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Thesis Outline

Recent advances in technological capabilities raise concern that a sizable frac-
tion of today’s occupations is at high risk of being automated in the near fu-
ture. There are many studies in the literature arguing that this is a concrete
possibility. What these papers do in practice is first to understand what tech-
nology is able to do today and what will be able to do in the near future
according to technology experts. Then, they match this information with the
tasks that are performed today by workers in their occupations. While there
is a direct effect that tends to decrease the demand for such workers, there
are other general equilibrium effects associated with the adoption of automa-
tion technology that tend to increase the demand for labor. Indeed, despite
massive automation has happened in the past, labor did not become “redun-
dant”.

Despite the known benefit of technological progress on economic growth
and living standard, it has also been identified as one of the major reasons for
the decrease in the earning and employment prospects for specific groups
of populations. To understand automation means to design better policies
that can maximize the benefits of technological advances by incentivizing
innovation and reallocating resources to the most fragile households. More-
over, the Coronavirus pandemic could further increase the incentive to adopt
labor-substituting technologies, as machines do not get infected and sick. To
understand the conditions that foster the adoption of automation technology
and the overall effect of automation on earnings and employment is the focus
of this doctoral thesis.

In Chapter 1, “Automation with Heterogeneous Agents: the Effect on Con-
sumption Inequality”, I study the distributional implications on consumption
of the adoption of automation technology. I combine an Aiyagari incomplete
market model with educational choice and a task-based model of produc-
tion. Workers that choose to get a college education develop skills with a
higher degree of capital complementarity with respect to workers who do
not get college education. As a consequence, the effect of automation im-
pacts their earnings in a different way. On top of that, I consider the effect
of automation on the return to wealth and show that it is key in determining
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the overall effect on consumption inequality. The fundamental idea is that
automation has an effect on earnings but also on capital income. To study the
effect of automation on consumption I argue that is important to consider the
joint distribution of earnings and wealth. Indeed, as those who earn a higher
salary are also able to accumulate more wealth, the increase in capital income
amplifies the effect of automation on inequality. In a quantitative analysis, I
calibrate the model to the US economy between 1978 and 1981. I compute
the transitional dynamics from the initial steady state when I shock the econ-
omy with an increase in automation possibilities and the introduction of new
tasks for labor, which I estimate from the data. I first show that the model is
able to replicate closely the increase in consumption inequality from 1981 to
2007. Then, I decompose the role played by the various components in the
model to highlight that the return to wealth channel and endogenous edu-
cational choice are crucial to understand the overall distributional effects on
the consumption distribution.

Chapter 2, “Automation and Sectoral Reallocation”, is a joint work with Den-
nis Hutschenreiter and Eugenia Vella. We study the effects of automation in
the form of robot adoption in Germany. Empirical evidence in the literature
suggests that robot adoption has induced a sectoral reallocation of workers
from the manufacturing to the service sector in the German economy, leav-
ing total unemployment unaffected, in contrast with the negative effect in the
United States. To rationalize this evidence, we develop a general equilibrium
model with search and matching frictions, participation choice, and two pro-
duction sectors. We calibrate the model for Germany and perform analysis
across steady states. In the model, as in the German data, automation does
not destroy existing jobs but induces firms to create fewer new vacancies in
the robot-exposed sector (manufacturing) and job seekers to reallocate their
search towards the non-exposed sector (services). We show indeed that ag-
gregate employment is hardly affected.

What are the conditions in which it is more convenient to adopt new tech-
nologies? What are the factors that influence such a decision? In Chapter
3, “Common Ownership and Automation”, joint with Dennis Hutschenreiter,
we investigate what is the effect of Common Ownership on the adoption of
automation technology. By Common Ownership, we refer to institutional
investors that own blocks of different public firms competing in the same
product markets. We build a symmetric Cournot model with a task-based
production side. We show that automation increases (decreases) with Com-
mon Ownership if the elasticity of the capital supply is smaller (larger) than
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the elasticity of the labor supply function in the industry.
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1

Chapter 1

Automation with Heterogeneous
Agents: the Effect on Consumption
Inequality

Abstract

In this paper, I study technological change as a candidate

for the observed increase in consumption inequality in the

United States. I build an incomplete market model with

educational choice combined with a task-based model on

the production side. I consider two channels through which

technology affects inequality: the skill that an agent can sup-

ply in the labor market and the level of capital she owns. In a

quantitative analysis, I show that (i) the model replicates the

increase in consumption inequality between 1981 and 2008

in the US (ii) educational choice and the return to wealth are

quantitatively important in explaining the increase in con-

sumption inequality.
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1.1 Introduction

Since the beginning of the eighties, consumption inequality in the United
States has risen.1 The increase ranges, between 1982 and 2005, from around
30% to 95%, depending on the adopted measure.2 In this paper, I evaluate
the role played by technological change and, in particular, by the automation
of tasks, in the observed increase in consumption inequality.

To this end, I build a general equilibrium model combining two theo-
retical frameworks. On the household side, I use an Ayiagari incomplete
market model with educational choice while, on the production side, I use a
task-based model borrowed from Acemoglu and Restrepo, 2018. Agents face
skill-specific uninsurable idiosyncratic risk and choose how much to save
and consume. When they die, they are replaced by their offspring who can
decide whether to go to college or not. A unique final good is produced by
aggregating a unit measure of tasks. Three inputs of production, capital, un-
skilled labor, and skilled labor are endogenously allocated to perform tasks,
given their productivities and endogenous factor prices.

Automation directly displaces low-skill workers from the performance of
some tasks and increases aggregate productivity. The net effect on the wage
of the low-skill workers depends on the trade-off between the displacement
and the productivity effect. Moreover, as high-skill workers perform tasks
that cannot be performed by machines, automation increases the relative de-
mand for skilled relative to unskilled workers (Acemoglu and Autor, 2011).
I consider the effect of the introduction of new tasks in which labor has a
comparative advantage, which has been argued to be one of the most im-
portant forces countervailing the displacement effect of automation.3 In my
model, the introduction of new tasks increases productivity and the demand
for high-skill relative to low skill workers. The assumption that new tasks in-
crease the relative labor demand of more educated workers receives support

1See Aguiar and Bils, 2015, Attanasio, Battistin, and Ichimura, 2004, Attanasio and Pista-
ferri, 2014, Attanasio and Pistaferri, 2016, and Heathcote, Perri, and Violante, 2010.

2Attanasio and Pistaferri, 2016 show that consumption inequality, measured as the vari-
ance of log-consumption, varies between 30% to 95%. The variation in this result depends
on the different ways in which consumption is computed in the data.

3Automation technologies might need labor in order to be operated and this, directly, can
create demand for new jobs (or new tasks for existing jobs). Moreover, by decreasing the
relative price of labor with respect to capital, automation incentivizes the development of
new, labor-intensive technologies. Acemoglu and Restrepo, 2019 show that the introduction
of new tasks can account for around 50% of the employment growth in the US between 1980
and 2010. Over the same period, a 10 log points increase in labor demand is attributed to the
introduction of new tasks.
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from the data.4

Technological change affects labor demand and wages, but also the return
to capital. In particular, the adoption of automation technology increases
capital demand and, therefore, the return to wealth for the agents who lend
capital to the firms. As wealth is unequally distributed among the agents,
the increase in the price of capital has distributional implications. In this
model, automation increases total income inequality for two different but in-
terconnected reasons. First, because it increases labor income inequality due
to differential ways in which technology impacts skill demands. Second, be-
cause it increases capital income inequality by raising the return to wealth.
As agents who earn a higher salary are also able to accumulate more wealth,
the rise in the return to wealth increases total income inequality.

The spread in the income distribution translates into increased consump-
tion inequality. The mapping between these two depends on the aggregation
of individual saving decisions of the agents. This, in turn, depends on the
amount of risk agents face. I assume that labor income risk fluctuations de-
pend on education, as this is the case in the data (Guvenen, 2009).

Crucially, I model educational choice to allow agents to react to prices
changes by adjusting their skill supplies. To ignore this fact, the effect of
automation on the education premium would be overestimated. Indeed, as
the education premium reacts to scarcity, the education decision buffers the
increase in the premium implied by technological change.

I calibrate the model to the US economy over the period between 1978 and
1981. With the calibrated model, I compute transitional dynamics to a new
steady-state with different levels of technology. In particular, I show that,
after an automation shock, the wage of workers without education decreases
in the short run and recovers along with the transition. Despite the short-
run decrease in the low-skill labor income, total income does not decline for
every agent without education. Indeed, richer low-skill agents who had a
positive series of labor income shocks can experience a rise in total income,
as the increase in the return of capital compensates for the decline in labor
income.

Thereafter, I estimate from the data measures of task automation and task
introduction spanning from 1981 - the initial steady-state - to 2008. I plug
these series in the model and compute the implied transitional dynamics. I

4Acemoglu and Restrepo, 2018 show that occupations with a greater number of new job
titles employ, on average, workers with more years of schooling.
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show that the estimated technological change explains the increase in con-
sumption inequality observed in the US in the years under study. Moreover,
the model explains around 35% of the increase in the college premium and
around 53% of the increase in the share of workers with a college degree in
the US. Finally, I estimate the role of various components in the model in ex-
plaining the increase in inequality. In particular, I show that both the return
to wealth channel and the endogenous education decision are quantitatively
important. To estimate the role played by the increase in the return to wealth,
I compute the transition between steady-states with the interest rate fixed to
its initial steady-state value. In this case, the effect of technological change
on inequality is 4% lower as it increases only the education premium and it
does not directly increase inequality in capital income. To quantify the role of
endogenous educational choice, I compute the transition with the probability
of dying equal to zero. In this way, the shares of educated and uneducated
workers remain fixed to the initial steady-state value. With this decomposi-
tion, I show that without allowing the agents to adjust their skill supplies as
the demand changes, the overall effect of technology on inequality is twice
as large.

Literature Review

First, this paper contributes to the literature that focuses on the determinants
of income and consumption inequality. There are several papers that use the
Aiyagari, 1994, Bewley, 1986, and Huggett, 1993 framework to study the role
of technology on inequality as, for instance, Heckman, Lochner, and Taber,
1998, Hubmer, Krusell, and Smith Jr, 2016, and Kaymak and Poschke, 2016.
The most important differences with respect to these studies are the way in
which I conceptualize technological change - a combination of automation
and creation of new tasks - and that I consider the effect of the return to
wealth on inequality. Methodologically, my paper is similar to Kaymak and
Poschke, 2016 in the way I decompose the effect on consumption inequality
of various channels in the model. Another paper that underlines the im-
portance of the return to wealth is Moll, Rachel, and Restrepo, 2019. They
combine a task-based model with a perpetual youth structure with imperfect
dynasties, which is another way to get a determinate wealth distribution and
study the implication of the return to wealth on inequality. Using instead an
incomplete market model, I can account for differences in labor income risk
between education groups (Guvenen, 2009). Another key difference with re-
spect to that paper is that I do model educational choice, and I show that it
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is crucial in the observed increase in inequality. Finally, I also consider the
effect of new tasks introduction.

Second, this paper contributes to the literature that studies the effect of
automation, spurred by recent advances in technological capabilities. Like
the majority of papers in this literature, I use a task-based model of produc-
tion (Zeira, 1998, Acemoglu and Autor, 2011 and Acemoglu and Restrepo,
2018). Most of the papers studying the effect of automation using general
equilibrium models either focus on aggregate labor demand (as Acemoglu
and Restrepo, 2018) or consider labor income inequality (Hémous and Olsen,
2014). But as automation increases the demand for capital, I show that the
channel through the increase in the return of wealth is quantitatively impor-
tant. I extend the conceptual models used in previous research by including
heterogeneous capital accumulation that depends on the labor income and
individual risk. In a representative household model (e.g. Acemoglu and
Restrepo, 2018) automation always increases total income and consumption.
That is because automation always increases output; hence, even if wages are
reduced, the household is compensated with a higher capital income. This is
not true for all the agents in a model with endogenous wealth distribution.

The rest of the paper is organized as follows: In Section 1.2 I explain the
structure of the model. In Section 1.3.1 I take the model to the data. In Section
1.3.2 I discuss the mechanisms of the model. In Section 1.3.3 I explain the
estimation of the shocks that I use in Section 1.3.4 to contrast the model with
the data. In Section 1.3.5 I quantify the role of various elements of the model.
Section 1.4 concludes.

1.2 Model

The model combines two theoretical frameworks. The consumption side bor-
rows the basic features of Aiyagari (1994) incomplete market model com-
bined with endogenous educational choice. The production process, instead,
is modeled with a particular task-based production function borrowed from
Acemoglu and Restrepo, 2018.

The population is normalized to one and time is discrete and indexed by
t. I make the dependence of time explicit to underline non-stationarity in the
model. An agent is born with a level of assets and chooses whether or not
to become high skill by paying a cost θ(a) which is a function of asset hold-
ings. This decision is permanent for an agent. Then, during her life, the agent
chooses how much to save and how much to consume; she cannot borrow,
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and her labor supply is exogenous. In every period there is a probability of
dying d; when an agent dies, her offspring inherits the level of asset holdings
the agent had in her last period of life.
Productivity differs between skill groups but is identical within each skill
group. Consequently, wages differ between skills but are identical within
skills. On top of this, agents face a not insurable idiosyncratic shock and this
creates heterogeneity within each skill group.

Consumption Side:
The initial problem of an agent is the following:

vn
t (a) = max

{
Eεh

{
vh

t (a, εh)
}
− θ(a), Eε`

{
v`t (a, ε`)

}}
, (1.1)

where vn
t (a) is the value function of new-born agents, vh

t (a, εh) is the value
function of a high skill agent that depends on the asset holdings and on the
realization of the labor endowment shock εh.5 v`t (a, ε`) is, similarly, the value
function of a low-skill agent. The value of becoming a high-skill is reduced
by a fixed cost, θ(a), which decreases with the level of capital. The expecta-
tions are formed using the stationary Markov distributions which are type-
specific.
Once the decision regarding the type is taken, the agent i solves the following
problem, with j = {`, h}:

vj
t(ai,t, ε

j
i,t) = max

ct,at+1

u(ci,t) + β(1− d) ∑
ε

j
t+1

π
(

ε
j
t+1 | ε

j
i,t

)
vj

t+1

(
ai,t+1, ε

j
i,t+1

) ,

(1.2)
subject to ci,t + ai,t+1 = (1 + rt − δ)ai,t + wj

t · ε
j
i,t, and at > 0.

Where wj
t is the type-specific wage rate and ε

j
i,t is the idiosyncratic shock,

which follows a type-specific Markov process. rt is the interest rate and δ is
capital depreciation.

Production Side:
As mentioned, the production side borrows from Acemoglu and Restrepo,
2018. In that paper, they build a representative agent model combined with

5I refer to the shock as “labor endowment” as in Aiyagari, 1994. In the literatiure is
maybe more common to use “productivity shocks”, however, in this model the shock does
not change the productivity of the agents which is a very precise thing in the production
side (see below). The productivity of the agent determines her wage rate, while, the shock,
together with the wage rate determines the total labor income.’
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task-based production with capital and labor. Then, in an extension (see page
1519), they propose a way to model heterogeneous skills in their task-based
production and characterize balance growth path wage inequality depend-
ing on the difference between productivities between high and low-skill la-
bor. They do this exercise with fixed shares of labor skill types. In this paper,
I use the framework developed in that extension.

There is a unique final good produced with a continuum of tasks:

lnY =
∫ N

N−1
ln[y(x)]dx,

where Y is the output of the final good and y(x) is the quantity of task x pro-
duced. The final good is produced with a unit measure of tasks that ranges
from N− 1 to N. An increase in N, which corresponds to the introduction of
new tasks, does not alter the total measure of tasks in the economy. Each task
is produced with a linear production function as in Equation (1.3). Where,
for instance, m(x) is the amount of capital (machines) used in the production
of task x and γm(x) is the productivity of capital in the production of task
x. γm(x) is, therefore, the productivity schedule of capital: a function that
for every task gives the productivity of capital in that task. Similarly for the
other factors of production.

y(x) = γm(x)m(x) + γ`(x)l(x) + γh(x)h(x). (1.3)

The relationship between the productivity schedules of capital and the two
productivity schedules of labor determines how the production of tasks is
split between capital and labor. I assume the following:

Assumption 1

d
dx

(
γ`(x)
γm(x)

)
> 0 and

d
dx

(
γh(x)
γm(x)

)
> 0. (A1)

This implies that labor has a comparative advantage in higher indexed
tasks. And,
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Assumption 2

γl(x) =

{
γh(x) x ≤ N̄
γh(x) · Γ x > N̄

(A2)

Where Γ < 1. High-skill labor has a comparative advantage in higher index
task with respect to low-skills. N̄ can be thought of as a division between old
and new tasks, or complex and non-complex tasks.
The highest indexed task produced with capital, Ĩ, is given by solving the
following equation,

Ĩ :
r

γm( Ĩ)
=

w`

γ`( Ĩ)
.

Hence, Ĩ is the task in which the effective costs - price over productivity - of
capital and labor are equal. The division between high and low-skills in the
labor area follows a similar logic. However, given the discontinuity in the
productivity of the low-skills, there is not one clear equation that pins down
the separation threshold, as we have for the division capital-labor. Therefore,
for simplicity, I restrict the attention to the case in which the following con-
dition is verified:6

Assumption 3

Γ <
w`

wh
< 1. (A3)

This in turn implies the following:

w`

γ`(x)
<

wh
γh(x)

if x < N̄,

w`

γ`(x)
>

wh
γh(x)

if x > N̄.

The left hand side of both equations is the effective cost of producing tasks
with low-skill labor while, the right hand side is the same variable for high-
skills. These equations tell us that when assumptions A2 and A3 are satisfied,
only high-skills are employed in new tasks and only low-skills are employed
in old tasks. The separation threshold between the two types of labor is equal
to N̄. Assumptions A1, A2 and A3 imply that the unit measure of tasks is
divided into three areas: tasks performed by capital, tasks performed by low-
skill labor, and tasks performed by high skill labor (see Figure 1.1).

Automation is modeled in the following way. As said, Ĩ is the highest
indexed task that is optimal to automate given productivity schedules and

6This assumption is made on endogenous objects and must be verified ex-post in equi-
librium.
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N − 1

Capital

I

Low skill labor

Ĩ N̄

High skill labor

N

FIGURE 1.1: Allocation of factors of production in the unit mea-
sure of tasks.

factor prices. I now define I as the highest indexed task that is feasible to
automate. This means that for x > I simply does not exist the technology
that allows producers to use machines to perform these tasks. In general,
then, the highest indexed task automated in equilibrium, I∗, is equal to

I∗ = min{I, Ĩ}.

For some combinations of the parameters in the model, the profit maximiza-
tion problem of the firm is constrained in the equilibrium, that is I∗ = I. In
these cases, automation is a relaxation of this constraint, an increase in I. For
the rest of the paper, I focus on this case because is the only one which al-
lows me to study the implication of an invention in automation technology.
Indeed, when some automation technologies are not adopted ( Ĩ < I), an in-
crease in I has absolutely no effects on the equilibrium in this model.
The total output, Y, can be rewritten as a Cobb Douglas in the three factors of
production, in which, crucially, factors’ shares are endogenous and depend
on technology.7

Y = G
(

K
I − N + 1

)I−N+1( L
N̄ − I

)N̄−I ( H
N − N̄

)N−N̄
. (1.4)

The expressions of factors’ prices take the usual form,

r = Y · I − N + 1
K

, (1.5)

w` = Y · N̄ − I
L

, (1.6)

wh = Y · N − N̄
H

. (1.7)

7With

G = exp
(∫ I

N−1
ln (γm) dx +

∫ N̄

I
ln (γ`(x)) dx +

∫ N

N̄
ln (γh(x)) dx

)
.
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The price of each factor is proportional to total output and to the share of the
factor in aggregate production, and inversely proportional to the supply of
the factor.

Before turning to the definition of equilibrium, it is useful to describe the
transition of the distribution between a generic period t and t + 1. In every
period t, each agent is characterized by three variables, the level of assets she
owns, ai,t, the Markov state ε

j
i,t and, her education level, ei. λt is the distribu-

tion of agents over states at time t. At the end of the period, a random sample
of size d - which corresponds to the probability of dying in t - is drawn from
λt. Before the beginning of the next period, the deceased agents are replaced
by their offspring who inherit their level of capital. First, they decide their
level of education based on (1.1). Second, their Markov state realizes based
on the education-specific stationary Markov distribution. The transition of
the agents who do not die in period t into a new position in state space in
t + 1 depends on the solution of the value function (1.2) - that depends on
their level of asset holdings, Markov state, and education type - and on the
realization of the idiosyncratic shock in t + 1.

Equilibrium:
Given a sequence of technological parameters {It}∞

t=0 and {Nt}∞
t=0, a recur-

sive competitive equilibrium are sequences of value functions
{

vh
t
}∞

t=0 and{
v`t
}∞

t=0, policy functions
{

ch
t , ah

t+1
}∞

t=0 and
{

c`t , a`t+1
}∞

t=0, firm’s choices {Lt, Ht, Kt}∞
t=0,

prices
{

w`
t , wh

t , rt
}∞

t=0 and ditributions {λt}∞
t=0 such that, for all t:

• Given prices, the policy functions solve the agents’ problems and the
associated value functions are

{
vh

t
}∞

t=0 and
{

v`t
}∞

t=0.

• Given prices and technology, firms choose optimally labor inputs and
capital.

• The labor markets clear:

Ht =

[(
Π∗,h

)T
· εh
]

Sh
t

Lt =

[(
Π∗,`

)T
· ε`
]

S`
t

Where Π∗,j is the stationary distribution associated with the Markov
process of type j; εj is a vector containing the values of the shock cor-
responding with the stationary distribution and Sj

t is the number of
agents that belong to type j.
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• The asset market clears:

Kt =
∫

A×E
at+1(at, εt)dλt.

1.3 Quantitative Results

I now turn to the quantitative analysis of the model. First, I explain how I
calibrate the model parameters. Then, with the calibrated model, I discuss
the mechanism at play in the model. To do so, I report, separately, the transi-
tional dynamics between steady-states for two different shocks: an increase
in automation and an introduction of new tasks in which labor has a com-
parative advantage. For the sake of clarity, I assume that these shock are
instantaneous, that is, the final steady-state value of the shock is reached im-
mediately. In this way, it is easier to understand the reaction of the model
economy with respect to a case in which the shock happens gradually. This
strong assumption is relaxed in the main result of the paper, in which I com-
pute the transitional dynamics with shocks estimated from the data. Finally,
with a decomposition exercise, I quantitatively evaluate the contribution of
various components of the model in determining the increase in inequality.

1.3.1 Bringing the model to the data

The composition adjusted college premium is reported in Figure 1.2. The
data is taken from the March CPS database; I restrict the sample to include
only full-time full-year workers with age between 16 and 64. This measure of
the college premium, taken from Acemoglu and Autor, 2011, ensures that this
statistic is not “mechanically affected by shift in experience, gender compo-
sition, or average level of completed schooling within the broader categories
of college and high-school graduates”.
I assume that the economy is in a steady state from year 1978 to 1981 - red
dashed horizontal line in the graph - because in this period the college pre-
mium displays more stability relative to the whole period.

In Table 1.2 I report the calibrated parameters and the relative targets or
sources used in the calibration. The table is divided into two parts: prefer-
ences and technology. The result of the calibration of the labor income risk
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FIGURE 1.2: Composition-adjusted log college premium from
1978 to 2008 in the United States. Data from March CPS, full-
time, full-year workers. The steady state value - red dashed line
in the graph - is equal to 0.39. I use the estimation technique of

Acemoglu and Autor, 2011.

parameters is excluded from the Table but is also discussed in this section. I
now explain the reasoning behind the calibration strategy for each parameter.

Regarding the parameters that enter the preferences of the agents, I set
the dying probability equal to 3% to imply an average working life of 33
years. To estimate the cost of education, I use as a target the average share
of workers with a college degree in the US between 1963 and 1981, which
is equal to 14%. The remaining parameters relative to the preferences of the
agents have standard values taken from the literature.
All the parameters relative to the labor income risk that the agents face are
calibrated using the estimates from Guvenen, 2009. Using data from the
Panel Study of Income Dynamics (PSID) covering 1968 to 1993, he estimates
an AR(1) income process separately for college and non-college graduates.8

The values he estimates for the persistence and the variance of the innovation
are reported in table 1.1.

I compute the associated Markov process using the Tauchen’s method.

8Using Guvenen words, his sample consist of “[...] male head of households between the ages
of 20 and 64. I include an individual into the sample if he satisfies the following conditions for twenty
(not necessarily consecutive) years: the individual has (1) reported positive labor earnings and hours;
(2) worked between 520 and 5110 hours in a given year; (3) had an average hourly earnings between
a preset minimum and a maximum wage rate (to filter out extreme observations). I also exclude
individuals who belong to the poverty (SEO) subsample in 1968”.
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Parameters Values
ρ` .829

σ2
` .022

ρh .805

σ2
h .025

TABLE 1.1: Values from Guvenen, 2009.

When doing this, I have to set the number of Markov states, S, and the maxi-
mum number of standard deviation from the mean, i.e. the dispersion of the
Markov’s state space. I set S = 9 and max(SD) = 1. From the discretiza-
tion, I obtain the conditional probabilities of the Markov matrix, Πi, and the
vector of Markov states, εi. Given that Guvenen uses log labor earnings to
estimate the labor income risk parameters, I have to normalize the values of
the Markov process to have E(exp(εj

i)) = 1. To do this, I symmetrically shift
the values found with the Tauchen method.

I now turn to the discussion of the parameters of the production side of
the economy.
I normalize the highest-indexed task in the economy N0 = 1 (the sub-index
“0” indicates the initial steady-state). To compute the highest indexed task
automated in equilibrium I use the following relationship that holds in the
model:9

It = Nt − (LABOR SHARE)t.

The series of the Labor Share (LS) is a crucial object for the result of this paper,
as this is used to impute the level of automation in the initial steady-state and,
as will be explained in the following section, to estimate the sequences of the
technology parameters.
The remaining four parameters (γ̃, qy, m, N̄) in Table 1.2 determine the shape
of the productivity schedules of the factors of production. The functional

9From the definition of the labor share,

LS =
wh H + w`L

Y
,

substitute the expressions for the wages, (1.6) and (1.7), to obtain,

LS =
Y(N − N̄) + Y(N̄ − I)

Y
= N − I.
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FIGURE 1.3: Labor share. Data from the Bureau of Economic
Analysis. The average value of the labor share in the initial

steady-state is 0.64.

FIGURE 1.4: Productivity schedules of inputs of production. In
red, the parameters to calibrate.

forms chosen for the productivity schedules are the following:

γh(x) = γ̃ · qy · em(x− I+N
2 ) (1.8)

γ`(x) =

{
γh(x) x ≤ N̄
γh(x) · Γ x > N̄

(1.9)

γm(x) = γ̃ (1.10)

To have a sense of how the to-be-calibrated parameters affect the shapes of
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DESCRIPTION VALUE TARGET/SOURCE

PREFERENCES
σ Risk Aversion 2 Standard
β Discount 0.95 Standard
δ Depreciation 6% Standard
d Death probability 3% 33 years average working life
θ̃ Education Cost 15.04 Share of workers with col. degree
TECHNOLOGY
N Highest-indexed task 1 Normalization
I Highest-indexed automated task 0.35 Labor share = 0.66
γ̃ Productivity 0.12 K/Y = 3
qy Productivity of labor 1 0.7 Cost saving = 30%
m Productivity of labor 2 1.66 ẑ = 1.67
N̄ Highest-indexed task non-college 0.84 Log college premium = 0.43

TABLE 1.2: Calibrated parameters of the model.

the productivity schedules, take a look at Figure 1.4. γ̃ determines the aggre-
gate productivity as an increase in this parameter shifts up all productivity
schedules. qy determines the difference between the productivity of capital
and that of labor. N̄ controls the difference between the productivity sched-
ule of unskilled and skilled labor while m regulates the slope of the produc-
tivity schedule of labor.

As will be more precisely explained in the following section, the effect of
task automation on the economy crucially depends on the trade-off between
the displacement and the productivity effect. The displacement effect de-
pends on how tasks automation changes the relative demand for factors, as
an increase in I decreases the size of the set of tasks performed by low-skills
and increases the size of the set of tasks performed by capital. However,
automation also increases productivity and this tends to increase all factor
prices. I specify the productivity schedule in (1.8) so that the parameter m
determines precisely this trade-off. As m increases, for a given productivity
of capital and a given displacement effect, the cost-saving (and therefore the
productivity effect) implied by automation is greater. The chosen specifica-
tion for the productivity schedule in (1.8) implies that, in the initial steady-
state, a change in the parameter m within a range of values, does not change
the equilibrium of the model economy. This is because it does not change the
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aggregate productivity G and does not change the relative demand for fac-
tors.10 In this way, m is directly linked with the previously mentioned trade-
off. m reflects also the difference between the average productivity of work-
ers with a college degree and the average productivity of workers without
a college degree. Indeed, as m increases, the average productivity of college
workers increases relative to non-college workers. This is perfectly consistent
with the relationship between m and the trade-off. As the productivity of the
workers who will be automated increases, the cost-saving coming from au-
tomation decreases, and the impact of automation on the economy changes.
To calibrate this parameter, I use, therefore, the following statistics:

ẑ =
Average workplace productivity of workers with a college degree

Average workplace productivity of workers without a college degree

I take the estimate for ẑ from Hellerstein, Neumark, and Troske, 1999: ẑ =

1.67. In this paper, the authors estimate precisely the difference in productiv-
ity between workers with and without college education. To build the coun-
terpart of this statistic in the model, I use the implication of assumption A2
and A3 about the labor productivity schedule. In the initial steady-state, low-
skill workers perform tasks between I and N̄ and skilled workers between N̄
and N. The average productivity of a low-skill worker is

¯̀ =

∫ N̄
I γ`(x) · L

N̄−I dx

L
.

While for high-skill workers,

h̄ =

∫ N̄
N̄ γh(x) · H

N−N̄ dx

H
.

Finally, the moment condition I sue to calibrate m is,

h̄(m)
¯̀(m)

= ẑ.

10Wages in this model change because of two reasons (i) the aggregate productivity G
changes (ii) the relative demand for factors change. The aggregate productivity does not
change with m because, thanks to the specific chosen functional form, as, for instance, m
increases, the productivity of skilled workers increases but the productivity of low-skills
decreases in a way that perfectly offsets the effect on aggregate productivity. Moreover, the
change in productivity does not change the relative demand of labor because, on one side,
there is the technological constraint (I) and, on the other side - the threshold that separates
the two types of labor - there is the discontinuity of the productivity schedule of the low-skill
workers.
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Which, after plugging the expressions for ¯̀ and h̄ becomes,

exp(mN)− exp(mN̄)

exp(mN̄)− exp(mI)
· N̄ − I

N − N̄
= ẑ. (1.11)

To calibrate qy I use the estimate from Acemoglu and Restrepo, 2017 of the
cost-saving associated with the adoption of automation technology. To pin
down γ̃ I use the capital-output ratio. Finally, for N̄, I use the adjusted log
college premium, ĈP (average value over the period 1963-1981, see Figure
1.2). Given that ĈP is the difference between the average log wages for the
two education groups, the moment condition is not simply log (wh/w`) =

ĈP. To explain the derivation of this moment condition, I use the example of
a three state Markov process. The average log wage for low-skills is

π∗,`1 log
(
w`ε

`
1
)
+ π∗,`2 log

(
w`ε

`
2
)
+ π∗,`3 log

(
w`ε

`
3
)
=

log (w`) (π
∗
1 + π∗2 + π∗3)︸ ︷︷ ︸

1

+
(
Π∗,`

)T
log
(
ε`
)
=

log (w`) +
(
Π∗,`

)T
log
(
ε`
)

.

(1.12)

Where Π∗,j is the stationary distribution associated with the type-specific
Markov process. Hence, the moment condition is

log (wh)− log (w`) = log (wh)− log (w`) +

+
(

Π∗,h
)T

log
(

εh
)
−
(

Π∗,`
)T

log
(

ε`
)
= ĈP. (1.13)

Which, given the model expression of the wage ratio,

wh
w`

=
N − N̄
N̄ − I

· L
H

, (1.14)

becomes,

log
(

N − N̄
N̄ − I

· L
H

)
+
(

Π∗,h
)T

log
(

εh
)
−
(

Π∗,`
)T

log
(

ε`
)
= ĈP. (1.15)

In Tables 1.3 I report the model generated moments used in the calibration
and their data counterparts. In Table 1.4 I report the Gini’s coefficients of
the wealth and consumption distribution of the simulated economy. These
moment were not targeted directly. The model generates 57% of the wealth
inequality observed in the data and 62% of the consumption inequality.
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Expressions Data/Targets Model
log (wh/w`) Log coll. premium 0.39 0.39
ẑ Prod. ratio 1.67 1.67
K/Y Capital/output 3 2.58

w`
γ`(I)/ r

γm
Cost saving autom. 30% 30%

Sh College share 18% 18%

TABLE 1.3: Calibration results, targeted moment.

Gini coefficients Data Model
Consumption 0.24 0.15
Wealth 0.77 0.44

TABLE 1.4: Untargeted moments. Source: Kuhn et al 2018 and
Krueger and Perry 2006.

1.3.2 Mechanisms’ Discussion

To analyze the effect of task automation and new task introduction, I now
report, separately, one transition for each shock. First, look at Figure 1.5. In
these graphs I show the transitional dynamics after a permanent and instan-
taneous increase in the tasks performed with machines (a 5% increase of I).
To understand the reaction of the interest rate, capital and output, it is con-
venient to recall equation (1.5),

r = Y · ↑I − N + 1
K

In the first period after the shock, the increase in I implies an instantaneous
increase in the interest rate. Indeed, the reaction of the aggregate capital stock
is sluggish and the supply of capital takes time and does not compensate im-
mediately the increase in demand. As time goes by, agents start to accumu-
late more capital and the interest rate decreases until the final steady-state
value. As more capital is accumulated, the output increases.
In the short run, the effect of automation on the wage of educated workers is

unambiguously positive, as automation increases productivity and does not
decrease the demand for educated labor. Instead, in the short run, the effect
on the wage of workers without college education depends on the trade-off
between the increase in productivity and the decrease in the number of tasks
in which they are demanded by the firms, or, in other words, the fact that
they are reallocated in a different set of tasks. This trade-off can be analyzed
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FIGURE 1.5: Transitional dynamics between the initial, cali-
brated steady-state and a final steady state in which the size of
the set of tasks performed by capital has increased by 5%. All
reported variables are normalized to zero in the initial steady-

state.

by taking the following derivative:

d ln w`

dI
=

d ln(Y/L)
dI︸ ︷︷ ︸

Productivity Effect

+
d ln(N̄ − I)

dI︸ ︷︷ ︸
Reallocation Effect

.

The productivity effect can be expressed in terms of productivities and
prices,

d ln w`

dI
= ln

(
w`

γL(I)

)
− ln

(
r

γm(I)

)
︸ ︷︷ ︸

Productivity Effect

− 1
N̄ − I︸ ︷︷ ︸

Reallocation Effect

. (1.16)

Thanks to this manipulation, we can see that the productivity effect is greater
the greater is the difference between the cost of producing task I with low-
skill labor and with capital. In other words, the greater is the cost saved
thanks to the automation adoption, the greater is the increase in productiv-
ity. Thus, whether the low-skill wage decreases in the short-run depends on



20
Chapter 1. Automation with Heterogeneous Agents: the Effect on

Consumption Inequality

which of the two effects is bigger, which in turn depends on the compara-
tive advantage structure and on the magnitude of the shock. With the chosen
calibration for this model, the reallocation effect is stronger than the produc-
tivity effect in the short run. In the long-run, the accumulation of capital and
the increase in the share of agents with a college education affect the transi-
tion of wages. The increase in capital tends to increase output and therefore
both wages, while the increase in the number of educated workers decreases
the wage of high-skill labor and increases the wage of the low-skills. To un-
derstand the difference between the short and the long-run, it is important
to notice that while the reallocation effect is instantaneous, the implications
of the productivity effect change over time as more and more capital is accu-
mulated. For this reason, the reallocation effect can be greater than the pro-
ductivity effect in the short-run, but the opposite can be true in the long-run.
Hence, for a fixed reallocation of factor, the greater the productivity effect,
the greater is the difference between the short- and the long-run effects.
To analyze the transition of the college premium and the share of educated
workers, it is useful to report the expression of the wage ratio,

wh
w`

∝
N − N̄
N̄ − ↑I

· (1− Sh)

Sh
,

and the problem of a new-born worker,

vn
t (k) = max

{
↑Eε

{
vh

t

(
k, εh

)}
− θ(k), Eε

{
v`t
(

k, ε`
)}}

.

Right after the shock, the immediate increase in the college premium im-
plies an increase in the expected lifetime utility of high-skills relative to low-
skills. For this reason, more agents decide to get education (increase in Sh)
thus implying a decline in the college premium. However, there is another
force that tends to increase the share of high-skill agents: as aggregate capital
and per capita capital increase, also the average new-born worker becomes
richer. As the cost of education is constant in the model, more agents can
afford to get education. This last point explains why, in the final steady-
state, the share of high-skills is higher than its value in the initial steady-state
despite the college premium being lower. The increase in the interest rate in-
creases wealth inequality, as the agents who own more capital benefit more
from this increase. Also, the sudden jump in the college premium, allows
college-educated workers to accumulate more capital. This boost in wealth
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FIGURE 1.6: Percent variation of percentiles with respect to the
initial steady-state value. Each line represents the variation a
given number of years after the shock hits the economy. Left
panel, total income distribution. Right panel, consumption dis-

tribution.

inequality, combined with the increase in wage inequality implies a perma-
nent increase in the spread of the consumption distribution, measured with
the standard deviation.

In Figure 1.6 I further focus on the effect of automation on inequality. To
show how the total income and consumption distribution react to the sudden
substitution between low-skill labor and capital in production, I report, for
each distribution, the relative change with respect to the initial steady-state
value of each percentile. In these graphs, each line represents the percentiles
changes in a given period after the shock. The blue line depicts the change at
t = 3, which is almost immediately after the shock. To understand what hap-
pens, recall that the wage of the uneducated workers decreases immediately
but the interest rate increases. As a consequence, about half of the popula-
tion in the model economy experience a decrease in total income when tasks
are automated. This, despite the fact that the fraction of agents without a
college degree is 82% in the initial steady-state (see Table 1.3). The reason is
that uneducated workers who had a lucky series of shocks and managed to
accumulate a relative big wealth, do not see their total income decrease, as
the increase in the capital income compensates the decline in their return from
the labor market. This highlights the importance of departing from the rep-
resentative household model when studying the effect of technology on total
income and consumption. In that model, as automation increases output,
even if the labor income declines, the household is compensated with the
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increase in capital income. As a consequence, consumption and welfare nec-
essarily increase. This is not true anymore with heterogeneous agents: only
a small fraction of the agents who see their labor income drop benefit from
greater capital income. The implication for consumption distribution can be
seen in the right panel of the same figure. Right after the shock (blue line)
percentiles up to the 85th decrease with respect to initial steady-state value.
The decrease in consumption is greater than the one in the income distribu-
tion because agents are taking advantage of the high interest rate therefore
postponing their consumption. As time goes by both distribution “shift to
the right” and approximately after 50 years every percentile of both distribu-
tion is at a higher value.
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FIGURE 1.7: Transitional dynamics between the initial, cali-
brated steady-state and a final steady state in which the highest-
indexed task in the economy, N, increases by 2%. All reported

variables are normalized to zero in the initial steady-state.

In Figure 1.7 I show the transition after an introduction of tasks in which
labor has a comparative advantage with respect to capital. In the short run,
the introduction of new tasks increases productivity, and, consequently out-
put increases. However, the production of the final good becomes more
labor-intensive and the relative demand for capital decreases. The effect
on the absolute demand for capital depends on the interaction between the
boost in productivity and the decrease in the relative demand for capital;
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with the chosen calibration the demand for capital decreases, as can be ob-
served in the transition of the interest rate. The decrease in the interest rate
implies that the aggregate level of capital starts decreasing, in turn implying
a decrease in the production of the final good. Both wages increase because
of the increase in productivity; however, the wage of educated workers in-
creases more, as they also benefit from the increase in the relative demand
for skilled labor. By looking at the following equation,

wh
w`

∝
↑N − N̄

N̄ − I
· (1− Sh)

Sh
,

it is clear why the college premium increases in the short run. Along with
the transition, as more agents choose to get education given the increased
premium, the gap between the wage of high- and low-skill workers declines
until its final steady-state value. The effect on wealth inequality depends,
as before, on the interaction between the effect on the return of capital and
wage inequality. The increase in wage inequality dominates in the short-run,
implying an increase in wealth inequality which, however, decreases along
with the transition because of the lower interest rate and the decreasing col-
lege premium. For similar reasons, the standard deviation of the consump-
tion distribution increases when new tasks are introduced and reaches its
maximum right after the shock. After that, it starts to decline.

1.3.3 Estimation of the Shock

In the two transitions I showed in the previous subsection, the shocks are
instantaneous and their magnitudes are chosen ad hoc to have the clearest
possible dynamics. In this section, instead, I explain how I estimate from
the data the sequences of the two technology variables {It, Nt}. In the fol-
lowing section, I use these estimated sequences to compute the transition
that I then compare with the data. For the estimation of It and Nt, I use the
series of the labor share as reported by the BEA (see Figure 1.3) and the ex-
pression that links, in the model, these two variables with the labor share,
It = Nt − (LABOR SHARE)t. Given the initial values for I0 and N0 I adopt
a similar technique as in Acemoglu and Restrepo, 2019 which in turn relies
on the theory developed in Acemoglu and Restrepo, 2018: in a model with
endogenous technological change, in a given period, is either profitable to
develop technologies which are labor-intensive or automation technologies
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FIGURE 1.8: Estimated sequences of the technology parameters
N - left panel - and I - right panel.

with the purpose of substituting labor in a given set of tasks. With this rea-
soning in mind, I assume that in a given period there are three possibilities:
an increase in I, an increase in N, or no technological change. Following this
logic, if the labor share increases I impute this increase to the introduction
of new tasks, if it decreases, to the automation of tasks. This computation
results in the sequences reported in Figure 1.8.

1.3.4 Transitional dynamics of the calibrated economy

In this section, I compute the transition of the model economy using the esti-
mated sequences and compare the transition with real data in the period from
1981 to 2008. To simulate a balanced growth path, I extend the estimated se-
quences with linear trends until 50 years after the initial steady state. After
this period, the technology parameters remain constant. As the agents dis-
count the future and also have a probability of dying in every period, what
happens in the first 30 years after the initial steady-state - which is the period
under study - is not affected by what happens in a so remote future.

In Figure 1.9 I contrast the model generated series of consumption in-
equality with the data. For completeness, I report both the Gini’s coefficient
and the standard deviation of the distribution. The standard deviation im-
plied by the model follows closely the increase in the spread of the distribu-
tion measured in the data until 1999. At that point, the inequality measured
in the data increases relatively to the model. The Gini’s coefficients are pretty
close along the period under study: the model is able to generate the 14% in-
crease in the Gini’s coefficient. Consumption inequality depends on the col-
lege premium and on the fraction of workers with a college degree, for this
reason, in Figure 1.10 I also contrast the evolution of these variables with the
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FIGURE 1.9: Evolution over time of the standard deviation
and the Gini’s coefficient of the consumption distribution. The
model generated series are contrasted with the data counter-
parts. All values are normalized to zero in 1981. For illustrative
purposes, I also report the 10-year moving average for the data

series.

data. The model is able to explain around 35% of the increase in the college
premium and around 63% of the increase in the share of educated workers.
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FIGURE 1.10: Evolution over time of the college premium and
the share of workers with a college degree. The model gener-
ated series are contrasted with the data counterparts. All values
are normalized to zero in 1981. For illustrative purposes, I also
report the 10-year moving average for model generate college

premium.

1.3.5 Effect Decomposition

In this section, I analyze the role played by task automation, the introduc-
tion of new tasks, the return of wealth, and endogenous education decision
in the transition showed in the previous section. To understand the role of
these components I compute the transition keeping the component fixed to
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FIGURE 1.11: This figure compares the benchmark transition
with two transitions in which I fix the automation of tasks and

the introduction of new tasks.

the initial steady-state value. In Figure 1.11 I report the transition in which
I fix the capital intensity to the initial steady-state value, the transition with
no introduction of new tasks, and the benchmark transition for comparison.
From this figure, we see how task automation contributes to the increase in
inequality. The college premium increases less when no tasks are automated
and, as consequence, the share of college workers is also smaller along with
the transition. Task automation also contributes to the increase in the return
of wealth. The lower return to wealth combined with the lower college pre-
mium implies that both measures of consumption inequality are lower in
every year under study when no tasks are automated.
In the same figure, we see how also the new task introduction contributes to

the increase in consumption inequality. First, the introduction of new tasks
increases the college premium. Second, as the relative demand of capital de-
creases because production becomes more labor-intensive, tasks introduction
decreases the value of the return to wealth. This has the effect of decreasing
wealth inequality. However, the increase in the college premium dominates
and, according to the model, the introduction of new tasks has contributed
to the observed increase in consumption inequality between 1981 and 2008.

In Figure 1.12 I report the transition with a fixed return to wealth and fixed
education shares. Similarly to the previous exercises, I fix the interest rate to
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FIGURE 1.12: This figure compares the benchmark transition
with two transitions in which I shut down the educational

choice decision and the increase in the return to wealth.

the initial steady-state value. As the interest rate is an endogenous variable
in the model, fixing it implies that, along with the transition and in the fi-
nal steady-state the capital supply does not equal the capital demand. This
exercise shows the importance of taking into account heterogeneous capital
accumulation when studying the implication of technological change on in-
equality. Indeed, the increase in the interest rate contributes to the growth of
consumption inequality by almost 4%.

In the same figure, I report the transition in which agents do not have the
opportunity to choose their education. The way I do this in practice is to set
to zero the probability of dying, d, in the household optimization problem. In
this way, the shares of college and non-college-educated agents remain fixed
to the initial steady-state level. When the labor force does not adjust the skill
supply, the level of inequality is much higher. The college premium increases
dramatically more with respect to the benchmark transition. As the college
premium increases, both measures of consumption inequality increase more
as well. The role of educational choice is therefore to buffer the increase in
inequality implied by technological change.
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1.4 Conclusion

I study the relationship between automation and consumption inequality by
combining two theoretical frameworks. I use an incomplete market model
à la Ayiagari with endogenous educational choice with a task-based model
borrowed from Acemoglu and Restrepo, 2018. After calibrating the model to
the US economy between 1978 and 1980 I first show what are the effects of
a sudden adoption of automation technology and a sudden introduction of
new tasks. I do that by computing the transitional dynamics from the initial
steady-state. In particular, I show that automation decreases the labor income
of uneducated workers and that the implied increase in the return to wealth
counteracts that drop only for the uneducated rich. As the high-skill workers
earn more and have, on average, higher wealth, the increase in the return to
wealth widens the gap between the total income of high- and low-skills.

After estimating the series of automation and new tasks creation from the
data, I compute the model implied transition and contrast this with the data.
The model is able to replicate the increase in consumption inequality that
took place in the US between 1981 and 2007. Finally, I decompose the effects
of various components of the model along with the transition. I find that
both educational choice and the return to wealth channel are quantitatively
important in accounting for the increase in consumption inequality.
A natural use of the calibrated model developed in this paper is to use it
for policy analysis. Regarding the possible effect of massive adoption of au-
tomation technology, a tax on robots has been proposed and evaluated by
economists.11 This is left for future research.

11For example, Guerreiro, Rebelo, and Teles, 2017.
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Abstract

Empirical evidence in Dauth, Findeisen, Suedekum, and Woess-

ner (2021) suggests that industrial robot adoption in Ger-

many has led to a sectoral reallocation of employment from

manufacturing to services, leaving total employment unaf-

fected. We rationalize this evidence through the lens of a

general equilibrium model with two sectors, matching fric-

tions, and endogenous participation. Automation induces

firms to create fewer vacancies and job seekers to search less

in the automatable sector (manufacturing). The service sec-

tor experiences a positive spillover effect due to the sectoral

complementarity in the production of the final good and the

positive income effect for the household. Analysis across

steady states shows that the reduction in manufacturing em-

ployment can be offset by the increase in service employ-

ment. The model can also replicate the magnitude of the

decline in the ratio of manufacturing employment to service

employment in Germany from 1994 to 2014.

We acknowledge financial support from the Spanish Ministry of Economy and Compet-
itiveness, through the Seed Grant (“Job Automation, Domestic Migration and Occupational
Mobility”) of the Barcelona Graduate School of Economics Severo Ochoa Programme for
Centres of Excellence in R&D (SEV-2015-0563) for the use of robot data.
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2.1 Introduction

As a result of improved capabilities and falling production costs, the global
operational stock of industrial robots rose by about 65% within five years
(2013-2018). The Covid-19 crisis is expected to accelerate further the speed of
automation (see, e.g., Dolado, Felgueroso, and Jimeno, 2020 and Leduc and
Liu, 2020a). In addition to the potentially significant implications for labor
markets, recent evidence reveals that higher exposure to robot adoption has
increased support for nationalist and radical-right parties in Western Europe
(Anelli, Colantone, and Stanig, 2020).

Academic and policy debates have focused on whether robots cause job
displacement or job creation in the economy. On the one hand, a negative
displacement effect arises from the fact that robots can outperform workers
in some tasks. For instance, Acemoglu and Restrepo, 2020 recently find that
each robot installed in the US replaces six workers. On the other hand, a
positive productivity effect occurs because machines can help fewer workers
produce more output, which increases labor demand. In this vein, the semi-
nal work by Graetz and Michaels, 2018 finds, using industry-level data from
17 countries, that cumulative changes in robot adoption from 1993 to 2007
boost labor productivity and raise wages.1

Notably, the adjustment in other parts of the economy and the potential
sector spillover effects – for instance, when other sectors expand to absorb the
labor freed from robot adoption – have received little attention so far. Accord-
ing to empirical evidence from Germany in Dauth, Findeisen, Suedekum,
and Woessner, 2021, industrial robots have changed the composition but not
the aggregate size of employment, with job gains in services offsetting the
negative impact on manufacturing employment. Figure 2.1 shows the evolu-
tion of employment and employees’ compensation (as a share of GDP) in the
two sectors along with the stock of industrial robots in the country with the
highest robot density in Europe (see Figure 2.2).

To rationalize the empirical evidence on the automation-driven sectoral
reallocation of labor in Germany, we develop a general equilibrium model
with two production sectors, a labor market participation choice, and match-
ing frictions.2 Automation increases the capital intensity of the technology
in the manufacturing sector. Our modeling framework for automation (see

1There are two main strands in the literature regarding a tangible measure of automation:
information-and-communication-technology capital (see, e.g., Eden and Gaggl, 2018) and
robotics (see, e.g., Graetz and Michaels, 2018).

2For empirical work on the decline in manufacturing and the rise in services, see a novel
dataset for 10 sectors, 23 countries, and 150 years compiled by Priftis and Shakhnov, 2020.
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FIGURE 2.1: Industrial robots, employment and employees’
compensation in Germany

Note: Numbers of employees and the levels of their compensation (as share of GDP) in the manufac-
turing and service sectors come from the Federal Statistical Office (Destatis). Data on the stock of
industrial robots comes from the International Federation of Robotics (IFR).

Section 2.2) is consistent with the microfoundations derived by Acemoglu
and Restrepo, 2018 and close in spirit to Bergholt, Furlanetto, and Faccioli,
2020.3 The presence of unemployment in the model is crucial as we seek to
explain how total employment can remain constant when labor reallocates
between the two sectors. Without unemployment, that would be true by
construction, while it is a result of our model. Furthermore, the inclusion
of labor market frictions allows us to study the impact of automation on en-
dogenous job creation. The presence of the extensive margin in our model
is motivated by recent literature highlighting the negative effect of automa-
tion on participation (see, e.g., Lerch, 2020, Grigoli, Koczan, and Topalova,
2020, Jaimovich, Saporta-Eksten, Siu, and Yedid-Levi, 2020, and Lerch, 2020).

3Note that Bergholt, Furlanetto, and Faccioli, 2020 examine impulse responses from a
New Keynesian model, while we focus on long-run effects through analysis across steady
states.
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FIGURE 2.2: Industrial robot density in the manufacturing sec-
tor of European economies

Note: Data on the stock of industrial robots comes from the International Federation of Robotics (IFR).
We define the manufacturing sector as the aggregate of Industries A-F in the German WZ08 industry
classification.

Overall, the adjustment of sectoral labor markets in response to automation
takes place in the model through three channels: (i) job creation, (ii) sector-
specific search of unemployed job seekers, and (iii) participation. Since our
representative household model is capable of rationalizing the empirical evi-
dence mentioned above, we abstract from heterogeneous households for sim-
plicity.

Our main findings can be summarized as follows. In the model, as in
the empirics of Dauth, Findeisen, Suedekum, and Woessner, 2021, automa-
tion induces firms to create fewer vacancies and job seekers to search less in
the robot-exposed sector (manufacturing). The model is able to replicate the
empirical evolution of employment and employees’ compensation in manu-
facturing and services (Figure 2.1). The service sector experiences a positive
spillover effect and expands. Labor demand in services increases since the
two sectoral goods are gross complements in the production of the final con-
sumption good. This result is consistent with the model of Acemoglu and Re-
strepo, 2020, where higher robot adoption increases demand for complemen-
tary inputs. Additionally, as income rises, consumption demand increases
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(positive income effect), also contributing to the spillover effect. Calibrating
the model for Germany, we show through analysis across steady states that
the reduction in manufacturing employment can be offset by the increase in
service employment, thus leaving aggregate employment mostly unaffected.

Our analysis highlights vacancy creation (labor demand) as the primary
channel through which the two labor markets adjust to automation. The elas-
ticities of substitution between capital and labor in manufacturing produc-
tion and between automatable (manufacturing) and non-automatable (ser-
vice) goods play an important role in the sectoral reallocation of labor, while
the sectoral mobility of job seekers and the positive income effect also matter.
Furthermore, the model generates a negative effect of automation on labor
market participation in line with the literature, but, overall, results do not
depend crucially on the extensive margin.

The model can replicate the magnitude of the decline in the ratio of manu-
facturing employment to service employment in Germany from 1994 to 2014.
Specifically, we take from the German data the values of the capital share in
manufacturing in these two years. Then, we compute the values of the degree
of automation in our model that generate these two values in the correspond-
ing steady states, keeping the rest of the calibration unchanged. We find that
in the second steady state (for 2014) the model predicts a decline of 27% in the
ratio of manufacturing employment to service employment, which is close to
the one found in the data (32%).

Related Literature. Abstracting from labor market frictions, Bergholt, Furlan-
etto, and Faccioli, 2020 examine impulse responses to an automation shock,
modeled as an exogenous increase in the weight of capital in the production
function of a New Keynesian model. They find that, among four possible
explanations, automation is the main driver of the long-run labor share. In
macroeconomic models with labor frictions, the role of automation remains
little explored. Leduc and Liu, 2020b provide the first quantitative general
equilibrium evaluation of the interaction between automation and labor mar-
ket fluctuations over the business cycle. Automation acts as an endogenous
wage rigidity by posing a threat to workers in wage negotiations. Leduc
and Liu, 2020a extend the previous Real Business Cycle model with nominal
rigidities. They find that pandemic-induced uncertainty shocks to worker
productivity stimulate automation, which helps mitigate the negative im-
pact on aggregate demand. Models with automation, heterogeneous house-
holds, and matching frictions are developed by Cords and Prettner, 2019 and
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Jaimovich, Saporta-Eksten, Siu, and Yedid-Levi, 2020 to study the impact on
inequality.

Very few studies in the automation literature have considered a two-sector
economy without accounting for labor market frictions. Focusing on inequal-
ity, Berg, Buffie, and Zanna, 2018 show that the inclusion of a non-automation
sector amplifies the high-skill labor gains and low-skill labor losses from au-
tomation. A non-automatable sector is included in an overlapping genera-
tions setting by Sachs, Benzell, and LaGarda, 2019. The study shows how
short-term increases in consumption enabled by robots may lead to long-
term immiseration and how government intervention can take place. To the
best of our knowledge, we are the first to build a two-sector general equi-
librium model with search and matching frictions to analyze the long-run
impact of automation on both sectoral and aggregate employment.

Structure. Section 2.2 lays out the model. Section 2.3 establishes the equi-
librium relationship between relative labor demand and labor supply in the
two-sector economy. Section 2.4 discusses the calibration strategy. Section
2.5 presents the results. Section 2.6 investigates the role of key parameters
and features of the model. Section 2.7 concludes.

2.2 The Model

We construct a general equilibrium model featuring search and matching
frictions, endogenous labor decisions, and two sectors (manufacturing and
services). Figure 2.3 provides an overview of the model.

On the production side, there is a representative firm in each of the two
sectors. Manufacturing output is produced with capital and labor as inputs,
while output in services is produced with labor only. The outputs of the two
sectors are costlessly aggregated into the final consumption good.

On the household side, there is a representative household consisting of
employees, unemployed job seekers, and labor force nonparticipants. The
household rents out its capital to the manufacturing firm, purchases the final
consumption good, and receives dividends through owning the two firms.

2.2.1 Labor markets

Jobs are created through a matching function. For j = M, S denoting the
manufacturing and service sectors, let υ

j
t be the number of vacancies and uj

t
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the number of job seekers. We assume matching functions of the form,

mj
t = µ

j
1(υ

j
t)

µ2(uj
t)

1−µ2 , (2.1)

where the efficiency of the matching process is µ
j
1 and µ

j
2 denotes the elastic-

ity of matches with respect to vacancies. For each sector, we define the hiring
probability ψ

hj
t and the vacancy-filling probability ψ

f j
t ,

ψ
hj
t ≡

mj
t

uj
t

, ψ
f j
t ≡

mj
t

υ
j
t

.

Labor market tightness θ
j
t ≡ vj

t/uj
t determines the matching market prospects

of firms and workers. The probability that a worker finds a vacancy is an in-
creasing function of labor market tightness, ψ

hj
t = f (θ j

t), while the probabil-
ity that a job vacancy is matched with an unemployed worker is a decreasing
function of tightness, ψ

f j
t = f (θ j

t)/θ
j
t.

In each period, jobs are destroyed at a constant fraction σj and mj
t new

matches are formed. The law of motion of employment nj
t is then given by,

nj
t+1 = (1− σj)nj

t + mj
t = (1− σj)nj

t + ψ
hj
t uj

t. (2.2)

Using the vacancy-filling probability, we obtain an equivalent expression,

nj
t+1 = (1− σj)nj

t + ψ
f j
t υ

j
t. (2.3)

2.2.2 Household

Next, we present the structure of the household side in the model and the
corresponding optimization problem.

Utility function and budget constraint

The representative household consists of a continuum of infinitely lived mem-
bers. Utility is derived from consumption ct and from leisure, which corre-
sponds to the fraction of members out of the labor force lt. The instantaneous
utility function is given by,

U(ct, lt) =
c1−η

t
1− η

+ Φ
l1−ϕ
t

1− ϕ
,
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where η is the inverse of the intertemporal elasticity of substitution, Φ > 0 is
the relative preference for leisure and ϕ is the inverse of the Frisch elasticity
of labor supply. At any point in time, a fraction nM

t (nS
t ) of the household’s

members are employees in the manufacturing (service) sector. The house-
hold chooses the fraction of the unemployed actively searching for a job ut

versus those who are out of the labor force enjoying leisure lt so that

nM
t + nS

t + ut + lt = 1. (2.4)

Of the unemployed ut, the household chooses the fraction of job seekers who
look for a job in the manufacturing sector st while the remaining 1− st search
in services, so that

ut = stut + (1− st)ut = uM
t + uS

t , (2.5)

where uM
t ≡ stut and uS

t ≡ (1− st)ut. The household accumulates assets,
evolving over time according to

kt+1 = it + (1− δ)kt, (2.6)

where it is investment and δ is a constant depreciation rate. The household
budget constraint is given by,

ct + it ≤ rtkt + wM
t nM

t + wS
t nS

t + b̄tut − Tt + ΠM
t + ΠS

t , (2.7)

where wj
t is the real wage in each sector, rt is the real return on assets, b̄t

is the unemployment benefit (see Section 2.4), Tt refers to lump-sum taxes
that adjust to satisfy the government budget, i.e. b̄tut = Tt, and Πj

t for j =
M, S denotes dividends received from ownership of the firms. We model
the unemployment benefit as a share v of the average wage in the economy

through the function b̄t = v
(wM

t nM
t +wS

t nS
t )

nM
t +nS

t
.

The optimization problem

The household maximizes the expected lifetime utility subject to equations
(2.1), (2.2), (2.4), (2.5), (2.6), and (2.7) (for details, see the Online Appendix).
Denoting by λnMt , λnSt , and λct the Lagrange multipliers on equations (2.2)
for j = S, M and (2.7), the first-order conditions with respect to ct, kt+1, nM

t+1,
nS

t+1, ut and st are given by,
c−η

t = λct, (2.8)
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λct = βEt [λct+1(1− δ + rt+1)] , (2.9)

λnMt = βEt

[
−Φl−ϕ

t+1 + c−η
t+1wM

t+1 + λnMt+1 (1− σM)
]

, (2.10)

λnSt = βEt

[
−Φl−ϕ

t+1 + c−η
t+1wS

t+1 + λnSt+1 (1− σS)
]

, (2.11)

Φl−ϕ
t − λnMtψ

hM
t st − λnStψ

hS
t (1− st) = λctb̄t, (2.12)

λnM
t

ψhM
t = λnS

t
ψhS

t . (2.13)

Equations (2.8) and (2.9) are the non-arbitrage conditions for the returns to
consumption and capital. Equations (2.10) and (2.11) relate the expected
marginal value of being employed in each sector to the utility loss from the
reduction in leisure, the wage, and the continuation value, which depends
on the separation probability. Equation (2.12) states that the value of being
unemployed (rather than enjoying leisure) should equal the marginal util-
ity from leisure minus the expected marginal values of being employed in
each sector, weighted by the respective job finding probabilities and shares
of job seekers. Equation (2.13) states the choice of the share st is such that the
expected marginal values of being employed, weighted by the job finding
probabilities, are equal in the two sectors. Notice that the marginal value to
the household of an additional member employed in each sector is given by,

Vh
nMt = −Φl−ϕ

t + λctwM
t + (1− σM)λnMt, (2.14)

Vh
nSt = −Φl−ϕ

t + λctwS
t + (1− σS)λnSt. (2.15)

2.2.3 Production

We now turn to the structure of the production side in the economy and
present the optimization problem of the firms in the two sectors.

Final good

There are three goods produced in the economy. These include two interme-
diate goods, namely manufacturing and service goods (Mt and St), which are
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combined in the production of the final good Yt according to a CES technol-
ogy,

Yt =

[
γM

χ−1
χ

t + (1− γ)S
χ−1

χ

t

] χ
χ−1

, (2.16)

where 0 < γ < 1 denotes the weight attached to the manufacturing good
versus the service good and χ is the elasticity of substitution.

The three goods are sold in competitive markets and we assume that the
final good is the numeraire. Therefore, the prices of the sectoral goods equal
the marginal products,

pM
t =

∂Yt

∂Mt
= γ

(
Yt

Mt

) 1
χ

, (2.17)

pS
t =

∂Yt

∂St
= (1− γ)

(
Yt

St

) 1
χ

. (2.18)

Manufacturing intermediate good

The manufacturing good is produced by combining capital kt with employ-
ment nM

t ,

Mt =

[
ζk

α−1
α

t + (1− ζ)(nM
t )

α−1
α

] α
α−1

, (2.19)

where ζ denotes the weight attached to capital versus labor and α is the elas-
ticity of substitution.

An increase in ζ makes output more capital-intensive at the expense of la-
bor, representing in our setup an increased robot adoption (automation). The
microeconomic foundations are derived by Acemoglu and Restrepo, 2018 in
a framework where a continuum of tasks is used in production. Automa-
tion in that context is interpreted as a shift in the share of tasks that can be
produced with capital. Acemoglu and Restrepo, 2018 show how one can
aggregate the tasks to establish a production function with aggregate capital
and labor inputs (see also the discussion in Bergholt, Furlanetto, and Faccioli,
2020).

Firms maximize the discounted expected value of future profits subject
to the technology and the law of motion of employment (2.2). That is, they
take the number of workers currently employed nj

t as given and choose the
number of vacancies to post υ

j
t so as to employ the desired number of workers

next period nj
t+1. The firm also chooses the amount of capital to demand. The
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manufacturing firm solves the problem,

QM(nM
t ) = max

υM
t ,kt

{
pM

t Mt − wM
t nM

t − rtkt − κMυM
t + Et

[
Λt,t+1QM(nM

t+1)
] }

,

(2.20)
where κM denotes the marginal cost of posting a vacancy. As the house-
hold owns the firm, the term Λt,t+1 = βλct+1/λct refers to the household’s
stochastic discount factor in which λct denotes the Lagrange multiplier for
the household budget constraint and β is the household’s discount factor.

The first-order conditions with respect to vM
t and kt are,

κM = ψ
f M
t × EtΛt,t+1

pM
t+1(1− ζ)

(
Mt+1

nM
t+1

) 1
α

− wM
t+1 +

(
1− σM) κM

ψ
f M
t+1

 ,

(2.21)

rt = pM
t · ζ

(
Mt

kt

) 1
α

. (2.22)

Equation (2.21) states that the marginal cost of hiring a worker should equal
the expected marginal benefit subject to the vacancy-filling probability. The
latter includes the net value of the marginal product of labor, where ζ enters
with a negative sign, minus the wage plus the continuation value. Equation
(2.22) states that the return on capital is equal to the value of its marginal
product, where ζ enters with a positive sign.

The value of the marginal job for the firm is given by,

V f
nMt = pM

t (1− ζ)

(
Mt

nM
t

) 1
α

− wM
t +

(
1− σM) κM

ψ
f M
t

. (2.23)

Service intermediate good

In the service sector, we assume a simple production function with labor only,

St = B(nS
t )

b, (2.24)

where B denotes total factor productivity (TFP) and b is the degree of returns
to scale.

A firm operating in this sector solves the following problem,

QS
t (n

S
t ) = max

υS
t

{
pS

t St − wS
t nS

t − κSυS
t + Et

[
Λt,t+1QS

t+1(n
S
t+1)

] }
. (2.25)
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The first-order condition is,

κS = ψ
f S
t × EtΛt,t+1

[
pS

t+1b
St+1

nS
t+1
− wS

t+1 +

(
1− σS) κS

ψ
f S
t+1

]
. (2.26)

The value to the firm of a marginal job is given by,

V f
nSt = pS

t b
St

nS
t
− wS

t +

(
1− σS) κS

ψ
f S
t

. (2.27)

2.2.4 Wage bargaining

Following standard practice, the Nash bargaining problem in each sector is
to maximize the weighted sum of log surpluses,

max
wj

t

{(
1− ϑj

)
ln Vh

njt + ϑj ln V f
njt

}
,

where ϑj denotes the bargaining power of firms and Vh
njt, V f

njt
have been de-

fined above. The first-order condition with respect to wj
t is

ϑjVh
njt =

(
1− ϑj

)
λctV

f
njt

.

Through the derivations shown in the Online Appendix, we obtain the equi-
librium values for wages in the two sectors,

wM
t =

(
1− ϑM

)(
pM

t (1− ζ)

(
Mt

nM
t

) 1
α

+

(
1− σM) κM

ψ
f M
t

)
+

ϑM

λct
(Φl−ϕ

t −
(

1− σM
)

λnMt ),

(2.28)

wS
t =

(
1− ϑS

)(
pS

t b
St

nS
t
+

(
1− σS) κS

ψ
f S
t

)
+

ϑS

λct
(Φl−ϕ

t −
(

1− σS
)

λnSt ).

(2.29)

2.2.5 Resource constraint

The final good is used for consumption and investment, and also to cover
vacancy costs.

Yt = ct + it + κMυM
t + κSυS

t . (2.30)
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The derivation of the resource constraint is shown in the Online Appendix.

2.3 Relative Labor Demand and Labor Supply in

Equilibrium

In this section, we establish the equilibrium relationship between relative la-
bor demand and relative labor supply in the two sectors.

Proposition 1. In equilibrium, the sectoral ratio of labor market tightness depends
only on the bargaining power and vacancy costs in the two sectors,

θM
t

θS
t

=
ϑM

(1− ϑM)

(1− ϑS)

ϑS · κS

κM

Proof. See Appendix A.

Proposition 1 establishes that the relative labor market tightness of the two
sectors is constant in equilibrium and characterizes its level. Asymmetric
bargaining power and/or vacancy costs introduce a wedge in tightness be-
tween the two sectors. Conversely, if both the bargaining power and vacancy
costs are symmetric, tightness is equal in the two sectors. The derivation of
Proposition 1 (see the Appendix) builds on Ravn, 2008, where a relationship
between tightness and the marginal utility of consumption is derived in a
one-sector search and matching model with endogenous participation.

The relationship between relative labor supply and relative labor demand
directly follows from the proposition,

s
1− s

≡ uM

uS︸ ︷︷ ︸
Relative labor

supply

=
(1− ϑM)

ϑM
ϑS

(1− ϑS)

κM

κS ·
vM

vS︸︷︷︸
Relative labor

demand

For a given level of relative labor demand (which depends, among others,
on the degree of automation ζ), the pool of job seekers in manufacturing
increases with the relative (i) bargaining power of workers and (ii) vacancy
cost. In the second case, an increased pool of unemployed is required to com-
pensate for the higher vacancy cost when firms decide about new vacancies
so that the level of labor demand is sustained in equilibrium.

Finally, notice that the household decides how to allocate job seekers by
comparing the discounted expected values of searching in the two sectors,
ψj,hβEt

[
Vh

njt+1

]
, which, in turn, is equal to the probability of finding a job
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times the discounted expected value of being employed. The optimal value
s∗ is given by,

s∗ =


1 ψM,h

t βEt

[
Vh

nMt+1

]
> ψS,h

t βEt

[
Vh

nSt+1

]
s∗ ∈ (0, 1) ψM,h

t βEt

[
Vh

nMt+1

]
= ψS,h

t βEt

[
Vh

nSt+1

]
0 ψM,h

t βEt

[
Vh

nMt+1

]
< ψS,h

t βEt

[
Vh

nSt+1

]
In general equilibrium, we can rule out the two corner solutions. If s∗ = 1

and all the unemployed search in manufacturing, there is no production in
services. Yet, as long as the two sectoral goods are not perfect substitutes in
the final good production, the marginal product of the service good becomes
infinite, leading to an infinite wage, which is incompatible with zero labor
supply in this sector. If s∗ = 0 and all the unemployed search in services,
there is no production in manufacturing. Yet, as long as capital and labor are
not perfect substitutes in manufacturing production, the marginal product of
labor in manufacturing becomes infinite, which, again, is incompatible with
a zero supply of labor in that sector. Therefore, the only possible solution is
s∗ ∈ (0, 1).

2.4 Calibration Strategy

In this section, we describe the calibration of the initial steady state, which
we take to refer to the start year 1994 in the analysis of Dauth, Findeisen,
Suedekum, and Woessner, 2021. We calibrate the model annually to the Ger-
man economy. Table 2.1 summarizes our calibration.

Household. We use the data set built by Jordà, Knoll, Kuvshinov, Schular-
ick, and Taylor, 2019 to compute the return to capital r in Germany, equal to
5% in 1994. We set the capital depreciation rate δ equal to 4%. To choose the
value for the discount factor, we use the Euler equation in the steady state,
β = 1/(1 + r− δ). For the inverse elasticity of the intertemporal substitution
η, much of the literature uses econometric estimates between 0 and 2 (see,
e.g., Hansen and Singleton, 1983). The estimated aggregate Frisch elasticity
for Germany varies between 0.85 and 1.06 in a micro panel of men in Ger-
many from 2000 to 2013 used by Kneip, Merz, and Storjohann, 2020. We thus
set the Frisch elasticity to 0.85 (φ = 2). We have performed sensitivity anal-
ysis for different values φ = 4, 6 (see the Online Appendix and footnote 13).
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We calibrate the relative utility weight for leisure Φ to target a participation
rate of 70%.

Production. To calibrate the parameters of the aggregate production func-
tion, we follow Iftikhar and Zaharieva, 2019, setting the share of manufac-
turing output γ to 0.33 and the elasticity of substitution between the man-
ufacturing and the service goods χ to 0.3. In the manufacturing production
function, we set the elasticity of substitution between capital and labor α to
0.6. Based on a meta-regression sample, Knoblach, Roessler, and Zwerschke,
2020 estimate a long-run elasticity for the aggregate economy in the range of
0.45-0.87, noting that most industrial estimates do not deviate significantly
from the estimate for the aggregate economy. Our calibrated value is also in
line with Oberfield and Raval, 2020 who find the US manufacturing sector’s
aggregate elasticity to be in the range of 0.5-0.7. Most of the literature esti-
mates constant (or slightly decreasing) returns at the industry level (see, e.g.,
Ahmad, Fernald, and Khan, 2019 and Maioli, 2004). Therefore, we set the
parameter b, in the production function of the service good, equal to one. We
also normalize the TFP parameter B to one.

Labor Markets. To calibrate the parameters for the bargaining power of
firms in each sector, we take weighted averages of the estimates for high-
skill and low-skill workers in Iftikhar and Zaharieva, 2019. A lower bargain-
ing power for workers in the service sector is in line with the empirical ev-
idence that service workers get a lower fraction of output produced in their
sector, leading to a mild wage premium in manufacturing of around 2% in
our calibration. The same authors estimate the average job duration rate in
Germany to be 12.25 years, so we set the destruction rate in both sectors as
σ = 1/12.25 = 0.08. We set the gross replacement rate v equal to 0.6.4 For
the vacancy cost parameter, we set in both sectors κ = 0.1, which implies that
vacancy costs represent around 20% of the average wage. Using aggregate
data of the Federal Employment Agency, Iftikhar and Zaharieva, 2019 esti-
mate the elasticity of the matching function with respect to vacancies to be
0.54, which is close to 0.5, often assumed in the search and matching litera-
ture. Their estimate for the matching efficiency parameter is 0.58.

4According to the OECD, the standard rates in Germany after 2000 are 60% of the previ-
ous earnings net of tax.
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DESCRIPTION VALUE TARGET/SOURCE

HOUSEHOLD
β Discount factor 0.99 Return to capital, 5%
δ Depreciation rate 0.04 Standard calibration
Φ Relative utility from leisure 0.8 Participation Rate, 70%
φ Inverse Frisch elasticity of labor supply 2 Kneip, Merz, and Storjohann, 2020
η Inverse elasticity of intertemporal substitution 2 Hansen and Singleton, 1983

PRODUCTION
γ Share of manufacturing in total output 0.33 Iftikhar and Zaharieva, 2019
χ Manufacturing-services elasticity of substitution 0.3 Iftikhar and Zaharieva, 2019
α Capital-labor elasticity of substitution 0.8 Knoblach, Roessler, and Zwerschke, 2020
B TFP in services 1 normalization
b Degree of returns to scale in services 1 Ahmad, Fernald, and Khan, 2019

LABOR MARKET
θM, θS Bargaining power of firms 0.43, 0.6 Iftikhar and Zaharieva, 2019

µ1 Matching efficiency 0.58 Iftikhar and Zaharieva, 2019
µ2 Elasticity of matching to vacancies 0.46 Iftikhar and Zaharieva, 2019
σ Separation rate 0.08 Iftikhar and Zaharieva, 2019
κ Vacancy cost 0.1 Share of the average wage, 20%
v Replacement rate 0.6 OECD data

TABLE 2.1: Calibration

2.5 Automation and Sectoral Reallocation

In this section, we present the main results of our quantitative analysis. First,
we discuss steady-state comparative statics with respect to an increase in the
degree of automation ζ. Then, we show that the model can replicate the mag-
nitude of the decline in the ratio of manufacturing employment to service
employment in Germany between 1994 and 2014.

2.5.1 Analysis Across Steady States

Figure 2.4 depicts results for the steady-state levels of the main variables of
the model for 0.25 < ζ < 0.5, which is an empirically relevant interval.

Sectoral Reallocation of Output. A higher degree of automation ζ corre-
sponds in our model to an increased (decreased) capital (labor) intensity of
manufacturing production. Since the steady-state return to capital is con-
stant, while the steady-state return to labor can freely adjust, the capital
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FIGURE 2.4: Steady-state effects of automation in a two-sector
economy

Note: The y-axis shows steady-state levels. In each plot, the two vertical lines refer to the two steady
states that we compare in Table 2.2. In the labor share plot, the blue and red lines refer to the share in

total output of employment compensation in manufacturing and services, respectively.

increase due to a higher ζ dominates the labor decline. Therefore, manu-
facturing output increases.5 In turn, output in services also increases since
the two sectoral goods are complements in the production of the final good
(sectoral complementarity effect). In addition, as the total output increases, the
household who is the owner of capital and firms enjoys a higher income and

5The effect of an increase in ζ on manufacturing output M is expressed by the derivative:

∂M
∂ζ

=
1
α

M(1−α)

[
kα − (nM)α + ζα

∂k
∂ζ

+ (1− ζ)α
∂nM

∂ζ

]
An increase in ζ induces an accumulation of capital ( ∂k

∂ζ > 0) and a decrease in employ-

ment ( ∂nM

∂ζ > 0). The difference kα − (nM)α also matters for which effect dominates. If the
initial value of ζ is sufficiently low, the steady-state capital stock k is relatively low and labor
nM is relatively more important in the production, leading to a decrease in manufacturing
output.
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demands more of the service good (income effect). Therefore, the economy
experiences an aggregate output expansion. Overall, a higher ζ increases the
steady-state ratio of manufacturing to service output M/S and decreases the
relative price of the manufacturing good (see equations (2.17) and (2.18)).6

Consumption, Participation, and Labor Share. The positive income effect
for the household explains the increase in consumption and the decrease of
participation. Automation has a negative effect on the aggregate labor share,
which is driven by the manufacturing sector and is in line with the literature
findings on the importance of the automation mechanism for a countercycli-
cal labor share (see, e.g., Bergholt, Furlanetto, and Faccioli, 2020 and Leduc
and Liu, 2020b).

Sectoral Reallocation of Labor. Vacancies in the manufacturing sector de-
crease. Automation affects labor demand in manufacturing through two
competing channels: (a) production becomes less labor-intensive, which tends
to decrease employment (labor-intensity channel) and (b) since capital and la-
bor are complements, the increase in capital tends to increase labor demand
(capital-labor complementarity effect). Vacancies in services increase due to the
sectoral complementarity effect and the positive income effect. Total vacancies
increase as well.

The number of unemployed searchers drops in the manufacturing sec-
tor as households reduce participation and reallocate job search towards ser-
vices. The unemployment rate drops in the service sector too, but the share
of searchers increases (see blue line in Figure 2.5). Total unemployment falls.

Labor market tightness increases in both sectors. The effect on the hir-
ing rates follows from the fact that they are a positive function of tightness
(while the opposite holds for vacancy-filling rates). The impact of automa-
tion on wages in both sectors is positive, consistently with the decrease in the
vacancy-filling probabilities.

Following the sectoral reallocation of labor, employment increases in ser-
vices and falls in manufacturing in such a way that aggregate employment
remains relatively constant, in line with the empirical evidence in Dauth,
Findeisen, Suedekum, and Woessner, 2021. The pattern matches well the
one observed in Figure 2.1.7

6Recall that capital serves as input only in manufacturing production.
7To also match the levels, we would need to add capital in the service sector.
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FIGURE 2.5: The steady-state effect of automation on searchers’
share in manufacturing

Note: The y-axis shows steady-state levels. The blue line refers to the baseline model, whereas the red
line refers to a model variant where the sectoral allocation of job seekers is kept fixed.

In sum, labor markets adjust to automation through vacancy creation, sec-
toral reallocation of the unemployed, and participation. The findings also
highlight the expansionary effects of automation in the economy, namely the
aggregate output expansion and unemployment reduction.

2.5.2 The Decline of the Sectoral Labor Ratio from 1994 to

2014

The model can also replicate the magnitude of the decline in the ratio of
manufacturing employment to service employment in Germany. Specifically,
we take from the data the values of the capital share in manufacturing in
1994 and 2014, which are the start and end years in the empirical analysis
in Dauth, Findeisen, Suedekum, and Woessner, 2021.8 Following Iftikhar
and Zaharieva, 2019, we define our manufacturing sector as the aggregate
of Industries A-F in the German WZ08 industry classification. Moreover,
robots are predominantly employed in these industries. Then, we compute
the values of the degree of automation ζ that generate these two values in
our model. For a manufacturing capital share equal to 0.24 in 1994, we find
that the implied value of ζ is 0.29, while for a capital share equal to 0.36 in
2014 the implied value of ζ is 0.44 (see Table 2.2).

8EUKLEMS defines the capital share as the ratio of capital services to the value added.
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Next, we examine the steady-state values for the ratio of manufacturing
employment to service employment for these two values of ζ. The model
predicts a decline of 27% in the ratio of manufacturing employment to ser-
vice employment, which is reasonably close to the one found in the aggregate
data for the German economy (32%). Using a local labor market approach,
Dauth, Findeisen, Suedekum, and Woessner, 2021 find that, on average, em-
ployment in manufacturing falls by 16.86%, while non-manufacturing em-
ployment increases by 3.74%.9 This implies that the weighted average of the
sectoral labor ratio over the 402 local labor markets analyzed in their paper
decreases by 19.85%.10 Therefore, our model’s prediction about a decline
of 27% lies between the value estimated using our aggregated data (32%)
and the statistics for local labor markets (nearly 20%) in Dauth, Findeisen,
Suedekum, and Woessner, 2021.

Variable Notation 1994 2014 Change: model Change: data

Degree of automation ζ 0.293 0.446 52% N/A

Manufacturing capital share rK
pM M 0.236 0.340 44% 44%

Labor ratio: manuf./service nM

nS 0.576 0.420 -27% -32%

TABLE 2.2: Comparison of two steady states (Germany 1994
and 2014)

2.6 What Determines the Extent of Sectoral Real-

location?

In this section, we investigate the role of key parameters and features of the
model, namely (i) the elasticity of substitution between the sectoral goods, (ii)
the elasticity of substitution between capital and labor, and (iii) the sectoral
mobility of job seekers.

2.6.1 Elasticities of Substitution

Between the Sectoral Goods. The elasticity of substitution between the sec-
toral goods χ matters both for the sectoral reallocation of output and for the

9See Table 1 in Dauth, Findeisen, Suedekum, and Woessner, 2021.
10We computed the rate of change in nM

nS as: n̂M

nS = 1+n̂M

1+n̂S
− 1, where x̂ = x2014−x1994

x1994
.
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sectoral reallocation of labor. Figure 2.6 compares the change in key sectoral
ratios of variables as the degree of automation ζ increases from an initial
steady state (with ζ = 0.25) for a higher elasticitity χ and for our benchmark
calibration. Additional variables and the same results in levels of these ra-
tios are included in the Online Appendix. Relative to the baseline calibration
(χ = 0.3), when we increase the elasticity (χ = 1.5), the sectoral output ratio
M/S changes by more due to automation because it is easier now to substi-
tute services by manufacturing intermediate goods in the final good produc-
tion.11 Consequently, an increase in χ mitigates the effect of automation on
the sectoral reallocation of labor, vacancies, and job seekers (see the plots of
the sectoral labor ratios nM/nS, vM/vS, and uM/uS). In line with these re-
sults, the drop in the wage premium in manufacturing wM/wS becomes less
pronounced.

Between Capital and Labor. The elasticity of substitution between capital
and labor matters for the sectoral reallocation of labor. Figure 2.6 also de-
picts results for a lower elasticitity of substitution between capital and labor
α. Through the capital-labor complementarity channel, a decrease in α tends
to dampen the automation-driven sectoral reallocation of vacancies, job seek-
ers, and labor as well as the drop in the wage premium in manufacturing (see
the plots of the sectoral labor ratios vM/vS, uM/uS, nM/nS, and wM/wS). It
also affects the sectoral price ratio (pM/pS) reaction to automation.

2.6.2 Sectoral Mobility of Job Seekers

Next, we explore the extent to which shutting down the reallocation of job
seekers between the two sectors affects our findings. We examine the com-
parative statics with (a) endogenous sector-specific search and (b) fixed sec-
toral shares of job seekers by keeping the share of searchers in manufacturing
s equal to the value it attains endogenously in the initial calibrated steady
state of Section 5.2 ζ = 0.293 (see Figure 2.5). In other words, equation (2.13)
is no longer used. Hence, although the number of employees per sector can
evolve separately through the dynamics of vacancy postings, matches, and
participation, households cannot freely reallocate job seekers between sec-
tors.

With a fixed sectoral allocation of job seekers, as we move from a steady
state with ζ = 0.293 to a steady state with ζ = 0.446 (in line with Table 2.2),

11As shown in the Online Appendix, even when the two goods are imperfect substitutes
(χ = 1.5), output in services increases due to the income effect.
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FIGURE 2.6: Steady-state effects of automation in a two-sector
economy: Different elasticities of substitution between capital

and labor (α = 0.7) and between the two goods (χ = 1.5)

Note: All the plotted variables are normalized to 0 in the steady state with ζ = 0.25. We denote the
ratios of manufacturing to services variables as follows: M/S for output, pM/pS for prices,

wM/wS for wages, nM/nS for labor, vM/vS for vacancies, and uM/uS for job seekers.
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FIGURE 2.7: Steady-state effects of automation with and with-
out sectoral mobility

Note: The y-axis shows steady-state levels. The blue line refers to the baseline model, whereas the red
line refers to a model variant where the sectoral allocation of job seekers is kept fixed.

total employment changes even less than with endogenous allocation (see
Figure 2.7).12 If job seekers cannot move, the unemployment rate in manu-
facturing increases with ζ. At the same time, the negative effect on the un-
employment rate in services becomes sharper since without the reallocation
of job seekers there is less competition in this labor market. Yet, differences
are not very large in magnitude.

12Figure 2.7 omits the output and labor share variables as the differences between the two
model variants are minimal. Results are available upon request.
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The sectoral mobility of job seekers also matters for the effect of automa-
tion on vacancies: under fixed search, the impact on manufacturing vacan-
cies becomes more negative, while the positive effect on vacancies in services
is reinforced. This result is explained by the effects on sectoral prices, which,
in turn, suggest that the sectoral reallocation of output is somewhat smaller
than in the baseline model.13

2.7 Conclusion

The paper studies the sectoral impact of automation through the lens of a
general equilibrium model with matching frictions, endogenous participa-
tion, and two production sectors. In the model, as in empirical evidence from
Germany (see Dauth, Findeisen, Suedekum, and Woessner, 2021), automa-
tion induces firms to create fewer new vacancies and job seekers to search
less in the robot-exposed sector. Analysis across steady states shows that the
reduction in manufacturing employment from automation can be offset by
the increased service employment, thus leaving aggregate employment un-
affected. The model does a good job in replicating (a) qualitatively the em-
pirical evolution of employment and employees’ compensation (as a share of
GDP) in manufacturing and services, and (b) the magnitude of the decline in
the ratio of manufacturing employment to service employment from 1994 to
2014. Our findings also highlight the expansionary impact of automation on
aggregate output.

Our model can be extended along several dimensions. For instance, the
good produced in the automated sector (manufacturing) is, in fact, a trad-
able good. One plausible extension could therefore be to consider the sec-
toral impact of automation in an open economy framework. Another inter-
esting avenue for further research would be to introduce skill heterogeneity
and capital-skill complementarity (see, e.g., Dolado, Motyovszki, and Pappa,
2020). Such a setup could capture the idea that robots are complements with
high-skill workers but substitutes for low-skill workers, allowing to study
implications for inequality. We leave these topics for future research.

13In the Online Appendix, we also show results for different values of the parameter gov-
erning the Frisch elasticity of labor supply (φ = 4, 6). A lower value of the Frisch elasticity
(higher value of φ) matters for the steady-state levels of the variables but without affecting
our main results.
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Chapter 3

Common Ownership and
Automation

With Dennis HUTSCHENREITER

Abstract

We study the effect of increasing common ownership on au-

tomation using a task-based model of automation. In a Cournot

model we show that automation increases (decreases) with

common ownership if the elasticity of capital supply is smaller

(larger) than the elasticity of the labor supply function in the

industry.
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3.1 Introduction

Common ownership of publicly traded firms and the automation of tasks
previously performed by workers are both rising phenomena in developed
economies.

Backus, Conlon, and Sinkinson, 2019 build a measure of common owner-
ship and document that it has tripled between 1980 and 2017 among the firms
in the S&P 500. Over the same period, the 10 largest institutional investors
have quadrupled their ownership in U.S. stocks and, by the end of 2016, they
managed 26.5% of total equity assets (Ben-David, Franzoni, Moussawi, and
Sedunov, 2016). Economic theory suggests that common ownership of firms
competing in the same product market can reduce competition, pushing such
markets toward monopolistic outcomes, with implications on consumers’
welfare.1 Azar, Raina, and Schmalz, 2019 and Azar, Schmalz, and Tecu, 2018
show that common ownership has indeed lead to anti-competitive behavior,
causing higher prices and less output in the Airlines and Banking industries,
respectively.

The global operational stock of industrial robots rose by about 65% be-
tween 2013 and 2018. Frey and Osborne, 2017 estimate that 47% of United
States employment is at risk because of automation technologies, while Arntz,
Gregory, and Zierahn, 2016 find that 9% of jobs are at risk in OECD coun-
tries. A growing number of papers study the effect automation on wages,
employment, welfare and inequality. For example, Acemoglu and Restrepo,
2020 find that each robot installed in the US replaces six workers and Ace-
moglu, LeLarge, and Restrepo, 2020 find that robot adoption has negative ef-
fects on the French labor share and employment. On the other hand, Dauth,
Findeisen, Suedekum, and Woessner, 2021 do not find adverse effect of robot
penetration on total employment in Germany.

In this paper, we investigate the relationship between common ownership
and automation. In particular, we study the effect of common ownership on
firms’ adoption decision of automation technologies.

To this end, we combine a Cournot duopoly model with a task-based
model of production where capital and labor are used as inputs. Firms face
an aggregate demand function and set quantities, while they are price takers
in the inputs markets. Firms make decision taking into account the profit of
the other firm, given an exogenous degree of common ownership.

1Backus, Conlon, and Sinkinson, 2019; Baker, 2015; Posner, Scott Morgan, and Weyl, 2016;
Macho-Stadler and Verdier, 1991; Anton, Ederer, Gine, and Schmalz, 2018
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We compute comparative statics with respect to the degree of common
ownership and show that the effect on automation depends on the relation-
ship between the elasticities of the supply functions. automation increase
(decreases) with common ownership if the elasticity of the capital supply is
smaller (larger) than the elasticity of the labor supply function in the indus-
try.

The intuition behind this result is the following: increase in common own-
ership decreases the equilibrium level of production without affecting the
cost minimization problem of the firm. In other words, the relative demand
curve of the inputs of production does not react to changes in common own-
ership. As the demand for both inputs decrease, the associated decrease in
prices determines which one between capital and labor is relatively cheaper.
The effect on the price ratio ultimately determines the effect on the automa-
tion decision.

The remainder of this paper is organized as follows. Section 3.2 summa-
rizes the relevant literature. Section 3.3 presents our model and in Section
3.4 the effect of common ownership on automation is analyzed. Section 3.5
concludes.

3.2 Related Literature

Our paper is related to a broad set of recent research in economics. First, it
relates to the debate on the impact of common ownership on firms’ objec-
tive function and actual firm behavior. Institutional ownership is an upris-
ing matter in many countries and industries. Large institutional investors
holding diversified portfolios lead to significant overlaps in the shareholder
base of companies. In many industries in the U.S., funds as BlackRock, Van-
guard, Fidelity or State Street are top shareholders in the main companies
(Ben-David, Franzoni, Moussawi, and Sedunov, 2016). As another exam-
ple, in 2008 BlackRock became the largest investor in German publicly listed
companies, holding a value of around 20 billion U.S. dollars. By 2015 its
holdings had more than quadrupled in value (Seldeslachts, Newham, and
Banal-Estanol, 2017). The enormous growth in institutional investment, e.g.
by pension funds, mutual funds, asset managers and endowments, that has
not only been caused by the rise in passive investment strategies, has led
to huge overlaps in the shareholder base, i.e., common ownership, of firms
which are natural competitors in their markets. The effect of increasing com-
mon ownership on product market competition and consumer welfare as
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well as its implications for antitrust policy is investigated by academics in
recent years (Backus, Conlon, and Sinkinson, 2019; Baker, 2015; Posner, Scott
Morgan, and Weyl, 2016). However, the theoretical and empirical evidence
of the impact of common ownership from the economic literature is still in-
conclusive.

The engagement of institutional investors in companies has possible pros
and cons. On the one hand, institutional investors may foster innovation ei-
ther by overcoming moral hazard problems through better monitoring (Aghion,
Van Reenen, and Zingales, 2013) or, when they hold shares in the main com-
panies of an industry, through the internalization of externalities in the pres-
ence of sufficiently large technology spillovers (López and Vives, 2019). In
this regard, the paper by Anton, Ederer, Gine, and Schmalz, 2018 shows some
evidence that common ownership on the firm-pair level might have positive
or negative effects. Firms that produce products that are close in product
market space (i.e., a high product market rivalry) also compete by means
of costly investments in innovation. As common ownership leads firms to
internalize the negative externality that a firm exerts on the other by inno-
vating (business stealing effect) and, therefore, increasing its market share,
firms with higher common ownership reduce their effort to innovate and
thereby compete less aggressively. Contrarily, firms that are close in technol-
ogy space (similar production technologies) may exert a positive externality
on each other when innovating due to knowledge spillovers. common own-
ership will incentivize firms to partially internalize this positive externality
leading to higher R&D investments. Therefore, they claim that the overall
effect of common ownership depends on the relative strength of the effects
caused by the closeness in technology space and product market rivalry and
find some evidence for this using the measures of product market rivalry and
technology spillovers proposed by Bloom, Schankerman, and Van Reenen,
2013.

On the other hand, the diversification practices of large institutional in-
vestors may result in anticompetitive behavior, causing higher prices and less
output in some industries, as documented recently in the Airlines’ and Bank-
ing industries (Azar, Raina, and Schmalz, 2019; Azar, Schmalz, and Tecu,
2018). Moreover, commonly owned firms seem to coordinate and collaborate
more explicitly in the product market through within-industry joint ventures
or strategic alliances (He and Huang, 2017). This coordination is a signal of
softer competition among firms.

Macho-Stadler and Verdier, 1991 and Anton, Ederer, Gine, and Schmalz,
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2018 study a potential mechanism through which common ownership leads
to lesser competition. They show theoretically or empirically, respectively,
that overlapping ownership may lead to a decrease in the alignment between
managers’ compensation with firm profits and to less relative performance
pay. Thus, common owners give their managers less incentives to compete
aggressively.

It has also been shown that common ownership plays a major role in
mergers and acquisitions (M&As). On the one hand, Brooks, Chen, and Zeng,
2018, using various different measures of Institutional Cross-Ownership be-
tween acquirers and target firms, show that this type of common ownership
leads to an increase in the probability of a merger of these firms and affects
the outcomes of M&As, reducing deal premiums, increasing stock payment
in M&A transactions, and lowering the completion probabilities of deals with
negative acquirer announcement returns. Deals with high institutional cross-
ownership are also found to have lower transaction costs which can be at-
tributed to institutional investors’ ability to decrease asymmetric informa-
tion problems if they hold shares in both, the acquirer and the target. On
the other hand, institutional owners may not only gain from M&As due to
their holdings in acquirers and targets, but also through their ownership of
rival firms, that are not involved in the acquisition deal. As economic theory
suggests, e.g. in the symmetric Cournot model, the outsiders in the industry
gain from a merger of two competitors. Anton, Azar, Gine, and Lin, 2020
find that acquirers’ institutional shareholders ownership of outsider compa-
nies in the same industry is negatively associated with acquirer CAR and
deal synergy, but positively associated with the completion probability of
bad deals and that announcement losses are largely mitigated for the aver-
age acquirer shareholder when accounting for wealth effects on their stakes
in the rival firms. Both of these studies confirm that common ownership ef-
fectively changes firm behavior.

Since common ownership is an economy-wide phenomenon, Azar and
Vives, 2019; Azar and Vives, 2020 analyze the macroeconomic implications of
common ownership developing models of oligopolistic markets with share-
holder overlap in competing firms. They show that an increase in common
ownership is associated with an decrease in the labor share, the capital share,
rising profits and can also be used to explain the concentration of markets
by shifting production from less to more productive firms in a setting in
which competitors are heterogeneous in productivity and therefore partially
explaining the trends described by Autor, Dorn, Katz, Patterson, and Van
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Reenen, 2020 and De Loecker, Eeckhout, and Unger, 2020. The majority of
paper in this literature focus on the effect of common ownership on the com-
petition and on the product markets while we study the effect on the produc-
tion inputs use.

A second strand of literature related to our paper is the study of the im-
pact of automation on wages, employment, interest rates and income shares.
In an intent to predict the future, Frey and Osborne, 2017 estimate that 47%
of United States employment is at risk to be automated relatively soon, i.e.,
within the next two decades. Applying the methodology of Frey and Os-
borne, 2017 to more detailed task-based data, Arntz, Gregory, and Zierahn,
2016 find that on average 9% of jobs are automatable in OECD countries,
ranging from 6% in Korea to 12% in Australia. Another branch of the au-
tomation literature tries to estimate the effects of robot penetration on em-
ployment and wages from historical data. On the one hand, Acemoglu and
Restrepo, 2020 find a negative effect of robot penetration in the US labor
markert, in particular they find that one more robot per thousand workers
reduces the employment to population ratio by about 0.2 percentage points
and wages by 0.42 percent. Acemoglu, LeLarge, and Restrepo, 2020 for a
sample of french manufacturing firms find that the adoption of robots by a
small set of large market share firms has overall negative effects on the labor
share and employment. On the other hand, Dauth, Findeisen, Suedekum,
and Woessner, 2021 do not find adverse effects on robot penetration for work-
ers in Germany, but rather that automation leads to higher quality jobs for
young employees and that young workers substitute away from vocational
training towards colleges and universities in their education choices. We con-
tribute to the automation literature by showing that common ownership has
a potential impact on the incentives to adopt automation technologies.

3.3 Model

We consider a Cournot duopoly in which two firms, j = 1, 2, face an aggre-
gate demand function for a homogeneous good and simultaneously set the
quantity they want to produce in order to maximize their objective function.
The aggregate inverse demand function for the good is given by

p =

a−Y, if Y < a

0, otherwise,
(3.1)
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where a ∈ R++ is the market size and Y ∈ R+ is the aggregate quantity
produced by the two firms, i.e.,Y = Y1 + Y2.

O’Brien and Salop, 1999, López and Vives, 2019 show for a range of differ-
ent ownership structures (e.g. silent financial interest, proportional control,
and cross-ownership) that, when investors’ stakes are symmetric, firms’ ob-
jective function can be written as

φj = πj + λ ∑
k 6=j

πk, (3.2)

where πj is the profit of firm j and λ ∈ [0, 1] is the profit weight firm j puts
on its rivals’ profits in order to maximize a weighted average of the value of
its shareholders’ portfolios. An increase in common ownership is modeled
as an increase in λ in our analysis. Notice, that λ = 0 corresponds to inde-
pendently maximizing firms, whereas λ = 1 corresponds to a cartel or a full
merger, respectively, i.e., maximizing industry profits.

The firms employ capital and labor as inputs. For simplicity we assume
that the supplies of these two factors are iso-elastic and given by inverse
supply functions r = Kψ and w = Lβ, with ψ, β > 0. We assume that firms
behave as price takers in the factor markets.2

Each firm has access to the same set of technologies combining quantities
of a continuum of different tasks x ∈ [0, 1]. In particular, the production
function of firm j is given by

Yj = exp
(∫ 1

0
ln[yj(x)]dx

)
(3.3)

where yj(x) is the quantity of task x employed in production. Each task in
turn is produced according to the following intermediary production func-
tion,

yj(x) = γm(x)mj(x) + γ`(x)lj(x) (3.4)

in which quantities of machines mj(x) and labor lj(x) are perfect substitutes,
and γm(x) and γ`(x) are the productivity schedules of capital and labor over
the task measure. We assume that firms can convert one unit of capital into
one unit of machines.

2Notice that the price taking assumption in the input markets can be motivated by having
a large number of identical duopolies sharing the same inputs markets and facing an aggre-
gate demand function. If common ownership changes in the whole economy, our results
derived from the analysis of a single duopoly would be the same in a set-up with a large
number of duopolies.
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The profit function of firm j is given by

πj = (a−Yj −Y−j)Yj −
∫ 1

0
ρ(x)yj(x)dx, (3.5)

where ρ(x) is the marginal cost (price) of the intermediary good (task) pro-
duced by capital or labor. The economic price ρ(x), i.e.,the marginal cost of
producing a task x is given by

ρ(x) =


r

γm(x) , if produced with capital.
w

γl(x) , if produced with labor.
(3.6)

Moreover, we assume that γ`(x)/γm(x) is continuously differentiable and
that tasks are sorted such that

d
dx

(
γ`(x)
γm(x)

)
> 0. (3.7)

This implies that labor has a comparative advantage in higher-indexed tasks.

3.3.1 Model’s solution

Given a degree of internalization of the rivals profit, or, a degree of common
ownership, λ ∈ [0, 1], each firm j = 1, 2 maximizes its objective function
(3.2), while taking as given the rivals choices (Cournot assumption). We seek
a symmetric Nash equilibrium in pure strategies. A strategy profile of the
Cournot Game is a tuple (Y1, Y2) ∈ R2

+. A task x is produced with capital
(labor) if the marginal cost given by (3.6) of producing with capital is lower
(higher) than producing this task with labor (capital). Hence, given the factor
prices, the productivity schedules and the assumption in (3.7), there exists a
threshold Ij ∈ [0, 1], such that all tasks x < Ij are produced with capital and
all tasks x ≥ Ij are produced with labor. In particular, Ij solves the following
equation:

γm(Ij)

γ`(Ij)
=

r
w

. (3.8)

The effective cost of producing task Ij with capital is equal to the effective
cost of producing it with labor. We refer to an increase in Ij as automation,
i.e., capital replacing labor in the performance of some tasks. We show in
the Appendix (section B.1), that the following production function can be
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derived:

Yj = Gj

(
Kj

Ij

)Ij
(

Lj

1− Ij

)1−Ij

, (3.9)

with,

Gj = exp

(∫ Ij

0
ln (γm(x)) dx +

∫ 1

Ij

ln (γ`(x)) dx

)
. (3.10)

The crucial difference between (3.9) and a standard Cobb-Douglas produc-
tion function is that the input shares are not exogenous, but react to changes
in input prices. Gj, total factor productivity, is a function of the productivity
schedules and of the degree of automation, Ij.

Since both input markets are competitive, we can use the dual problem to
compute the conditional factor demands and the total cost function of each
firm. Given factor prices, the degree of automation as shown above is con-
stant and, therefore, the conditional demands only depend on the output of
each firm. Notice, as well, that when the firm minimizes cost, it does not
take into account its effect on factor prices and, therefore, ignores the effect
of its factors demands on the profit of its rival, i.e., its common ownership
incentives. Therefore, we can state the following Lemma.

Lemma 1. The conditional demands of capital and labor are,

Kj(Ȳj, r, w) =
Ij

Gj
(w

r
)Ij−1 · Ȳj (3.11)

Lj(Ȳj, r, w) =
(1− Ij)

Gj
(w

r
)Ij
· Ȳj (3.12)

Given these conditional factor demands, the cost function of the firms is,

C(Ȳj, r, w) =
rIj w1−Ij

Gj
· Ȳj. (3.13)

Proof. See Section B.2 of the Appendix.

As can be seen, given the constant return to scale of the production func-
tion, the total cost of the firm is linear in output and the marginal cost is
constant. As explained above intuitively, for any output level, the cost min-
imizing degree of automation is given by (3.8). We show formally in the
appendix (Section B.3) that (3.8) can be derived from the minimization of the
marginal cost of the firm.
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Now, we can proceed to write down the objective function (3.2) using
firms’ profits (3.5) and the cost function (3.13). Firm j solves the following
program:

max
Yj

(a−Yj −Y−j)Yj −
rIj w1−Ij

Gj
Yj + λ

{
(a−Yj −Y−j)Y−j − rK−j − wL−j

}
,

subject to

Ij solves
γm(Ij)

γ`(Ij)
=

r
w

.

This program has the following solution:

Yj =
1
2

(
a− (1 + λ)Y−j −

rIj w1−Ij

Gj

)
≡ BRj(Y−j), (3.14)

where, BR(Y−j) is the best response of firm j given the actions of firm −j.
By plugging expression (3.14) into the conditional factor demands (3.11) and
(3.12), we obtain the solution functions of the optimal input demands Kj(Ȳ−j, r, w)

and Lj(Ȳ−j, r, w). It is clear from equation (3.14) that, an increase in common
ownership, λ, decreases the optimal output of the firm given the output of
the rival. From there it follows that it decreases also conditional factor de-
mands.

Nash Equilibrium of the production side

We now derive the Nash equilibrium of the production side, by solving for
the fixed point of the two best-response functions. Notice that, given prices,
Ij = I, Gj = G for j = 1, 2. In the symmetric Nash equilibrium, Yj = Y−j, and
we can solve for Yj from expression (3.14) and obtain,

YNE
j =

1
3 + λ

(
a− rIw1−I

G

)
, (3.15)

KNE
j =

I

G
(w

r
)I−1 ·Y

NE
j (3.16)

LNE
j =

(1− I)

G
(w

r
)I ·Y

NE
j . (3.17)
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Definition of general equilibrium

An equilibrium is a vector of prices (w, r) and quantities (Yj, Kj, Lj) for j =
1, 2, such that

1. Prices are given by the inverse supply functions

w = Lβ, r = Kψ.

2. The firms compete à la Cournot with common ownership in the prod-
uct market, i.e., for j = 1, 2

Yj = YNE(w, r),

Kj = KNE(w, r),

Lj = LNE(w, r).

3. Markets clear, i.e., for j = 1, 2

2Yj = Y,

2Kj = K,

2Lj = L.

3.4 Effect of common ownership on automation

The effect of increasing common ownership on the degree of automation is
described in the following proposition:

Proposition 2. The effect of common ownership on automation depends on the re-
lationship between the elasticities of the inputs supply functions. In particular, we
have

∂Ij

∂λ
:


> 0 if ψ− β > 0,

= 0 if ψ− β = 0,

< 0 if ψ− β < 0.

(3.18)

Proof. We first consider the effect of increasing common ownership on factors
demand, given prices. As already explained, it is easy to see from equations
(3.15), (3.16) and, (3.17), that an increase in common ownership decreases
the demand for inputs. Importantly, however, common ownership does not
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change the relative demand curve. By taking the ratio of (3.16) and (3.17) we
obtain,

Kj

Lj
=

I
( r

w
)

1− I
( r

w
) w

r
(3.19)

where we made explicit that I, the degree of automation, depends on prices.
The interpretation of this is very straightforward. The degree of common
ownership does not affect the optimal allocation of inputs given factor prices.
In other words, common ownership does not change the cost-minimization
problem of the firm. As common ownership increases, the firms decrease the
demand for inputs, keeping constant the relative demand. To understand the
effect of common ownership on the input price ratio in equilibrium, we need
to consider the relative supply curve. We take the ratio of the inverse supply
functions r = Kψ and w = Lβ and we obtain,3

r
w

=
Kψ

Lβ
=

(
K
L

)ψ

Lψ−β. (3.20)

Given symmetry, the aggregate relative demand curve is equal to the relative
demand curve of firm j.4 The effect on the equilibrium price ratio depends
on the relationship between the elasticities of the supply functions, ψ and β.
In particular, we have,

∂ (r/w)

∂λ
:


< 0 if ψ− β > 0,

= 0 if ψ− β = 0,

> 0 if ψ− β < 0.

(3.21)

As the automation decision depends only on the price ratio (see (3.8)), and
because of the assumption (3.7), we obtain the result in (3.18) for the effect of
an increase in common ownership on automation.

A graphical representation of the effect of common ownership on equilib-
rium is presented in Figure 3.1. We plot the curve for the case of ψ ∈ (0, 1)

3Or, alternatively,
r
w

=

(
K
L

)β

Kψ−β.

4Formally,
Kd

Ld =
Kd

1 + Kd
2

Ld
1 + Ld

2
=

2Kd
1

2Ld
1
=

Kd
1

Ld
1

.
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K
L

r
w

REL. DEMAND

r
w = I

(1−I)

(K
L
)−1

r
w =

(K
L
)ψ (

L1)ψ−β

r
w =

(K
L
)ψ (

L2)ψ−β

REL. SUPPLY
1

2

FIGURE 3.1: Graphical representation of the effect of an increase
in common ownership on equilibrium. The curves are drawn
assuming that ψ ∈ (0, 1) and ψ > β. The two equilibria de-
picted are characterized by a different value of common own-
ership with λ1 < λ2. As explained in the text, a higher value of
common ownership implies a lower equilibrium value of pro-

duction and input use, i.e, L2 < L1.

and ψ− β > 0. By looking at the Figure, it is clear that an increase in common
ownership, somehow counter-intuitively, shifts the relative supply curve.

To sum up, an increase in common ownership decreases the demand for
production inputs while keeping the relative demand unchanged. There-
fore, the percentage change of the demanded input is the same for capital
and labor. If the elasticities of the two supply functions are the same, the per-
centage decreases of the two prices are also equal and the price ratio is not
affected by an increase in common ownership. Consequently, the degree of
automation is also unaffected by common ownership. On the contrary, if one
price decreases proportionally more than the other, the price ratio changes
with common ownership. Our model predicts that an increase in common
ownership increases automation if the elasticity of the inverse supply func-
tion of capital is greater than the elasticity of the inverse supply function of
labor. Equivalently, if the elasticity of the supply function of capital is lower
than the elasticity of the supply function of labor, the incentives to automate
increases with rising common ownership.
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3.5 Conclusion

We study how increasing common ownership, a rising phenomenon in many
countries, affects automation technology adoption. We develop a simple
Cournot duopoly model with overlapping ownership of firms and endoge-
nous automation decision. We find that the effect only depends on the rela-
tionship between the elasticities of the supply functions of capital and labor.
The interpretation of this result is straightforward. Increasing common own-
ership decreases the demands of capital and labor but does not affect the rela-
tive demand curve. The elasticities of the inverse supply functions, therefore,
determine which price decreases the most and the effect on the price ratio in
equilibrium. The effect on the equilibrium price ratio determines the effect
of common ownership on automation.
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Appendix A

Appendix: Chapter 2

A.1 Proof of Proposition 1

Proof. From the maximization problem of the household we have,

Φl−ϕ
t = λnMt ψ

hM
t st + λnstψ

hS
t (1− st) + λctb̄t, (A.1)

and
λnMt ψ

hM
t = λnSt ψ

hS
t . (A.2)

We can substitute (A.2) into (A.1) and obtain,

Φl−ϕ
t = λnSt ψ

hM
t + λctb̄t,

or alternatively we can get,

Φl−ϕ
t = λnSt ψ

hS
t + λctb̄t,

which states that the marginal utility of leisure is equal to the value of being
unemployed. The latter in turn is equal to the utility value of the unemploy-
ment benefit plus the probability of finding a job times the value of being
employed. We invert these equations and obtain,

λnMt =
Φl−ϕ

t − λctb̄t

ψhM
t

,

and

λnSt =
Φl−ϕ

t − λctb̄t

ψhS
t

.

The values of an additional unit of employment in the two sectors are,

Vh
nMt = λctwM

t −Φl−ϕ
t +

(
1− σM

)
λnMt ,
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and
Vh

nSt = λctwS
t −Φl−ϕ

t +
(

1− σS
)

λnst.

The Lagrange multipliers λnM and λnS are equal to,

λnMt = βEt

[
λc,t+1wM

t+1 −Φl−ϕ
t+1 + λnMt+1 (1− σM)

]
,

and
λnSt = βEt

[
λc,t+1wS

t+1 −Φl−ϕ
t+1 + λnst+1(1− σS)

]
.

Therefore, we can write,

λnSt = βEt

[
Vh

nSt+1

]
, (A.3)

and
λnMt = βEt

[
Vh

nMt+1

]
. (A.4)

Consider now the problems of the two representative firms where the first-
order conditions with respect to vacancies are given by,

κM

ψ
f M
t

= EtΛt,t+1

pM
t+1(1− ζ)

(
Mt+1

nM
t+1

) 1
α

− wM
t+1 +

(
1− σM) κM

ψ
f M
t+1

 ,

and
κS

ψ
f S
t

= EtΛt,t+1

[
pS

t+1b
St+1

nS
t+1
− wS

t+1 +

(
1− σS) κS

ψ
f S
t+1

]
.

The marginal value of an extra unit of employment in period t for each sector
is,

V f
nMt = pM

t (1− ζ)

(
Mt

nM
t

) 1
α

− wM
t +

(
1− σM) κM

ψ
f M
t

,

and

V f
nSt = pS

t b
St

nS
t
− wS

t +

(
1− σS) κS

ψ
f S
t

.

Therefore, we can write,

κM

ψ
f M
t

= EtΛt,t+1

[
V f

nMt+1

]
, (A.5)

and
κS

ψ
f S
t

= EtΛt,t+1

[
V f

nSt+1

]
.
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Recall that the first-order conditions of the wage bargaining problems are,

ϑMVh
nMt =

(
1− ϑM

)
λctV

f
nMt, (A.6)

and
ϑSVh

nSt =
(

1− ϑS
)

λctV
f

nSt.

By evaluating equation (A.6) for the next period, multiplying by β
λc,t

, and
taking expectations we obtain,

ϑM

λc,t
βEt

[
Vh

nMt+1

]
=
(

1− ϑM
)

EtΛt,t+1

[
V f

nMt+1

]
.

Substituting (A.4) and (A.5) we get,

ϑM

λc,t

(
Φl−ϕ

t − λctb̄t

)
ψhM

t
=
(

1− ϑM
) κM

ψ
f M
t

,

and, after rearranging terms, we obtain,

θM
t =

ϑM

1− ϑM

(
Φl−ϕ

t − λctb̄t

)
κM .

Similarly for the service sector, we have,

θS
t =

ϑS

1− ϑS

(
Φl−ϕ

t − λctb̄t

)
κS .

These relations are similar to the the linear relationship between labor market
tightness and the marginal utility of consumption derived by Ravn, 2008 in
a one-sector search and matching model with endogenous participation. By
taking the ratio of tightness in the two sectors, we obtain the relationship of
Proposition 1.

θM
t

θS
t

=
ϑM

1−ϑM

ϑS
1−ϑS

· κS

κM .
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Appendix: Chapter 3

B.1 Derivation of of the production function (3.9)

The Lagrangian of the cost minimization problem given the production func-
tion (3.3) and the task-specific production functions (3.4) as well as the opti-
mal threshold I given in (3.8) can be written as

L({m(x)}I
x=0,{l(x)}1

x=I , µ)

=
∫ I

0
rm(x)dx +

∫ 1

I
wl(x)dx (B.1)

+ µ

{
Ȳ− exp

(∫ I

0
ln[γm(x)m(x)]dx

)
exp

(∫ 1

I
ln[γl(x)l(x)dx]

)}
,

where Ȳ is any fixed production level and µ is the Lagrange multiplier. The
program (B.1) yields the following first-order conditions:

m(x) =
µȲ
r

, ∀ x < I,

(B.2)

l(x) =
µȲ
w

, ∀ x ≥ I,

(B.3)

Ȳ = exp
(∫ I

0
ln[γm(x)m(x)]dx

)
exp

(∫ 1

I
ln[γl(x)l(x)dx]

)
. (B.4)

Notice that within each set of tasks [0, I) and [I, 1] the same amount of
labor and machines is employed. Assuming that firms can convert one unit
of capital into one unit of machines, the total demands of capital and labor
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by firm j in order to produce Ȳ are given by

Kj =
∫ Ij

0
mj(x)dx =

µȲ
r

Ij, (B.5)

Lj =
∫ 0

Ij

lj(x)dx =
µȲ
w

(1− Ij). (B.6)

Using (B.3-B.6) and defining

Γm,j =
∫ Ij

0
ln γm(x)dx

Γl,j =
∫ 1

Ij

ln γl(x)dx,

we can rewrite firm j’s production function as

ln Ȳj =
∫ Ij

0
ln[γm(x)mj(x)]dx +

∫ 1

Ij

ln[γl(x)lj(x)]dx

= Γm,j + Γl,j +
∫ Ij

0
ln[mj(x)]dx +

∫ 1

Ij

ln[lj(x)]dx

= Γm,j + Γl,j +
∫ Ij

0
dx ln

[
µȲj

r

]
+
∫ 1

Ij

dx ln

[
µȲj

w

]

= Γm,j + Γl,j + Ij ln

[
µȲj

r

]
+ (1− Ij) ln

[
µȲj

w

]

= Γm,j + Γl,j + ln

(Kj

Ij

)Ij
+ ln

( Lj

1− Ij

)1−Ij


Therefore, firm j’s output is given by

Yj = Gj

(
Kj

Ij

)Ij
(

Lj

1− Ij

)1−Ij

, (B.7)

where G = exp[Γm,j + Γl,j].
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B.2 Derivation of conditional factor demand and

cost function of the firms

We omit the sub-index j for simplicity. Given Ȳ, the cost minimization of the
firm is,

min
{K,L}

rK + wL + µ

[
Ȳ− G

(
K
L

)I ( L
1− I

)1−I
]

.

The first order condition with respect to K is,

r = µȲ
I
K

,

and, with respect to L is

w = µȲ
1− I

L
.

To obtain the conditional relative demand, we take the ratio of the two pre-
vious expressions,

r
w

=
I

1− I
L
K

.

With this, we can express the demand for capital with respect to the demand
for labor. By plugging this expression in the production function we obtain,

Ȳ = G
(w

r

)I L
1− I

.

Solving for L, gives us the conditional factor demand for labor,

L(Ȳ, r, w) =
(1− I)

G
(w

r
)I · Ȳ.

By applying similar steps, we derive the conditional factor demand for capi-
tal,

K(Ȳ, r, w) =
I

G
(w

r
)I−1 · Ȳ.

By using the expressions for the conditional factor demands, we obtain the
expression for the cost function,

C(Ȳ, r, w) = r · K(Ȳ, r, w) + w · L(Ȳ, r, w) =
rIw1−I

G
· Ȳ.
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B.3 Derivation of expression (3.8) from the marginal

cost function

In this section, we show that by minimizing the marginal cost function (3.13)
with respect to I, the degree of automation, we obtain the expression in (3.8).

∂

∂I
rIw1−I

G(I)
= 0,

rI ln(r)w1−I

G(I)
− rIw1−I ln(w)

G(I)
− rIw1−I

G(I)
[ln (γm(I))− ln (γ`(I))] = 0,

rIw1−I

G(I)
[ln(r)− ln(w)− ln (γm(I)) + ln (γ`(I))] = 0.

From the last expression, we see that the derivative is equal to zero if,

ln
( r

w

)
= ln

(
γm(I)
γ`(I)

)
,

r
w

=
γm(I)
γ`(I)
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