmax scores. Second, we distinguish between novelty and
anomaly detection and argue that research should focus on the more challenging
problem of novelty detection. Third, we obtain comparable or better results than
state-of-the-art in both anomaly and novelty detection. Finally, in addition to the
experiments with benchmark datasets in order to compare with previous works, we
also address a real-world classification problem, traffic sign recognition, for which we
obtain good detection and accuracy results.

5.2 Related work
This chapter is related to anomaly detection in its different meanings. Also to open-set
recognition, as one of the most important applications of out-of-distribution detection.
And finally to metric learning, the basis of our approach. In the following we briefly
review the most related works in each of these areas. Out-of-distribution detection
should not be confused with another desirable property of machine learning systems,
namely the reject option, which is, the ability to decide to not classify an input if the
confidence on any of the labels is too low (see for example [45] and references therein).
The difference is that in the latter case it is assumed that the sample does belong to
some class present during training.

Anomaly and novelty detection. Also known as out-of-distribution detection, it aims
at identifying inputs that are completely different from or not present in the original
data distribution used for training [128]. In [18], novelty detection is performed
by learning a distance in an embedding. It proposes a Kernel Null Foley-Sammon
transform that aims at projecting all the samples of each in-distribution class into a
single point in a certain space. Consequently, novelty detection can be performed
by thresholding the distance of a test sample to the nearest of the collapsed class
representations. However, they employ handcrafted features, thus optimizing only
the transform parameters and not the representation, as in the currently prevailing
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paradigm of deep learning.
Although Deep Neural Networks (DNNs) have been established as state-of-the-art

on many computer vision classification and detection tasks, overconfidence in the
probability score of such networks is a common problem. DNNs capable of detecting
many objects with high accuracy can still be fooled by predicting new, never-seen
objects with high confidence. This problem can be defined by the ability of the network
to decide if a new test sample is in-distribution (i.e. from a class or from the data used
to train the classifier) or is instead out-of-distribution.

In [61] the authors showed that DNNs trained on MNIST [80] images can fre-
quently produce high confidence guesses (+90%) on random noise images. They
propose a baseline for evaluation of out-of-distribution detection methods and show
that there is room for future research to improve that baseline. Their baseline assumes
that out-of-distribution samples will have a more distributed confidence among the
different classes than an in-distribution sample. Recently, in [88] the authors propose
ODIN, a simple method applied to DNNs that uses a softmax layer for classification
and does not need the network to be retrained. The key idea is to use temperature
scaling and input pre-processing, which consists on introducing small perturbations in
the direction of the gradients for the input images.

The authors of [82] diverged from the other threshold-based methods by proposing
a new training method. They add two loss terms that force the out-of-distribution
samples to be less confident and improve the in-distribution samples respectively. In
both these works, trained DNNs follow a typical softmax cross-entropy classification
loss, where each dimension on the output embedding is assigned to measure the
correlation with a specific class from that task. Other than previous work which focuses
on networks trained with the cross-entropy, our work studies out-of-distribution for
networks which are optimized for metric learning. These networks do not have the
normalization problem which is introduced by the softmax layer, and are therefore
expected to provide better estimates of out-of-distribution data. One final work is
worth mentioning in the context of DNNs. In [150] the authors propose to discern
between seen and unseen classes through the dimensions of certain layer activations
which have extreme values. They achieve good accuracy on ImageNet but only when
the number of selected classes is very small.
Open Set Recognition. This shares with out-of-distribution detection the goal of
discriminating samples from two different distributions. But it places the emphasis on
how to apply it to improve classifier capabilities so that it can still perform well when
the input may contain samples not belonging to any class in the training set. One of the
first works is [147], which formalized the problem as one of (open) risk minimization
in the context of large margin classifiers, producing what they called a one-versus-set
Support Vector Machine. More recently, a method to adapt deep neural networks to
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handle open set recognition has been proposed in [14]. The key idea is to replace the
conventional softmax layer in a network by a so called openmax layer. It takes the N
activations (where N is the number of classes) of the penultimate layer of the network
and estimates the probability for each training class, like in softmax, plus that of not
being a sample of the training data. This later is done by fitting a Weilbull density
function to the distance between the mean activation value for each class and those
of the training samples. We see thus that distance between last layer activations or
features plays a key role. This is coincident with our method, only that features in their
case are learned through a loss function similar to cross-entropy whereas we explicitly
will learn a distance such that in-distribution samples cluster around one center per
class and out-of-distribution samples are pushed away from all these centers.
Metric Learning. Several computer vision tasks such as retrieval, matching, veri-
fication, even multi-class classification, share the need of being able to measure the
similarity between pairs of images. Deriving such a measure from data samples is
known as metric learning [79]. Two often cited seminal works on this subject through
neural networks are [31, 53], where the Siamese architecture was proposed for this
purpose. Differently from classification networks, the goal is to measure how similar
two instances are in terms of the Euclidean distance, rather than learn a representation
amenable for classification. Another popular architecture is the triplet network [64].
For both of them many authors have realized that mining the samples of the training
set in order to find difficult or challenging pairs or triplets is important in order to
converge faster or to better minima [149, 159, 160]. Like them, we have also resorted
to a mining strategy in order to obtain good results on the task of out-of-distribution
detection.

5.3 Metric Learning for Out-of-Distribution Detection
Most recent works on out-of-distribution detection are based on supervised training of
neural networks which optimizes the cross-entropy loss. In these cases the network
output has a direct correspondence with the solution of the task, namely a probability
for each class. However, the representation of the output vector is forced to always
sum to one. This means that when the network is shown an input which is not part
of the training distribution, it will still give probabilities to the nearest classes so that
they sum up to one. This phenomena has led to the known problem of neural networks
being too overconfident about content that they have never seen [61].

Several works have focused on improving the accuracy of the confidence estimate
of methods based on the cross-entropy, adapting them in such a way that they yield
lower confidences for out-of-distribution samples [61, 82, 88]. We hypothesize that
the problem of the overconfident network predictions is inherent to the use of the
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cross-entropy loss, and therefore propose to study another class of network objectives,
namely those used for metric learning. In metric learning methods, we minimize
an objective which encourages images with the same label to be close and images
with different labels to be at least some margin apart in an embedding space. These
networks do not apply a softmax layer, and therefore are not forced to divide images
which are out-of-distribution from the known classes.

5.3.1 Metric Learning
For applications such as image retrieval, images are represented by an embedding in
some feature space. Images can be ordered (or classified) according to the distance to
other images in that embedding space. It has been shown that using metric learning
methods to improve the embeddings can significantly improve their performance [52].
The theory of metric learning was extended to deep neural networks by Chopra et
al. [31]. They proposed to pass images through two parallel network branches which
share the weights (also called a Siamese network). A loss considers both embeddings,
and adapts the embedding in such a way that similar classes are close and dissimilar
classes are far in that embedding space.

Traditionally these networks have been trained with contrastive loss [53], which is
formulated as:

L(x1, x2, y ; W ) = 1

2

(
1−y

)
D2

w + 1

2
y (max(0,m−Dw ))2 , (5.1)

where Dw = || fW (x1)− fW (x2)||2 is the distance between the embeddings of images
x1 and x2 computed by network fW with weights W . The label y = 0 indicates that
the two images are from the same class, and y = 1 is used for images from different
classes. The loss therefore minimizes the distance between images of the same class,
and increases the distance of images of different classes until this distance surpasses
the margin m (see Fig. 5.1). Several other losses have been proposed for Siamese
networks [64, 149, 160, 171, 172] but in this chapter we will evaluate results with the
contrastive loss to provide a simple baseline on which to improve.

5.3.2 Out-of-Distribution Mining (ODM)
In the previous section, we considered that during training only examples of in-
distribution data are provided. However, some methods consider the availability of
some out-of-distribution data during training [82]. This is often a realistic assumption
since it is relatively easy to obtain data from other datasets or create out-of-distribution
examples, such as samples generated with Gaussian noise. However, it has to be noted
that the out-of-distribution data is used unlabeled, and is of a different distribution
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Figure 5.1 – Visualization of the contrastive loss [53]. Pairs are formed by xa and xp

if the pairs are of the same class (y = 0), and xa and xn if the pairs are from different
classes.

from the out-of-distribution used at testing. The objective is to help the network be
less confident about what it does not know. Therefore, noise or even unlabeled data
can be used to strengthen the knowledge boundaries of the network.

We propose to adapt the contrastive loss to incorporate the out-of-distribution data:

L(x1, x2, y ; W ) = 1

2

(
1−y

)
zD2

w + 1

2
y z (max(0,m−Dw ))2 , (5.2)

where we have introduced a label z which is zero when both images are out-of-
distribution and one otherwise. This loss is similar to Eq. 5.1, but with the difference
that in case of a pair of images where one is an out-of-distribution image (z = 1, y = 1)
they are encouraged to be at least m distance apart. Note that we do not enforce the
out-of-distribution images to be close, since when z = 0 the pair does not contribute
to the loss. It is important to make sure that there are no pairs of out-of-distribution
samples so that they are not treated as a single new class and forced to be grouped into
a single cluster. A summary of the mining strategy is shown in Fig. 5.2.

In practice, we have not implemented a two-branches Siamese network but fol-
lowed recent works [91, 166] which devise a more efficient approach to minimize
losses traditionally computed with Siamese networks. The idea is to sample a mini-
batch of images which we forward through a single branch until the embedding layer.
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Figure 5.2 – Out-of-Distribution Mining pipeline. Pairs containing at least an in-
distribution are learned following the contrastive loss. However, pairs consisting of
two out-distribution samples do not contribute to the loss since we do not want them
to form clusters in the output space.

We then sample pairs from them in the loss layer and backpropagate the gradient.
This allows the network to be defined with only one copy of the weights instead of
having two branches with shared weights. At the same time, computing the pairs after
the embedding also allows the use of any subgroup of possible pairs among all the
images from the minibatch. When computing the pairs we make sure that pairs of
out-of-distribution samples are not used. As a result z will never be 0 and we can in
practice directly apply Eq. 5.1 instead of Eq. 5.2.

5.3.3 Anomaly and Novelty detection
In this chapter we distinguish between two categories of out-of-distribution data:

Novelty: samples that share some common space with the trained
distribution, which are usually concepts or classes which the network
could include when expanding its knowledge. If you train a network
specialized in different dog breeds, an example would be a new dog breed
that was not in the training set. Furthermore, if the classes are more
complex, some novelty out-of-distribution could be new viewpoints or
modifications of an existing learned class.
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Anomaly: samples that are not related to the training distribution. In
this category we could include background images, Gaussian noise, or
classes unrelated to the training distribution (i.e. SVHN would be a
meaningful anomaly for CIFAR-10). Since anomalies are further from
the in-distribution than novelties, these are expected to be easier to detect.

To further illustrate the difference between novelties and anomalies consider
the following experiment. We train a LeNet network on the classes 2, 6 and 7
from the MNIST dataset [80] under the same setup for both cross-entropy (CE) and
contrastive (ML) losses. We also train it with our proposed method which introduces
out-of-distribution mining during training (ODM). We use classes 0, 3, 4, and 8 as those
seen out-of-distribution samples during training. Then, we visualize the embeddings
for different out-of-distribution cases from closer to further resemblance to the train
set : 1) similar numbers 5, 9 and 1 as novelty, 2) SVHN [117] and CIFAR-10 [77] as
anomalies with a meaning, and 3) the simpler Gaussian noise anomalies.

In Figure 5.3 we show the 3-dimensional output embedding spaces for CE, ML
and ODM in rows 1, 2 and 3 respectively. As expected, the CE space is bounded inside
the shown triangle, since the three dimensions of the output (the number of classes)
have to always sum up to 1. For SVHN, CE correctly assigns low confidence for all
classes. However, for CIFAR-10, Gaussian noise and Novelty it increasingly is more
confident about the probability of an out-of-distribution image to be classified as an
in-distribution one. In the case of ML, all anomalies seem to be more separated from
the in-distributions for each class, and only the Novelty is still too close to the cluster
centers. With the introduction of out-of-distribution samples during training, ODM
shows how out-of-distribution images are kept away from the in-distribution, allowing
the network to be confident about what it is capable of classifying and what not.

We also provide some quantitative performance results of the comparison on the
MNIST dataset. In this case we applied a 5-dimensional embedding space for ML
so the representation is rich enough to make the discrimination between in-dist and
out-dist. For CE, as it is fixed to the number of classes, the embedding space is
3-dimensional. In Table 5.1 we see that ML performs better than CE in all cases.
ODM almost solves the novelty problem while keeping a similar performance on
anomalies as ML. It is noticeable that CE struggles a bit more with Gaussian noise
than the other anomalies. In this case, CE still produces highly confident predictions
for some of the noise images.

In conclusion, this experiment shows that there is a difference between novel
and anomaly out-of-distribution samples for both cross-entropy and metric learning
approaches, stressing that these must be approached differently. Furthermore, the
overconfidence of the cross-entropy methods is more clear on novelty detection cases,
and among the anomaly cases, the Gaussian noise seems to be the one with more
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Figure 5.3 – Embedding spaces for CE, ML and ODM (rows respectively) being tested
on in-dist 2, 6, 7 of MNIST (red, blue, purple), and out-dist 5, 9, 1 of MNIST (green),
SVHN (yellow), CIFAR-10 (orange), and Gaussian noise (grey).

overconfident cases. In those cases, a metric learning approach presents more benefits
for out-of-distribution detection. It allows the output embedding space to be more
representative of the learned classes around the class centers, and naturally has the
ability to give low scores to unseen data. Finally, when some out-of-distribution
samples are shown during training, the network is more capable of adapting the
embedding space to be more separable against anomaly data.

5.4 Results
To assess the performance of our proposed method, we first compare with existing
state-of-the-art out-of-distribution detection methods on the SVHN [117] and CIFAR-
10 [77] datasets using VGGnet [162] and evaluated with the metrics explained in
Sec. 5.4.1†. Furthermore, as a more application-based benchmark, we propose to
compare cross-entropy based strategies and metric learning strategies on the Tsinghua
dataset [191] of traffic signs. In this second set of experiments we use our own
implementation of the metrics defined in [88].

†Code available at: https://mmasana.github.io/OoD_Mining
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Method In-dist Out-dist FPR at Detection AUROC AUPR-in AUPR-outaccuracy 95% TPR Error

CE 99.70

Novelty 33.76 19.38 92.33 92.73 92.29
Gaussian noise 0.70 2.85 98.85 99.21 98.14

SVHN 0.23 2.60 99.48 98.64 99.91
CIFAR-10 2.86 3.93 98.96 98.02 99.57

Ours - ML 99.54

Novelty 21.05 13.03 94.48 94.02 94.46
Gaussian noise 0.00 1.95 98.54 99.21 95.15

SVHN 0.00 1.74 98.88 98.76 99.61
CIFAR-10 0.01 2.36 98.87 98.93 99.12

Ours - ODM 99.64

Novelty 0.16 1.67 99.95 99.94 99.96
Gaussian noise 0.00 1.76 99.14 99.46 97.66

SVHN 0.00 0.96 99.65 99.41 99.89
CIFAR-10 0.00 1.31 99.54 99.45 99.68

Table 5.1 – Quantitative comparison between cross-entropy and metric learning based
methods training on LeNet for MNIST – 2, 6, 7 (In-dist), 0, 3, 4 and 8 (Seen Out-dist)
and 5, 9, 1 (Unseen Out-dist Novelty).

5.4.1 Out-of-Distribution detection metrics
In out-of-distribution detection, comparing different detector approaches cannot be
done by measuring only accuracy. The question we want to answer is if a given test
sample is from a different distribution than that of the training data. The detector will
use information from the classifier or embedding space, but the prediction is whether
that processed sample is part of the in-distribution or the out-distribution. To measure
this, we adopt the metrics proposed in [88]:

• FPR at 95% TPR is the corresponding False Positive Rate (FPR=FP/(FP+TN))
when the True Positive Rate (TPR=TP/(TP+FN)) is at 95%. It can be interpreted
as the misclassification probability of a negative (out-distribution) sample to be
predicted as a positive (in-distribution) sample; and

• Detection Error measures the probability of misclassifying a sample when the
TPR is at 95%. Assuming that a sample has equal probability of being positive
or negative in the test, it is defined as 0.5(1−TPR)+0.5FPR,

where TP, FP, TN, FN correspond to true positives, false positives, true negatives and
false negatives respectively. These two metrics were also changed to TNR at 95%
TPR and Detection Accuracy in [82], which can be calculated with 1−x from the two
metrics above, respectively. We use the latter metrics only when comparing to other
state-of-the-art methods. This is also done because the implementation in both [82,88]

112



5.4. Results

allows for using a TPR which is not at 95% in some cases, meaning that the Detection
Error can go below 2.5 since TPR is not fixed to 0.95.

In order to avoid the biases between the likelihood of an in-distribution sample to
being more frequent than an out-of-distribution one, we need threshold independent
metrics that measure the trade-off between false negatives and false positives. We
adopt the following performance metrics proposed in [61]:

• AUROC is the Area Under the Receiver Operating Characteristic proposed
in [33]. It measures the relation between between TPR and FPR interpreted
as the probability of a positive sample being assigned a higher score than a
negative sample.

• AUPR is the Area Under the Precision-Recall curve proposed in [104]. It mea-
sures the relationship between precision (TP/(TP+FP)) and recall (TP/(TP+FN))
and is more robust when positive and negative classes have different base
rates. For this metric we provide both AUPR-in and AUPR-out when treating
in-distribution and out-distribution samples as positive, respectively.

5.4.2 Comparison with state-of-the-art
We compare our method with two very recent state-of-the-art methods. One of them
uses a confidence classifier and an adversarial generator (CC-AG) [82] and like ours
uses out-of-distribution images during training. The second method is ODIN [88]
which does not consider out-of-distribution images during training. In [82] they
compare CC-AG with ODIN [88], and show that they can perform much better in the
novelty case but similar for the anomaly cases.

We train each SVHN and CIFAR-10 as the in-distribution datasets while using the
other dataset as the seen out-of-distribution during training. We train using VGGnet,
just like [82], with a contrastive loss of margin 10 and a 25% of (in-dist, out-dist)
pairs every two batches. Following the experiments of [82], we test the resulting
networks on the in-distribution test set for classification, and TinyImageNet [36],
LSUN [182] and Gaussian noise for out-of-distribution detection. For evaluation we
use the proposed metrics from their implementation, namely: true negative rate (TNR)
when true positive rate (TPR) is at 95%, detection accuracy, area under the receiver
operating characteristic curve (AUROC) and both area under the precision-recall curve
for in-distribution (AUPR-in) and out-distribution (AUPR-out).

Table 5.2 shows the results. For SVHN as the in-distribution results are as expected,
with ODIN having lower results due to not using any out-of-distribution during training,
and both CC-AG and ODM having near perfect performance. In the case of CIFAR-
10 being the in-distribution, the same pattern is repeated for the seen distribution
from SVHN. However, for the unseen out-of-distributions, CC-AG achieves the lower
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In-dist Out-dist TNR at Detection AUROC AUPR-in AUPR-outclassification 95% TPR Accuracy

CIFAR-10* 47.4/99.9/99.8 78.6/99.9/99.8 62.6/99.9/99.5 71.6/99.9/99.7 91.2/99.4/99.9
SVHN Tiny 49.0/100.0/99.0 79.6/100.0/99.1 64.6/100.0/99.0 72.7/100.0/96.5 91.6/99.4/99.8

93.8/94.2/68.7 LSUN 46.3/100.0/99.4 78.2/100.0/99.5 61.8/100.0/99.3 71.1/100.0/97.8 90.8/99.4/99.8
Gaussian 56.1/100.0/100.0 83.4/100.0/100.0 72.0/100.0/100.0 77.2/100.0/100.0 92.8/99.4/100.0

SVHN* 13.7/99.8/99.8 66.6/99.8/99.7 46.6/99.9/99.9 61.4/99.9/99.9 73.5/99.8/100.0
CIFAR-10 Tiny 13.6/10.1/17.1 62.6/58.9/66.9 39.6/31.8/66.2 58.3/55.3/60.3 71.0/66.1/68.2

80.1/80.6/54.0 LSUN 14.0/10.8/19.6 63.2/60.2/70.9 40.7/34.8/68.4 58.7/56.4/59.5 71.5/68.0/70.7
Gaussian 2.8/3.5/3.0 50.0/50.0/64.2 10.2/14.1/49.8 48.1/49.4/64.1 39.9/47.0/46.7

Table 5.2 – Comparison with the state-of-the-art. All metrics show the methods as
ODIN/CC-AG/ODM, red indicates worst performance, bold indicates best, * for seen
distribution.

performance on both TinyImageNet and LSUN datasets, and ODIN the lower for
Gaussian noise. Although not always achieving the best performance, ODM is able to
compete with the best cases, and is never the worst performer. Gaussian noise seems to
be the most difficult case on CIFAR-10, which is a more complex dataset than SVHN.
For ODIN, as it is only based on cross-entropy, it becomes to overconfident. In the
case of CC-AG and ODM, the low results might be related to Gaussian noise being
too different from the out-distribution seen during training.

Finally, it is important to note that metric learning has a lower classification
accuracy for in-distribution. This has already been observed in [65], where features
learned by classification networks with typical softmax layers are compared with
metric learning based features on several benchmark datasets. For good classification
results our metric learning network should be combined with those of a network
trained with cross-entropy. One could also consider a network with two heads, where
after some initial shared layers a cross-entropy branch and a metric learning branch
are trained in a multi-task setting.

5.4.3 Tsinghua traffic sign dataset
We evaluate our method on a real application: traffic sign recognition in the presence of
unseen traffic signs (novelty) and not-a-traffic-sign detection (anomaly). We compare
our proposed method ODM against ODIN [88], as a cross-entropy based method, on
the Tsinghua dataset [191]. We divide traffic sign classes into three disjoint partitions:
the in-distribution classes, seen out-of-distribution images used for training, and unseen
out-of-distribution images used for testing on out-of-distribution detection.

Restricted splits: Since Tsinghua contains some very similar traffic sign classes
which would rarely be learned without each other (i.e. all speed limits, all turning
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Figure 5.4 – In-distribution (top-left), seen (top-right) and unseen(bottom-left) out-
of-distribution partition classes, and background patches (bottom-right) from the
proposed Tsinghua split.

arrows, ...), we group those that are too similar in order to build a more reasonable and
natural split than just a random one. For the same reason, we also discard classes with
less than 10 images as they introduce errors. Therefore, we generate a random split
which applies by the mentioned restrictions (see Fig. 5.4), by taking a 50-20-30% split
of the classes for the in-distribution, seen out-distribution and unseen out-distribution
respectively.

Regarding anomalies, we consider Gaussian noise, but also background patches
from the same Tsinghua dataset images. Those patches are generated randomly from
the central area of the original full frames to avoid an unbalanced ratio of ground and
sky images, which can be semantically richer and more challenging. In a real traffic
sign detector application, where detected possible traffic signs are fed to a classifier,
this kind of anomalies are more realistic and account for possible detection errors
more than Gaussian noise. The global performance of the system can be improved by
avoiding that those anomalies reach the classifier and produce an overconfident error.

For this experiment, we learn a 32-dimensional embedding space, training a WRN-
28-10 model [183] with an Adam optimizer at learning rate 0.0001 for 10,000 steps.
The same training parameters are used for ODIN since they provided the best results
on the validation set. Table 5.3 shows the results of the comparison between ODIN,
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Method In-dist Out-dist FPR at Detection AUROC AUPR-in AUPR-outaccuracy 95% TPR error

ODIN 98.29
Tsinghua (unseen) 8.74 6.87 97.82 96.19 98.92

Background (unseen) 22.42 13.71 96.43 92.13 98.48
Noise (unseen) 0.23 2.61 98.59 98.40 98.76

Ours - ML 98.93
Tsinghua (unseen) 5.23 5.11 98.77 97.38 99.45

Background (unseen) 0.25 2.62 99.35 99.03 99.64
Noise (unseen) 0.07 2.53 99.51 99.25 99.72

Ours - ODM 98.96
Tsinghua (seen) 4.38 4.70 99.01 98.01 99.63

Background (unseen) 0.17 2.60 99.28 98.81 99.67
Noise (unseen) 0.00 2.51 99.69 99.51 99.73

Ours - ODM 98.57
Tsinghua (unseen) 8.65 6.82 97.84 94.40 98.57

Background (seen) 0.01 2.50 99.99 99.94 99.99
Noise (unseen) 0.00 2.50 100.00 99.97 99.99

Ours - ODM 99.00
Tsinghua (unseen) 5.72 5.36 98.50 97.09 99.30

Background (unseen) 1.51 3.25 98.53 97.97 99.20
Noise (seen) 0.00 2.50 100.00 99.93 99.99

Table 5.3 – Comparison between ODIN and our proposed learning strategies on
a WRN-28-10 architecture when using novelty, anomaly (background patches and
Gaussian noise) as seen out-of-distribution data as well as not seen out-of-distribution.

ML and ODM for both seen novelty and anomaly cases. Note that our implementation
of the Detection Error metric is fixed to use the FPR at a TPR of 95%, making a value
of 2.50 the one of a perfect detector (see Sec. 5.4.1).

In terms of in-distribution classification accuracy, both methods are equivalent.
However, the comparison of plain metric learning (Ours-ML) with ODIN shows that
learning an embedding can be more suitable for out-of-distribution detection of both
novelty and anomalies. Introducing out-of-distribution samples during training slightly
improves all cases. Using anomalies as seen out-of-distribution during training helps
the detection of the same kind of anomaly as expected since anomalies will be forced
to be further away from the in-distribution in the embedding space. However, in some
cases, it can damage novelty detection, which would not be guaranteed to be pushed
away from the learned classes.

Random splits: Alternatively to the Tsinghua split generated with the restrictions
introduced earlier, we also perform the comparison in a set of 10 random splits without
applying any restriction to the partition classes. We still discard the classes with fewer
than 10 images per class. Table 5.4 shows the average performance for this set of
splits with their respective standard deviation. Since the split of the classes is random,
this leads to highly similar or mirrored classes to be separated into in-distribution
and out-distribution, creating situations that are very difficult to predict correctly. For
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Method In-dist Out-dist FPR at Detection AUROC AUPR-in AUPR-outaccuracy 95% TPR error

ODIN 99.29±0.05
Tsinghua (unseen) 20.85±2.28 12.92±1.14 93.50±1.05 93.78±1.93 92.41±0.73

Background (unseen) 8.39±6.34 6.70±3.17 98.06±1.26 97.02±3.15 98.79±0.60
Noise (unseen) 0.03±0.43 2.53±0.85 99.67±0.34 99.60±0.39 99.74±0.41

Ours - ML 99.16±0.16
Tsinghua (unseen) 21.05±3.25 13.03±1.62 94.18±0.92 94.42±1.12 92.75±1.08

Background (unseen) 1.91±1.02 3.45±0.51 99.14±0.32 98.79±0.35 99.40±0.22
Noise (unseen) 0.30±0.96 2.65±0.48 99.27±0.36 99.09±0.40 99.43±0.35

Ours - ODM 99.13±0.22
Tsinghua (seen) 16.29±4.53 10.65±2.26 96.27±0.86 96.78±0.93 95.11±1.15

Background (unseen) 0.39±1.63 2.71±0.31 99.50±0.27 99.30±0.31 99.66±0.20
Noise (unseen) 0.01±1.39 2.51±0.70 99.59±0.54 99.51±0.60 99.69±0.43

Ours - ODM 99.09±0.18
Tsinghua (unseen) 20.36±3.63 12.68±1.81 93.47±1.55 93.58±2.10 92.00±1.74

Background (seen) 0.01±0.03 2.51±0.01 99.97±0.02 99.92±0.03 99.98±0.01
Noise (unseen) 0.00±0.00 2.50±0.01 99.99±0.03 99.97±0.05 99.99±0.01

Ours - ODM 99.02±2.42
Tsinghua (unseen) 20.87±1.63 12.93±0.81 93.65±1.05 94.01±1.48 92.33±0.89

Background (unseen) 0.97±1.19 2.99±0.60 99.14±0.19 98.90±0.23 99.39±0.19
Noise (seen) 0.00±0.00 2.50±0.01 100.00±0.00 99.98±0.01 99.99±1.85

Table 5.4 – Comparison between ODIN and our proposed learning strategies on a
WRN-28-10 architecture, when using novelty, anomaly (background patches and
Gaussian noise) as seen out-of-distribution data as well as not seen out-of-distribution.
The experiments are performed on a set of 10 random splits and the metrics provided
are the mean of the metrics on the individual splits ± its standard deviation.

instance, detecting that a turn-left traffic sign is part of the in-distribution while the
turn-right traffic sign is part of the out-distribution, is very difficult in many cases.
Therefore, the results from the random splits have a much lower performance, specially
for the novelty case.

When comparing the metric learning based methods, ODM improves over ML for
the test set that has been seen as out-distribution during training. In general, using
novelty data as out-distribution makes an improvement over said test set, as well as
for background and noise. However, when using background images to push the out-
of-distribution further from the in-distribution class clusters in the embedding space,
novelty is almost unaffected. The same happens when noise is used as out-distribution
during training. This could be explained by those cases improving the embedding
space for data that is initially not so far away from the in-distribution class clusters.
This would change the embedding space to push further the anomalies, but would
leave the novelty classes, originally much closer to the clusters, almost at the same
location.

When introducing out-of-distribution samples, the behaviour on the random splits
is the same as for the restricted splits: while introducing novelty helps the detection
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on all cases, introducing anomaly helps the detection of the same kind of anomaly.

Embedding visualization: Figure 5.5 shows the embeddings for ODM (with novelty
as seen out-of-distribution) and ML after applying PCA. When using ML, the novelties
are not forced away from the in-distribution clusters so they share the embedding
space in between those same in-distribution clusters. In the case of ODM, the out-of-
distribution clusters are more clearly separated from the in-distribution ones.

5.5 Conclusions
In this chapter, we propose a metric learning approach to improve out-of-distribution
detection which performs comparable or better than the state-of-the-art. We show that
metric learning provides a better output embedding space for detecting data outside
the learned distribution than cross-entropy softmax based models. This opens an
opportunity to further research on how this embedding space should be learned, with
restrictions that could further improve the field. The presented results suggest that
out-of-distribution data might not all be seen as a single type of anomaly, but instead
a continuous representation between novel and anomalous data. In that spectrum,
anomaly detection is the easier task, giving more focus on the difficulty of novelty
detection. Finally, we also propose a new benchmark for out-of-distribution detection
on the Tsinghua dataset, as a more realistic scenario for novelty detection.
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Figure 5.5 – Embedding spaces after PCA for ODM (left) and ML (right) tested for
in-dist (blue shaded) and out-dist (yellow shaded). Results are for Tsinghua (first row),
background patches (second row) and Gaussian noise (third row).
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6 Conclusions

This thesis aims to develop theory which allows learning of neural networks beyond
the standard setting where all training data is jointly available and testing data can be
assumed to come from the same distribution as the training data. We therefore address
the compression and adaptation of networks to small target domains, the incremental
learning of networks faced with a sequence of tasks, and finally the detection of out-
of-distribution samples at inference time. First we summarize the main contributions
of the thesis, and then we discuss possible directions for future work.

6.1 Summary of contributions
Chapter 1 presents four research objectives on which this thesis focuses. All of these
objectives are related to scalability problems and here we summarize each and discuss
the solutions presented in this thesis.

Objective 1: Pretrained networks contain large amounts of knowledge
but are often too large to be used on certain devices. We aim to study
compression in the context of domain adaptation, where knowledge un-
related to the target task can be dropped in exchange for computational
efficiency.

In Chapter 2 we propose a compression method for domain-adapted networks from
a large dataset as source to a smaller, fine-grained dataset as target. We demonstrate
that networks trained on a specific domain tend to have neurons with relatively flat
activation rates, indicating that almost all neurons are equally important in the network.
However, after transferring to a target domain, activation rates tend to be skewed.
We show that compression which takes activations into account can be formulated
as a rank-constrained regression problem which has a closed-form solution. As
an additional contribution we show how to compensate for bias introduced by the
matrix approximation done by SVD, which consistently obtains improved results.
Furthermore, the experimental results support that higher compression rates can be
applied to target domains further away from the source domain.

Objective 2: For many practical applications of continual learning, al-
lowing for a variable amount of forgetting is undesirable. Therefore, we
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aim to design a learning system that can adapt to new tasks, while using
previous knowledge, but without any forgetting.

In Chapter 3 we propose a new method for continual learning which does not
suffer from any forgetting. This is achieved by relating each task with a binary mask
at each layer that identifies the activations that are used for each task. By applying
the masks on the activations, we greatly reduce the number of extra parameters added
per task and the overhead of the network in which other methods incur. In addition,
we propose to apply a task-specific feature normalization of features, which allows
adjusting previously learned features to new tasks. Ablation experiments show that
improves results of the proposed ternary feature masks. When compared to a wide
range of other continual learning techniques in the task-incremental learning setting,
our method consistently outperforms those on a variety of datasets. Finally, our
experimental section is one of the first to compare different approaches under different
class orderings. We explore how incremental learning is affected by learning tasks
with a random or semantic task split, as well as starting from a larger task which
provides a more robust representation.

Objective 3: As some systems become more dynamical and data becomes
accessible in streams, systems should be able to learn while mitigating
catastrophic forgetting. This desire has resulted in a wave of recent
works, however a comprehensive comparison of their performance is
currently lacking. Therefore, we survey the current state-of-the-art on
class-incremental learning.

In Chapter 4 we perform an extensive survey on class-incremental learning. We
study the related work, identify the main challenges and organize existing approaches
into three families: regularization, rehearsal and bias-correction. We provide experi-
ments on twelve methods on a wide range of incremental learning scenarios, some
well-known ones and some new ones. We show that current exemplar-free methods
can not compete with exemplar rehearsal methods, and that the baseline of fine-tuning
with exemplars performs better than most of them. We compare the exemplar sampling
methods and agree with most of the community that random sampling is usually a
good enough option, but herding sampling provides a more robust performance for
larger tasks. We point out that methods which tackle the task-recency bias obtain
better performance. However, most presented results in the related works are on
experimental setups with small domain shifts, while we show that large domain shift
scenarios might require new techniques to obtain satisfactory results. Finally, we are
the first to present a comparison of a wide range of network architectures, showing
that current class-incremental learning methods benefit differently from them.
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Objective 4: we aim to apply metric learning to the out-of-distribution
detection problem, thus evading the problems introduced by using a cross-
entropy loss. Metric learning can naturally be extended to new classes
whereas classification networks are forced to produce an answer in terms
of known classes.

In Chapter 5 we propose a metric learning approach to improve out-of-distribution
detection which performs comparable or better than the cross-entropy-based methods.
We show that metric learning provides a better output embedding space to detect
data outside the learned distribution than cross-entropy softmax-based models. The
presented results suggest that out-of-distribution data might not all be seen as a single
type of anomaly, but instead a continuous representation between novel and anomalous
data. In that spectrum, anomaly detection is the easier task, giving more focus on
the difficulty of novelty detection. Finally, we also propose a new benchmark for
out-of-distribution detection based on the Tsinghua dataset, as a more realistic scenario
for novelty detection.

Software packages: the code supporting most of our work has been made available
publicly, contributing to the machine learning and computer vision communities for
comparison and further research.

Applied research: some of the work done in this thesis has been used in more
applied fields such as medical imaging, allowing for collaboration with other research
groups and the publication of other manuscripts. For example, the results on network
compression from Chapter 2 where successfully transferred to polyp detection in
colonoscopy images [16, 17]. In that field, when deploying trained models, the
hardware has memory limitations which can be circumvented by applying the domain-
adaptive network compression presented in this thesis.

6.2 Future research directions
Network compression has become a mature, independent research field. However,
its principle focus is on the compression of single networks into smaller ones while
maintaining network performance. We think that one of the future challenges for
lifelong learning is rather the compression and fusion of sets of networks coming
from a variety of domains. When faced with new domains, the learning system should
decide which networks to deploy to the new domain. Developing theory and measures
for this selection is still an open research area. After adapting to the new domain, the
network can be either discarded, added or fused to the set of networks that will be
used to employ to future domains. The tools to make these decisions are also still in
their infancy stage and we think this to be an exciting future research direction.
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Many continual learning methods rely on the storage of exemplar images from
previous tasks. The storing of images, however, is not optimal. Therefore, recent works
have focused on the combination of compression and continual learning [20, 59]. This
has lead to Online Continual Compression, a problem where storage of a representative
dataset and simultaneous compression of the model are performed from a non i.i.d
data stream. Furthermore, with the increase in new available data from data streams,
storing large datasets to train models will become less appealing since it does not
capture the slight changes in the data distribution. Online learning techniques can
solve this issue, at the cost of some performance limitations, which we expect to be
addressed in future research.

Another exciting research direction is evaluation of continual learning in real-world
applications. A recent dataset which has propelled research in this direction is the
CORe50 [95], which since its introduction has been used in many works [57, 96, 103,
124]. This dataset considers a practical setting which is common in robotics: objects
are presented one by one to a robot, which has to incrementally learn them, while not
forgetting previously learned objects. Methods are allowed to use a small buffer of
images from previously seen objects. An additional challenge of the dataset is that
it considers distinct sessions, each with different background and lighting. We are
especially interested in verifying if the conclusions of Chapter 4 generalize to this
dataset.

When learning new tasks in continual learning, the next batch of classes to learn
is defined by a human. However, in scenarios like the one presented above, it can
be undesirable to have a human analyze the data that has been learned and design
which data to learn next. With the use of out-of-distribution, unknown classes can be
identified separately from the known tasks. This opens the option to learn from the
out-of-distribution and to analyze that data in order to automatize or better choose
which tasks need to be added next. This automation would allow us to close the loop
of continual learning, where some systems would be able to independently learn new
tasks while identifying the next potential tasks that would better fit into the models.
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