
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en



 

 

    

INVESTIGATION OF THE INFLUENCE OF THE 

MEMBRANE LIPID ENVIRONMENT ON G 

PROTEIN-COUPLED RECEPTOR ACTIVATION 

BY MOLECULAR DYNAMICS SIMULATIONS 

A Thesis presented by Agustín Bruzzese 

 

Submitted to the Institut de Neurociències, Universitat Autònoma de Barcelona  

in partial fulfillment 

of the requirements for the degree of 

 

DOCTOR in NEUROSCIENCE 

 

2020 

 

Directors: 

 Dr. Jesús Giraldo & Dr. James Dalton 

 



Acknowledgements 

  

1 

 



Acknowledgements 

  

2 

 

 

ACKNOWLEDGEMENTS 

This work took place in the Laboratory of Molecular Neuropharmacology and Bioinformatics, 

Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona. 

Therefore, I wanted to thank Dr Jesús Giraldo and Dr James Dalton in the first instance. I thank 

them both for the opportunity to allow me to be part of their group. 

 

Jesus Giraldo is a good boss, with a comprehensive vision and a good sense of humour. His 

pragmatic and logical vision has allowed the objectives of this thesis to be put on track. All the 

time I could be with the laboratory staff has become an excellent experience because it has 

allowed me to make very good friends and has given me a great work experience that has 

helped me to grow professionally and personally. For all this, thank you Jesús. 

 

James Dalton is the most understanding and patient person I have ever met. He always has had 

time for any of my questions. From him, I learned everything I know about programming today 

and the methodology to perform this thesis. 

 

I would like to thank all the colleagues with whom I could share the laboratory during these 

five years. In particular, Adrián Ricarte and Óscar Díaz, consider them more than colleagues. 

 

Also, a special thanks to Dr Jordi Ortiz and Dr Carles Gil. They contributed to my introduction in 

the world of lipids and GPCRs, while having an important role in this thesis by providing a 

critical view of the work.  

 

To the members of my court, Dr Francisco Javier Luque Garriga, Dr Baldo Oliva, and Dr Jordi 

Ortiz, I deeply appreciate their time and constructive criticism regarding the work done. 

 

Finally, to those people who were all this time by my side. Especially to my friends, and my 

family, thank you very much. This thesis is dedicated to all of you. 

 



Abstract 

  

3 

 

 

ABSTRACT 

G protein-coupled receptors (GPCRs) are integral membrane proteins that transmit signals 

embodied in the chemical structure of endogenous and synthetic ligands from outside to inside 

the cell. Thus, they are fundamental in physiological and pathological conditions and, 

consequently, key pharmacological targets. Recently, a number of studies have shown that 

allosteric interactions exerted by lipids affect the population distribution of active and inactive 

receptor states, therefore leading to a complex signalling network. As a consequence, the 

membrane lipid environment has become an important factor in the study of GPCR signal 

transduction. 

The present work takes advantage study of high-throughput molecular dynamics (MD) simula-

tions to elucidate key biological processes in GPCR structure and function. Specifically, this the-

sis focusses on two main challenging tasks. On the one hand, the molecular understanding of 

the GPCR activation process. On the other hand, the exploration of the allosteric coupling be-

tween the lipids and the receptor protein, thus, aiming at characterizing lipid-modulated pro-

tein dynamics. Our approaches have been validated with published experimental results from 

which we have learnt about the systems and have been a source of ideas and hypotheses for 

the design of our computational experiments. 

The results presented in this thesis show how long-timescale MD simulations can consistently 

reveal the molecular effects of phospholipids on two pivotal class A GPCRs, the β2-adrenergic 

and the adenosine A2a receptors. Our computational results are in agreement with published 

experimental data, and provide complementary information about the ligand-receptor con-

formational ensembles and the involved protein-lipid interactions. Briefly, our results reveal 

how GPCRs are sensitive to their lipid environment and, therefore, why lipids are crucial for 

GPCR dynamics and function.  

 

KEYWORDS: GPCR, β2-adrenergic receptor, adenosine a2a receptor, phospholipid, allosteric 

modulation, ligand, agonist, orthosteric, molecular dynamics, protein conformation, receptor 

activation. 
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INTRODUCTION 

This thesis is organized in nine sections, namely, a background for the work presented, along 

with its main challenges, a description of the methodology used, the objectives for the study, 

the results obtained, and, finally, a general discussion and conclusions. The published papers 

have been added at the end together with the corresponding supplementary material. 

Section 1 presents a basic description of biological membranes. This includes a review of the 

literature involving lipids and GPCRs, in which the characteristics of the membrane and the 

activation process of the receptor are examined.  

Section 2 describes the practical aspects of the application of MD methodology, including MD 

simulations of proteins, ligands and lipid systems. 

Section 3 outlines the research problem that motivated the present work, establishes the hy-

potheses,  the objectives and how to accomplish them during this dissertation. 

Section 4 focuses on a review of our results. Particularly, our investigations revolve around the 

study of two representative class A GPCR prototypes: β2-adrenergic receptor (β2aR) and 

Adenosine A2a receptor (A2aR). Both have been crystallized in high-resolution structures, and 

have been described to be greatly influenced by their lipid environment. The goal of our study 

on β2aR was motivated by published experimental work on this receptor illustrating the lipid 

influence. We performed several long-timescale MD simulations to map the allosteric modula-

tion and conformational changes in β2aR which occur as a result of interactions with 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

(DOPE), and 1,2-dioleoyl-sn-glycero-3-phosphoglycerol (DOPG) lipids, respectively, without any 

bound ligand (APO state). Thus, our study may provide a molecular explanation to membrane-

dependent receptor constitutive activity. Furthermore, the development of this thesis was 

coincident with many other studies involving the process of agonist-mediated GPCR activation 

using theoretical approaches, such as MD simulations. Therefore, we thought that the lipid 

environment could also aid to explore the molecular mechanisms underlying agonist-mediated 

GPCR activation. As a result, we carefully examined the agonist-mediated activation of A2aR 

starting from the inactive conformation with the crystalized-bound endogenous ligand adeno-

sine embedded in two homogenous lipidic environments: DOPG and DOPC. Additional simula-

tions with the synthetic agonist NECA allowed us to retrieve more information on the differen-
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tial effects of lipids on agonist function. Thus, our MD simulations provide a basis for the un-

derstanding of how the lipid environment may affect the efficacy of agonists. 

Section 5 provides a summary of the thesis, together with a general discussion of the results 

and their conclusions. This section also considers further avenues by which this work could be 

followed to advance in the GPCR-lipid field. 

Section 6 lists the references included in this work. 

Section 7 includes the two published papers that constitute the main result of the thesis. 

Section 8 is considered as an appendix and includes a third publication, which was obtained 

once the formalities for the acceptance of the thesis as a compendium of articles were 

achieved. This third article proposes a classical statistical test (multiple-way ANOVA with re-

peated measurements on the time factor) for the analysis of agonist-dependent MD simula-

tions of GPCR activation. This statistical analysis allows, in principle, the exploration of agonist 

efficacy within a statistical framework. The lipid environment, whose contribution is the main 

element of this thesis was included as a factor of the statistical analysis. 

Section 9 includes the supplementary material corresponding to the published articles. 
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1. BIOLOGICAL MEMBRANES 

Biological membranes are one of the most important and complex structures of living cells. 

The current view on biological membranes is indebted to the pioneering work of Singer and 

Nicolson, also known as the “fluid mosaic” in 1972(1). In turn, this was influenced by a number 

of experimental(2) and computational methods(3, 4) that came later. As a result, a growing 

number of results have been developed so far, complementing and extending the original 

model. Nowadays, we know biological membranes provide effective diffusion (i.e. enable 

drugs and metabolites to be transported while keeping waste out of the cell), promote inter-

cellular communication, support energy generation, signal transduction, and serve to define 

different compartments within the cell(5, 6).  

Primarily, biological membranes consist of a hydrophobic double layer (known as bilayer) of 

lipids, with proteins allowed to be bound in different ways(6). New knowledge has been ac-

quired recently, thanks to advances in lipidomics(7) and structural determination(8) and analy-

sis(9) of membrane proteins. Some of them are presented below. 

 

1.1. G-PROTEIN COUPLED RECEPTORS  

Membrane proteins such as channels, transporters and pumps help to maintain the structural 

integrity and organization of the cell and allow selective and controlled traffic of substances, 

owing to the low permeability of the membrane(10-13). In mammals, the largest and most 

diverse membrane protein family are the integral membrane GPCRs, encoded by more than 

800 different human genes(14, 15). GPCRs mediate the majority of cellular responses. For these 

reasons, GPCRs are one of the major targets of current market drugs(16). 

Recent analyses of the entire superfamily of GPCRs indicate that these receptors can be 

grouped into the following classes based on their sequences and structural similarity: class A 

(rhodopsin-like), class B (secretin-like), class C (metabotropic glutamate-like), class D (Fungal), 

class E (cyclic AMP receptors), and class F (frizzled/taste2)(14-18). This A–F system is designed 

to cover all GPCRs, in both vertebrates and invertebrates. Some families in the A–F system do 

not exist in humans. This happens for classes D and E. More recently, an alternative classifica-

tion system called GRAFS (Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2, Secretin) has 

been proposed for vertebrate GPCRs(14, 19-21).  
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In all crystallized proteins to date, GPCRs have been observed to share the following conserved 

motifs: seven transmembranes (TMs) α-helices, three intracellular loops (ICLs), three extracel-

lular loops (ECLs), a G-protein coupling intracellular site and a ligand-binding extracellular 

site(22).  

 

1.1.1. GPCR ACTIVATION 

Importantly, GPCR structure determination has been accompanied by functional knowledge; 

and crystallization of these receptors has provided new insights into the features of their acti-

vation process(23, 24). GPCRs are flexible proteins that fluctuate between different confor-

mations that can be broadly grouped into inactive, active and intermediate states(25, 26). The 

transitions between these states, in particular, from the inactive to the active state, can occur 

during timescales of nanoseconds to milliseconds(27, 28). Most GPCRs exhibit these transitions 

spontaneously allowing receptor activation to occur, which is known as receptor constitutive 

activity or basal activity(9, 29-31). Further, the GPCR activation process can be modified both 

in its magnitude and dynamics by the binding of endogenous or exogenous extracellular lig-

ands(32, 33).  

GPCRs can bind a great variety of ligands: neurotransmitters, ions, odorants, tasting molecules, 

amino acids, nucleotides, peptides and even photons(32, 33). The receptor cavity to which the 

endogenous ligands responsible for receptor function bind is known as the orthosteric binding 

site. From a pharmacological perspective, GPCR ligands can be classified according to the effi-

cacy they show for the activation of a particular signalling pathway into agonists, inverse ago-

nists and neutral antagonists (Figure 1 A)(9). Agonists promote the active conformation above 

the basal level, with full agonists achieving the same maximum functional response as the en-

dogenous agonists. Partial agonists show lower asymptotic maximum activity than full ago-

nists. Inverse agonists display functional response below basal activity and neutral antagonists 

do not affect the basal response but compete with other ligands for the orthosteric binding 

site. 

Upon agonist binding on the extracellular site, a sequence of conformational changes, which 

affect mainly the TM domain, is triggered(29). Each class of the GPCR family has its specific 

mechanism to transmit the ligand-bound extracellular signal. Starting at the orthosteric bind-

ing site, the activation process runs along the TM domain reaching the intracellular side, allow-

ing the opening of the cavity for the coupling of the heterotrimeric (Gαβγ) G protein(34). Then, 
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the G protein undergoes GTP/GDP exchange with subsequent dissociation of Gα and Gβγ sub-

units that, in turn, interact with specific downstream intracellular effector systems, including 

the modulation of the cytoplasmic calcium release(35) and the production of cyclic adenosine 

monophosphate (cAMP), phosphatidylinositol-4,5-bisphosphate and diacylglycerol(34) (Figure 

1 B). In due course, through the process of desensitization, the active conformation of the re-

ceptor is prevented and signalling is attenuated by agonist dissociation and/or deactivation 

through interaction with β-arrestins(36, 37) in response to activation-specific phosphorylation 

by G protein-coupled receptor kinases and/or internalization(38, 39). This constitutes the G 

protein-dependent signalling pathway, while GPCRs may also transduce signals through the G 

protein-independent signalling pathways when other transducers, such as G protein-coupled 

receptor kinases (GRKs) and arrestins are involved (Figure 1 B). 

 

 

Figure 1. The GPCR functional response: different signaling pathways can be promoted by a 

single GPCR.  

A) Ligand classification based on their asymptotic maximum response (efficacy). B) Agonist 

binding promotes receptor conformational changes affecting mainly the TM domains (in par-

ticular, TM6, blue). A varied array of intracellular signalling proteins, including G-proteins (or-

ange), GRKs (pink) and arrestins (cyan and brown) are bound to the activated receptor leading 

to different signalling pathways. Taken and adapted from W. I. Weis and B. K. Kobilka, 2018(9). 

 

However, due to the difficulties in crystallizing membrane proteins(40, 41), the crystal struc-

tures of most GPCRs are not yet determined.  
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1.1.2. CLASS A G PROTEIN–COUPLED RECEPTORS  

To date, the majority of the available GPCRs crystal structures belong to class A (or rhodopsin-

like), which are the largest protein family in humans(42, 43). As a result, class A members are 

usually the most studied and represent an important target for therapeutic purposes(44). At 

the time of performing this study, 52 class A GPCRs crystal structures had been determined(45, 

46).  

Of these, there are five receptors for which the structures of both inactive and active (either 

full active or active-intermediate) states are available: rhodopsin(47), β2aR(48, 49), M2 musca-

rinic receptor (M2R)(50), A2aR(51, 52), and µ-opioid receptor (MOR)(53). The crystallization of 

these class A GPCR active structures has served as an important factor in understanding GPCR 

activation(9), allowing the characterization of highly conserved amino acid sequence 

motifs(54), which presumably play important functional roles in the apparently common sig-

nalling mechanism shared by all family members(9, 25, 42, 55).  

Notably, despite differences among class A GPCRs, inactive- and active-state structure 

comparisons indicate similar activation-related characteristics concerning conformational 

changes on the receptor's intracellular side. One of the important rearrangements is the 

outward movements of TM helices 5 and 6 (including rotation in the latter)(25, 55). 

Additionally, TM3 and TM7 also undergo significant conformational changes during activation. 

Specifically, the intracellular part of TM7 shows an inward movement whereas TM3 

translocates vertically(25, 55).  

These helix movements during activation are mediated by local microswitches on conserved 

motifs(54). Such conserved motifs include the D(E)RY, the CWxP, and the NPxxY, where ‘‘x’’ 

stands for any amino acid residue(55). To facilitate the comparison of the motifs among the 

different receptors, we include the Ballesteros−Weinstein numbering scheme as a superscript, 

which aids in the comparison between homologous class A GPCRs(56). A particular residue is 

formatted as X.ZZ, where X represents the helix, 1–7; and ZZ, the residue position relative to 

the most conserved residue in the named helix (denoted as X.50). For instance, 5.42 indicates a 

residue in TM5, eight residues before the most conserved residue, Pro5.50. In the case where 

the residue is placed on the loop between two helices, a specific format of X(Y).ZZ is used. In 

this context, X and Y represent the previous and following helices, and ZZ is the location rela-

tive to the most conserved residue in the loop. 
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The D(E)RY motif is located at the intracellular end of TM3. The electrostatic interaction be-

tween R3.50 and E6.30 on TM6 (known as ‘the ionic lock’) is supposed to stabilize the inactive 

conformation(57, 58). The breaking of this interaction facilitates the movement of TMs 3 and 

6, and receptor activation(9). The NPxxY motif located at the intracellular end of TM7 is ob-

served to switch inwards in the activated crystal structures. Finally, the CWxP motif is located 

in the middle section of TM6. In particular, the sidechain rotamer of W6.48, in CWxP, was pro-

posed to assume a toggle role in GPCR activation, in recent nuclear magnetic resonance (NMR) 

studies(59). However, W6.48 does not appear to change its sidechain rotamer in crystal struc-

tures of agonist-bound GPCRs reported later(48, 49, 51, 52, 55).  These arrangements have got 

great significance in clarifying several aspects of GPCR activation(9). The importance of water 

networks in GPCR activation has also been supported by recent crystallographic data(60, 61). 

Various studies have shown how ordered waters interact with residues that are important in 

disease states, binding of drugs, receptor activation, and signalling(62-65).  

As an additional level of complexity and subtlety in the mechanism of signal transduction, the 

communication between the orthosteric ligand-binding site and the cytoplasmic region of the 

receptor responsible for transducer protein binding seems to be loose because they are not 

rigidly coupled(9, 66). Therefore, the fully molecular processes behind ligand-dependent 

(de)activation of GPCRs remains scarce, and it is essential to work deeply both at the 

experimental and computational levels to understand the molecular functioning of these 

proteins and expectedly perform more efficient drug discovery(9, 25, 42).   

 

1.2. MEMBRANE LIPIDS 

Lipids are amphiphilic molecules that spontaneously form a bilayer where the hydrophobic 

acyl chains are present in the interior and the hydrophilic head groups face outside(67). The 

main components of the cellular membranes are phospholipids (or also called phosphoglycer-

ides), sphingolipids, glycolipids and sterols (Figure 2)(68).  

Phospholipids are the most abundant lipids in eukaryotic membranes. They are named consid-

ering firstly their glycerol backbone, and secondly the phosphate-containing moiety. Phospho-

lipids present a polar head group and two hydrophobic fatty acid tails. The two-fatty acid 

chains may vary in length and saturation state(69). The phosphate group can be esterified with 

another hydrophilic compound. This allows to classify them into separate classes, based on the 

nature of the hydrophilic moiety. These classes are named as phosphatidylcholine (PC), phos-
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phatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylglycerol (PG) or phosphatidyl-

inositol (PI) (Figure 2)(70). Moreover, the different head groups differ in the charge carried by 

the polar head groups at neutral pH: some phosphoglycerides (e.g., PC and PE) have no net 

electric charge; others (e.g., PG, PI, and PS) have a net negative charge (Figure 2 A-E). Phospho-

lipids and sphingolipids share a similar structure (Figure 2 F). Sphingolipids are composed by a 

polar head group and two long non-polar side chains. Sphingolipids are present in all mem-

branes but are particularly abundant in the nervous system, where they are important for 

proper brain development and functions(71). Sterols are important non-polar components of 

mammal, plant, and fungal membranes.  The basic structure of steroids is the four-ring hydro-

carbon. In particular, cholesterol (Figure 2 G) plays a key role in membrane protein in mam-

mals(72). Due to this large structural heterogeneity(68), the lipid composition and distribution 

varies among bilayers(73-75). PC, sphingomyelin, and glycolipids are preferentially located at 

the outer layer of the membrane. Meanwhile, PI, PE, and PS are localized in the cytoplasmic 

half of the bilayer. Some authors have suggested that this diversity could be associated with 

the differential roles and properties that they perform(76, 77). 
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Figure 2. Molecular structure of the some lipid species in biological membranes.  

Representative structures from each of the most important lipid categories: A) Phosphatidyl-

choline (PC) B) Phosphatidylethanolamine (PE) C) Phosphatidylserine (PS) D) Phosphatidylglyc-

erol (PG) E) Phosphatidylinositol (PI) F) Sphingolipid (SM) G) Cholesterol. Colour coding of the 
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atoms is as follows: red for oxygen, magenta for phosphorus, blue for nitrogen and black for 

carbon. 

 

Indeed, the functional role of lipids is increasingly considered more important. Recent works 

pointed towards lipids as a cause of some human diseases, including cancer(78) and neuro-

degenerative diseases(79), as shown by membrane changes in the brains of Alzheimer’s and 

Parkinson’s patients(80-83) 

At the same time, lipids have been found to influence GPCR activity(84-87). This matter was 

introduced after several observations. Firstly, in the absence of ligands, some GPCRs exhibit 

basal activity, thought to be caused by their surrounding environment, which provides enough 

energy for the receptor to reach an active state(9, 29-31). Further, lipids facilitate the recruit-

ment of heterotrimeric G-proteins(88) and help their crystallization process(41, 89). Moreover, 

GPCRs are integral membrane proteins with a significant portion of the protein embedded in 

the membrane. Therefore, portions of protein structures directly interact with the acyl por-

tions (hydrophobic) of the lipid membrane. This is accomplished by the hydrophobic matching 

between the hydrophobic lipid bilayer and the GPCR(85, 86, 90, 91). This means that the thick-

ness of the lipid bilayer could adapt to the protein if the width of the protein is not equal to 

the membrane(92).  

Lipids not only determine the biophysical properties of GPCRs in the membrane but also the 

propensity of these receptors to activate through allosteric protein-lipid interactions. 

 

1.3. MOLECULAR CHARACTERIZATION OF GPCR (DE)ACTIVATION AND LIPID−GPCR IN-

TERACTIONS 

Given the increasing number of results that point to lipids as important modulators of GPCR 

structure and function, great interest has formed around the underlying molecular mecha-

nisms that govern their interactions, and could potentially be of interest for pharmaceutical 

research and drug discovery.  Nevertheless, the regulation of GPCR function by the allosteric 

modulation of lipids is not yet well understood. 

Importantly, the growing advancements in biophysical techniques allow the gathering of rele-

vant information at the molecular level. In particular, MD simulations have proven to be a reli-
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able computational approach to explore in detail protein-lipid interactions, receptor-ligand 

binding, and receptor conformational changes(93).  

In this context, the present thesis represents an effort towards the molecular characterization 

of GPCR-lipid interactions with a special emphasis on their involvement in the activation of 

these receptors. We have tried to give a computational content to typical pharmacological 

concepts such as receptor constitutive activity and agonist efficacy with lipids as allosteric 

modulators. 
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2. MATERIALS AND METHODS 

Experimental methods, such as NMR, infrared (IR) and fluorescence spectroscopies together 

with X-ray crystallography are some of the techniques that allow obtaining information at the 

molecular level on GPCRs. However, obtaining data on the molecular mechanisms responsible 

for the receptor activation process with the inclusion of lipid-protein interactions is challeng-

ing. In this regard, computer simulation approaches have proven helpful in opening new ave-

nues in the knowledge of the conformational dynamics and function of these proteins. In par-

ticular, MD simulations have been successful in providing accurate molecular features of GPCR 

conformational space(93). 

In the section of the thesis devoted to our published studies, articles have been inserted that 

summarize the computational work developed during the thesis period. Each of these articles 

includes its corresponding methods section with a detailed description of the techniques in-

volved. Thus, to avoid redundancy, this chapter offers herein a brief introduction to MD simu-

lations, the key methodology used in our studies. 

 

2.1. INTRODUCTION TO MD SIMULATIONS  

MD simulations aim to explore and chemically understand the dynamics of biomolecular sys-

tems. Thus, they can be considered relatively close to some experimental techniques such as 

NMR and complementary to others such as X-ray crystallography or electron microscopy(94). 

MD is an ideal computational technique for studying GPCR conformational flexibility in a 

membrane environment and the effects exerted by ligands and lipids(95).  

MD simulations are indebted to the pioneering work by Alder and Wainwright during the 

1950s(96). Briefly, MD simulations is a deterministic technique that tracks the time fluctuation 

of the atomic positions or a molecular system with high spatiotemporal resolution(95, 97-100). 

MD algorithms allow the description of the temporal evolution of atoms according to their 

potential energy according to Newton’s laws. 

Newton’s second law or the equation of motion (Fi=miai) can be presented for a group of N 

atoms, where Fi is the force exerted on particle i, mi is the mass of particle i and ai is the accel-

eration of particle i. This force is determined by empirical parameters, also called force fields 
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(FFs). The FFs are a collection of mathematical equations to model the potential energy, charge 

polarization and associated constants, designed to accurately reproduce the molecular geome-

try obtained from X-ray, NMR, IR, etc (101). The most used FFs to study GPCRs using MD simu-

lations are AMBER(102), CHARMM(103, 104), GROMOS(105), and OPLS(106). As a result, the 

atoms follow a trajectory, calculated by the initial distribution of velocities and their accelera-

tions, which is determined by the gradient of the potential energy function, and the initial po-

sitions of the atoms. The potential energy is a function of the atomic positions of all the atoms 

in the system. To solve the equation for each atom, different algorithms, such as Verlet(107) or 

leapfrog(108), are applied. 

MD simulation techniques have been improved over time to obtain more reliable results. The 

two most important techniques developed in this area are associated with the control of tem-

perature and pressure. Several thermostats have been developed to keep the system around 

the desired temperature, such as Langevin (109) and the Nosé-Hoove thermostat (110). Be-

sides, as most experiments are performed under constant pressure, barostats have been de-

veloped to keep simulations under constant pressure, such as the Berendsen barostat (111). As 

a consequence, the calculations can be carried out either at the desired NVT (N: constant par-

ticle number, V: constant volume, T: constant temperature), set by inserting the thermostat 

into the system, or at the desired NPT (P: constant pressure), set by incorporating both ther-

mostat and barostat into the system. The Berendsen barostat and Langevin thermostat are 

perhaps the most typically used for MD simulations as previously have been reported (112). 

 

2.2. LIMITATIONS OF MD SIMULATIONS 

Although MD has proved to be a reliable computational approach, it has limitations. As hap-

pens in general with all computer science methods, its application is limited by timescales, 

algorithms and technical implementations. The main limitation is that some biomolecular pro-

cesses (such as receptor activation) occur over long-timescales.  

To overcome these limitations, the field of MD simulations has developed different approach-

es involving particle resolution and timescales. I will mention three main types of MD simula-

tions: all-atoms (AA)(113-115), coarse-grained (CG)(116, 117), and intermediate “hybrid” reso-

lution (e.g. PACE)(118-120). The AA MD simulations provide high-resolution information at 

both time and spatial level (fs and angstrom levels). However, the duration of biomolecular 

phenomena such as conformational receptor activation and ligand unbinding usually go be-
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yond the AA MD capability because of their computational cost(121, 122). Thus, to avoid this 

problem and, therefore, extend the simulation timescales, CG MD simulations were devel-

oped. In the latter simulations, atoms are not treated as individual entities but grouped into 

bigger objects to simplify the representation of big molecules. However, this often results in a 

loss of accuracy, particularly concerning the secondary structure of the protein models(123). 

PACE simulations have been developed to couple lipids and solvents, modelled from MARTINI 

CG, while proteins are represented by GROMOS AA force field or the PACE UA force field. In 

this way, it is possible to arrive at long-timescales compared to AA simulations, while at the 

same time a complete atomic representation of the secondary structure of the protein is pre-

served. 

Apart from advances in methodological approaches, computer architecture developments are 

of great help to achieve long-timescales, while maintaining the accuracy present in AA MD 

simulations. An example resides in the graphic processing unit (GPU) hardware, which contains 

numerous cores with parallel architecture, which is efficient for computational applications 

such as MD(124, 125).  
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3. MOTIVATIONS, HYPOTHESES AND AIMS 

 

3.1. THE RESEARCH PROBLEM ADDRESSED IN THE THESIS  

GPCRs are involved in numerous human diseases(126-128). This makes them very important 

targets for drug discovery programs in the pharmaceutical industry in the quest for new medi-

cines.  

Although GPCRs have been extensively studied during the past decades, the underlying struc-

tural and functional mechanisms responsible for the many critical regulatory processes con-

trolled by this protein superfamily remain unclear, including the first step of signal transduc-

tion as receptor activation and lipid allosteric modulation(25). Hence, there is a tendency in 

recent years to obtain more information at the molecular level(122, 126). 

In this section, we highlight some of the most relevant MD findings and limitations that influ-

enced the conception and development of this thesis, namely, GPCR conformational changes 

and activation, ligands modulation, and lipid allosteric modulation. 

MEANINGFUL TIMESCALE MD SIMULATIONS ARE NEEDED  

There has lately been a growing interest in developing modelling methods for MD 

simulations(112, 129). Achieving significant timescales, while maintaining atomistic resolutions 

and accurately simulate biological processes is a critical step that is conditioned by the capacity 

of computational resources. 

The introduction of strategies that consider recent cost-effective accelerator processors, such 

as the IBM Cell processor and Nvidia's GPUs, represents a well-positioned innovation that effi-

ciently enhances AA MD. Nowadays, significant timescale MD simulations are possible and 

easier through ACEMD software(112). Particularly, this software takes advantage of GPUs to 

achieve relevant timescales (μs) while maintaining atomistic resolution through CHARMM and 

AMBER FFs. 

Β2AR AND A2AR WERE SELECTED AS THE RESEARCH SYSTEM  

β2aR(27, 28, 85, 130-143) and A2aR(144-148) have been the subject of numerous studies in 

the context of MD simulations. Thus, there is a rich corpus of literature to which our results 

can be compared. 
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To this end, it is essential to utilize crystal structures of good quality to properly run reliable 

MD simulations, explore GPCR activation and tackle protein-lipid interactions. In this sense, 

β2aR and A2aR provide the basis presented in this thesis. 

INFLUENCE OF THE MEMBRANE LIPID ENVIRONMENT ON G PROTEIN -COUPLED RECEPTOR 

ACTIVATION 

The typical behaviour of class A GPCRs, when they are simulated without a bound G protein, is 

to fluctuate between inactive and intermediate states without inducing the fully active recep-

tor conformation, even in the presence of an agonist(20, 27, 137, 144, 149-153). Therefore, 

one of the current challenges when running MD simulations on GPCRs is to understand the 

molecular basis of their agonist-mediated transition from the inactive state to the active state.  

In this regard, several studies have suggested that various factors related with lipids, such as 

the lipid headgroups, the length of acyl tails, and bilayer thickness may be involved in particu-

lar conformational changes in the protein, which may have implications in the activation of 

GPCRs(3). Hence, the consideration of different lipidic compositions of the membrane and the 

analysis of the allosteric influences of the selected lipids may be an important element in the 

exploration of GPCR activation by MD simulations. 

 

3.2. HYPOTHESES 

The following hypotheses have been proposed as the subject of the research for this thesis to 

take a step forward in the knowledge of GPCR activation in an lipid-dependent membrane 

environment: 

1- The application of ACEMD AA MD simulations can give reliable and achievable molecu-

lar details on GPCR conformational ensembles and protein-lipid interactions, which 

presumably will agree with experimental data.  

2- To understand the determinants of membrane-lipid composition on the (de)activation 

of class A GPCRs, various lipids should be chosen and their allosteric actions analyzed. 

3- The distinct lipid headgroups might lead to specific molecular interactions with the re-

ceptor, leading to different protein conformations with potentially functional implica-

tions. Ultimately, these interactions may induce the (de)activation of class A GPCRs as 

well as the stability of ligands in the receptor binding site. Thus, the analysis of lipid-



Motivations, Hypotheses and Aims 

  

31 

 

receptor interactions and their allosteric transmission through the protein can provide 

new insights into the structure-function properties of GPCRs. 

To sum up, taking profit of the advanced architecture of intrinsic parallelized GPUs and the 

implementation of ACEMD software, it is expected that AA MD simulations of some selected 

GPCRs in membranes of different lipid compositons will provide relevant information on the 

receptor activation process and lipid allosteric modulation, in achievable timescales. 

 

3.3. AIMS AND OBJECTIVES  

The general aims of this thesis are:  

1. To better understand at the molecular level the pharmacological properties of consti-

tutive receptor activity and agonist efficacy by MD simulations.  

2. To identify the lipid-receptor interactions allosterically contributing to receptor activa-

tion.  

3. To provide a methodology that can be transferable to different receptor systems and 

that can set the basis for a new structure-based drug design. 

To accomplish these general aims, two class A GPCRs were selected: β2AR and adenosine 

A2aR. For each of these systems the following specific objectives were proposed.  

 

FIRST ARTICLE OF THIS THESIS: “STRUCTURAL INSIGHTS INTO POSITIVE AND 

NEGATIVE ALLOSTERIC REGULATION OF A G PROTEIN -COUPLED RECEPTOR 

THROUGH PROTEIN-LIPID INTERACTIONS”.  

New experimental data on β2aR coming at the beginning of the present thesis pointed to 

phospholipids as essential allosteric modulators of GPCR activity(84). However, how lipids ex-

ert their effects on GPCR conformations at the atomic level was unclear.  

Therefore, the specific objectives of this study were: 

i. To map at the atomic level the allosteric modulation that DOPE, DOPC and DOPG 

phospholipids exert on apo β2aR in an active receptor state. 

ii. To extract general mechanistic conclusions on phospholipid-GPCR interactions. 
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SECOND ARTICLE OF THIS THESIS: “ INSIGHTS INTO ADENOSINE A2A RECEPTOR 

ACTIVATION THROUGH COOPERATIVE MODULATION OF AGONIST AND ALLOSTERIC 

LIPID INTERACTIONS”.  

The understanding of the molecular interactions involved in agonist binding and ensuing re-

ceptor activation is essential for rational drug design in GPCRs. In particular, agonist binding to 

A2aR does not guarantee that the active state is reached during MD simulations(150). Thus, to 

our knowledge, previously to the publication of this study, the full transition of A2aR from the 

inactive to the active state had not yet been described with unbiased MD simulations. Thus it 

remained unclear how the agonist-mediated activation of A2aR occurs.  

Therefore, by using as a starting point the inactive crystal structure of A2aR, the specific objec-

tives of this study were: 

i. To identify the molecular determinants of A2AR activation by adenosine under differ-

ent lipid environments. 

ii. To identify the differential allosteric effects of lipids on adenosine-mediated A2aR acti-

vation. 

iii. To validate adenosine results with NECA, a more potent A2aR agonist. 

 

3.4. PROTOCOL TO ACCOMPLISH THE OBJECTIVES  

To develop an investigation that allows us to fulfil the stated objectives, all MD simulations 

were performed with ACEMD software(112) on specialized GPU-computer hardware. As a 

general approach, the receptor complexes were embedded in a containing lipid bilayer and 

solvated with TIP3P water molecules above and below the membrane, with a concentration of 

0.3 M KCl for zero system net charge. Membrane, water and protein parameters were gener-

ated according to the CHARMM36 force-field(104) and adenosine/NECA parameters were 

generated according to CGenFF v1.0.0(154). The exact size of the system and type of lipid var-

ied depending on the specific system (see each published study for particular details). Each 

receptor-membrane system was equilibrated for 28 ns at 300 K (Langevin thermostat) and 1 

atmosphere (Berendsen barostat). During the initial 8 ns of equilibration, protein and ligand 

heavy atoms were harmonically restrained and progressively released over 2 ns. During the 

final 20 ns of equilibration, no restraints were applied. Unrestrained production MD trajecto-
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ries were yielded under the same conditions with varying total time length depending on each 

study, but always using 4 fs time step. 
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4. RESULTS 

 

The purpose of this thesis has the ultimate objective of gaining insight into the impact of the 

membrane lipid environment on the (de)activations of GPCRs by MD simulations. This has 

been done to better understand the regulatory processes behind Class A GPCRs, which, hope-

fully, would allow in a later step the design of more effective drugs. To this end, two prototypi-

cal class A GPCRs, β2aR and A2aR, embedded in different lipid environments, were selected.  

The work presented in this section belongs to the following published studies, which are re-

ferred in the text by the chapter’s numbers:  

4.1.  Structural insights into positive and negative allosteric regulation of a G protein-

coupled receptor through protein-lipid interactions. Bruzzese A, Gil C, Dalton JAR, Gi-

raldo J. Sci Rep. 2018;8(1):4456. Published 2018 Mar 13. 

4.2.  Insights into Adenosine A2a receptor activation through cooperative modulation of 

agonist and allosteric lipid interactions. Bruzzese A, Dalton JAR, Giraldo J. PLoS Comput 

Biol. 2020;16(4):e1007818. Published 2020 Apr 16. 

Agustín Bruzzese (AB) performed the corresponding MD simulations and analysis under the 

supervision of James Dalton (JD). Also, AB was involved in the writing of the first versions of 

the manuscripts, whereas the subsequent versions were co-supervised by Jesús Giraldo and 

JD. The central findings of these studies are provided in this section regarding the original 

premises and specified objectives. 

 

4.1. STRUCTURAL INSIGHTS INTO POSITIVE AND NEGATIVE ALLOSTERIC 

REGULATION OF A G PROTEIN-COUPLED RECEPTOR THROUGH PROTEIN-LIPID 

INTERACTIONS 

Long-timescale MD simulations revealed the molecular effects of three lipids on β2aR activity 

via different protein-lipid interactions. In agreement with published experimental results, we 

show that net negatively charged lipids (such as DOPG) stabilize an active-like β2aR state that is 

capable of docking Gsα protein. Net-neutral zwitterionic lipids (DOPE and DOPC), on the other 

hand, inactivate the receptor, generating either fully inactive or intermediate states with 

kinetics depending on the distribution of lipid headgroup charge and hydrophobicity. Such 
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chemical variations among lipid head groups change the thickness and density of the 

membrane, which, by lateral compression effects, destabilizes the active state of β2aR 

differently. This reveals how and why β2aR is sensitive to its cell membrane environment.  

 

4.2. INSIGHTS INTO ADENOSINE A2A  RECEPTOR ACTIVATION THROUGH 

COOPERATIVE MODULATION OF AGONIST AND ALLOSTERIC LIPID 

INTERACTIONS  

The results gathered on β2aR were used to uncover the underlying molecular mechanism be-

hind A2aR activation. In this regard, long-timescale MD simulations consistently showed the 

activation process of A2aR in different lipid environments. In DOPC with bound adenosine, we 

observe the transition to an intermediate receptor conformation consistent with the known 

adenosine-bound crystal state. Two different intermediate conformations were obtained in a 

DOPG lipid membrane. One is similar to that observed in DOPC with bound adenosine, while 

the other is closer to, although not fully reached, the active state. Exclusively with DOPG and 

the adenosine-bound receptor, we consistently reproduced the fully active receptor character-

istics. The presence/absence of agonist and phospholipid-mediated allosteric effects on the 

intracellular side of the receptor are factors responsible for these singular receptor confor-

mations. These results suggest that cooperative effects between receptor-bound ligand and 

lipids play a key role in GPCR activation. Finally, the results exhibit how and why A2aR, similarly 

to β2aR, is sensitive to its cell membrane environment.  

Overall, we believe our results have contributed to understanding the receptor allosteric 

modulation through protein-lipid interactions. These results on A2aR and β2aR are in good 

agreement with experimentally reported data(84, 155). The obtained results show the 

modulatory effect of membrane lipid composition on GPCR conformational ensembles. In 

addition, it may be speculated that such modulation may be important for  other GPCRs.  

To some extent, these findings may also be meaningful in the design of drug discovery 

programs and might explain how membrane impairment in some diseases (e.g. Alzheimer’s 

and Parkinson’s) could affect GPCR-mediated cell signalling. This suggests the relevance that 

the membrane lipid composition and the methodologies that include this factor may have in 

GPCR-based therapeutics. 

Therefore, in this thesis, a detailed analysis of lipid effects on GPCR function and ligand efficacy 

is presented, which is consistent with current experimental data. 
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5. CONCLUSIONS 

 

The research herein presented was aimed to examine the effect of the lipid composition of the 

cell membrane on GPCR (de)activation. Importantly, the allosteric interactions exerted by lipids 

affect the population distribution of active and inactive receptor states, thus leading to a 

complex signalling network. This is the reason why there is increasing interest in exploring 

methodologies and techniques to increase the current knowledge on the molecular 

mechanisms by which lipids modulate the activity of GPCRs, as this could have a direct impact 

on drug discovery. This work offers new insights into this field by selecting two prototypical 

class A GPCRs and applying AA MD simulations. The following general conclusions were 

reached: 

 

1. The first hypothesis of this thesis states that the high computational performance of 

ACEMD software could facilitate the description of the molecular mechanisms that govern 

protein-lipid interactions and their involvement in GPCR (de)activation by making long-

timescale MD simulations computationally accessible. This hypothesis has been 

accomplished in our two published studies in which computational results seem to be in 

good agreement with experimental data.  

2. The selection of two crystal structures, one in an active state (β2aR) and the other in an 

inactive state (A2aR), has allowed us to analyze different aspects related with receptor 

(de)activation. Comparison between the stabilization of an active state, in the case of 

β2aR, with the induction of an active state from a starting inactive state, in the case of  

A2aR, allows to identify the conmmonalities and differences between conformational 

selection and conformational induction mechanisms, using MD simulations. On the other 

hand, we consistently have described similar positive and negative allosteric modulation 

on these GPCRs through the differential effect of various phospholipids. These modulatory 

effects depend on the formation/lack of electrostatic interaction between the lipid 

headgroups and the protein. As a result, a molecular view on how lipids modulate GPCR 

function is provided. 

3. Finally, this work can be relevant for other research groups either from the private or 

public sectors involved in the GPCR field. We believe this methodology can be extended to 
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other GPCRs following similar premises. 

 

5.1. FURTHER DIRECTIONS  

The work presented in this thesis can be further extended to cover other aspects in the com-

plex GPCR field:  

1- To study the effect of lipids on GPCR dimerization. There is a significant amount of 

experimental data pointing to receptor oligomerization for new therapeutic 

approaches (bivalent drugs)(156, 157). In this context, membrane lipids seem to be 

tightly involved in the regulation of GPCR oligomerization. 

 

2- To explore the effect of lipid-GPCR modulation using MD simulations with varying 

complexity scale. The accuracy of AA FF calculations comes with a high computational 

cost if it is required to perform them at biologically relevant timescales (micro-

seconds). At the beginning of the study, we expected that the CG MARTINI FF would be 

a useful alternative for studying lipid-protein interactions and receptor activation due 

to its reductionist nature, which would allow for a significant speed-up in 

computational performance. However, the resulting protein behaviour and protein-

lipid interactions were not consistent with experimental results and we left this 

approach. Thanks to the continuous advances in the field of MD simulations, it could 

be that today, CG MARTINI FF is sufficiently accurate, and therefore could become a 

great asset for the study of protein-lipid interactions. 

 

3- To develop a close-physiological membrane. Although this current research presents 

two prototype class A GPCRs in the context of different membranes, it remains to be 

studied how a more physiological membrane (both in disease and healthy contexts) 

might affect GPCR functional behavior in a more physiological-like setting. 
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