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Abstract

The interaction of trapped light and motional degrees of freedom has recently
emerged as one of the mechanisms enabling both fundamental research in meso-
scopic quantum physics and high-performance microscale laboratory devices for
practical applications such as sensing or optical signal processing. To do so, a
solid theoretical and experimental understanding of the exploitable physics in
(cavity) optomechanical systems has been achieved during the past two decades.
Their dynamics can be reduced to a small set of governing parameters, the pre-
ferred setting for engineered solid-state classical and quantum devices. However,
those parameters are usually determined by a fine-tuned combination of material
properties and geometry, the control of which becomes extremely challenging in
nanometer-scale device-like structures. It is well accepted that unavoidable fab-
rication imperfections impose severe limits on the achievable control over these
parameters in state-of-the-art optomechanical systems. However, this role has so
far not been analysed in depth. In this thesis, I study the role of this ubiquitous
form of disorder in the optomechanical coupling at the nanoscale, both from a
numerical and experimental perspectives.

Understanding and quantifying the effect of disorder in engineered cavity
optomechanical systems is crucial to reduce its impact. Taking this approach,
based on our propensity towards order and symmetry over anything else, even-
tually leads to the following conclusion: critical dimensions need to be controlled
down to a few nanometers. If instead of considering disorder as a nuisance, we
explore how to harness its potential, the conclusions are less obvious. In the field
of photonics the role of multiple scattering in disordered dielectric structures has
been largely studied, evidencing the particular role of disordered lattices, where
the interplay between order and disorder offers an alternative route to strong
light confinement, i.e., Anderson localization, a phenomenon well known for elec-
trons in solid-state physics since the mid-1950s. In principle, the same wave-like
multiple interference should happen for elastic waves, leading to tightly localized
mechanical modes at similar wavelengths. However, direct observation of Ander-
son localization of phonons in the GHz range remains elusive, due to the lack of
practical phonon transitions in the solid state and limited far-field radiation for
read-out. Can these disorder-induced optical cavities be used to locally probe An-
derson localization of GHz phonons via their optomechanical interaction? What is
the likelihood to find spatially co-localized photons and phonons? Are these two
waves equally sensitive to fabrication imperfection? Can we explore cavity op-
tomechanical dynamical back-action in such a system? These scientific questions
articulate this thesis.

Due to the limited control over the intrinsic dissipation channels of the me-
chanical resonator at room temperature, the quality factor of the optical modes
and the level of co-localization are identified as the key parameters to statistically
enable optomechanical interaction in disordered semiconductor nanostructures.
The first requirement is achieved in slow-light photonic crystal waveguides. Using
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evanescent fiber-taper coupling, we observe high-Q (~ 10°) optical Anderson local-
ization in a novel silicon photonic crystal waveguide that simultaneously operates
as a phononic waveguide. Trigger of non-linear material effects via the strongly
confined light coherently self-modulates the random cavities, hindering the obser-
vation of optomechanical modulation. The inclusion of a sub-wavelength air slot
along the waveguide core allows confinement in the narrow air region, prevent-
ing the rapid onset of material non-linearities while simultaneously increasing the
achievable optomechanical coupling rate g,. We observe optomechanical modula-
tion of Anderson-localized optical modes in slotted photonic crystal waveguides at
two frequency ranges: low-frequency in-plane mechanical modes spanning 100-500
MHz and high-frequency ~ 7 GHz phonons. Optomechanically-induced amplifi-
cation up to coherent self-sustained oscillations is evidenced at both frequency
ends. At the 7 GHz band, the explored system constitutes a perfect platform to
observe high-frequency phonon localization phenomena in cryogenic conditions.

These simultaneous slow-light and slow-sound two-dimensional photonic
crystal waveguides however lack an a priori mechanism that guarantees a high
degree of colocalization. In principle, the modes appear at uncorrelated positions
due to their complex interference nature. To explore and understand this co-
localization process, I proposed a way to address this challenge using periodic-on-
average one-dimensional GaAs/AlAs Distributed Bragg Reflectors. A statistical
enhancement of the vacuum optomechanical coupling rate, g,, is found, making
this system a promising candidate to explore Anderson localization of even higher
frequency (~ 20 GHz) phonons using ultra-fast pump-probe coherent phonon
spectroscopy. I have employed this experimental technique to all-optically probe
a spacer-less phononic nanocavity created by concatenating two perfectly periodic
multilayers, i.e., a 0D topological state, a testbed to understand the most basic
implications of bulk topology on interfaces.

Last, I apply my knowledge and understanding of disordered waveguide
nanostructures to explore propagating topological interface states and quantify
their potential for robust backscattering-free photon transport at the nanoscale,
a premise for compact and efficient circuit and cavity optomechanics based on
topological edge states.
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Chapter 1

Motivation and introduction

The role that symmetry and order play on the underlying structure of nature has
fascinated the human mind since the Greeks, to the point that science operates
on the fundamental assumption that nature is ordered and that symmetries de-
termine its dynamical laws. However, the role of complexity in understanding
the world around us does not escape us either. Entropy, one of the foundations
of thermodynamics and statistical physics, is often understood, at least under
particular circumstances, as a measure of the level of disorder in a physical sys-
tem. Going beyond the simplicity of regular systems and accepting this inherent
complexity of nature has been crucial in the last century physics.

In particular, the history of condensed matter physics gives us a clear exam-
ple. Before 1958 solid-state physicists were convinced that the effect of disorder in
crystals could be treated by considering electrons as point-like particles suffering
random scattering events with a characteristic length-scale denoted as the mean
free path £. A stronger scattering could always be cast into a smaller ¢. Building
on this simple picture, electronic transport in the presence of defects can be de-
scribed as a Brownian motion with a drift velocity and macroscopically manifests
itself as the well-known Ohm’s law. Lack of experimental evidence suggesting the
necessity for a more fundamental treatment of scattering from lattice defects was
probably the main reason for that simple description. Faced with anomalously
long relaxation times of electron spins in doped semiconductors [1] that he thought
could be explained by localized electrons, Phillip Warren Anderson decided to ac-
count for the quantum wave nature of the electron in a disordered lattice. In a
seminal paper [2] he proposed that strong enough scattering can halt the classical
diffusive motion of the electron, whose wave function becomes exponentially lo-
calized. As the mean free path becomes smaller and smaller by larger disorder it
encounters another fundamental length scale: the electronic wavelength, beyond
which wave effects cannot be ignored anymore. This effect was later understood
to arise from the localization of the system eigenstates [3], prompting intense
mathematics research on the spectral properties of random operators [4]. These
ideas completely revolutionized the understanding of physics back in the 60s. As
put by Anderson himself during his Nobel Prize speech (1977): ”Localization was
a different matter” [5]. Far from being the most mathematically rigorous paper
in theoretical solid-state physics, what was different and supposed a profound
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breakthrough was his choice of treating disorder not as the exception, but as the
rule. We now know that the localization of the electron wave function is actually
not limited to perturbed lattices but to generic random potentials and, ultimately,
the theory of bands —periodicity, order- and the theory of localization —disorder-
need to be considered in an equal footing [6] to understand why some materials
conduct electricity and why others do not.

The profound effect of complexity that emanates from Anderson’s ideas has
strongly permeated physics, generating strong research efforts on the behaviour
of disordered systems [7] in fields such as solid-state physics, biophysics, optics
or acoustics. In particular, as localization is essentially a wave-interference phe-
nomenon, it should be universal to all wave-systems [8], generating a long-lasting
quest for Anderson localization in a large variety of classical waves such as water
waves [9], light [10] or sound [11]. The non-interacting and time-invariant nature
of Anderson’s model to predict electron localization were proving too stringent
simplifications for an unambiguous experimental confirmation and classical waves
offered a promising platform for the observation of localization in its pure form.
Manipulating and controlling excitations whose wavelengths are of the order of
millimeters or micrometers instead of nanometers as well as the occurrence of
interference effects without the need of low-temperature operation were some of
the advantages offered by classical waves. Experimental attempts to observe An-
derson localization have often relied on the analysis of transport parameters [12—
14], an approach that strongly relates to Anderson’s first description of the phe-
nomenon. The fingerprint of the localization regime in transport measurements
is the exponential, rather than linear, fall of transmission with system size. How-
ever, classical waves suffer from artifacts like absorption, that also show up as an
exponential decay [15]. Fortunately, classical waves often offer the possibility to
measure other observables than conduction, specially in the case of photons. One
can look at the relative size of the fluctuations in different transport parameters,
an approach first proposed in the microwave domain [16]. In optics, the far-field
emission of excellent point sources, i.e., quantum emitters, allows direct access to
the statistics of Anderson localization and to spatially resolve localized fields [17].
For elastic waves, experiments have been so far restricted to ultrasound [11,18]
while the direct observation of localization at higher frequencies with explicit in-
spection of the individual localized wave fields simultaneously in the spatial and
spectral domain remains elusive. The lack of practical phonon transitions in the
solid state, the limited number of commercially available high frequency coherent
phonon sources and their limited far-field radiation complicate the read-out and
prevent the analogy to optics.

Optics and acoustics constitute two pillars of modern scientific knowledge
and are the two disicplines, along with electronics, that have had a stronger influ-
ence in the advent of the chip-based technological era. They have been explored
separately since time immemorial but have happened to find common grounds
during the last century. Brillouin’s predictions of diffraction of light by an acous-
tic wave in 1922 [19] was the departure line of acousto-optics, a field that has
recently received huge attention due to the fast developments in cavity optome-
chanics [20]. Among the most commonly used optomechanical (OM) systems
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figure optomechanical crystals [21] (OMCs), precisely fabricated nanometer-scale
devices used to efficiently interface light with the mechanical vibrations of mat-
ter at the nanoscale. They constitute a clear example where order and spatial
symmetries are crucial for current functionalities and often used at an early de-
sign stage. Fabrication imperfections, that impose severe performance limits by
increasing the energy dissipation of the optical and mechanical elements [22], are
seen as a nuisance. We propose this form of ubiquitous disorder as a tool to si-
multaneously localize both the electromagnetic and acoustic fields by Anderson
localization of photons and phonons in nanostructured media, offering an alter-
native route to precisely designed confining potentials that is, by the nature of its
construction, imune to disorder. In particular, the interplay of order and disorder
in dielectric/acoustic perturbed lattices provides an ideal platform for studying
strong localization effects, as was early predicted by S. John [23] for photonic
crystals. Since disorder localizes both fields, the confined optical modes can inter-
act with the localized mechanical motion via the same mechanisms as in standard
engineered cavity OM systems [24]. Simultaneous localization of photons and
phonons via randomness may have limited practical applications for tasks requir-
ing small foot-print, highly engineered cavity OM systems, but light-localization
can be used as a fundamental local probe to observe Anderson localization of high
frequency mechanical vibrations, circumventing the aforementioned issues so far
encountered for phonons. The main objective of the research reported here is to
identify the limiting factors encountered with this approach and to assess, both
numerically and experimentally, the convenience of different optomechanical plat-
forms to overcome them. In the context of OM cavity arrays, site-to-site disorder
and its effects on the OM building blocks can also lead to Anderson localization
of hybrid photon-phonon excitations [25]. The question of what role does disorder
play for photons and phonons that are allowed to interact in nanoscale structures
has therefore become relevant.

Understanding the effect complexity has in nanoscale photonics and phonon-
ics and their possible interactions seems even more crucial in a scientific land-
scape that is now strongly influenced by the concepts of topology coming from
fermions in condensed matter physics. At the heart of this growing interest is the
possibility of opening dissipationless information channels by providing robust
backscattering-free topological waveguides. Nearly every paper on topological
bosonics published during the last years claims robust topological edge states,
but few describe the role of unavoidable fabrication disorder on the allowed prop-
agation lengths. It is therefore necessary to study the supposed robustness using
the concepts of coherent backscattering and localization, where the interplay be-
tween the properties of the ordered system, the density of states, and the type and
amount of randomness is a key factor to determine the backscattering length &,
the average ballistic propagation length. In particular, this length-scale strongly
depends on the group index n,4, the slow-down factor of the propagating wave.
These two figures of merit, £ and n, should be taken into account to obtain a
quantitative assesment of any particular protection mechanism in the propaga-
tion equation due to topology.

In this thesis, I discuss the general role of disorder in OM systems and
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explore key aspects that could enable the observation of Anderson phonon lo-
calization at frequencies where direct observation of the wave fields is otherwise
ellusive. The thesis starts with two background chapters (Chapters 2 and 3) that
provide an extensive introduction to the field of cavity optomechanics and its
development in nanostructures. Both are ended with a brief section that under-
lines the concepts exposed that are required for a proper understanding of the
numerical and experimental results later described on Chapters 4 and 5, the core
results of this doctoral thesis. Chapter 6 is used to provide conclusions to this
thesis, to explain how it contributes to the different fields involved and to give an
overview of possible future research. In particular, we build upon the knowledge
gained earlier in this work to assess the robustness of topological edge states to
backscattering, one of the typically assumed properties granted by topology. The
contents of the individual chapters are given below.

e In Chapter 2 the fundamentals of cavity OM systems in the very generic
system of a Fabry-Pérot cavity with a movable end mirror are introducted.
This particular setting is introduced via a historical perspective on radiation-
pressure interaction of light and matter, going from point-like particles
(atoms) to gram-scale mirrors. The hamiltonian of such a system is de-
scribed and the governing equations for the optical and mechanical res-
onators derived. The basic physical effects induced by dynamical back-
action of the light field on the mechanical resonator are explained, with
special emphasis on optomechanically-induced coherent amplification and
lasing. The strongly-driven non-linear dynamical response of an optical
cavity via intrinsic material non-linearities is also given, as well as how to
couple it to the mechanical degree of freedom via radiation-pressure in order
to produce mechanical lasing at low frequencies.

e In Chapter 3 a clear and detailed introduction to the properties of light
and motion propagation in periodic lattices, i.e. photonic and/or phononic
crystals, is provided. The traditional notions of band gaps and localization
via point and smooth defects are described, but special attention is set to
the role of distributed defects in the form of geometrical disorder, providing
the tools to understand the interplay of order and disorder in the occurrence
of Anderson localization in such structures. Last, the coupling mechanisms
in standard semiconductor nanostructures are described and the way to
compute an OM coupling rate g, from first order perturbation theory.

e In Chapter 4 the interaction of photons and phonons in purely one-dimensional
structures based on GaAs/AlAs multilayers is presented and discussed. I an-
alyze the particular role of the photon/phonon co-localization occuring with
such specific material choice on g,, an enabling aspect for their interaction
in the Anderson-localization regime. Due to their lack of confiment in the
in-plane direction, multilayers are less-suited for OM measurements based
on brownian motion. We introduce all-optical ultra-fast pump probe coher-
ent phonon spectroscopy as an alternative spectroscopic technique. Selection
rules for generation and detection of coherent phonons via light are explored
and their relation to g, analyzed. These rules are finally used to conceive and
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perform an experiment that demonstrates a topological phononic nanocavity
and the band inversion underlying it.

e In Chapter 5 OM effects in dual photonic/phononic crystal waveguides sub-
ject to unintentional fabrication imperfection are explored. Two dimensional
numerical simulations and experimental data provide conclusive evidence of
strong photon localization in both standard and slotted photonic crystal
waveguides, ultimately leading to non-linear behaviour. For the latter, OM
coupling to extended low-frequency and high-frequency guided modes is ex-
perimentally observed with Anderson-localized optical modes, a milestone
observation in this thesis. Finally, dynamical-backaction induced phonon
lasing is experimentally achieved in both frequency ranges. This chapter
comprises the most relevant results of the thesis towards anwering the ques-
tions initially set.

e In Chapter 6 the main results presented in the thesis are reviewed and a
perspective on future research is provided. In particular, recent numerical
results on the role of topological phases and the bulk-edge correspondance
are discussed as a means to produce guided edge states that are immune to
backscattering. The backscattering mean-free path £ and the group-velocity
ng are presented as the key parameters for wave-transport in the presence
of disorder to compare the robustness of different topological edge states. A
comparison with conventional edge states is also provided.






Chapter 2

Fundamentals of cavity
optomechanics

The field of cavity optomechanics studies the interaction of light confined inside an
optical cavity with the mechanical degrees of freedom of the structure supporting
it. A myriad of coupling mechanisms have been explored in the last two decades,
howevever, most of the physical implementations and the observed phenomena can
be explained with a simple model: a Fabry-Pérot interferometer with a movable
end marror, the latter being attached with a spring to a fized support. In this chap-
ter, we describe the basic theory of cavity optomechanical (OM) systems that is
required for the understanding of the chapters to follow, based on this well-known
toy model. Even though the results in this thesis belong to the realm of classical
physics, a more general description starting from the quantum equations of motion
1s given for the sake of completeness. The classical description is simply derived
from the quantum version by taking the expectation value of the operators in play.
After a brief historical perspective on the role of radiative light forces on motional
degrees of freedom of matter, the basic OM system and its Hamiltonian are de-
rived. The equations of motion for the driven optical and mechanical resonators
naturally emerge from such a description. The different physical phenomena that
arise from the set of differential equations is then described, with special emphasis
on mechanical mode amplification. An incursion into the non-linear behaviour of
strongly driven optical cavities is made, with the goal of describing another type of
self-sustained oscillation reported in this thesis. Finally, a description of optical
transduction of the (thermal) motion of the mechanical oscillator is given. The
chapter is finished with a brief summary describing how the concepts herein relate
to the results given in Chapters 4 and 5.
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2.1 The effect of light on mechanical objects and
viceversa

The idea that electromagnetic radiation exerts pressure on objects dates back
to the early days of the scientific revolution in the 17*" century, when Kepler ob-
served that the tail of comets always point away from the sun [26]. Far from being
aware that electromagnetic radiation carries momentum, and even from the no-
tion of momentum itself, his interpretation in terms of a force exerted by sunlight
was foundational. Around 250 years were necessary for setting the theoretical
grounds of Kepler’s intuition. In 1873, Maxwell described how light, as a form
of electromagnetic radiation, has the property of momentum and thus exerts a
pressure upon any surface it encounters [27], i.e., radiation pressure, and he de-
rived a closed-formula for it. Radiation-pressure effects had largely been explored
experimentally during the century [28-30], however observations in agreement
with Maxwell’s predictions remained ellusive until the early 20" century, namely
due to the relative strength of the induced force compared to other effects in the
studied systems. Indeed, if one imagines a mirror upon which a photon impinges
(Figure 2.1(a)), conservation of momentum dictactes that the sum of momentum
vectors after reflection /absorption must be equal to the momentum of the incom-
ing photon. Particle-wave duality and De Broglie’s hypothesis [31] impose the
momentum p of the photon of wavelength A to be

p=ry (2.1)
where h is Planck’s constant. In terms of wavenumber k& = 2% the momentum
of each photon obeys the well-known relation p = Ak where we use the reduced
Planck’s constant h. Reflection upon the mirror implies a momentum transfer of
Ap = 2hk, i.e., Ap = 1.25:107%7 kg-m/s for a green photon (A = 532 nm), which
is a tiny number for most of electromagnetic radiation. Observing this momen-
tum transfer or the force that results when an incoherent light source is used,
e.g. a light bulb or an halogen lamp, requires extreme precision measurement
and disentangling the effect from the action of other forces, in particular those
mediated by the residual gases surrounding the body in study. This resulted in fa-
mous and controversial experiments, like the Crookes radiometer experiment [32],
where optical momentum was said to make a vane spin. The vane did spin, but
Maxwell was not the one pushing. The radiometer was actually spinning in the
opposite direction to what is expected from radiation pressure and it was even
shown later that spinning of the vanes halted for even lower vacuum levels than
the ones Crookes could achieve. Constructing upon the ideas of Crookes, more
sophisticated experimental set-ups and thorough consideration of the ubiquitous
residual gases allowed the russian scientist Lebedew [33] and americans Nichols
and Hull [34] to observe true radiation-pressure effects, the latter with such an
accuracy that no subsequent physicists reproduced their experiments.

With Nichols and Hull experiment as a starting point and with the advent
of the laser in the 70s, a new era in the study of light-matter interaction started.
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Figure 2.1: Radiation pressure force: a route towards a tangible
interaction in macroscopic systems. (a) Conservation of momentum of the
system composed by the photon and the mirror where it is reflected fixes the
momentum transfer. This instantaneous momentum transfer puts the mirror
into motion with a negligible velocity. (b) The use of a coherent laser source of
power P, generates a net force upon the mirror, resulting from the continuous
photon arrival rate. This force is still very small in most situations. A possible
path towards increased radiation pressure is enclosing the light in a partially
open cavity (c), where the circulating power is much larger than the input
power. Finally, (d) the movable mirror is held in place via a suspension or a
spring.

If instead of a single photon travelling towards a mirror, a coherent light beam
with a photon rate |a;,|* = N;/At and a frequency wy is used for illumination
(Figure 2.1(b)), the radiation pressure force reads

Ap  2hkN; 2kP, 2P

At At W c (2:2)

Frp

with ¢ the speed of light. This is still a tiny force for everyday objects, e.g.1
W of laser power exerts a force of 6.7 nN, but can be readily used to manipu-
late the motional degrees of freedom of very lightweight objects such as atoms,
ions or molecules, where the force is mediated by absorption. The quest for bet-
ter spectroscopic measurements of atomic lines and for readily available physical
systems to study quantum-optical phenomena led to important research efforts
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in using radiative light forces to cool down the heat-induced random motion of
atoms. The simultaneous works of Héansch and Schawlow [35] and Wineland and
Dehmelt [36] concerning laser cooling, followed by proposals from Ashkin [37] and
Chu [38] to trap the aforementioned atoms using optical dipole forces, set the
ground for a revolution in atomic physics, with radiative forces used to manipu-
late atoms to form exotic states of matter, such as Bose-Einstein condensates [39],
superfluidity [40] and optical lattices [41], or to generate our most accurate clocks.
With the increasingly lower temperatures achieved, the necessity of using quan-
tum mechanics to understand both the motion of trapped particles and the limits
in temperature [42] became evident. Refined excitation schemes of the atomic
clouds taking into account the quantum nature of the object allowed even lower
temperatures down to the quantum ground state [43], where further manipulation
allows generation of intricate quantum states such as superposition [44] or entan-
gled states [45,46].

The question of how big, in terms of mass, can we make the system to
be cooled down, eventually to its zero-energy state, follows naturally seeing the
tremendous accomplishments of atomic physics during the end of the 20" cen-
tury. From a fundamental perspective, ground-state cooling of massive resonators
could help in studying the quantum-classical boundary and the decoherence mech-
anisms that define it. Generating superposition or entangled states of mechanical
motion at a mass scale where gravity is non-negligible could allow the observation
of gravitation-induced spontaneous quantum state reduction [47], a milestone to-
wards a unfied theory in physics. The radiation-pressure force exerted by a laser
beam upon a macroscopic mirror is well described by Equation (2.2). It is obvious
that for massive objects the effect on velocity is, most of the time, negligible, un-
less photons can be recycled. An effective way of recycling photons starting from
Fig. 2.1(b) is by using a second mirror prior to the object of study, i.e., photons
travel in an optical cavity. In it, a resonant photon makes multiple round-trips
before being lost either via leakage or absorption, making the built-up circulating
optical power much larger than the input power driving the cavity (Fig. 2.1(c)).
This increases the radiation pressure force acting on the mirrors. For the particu-
lar case of a partially transparent input mirror of reflectivity R at a distance L of
the studied mirror, the internal enhancement the resonator provides to the light
launched into it scales as 1/(1 — v/R)? and therefore the radiation pressure force

can be given by
Ap 2Pci7"c QB
Frp=—= = (2.3)
At & c(1 —VR)?
where the effect of using an optical cavity is evident as compared to Equation (2.2).
If the circulating power P,;,.. is written in terms of the cavity photons n. and the

round-trip time 7,, = 2L/c, the formula can be also written as

2Pcirc o 2nchwc o nchwc

= 2.4
TrtC L hGnc ( )

where we have introduced the OM coupling rate G = w../ L, the radiation-pressure
force of a single cavity photon. We will see on Section 2.2 that this parameter
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also represents the frequency shift induced by a unitary mechanical displacement
of the mirror.

When such an optical feedback system is used to increase radiation pres-
sure, effective action can be achieved on more massive objects. The most striking
in this quest to understand how to manipulate objects of increasing mass is that
most of the theoretical foundations were set by people working with objects at
the other end of the size spectrum and for who that specific light-matter interac-
tion was more of an impediment than a goal itself. In order to detect space-time
oscillations generated by gravitational waves (with strain levels on the order of
10721 [48]), gravitational astronomers conceived kilometer-scale laser-driven in-
terferometers with pendulum-like mirrors to avoid spurious environmental noise.
The building block of these interferometers is therefore equivalent to the one de-
picted in Fig. 2.1(d), a Fabry-Pérot (FP) resonator with an end mirror attached to
a spring, and experimentalists were soon confronted with the fact that radiation
pressure exerted by the high power laser on the massive interferometer mirrors
led to displacements higher than the wobbles they were seeking to mesure, over-
whelming the signal. Braginsky’s group pioneered the development of a theory of
OM interactions in such a system. The physics that derive from such an interac-
tion turned out to be extremely rich. While the cavity photons put the mirror in
motion, the subsequent displacement of the mirror changes the length of the cav-
ity and therefore the resonance condition. The driving laser finds itself detuned
from respect to the cavity, producing a change of the intracavity photon number,
which again changes the radiation-pressure force. This closed loop and the re-
tarded nature of the force change due to the finite lifetime of the cavity photons
generates a broad collection of physical phenomena, in particular the control over
the mechanical oscillator [20]. Both optically-induced changes in the stiffness and
the viscous damping of the mechanical oscillator dynamics were evidenced during
the early days [49]. Control over the dissipation rate was soon envisioned as a
means to amplify -up to the self-sustained level- or cool -down to the ground-state-
the motion of the mechanical oscillator [50]. Within the framework provided by
the developed theory, Braginsky adressed the question of how accurate can we
measure the mechanical resonator position using light, going down to the funda-
mental limits imposed by quantum fluctuations of radiation pressure in what is
called quantum backaction [51]. His measurement theory approach to the problem
allowed to conceive optimal driving strategies for the detection of gravitational
waves, finally observed by the LIGO collaboration in September 2015 [52].

The developments of Braginsky soon reached the quantum optics commu-
nity, initiating a lasting research on possible quantum effects in these systems.
These efforts were initially focused on controlling the quantum properties of the
light field via the mechanical resonator [53,54], but very soon the quantum be-
haviour of the motional degree of freedom itself was explored. Generation of
non-classical states of motion with one or more mechanical resonators such as
supersposition [55] or entangled [56] states are only some examples of the physics
that were studied at the time. However, most of the ideas remained as theoretical
proposals for many years. The observation of quantum effects in these systems is
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a great experimental challenge. The first reason is simply because the interaction
strength G discussed above is generally weak, even inside an optical cavity. More
fundamentally, this is due to the natural scale of the displacements involved in
quantum motion, given by the zero point fluctuations z,,r = \/h/2mS,,, where
m is the mechanical oscillator’s mass and €2, its frequency. Due to the masses
involved and to the impossibility to tailor €2, at will, zzpr of a spring-attached
mirror is many orders of magnitude smaller than for trapped atoms, requiring
extreme displacement sensitivity that can only recently be achieved [22,57-59].
Even when control over 2, constitutes a possible path to increase xzpp, this
may worsen the role of thermal noise -how the energy scale kgT" compares to the
quantum of energy hfl,,- to levels that mask quantum effects, even at the lowest
attainable temperatures in closed-cycle cryogenic environments.

10pem

Figure 2.2: Micro and nanometer-scaled optomechanical (OM) sys-
tems. (a) Suspended high-reflectivity micromechanical system in a Fabry-Perot
(FP) OM system [60] (b) Whispering gallery modes (WGMs) along the rim of
a microtoroid couple to radial mechanical modes of the structure supported via
a thin pedestal [61]. (c) One dimensional [62] and (d) two dimensional [63] sus-
pended photonic crystals couple diffraction-limited optical photons to extended
and localized mechanical motion. (e) A nanoresonator embedded in the middle
of an optical cavity couples to the cavity light field and enables mapping of
the full cavity. (f) Plasmonic resonators exhibit much lower quality factors but
extreme nanoscale light confinement, allowing values of the coupling rate g,
hard to attain with dielectrics [64].

It comes as no surprise that the community pushed towards the miniatur-
ization of both the mechanical element (lower m) and the optical cavity (increas-
ing (7). Despite the difficulty in fabricating FP resonators below the mm-scale,
the breakthroughs in advanced micro-nanofabrication starting at the end of the
century supposed a true revolution for the field of quantum optomechanics (OM).
Instead of using an end-mirror configuration where the displacement in play is the
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center-of-mass displacement of a test mass, increasing interest was put in mechan-
ical motion resulting from relative atomic motion. In contrast to point-like atoms
where the external degrees of freedom have a free-particle behaviour in the ab-
sence of other forces (like the force induced by the trapping potential), the natural
motion of more massive objects results from collective motional degrees of freedom
of ensembles of atoms, i.e., phonons, whose complex motion naturally evolves in
time like a harmonic oscillator, at least at small displacements [65]. Control of
solid-state matter at the sub-micrometer scale allowed the development of novel
OM systems in which both the optical cavity and the mechanical resonator prop-
erties and their coupling can be tailored with great flexibility. The most natural
micro-scale version of the system in Fig.2.1(d) is that of a microcavity where the
suspended mirror is replaced by a highly-reflecting micromechanical device like a
membrane or a cantilever (Fig. 2.2(a)) with naturally-occurring flexural mechan-
ical modes. However, the first micron-sized OM systems employed were based on
axi-symmetric structures such as microspheres, microdisks or microtoroidal res-
onators, as the one reported in Fig. 2.2(b). In these, light is confined via total
internal reflection along the circular rim of the resonator, in the so-called whis-
pering gallery modes (WGMs) [66]. These micrometric devices are obviously free
to move and one of its natural mechanical displacements are radial-like breath-
ing motion. In an analogous way to what was described for the FP resonator in
Fig.2.1(d), the light field bouncing on the boundaries of the resonator exerts a
radiation pressure force that drives this motion, while a change in the radius R
of the structure changes the optical path length and therefore changes the opti-
cal resonance condition, leading to the same type of bidirectional OM coupling.
Early experiments with this type of system also revelead the necessity to take
into account another type of coupling mechanism beyond radiation pressure [67].
When the microresonator experiences a breathing-like motion, microscopic strain
fields are both present in the radial and the azimuthal direction, which generates
distortion of the host lattice and changes its refractive index. This effect, called
photoelasticity, also alters the optical path of resonant light, dispersively coupling
the optical resonator to the mechanical degree of freedom. The reverse process,
the generation of strain fields via light, electrostriction, plays the role of radiation
pressure and again produces bidirectional OM coupling. For optical microres-
onators, radiation pressure coupling still dominates over photoelastic coupling.
The coupling rate GG that were achieved were high enough to allow the observation
of the parametric instability predicted by Braginsky [68] and radiation-pressure
cavity cooling [69] in just one year.

These seminal experiments paved the way to a myriad of new physical im-
plementations of the OM coupling mechanism [20], among which photonic crystal
cavities play a major role. Chapter 3 will provide an in-depth description of OM
systems based on photonic crystals, but it is worth noting here their role from
a historical perspective. Photonic crystals are periodic dielectric lattices which
result in the generation of optical bands with dispersions far more rich than those
happening in a homogeneous material, eventually leading to the creation of band
gaps where the total absence of density of states prevents light propagation, in
analogy to electron waves in a crystal lattice [70]. The inclusion of an artifical
defect in the lattice results in a localized electromagnetic mode that cannot decay
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into the continuum due to the presence of the band gap. The photonic holy grail,
a cavity in a three-dimensional photonic crystal at optical wavelengths, has how-
ever remained ellusive due to the difficulty of fabricating these structures at optical
scales. To ensure 3D confinement and operate at optical wavelengths the typical
approach has been to employ periodic structures in one or two directions and
total internal reflection in the remaining. Photonic crystal slabs [71] or photonic
crystal wires, two and one-dimensional photonic crystals etched into thin semicon-
ductor slabs or wires are playground structures for applications in photonics [72].
A cavity is formed in such a system by introducing a defect in the underlying
periodic lattice, regardless of the number of dimensions where Bragg reflection is
employed. Underetching of a photonic crystal cavity results in the formation of
nanomechanical membranes or beams, while maintaining light confinement due
to total internal reflection with the new air substrate. Their mechanical motion
produces both displacement of the boundaries and strain fields, i.e., it leads to
dispersive OM coupling between the mechanical modes of the structure and the
cavity photons. The possibility to engineer the cavity dimensions down to sizes
of the order of the wavelength combined with the use of low-mass mechanical
resonators produces OM coupling strengths that are much larger than in FP sys-
tems or WGMs [21]. In addition, the spatial dielectric modulation is inevitably
accompanied with a modulation of the acoustic properties like the density and the
elastic constants. A photonic crystal is generally also a phononic crystal, where
the same confinement strategies are also valid. Periodic patterning therefore al-
lows OM coupling to another family of mechanical modes that does not require
the motion of the whole suspended photonic crystal [73]. It allows simultaneous
confinement of optical photons and microwave phonons in volumes of diffraction-
limited size. The higher mechanical frequencies in the gigahertz range also allow
approaching a regime where low-temperature operation is achieved even without
additional laser cooling.

Most of the work described in this thesis deals with the interaction of pho-
tons and phonons in photonic crystals. As will be seen in Chapter 3, the analo-
gous behaviour of photons and phonons in periodic potentials and how their flow
is perturbed in the presence of defects also allows confinement strategies based on
distributed defects, which are the main object of study of this research. Despite
the specificities of OM interactions in a photonic crystal platform and the ones
added by employing localization via disorder, what truly matters to describe the
basic physics of photon-phonon interactions in an optical cavity is having a cavity
whose resonant frequency is dispersively coupled to the position of a mechanical
resonator, something that is true for all of the aforementioned systems. Therefore,
we use the FP resonator with a movable mirror as a toy model from which the
Hamiltonian and the equations of motion are derived. For the sake of simplic-
ity, other types of OM coupling explored, like dissipative [74] or quadratic [75]
coupling, are omitted in our model.
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2.2 Hamiltonian formalism and equations of mo-
tion

In a real OM system, light can usually be confined at more than one particular
wavelength /frequency and the mechanical spectrum of the involved structure has
a rich multi-lineshape spectral response. Therefore, in principle, such a system
can only be described in terms of a set of optical modes with frequencies w,; and
a set of mechanical modes with frequencies €2, ;. However, all of the involved
mechanical frequencies are typically much smaller than the free spectral range of
the optical cavity and we can restrict ourselves to one single optical mode of fre-
quency w,, the one closest in frequency to the driving laser. Additionally, we also
limit the analysis to one mechanical mode of frequency 2, under the assumption
that the dynamics are linear with independently evolving normal modes. At the
displacement levels typically achieved with such systems, the uncoupled optical
cavity and mechanical mode can both be described by quantum harmonic oscil-
lators with @ (a') and b (b') the anihilation (creation) operators for photons and
phonons, respectively. The system Hamiltonian then reads

. 1 e
H = hwyata + 5+ R, bTb + 3 (2.5)

When we consider an optical cavity with a movable end mirror, i.e., a cavity whose
resonating frequency depends on the position of the mechanical resonator, the in-
duced parametric coupling can be easily introduced in Eq. (2.5) by substituting w,
by w, (%), where we have replaced the classical position amplitude by the position
operator T = mzpf(lA)T + l;) For most experimental realizations so far explored,
including the ones of this thesis, the frequency dependence on the position can
be Taylor-expanded to first order as w,(Z) ~ w, + £0w,/0r = w, — G&, with G
the frequency shift induced by a unitary displacement. When this expansion is
included in the previous Hamiltonian, we get

H = h(w, — G#)ata + he,,b'h

on AU (2.6)
= hwol'a + 1iQbTh — G, (b7 4+ b)a'a

where the constant terms have been omitted. From this construction, the product
Gx,yy, the cavity frequency shift due to a displacement equal to the zero-point
fluctuations of the mechanical resonator position, arises naturally. We define the
vacuum optomechanical coupling rate g, = Gz, which quantifies the interaction
between a single phonon and a single photon. Unlike G, which suffers from the
somehow arbitrary definition of the displacement amplitude for complicated space-
dependent mechanical modes [76], g, is a fundamental quantity. We see from (2.6)
that the interaction term, ﬁmt = —hgo(lA)Jr + ZA))&T&, is a three-wave operator and is
therefore inherently nonlinear. From this interaction hamiltonian, the radiation-
pressure force is given by

- det _ h Go aT

F [ T hG TA 27
RP T P a a'a (2.7)
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whose expectation value recovers the formula derived in Eq. 2.4 for a FP resonator
with a movable end-mirror, for which G = —0w,/0x = w,/L.

In order to have the full description of the OM system, a series of addi-
tional terms accounting for the openness of the system need to be added to (2.6).
First, the optical cavity is being driven by an external laser that populates the
cavity and enables acquisition of information on mechanical motion via photons
exiting the cavity. Its effect can still be cast into the conservative hamiltonian
as Hypipe = ihy/Riau,ate™™ + c.c., with wy the laser drive frequency [77]. How-
ever, the mere presence of this term implies that the optical cavity has some loss
channels along which the cavity can be driven. Photon decay into that specific
channel and into any other loss channel need to be considered, as do the possible
quantum fluctuations entering via them. For the mechanical resonator, coupling
to a thermally-populated bath should also be taken into account. First-principles
consideration of all these additional terms in a Hamiltonian formalism would re-
quire a model for the optical and mechanical environment, typically that of an
infinite collection of harmonic oscillators [78], and how these couple to the opti-
cal and mechanical resonator. To avoid tracking the evolution of both the OM
system and the environment simultaneously, one can ressort to the input-output
formalism [79]. This is a formal setting based on quantum Langevin equations
derived from integrating the Heisenberg equations of motion over the environ-
ment and asuming some non-restrictive properties on the environment, notably
its non-Markovian dynamics, i.e., whatever reaches the outside is irreversibly lost.
A detailed derivation of these equations can be found elsewhere [30].

The quantum Langevin equations [81] for the field operator a can be written
in the following form
da(t)
dt

= —i(w, — Ga(1)a(t) = Sa(t) + Vre(@ne ™" + i) + o fin  (2:8)
where we introduced the overall photon decay rate k = ky + k; that takes into
account both losses into the laser drive channel (k,) and into all other bath chan-
nels (k). The quantum fields a;, and fm associated to these two channels enter
as source terms in (2.8), where we split a;, into its coherent mean field @;, and
its vacuum-like fluctuations da;,. The field is normalized in such a way that

is the input power launched into the cavity. More complex field states such as
squeezed or entangled states of the photonic environment a;, can also be treated
within the input-output formalism, but we limit ourselves to highly coherent laser
sources. Fortunately, the same formalism gives access to the field that is decoupled
from the optical cavity into any of the loss channels via the energy-conserving
boundary condition

dout,j<t) = dzn@) - \//fjd (210)
where k; specifies the decay rate into the chosen j-th channel, whose contribution
to Eq. (2.8) was either masked inside & or in the driving term such that x; = k.
For the equation on the field operator b, the same input-output formalism leads
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to

%(;) = (=i, — %’”)b( t) +iGa' (H)a(t) + /Tobin (2.11)
where I'), is the dissipation rate. We have also asumed that the mechanical mode
is not driven by any other external means and the only source term b accounts
for the hot thermal bath to which the mechanical mode is coupled. Unlike for
the optical cavity, the average number of quanta in the mechanical thermal bath
= kgT/h€, > 1 is non-negligible, even when the system is operated in
cryogenic environments.

The classical equations of motion for both the mechanical resonator position
z(t) = 2z,,rRe((b(t))) and the complex cavity field amplitude a(t) = (a(t)) are
readily obtained by taking the expectation values of Eqgs. (2.8) and (2.11)

d(;_it) = i(A + Ga(t))a(t) — —a( ) + VKl (2.122)
megr & digt)‘ = —mesrQna(t) — meffrm%$(t) +hGla(t)]* + Fiu(t)  (2.12b)

where we have moved to a rotating frame at the laser frequency w; and introduced
the detuning A = wy — w,. The system is said to be blue-detuned for A >
0 and red-detuned for A < 0, while A = 0 corresponds to a laser in perfect
resonance with the optical cavity. As can be seen, the only fluctuations left are the
ones associated to the thermal bath of the mechanical oscillator, which effectively
leads to a stochastic Langevin force with correlation function (Fy,(t), Fin(t')) =

Amep Lo [ €0 Coth(% 7)dw [82].

In the absence of interaction, i.e., G = 0, and with the classical analogue of
the boundary condition in (2.10), i.e., @out(t) = @in(t) —+/F;a(t), Equations (2.12a)
and (2.12b) correspond to the equations for a driven optical cavity within a
coupled mode theory framework [83] and to the dynamics of a thermally-driven
damped harmonic oscillator, respectively.

2.3 Dynamics of optomechanical resonators

The two coupled non-linear differential equations in (2.12) do not present an easy
analytical solution, making the use of numerical simulations unavoidable in most
cases. However, it is instructive to analyze what happens in a series of simpli-
fied settings. The simplest one is probably what happens when the interaction
strength is set to zero in both equations and the two resonators evolve indepen-
dently. This will allow us to study the basic physics and response of a driven
optical resonator and of a mechanical resonator in thermal equilibrium. With
those in hand, the equations can be linearized around a steady state value and
both the effect of the mechanical displacement on the optical cavity field and static
and dynamical effects on the mechanical resonator induced by the light field, i.e.,
dynamical backaction, can be easily derived.
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2.3.1 Basics of a driven optical cavity

Here, we only consider the optical subsystem with G = 0. We first analyze the
dynamics in the case where the cavity is driven at low power and responds linearly
and then add the necessary terms to Equation (2.12a) in order to account for the
onset of material nonlinearities, which lead to nonlinear dynamics.

The linear regime

The behaviour of a weakly driven optical cavity can be derived by setting G = 0
in Eq. (2.12a). This is a simple first-order linear equation, whose solution for the
initial condition a(t = 0) = a,, after going back into the laboratory frame, yields

(5T 1) a,
a(t) = -2 e et (2.13)

JREEINT

The intra-cavity photon number can be found by taking n(t) = |a(t)|>. Its time
dependence is depicted in Fig. 2.3(b) for two different initial conditions and for
various detunings, with x, = /2 fixed. In all cases, the photon number saturates
to a fixed value on a characteristic timescale of several k!, the cavity build-up
or decay time depending on the cavity initial condition. The saturation value
corresponds to the steady state solution to the equation (da(t)/dt = 0) and is
found by taking the limit of Eq. (2.13) when ¢ — oco. The solution corresponds to
the prefactor

Vhilin (2.14)

a =
5 — 1A
in the numerator, while the steady-state cavity population is given by
_ Ke P;
= 2.15
T R2)2 + A h, (2.15)

While the intra-cavity field a(t) is the fundamental quantity that couples to
the mechanical degree of freedom, the information on the dynamical state of the
system is obtained via the outcoupled light into the channel of detection @yt q(t).
Coupling light into an optical resonator and the conditions for an optimal coupling
are extremely recurring problems in photonics, specially when the system size
gets down to the nanoscale. How to read-out the decoupled light is however as
important as how we couple it in. For the case of a FP cavity as the one depicted
in Fig. 2.1 the openness of the cavity is directly used to drive it from one of
its mirrors and measure the reflected light, but one could very well measure the
transmitted light from the back-mirror. In a simplified picture, these two cases
would correspond to a one-sided or a double-sided optical cavity coupled to one or
two bus waveguides, respectively, the cases depicted in top and middle diagrams
of Fig. 2.3(a). The optical cavities dealt with in this thesis are photonic crystal
cavities based on disorder-induced localization and on-demand access to particular
cavities becomes a crucial requirement. Therefore, we use a tapered optical fiber
to evanescently couple to the near-field of the optical cavity and we use the fiber
for both the driving and the detection, which can be done either in transmission
or in reflection. The description of such an experimental configuration in the
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Figure 2.3: Optical response of a driven optical cavity. (a) Possible
configurations for driving an optical cavity, where the blue rectangles repre-
sent the channels used for excitation and/or detection and the optical cavity
is represented with a circle. The relevant parameters for a single-sided (top),
a double-sided (middle) and a bus-waveguide-coupled (bottom) optical cavity
are given. (b) Time evolution of the intracavity photon number n(t) for differ-
ent laser-cavity detunings A starting from an empty (left) and a filled cavity
(right). (¢) Transmission (top) and reflection (bottom) of an optical cavity bi-
directionally coupled to an excitation/detection bus waveguide as a function of

the ratio ke/k.

input-output formalism corresponds to an optical cavity which is bi-directionally
coupled to a bus waveguide, as depicted in the bottom of Fig. 2.3(a). This bi-
directionality is typically perfect for the cases treated in this thesis, and we can
therefore divide the losses into the bus waveguide k, into equal parts for the
propagating (k,/2) and counter-propagating modes (k,,/2). The total losses of the
system k = k; + K. can be split into the intrinsic losses k; that exist irrespective of
the bus waveguide -mainly absorption or radiation losses- and the extrinsic losses
ke associated to the fiber taper that obviously are k. = Ky /24Ky /2 = Ke /24K /2.
In such case k; = k./2. However, this symmetry can be broken for propagating
cavity modes like those in ring resonators, where phase-matching can only occur in
one particular direction [84]. The steady-state transmission for a bi-directionally
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coupled cavity therefore reads

Aot t |2 Qi — \/Ke212 A%+ (k)2 — Ke/2)?
T == =T | =~ ®r (2.162)
2 |Geutr [P | =V /212 (Ke/2)?
R(A) =[r]" = —| = ’ | T A4 (a2 (2.16b)

whose lineshapes are represented in Fig. 2.3(c) as a function of the ratio k./k. Ob-
viously, whenever k. = 0, R = 0 and T = 1 since the cavity is invisible to the bus
waveguide, and when k., = k the inverse situation happens and the transmission is
null, all light being back-reflected into the bus waveguide. The optical parameters
of the cavity x and k. can be obtained from fitting a measured normalized DC
transmission or reflection spectrum to the above formula. Most measurements
that will be described in this thesis are done in a transmission configuration, for
which the response is an effective Lorentzian lineshape with linewidth x and an
on-resonance transmission 7(0) = (1 — k./k)?>. With those parameters known,
the typical figure of merit for an optical cavity, the (loaded) quality factor @, can
be calculated as Q) = w,/k.

The non-linear regime

We see from Egs. (2.16) that, as expected from the linearity of the equations,
the normalized response of the system is independent of the power drive Pj,.
However, the experiments that will be described in Chapter 5 require relatively
large laser power (~ 0.1-10 mW) and deal with cavities of rather high quality
factors @ (~ 10* — 10°), where the cavity response is modified due to the onset
of material non-linearities. The range of non-linearities in the materials used for
optical resonators is extremely large and materials are chosen depending on the
application targeted. In the field of cavity OM the situation is rather the oppo-
site, with extensive research on finding materials that respond linearly up to very
high power drives [85-88]. The main driving force for this material science re-
search is to perform quantum OM experiments, since lowering photon absorption
as much as possible is crucial in order to prevent heating effects when the me-
chanical resonator has been cooled to near its quantum ground-state [89,90]. Our
experiments use a silicon platform and operate at telecommunication wavelengths,
room-temperature and ambient conditions. We therefore restrict our description
of the non-linear response of a driven optical cavity to the most prominent non-
linearities for this particular setting.

Due to its central symmetry, the susceptibility tensor of second order of sil-
icon is null and only third order terms need to be considered [91]. To such order,
the main non-linear processes in silicon for single frequency operation in the tele-
com range are two-photon absorption (TPA) and a dispersive Kerr effect, arising
from the real and imaginary parts of the third order suspceptibility of electronic
origin [92]. Nevertheless, free carrier absorption (FCA) needs to be considered
since a large population of free carriers N, can be generated in such high-@) low-V
cavities, precisely due to TPA. A schematic describing the microscopic nature of
these two phenomena can be found in Fig 2.4 (top panel). Last, most of the
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absorbed optical power in the cavity will be released to the lattice through the
decay of the photoexcitated carriers, rising its temperature. The decay being
much faster than the dynamics of the temperature, the energy transfer from the
electron population to the lattice can be considered inmediate for the purposes of
modelling the temperature field in the cavity. Such temperature rise in the cavity
region will in turn produce a shift in the cavity resonant frequency w, of opposite
sign to the one mediated by the presence of free carriers. Following the derivations
in [93-95], all such non-linear processes can be microscopically introduced into
Maxwell’s equations with the corresponding non-linear polarization terms, and
then cast into a non-linear coupled mode formalism by writing

da(t) . Kk hweBrpala(t)|? ¢ o,N, Ke_
—iAa(t) — (24 S PrPAIGET )+ Ly, (217
dt ’ a( ) (2 * n%l 2Vrpa * ng; 2Vroa a( )+ 2 “ ( a)
0 iNe o
A=uwp— <wo _ Yo Tifle | @ nTAT> (2.17b)
ns; Vrca  nsi

where in addition to the cavity losses in the linear regime (x/2) the absorbed
power due to TPA and FCA have been considered in (2.17a). Dispersion due to
free carriers N, and temperature increases AT has also been introduced as can be
seen on the equation for the detuning in (2.17b). Here 87p4 is the tabulated TPA
coefficient, Vrpa and Veca the characteristic volumes of TPA/FCA processes
respectively, ng; the refractive index of silicon, ¢ the speed of light, o, and o;
the free-carrier absorption and dispersion cross-sections and nr the first-order
refractive index variation caused by temperature. We have already here dismissed
the dispersion associated to the Kerr effect due to the difference in magnitude as
compared to free-carrier dispersion (FCD) and to the thermo-optic (TO) effect.
We note here that the linear absorption does not appear explicitly in (2.17a)
since its effect is already taken into account through the intrinsic cavity losses
k;, that contribute to x. This implies that solely considering linear absorption
already requires solving a much more complex system in which N, and AT have
a prominent role in the dynamics. The influence of the free carrier population N,
and the temperature increase AT in Egs. (2.17a) and (2.17b) implies that their
dynamics need to be tracked too. These are obviously very complex space and
time-dependent processes, but its possible to have a simple physical picture in the
following form,

dNe(t) 1 ¢ hwBrpa

= —v¢Ne + =————la(t 44 C YMin & 2.18
7 VfelVe + 2%, Vira la(t)|” + -~ Reff’a( ) (2.18)
dAT(t 1 2 ¢ o,.N(t
dt psiCp,siVersr \ng; Vrra ns; Vrca (2.19)
C Qlin 2
+ —a(t
2 pa(o)

where we have considered unavoidable linear absorption in addition to TPA and
FCA. Here oy, is the linear absorption coefficient, R.f; represents the inverse
of the fraction of the optical mode inside the silicon, pg; and C, s, the density
and constant-pressure specific heat capacity of silicon, Vs an effective thermal
volume for the cavity and 7. and <y, the free-carrier and thermal decay rates.
An understanding of the dynamical behaviour of an optical cavity driven at high
enough power requires the simultaneous solution of Equations (2.17a), (2.18) and
(2.19). In order to simplify those, we can use the characteristic times involved in
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Figure 2.4: Self-pulsing (SP) dynamics of a highly driven silicon op-
tical cavity. Driven at high powers, the dynamics of free-carriers N, and
temperature changes AT need to be tracked. They couple dispersively to the
optical resonance and can end up leading to periodic but highly anharmonic
dynamical states. Both dynamical variables AT (a) and N, (b) display a pe-
riodic behaviour at frequency vgp, forming a closed trajectory in phase space
(e). The resulting time-periodic detuning A (c¢) between the optical cavity and
the driving laser modulates the photon number n. and the transmission, the
typical time trace of which is shown in (d). (e) Fast Fourier transform (FFT)
of the time trace. Time and frequency are given relative to the thermal decay
rate yp.

the different physical processes. For most of the optical modes dealt with in this
work, the typical decay time of an optical mode (~ ps) is orders of magnitude
faster than the nonlinear dispersion mechanisms (~ ns). As a consequence, we
can asume N, and AT to be constant in the time-scales involved in (2.17a). In
addition, the non-linear losses, that we denote by k,;, can be at first neglected,
since in most cases we have still kK > k,;. Solving for the steady state intra-
cavity photon number 77, we can actually restrict our system of equations to (2.18)
and (2.19) by considering the adiabatic response of the optical cavity using the
steady state number of photons (2.15) with a time-dependent detuning (2.17b)
and replacing |a(t)|?= 7m(t). This results in the simplified system of non-linear
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equations
dNe(t) 12 ﬁTpAhwlﬁ(t)2 c almﬁ(t)
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which can be integrated without much computational effort and is able to capture
the main experimental features that will be reported on Chapter 5, as well as
in previous experiments in our group [96]. For the observed modes with largest
Q-factor, the adiabaticity assumption does not hold and Equations (2.17a), (2.18)
and (2.19) need to be solved. This has consequences in the temporal transmission
trace when these are driven, as will be shown in Chapter 5.

We consider all of the parameteres defining the equations above, except the
laser parameters P;, and wy, as given. In most of the situations, the dynamic
solution to the system of differential equations (2.20) and (2.21) is a fixed or
equilibrium point in the phase space defined by {N,, AT}, which leads to a stable
spectral shift of the cavity mode, which is typically dominated by the thermal part
and will be simply referred to as the TO shift [97] from now on. For particular
combinations of P, and wy stable limit cycles exist in phase space. With initial
conditions {N,.(0), AT'(0)} inside the basin of attraction of this limit cycle, the
dynamic solution in the limit ¢ — oo tends to the cycle, forming a periodic closed
trajectory in phase space {N7(t), AT*(t)} - a self-pulsing (SP) limit cycle [98]-
which is generally highly anharmonic. The typical shape of this closed trajectory,
as well as the resulting temporal traces for N, and AT are obtained by numerical
integration of equations (2.20) and (2.21) and are depicted in Fig. 2.4(a,b). The
dynamical solution can be readily understood by heuristically considering the
physical processes taking place at several points, the ones highlighted as 1, 2, 3 or
4 in Fig. 2.4. Let us imagine the system is set to an arbitrarily higher temperature
by an external heat source, inducing a TO redshift of the optical resonance, and
the laser is fixed somewhere in between the original cold and the modified hot
optical resonance. The external source is shut down and the temperature starts
decreasing progressively, until the driving laser is resonant with the cavity, which is
exponentially returning to its original position due to the progressive temperature
decrease. Then:

e At point 1, partial absorption of the optical energy that gets stored in the
cavity (Fig. 2.4(b)) induces a fast increase of the free-carrier density N,
while the raise in temperature is slower. This induces a quick blueshift of
the mode.

e The first minimum observed in transmission (Fig. 2.4(d)) occurring at point
2 is related to this blueshift, which ends up leading to a change in the
detuning sign (Fig. 2.4(c)). The sharpness of the dip is precisely related to
the short characteristic time of the free carriers 7. decay.
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e The resonance rapidly blueshifts up to the point where the temperature
starts raising due to the previously absorbed light, redshifting the resonance.
As the TO effect is much larger than FCD, the resonance progressively
redshifts despite the increase in N,. This leads to the second transmission
minimum point 3, where the laser is again perfectly resonant with the cavity
mode (A = 0).

e After, the cavity progressively goes out of resonance and free-carriers decay
much faster than temperature. This leads to a much faster redshift, up to
point 4, where all free-carriers have decayed to the valence band and the
cavity is back at the initial stage of its cooling. The cavity starts cooling
down, eventually leading to point 1 again.

This periodic evolution occuring at a frequency vgp is highly anharmonic as shown
by the time traces of N, and AT. The anharmonicity of the observed transmission
trace is even stronger since the non-sinusoidal evolution of w, is convoluted with
the Lorentzian lineshape given by Eq. (2.16), which constitutes a highly non-linear
filter for resonance oscillations that go up to several linewidths (A/k reaches 6
in Fig. 2.4(c)). This generates a frequency-comb in the transmitted light with
harmonics M up to M = 100 or more [96].

When the laser frequency wy or the power P;, are changed, the limit cycle is
both displaced and occurs at a different pace vgp. Since the instantaneous decay
rate of AT depends on the absolute value of the temperature, vgp can be enhanced
up to five times by increasing the amount of total heat in the cavity, which can
be done by increasing the time-averaged photon number. This is experimentally
achieved by either increasing the power P, or by further decreasing wy, i.e., in-
creasing the wavelength A,, to be more resonant with the optical mode. However,
initial conditions inside the basin of attraction of the limit cycle are required to
end up in the cycle. In order to enter this basin of attraction experimentally one
needs either additional drive terms to prepare the initial condition [99] or to sweep
the laser wavelength starting from the blue-side of the resonance. The resulting
dynamics as a function of Ay, the typical parameter over which we have experimen-
tal control, are shown in Fig. 2.5(a,b). The DC transmission (T'(t));, the quantity
that one would measure with a slow photodetector, is depicted in (a) for several
input powers P;,. Above P,, = X mW a kink in the DC transmission appears
at some particular wavelength Aj, which corresponds to an intracavity photon
threshold 7y,. The Fast-Fourier-Transform (FFT) of the transmission temporal
trace above that wavelength is shown in (b) and exhibits the spectral features
of the SP limit cycle (Fig. 2.4(f)). The panel at P,, = 2 mW shows the most
commonly observed behaviour of the SP, with vsp progressively increasing with
the number of cavity photons as the average detuning (A(t)); is lowered. At some
point, after reaching vsp ez, Vsp starts decreasing again, until the resonance ir-
reversibly returns to its original cold position. Although this is the spectral map
we typically observe experimentally, other more intricate behaviours can be found
numerically for particular locations in the multiparameter phase space. A partic-
ular example observed experimentally (see Chapter 5) is shown in the right panel
of Fig. 2.5(b), with a pronounced change in the onset and die-out of the SP limit
cycle.
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Figure 2.5: Typical wavelength-dependence and phase portrait of the
self-pulsing (SP) dynamics. (a) DC transmission at various input powers
P;,. (b) Radiofrequency (RF) spectrum of the transmission time trace T'(¢) as a
function of the laser wavelength A, for two of the powers in (a). The left panel
shows the most common type of SP RF spectral map, while the right panel
shows a more intricate evolution of vgp(A¢). In both panels the first harmonic
of the SP is highlighted. (c-h) Phase portraits as of function of N, and AT for
A¢ below the Hopf bifurcation (c), at the bifurcation (d), above the bifurcation
(e-g) and when the resonance is lost (h). The nullclines of Egs. (2.20) and (2.21)
are plotted in light (dN./dt = 0) and dark (dAT/dt = 0) blue, while the system
trajectories are in black. The background arrows show the temporal derivatives
at each point in phase space. Solid black dots and open dots represent stable
and unstable fixed points respectively.
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It is also instructive to observe the phase portrait of the dynamic solution
while sweeping A, [100]. The long-term solutions of any one or two-dimensional
nonlinear system restrict to nothing more complicated than stable/unstable fixed
points or limit cycles and the existence of one such limit cycle grants the presence
of an unstable fixed point in the space bounded by the closed trajectory [101].
Therefore, we depict in Fig. 2.5(c-h) both stable and unstable fixed points in the
region close to where the effective trajectory takes place. First, when the laser is
only slightly inside the optical resonance (c), the long-term solution to which the
system evolves towards is a stable fixed point (e) with a steady-state free-carrier
density N} and a fixed temperature rise AT™. When gently increasing the laser
wavelength )y, we adiabatically follow the stable fixed point, although an unstable
fixed point appears close in phase space (d). Although not shown, another stable
fixed point also appears close to the origin within a given region where the cavity
has a bistable behaviour. It results from the intersection of the lower branch of
the free-carrier nullcline (dN./dt = 0) in light blue with a temperature nullcline
(dA/dt = 0) that remains close to AT = 0. The physical origin of this other fixed
point is simply the solution that one would obtain with the laser directly turned on
at that particular wavelength \,, since we have already TO-shifted the resonance
by much more than its own linewidth x. At some particular wavelength, the fixed
point in (d) undergoes a supercritical Hopf bifurcation [102], transmuting into an
unstable fixed point surrounded by a stable limit cycle (e), effectively our SP state.
Further increasing the laser wavelength increases the average temperature of the
system (AT'(t)); ((e) to (g)) and increases the SP frequency vgp. We also observe
that the SP trajectory, whose shape remains rather constant, starts approaching
the second unstable fixed point. The optical resonance is lost and returns to its
cold wavelength whenever the limit cycle encounters the second unstable point.
There, the trajectory closely follows the free-carrier nullcline and ends up in the
stable fixed point very close to 0,0. The resonance is therefore irreversibly lost
and further sweeping the laser wavelength does not produce any more interesting
dynamics.

The overall dynamics described above asumes that the cavity photon num-
ber n, adiabatically responds to changes in both temperature and free-carrier
density and that no steady-state effect of the non-linear losses is induced in the
cavity lineshape. Despite being a crude approximation for optical cavities above
Q ~ 10°, the dynamics of the system including the free evolution (2.17a) of the
complex cavity field leads to very similar type of solutions in most situations.
However, since more than two dimensions are at play, trajectories may become
much more complex, eventually displaying aperiodicity and extreme sensibility to
initial conditions, that is, exhibiting chaos. We have chosen to depict their solu-
tion under simplifying assumptions to enable their visualization in phase space,
although these will be solved exactly for quantitative comparison to an experi-
ment. This phenomenon, which has already been observed in different photonic
engineered nanostructures such as microdisks [94], photonic crystals [103] or op-
tomechanical crystals [96], will be of importance to understand the experimental
observations of Chapter 5.
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2.3.2 Basics of a mechanical resonator in thermal equilib-
rium

The main characteristics of an optical cavity driven at both low and high powers
given, the behaviour of the mechanical resonator when the coupling constant
G = 0 remains to be explored. The simplest case to evaluate is the mechanical
resonator dynamics under free-evolution, with no drive terms. We denote ()
the solution to the resulting homogeneous equation obtained by setting Fy,(t) =
0 in (2.12b). The equation of motion can be easily solved in the time domain and
xp(t) is given by

2
zp(t) = Age T/ 2sin | 4/ Q2, — (%”) t+ ¢, (2.22)

where constants A, and ¢, are found from the initial conditions. The system os-
cillates at a frequency close to the resonance frequency 2, and gradually decays
to zero. The quality factor of the mechanical resonator, i.e., Q,, = Q, /Ty, de-
termines the number of oscillations the resonbator undergoes before its amplitude
decays by a factor e. In addition, its value categorizes the system as underdamped
(Q > 1/2), critically damped (@ = 1/2) or overdamped (Q < 1/2). Fig. 2.6(a)
depicts the behaviour of (2.22) for various values of the quality factor @,, and
evidences how in any case the resonator ends up being at its equilibrium position
after a time ¢ > T, 1.

If the mechanical resonator is driven by any external force, including any
type of noise, like the one resulting from coupling to a thermal bath F(t), the
general solution to the equation of motion comprising the force term will be the
sum of the solution to the homogeneous equation given in (2.22) and a particular
solution. The particular solution is best found in the frequency domain. We
define the Fourier transform of z(t) via z(w) = [ z(t)e™*dt, which leads to the
following equation in frequency coordinates

— meeffx(w) = —anmeffx(w) — twlyymesra(w) + Fip(w) (2.23)

which is now a simple algebraic expression. The generic mechanical susceptibility
X(w) of the mechanical resonator is

1
= 2.24
X(w> meff(Q?n — w2) — imeeffw ( )

such that z(w) = x(w)F(w) and the full trajectory in time can be calculated as

x(t) = xp(t) + % /OO (W) F(w)e ™! dw (2.25)

—00

where again constants A, and ¢, set the initial conditions. Due to the decaying
transient nature of xy(t), very often one ends up considering only the second
term in (2.25), the one relevant for observation times ¢ > I',1. The response



28 Chapter 2. Fundamentals of cavity optomechanics

Q
~—"

Xh (Ao)

10

X(w)l (M,Q,") =

2k, T
meQ, T, Cn

arg(x(w))

0.8 1 1.2
Frequency (Q,,)

Figure 2.6: Free and forced mechanical resonator response. (a) Time-
evolution of a damped free harmonic oscillator for different ratios of I'y, /.
(b) Amplitude and phase response of a damped driven harmonic oscillator as
a function of the drive frequency w for the same values of I',,/Q,,. (c) Power
spectral density of a mechanical resonator in thermal equilibrium with a high-
temperature bath at 7. In the low-dissipation limit, i.e., I';, < €, it corre-
sponds to a pair of Lorentzian lineshapes centered at w = +£2,,, each of which
contributes to one half of the variance (z2) due to thermal motion.

given by (2.24) can be approximated by a Lorentzian for high-Q,, (I, < Q)
mechanical oscillators as,

B 1

N mefom(Q(Qm - w) — ZF)

X(w) (2.26)
Figure 2.6(b) depicts the shape of |x(w)| for several values of @,,, evidencing
that the oscillator responds with an intensity proportional to @), when driven
at resonance (w = €,,), while Fig. 2.6(c) shows how the phase of the resonator
motion evolves from 0 to m across the resonance.

In the set of experiments described in this thesis, the mechanical resonator
is solely driven by the optical field or by the thermal bath. The first driving force
being null for G = 0, only the latter needs to be considered. We therefore want
to solve Eq. (2.12b) with a force term Fjj,(¢) that is inherently stochastic. The
resulting trajectory x(t) obviously inherits the nature of the drive force and needs
to be considered as a random process. When the force acting upon the mechanical
resonator is the thermal Langevin force, the motion of a single harmonic oscil-
lator in thermal equilibrium corresponds to an oscillating motion at frequency
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Q,, with time-varying amplitude and phase whose changes occur on a time scale
given by the damping time I' ! [104]. Direct observation of the thermally-active
trajectory of the mechanical resonator z(t) is rare due to the simultaneous con-
tribution of many normal modes. Observations are often done in the frequency
domain via noise spectra, acquired in radiofrequency (RF) spectrum analyzers.
In such apparatus, like in any measurement, one only measures over a given time
T or, equivalently, with a given bandwith. Given one particular realization of the
trajectory z(t) obtained during such time, the gated Fourier transform over 7 is
defined [105] as

1 ! iwt
zr(w) = F/o x(t)e™ dt (2.27)

whose average over independent experimental runs leads to the gated power spec-
tral density {|z,|?), the quantity we measure with spectrum analyzers. The power
spectral density of the signal x(t) is therefore defined [105] as

Spe (W) = im0 (|7,*) (2.28)

From a theoretical standpoint, the main quantitiy of interest in a random process
x(t) is its autocorrelation function R,.(t,t') = (xz(t')x(t)). Since a mechanical
oscillator in thermal equilibrium can be considered as a wide-sense stationary
(WSS) process [106], i.e., there is no special time ¢ in the first and second order
moments of the process, the autocorrelation function can be written as R, (¢,t') =
(x(t —t)x(0)) = (x(t)x(0)) = R.(t). Fortunately, the Fourier Transform R, (w)
of the autocorrelation function, a theoretical quantity, can be connected to the
experimentally-accesible expression (2.28) via the Wiener-Khinchin theorem [107]

for a WSS processes. With this relation, the area under the noise spectrum
(1/2m) [ Spe(w)dw yields the variance of the mechanical displacement (2(0)?) =

(@(t)?) = (=?).

As the resonator is in thermal equilibrium, the classical fluctuation-dissipation
theorem (FDT) relates the Fourier transform of the autocorrelation function
R, (w) to the dissipative part of the mechanical susceptibility introduced in (2.24),

Rea(0) = 272 T () (2:30)

which in the case of a high-Q),, resonator gives rise to two Lorentzian peaks of
width I'),, and central frequency w = +£(2,,,. The integral of such a lineshape is read-
ily obtained, leading to the well-known equipartition theorem (2:?) = kgT'/m.;Q2,
after using (2.29). This allows to calibrate the temperature 7" of the mechan-
ical oscillator by integrating over the power spectral density S,.(w). Note that
R,.(w) is a symmetric function and the real observable, which is composed of the
spectrum folded back on itself, Ry, (w) = (Rye(w) + Rye(—w)) /2 retains this prop-
erty. On the contrary, a generalization of the previous derivations to a quantum
mechanical resonator taking the products of the Heisenberg operators (& (t)z(0))
and using the quantum FDT [108] leads to an asymmetric function due to the
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non-commuting nature of Z(¢) and #(0). In that case, accessing R,,(w) requires a
more advanced readout scheme where the positive and negative frequency compo-
nents of the observable are determined separately. This was achieved in Ref [109]
and the observed asymmetry used to prove the quantum nature of a mechanical
oscillator close to its quantum ground state.

2.3.3 Optomechanical effects

So far we have considered the behaviour of the driven optical cavity and the
mechanical resonator separately. We now set G # 0 and intend to solve simulta-
neously the equations in (2.12).

Static effects

We first search for the fixed points of the system {Z,a} in the absence of an
external force. These are the points at which all time derivatives vanish and are
given by the two relations

VR (2.31a)
i(A+ GT) + k/2
_o_ Meprl,
@ = — 77T
The phase of the complex cavity field @ can always be adjusted via @;, in order
to fulfill (2.31a). We can therefore multiply it by its complex conjugate a* with-
out loss of generality. The resulting implicit relations are plotted in Fig. 2.7(a)
for different values of the normalized detuning A/k, exhibiting the possibility of
multiple fixed points. The existence of such values is conditioned to the inequality

\/gﬁgnmeffﬁg
9k hG?

that is obtained by comparing the slope of the straight line (2.31b) to the maxi-
mum slope of the Lorentzian resulting from (2.31a). Above this power, the system
may develop bistability, i.e., values of A for which two stable fixed points exist.
These are represented as filled dots (e) in Fig. 2.7. In between these, an unstable
fixed point develops. The unstable nature of such point is better understood if one
considers the particular dynamic case when the light force reacts instantaneously
to mechanical motion, i.e., the regime in which x > €,,,. In the phase space rep-
resentation of Fig. 2.7(a) this is a trajectory that always follows the Lorentzian
photon number curve (dark blue). We can restrict ourselves to trajectories ex-
actly along the nullcline. In that case, the equation of motion for the mechanical
resonator sees a radiation pressure force F,(x) that depends on its position via
the steady-state intracavity photon number 72(x) as

hGI{AamP
(k/2)? 4+ (A + Gz)?
which is then a conservative force deriving from a light-induced potential V,.,(x)

Vip(z) = 2h@|am|2atan (—Q(A + Gz))
K

a =

(2.31b)

|5m|2 2

(2.32)

F,,(z) = hGn(z) = (2.33)

(2.34)

K
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Figure 2.7: Static optomechanical effects. (a) Graphic representation of
the fixed points {Z,a} of the driven ptomechanical system for different detun-
ings A/k. These are obtained as the intersection of (2.31a) and (2.31b), given
with dark and light blue solid lines. Filled (empty) circles represent stable (un-
stable) solutions. The unstable fixed point is better understood in the limit
Q. < K, where the number of photons adiabatically follows the mechanical
displacement. In that case, the radiation pressure force F;., derives from a po-
tential, which added to the harmonic oscillator potential leads to the energy
landscape shown in (b) for different input powers Pj,.

that needs to be added to the bare harmonic potential V;,(x) = (1/2)m.;Q2,2°.
The overall potential landscape in which the mechanical degree of freedom evolves
is depicted in Fig. 2.7(b) for different values of the laser field @;,. Above some
threshold power the system develops into a double-well potential, evidencing the
presence of the two aforementioned stable fixed points and the presence of an
unstable fixed point in between the two local minima. Under other less restrictive
conditions, the stability of these points may be lost. This bistability has been
observed with a micromirror OM system [110] and manifests itself in a hysteretic
behaviour of a transmission curve upon direct /reverse scanning of either the input
power or the detuning. The addition of V;,(x), as evidenced in Fig. 2.7(b), also
leads to a change in the curvature at the minimum of the potential, thus changing
the effective spring constant. This effect is derived later.

Dynamic effects

We now analyze the dynamical reponse of the system evolving around a stable
fixed point {Z,a} satisfying (2.31a) and (2.31b). We first numerically solve the
equations of motion (2.12) starting from an initial position {Z + dz,a} in close
proximity to the fixed point and observe the evolution of the mechanical resonator
when the cavity is driven. What one observes for a large fraction of phase space
is that the mechanical resonator returns back to the equilibrium fixed point as
a free damped mechanical resonator, whose evolution is shown in Fig. 2.6, with
modified dissipation rate I';;, and modified resonance frequency €,,,. In Fig. 2.8(a)
the trajectory of a mechanical resonator with and without the laser driving the
optical cavity are depicted, where the fixed position T is taken as the zero reference.
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For clarity, the curves have been shifted to start with a common phase reference
and normalized in amplitude to their value at time ¢ = 0. For a negative detuning
(top panel), there is an exponential decay with an increased dissipation rate I',,, as
can be seen by the the fastest decay of the driven OM system (light blue) compared
to the free mechanical resonator (black). The change in the resonance frequency is
less evident, but careful look at times ¢ > T',! show that a small phase mismatch
is present, a consequence of the modified spring constant in the potential resulting
from the radiation pressure force. When driven on the blue-side, i.e., A > 0, the
influence on the damping I, is inverted and the OM system decays slower than
the bare mechanical resonator. A simple thermodynamical picture displaying the
underlying mechanism behind the modified friction force is shown in Fig. 2.8(b).
When the cavity is red detuned and the equilbrium position x lies somewhere
on the rising slope of the steady-state radiation-pressure force (2.33), putting the
resonator into motion by a small momentum transfer leads to a radiation-pressure
force that is smaller than the steady-state force due to the time-lag associated to
the cavity decay or build-up rate x. After this instantaneous kick, the resonator
follows the curve depicted by the arrow, along which the light-induced radiation-
pressure force is doing negative work since fSF -dx < 0. Therefore, the work
done during one oscillation, i.e., the area swept in the force-displacement diagram,
leads to additional damping of the mechanical resonator. On the other side of the
optical resonance, the thermodynamic picture is inverted and the work done by
the radiation-pressure leads to antidamping. In that case, the level of antidamping
can even surpass the natural decay rate of the mechanical resonator, leading to
self-sustained oscillation, as we see later.

To understand the dynamics obtained via direct numerical integration of
the equations it is instructive to linearize them. We assume that the system
undergoes small excursions da(t) and 0x(t) out of the equilibrium position and
set a(t) =a+ da(t), z(t) =T + dz(t). Plugging these expressions into (2.12) and
discarding second-order terms one finds

d5§§t) = i(A + GT)da(t) — Sdalt) + iGasa() (2.3%)
Mgy s = e 2,0 (t) — Meflm == (2.35D)

+ hGa(da(t) + 0a™(t)) + F(t)

where both (2.31a) and (2.31b) are used and we have set @ € R, i.e., @ = @*, which
can be done due to the free phase of the driving laser term @;,. The solution to
this system of equations is easier in the frequency domain, so we Fourier transform
the set of equations to obtain

—iwda(w) = i(A + GT)da(w) — géa(w) +iGasr(w) (2.36a)

—Mep 20T (w) = — Mep Q200 (w) — ime s Tnwdz(w)

+ hGa(da(w) + da*(w)) + F(w) (2.36b)
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Figure 2.8: Dynamic optomechanical effects. The effect of radiation
pressure force on the dynamics of the mechanical resonator depend on the sign
of the detuning A. On the red-detuned side, i.e., A > 0, the backaction of
the light field on the mechanical resonator leads to an increased damping and a
frequency shift, while it leads to antidamping on the blue side. This is shown for
A = £Q,, from direct numerical integration of 2.12 with a mechanical oscillator
displaced from its equilbrium position T at time =0 and left to evolve while the
optical cavity is simultaneously driven. (b) Optomechanical spring effect and
damping for different sideband resolutions (£2,,/x) as obtained from fitting the
numerically-integrated displacement with (2.22) (points) and as given from the
predictions (2.40a) and (2.40b) obtained from the linearized optomechanical
equations of motion.
Using the Fourier transform property da*(w) = (da(w))* and (2.36a) we find
iGa
da(w) = — ox(w 2.37a
() —i(A+GT+w)+§ @) ( )
—1Ga
da*(w) dx(w) (2.37Db)

T (A GT-w)+ 5

Here, the displacement field z(¢) acts as a modulator, spectrally resulting in
the generation of sidebands to the cavity field at frequencies wy + w.

These
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Figure 2.9: Optomechanical sideband asymmetry. Ratio of the Stokes
and anti-Stokes sidebands at €, for different levels of sideband resolution
K/,

sidebands are weighted with a Lorentzian lineshape, where the detuning A en-
hances or supresses either the Stokes (2.37a) or the anti-Stokes (2.37b) sideband.
The mechanical resonator typically has a peaked response dz(w) at a frequency
w = §2,, and it suffices to evaluate there. Fig. 2.9 depicts the sideband asymme-
try [0a(n)]/[0a* ()| as a function of the detuning, where for simplicity we set
A = A = A+G7. The largest asymmetry is found for A = ++/Q2, + (k/2)2, i.e.,
the highest unbalance depends on the ratio x/€,,. When the generated sidebands
at €2, are spectrally resolved with respect to the cavity itself, i.e., the sideband-
resolved regime (€2,,, > k), the highest asymmetry happens at A ~ +Q,,. This
case is shown in the leftmost panel of Fig. 2.9. When the sidebands are not re-
solved, i.e., the sideband-unresolved regime (£2,, < k), the highest asymmetry
occurs at A ~ +r/2.

The induced intracavity energy modulation gives rise to an oscillating light-
induced force F,,(w) = hGa(da(w)+da*(w)) called dynamical backaction, that can
be expressed as originating from the displacement by using (2.37a) and (2.37b).
If we substitute for () in the frequency-domain, i.e., Eq. (2.36b), we see that the
dynamical response of the mechanical oscillator to the external force F'(t) changes
to

dz(w) = Flw)

Merr(2, + Q2 (W) — w?) —dwmesr(Dyy + Tom(w)) (2.38)
= Xmeff (@) F(w)
with
9 _ hG?|al? A+w A+w N
Vo) = = (<Z+w>2+ (/22 B-wrt <n/2>2) (2:35)
W) = hG2|d|2 K _ K

)= i T m o)
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With the above w-dependent expressions for the OM spring constant mes¢{om, (w)?
and damping I',,,, the effective susceptibility has a non-Lorentzian line shape. By
using the relation hG? = 2m.;;Qy,92, with g, as introduced in Section 2.2, and
defining a new coupling rate by g = g,|al?, the laser-enhanced OM coupling
rate, expressions (2.39a) and (2.39b) can be further simplified. When the laser
drive is weak (¢ < k), one can evaluate them at the unperturbed oscillation
frequency w = €1,,. Then, the mechanical oscillator effectively behaves like a
damped harmonic oscillator with resonance frequency and damping given by

St _ A9y ) (2.400)
(A+ Q)2+ (k/2)2 (A —=Q,)%4+ (k/2)?

Tepr = Do + g2l ((Z T B (5/2)2) (2.40D)

Q2 p = Q2 4 20 g2]al® (

The magnitude of T',,, and €2,,, are determined by multiple device parameters
like the OM coupling rate g, or the optical decay rate k. However, the operating
conditions, A and P,,, which enters the expressions via |a|?, allow controlling the
overall behaviour, in particular the sign. The solid lines in Fig. 2.8(b) plot the ef-
fective oscillation frequency and damping rate of an OM system at various levels of
sideband-resolution /€2,,. The effective parameters of the mechanical resonator
obtained via the linearized system quantitatively reproduce the results obtained
upon numerical integration of the dynamical equations, even up to values where
I'.s¢ is very close to zero, where self-sustained oscillations are expected to happen
since any perturbation blows up in time until the non-linearities of the system
saturate the signal amplitude. Whenever I';y; < 0, the time trace does not decay
exponentially, as the bottom panel in Fig. 2.8(b) shows for k£ = 0.25(2,,. The lin-
ear approximation also fails within the optical resonance red-detuned flank, since
the condition g < k does not hold.

2.4 Mechanical amplification

The work done by radiation-pressure can lead to amplification or damping of the
mechanical mode, effectively heating or cooling the resonator when this is coupled
to a hot environment. This process leads to a thermal state with a modified
effective temperature T,;; [20]. On the blue-side, amplification can be strong
enough to induce OM self-oscillation, where these thermal fluctuations blow up.
However, the system requirements to reach the self-sustained oscillation state are
quite restrictive in terms of device parameters and operating conditions, specially
at low frequencies where operation in the sideband-resolved regime is extremely
complicated due to limitations imposed by fabrication disorder on the achievable
optical quality factors (). The onset of optical non-linearities as described in
Subsection 2.3.1 can lead to dynamical solutions of the optical cavity that are self-
sustained oscillating solutions. This phenomenon is very often seen as detrimental,
since it prevents operation of a resonant photonic device at a fixed cavity-laser
detuning A. Here, we exploit these non-linearities and their intercoupling with
the mechanical degrees of freedom to unveil another mechanism for mechanical
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Figure 2.10: Optomechanical oscillation via dynamical backaction.
(a) Numerically obtained displacement amplitude of a mechanical resonator
coupled to a driven optical cavity after displacing it from its fixed position
T. The time traces are given for different input powers as a function of the
threshold powe Py, given by Eq. (2.41). Above Py, optomechanical oscillations
are evidenced by the stable high-amplitude displacement. (b) Py, as a function
of cavity-to-laser detuning A. (c) Spectral map of the Fast Fourier Transform
(FFT) of the obtained numerical traces as a function of A. The solid black line
gives the prediction of the linearized system (Eq. (2.40a)). The vertical dashed
lines across (b) and (c) delimit the detuning region where P, = 2 mW > Py,.

lasing. This type of OM oscillation requires much less stringent conditions on the
OM system parameters and it can be effectively used to have low-noise coherent
phonon sources [96]. These two ways to achieve OM oscillation obviously coexist
in an OM system based on silicon, as will be shown in Chapter 5, but are here
independently discussed for the sake of clarity.

2.4.1 Dynamical backaction

As explained in Subsection 2.3.3, a blue detuned laser reduces the effective damp-
ing of the mechanical resonator. Whenever the optomechanically-induced damp-
ing I, completely cancels out the intrinsic I',,, the fixed point {Z,a} becomes
unstable and a limit cycle develops around it. The approximate condition for
the onset of self-sustained oscillations can be derived in the framework of the
linearized equations by imposing 'y, = —I',,, with the first taken as (2.39b).
After some algebraic manipulation to introduce the input power P;,, the power
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threshold condition reads

o hwlw (R/2)2 +Z2 K B K -1
Fin =Yg~ ( i ) ((Z+W)2+<'f/2)2 (Z‘W)”(’{/Q)Q)

(2.41)
where we have kept the explicit frequency dependence that was set to w = €,
in (2.40). We will see that Q.s; as given in (2.40a) roughly holds even when
I'epp < 0, so we set here w = wyse = Slefr to be the frequency already modified
due to the optical stiffening, with which Eq. (2.41) becomes implicit since €Qz¢
depends on the input power. We show in Fig. 2.10(a) the temporal trace of
the mechanical displacement x(t) obtained from numerical integration of (2.12)
with a presrcribed small perturbation dx from the fixed point {Z,a} as an initial
condition. This is done for different powers given as a fraction of P, for an
OM system with the following parameters: w, = 27 187 THz, x; = 27 - 2.42
GHz, k. = 27 - 1.6 GHz, ,, = 27 230 MHz, T',, = 27 1.2 MHz, g, = 27 200
kHz. Whenever P, > P, high amplitude coherent mechanical oscillations are
activated and their trajectory can be very well approximated by a sinusoidal shape
once the steady-state is reached [111,112]. The detuning A in panel (a) is chosen
such that the power threshold P, is minimal. That precise point is higlighted in
Fig. 2.10(b), where Py, is given as a function of detuning. Fig. 2.10(c) provides
the FFT of the temporal transmission trace obtained when sweeping the laser-
cavity detuning from the blue-detuned side. The solid black line highlights the
prediction (2.40a) of the linearized theory. While this prediction agrees very well
with the FFT peak whenever the OM oscillation is not reached, the oscillation
frequency seems to evolve linearly within the lasing bandwith rather than follow
the black curve, something that is observed in Chapter 5.

2.4.2 Intrinsic optical non-linearities

The non-linear behaviour of a strongly driven optical cavity made of silicon has
been described in Section 2.3.1, evidencing the existence of thermal/free-carrier
self oscillations, i.e., self-pulsing, that lead to a strongly anharmonic modulation
of the intracavity photon number 7(t) (see Fig. 2.4(d)). If the driven optical
cavity is dispersively coupled to a mechanical resonator and the SP is active, the
photon modulation results in a comb-like radiation pressure force Frp = hG7(t).
As would happen with any driven harmonic oscillator, we expect a modulated
force close to the mechanical resonator frequency €2, to drive its motion with
a response proportional to the mechanical susceptibility y,,(w) given by (2.24).
Due to the highly anharmonic nature of the optical force Frp(t), many of the SP
harmonics M may drive its motion; whenever vsp ~ Q,,/M with M € N. When
this is achieved with one of the first high-amplitude SP harmonics, the dispersive
effect of the activated motion on the optical frequency via G provides enough
feedback to the cavity dynamics and leads to self-sustained motion.

If we assume €2,, < k and a moderate value of g,, we can rule out the
dynamical backaction effects previously described and consider the response of
the intracavity photons n(t) to deformation to be adiabatic, as done in Subsec-
tion 2.3.1 for the free-carriers N, and temperature AT. Under such asumptions,
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the system of equations governing the dynamics of the OM system is given by,

dN,(t) 1 c? 5TpAhwlﬁ(t)2 ¢ appn(t)
= —vreNe(t - 2.42
dt s () + Qn%i Vrpa + ng; Repy ( 2)
dAT(t e (t 2 wn(t
(t) _ A AT(H) + in(t) (CQBTPA in(t)
dt psiCpsiVerrr \ng;,  Vrpa (2.42D)
4+ orNe(t) ¢ oun > '
nsi Vrca — nsi Reypy
d?x(t d
meffdg_;g) = —meffﬁfna;(t) — meffljm%x(t) + hGﬁ(t) (2.420)
with the adiabatic photon number 7(¢) and the detuning A given by
— Ry P;
t) = 2.43
) = (o727 + AW hy (2.43a)
o iNe t o
A(t) =w, — (wo _ o ailN(t) + 2 nrAT(t) — Ga:(t)) (2.43Db)
nsi Vrca — nsi

We solve numerically the system of equations using the same set of param-
eters employed to obtain the colormap of Fig. 2.5(b). The mechanical resonator
dynamics are solved for a resonator of effective mass m.r; = 5 pg, frequency 2, /27
= 54.6 MHz, I',,,/2m = 0.1 MHz and coupling given by G/27 = 0.76 THz/nm,
which corresponds to ¢,/2m = 175 kHz. Fig. 2.11(a) compares the spectral map
obtained in the presence/absence of the mechanical resonator. While the left map
reproduces the one in Fig. 2.5, the right map evidences both wavelength regions
where the dynamic solution corresponds to SP and matches the one seen for g, =
0 and others where the frequency of the limit cycle does not change with the laser
wavelength. These result in the sharp plateaus of the right panel. The frequency
of the first harmonic in these regions corresponds to 2mv = Q,,/M, i.e., the SP
drives the mechanical motion and the two oscillators are frequency-entrained due
to the OM feedback. The simulated temporal transmission traces in these plateaus
are shown in Fig. 2.11(b) at the wavelengths highlighted with dashed lines in panel
(a). The displacement of the mechanical resonator is also provided with a solid
blue line in the case G # 0. The observed transmission traces qualitatively agree
with those of pure SP (see Fig. 2.4) at a frequency vsp with the superposition
of an additional sinusoidal component at v = Mvgp resulting from the activated
mechanical motion. The fact that the mechanical oscillations do not decay at
all inside a cycle of the SP implies that the driving strength overcomes the me-
chanical dissipation I',,, leading to mechanical lasing. The appearance of abrupt
plateaus seen in (a) precisely result from the onset of mechanical lasing. If self-
oscillation is not achieved, the SP follows its natural evolution vgp(A) and merely
activates mechanical motion at its own frequency with an amplitude proportional

€0 om(vsp).

The mechanism to generate coherent mechanical oscillations described here
operates deeply in the unresolved-sideband regime (k > 2,,,) and therefore repre-
sents a viable solution to generate and feed phonons to waveguides or membranes.
The relatively low standards in terms of system parameters make coherent phonon
generation readily available to researchers not having access to state-of-the-art
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Figure 2.11: Self-pulsing (SP) driven mechanical lasing. (a)
Numerically-obtained spectral maps as a function of laser wavelength with
(left) go = 0 and (right) g, = 27 - 175 kHz, for a driven optical cavity with
parameters as in Fig. 2.5. The effect of having the optical cavity undergoing
SP dispersively coupled to a mechanical resonator is to activate mechanical
lasing whenever vgp ~ f,/M, where M is the harmonic of the optical force
driving the motion. This leads to the plateaus shown in the right panel. The
mechanical resonant frequency is marked with f,, and the vertical dashed lines
mark the M = 3, M = 2 and M = 1 mechanical lasing states, the transmission
temporal traces of which are given in (b).

fabrication facilities and experimental setups. In addition, we have recently eval-
uated the phase noise of such type of phonon sources and shown how to control
it via injection-locking to an external RF tone [113].
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2.5 Mechanical motion detection

The dispersive coupling of the optical cavity mode and the mechanical resonator
motion via the OM coupling rate G allows precise monitoring of mechanical mo-
tion via the reflected or transmitted light, with measurement imprecision that has
reached the standard quantum limit of weak continuous measurements [114]. This
limit can even be beaten by using alternative measurement schemes belonging to
the family of quantum non-demolition (QND) measurements, like single quadra-
ture measurements or single-photon-assisted phonon counting. In this thesis, me-
chanical motion is detected using the most basic and direct detection scheme, in
which the amplitude of the outcoupled light is continuously measured with a fast
photoreceiver. We provide here the basic steps that lead to the measured power
spectral densities.

Given the detuning A = w; — (w, — Gx(t)) = Ag + Gx(t), the mechanical
motion state can be obtained from any of the scattering properties of the system
which depends on A. If one considers a small oscillation of the mechanical res-
onator, the effect on the transmitted light is proportional to its derivative with
respect to the bare detuning A, as

dT dA dT
|, T =T+ G560 (2.44)

T(t,A) = T(Ao) + X

where we have considered that there is no backaction of the light field on the
mechanical motion. Expression (2.44) comprises the steady-state DC value one
measures with a slow photodetector (see Fig. 2.3) and a time-dependent term
proportional to both the coupling rate G and the derivative of the transmission
lineshape, the last given by

dT JAVS (I{— %)
N T, N2

where we have used Eq. (2.16a) for a bi-directionally coupled cavity.

(2.45)

Figure 2.12 diagramatically shows the mechanism to detect mechanical mo-
tion and plots the derivative %, where we have set k./k = 0.4 and both axis
are given normalized to x. The depicted curve shows that the OM transduction
of mechanical motion is optimal at two very precise detunings, i.e., A = iﬁgli
and is null exactly at resonance with the optical mode, i.e., A = 0. This last
property is unfortunate since A = 0 corresponds to the detuning for which dy-
namical backaction effects, as given by Eqs. (2.39a) and (2.39b), are ruled out
and backaction-evading measurements can be done. However, phase sensitive de-
tection schemes like homodyne detection have maximum sensitivity at A = 0
since the derivative of the transmitted/reflected phase is maximal. With expres-
sion (2.45), we can now calculate the total modulated power due to the coherent

mechanical motion z(t) to be

A, (i — B
9T Gt = 2hw[G|am|2L)

P(t) =P A (AQ N (5)22>2

(2.46)
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Figure 2.12: Optomechanical transduction of motion.

The optical power P,,(t) is measured on a photodetector, leading to a voltage
Vin(t) = NaetGaet P (t), where we have introduced the detector efficiency 14, and
its transimpedance gain G4;. The photodetector signal is then fed to an electronic
spectrum analyzer (ESA), which measures the electrical power P. = (V,,(w)?)/R,
with R the characteristic impedance of the detector. The measured signal is
therefore

Posalw) =2 (”%)Gmrr (j—i) WP (4

As we can obtain the variance from integrating over the power spectral density,
we can write the measured power spectral density as

S _ 7,/cletGdet ? GQFLOJ ! dT 2 g
PP(w) =2 \/E Z|azn’ E zx(w> (248)

where the expression for S,,(w) for the resonator in thermal equilibrium is given
in (2.30). This is the signal we measure in our spectrum analyzer.

2.6 Summary

The main conceptual developments of the chapter and how they relate to the
results provided in Chapters 4 and 5 are given. These are:

e Spectrally and spatially confined light in the form of an optical cavity en-
hances the interaction with the mechancial modes of the structure. The
interaction of a particular optical cavity / mechanical mode pair is weighted
by the vacuum optomechanical coupling rate g,, which also determines the
accuracy with which its motional state can be measured when the optical
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cavity is driven (Section 2.5). In Chapters 4 and 5, we show (both numer-
ically and experimentally) how the light and acoustic fields spontaneously
localize in a periodic-on-average nanostructure. The achievable g, in such a
regime is studied for intentionally disordered superlattices (Chapter 4) and
for dual photonic/phononic crystal waveguides in the presence of unavoid-
able fabrication disorder (Chapter 5). By optically driving such random
cavities, they become an accesible read-out mechanism for phonon spec-
troscopy, a key ingredient to observe mechanical Anderson localization and
to understand phonon transport in disordered nanostructures.

In addition to mechanical motion read-out, driving the optical cavity enables
the manipulation of the motional state, as described in Subsection 2.3.3. On
the blue-side of the optical resonance, amplification up to optomechanical
self-oscillation (Subsection 2.4.1), i.e., mechanical lasing, can be achieved.
In Chapter 5 dynamical backaction effects obeying the laws here derived is
observed.

The optical input power P;, is a key knob to explore the physics that derive
from the OM coupling. However, high drive powers in low-V /high-Q opti-
cal cavities activate material non-linearities, which can lead to self-triggered
optical oscillations, i.e., self-pulsing (Subsection 2.3.1), even before any OM
effect sets in. In Chapter 5 these oscillations are observed. When these os-
cillations coexist with a highly-coupled MHz mechanical mode, the resulting
modulated radiation pressure force can also be used to drive OM oscillations
(Subsection 2.4.2). This regime, i.e., self-pulsing driven mechanical lasing,
is also explored in Chapter 5.
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Chapter 3

Confining light and motion in
photonic and phononic crystals

In this background chapter, we discuss the basic propagation properties of electro-
magnetic and elastic waves in periodic structures in order to understand how to
simultaneously trapped light and motion in exceedingly small interaction volumes
increases the rates at which these couple. Using the rapid advances in nanofab-
rication techniques, lithographically defined chips with multiple optical and me-
chanical elements allow access to regimes in optomechanics that are difficult to
achieve with other optomechanical (OM) systems. However, highly-engineered op-
tomechanical crystals (OMCs) are sensitive to random disorder due to fabrication
fluctuations in the few nm range. While acoustic losses might be compensated by
larger acoustic shields in full phononic band gaps, the optical quality factors are
strongly affected by out-of-plane scattering on such random defects, compromising
the OM interaction. However, disorder can also naturally lead to highly confined
Anderson-localized optical (and mechanical) modes in OMCs, a localization mech-
anism that we explore at the end of this Chapter and in the rest of this thesis.
The chapter is finished with a brief summary describing how the concepts herein
relate to the results given in Chapters 4 and 5

3.1 The governing equations

3.1.1 Maxwell’s equations in matter

The propagation of electromagnetic waves in a periodic medium, like in any
medium, is governed by the four macroscopic Maxwell’s equations, which are [115]

V. B(r,t) =0 3.1a)
V -D(r,t) = p(r,t) 3.1b)
V x E(r,t) + aBé;’t =0 (3.1¢)
v s Hr 1) — 2P0 gy (3.1d)
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where E(r,t) and H(r, ) represent the macroscopic electric and magnetic fields,
the scalar function p(r,t) in (3.1b) accounts for the free charge density and J(r, )
in (3.1d) represents the current density. The displacement D(r, ) and the mag-
netic induction B(r,t) fields are defined by

D(r,t) = ¢, E(r,t) + P(r, 1) (3.2a)
B(r,t) = pio(H(r,t) + M(r, ) (3.2b)

with P(r,t) the polarization and M(r,¢) the magnetization fields. The mathe-
matical description of P and M as a function of E and H in the form of local
consitutive relations describing the response of the bound charges and currents
in the medium sets the equations to solve. These can be generally written as
power series expansions of E and H depending on a set of tensors {Xj} of order
J+ 1 [116]. Asuming small field strengths only the first terms x; , and x4, i.e.,
the electric and magnetic susceptibility, might be kept. Since a material cannot
polarize instantaneously, the time-dependence of P is formulated via

P@_%/tM@—wmﬂw (3.3)

—00

where we omit the index ”1” in X, since the response is linear. As is obvious
from the expression, causality is preserved. Since the dielectric materials treated
here present a very small magnetization, we simply set B(r) = pu,H(r). The free
charges p(r,t) and currents J(r,¢) can be discarded if one aims at understanding
the intrinsic propagation properdies inside the medium. Setting p and J to zero
and using (3.3) in Equations (3.1) leads to

V- -H(r,t)=0 (3.4a)
V- (E(r,t) + /t X.(t —tE({)dt') =0 (3.4b)
V x E(r,t) + 8B(;;',t) =0 (3.4¢)
V x H(r,t) — eo% (E(r,t) + /t X, (t — t/)E(t/)dt’)> =0 (3.4d)
whose Fourier transform reads
V -H(r,w)=0 (3.5a)
V - (e(r,w)E(r,w)) =0 (3.5b)
V x E(r,w) —iwu,H(r,w) =0 (3.5¢)
V x H(r,w) + iwee(r,w)E(r,w) =0 (3.5d)

We have introduced the relative permittivity e(w) = (1 + x, (w)) with x,(w) the
Fourier transform of x,(¢). This complex-valued tensor describes the response
of the bound charges in a material to an harmonic electromagnetic field. The
tensorial nature of €(w) can however be dropped for the materials considered in
this thesis since we employ isotropic dielectrics, i.e., €(w) = e(w)1.
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In the special case of a monochromatic field at frequency w, i.e., E(r,t) =
E(r)e ™! and H(r,t) = H(r)e ™!, the frequency dependence of E and H can be
dropped. If we combine equations (3.5¢) and (3.5d) and introduce the vacuum
speed of light ¢ = 1/,/é,p1, we get

w

V x (;V x H(r)) - (—>2H(r) (3.6)

e(r,w) c

Together with the divergence equation (3.5a) and the appropriate boundary con-
ditions, the master equation (3.6) fully determines the magnetic field H(r). The
electric field can be readily found as

E(r) = — ¥ x H(r) (3.7)

wee(r, w)

that automatically satisfies its own divergence equation (3.5a). Equation (3.6)
has the form of a non-linear eigenvalue problem with (w/c)? the eigenvalue and
H(r) the eigenvector.

Most standard textbooks in photonic crystals (PhCs) [72,117,118] build
upon Eq. (3.6) and state that the operator acting on the magnetic field H(r)
is an hermitian operator with respect to the standard inner product of two com-
plex functions. This property is based on two particular aspects: i) the permit-
tivity €(r,w) is real and ii) the fields H(r) are well behaved at the boundary
S of the physical domain V', which clearly depends on the particular boundary
conditions one imposes. When these two conditions are true, the operator is
indeed hermitian and the theory behind hermitian operators, like their real eigen-
spectrum, holds [119]. However, the equations are valid even in the presence of
losses or gain induced by an imaginary part €;(r,w) of the complex permittivity
€(r,w) = €(r,w) +i€;(r,w) which obviously precludes the existence of modes with
real eigenvalues w, unless very specific conditions on the potential €(r) are met in
parity-time (PT) symmetric systems [120], a class of systems which are currently
gathering much attention in optics [121,122]. A second type of situation refers
to an optical system occupying a volume of physical space V' and surrounded
by a rather homogeneous unbounded environment. Such situations are extremely
common in photonics and are found, for example, in a planar dielectric slab or
in a PhC cavity, cases that will be described later in this Chapter. These sit-
uations can either be treated by considering V' to be all space, in which case
the system is hermitian and exhibits radiation states with continuous eigenspec-
trum, or by considering the finite volume of interest V’ as the physical domain
V and treating it as an open system exhibiting irreversible radiation losses. In
that case, the eigenvalue problem (3.6) has to be supplied with outgoing bound-
ary conditions [123] to ensure that energy leaks away. Both in the presence of
loss/gain or when such an outgoing boundary condition is imposed, the problem
is not (necessarily) hermitian with respect to the conventional inner product and
the eigenvalue problem (3.6) needs to be considered within the theory of non-
hermitian physics [124]. The solutions to the system {E(r),H(r)} are denoted
quasinormal-modes (QNMs) and have complex eigenfrequencies @ = w, — iw;,
where the imaginary part w; represent the losses and plays the role of x;/2 for the
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optical cavity dynamics described in Chapter 2. This type of formalism is well
suited to describe resonant states in optical systems', states whose energy can be
stored in a bounded region of space for a certain time but inherently decaying into
a continuum of radiative states that carry the energy away. This continuum is
typically made of plane or spherical waves. The use of optical QNMs to study the
scattering properties of a medium [126,127] or light-matter interactions [128,129]
has gained widespread acceptance and is a growing field in theoretical photonics.

For most of this thesis we focus on the optical response of semiconductor
(nano)structures around particular frequency regions where they do not absorb
linearly, e.g. silicon in the telecommunication bands 1.4-1.6 ym. We therefore
disregard gain/loss and dispersion provided that the obtained eigenvalues w lie
within a narrow frequency band around some w, for which €(r,w) ~ €(r,w,) =
€(r). This leads to a linear eigenvalue problem of the form

6, ) = (<) He) (3.8)

C

with the differential operator given by

A 1
O,(r)e =V x (@V X o) (3.9)
The operator ©,(r) is a linear operator and two field patterns differing only by
an overall multiplier are taken to be the same mode. If one is interested in the
energy carried by a particular eigenmode, its excitability from the far-field or its
interaction with matter makes proper normalization of the modes critical, specially
within the framework of QNMs [130-132], where the fields diverge towards infinity
due to the complex eigenfrequencies and the outgoing boundary conditions.

3.1.2 Elastodynamics of solids

The discrete nature of the atomic lattice can generally be ignored when finding
the vibrational modes of a mechanical element, thus treating it as a continuum.
This is similar to what is done when one transitions from the microscopic version
of Maxwell’s equations to their corresponding version in matter (3.1). This model
can be directly derived from the theory of lattice vibrations if one considers that
the deformations vary slowly at the inter-atomic force scale [133] and is typically
valid for acoustic wavelengths sufficiently larger than the atomic lattice constant.
In that case, the theory of continuum mechanics [134] dictates the behaviour of the
body under study by imposing Newton’s second law to each differential volume
av,

0?U(r, )
ot?
where U(r, t) is the unknown displacement field, o (r,t) the Cauchy stress tensor,
p(r,t) the mass density and F(r,t) the body force per unit volume. In order to

V.o(r,t) + F(r,t) = p(r,t) (3.10)

!The formalism was first developed to study the properties of resonant states in quantum
mechanics, quantums states that are long lived but are inherently coupled to a continuum of
modes. This is the case, for example, of autoionization states [125].
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solve for the displacement, we need a constitutive relation, i.e., a function G relat-
ing the nearly-always symmetric tensor o (r,t) and the displacement field U(r, t).
This relation typically depends on the relative displacement between neighboring
volume elements. We introduce the strain tensor S(r, ), that is defined for low
displacements as,

1
S = §[Vu + VuT] = Vsu (3.11)

Vs is the symmetric gradient and S is a symmetric tensor by construction. We
can generally expand o as a power series of S and keep only the first-order term,
ie.,, o = C: S, where the stiffness tensor C = {Cj;x} is a fourth order tensor.
This is the constitutive relation for linear elasticity.

Using the fact that both o and S are second order symmetric tensors with
at most 6 different elements, the tensor C has at most 36 different components
Cijii. As o and S are 6-component vectors using the Voigt notation [135], C is a
6x6 matrix C,4 in that same notation. By using energy considerations, the matrix
C is itself symmetric, therefore reducing its number of independent parameters
to 21 for the most general anisotropic material. This number is further reduced
by using the symmetry operations that leave the underlying crystalline lattice
invariant. For the case of silicon, the standard material platform used in this
thesis, the cubic symmetry leads to

Cyy Cip Cia O 0 0
Cp Ciy Cia O 0 0
Cip Cip Cip 0 0 0
Cas=1%0" 0 o0 Cu 0 0 (3.12)

0 0 0 0 Cu 0
0 0 0 0 0 Cu

in the material coordinate system (x = [100],y = [010] and z = [001]). This
reduces the tensor to only three different elastic coefficients, which are C7; = 166
GPa, C12 = 64 GPa and Cy = 79.6 GPa [136]. Unlike for the electromagnetic
response, isotropy is rather unusual in mechanics since crystalline materials are al-
ways, by construction, anisotropic. Isotropy only applies for acoustic wavelengths
much larger than the scale where the system displays atomic order. Let’s note
here that an arbitrary rotation of the physical coordinate system with respect to
the material coordinate system will in general transform all of the coefficients in
(3.12) and this should therefore be carried out before any calculation. Addition-
ally, the orientation of a patterned structure displaying discrete symmetries, e.g..,
a phononic crystal (PnC), with respect to the material axis is critical, as will be
discussed later.

We solve for the normal modes of a mechanical object assuming no vol-
ume (or boundary) forces, i.e., F(r,t) = 0, and a stationary setting, i.e., no
time-dependent physical parameters. We look for harmonic solutions of the type
U(r,t) = U(r)e *%, leading to,

~

6,.(r)(U(r)) = Q*U(r) (3.13)
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with the differential operator @m(r) given by,

~

On(r)(e) = —ﬁwc (r):V go) (3.14)

which constitutes a linear eigenvalue problem for the displacement field U(r). Due
to the anharmonicity of phonons, the mechanical excitations in such a system
are intrisically lossy and the system is non-hermitian, even in the absence of
radiation losses. The eigenfrequencies {2 are generally complex eigenfrequencies
Q = Q, +18;, although the QNM framework in the description of mechanical
resonances has only recently been addressed [137,138].

Despite the apparent differences between the electromagnetism operator
(3.6) and the elastodynamics operator (3.14), the structure of the problem to
solve is similar as are the numerical methods suited for it. In addition, fundamen-
tal properties of their eigensolutions can be understood from a general inspection
of the respective operators, in particular their underlying symmetries [139].

3.2 Symmetries and mode categorization

The use of symmetries, i.e., coordinate transformations that leave a system un-
changed, and, under some circumstances, the breaking of those same symmetries
is of utter importance in physics. In this case, symmetries of the the eigenvalue
operators O,(r) and ©,,(r) are reflected in the form of the solution and or allow
clsssification of the normal modes supported by the structures, often reducing the
computational cost of their numerical resolution. We discuss here particularly im-
portant symmetries for OMCs such as discrete and continuous translational and
rotational symmetries, mirror symmetries and time-reversal symmetry.

We consider an operator A that acts on C? vector fields F(r) in R3. In some
cases A admits a matrix representation A with which the action of the operator is
given by A(F(r)) = AF(A~'r), i.e., the inverse matrix A~! acts on the argument
r, the field is taken at the new argument and then the field itself is multiplied by
matrix A. The system studied is said to have A—symmetry if it does not matter
whether we directly apply the operator é(r) or we first apply A, then é(r) and
operate back with the inverse AL to change them back. Formally

O(r)(F(r) = A (O(r)(A(F(r)))) = [4,6(r)] =0 (3.15)

with the commutator [B,C] = BC — CB. Therefore, if F(r) is an eigenfield of
O(r) with eigenvalue w, then A(F(r)) is also an eigenmode with equivalent eigen-
value w. In the absence of degeneracies in the eigenspectrum of é)(r), this means
that they need to be equivalent up to a multiplicative factor, i.e., AF(r) = SF(r),
which is nothing more than the eigenvalue problem for the operator A. There-
fore, eigenstates of @(r) are also eigenstates of A, which is an extremely pow-
erful tool since the eigenstates of A are often easily obtained. In the presence
of degeneracies, F(r) and A(F(r)) might have the same frequency w but not be
related by a multiplicative factor. However, under particular circumstances the
field A(F(r)) is adscribed to a particular eigenstate among the degenerate set,
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generating redundancies in the calculation of the full energy spectrum and reduc-
ing the computational cost. In general, one can show that the two operators do
posses simultaneous eigenfunctions even in the presence of degeneracies. There-
fore, a common strategy consists of finding the eigenfunctions of the symmetry
operator first and then use them to simplify the search of the eigenfunctions of
é(r) Even when the eigenfunctions of the symmetry operator A are degenerate,
as is typically the case, we only need to search in the lower-dimension degenerate
eigenspaces by building eigenstates of the operator @(r) as a linear combination
of the degenerate set. This can drastically reduce the complexity of the problem.

3.2.1 Discrete translational symmetry and Bloch theorem

A particularly important role in PhCs and PnCs, as in matter in general, is
played by discrete translational symmetry because it leads to the well-known
concepts of Bloch modes with energies represented via a band structure. If the
operator @(r) possesses translation invariance with respect to some vector R, i.e
O(r) = O(r + R) Vr, then [O(r), Tr] = 0, where Tk is the translation operator
whose action upon a vector field is given by Tgr(F(r)) = F(r + R). Due to the
composition law TRTR/ =T R+R/, the eigenvalues of the translation operator T R
are given by B(R) = R and its eigenfields satisfy F(r + R) = ¢*RF(r + R),
where we have introduced the quasi-momentum k, a conserved quantity. The
functions F(r) satisfying such condition can be written as

Fi(r) = fi(r)e™™ with fi(r) = fi(r + R) Vr,R (3.16)

which is a formulation of the Bloch-Floquet theorem [133]. It is worth noting that,
as posed, nothing constraints the wavevector k to be real. One would physically
expect it to be real in an infinite lattice to avoid divergent solutions, but formal
solutions with k € C? do exist [140]. These have particular importance when a
surface or a defect is introduced as happens with, for example, evanescent Bloch
waves or the role of perturbative disorder.

A corollary of Bloch’s theorem is that wave-vectors k are redundant outside
a region of reciprocal space that is called the Brillouin Zone (BZ). The particular
boundaries and shape of this region depend on the underlying periodic lattice,
with its dimension set by the dimensionality of the lattice in real space. The
shape of the BZ for a one-dimensional system is simply given by —7/a < k < 7/a
but in 2D and 3D there is many possible ways of arranging a periodic pattern
in what are called Bravais lattices. Starting with a set of elementary vectors a;
one builds the Bravais lattice of the crystal by setting all points R = ). n;a;
with n; integers and repeating an elementary unit cell in all directions given by
the lattice R. This elementary block, the unit cell, is, however, not unique. A
particular choice is given by the primitive unit cell or Wigner-Seitz cell [133], which
has minimal volume and is constructed by taking the perpendicular bisectors to
the lines joining a lattice site to its neighbours and finding the volume enclosed
by those. This is depicted in Fig. 3.1(a) for a triangular lattice. Analogous to
this construct in real space, a lattice is built in reciprocal space using lattice
vectors b; found by imposing a;b; = 2m¢;; and with lattice sites spanned by
K = ). k;b;, with k; integers. The BZ is obtained by finding the Wigner-Seitz
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Figure 3.1: Real and reciprocal space lattices in a discrete transla-
tional invariant 2D system. Triangular lattice of circles in (a) real space and
(b) reciprocal space, with the Wigner-Seitz (WS) cell shaded in blue and brown
respectively. For reciprocal space, the WS cell corresponds to the 15! Brillouin
Zone (BZ). The primitive vectors in both lattices are also shown. (c¢) By using
additional symmetries of the system like its point group or time-reversal invari-
ance, the 1BZ is reduced to the irreducible Brillouin Zone (IBZ), the minimum
region in reciprocal space not connected by symmetry operations.

cell of the reciprocal lattice, as is depicted in Fig. 3.1(b) for the triangular lattice.
The case where continuous translational symmetry in a direction s holds, i.e.,
[Tys,©(r)] = 0 Vd € R, can be thought of as satisfying Bloch’s theorem (3.16)
for any vector R in that direction, which only holds if the periodic part does not
depend on that particular coordinate. If we take, for clarity, the system to be
homogeneous along z, then the eigenfield can be written as F(r) = fi(z, y)e*=*
and k, can take any value in C.

The Bloch eigenmodes are therefore described by their continuous conserved
quasi-momentum k, so it seems appropiate to ask what is the minimum space that
has to be sampled in the 1BZ to capture all features of the eigenspectrum w(k).
To answer this, additional symmetries of the unit cell are considered.

3.2.2 Discrete rotational symmetry and other spatial sym-
metries

Depending on the symmetries of the motif inside the unit cell and the symmetries
of the material at the atomic scale, the PhC/PnC might possess a discrete set
of rotational symmetries in addition to their translation invariance. Asuming a
constituent insotropic reponse, it is clear that rotating a circle around its center by
any angle 6 leaves the circle unchanged. We say that the circle has C', rotational
symmetry. If a full lattice of circles, like the one depicted in Fig. 3.1(a), is rotated
by some angle # about an axis n that leaves the lattice unchanged, then the full
crystal remains unchanged. For the particular case of the triangular lattice of
circular holes we see that any rotation of angle § = p27 /6 with p € Z leads to the
exact same lattice.
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Figure 3.2: Point group representation and the Irreducible Brillouin
Zone (IBZ). The symmetries of the unit cell motif that map the lattice into
itself are called the point group of the crystal and define the IBZ, the minimum
region in k-space that needs to be sampled to access the full eigenspectrum
wp (k). (a) A circle preserves all mirror symmetries oy 5/ 4y, 7, all rotational
symmetries Cy6 43 +2 and the inversion symmetry Cio of the hexagonal WS
cell of a triangular lattice, leading to the I'-K-M IBZ shaded in brown. (b)
An equilateral triangle breaks the o,/ , ,» mirror symmetries and the inversion
symmetry Cyo, which leads to the shaded reregion. Use of time-reversal invari-
ance finally leads to the same I'-K-M IBZ. Larger IBZs occur when the motif
breaks additional symmetries, as does (c) a square or (d) a tilted square, which
lead to an IBZ of size 1/4 and 1/2 in units of the 1BZ area, respectively. Even
if the C'yo inversion symmetry in (d) is lost by employing an arbitrary shape,
time-reversal invariance still leads to the region shown.

More generally, let us imagine that the system under study possesses a dis-
crete rotational symmetry, which is a set of rotations denoted by R = R(n,0)
with n the rotation axis and § = p27 /N, p € [0, ..., N —1] the rotation angle, whose
associated operators R, applied in the way described above, commute with the
differential operator @(r) Unfortunately, operators R and the translation opera-
tor Tg do not generally commute even if they both commute with the differential
operator é(r) Even if this prevents a common eigenbasis, the use of the discrete
rotational symmetry allows a reduction of the BZ that needs to be sampled. When
operating on a Bloch eigenstate with wavevector k, R(Fi(r)), the rotation leads
to nothing else than the Bloch eigenstate with the rotated wavevector Rk up to
a multiplicative constant

R(Fi(r)) = e“Fry(r) (3.17)

and by the commutation relation they possess the same eigenvalue, therefore
w(Rk) = w(k). The dispersion relation w(k) of the system eigenstates inher-
its the discrete rotation.
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A comprehensive study of all the spatial symmetries of the crystal lattice
can further reduce the size of the 1BZ. This is in principle done based on group
theory [141], but can be understood rather intuitively by doing analogous argu-
ments to the one given for discrete rotations. The set of transformations (e.g.
rotation, mirror-symmetry and inversion) leaving the dielectric function €(r) and
mechanical pair {p(r),C(r)} respectively unchanged is called the point group.
Taking the point group into account reduces the 1BZ to what is denoted as the
irreducible Brillouin zone (IBZ), i.e., all of the points in the 1BZ that cannot be
connected by symmetry. For example, if we define 64 as the mirror symmetry

~

with respect to an axis d and [O(r), 54]=0, then it can be shown that
Ga(Fi(r)) = eFop(r) (3.18)

and w(k) = w(ogk) in an analogous way to what has been said for the discrete
rotations in the point group. Figure 3.2 illustrates how the existing symmetries
of the unit cell of a triangular lattice give rise to reduced sizes of the BZ via some
examples, where the top panel represents the real-space WS cell and the bottom
panel the corresponding 1BZ. The circle in Fig. 3.2(a) possesses full rotational
symmetry (C,) and the 12 operations that map the hexagonal WS cell to itself
are preserved, leading to an IBZ (the shaded region inside I'-K-M) of size 1/12,
in units of the 1BZ. The equilateral triangle in (b) breaks the inversion symmetry
(C3) and three mirror symmetries (6,6, and &) leading to an IBZ two times
bigger. Other geometrical entities like a square can preserve inversion symmetry
but break a higher number of mirror symmetries, leading to an IBZ of one quarter
of the 1BZ (c). Finally, if the same square is tilted an angle different from a
multiple of 7/6, only inversion symmetry is left, leading to an IBZ half the size
of the original BZ.

Even though these symmetry arguments might appear obvious to the reader,
a literature review over the past decade [142] has shown how the IBZ is often
misjudged. Ref. [142] addresses only PnCs but the issues presented are found
to be generic and present in the literature on photonic systems. This analysis
is even more complex in phononics if the isotropy condition on the constituent
materials is dropped, since symmetries of the artifical lattice might not apply to
the constitutive stiffness tensor C. Therefore, special care has to be taken on
the definition of the IBZ even for artificial lattices using an elemental crystalline
material like silicon.

3.2.3 Time-reversal symmetry

An extremely important and subtle symmetry across physics that we have left out
so far is time-reversal invariance, or the fact that a system is invariant to an oper-
ation that inverts the time dependence t to —t as well as instantaneously preserves
or reverses some fundamental quantities at fixed t, e.g., position x is preserved,
momentum p is reversed, the electric field E is preserved, but the magnetic field
H is reversed, etc. [143]. The definition of a time-reversal operation in physics is
actually an important source of debate [144]. When set via the eigenvalue prob-
lems (3.8) or (3.13), which are inherently written in the frequency domain, the
time-reversal operator acts by taking the complex conjugate of the field [145].
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Time-reversal invariance implies that if {w, F(r)} is an eigenstate of the system,
the complex conjugate F*(r) is also an eigenstate with eigenfrequency w*. Now, if
the system is periodic and hermitian, the eigenstate can be represented by a Bloch
state with w real and its complex conjugate is nothing more than a Bloch eigen-
state at wavevector —k and the same eigenvalue. When time-reversal invariance
holds, the IBZ of the periodic structure may therefore be further reduced. This is
shown in Fig. 3.2(b), where the point group leads to the shaded region and time-
reversal invariance crops the IBZ to the delimited region inside I'-K-M. Therefore,
regardless the symmetry of the crystal, only half of the BZ needs to be considered.

The systems we consider in this thesis are time-reversal invariant and the
necessary existance of two eigenstates with equivalent frequency w and opposite
value of k plays a very prominent role in the behaviour of the Bloch mode in the
presence of small disorder, when translational symmetry is perturbatively broken.
However, when any of the materials considered is lossy, Im(e(r,w)) > 0, time-
reversal symmetry of the macroscopic Maxwell’s equations can be broken and the
mentioned property is lost, usually needing a larger IBZ. Breaking time-reversal
symmetry is actually the main strategy to induce topologically non-trivial pe-
riodic structures that support edge states [146], propagating states immune to
elastic coherent backscattering due to the absence of the time-reversed state at
frequency w and wavevector -k. This strategy is analyzed at the end of this thesis
where topological photonic structures are discussed.

3.2.4 Mirror-symmetry and field polarizations

In subsection 3.2.2 the effect of mirror symmetries was explored, leading to (3.18)
and to a reduction of the k-space redundancies. Despite this reduction, relation
(3.18) does not say much about the reflection properties of the mode eigenfield
Fy(r). However, if ogk = k, (3.18) is an eigenvalue problem. The eigenvalues of
the mirror symmetry operator oq are simply +1 and -1, since two applications of
the operator restores the original system. Without loss of generality, we set d = z
and apply the operator in the way described before, o,F (o 'r) with

0
0
-1

(3.19)

g, =

o O =
O = O

the matrix associated to the mirror operator ¢,. For the eigenvalue p, = 41, this
leads to

(l‘ Y, Z) a:(Ly,Z) (320&)
Fy(z,y,—2) = Fy(z,y, 2) (3.20b)
F(z,y,—2) = F.(z,y,2) (3.20¢)

while multiplying the left-hand-side of (3.20) by -1 sets the restrictions on F(r)
for p, = —1. For the case of the electromagnetic field, using (3.7) shows that
if the magnetic field H(r) transforms as (3.20), the electric field transforms as if
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it were a p, = —1 eigenstate?. For points in the symmetry plane, like o,r = r,
the field takes the form [F,, F}, 0] for p, = +1 and [0,0, F,] for p, = —1. This
restrictions on the field are essentially boundary conditions imposed in a surface
of the volume V' where the problem is solved and can be used to reduce the size
of the computational domain in real-space solvers.

Whenever the condition gk = k is satisfied for all k values, 64 commu-
tates with the operator @(r) restricted to the eigenspace defined by k, making the
categorization extremely useful. This property is satisfied for a system exhibiting
two dimensional periodicity in the p = (x,y) plane and a mirror symmetry along
z, like a PhC slab. In the case of a two dimensional PhC which is translation-
ally invariant, and therefore infinite in that same direction, the mirror symmetry
becomes very restrictive with respect to the polarizations allowed to propagate.
Based on Subsection 3.2.1, the general form of the eigenstates is

F(I‘) = eikzzeik~psz7k(p> (321)

with k = (k,, k) the in-plane Bloch wavevector and k, the out-of-plane wavevec-
tor. Since translational invariance along z can be thought as being a continuum
of mirror symmetries o4 with respect to any plane, we have both o,r = r and
o,k = k for all r and k, and solutions at k, = 0 can be classified according to
their polarizations. In the case of electromagnetic waves this classification leads
to trasnverse electric (TE) and transverse magnetic (TM) modes

TE: {H7 E} = {[07 0, hZ,k(p)]7 [er,k<p)7 6y7k(p)7 O]} (322&)
T™M: {H’ E} = {[hw,k<p)7 hy,k(p% 0]7 [07 0, eZ,k(p)]} (3'22b)

while in the case of elastodynamics it leads to a decoupling of the displacements
into transverse and in-plane motional waves

Transverse : U = (0,0, u, x(p)] (3.23a)
In-plane : U = [u, k(p), uyx(p), 0] (3.23b)

3.3 Band structures and band gaps

Supplied with Bloch’s theorem (3.16), the eigenvalue problems for electromagnetic
and acoustic waves can be rewritten inside the eigenspace defined by wavevector
k. The eigenvalue problem (3.6) can be cast as finding hy(r) obeying

Oox(r)(hy(r)) = (@) hy(r) (3.24)

C

with the k-dependent differential operator (:)071( being defined by

O,x(r)(e) = (ik + V) x <$(Zk + V) x o> (3.25)

2This difference stems from the fact that H(r) is a pseudovector and E(r) a vector.
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Additionally, the solution needs to satisfy both the transversality condition (ik +
V)-hi(r) = 0 and periodicity hy(r) = hx(r + R).

For the case of acoustic waves in solids the eigenvalue problem (3.13) trans-
forms to

O ic(r) (i (1)) = Q(k) (1) (3.26)
with the k-dependent differential operator ém,k being defined by

) :
Omk(r)(e) = —m (V +ik) - (C(r): (VS ° —|—%(k Re+eR® k))) (3.27)
where we have introduced the outer product a ® b, in index notation (a® b);; =

a;b;. The periodic boundary condition uk(r) = uk(r + R) needs also to be satis-
fied.

Since periodic boundary conditions are imposed on the fields to solve, the
eigenfields for a fixed k are determined by their value inside a small region of
space, a single unit cell. This results in a discrete spectrum of eigenvalues w,
at a fixed value of k [72]. In addition, due to the continuity of (:)O/mk(r) with
respect to k, we expect a particular frequency w at a fixed k to evolve continuously
when k is changed. Therefore, the modes of a PhC or PnC can be cast into a
set of continuous functions w, (k) indexed by the number n, the band number.
In order to obtain the band diagram of a phot(n)onic crystal we need to solve
Equation (3.24) or (3.26). In general, numerical methods are needed to obtain
the band structure w(k) and the corresponding eigenstates Fy(r).

One of the most salient features of periodic structures is the possibility to
have frequency regions Aw where propagation is forbidden, at least for some of
the allowed polarizations, i.e., frequencies w for which there is no Bloch state with
k € R. The analogy with the behaviour of electrons in atomic crystals is, for
this particular feature, obvious. If such a region is to be found, one typically
needs to solve for all possible values of k inside the IBZ. This is done for the
k., = 0 modes of a two-dimensional PhC made of a triangular lattice of infinite
cylindrical air inclusions in silicon. The results, which can be split between TE
and TM polarizations, are shown in Figure 3.3. The unit cell size is given by the
parameter a, the radius of the circles is r = 0.3a and the refractive index of silicon
is taken as ng; = 3.48. Here, we solve the modes for the entire BZ to show the
convenience of using the IBZ (the shaded region depicted in the xy-plane), since
the rest are only replicas. Along with the band structure, the density of optical
states (DOS), defined as

DOS(w) = Y /1 b= (k) di (3.28)

is given. This quantity essentially counts the number of available states at a
particular frequency w, and scales as w? in a bulk material. The DOS for the TE
polarization evidences the presence of a photonic band gap (PhBG) for frequencies
spanning [0.206¢/a, 0.272¢/a], while the TM polarization possesses no gaps.

An important result that has been derived in the frame of group theory tells
us that the extreme points (maxima and minima) of all bands occur along the
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Figure 3.3: Band structure of a two-dimensional photonic crystal
(PhC) made of air holes in silicon. Transverse electric (TE, left) and
transverse magnetic (TM, right) band structure of a 2D PhC made of infinite
cylindrical air inclusions in silicon, whose unit cell is given on top. The param-
eters used are period a, radius r = 0.3a and ng; = 3.48. The bands are given
as continuous manifolds within the full Brillouin Zone (BZ), where the color
represents the frequency and is only employed for visualization purposes. The
irreducible BZ (IBZ) is highlighted in the zy-plane in shaded brown, along with
the revelant high-symmetry points I'-K-M. The density of optical states (DOS)
as obtained from Eq. (3.28) is depicted for both polarizations, evidencing a
band gap -blue shaded rectangle- for TE modes and none for TM modes. All
frequencies are given in normalized units.

high symmetry directions, and most of the time at the high symmetry points in
the IBZ. This happens for the case shown in Fig. 3.3, where the maximum and
minimum bounding the gap are depicted with a white dot at the K and M points
respectively. Most of the research community in photonics and phononics tends
to sample a reciprocal space path that follows those directions in the IBZ and
the band structure is calculated and displayed in a single line graph. However,
Maurin et al [142] numerically assessed the probability that a band-gap extremum
is located on the IBZ contour for the 17 different plane crsytallographic lattices (in
2D) and showed that the assumption inherited from group theory only holds for
crystallographic groups p4mm and p6mm, the groups with the highest number of
symmetry operations [147], to which the silicon-air structure of Fig. 3.3 belongs.
This said, we often plot the bands along the IBZ contour since the likelihood
of finding a full gap in such path is still relatively high and serves as a design
guideline. However, the effective width of a band gap should always be obtained
after solving in the (properly-defined) full IBZ.

Examples of different photonic band diagrams along that high-symmetry
IBZ path for a material system consisting of a two-dimensional crystal of infinite
cylindrical inclusions in a matrix are shown in Figure 3.4. Figure 3.4(a) shows
the photonic band diagram already depicted in 3.3, with its indirect PhBG for
TE polarization (shaded blue) and no gap for TM polarization. This is a typical
feature of low-index inclusions in a high-index matrix [72]. The band diagram for
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Figure 3.4: Band structure of two-dimensional photonic crystals
(PhCs): the role of the inclusion’s refractive index. Transverse Electric
(TE, light blue) and Transverse Magnetic (TM, brown) band structure of a 2D
PhC made of infinite cylindrical inclusions of (left) air in silicon and (right)
silicon in air. The results are given along the Irreducible Brillouin Zone (IBZ)
contour, which suffices since the structure belongs to the p4mm crystallographic
group. Low-index inclusions in a high-index matrix typically lead to a TE band
gap between the first and second bands, as shown with the blue-shaded region.
On the contrary, high-index inclusions in a low-index matrix open a TM band
gap, shown in shaded brown.

the reverse situation, that of an array of silicon cylinders in an air matrix, is given
in Fig.3.4(b). The situation is also reverted and we have now a wide PhBG for
TM polarization spanning [0.224¢/a, 0.31c/al.

3.4 Three-dimensional confinement with lower-
dimensional periodicity

One of the main quests in both photonics and phononics is controlling the propa-
gation properties in three dimensions, something possible with periodic structures
in all three directions. The possibility of having omnidirectional band gaps would
allow perfectly-shielded spatially-confined excitations, a task that is extremely
complicated otherwise, specially in optics since electromagnetic radiation can
propagate in vacuum. Three-dimensional PhCs with full band gaps are therefore
a sort of grail for physicists and engineers and their realisation was the main goal
of the early PhC research. Since then, a number of 3D PhC implementations have
been realized. Some examples are the famous "Yablonovite’ [148], self-assembled
colloids/inverse opals [149,150] or woodpile structures [151,152]. Nevertheless,
they are still highly undeveloped in practice, specially at the nanoscale, where
only approaches based on stacked layer-by-layer 2D crystals [153-155] have been
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experimentally realized. The reason for the lack of scalable 3D PhCs at frequency
ranges nowadays relevant for technology applications is both the challenge to fab-
ricate them and the difficulty to integrate them with the existing (and mature)
planar technology. In order to effectively confine light or motion in the three di-
mensions, other strategies have therefore been explored, among which PhC/PnC
slabs are the most widely investigated.

3.4.1 Index guiding and free surfaces

For the case of elastic waves, the solution that enables ominidrectional confine-
ment is extremely simple. It consists in using physical boundaries between a solid
material and vacuum to force any propagating elastic wave in the direction of the
boundary to be perfectly reflected. In a more realistic environment, the surround-
ing medium is filled with air, where pressure waves can be launched, however, the
mismatch is so large that a boundary between a solid and air can be effectively
modelled as a perfectly reflecting interface. In terms of the stress tensor, this
condition is denoted as a free surface condition and can be written as

on=0 VYreodV (3.29)

where OV denotes the boundary of the considered domain V. In principle, elastic
energy can be confined in such a way in all three directions, but any object typi-
cally needs to be supported to avoid the effect of gravity. The supporting points,
like the clamping regions of a suspended solid beam or the contact area of a solid
object with a substrate, are both a source of damping and of thermal noise, which
prevents strict confinement without energy decay in time. Recently, the motion
of trapped particles inside the potential generated by light beams, in essence a
levitated object, has gathered increasing attention [156] since they precisely allow
motion confinement without any source of radiative losses and/or thermal loading
and are candidates to study collapse models that go beyond standard quantum
mechanics [157].

Confinement of electromagnetic radiation is achieved via a similar principle
by using total internal reflection. We consider an interface between two semi-
infinite media of permittivity ¢; and e; and asume that €; > e3. We consider
a plane wave inside medium 1 with wavevector k; and frequency w; incident at
an angle 6; upon the interface, as depicted in Fig. 3.5. Energy conservation and
translational invariance impose the equality of frequencies w; = wy = w and the
conservation of momentum parallel to the interface, k; | = ko | = k|;. Given these
and the dispersion relation in both media we have

Now\ 2
<%) = [k + ko (3.30)

which can only hold for imaginary values of ks | if w < ckj;/ne. This implies that
the modes are evanescent away from the interface into the medium 2 and are fully
confined to the semi-infinite medium 1, a result which is known as total internal
reflection (TIR). This result is actually nothing more than a formal statement
of Snell’s refraction law in ray optics [158], i.e., nisin(fy) = nesin(fs), above the
critical angle 6; > 6. = asin(ny/n;), that only exists with the set condition €; > €.
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Figure 3.5: Index guiding in an infinite dielectric slab. The interface
between two dielectric media of permittivities €; and es leads to total inter-
nal reflection (TIR) when the incidence angle from medium 1 satisfies §; >
asin(na/n1). When a layer of thickness d and permittivity €; is surrounded by
a lower index homogeneous medium as shown in the inset, multiple interfer-
ence of light bouncing between the two interfaces due to TIR leads to a discrete
set of modes with frequencies lying between lines given by w = c|kj| /n2 -the
light line- and w = c[kj[/n1. Within this region (A), modes are labelled as
Transverse Electric (TE, blue) or Transverse Magnetic (TM, red) in relation to
their symmetry with respect to a plane zk and as p, = +1 (solid) or p, = —1
(dashed) with respect to the mid-plane of the slab. Region B hosts a continuous
eigenspectrum of radiation modes called the light cone, while region C contains
no physically meaningful solutions.

Based on TIR, a slab of material with refractive index n; = /¢; embed-
ded between two semi-infinite media of lower refractive indexes no and ns can
totally confine light into the slab region for frequencies w < clk|/max(nq, n3). In
particular, a slab surrounded on both sides by air supports slab-confined modes
with in-plane wavevector k at frequencies below w = c|k|, which we denote by
the light line. The condition for constructive interference, i.e., phase matching,
of slab-confined light recurrently bouncing at the two interfaces leads to the for-
mation of well-isolated bands below this light line. The discrete nature of the
spectrum could have also been deduced via the argument used in Section 3.3, i.e.,
the equations at a fixed k are effectively solved for a finite volume of space. The
w — k region above that line, the light cone, supports a continuum of radiation
modes which far away from the interfaces must approximate plane waves, which
are supported at all frequencies w and k .
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The photonic dispersion relation for a slab of thickness d and refractive index
ny = 3.48 is given in Fig. 3.5. Since the slab has a continuous rotational symmetry
around the axis n perpendicular to the interfaces, the dispersion only depends on
the wave vector amplitude w(k) = w(|k|). With the symmetry arguments given in
subsection 3.2.4, modes can be categorized into two polarizations, that we again
denote by TE and TM. For a particular choice of the wavevector k|, that we
denote from now simply k, the system has a mirror symmetry with respect to any
plane defined by z and k, whose mirror operator we denote Mgk with &, =2 x k
and k the unit vector along k. Solutions can therefore be split into TE modes with
fields {E(p, z) = E(p, 2)éx, H(p, z) = Hy(p, 2)k+ H.(p, )z} and TM modes with
fields {E(p, z) = Ex(p, 2)k + E.(p, 2)z, H(p,z) = H(p, 2)éx}. In addition, for a
slab with common cladding and substrate as shown in Fig. 3.5 the mid plane of the
slab is a plane of symmetry and modes can therefore be categorized with respect
to the mirror symmetry M. as even (p, = +1) or odd (p, = —1). The particular
form and trascendental equation for the optical modes of an isotropic material
slab are described in detail in Appendix A, since they constitute an extremely
well-suited basis to expand the solutions of the eigenvalue problem for PhC slabs,
as done in the Guided Mode Expansion (GME) [159].

One should note here that not all eigenmodes at a particular k above the
light line possess the same behaviour. Solving the eigenproblem (3.8) for QNMs
with complex eigenfrequencies as described in Subsection 3.1.1 leads to solutions
with Im(w) # 0 above the light cone which represent resonant states for which
the fields are highly concentrated in the slab but over time leak into the radiation
continuum [160]. These are therefore modes with a finite lifetime and can be well
represented by QNMs [161]. The particular case of k = 0 will be described in more
detail on the next Chapter in the context of propagation of normal-incidence light
in a multilayer structure.

3.4.2 Photonic and phononic crystal slabs

Photonic and phononic crystal slabs are structures exhibiting 2D in-plane period-
icity and a slab structure as the one described above in the vertical out-of-plane
direction. In this thesis we limit ourselves to suspended structures for which both
cladding and substrate are made of air, which behave as some sort of hybrid
between the two pictures already described and depicted in Figs. 3.3 and 3.5.
They exhibit band gaps due to the high degree of dispersion control allowed by
the in-plane periodicity while confining in the transverse direction due to TIR.
They constitute the most widely used approach to engineer light and motion
propagation in three dimensions and can be routinely realized at submicrometer
length-scales by advanced lithography and etching.

Figure 3.6 depicts the photonic band diagram of a silicon slab into which a
triangular lattice of cylindrical air holes has been etched. The in-plane parameters
are chosen as in Fig. 3.3, the period is a = 500 nm and the thickness is set
to d = 250 nm. As evidenced by the grey shaded regions in Figure 3.6(a,b),
the occurrence of a radiation continuum above the light line is preserved for the
etched slab since the cladding and substrate remain homogeneous unstructured
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Figure 3.6: Band structure of a two-dimensional photonic crystal
(PhC) slab of air holes in silicon. Eigenspectrum of a 2D PhC slab obtained
by etching a triangular lattice of holes in a silicon slab. The band structure
for modes of even (odd) parity with respect to the mid-plane, ie., p, = +1
(p. = —1), is given along the Irreducible Brillouin Zone (IBZ) contour I'-K-
M on the left (right). The inset to (b) shows the unit cell. The in-plane
parameters are chosen as in Fig. 3.4 and the thickness is set to ¢ = 0.5a. The
density of optical states (DOS), as obtained from applying Eq. (3.28) over the
bundle of guided and quasi-guided bands inside the full IBZ, is depicted with
the corresponding color for both polarizations. The DOS evidences a band gap
-shaded rectangle- for z-even or TE-like modes which is faithfully captured by
the minima/maxima along the IBZ contour. A band gap for guided z-odd or
TM-like modes is also evidenced. The pitch a has been set to 500 nm, which
leads to a z-even gap around 190 THz.

media. However, the band diagrams of Figure 3.6 also depict discrete bands in the
radiation continuum. The portion of the folded bands at frequencies above the
light cone suffers from diffraction by the periodic potential, which leads to lossy
slab-confined bands, i.e., they become quasi-guided or leaky. For the particular
thickness d used for Fig. 3.6, a critical parameter for the dispersion [71], the
PhC slab inherits the TE PhBG observed for the 2D PhC at k., = 0, but now
associated to p, = +1 even eigenstates with respect to the mid plane of the slab,
often called TE-like modes. Since a true complete PhBG is not possible due to
the presence of the radiation continuum, we define two different types of gaps for
PhC slabs. First a guided PhBG, which we define as a range of frequencies w
for which there are no guided modes. The second type of gap, that we denote
as in-plane PhBG, extends accross both the guided and the leaky resonances.
Achieving an in-plane PhBG is of great importance to reduce radiation losses
in real fabricated structures, since unintentional fabrication imperfections or any
other perturbation, can easily couple a guided mode to a quasi-guided lossy band
at the same frequency due to the large local DOS. While the PhBG spanning 158.5
- 208.3 THz shown in Fig. 3.6(a) is of the second type, the structure also exhibits
a narrow PhBG of the first type spanning 259-8 - 278.5 THz for odd or TM-like
modes. The depicted bands are computed using an in-house GME code, whose
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Figure 3.7: Band structure of a two-dimensional phononic crystal
(PnC) slab of circular air holes in silicon. Eigenspectrum of a 2D PnC
slab obtained by etching a triangular lattice of holes in a silicon slab. The
unit cell is given in (a), with the crystalline axis of silicon given for reference.
The band structure for modes of (b) even (p, = +1) and (c) odd (p, = —1)
parity with respect to the mid-plane is given inside the Irreducible Brillouin
Zone (IBZ). All parameters are chosen exactly as in Fig. 3.6. The density of
mechanical states (DMS), from Eq. (3.28), is depicted for symmetric (blue) and
antisymmetric (red) polarization. (d) The mechanical band diagram is shown
along three high-symmetry paths within the IBZ, the edges of which are given
within the brown shaded IBZ depicted in (a) or (b).

underlying principle is posing the eigenvalue problem (3.8) in a basis made of the
guided modes of an effective dielectric slab, which are shown in Fig. 3.5. The
leaky modes of the dielectric slab are not considered and the basis is therefore
incomplete, resulting in a band structure with only guided and lossless quasi-
guided modes. The losses associated to the portion of the bands above the light
line can however be calculated using a Fermi golden rule approach [162]. More
details are given in Appendix A.

The phononic band structure for the same crystal is calculated using the
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Finite Element Method (FEM) in the commerical solver COMSOL Multiphysics.
The band diagram is given in Fig. 3.7. As for the optical eigenstructure, two
polarizations can be defined with respect to the mid plane of the slab. However,
the PnC band structure needs to be computed in a larger IBZ than in the photonic
case due to the cubic crystallography of silicon (see Eq. 3.12). We asume here
that the slab surface corresponds to the (001) plane and that the lattice vector a;
is oriented along = and along the [1 0 0] crystalline direction as depicted in the
unit cell of Fig. 3.7(a). Given this information, the IBZ of the PnC is a quarter
of the BZ and cannot be reduced to I'-K-M as for the optical case. The three-
dimensional plots in Fig. 3.7(b,c) show the band structure inside the IBZ and the
corresponding density of mechanical states (DMS) for even and odd modes. They
evidence that there is only a very narrow phononic band gap (PnBG) for the
asymmetric modes. Figs. 3.7(c) shows the band diagram for both polarizations
along three paths in the high symmetry directions of the artifical crystal. These
illustrate that the results yield by considering those paths, very often asumed to
give the same bands, differ and that the presence of a full PnBG needs to be
assessed within the full IBZ.

The shamrock crystal

As shown in Fig. 3.7(a,b), the typically employed triangular photonic lattice with
circular air holes [163] only opens a narrow mechancial bandgap for antisymmetric
modes, which is of limited practical use for OM devices. Mohammadi et al. [164]
have shown that such a lattice displays no sizeable PnBG for a large range of
radius 7 and thicknesses ¢t and that in order to open a full PnBG square or hexag-
onal lattices are required. Nevertheless, these lattices lead to a reduced PhBG
and the large hole sizes required make them unsuitable to realize high-Q optical
cavities [165]. In order to allow simultaneous confinement of light and motion
while maintaining the triangular lattice,variations in the shape of the hole have
been explored in Ref. [166]. The heuristic design rule to achieve the PnBG is as
follows: the mass has to be distributed in such a way that the PnC effectively be-
haves as a collection of alternating heavy and light masses attached by springs, in
analogy to the two-mass phonon toy model in solid-state physics [133], where op-
tical and acoustic phonons are separated by a bandgap. Despite this design rule,
numerical studies and experimental evidence of simultaneous PhBG/PnBG in
two-dimensional crystal slabs are rather limited, with the most well-known struc-
ture being the snowflake crystal design from Oskar Painter’s group [167,168]. It
consists of a triangular lattice of holes with snowflake shape or equivalently, by
an hexagonal lattice of triangular drumheads connected by small bridges. With
this second interpretation, the snowflake crystal faithfully follows the mentioned
design rule. This OMC has recently led to cavities with high quantum cooperativ-
ity [169] or to back-scatter free topological phononic edge states [170], althought
the latter in the MHz range. Despite these major breakthroughs, the commu-
nity of nanoscale optomechanics may benefit from a simplified design that can
be experimentally realized with the current nanofabrication in multiple material
platforms.
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Figure 3.8: Band structure of a two-dimensional phononic crystal
(PnC) slab of shamrock-shaped air holes in silicon. Eigenspectrum of
a PnC slab obtained by etching a triangular lattice of shamrock-shaped holes
in a silicon slab. The lattice showing the unit cell, the parameters defining
the shamrock and the crystalline orientation, is given in (a). A shamrock is
obtained by overlapping three ellipsoids (semi-axis A and B) rotated by 27 /3
with respect to each other and displaced by F' along the direction of axis B. The
band structure inside the Irreducible Brillouin Zone (IBZ) is given for modes
of (b) even (p, = +1) and (c) odd (p, = —1) parity with respect to the mid-
plane of the slab. The density of mechanical states (DMS), from Eq. (3.28), is
depicted for symmetric (blue) and antisymmetric (red) polarization. The DMS
evidences that two wide band gaps are found for each polarization, the first of
which coincides in energy and leads to a wide full phononic gap.

In this thesis we explore the geometry initially proposed in Ref. [171] to
achieve simultaneous TE and TM gaps in 2D PhC and later shown [172] to allow
the opening of a full PnBG in a slab architecture, where the photon-phonon
interaction mediated by an embedded Zeeman-split quantum dot was studied. It
consists of a triangular lattice of shamrock-shaped holes. Each hole is made by the
union of three overlapping ellipses rotated by 27 /3 with respect to one another, as
shown in Fig. 3.8. The minor and major semiaxes of the ellipse are denoted by A
and B, and each ellipse is shifted outwards along its major axis by a distance F.
With the [1 1 0] crystalline axis aligned with the a; lattice vector, the IBZ of the
PnC is given by the region bounded by the path I'-K-M-K;-M; (see Fig. 3.2(c)),
which coincides with the IBZ given in Fig. 3.7 despite the additional symmetries
broken. Note that Ref. [172] misjudged the IBZ despite mentioning that the full
anisotropy of GaAs was considered.

The band structure for both symmetric and antisymmetric mechanical modes
for a structure with parameters ¢ = 500 nm, A = 0.21a, B = 0.28a, F = 0.15a
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Figure 3.9: Band structure of a two-dimensional photonic crystal
(PhC) slab of shamrock-shaped air holes in silicon. Eigenspectrum of
a PhC slab obtained by etching a triangular lattice of shamrock holes in a
silicon slab. The band structure inside along the Irreducible Brillouin Zone
(IBZ) contour is shown for modes of (a) even and (b) odd parity with respect
to the mid-plane of the slab. The density of optical states (DOS), as obtained
from Eq. (3.28), is depicted for both polarizations. The DOS evidences that the
wide z-even in-plane photonic band gap (PhBG) is preserved in the shamrock
crystal, while both guided and in-plane PhBGs open for the z-odd polarization.

and t = 0.5a is shown in Fig. 3.8(a,b), along with the DMS. Two PnBGs are
found for each polarization, the first of which coincides in energy and leads to a
wide 1.7 GHz full PnBG p at ~ 7 GHz. The photonic band diagram for the same
structure along the I'-K-M path, which corresponds to the IBZ for the photonic
case, is shown in Fig. 3.9. The wide in-plane PhBG for z-even modes is pre-
served, which makes the shamrock crystal a potential platform for high-frequency
optomechanics with strong radiation-pressure interaction of cavity photons and
cavity phonons. In Chapter 5 of this thesis we will see how to employ the sham-
rock crystal as a building block to mediate OM interactions in the presence of
unavoidable fabrication imperfection, both with guided mechanical resonances in
a linear defect and with low-frequency MHz motion.

3.4.3 Photonic and phononic crystal nanobeams

The dimensionality of the periodic pattern can be even further reduced by using
dielectric waveguides with a one-dimensional pattern in the propagation direction
with finite thickness and width. Confinement in both directions perpendicular
to the propagation axis is provided by TIR while the periodic pattern provides a
high degree of dispersion control.

Most of the work devoted to patterned nanobeams has focused on straight
ridge waveguides with a pattern of circular or elliptical holes [73], whose basic unit
cell is shown in an inset to Fig. 3.10(a). For vertically etched holes centered along
the axis in the nanobeam, the structure possesses both a ¢, and a 7, symmetry
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Figure 3.10: Photonic and phononic band structure of patterned
nanobeams. Suspended dielectric wires, i.e., nanobeams, can be patterned
along their axis to tailor the propagation of both light and acoustic waves.
(a,b,c) provide the optical (top) and mechanical (bottom) band diagram for
three possible choices of the unit cell. The first case shown (a) consists of a
strip waveguide with a pattern of etched circular holes. The parameters used
are ¢ = 500 nm, w = a, 7 = 0.3a and t = 0.5a. It exhibits a wide photonic band
gap (PhBG) for z-even modes and a small phononic band gap (PnBG) for z-
odd modes. To open a mechanical gap for both polarizations, a unit cell based
on long rectangular corrugations of length h = 3a and width d = 0.5a is shown
in (b), where the rest of common parameters remain unmodified. Despite the
full PnBG that opens around 4 GHz, the wide PhBG is replaced by smaller
ones. The structure shown in (c), a combination of (a) and (b), inherits their
properties, notably the two gaps.
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with respect to the mid-z and mid-y planes, respectively. This leads to splitting
the modes into four categories: {p, = +1,p, = +1;p, = +1,p, = —1;p, =
-1,p, = +1;p, = —1,p, = —1}. For a nanobeam with periodicity a, circular
holes of radius » = 0.25a, width w = a and thickness d = 0.5a, a PhBG between
the lowest guided bands can be observed (Fig. 3.10(a)) for TE-like modes (p, =
+1), somehow inherited from the one observed along I'-K for the 2D PhC slab
of Fig. 3.6(a). The phononic band structure of that same beam is depicted in
Fig. 3.10(d) and shows that only a narrow gap for antisymmetric modes is open. If
a full PnBG is sought after, an alternative structure consisting of a strip waveguide
with corrugations [173,174] can be designed. Its photonic and phononic band
structures are depicted in Fig. 3.10(b) and (e), respectively. While the latter
evidences the presence of a mechanical band gap spanning 2 = [3.6-4.15] GHz,
the wide PhBG is lost, since the previously described thumb rule of having low-
index inclusions in high index material is not fulfilled.

A corrugated nanobeam that exhibits both a TE-like in-plane PhBG and a
full PuBG was conceived [175] and characterized [176]. It merges the two previous
systems into a structure like the one depicted in the inset to Fig. 3.10(c). The
photonic and mechanical properties of such a design strongly inherit the features
observed in (a) and (e) respectively. While the individual gaps are wider in (a)
and (e), the structure posseses both a wide photonic and mechanical band gap in
the same frequency regions, as shown in Fig. 3.10(c) and (f), respectively. The
geometry of the holes and the wings provides independent control over the optical
and mechanical dispersion, a key figure in designing OMC cavities based on this
unit cell [177]. This has been recently used to design for the first time a silicon
OM oscillator which operates within a full mechanical gap [178]. We later use this
property when we assess the role of intentional disorder in localizing the optical
and mechanical fields.

3.5 Optomechanical crystal cavities: the case of
nanobeams

It is a well-known concept in solid-state physics that local defects in the crystal
structure of a band-gap material introduce energy eigenstates inside the band
gap [179]. In addition, the spatial extent of these eigenmodes is localized in the
region of the defect. Analogously, defects in PhCs and PnCs posessing a band gap
can lead to mid-gap states. The large degree of control allowed by nano-fabrication
makes this property very convenient. One can deliberately create defects by mere
design of the nano-fabricated pattern and thus build integrated elements that serve
a particular function. Examples of these are the introduction of a line defect in
a two-dimensional PhC slab to create waveguides or the introduction of a 0D
or point defect to create a cavity. Since the dispersion of both the optical and
acoustic fields can be shaped via a periodic pattern in a thin silicon slab, defects
can then be used to achieve co-localization of vibrational and light modes in a
small volume. We review here the traditional strategy to confine photons and
phonons using the corrugated nanobeam described in the previous section and
explain how to compute the OM coupling coefficient g, introduced in Chapter 2.
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We then evaluate how the presence of distributed disorder in an otherwise periodic
lattice can also lead to localized optical and mechanical eigenfields, providing a
new strategy to achieve OM coupling in nanoscale structures [180].

3.5.1 Point and other engineered defects

The introduction of a local defect of finite extent in a PhC/PnC nanobeam can
lead to the creation of cavities, i.e., resonant localized states. The resulting con-
finement can either be understood in analogy to solid-state physics or by con-
sidering the system as having two PhBG/PnBG mirrors facing each other and
an intermediate small region (the defect) where light or motion can eventually
oscillate at certain frequencies inside the band gap. We explore here two different
types of such defects.

Point-like defects

We first describe a point-like defect, as shown in Fig. 3.11(a), where a strong
perturbation is introduced inside an otherwise periodic lattice made of unit cells
as the one in Fig. 3.10(c). The defect corresponds to a single unit cell with no wings
and no holes, i.e., a suspended strip waveguide of length a = 500 nm surrounded by
two silicon corrugated PhCs/PnCs. Since the defect preserves the ¢, symmetry,
z-even and z-odd bands do not couple and we can restrict to even optical modes
of the defect, for which the gap is open. The chosen geometry also preserves the
o, symmetry of the unit cell, which implies that bands of different y-symmetry
do not couple via the defect. Additionally, the defect+mirror has a ¢, symmetry
with respect to the plane that cuts the beam at the center of the defect. Using all
these symmetries allows us to decouple the calculation of the eigenspectrum of the
full structure into that of 1/8 of it. The structure is simulated using COMSOL
and surrounding the system by perfectly matched layers (PMLs) [181] to mimic an
open system. The use of PMLs in finite-element simulations coupled to complex
eigensolvers has been shown to accurately provide both the optical and mechanical
QNMs [130] . The latter is particularly important for the optical eigenproblem
because the modes are not confined to the slab. Fig. 3.11(b,c) illustrate the optical
eigenmodes supported by such a point defect. The spectral position of the allowed
states is shown within the TE-like bandstructure in (a), while (b) displays the y-
component of the field profile £, (z,y,z = 0) of the localized optical modes. All
three allowed modes have common p, = —1 parity, which probably results from the
much higher frequency of second order modes in the central strip waveguide [182].

Adiabatic confinement potentials

While this type of abrupt point defect suffices to confine the optical and mechan-
ical modes to extremely low modal volumes, it is rather poor in terms of light
storage. The simulated optical quality factors () for this type of abrupt defect
(Fig. 3.11(c)) show that it is not suitable to obtain long-lived optical resonances.
Confining light to a given region of space in the slab leads to a finite extension of
the cavity field profile in k-space, whose wavevector components within the light
cone couple to the radiation continuum. While multiple strategies both in real
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Figure 3.11: Point defect optical cavities in a silicon optomechanical
crystal (OMC). (a) A point defect consisting of a strip waveguide embedded
between two finite OMCs leads to spatially localized defect states within the
TE-like photonic band gap (PhBG). The optical band diagram is reproduced in
(b), with y-even (odd) modes given with solid (dashed) blue lines. (c) Electric
field component Ey(x,y, z = 0) of the allowed defect states, with their frequen-
cies w, and @-factors. Their position within the band gaps is shown with either
solid or dashed horizontal lines in (b) along with the symmetry of the field with
respect to the plane intersecting the beam at the center of the defect. All of
the supported defect states have p, = —1 parity.

and reciprocal space have been pursued to circumvent this issue [183-185], all of
them agree on the importance of the smoothness of the cavity envelope. A Gaus-
sian envelope is Fourier transform-limited, which leads to the smallest possible
extension in k-space and therefore constitutes an efficient way to supressess those
k-vector components.

The most straightforward way to achieve a smooth cavity envelope is to use a
smooth potential. This strategy relies on engineering the band structure by adi-
abatically changing the unit cell geometry in the direction of periodicity. In this
way one can construct an optical or a mechanical trap [186,187]. A standard strat-
egy to define the trap corresponds to changing the pitch a quadratically/cubically
from the mirror cell a,,;, to a central defect cell aze = 'y and back to @i,
The rest of geometrical parameters, which are defined in fractions of a, change
accordingly. Although the thickness ¢ remains constant, the conditions to use
the scaling properties of Maxwell’s equations [72] are approximately satisfied for
small values of I', which implies that the band structure is approximately scaled
by a factor of I'. This allows a progressive shift of the bands for the same cor-
rugated nanobeam. If one changes the geometrical parameters following a cubic
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Figure 3.12: Adiabatic optical cavities in a silicon optomechanical
crystal (OMC). (a) A typical adiabatic defect consists of a geometrical trans-
formation that smoothly transitions from a nominal unit cell with characteristic
width a,,; to a defect unit cell of width agey = I'asmir, and back to @, fol-
lowing the mirror transformation. In addition to changing the unit cell size a,
other parameters may change accordingly, as the radius » and the corrugation
width d. (b) Optical band diagram of the mirror unit cell (¢ = 500 nm, w =
500 nm, ¢ = 250 nm, h = 1500 nm, = 0.3a and d = 0.5a), with the zone edge
(k = m/a) modes highlighted with black dots. The evolution of their frequencies
along the potential well shown in (a) is drawn with solid or dashed black lines
depending on their y-symmetry. The two lower bands are smoothly drawn into
the photonic band gap (PhBG) of the mirror cells, creating a potential well for
photons in the adiabatic defect region. This leads to spatially confined states,
whose frequencies are highlighted with horizontal lines. (c) Electric field com-
ponent Ey(x,y, z = 0) of the allowed states, showing a steadily decreasing mode
volume towards the top of the well. The @Q-factors are given, evidencing how
such a strategy is radically superior to the one shown in Fig. 3.11.

function, as shown in Fig. 3.12(a), the lower band edge of the even PhBG gener-
ates a smooth potential for photons in the central region of the defect, as shown
with green lines in Fig. 3.12(b). Solving Maxwell’s equations leads to the set of
confined optical modes shown in Fig. 3.12(c), whose quality factors are now all
above 5 - 10°. Cavity modes formed from both the band edge of the y-symmetric
and the y-antisymmetric bands are found. Their symmetries are given by either
dashed or solid horizontal lines in Fig. 3.12(b). The same strategy followed here
allows confining mechanical modes provided that the geometrical transformation
pushes the mechanical band inside a (quasi-)band gap. This is shown in the next
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section.

3.5.2 Optomechanical coupling

The introduction of controlled defects in PhC/PnC slabs allows confining the
electromagnetic and displacement fields to a tiny region of space. The nearly
diffraction-limited level of confinement has been used to enhance the OM interac-
tion [73,178,188-190] up to levels that are hardly achievable with other types of
mesoscopic OM resonators, like those based on whispering gallery resonators [191]
or Fabry-Perot microcavities [192]. Nevertheless, not all defect cavity modes result
in coupled photon-phonon pairs and proper design of the confinement potential is
of utter importance. This is due to the symmetries of the resulting cavity fields
and to the physical coupling mechanisms.

The interplay between optical and mechanical modes results from changes
in the material permittivity due to deformation, i.e., Ae(U(r)). In silicon OMC
cavities two mechanisms need to be considered. The first one is a moving bound-
ary (MB) effect applying to any material. The displacement introduced by the
motion during the mechanical oscillation shifts the boundary S of the silicon
nanostructure and changes the overall shape of the patterned structure, which in
turn affects the frequency w, and losses x of the optical mode. This is equiva-
lent to the radiation pressure force term used in Chapter 2 for the Fabry-Perot
cavity with a movable end mirror. Second, the stress induced in the system by
the vibration locally modifies the dielectric constant of silicon via the photoelastic
effect [193]. Although several approaches for evaluating the interaction strength
are possible [194,195], the most easily deployed is perturbation theory, which in
addition may provide physical insights through simple mathematical expressions.
Since the optical cavities used are designed to have extremely high Q-factors, the
commonly chosen approach consists in using an hermitian perturbation theory for
closed photonic systems [196]. However, dissipation is unavoidable and can be ac-
counted for by using a non-hermitian treatment and the associated perturbation
theory [197,198], which allows computing both the dispersive g,,, and dissipative
Go, OM coupling rates, as recently pointed in [199].

The complex coupling rate g, between an optical QNM {E(r), H(r)} of
unperturbed complex eigenfrequency w, and a mechanical eigenmode U(r) of fre-
quency 2, is given by,

dw, / h
Jo = %xzpf = (GMB + GPE) m (331)

where « represents a generalized displacement coordinate [200] associated to a
unit-normalized displacement field u(r), i.e., U(r) = au(r), and the effective
mass M.y is calculated by requiring that the potential energy of the parametrized
oscillator is equal to the true potential energy [201]

mesy = [ ple)lue) (3.3
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The non-hermiticity manifests in the form of the first-order (complex) perturba-
tion coefficients G, and G pg, which are given by

5, Js(u(r) - 1) [AcB)(r) - By (r) = Ae D, (r) - Du(r)]

Gup = —— = — — — (3.33a)
20 4y [e)B () By ) — p)H(r) - Hir)|
~ C’E.(p:S)-E
g = JZoE @SB (3.33b)

2Ly [B ) By ) — pl) () - Fi(r)]

where we have introduced the normal unit vector n to surface S between media 1
and 2, Ae = ¢;—¢€9, A7) = <i - i) the fourth-rank photoelastic tensor p and

€1 €2 )’

the strain tensor S as given by (3.11). Expressions (3.33a) and (3.33b) correspond
to the typically employed expressions [67,202], provided that the terms F.o.F are
replaced by F* -o-f‘, with F = E or H. These transformations arise from replacing
the standard power orthogonality of normal modes in hermitian systems [182], by
the bi-orthogonality of QNMs [123,203]. To ensure completeness of the QNM
basis [204], the integration volume V' comprises the PMLs used to truncate the
computational domain. Once g, given, the dispersive and dissipative coupling
rates are found respectively by g,., = Re(g,) and g¢,, = 2Im(g,), respectively.
The vacuum OM coupling rate g, as defined in Chapter 2 corresponds to g,,, and
its value is very well aproximated by the hermitian theory in the case of high-Q)
cavities. Since we only consider the dispersive coupling in this thesis, we restore
from now to the common notation g, = g,.. The non-hermitian perturbation
theory provides the right theoretical framework to engineer devices with strong
dissipative coupling, e.g. plasmonic systems, and deserves increasing attention
in the optomechanics community. In addition, the deformation u(r) has no time
dependence and Eq. (3.33a) can be used to calculate the first-order changes in
both frequency and losses with respect to any prescribed displacement, i.e., its
gradient. One can therefore compute the change in ) with respect to, e.g., the
rigid displacement of a particular hole. I am currently using the computed gradient
to optimize the in-plane and out-of-plane Q)-factor of point-like PhC cavities in a
large parameter space, but that work goes beyond the scope of this thesis.

Once the first order perturbation expressions are found, the challenge is to
select a geometry transformation to a mirror unit cell that not only allows simul-
taneous confinement of light and motion, but a high dispersive OM coupling rate.
Inspection of expressions (3.33a) and (3.33b) is rather instructive in that sense,
since they allow determining which mechanical modes are optomechanically dark,
i.e., go = 0, in the presence of mirror symmetries. The moving boundary effect
results from the product of squared terms, e.g. E-E, with a linear term, i.e., u-n,
and therefore vanishes for mechanical modes which are antisymmetric accross any
mirror plane. Although the photoelastic term is more involved, developing the
numerator in (3.33b) evidences that for a mode with a dominant optical polariza-
tion, which is the case in the structures used in this thesis and in particular in the
nanobeams shown in Fig. 3.12, the same selection rule applies [205]. Mechanical
modes that are formed from bands with Bloch modes that are symmetric accrosss
the y and z planes should therefore be privileged. In addition, mechanical modes
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Figure 3.13: Optomechanical crystal (OMC) cavities based on adia-
batic potentials. The optical and mechanical band structure of a corrugated
silicon OMC can be engineered to (a) push the lower TE-like band edge inside
the photonic band gap (PhBG) while (b) pushing a mechanical band of z/y/z-
symmetric mechanical modes (thick solid blue lines) into a partial phononic
band gap (PhBG) (shaded blue). This is done by scaling the geometry in
the direction of periodicity while simultaneously increasing the stub height, as
shown by the unit cells in the insets, where a, r and d are scaled by I' = 0.75
and h by ', = 1.2. (¢) An OMC cavity is created by a cubic transformation
from the mirror to the defect cell, leading to the geometry shown in the upper
panel. (d) Mode profiles of the calculated optical and mechanical modes having
the highest coupling g, = 27 - 350 kHz.

originating from the I' point are preferred since neighboring cells add up con-
structively, while modes from the X point experience a 7 phase shift at the unit
cell boundary and single cell contributions cancel out. Note that modes at the
I' point of a crystal with a centro-symmetric unit cell are also either symmetric
or antisymmetric with respect to the inversion center and that this feature also
needs to be considered.

Figure 3.13 shows the design of an OMC cavity based on the corrugated
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nanobeam and following the design rules just given. The geometrical transforma-
tion proposed employs the same defect cell shown in Fig. 3.12(a) with I" = 0.75
with the additional enlargement of the corrugation height h by a factor I'j, = 1.2.
Panels (a) and (b) show, respectively, the optical and mechanical band diagram of
the mirror cell and the evolution of the band edges when linearly transforming the
geometry from the mirror cell to the defect cell. This is done at the X (optical)
and I" (mechanical) points, respectively. The stub height has a minimal effect on
the optical bands, which increase their frequency due to the scaling of Maxwell’s
equations. However, it strongly influences the mechanical band structure and
counterbalances the frequency rise induced by the decreasing unit cell width a,
radius r and stub width d, as shown by the negative slope of the mechanical modes
shown as solid blue lines in (b). The band edges of these bands at the I' point
therefore enter the quasi-PnBG for vibrations that are symmetric across the y
plane. When a smooth transition along the beam axis -over N, unit cell periods-
from the mirror region unit cell to the central defect unit cell is designed, it leads
to a confinement potential and allows both the localization of TE-like optical
modes and of z/y symmetric mechanical modes. Fig. 3.13(b) shows the resulting
geometry using a smooth cubic function [73] over Ny = 7 cells and a mirror of
N,, = 15 cells. The frequency of the most OM-coupled photon and phonon is
highlighted in (a,b) via a horizontal line. This pair is represented in Fig. 3.13(c)
along with their vacuum OM coupling rate g,/2m = 350 kHz, calculated from the
real part of Eq. (3.31). Note that the dissipative coupling g, . is equal to 27 - 247
Hz, which is much smaller than the dispersive contribution. This is the case for
most of the photon-phonon pairs considered in this thesis.

3.5.3 The role of disorder: dissipation and localization

Purposely designed high-Q PhC/PnC cavities exhibiting high OM coupling rates
are created via controlled nanopatterning based on engineering the band structure,
as shown in Fig. 3.13. Nevertheless, uncontrolled distributed defects are always
introduced in the fabricated nanostructures in the form of fabrication disorder.
Regardless of the type of disorder, any deviation from the perfect design generally
introduces additional dissipation channels, both in the crystal plane and in the
out-of-plane direction. The first channel operates both in PhCs and PnCs by
coupling the cavity mode to isofrequency propagating modes with other spatial
symmetries, if any are present. This is precisely why confining phonons inside a full
mechanical gap is particularly appealing, as has recently been done with shrunken
wings in Ref. [178]. In the case of photonics, the second dissipation channel also
operates and results from the coupling to the radiation continuum. These two
mechanisms lead to a decrease of the radiation-limited optical and mechanical
quality factors. Fig. 3.14(a) shows the results of simulating 200 realizations of the
OMC cavity described in Fig. 3.13 in which the holes are randomly displaced by
Ar, with Ar distributed according to a normal distribution A(0,0?). From now
on, whenever we refer to disorder, normal distributions are assumed. The results
shown use 0 = 0.005a = 2.5 nm, with a = 500 nm the periodicity in the mirror
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Figure 3.14: Disorder-mediated dissipation in an optomechanical
crystal (OMC) cavity. The OMC cavity of Fig. 3.13 is subject to unin-
tentional disorder the position of the holes Ar, with Ar distributed according
to a normal distribution A(0,0?). (a) Optical and mechanical quality factors
of 200 disorder realizations (blue dots) with ¢ = 0.005a and of the unperturbed
structure (black dot). The shaded region marks the space where the OMC cav-
ity is in the sideband resolved regime €2, > x. (b) Histogram of the obtained
go/27 for the same set of disordered structures. The black vertical line marks
the unperturbed value and the blue one the average on the set shown.

section, a value that can only be achieved with state-of-the-art nanofabrication
technologies.

The optical Q-factor is shown to be dramatically affected by the presence
of fabrication disorder, with an average decrease in () of over two orders of mag-
nitude. This constitutes the main effect of unintentional disorder for the optical
@, since the Q-factors otherwise spread over a rather limited region. The strong
effect on (Q) stems from breaking the underlying x and y symmetries of the
confinement potential, which are crucial in canceling out radiation channels via
interference [206]. In contrast, the radiation-limited mechanical Q-factor presents
a much broader distribution, with some subset of values close to the unperturbed
one (black dot). Nevertheless, the average decrease in () is also two orders of mag-
nitude. Note that the mechanical mode under study is found in a partial PnBG
instead of in the full PuBG (see Fig. 3.13(b)). Random disorder breaks the sym-
metry that protects the mechanical mode, coupling the otherwise y-even mode to
the isofrequency y-odd band of the mirror region, i.e., it adds a dissipation chan-
nel. While the cavity OM system is designed to operate in the sideband resolved
regime (2, > k), the presence of unavoidable fabrication disorder brings the
system to the unresolved one, as shown via the blue shaded region of Fig. 3.14(a).
This critically limits the possible physical phenomena experimentally accessible,
as discussed in Chapter 2. On the contrary, the field profiles do not change sig-
nificantly and the OM coupling rate g, is practically unaffected as shown via the
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histogram in Fig. 3.14(a). Since disorder is considered detrimental, efforts are usu-
ally made to minimize it [73] or finding designs as immune to fabrication disorder
as possible [207,208]. We propose here a different strategy focused on exploiting
disorder as a resource.

When a crystal is structurally perturbed such as a crystalline solid, a PhC,
or an OMC, the ideally propagating Bloch modes undergo random multiple scat-
tering and are sensitive to imperfections, especially at the edges of the band
gap [23]. Depending on the propagation frequency or energy, the dimensionality
of the system, the nature and level of disorder and the interaction of the system
with the environment, disorder-induced scattering can completely change the en-
ergy spectrum of the perturbed crystal and the transport properties with respect
to the unperturbed one. In the three dimensional case [209], a phase transi-
tion from diffusive to insulating occurs when the disorder level is sufficiently high
and the modes become localized states, decaying exponentially when ensemble-
averaged with a characteristic length scale, called the localization length, £&. In
a quasi-one-dimensional structure like the OMCs described here, the crossover
from extended to localized modes occurs at & = L, where L is the total length of
the structure [209]. These disorder-induced narrow resonant states populate the
spectrum around the band edges forming a band of localized modes, known as
the Lifshitz tail [210], which exponentially decays away from the band edge when
ensemble averaging. This band-edge tail in the density of states broadens with
increasing disorder and has been measured in, e.g., a photonic crystal waveguide
(PhCW) [211]. This type of disorder-induced confinement, also known as Ander-
son localization, was originally proposed in the context of electronic transport to
explain the metal-insulator phase transition induced by structural imperfections
in a semiconductor [2]. The idea here is to induce localization of both photons
and phonons via intentional disorder and to study the potential of such an ap-
proach for cavity optomechanics and as a tool to observe Anderson localization
of GHz mechanical vibrations. In Chapters 4 and 5 we will discuss the physics of
light and motion localization in some detail, in particular its occurrence within
the frequency regions where propagating Bloch modes exist in the unperturbed
structure and the connection between the spontaneously localized modes and the
density of states given by Eq. (3.28). Here we restrict instead to modes that
spectrally appear inside the full mechanical gap or the TE-like photonic gap of
the corrugated OM nanobeam, i.e., modes deep inside the Lifshitz tail, which
guarantees their localized nature and allows comparison to engineered cavities.
Close to the band edge and to first-order, localization can be pictured in close
analogy to what we have shown in Fig. 3.13 for an engineered potential. Random
geometrical perturbations in an otherwise periodic lattice lead to random fluctu-
ations of the band edge frequencies, which in turn results in a potential landscape
where photons and/or phonons can be spatially trapped. This is schematically
depicted in Fig. 3.15(a), where the band edge frequencies of the full mechanical
gap are shown in the presence of normally distributed wing widths (¢ = 0.05a)
across a nanobeam of length L = 100a. The approximate extension of the Lifshitz
tail, at least for low values of ¢ depends, therefore, on how sensitive is the gap
to variations in the parameter of choice. This is confirmed in panels (b) and (c),
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Figure 3.15: Gap maps and sensitivity to disorder. (a) Geometrical
disorder leads to a random spatially-dependent potential at the band edges of
a photonic/phononic crystal, as shown for disorder in the wing width (¢ =
0.05a) of a corrugated nanobeam of length L = 100a. The position of the
full mechanical gap band edges is extracted from the corresponding gap map
shown below (left). The gap map obtained when changing the position of the
circular hole by Az or Ay is also shown (right). (b) Density of mechanical
states (DMS) obtained for disorder in the wing width (left) and hole position
(right). Disorder levels o = {0.01a,0.03a,0.05a,0.07a,0.09a} are shown. The
Lifshitz band-edge tail is evidenced in both cases, as is the enhanced sensitivity
of the DMS to disorder in the wing parameters.

where we show both the gap map and the density of mechanical states for var-
ious o obtained after ensemble averaging over 30 different disorder realizations.
The DMS is shown both for disorder in the wing widths and the hole positions
(both in x and y). The unperturbed structure has a wing width of w = 250 nm
and the holes are centered in the unit cell. Such positions are marked in the
gap maps with a graded shading, which represents the uncertainty in the value
due to the imposed disorder. While the gap position and size is quite sensitive
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to the wing width at the values chosen, it is rather independent of variations in
the hole position relative to the center of the unit cell. Indeed, the evolution of
the gap width with respect to these two has to correspond to either a minima, a
maxima or a saddle point since moving the hole in one or the other direction is
equivalent. As a result, the Lifshitz tail extends much deeper in the gap for wing
disorder. Positional disorder only starts having a strong effect on the band-edge
tail at disorders above ¢ = 0.05a, a disorder level above which the gap is nearly
destroyed for wing disorder. Similar results are found for wing height disorder
(left) or hole radius disorder (right). Although not shown here, the behaviour
for the optics is reverted, with the holes having a much stronger effect than the
wings, as was suggested with the simulations shown in Fig. 3.10. At very large
levels of disorder, i.e., ¢ > 0.07a, the simple picture used here might be consider-
ably wrong, which leads to a sudden increase of the Lifshitz tail, which otherwise
grows linearly with o [180]. This different response opens the exciting possibility
to engineer independently their disorder-induced localization.

Finally, we calculate the vacuum OM coupling rate g,/2m between all the
photonic and phononic Anderson-localized modes found in a set of structures
perturbed by different amounts of disorder using Eq. (3.31). An example of a
highly coupled photon-phonon pair (g,/27 = 183 kHz) found for a structure with
o = 0.08a in the hole positioning is depicted in Fig. 3.16(a), exhibiting a highly
localized mechanical mode of effective volume of V,;; = 0.1pum?®, which repre-
sents half of the effective volume of a perfectly engineered mechanical cavity as
the one shown in Fig. 3.13. The optical mode shown is spatially broader than
an engineered cavity even if intentional hole disorder is employed. The prob-
ability distribution of the calculated coupling for ten structures perturbed by
o = 0.04a (black dots), ¢ = 0.08a (red dots), and ¢ = 0.12a (blue dots) is shown
in Fig. 3.16(b). Deep in the localization regime, many variables deviate from a
normal distribution showing heavy-tailed distributions such as the quality factor
and the volume of localized modes [212,213], the transmission intensity [214], or
the conductance fluctuations [215]. In this case, we also observe a log-normal dis-
tribution of g,/27 in the localization regime. The mean value of the log-normal
distribution increases with disorder, while the variance has a maximum value for
o = 0.08a and then decreases. We attribute this dependence on disorder to a
nontrivial interplay between the localization length and the photonic leakage out
of the structure. Up to o = 0.08a, the localization length is comparable to the
total length of the structure thus giving rise to extended leaky modes with poor
coupling rates in the range of 0.1 kHz. With increasing disorder, the localization
length decreases giving rise to strongly confined modes within the structure with
larger coupling rates. For larger perturbation, however, also the leakage of pho-
tonic modes increases which reduces both the photonic confinement and the OM
coupling. For completeness, the probability distribution of g,/27 calculated when
perturbing the width of the wings and the position of the holes by ¢ = 0.08a is
shown in the bottom panel of Fig. 3.16(b).The maximum rates are calculated in
the hundreds of kHz range and correspond to strongly overlapping photonic and
phononic localized modes. These are lower than values attainable for an engi-
neered cavity in the same silicon platform (see Fig. 3.13 or Refs. [176-178]) but
place the observation of OM modulation in the Anderson-localization regime at
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Figure 3.16: Optomechanical coupling in the Anderson localization
regime. (a) An Anderson-localized mechanical and optical mode in a corru-
gated nanobeam of length L = 50a (¢ = 500 nm) where the hole positions
are distributed with ¢ = 0.08a. Their vacuum optomechanical coupling rate
go/2m is given. (b) Probability distribution of g,/2m calculated between all the
Anderson-localized mechanical and photonic modes found in ten nanobeams
randomized with a standard deviation o = 0.04a (black dots), o = 0.08a (red
dots) and o = 0.12a (blue dots). We fit them with a log-normal distribu-
tion. (b) As (a) but with a perturbation of the wings width by ¢ = 0.08a (red
squares), compared to the coupling calculated when perturbing the holes by
the same amount (red dots).

experimental reach, as only twenty structures have been used to obtain the dis-
tributions of Fig. 3.16(b).

Motivated by these calculations, corrugated nanobeams with intentional
disorder in several parameters were fabricated in collaboration with Universitat
Politecnica de Valencia. The fabricated samples had a fixed amount of o = 0.02a
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Figure 3.17: Photonic localization in disordered corrugated silicon
nanobeams. (a) SEM micrographs of disordered corrugated nanobeams with
a deterministic disorder in the wing width (¢ = 0.02a) and increasing disor-
der in the hole position. (b) Optical transmission spectra measured with an
evanescently-coupled fiber taper (see Chapter 5 for experimental details) for
a single disorder realization of various values of o. The inset shows a single
optical resonance fitted with a Lorentzian, from which a @) ~ 3500 is extracted.

deterministic disorder on the width of the wings to guarantee phonon localiza-
tion close to the band edge and varying levels of disorder on the hole position to
significantly alter the photonic localization properties leaving the phononic ones
relatively unaltered. Scanning Electron Micoscopy (SEM) images of the fabri-
cated structures are shown in Fig. 3.17(a). These were optically characterized
using an optical fiber taper experimental setup (discussed in detail in Chapter 5).
Localized optical modes were observed but with very low Q-factor (Q < 5 -103),
as exemplified by the transmission spectra of Fig. 3.17(b). The low Q-factors,
even lower than in the simulated structures, probably prevented the observation
of any OM modulation in the GHz-range.

3.6 Summary

The main notions and results are summarised and the relationship to the content
provided in the next Chapters 4 and 5 is given.

e To observe optomechanical interaction in first-order approximation we need
to co-localize light and displacement within the same volume. Deterministic
defects in periodic structures allow this to happen. Since periodicity in three
directions is difficult to achieve at the nanoscale, an alternative is to reduce
the dimensionality of the system and use 2D or even 1D periodic structures.
In these cases, the confinement in the dimension(s) left is achieved by other
mechanisms such as total internal reflection (Subsection 3.4.1). These struc-
tures exhibit eigenmodes described by Bloch waves distributed in frequency
bands (Section 3.3). An embedded deterministic defect creates localized
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eigenstates in otherwise forbidden regions, i.e., band gaps. This is achieved
even in quasi-band gaps for modes sharing the symmetries of the introduced
defect, i.e., the modes are protected by symmetry. Spatially co-localized
photons and phonons can be obtained by appropriate engineering of the
band structure (Fig. 3.13).

e The dispersive coupling of an optical cavity mode to a mechanical mode dis-
placement is given by the vacuum optomechanical coupling rate g, (Chap-
ter 2). We presented here (Subsection 3.5.2) a general treatment to calcu-
late it based on a non-hermitian perturbation theory which uses quasinormal
modes, the naturally-ocurring resonances of a lossy system, and goes beyond
ultra-high @ cavities. The theory yields a complex coupling g, = o+ 190 s
which also provides the dissipative coupling, i.e., changes in ) depending
on the mechanical resonator position . The dissipative part g, , is not con-
sidered in the rest of this thesis, but the () factor in an Anderson-localized
optical cavity is typically lower than in a designed optical cavity and justi-
fies the use of this theory even for the dispersive part g, .. The expressions
given here should gain widespread use as they unveil the often neglected
role of dissipative coupling in current experiments and offer a way to en-
gineer it. We also analyzed the selection rules that govern the value of g,
when an adiabatic potential is employed. These rules are equally relevant
in understanding the role of g, in the Anderson-localization regime since
the localized fields are roughly given by the product of a Bloch mode and
a cavity envelope [216]. These ideas are employed to understand optome-
chanically transduced spectra in Chapter 5 and constitute a set of first-order
rules to consider when engineering an optomechanical structure optimal for
the observation of phonon localization.

e Cavity-optomechanical systems are parametrized by a few coefficients set
either by design or by the optical drive conditions. In a lithographically pat-
terned optomechanical crystal cavity, the presence of unavoidable fabrica-
tion disorder typically alters the calculated values for these coefficients. This
random disorder leads to additional loss channels, as shown for an optome-
chanical crystal cavity in a silicon corrugated beam (Subsection 3.5.3), and is
often seen as a nuisance. However, disorder can also be exploited as a tool to
induce both light and motion confinement. This was illustrated at band gap
frequencies for the same corrugated optomechanical nanobeam with inten-
tional positional disorder. However, to bring Anderson-localization optome-
chanics within experimental reach, one needs to tackle two main issues: lack
of co-localization and poor light confinement over time. The first is inher-
ent to the independence of the two interference processes and will generally
push the probability distribution function of the dispersive coupling rate g,
to peak at rather low values, as shown for the nanobeams in Figure 3.16.
In Chapter 4 we show how to circumvent this limitation using GaAs/AlAs
periodic-on-average multilayers. The second issue, low optical quality fac-
tors, makes it difficult to the detect mechanical motion by lowering the
transduction factor (see Eq. (2.45)). When the disorder levels required to
induce localization are very high, as for the nanobeams explored here, the
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Q-factor of the Anderson-localized optical cavities are dramatically reduced
due to enhanced out-of-plane losses (Qqe ~ 4 - 10%). Ideally, the minimum
disorder that can be assumed in a fabricated structure, i.e., intrinsic fab-
rication disorder, should suffice to tightly localize both fields. In the case
of optics, photonic crystal waveguides (PhCWs) have proven resourceful
for experiments in the Anderson-localization regime even with fabrication
deviations as low as 1.5 nm [217]. A dual photonic/phononic crystal waveg-
uide should therefore enable both optical and mechanical localization of
waveguided modes with Anderson-localized optical modes at much higher
Q-factors. We show in Chapter 5 how a well-chosen line defect in the full
mechanical gap of the shamrock crystal we proposed here (Fig. 3.8) enables
both light and mechanical guiding and explore this approach in detail.
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Chapter 4

Photon-phonon interaction in
one-dimensional structures

The simplest photonic and phononic crystal one can envision is a one dimensional
structure in the form of a periodic multilayer, also known as a superlattice. Despite
its simplicity, the physics of periodic multilayer stacks provide deep insights into
the general physics of periodic systems and how propagation can be controlled via
alternating material properties. It also allows some analytical derivations, which
can cast light on some of the most fundamental effects described in the rest of the
chapters. Since this type of system can be grown with epitaxial techniques [218],
the quality of the crystalline materials and the atomic-scale level of precision that
one can attain on the thicknesses of the constituent layers has opened the door
to highly engineered optical and mechanical nanostructures with applications in a
broad range of disciplines. We will therefore review the acoustooptic properties of
this type of system and how disorder can be introduced to induce localization of
both the light and acoustic fields. The last part of the chapter will be devoted to
explain how to coherently generate and detect high frequency phonons by pulsed
optical means in this type of structure. With the selection rules that result, one of
the main experimental results of this thesis, the coherent generation and detection
of a topological nanocavity phonon will be described.

4.1 Acoustics and optics in multilayered struc-
tures

4.1.1 Acoustic and optical eigenproblem

Following the structure developed on the previous Chapter our goal is to solve the
elastodynamic (3.13) and optical (3.8) eigenproblems for a system with a stacking
of transversely homogeneous layers of different materials {A, B,C, D, ..}. We give
here the basic mathematical developments and physical assumptions that lead to
the simple transfer matrix formalism that is used both in the optical and acoustic
domains in the rest of the chapter.
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Longitudinal acoustic phonons

Using the translational invariance property in the in-plane direction we can de-
scribe the acoustic modes sustained by such a system as

Uy, (r) = e™iPuy (2) (4.1)

with kj the in-plane wavevector taking any value and function uy, (z) dependent
only on the 2 coordinate. For a generic crystalline material, Uy, (r) can have all
three components non-null simultaneously and no further polarization informa-
tion can be given on the supported modes, except when k; = 0. In such case,
the eigenmodes can be split between longitudinal U = [0, 0, U,(z)] and transverse
waves U = [U,(z),U,(2),0]. Due to the experimental conditions used during
this thesis, we can limit our analysis to modes with propagation normal to the
interfaces; we set k; = 0. For the very same reason, we will only consider lon-
gitudinal vibrations, for which the only non-null component is U,, i.e. we define
U(z) = U,(2). The eigenproblem, prior to using any condition on the materials
and/or thicknesses, becomes the following scalar eigenproblem

1 0 ou 2
_R5$<QAE@0:QU@ (42)

where we asume that the z direction corresponds to the [100] crystalline direction
of all materials and set C' = C'1;. The solution inside each homogeneous layer j
is known to be a plane wave with a linear dispersion relation and we can locally
decompose the field inside the j-th layer as the sum of a propagating and a
counterpropagating plane wave

U;(2) = aj ™% + a; _e ™% for 0 < 2 < d; (4.3)

with k; = Q/v; the local wavevector and v; = /C;/p; the longitudinal speed
of sound in the material j. Note that we define here a local coordinate z at the
beginning of each layer. The solution inside layer j can now be given by a two-
component vector a; = [a;4,a;_]. At the interfaces between each two layers,
the boundary conditions of the elasticity problem impose the continuity of both
displacement and stress

Uj(d;j) = Uj+1(0) (4.4a)
ou; ou;
Cja—;(dj) =Cjn 8];1 (0) (4.4b)

whose algebraic manipulation leads to the following recursion relation for the
vector a;

a; = Mjjp-ajn (4.5)

with matrix M; ;1 given by

1 (1 + ZJZ_+> e—45d; (1 — ZJZ_+> e—4;d;

M =3 ’ ’ =L, -1, 4.6
S R o

J
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where we have introduced the acoustic impedance Z; = C;/v;. The last equiv-
alence in (4.6) decomposes matrix M ;,; into a matrix L; that accounts for
propagation in layer j and an interface matrix I; ;1 that connects the field and
stress just to the left of the interface between j and 7 + 1 to the one just on the
right of it. These are

[emiaidi ()
(1) (-3

Lij = 7. . (4.7b)
(1- - 1+ ==

which are the two main algebraic building blocks to find the coefficients at a given
position once they are known elsewhere. Solving the eigenproblem (4.1) therefore
implies using these algebraic relations to construct a global transfer matrix M
together with the appropriate boundary conditions in what is called a transfer
matrix formalism [219].

Normal-incidence light

The same stacking behaves as an optical multilayered structure, provided that
the different materials {A, B, C, D, ..} have different complex permittivities. We
assume that all materials are non magnetic, i.e. 4 = 1. Much like in the acous-
tic eigenproblem, translational invariance in the zy-plane allows us to write the
eigenmodes sustained by such a structure as

Ey, (r) = eI Pey, (2) (4.8)

with k the in-plane wavevector taking any value and function ey (z) depending
only on the z coordinate. Note that we give here the form of the solutions for
the electric field E but the same applies to the magnetic field H. Since we only
consider optically isotropic materials, any plane defined by k| and z (the plane of
incidence) is a symmetry plane and modes can be split between Transverse Electric
(TE) and Transverse Magnetic (TM) polarization, as was seen in Chapter 3, which
reduces the vectorial wave equation (3.8) to two uncoupled scalar equations [219].
For TE (TM) waves the electric (magnetic) field is perpendicular to the plane
of incidence. For the particular case of on-axis propagation, i.e. k=0, the two
polarizations are degenerate. We will limit ourselves to this particular case and
fix an arbitrary polarization p = ix + jy. One can then solve for the scalar field
E(z) satisfying
1 0?E(z) w2
e(z) 022 ( ) E() (4.9)

c
whose solution inside each layer is simply given by the superposition of a propa-
gating and a counterpropagating plane wave

Ej(2) = a; ™" +a;_e ™% for 0 < 2 < dj; (4.10)

with k; = %, /€; the local wavevector and ,/€; = n; the refractive index of layer
7. As in the acoustic case, the solution in a given layer is given by the vector
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a; = [a;+,a;_]|. At the interfaces between each two layers, Maxwell’s boundary
conditions impose the continuity of both the tangential electric field (here F(z))
and magnetic fields (here ———2E£(2)), that lead to

wpe 0z
Ej(d;) = Ej44(0) (4.11a)
8Ej o 8Ej+1
i (ds) = 2L (0) (4.11)

The use of such boundary conditions leads to a relation of the form (4.5), with
the matrix M, ;41 given by

1 <1 + M) e~ tkid; <1 _ M) e~ Fkidj

J

Jatl = 2 1 _ 41 eikjdj 1 + nj+1 e’ik‘jdj
; n;

nj

M (4.12)

The obtained matrix is equivalent to (4.6) provided that the acoustic impedances
Z; are replaced by refractive indexes n; and the longitudinal acoustic velocities v;
by the speed of light, ¢/n;. The equations governing on-axis propagation of light
in a multilayer structure therefore mimic longitudinal acoustic phonons propagat-
ing in the same structure, the similarity being most apparent when the problem
is set via a transfer matrix formalism.

Due to the strong analogy between longitudinal acoustic phonons and normal-
incidence light propagation in multilayered systems, most of the discussed physics
for the acoustic case can be directly generalized to the case of optical multilayers
and viceversa. The analogy can also be extended to other one-dimensional sys-
tems governed by scalar wave equations. We will therefore devote most of this
chapter to the description of acoustic phenomena in multilayers and their optical
properties will only be explored when studying photon-phonon interaction.

4.1.2 Acoustic superlattices

We focus now on the propagation of elastic waves in an infinitely periodic planar
stacking, i.e. an acoustic superlattice (SL). In this setting, the eigenmodes can be
set to be Bloch modes of the form

Uyn(2) = €uy, 4(2) (4.13)

where u, ,(z) is a periodic function of period D. As described in the previous
chapter, ¢, the Bloch wavevector, belongs to the Brillouin Zone (BZ),i.e. —7/D <
qg<m7/D.

From now on, only periodic systems with two different materials A/B, a
binary SL, are considered (see Fig. 4.1(a)). Unlike in the previous chapter, where
we resorted to numerical methods to find the band structure of the allowed modes,
the simplicity of this particular system allows for a direct analytical solution. If
we concatenate the operation (4.5) two times we know that the coefficients should
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obey both the result of applying (4.6) twice and Bloch’s theorem for the Bloch
wavevector ¢ in (4.13). They therefore need to fulfill simultaneously

a; = M 11 My 4025400 = B-aji (4.14a)

a; = €_iqDaj+2 (414b)

an eigenvalue problem that leads to the following transcendental equation [220)]

for ¢
Qd Qd 2 Qd Qd
cos(qD) = cos (—A + —B> — Lsin (—A> sin (—B) (4.15)
VA VB 2 Vg vB
where 2
_ Za
ZB
= 4.1
7 7. (4.16)
ZB

represents the phononic modulation that arises from the difference in the acoustic
impedances Z4 and Zg. The corresponding eigenvector is given by

Ajy2.4+| B
[aﬁz,] N L_iqD - Blj 4

with B;; the 4, j-th coefficient of matrix B in (4.14a). If we assume that n < 1,
which is the case for the most commonly used I1I-V materials, we can neglect the
second term in (4.15), which leads to [221]

Q
gD =+—+n2r Vn € Z (4.18)
v

where v is the effective speed of sound given by

Dvvg

== —-— 4; ].9
davp + dpva (4.19)

and corresponds to the mean velocity for the transit time across one period. Equa-
tion (4.18) evidences the band folding effect induced by the periodicity D, al-
though the dispersion remains a simple linear dispersion with an effective velocity
v and no acoustic band gap. This dispersion (Z4/Zp = 1) is depicted with a
black solid line in Fig. 4.1(b). The folded dispersion relation (4.18) leads to a
degeneracy of order two at frequencies

nmv

with even values of n corresponding to zone-center (ZC) phonons (¢ = 0) and odd
values corresponding to zone-edge (ZE) phonons (¢ = 7/D). When the quadratic
term on 7 is considered, there exists values of 2 for which the modulus of the
RHS in (4.15) is greater than 1 and the equation has no solutions for ¢ € R. The
role of the acoustic impedance mismatch is therefore to open acoustic band gaps
around the frequencies €2, in (4.20). The size of such gap can be approximated as

nsin (mrd—Ai)‘ (4.21)

(Y
AQ, =2—
D VA

D
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Figure 4.1: Schematic principle of an acoustic superlattice (SL). An
acoustic SL is made by infinitely stacking layers of different materials in such a
way that the governing parameters, the mass density p(z), the elastic coefficient
C(z) and the longitudinal acoustic velocity v(z) are periodic in z. The typical
bilayer setting, with a period D given by two layers A and B of thicknesses d 4
and dp, is depicted in (a). (b) Acoustic band diagram of the allowed propagat-
ing Bloch modes for a SL with (blue) and without (black) acoustic impedance
contrast. While band folding and a modification of the acoustic velocity to v
occurs without impedance mismatch, i.e. 1 = 0, impedance mismatch is re-
quired to open band gaps of width AQ,, at frequencies Q,, = nwv/D. The gap
to midgap ratio A, /€, for the first 5 bands is depicted in (c) for varying
da/D.

by Taylor expanding the RHS of (4.15) around §2,, and its normalized behaviour
is depicted for the first 5 bands in Fig. 4.1(c). We see that both €, and AQ,, are
inversely proportional to the period D, which can be used to increase both the
width and central frequency of a minigap, without altering their ratio. However,
if a particular €2, is targeted, choosing materials with high 7 constitutes the main
way of increasing the gap. In addition, the presence of the sinusoidal term in (4.21)
allows particular choices of the thicknesses (d4,dp) to close certain minigaps. For
the n-th minigap, we have

dy pUA

— = = AQ, = 4.22

D~ nog+ plos — o) =0, Vpe0,n]NN (4.224a)
da _ (2p — 1va

AQ,
— — — |, Vpe[l,n]NN (4.22b
D 2nvg+ (2p—1)(va —vp) maX( Qn ) pellnl ( )
such that all ZC minigaps cancel out for ds/D = va/(va + vp) while the ZE
minigap relative width 49 /q, are always maximal for this particular choice of
dy. Since we usually deal with the lowest order minigaps, it is interesting to
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Figure 4.2: Band diagram and Bloch modes of a GaAs/AlAs (%,%

superlattice (SL). (a) Complex band diagram of a (3,%) SL for a design
frequency f,, = 100 GHz. The zone-edge (ZE) minigaps are maximized for the
thicknesses chosen, while all the zone-center minigaps are closed. Inside the
minigaps, evanescent Bloch solutions with ¢ = J + iqr, exist. (b) and (c) rep-
resent the acoustic velocity v and impedance Z profiles. (d) The displacement
field U(z) associated with the Bloch modes at the lower (upper) edge A (B) of
the first ZE minigap is given. Due to symmetry considerations, these have to be
either symmetric or antisymmetric in a unit-cell chosen to be centro-symmetric
(dashed red). We see that the edge mode A (B) is symmetric (antisymmetric)

with respect to the central GaAs layer.

note that for n = 2, the choice of thicknesses da/D = va/(va + 3vg) or da/D =
va/(3va + vp) leads to a maximal relative gap width. Also note that the first
minigap A€ is never closed for a finite value of n by sole control of the relative
thicknesses of the two layers A and B, but closes only when d4 =0 (d4 = D), i.e.
bulk material of only material B (A).

When designing an acoustic SL and nanostructures that derive from it, one
typically wants to control the phononic properties in a particular minigap n, at a
frequency f,, and with a given gap size (typically maximal). These criteria set the
values of the layer thicknesses. For example, if we aim at having a SL with a design
frequency f,,=100 GHz at the the first ZE minigap and with maximal minigap
width, the chosen thicknesses would be ds = v4/af,, and dg = vB/af,, [222]. This

particular geometry is called a (2,2) SL, since the wavelength of a mechanical

plane wave propagating at frequefm;f fm is vasB /g, for alternating materials A/B.
The band diagram of this SL made of GaAs/AlAs is shown in Fig. 4.2(a), while (b)
and (c) show the acoustic velocity and impedance profiles. The eigenvalue prob-
lem we solve is formulated in the reverse direction than (3.13), since we asume 2
given and we look for eigenvalues ¢ [223]. With this approach, Equation (4.15)

admits an analytic continuation in the complex plane and we can find solutions
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with Q € R and ¢ = qgre + iqrm € C. Within the ZC (ZE) band gaps, solutions
with gre = 0 (¢qre = /D) and qr,,, # 0 satisfy (4.15). Although these solutions
lack physical meaning for an infinite SL (spatially divergent eigenfields in either
the positive or negative z-direction) they are relevant whenever one considers a
finite or semi-infinite SL or when one studies what would happen to a system
in the presence of an oscillating source term at frequencies within the band gap.
For this particular choice of thicknesses, the minigaps at the ZC are closed (see
Fig. 4.1(b)) and evanescent Bloch modes only exist at the ZE. The propagating
Bloch eigenfields at the two extrema A and B of the first ZE minigap and the
evanescent Bloch mode at the deepest point within the same minigap (at the de-
sign frequency f,,=100 GHz) are depicted in Fig. 4.2(d). The centro-symmetric
unit cell is depicted by the red dashed lines and reveals the exchange of the mode
symmetry with respect to the center of the unit cell accross the minigap. The dif-
ferent symmetry of the band edge modes can be generalized to all other minigaps
and will be of importance in the following sections. For the first minigap, the
lower band-edge mode A is symmetric (antisymmetric) with respect to the middle
of the central GaAs (AlAs) layer, while the upper band-edge mode (B) is anti-
symmetric (symmetric) with respect to the GaAs (AlAs) layer. The evanescent
Bloch mode at f,, has obviously no inherent symmetry since it decays towards +z
and grows towards -z, but one can see that the minima and maxima of the field
are located at the interfaces between materials.

4.1.3 Acoustic Distributed Bragg Reflectors

An acoustic SL is an infinitely extended ideal one-dimensional phononic crystal
and cannot be strictly realized in practice. The finite version of such a system,
an acoustic Distributed Bragg Reflector (DBR) is however of great technological
relevance and inherits its basic features from the properties described for the
infinite SL. A DBR is a structure composed of N periods of an acoustic SL and
embedded between bulk material, as depicted in Fig. 4.3(a) for a (2, 3) GaAs/AlAs
stacking embedded in bulk GaAs, where we have added a last AlAs layer since
the substrate is GaAs (N+0.5 periods).

The structure being of finite nature the problem does not possess discrete
translational invariance as it does in the infinite case and little to nothing can
be said a priori about the eigenfrequencies or eigenfields. However, using the
recurrence relation given in (4.5) one can easily study what happens in the pres-
ence of a source far away in the cladding or substrate layers, whose effect can be
thought of as a plane wave impinging from one of the sides. We can then study
how acoustic waves are reflected, transmitted (or absorbed) by the DBR as well
as the fields that result from such excitation. For this purpose, the coefficients

end

ac"® at the end of the semi-infinite cladding layer (0) need to be related to the
coefficients ay,, . 41 at the origin of the semi-infinite substrate layer (Nygyer + 1).

This is done by concatenating the matrices M; ;1 introduced in (4.6) as

Nayer
end __ _
aO - Ioal H ijj""l ’ aNlayer+1 = M ' aNlayer+1 (423)

=1
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where Njgyer = 2N +1 for the particular multilayer of Fig. 4.3(a). For a plane wave
impinging from layer 0 and arbitrarily choosing a phase reference, we have ag"¢ =
[1,7] and ayg,,,,+1 = [t,0]. The transmission and reflection of the multilayer stack
can be found via

INportl 9 LNjyer+1 12
T(Q) = “Haver™ 142 - Zlaver 4.24
() 7, |t] Zo |3 (4.24a)
Moy ()]
R(Q) = |r|* = Mi @ (4.24b)

where M;; is the 4, j-th element of matrix M in (4.23). The reflection and trans-
mission properties of any multilayer structure can be found by computing (4.24),
which is typically done by the direct matrix multiplication. For an absorptionless
N-period DBR embedded between bulk semi-infinite media of the same material,
the transmittance is given by [224]

1

sin?(¢(Q)N D) 1 _
1+ sin?(q(Q)D) <‘t1(Q)|2 1)

T(Q) = (4.25)

where we see the Bloch wavevector ¢ of the SL appear, while the coefficient ¢; is
the complex transmission coefficient of a single unit cell, which can be obtained
directly by computing the matrix M for a single unit cell using (4.23). This
provides a direct link between the eigenstructure of the infinite SL and he behavior
of its respective finite DBR and shows the importance of computing the complex
band structure inside the bands gaps where ¢(2) in (4.25) is complex.

The band diagram of the underlying (%,%) GaAs/AlAs SL and the reflec-
tivity of the N = 20 period DBR shown in Fig. 4.3(a) are reproduced in panels
(b) and (c) of the same figure. Since the structure can both be thought of as
being composed of N bilayer unit cells plus an additional AlAs layer at the end
or in terms of N + 1 centro-symmetric unit cells with AlAs as the central layer,
the reflectivity is computed using Equation (4.25) for N = 21. At frequencies
within the band gap region of the underlying SL no propagating Bloch modes are
supported, which leads to a region of high reflectivity R, called the stop band.
Outside this stop band, whenever the underlying SL supports propagating Bloch
modes, the overall reflectivity drops significantly while exhibiting fast spectral
oscillations called Bragg oscillations, whose occurrence can be understood using
(4.25). They occur at frequencies Qppr satisfying either q(Qppr)ND = mn or
1t1(Qppr)|? = 1, giving rise to two different families of resonances. The first
family corresponds to Bragg resonances and one can find N — 1 per band (for
values m = 1,.., N — 1), while the other family, whose number per band is not
precisely defined [225], stem from resonances of the single unit cell. The free
spectral range (FSR) and the linewidth of such resonances decrease both towards
the band edges and with increasing number of periods NN, see the colormap in
Fig. 4.3(d), where the horizontal dashed line highlights the position of the reflec-
tivity curve of Fig. 4.3(c). The dependence of the FSR with increasing number of
layers N and towards the band edge is due to the difference between two of the
Bragg resonances in g-space, given by Aq = /(N D), and to the flattening of the
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Figure 4.3: Basic features of an acoustic Distributed Bragg Reflec-
tor (DBR). (a) A DBR is made of N periods of an acoustic superlattice
(SL) bounded by semi-infinite bulk media. (b) Band diagram of the infinite
GaAs/AlAs SL around the first zone-edge (ZE) minigap, centered at frequency
fm=100 GHz, and (c) reflectivity of its finite counterpart, a DBR consisting of
N=20 periods. The stop band tends to the minigap with increasing number of
DBR periods N (d), with the highest reflectivity reached at f,,. (e) Reflectiv-
ity R (black) and reflection phase ¢ (green) spectra for a plane wave impinging
on the semi-infinite SL from a GaAs cladding, mimicking the behaviour of (d)
when N — oc.

bands towards the band edges. The stop band, bounded by these reflectionless
resonances, approaches the minigap width for N — co and one intuitively expects
that the fringes disappear when N — oo. The reflection R in this case, a semi-
infinite SL, is computed by imposing the boundary conditions (4.11) between a
perfect Bloch mode in the semi-infinite periodic medium and plane waves on the
cladding medium. Using (4.17) and ag*¢ = [1, 7], the complex reflection coefficient
r is given by

(4.26)

L+r [ Zoada \ B2 + (e"P — Byy)
1—7r a ZA Blg — (quD — BH)

whose spectral evolution is given in Fig. 4.3(e). Perfect reflectivity R occurs
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throughout the full minigap of the underlying SL. while it progressively drops
within the band with a lineshape that closely follows! the mean value of the
aforementioned Bragg oscillations. This steady decrease in reflectivity is asso-
ciated with an effective frequency-dependent impedance of the semi-infinite SL,
that goes from infinity exactly at the band edge to a fixed value in the region of
linear dispersion.

The resonant transmission occurring at frequencies 2pgr is associated to
(quasi-)resonant excitation of dissipative eigenmodes of the system [226]. A lossy
optical cavity or a damped mechanical resonator exhibits a resonant response when
subject to a periodic drive via one of its loss channels (Chapter 2). In the low-
dissipation limit, the response has a Lorentzian lineshape with a central frequency
given by the resonator frequency (2, or w,) and linewidth given by its dissipation
rate (I', or k). Bulding on these ideas, we can think of the full physical volume of
Fig. 4.3(a) as a finite closed acoustic system having discrete energy levels to which
we add the cladding and substrate layer, which are irreversible sources of losses.
When driven periodically, in this case via the cladding layer itself, the response at
the fixed drive exhibits the resonant behaviour observed. The linewidth Afpgr
of such resonances is therefore associated to losses of these dissipative modes of
the system. This rationale used for unbounded systems corresponds to finding the
quasinormal-modes (QNMs) of the structure (see Chapter 3), which are modes
U(z) satisfying the eigenproblem (4.2) with outgoing boundary conditions, the
eigenfrequencies of which are complex, i.e. Qo = O — il /2.

For the case of a multilayered structure with N4, layers, satisfying the
outgoing boundary conditions implies setting af"? = [O,aﬁfﬁi] and ay,,.,+1 =
[aNyert1,45 0] in (4.23), i.e. only outgoing plane waves exist in the cladding and

substrate layers. This implies finding Q,, € C satisfying

My () =0 (4.27)

with Mj; the 1,1-th coefficient of matrix M. Since M;; = 1/t in a transmission
configuration, finding the QNM frequencies O corresponds to finding the com-
plex poles of the scattering matrix [227]. Whenever the transmission/reflection
resonances calculated are narrow and well isolated from other spectral dependen-
cies, both §2,, and I, can be extracted from the central frequency and width of
the resonant Lorentzian feature. Fig. 4.3(b) shows that this low-dissipation limit
is not satisfied and the trascendental complex equation (4.27) has to be solved.
We use a standard complex root-finding Miiller method [228] for its numerical res-
olution, calculating the initial values from the central frequency and the linewidth
of the transmission resonances. When the method fails to converge, as in the case
of closely spaced eigenvalues, we use a method based on the argument principle
method (APM) of complex analysis [229]. Both methods were occasionally em-
ployed depending on the intricacy of the basins of attraction of the zeros using

!The spectral evolution of R({)) resembles that of the envelope of the Bragg oscillations
but the exact value depends on the impedance of the substrate Z,,,s chosen, a choice that is
obviously irrelevant inside the minigap, where the matching is perfect.
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Figure 4.4: Displacement fields at the edges of and inside the stop
band of an acoustic Distributed Bragg Reflector (DBR). (a) Eigen-
frequencies Q,, of the supported quasinormal-modes (QNMs) in a GaAs/AlAs
DBR around the first zone-edge (ZE) minigap (blue dots). Its reflection spec-
trum is given with a solid light blue line for reference. (b) (Blue) Absolute
value of the QNM fields |U ()| associated to QNMs highlighted with letters A,
and B in (a). Along with the QNM fields, the transmitted fields |U(z)| (black)
are shown. These are associated to either the closest reflectivity dip to the real
part of frequencies A and B or to frequency fp, (C). The Bloch modes |U(z)]
for the lower (upper) band edge, whose frequency is marked by a black (green)
dot, and for the evanescent Bloch mode at f,, (light blue dot) are depicted on
the right. The observed resonances inherit some of the field properties of the
corresponding Bloch modes, including their symmetries.

the iterative method. The complex eigenfields ﬁm(z) are obtained by fixing the
coefficients in a given layer, e.g. in layer Nj,ye, + 1, and propagating the solution
via matrix multiplication, with matrices (4.7a) and (4.7b) evaluated at €2,,. These
are defined up to a an arbitrary phase factor. Note that the eigenmodes diverge
when z — oo since the outgoing plane waves in layer 0 (or Njgyer + 1) will have
an exponential term diverging as I, /2uvg)z.

The QNM eigenfrequencies Qppp of the N = 20 (2,2) GaAs/AlAs DBR
are given in the complex frequency plane in Fig. 4.4(a). The reflection spectrum
from Fig. 4.3(b) is reproduced in the background for clarity. There are no QNMs
with Re(@DBR) inside the minigap. The QNM frequencies lie inside the pass

bands and Re(Qppr) ~ Qppr. In addition, the associated losses as given by
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Im(ﬁ par) steadily drop towards the gap edges, as expected from the observed
linewidths. Among such QNMs and their associated reflectivity resonance, the
modes bounding the stop band are of special importance. Their spectral posi-
tion tends to the band edge when N — oo (Fig. 4.3) and we expect the QNM
eigenfields to resemble the Bloch eigenmodes of the infinite SL. Fig. 4.4 depicts
the absolute value of the displacement fields |U(z)| at frequencies A, B and C
of Fig. 4.3(b) in a transmission /reflection configuration along with |U(z)| for the
associated QNMs at frequencies Qppr?. For reference, |U(2)] in the unit cell for
the Bloch band-edge (black and green dots) and mid-gap (light blue dot) modes
are given along with the field profiles. We see how the QNM eigenfields A and B
inherit the symmetry properties of the SL. Bloch modes and how the transmission
field excites such modes. The transmission field C possesses the displacement
profile corresponding to the midgap evanescent Bloch mode at f,,, evidencing the
importance of these family of evanescent modes in finite structures. The last has
obviously no QNM associated since there is no natural resonant state at that or
close to that frequency, therefore no QNM field (blue) is plotted.

4.2 Acoustic nanocavities

More complex and compact acoustic nanostructures can be envisioned, notably
nanocavities which can be formed following several approaches, such as intro-
ducing a local defect [230,231], an adiabatic potential [232] or distributed disor-
der [233]. These strategies solely use the frequency band structure (the eigenener-
gies) of their underlying periodic counterpart as a confinement strategy, with the
spatial distribution of the Bloch modes having no particular role in controling the
density of states. Such spatial distributions, thoroughly discussed in the previous
section, can also be used to achieve spectrally and spatially confined states by
relating the symmetries of the band-edge modes to reflection phases within a stop
band. Since the latter are linked to a topological invariant of one-dimensional
periodic systems, the Zak phase [234], this confined mode will be described as
stemming from the topological properties of the bulk acoustic SL.

4.2.1 Fabry-Pérot cavities

Due to the presence of band gaps, semi-infinite SLs can be used to confine me-
chanical waves by bounding a spacer layer. When two SLs are placed top and
bottom of a given intermediate layer of different acoustic length?, as is depicted
with DBRs in Fig. 4.5(a) for a GaAs spacer layer, this confined state allows prop-
agation within the stop band. One expects mechanical confinement to happen
for specific frequencies within the minigap, forming a Fabry-Pérot (FP) acoustic

2The displacement field itself, U(z), depends in both cases on a chosen phase reference. In
the transmission configuration this corresponds to the phase chosen in the cladding layer, i.e.
the real displacement depends on the position of the source in the that layer, while in the QNM
fields it is just an overall factor of the field. It therefore seems clearer to depict the absolute
value, which is insensitive to that arbitrary phase

3This can be achieved by either changing the material or by choosing a thickness different
from the ones used in the SLs.
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Figure 4.5: Basic features of an acoustic Fabry-Pérot (FP) resonator.
(a) Schematic of a GaAs FP resonator. (b) Band diagram of the infinite
GaAs/AlAs superlattices (SLs) around the first zone-edge (ZE) minigap, cen-
tered at frequency f,,=100 GHz, and (c) reflectivity of its finite counterpart,
a GaAs spacer (L. = vgqas/2fm) bounded by two DBRs of N=10 periods.
The stop band tends to the common minigap with increasing number of DBR
periods N (d), while the transmission resonance associated to the FP cavity at
fm gets narrower. The value of the Q-factor of the resonance is given in (e).

resonator. Let us imagine that a longitudinal acoustic phonon is propagating in
the spacer layer towards the top (left) DBR at a frequency inside the minigap. As
it encounters the SL, it is fully reflected and acquires a phase ¢;. Upon interaction
with the bottom (right) SL, the same happens, acquiring a phase ¢,, while during
the round-trip a propagation phase 2¢.L. is acquired, with g. the wavevector in
the cavity (c) layer, i.e. ¢. = /v.. Constructive interference results from fulfilling
the condition

2q.L. + ¢1+ ¢ =2mn with n €Z (4.28)

which applies to any two SLs 1 and 2 and cavity length L. within the minigap.

Usually one deals with equivalent SLs at both sides of the cavity layer, leading to
¢1 = ¢o. If the two are (3, 3) GaAs/AlAs SLs equivalent to the ones described in
Fig. 4.3, we see (Fig. 4.3(e)) that ¢;,2(f) = 0 and the system sustains a confined
mode at f,, for L, = mv/2f,,. The case n = 1 corresponds to a % FP resonator. In
addition, since (4.28) is satisfied for the rest of the open minigap centers f = pf,,, a
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Figure 4.6: Relevant displacement fields in a Fabry-Perot (FP)
nanophononic resonator. (a) Eigenfrequencies Qm of the supported
quasinormal-modes (QNMs) in a structure made of a GaAs spacer bounded
by two finite 10-period Distributed Bragg Relfectors (DBRs) (blue dots). The
reflection spectrum of the structure is given with a solid light blue line for ref-
crence. (b) (Blue lines) Absolute value of the QNM fields |U(z)| associated to
QNMs highlighted with letters A, B and C in (a). Along with the QNM fields,
the transmitted fields |U(z)| (black lines) are shown. These are associated to
the reflectivity dip closest to the real part of frequencies A, B and C. The Bloch
modes |U(z)| for the lower (upper) band edge, whose frequency is marked by a
black (green) dot, and for the evanescent Bloch mode at f,, (light blue dot) are
given on the right. The observed resonances inherit some of the field properties
of the corresponding Bloch modes, including their symmetries.

FP mode is found at any such frequency (not shown). Cropping the two bounding
SLs into DBRs leads to a finite system open to external radiation. The band
structure of the underlying SLs and the reflection spectrum of a symmetric % GaAs
FP cavity with N = 10 (+0.5) (%,%) GaAs/AlAs DBRs are shown in Figs. 4.5(b)
and (c). The latter evidences a spectrally isolated resonance (C) appearing within
the stop band, at the design frequency f,,.

The evolution of the spectral reflectivity as a function of the number N of
periods in the bounding DBRs is depicted in Fig. 4.5(d), which evidences that the
cavity spectral width decreases for increasing N. The quality factor, extracted

as Q = fu/Afm, with Af,, the full width at half maximum (FWHM) of the
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Lorentzian reflectivity dip, is depicted in (d) and can be approximated as [235]

B Jm(Le + Lppr)
vcln(\/ R1R2)

where Lppgr is the penetration depth into the bounding DBRs, extracted as in
Ref [236]. We again observe similar Bragg oscillations as in the case of the single
DBRs, with a stop band that approaches the (common) minigap as dips A and B in
Fig. 4.5(c) tend to the band edges with increasing N. The wide resonances A and B
are composed of two dips, a behaviour that can be understood as (strong) coupling
between the QNM band-edge modes of the two DBRs (which were depicted in
Fig. 4.4) via the GaAs spacer. Fig. 4.6(a) shows the presence of two QNMs per
wide reflection dip. The transmission fields associated with the peak bounding the
stop band at each band edge are shown in black in Fig. 4.6(b), showing how the
resonances are built up from the respective band-edge modes of the conforming
N = 10 DBRs and mantaining the in-cell symmetries. The FP cavity transmission
field profile |U(z)] is also depicted in C. The QNM fields |U(z)| are also given in
the respective panels (blue lines). These match the structure observed on the
transmission field at the core of the two DBRs, but the central part differs. This
is because a plane wave impinging from the left at frequency (2pgr close to two
QNMs will likely excite both of them and result in an interference pattern.

Qm = (4.29)

Condition (4.28) is satisfied for other in-gap frequencies f,. for nearly any
value of L., as shown in Fig. 4.7. For example, if the cavity length is changed
to L. = 1.2v./2f,,, the condition is satisfied for a frequency lower than f,,. This
is illustrated in Fig. 4.7(b), where the zero-crossing of the black curve, the total
phase acquired, gives the resonant frequency of the supported mode in a spacer
bounded by the same (%, %) semi-infinite SLs, with the reflection phases ¢; and
¢ obtained again from (4.26). When the system is finite, i.e. N = 10 periods for
each DBR, the resonant frequencies are obtained via the dips in the reflectivity
spectrum, which are depicted for varying cavity length in Fig. 4.7(c). The res-
onant frequencies obtained from the reflectivity map remain very close to those
extracted via condition (4.28), as is evidenced in Fig. 4.7(d). The N — oo ap-
proximation only fails close to the borders of the minigap, with the disagreement
caused by deviation of the reflection phases ¢/, from ¢g; close to these edges.
Using the exact reflection phases ¢/, for finite N = 10 DBRs leads to perfect
matching.

4.2.2 Topological cavities

Spacer-less Fabry-Perot resonators

The presence of a resonant state trapped between two semi-infinite SLs obeys the
phase-matching condition (4.28). Whether or not the condition can be satisfied
in the limit L. — 0, a spacer-less cavity, can be cast as

61+ by =2t with n €7 (4.30)
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Figure 4.7: Influence of the cavity spacer thickness on the Fabry-
Pérot (FP) resonant frequency. The frequency of the FP cavity can be
controlled by changing the spacer thickness L.. (a) Band diagram of the infinite
GaAs/AlAs SL around the first zone-edge (ZE) minigap, centered at frequency
fm=100 GHz. (b) Phase matching condition (4.28) for a FP mode with a spacer
of width L. = 1.2vg44s/2fm. The phases of the two semi-infinite superlattices
(SLs) are equal and given by ¢gz, (green), while ¢. (blue) represents the linear
phase acquired during propagation. The black curve gives the sum of the two
and the red dot highlights the frequency f. for which phase matching occurs.
(c¢) Colormap showing the reflectivity as a function of the value of L. € [0,2]
in units of veaas/2f,,. The horizontal dashed line highlights the reflectivity for
the case shown in (b). (d) The position of the reflectivity dip, the resonance
in the finite system, can be predicted from the phase matching condition for
semi-infinite SLs, with small disagrement whenever f. approaches the band
edges.

with ¢; and ¢5 the phases acquired upon reflection on both sides of the infinitesi-
mally thin spacer. In Fig. 4.7(c) the case for L. = 0 was already solved; it exhibits
resonant transmission exactly at frequency f,,. Whenever L. goes to zero in the
configuration used there, we end up with the two bounding layers of AlAs joining
and creating a A/2 FP cavity with AlAs as the spacer layer. An AlAs \/2 FP
cavity can be interpreted both via condition (4.30) with the two semi-infinite SLs
starting with a full AlAs layer or via condition (4.28) with an AlAs \/2 spacer
and the two semi-infinite SLs starting with full GaAs layers. This observation
gives a much more general purpose to (4.30) and explains nearly any interface
state inside the gap. This phase condition is extremely general and consequently
applies to other physical systems such as localized surface plasmons [237], electro-
magnetic waves pinned at the interface between two optical materials [238,239],
or an electronic wave localized at the interface between two semiconductors [240)].



100 Chapter 4. Photon-phonon interaction in one-dimensional structures

In the field of nanophononics it is used to study the emergence of surface states
in a semi-infinite SL, a surface being nothing more than an interface between the
SL and vacuum [241]. Using it to understand the formation of cavities more often
approached as spacer-based cavities points to the key ingredient being how /where
the interface is defined and how does ¢(2) behave inside the band gap. The ques-
tion is then, how can we design or control the spectral dependence of the reflection
phase? This is determined by some geometrical phase of the bulk bands, giving a
topological view to the resulting interface states.

The choice of the origin in the unit cell upon concatenation of two DBRs has
a large influence on the allowed states at the interface via their reflection phases ¢
from a semi-infinite cladding (Fig. 4.8 ). The schematic of Fig. 4.8(a) shows two
DBRs 1 and 2 prior to being concatenated and being cut at specific points within
the unit cell denoted by a; and ay. We study how the reflection phase ¢ from a
semi-infinite SL at frequencies in a minigap depends on how the SL is connected
to the semi-infinite cladding from which a plane wave impinges. For now, we
restrict ourselves to the same (4, %) GaAs/AlAs SL, with design frequency f,, =
100 GHz. We define the parameter a € [0, 1) that continuously shifts the initial
position of the SL, with o = 0 being set by a SL starting with the full AlAs layer
in what is usually called a bilayer unit cell. For a < % (>), the plane wave
first reaches an AlAs (GaAs) layer. This parameter is evidenced in the schematic
of the two semi-infinite SLs of Fig. 4.8(a) and it essentially determines how the
origin is chosen inside the unit cell. The evolution of the reflection phase ¢ is
depicted in Fig. 4.8(b), where we see that this can be highly controlled by appro-
priately choosing the interface position via o. The phase variation A¢ across the
minigap always equals 7, but the bounds change depending on the unit cell. For
a bilayer unit cell with AlAs at its origin (o = 0), ¢ grows from —% to § when
going from the lower to the upper band edge, while for the bilayer unit cell with
GaAs at the origin (o = daas/p) it goes from 7 to 5F. Interestingly, at o = %
the value goes from —7 to 0 and at o = 1 — C%LDAS from 0 to m. These last two
cases correspond to centro-symmetric unit cells with GaAs and AlAs as the central
layer, respectively. If two SLs with values oy and ay are concatenated, condition
(4.30) is satisfied for f,. inside the gap for nearly any pair [aq,as], as depicted
in Fig. 4.8(c) for three particular cases. The colormap in Fig. 4.8(d) highlights
the frequency f. for any pair [aq, as]. The two red diagonals represent pairs for
which the concatenated system is a simple DBR and they correspond to lines for
which no values of f. satisfying (4.30) are found. The lower-left (upper-right)
region corresponds to cavities made of an AlAs (GaAs) spacer bounded by bilayer
GaAs/AlAs DBRs. Green dots correspond to a A/2 AlAs spacer cavity, whose
phase matching condition is represented on the topmost graph of Fig. 4.8(c). The
background of that graph represents the reflectivity, R, of a finite stack made of
N = 10 periods for each one of the two phases. The light blue dot represents
a A/2 GaAs spacer cavity, found when o = ag = d“g‘s, whose condition is also
fulfilled in the center of the gap f,,, as depicted in the mid panel of Fig. 4.8(c).
Again, traditional spacer-based cavities can be understood as stemming from a
condition solely dependent on the reflection phases ¢; and ¢,. The most interest-
ing regions in this phase space are the outer diagonal regions, since the cavities
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Figure 4.8: Spacer-less Fabry-Pérot (FP) nanophononic resonators.
(a) Schematic of two semi-infinite superlattices (SLs) with unit cell defined
by parameters a; and «g prior to being concatenated at their interface. (b)
Reflection phase ¢ of a SL as a function of the unit-cell origin a. (c¢) An
interface state is created when the spacer-less phase matching condition (4.30)
is satisfied, as shown for [ag,a2]=[0,0] (top), [a1,a0]=[datas/D, daia: /D] (middle)
and [aq,qg]=[daias 2D, 1 — %] (bottom). (d) Colormap showing the cavity
frequency f. resulting from the phase matching condition for all [a;,as]. For
clarity, % FP cavities are marked with green (AlAs) and light blue (GaAs) dots.
The outer diagonal quadrants delimit the regions where the FP picture given
above cannot be directly applied. The positions highlighted with magenta dots
represent states at the interface of the two SLs with centro-symmetric unit cells,
albeit with different central layer.

do not correspond to a bounded spacer. The central points in those two regions,
highlighted with magenta dots, correspond to two centro-symmetric concatenated
SLs with the central layer exchanged. The existence of confined intra-gap states
in those regions would not be expected from traditional band structure arguments
as no defect is introduced. Without loss of generality, let us focus on the choice
of [ay, arp] = [d414s 1 — dGeas) o the magenta points in Fig. 4.8(d).

2D 2D
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Phononic topological invariants

The notion of a topological invariant [242] enables the prediction of the unintuitive
resonant state(s) discussed in the previous section from the intrinsic properties
of the bulk bands without consideration of condition (4.30), providing easy de-
sign rules for interface states. Here, the relevant topological invariant is the Zak
phase [234], although this choice is not unique [243]. We consider an isolated band
with Zak phase given by

™

5
Hf“k = z/ (Un,q|Og|tn.q) dg (4.31)

U
D

where the bra-ket notation is used for historical reasons [244]. |u,,) represents
the periodic-in-cell part of the Bloch mode as was introduced in (4.1). The Zak
phase #Z% in (4.31) is the one dimensional geometric Berry phase [245], which is
obtained by integrating the Berry connection A(q) = (uy4|0;|un 4) in the full BZ.
The latter is given by [246],

1 *
Alq) = / e L (4.32)

For the case of binary A/B SLs considered here, the system posseses inversion
symmetry and the Zak phase is known to be quantized at either 0 or 7 if the
origin is chosen to be in an inversion center [234]. The definition provided by
(4.31) depends on the unit cell choice [247] and a linear phase 22 is acquired by
shifting the unit cell origin by s. If the Zak phase equals 0 (7) relative to the
inversion center in layer A, it must be 7 (0) relative to the other inversion center
B. Therefore, the Zak phase is not a gauge-invariant topological quantity [248]
since it cannot characterize the bulk bands uniquely. However, the classical bulk-
boundary correspondance using the Zak phase has been applied in multiple 1D
systems [249-252] since the Zak phase difference between bands is a properly
defined topological number. We apply it here to nanophononic systems. For
simplicity, we assume that we have centro-symmetric unit cells and then derive

the case of a bilayer cell.

Each of the bands and band gaps are numbered beginning from 0 and 1,
respectively. This numbering holds even for closed minigaps, i.e. two bands
crossing count as two bands and a closed minigap counts as a gap. The relation
between the reflection phase ¢, inside the n-th band gap of a semi-infinite SL
terminated in a centro-symmetric unit cell and the Zak phases of the bulk SL has
been formally derived for photonic crystals in [249]. The derivation is analogous for
the longitudinal acoustic phonons considered here, noting the already mentioned
analogy between optics and acoustics. For a phase reflection ¢, € [—m, 7], we
have

sgn(6n) = (~1)"(~1)exp(i 3 67%) (4.33)

The integer n denotes the considered band gap and the integer [ denotes the
number of croissing points or closed band gaps under the considered gap. In the
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Figure 4.9: Topological origin of the simplest interface state. The
Zak phase of an isolated band depends on the choice of the unit cell origin.
(a) Acoustic band diagram of a (%, %) GaAs/AlAs superlattice (SL) with the
unit cell shown schematically above the band diagram, with a central GaAs
layer. The bands and band gaps (BGs) are numbered in blue. The Zak phases
are given and the sign of the reflection phase inside the open zone-edge (ZE)
minigaps is highlighted by shaded blue (4) and red (-). The displacement
fields of the corresponding band edge modes are also given (in spectral order).
(b) Acoustic band diagram analagous to (a) but with a centro-symmetric unit
cell centered in the AlAs layer. Concatenating these two SLs at their origin
leads to interface states at the center of all ZE minigaps, as evidenced by the
difference in the sign of ¢ (shown for BG1 and BG2) and by the magenta dots
in Fig. 4.8(c). The two lowest energy states are shown in (c), evidencing the
exponential decay towards both sides of the interface.

summation in (4.33) only well defined Zak phases, i.e. of isolated bands, are con-
sidered. Recalling that centro-symmetric unit cells are chosen, the RHS of (4.33)
takes values +1 and everything is well defined.

Relation (4.33) holds for any centro-symmetric unit cell, even for continu-
ously varying periodic impedances Z(z) and mass densities p(z), making it ex-
tremely useful as the reflection phases are harder to compute for such conditions.
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In addition, since the phase-matching condition (4.30) only requires being in band
gaps of any order n; and ny for both SLs 1 and 2, (4.33) determines the presence
of an interface state even for SLs of different period D. In particular, a simple
way of building such an interface state consists of having a given SL 1 and con-
catenating it with a particular scaled version of itself. If SL 1 has minigaps n with
sgn(¢n) = +1 and m with sgn(¢,,) = —1, concatenating it with a SL 2 with a
geometry scaled by a factor n/m leads to a common band gap region around the
frequency of the m-th gap in SL 1. This is due to the scaling properties of the
governing equations, which do not change the Zak phases of each band, leading
to a common gap with inverted sign of the phase reflection ¢ on both sides of the
interface.

Now we return to the localized interface states that were highlighted with
magenta dots in the analysis of Fig. 4.8. The band diagram of the base SLs is
reproduced twice in Fig. 4.9(a,b), but now the Zak phases and the mode profiles
at all visible band edges are given for the particular choice of the unit cell high-
lighted on top. The bands and band gaps have been numbered for clarity and the
reflection phase sign (4.33) for all ZE minigaps (we recall that ZC minigaps are
closed for a (%,%) SL) is given in blue (+) and red (-). The respective Zak phase
679 as calculated from (4.31) is also given above each band. As expected from
the phase evolution of 2% with the unit cell choice, all bands having Zak phase
equal to 0 (7) in (a) become 7 (0) in (b). Another important aspect that needs
to be explored is the relation of the Zak phase of a band to the spatial profiles of
the band edge modes. Using the seminal result from Kohn [253], the Zak phase of
the n-th band is 0 if both the ZC and ZE modes profiles satisfy U(z = 0) = 0 or
both satisfy U(z = 0) # 0. In any other case, its value is 7. From this point, this
argument is used to adscribe 2% to a given band. Here, the only band having
a well defined Zak phase is the lowest lying band, i.e. §Z% all the rest exhibit a
crossing at the ZC. Having the null solution at the origin, the lowest band edge
modes depicted explain the calculated Zak phases. The reflection phase signs
highlighted are found by direct use of (4.33). The inversion of the reflection phase
sign guarantees the existence of an interface state inside all ZE minigaps. The
eigenfrequencies f,. of such states are not exactly centered in the corresponding
minigaps, as has already been discussed. The mode profile U(z) associated to the
the first and second ZE minigap interface modes are depicted in Fig. 4.9(c). Both
modes decay exponentially from the interface. The profile associated to the first
ZFE minigap mode at each side of the interface closely resembles the evanescent
Bloch mode given in Fig. 4.4.

Topological band inversion

The interface states found at the ZE minigaps by the strategy just described are
often referred to as topological interface /edge states. The used nomenclature is not
necessarily related to the use of the Zak phases to predict the sign of the reflection
phase, but to the fact that they are obtained by tuning the system parameters
across a topological transition point [254]. To understand this, we explore how an
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interface state can be formed solely by tuning of the layer thicknesses at the first
ZC minigap.

In Fig. 4.9, the first minigap is closed and the first requirement would be
to open it. If we additionally want the central frequency to remain the same,
the total acoustic path length of one SL unit cell needs to remain half a phonon
wavelength, i.e., to satisfy

daass  dalas 1
GaA + AlA _ (434)
VGaAs VAlAs 2fm

which can be accomplished by setting

(% aAns v S
jf: (1+6) and daas = f}i (1-10) (4.35)

where § € (—1,1). The two bounds correspond to bulk AlAs (6 = —1) and bulk
GaAs (6 = 1), while § = 0 corresponds to the (%,2) SL explored so far. The
band diagram for 6 = —0.25 and 0 = 40.25 are given in Fig. 4.10(a,b), along
with the information for band topological invariants and reflection phases similar
to in Fig. 4.9(a,b) previously. When only considering the dispersion relations, +4
provide the exact same information. However, the opening of the gap towards +0
and towards —¢ is accompanied by the acquisition of different Zak phases in the
bands that cross at the ZC for 6 = 0. In addition, the symmetry of the band edge
modes associated to those gaps is inverted, as can be seen for the two first even
band gaps, BG2 and BG4 (Fig. 4.10(c)). The Zak phases of these bands here
are topological invariants because it is possible to deform the set of bands inside
the Brillouin Zone by changing the value of § without altering the associated Zak
phases. The only way to change the values of #Z% for any n (and consequently
6Z%) is to pass through a discontinuity, here associated with band inversion, where
we close and reopen the n-th gap. This topological band inversion is represented
in Fig. 4.10(c) for both BG2 and BG4.

dGaAs =

We first focus on BG2: for § < 0 the lower band has 67 = 0 and the
upper band 7% = 71 and we say that we are in a given topological phase (with
respect to this particular gap). For § > 0, the values of 7% and 0% are flipped
and we are in another topological phase. At the topological transition point, i.e.
0 = 0, the gap is closed and the Zak phases of the two bands cannot be defined.
The color code for the GaAs and AlAs layers used for the mode profiles represent
that both are different topological phases. The cell insets in Fig. 4.10(c) show
that for 0 < 0 the Bloch mode at the lower (upper) band edge has a symmetric
(antisymmetric) displacement pattern. The insets also how these symmetries are
exchanged precisely at the topological transition point. The symmetry is not
associated to the particular value of the Zak phases bounding the gap, but to all
Zak phases below it. In the case of band gap BG4, we have the same Zak phase
exchange as produced for BG2 for small values of 6. However, for |§| > 0.5, the
bands are inverted another time. For simplicity, the associated mode edges are
not shown, but the swapping of the Zak phases at all three points is associated
to an inversion of the edge mode symmetries. By continuously varying §, BG4
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Figure 4.10: Topological band inversion in a phononic superlattice
(SL). The acoustic band diagram of a (%(1 +0), %(1 —0)) GaAs/AlAs SL is
given for (a) § = —0.25 and (b) § = 0.25, the corresponding unit cells shown
on top. Bands and band gaps (BGs) are numbered, Zak phases are given
above the bands and the sign of the reflection phase inside the minigaps is
highlighted by shaded blue (+) and red (-). The displacement fields of the band
(BG2 and BG4) edge modes are also given (in spectral order). (c) Band edge
frequencies as a function of § € (—1,1) for the edges bounding the first (BG2)
and second (BG4) ZC minigaps. The Zak phases of the associated bands are
given in green (7) and black (0). The insets reproduce the mode profile shape
of the modes bounding BG2. The value §=0, for which the gaps are closed,
represents a topological transition point that is characterized by an exchange
of the symmetries of the Bloch modes. Accordingly, the Zak phases bounding
the gap are exchanged. Therefore, 6 > 0 and § < 0 represent two distinct
topological phases. This is visually represented by using a different colour code
in the layers, with a dark (light) palette corresponding to GaAs (AlAs) layers.
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Figure 4.11: Basic features of an acoustic topological nanocavity.

(a) Schematic of a structure supporting an interface state between two centro-
symmetric GaAs/AlAs superlattices (SLs) belonging to two different topological
phases. (b) Common band diagram of the (%(1 +9), %(1 —6)) GaAs/AlAs SLs
around the first zone-center (ZC) minigap for § = +0.25, centered at frequency
2fm=200 GHz. (c) Reflectivity of a finite sample consisting of a 6 = —0.25 and
a 0 = 0.25 concatenated 10-period Distributed Bragg Reflectors (DBRs). The
stop band tends to the common minigap with increasing number of DBR periods
N (d), while the transmission resonance associated with the topological cavity
at fy, gets narrower. The value of the )-factor extracted from the corresponding
quasinormal-mode (QNM) is given in (e).

can undergo three topological phase transitions. For this system, passing through
two of these transition points necessarily implies that one returns to the same
original phase. This behaviour can be generalized to the n-th even gap by noting
that the variation in ¢ at a fixed acoustic path length corresponds to varying «
in Fig. 4.1(b), where we have 2"/2 — 1 topological band transitions (gap closings)
and that 6 = 0 (& = vajas/(Vaias +Vcaas)) is a crossing point for all ZC minigaps.
Due to the periodic evolution of the band edges with ¢, this implies that for a
fixed value of ¢, the topology of —d, is exchanged for any open ZC minigap.
Therefore, for the particular case shown in Fig. 4.10(a,b), § = £0.25, all minigaps
of the two systems are not topologically equivalent since the only way to obtain
one structure from the other is through band inversion.



108 Chapter 4. Photon-phonon interaction in one-dimensional structures

As described before, a common minigap associated with two different topo-
logical phases exhibits, by construction, a different reflection phase sign, as shows
Fig. 4.10(a,b). This provides the foundation for what is more generally known as
the bulk-edge correspondance [255], which guarantees the presence of an in-gap
edge state when two systems of different topological phase are interfaced. For the
first ZC minigap: 7% remaining the same for any §, the change in the value of
the 079 changes the value of (4.33). For any higher-order ZC minigap, i.e. n = 2p
with p > 1, the inversion of the reflection phases ¢,, upon passing through an odd
number of topological transition points simply follows from the fact that all the
bands beneath the n — 1 -th band either keep the same Zak phase or there is a
Zak phase exchange at lower order crossings, but the sum below the n — 1 -th
band remains fixed. Therefore the n-th band Zak phase, which has swapped from
0 to 7w or from 7 to 0 determines the sign. For a transition from —d, to d, all ZC
minigaps are closed an even number of times and this leads to topologically dif-
ferent ZC minigaps. By concatenating two semi-infinite SLs with inverted bands
and centro-symmetric unit cells an interface state is created. An example of the
finite version of such a structure, two finite DBRs with inverted bands, is given
in Fig. 4.11(a), where the two DBRs correspond to § = —0.25 (left) and § = 0.25
(right). For clarity, the band diagram of the base SL around the first ZC minigap
is shown in Fig. 4.11(b). When the structure is driven from the left, a clear reflec-
tivity dip at frequency 2f,, (Fig. 4.11(c)) evidences the presence of a topological
interface state, as predicted from the fact that the two are topologically different.
The reflectivity as a function of the number of periods N in the DBRs is given
in Fig. 4.11(d). The Q-factor of the topological interface state obtained from the
complex eigenfrequency ﬁm of the associated QNM, is depicted in (e). The overall
Q is lower than for the FP cavity discussed previously though this stems from the
lower reflectivity of the mirrors R; and Ry,. At 0 = 4+0.25, the width of the first
ZC minigap is not maximal, unlike the first ZE minigap for ¢ = 0, likely leading
to a smaller reflectivity.

The resonant transmission at A and B in Fig. 4.11(b) is associated to a pair
of dissipative normal modes which arise from coupling of the band edge modes of
the respective DBRs. In this particular case, the two-mode structure is not even
visible from the reflectivity spectrum, but two QNMs exist with Re(f,,) close
to the frequencies of both A and B. Fig. 4.12 shows both the transmission field
and the QNM eigenfield (of the mode closest to the band edge) for both of these
edges, along with the same fields for the topological interface state. The behaviour
of both the QNMs and the transmitted fields at A and B are rather complex.
However, the fields at both DBRs interchange their overall field structure when
one switches from A to B. Although |U(2)|(|U(z)|) of A and B do not perfectly
follow the mode profiles associated with the edge modes of the SL as was seen in
Figs. 4.4 and 4.6, the modes do retain some field properties associated with the
band inversion process. In addition, for much larger values of N the modes do
follow accurately the displacement field associated to the Bloch band edge modes.
On the contrary, the topological nanocavity decays exponentially into both DBRs.



4.2. Acoustic nanocavities 109

a) Re(Quer) (GHz)
Py 1?0 1§O 190 290 2‘]0 220 ZCI’:O

§Q—4; o © o ° ® o O o o \$ @)
Houn ° ° ~
N _2- .A B. -
£ 2 ob— . g ¢C : j %

N

b) QNM q 0

Reflection/Transmission

&
[

o

4

== B E

Displacement field |U(z)| (a.u.)
o
&

o

0 100 200 300 400 500

Position (nm)

Figure 4.12: Relevant displacement fields in a topological
nanophononic resonator. (a) Eigenfrequencies ﬁm of the supported
quasinormal-modes (QNMs) in a structure with two concatenated Distributed
Bragg Reflectors (DBRs) based on superlattices (SLs) exhibiting different topol-
ogy (blue dots). The reflection spectrum of the structure is given with a solid
light blue line for reference. (b) (Blue lines) Absolute value of the QNM fields
|U(2)| associated with QNMs highlighted with letters A, B and C in (a). Along
with the QNM fields, the transmitted fields |U(z)| (black lines) are shown.
These are associated to the reflectivity dip closest to the real part of frequen-
cies A, B and C. The Bloch modes |U(z)| of both inverted superlattices for
the lower (upper) band edge, whose frequency is marked by a black (green)
dot, and for the evanescent Bloch mode at f,, (light blue dot) are given on
the right. The observed resonances inherit some of the field properties of the
corresponding Bloch modes, including their symmetries.

The described interface state, which has been designed using the bulk topo-
logical properties of the SLs that are interfaced, can still be interpreted as a FP
resonator. While the left and right acoustic mirrors are (22(1 —4),22(1+4))
and (22(1 4 0),22(1 —4)) DBRs for an acoustic wave propagating at frequency
fm = 100 GHz, they are (3(1 — 0),5(1 4 0)) and (3(1 +4), 5(1 — 9)) for a phonon
of frequency 2f,,. When interfaced with the same material in contact, AlAs in
this context, it leads to a % FP resonator between two different mirrors. Nev-
ertheless, we can now create a localized interface state between the two DBRs
in which the mode is confined between layers of different materials, a mode that
lives between two bilayer DBRs. For that purpose, the last unit cell of each DBR
can be redefined. The procedure is schematically shown in Fig. 4.13(a). We per-

turb the interface via the addition of a thin AlAs layer of thickness d,,;; (black
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Figure 4.13: Topological nanophononic state at an interface made of
two different materials. The spectral position of the topological cavity mode
can be tailored by adding a thin AlAs layer of thickness d,,;q at the interface,
as shown on the top schematic in (a). Three particular cases are depicted.
Case (I) corresponds to df ., = 0 ”A;AS for which the compound central AlAs
layer has the thickness of AlAs layers in the left superlattice (SL1). Case
(IT) shows the structure for d,,;q = 0, in which case two concatenated centro-
symmetric SLs terminated in AlAs are joined, effectively leading to a A/2 Fabry-
Pérot (FP) resonator at f. = 2f,,. Case (III) represents d} ., = —6 ”4“}“‘5 for
which the compound central AlAs layer has the thickness of AlAs layers in
the right SL (SL2). (b) Common band diagram of the (3(1+6),3(1—6))
GaAs/AlAs SLs around the first zone-center (ZC) minigap for 6 = +0.25,
centered at frequency 2f,,=200 GHz. (c) Reflection spectrum colormap of a
finite structure composed of two 20-period concatenated DBRs as a function
of the interface layer thickness dq. For dimig > 0 (dmig < 0), the mode
continuously redshifts (blueshifts). The two limiting cases, i.e., diiq = £d},;,,
which represent two bilayer DBRs in contact, still lead to an in-gap resonant
state as shown by the vertical dashed lines across (b) and (c).

layer). When d,,;q = 04Ss4s ”G]‘:AS or more generally when d,,;q = (0 — 0 )”GJ‘}AS if 0 is
chosen to be different in both DBRs, the thickness of the central AIAs compound
block becomes equivalent to the thickness of an AlAs layer in the left DBR, as is
illustrated in Fig. 4.13(a) (I). By redefining the position of the interface between
the two topologically different DBRs, the perturbation introduced corresponds
to changing from centro-symmetric unit cells to a standard GaAs/AlAs bilayer
unit cell, where the interface directly connects layers of different materials. Al-
lowing d,;q to also take negative values leads to the case depicted in Fig. 4.13(a)
(III), where the interface is now between a GaAs layer of the left DBR and an
AlAs layer of the right DBR. In both cases an interface state prevails, although
its frequency f. is red-shifted (blue-shifted) with respect to the d,;q = 0 case
shown in Fig. 4.13(a) (II). This results from the added (suppressed) propagation
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phase through the layer. The colormap in Fig. 4.13(c) shows how it is possi-
ble to continuously tune the spectral position of the mode inside the minigap by
continuously varying the intermediate layer thickness. The extreme cases are par-
ticularly interesting, since the bilayer configuration is the one typically employed
in nanophononic devices and the one that was experimentally realized in the frame
of this thesis and explored in Subsection 4.4.4.

4.2.3 Disorder-induced localization

Intentional disorder can lead to the formation of optical /mechanical cavity modes,
in the classical analogue of Anderson strong localization for electrons [2] (see
Chapter 3). Here, we introduce geometrical disorder to induce acoustic Anderson
localization in a periodic-on-average SL and focus our analysis in a frequency
range around the band edge of the corresponding acoustic SL, where stronger
multiple scattering is expected [23,256]. Localization of photons [6,256-258] and
phonons [259-262] has been largely explored in these systems due to their ease
of modelling. Some relevant notions are described here.

Calculating the localization length

Crystals are rather robust to disorder [17], i.e., one requires considerable disor-
der levels to induce localization in realistic structures. The first requirement to
understand the emergence of localized displacement fields in a finite-size multi-
layer is to compute the frequency-dependent localization length £. In this case, it
corresponds to the back-scattering mean free-path of the system since this is the
only possible source of losses for a propagating acoustic phonon.

We study the (%, %) SL with design frequency f,, = 100 GHz that has been
previously discussed. Disorder is introduced by randomly setting the natural
position z;,; of the interface between AlAs and GaAs inside a bilayer unit cell, a
type of geometrical disorder that keeps the length L of the structure fixed and that
can be readily obtained in molecular beam epitaxy (MBE) grown multilayers. For
a fixed amount of disorder and a fixed sample length L, we calculate the intensity
transmission 7' of many different realizations of disorder. A single realization is
given by a set of interface positions {z;;,;} taken from a Gaussian distribution
N (d g4, 0%) with standard deviation o. The ensemble-averaged transmission (T')
decays exponentially with the length L. However, the logarithm of T is typically

chosen due to its self-averaging nature [263], which leads to [264]

(og(T(L)) =~ (4.30)
Note that a single realization of length L, can be used to extract T for all L <
L, provided that Equation (4.36) is used at each layer. The results of fitting
(log(T'(L))) with (4.36) are shown in Fig. 4.14(a) for a disorder level o = 0.025D
and for several frequencies (both in the pass and stop bands). Both the value
of the frequency and the extracted ¢ are given. The localization length ¢ is
rounded to the closest integer number of periods and the fit error is omitted when
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Figure 4.14: Localization length in a disordered acoustic superlat-
tice (SL). The acoustic transmission through N-period Distributed Bragg Re-
flectors (DBRs) based on a (%,%) GaAs/AlAs superlattice (SL) with design
frequency f,, = 100 GHz is studied in the presence of Gaussian-distributed
geometrical disorder, with the standard deviation ¢ as the measure of disorder.
(a) Ensemble average logarithmic transmission as a function of N for frequen-
cies accros the lower band edge of the first zone-edge (ZE) minigap, whose
frequency is denoted by fyp. Red lines give the best fit to Eq. (4.36), with the
extracted localization length £ given in each panel. Repeating the procedure
in (a), we obtain £ as a function of both frequency and disorder level (b). The
vertical dotted-dashed line marks fy g, while the dashed lines on both sides
represent (left) the squared-inverse density of mechanical states (DMS™2) and
(right) the Bragg attenuation length. (c) Disorder-level dependance for several
frequencies, with their assymptotic behaviour at low o fitted to a straight line
whose slope gives the the Lyapunov exponent .

smaller than D. Finite size effects, which are relevant for lengths L < &, result
in fast oscillations for small values of L in Fig. 4.14(a). Nevertheless, the non-
oscillatory baseline of (log(7'(L))) in that region also decays exponentially and
roughly shares the exponent £ computed by omitting the first region, as shown
from the shifted origin of the red fit. While the effect of this is minimal due to
the low computational cost of these simulations, this can be relevant for higher
dimensional systems where the length of the simulated structure can be a limiting
factor.

The localization length & decreases quickly when going from the walence
band, across the valence band edge frequency fi, 5 and into the band gap. The full
dependence of ¢ with both frequeny and disorder level o is shown in Fig. 4.14(b),
where two different regimes are observed. Outside the band gap within the bulk
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bands, an increasing level of disorder leads to a decreasing &, since backscattering
is the only source of losses. Within the band gap, the situation is reversed and &
starts at half the Bragg length for 0 = 0 and increases with o. In the former, the
density of mechanical states (DMS) controls the localization length £ [265], while
the Bragg attenuation length, i.e. twice the Bragg length 1/q;,,, is that which
controls £ within the gap [6,266]. The two last panels in Fig. 4.14(a) include the
Bragg exponential decay as a dashed line. Both the DMS and the Bragg length
diverge at the band edge, necessarily implying that a crossover in which the two
mechanisms compete takes place around the band edge [267], determinining the
precise value of £. Fig. 4.14(b) also evidences that an increasing level of disorder
enlarges the frequency range over which this crossover takes place. For clarity,
Fig. 4.14(b) provides the inverse square of the DMS in the passband and the Bragg
attenuation length in the gap as a black dashed and black dotted-dashed lines, re-
spectively. The used scaling with the DMS has been largely discussed [180,268,269]
and observed in photonic-crystal waveguides [270] and three-dimensional photonic
crystals [271]. To explain this scaling, there are three approximations to take into
account. First, in a one-dimensional single-mode structure, the localization length
equals the scattering mean-free path [215], i.e., £ &~ (. In addition, the scattering
mean-free path can be expressed as ¢, = 1/ps%, where p; is the density of scatter-
ers and X is the scattering cross section [209]. Finally, two separate mechanisms
determine ¥ in a periodic structure: how the Bloch mode couples to the scatterer
and how the scatterer radiates the scattered wave. While the former is described
by the DMS along the incident wave vector ¢ [272], the latter also reduces to
the DMS when considering only in-plane scattering [273], as is the case for this
one-dimensional geometry.

To evaluate the strength that the disorder level ¢ has on the localization
length &, we plot the detail of this dependence for several characteristic frequencies
in Fig. 4.14(c). At sufficiently low o, all panels exhibit a linear dependence on a
log-log plot. This linear dependence is lost for an increasingly lower value of o
when approaching the cutoff, which reflects the widening of the crossover region
with o. We fit the calculated values in the first region as ¢ = ac—?, shown with a
solid black line in each panel. This dependence has been studied in the literature in
terms of the Lyapunov exponent, v, which under certain hypotheses fulfilled here
quantifies the exponential decay of the eigenfunctions in a disordered system [274].
Therefore, « is the inverse of the localization length. The asymptotic dependence
of v with the amount of disorder, v ~ ¢, has been analyzed in perturbed periodic
photonic structures [275] where a value of 5 ~ 2 is obtained in the bulk of the
dispersion relation, i.e., spectrally far from the cutoff frequency. Here, we recover
this dependence for frequencies 92, 93 and 94 GHz, i.e., well within the band.
Near the cutoff frequency, the parameter [ is expected to asymptotically behave
as 2/3, as observed in Ref. [275]. When the fit is done exactly at the cutoff, i.e.
fve here, we obtain a value of § = 0.62, which is in good agreement with the
expected asymptotic. As previously mentioned, at 95 GHz inside the gap, the
behaviour of £ with ¢ changes sign, but we still observe an asymptotic power-law
behaviour with 3 strongly dependent on frequency.
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Figure 4.15: Quasinormal-modes (QNMs) of a disordered acoustic
Distributed Bragg Reflector (DBR). Eigenfrequencies Q,, of the supported
QNMs in a set of 250 geometry-disordered 200-period Distributed Bragg Reflec-
tors (DBRs). These are based on a (%, %) GaAs/AlAs superlattice (SL) with
design frequency f,, = 100 GHz. The top panel gives the eigenfrequencies for
the unperturbed structure (¢ = 0) and is reproduced in the rest of the panels
with black dots. Vertical blue lines mark the band edges, while black vertical
dashed lines mark the frequency for which £ ~ L as extracted from Fig. 4.14.
The horizontal dashed line marks, for reference, the lowest losses Im(£2,,) found
for the unperturbed structure. The color code gives an effective modal length

L,, for the QNM, calculated via Eq. (4.37).

Anderson-localized modes

Whenever the sample length L exceeds &, the system is expected to exhibit spa-
tially localized and spectrally distinct modes, unlike in the ballistic and/or dif-
fusive regime where modes overlap spectrally. However, we consider finite disor-
dered DBRs either embeded between two semi-infinite media or terminated with
fixed /free boundary conditions. Even in the unperturbed case, such systems ex-
hibit well-defined spectral resonances close to the band edge (see Fig. 4.3) and it
is therefore instructive to explore how the spectral features of the unperturbed
structure transform under the introduction of disorder with increasing o. Fig. 4.15
shows the eigenfrequencies (2, found for a set of 250 disorder realizations in the
regions bounding the two band edges of the SL discussed so far. In addition
to the real and imaginary parts of the QNM eigenfrequencies €2,,, the colorscale
represents the effective modal length of the considered mode, calculated as,

S /Gl wam

max([ p(2)|U(2)]?)




4.2. Acoustic nanocavities 115

0 10 10* 10° 10°

Quality factor Q

Figure 4.16: Quality factor distributions in a disordered acous-
tic Distributed Bragg Reflector (DBR). Log-scale probability distribu-
tion function of the quality factors @@ found in a narrow frequency region
Q€ [93.2,93.28] for different lengths L/D = {100, 200,400,800} of a dis-
ordered DBR (o = 0.08- D). The localization length is obtained from Fig. 4.14
to be £=200D.

For the lowest value of o, i.e. ¢ = 0.02-D, the QNM eigenfrequencies are found
to be distributed (both real and imaginary parts) around the eigenfrequencies of
the unperturbed structure, nearly up to the band edge frequencies fyp and fop,
where modes with considerably smaller losses T',,, = 2Im(2,,) appear both at the
band edge and slightly inside the band gap. For reference, the QNM eigenfrequen-
cies for the unperturbed DBR are given with black dots and the horizontal dashed
line marks the minimum losses achieved for the unperturbed structure, which cor-
responds to the band edge modes. For a stronger disorder level ¢ = 0.04 - D,
only the lowermost and uppermost frequency regions exhibit well-defined clus-
tered data. This clear characteristic of ballistic propagation is lost towards the
band edges rather quickly, both for frequency and losses, and we cannot attribute
a single eigenmode in the perturbed structure to the unperturbed one, despite
having ¢ < L (marked with the vertical dashed black lines). Further increasing
o leads to the appeareance of low losses and low modal length L,, modes inside
the band gap. This set of modes extends further inside the gap with increasing o,
a feature that leads to the well-known Lifshitz tail in the density of states when
ensemble averaging, as seen in Chapter 3 for the corrugated nanobeams. At fre-
quencies close to the band edge, the spread in losses increases with o, leading to
a distribution unrelated to the original eigenmodes in the unperturbed structure.
Note that the losses at the band edge frequency (marked by the crossing of the
vertical blue line and the horizontal dashed line) spread over a region with val-
ues lower than the losses of the unperturbed band edge mode, showing that the
spectral properties at that frequency are no longer determined by the properties
of the finite-sized acoustic DBR.

The long tails in the distribution of Im(£2,,) describe a non-vanishing prob-
ability to observe very high Q-factor Anderson-localized modes. This probability
grows with the ratio {/L, as is shown in Fig. 4.16 for a narrow frequency re-
gion Re(,,) € [93.2,93.28] MHz close to the band edge and a disorder level
o = 0.08 - D. All of the distributions shown are in good agreement with the



116 Chapter 4. Photon-phonon interaction in one-dimensional structures

predicted log-normal distributions [276,277] that are given by,

1 (u—1n(Q))?
P = ———¢€ 202 4.38
@ =57 (4.38)

with p and o the mean and standard deviation. Moreover, each distribution
is in principle uniquely assigned to a given ratio {/L as a consequence of the
single-parameter scaling and universality [278] exhibited by most one-dimensional
disordered systems, i.e. pu and o only depend on the ratio £/L. This holds for
any mesoscopic-transport observable in the system as long as the frequencies are
chosen within the bands of the unperturbed periodic structure. States from the
interior of the band gaps and in a narrow region around the band edge do not have
universal behavior and require two parameters to describe their scaling proper-
ties [258]. In our case, this leads, for the same ratios /L, to different distributions
as those shown in Fig. 4.16. The Q-factors of the Anderson-localized modes ap-
pearing inside the band gap of the unperturbed structure are considerably higher
and we therefore restrict the following analysis to that particular region.

4.3 Optomechanical coupling in the Anderson-
localization regime

Due to the strong analogy between longitudinal acoustic phonons and normal-
incidence light in multilayers, one would expect that photon localization behaves
in a qualitatively similar manner for the corresponding wavelength range. Nev-
ertheless, the specific values of the governing parameters in the binary SL, i.e.
the refractive indices n4 and np, strongly influence both the average behaviour of
the supported eigenmodes (both localized and extended) and the specific eigen-
fields and eigenfrequencies associated to a particular disorder realization. Due to
the inherently complex nature of the underlying interference processes that lead
to phonon/photon localization, the likelihood of having simultaneous localization
along with spatially co-localized fields in space is extremely low. This decreases
the achievable optomechanical coupling rates as was outlined in Chapter 3. We
propose a way to address this challenge by noting that for the specific binary mul-
tilayers dicussed so far (i.e. GaAs/AlAs multilayers), a remarkable coincidence in
the physical parameters governing light and motion propagation occurs [279].

4.3.1 The double magic coincidence

The similarities in the formal description of light and motion propagation in mul-
tilayered structures previously discussed imply that, under some conditions on the
physical parameters of all the layers j, the two problems may become equivalent.
When cast in a transfer matrix formalism, the matrices governing the propagation
of light (M,,) and those governing the propagation of acoustic waves (M,.) are
equivalent under the substitutions Z <+ n and ¢/n <> v. This implies the following
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property

Ziy1  njp

Z, .

L Myp(KQ) = M) (4.39)
n; K

Uj

which states that if the impedance ratios at all interfaces are equal and the ac-
quired propagation phases obey some proportionality relation, with proportion-
ality constant, K, the problems to solve become exactly equivalent by scaling of
the frequency by K.

Condition (4.39) is extremely stringent and is generally not satisfied. How-
ever, for stacks made of GaAs and AlAs grown in the [100] direction, an excep-
tional coincidence occurs for near-infrared photons and microwave phonons. Using
standard values [280] for the optical and mechanical coefficients of GaAs and AlAs
at those frequencies, we have

aAs Z aAs
NGads _ 1 193 ~ 1,199 = 2624 (4.40a)
NAlAs Z aiAs
HGads 1193 ~ 1.186 = —AAs (4.40D)
N AlAs VGaAs

which approximately satisfies (4.39). Despite this slight departure from the ideal
case, we expect that any arbitrary GaAs/AlAs multilayer exhibiting a mechan-
ical eigenmode with field profile U(z) and angular frequency €2, will also sup-
port an optical eigenmode with angular frequency w, ~ K{2,, and field profile
E(z2) = U(z). In particular, any geometrically disordered GaAs/AlAs multilayer
should satisfy the condition, guaranteeing the existence of perfectly co-localized
photon-phonon pairs in the Anderson-localization regime. This property has al-
ready been exploited in engineered nanophononic devices to achieve enhanced
optoacoustic interaction and spectrally-tuned coherent phonon generation with
light [281,282]. In particular, the topological cavity discussed in Subsection 4.2.2
has been recently designed at a phononic frequency of 18 GHz, leading to a
perfectly co-localized near-infrared photonic topological cavity at 920 nm and
showing simultaneous band inversion [283]. However, spatial co-localization in
engineered nanocavities such as FP resonators or topological interface states is
already granted by the purposely designed confinement potential. The true po-
tential of such double magic coincidence relies in using the co-localization effect
to explore more subtle interference effects such as those induced by randomness.
The question is then: is the depature from condition (4.39) enough to prevent
the emergence of co-localization in a regime where both the optical and acoustic
modal structure are induced by disorder?

4.3.2 Spectral and spatial co-localization

To illustrate the role of the double magic coincidence [284] in a disordered multi-

layer we depart from a (%, %) DBR structure and we choose the layer thicknesses

to have the first optical ZE minigap centered at A = 870 nm (f, = 344.6 THz).
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This opens the first acoustic ZE minigap at f,,, = 19.28 GHz. Note that we already
have f, =~ K f,,, with K = %, as expected. The layer thicknesses are there-
fore given by dgaas = 61.88 nm and d ;45 = 73.48 nm. In the exact same manner
as in the previous section, we introduce geometrical disorder in the position of the
interface between the two materials. Its natural position inside a bilayer unit cell
at Zint = dajas is normally distributed N (24, %) with varying standard deviation
o, whilst the period D = dajas + dgass = 135.36 nm is kept constant. Whenever
the obtained interface position z;,; enters the previous or following unit cell, the

interface is set at the end of the corresponding layer.

We compare first the transmission of normal-incidence light and longitudi-
nal acoustic phonons in the same disordered sample for a high disorder level of
o = 0.15- D, for which we have verified that L = 600a > &, ~ £, across the entire
frequency region shown. The optical spectrum is almost identical to the mechan-
ical one when plotted with scaled frequency, as shown in Fig. 4.17(a). The QNMs
associated to such resonances are calculated as discussed previously, assuming
an air layer as a cladding. When the real parts of the mechanical and optical
QNM frequencies are mapped onto each other in spectral order, we recover the
predicted spectral behavior with w, ~ CQ,, and C = 1.82-10* ~ 1.79 - 10* = K
(Fig. 4.17(b)). Figures 4.17(c) and (d) show the displacement and electric field
intensities for the photon-phonon pair highlighted in Fig. 4.17(b), demonstrating
that they are indeed localized modes within the same region of the multilayer.
A zoomed in region indicated between the dashed black lines in Fig. 4.17(c,d) is
shown in Fig. 4.17(e), where the two fields are perfectly overlapping in space, with
the only observed mismatch corresponding to minor intensity differences.

To quantify the degree of spatial co-localization we define the following
overlap integral between the two eigenfields

A NTEUEE:
VI0(2) Pz 1B, (=) Pd=

where A € [0,1], with A = 1 indicating full co-localization. Here U, (z) is the
mechanical displacement of the m-th mechanical QNM and E’n(z) the electric field
of the n-th optical QNM. The fields are normalized by the amplitude of the field
in the substrate and by the electromagnetic energy, respectively. As a reference,
the calculated value of A for the pair depicted in Fig. 4.17 is A = 0.997. We
calculate the co-localization parameter A between all the {m,n} phonon-photon
pairs in a narrow frequency range around the lower band edge in a set of 1500
disorder realizations. The disorder level is kept at ¢ = 0.15 - D, which guarantees
the presence of multiple Anderson-localized modes per disorder realization. The
histogram of A, plotted in Fig. 4.18(a), is strongly peaked for A > 0.95. On the
contrary, the histogram presents rather low and evenly disitrbuted values for the
A < 0.95 bins. We set this value as the criteria for perfect co-localization. For
comparison, we calculate the distribution of A for another commonly used binary
SL in nanophononics [285-287], that based on silicon (Si) and germanium (Ge).
The Si and Ge layer thicknesses (dg; = 115.97 nm, dg. = 93.88 nm, N = 600) are
chosen to tune the band edge of interest to approximately half the frequency of

(4.41)
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Figure 4.17: Anderson photon-phonon co-localization in GaAs/AlAs
Distributed Bragg Reflectors (DBRs) with geometrical disorder. (a)
Optical and acoustic transmission spectrum of a single disordered (%, %) DBR
with design frequency f,, = 19.28 GHz and disorder level ¢ = 0.15D. Both
spectra have been shifted for clarity. (b) Real part of the quasinormal-mode
optical eigenfrequencies w, as a function of the real part of the QNM acoustic
eigenfrequencies Qm when these are paired in spectral order. The blue line gives
a linear fit to the obtained QNM pairs, showing a proportionality relation given
by C' = 1.82-10% close to the one expected, given by K = 1.79-10%. QNM field
profile (c) |U(z)] and (d) |E(z)| of the pair highlighted in (b), evidencing the
localized nature of the modes. (e) The region highlighted with dashed boxes in
(c,d) is shown in more detail, demonstrating that both field profiles are virtually
the same.

that of the GaAs/AlAs SL to avoid absorption. The disorder level is also shifted
to o = 0.11- D to satisfy the condition {g;/Ge ~ {Gaas/aias- In this case, the prob-
ability distribution of A, shown in Fig. 4.18(b), shows no level of co-localization
at all, clarifying the statistical difference granted by the use of GaAs and AlAs as
the SL materials.

The physical parameters governing both light and motion transport of even
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Figure 4.18: Statistical assesment of the co-localization level. The level
of co-localization between a photon-phonon pair is evaluated with the overlap
integral A given by (4.41), whose value is equal to 1 for perfectly overlapping
fields. The case for GaAs/AlAs Distributted Bragg Reflectors (DBRs) is shown
in (a), with the distribution effectively peaked at A > 0.95. For comparison,
Si/Ge DBRs (dg; = 115.97 nm, dg. = 93.88 nm, N = 600) are also simulated
and their co-localization properties are shown in (b).

the most well-known parameters are subject to some uncertainty. To verify the
robustness of this significant co-localization effect, we calculate the distribution of
A while adding additional Gaussian disorder to the material parameters {p,v,n}
of both GaAs and AlAs, with standard deviations o, = [0.002,0.005,0.01] - 1,
where 41, is the mean value for the given physical parameter. As plotted in the
series of panels of Fig. 4.19(a), a disorder level bigger than o, = 0.01 - y,, or more
is required to fully wipe out the co-localization effect, well above the layer-by-
layer statistical fluctuations achievable in actual MBE-grown samples [288]. Such
distributions are obtained from the same set of 1500 geometrically disordered mul-
tilayers. Fig. 4.19(b) plots the obtained optic and acoustic transmission spectra
for one disordered multilayer, which shows that spectral co-localization is lost si-
multaneously. It is remarkable that spectral co-localization seems to be lost faster
than the spatial counterpart. A possible heuristic explanation would be that ad-
ditional phases acquired due to the randomized parameters are compensated by
slight changes in frequency, leading to fields that remain close to the original ones.

4.3.3 Statistics of the optomechanical coupling rate

The double magic coincidence ocurring for GaAs and AlAs ensures that for a given
frequency range exhibiting an average of N Anderson-localized photonic modes, a
scaled frequency region will on average host N Anderson-localized acoustic eigen-
modes. Among all possible N? pairs, NV will be fairly co-localized, even in the pres-
ence of certain parameter randomness. These well-confined spatially-overlapping
modes can interact with each other and are therefore candidates as optomechan-
ical systems. As was already discussed in Chapter 3 for a silicon nanostructure,
the deformation profile associated with a normal mode u,,(z) will locally change
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Figure 4.19: Effect of parameter uncertainty on the co-localization
properties. Physical quantities governing light and motion transport are very
precisely known, but small levels of uncertainty are still expected. (a) Statisti-
cal assessment of the co-localization levels achieved in the presence of increasing
levels of uncertainty on {p,v,n} of both GaAs and AlAs, with standard devi-
ations o, = [0.002,0.005,0.01] - p, pp the mean value for the given physical
parameter. The same 1500 disordered geometries are used for each distribution.
(b) Transmission spectra of a single disorder realization for increasing level of
parameter uncertainty, exhibiting how spectral co-localization is lost. The top
panels in (a) and (b) correspond to Fig. 4.18(a) and Fig. 4.17(a) respectively.

the optical properties of the structure. The inherent reason for such a change is
that the optical eigenmodes themselves depend on such displacement. The cou-
pling of an acoustic and an electromagnetic QNM gives rise to both an optical
frequency shift (dispersive interaction) and a quality factor change (dissipative
interaction). In GaAs/AlAs SLs and in the frequency range of interest, mainly
two acousto-optic interaction mechanisms need to be considered [289,290]. First,
the displacement of the N + 1 boundaries, or moving boundary effect, will change
the interference pattern of multiple light paths. Second, the photoelastic effect
will induce a change in the bulk permittivity tensor ¢ that can be written as the
tensor product d(e_l)ij = P;jUkl, where U is the second-order strain tensor and
P the fourth-order photoelastic tensor [291]. These two correspond precisely to
the mechanisms evoked for silicon in Chapter 3. Employing the hermitian limit
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of the first-order perturbation theory discussed in Chapter 2 to a multilayered
system leads to,

@ 2005 Un() (i1 — )| B ()]
N OIEAOIRE

Imb =

Lzpf (4.42&)

_ w0 Ji Pa(2) e (2)e(2)*| B )
2 I e(2)|En(2)|2dz

Gpe = Lopf (4.42b)

The hermitian limit is used because for a 1D system deep in the localization regime
(¢ << L), the quality factor of the observed QNMs is extremely large and the limit
provides an extremely good approximation for the dispersive shift. The strength
of the coupling parameter g, = gmp + gpe between two (n-optical,m-mechanical)
eigenmodes strongly depends on the overlap of the displacement ﬁm(z) or strain
9Un () field with the electric field squared-modulus |E,,(2)|2, which highlights the
importance of co-localizing the displacement and the electric field profiles. Since
our model is by definition one-dimensional, we have chosen an arbitrary size in
the x-y plane of 2 x 2 um? -for the area excited by a focused laser beam- in
order to calculate the effective mass mes; of the mechanical resonator and the

zero point fluctuations ., = ,/W. The product of the coupling integral

by z.,; quantifies the interaction between a single phonon and a single photon
(Chapter 2) and is required since otherwise the parameter would depend on the
normalization chosen for Up,(z).

We evaluate g, between optical and mechanical QNMs of the GaAs/AlAs
disordered SLs simulated for Fig. 4.19(a). Due to the strongly dispersive nature of
the localization length £ (Fig 4.14), we consider only a narrow frequency window
and thus minimize the effect of varying the effective volume of both field profiles.
The coupling values in the densely-packed diagonal of Fig. 4.20(a), which roughly
corresponds to perfectly co-localized photon-phonon pairs (A > 0.95), exhibit
values higher than those far from the diagonal. This plot is again compared to
the values obtained for Si/Ge SLs (Fig. 4.20(b)), where lack of any co-localization
effect leads to uniformly distributed pairs inside the frequency-frequency space
considered. The probability density function of the vacuum optomechanical cou-
pling rate g, for the case of interest is plotted in Fig. 4.20(c). The distribution
considering either poorly co-localized (blue bars) or perfectly co-localized (red
bars) modes are shown separately, pointing out a statistical increase of g, for this
material combination. For comparison, we also calculate the coupling coefficient
for a perfect A\/2 FP cavity formed by two 300 cells DBR-mirrors, highlighted
with a dashed line in panel Fig. 4.20(c).

Similar as in the case of the co-localization parameter A, the role of pa-
rameter uncertainty is evaluated in the statistics of the optomechanical coupling
rate g,. The probability distribution function of A transforms from a nearly ¢-like
distribution at A ~ 1 over a uniform background when no uncertainty is consid-
ered, i.e. 0, = 0, to a broad peak around that same, or slightly lower, value of
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Figure 4.20: Vacuum optomechanical coupling rate g,/27 in disor-
dered Distributed Bragg Reflectors (DBRs). Scatter plots of the me-
chanical and optical frequencies of the resonant modes found in (a) a set of 2000
disordered 600-period GaAs/AlAs DBRs (o = 0.15- D) and (b) a set of 1000
disordered 400-period Si/Ge DBRs (o = 0.11- D). The lengths are chosen such
that £/L is roughly equal for the acoustic case. The color represents the cou-
pling rate g,/2m between the considered pair in logarithmic scale. (b) Histogram
of the coupling rate g,/2m considering poorly co-localized photon-phonon pairs
(A < 0.95, blue bins) and only perfectly co-localized pairs (A > 0.95, red
bins), with A the co-localization parameter given by Eq. (4.41). The dashed
line gives the value expected for a perfect % GaAs Fabry-Pérot (FP) cavity with
unperturbed DBR-mirrors of 300 cells each.

A when uncertainty is considered (Fig. 4.19). However, we expect that rather
large values of A in this broadened feature are inherited from the perfect case.
In the presence of uncertainty we have chosen A = 0.75 as the threshold value
that determines co-localization between two modes arising from the double magic
coincidence. This value is also chosen taking into account the distribution ob-
served for the Si/Ge SLs, where A > 0.75 is extremely unlikely. Fig. 4.21 depicts
the probability distributions for differents levels of uncertainty o,. The full dis-
tribution is represented in green, while the partial contributions from co-localized
pairs (A > 0.75) and non-colocalized pairs (A < 0.75) are represented in red
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Figure 4.21: Vacuum optomechanical coupling rate g,/27 with uncer-
tain physical parameters. Histogram of the logarithm of the photon-phonon
optomechanical coupling values for poorly co-localized (A < 0.75, blue bins),
co-localized (A > 0.75, red bins), and for their sum (green bins) as a function
of the uncertainty o, on the governing physical parameters. The mean values
from the distributions in blue and green are given with a dashed line of the
same color.

and blue, respectively. The mean values obtained for the co-localized distribution
and total distribution are indicated by a dashed line across the panels with the
color chosen accordingly. The co-localized pairs (red) contribute to the high-g,
side of the distribution as expected from the chosen cut-off. They constitute the
majority of photon-phonon pairs above the mean value of the full distribution for
the cases without uncertainty and with o, = 0.002 - u,. For greater uncertainties
we see how the mean value drops slightly, but the overall distribution shape re-
mains the same. In any case, comparison of the mean value with and without the
co-localized portion shows the important role of this set of photon-phonon pairs
in the statistical properties of the optomechanical coupling rate g,.
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However, one could expect a more pronounced difference after seeing the
statistics of A in Fig. 4.18, particularly for o, = 0. The photoelastic coupling
mechanism considered in Eq. (4.42b) dominates over Eq.- (4.42a) and can allow
us to understand why the expected blow-up effect is rather moderate. Expres-
sion (4.42b) is based on the product of the oscillating function 25 (z) by the

always positive 6(2)2|E'n(z)|~2 When two fields U,,(z) and E,(z) are perfectly

U,
0z

|E,(2)[? attains a maximum, and vice versa for the maxima/minima of W (2).
The fields coincide perfectly but the integrand values stay low, since €(2)* and
p12(z) have their own particular spatial-dependence. As a consequence, partially
overlapping photon-phonon pairs may present similar couplings than perfectly-
overlapping ones, which reduces the effect of co-localization for this particular
photoelastic coupling when compared to other light-matter processes. In addi-
tion, %Y= () is an oscillating function and only part of the field in each unit cell
ends up contributing to the integral coupling, so the effect of co-localization does
not result in a blow-up. Nevertheless, a clear change in the distribution can be
observed even when the complicated spatial distribution of the three functions
involved in the mechanism is considered. To emphasize the general interest of the
co-localization effect, we calculate the role of co-localization on different possible
types of light-matter interactions, i.e with different functional forms of the para-
metric coupling. While a purely photoelastic coupling yields a moderate effect
of co-localization (Fig. 4.22(a)) for the reasons explained above, other functional
forms are best suited to the situation in hand. Fig. 4.22(b) shows the distribu-
tion for a non-integral coupling rate, that we denote gs, considering a Dirac-like
photoelastic response at the given depth of the multilayer. This coupling is inter-
esting because it is not affected by the oscillation of the strain field %L;“(z), but
allows us to see the effect of the first issue described above. It shows that when
the maximum value of the product of the two functions %L;”(z) and |E,(2)]? is
considered, partially co-localized photon-phonon pairs can be competitive when
compared to perfectly co-localized modes. The case of coupling mediated by the
modulus squared electric field |E,(2)|? and the modulus squared strain field is
considered in Figure 4.22(c), where we see an important effect on the full distri-
bution. This g coupling describes a second order photoelastic interaction. The
most prominent effect of co-localized modes on their interaction is depicted in
Figure 4.22(d), for which the maxima and minima of the two terms |U,,(z)[?

co-localized, the function (2) (m/2-shifted version of w,,(z)) is null whenever

and |E,(z)|? coincide and the integrand is positive everywhere. We denote this
coupling by ¢moq. For this case, the co-localized photon-phonon pairs have an
obvious effect on the full distribution and any light-matter interaction that share
these characteristics would also benefit from this enhancement. The precise values
given in the x-axis and their different scales are not to be taken literally, since the
the z-dependent function p;5 has numerically been kept the same for all interac-
tions; the importance here is the shape of the distributions as a way to understand
why the observed effect is smaller than what could in principle have been expected.
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Figure 4.22: Photon-phonon coupling rate distributions for different
functional forms. Histogram of the poorly co-localized (A < 0.95, blue bins)
and perfectly co-localized (A > 0.95, red bins) photon-phonon pairs coupling
values for the coupling terms indicated in panels (a) to (c).

4.4 Optical generation and detection of longitu-
dinal coherent acoustic phonons

The optomechanical coupling in a deformable and driven optical cavity allows
the detection of mechanical motion and the generation of coherent phonons via
parametric amplification processes (Chapter 2). In these systems, the mechanical
frequencies €2, explored are limited to several tenths of GHz due to the detection
bandwidths and signal-to-noise ratios available as well as to a reduced thermal
Brownian motion. The spectrum of optical techniques to both generate and de-
tect acoustic vibrations is not limited to such a setting and some allow exploration
of (much) higher mechanical frequencies. With the advent of femtosecond light
pulses delivered by pulsed lasers, the realm of non-equilibrium ultra-fast pro-
cesses, like high-frequency coherent acoustic phonons, can be explored by the use



4.4. Optical generation and detection of longitudinal coherent acoustic phon®2§

of pump-probe techniques.

4.4.1 Time-domain pump-probe phonon spectroscopy

Pump-probe experimental techniques to generate and detect coherent acoustic
phonons consist of using ultrafast light pulses as both a mechanism to instanta-
neously create a non-equilibrium population of coherent mechanical vibrations at
a given time ty and to read the deformation state of the sample of study at a
certain time ¢ from the creation event. If the delay time At between the initial
time ¢y and the read-out time ¢, i.e. At =t—tg, can be controlled, one can in prin-
ciple reconstruct the dynamics of the vibrational state by repeatedly generating
exactly the same coherent population and changing At at each run. This simple
picture already points to some of the requirements needed to perform such type
of experiments. First, the pump pulse needs to be able to generate mechanical
vibrations, so it needs to be at the origin of a source term in the elastodynamic
equation of motion. Second, the optical property to be measured via the delayed
pulse needs to be affected by the presence of mechanical vibrations in the sample.
Third, the measurement itself needs to leave the state of the sample unaffected,
which is typically achieved by using a much weaker low-power probe pulse or by
employing two-color pump probe spectroscopy [292]. Lastly, one needs to be able
to control the delay between the two pulses and, at each time delay, to repeat the
experiment multiple times in order to increase the signal-to-noise ratio. Here, we
describe the different possible physical mechanisms leading to the generation of
coherent acoustic phonons by the pump pulse and detection of these phonons by
the probe pulse. Then, we introduce the experimental technique and apparatus
used to achieve the different requirements just mentioned.

Generation mechanisms

Whenever a light pulse is incident on a material it interacts with the bound and/or
free electrons and the atomic lattice. Several of the processes occuring can give
rise to the generation of coherent acoustic phonons [293,294]. This can be cast into
the elastodynamics equation by adding a source term consisting of the derivative
of the tension o, induced by the pump pulse. In the case of a laser spot much
larger than both the characteristic dimensions of a multilayer and the penetration
depth of light, the equation of motion reads

0?U 1 0 oU 1 Oo

W(z,t) o) 9 <C(z)£(z)) = ma—zp(z,t) (4.43)

Despite important controversy on the microscopic origin of the tension o, lead-
ing to the generation of coherent acoustic phonons in many pump-probe experi-
ments [290], the following origins are typically acknowledged to take place:

e Thermal expansion: In the presence of absorption, electrons (and holes in
the case of semiconductors) acquire an excess energy which, on a picosecond
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timescale, is given to the lattice by phonon-mediated intra-band relaxation.
The excess energy given to the lattice leads to an out-of-equilibrium popu-
lation of incoherent phonons. Whenever the timescales to explore are much
larger than several picoseconds, that phonon population can be considered in
thermal equilibrium at a higher temperature, i.e. we have a sudden increase
of the temperature of the material AT'(z,t), whose spatiotemporal dynam-
ics have to be solved using Fourier’s law [295,296]. This AT produces in
turn a change of the elementary differential volumes due to anharmonicity
effects [297], generating a tension in the material op that is given by [294]

or = —3BBAT(z,1) (4.44)

where B is the bulk compressibility module and § the linear expansion co-
efficient. Only isotropic materials are considered here. This constitutes the
leading tension term in metals after the initial picosecond dynamics, because
the electronic heat capacity is much smaller than the phonon heat capacity.

e Deformation potential: The thermal picture just depicted gives a sufficient
description when absorption and relaxation happens fast and inside the same
band, as it does in metals [298]. In semiconductors, electrons can remain in
an excited state at the bottom of the conduction band for up to a fraction
of a ps [299]. The same is true for holes at the top of the valence band.
Under this condition, the equilibrium state of the crystalline lattice is not
equal to that of the unexcited state, leading to what is called a deformation
potential [300]. The tension associated with this mechanism is given by [301]

OE
Opp = —Ba—;n(z,t) (445)
where E is the band gap energy, P is the pressure and n(z,t) is the electron
(hole) density. This electronic tension is often around one order of magni-

tude greater than the thermal equivalent in semiconductors [302].

e Flectrostriction: For excitation energies below an electronic gap, the above
mechanisms cannot lead to the generation of acoustic vibrations. The main
mechanism to generate coherent acoustic phonons is electrostriction or stim-
ulated Raman scattering [303], which stems from the polarization of the
medium induced by the pump pulse electric field. It is the inverse process
of photoelasticity and the tension term is found by taking the derivative
with respect to deformations of the electromagnetic field energy in the ma-
terial [304]

1
ORSij = - ZpkljinmelnEm(zat)En(th) (4.46)
ijkl
where P is the photoelastic tensor, € the dielectric tensor and E(z) the

incident electric field.

These three generation mechanisms can have very intricate space and time
dependence and are all interlinked. However, some approximations using the
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characteristic timescales and the space dependence of the light field can be made.
Since the thermal and electronic tensions will subsist after several nanoseconds,
their time dependence can approximately be considered as a step or Heavyside
function in time, i.e. 0, = F(2)H(t), when acoustic phonons with periods smaller
than a fraction of a nanosecond are considered. On the other hand, the elec-
trostrictive tension only lasts while the pulse transits the sample, which is typ-
ically done in a timescale much shorter than the period of phonons up to the
THz, i.e. 0, = F(2)d(t). Concerning the spatial dependence, what can be very
generally said is that higher electric field intensities |E(z)| lead to higher ten-
sions. This is a direct consequence of (4.46) for the electrostrictive term and a
consequence of increased absorption for both the thermal (4.44) and electronic
(4.45) stresses. Thus, one can very generally asume the following expression for
the induced tension [305]

op(2,t) = K(2)|E(2)]*T(t) (4.47)

with K (z) a material and process dependent constant and T'(¢) either a step-like
or delta-like function depending on the generation mechanism considered. Even
though many observed dynamics go beyond what can be explained by considering
the functional form (4.47), this expression allows us to obtain simple selection
rules for the generation of coherent acoustic phonons in SLs, as well as a closed
analytical expression for the mechanical displacement U(z,t).

Detection mechanisms

The optical detection of the generated coherent acoustic phonons is done via the
photoelastic mechanism, which has already been described. The presence of an

acoustic strain n;;(z,t) = 1 (g;? (z,t) + %(z, t)) modifies the dielectric tensor €
J [

according to
Aeij(z,t) = Zpijkmkl(Z, t) (4.48)
kl

where again p is the photoelastic tensor. The movement of the boundaries in the
system also contribute to change the dielectric tensor by the moving boundary
effect. These two detection mechanisms are precisely the ones that were evoked
when considering the optomechanical coupling g, in Section 4.3.3. Other phenom-
ena in play will change the light scattering properties of the pumped system. We
have already referred to changes in temperature and in the electronic distribution,
which have an important effect on the observed optical response.

Asynchronous optical sampling (ASOPS)

The traditional scheme in ultrafast pump-probe time-domain spectroscopy ex-
periments employs a single mode-locked laser. The pulsed laser emits a train of
picosecond (ps) or femtosecond (fs) light pulses with a given repetition rate f,e,
and the high-energy pulses are guided to a beam splitter (BS), which divides the
primary laser into two independent trains that act as the pump and the probe.
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In the optical path followed by the probe (or the pump), a mechanical transla-
tion stage with mounted mirrors is introduced and allows control on the delay
time At between the arrival of pump and probe pulses. However, the use of a
scanning mechanical delay line has several inconveniences. The first and more
obvious is the impossibility to eliminate residual variations of the beam pointing
and spot size on the sample as the stage is translated by tens of centimeters,
the required distance to achieve time delays of hundreds of picoseconds. These
lead to experimental artifacts that are sometimes hard to distinguish from the
real dynamics. Another issue concerns the scanning speed, which is currently
limited. Higher scanning rates allow much faster measurement times and higher
throughput, which could enable the analysis of slow transient behaviour [306-308]
or acoustic imaging [309,310] by the acquisition of succesive data sets within just
a few milliseconds.

ASynchronous OPtical Sampling (ASOPS) is an elegant technique that en-
ables ultrafast pump-probe time-domain spectroscopy without the use of such a
mechanical delay line [311]. The pump and probe pulses that will respectively in-
teract and monitor the sample are generated by two different mode-locked lasers
that are actively stabilized (via a single electronic feedback loop) to have a small
repetition rate difference Af,., = fi — f2. The working principle of the method
and the practical implementation used in this thesis are depicted in Fig. 4.23. The
detuning of the repetition rate Af,¢, causes the interval between the pump and
probe pulses to vary monotonically as a function of time, allowing the dynamics
of the system to be probed without the need of re-adjusting a mechanical stage.
The scan rate is given by A f,.., which means that one can acquire the response of
the system every % flm s. The available time window is given by the inverse of the
repetition rate of the pump laser f;, i.e. the dynamics to be probed should ideally
die out before ¢t = 1/ f;, since otherwise the system enters a resonantly pumped
regime [312]. If only laser pulses coming from the probe reach the detector and
the electronics are able to follow the dynamics at the repetition rate fs of the
probe laser, then the photocurrent signal will reproduce the sample’s reflection
curve. This acquisition process is schematically depicted in Fig. 4.23(a). Note
that the schematic uses a very high Af,, for the sake of clarity, while in reality
this is set to Af,ep, = 2-10 kHz.

The experimental setup used for the measurements shown in this thesis is
represented in Fig. 4.23(b). The overall system has been set up in reflectometric
configuration using colinear pump and probe pulses, which are focused into the
surface of the sample using a long working-distance, high NA, 100x microscope ob-
jective. Filtering of reflected pump light is achieved by means of polarization. The
setup was originally set to filter by wavelength using an extremely sharp low-pass
filter. This configuration was changed as the operation of the dual-mode-locked
lasers at a common wavelength of A\ = 800 nm is easier. The polarization filtering
is achieved by using two half-wave plates (A/2) at the beginning of the pump and
probe optical paths, from which the two beams propagate with orthogonal polar-
ization. Placing a polarizing beam splitter (PBS) prior to the objective joins the
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Figure 4.23: Ultra-fast pump probe spectroscopy based on asyn-
chronous optical sampling (ASOPS). (a) Illustration of time-domain sig-
nal acquisition by ASOPS, including (1) pump pulses at repetition rate fi, (2)
probe pulses at repetition rate fo = f1 — Af, (3) sample reflection after the
pump photo-induced stress and (4) photodetector signal. (b) Schematic of the
reflectometric colinear pump-probe setup used during this thesis. The dual-
GHz femtosecond oscillators from LaserQuantum GmbH are shown in (c), with
the piezocontrolled mirrors of the slave (left) cavity highlighted.
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two optical paths and forces the reflected light to take the same path when prop-
agating backwards, effectively filtering all the pump light. An additional beam-
splitter (BS) is placed in the probe optical path and used to redirect the reflected
probe light towards the fast photodetector. The R/T ratio of the BS is chosen to
be 90/10 since the employed pulsed lasers deliver more than enough fluence for a
weak probe but we want as much of the reflected light to reach the photodetector
as possible. The power delivered by both pulse trains is controlled by two variable
optical attenuators (VOA). The employed Ti:Sapphire pulsed lasers are commer-
cial femtosecond lasers from Laser Quantum GmbH [313], delivering 30-50 pulses
of energy X fJ. The two ring laser cavities are perfectly symmetric and are built
on the same metallic box, which allows minimizing relative fluctuations between
the two pulse trains. A picture of the two under continuous wave pumping by a
green Coherent Verdi laser is shown in Fig. 4.23(c). As highlighted, two of the
mounted mirrors in the left cavity are piezo-controlled, which allows very precise
tuning of their position. This degree of freedom is used to control the repetition
rate fy of the left cavity and to stabilize it at Af,., from f;.

4.4.2 Coherent phonon generation

Here we derive in detail the level of excitation associated with the different eigen-
modes of a structure. This will then allow us to obtain selection rules for simple
systems such as acoustic SLs. Their finite version in the form of acoustic DBRs
largely inherit the found selection rules and help the interpretation of experimen-
tal data of pump-probe experiments in systems comprising DBRs. This section
relies heavily on Refs. [314] and [305].

Generation spectral function

The presence of a source term in a wave equation leads to the excitation of the
normal modes of the medium. It is therefore instructive to seek a solution to
(4.43) based on spectral decomposition of the displacement field U(z) into its
eignmodes. The first requirement is therefore knowing the eigenspectrum of the
differential operator f)(z) in (4.43) under practical boundary conditions. This
has been done previously for the Bloch modes of an acoustic SL and to find the
QNMs of open nanophononic structures, i.e. with outgoing boundary conditions.
Real fabricated acoustic nanostructures are nevertheless closed structures due to
the finite thickness of both the substrate and the grown nanostructure and they
typically have a free surface on the excitation side, i.e. at the beginning of layer
1, and either a free-surface or a fixed boundary on the substrate side, at the
end of layer N. In the absence of acoustic dissipation, the eigenfields are purely
real, whcih implies that the displacement field in any layer j can be written as
U;(z) = Ujcos(q;z + 6;). The boundary conditions are enforced by setting U
and 0y in layer 1 and Oy, in a (irrelevant) fictitious N + 1 -th layer. On the
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propagating/counterpropagating plane wave basis, this leads to

1601
aj+| | € ‘
[(IL] = [6_291] (4.49a)

|:GN+1,+:| _ [—UNQHewN“ } (4.49D)

U _
CLN+177 1\;+1€ 10N 4+1

with 6 = 0 for a free-surface and ¢ = 7 for a fixed boundary. Note that the
amplitude in layer 1 has been arbitrarily set to U; = 2 since the eigenfields are
defined up to a multiplicative constant. These two pair of coefficients are linked
via the full transfer matrix of the system M, i.e. ay,; = M-a;, which leads to

Re(MH)cos(Gl — 9N+1) — Im(MH)sin(Hl — 0N+1)

4.50
+R6(M12)COS(91 + 9N+1) + Im(Mll)sin(Ql — 9N+1) =0 ( )

Expression (4.50) is satisfied for a discrete set of real frequencies €, that can be
found using a standard Newton method. The eigenfields are found by concatenat-
ing the individual transfer matrices starting from a;. Lastly, the obtained eigen-
fields need to be normalized to fulfill the following orthonormality relation [315]

/0 p(2)Up(2)Upn(2)dz = O, (4.51)

Once the spectral decomposition of operator f/(z) is known, we use the Green
function formalism for second order differential equations in the time variable to
obtain a general solution to equation (4.43), which is formally written as [316]

Un(2) b / L NS ’
Uz, t) = Up(z,1) — znj 2 /_Oo sin(Q (t — ) /O Un() 22 (!, )" ) ! (4.52)
where Uy(z,t) is the homogeneous solution to equation (4.43). This is usually
disregarded as the system is either at rest at time ¢ = 0 or undergoing incoher-
ent Brownian motion which goes undetected in pump-probe time-domain spec-
troscopy. Integrating by parts and introducing the functional form o,(z,t) =

K(2)|E(2)|*T(t) given in (4.47), the displacement field can be written as

U(z,t) = Y G()Un(2) f(Qn, 1) (4.53)
with '
G(Q) = Qi {—un(z)K(z)lE@)IQ!oL + /OL %(@K@IE(Z)I2 (4.54)
and
L W O A ST

We will refer to G(2) as the generation spectral function, whose evaluation
at the eigenfrquency 2,, and with the eigenmode field U, (z), gives the amplitude
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of oscillation of that particular mode upon incidence of the pump pulse. The
function is in principle only defined for {2, U,(z)} and one should compute the
normal modes with the guidelines described above. Here, G(£2) is an analytical
continuous function of frequency €2 as the examined nanostructures are typically
grown on a thick substrate, which implies that the eigenfrequencies of two modes
are extremely close, much closer than the typical experimental resolution. We
can therefore assume a continuum of frequencies €2 and choose the sampling in
(4.53) according to the experimental resolution. In this case the fields Uq(z)
are computed by considering the free-surface boundary condition at the top, i.e.
a, = [1,1] and using the transfer matrices up to the substrate. This essentially
corresponds to neglecting the boundary condition at the bottom of the substrate
and taking L — oo. The system is therefore equivalent to an open system on
the bottom surface. Unavoidable sound absorption at room-temperature while
phonons propagate through the thick substrate [317] also strengthen this formal
argument, since vibrations cannnot reach the bottom surface to generate standing
waves.

The temporal dependence of (4.53) is provided by the term f(2,,t). The
particular form this function takes for two limiting cases, i.e. a delta and step
time dependence for o, is given in (4.55). The difference between their two tem-
poral dynamics is a phase factor of 7/2 and an overall offset given by the factor
1. The latter is associated to the sudden change in equilibrium position described
previously. Any other temporal dependence will simply produce a different phase
and offset. Note that the choice of a step time-dependence H(t) also leads to an
additional factor Q~! in G(Q), a factor that can be neglected when considering
the behaviour of G(2) on a particular frequency region.

Selection rules for an acoustic superlattice

The spectral behaviour of G(£2) in an infinite SL and in the absence of optical
absorption, i.e. via electrostriction, can be found by taking the limits 0 and
L in (4.54) to oo and using the periodicity of the structure. Since the typical
wavelengths used in the experiments (A ~ 800 nm) are considerably larger than the
modulation of the optical properties induced by the SL considered (da;p ~ 5-100
nm), the system optically behaves as an effective medium with effective refractive
index n.ss. The electric field is therefore approximately given by E(z) = Ee'*ers?
with keyp = neprk and k the free-space wavevector; therefore |E(z)]> = |EJ%.
Both the displacement field Ug(z) and any of its spatial derivatives are Bloch
functions, i.e. %(z) = no(2)e'?” with no(z) a periodic function of period D. In
addition, K (z) is also a periodic function whenever light absorption is disregarded.
Expanding both 7q(z) and K(z) in the Fourier basis spanned by the reciprocal
lattice vectors ) and disregarding the first term of (4.54) leads to

G() =B ) Ko-qmaqedld—Q) (4.56)
QQ’
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Figure 4.24: Coherent acoustic phonon generation function in an
acoustic Distributed Bragg Reflector (DBR). (a) Band diagram of a
(%, %) GaAs/AlAs superlattice (SL) for a design frequency f,, = 100 GHz.
The displacement profile of ¢ = 0 modes highlighted with letters A-D are given.
(b) Generation spectral function |G(Q2)| for a DBR of N = 20 periods. The
evolution of the spectral function with NV is shown as a colormap in (c), with
each spectrum normalized to its maximum. It demonstrates how in the limit
N — o0 the selection rules for an acoustic superlattice are recovered.

which is only non-null when ¢ = 0 in the first BZ. This leads to the following
selection rule: only phonons with ¢ = 0 in the band-folded scheme, often called
forward-scattering (FS) modes, are generated in an infinite absorptionless SL.

An additional selection rule can be obtained when one considers the sym-
metry properties of the band edge modes at ¢ = 0. The two modes bounding a ZC
or ZE minigap are either symmetric or antisymmetric with respect to reflections
in the bisector planes and if one is symmetric, the other one is antisymmetric
(Section 4.1). In addition, the displacement Uq(z) and the strain ng(z) are /2
out of phase, which inverts the symmetry property with respect to the bisector.
Since K (z) is an even function, the second term in (4.54) vanishes for symmetric
modes since ng(z) is odd. The selection rule is further reduced to: only ¢ = 0
phonons with odd parity with respect to the bisector planes can be generated in
an absorptionless SL.

Finite size and absorption effects

In a realistic experiment the SL is finite and light is at least partially absorbed or
scattered away by defects. What are the role of these two on the selection rule just
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introduced? Finite-size effects for the generation of coherent acoustic phonons in a
SL, a DBR of N periods, can be partly deduced from the behaviour of (4.56). The
integration leading to §(¢— @) leads to a sinc(g) function when the integral bounds
are set at finite positions, which slightly relaxes the selection rule. Considering
the exact acoustic and optical fields slightly modifies this sinc(q) dependence, but
the resulting functions will be of similar shape, leading to satellite oscillations
whose spectral position gets closer to the central peak with an increasing number
of layers NV [318]. In addition, the first term in (4.54) cannot be neglected for a
DBR, especially outside the frequencies €2 for ¢ = 0 phonons and can contribute
to the relaxation of the selections rules. The inclusion of absorption in the sample
has more or less the same effect. The presence of a real exponential term e™®*)?
in F(z) does not lead to d(¢ — @) after integration. Whenever strong absorption
takes place, the three mechanisms for coherent generation simultaneously operate
and K(z) cannot be assumed to follow the sample’s geometrical profile. Despite
these finite size and absorption effects, the spectral behaviour of the generation
function G(2) for a DBR is dominated by the peaks at ¢ = 0 (band diagram
in Figs. 4.24(a)), as can be seen in Figs. 4.24(b,c), where we have considered
an impulsive mechanism for generation based on electrostriction. The spectral
oscillations are clearly visible, as is the odd parity ¢ = 0 selection rule evidenced
by the accompanying field profiles of the Bloch modes.

4.4.3 Coherent phonon detection

The spectrum of the generated phonons, given by G(2), provides simple selec-
tion rules. Now we want to study if the probe pulse is sensitive to the generated
phonons. By finding the reflection coefficient r of the structure, we derive a de-
tection spectral function and study what selection rules follow from the detection
process and how compatible they are with the rules for generation.

Detection spectral function

The presence of excited coherent acoustic phonons leads to a modulation of the
optical properties via the photoelastic effect, as defined in (4.48), and via the dis-
placement of the interfaces between the layers. Due to the nature of the longitudi-
nal phonons generated and to the cubic crystallography of the materials employed
in this thesis, the dielectric tensor remains isotropic when normal-incidence light is
considered. Maxwell’s equations remain practically unchanged, although the dis-
placement field D(z, t) is in principle time-dependent via €(z,t) = €9 (2)+Ae(z, 1),
with €©)(z) the contribution from the nanostructure in the absence of vibrations
and Ae(z,t) = A€pe(z,t) + A€mp(z, t) the perturbation induced by the vibrations.
Note that we typically have the following situation: first, |Ae(z,t)| < [e®(2)| and
second, the timescale associated with the variations Ae(z,t) is much longer than
both the optical period and the probe pulse duration. Given these two assump-
tions, we can make a quasi-static approximation and employ the Green function
of the unperturbed system to solve for the reflectivity of the optical nanostructure
at optical frequency w [291]. This corresponds to solving at a given snapshot of
the coherent mechanical oscillation. Up to the first order in Ae(z), the electric
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field E(z) at the cladding layer can be written as

k2 . L oU
F(z) ~ EO(z) + ! e_ZkOZ{/ P(2)==(2)E©(2)?
(2) (2) Yoal] i ()az() (2)

N (4.57)
+ 3 (em-1 — m)ulzm) (@l + a£2?>2}
m=0

where the form of the photoelastic and moving boundary terms have been used.
For SLs made of GaAs and AlAs, the photoelastic coefficients can be set to around
200 for GaAs [319] and null for AlAs [320]. With these values, the first term
in (4.57) largely dominates over the second term and we can safely restrict our
analysis to just the first. Introducing the expression found for the generated
displacement (4.53) into (4.57) leads to the following expression for the reflection
coefficient change Ar

Ar(t) =) G(Q) D() (1) (4.58)
with ”» Loy
= ! L z z ©) z 2 z .
D) = | FREPE B (4.59)

We will refer to D(Q2) as the detection spectral function, whose evaluation at the
eigenfrquency §2,, and with the eigenmode field U, (z) gives the achieved sensitivity
in the reflection coefficient at the frequency of that particular eigenmode. Ar(t)
is the sum over the eigenmodes of the product of the generation and the detection
function times the corresponding temporal evolution given by (4.55).

Selection rules for an acoustic superlattice

Here, we deduce a selection rule for the detection process using (4.59) and the
periodicity of the functions within when the light field E®(2) is simply given by
a plane wave with an effective refractive index n.s¢. This leads to,

D(g() < Y Po-gmaqd(qg — Q + 2kess) (4.60)
Q'

which has the same form as (4.56) but the Dirac delta is not taken at ¢ = @ but
at ¢ = ) — 2kcs¢, which implies that in the folded scheme only ¢ = 2k.s¢ can be
detected, as depicted in Fig. 4.25(a). This results from the momentum conser-
vation in the backscattering of light induced by the coherent acoustic phonons.
In the same manner as for the generation spectral function, finite size effects and
optical absorption relax these selection rules and lead to a sinc-like response, as
can be seen in the spectrum of Fig. 4.25(b). Due to the slope of the dispersion at
q = qefs, the detection peaks are broader than those in G(£2). Nevertheless, these
narrow for an increasing number of DBR periods N, as shown in the colormap
of Fig. 4.25(c), recovering the selection rules for the infinite SL. Small peaks that
mimic G(2) are also visible at ¢ = 0 in both Fig. 4.25(b) and (c). These are
due to the fact that the effective index approximation for E(z) is weakly satis-
fied, which hints at engineering the light field confinement as a tool to tailor the
generation/detection spectral responses [321].
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Figure 4.25: Coherent acoustic phonon detection function in an
acoustic Distributed Bragg Reflector (DBR). (a) Band diagram of a
(32, 2) GaAs/AlAs superlattice (SL) for a design frequency f, = 100 GHz.
(b) Detection spectral function |D(2)| for a DBR of N = 20 periods. The evo-
lution of the spectral function with N is shown as a colormap in (c), with each
spectrum normalized to its maximum. It shows how in the limit Noo100 the
selection rules for an acoustic superlattice are recovered, with additional spec-

tral features at ¢ = 0 arising from backpropagating components in the electric
field E(z).

Differential reflectivity in the time and spectral domain

The quantity we measure with the configuration shown in Fig. 4.23(b) is the
variation of the reflectivity of the sample at at given time ¢ with respect to its
value in the absence of vibrations R . This quantity can be written as

AR(t) = 2Re[rV|Re[Ar(t)] + 2Im[rO]Im[Ar(t)] (4.61)

where both the real and imaginary part of Ar(t) can contribute to the observed
temporal trace. If expression (4.58) is used, the differential reflectivity AR(t) is

AR(t) = AR, f(S,t) (4.62)

with
AR, = 2Re[rV|Re[G(Q,)D(Q,)] + 2Im[rO]Im[G(22,,) D(,)] (4.63)

Given expression (4.62), the spectrum of AR(t) can be found, since all the spectral
information is essentially contained in AR,. However, we have so far ignored
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that the eigenmodes of the structure have a finite lifetime even in the absence
of radiation lossess. To improve the matching between the measured spectra
and the expected reflectivity traces, we add an exponential decay e /™ to the
temporal dependence of each normal mode. In addition, the experimental trace
is only acquired over a given time interval. The theoretical expression (4.62)
is therefore convoluted with the Fourier transform of the rectangular function
H(t)H(t; — t) where we have set the initial measurement time to ¢ = 0 and the
temporal measurement window ends at the final time ¢y, which corresponds to
1 ns in our experimental apparatus. Combining both the finite lifetime and the
convolution, the spectrum is

AR(w) =" AR, [eltOnti/mts/2) sin((w + D +1/7u)t;/2)
w+Q, +i/7,
! (4.64)

1 i@ nti/n)ts/2) sin((w — Q, +i/7)t7/2)
w—Q, +i/m,

In addition to these aspects, the frequency cut-off induced by the finite size
of the pulses (~50 fs) is also taken into account, as is the full spectral width of
the pump and probe pulses by doing a weighted average of the generation and
detection functions over the linewidth of the laser spectrum. Since the spectral
dependence of the losses 7, goes well beyond the scope of the measurements re-
ported here, we set 7,, = 7 and we use it as a free parameter to be adjusted by
comparing the theoretical expression (4.64) to the Fast Fourier Transform (FFT)
of the measured data.

4.4.4 Experimental evidence of a topological nanocavity

In this section we numerically and experimentally study how the selection rules
just described manifest in a system comprising of two concatenated and band-
inverted DBRs, for which the inversion of the ZC band edge mode symmetries
and its manifestation in coherent pump probe spectra indicate the topological
nature of the measured confined state inside the corresponding minigap.

Cavity design

We study two different nanoacoustic multilayer structures made by combining
different types of DBRs (labelled A, B, and C) as building blocks. Both sam-
ples are grown on a 200 pm thick GaAs substrate starting with a DBR of type
B followed by DBR of type A (we label this the topological sample) or type C
(control sample), respectively. While the topological sample is designed to confine
a topological acoustic mode at the interface between the two DBRs, the control
sample only supports extended propagating and stationary band edge modes. The
design of both samples is based on the (22(1+ §), 22 (1 —4)) DBRs introduced
before, for which we have shown that 6 = 0 corresponds to a topological transi-
tion point for all ZC minigaps. The design frequency is chosen at f,, = 100 GHz,
which means that the first ZC minigap lies at 200 GHz. We choose § = —0.1
for DBR A, § = 0.1 for DBR B and § = 0.3 for DBR C. Each DBR contains 20
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Figure 4.26: Topological interface state through band inversion in
GaAs/AlAs superlattices (SLs). (a) Band structure corresponding to the
Distributed Bragg Reflector (DBR) A. Zak phase values of different bands de-
picted on top of them. Minigap edges at the center and border of the Brillouin
Zone (BZ) are marked with green and black dots. Black (green) dots represent
edge modes with an even (odd) displacement profile as shown in the insets. (b)
and (c) present plots of the edge positions as a function of parameters z4_p
and x¢_p, respectively. Edges corresponding to DBR B are represented as dots
at to—p = ro_p= 1 using the same even/odd color code for both lines and
dots. A schematic of the two samples with their corresponding DBRs labeled
and the interface plane highlighted is provided. (d) Band structure correspond-
ing to DBR C using the same representation as in (a). (e) Reflectivity spectra
for DBRs A, B, and C composed of 20 periods. (f) Reflectivity spectra for
topological (DBR A - DBR B) and control samples (DBR C- DBR B). (g)
Displacement profile of the topological interface state at f. = 199.24 GHz.

GaAs/AlAs layer pairs with 10.76 nm/15.57 nm (A), 13.15 nm/12.74 nm (B), and
15.54 nm/9.91 nm (C) nominal thicknesses, respectively.

As explained in Subsection 4.2.2, the difference in the topological properties
of the two samples can be understood from an analysis of the SL bandstruc-
tures and the associated mode symmetries and/or Zak phases, as is shown in
Figs. 4.26(a-d). While Fig. 4.26(a) and Fig. 4.26(d) show the band structures
of SLs A and C, Fig. 4.26(b) and Fig. 4.26(c) illustrate that upon a topological
phase transition the energetic order of the band edge modes change. To that end,
we define a continuous parameter, x 4_p, that deformS DBR A into DBR B. An
analogous parameter, rc_pg, transforms DBR C into DBR B. That is, we define
the thickness of a DBR’s GaAs and AlAs layers as

dgass = dgaasy - (1 — vy_p) + dgarsp - Ty—B (4.65a)
daias = daiasy - (1 —xy_p) + dajasp - Ty—pn (4.65Db)

with zy_p € [0,1], and Y being either A or C. We plot the evolution of the band
edges bounding the second acoustic minigap as a function of z4_p (Fig. 4.26(b))
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and xo_p ( Fig. 4.26(c)). Continuously transforming DBR C into B merely implies
a change in the size of the common minigap, but the energetic order of mode
symmetries persists. This corresponds to moving from 6 = 0.3 to 6 = 0.1 in
Fig, 4.10. In contrast, Fig. 4.26(b) shows that a continuous transition between
DBR A and B necessarily implies a band crossing, i.e. the minigap closes and
re-opens, and an associated exchange of the band edge symmetries. This happens
for x 4_p = 0.5, which corresponds to § = 0 in Fig. 4.10. DBRs B and C are hence
in the same topological phase, whereas DBRs B and A cannot be continuously
transformed into one another, that is, they are in different topological phases.
Acoustic transmission spectra of the individual DBRs (Fig. 4.26(¢)) and of the
two concatenated structures (Fig. 4.26(f)) show the different behaviour of the two
stackings. For the control sample (dashed line, Fig. 4.26(f)) only a broad stop
band is found, as in the case of the individual DBRs. The small peak at around 196
GHz corresponds to the band edge mode of DBR B, which is confined between
the substrate and DBR B, whose minigap is much wider. For the topological
sample (solid line), a clear peak appears at 199.24 GHz, indicating the presence of
a confined mode. The spatial acoustic displacement profile of the corresponding
QNM |U(z)| is shown in Fig. 4.26(g), superimposed with the layer structure of
the topological sample. We observe that the mode is centered at the interface
between the two bilayer DBRs and decays exponentially into both extremes of
the structure.

Both samples were grown by MBE at the Centre de Nanosciences et de Nan-
otechnologies (C2N) in Palaiseau, France. These were grown on a [001]-oriented
GaAs substrate and without any thickness gradient. They were pre-characterized
by means of high resolution x-ray diffraction (HRXRD). As an important tool for
structural characterization, HRXRD provides valuable information on the peri-
odicity, layer sizes and overall quality of both samples. A # — 20 HRXRD scan
using Cu K-« 1 radiation was performed, diffractograms were measured, and fur-
ther analysis of their peaks provided information about the different parts of the
structure. For the topological sample, the results showed that DBR A is formed
by GaAs/AlAs layers of 11.1/15.5 nm and DBR B of 13.5/12.7 nm. For the
control sample DBR C presents layers of 16/10 nm of GaAs/AlAs while DBR B
of 13.5/12.8 nm. For the topological sample, these thickness values represent a
reduction of the AlAs layers by 0.6% of their nominal values, while for the GaAs
layers the change corresponds to an increase of 2.8%. For the control sample both
AlAs and GaAs layers present an increase of 0.5% and 2.8%, respectively. Despite
this deviation from the design values, this band structure analysis remains valid
for both samples as we will show via coherent pump-probe spectroscopy.

Pump-probe measurements

The samples described were first characterized in Dr. Daniel Lanzillotti-Kimura’s
team at C2N via Raman scattering spectroscopy [252]. The measurements carried
out there demonstrated the presence of a confined topological phononic mode, yet
the resolution did not suffice to determine lifetimes or to identify other acoustic
modes in the same frequency region. Fig. 4.27 reproduces Fig. 3(c) in Ref. [252],
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Figure 4.27: Raman scattering spectrum of a topological nanocav-
ity mode. (a) Raman spectrum of a bilayer topological phononic nanocavity
with design frequency 2f,, = 360 GHz. The solid black line represents the
experimental spectrum, while the solid red trace shows the simulated spectrum
using a photoelastic model similar to that used for coherent phonon genera-
tion/detection experiments. The limited resolution of the experimental set-up
is taken into account by convoluting the simulated Raman spectrum with a
Gaussian (20 = 13 GHz), as shown with a dashed red line. The agreement
between the measurement and the convoluted spectrum is remarkable. Nev-
ertheless, the different mechanical modes leading to the broad peak B cannot
be resolved. (b) Simulated acoustic reflectivity of the sample. The topological
interface mode at 360 GHz corresponds to peak B in the Raman spectrum. The
two panels have been adapted from Fig. 3 in Ref. [252] (C)American Physical
Society.

where the measured and simulated Raman spectrum and the calculated reflectiv-
ity of a topological sample with higher design frequency (2f,, = 360 GHz) are
shown. As compared to the resolution-limited (13 GHz) broad peak (B) observed
with Raman (solid black line in Fig. 4.27(a)), the use of time-resolved pump-
probe measurements can unveil the detailed structure of the nanoacoustic modes
around the band gap region (the inner structure ok peak B in the solid red line in
Fig. 4.27(a)), allowing a clear assignment of the different peaks to topological and
other stationary modes. Therefore, we perform measurements using the ASOPS
technique described in Subsection 4.4.1 to overcome these resolution limitations.

The measurements shown are done at a fixed central wavelength of A = 800
nm for the pump beam (40 mW) and a varying central wavelength A = 760-840
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Figure 4.28: Reflection-type pump-probe coherent acoustic phonon
experiments in a control sample. (a) Time-resolved differential reflectiv-
ity obtained with both pump (40 mW) and probe (4 mW) at A = 800 nm.
The as-obtained data is treated by cutting the initial electronic peak and us-
ing appropriate Savitzky-Golay filters to extract low-frequency backgrounds,
leading to the trace in the inset. (b) The Fast Fourier Transform (FFT) of
the treated time trace is given (blue) and compared to the theoretical spectra
obtained from a simple electrostriction-photoelastic model (grey). (c) Band
diagram of the bottom superlattice (SL B), with the spectral position of the
generation/detection selection rules highlighted with vertical dashed lines.

nm for the probe (4 mW) beam, collinearly focused to a 2 pm spot on the sample
surface. Measurements at different magnifications and powers were done to rule
out the presence of additional power density dependent temperature variations
of the sample reflectivity. In addition, measurements at different positions in the
sample were done to confirm the observed signals. The differential reflectivity
signal AR(t)/R® obtained for the control sample is shown in Fig. 4.28(a). The
temporal trace is initiated by a sharp dip of electronic origin, that marks the
point of coincidence between the pump and probe pulses. When this peak is
disregarded, only slow dynamics related to the temperature field AT (t) are usu-
ally left in addition to the modulation associated with the mechanical vibrations.
Supervised application of Savitzky-Golay filtering [322] allows extraction of this
low-frequency background which also includes a 1 GHz background coming from
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spurious light from the pump. The inset of Fig. 4.28(a) shows the result of this
data processing. This time trace shows that specific coherent acoustic vibrations
have been excited and that those vibrations can be observed via the reconstructed
differential reflectivity. The discrete Fourier transform of the differential reflec-
tivity signal in the spectral region below 300 GHz is shown in Fig. 4.28(b) and
compared to the expected differential reflectivity spectra as obtained from Equa-
tion (4.64). The experimental time trace has been zero-padded for increased
readability of the discrete Fourier Transform and special care has been taken to
ensure that the padding does not add any spectral features. This is achieved
whenever the signal has reached zero after the final time over which the FFT is
taken, which is essentially the case here. We see that a purely electrostrictive
model for the phonon generation process and photoelasticity-based detection re-
produces the main features of the measured spectra for the control sample under
the experimental conditions considered here. Several acoustic modes are observed
in Fig. 4.28(b). First, we observe the Brillouin peak [323] of both SLs and the sub-
strate at ~ 42 GHz, as well as two groups of peaks at 150 and 245 GHz, which are
linked to the detection ¢ ~ 2k.¢; selection rule introduced before, which applies
even in the presence of two different concatenated SLs. This is demonstrated in
Fig. 4.28(c), where the band structure of the bottom SL (SL B) is depicted, with
the horizontal line representing the ¢ = 2k.;; condition at the detection wave-
length A = 800 nm. Although we have two different DBRs B and C, their bands
far from the minigap are virtually equivalent, which makes it hard to observe any
particular substructure in those regions. The analysis of the region around the
first ZC minigap of the underlying SLs A, B and C (185-210 GHz), where the
generation selection rule ¢ = 0 applies, is studied in a separate figure.

The equivalent treatment of the obtained differential reflectivity for the
topological sample is shown in Fig. 4.29, where the initial electronic response leads
to a peak instead of a dip. The same processing of the data as the one done for the
control sample leads to the time trace shown as an inset, where the initial modu-
lation AR(t)/R® is ~ 3 times larger than for the control cavity for similar levels
of power. Using the same impulsive electrostriction mechanism for generation and
photoelastic-based detection also leads to quantitative agreement between the ex-
perimental spectrum and the modeled spectrum for the topological sample, as seen
in Fig. 4.29(b). The black dashed lines highlight the same set of modes associated
with detection and selection rules. The additional peak between the two dashed
lines bounding the first ZC minigap at ~ 200 GHz corresponds to the topological
nanocavity mode. The structure around this peak is studied in more detail in
Fig. 4.30. We expect the differential reflectivity spectrum AR/R(®(Q) for the
topological sample to exhibit a modal structure involving three modes. First, the
¢ = 0 odd mode of each SL should lead to a generation peak in the corresponding
DRBs. This is shown in Figs. 4.30(a,b), which respectively show the acoustic
band diagrams and the active modes if the two DBRs were assessed individually.
Owing to the inverted symmetry of the band edge modes of the underlying SLs A
and B, the lower band edge mode of DBR B (that we denote Lg) and the upper
band edge mode of DBR A (that we denote Uy,) are respectively excited. When
the two DBRs are concatenated, the corresponding modes, evidenced by peaks
in the derivative of the reflection phase from the substrate side (Fig. 4.30(c)),
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Figure 4.29: Reflection-type pump-probe coherent acoustic phonon
experiments in the topological sample. (a) Time-resolved differential re-
flectivity obtained with pump (40 mW) at A = 800 nm and probe (4 mW) at A =
765 nm. The as-obtained data is treated by cutting the initial electronic peak
and using appropriate Savitzky-Golay filters to extract low-frequency back-
grounds, leading to the trace in the inset. (b) The Fast Fourier Transform
(FFT) of the treated time trace is given (blue) and compared to the theoretical
spectra obtained from a simple electrostriction-photoelastic model (grey). (c)
Band diagram of of the bottom superlattice (SL B), with the spectral position of
the generation/detection selection rules highlighted with vertical black dashed
lines. A peak, corrresponding to the position of the topological interface state,
is observed in between the two dashed lines bounding the first zone-center (ZC)
minigap at ~ 200 GHz.

are also generated/detected, as is the topological mode (T"), which arises precisely
from this symmetry exchange. These three peaks are present in the modeled spec-
trum shown in Fig. 4.30(d). The spectrum obtained from zooming in Fig. 4.29(b)
around 185-210 GHz (shown in Fig. 4.30(e)) shows qualitative agreement with
the theoretical spectrum, although what are clear peaks in the theoretical curve
(grey) only show up as shoulders in the experimental curve (blue). However, these
shoulders are individually present as more prominent peaks in spectra taken at
different points of the sample surface and do not arise from the zero padding of the
time signals. For completeness, the calculated mode profiles U, (z) for the three



146 Chapter 4. Photon-phonon interaction in one-dimensional structures

modes are shown in Fig. 4.30(f) clearly highlighting the band edge and confined
nature of the observed modes, respectively.

The same analysis is carried out for the control sample, as shown in Figs. 4.30(g)-
(1). The simple selection rules for photoelasticity-based infinite non-absorbing SLs
are also conclusive for the control sample. The two modeled and observed peaks
correspond to the lower ZC band edge modes of DBRs C (that we denote L)
and B (Lp) respectively. When looking at the displacement profile of the ¢ = 0
(FS) mode of DBR B (Lp) in both the topological and control sample we observe
a different spatial profile, despite being at a very similar frequency. It must be
noted that the FS peak is mainly generated in the second DBR (DBR B) and
thus its intensity is almost independent of the spatial profiles in the first DBR
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Figure 4.30: Optical transient reflectivity spectra of the topological
and control sample around the first zone-center (ZC) minigap. (Left)
(a) Band diagram of the underlying superlattices SL A (black) and SL B (blue).
(b) Pump-probe phonon spectra of the individual uncoupled Distributed Bragg
Reflectors (DBRs) A and B. The same color code as in (a). (c) Simulated
derivative of the phase shift ¢ for a substrate-incident acoustic plane wave,
allowing identification of supported resonances for a closed structure at the
top layer. The three relevant modes are identified as Lp, Ua, and T and are
also present in the (d) theoretical AR/R,(€2) and (e) experimental spectra.
(f) Mode profiles of the topological nanophononic cavity (T) as well as the
detected lower (upper) band edge mode L (Uya). (Right) Equivalent plots for
the control sample, with the two lower band edge modes Ly and Lo depicted
instead in (1).
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(DBRs A or C). In the first DBR, the Ly mode grows exponentially from the
surface to the interface for the control sample while it is fully propagating for the
topological sample. This difference arises from the different matching conditions
with the second DBR. Fig. 4.30(a) shows how the lower band edge associated with
DBR B lies inside a frequency region where propagating modes exist for DBR A,
while Fig. 4.30(g) shows that the same band edge lies deep inside the band gap of
DBR C. Note that the profiles in Fig. 4.30(f,1) directly give the displacement field
U(z), i.e. its real part, in contrast with Fig. 4.26, where we show the absolute
value of the complex-valued displacement field |U,,(z)| since an arbitrary complex
phase can be added to the transmitted field.

In conclusion, in a pump-probe measurement in a semiconductor superlat-
tice we observe peaks that are related to ¢ = 0 (FS) and ¢ = 2k.ss acoustic
phonons. For symmetry reasons, only one of the two F'S modes is accessible by
the experiment. In the case of the control sample, two FS peaks appear on the
same side of the common minigap. In the case of the topological cavity, the
two F'S peaks appear on opposite sides of the gap, validating the band inversion
concept. The symmetry-dependence of the observed peaks is based on very well
established selection rules in Raman scattering that are mapped into photoelastic
mediated processes in pump-probe coherent phonon generation/detection exper-
iments. Even though the existence of the topological mode could also be probed
by means of transmission/reflection experiments, similar to the ones reported in
Ref. [324], this kind of experiments does not provide any information on the mode
symmetries, a critical feature to prove the topological nature of the most intense
observed central peak. Moreover, they require the growth of metallic transducers
that would generate additional acoustic modes. Therefore, the use of time-resolved
pump-probe measurements directly on the semiconductor superlattices is essential
to spectrally resolve and distinguish the three modes around 200 GHz. The pos-
sibility of identifying individual modes that are closely spaced in frequency is of
central importance for the study of dynamics in more complex topological acous-
tic structures where the interaction with the optical field can be engineered [279],
e.g. in topological resonators for light and acoustic phonons [283].
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Chapter 5

Cavity optomechanics in the
Anderson-localization regime

In this chapter, we discuss the optomechanical (OM) experiments performed on
photonic crystal waveguides (PhCWs) in the presence of unintentional fabrication
disorder. We first give an introduction to the optical and mechanical properties
of unperturbed photonic and phononic wavequides, which allows us to understand
how to control the behaviour of light and motion propagation in the presence of
fabrication imperfection. After that, we describe the experimental technique and
apparatus employed to couple light into the optical modes emanating from the
bands of these PhCWs, notably Anderson-localized optical modes. Multiple fea-
tures evidencing the onset of localization are adressed, choosing the most appro-
priate on a case by case basis. With these tools in hand, the OM characterization
of slotted PhCWs (sPhCWs) is described, showing both OM interaction with low-
frequency mechanical modes using circular holes and with high-frequency modes
using shamrock-shaped holes.

5.1 Photonic and phononic crystal waveguides:
order and disorder

Photonic crystal (PhC) slabs enable control over the phase and amplitude of light
due to the combined effect of the slab geometry and the dielectric pattern. In
particular, they allow creating photonic band gaps (PhBGs), where light cannot
propagate. A similar effects occurs for acoustic waves provided that the hole shape
is chosen properly. Cavities based on point defects in a periodic nanostructure pos-
sesing a bandgap, like a patterned nanobeam, have been discussed in Chapter 2.
In a two-dimensional system, one can also create a linear defect which guides light
or sound from one point to another using Bragg reflection confinement within the
lateral in-plane directions. Owing to the periodic pattern, the bands that arise
from this type of defect are very dispersive. This allows a high density of propa-
gating states at particular frequencies, in general close to the band edges [72], but
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Figure 5.1: Band structure of a photonic crystal waveguide (PhCW).
(a) Schematic of a W1 PhCW, which consists of a triangular lattice of circular
holes with one missing row in the I'-K direction. (b) Band structure of the
structure shown in (a) for r = 0.31a, t = 0.5a and a = 500nm. The light
cone and the bulk bands are shown with shaded grey and red respectively. (c)

Ey(z,y,z = 0) for the highlighted bands (A,B and C) at the band edge (k = 7),
showing either even or odd parity with respect to the waveguide axis.

not limited to. We have already discussed how a high density of states can lead
to enhanced multiple scattering and localization for a 1D multilayer and we ex-
plore here its manifestation in PhCWs and phononic crystal waveguides (PnCWs).

5.1.1 Line defects in two-dimensional lattices

A line defect is formed in a regular lattice by altering the periodic pattern in a
given direction. The most typical line defect consists of omitting a single row of
holes [325] in a high-symmetry direction, but many other possibilities have been
explored [326,327]. The effect of omitting a row of holes in the I' — K direction of
a triangular lattice of circular holes leads to the geometry depicted in Fig. 5.1(a).
As seen in Chapter 2, when this lattice is etched in a silicon slab it exhibits a
PhBG for z-even or TE-like modes, provided that the value of the hole radii and
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the slab thickness are properly chosen. Since the vertical thickness invariance is
mantained, we denote the resulting geometry of Fig. 5.1(a) a TE-like PhCW. The
disruption of the translation symmetry in the in-plane direction perpendicular to
the defect (y) creates a set of photonic states in the PhBG. Similar to the point-
like defects, these states are roughly localized within the defect volume, since they
cannot propagate through the lattice. The system still retains the translational
symmetry along the direction z, i.e., Bloch theorem (see (3.16)) applies. We
define k as the Bloch wavevector that characterizes the variation of the phase
along that direction. The photonic band diagram for the system in Fig. 5.1(a)
is calculated using Guided-Mode-Expansion (GME) and its bands are shown in
(b). Only z-even modes are shown for clarity. We see that four bands populate
the band gap region of the original lattice below the light line, the region above
which is marked with shaded grey. The field profile of these guided modes is
confined within the defect and decays exponentially into the bulk of the bounding
PCs, as shown in Fig. 5.1(c) via the component E,(z = 0) of modes A, B and
C (k = m/a). In addition, the modes have a well-defined and differing vector
symmetry with respect to the axis of the defect, which will be of relevance later
in this Chapter. The discrete nature of the bands shown for the bulk regions
only results from the artificial periodicity that the GME method imposes in the
perpendicular direction, i.e. it is a finite size effect. The structure supports in
reality a continuum of states, which is also shown with shaded red in Fig. 5.1(b).

In order to achieve the same waveguiding effect for acoustic waves, an acous-
tic band gap is required. The lattice used in Fig. 5.1(a) does not exhibit band
gaps for either z-symmetric or antisymmetric modes, as shown in Fig. 3.7 of Chap-
ter 3. A mechanical waveguide or PnCW can be created by employing a different
geometry for the scatterer like the shamrock used in Chapter 3. This is shown in
Fig. 5.2(a) by employing a phononic crystal (PnC) on one side and a free-surface
on the other. This boundary strategy is less suited for the photonic counterpart
since the in-plane total internal reflection (TIR) is easily lost in the presence of
any perturbation, but it provides lossless confinement for the guided mechanical
waves, which we employ for cavity-optomechanics experiments. The band dia-
gram of the waveguide with the I' — X direction of the PnC oriented along the
[110] crystalline direction of silicon (as in Fig. 3.7) is shown in Fig. 5.2(b). Both
z-symmetric (blue) and z-antisymmetric modes (red) are calculated due to the
presence of the full mechanical gap. Panel (c) highlights the deformation profile
of the modes of different bands and at different high-symmetry points. In the fre-
quency range spanning 6.7 - 7.3 GHz, a multimode symmetric band operates at
frequencies where two asymmetric bands are also present. This has an important
effect on our measurements, where the vertical invariance is lost due to irregular
etching.

5.1.2 Light localization

Compared to other light waveguiding technology, the supported propagating modes
in PhCWs allow smaller confinement volumes and more compact architectures.
The modal volumes can be much smaller than that of the high-refractive-index
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Figure 5.2: Band structure of a phononic crystal waveguide (PnCW).
(a) Schematic of a mechanical strip waveguide bounded by a triangular lattice of
shamrock holes and a free-surface. (b) Band structure of the structure shown
in (a) for A = 0.31a, B = 0.5a, f = 0.13a, t = 0.5a and a = 500nm. The
width of the waveguide is W's = 0.2a. Bands are split between modes that are
symmetric (blue) and asymmetric (red) with respect to the mid-plane. The
bands extending in the bulk of the crystal are shown with shaded grey. (c)
Displacement fields (color gives |u| at the surface) of the band edge modes
highlighted with A, B, C and D.

core of an optical fiber and of similar magnitude or smaller (and thus compatible)
than those of high-index waveguiding structures (see light fields in Fig. 5.1(c)).
In addition, distortion or bending at a microscopic scale in fibers or high-index
waveguides leads to scattered waves with angles of incidence for which TIR is lost,
while in a PhCW light cannot radiate in-plane because there are no electromag-
netic modes to scatter into. However, in the presence of a scattering center like
a sharp corner or a misplaced hole, the propagating Bloch mode of frequency w
and wavevector k scatters in the forward or backward direction into isofrequency
modes, i.e. Bloch states of another (or the same) k propagating at the same
frequency w [209]. The number of scattering channels depends on the number
of available guided states, while the scattering cross sections are linked to the
quantity of allowed states at w, i.e. the density of optical states (DOS) [270]. The
paradigmatic case of a W1 PhCW presents a y-even monomode band (see band
labeled A in Fig. 5.1(b)), with no other guided (or quasi-guided) isofrequency
modes than its time-reversed state at —k. This easily allows the interpretation of
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the backscattering properties in terms of the group velocity of light in the waveg-
uide [328].

The fast speed of light in vacuum or through transparent materials (which
can circumvent the Earth in just 0.1 seconds) allows us to see very distant objects
in the Universe and enables unbeatable fast information transmission. However,
when strong light-matter interaction is needed, the fast speed of light is a draw-
back [329]. Slowing down light is a scientific and technological goal of paramount
importance for applications ranging from nonlinear optics [330] to quantum in-
formation processing [331] and PhCWs are likely the most suited platform to
achieve it [332]. The velocity at which the phase of a single frequency wave prop-
agates in a given system is given by the frequency-dependent refractive index as
v, = ¢/n(w). However, in a realistic setting where light is used one typically deals
with an electromagnetic wave-packet. The velocity at which its envelope moves,
i.e., the group velocity vy, is given by

Oow c on

U= ok T ) ok

(5.1)

where the refractive index dependence on k is made explicit. Both v, and v, coin-
cide in non-dispersive media, but they can be extremely different in the presence
of dispersion, i.e., when % # 0. The factor at which the wave slows down with
respect to the light speed in vacuum is defined by the group index n, = ¢/v,. One
possible way to achieve high values of ng,, i.e. slow light, is to rely on the natural
dispersion of materials resulting from the interaction of light and matter at the
atomic scale, which has allowed the production of extreme slowdown factors in,
e.g. atomic clouds [333]. This category often requires controlled pressure and
temperature environments and are restricted to laboratory-scale settings [334].
Another way of achieving controlled, guided, slow light can be easily understood
by looking at the dispersion shown in Fig. 5.1(b). At the band edge X (k = 7/a)
both bands are flat: at those frequencies light is completely halted. At frequen-
cies very close to the cut-off, n, has extremely high values, which would make a
photon wavepacket travel freely within the waveguide channel at nearly human
paces (m/s).

However, in real devices there is a limitation to the maximum n, achievable
due to slight deviations of the fabricated parameters compared to the designed
values. Even fluctuations in the nm-range [217] give rise to backscattering of
the guided light, especially within the slow-light bandwith. The slower the wave
propagates, the more time it has to interact with the imperfection, therefore in-
creasing its chances of being (back-)scattered. Recurrent coherent backscattering
can actually induce a strong interference [335] which localizes the light field, a
photonic manifestation of Anderson localization in low dimensions. We have al-
ready discussed and numerically assesed in Chapter 4 how the presence of disorder
in a multilayered structure can halt transport and how this absence of difusion
originates from a localization of the corresponding eigenfields. While a superlat-
tice seems to constitute the perfect setting to observe the physics of localization
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Figure 5.3: Dipole emission in disordered photonic crystal waveg-
uides (PhCWs). (a) Band structure of a 2D W1 PhCW around the cut-off of
the z-even mode, with the group index n, of the propagating modes highlighted
at some particular frequencies. (b) Logarithmic scale map of the field emitted
by a y-oriented dipole source at the middle of the waveguide oscillating at the
frequencies highlighted in (a). The color scale is fixed for all of the maps and
evidences the different length-scale associated to the field decay. All simulations
are based on the Finite Element Method (FEM).

because an imperfection can only elastically scatter the incident Bloch mode into
itself or its backward state, observations in such systems are limited [336-338].
On the other hand, the picture in PhCWs may seem more complex due to an
important additional channel for scattering, i.e., out-of-plane radiation. Although
the propagating Bloch modes below the light cone have no intrinsic out-of plane
losses, the considered disorder can induce coupling to the radiation continuum.
However, in plane back-scattering is largely the dominant loss mechanism at large
values of n, and low disorder levels [339] for most traditionally employed PhCWs.

Localization length in a W1 photonic crystal waveguide

Given that in-plane scattering dominates in the slow light regime, we use two-
dimensional Finite Element Method (FEM) simulations of perturbed PhCWs to
study its localization properties around that frequency region (Fig. 5.3), instead of
more computationally heavy 3D simulations. In this case, we can use an effective
(lower) refractive index for silicon of n.sr = 2.84 to mimick the real 3D system.
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With this choice the photonic bands of the 2D system reproduce the bands shown
in Fig. 5.1(b) rather accurately. The effective refractive index method [340] pro-
vides accurate results whenever the fundamental TE mode of an unpatterned
silicon slab suffices to describe the PhC slab [71] and we have checked using GME
that only that guided mode is required to have a converged band structure. Under
these hypotheses and for the particular case of the y-even guided mode of the W1
PhCW, the only source of losses is backscattering and the localization length &
coincides with the backscattering mean free path [215,341].

The localization length £ is obtained from numerical simulations of the light
emitted by a light source embedded in the medium, following Ref. [267] as
" o[l 5.2
@—<n[(V)]> (5.2)
where [ is the FEM solution of the electromagnetic field intensity emitted by a
single y-oriented dipole at frequency v, x is the distance from the dipole position
along the waveguide and the brackets indicate the statistical ensemble average over
different configurations of positional disorder. The emitter is placed at the middle
of a waveguide of length length L = 100a in the = direction and with eleven unit
cells on each side of the waveguide in the y direction. This domain is surrounded
by perfectly matched layers (PMLs) to mimic an open system. The effect of fab-
rication imperfection is introduced by randomizing the position of the air holes
around their ideal value according to a normal distribution whose standard devia-
tion ¢ is our measure of disorder. Note that the exponential damping (5.2) is not
found in all types of disordered single-mode waveguide systems [342], especially as
v, decreases, but it is commonly assumed and numerically obtained [270,343-345].
Fig. 5.3 shows the electromagnetic field intensity excited by a dipole source in a
single realization of disorder (0 = 0.03a) and for several oscillating frequencies.
The values of n, for the corresponding frequencies v are given in the band diagram
of Fig. 5.3(a). Regardless of the fine structure of the excited electromagnetic field
for this particular disorder realization, we observe that as n, increases the field
profile decays faster, a clear fingerprint of the mentioned correlation between the
DOS of the unperturbed structure and backscattering in the perturbed one. In
addition, for frequencies inside the band gap of the perfect structure, bottom-
most field of Fig. 5.3(b), the field is not a simple exponential decay as would be
expected from coupling to an evanescent Bloch mode, but has an intricate struc-
ture, also pointing to a change in the DOS induced by disorder. The localization
length € is extracted after ensemble averaging the emitted fields over 100 disorder
realizations, a number of samples for which the extracted parameter £ is already
converged. For clarity, the exponential fit corresponding to the frequencies shown
in Fig. 5.3 are given with a red and blue line in Fig. 5.4(a), evidencing well-
behaved exponential decays with decreasing characteristic lengthscale. Taking &
as the mean between the two fitted lengths, we extract the frequency-dependent
&(v), which is given in Fig. 5.4(b). For reference, the cut-off frequency for the
guided band is given with a dashed line. As expected, we observe a progressive
decrease of £ with decreasing frequency v, a dependence that stems from the in-
creasing group index n,. Inside the band gap, where n, is an ill-defined quantity,
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Figure 5.4: Photonic localization length ¢ in a disordered photonic
crystal waveguide (PhCW). (a) Averaged intensity |E|? emitted by a dipole
along the axis of a disordered PhCW (0 = 0.03a). Both sides are fitted (blue
and red) with an exponential from which the localization length ¢ is extracted.
The value of n, for the used frequencies is given. (b) {(v), with the cut-off f,
given as a black dashed line. The analysis done in (a,b) is repeated for multiple
disorder levels o and £ as a function of n, is shown in (c). Shadings mark the
region where the fields decay less than a factor e~! and the dashed line shows
the perturbative [328] slope n, 2.

the localization length also exhibits some slight dispersion. To emphasize the im-
portance of the group index n4 of the unperturbed structure on the backscattering
properties of the PhCW and on the localization length &, Fig. 5.4(c) shows the
dependence of {(v) with o, where we see that a negative correlation between n,
and ¢ is always found. Shadings mark the region where the fields decay less than
a factor e7! and the dashed line shows the perturbative slope n;Q [268,346]. We
recover here very similar results to those obtained for a three-dimensional Fourier-
Bloch mode method [328], notably that the perturbative approach is only valid
for very high n, and very low o.

Anderson-localized modes in a W1 photonic crystal waveguide

Whenever the length L of the system explored is considerably larger than the lo-
calization length & (L > &), we expect the photonic eigenspectrum to be composed
of spectrally and spatially localized modes with an average lengthscale given by
€ [213]. This can be observed for ¢ = 0.03a in Fig. 5.5, where E,(z,y) is shown for
the eigenmodes with eigenfrequencies closest to the ones considered in the previ-
ous two figures. The localization length £ at those particular frequencies are given
for reference. For & = 80a the localization length is approximately the size of
the considered system and the eigenmode field extends over the whole structure,
although the field profile of the perfectly propagating Bloch mode is considerably
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Figure 5.5: Anderson-localized optical modes in a disordered pho-
tonic crystal waveguide (PhCW). Eigenfields of several representative
modes of a 2D disordered PhCW with ¢ = 0.03a, evidencing light localiza-
tion. (a) Band structure of a 2D W1 PhCW around the cut-off of the z-even
mode, with the group index n, of the propagating modes in the perfect struc-
ture highlighted at some particular frequencies. (b) Ey(x,y) of the eigenmodes
with eigenfrequency closer to the ones highlighted in (a).

altered. For lower values of &, the eigenmodes are localized within the sample
length with correspondingly lower mode volumes. The last two eigenfields, one of
eigenfrequency inside the propagating bands and one inside the PBG, have tightly
confined fields that are of similar size to engineered heterostructure PhCW cavi-
ties [186] and therefore possible good candidates for cavity OM experiments.

Anderson-localized modes in LN cavities

In general, characterizing £ is very challenging [347]. In transport experiments,
where the trasmission of light through the waveguide is detected for various lengths
of the system, many artifacts can arise, mainly absorption [14]. It is therefore
important to find alternative ways of measuring, or at least estimating, such a
quantity based on other spectral features. Here, we suggest an alternative solution
to estimate the value of £ based on finite samples and show how this applies in
the case of 2D simulations.

To characterize the dispersion of a fabricated PhCW, it is interesting to
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enclose the waveguide portion between high-reflectivity mirrors and use the re-
sulting Fabry-Pérot (FP) resonances and their free spectral range (FSR). The case
of enclosing a W1 PhCW is particularly straightforward, since instead of omitting
a full row of holes as in Fig. 5.1 one can omit only a portion of a row composed
of N cells, creating or forming a long LN cavity [348]. The field confinement in
disordered LN cavities [349] is mainly determined by the local structural disorder
as long as the confinement region is far away from the cavity mirrors and the
localization length & is considerably smaller than the cavity length L = Na, while
in the opposite case it effectively behave as a W1 waveguide. This LN cavities
enable simultaneously FP resonances and Anderson-localized modes depending
on the value of /L, which is also strongly dispersive (see Fig. 5.4(b,c)). This
makes them interesting candidates to study the transition between a frequency
range where ballistic transport is allowed -and thus FP resonances are created-
when L < ¢ and another frequency range where Anderson localization happens
when L > £. Analyzing this transition might give valuable insights into the
ng, dependence of the localization length &, at least qualitatively. In addition,
Anderson-localized modes do not appear as additional resonances inside the spec-
tral region covered by the original FP resonances of an unperturbed LN cavity, i.e.
the number of eigenmodes within the band remains constant [349]. This points
towards resonance counting as a possible tool to understand the experimentally
observed spectra and whether or not to expect additional resonances when locally
probing the density of states.

We have simulated a number of these LN cavities with different lengths
L = {50a,100a, 150a} to analyze the onset of localization in a W1 PhCW and its
relation with ny. Disorder is introduced here as positional disorder with strength
o = 0.005a, a value that is on the lower bound of the fabrication disorder expected
from our fabrication process. Fig. 5.6(a) plots the first 8 modes of a perfect (left
panel) and a disordered (right panel) L50 cavity. The associated W1 band is also
given, with the eigenfrequencies highlighted with solid lines of the corresponding
colour. From the 4" to the 8" eigenmode there is a strong link between the
profiles and eigenfrequencies of the perfect and the perturbed structure, while
they differ for eigenmodes 1 to 3, when the eigenfrequencies approach the cut-off
frequency f.,. The disordered L50 cavity exhibits tightly localized modes which
are difficult to link to the modes of the perfect L50. Below a certain frequency,
the condition Na > ¢ is satisfied and the LN cavity behaves like an open W1
waveguide, the boundary conditions imposed by the end mirror playing no role.
From the FSR between two resonances, i.e. Avpsg = v;41 — V;, one can obtain
the group index n, of the propagating mode in the central region as,

C

= Avrsnl (5.3)

g
where the frequency v at which n, is evaluated is simply taken to be the mean
value v = (v;+v;11)/2. The extracted n}" for both the perfect and the disordered
LN cavity are shown in Fig. 5.6(b), with the theoretical curve nIg/V1 as obtained
from (5.1) given by the solid black line. The curve for the unperturbed L50 cavity

exactly recovers nng (both superimposed in Fig. 5.6(b)) and this holds even for
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Figure 5.6: Localized optical modes in a disordered LN cavity. (a)
Eigenfields of the first 8 modes of a 2D L50 cavity in the absence (left) and the
presence (right) of positional disorder. The disorder level is set to o = 0.005a.
The band dispersion of the underlying 2D W1 photonic crystal waveguide
(PhCW) is given in the left, with the obtained eigenfrequencies highlighted
with solid lines. (b) The group index néN is recovered from the corresponding
eigenfrequencies and, in the case of the disordered L50 cavity shows deviations
from n}'!. (c) Extracted £(ng) using Eq. 5.4 on 100 disordered LN cavities of
lengths L = {50a,100a, 150a}.

very small N. Secondly, the effect of disorder leads to a deviation of the extracted
ntN(v) from n}"! (v), since the frequency of the random cavities is not determined
by the bounding mirrors but by the disordered potential. This deviation can be
used as a fingerprint of strong backscattering in closed waveguides and as a means

to obtain a good approximation to the localization length £(v). To this aim, we
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define a normalized deviation as,

(5.4)

where the numerator accounts for extreme deviations at very high n, values. Once
this deviation is defined, one must set a criterion, i.e. a limiting value J,, that
allows extracting the pair {v,,n, .} for which the perfect LN system starts devi-
ating or d(v,) > d,. This approach is applied in panel Fig. 5.6(b), where the point
{vy,ny .} is marked with a red dot for a value of §, = 0.13 . After repeating this
same procedure for many different disorder realizations, finding the average n, .
and iterating over LN cavities of different lengths L, one obtains a curve relating
the length L to n, .. Since the modes are localized roughly whenever £ > L, one
can approximate the localization length at group index n, = 1y, to be L, i.e.
&(ny) = L. The dependence obtained for different values of the threshold value 6,
is shown in Fig. 5.6(c) for the three lengths explored here and the dotted black
line gives the reference curve as extracted from Fig. 5.4(c). This analysis gives
an appropriate trend for the localization length, although the value of d, is obvi-
ously arbitrary and has a strong influence on the analysis. For this reason, this
analysis is by no means quantitative and it is only intended to estimate £(v) in a
well-behaved monomode optical band without the need of cumbersome transport
measurements, which are usually affected by artifacts [13].

5.2 Near-field coupling to photonic crystal waveg-
uides

A significant challenge in the development and characterization of integrated
nanoscale optical devices lies in the efficient coupling of light from conventional op-
tical elements such as lenses and fibers to confined or distributed nanoscale optical
mode volumes and viceversa [350]. The most relevant challenge is the considerable
modal mismatch in spatial extent, polarization, and propagation constant between
radiation in free-space or in a glass fiber with weak refractive index contrast and
that of a typical integrated waveguide with high refractive index contrast and
sub-micron dimensions [351]. Possible solutions include the use of on-chip grating
couplers [352], with efficiencies that can go up to 80% [353] for free-space radia-
tion and for near-normal fiber-based coupling [354,355], end-fire butt-coupling into
inverse tapered integrated ridge waveguides [356], and/or adiabatic mode trans-
fer [351,357]. In all such cases, tapered structures with rather high footprints are
usually required to avoid losses at the interface and/or to increase the operational
bandwith.

In any technique that couples light from the outside world into the pho-
tonic chip, one needs to engineer the interface between different functional ele-
ments, e.g., a nanoscale strip waveguide and the PhC (waveguide, cavity, etc.), to
avoid on-chip back-reflection or out-of plane losses at the interface. The strong
impedance mismatch occuring due to the large difference in group index between
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the fundamental mode of a strip waveguide and a PhCW guided mode is the main
impediment in the case of PhCWs [358]. Several adiabatic couplers changing the
PhCW width [359], the hole radii [360] or the crystal periodicity [361] have been
designed and experimentally assesed, exhibiting extremely high coupling efficien-
cies of above 95%. Resonant coupling using interface states [150] has also been
proposed, especially in slotted PhCWs using a multimode interference (MMI)
coupler [362], although with limited bandwith. With such advanced coupling
schemes, PhCW dispersion characterization observing reflection/transmission FP
resonances [325] or interference fringes in external Mach-Zehnder interferome-
ters [363] is achieved. Insertion efficiency in these systems is however still a chal-
lenge, especially in the slow light regime, which leads to poor signal-to-noise ratios.
The experimental observation of the onset of Anderson localization in that fre-
quency region is also hard to assess by such a transport approach because any
optical loss in the system, like absorption or out-of-plane scattering also results
in an exponential decay of the intensity profile with an average loss length. This
problem can be circumvented by studying the fluctuations in the transmitted light
intensity [16], but only modes having a non-vanishing amplitude at the initial part
of the PhCW are efficiently excited [270,364]. All these issues point to the neces-
sity to locally probe the spectral properties of the PhCW of study, which can be
achieved by using internal emitters such as quantum wells or quantum dots [365]
both by far-field [366] or near-field excitation [367,368].

Evanescent coupling from an optical tapered fiber to the photonic structure
of interest is the alternative method employed in cavity optomechanics [369]. A
standard single mode optical fiber supports a single propagating optical mode in
the wavelength range of interest through TIR of light between the core of the fiber
and its lower-index cladding. At telecom wavelengths, this is typically achieved
with an 8 pym diameter core and a 125 um cladding, where most of the optical
mode is confined in the core. If the lateral dimensions of the fiber are reduced and
air chosen as a cladding, most of the guided mode propagates as an evanescent
tail which can be brought in close proximity to a photonic structure. Overlap of
the evanescent fields of the two modes or, equivalently, frustrated total internal
reflection enables their coupling. This approach has been used to efficiently probe
a large variety of micro and nanophotonic devices [370], including PhCWs [93],
and allows to extract its dispersion properties without the need of integrated ac-
cess waveguides. In this section we will explain how to use this approach to couple
light into a silicon PhCW, how to characterize its dispersion properties, and how
to locally probe Anderson-localized optical modes close to the cut-off frequency
of the considered waveguide. We will also see how the boundary conditions of the
considered waveguide can clarify the nature of the observed spectral features and
the behaviour of such locally probed resonances when driven at high power.

5.2.1 Fiber-taper: theory and fabrication

The evanescent coupling between two optical modes occurs whenever the two
oscillate at the same frequency and have some overlap in their k-space distribution,
i.e., they are phase-matched. For propagating modes with eigenstates defined by
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Figure 5.7: Phase matching between an air-cladded fiber and a
photonic crystal waveguide (PhCW). The coupling geometry is shown
schematically on top: an air-cladded curved fiber of diameter d is placed at a
distance D from the mid-plane of a slab of thickness ¢ in which a PhCW is
patterned. (a) Band diagram portrait of the phase matching condition between
the fiber taper and the PhCW. The even and odd defect TE-like bands are
shown in light blue, while the optical modes of a fiber taper of diameter d=1.5
pm are shown in black (HE;; mode) and light grey. For a straight fiber taper,
the phase matching condition is only achieved at the points marked with a
white-filled dot, while a finite curvature R relaxes the condition by increasing
the k-space distribution of the fiber taper mode in the PhCW plane z = 0, as
shown by the shading around the HE; mode. (b) Electric field norm |E(z,y)|
and vector field (arrows) of the fiber HE1; mode at frequency f., (left) and its
decay in the air-clad (right) for different diameters d, with fields normalized
to carry the same power. (c) Approximated Fourier transform of taper mode
at the PC plane as a function of R, showing how the phase-matching region
broadens with decreasing R.

a well-conserved momentum £ in a given common direction, this translates into
finding a crossing in a band diagram. This is the case for the evanescent coupling
of the propagating Bloch modes of a PhCW (of wavevector k) and the modes of
a silica fiber (of wavevector 3). The thick lines in Fig. 5.7(a) show the dispersion
of both the PhCW of Fig. 5.1(b) and of an air-cladded fiber taper of diameter d
=1.5 pum, where a refractive index of 1.445 has been used for SiOs,.

For the diameter chosen, the fiber is not single mode in the frequency range
of interest. However, we will only consider the fundamental HE;; for the purpose
of understanding the phase-matching condition. When an infinitely long fiber
and a PhCW are considered only a single point of intersection between the two
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continuous dispersion curves leads to efficient energy transfer [371]. Evanescent
coupling is therefore possible for both the fundamental even mode and for the first
higher order odd mode of the eW1 PhCW. Nevertheless, due to the symmetry of
the taper-guided mode (shown in Fig. 5.7(b)), the y-odd mode of the PhCW
is optically dark when the fiber is perfectly aligned with respect to the axis of
the PhCW. The positioning of the fiber relative to the PhCW axis is a critical
parameter and that slight misalignment can induce coupling to the odd band.
Measurements with fiber tapers of different (and well-known) diameters should
be carried out [372] to characterize a PhCW, which clearly precludes its use as a
chip-scale fast characterization technique. An alternative approach was suggested
in Ref. [373], where a single taper with an increased curvature radius R allows
coupling over a much higher bandwith. This can be understood by mapping the
curved fiber eigenfield to the PhC plane and taking its Fourier transform. This
last can be approximated as

F(k.) = / £(0,v/22 ¥ (R+ D)2 — R)?Ftn(winleitezgy  (5.5)

where the curvature is considered small enough to mantain the transverse profile
f(@',y) of the straight fiber at any 6, with 6 and all other parameters defined as
shown on top of Fig. 5.7. Accurate description of the coupling should consider the
exact fields, but this simply evaluated integral shows that the k-space extension
of the taper mode increases in the presence of a finite curvature R. The smaller
the radius R, the broader the reciprocal space broadening. This allows an over-
all transition from a d-like taper dispersion to a Gaussian-like one and facilitates
the phase-matching condition over a large portion of the dispersion. Fig. 5.7(a)
shows that a thicker taper is beneficial to couple light into the PhCW over the
slow-light region at telecom wavelengths in terms of phase matching. However,
this also leads to a thinner evanescent field extension, as seen in Fig. 5.7(c), which
considerably reduces the coupling for a fixed distance d. In addition, the presence
of other higher order propagating modes can lead to beating between different
propagating modes in the taper when this one is driven from either side. In our
case, the diameter of 1.5 um simulated here is chosen to allow both a sufficient
exponential tail at D = 120-125 nm, i.e. half the thickness of the used slabs,
while mantaining the center of the broadened dispersion close to the cut-off of the
y-even band.

The fiber tapers are produced using a telecom optical fiber (SMF-28) which
is stretched in a controlled way via two independent motorized stages while the
central part is being heated to a temperature of 1180°C using an electric ce-
ramic microheater [374]. This allows direct coupling to the air-cladded region by
employing standard SMF technology, provided that the tapered region is made
adiabatic [375], since the guided field mode in the standard step-index unstretched
regions needs to adiabatically transform into a guided mode in the waist of the
taper. Nevertheless, extremely high and optimized transmission as the ones re-
ported in [376,377] are not necessary for the purposes herein. The used setup is
shown in Fig. 5.8(a). Since we typically work with structures designed to operate
at A = 1.5 pum, the fiber transmission at that wavelength is monitored during
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Figure 5.8: Fabrication of wavelength-scale fiber tapers. (a) Exper-
imental arrangement used to produce a fiber taper with a wavelength-scale
diameter at its waist. Two independent motorized stages operating at a 20
um/s speed are used to symmetrically pull the fiber, which is supported by
magnetic clamps. The central part is embedded in a ceramic microheater with
a narrow slot, which permanently heats the region to a temperature around T
= 1180 °C. The transmission at a central wavelength of A =1.5 ym is monitored
while pulling and exhibits oscillations that arise from interference between the
supported guided modes, as seen in (b). When the observed oscillations die off,
the pulling is stopped. (¢c) SEM image of the waist of a fabricated taper using
the described technique.

the pulling process, allowing us to understand the modal structure of the taper.
Heating of the structure by the microheater melts the core and cladding into a sin-
gle effective material and the initially SMF becomes multimode. Power loss from
the fundamental mode can therefore happen via the excitation of higher order
modes, which leads to interference between the supported modes at the operating
wavelength, as shown in the left region of Fig. 5.8(b). As discussed in several
works [374,378] the beating notes vanish when the supported modes go above the
cut-off. When all oscillations have vanished, the taper waist is single mode (right
region of Fig. 5.8(b))’. Strictly single-mode fibers are best suited to couple light
to tighly confined engineered optical cavities or in light-atom interaction experi-
ments [379]. However, in our case we stop pulling slightly before the single mode
operation to ensure that the HE;; band crosses the PhCW in close proximity to
the region of interest. A Scanning Electron Microscopy (SEM) micrograph of a
typical fabricated taper is shown in Fig. 5.8(c), with its diameter highlighted. The
achievement of a curved geometry is guaranteed by creating a micro-loop with the
taper’s waist at its lower part. After removing the taper from the microheater,

IThe single mode operation at A = 1.5 um for a taper of refractive index ng;o, = 1.445 is
achieved at d = 1.23 pum.
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Figure 5.9: Experimental evidence of evanescent coupling to a silicon
photonic crystal waveguide (PhCW). (a) Lateral image of the employed
optical excitation scheme, where both the chip and the fiber with the loop are
clearly visible. (b) Detailed image of the obtained loop as observed with a 100x
microscope objective, with the curvature R schematically shown. (c) Micro-
scope image of the PhCW surface with the loop in contact and aligned with
the waveguide axis, our typical measurement configuration. (d) SEM image of
a closed W1 PhCW or an LN cavity. The micrograph shown here corresponds
to an L31 cavity and differs from the one shown in (c), an L255 cavity, for
clarity. (e) Reflection coefficient |r|? for different curvatures R, where only the
first one has been explicitly calibrated with the top microscope after a 90°C
tilt of the fiber taper loop. The scale is common to the three spectra, which are
given in arbitrary units. The dashed lines mark the region where resonances
are observed, clearly evidencing the increased bandwith with decreasing radius
R.
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the loop of desired size/curvature is created by a 3-step procedure: first, twisting
the stretched fiber using rotating magnetic clamps (one full turn each); second,
approaching the two translation stages by approximately 3 mm and, last, pulling
the fiber again up to the desired loop size. The obtained shape has a fine de-
pendence on the amount of pulling but a typical shape is shown in the image of
Fig. 5.9(b), obtained with a 100x microscope objective. The curvature radius R in
the region that will approximate the sample is highlighted, with an approximate
radius of R = 30 um. A lateral image of the fiber loop over a photonic chip is
shown in Fig. 5.9(a), where the reflection over the surface of the full fiber/loop is
also visible. The one-sided optical driving configuration is sketched with arrows,
allowing us to measure both transmission 7' = |¢|> and reflection R = |r|?. The
PhCWs are characterized by measuring the fiber transmission/reflection with the
loop on top of the waveguide axis, as is shown in Fig. 5.9(c) with a microscope
image of the chip surface, where both waveguide and loop can be seen. Whenever
the PhCW is enclosed by using mirrors on each side, FP resonances are formed
and their FSR can be used to characterize the dispersive properties of the band
(see Subsection 5.1.2). These modes are mainly composed of a propagating and
a counterpropagating Bloch mode of wavevector k, with discrete modes at each
Ak = /L, with L the length of the PhnCW region. Those FP modes with k inside
the shaded region shown in Fig. 5.7(a,b) are therefore phase-matched to the fiber
taper mode and can therefore be probed both in transmission and reflection.

The dispersion characterization using FP resonances is achieved in a W1
waveguide by measuring LN cavities with NV > 1, as the one on the SEM micro-
graph of Fig. 5.9(d), where N = 31. Both 7" and R obtained with a calibrated
loop radius of 30 pum are shown in blue and red in Fig. 5.9(e), where a tunable
near-infrared (NIR) external cavity diode laser (Yenista T100S-HP) is used for
excitation and a wavelength-calibrated multiport powermeter (Agilent 8164B) for
detection. Although we typically measure in a transmission configuration, the
reflection spectrum (red) is often cleaner since virtually no other mechanism than
light outcoupled from the FP resonances can contribute to the reflection signal.
On the contrary, the transmission spectrum exhibits both low-amplitude oscilla-
tions due to the fiber-taper loop ring esonances [374] as well as contributions from
any residual coupling to, e.g. a TM-like quasi-continuum. The effect of diminish-
ing the taper curvature R is observed in the reflection spectra of Fig. 5.9(e), where
R is only approximately obtained from the pull-back distance of the translation
stages. The specific value of R is here of little relevance, what matters is that
it confirms that the basic phase-matching rule described in Fig. 5.7 qualitatively
describes our experimental conditions, as shown with the dashed lines which mark
the range over which resonances are observed. We conclude that a minimum cur-
vature R is desirable, although going below 25 pm is extremely complicated since
the loop unwinds when the fiber is detached from the sample surface.
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5.2.2 Experimental signatures of Anderson localization

The PhCWs explored in this thesis have been designed without any intentional
disorder, but slight unintentional deviations of the fabricated structures from the
as-designed geometry effectively lead to disordered PhCWs. These deviations are
due to the fabrication process itself and include surface roughness, shape inho-
mogeneity, loss of wall verticality, etc. These types of distributed disorder have
various effects on the transport properties of the PhCWs like out-of plane scat-
tering [380,381], TE-TM like coupling [211,382] and/or backscattering [335]. The
lattermost eventually leads to strong localization in a narrow frequency region
around the slow-light region of the perfect waveguide, as thoroughly discussed
before. Assessing the level and type of unintentional disorder in a fabricated pho-
tonic nanostructure is a topic of extreme interest and the most novel and accurate
approaches actually rely on the scattering properties of light in the medium [217]
rather than on high-resolution direct spatially-resolved imaging techniques like
SEM, where charging effects and drift, edge effects, and scale bar miscalibration
can lead to uncertainty in the geometrical feature extraction.

Nevertheless, since the precise assessment of the level of unintentional dis-
order is beyond the scope of this thesis, we employ high-quality and fast-scan
SEM images to evaluate the fabricated geometrical parameters of the measured
PhCWs. Special attention is devoted to the extraction of the average parame-
ters, since this enables the calculation of the as-realized band structure, provided
that the thickness ¢ and the refractive index of silicon ng; are well-known. We
obtain the former from nearly tangent SEM inspection of the used structures in
purposely introduced trenches, as can be seen in Fig. 5.10(a), while the latter is
obtained from ellipsometry measurements? to be ng; = 3.482. The image process-
ing of a normal-incidence SEM micrograph of the LN cavity of Fig. 5.9 is shown
in Fig. 5.10(b), with the fitted circles drawn in blue. The distributions of both
the extracted radii r and the 1% neighbour distances are shown in (c¢), where the
conversion from pixels to nm is done by setting the mean of the distribution in
(d) to be @ = 410 nm, the design pitch of the fabricated structure. Although the
resolution of the image is only of 0.5 nm/pixel, this treatment gives a mean radius
of 7 = 131.5 nm and together with ¢, ng; and an average etch angle of 0., = 3°
[Fig. 5.10(a)] allows us to calculate the expected band dispersion and group index
Ng.

Group index fluctuations

With spectra like the one shown in Fig. 5.9(e) one can also reconstruct the ex-
perimental band dispersion (Subsection 5.1.2), and identify the frequency region
where the waveguide enters the localization regime. This is done in Fig. 5.10(d)
by comparing the simulated n, obtained after FEM simultation of the extracted
geometry (solid blue curve) and the experimentally obtained using the FP reso-
nances shown in Fig. 5.9(e) and Eq. (5.3) (solid black curve). Despite a fairly good
matching between the spectral lineshape of the simulated and experimental ng, a
better understanding of the deviations from ballistic transport is obtained when

2The ellipsometry measurements were done at DTU Fotonik.
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Figure 5.10: Experimental evidence of Anderson localization of light
in an L255 cavity. (a) Nearly-tangent SEM micrograph of a trenched pho-
tonic crystal waveguide (PhCW), showing both the slab thickness and hole
etching profile. (b) Normal-incidence SEM micrograph of a representative re-
gion of a L255 cavity, with blue circles showing the extracted holes after image
processing. (c) Histograms of the extracted radii r (top) and first neighbour
distance (bottom). The mean value 7 along with ¢, 0., and ng; are used to
compute the photonic band diagram using the Finite Element Method (FEM).
The comparison of the FEM simulated (solid blue) and the experimentally ex-
tracted (black) group-index ng4(A) is shown in (d). The blue dotted line shows
a wavelength-shifted version of the theoretical curve which corresponds to the
best fit of experiment and theory over the ballistic region below A = 1503nm.

the FEM simulated curve is shifted by 6\ = 1.25 nm, which corresponds to the
best fit in the region below A = 1503 nm, i.e. in the ballistic regime. We find our
2D calculations shown in Fig. 5.6 to describe the full 3D bandstructure accurately
by comparing the blue dotted and solid black curves. In a different collaboration
with DTU Fotonik, we actually performed fiber-taper measurements on a set (5
realizations) of W1 waveguides of varying length L. Those were terminated with
high-reflectivity grating couplers at the two end facets (see [383] for details) since
they were originally conceived for free-space measurements. Fig. 5.11(a) shows
the spectrum and n, curve measured for a single realization of length L, while (b)
shows the extracted maximum n, , using a threshold value of 6, = 0.13. One needs
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to recall or take into account that, as explained in Fig. 5.6, the x-axis showing
the length L gives us a good approximation of the localization length &.

We attribute the appearance of strong n, fluctuactions in these PhCWs to
the onset of light localization and the spectral dips in that region to Anderson lo-
calized optical modes. An additional hint of the localized nature of the mentioned
optical cavity modes can be obtained from comparing the spectral behaviour of a
LN cavity and a W1 waveguide of same length. The pronounced difference in the
boundary conditions at the end facets leads to a completely different spectrum in
the region where light propagates freely, since light easily escapes the W1 waveg-
uide, i.e. there are no FP resonances. On the contrary, the spectrum contains
randomly located transmission dips in the frequency range where light localizes, as
the effect of the boundary conditions is negligible since L > £. Fig. 5.12 plots the
spectrum of an 1255 cavity and a W1 waveguide with L = 255a terminated with
the silicon slab. While the 1.255 cavity exhibits strong FP resonances with a rather
monotonously evolving FSR until A = 1504-1505 nm (mid panel of Fig. 5.12(a)),
the W1 shows only a nearly-continuous reduction of the transmission below that
wavelength (mid panel of Fig. 5.12(b)). Minor oscillations are also present since
index mismatch at the silicon slab termination still leads to some reflection at
the end facets. Above A = 1504-1505 nm, the two exhibit a series of unequal
transmission dips with strong fluctuations in both frequency and linewidth, again
a fingerprint of Anderson localization [384]. We hypothesize that some of these
dips, specially at wavelengths above the cut-off, are not associated solely to the
photonic structure but are due to a local confinement potential induced by the
presence of the fiber taper loop, which increases the refractive index of the upper
cladding and tunes the band edge [385]. These typically show up as broader dips
with extreme sensitivity to the exact positioning of the loop.

Spectro-spatial mapping

Although several works have shown spatial mapping of a localized optical mode
using a tapered optical fiber [370,386], the presence of a densely packed eigen-
spectrum combined to the sensitivity of the central wavelength and the coupled
fraction to the positioning of the fiber taper makes spatially-resolved measure-
ments rather complex in our case. Due to the atmospheric pressure conditions
employed, we are forced to work with the fiber loop in contact with the waveguide
surface, which leads to strong friction forces when the sample is displaced relative
to the loop, complicating any automatization. Even when the loop is manually
lifted and re-positioned somewhere else along the axis of the PhCW, the preceding
exact transverse placement of the loop relative to the PhCW axis is lost, notably
changing the optical coupling conditions. Placing the fiber and waveguide at an
angle o can facilitate the task at the expense of lower average coupled fraction.
Despite these difficulties, we show in Fig. 5.13 a spatial scan of size 39 ym with a
spectrum taken each 3 pym. The spectral region above A = 1505 nm corresponds
to the region where Anderson localized modes show up. Although we are not
able to assess the spatial shape of the modes, we see that some of the peaks only
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Figure 5.11: Estimating the localization length in closed photonic
crystal waveguides (PhCWs). (a) Transmission spectra (left) of 7 W1
PhCWs of varying length L, with the extracted frequencies highlighted with
red asteriks. The obtained group index ng is given (right) with a solid black
line, while the simulated -and shifted- is given with a solid blue line. (b) Mean
value of the maximum nj as obtained from the set of 5 measured waveguides,
the error bar giving the standard deviation. The threshold is set to 6* = 0.13.
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Figure 5.12: Spectral features of closed and open PhCWs. The trans-
mission of an L255 cavity (a) over a broad (top) and narrow (bottom) wave-
length range is compared to the one of a W1 waveguide of length L = 255a

(b).

appear in a very narrow spatial region, another fingerprint of strong Anderson
localization. Further work along these lines is currently underway.

Shamrock photonic crystal wavegquides and alternative hints for An-
derson localization

Up to now we have given strong evidence of how unintentional fabrication dis-
order localizes the light field in the slow-light spectral region of a standard W1
PhCW. Nevertheless, this type of waveguide does not support guided mechanical
modes, making their use in optomechanics rather limited. For this reason, we have
fabricated and explored the behaviour of PhCWs with shamrock-shaped holes in-
stead of circles. A normal-incidence SEM micrograph of the geometry explored is
shown in Fig. 5.14(a) with automatically fitted shamrocks included in blue and
the main parameters highlighted. As can be seen from Fig. 5.14(b), the quality of
the etching was rather poor both in terms of roughness and verticality, which com-
plicates the fitting of the real structure with the imaged geometrical parameters.
However, a better fit between the simulated band structure and the measured
resonances is found when the average blue fit is expanded isotropically by dxr =
4 nm, which corresponds well to the observed outer border around the shamrock.
The band diagram of a structure with the fitted parameters and with that same
shamrock extended by dz are shown in Fig. 5.14(b) in blue and red respectively.
The position of the band edge for the latter fits well with the observed transmis-
sion resonances in the panel I' = 1 of Fig. 5.14(d). The band of observed modes
is frequency tuned by scaling the full in-plane structure by a factor I', as shown
in the set of panels in Fig. 5.14(d), although the spectral position of individual
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Figure 5.13: Spectro-spatial imaging of a W1 photonic crystal waveg-
uide (PhCW) in the slow light region. Reflection spectrum obtained with
a fiber taper loop aligned and in contact with the axis of a W1 PhCW when
the sample is displaced along the axis of the PhCW in steps of 3 pum.

modes within this band is uncertain due to the complex nature of the system.
Another collection of modes is observed at shorter wavelengths at aproximately
10 nm distance, which matches well the spectral position of the other simulated
band. The small coupled fraction of the transmission resonances is due to the
y-odd nature of the optical band, i.e. it corresponds to residual coupling from a
slight misalignment with the waveguide axis.

Unlike with circular holes, these PhCWs do not exhibit a monomode y-even
guided band as shown in Fig. 5.14(c), where we consider the full band above the
light cone. This is the case unless the shamrock parameters are chosen to closely
resemble a circle, which undermines the mechanical properties that we aim to
explore. The multimode characteristics of the band has very important implica-
tions in the localization properties of the PhCW| since the elastic scattering into
a (quasi)guided mode with momentum £’ differing from k or —k is allowed [339].
In addition, enclosing the waveguides with PhBG mirrors as done for LN cavities
leads to a more intricate spectrum of FP resonances. This makes the interpre-
tation of the transmission spectra in terms of Anderson localization harder than
in the standard waveguides discussed in prevous sections. We analyze here both
the distribution of the observed ()-factors as well as the spectral fluctuations in
either the transmission or reflection spectrum, as shown in Fig. 5.15 for the case
of I' = 1 shamrock PhCWs. Transmission or reflection spectra as the one shown
in (a) are taken at different positions of an L = 150 pum waveguide and treated
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independently. The transmission resonances are fitted with a Lorentzian lineshape
and used to obtain the intrinsic quality factor @); of the observed optical modes
by employing the procedure described in Subsection 2.3.1. The values obtained
for a particular resonance are given as an inset in Fig. 5.15(a). The broad distri-
bution of @) factors obtained and shown in Fig. 5.15(b) has values in the range
103 < Q < 1.5-10°% and a mean value of Q ~ 1.6 - 10*. By comparing these
values with the ones calculated with a fully three-dimensional Bloch mode expan-
sion technique [213], we can estimate the amount of fabrication imperfection as
o = 0.005—0.007a, although only out-of-plane losses are considered therein while
our system is likely limited by in-plane radiation at the waveguide terminations
as well. In addition, this implies that we map all the possible sources of intrinsic
disorder to zero-mean Gaussian random displacements in the shamrock positions
with a standard deviation ¢. In any case, the value of ¢ found by comparison
seems to be in good agreement with previous estimations of the tolerance of the
fabrication process. By analogy with 1D systems as the one described in Chap-
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Figure 5.14: Optical characterization of shamrock photonic crystal
waveguides (PhCWs). (a) SEM micrograph of a W=0.9 shamrock PhCW,
with the two crystals facing each other. (b) Detail of a single shamrock hole
highlighting the observed border of size dx that results from the low quality of
the dry etching process. (c) Band diagrams of the PhCW with the parameters
obtained from the mean values of the blue fits (blue) and with an expanded
feature by 0x (red). (d) Fiber-taper transmission spectra of waveguides with
different overall scalings I', clearly evidencing the deterministic tuning of the
overall band region.
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Figure 5.15: Experimental signatures of Anderson-localization in
sharmcok photonic crystal waveguides (PhCWs). (a) Transmission spec-
trum of a I' = 1 shamrock PhCW around the band edge. The properties of
one mode as obtained from fitting the lineshape with a Lorentzian are given
for reference. This is done for all modes around the band edge, at multiple
locations and for several waveguides in order to acquire the Q-factor statistics
shown in (b). The solid line gives a log-normal fit. (c) Reflection spectrum
fluctuatins deviating from those expected in the Rayleigh scattering limit and
fitted with the theory of Ref. [214] using g = 0.08. (d) Thermo-optic effect in
an Anderson-localized optical mode driven at high power.

ter 4, in the limit of narrow resonances, we expect the QQ-factor to be log-normal
distributed in the localized regime [365,387,388]. Assuming no long-range cor-
relations and in the absence of any other loss mechanism than leakeage at the
boundaries of the disordered region, the in-plane @, i.e. )}, is distributed accord-
ing to Eq. 4.38. In our structures, however, £/L is not enough to fully describe the
experimental distributions. Other leaky channels such as out-of-plane scattering
or material absorption have to be taken into account in addition to the in-plane
losses. Although out-of-plane losses obey some distribution as well [213,339] we
incorporate them to our model by adding a generic loss length, ¢/L, which rep-
resents a truncation to the log-normal distribution expressed in Eq. (4.38). A
detailed analysis of this procedure can be found in Refs. [365,389]. The final
distribution is,

2
1 (g Ze)] QL0(QL - Q)
PQ) = o a it )
2o QQL—Q)
where @ is the quality factor including in-plane and out-of-plane losses and Q! =
Qil—i—Qll. Here, (), represents the limit to the highest value that can be measured
in the system, imposing a truncation to its log-normal distribution and is given

by Q. = "&')”E. Using a Bayesian inference [390] approach, we calculate the

(5.6)
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probability that /L and ¢/L determine the set of measured values of the Q-
factor, {Q"} over the modes observed at 10 different positions. This leads to a
fitting of the measured distribution (black line in Fig. 5.15(b)) with parameters
¢/L =0.045 + 0.015 and ¢/L > 10*. Here, the extra loss channel associated to the
quasi-guided band to which the observed Anderson-localized modes can couple,
does not impose a significant truncation to the observed @Q-factor distribution,
leading to narrow cavity resonances as in Ref. [335]. In addition, these values
open the possibility for strong light-matter coupling induced by disorder [389].

A second fingerprint of localization in shamrock PhCWs is found by analyz-
ing the fluctuations in the reflection spectra. These are preferred to transmission
due to the absence of interference effects arising from the ring-like modes of the
fiber-taper loop. The statistical analysis of these (strong) fluctuations is a pow-
erful tool used to characterize the regime of localization [209]. In particular, the
existence of very bright and spectrally well separated peaks is a fingerprint of
Anderson localization and their analysis can provide significant information on
the degree of confinement induced by disorder in our structures. To quantify the
degree of confinement, we use a parameter, the dimensionless conductance g, ini-
tially proposed [391] in the scaling theory as a single scaling parameter to describe
the conductor-insulator phase transition induced by disorder. This theory was ex-
tended to the case of classical waves by Van Rossum and Neuwenhuizen [214] and
defined as the total transmittance, i.e., the sum over all the transmission coeffi-
cients connecting all input-output modes. It governs all the statistical aspects of
light transport in a random medium [16] and sets the boundary for Anderson lo-
calization in absence of absorption at (¢ < 1) for three-dimensional structures [11].
For lower-dimensional structures, g determines the degree of confinement and can
be extracted as a single parameter by fitting the reflected intensity distribution
with the theory developed in Ref. [214] as

P(R*):/wod—xKo(Q\/ Rrg)e ben(® (5.7)

—ioo T
where R* is the normalized intensity, i.e. R* = R/(R). Here, Ky is a modified
Bessel function of the second kind and ®.., () is obtained by assuming plane-wave

incidence to be,
Beon () = gln® (, /1 —l— —l— \/7) (5.8)

This formula is valid in the regime of perturbatlve scattering and in the absence
of absorption. For low values of the parameter g, Eq. (5.7) leads to a heavy tail
of the intensity distribution which can only be explained in terms of Anderson lo-
calization. The extracted fluctuations (Fig. 5.15(c)) can be reasonably well fitted
with a dimensionless conductance of g = 0.08 + 0.01, which is lower than in pre-
vious experiments [11,17]. We are aware that the experimental conditions herein
are far from the hypothesis assumed to use Eq. 5.8 and from other experimental
configurations where this has been used [392]; nonetheless, the large tail and the
low value of g extracted constitutes a solid fingerprint of the localized nature of
the modes.
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5.2.3 Self-pulsing in Anderson-localized cavities

The shamrock geometry was inteded to enable the mechancial modulation of
Anderson-localized cavities in the GHz range resulting from guided mechacial
modes at these high frequencies. Unfortunately, we were unable to observe any
OM modulation of the optical modes therein, even at the highest powers P, of
the available lasers. However, we do observe a modulation of the AL modes in-
duced by a different mechanism at sufficient power P,,. The fundamentals of this
modulation mechanism are explained in Subsection 2.3.1, where we describe how
a highly-driven optical cavity can be brought into a state of self-oscillation by trig-
gering material optical non-linearities. In this section, we describe this mechanism
applied to AL modes, leading to all-optical RF modulation of a disorder-induced
optical resonance [393].

So far, the optical transmission spectra shown were acquired at an incident
power P, = 20 uW , which is low enough to obtain the linear Lorentzian response
of the driven optical cavities. Driving the Anderson-localized mode at higher
powers leads to more complex transmission spectra. The fiber DC transmission
spectrum shows a thermo-optically mediated sawtooth-shaped transmission bista-
bility at an input power typically around 150 pW, as plotted in Fig. 5.15(d). This
power is rather high when compared to other nanostructures where only confined
modes are allowed [96]. The coexistence of confined and propagating modes in
our waveguides may open leaky channels to the coupled light, thus increasing the
power required to achieve the nonlinear behavior. Finally, sweeping the excitation
laser wavelength at higher powers drags the resonant wavelength to higher values,
broadening the range of the hysteresis loop, as shown for powers up to P, = 3.2
mW. This behaviour is a clear fingerprint of the presence of high Q/V" photonic
cavities and is observed for multiple of the resonances in the spectral range ex-
plored. An example can be seen in Fig. 5.16(a), where the linear response is shown
in light blue. While some of the modes are strongly dragged by the thermo-optic
(TO) effect, others are only slightly affected despite similar @-factors, a manifes-
tation of their differing mode volumes V. When the transmitted light is detected
instead with a fast 12 GHz photoreceiver (New Focus 1544-B) and processed by
a spectrum analyzer (Anritsu MS2830A) it reveals a frequency comb whenever
the laser is resonant with the optical modes which exhibit a strong TO effect, as
shown in Fig. 5.16(b). The revealed RF spectra in resonance with those optical
modes exhibits many of the features that are shown in Fig. 2.4 for a simulated
cavity undergoing self-oscillation. The origin of the anharmonic modulation is
therefore attributed to the onset of a self-pulsing (SP) limit cycle. This is con-
firmed by time-resolving the transmitted light using a 4 GHz digital oscilloscope
(Tektronix TDS7404) and using the signal itself as a trigger. The acquired time
trace at wavelength A\p = 1510.7 nm and driving the mode with a cold wavelength
of A, = 1510.34 nm is shown in Fig. 5.16(c). This time trace shows most of the
features of the simulated trace in Fig. 2.4. To recall the dynamics of this optical
modulation, the set of panels in Fig. 5.16(c) sketches different frames of the period
of the Anderson-localized mode oscillation around the laser wavelength, which is
marked as a black solid line. Figures 5.16(c)(1-3) plot the first half period of the
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oscillation when the cavity mode is progressively blueshifted due to a slow tem-
perature recovery and a fast free-carrier population buildup. Far from resonance,
at position (1), the transmission through the fiber at Ay is maximum due to the
poor coupling to the cavity mode. When the cavity is tuned on resonance with the
laser —position (2)— the transmission through the fiber drops to the minimum
due to the evanescent coupling of the transmitted light to the Anderson-localized
cavity. The oscillation still continues to the maximum blueshift at position (3),
for which the effect of heating of the sample overcomes the effect of the excess of
free carriers and redshifts the localized mode back to its initial position.
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Figure 5.16: Self-pulsing (SP) dynamics in a shamrock photonic crys-
tal waveguide (PhCW). (a) Optical transmission spectrum around the band
edge of a shamrock PhCW in the linear (light blue) and non-linear (black)
regime, exhibiting pronounced thermo-optic (TO) effect for many of the modes.
(b) Radiofrequency (RF) spectral map as a function of wavelength obtained
when detecting the transmitted signal with a fast photoreceiver. The modes
with the highest TO effect enter a SP regime as described in Chapter 2. (c)
Time-resolved transmission as obtained with an oscilloscope at the wavelength
highlighted with a vertical dashed line in (b). A sketch of the relative position
of the laser line relative to the cavity is given for points numbered 1 to 5. (d)
Evolution of the duty cycle of the SP dynamics as a function of wavelength for
the optical mode with a cold resonance wavelength A\, = 1510.3 nm.
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Table 5.1: Model parameters for the coupled differential equations governing
the behaviour of a highly driven optical cavity.

Parameter Value Units Origin
Refractive index (ng;) 3.458 - [394]
Density (psi) 2.33-103 kg/m3 [394]
Constant-pressure specific heat capacity (Cp si) 0.7-103 J/(kg-K) | [394]
Two-photon absorption coefficient (Srpa) 8.4-10712 m/W [395]
Free-carrier absorption cross-section (o) 1.45-1072 m?2 [396]
Free-carrier dispersion cross-section (o;) -5.3-107%7 m? [396]
Linear absorption coefficient (auiy) 3.68 m~1 [397]
Refractive index temperature coefficient (nr) 1.86-10~4 K™ [398]
Thermal decay rate (vin) 33 MHz fit
Free-carrier decay rate () 4.62 GHz fit
Effective thermal volume (Veg,T) 2.3-10718 m3 fit
Free-carrier absorption volume (Vrca) 810718 m3 fit
Two-photon absorption volume (Vrpa) 7 (Ae/nsi)? [213]

Beyond the temporal modulation of the cavity, the material nonlinearities
have an effect in the Anderson localization process. The optical nonlinearity has
two main effects on the Q)-factor of the Anderson-localized modes. First, the ma-
terial two-photon absorption induces a dissipation mechanism which increases the
optical leakage, thus reducing the Q)-factor of the modes. This has been observed
in previous experiments with resonant nonlinearity in standard silicon-photonic
structures [93]. However, the nonlinear process probably induces an additional
dephasing mechanism in the interference process leading to Anderson localiza-
tion [399]. This decoherence mechanism further reduces the @-factor and it is
expected to fully destroy the localization effect in an infinite system [400]. As
sketched in Fig. 5.16(c), the Q-factor of the Anderson-localized mode is consider-
ably reduced from position (2) to position (5). This fast modulation of @) explains
why the two resonant conditions shown in the time trace of Fig. 5.16(c) do not
drop to the same value, a feature that cannot be explained by solely considering
the dissipation induced by two-photon absorption and free-carrier absorption in
the numerical model detailed in Subsection 2.3.1. This fast modulation is further
evidenced in Fig. 5.16(d), where the shape of the time trace is shown at differ-
ent wavelengths \;. Along with an increase of the duty cycle of the trace as
was described theoretically, we see that the difference between the two resonant
dips increases with the power dropped into the cavity, a fingerprint of stronger
dephasing. The multiple scattering process adds yet another complexity to the
picture. When few modes overlap spectrally and spatially, a complex collective
behavior could be expected in the dynamics of the system due to their interaction.
This spatial and spectral mode overlap can eventually result in complex tempo-
ral transmission traces that cannot be explained with a single-cavity model [337].
However, we do not observe these interaction effects in our experiment. This can
be atributed to the suppression of mode interaction in the localization regime,
even between modes that have significant spatial and frequency overlap, as pre-
dicted in Ref. [401] and confirmed by experiments on multimode lasing in the
Anderson localized regime [402].
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Figure 5.17: Comparison of the experimental radiofrequency (RF)
spectral map to numerical simulations. The RF spectral map obtained
for the optical resonance having a cold resonance wavelength A, = 1510.3 nm is
compared to the Fast Fourier Transform (FFT) from the numerical simulations
using the linear optical response and the parameters given in Table 5.1.

In the absence of multimode interference effects, we can use the model de-
veloped in Chapter 2 and extract the values of the unknown physical parameters
therein, e.g. vy, or vs., by comparing the experimentally observed radiofrequency
map to the FFT of the simulated transmission traces. Using the values in Ta-
ble 5.1, we see that the numerical FFT in Fig. 5.17(right) qualitatively and quan-
titatively agrees with the experimental colormap, the only prominent differences
being the initial region and the speed at which the system escapes the limit-cycle
at the end of the resonance. Despite the considerable number of free parameters
and the extensive use of data from the literature, an analysis of the sensitivity of
the colormap to changes in those parameters confirm that the values have to be
close to those given in Table 5.1. Particularly interesting are the different mode
volumes Ve¢rr, Vrca and Vrpa, which confirm that the optical modes probed
are highly localized. We observe this behaviour for shamrock waveguides and
also for standard waveguides fabricated with circular holes, as the origin of this
modulation mechanism are the silicon material nonlinearities common to both
systems. The possibility to extract meaningful information on the modal volumes
of Anderson-localized modes via its SP maps, combined with the estimates of &
obtained by probing LN cavities makes this system a test bed to study the inter-
play between structural complexity and material nonlinearities and their impact
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on localization phenomena. In addition, this radiofrequency modulation intro-
duces a different functionality to the toolset of disordered photonics [403].

5.3 MHz-Optomechanics with Anderson local-
ized optical modes

The PhCWs discussed so far don’t exhibit any type of OM modulation either
at low (MHz) or high (GHz) frequencies. This is probably due to a rather low
OM coupling g, or simply due to our experimental conditions, since the fiber
loop is in contact with the structure and considerably damps the motion. Physi-
cally separating both sides of the crystal by introducing an air slot enables us to
probe the OM modulation at both high and low frequency using our evanescent
coupling scheme. In Chapter 3 we have discussed both TIR and PhC mirrors
as means to confine light in a given physical volume. However, another con-
finement strategy based on a narrow sub-wavelength low refractive index region
surrounded by a higher index medium can be achieved in a specific direction in
what is called a slot waveguide [404]. The combination of a nanoscale air slot and a
line-defect PhCW leads to slotted photonic crystal waveguides (sPhCW). The sub-
wavelength confinement provided by the slot and geometry-controlled dispersion
engineering provided by the PhC pattern make sPhCWs an ideal building block for
three-dimensional confinement with minimal footprint and a relevant platform for
free-space cavity quantum electrodynamics (cQED) experiments with atomic en-
sembles [405,406] and index-sensitive sensing [407]. High-@Q slot-confined cavities
based on linear sSPhCWs have been observed in slot-width [408] and waveguide-
width [409] modulated configurations, as well as on heterostructures [410]. Addi-
tionally, the tightly localized electric field near the air/dielectric boundary imposes
a large radiation pressure force on the slot sidewalls, which leads to a pronounced
coupling of the slot-guided optical modes with low-frequency differential motion
of the two sides of the waveguide [411]. Light-motion interaction in nanoscale slot-
ted systems has also been explored in near-field evanescently-coupled pairs of OM
structures [386], single or multiple slot-in-the middle PhC cavities [412,413] and
one-dimensional sliced PhC nanobeams [189], the latter exhibiting a many-fold
increase in the vacuum OM coupling rate g, introduced in Chapter 2 as compared
to previously existing OM systems.

This approach allows us to exponentially increase the coupling strength by
simply decreasing the width of the slot [414,415]. However, several tenths of
nanometers-wide air slots along many micron-long structures unavoidably suf-
fer from (additional) uncontrolled imperfections appearing during the fabrication
process, e.g., sidewall roughness. Extremely high as-designed Q-factor cavities
(Q ~ 10°) become specially sensitive to such imperfections, leading to additional
radiation channels and experimentally observed quality factors far from the cal-
culated values [408,409,416,417]. Nevertheless, the interplay between order and
disorder in a sSPhCW may itself induce strong light confinement as explained for
standard PhCWs. In this section we assess how to use the air slot width as
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a deterministic parameter enabling low-frequency cavity-optomechanics experi-
ments with Anderson-localized optical modes and we experimentally evidence a
pronounced OM coupling in unintentionally disordered sPhCWs where Anderson-
localized optical cavities couple to extended mechanical modes with observed fre-
quencies up to 600 MHz.

5.3.1 Slotted photonic crystal waveguides

First, we explore sSPhCWs based on a standard W1 PhCW with an additional
slot of variable width s along the waveguide axis. The resulting geometry for
a slot of size s = 78 nm, circular hole radii » = 147.5 nm, pitch a = 470 nm
and thickness ¢ = 240 nm is shown in Fig. 5.18(a). Its TE-like band structure
is shown in Fig. 5.18(b), where the same color code as in Fig. 5.1 is used. The
band of interest in the sSPhCW is plotted with a thick blue line, while the field
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Figure 5.18: Band structure of a slotted photonic crystal waveguide
(sPhCW). (a) Schematic of a sSPhCW, which consists of a W1 waveguide with
an additional air slot in the direction of the line-defect. (b) Band structure of
the structure shown in (a) for the geometrical parameters s = 78 nm, r = 147.5
nm, ¢ = 240 nm and a = 470nm. The light cone and the bulk bands are shown
with shaded grey and red respectively. (c) Ey(z,y,z = 0) for the highlighted
bands (A,B and C) at the band edge (k = 7), showing either even or odd parity
with respect to the waveguide axis. (d) Fundamental slot-band as a function
of the slot width s from s = 20 nm (black) to s = 100 nm (light blue). The
cut-off f., and band-edge fy. frequency are highlighted for two of the slots. (d)
Rate of change of f;. as a function of the slot width s, showing an exponential
behaviour.
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profile Ey(x,y,z = 0) of that band (A) and the two above (B and C) at the
high-symmetry point k& = 7/a are given in Fig. 5.18(c). We see that both A
and C have a strong fraction of the electromagnetic field inside the air slot but
the field partially extends into the surrounding PhC. This leads to a diverging
group index n, and allows slot-guided slow light. We denote these two bands as
the fundamental and first order slot-bands. On the contrary, mode B looks very
similar to the corresponding mode in Fig. 5.1(c), and we denote it as the W1-like
mode. In addition, this sSPhCW does not sustain any other guided or quasi-guided
mode in the frequency range of the fundamental slot-band, which avoids excessive
extrinsic out-of-plane losses in the presence of fabrication disorder [339,411].

Due to the strong confinement of the light field inside the slot, the high-
lighted band is extremely sensitive to the slot width s. Fig. 5.18(d) plots the
band dispersion as a function of s, showing how the cut-off f., and band edge fi.
frequencies of this mode change by more than 20 THz when going from s = 20 nm
to s = 100 nm, while the overall dispersion conserves the monomode condition
for all slots above s = 50 nm. Any differential displacement of the two high-index
regions leads to a change As of the slot width. The high sensitivity % has a
strong impact on the OM coupling rates g, between an optical cavity drawn from
that band and any in-plane relative displacement of the slot walls. This stems
from the definition of g,, which evaluates the frequency shift of an optical cavity
mode with respect to a displacement of amplitude ., the zero-point fluctuations
of the mechanical resonator considered. Fig. 5.18(e) depicts the rate of change of
fre, which increases with decreasing slot size s. The expected g, increases expo-
nentially with decreasing s. Strong light localization along the slot will therefore
lead to pronounced coupling between light and motion in this system, which is
our main approach to analyze the OM coupling mediated by disorder.

Similarly to the PhCWs analyzed in previous sections, the full 3D slotted
waveguide is very challenging to be modelled with current numerical tools if we
add complexity or disorder. 2D FEM simulations are therefore our only option to
understand the behaviour of sSPhCWs. Unfortunately, unlike the W1 waveguide,
the effective refractive index approximation allowing us to transform the 3D prob-
lem into a 2D problem does not hold in this case because the bands of this system
are not well described by the first TE mode of the slab. While the simulated
bands shown in Fig. 5.18(d) exhibit a monomode band with monotone increasing
ng up to nearly the band edge for most values of s, their 2D counterpart using
an effective index n.yy for silicon do not. Our strategy to approximate the band
diagram of the 3D structures keeping the value of s fixed consists on changing
the geometrical parameters of the waveguide. Fig. 5.19 plots the results following
this strategy to calculate the localization length £ for a sSPhCW with W = (.84,
s = 78 nm, a = 470 nm, r = 147.5 nm and n.;; = 2.844. As shown in panel
(a), the band is not single mode, so we calculate £ as a function of frequency v
and not as a function of n, (Fig. 5.19(c)). We calculate the localization length
for positional disorder with ¢ = 0.01a, a value larger than the one used for the
W1 waveguides, to account for the surface roughness on the slot itself. Under
this condition, the localization length is not equal to the backscattering mean free
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Figure 5.19: Photonic localization length ¢ in a disordered slotted
photonic crystal waveguide (sPhCW). (a) Slot-guided band dispersion
close to the cut-off frequency f., for a 2D sPhCW of parameters s = 78 nm,
r = 147.5 nm, a = 470 nm and W=0.84. (b) £{(v) for a positional disorder of
o = 0.0la, as obtained from the averaged intensity |E|?> emitted by a dipole
along the axis of a disordered waveguide. (c) Both sides are fitted (blue and
red) with an exponential from which the localization length ¢ is extracted. (d)

path in this particular waveguide. The fits of the ensemble-average emitted light
intensity are given for some of the calculated frequencies v in panel (c), showing
anomalously different slopes on both sides for some frequencies, a behaviour that
is under exploration. For the range 185-187 THz the extracted localization length
¢ is below 30 unit cells. This is associated to the formation of slot-guided local-
ized modes, as shown in panel (d), where the geometry in the y-direction has been
cropped for clarity. These calcualtions allow us to visualize the effect of disorder
in a sSPhCW and give us a qualitative description of the dispersion of ¢ and the
modal volumes of the localized modes in the system.
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5.3.2 Optomechanical coupling to in-plane differential mo-
tion

The strong dependence of the fundamental slot-band on the slot width s can be
used to design efficient cavity OM systems as, e.g., an engineered heterostructure
optical cavity coupled to the fundamental in-plane differential mode of the mem-
branes bounding the slot. Although the 3D simulation of the mechanical eigen-
modes is computationally feasible due to the absence of surrounding air boxes
and PMLs, the calculation of the coupling rates requires both the optical and
mechanical eigenfields. We therefore continue with 2D simulations as described
in the previous section to have a qualitative estimation of the expected OM cou-
plings. Additional trenches etched on each side of the waveguide are introduced
to enable efficient in-plane motion of the membranes. The particular geometry
for a L = 100a waveguide is shown in Fig. 5.20(a) along with the displacement
profile of the main breathing-like mechanical resonance.

While this 2D approach has certain limitations on the analysis of the opti-
cal properties of our structure, the mechanics of the in-plane mechanical modes®
are well captured by using a plane stress approximation [418]. We have simu-
lated a set of 100 realizations of 2D sPhCW as the ones used for Fig. 5.19 and
computed the OM coupling rate g, between the first 30 mechanical eigenmodes
and the 30 optical modes with eigenfrequencies closest to the cut-off frequency
feo, which comprises the modes within the 185-187 THz range for which £(v) has
been given in Fig. 5.19. In this system, the moving boundary contribution g,
(Eq. 3.33a) in the slot-guided mode largely surpasses the photoelastic contribu-
tion g,pe (Eq. 3.33b), so here only the former is considered. In addition, the
effective mass m. s of the mechanical eigenmodes is computed by considering the
2D solutions to be invariant across a slab of thickness ¢ = 240 nm, which leads
to values with the right order of magnitude. Unlike a standard PhCW whose
naturally achieved end-facets (a silicon slab) lead to a rather weak confinement,
as confirmed by Fig. 5.12, a slotted waveguide bounded at its ends with silicon
slabs effectively behaves as a closed system due to the abrupt termination of the
air slot, leading to prominent FP resonances. We use the sPhCW without disor-
der as a reference to estimate the enhancement of g, in the Anderson-localization
regime. The calculated OM coupling in a perfect sSPhCW and a set of disordered
sPhCWs is plotted in Fig. 5.20(b) for a disorder strength ¢ = 0.0la. For an
unperturbed waveguide the mechanical eigenmodes can be split into symmetric
and antisymmetric with respect to the plane defined by the waveguide axis and
z. Here we only include the symmetric modes, since the antisymmetric ones are
optomechanically dark. One should nevertheless bear in mind that each eigen-
mode is actually associated to a nearly-degenerate antisymmetric mode in which
the two sides oscillate in phase. On the contrary, disorder breaks that particular
symmetry and to some extent hybridizes the two modes [414]. For this reason, we
include all the mechanical modes in the case of the disordered sPhCW.

3We here limit our scope to z-symmetric in-plane eigenmodes since flexural antisymmetric
modes are optomechanically dark.
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Figure 5.20: Optomechanical (OM) coupling in a disordered slotted
photonic crystal waveguide (sPhCW). (a) Geometry and fundamental in-
plane differential mode of a slotted photonic crystal waveguide with lateral
trenches. (b) Scatter plot of the optical and mechanical eigenfrequencies in
(left) an unperturbed L=100a 2D sPhCW and (right) a set of 100 disordered
L=100a 2D sPhCW, with positional disorder of level & = 0.01a. The slot-guided
mode cut-off f., is marked with vertical lines in both panels. The mechanical
eigenmodes of the perturbed structures are easily attributed to the original
unperturbed modes (the scattered dots roughly remain on horizontal lines) and
the distribution of g, associated to a given mechanical mode with all optical
modes can be computed. This is shown in (¢) for the 4 mechanical modes shown
in the insets, both for the unperturbed (blue bins, 0 = 0) and disordered (red
bins, ¢ = 0.01a) structures.

Several conclusions can be drawn from Fig. 5.20. First, the optical eigen-
frequencies in the disordered sPhCWs are not distributed into clusters around
the eigenfrequencies of the unperturbed case, showing a strong effect of disor-
der which is associated to light localization. In addition, resonant optical modes
are clearly visible above the cut-off frequency f., (marked with a dashed line in
Fig. 5.20(b)) which evidences the formation of a Lifshitz tail. On the contrary,
the mechanical eigenmodes are barely sensitive to the imposed disorder and they
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remain easy to identify by the sole observation of their frequency. This is es-
pecially the case for the type of disorder introduced, since it does not change
the masses of both sides. In terms of the coupling rates g, achievable, disorder
can turn modes that are poorly coupled into highly coupled mechanical modes, al-
tough some mechancial modes induce high coupling for the perfect and disordered
system indistinctly. Fig. 5.20(c) shows the log-scale histogram of g, as obtained
from all 30 optical modes and each of the four highlighted mechanical modes,
with red (blue) bars showing the distribution for the (un)perturbed sPhCW. The
bottommost panel shows how shear modes without pronounced y displacement
—and therefore As ~ 0— are not importantly coupled in any of the cases. In the
case of the the fundamental breathing mode at f,, = 212 MHz (histogram 2), a
nearly-rigid As leads to coupling values as high as g, = 27- 400 kHz both in the
ordered and disordered case, with an actual lowering of the mean value for the
disordered platform (the mean values are shown with the vertical lines). In the
case of the n-th order breathing mode with n being an odd integer, the situation
is similar but with a slight increase of the mean < g, >, although not shown.
On the contrary, breathing modes with even n are in principle optomechanically
dark in the absence of disorder, but the localization of the light field radically
enhances their coupling, as shown in histograms 3 and 4. The blue histogram
should in principle be pinned to g, = 0, but the numerical imprecision leads to
distributed finite values, while in the disordered case values nearly as high as for
the fundamental breathing mode can be reached. The same generally applies for
higher even order modes.

We evaluate the overall effect of disorder by taking the distribution of the ob-
tained g, between all 30x30 pairs. The resulting histograms are shown in Fig. 5.21
for two different values of the slot width s = [78,100] nm and three different dis-
order levels ¢ = [0.005,0.01,0.02]a. The distribution for the unperturbed case
(0 = 0) is also given and the mean value (g,) is pin pointed with a vertical line
in each panel. The probability distribution functions evolve from a rather broad
distribution in the unperturbed case to one that peaks around g, ~ 27- 100 kHz,
for all three values of s. The extracted mean (g,) for the three slots is given in
Fig. 5.21(b). To evaluate quantitatively the role of s in the OM coupling proper-
ties, one should compare the distributions obtained for structures operating under
the same localization length £. This is not done here, but these simulations show
how reducing s induces an enhanced OM coupling in the Anderson-localization
regime, something that is experimentally checked later in this thesis. Narrower
widths have not been considered here since the 2D approximation increasingly
fails to reproduce the bands for shrinking s. In addition, the shape and dimen-
sions for the trenches have not been engineered at all, so we expect that more
carefully designed structures [419] can achieve higher values of g,.

5.3.3 Optomechanical spectroscopy

sPCWs with several overall scalings including different nominal slot widths s =
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Figure 5.21: Statistical assessment of g, in disordered slotted pho-
tonic crystal waveguides (sPhCWs). (a) Log-scale histogram of the ob-
tained optomechanical (OM) couplings g, for three different levels of disorder
o = {0.005,0.01,0.02}a and for two slot widths s = 78 nm (left, red) and s =
100 nm (right, blue). The distribution in the unperturbed case is also given on
top and the mean values are marked with vertical lines of the corresponding
color. (b) Mean OM coupling (g,) as a function of disorder level ¢ for both slot
widths. The color of the line is chosen accordingly.

{20, 40, 60, 80, 100} were fabricated at DTU Fotonik. The type of devices that are
described herein correspond to sLN cavities, i.e. slotted LN cavities. Although
direct termination also leads to pronounced FP resonances, their quality factor ¢
is highly improved when embedded between PhC mirrors. An SEM micrograph

of the termination of one such cavity with s = 100 nm and N > 1 is shown in
Fig. 5.22(a).

Waveguides with nominal s = 20 nm were unfortunately not fully developed
since the dry-etching process did not reach the top of the silicon oxide layer of
the SOI wafer, leaving a very thin (~ 10 nm) silicon layer at the base of the slot,
as evidenced by the contrast of the leftmost SEM micrograph of Fig. 5.22(b).
The rest of the slots were fully etched and Fig. 5.22(b) shows a typical normal-
incidence SEM image of the fabricated structures, with the realized widths s given
above. These were extracted as the average over multiple normal-incidence SEM
micrographs of the width of the rectangle best-fitting the slot. These SEM images
also reveal the surface roughness of the slot walls and its width dependence, a
type of disorder that probably controls out-of plane and backscattering losses to
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Figure 5.22: Optical characterization of slotted photonic crystal
waveguides (sSPhCWs). The optically probed sPhCWs are enclosed between
photonic crystal mirrors to form sLN cavities, the left boundary of which is
shown in (a) for a SPhCW with s = 100 nm and N > 1. (b) Detailed SEM
micrograph of a representative region of the sPhCWs, with fabricated slots of
widths s = {45,59,78,100}. (c) Transmission spectra using the fiber-taper
evanescent coupling technique of a sL309 cavity with varying s, showing the
strong effect of the slot width on the spectral position of the band.

a much larger extent than hole radii or position fluctuations [420].

Optical characterization

We chacacterize optically the sLN structures using the fiber setup described pre-
viously. Due to the positive slope exhibited by the slot-guided mode within the
first BZ, phase-matching is expected within a considerable bandwith, nearly up to
the crossing with the light line, as shown in Fig. 5.18(b) by the precise dispersion
of the HE;; mode of a d = 1.5 um. The fiber is placed parallel to the waveguide
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Figure 5.23: Etch verticality in fabricated features. (a) Etch profile
along a [1 0 0] cleaved trench, with white dashed lines highlighting a possible
geometrical representation of the sidewall. (b) Nearly-tangent SEM micro-
graphs of focused-ion beam cut slotted photonic crystal waveguides (SPhCWs),
showing the vertical profile of the slot trenches.

axis and aligned with it. Transmission spectra of sL.309 cavities with varying slot
width s are shown in Fig. 5.22(c). For the smallest slot of s = 45 nm, two sets of
modes are visible close to the limits of the employed tunable laser. We asume that
the band that starts close to A = 1590 nm at s = 45 nm and shifts towards lower
wavelengths with increasing s is the fundamental slot-guided band. Transmission
resonances with monotonously increasing FSR appear on the long wavelength side,
which is lost towards lower wavelengths where a collection of resonances at ran-
dom spectral positions is observed. This represents an underlying band structure
with a positive slope in the first BZ, which is a clear fingerprint of the funda-
mental slot-band. Nevertheless, the simulated band structure as obtained with
the geometrical parameters extracted from the SEM micrographs does not allow
us to indentify unambiguously the observed bands. The matching between the
experimental spectral position and the simulated one is rather poor in this case,
with an approximate offset of A\ = 100 nm.

In-plane parameters {s,r, a}, thickness ¢ and refractive index ng,; are known
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with considerable accuracy, so we attribute the observed large systematic mis-
match between simulation and measurement to a pronounced loss of the etch
verticality, certainly larger than the one shown for the W1 PhCW of Fig. 5.10,
where we had AX = 25 nm. The etch profile obtained by cleaving the sample
perpendicular to an exposed trench is shown in Fig. 5.23(a). The etch profile
is not vertical. An overall etch angle of approximately 8 = 5° is observed and
remains rather constant up to a depth hA; = 200 nm, with an additional notching
effect at the bottom 40 nm of the slab. This profile can be acounted for by con-
sidering a two slope profile given by parameters [hy, 6] = [200 nm, 5°] and [hs, 02]
= [40 nm, 30°]. Nevertheless, notching effects are often highly dependent on the
exposed feature [421]. To assess the etch profile at the level of the sSPhCWs, some
of the devices were cut using a focused ion beam (FIB) accross both the circular
holes and the slot trench*. Some SEM micrographs taken at a tilt angle of 20°
are shown in Fig. 5.23(b). Although FIB exposure has an effect on the region
surrounding the cuts [422], these SEM images show a non-vertical profile of the
slot. This effect seems less pronounced than the one shown in (a). Aside from the
slot trench, the verticality of circular holes seems to be preserved with only some
minor notching.

Even with these structural imperfections considered, the matching of the
simulated and experimental bands is still complicated. To estimate the role of the
different geometrical parameters in this mismatch, we calculate the position of
the band edge A\, while varying them independently as shown in Fig. 5.24 for the
sPhCW with s = 78. Each panel plots the variation of a single parameter while
keeping the rest fixed. The structure with the as-extracted in-plane geometry
therefore lies at the origin of the x-axis. The wavelength A = 1500 nm of the
approximate experimental cut-off is marked with a dashed line. We cannot acount
for the observed mismatch with the effect of each parameter independently, which
pinpoints the fact that several effects might be occurring simultaneously. Instead
of doing a complex multiparameter optimization to fit the experimental data, we
use the profile measured on the isolated trench as an etch reference which we use
for all features equally.

The analysis of the group index n, extracted from the observed resonances
is shown in Fig. 5.25, with the different extracted band structures given as a
reference. The considered vertical profile does not suffice to reach the deviation
AM and the best fit to the experimental data on the region where FP resonances
are clear requires an additional rigid shift of 0\ = 25 nm. With this shift given,
we see that strong n, fluctuations occur and the system deviates from a smooth
ballistic behaviour at around A = 1515 nm. We attribute these deviations to
the onset of light localization. To ensure that we are probing Anderson-localized
resonances we restrict the measurements from now on to the first 5 - 10 resonances
appearing in the slow light regime.

4The FIB exposure was carried out by a technician at the Barcelona Institute of Microelec-
tronics IMB-CNM.
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Figure 5.24: Band edge dependence on geometrical parameters in
a slotted photonic crystal waveguide (sPhCW). Single-parameter sensi-
tivity analysis of the band edge wavelength A\, to the hole radius r, the slab
thickness ¢, the slot etch angle # and the overall etch angle 8. The dashed line
highlights the experimentally observed approximate band edge.

Mechanical characterization

The OM coupling between an optical cavity and a mechanical mode allows the
transduction of the latter’s thermally activated motion, as described in Section 2.5.
The RF signal as a function of laser wavelength obtained when probing the low-
est wavelength mode of a s = 78 nm sL309 cavity with a laser drive of power
P, = 80 puW is shown in Fig. 5.26. The left panel shows the RF spectrum at
the wavelength where the transduction is stronger and evidences the presence of
multiple Lorentzian peaks. The evolution of the RF spectrum as a function of
wavelength is represented via a colormap and shows the expected behaviour from
frequency fluctuations of the optical mode frequency. Despite the presence of
the TO effect leading to a saw-tooth resonant lineshape (top of Fig. 5.26), the
transduction reaches a maximum close to the maximum slope of the transmission
resonance at detuning A ~ k/2, progressively decreases again and vanishes in
resonance. Then it appears again in the rising slope of the red-detuned side of
the resonance. This dependence of the RF signal with wavelength constitutes a
clear fingerprint of OM modulation of an Anderson-localized cavity mode with
MHz-mechanical modes. The RF signal obtained when probing multiple opti-
cal resonances in the same sPhCW provides strong evidence for the mechanical
origin of the transduced signal, as shown in Fig. 5.27. For reference, panel (a)
shows the low-power transmission spectrum measured prior to the acquisition of
the different RF spectra shown in (b), which are labeled with letters A-H ac-
cordingly. A rather high drive power of P;,, = 0.7 mW is employed to enable
the above-noise level transduction of as many mechanical modes as possible. The
dashed grey lines accross all the spectra pinpoints the central frequency of the
mechanical peaks visible in at least two of the spectra. We use additional spectra
than the shown here. The optically transduced density of mechanical states (grey
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Figure 5.25: Signatures of optical Anderson-localization in slotted
photonic crystal waveguides (sPhCWs). The transmission spectrum in
the region A = 1500-1530 nm is shown on top for an s = 78 nm sL309 cavity,
showing both Fabry-Pérot (FP) resonances with a well-defined and predictable
free spectral range (FSR) and a more unpredictable set of resonances above A
= 1520 nm. The detected peaks are used to extract the experimental group
index ny, which are compared to the progressively refined theoretical n,.

lines in Fig. 5.27) can be compared to the simulated one to back the mechanical
origin of the observed signal. Fig. 5.28 compares in detail the observed mechanical
eigenspectrum (a single RF spectrum is given for reference) to the FEM simulated
mechanical modes. The exact in-plane geometry of the sL.309 cavity with s = 78
nm is considered, including the size of the underetched region (3.25 ym) from the
lateral trenches to the SOI wafer where we impose a fixed boundary condition.
Only modes simultaneously y and z-symmetric are simulated, allowing us to cal-
culate just a quarter of the structure. However, z-antisymmetric flexural modes
densely populate the full frequency range considered here. Two types of modes
are found in our simulations. First, 5 shear modes with negligible y-displacement
populate the spectrum up to 169 MHz, where the shear stress becomes consid-
erable and it is released via a non-negligible y-displacement, as can be seen in
C. The rest of the shear-like modes (I,K,N) have spatial regions where this mo-
tion is clearly visible and become optomechanically bright. The second family
of modes (D,E,F,G,H,J,1L,M) constitutes the one of interest, with differential in-
plane motion between the two slabs. The fundamental in-plane breathing mode
(D) has a frequency €2,,/27 = 178 MHz, which is higher than the first observed
mechanical resonances by approximately 10 MHz. Above such frequency, both
the simulated and measured structure exhibit densely packed spectra with me-
chanical modes. Despite a higher density of modes in the experimental trace, the
overall agreement is sufficiently good to consider the simulated modes as those
populating the observed signal. The higher density and the overall shift to lower
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Figure 5.26: Optomechanical (OM) transduction with an Anderson-
localized optical mode. The driving of an Anderson-localized mode at suffi-
ciently low powers leads to the OM transduction of the thermally active motion
of multiple mechanical modes, as shown with the left panel. The colormap in
the middle shows the evolution of the radiofrequency (RF) spectrum with laser
wavelength, which typically corresponds to the one expected from an optical
cavity dispersively coupled to a mechanical resonator. This is highlighted with
the dashed lines, corresponding to maximal transduction at A = k/2 and no
transduction at A = 0.

frequencies can be explained by considering both the presence of fabrication dis-
order and the real vertical profile of the sample, shown in Fig. 5.23. Coupling
of the y-symmetric and antisymmetric modes due to disorder or the presence of
the fiber taper loop can lead to the experimetal observation of two peaks instead
of one, while the coupling of in-plane z-symmetric and flexural z-antisymmetric
modes has a more unpredictable effect. We have simulated the eigenspectrum of
a disordered structure of length L = 100a including and excluding the vertical
profile. FEM simulations indicate the presence of many flexural modes located
within a few MHz of the the main in-plane modes, which can lead to mixing with
in-plane motion through a breaking of the vertical symmetry of the slab. This
mixing happens particularly for the non-vertical profile of these samples as does
an aditional reduction of the frequencies of in-plane modes. The first can explain
the presence of a highly packed spectrum in the 160-180 MHz region, since orig-
inally flexural modes become optomechanically active, while the latter probably
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Figure 5.27: Low-frequency mechanical spectroscopy of a slotted pho-
tonic crystal waveguide (sPhCW) using multiple optical modes. (a)
Optical spectrum of a s = 78 nm sL309 cavity in the frequency region where
light localization occurs. Some of the optical modes are labeled with letters A
to H. (b) Radiofrequency (RF) spectra of the transmitted light when probing
the modes A-H, showing multiple Lorentzian peaks in the range from 120 MHz
to 400 MHz. The peaks are manually inspected and the dashed lines represent
those present in at least two from a large set of RF spectra.

explains why the first transduced modes are at lower frequency than expected
from the as-designed structure. Similar observations have already been reported
for weak stress-induced bowing in an engineered heterostructure cavity [411]. The
high level of transduction of the fundamental drum mode of the full membrane
at Q,,/2m = 4 MHz (not shown) also provides an important signature of the role
played by the vertical profile in determining the final mechanical eigenspectrum
of the structure under investigation.
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Figure 5.28: Simulated low-frequency mechanical eigenspectrum of a
fabricated device. The experimentally extracted eigenspectrum is compared
to that simulated via Finite Element Method (FEM), in which only the z and
y-symmetric mechanical modes are included. Specific modes in the eigenspec-
trum are labelled from A to N and their deformation profiles given, with the
deformation being unrealistically exagerated for visualization purposes.

We have made the same analysis for a set of SPhCWs with different s. The
type of RF spectrum observed, including the precise frequencies of the detected
peaks coincides across all devices, as the different values of s have negligible effect
on the MHz modes being probed. However, the transduced signal was stronger for
the narrower slots. The stronger signal can be due to different mechanisms, such as
overall better quality factors () in the Anderson-localization regime. Nevertheless,
we observed that the Q-factors are within the same order of magnitude, which
points towards higher values of the OM coupling rate g, (see Fig. 5.18).

Ezxperimental evaluation of the optomechanical coupling rate

The vacuum OM coupling rate g, can be determined using several techniques.
The most widespread employs a known frequency modulation as a calibration
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signal [423] to which the thermomechanical radio frequency spectrum is compared.
This technique is based on the equivalence of the transduction factor between a
laser line undergoing frequency/phase fluctuations upon a fixed optical resonance
and a fixed laser line driving an optical cavity undergoing (optomechanically-
induced) frequency fluctuations. Details on the theoretical description of such
a scheme can be found in the original article by Gorodetksy et al [423], and
elsewhere [63,88].

We employ an electro-optic modulator (iXblue Photonics MPZ-LN-10, V, =
4.9 V) driven by a vector network analyzer (Rohde&Schwarz ZVA 50) at a voltage
V = 0.178 V to phase modulate the laser carrier before light is coupled into an
optical cavity mode. The phase of the input signal can then be written as,

o(t) = wrt + Beos(Qmoat) (5.9)

where f is the phase shift factor, i.e. § = V/V;, and Qg the modulation
angular frequency. The RF spectrum exhibits both the Lorentzian spectra of the
mechanical modes and an additional calibration peak at ,,,4/27, as can be seen
with the solid black line of Fig. 5.29(a). Since the motional state of the mechanical
resonators is incoherent, we assume there is only a single mechanical mode coupled
to an optical cavity. The power spectral density of the mechanical resonator and
of the calibration tone are given by

Q2
m . 2— m
Sww(Q) - 8gonth <Q2 — Q,Qn)2 i anQ?n (510&)
1
S () = 522,04B°6(Q = noa) (5.10b)

2

with 7y, the thermal occupany of the mechanical mode considered. The experi-
mentally accesible power spectral density is given by Sy (Q) = |Gy, ()25, (),
with Gy, () a transduction factor depending on frequency 2. When the areas
(V) = 2920|Gve () |2 and (V) .y = %52|va(9mod)|2 beneath both curves

2
are compared, g, can be determined by

GVw (Qmod)
GVw (Qm)

6Qmod L <V2>m

o 5.11
g 2 Nh <V2>cal ( )

The typical approach consists in choosing a calibration tone placed just a few

MHz apart from the mechanical mode of interest, since one can then assume that

GVw (Qmod) ~ 1
GVw (Qm) ’

such approach would require the acquisition of as many RF spectra as mechanical
modes present. Additionally, we would need to repeat this for many optical modes
to assess the statistical role of the slot width s. However, the error commited in
the extracted g, by using such an assumption is spread by less than 10% of its
mean value when €2,,,4 is changed within a window spanning 150 to 300 MHz.

G W(Qmo ) —
GVVw(Qm§ - 1 for

all modes. We fit the low-power RF spectra obtained when driving the Anderson-
localized optical modes present in a single sL309 cavity for different slot widths s

both transduction factors are the same and set ‘ In our case,

We fix the calibration tone somewhere in the window and set ‘
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Figure 5.29: Optomechanical (OM) coupling statistics between MHz
in-plane motion and Anderson-localized optical modes in a slotted
photonic crystal waveguide (sPhCW). (a) Frequency modulation tech-
nique employed to extract the vacuum OM coupling rate between the observed
mechanical modes and the driven optical cavity. The mechanical modes are
fitted (blue line) using a sum of Lorentzian lineshapes and a background (green
lines), while the EOM-generated calibration tone is fitted with a Gaussian line-
shape. This procedure is repeated for multiple frequency windows and with
multiple localized modes, leading to the statistical distributions shown in (b),
where a clear shift towards higher g, is seen with decreasing slot width s.

with a sum of Lorentzian lineshapes and a straight baseline. This is done in small
spans of around 10 MHz to limit the number of observed modes and therefore
enable efficient least-mean-squares fitting, while the extracted central frequencies
from the analysis shown in Fig. 5.27(b) are used as a guideline for possible initial
guesses. In addition, the calibration tone for each RF spectrum is fitted with a
Gaussian, as the calibration tone lineshape is limited by the chosen SPA bandwith
(RBW = 10 kHz). An example of such analysis is shown in Fig. 5.29(a), where
each Lorentzian is given in green and their sum in blue. For clarity, the calibration
tone is also shown at €2,,,,¢/27m = 230 MHz. The extracted g, is given for two of the
observed peaks with an error solely given by the fit error for both the mechanical
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and calibration signals.

The main result of this subsection is shown in Fig. 5.29(b), where the prob-
ability distribution function of g, is shown in log-scale for the different slot widths
s. There is an overall shift of the PDF towards higher values of g, when s di-
minishes, confirmed by the progressive increase of the mean (g,) marked with a
vertical blue line in each panel. We also report measured values that can go up to
go ~ 2m-300 kHz for the sSPhCWs with s = 45 nm, a rather high value considering
the absence of any design in these optical cavities. This constitutes a first proof
of OM modulation of optical Anderson-localized modes. It also reveals the overall
importance of the slot width in the OM coupling rate achieved in the localization
regime. Strong efforts are currently ongoing at DTU Fotonik and Nanofab to
further improve the fabrication process with the prospect of reaching s = 10 nm.

5.3.4 Mechanical amplification and lasing

To calibrate g, very low probing powers are used to ensure that there is no back-
action of the light field on the mechanical modes. However, on the RF spectra
shown in Fig. 5.27, where higher powers were used to observe more modes, the
sharpness of some of the observed peaks already preludes that such backaction is
possible. In this subsection we show how Anderson-localized optical cavities in
sPhCWs can host OM oscillation limit cycles and we use them to amplify mechan-
ical motion at frequencies around 200 MHz. Additionally, silicon OMC cavities
with both high optical @, low mode volume V' and high OM coupling rate g, often
suffer simultaneously from radiation-pressure backaction and material non-linear
dynamical effects, which enriches the physics of the system under study. Despite
the clear coexistence of both driving forces, we evidence mechanical lasing via
either dynamical backaction or the self-pulsing (SP) mechanism.

Amplification based on dynamical backaction

The sPhCWs considered here constitute a rather rich OM system. First, many
localized optical modes can be probed in a wavelength range of around 10 nm,
which can be of interest for applications that benefit from large optical bandwiths
like spectrometry [424]. Second, the optical modes probed are coupled with a con-
siderable g, to multiple closely packed mechanical modes spanning a large range
of frequencies, with possible implications for high-bandwith sensing technology
like, e.g. optomechanical magnetometry [425,426]. Considering the mechanical
frequencies (they go up to €2, = 27 - 600 MHz) and the optical decay rates (the
smallest of k = 27-2.5 GHz) measured and the laser driving a single optical cavity
mode, the system constitutes a useful platform for sideband unresolved multimode
optomechanics [415] where mechanical mode competition [427] and rich non-linear
dynamics can be explored [428,429].

The high-power (P, = 200 xW) transmission spectrum of an Anderson-
localized optical mode in a sL309 cavity (with s = 45 nm) is shown in Fig. 5.30(a),
along with its RF spectral map. The cold resonant wavelength of the mode corre-
sponds to A, = 1598.1 nm, but rather moderate powers lead to a DC transmission



5.3. MHz-Optomechanics with Anderson localized optical modes 199

a) RF Signal (dBm) b) Frequency (MHz)

80 60 40 0 100 200 300 400 500 600
~ A =1598.35 nm{-40 &
£ 3f.| {-60 g
o) -80 =
o . . / .

g P, =200 pW C - - - - ]
— 05{P.=200p . e 02 <
0 3
: . . . . 1-02 =

350f 1 10 20 30 40 50 60

Time (ns)

300} 1¢) Wavelength (nm) -
. 1598 15981 1598.2 1598.3 1598.4 1598.5 g
N . ' ' ' ' 191 9
I 250} 1 =
> {190.5 3
gl Q
> <
O 200} _ 1190 —
3 ‘ 1189.5
® 150¢ 1 : ~
IC d)(B 1598.25 3
L 1-40
100} 1 A (nm) 7))
1_ «Q
1508.12 1l |7€° 2
50f - o~
-80 &
3

%96 15982 15984 189.5 190 190.5 191

Wavelength (nm) Frequency (MHz)

Figure 5.30: Dynamical backaction amplification and optomechanical
(OM) oscillation with an Anderson-localized optical mode. (a) Optical
transmission spectrum and radiofrequency (RF) spectral map of an Anderson-
localized mode driven at P;, = 200 uW, showing both transduction of in-plane
mechanical modes as well as self-sustained oscillation at f,, ~ 190.25 MHz
when driven above Ay, = 1598.2 nm. The RF spectrum at position A -marked
with a white dashed line- is given in (b). The multiple harmonics at nf,, and
the temporal trace trace evidence the coherent high amplitude nature of the
dynamical mechanical state. (c¢) Detailed RF spectral map around f,, with the
region leading to lasing marked with a white dashed box. The spectra in that
region are shown separately in (d), evidencing both stiffening and amplification
of the motional state as the characteristic dynamical-backaction path towards
self-oscillation.

with a saw-tooth lineshape, a fingerprint of cavity absorption leading to a TO
shift. We attribute this non-linearity to a pronounced optical absorption medi-
ated by surface states in the etched slot surface, since otherwise the air-guided
nature of the mode should considerably limit the observed non-linearities. The
first region of thermal transduction (A = 1598.05-1598.2 nm) in the RF spectral
map is followed by a more intricate spectrum (A = 1598.2-1598.5 nm) in which a
mode with natural frequency f,, = 190 MHz oscillates at high amplitude. How-
ever, the amplitude of the remaining mechanical modes stays rather constant.
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The RF spectrum at a representative wavelength (A = 1598.35 nm) is highlighted
with a dashed white line in Fig. 5.30(a) and shown in (b). The mentioned peak
is well above the rest of mechanical modes, as are its multiple harmonics (2f,,
and 3f,, shown). The temporal trace acquired with the oscilloscope (using the
signal itself as a trigger) confirms the coherent nature of the motion and evidences
that OM oscillation has been reached. Fig. 5.30(c) shows a detailed panel of the
RF spectral map around f,,, where we see that the mechanical oscillation fre-
quency linearly decreases with increasing wavelength. This behaviour has been
numerically obtained in Chapter 2 (see Fig. 2.10), but has here an additional
contribution from thermomechanical softening [97]. The region prior to the onset
of the self-oscillation is marked with a white dashed box and further explored in
Fig. 5.30(d), showing both a progressive lineshape narrowing and a stiffening of
the mechanical resonator. These are two clear signatures of dynamical backaction-
mediated amplification on the blue-detuned side of an Anderson-localized optical
mode. Nevertheless, the presence of a nearly degenerate mechanical resonance (as
seen from the bump on the high-frequency flank of the resonance) make the proper
extraction of the linewidth and its comparison to Eq. 2.40b rather complicated.
This analysis is left for another optical resonance where the nearly-degenerate
mode appears to be optomechanically dark.

Figure 5.31 plots the OM amplification with the characteristic evolution of
radiation pressure backaction given by Eq. 2.40b. These measurements were car-
ried out on an s = 45 nm and I[' = 0.95 sL.309 cavity, whose low-power transmission
spectrum is shown in Fig. 5.31(a). In particular, we focus on the interaction of
the lowest wavelength optical mode at a cold wavelength A\, = 1510.7 nm and a
mechanical mode of frequency €,,/27 = 230 MHz. From Eq. 2.40b, we expect
the overall damping rate I';,, to evolve linearly with the input power F;, whenever
the rest of the parameters are kept fixed. Unfortunately, the optical resonances
exhibit a considerable TO effect (Fig. 5.30), which complicates the recurrent mea-
surement at the same detuning A and forbids cooling on the red-detuned side.
Fig. 5.31(b) shows the transmission spectrum at powers ranging P;, = 20 - 220
#W and highlights the simplified approach taken here. We assume here that ab-
sorption is strictly linear and the @-factor of the optical resonance is fixed. We
select the detuning A = £/2 by always measuring the RF spectrum at the wave-
length A, corresponding to a fixed coupled fraction. The RF spectrum measured
as a function of P, is shown in Fig. 5.31(c). The trace in light blue was used
used to extract g, using the frequency modulation technique described before,
from which g, ~ 27- 198 kHz is obtained. Fitting the RF data with a Lorentzian
lineshape allows us to obtain I',,(P;,), which indeed decays linearly up to P, =
150 uW. Using the calibrated power F;,, the cold resonance characteristics ;e
and the fitted slope, the use of Eq. 2.40b yields g, = 27 228 4+ 7 kHz, which
is in good agreement with the value measured with the calibration tone. The
mechanical linewidth increases above P, = 150 uW and the mode vanishes from
the RF spectrum for P, = 220 uW (dashed black RF spectrum in Fig. 5.31(c)).
For this drive power F;,, the gain I',,, surpasses losses I';, ; for another mechanical
mode of frequency 2,,2/2m = 215 MHz. This second mechanical mode presents
a similar g, to the driven optical cavity mode. The increase in I, constitutes a
fingerprint of mode competition, while we atribute the vanishing of the mode at
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Figure 5.31: Power-dependence in dynamical backaction amplified
mechanical motion. (a) Optical transmission spectrum of an s = 45 nm and
I' = 0.95 sPhCW, with the optical mode of interest highlighted. Its optical
transmission at powers ranging from 20 pW to 220 uW are given in (b), with
the dashed line crossing with each spectra representing the approximate detun-
ing A ~ k/2. (c) RF spectrum taken at that precise detuning as a function of
laser power, clearly evidencing both optomechanical stiffening and amplifica-
tion. The latter corresponds to a change in linewidth depending linearly on the
input power P;,, whose value is calibrated prior to the cavity. This is shown in
(d), where the fitted slope is used to extract g,.

even higher powers to anomalous cooling in multimode OM systems [430].

Self-pulsing triggered mechanical lasing

Air-slotted PhCWs enhance g, in the Anderson-localization regime when com-
pared to a standard PhCW. Additionally, this system allows us to avoid silicon
absorption-mediated non-linearities. The onset of the self-pulsing limit cycle ob-
served in Subsection 5.2.3 prevents the use of laser power as a knob to increase the
mechanical transduction signal-to-noise ratio and limits the range of powers over
which the backaction of the light field can be studied. Nevertheless, the probed
resonances so far exhibit a dispersive TO shift which necessarily originates from
absorption within the cavity volume. We attribute such effect to linear absorption
by states at the surface of the slot sidewalls. Driving at sufficient power also leads
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to the development of SP limit cycles in sPhCWs and its frequency tunability
with laser wavelength leads to mechanical lasing whenever vgp ~ f,,/M, with M
being an integer (see Subsection 2.4.2). In addition, lasing via dynamical backac-
tion and via SP can be achieved for a single OM resonator depending on the laser
parameters (Ap, P;,) employed.

When the Anderson-localized modes are probed at powers P;, higher than
those for which backaction-based amplification is achieved, the dynamics become
richer due to the onset of material nonlinearities. We give in Figure 5.32 the
RF spectral maps at three different powers P, when driving an optical mode in
a sPhCW of slot size s = 80 nm. The specific values of P, are only given for
reference, since the power prior to the optical resonance was not calibrated and the
fiber loop baseline transmission had considerably degraded. The left panel shows
the spectral features of mechanical transduction (denoted with a T') and dynamical
backaction-base OM oscillation (denoted with an L). The two other spectral maps
evidence much more complex temporal dynamics and a large variety of attained
dynamical states. We analyze in detail the spectral map at higher power (right),
that we divide in different wavelength ranges associated to the leading physical
process,

e Transduction of thermally-active motion, occurs in the first wavelength re-
gion spanning A\;, = 1504.4-1504.6 nm, with a most prominent transduction
for the mechanical mode with f,,, = 163.6 MHz.

e The onset of self pulsing, denoted by SP, occurs at A\, = 1504.6 nm and is
associated to an extremely broadband RF signal similar to the one shown
for the shamrock PhCWs in Fig. 5.17. The broadband modulation of the
intracavity photon number n, effectively pumps the mechanical mode, as
revealed by the associated increase of the amplitude at f,, in the region
spanning \;, = 1504.6-1504.78 nm, but does not lead to self-sustained me-
chanical oscillations.

e Mechanical lasing mediated by the third harmonic of the SP, denoted by
M3, is activated when the underlying SP has periodicity of vsp ~ f,/3.
The SP-induced modulation of n. resonantly drives the mechanical motion
via the radiation pressure force. The SP in this region is then entrained to
oscillate at a third of the frequency of the mechanical oscillator, leading to
mechanical lasing. The characteristic time trace in this narrow wavelength
region is shown in the top panel of Fig. 5.32(b), where we observe the typical
trace of an M3 mechanical lasing state (see Fig. 2.11), with the relevant
periods highlighted with arrows.

e A transition region, denoted by P, takes place between the M3 plateau and
the consecutive M2 plateau. Here, the appeareance of sideband peaks are
characteristic of period doubling, one of the main routes to chaotic dynam-
ics [431], and observed between the different lasing plateaus for other OM
systems at the P2N group [100,113].
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Figure 5.32: Non-linear optomechanical (OM) dynamics with a
disorder-induced localized mode. (a) Radiofrequency (RF) spectral maps
obtained driving an Anderson-localized optical mode in a s = 78 nm sL309 cav-
ity with increasing laser power P;,. The attained dynamical states as a function
of laser wavelength are synthesized with the following acronyms: transduction
(T), dynamical backaction OM oscillation (L), self-pulsing (SP), period dou-
bling (P) and SP-driven OM oscillation with the n-th harmonic (Mn). The
relevant frequencies are also given. (b) Temporal traces corresponding to an
M3 (top) and M2 (middle) mechanical lasing states and to a pure SP state
(bottom) as measured simultaneously to the P;,, = 10 mW RF spectral map in

(a).

e Mechanical lasing mediated by the second harmonic of the SP, denoted by
M2, starts at A\, = 1505 nm and spans a region up to Ay = 1505.25 nm.
The characteristic time trace in this region is shown in the central panel of
Fig. 5.32(b), with the specific initial phase of the SP in coincidence with the
M3 panel, showing how the underlying mechanical signal remains fixed.

e Self-pulsing without any coherent mechanical motion is achieved between
Ar = 1502.25 nm and A\;, = 1502.55 nm, as evidenced by the broadening of
the frequency comb linewidth and by the characteristic evolution of vsp(Ar)
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already reported in Fig. 5.17. The time trace at the bottom of Fig. 5.32(b)
also illustrates how the duty cycle of the limit cycle has considerably in-
creased compared to the other two panels. This has already been reported
for the shamrock PhCWs in Fig. 5.16.

e A second plateau of mechanical lasing mediated by the second harmonic of
the SP, again M2, is suddenly activated above A\;=1505.55 nm. Although
the typical behaviour of the SP leads to a monotonously decreasing vgp
once its maximum value is reached, we have seen in Fig. 5.16 that a sudden
increase of the frequency can occur close to the wavelength where the limit
cycle vanishes. This sudden rise of vsp could explain the occurrence of this
second M2 plateau.

We observe mechanical lasing using the third and second harmonic of the SP and
evidence the underlying physics behind the coherent oscillations by showing both
the associated temporal traces and wavelength regions with pure SP. The spectral
map at P;, = 5 mW exhibits some of these dynamical states, as labeled in white.
In this case, the interpretation is more complicated since vsp does not efficiently
lock to f,,/M and the system is constantly hopping between a self-sustained state
of SP+mechanics and independent SP+mechanics. Fig. 5.33 depicts the same
spectral maps for a localized optical mode in a s = 59 nm sPhCW. In this case,
transduction and self-oscillation via backaction are observed at the lowest of the
three powers, while increasing the drive power activates the SP dynamics. The
first three harmonics of the SP frequency comb are considerably well defined in
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N
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Figure 5.33: Signatures of competing physical mechanisms in op-
tomechanical (OM) oscillation. Radiofrequency (RF) spectral maps ob-
tained driving an Anderson-localized optical mode in an s = 59 nm sL.309 cavity
with increasing laser power P;,. The attained dynamical states as a function
of laser wavelength are synthesized with the same acronyms as in Fig. 5.32 and
the relevant frequencies are given. The white dashed lines in the central panel
are guides-to-the-eye showing the spectral evolution of the self-pulsing (SP)
frequency comb.
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the middle and right panels compared to Fig. 5.32. Interestingly, at P;,, = bmW,
the system starts lasing via dynamical backaction at around A\;, = 1542.32 nm
even though the SP dynamics have been already triggered and despite the fact
that the third harmonic is relatively close to f,,. This is backed by the vanishing
of the SP spectral features in the range A\, = 1542.32 - 1542.39 nm while the
signal at f,, simultaneously becomes much higher. Above A\;, = 1542.39 nm, the
backaction-based mechanical self-oscillation is lost and the SP reappears. The
white dashed lines serve as guides-to-the-eye and mark the spectral position of
the SP, even in the range where the SP is quenched. At even higher powers, P,
= 10 mW, we do not observe lasing via dynamical backaction but we do instead
reach a M4 lasing state via the SP.

This set of qualitative measurements shows the richness of physical phe-
nomena that can be explored within this platform and provides a unique tool
to manipulate the state of an Anderson-localized optical mode by both material
non-linearities and coupling to mechanical degrees of freedom. Additionally, at
higher power drives the recurrent period doubling process preludes the entrance
into a chaotic regime, a possibility currently being explored.

5.4 GHz-Optomechanics with Anderson localized
optical modes

In the previous section we have thouroughly described the experiments carried out
on sPhCWs employing circular holes, where we were able to transduce and actu-
ate extended mechanical motion with frequencies always below 1 GHz. Despite
the presence of unintentional fabrication disorder leading to light localization, the
type of mechanical excitation probed is highly insensitive to disorder. One can
consider even a negligible effect over the resonant frequencies and mode profiles.
In order to study disorder-induced mechanical localization, a guided mechanical
band at much higher frequencies is required. Our hypothesis is that a sPhCW
with shamrock holes enables both light localization in the slow light region of a
slot-guided band while supporting guided mechanical resonances on each side of
the slot (Fig. 5.2(b)).

5.4.1 Optomechanical spectroscopy

Shamrocks sSPCWs were fabricated at DTU Fotonik on the same chips containing
the devices reported in the previous section. Waveguides with various overall
scalings I" and different slot widths s were included in the design file. In this
case, the shamrock sPhCWs are not enclosed by PhC mirrors and waveguides are
terminated with the bare silicon slab.

The optical characterization of waveguides with different slot widths over
the full span of our tunable laser is shown in Fig. 5.34, where a typical SEM
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Figure 5.34: Fiber-taper optical characterization of slotted shamrock
photonic crystal waveguides (sPhCWs). (a) Normal-incidence SEM mi-
crograph of a s = 78 nm shamrock sPhCW, with its band diagram given in
(b). The bands using the in-plane geometry obtained from the mean value of
a set of fitted shamrocks are given with (red) and without (blue) the vertical
profiile shown in Fig. 5.23. (c) Fiber-taper transmission spectra of waveguides
with different slot widths s, clearly evidencing the deterministic tuning of the
overall band region.

micrograph of a waveguide with s = 59 nm is shown. Compared to the shamrocks
shown in Fig. 5.14 (fabricated at ICN2), the shamrocks here are less rounded
despite sharing the same nominal parameters. This makes the fit using a perfect
shamrock more suited for this situation. We extract the mean parameters of the
shamrock holes by using normal-incidence SEM micrographs which results in the
band structure shown in blue in Fig. 5.34(b). We observe again a shift AX of of
over 100 nm between the simulated and measured cutoff clearly indicating that we
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Figure 5.35: Optomechanical (OM) transduction of GHz-motion with
Anderson-localized optical modes in a slotted shamrock photonic
crystal waveguide (sPhCW). The driving of an Anderson-localized mode
at moderate laser power leads to the OM transduction of the thermally active
motion of multiple GHz mechanical modes. (Top) Optical spectrum of a sham-
rock sPhCW with s = 59 nm around the band edge of the slot-guided mode.
The vertical dashed lines mark the optical resonances for which the RF spectra
are shown (bottom). Multiple mechanical resonances are evidenced, with the
dashed grey lines marking the central frequency of all of the transduced modes
in a larger set of RF spectra.



208 Chapter 5. Cavity optomechanics in the Anderson-localization regime

need to account for the vertical profile. Using the same profile shown in Fig. 5.23
results instead in the band structure shown in red. With this vertical profile,
bands originating from TM-like modes (not shown for clarity) are responsible for
features like the broad dip in the s = 45 nm transmission spectrum. Again, the
vertical profile does not suffice to account for the disagreement and an additional
shift of 0A ~ 30 nm would be necessary.

We observe two different families of mechanical modes when the Anderson-
localized mode is driven and the outcoupled laser light is detected with the fast
photoreceiver and analyzed with the ESA. The first, spanning 0 to 1 GHz (max-
imum), corresponds to the in-plane differential modes already described for the
sPhCWs with circular holes, which are not discussed any further in this section. In
addition, a second group of closely packed resonances is observed in the frequency
range spanning 6.5 to 6.75 GHz. This is shown in Fig. 5.35 for the shamrock
sPhCW with s = 59 nm. The optical spectrum of the measured waveguide is
given on top, with the vertical dashed lines marking the optical modes probed to
obtain the transduced spectra shown below. As done for the low-frequency me-
chanical spectra of Fig. 5.27, the peaks in at least one of the spectra are marked
with vertical dashed lines across all panels in order to obtain a good approximation
of the local density of mechanical states. Comparison of the observed mechani-
cal spectrum to the simulated guided mechanical bands did not provide a clear
picture of what region of the guided bands shown in Fig. 5.2(b) we were observ-
ing, neither of the nature/origin of the obseverd mechanical modes, although the
observation of common mechanical modes probing localized optical resonances at
different points in the waveguide suggest that these extend over the full system.
To observe FP mechanical resonances that enable us to reconstruct the mechan-
ical band structure, another chip with waveguides based on the same unit cell
design but with considerably shorter lengths was fabricated at DTU Fotonik.

Fabry-Perot acoustic resonances

To achieve a better level of mechanical confinement as well as improved optical
quality factors () in moderate-length waveguides, air trenches are introduced at
each termination. An example of a shamrock sPhCW of length L = 40a and slot
width s = 48 nm is shown in the SEM micrograph of Fig. 5.36(a). The waveguides
are characterized by using the fiber taper evanescent coupling technique, with the
fiber placed right at the center of the waveguide. The optical spectrum of the
structure shown is depicted in Fig. 5.36(b), along with the band dispersion, which
already takes into account the, once again, irregular etch profile. The presence of
a higher Q)-factor optical mode in between lower () resonances underlines the non-
monotone nature of the band. The highest @) is typically found for the mode closer
to the band edge due to either the higher effective index impedance mismatch or to
its localized nature if £ < L. The focus is set here in understanding the underlying
mechanical guided modes

Driving that optical resonance at a power of P, = 7 mW results in the
transduction of a set of well-defined Lorentzian mechanical resonances as shown
in Fig. 5.36(d) in a frequency range close to that shown previously in Fig. 5.35,
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Figure 5.36: Fabry-Pérot (FP) like mechanical modes in a short
shamrock slotted photonic crystal waveguide (sPhCW). (a) A sham-
rock sSPhCW with slot width s = 48 nm and length L = 40a. Etched trenches
are introduced in the terminations to achieve better optical and mechanical
confinement. (b) Band dispersion and transmission optical spectrum of the
structure shown in (a). (c) Band structure of the guided mechanical bands
with the as-fabricated vertical profile (black) and with vertical sidewalls (blue
for z-even and red for z-odd). The horizontal solid and dashed grey lines pro-
vide the calculated eigenfrequencies in a simulated device of length L = 40a.
(b) RF spectral map of the high-Q optical mode highlighted in (b) when driven
at Pj, = TmW . The white arrow highlights the spectral mismatch between the
calculated bands and the measured mechanical modes.

the minor difference coming from the overall scaling I' of the structure measured
here. We observe the same shift when a long open waveguide is measured on the
new chip, which rules out that the difference originates from a finite size effect.
The waveguided mechanical modes of an L = 40a structure can be simulated with
the available computational resources even when the irregular etch profile is con-
sidered. The simulated structure has no in-plane disorder and modes are therefore
split into y-even and y-odd modes with respect to the mirror plane defined by the
waveguide axis and the thickness. The eigenfrequencies of the supported modes
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are shown with solid and dashed grey lines in Fig. 5.36(c). The same panel shows
the mechanical band structure for the same frequency region (thick black lines).
The loss of the vertical symmetry hybridizes the z-even (blue) and z-odd (red)
bands, as evidenced by the anticrossing. This also mixes the OM darkness or
brightness of the modes. A rather constant free spectral range is observed within
the region spanning 6.7 to 6.98 GHz, where the guided mechanical band has fairly
constant slope. However, the eigenspectrum is more intricate in the region above
6.98 GHz, where the waveguide simultaneously supports three guided modes. An
additional complication is introduced by the free surfaces at the etched termina-
tions, which also support guided modes that can couple to those of the waveguide
under study. In addition, the splitting of modes into y-even and y-odd modes is
probably lost in the measured spectrum due to the presence of the fiber taper
in contact. In summary, the observed mechanical resonances in (d) have a con-
siderably smaller FSR than that shown in (c) for the same frequency region. In
addition, they lie at frequencies where the guided mode is mainly odd with respect
to the mid plane, i.e. any FP-like mechanical mode from that band is expected
to be weakly coupled to the light field. Last, the OM coupling in an extended
structure is expected for modes originating close to the I' point, where neighbor-
ing unit cells add-up constructively in the integral defining g, (Subsection 3.5.2 of
Chapter 3). For these facts, the calculated bands are shifted with respect to the
real underlying bands. We attribute the observed modes to FP-like modes from
the originally z-even band. The shift is schematically represented on Fig. 5.36(c)
with a white arrow, although what really shifts is the underlying band structure.

5.4.2 Dynamical back-action amplification

The backaction of the Anderson-localized cavity light field on the high-frequency
mechanics is observed on some of the longer shamrock sPhCWs. This is shown
in Fig. 5.37 for a waveguide of length L = 400a and slot width s = 48 nm be-
longing to the varying-length series of the device shown in Fig. 5.36. Fig. 5.37(a)
shows the low and high (P, = 2 mW) power optical transmission spectra of the
probed optical mode, which possesses both surprisingly low @-factor and high
TO effect. The RF spectral map as a function of laser wavelength is given below
and evidences the presence of two different type of mechanical modes: the low-
frequency in-plane modes and a single high-frequency GHz mode with frequency
fm = 6.842 GHz. The spectrum at the wavelength marked with the white dashed
line is shown in Fig. 5.37(b). The high-amplitude peak at f,, corresponds to the
mechanical mode undergoing OM self-sustained oscillations. We were not able to
obtain the temporal trace due to the limited bandwith of our oscilloscope, but the
coherence of the high amplitude signal induces the sidebands appearing around
the carrier peak, which are replicas of the low-frequency MHz modes. This is also
evidenced by the zoomed-in RF spectral map shown in Fig. 5.37(c) and the differ-
ent spectra of Fig. 5.37(d), where a progressive linewidth narrowing and stiffening
is observed before reaching the self-sustained oscillations. Again, as in Fig. 5.30,
the oscillation frequency foao then decreases when the detuning is further re-
duced. Note that with the measured @) =~ 9500 and mechanical frequency, the
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Figure 5.37: Dynamical backaction amplification and optomechanical
(OM) oscillation with an Anderson-localized optical mode and a GHz
mechanical mode (a) Optical transmission spectrum and radiofrequency (RF)
spectral map of an Anderson-localized mode driven at P;,, = 2 mW, where
both transduction of low-frequency in-plane mechanical motion and of a high-
frequency mode at f,,, = 6.842 GHz are evidenced. The RF spectrum at position
A -marked with a white dashed line- is given in (b). (c¢) Detailed RF spectral
map around f,,, with the region leading to self-oscillation marked with a white
dashed box. Representative spectra in that region are shown separately in
(d), evidencing both stiffening and amplification of the motional state as the
characteristic dynamical-backaction path towards self-oscillation.

system is still largely sideband unresolved since a- "~ 3 but the highest Q-factor
modes measured on the same waveguides are such that x =~ €),,, which suggests
that the sideband resolved regime with Anderson-localized optical modes is at
experimental reach.

The transduced mechanical spectra in long open waveguides (Fig. 5.35)
might originate from FP-like mechanical resonances or from localized mechan-
ical modes. The spectral information gathered does not allow a clear identi-
fication of their spatial features. However, the observed dynamical backaction
amplification in this system, where a single mechanical mode is visible and an
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Anderson-localized optical mode is employed, are hints for its localized nature.
For a localized optical mode with a small mode volume V,, we expect a rather low
OM coupling if V,,, > V,,, with V,,, the mechanical mode volume, since most of the
mechanical mode volume does not participate in the coupling. Both the measured
go ~ 2m- 62 kHz with a frequency-modulation technique (Subsection 5.3.2) and
the observed rich dynamics point towards a localized interaction. In addition, the
frequency of the mechanical mode probed here matches well the position of the
highest frequency modes observed in Fig. 5.36(d), which would correspond to the
mechanical band edge if the suggested shift in Fig. 5.36(c,d) is real. Nevertheless,
more experimetal data are needed to unambiguosly determine the nature of the
modes.
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Chapter 6

Conclusions and perspectives

We summarise the main results of this thesis and discuss their relevance. We
also suggest possible extensions to this work that could further facilitate the ob-
servation of Anderson-localized mechanical excitations in the GHz range enabled
by optomechanics. Pursuing this fundamental objective and the concepts used
to address it has also led to another major scientific question with important
technological implications, namely, how can we instead attempt to prevent the
subtle but dramatic effects that disorder has on photon-phonon transport and
use their cumulative interaction over increasing lengths? During the last months
of the research reported here, we studied how the field of topological bosonics
could offer an answer to this question. We briefly present the results obtained
since these constitute an example of how the knowledge acquired can be applied
to fast-growing fields like topological photonics or acoustics. The chapter has two
blocks: how can optomechanics be used to understand phonon transport in the
presence of disorder, and, how can we minimize its effects to guarantee lossless
transport.

6.1 How to harness disorder?

In this thesis, we have used both simulations and experiment to design and demon-
strate various optomechanical systems where the localization of photons via dis-
order can be used as a local probe for mechanical spectroscopy, with a special
emphasis on how to observe mechanical Anderson localization at high frequencies.
Studies on the Anderson localization of elastic waves above the MHz range are
scarce compared to the broad variety of systems/frequencies explored in the case
of electromagnetic waves. This is probably due to the current limited range of gen-
eration and detection methods as compared to photons. While the latter are easily
generated, injected into the device under test and detected even far away from it,
the former require much more elaborate experimental schemes. Generating GHz-
phonons and injecting them into the region of interest (a disordered structure in
this case) requires either dedicated material platforms exhibiting piezoelectricity
and the required patterning of resonant nanostructures including interdigitated
transducers (IDTs), or high-power pulsed lasers in coherent phonon pump-probe
spectroscopy, as discussed in Chapter 4. The detection is then typically achieved
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using optical techniques, e.g. reflectometry, interferometry or vibrometry. In the
case of mechanical vibrations in a disordered nanostructure, the expected localized
nature of the supported excitations make this task even more complex. Ideally,
one would like to measure the spatio-spectral properties of the thermally-activated
mechanical motion with an in-situ transducer. In this thesis, we have identified
the critical parameters to achieve such a goal by using simultaneously confined
photons and phonons in disordered optomechanical structures.

The spatial co-localization of photons and phonons is the first condition to
enable their interaction in nanostructured media. In conventional optomechanical
schemes this is granted by design, but nothing ensures it is in the Anderson-
localization regime due to the random and independent nature of the two inter-
ference processes. We have presented (part of Chapter 4) a numerical analysis of
simultaneous Anderson localization of the two wave fields in a particular set of ran-
dom superlattices, a 1D photonic/phononic crystal, with emphasis on their spatial
overlap and their acousto-optic interaction. Our calculations provide quantitative
evidence of the role played by spatial co-localization of mechanical and optical
excitations in GaAs/AlAs superlattices in which the likelyhood of spatial overlap
is greatly enhanced as a consequence of a material property that ensures perfect
co-localization between certain photon-phonon pairs. The coupling of the cavity
light field to the mechanical motion in GaAs/AlAs DBR-based cavity structures
appears to be a natural and appropriate choice to observe Anderson localization
of phonons at frequencies ~ 20 GHz and even to explore Anderson localization
of coupled excitations [25]. While we have focused in the numerical simulation
of such structures, the growth of disordered GaAs/AlAs DBRs using molecular
beam epitaxy (MBE) would in principle allow for a verification of the numerical
findings. GaAs/AlAs nanophononic structures are regularly grown with a wedge
along a particular direction [232,252,432,433] to allow frequency-detuning of the
drive laser with respect to, e.g., a nanophotonic cavity mode. In principle, one
could grow a wafer with continously increasing level of disorder along the radial
direction by randomly choosing the wedge direction and sample rotation between
layers also randomly. Moreover, due to the optomechanical nature of standard
coherent phonon generation/detection experiments in GaAs/AlAs mutilayers, the
conditions for read-out are well understood in terms of the optomechanical cou-
pling g,. The integration of quantum emitters [434] during MBE growth could
enable cavity quantum-electrodynamics experiments in the Anderson-localization
regime coupled to the motion of high frequency nano-mechanical oscillators, as
well as to explore the role of phonon-mediated dephasing in random lasers [402].
Finally, the discussed structures can be scaled down to study Anderson localiza-
tion of sub-THz vibrations with extended light modes or etched into micropillars
to study 3D-confined coupled excitations [282].

We have then transitioned to 3D dielectric nanostructures in the form of
photonic crystal waveguides (PhCWs) in a planar silicon slab. Substantial spectral
evidence of Anderson localization of light with quality factors up to @ ~ 10° has
been gathered via optical spectroscopy using a fiber taper evanescent-coupling
technique in both standard and slotted PhCWs (sPhCWs). The inclusion of
the subwavelength air-slot has allowed the observation of the thermal motion
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Figure 6.1: Single-mode mechanical guided resonance. The mechanical
band structure can be tuned by changing the relative orientation of the waveg-
uide axis with respect to the crystalline axis. (a) Schematic of the mechanical
waveguide explored and its orientation at an angle o with respect to the [1 0
0] silicon axis. The case experimentally shown corresponds to a = 45°, i.e. the
waveguide along the [1 1 0] direction. (b) Phononic band diagram as a function
of the angle a. The shaded regions in panels o« = 25° and 20° mark the regions
where the z-symmetric band (blue) is single mode close to the I' point.

associated to MHz in-plane differential modes and GHz guided modes of long
(L up to 200 um) suspended structures. Optomechanical coupling to Anderson
optical modes with rates g, as high as 27 300 kHz has been measured for slots of
width s = 40 nm. The achieved g, and the high optical ) of the localized optical
modes lead to amplification of the motional amplitude of particular mechanical
modes at moderate (sub-mW for MHz modes to several mW for GHz modes) drive
powers. Self-sustained oscillations using dynamical backaction with the driven
Anderson-localized cavity field are reported at both frequency ends. While the
extended in-plane modes are immune to fabrication disorder, the high-frequency
modes are expected to be. The inference of the spatial extension of the observed
GHz mechanical modes via their spectral properties remains nonetheless elusive
due to the complicated dispersion of the optomechanically bright band and its
coupling to isofrequency bands due to the deviation from vertical side-wall during
dry-etching. However, the proposed design can be minimally altered to produce
a band structure that could elucidate this question. While the optical properties
are, in principle, not affected by rotating the waveguide axis with respect to the
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silicon crystalline axis, the mechanical properties are. The mechanical bands of a
shamrock sPhCW evolve continuously with the angle a between the axis and the
[100] direction (Fig. 6.1). The experimentally probed waveguides, corresponding
to a = 45° or a [110]-oriented axis, have no z-symmetric single-mode bandwith
around the I' point, but this is achieved for a specific range of angles around
20-25°.  With such design, the fluctuations of the group velocity as extracted
from Fabry-Pérot mechanical resonances would be an invaluable fingerprint of
Anderson-localization as is the case for the optical modes. While the regime of
disorder-induced localization is considerably exploited in PhCWs, with evidence of
strong-coupling cavity quantum electrodynamics [366] and low-threshold random
lasing [402] in GaAs, little work exists on phononic crystal waveguides [435,436]
operating at GHz frequencies and on the effect of fabrication disorder on the
propagation of slow sound. The work presented here constitutes an important
step towards achievieng such regime.

These results and the simple design improvement make shamrock sPhCWs
an excellent platform for two-dimensional optomechanical experiments in the
Anderson-localization regime, and not just limited to it. Although most milestone
experiments in the field of cavity optomechanics use one-dimensional nanobeam
optomechanical crystal (OMC) cavities, often surrounded by two-dimensional
phononic shields, the initial efforts on two-dimensional OMC cavities [63,167,411]
are recently regaining momentum. The higher dimensionality of the platform en-
ables efficient thermalization as compared to nanobeam OMCs which have limited
thermal conductance [169], thus cirumventing a main roadblock for the quan-
tum manipulation of such devices at millikelvin temperatures. Engineered OMC
cavities in dual photonic and phononic band gap structures relying on a simple
geometry, e.g. the shamrock, promise to be an important building block for quan-
tum information processing and quantum sensing with optomechanical degrees of
freedom. The inclusion of the air slot in the shamrock waveguides could also al-
low a strong ultracold atom-photon-phonon (tripartite) interaction [437], enabling
optomechanics at the quantum level.

6.2 How to fight disorder?

The role of both intentional and unintentional disorder in periodic-on-average op-
tical and acoustic nanostructures hosting propagating modes depends on a myriad
of aspects such as the dimensionality of the structure, the periodic pattern, the
type and level of disorder, the field profile of the supported modes, etc. Ultimately,
the effect of all of these parameters on the transport properties of low-dimensional
nanostructures is quantified via the localization length £. As extensively discussed
in this thesis, £ is a key figure of merit in determining the characteristic length-
scale of Anderson-localized modes. This has led us to consider OMC waveguides,
where the optical localization length has been shown to be of only several unit
cells, as the most adequate platform to study phonon localization enabled by op-
tomechanics. However, the opposite objective, minimizing the effect of disorder
by maximizing £ is equally relevant as a means to quantify the robustness of
nanoscale transport. We have shown how ¢ generally depends on the operating
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frequency and related the dependence to the dispersive density of states of the
unperturbed system. In the case of light, the group index ngy, the slowdown factor
of the group velocity of the propagating mode with respect to the speed of light
in vacuum, and ¢ are intimately linked via the density of optical states (DOS),
i.e. alarger ny leads to a smaller £. A general conclusion that we extract from the
work carried out in this thesis is that these two figures of merit, { and ng4, have to
be taken into account when quantifying the robustness of (slow-light) transport
against fabrication imperfection. Therefore, these figures of merit are critical to
claim on the improved performance of a waveguide design over another, a key
issue for technological applications requiring slow light.

In the last years, topology, the mathematical branch of conserved properties
under continuous deformations, has emerged as a new fundamental degree of free-
dom to predict and control the propagation of light [438] or sound [439]. In this
thesis, we have numerically and experimentally demonstrated a high frequency
(200 GHz) acoustic interface state between two concatenated superlattices and
discussed its emergence in terms of the differing topological phases of the bulk
superlattices. The bridge between the topological invariants, the Zak phases,
and the resulting interface state is provided by the reflection phases in a spacer-
less Fabry-Pérot cavity and linked to the symmetry properties of the band edge
modes. The use of coherent phonon spectroscopy with selection rules sensitive to
these particular symmetries has allowed the clear assignment of the experimen-
tally observed acoustic mode to a topological interface state. The reasoning used
to proof the existence of the interface state constitutes a form of the bulk-edge
correspondence [440], the fundamental principle called to justify the emergence of
the edge states in topological photonics and/or acoustics. Inspired by the dissi-
pationless transport of interfacial electrons in topological insulators, this suggests
the possibility of back-scatter immune propagation of photons with the potential
of achieving slow light that is insensitive to disorder, or, in other words, to prevent
Anderson localization. However, several implementations of photonic topological
edge states have been proposed and the level of protection may vary consider-
ably. The most robust implementations use time-reversal symmetry broken edge
states [441], for which the time-reversed state at -k does not exist, preventing
direct elastic backscattering of the propagating mode. However, it requires strong
magnetic effects which at visible and near-infrared wavelengths are very weak and
challenging to implement [146]. In time-invariant topological insulators based
on the quantum-spin Hall effect [442] and the valley-Hall effect [443], topology
emanates from the breaking of particular spatial symmetries. In such implemen-
tations, the counterpropagating state at -k is granted by reciprocity, but carries
the opposite value of a binary degree of freedom, i.e., a pseudo-spin [442]. In this
case, the key open question we tackle here is whether backscattering is reduced for
such implementation. Does the existing structural disorder preserve the pseudo-
spin value, or not? Recent ground breaking experiments have reported robustness
to structural back-reflection when precisely-shaped local defects were introduced
in different topological waveguides [444-449]. However, this claimed robustness
still needs to be systematically quantified against fabrication imperfection, the
real limitation in slow-light transport. It is also crucial to compare these values to
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Figure 6.2: Slow light in a valley-Hall topological waveguide. (a)
llustration of a valley-Hall topological waveguide formed at the interface of two
valley crystals with different topological invariants as proposed in Ref. [443].
(b) Distribution of the dielectric function in the structure: black corresponds
to silicon and gray to air. Each valley crystal is formed as a triangular periodic
lattice with a unit cell composed by two pillars with different diameters to
break the spatial inversion symmetry. (c) Dispersion relation, v = v(k), and (d)
calculated group index of the interface topological edge state. The projection
of the K point in the waveguide unit cell is marked with a vertical dashed line.
The unit cell of each crystal is detailed in the inset. For reference, we design
a conventional photonic waveguide obtained by leaving a row of pillars from a
triangular lattice (f) with a dispertion relation and a group index plotted in
(g) and (h), respectively. The black point in the group index curves denotes
the frequency at which each waveguide has a group index of ng, ~ 300. The
electromagnetic field intensities calculated at these frequencies and for perfect
(non-disordered) waveguides are plotted in (e) and (i).

existing conventional designs to determine if this approach is valid or not. Despite
the substantial work on £ in conventional waveguides we have referred to along
this thesis, this parameter has only been explored recently in topological waveg-
uides [450] although ignoring the precise value of n,. Besides this, only intrinsic
out-of plane losses of topological guided modes in non-disordered photonic crystal
slabs have been analyzed [451].

We compare a standard W1 waveguide in a two-dimensional photonic crystal
made of silicon pillars in air with a Valley-Hall (VH) waveguide created at the
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interface between two VH photonic crystals [452] using the same materials. The
latter is made by interfacing the photonic crystal shown in the inset to Fig. 6.2(d)
with its mirrored version across the plane defined by the horizontal lattice vector.
The two-dimensional layout of the two waveguides is plotted in Figs. 6.2(b) and
(f). Both waveguides support a guided mode along the interface, as shown in
Figs. 6.2(c,d,g,h). While the former originates from a standard line defect, the
latter can be understood in terms of the topological properties of the bounding
crystals. When the two silicon pillars in the unit cell are equal, i.e. d; = do,
the system preserves the Cg, symmetry of the lattice and supports a symmetry-
protected gapless band structure between the first and second lowest energy bands
for TM light. When spatial inversion symmetry is broken, a bandgap between
these two bands opens at the K point in the Brillouin Zone and the band structure
acquires a local non-trivial topology [447]. Due to the bulk-edge correspondance,
interfacing two topology unequal crystals, as is the case with a crystal and its
mirrored version, leads to an interface edge state [440]. The group index of the
topological and the conventional edge modes respectively diverge at the X and
I" points, evidencing how both support extreme slow-light (Figs. 6.2(d) and (h)).
The ideal spatial field-intensity distributions in both waveguides, i.e., in absence
of any perturbation, and at frequencies corresponding to n, = 300 in both cases
are plotted in Figs. 6.2(e) and (i) for reference, evidencing a similar level of light
confinement.

We randomize the full phase by introducing positional disorder in the pil-
lars, thus mimicking the effect of imperfection in real systems. The backscatter-
ing mean free path £ of the waveguides is then numerically obtained as done in
Chapter 5. For disorder levels of o = 0.001a (Fig. 6.3(a)) the topological waveg-
uide (solid-red circles) is more robust than the conventional slow-light waveguides
(open-black circles). Does this difference stem from topological protection? We
know now that small geometrical perturbations in the pillars of the waveguides
result in small energy shifts +/Av of the dispersion relation of a guided mode [266],
shifting the guided-mode cutoff frequency v. These frequency fluctuations result
in a collection of barriers at random positions along the waveguide, responsible
for breaking down ballistic propagation. To quantify how large are these barriers
at a fixed o we calculate v of the guided mode by solving the bands for a dis-
ordered supercell of length N, = 11la. Fig. 6.3(b) and (c) plot the distributions
of these deviations, Av, for 10* different configurations normalized by the unper-
turbed cut-off 1. This figure shows unambiguously that for the same amount of
positional disorder the impact, in terms of the standard deviation of the distribu-
tion o, is stronger for the topological edge state than for the conventional guided
mode. We evaluate the linear dependence of o, on positional disorder strength for
a wide range of values in both waveguides, where the proportionality constant ¢
quantifies the effective impact of disorder. As plotted in Fig. 6.3(d), the topolog-
ical waveguide suffers a larger effective impact of disorder than the conventional
one. This underlines even more the potential of the topological protection ob-
served here at very large values of ny and for a considerable slow-light operational
bandwith. Even if the dependence of £ on ¢ is markedly different on both waveg-
uides and topological protection is lost above a critical disorder strength o, [453],
these results constitute a first evidence of the role of topology in state-of-the-art
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Figure 6.3: Backscattering length versus group index in topologi-
cal waveguides. (a) Backscattering length calculated for different frequencies
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positions of the pillars have been randomized around their ideal values with
a standard deviation of ¢ = 0.00la. The shaded area indicates the crossover
between ballistic transport and strong backscattering for a waveguide of length
L = 100a. The error bars are a conservative estimate of the fitting error to the
exponential decay used to extract £&. The red and black lines are guides to the
eye. (b,c) Distributions of the cutoff frequency calculated in a topological and
a conventional waveguide of 11 cells in the z-direction for 10* different config-
urations of positional disorder with ¢ = 0.001a. The calculated frequency is
normalized to the frequency of the unperturbed structures vy. (d) Standard
deviation of the distribution of the frequency shifts £/Av as calculated in (b)
and (c) vs. the strength of the perturbation. From the relation o, = ¢o, we
quantify the effective impact of disorder in the waveguides with the parameter

o.

extreme slow-light.

In conclusion, we show how to quantify the robustness of a topological edge
states against white noise depending on its structural parameters. Calculating the
backscattering length linked to the group index enables us to do that. We conclude
that current proposals of topological photonic phases relying on the breaking of
different parity symmetries may quantitatively be more robust than standard
conventional waveguides with small disorder levels. Although this analysis is
carried out on a particular design and for a particular system of silicon pillars
surrounded by air, the approach is completely generic and can be implemented for
any other single-mode waveguide with arbitrary design. Future work to evaluate
topological invariants [454] of different topological implementations will provide
additional insight on the relationship between the backscattering length evolution
with disorder level and the topological invariants of perturbed phases. The large
values of the group index calculated here, ny, >~ 1000, affected by a relatively weak
backscattering, show the potential of topological edge states for highly efficient
strong light-matter interaction [455] where photon transmission over hundreds of
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microns is relatively backscattering-free. These propagating edge states promise
to extend the effective length of optomechanical circuits and boost the Brillouin
gain, opening the door to a range of applications in silicon photonic circuits.
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Appendix A

Guided-Mode-Expansion

Photonic crystal slabs are slabs with an embedded periodicity in the in-plane di-
rections. In the same way as we use plane waves in Plane Wave Expansion (PWE)
as a reasonable basis to develop the solution to Maxwell’s equations in systems
exhibiting periodicity in some direction(s) of space and translational invariance
in the rest, it appears as natural to use homogeneous dielectric slab waveguide
modes of an effective slab as a basis in which to project Maxwell’s equations in
photonic crystal slabs (PCSs). Since the index profile in the z direction in such
structures has the shape of a square function, the use of PWE as a numerical tool
to obtain dispersion diagrams becomes numerically inefficient since large number
of wave-vectors in reciprocal space are required to reproduce the desired profile.
The Guided Mode Expansion (GME) has the advantage of requiring very few ef-
fective dielectric slab modes since those reproduce well the field-structure of the
real solution. The basis of guided modes of an effective homogeneous dielectric
slab is not a complete basis and GME is therefore an approximate method by
definition. Nevertheless, this method has proven computationally reliable and
efficient [159], specially to compute the dispersion diagram of the lower energy
bands and the intrinsic losses of quasi-guided modes [159,339,456,457]. The aim
of this Appendix is to describe the formalism to calculate band diagrams for such
structures and a way to estimate the optical losses due to coupling with radiative
modes by using a first order perturbation theory approach, equivalent to a Fermi
Golden’s rule in quantum mechanics. The formalism is based on [159,458].

A.0.1 Photonic dispersion band diagram

All macroscopic electromagnetism phenomena are governed by the four Maxwell’s
equations in matter, and propagation in complex structures is not an exception.
Under often verified assumptions such as linear dependence of the material’s polar-
ization and homogeneous constant magnetic permeability p = 1, the second-order
equation for the magnetic field H with harmonic time dependence writes

v x [Ilr)v < H] = %ZH (A1)
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with the additional condition that the magnetic field needs to be divergence-free;
i,e. V-H = 0. In order to solve this equation, we can expand the magnetic field
in an orthonormal set of basis states

Z c,H,((r)) with orthogonality condition (A.2a)
o

[ H) ()i = 6, (A20)

Inserting A.2a into A.1 and using condition A.2b bears

2
w
Z H,c, = 70,, (A.3)
with matrix element

1 *
H,, = / (VX H) - (V )i (A1)
Obtaining the electric field is direct once the magnetic field is known, by applying

i

E(r) = V xH A5
(1) = S5V X H (A5)

To solve this problem numerically requires the choice of a given basis and
a way to make this linear eigenvalue problem of finite-dimension. For the type of
geometries we are concerned with, the chosen basis for this method are the guided
modes of an effective homogeneous slab surrounded by two semi-infinite effective
layers. We define the effective dielectric constants 1,29, 23 of the three layers as
their average dielectric constant over their respective 2D-unit cells (u.c.),

g = ! / gi(x)dx (A.6)
AU.C. u.c.

with x = (z,y) the coordinate in the x,y-plane. The choice is not unique and
by no means globally optimal, but it turns out to be computationally convenient
for most of the cases this work was concerned with. In any case, we must have
€,,E1, €3 to define guided modes in this dielectric structure. Here, we restrict our
basis to actual guided modes of the effective slab because the relevant photonic
modes of the structures lie below the light cone do not couple to the radiative
field. The formalism has been extended to include the leaky modes of the dielec-
trib slab [459].

Let us now properly define the basis of guided modes of the effective slab.
The spatial profile of the magnetic field H of such modes writes

18X

d

Hy(x 2) =S B+ lglo)en ), =<5 (A7
‘eig-x ~ A\ G0z ~ A\ —igoz d

ZM<A2(—ng+\g!z)qu + Ba(@:8 + [glz)e™ ™), |z < 5 (A.TD)

A (458 + ilg|2)e™ 72 > _d (A.7c)

\/Z 3(q38 1\8|z)e s z = B .(C
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for transverse electric (TE) polarization and

eisx R (et d) d
H,(x,z2) = \/Eenge 2/, z < —3 (A.8a)
e’ > iq2z —iq2z d
\/Zeg(C’ge + Doe "% |z| < 5 (A.8b)
'8 d d
——&,C3e" B2 > —— A8
= €4C5¢ , zZ 5 (A.8c)

for transverse magnetic (TM) polarization. Here g denotes the in-plane wave-
vector, & the unit vector in the same direction and €; = Z x § perpendicular to
both z and g, while

w
¢ =1/lgl* — glg (A.9a)
_ w?
G2 = Elg - ]g|2 (A-9b)
o2
g3 =1\/|gl* — @g (A.9c)

are the out-of-plane component of the wave-vectors in the corresponding layers
where the fact that c|g|/ns < w < c¢|g|/maz(nq,n3) for core-guided modes has
been taken into account. The normalization parameter A is not relevant here.
Applying Maxwell’s boundary conditions on the two interfaces and the normal-
ization condition determines all the coefficients and imposes the following implicit
dispersion relation on the allowed modes

q2(q1 + g3)cos(qad) + (q1q3 — qg)sin(cpd) =0, for TE modes  (A.10a)

2—2(? + g—g)cos(qu) + (fjlﬁ — (51—2)2)sin(q2d) =0, for TM modes (A.10b)
€y €1 €3 €3€3 €2

The solutions to A.10 are organized in bands, such that for a fixed value of
g we have a discrete set of solutions with w real. Here, we label the guided-modes
with a single parameter u, where this one has the information on the wave-vector
g and the band-index « such that u = (g, @).

The solutions to A.1 in a photonic crystal slab obey Bloch’s theorem and it
is easy to then verify that the wave-vectors g of interest for the basis described
above can be redefined as g = kgjoen + G where kgjoen is the Bloch wavevector
of the solution in the first Brillouin zone and G is a reciprocal lattice vector. For
simplicity we will note now kgjoen = k. Thus, the solution we seek can be written
as:

Hk = Z Ck+G,aHk+G,a(r> (All)

G,
where Hy g o will include both TE and TM modes.

The basis being defined, we can now compute the matrix elements of Equa-
tion A.4 where we set u = (k + G,a) and v = (k + G, o). Four different types
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of combinations (TE-TE,TE-TM,TM-TE,TM-TM) yield the following different
matrix elements
U8 (S22 (Enve - &y {E) (G, GBI Br Ty
+ (23)"03(G, G) Ag Az I3 + (22) 12(G, G)[(A3, Az, (A122)
+ B3, Bay) o + (A3, Bay + By, As,) 1]}
HETM (2@ - (k+ Q)2 (G, G) B}, Divar
+E3m3(G, G') A3, Cs,,.q3,, I3 + 18202 (G, G') g2, [(— A5, Ca, (A.12b)
+ B3, Day) o + (A5, Doy — B; ,Co ) o 1]}
HMTP (S22 ((k+ G) - ) {~21m(G. G)D; By il
+Em3(G, G')C3 Az g3 13 — i82m2(G, G ), u[(—Coyp % Agy
+ D5, Bay) o + (D5, Asy — C5 ,Bay) Iz 1]}

o

(A.12¢)
HZ;LM_TM :nl(G7 G/)DLH * DI,M(QI,;LQI,ym ° k/‘f‘E, + |k + GHk + G/|)Il
—|— 773(G7 G/)C&H S 037M(Q31HQ37V1;\(} . m/ + |k + G”k + G/U]g

+12(G, G)[(Cop # Cop + Doy x Doy ) (@2 ek + G-k + G
+ |k + GHk + G/|)12,— + (OQ,;L * D2,lx + D2,p, * C2,V)(_q2,uq2,u

K+ G -k+G + k+G|k+G|) ]

(A.12d)
where I; correspond to the following definite integrals
_d 1
L= / R O (C O P S— (A.13a)
—0o0 q1,u + q1,v
d
2 sin +q,,)4
Iy, = /2 a2tz , — 9 (g2 & 420)3) (A.13b)
,% (Q2,u + q2,l/)
Iy = / e*(Qg,ﬁéIs,u)(Z*%)dz = —1 (A.13c)
a Q3.+ 3,0
and 7;(G, G’) is the inverse dielectric matrix element
n;(G,G’) = / g(x) LGS xqx (A.14)

where here £(x) are the real index x,y-profiles in the photonic crystal of each one
of the three layers. First, one computes the ¢,;(G, G') matrix and then inverts it
numerically. This operation is more adapted to truncation rules for Fourier series
in the presence of discontinuous functions [460]. Note that the Fourier transform
of any arbitrary closed polygon has an analytic Fourier transform [461], which
allows fast computation of ¢;(G,G’) .

Finally, we need to render the problem finite-dimensional. This is achieved
by defining a a4, and a G,,q., the former being the maximum number of TE and
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TM bands considered and the latter a bound for the norm of the reciprocal space
wavevectors used. Doing so, the expansion A.11 becomes finite and the linear
eigenvalue problem A.3 numerically solvable. Additional physical constraints in
the problem can be used to find suitable numerical schemes for the eigenvalue
algorithms. An example is the fact that for PhC slabs that are invariant under
reflection through the mirror plane bisecting the slab, the problem can be decou-
pled in finding so-called quasi-TE and quasi- TM modes, which are even and odd
modes with respect to that symmetry plane. The standard structures used in this
work based on patterned free-standing silicon based on under-etched silicon-on-
insulator (SOI) samples are well represented by this situation and the decoupling
can be used.

A.0.2 Intrinsic diffraction losses

Photonic modes in the PhC slab that lie above the cladding light line(s) are
coupled to the radiative field due to diffraction induced by the in-plane dielec-
tric modulation, and become quasi-guided. As a consequence, eigenmodes and
eigenvalues obtained in Subsection A.0.1 and lying above such lines require some
additional calculation in order to assess their level of coupling to leaky modes.

Such out-of-plane intrinsic losses can be captured with an imaginary part
of the eigenfrequency Im(w). In the GME’s framework, this imaginary part is
computed using time-dependent perturbation theory, and given by

() =7> " Y D WPk + G (55)) (A.15)

G’ (=TE,TM j=13
with coupling matrix element

1 * ra
Wiras = [ (VX Hy0) - (V% Bl j(0)de (A0
and p;(k + G',(2:)?) the 1D density of optical states (DOS) at a given in-plane
wavevector of the effective slab and outgoing in the medium corresponding to j.
These can be written as

it (2) = [ oy - B B (A7)
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To compute A.15, the field profile of the radiation modes of the effective
dielectric slab are required. These can be written as

ig-X . .
Hy0 ) =i (Wi + [g2)e 8 + Xa(ag + fgla)e D), 2 < -
(A.18a)
e’®x ¢ . o\ ites . AN —igez
i+ lgf2)e™ + Xl + gl o] <
(A.18b)
g X ] )
i e + g™ H & Xl + fgla)e V), 2 < -
(A.18c)
for TE polarization and
eigx . d . d d
ngad(X, 2) = \/Zég[yle%ql(frg) + X1671q1(z+§)]’ 2 < -3 (A.19a)
8% . - d
\/Zég[Yge“m + Xoe "7 |z| < B (A.19Db)
O e Waent—d 4 zpemm-D] <% (A190)
Vi LR

for TM polarization. Here all ¢;’s are defined as ¢; = 4/ Ejf—j — |g|?, where now
q1, q3 can take up real or imaginary values depending on what region of the radi-
ation space (defined by w > c|g|/max(ni, n3) we are in. For most of the cases we
dealt with, €, = €3 and therefore all radiation modes exhibit real ¢; and g¢s.

With such radiation fields and after using the expansion in A.11, the matrix
element A.16 between a guided mode of the PhC slab and a radiation mode
becomes

Wk,rad = Z cl*(+G7anuided,rad (AQO)
G,a
with )
Wguided,rad = /%(V X Hik{_,'_G’a(I‘)) : (V X Hf(a_;_iG/i’j)dI‘ (AQl)

For these matrix elements A.21 we set guided = u = (k + G, «) and rad
—r = (k+ G',w,j). Four different types of combinations (TE-TE, TE-TM,TM-
TE, TM-TM) yield the following different matrix elements

d
2

N |

| &

2
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Wy oWy /.

2 - e H(E)(GL G B (W Ty + XL, rT1,)
+ (83)°n3(G, G") A5, (Wi, Is — + X5,05.4) + (52)°n2(G, G) (A5, Wa,r
+ B3, Xop) o + (A3, Xop + B3 Wa, ) o ]}

TE-TE __
Wguided,rad _(

(A.22a)
_ Wio — .
Wgz:liEéleccizjﬁ\gd :7’<?#)2(€k+G : (k +G )){51771<G7 G/)Bl,NQLT(Zl,r[l,f - le,r[1,+>
+E3m3(G, G A3 a3 (Z3, I3+ — Ya, 03 ) + Eam(G, G ), [(— A5, Yo,
+ B3 Zop) o + (A5, Zar — B3 Yo r) o]}
(A.22b)
w —
(k+G) - era{—2m(G,G)D] g1, (Wi, — X111 -)

c
+2m3(G, G’)C’;’Mq&u(W&TI&, — Xz l34) —iam2(G, G/)QZH[(—CM * W,
+ D3, Xoy) o, + (D3 Wa, — €3, X0 ) 2 4]}

TM-TE __
Wguided,rad -

(A.22¢)
WIM-TM (G, G) D5 (i K + G -k + G+ [k + Gl |k + G'|)Yi, Lo 4
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The expression of this coefficients given, the formulation to obtain dispersion
relations and diffraction losses of quasi-guided modes is easily implemented in
any programming language using the truncation already explained in the end of
Subsection A.0.1 and an additional bound to |G’| in A.15.
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Appendix B

Sample fabrication

This Appendix describes the different steps of the nanofabrication process em-
ployed for samples fabricated at ICN2 and at DTU Fotonik.

B.1 Fabrication at ICN2-CNM

Although most of the reported measurements in this thesis were carried out in
samples fabricated elsewhere, an important part of this PhD has been devoted
to acquiring skills and hands-on practice in nanofabrication. Samples fabricated
during the thesis will hopefully produce publishable results soon. This section
gives the basic fabrication flow followed using equipment at both ICN2 and CNM.

SOI stack and sample preparation

The structures are fabricated using a silicon-on-insulator (SOI) SOITEC wafer.
The top silicon layer has a thickness of 250 nm (resistivity p ~ 1 — 1082 - em, p-
doping of ~ 10®em™2), the buried oxide layer a thickness of 3 um and the silicon
substrate a thickness of 675 pm. The usually 15x15 mm chips are cleaned via a 5
min Oy-plasma exposure (PVA Tepla). The power is set to 400 W and the chamber
pressure is kept at ~ 200 mTorr using an oxygen flow of 50 sccm. With the
chip directly placed under the vacuum chuck of the spinner, the chemically semi-
amplified positive resist AR-P 6200.09 (CSAR-62) is spin-coated on the sample
using a first step at 500 rpm for 5 secs and a second step at 4000 rpm during 60
sec. The acceleration in between steps is set to 8000 rpm/s. The chip is finally
soft baked on a hot plate at 145°C for 1 min, which typically results in a 200 nm
thick film of CSAR as measured with a profilometer.

Electron beam lithography and development

Electron-beam lithography is either done at ICN2 using an EBL-converted SEM
(Inspect F50) from Raith or on a dedicated electron-beam lithography system
(Raith150-TWO) at CNM. The masks to expose are generated as GDS-files by
using the Java-scripted NIST Nanolithography Toolbox [462] or directly on text
.ASC files using the language supported by the Raith Elphy Quantum Software
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suite generated via Matlab scripts. For the standard optomechanical structures
with pitches ~ 500 nm, the acceleration voltage is set to 30 kV in both sys-
tems, while the currents are set around 160 pA (CNM) and 20 pA (ICN2). The
large difference in current stems from the lower speed electronics of the beam
blanker used by the ICN2 equipment. The chosen writefields are respectively cal-
ibrated and aligned using a chessboard reference sample (ICN2) or a reference
mark (CNM). The exposure base-dose is set to 70 £C/cm? and various exposures
using dose-factors between 0.9 and 1.1 are typically done.

After e-beam exposure, the development of the CSAR resist is done by a 1
min inmersion and rinsing in AR-600-546, the dedicated developer by AllResist
for CSAR-62. This is followed by inmersion and rinsing in isopropanol (IPA) to
stop the developing process and clean the residues. Finally, the chip is gently
dried with a Ny gun and baked at 135°C in a hot plate to enhance the plasma
etching resistance.

Reactive ion etching and resist strip

The pattern is transferred to silicon using a Bosch process in an ICP-DRIE (Al-
catel AMS-110DE) system. The source power is set to 500 W and the pulsed
flows of SFg and C4Fy gases set to 150 scem for 1.5 secs and 100 scem for 2 secs,
respectively. The cycle repeats up to a total process time which depends on the
size of the feature to transfer but is typically around 1 min 15 sec for a membrane
thickness of 250 nm. The etch rates are respectively ~200 nm/min for silicon
and 45 nm/min for the CSAR resist. After pattern transfer, the remaining resist
is ashed by using the same O, plasma step used for the chip surface cleaning.
On the last samples fabricated, the plasma ashing was replaced by inmersion in
remover AR-600-71, the dedicated remover by AllResist for CSAR-62. This last
step improves the matching of the fabricated and nominal parameters since it
avoids increased oxidation of the hole sidewalls during the plasma and subsequent
etching during the release.

Membrane release

The top silicon layer is realeased by isotropic wet-etching of the buried oxide using
a hydrofluoric acid (50%). The etch rate is ~ 20 nm/s and the chip is inmersed in
the solution for 2 min and 30 sec, leading to full etching of the oxide in the vertical
direction and to 3 pm underetched regions around the exposed patterns. The chip
is then sequentially transferred (always under inmersion) to water and IPA and
then undergoes a critical point drying process (Tousimis Automegasamdri-915B
Series C) for 1 hour to avoid stiction and/or collapse of the structures during the
drying process.

B.2 Fabrication at DTU Fotonik

A considerable part of the samples shown in Chapter 5 of this thesis were fabri-
cated at DTU Fotonik by PhD student Marcus Albrechtsen. This section gives
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credit to his work.

SOl stack and sample preparation

The structures are fabricated using a silicon-on-insulator (SOI) SOITEC wafer.
The top silicon layer has a thickness of 240 nm (resistivity p ~ 13.5-22.5 Q-cm, p-
doping of ~ 10%em™2), the buried oxide layer a thickness of 3 ym and the silicon
substrate a thickness of 675 pm. The 25x25 mm chips are cleaned sequentially in
acetone (1 min), IPA, deionized water (1 min), IPA, and blow-dried with an N,
gun. The chip is then placed for 10 min on a hotplate at 200°C for dehydration.
The sample is then attached to the center of a 4”7 Si-carrier wafer with a carrier-
bonding substante. The 4”7 carrier with the sample is spin-coated in a fully-
automatic robot. Exactly 6 mL of CSAR-62 are deposited on the sample surface
and then followed by a first acceleraction step of 10000 rpm/s and then kept at
6000 rpm during 1 min. The sample is then soft baked on a hot plate at 2000C for
185 sec, which typically results in a 180 nm thick film of CSAR. Prior to e-beam
exposure, a 20 nm Al layer is thermally-evaporated on top of the resist. This is
done at arate of 1 A /s, with the sample upside down in a chamber pumped down
to a pressure p < 1.3 - 1075 mbar.

Electron beam lithography and development

The superior quality of the e-beam lithtography step at DTU is both due to the
electron beam itself and to the pre-processing of the exposed pattern. The GDS-
file is first loaded into the pre-processor GenlSys BEAMER v5.3.6 [463], which
removes polygon overlaps and merges adjacent polygons. The mask is therefore
flattened. The resulting geometry is then proximity effect corrected (PEC) [464]
for long-range effects using a Gaussian approximation with § = 30 ym and n =
0.5, which equalizes the real dose received by the different features of the mask,
e.g. it boosts the dose in the corners. The GDS file is then converted into the v30
format supported by the used electron beam equipment (JEOL JBX-9500FSZ)
using conventional fracturing and an exposure grid of 1 nm. The file is then
loaded into the e-beam software and exposed with an acceleration voltage of 100
keV and a current of 0.2 nA. The exposure base-dose is set at 235 u C/cm?,
but the structure is PEC-corrected and therefore every polygon recieves a slightly
different dose.

The development step is comprised of two steps. First, the 20 nm aluminum
layer is removed by inmersion in 2.38% TMAH for 60 secs and then cleaned with
DIW for 60 sec and spun-dried. The etch rate of the 2.8% TMAH is 0.5 nm/s
for the aluminium layer and 0.05 nm/s for the CSAR layer; thus all aluminium
is gone after 40-50 secs and the first nm of CSAR is etched away to ensure no Al
remains. Then the CSAR is developed in AR-600-546 for 60 sec and cleaned in
IPA for 20 sec. Finally, it is spun-dried under N, flow.
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Reactive ion etching and resist strip

ICP reactive ion-etching of the silicon thin layer is done on a SPTS Pegasus ICP
reactor using a cryogenic continuous process. Two gases, C4Fg at 75 scem and
SFg at 38 sccm are used. The chamber pressure is kept at 4 mTorr, with a 3 secs
initial strike at 15 mTorr to ensure instantaneous ignition of the plasma. The ICP
coil power is set at 800 W, while the chuck power is fixed at 40 W. The chiller
temperature is set at -190C. These set of parameters lead to a silicon etch rate of
approximately 190 nm/min with a total process time of 80 secs. The etch rate for
CSAR is approximately 80 nm/min, leaving approximately a 75 nm thick layer
left. Once the RIE completed, the remaining resist is removed by inmersion in
AR-600-71. Last, the sample is then sequentially cleaned in acetone (1 min), IPA,
DIW (1 min), IPA, and blow-dried with an N, gun.

Membrane release

The top silicon layer is realeased by a slow isotropic wet-etching of the buried
oxide using an SiO-etch, which is a buffered HF solution in water. The etch rate
is ~ 100 nm/min and the chip is inmersed in the solution for 35 min, leading
to 3.5 pm underetched regions around the exposed patterns. The sample is then
sequentially transferred to water twice and left to dry for 15 min inside a metallic
chamber filled with ethanol vapor.
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