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Abstract

Brain function is based on highly complex processes, which remain yet to be de-
scribed and understood in detail. In the last decades, neuroscience has experienced
an accelerated development, prompted by novel neurotechnologies that allow moni-
toring the dynamics of electrical activity in the brain with a higher spatio-temporal
resolution and wider coverage area. However, due to the high complexity of neural
networks in the brain, which are composed of strongly interconnected neural popu-
lations across large brain regions, we are far from monitoring a significant fraction
of neurons mediating complex functions.

In order to investigate large-scale brain dynamics with high spatial resolution several
technologies have been extensively used, including functional magnetic resonance
imaging (fMRI), voltage-sensitive dye imaging or high sensor-count electrophysio-
logical recordings. However, the temporal resolution of fMRI and optical methods is
typically limited to few hertz, almost three orders of magnitude below that of action
potentials, and are limited to head-fixed conditions. On the other hand, electrophys-
iological recordings based on micro-electrode arrays provide a high spatio-temporal
resolution, allowing to accurately detect fast dynamics from hundreds of individual
neurons simultaneously in freely moving animals. However, neuroelectronic sensing
interfaces present a trade-off between spatial resolution and coverage area. More-
over, they present a poor sensitivity in the infra-slow frequency band (< 0.5Hz),
which migh be related to long-range functional connectivity.

In this thesis, a novel technology based on graphene active sensors is presented,
which allows to increase the coverage area and spatial resolution of electrophysi-
ological recordings while preserving a high sensitivity in a wide frequency band,
from infra-slow to single electrogenic cell activity. This technological development
is divided into three main stages; first, a deeper understanding of the intrinsic
noise characteristics and frequency response of these sensors is obtained by build-
ing on prior graphene sensor technology. In the second stage, a quasi-commercial
system based on epi-cortical graphene sensor arrays and a wireless headstage for
chronic implantation in rats is shown. Using this system, the reproducibility of the
graphene sensor arrays, their long-term stability and their chronic biocompatibility
are demonstrated. Furthermore, preliminary evidence is provided for a wide range
of novel electrophysiological patterns owing to their sensitivity in the infra-slow fre-
quency band. Finally, in the last stage of this thesis, the focus is centred on the
development of new multiplexing strategies to upscale the number of sensors on the
neural probes.

These three main development stages have led to the demonstration of the potential
of multiplexed graphene sensor arrays for mapping of large-scale brain dynamics in
a wide frequency band in freely moving animals over long periods. The combination
of these capabilities makes graphene active sensor arrays a promising technology for
high bandwidth brain computer interfaces and a unique tool to investigate the role
of infra-slow activity on the coordination of higher frequency brain dynamics.
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Preface

Natural evolution has led to the emergence of highly complex biological computing

systems. Among them, the human brain is an unparalleled example, which is the

cornerstone of human intelligence. However, human intelligence is not only based

on the astonishing capabilities of the human brain, but also on our ability to ex-

ternalize thought via social interaction and the use of technology[1]. Expansion of

our computing capabilities beyond those of our own brains has been driven by the

evolutionary success of social behaviour and verbal communication. Furthermore,

following the emergence of languages, human societies evolved to invent writing sys-

tems as an efficient way to store and retrieve information. Writing was a disruptive

technological development, which represented a qualitative change in our way to

preserve knowledge beyond the existence of individuals.

In the past decades, we have experienced yet another non-incremental change in our

capabilities to store and process information by the use of digital computers and

new communication protocols such as internet. With the use of portable computers

such as smart phones and the use of wireless data transmission technologies[2] our

access to data has increased dramatically. However, an important bottleneck in the

improvement of our data processing capabilities is the link between our biological

brains and external information processing systems. This communication is bidi-

rectional, from computers to the brain via devices such as displays, and from the

brain to computers via low bandwidth peripheral devices such as keyboards. Our

sensory systems, in particular the visual and auditory systems, are highly optimized

to acquire information from the environment and therefore offer a high bandwidth

for communication from computers to the brain. On the other hand, the com-

munication between the human brain and computers is currently arguably more

constrained. Our main form of natural communication is undeniably speech. Using
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verbal languages, we are able to convey information to other human beings with

a high bandwidth. Speech is a very efficient way for the brain to transmit inter-

nal variables representing abstract, highly processed data from the sensory system,

through a physical communication channel to other brains. This highly optimized

communication form can be used to transmit information to digital computers as

well. In the last decade there has been a huge progress on the development of algo-

rithms for speech recognition and processing[3], which are critical to stablish high

bandwidth communication channels between brains and computers. Nevertheless,

use of speech to communicate with machines has some drawbacks. An important

one is privacy, speaking commands to a machine outloud cannot be used to transmit

sensitive information in an environment where others can intercept the messages.

Another disadvantage is that verbal communication with machines is not selective

and is prone to crosstalk among brain-machine communicating nodes[4]. Natural

verbal communication among humans has been optimized by natural evolution to

minimize this problem[5], commonly known as the cocktail party problem, but its

technological implementation remains elusive. Not to say that the capacity of our

brain to filter out noises is also certainly limited. An alternative way to improve the

communication between humans and external computing devices could be the use of

neuroelectronic interfaces. Implantation of bioelectronic devices on the brain could

be used to detect internal cognitive variables encoding e.g. covert speech, which

could be then transmitted to digital computers, enabling a high bandwidth and pri-

vate communication channel. In the last years, important progress has been made

in this direction, including the demonstration of the decoding of spoken sentences

in human patients[6]. In these first clinical trials, the engineered communication

between the human brain and a digital computer is not focused on enhancing cog-

nition, but on enabling patients to recover their ability to speak.

Although the great prospects of speech decoding for the restoration of speech and

enhanced brain-machine communication, there is concern in the scientific commu-

nity, and society in general, that these devices could infringe ethical principles. An

example of such concerns is the potential interception of personal information en-

coded in thoughts[7] or the shaping of thought by the statistical models used to

produce speech[8]. In order to avoid such problems it would be critical for a safe

technology to ensure that internal cognitive variables used for brain-machine com-

munication can be intentionally articulated by the user, in the same way we control

our intentions to speak aloud. In case of neural prosthesis for non-clinical appli-
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cations, the ethical concerns are more prominent. Neuroprosthetic speech can be

classified as a technology for human enhancement, which is origin of intense debate,

rising concerns of human freedom and autonomy, health and safety or equity and

societal disruption[9]. While many support the right of choice if no one other than

ourselves can be hurt, such technologies should be regulated to prevent potential

health problems that ultimately affect others[9]. Similarly, the choice of enhancing

oneself could put pressure on others to receive the implants to be successful in a

competitive society[9]. Additionally, expensive human enhancement technologies

could lead to unfair distribution of the benefits and costs derived from their use.

Certainly, stablishing a more efficient communication channel between humans and

external computing devices is a technological development that could help patients

and users as individuals as well as society as a whole, especially as the costs of

mass production drop. However, ethical concerns are currently not elucidated and

arguments should be revisited as novel technologies with concrete functionalities

and dangers are developed.

Beyond the potential benefits and ethical concerns, the development of neuroelec-

tronic interfaces capable of providing a high bandwidth and safe brain-to-computer

communication for speech decoding channel do not yet exist. In the last decade,

huge efforts have been dedicated to develop such devices, improving their biocom-

patibility for chronic use in humans[10, 11] with reduced risk following implantation

by using minimally invasive devices. Very recently, a relatively simple neuroelec-

tronic interface was used to demonstrate the decoding of spoken sentences in clinical

trials for the restoration of speech in impaired patients[6]. However, this trial was

carried out in patients with intact motor abilities, which was central for the decod-

ing. Furthermore, chronic implantation of devices over long periods could lead to

complications due to their high invasiveness. In order to improve the biocompat-

ibility in chronic settings of high bandwidth neural interfaces, multiple strategies

have been recently proposed both from academic institutions[11–13] as well as from

private initiatives[14], which have focused on reducing the footprint of the devices

and the trauma caused by their implantation.

In order to effectively detect electrophysiological activity in the brain encoding cog-

nitive variables, it is critical to get sensors in proximity to the nervous tissue. An

important fraction of high order functions in the mammalian brain are considered

to occur in the cortex, which is the outermost area of the brain and is therefore
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relatively accessible to external devices[15]. In order to effectively detect informa-

tion encoded in the activity of individual neurons, presumably the basic units of

processing in the brain[16], it is important to insert electrical sensors into the brain

tissue, penetrating through the outermost cortical layers. Intra-cortical devices have

demonstrated the potential to detect high dimensionality neural data[17]. However,

current technologies still cause significant tissue damage and are prone to failure

over chronic time points. Although the use of flexible, ultrathin neural probes is

thought to improve their chronic performance[18], it is yet to be demonstrated the

final reach of these technologies. Alternatively, surface micro-electrocorticography

(µ-ECoG) grids, which are placed on the surface of the cortex, are promising to

provide a platform for speech decoding[6] without causing direct trauma on the

brain tissue. However, the complexity of the flexible electronic devices required to

increase the bandwidth of conformal surface probes has so far limited their use in

clinical studies. In this thesis, I present a new technological platform for neuroelec-

tronic sensing interfaces based on graphene solution-gated field-effect transistors

(g-SGFETs). These active sensors allow the implementation of multiplexing tech-

niques to increase the number of sensors integrated in neural implants and provide a

high sensitivity in a wide frequency band. This technology has a great potential to

enable minimally invasive, high bandwidth and flexible neural interfaces for chronic

brain-computer communication.
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0.1 Significance statement

In this thesis, the current limitations in monitoring the electrical brain activity

from large cortical areas with high spatio-temporal resolution and in a wide fre-

quency band are addressed. For this purpose, the use of graphene active sensors

is proposed and novel developments achieved by: i), studying the sensitivity of

g-SGFETs and their dynamic response in-vitro, ii), developing advanced record-

ing systems for proof-of-concept in-vivo and iii), demonstrating novel multiplexing

strategies. These results have led to the demonstration of high sensor-count probes

with improved spatio-temporal resolution and wide frequency band sensitivity (Fig.

0.1). The outcomes of this thesis set a clear path towards the implementation of

graphene-based neural probes for the study of wide frequency band brain dynam-

ics across large-scale neural networks in freely moving animals, which is currently

not possible with existing methodologies. Based on the results of this PhD thesis,

future studies will help to understand the role of infra-slow fluctuations on the co-

ordination of fast brain dynamics that mediate cognition. Furthermore, the initial

validation of the biocompatibility and long-term stability of chronically implanted

devices confirms the great potential of this technology to implement high bandwidth

brain-machine communication.

Figure 0.1: Photograph and 512-channel epi-cortical neural probe based on multiplexed
active graphene sensor arrays. The inset shows an optical micrograph of the device active
area. The active area presents 512 g-SGFETs covering a wide area, accounting for a large
fraction of the rat cortical mantle. Multiplexing of graphene sensors reduces the complexity
of the connectors, which present only 48 contacts for the 512 channels.
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0.2 List of publications and contributions

This doctoral dissertation is based on a compendium of articles. Here, a complete
list of the publications derived from this doctoral research is presented. Their signif-
icance and my contribution to each of them is briefly described. The contributions
from the rest of co-authors can be found on each of the publications unless otherwise
stated in the description below. The articles that shall be considered for evalua-
tion of this work are summarized in the main text of this thesis, and are included
as reprints of the published works in the appendix. Complementary publications,
where I also contributed, are included in the appendix of this dissertation. Although
they are not to be evaluated, a summary of each of them is also included in the main
text in order give a coherent and complete description of my doctoral research.

Main articles

1. Article I: Garcia-Cortadella, R.; Masvidal-Codina, E.; De la Cruz, J. M.;
Schäfer, N.; Schwesig, G.; Jeschke, C.; Martinez-Aguilar, J.; Sanchez-Vives,
M. V.; Villa, R.; Illa, X.; et al. Distortion-Free Sensing of Neural Activity
Using Graphene Transistors. Small (2020)

The article I of this compendium represents a central part of the 1st stage of the
technological development of my PhD, which is centred on understanding and op-
timizing the response of graphene active sensors from a single device perspective.
In this article, a thorough evaluation of the stationary and dynamic response of
graphene active sensors and the effect of non-ideal response on the distortion of
neural signals is presented. First, the focus is placed on the characterization of the
voltage and frequency dependence of the transfer function of g-SGFETs. Having a
detailed model of their response, I could propose a calibration method to correct
signal distortion and demonstrated its effectivity on wide-band electrophysiological
activity.

This article does not include an author contribution statement. My contribution
to this work consisted in proposing the research idea and designing the research
plan. I also performed most of the fabrication of devices and characterized their
response. I analysed the results and proposed the model of frequency response. I
also performed the recordings of local field potential signals in-vivo and single cell
activity on cardiomyocyte cultures. Finally, I wrote the manuscript. Co-author
EMC contributed to propose the research idea, performed the recordings of corti-
cal spreading depression events and contributed to the revision of the manuscript.
JMC performed the cell cultures. NS fabricated the devices used for the recording
of electrophysiological activity of cardiomyocytes. GS performed the implantation
of devices on a rat and contributed to perform the recordings in-vivo. CJ, JMA and
AG contributed to the development of the electronics and software used for the char-
acterization of devices and electrophysiological recordings. MVSV coordinated the
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recording of cortical spreading depression events. RV contributed to coordination of
the team that developed the device characterization electronics. XI contributed to
the fabrication of g-SGFETs, AS coordinated the recording of local field potentials
in rats. AG and JAG contributed to the research idea and extensively revised the
manuscript.

2. Article II: Garcia-Cortadella, R.*; Schwesig, G.*; Jeschke, C.; Illa, X.;
Grey, A.; Savage, S.; Stamatidou, E.; Schiessl, I.; Masvidal-Codina, E.; Kostare-
los, K.; et al. Graphene Active Sensor Arrays for Long-Term and Wireless
Mapping of Wide Frequency-Band Epicortical Brain Activity. Nature Com-
munications (2021).

The article II of this compendium comprises the 2nd stage of the technological de-
velopment presented in this thesis, which is focused on advanced electrophysiology
recording systems based on graphene active sensors. In this work, carried out in
collaboration with the neuroscience team led by Prof. Sirota, the company Multi
Channels Systems and the nanomedicine team led by Prof. Kostarelos, the high
performance of graphene sensing technology in-vivo in an operational environment
is shown. Here, the sensitivity, reproducibility, stability and biocompatibility of
graphene active sensors implanted on the rat cortex is demonstrated. Preliminary
evidence of topographically structured modulation of theta, spindle and gamma
band power by ISA is also shown. With these results, the potential of the graphene
technology for the study of infra-slow activity (ISA) in combination with higher fre-
quency local-field potential (LFP) bands in large cortical areas in behaving rodents
is demonstrated.

The contributions from all authors are detailed in the published article. I con-
tributed to all parts of this study, coordinating with the rest of co-authors to per-
form the experiments and write the manuscript. I proposed, together with my
thesis supervisors, the research idea and research plan. I fabricated the neural
probes and performed their characterization. I contributed to the development and
characterization of the wireless headstage and development of the software for sig-
nal acquisition and processing. I performed the electrophysiological recordings in
cooperation with co-first author G. Schwesig and I contributed to the analysis of
electrophysiological signals, which was led by Prof. Sirota. I wrote the introduc-
tion, the results section on the characterization of graphene-based probes and the
wireless headstage in-vitro as well as in-vivo. I also contributed to the writing of
results section on the analysis of brain signals and the discussion section.

3. Article III: Garcia-Cortadella, R.*; Schäfer, N.*; Cisneros-Fernandez, J.;
Re, L.; Illa, X.; Schwesig, G.; Moya, A.; Santiago, S.; Guirado, G.; Villa, R.;
et al. Switchless Multiplexing of Graphene Active Sensor Arrays for Brain
Mapping. Nano Letters (2020).

The article III of this compendium represents an important part of the 3rd stage of
technological development of this thesis, which is focused on upscaling the graphene-
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based neural probes. Multiplexing strategies are crucial to increase the number
of sensors, while keeping a manageable complexity of the connector. In this ar-
ticle, I could show for the first time the operation of graphene sensor arrays in
frequency-division multiplexing (FDM) mode. Demonstration of FDM consisted
on a detailed characterization of the graphene sensors’ response in FDM and non-
multiplexed operation for comparison. In order to evaluate the scalability of this
strategy I modelled the effect of harmonic distortion, bandwidth limits, cross-talk
and heat dissipation in large-scale arrays, showing that this technology can enable
up to >1000-channel arrays. Finally, an in-vivo proof of concept was demonstrated,
showing the sensitivity of FDM-graphene probes in a wide frequency band.

The contribution from all authors is detailed in the published article. I contributed
to the proposal of the research plan together with co-first author N. Schaefer and
my thesis supervisors, I designed and fabricated the graphene neural probes and
I performed the characterization of the devices in-vitro. Subsequently, I modelled
their response for the analysis on the scalability and I proposed and developed the
methodology for cross-talk characterization. I contributed to develop a recording
system based on a high speed PXI for proof-of-concept in-vivo and the software for
data acquisition and processing in collaboration with co-author L. Re. I coordinated
with N. Schaefer and G. Schwesig to perform the recording of electrophysiological
activity in-vivo. I wrote all the parts of the manuscript, which was revised by my
thesis supervisors J. A. Garrido and A. Guimerà.

Complementary articles

1. Article S1: Schaefer, N.*; Garcia-Cortadella, R.*; Calia, A. B.*; Mavredakis,
N.; Illa, X.; Masvidal-Codina, E.; Cruz, J. de la; Corro, E. del; Rodŕıguez, L.;
Prats-Alfonso, E.; et al. Improved Metal-Graphene Contacts for Low-Noise,
High-Density Microtransistor Arrays for Neural Sensing. Carbon (2020).

The article S1 summarized in this compendium is part of the 1st stage of techno-
logical development. This article is focused on the understanding and mitigation
of low frequency noise (LFN) in g-SGFETs. In this work, a framework to model
the relative impact of metal-graphene contact noise with respect to channel noise
in g-SGFETs depending on the transistor geometry is presented. Identification of
contact noise allows to determine possible causes of increased noise and mitigate its
impact by applying ultra-violet ozone treatment on graphene prior to metallization.
Furthermore, the effect of ozone treatment on the contacts is modelled, leading
to an explanation of the physical origin of contact noise in wafer scale graphene
transistors.

The contributions from each author are detailed in the published article. My contri-
bution was on developing the research idea, proposing a research plan and developing
the methodology. I contributed to the analysis of the results and I proposed the
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model of contact and channel noise contributions as well as the numerical modelling
of contact noise. I wrote the part of the manuscript corresponding to contact noise
modelling.

2. Article S2: Mavredakis, N.; Garcia Cortadella, R.; Bonaccini Calia, A.;
Garrido, J. A.; Jiménez, D. Understanding the Bias Dependence of Low Fre-
quency Noise in Single Layer Graphene FETs. Nanoscale (2018).

The article S2 summarized in this compendium is part of the 1st stage of tech-
nological development of this dissertation, and in particular it is focused on the
understanding of the physical origin of LFN in g-SGFET. In this work, lead by N.
Mavredakis, a compact model is presented to describe the bias dependence of LFN
in g-SGFET. Modelling of LFN indicates that the dominant sources of noise are
trapping-detrapping events of charge carriers in graphene and provides a tool for
the modelling of LFN noise in graphene transistors in circuit simulators.

The contribution from each author is not described in the published manuscript.
NM contributed to the development of the research idea, he presented the compact
model of LFN. He also wrote the manuscript. ABC and I contributed to the devel-
opment of the research idea and on the design, fabrication and characterization of
devices. I also contributed to the identification and modelling of contact noise and
to the revision of the original manuscript. Co-authors JAG and DJ contributed to
the development of the research idea and to the revision of the original manuscript.

3. Article S3: Schaefer, N.; Garcia-Cortadella, R.; Mart́ınez-Aguilar, J.;
Schwesig, G.; Illa, X.; Lara, A. M.; Santiago, S.; Hébert, C.; Guirado, G.;
Villa, R.; et al. Multiplexed Neural Sensor Array of Graphene Solution-Gated
Field-Effect Transistors. 2D Materials (2020).

The article S3 summarized in this compendium is part of the 3rd stage of technolog-
ical development presented in this thesis. Here, the demonstration of time-division
multiplexing of g-SGFET arrays using external switching arrays is presented. The
performance of the devices in multiplexed operation mode is presented in-vitro and
it is compared with the performance of g-SGFET in non-multiplexed operation. The
concept is also proven in-vivo, demonstrating the wide frequency band sensitivity
of g-SGFETs in this operation mode. Furthermore, characterization and modelling
of crosstalk is performed to discuss the scalability of this technology.

The contributions from each author are not described in the published manuscript.
The first author NS made a major contribution, developing the research idea,
proposing the research plan, designing and characterizing the neural probes and
contributing to the development of the multiplexing system. He also performed
the experiments in-vivo in collaboration with GS and wrote the manuscript. I
contributed to develop the research idea and to the design and characterization of
devices. I developed the methodology to characterize cross-talk and contributed to
its analysis and modelling. JMA and AGB contributed to develop the multiplexing
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electronics. AML, SS and GG contributed to develop the methodology to charac-
terize cross-talk. CH contributed to develop the research idea. RV coordinated the
team developing the electronic system. AG and JAG supervised and coordinated
the research and revised the original manuscript.

Additional contributions

1. Severo-Ochoa seed funding project. Title: Multiplexed intra-cortical
probes for wide bandwidth neural sensing. Principal investigator: Garcia-
Cortadella, R., Funding agency: Severo-Ochoa foundation. Amount
granted: 8k€. Start: September 2020. End: April 2021.

2. Patent application (no. EP20382819) filled by CSIC, ICREA, CIBER and
ICN2 in september 2020; concerning an acquisition device to limit leakage
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Chapter 1

An introduction to intracranial
neural sensing interfaces

The brain is an organ with a high computational power, which processes sensory in-
formation representing physical quantities from the external world and combines
it with internal representations of previous experiences to predic future events.
Weighting the significance of external inputs allows the brain to define the be-
haviour of living organisms, which sets a strong influence on the evolution of brain
complexity[1]. For human beings, since initial discovery of its function[19], the brain
has been mostly understood as a black box, forcing us to speculate and hypothesise
on the nature of cognition. Understanding neural computation will have profound
epistemological and ontological implications and a huge potential for biomedical
applications. In the last decades, important progress has been made on the un-
derstanding of brain function[20], leading to major breakthroughs in the field of
neural prosthesis[6, 21]. This progress has been prompted by the development of
novel neurotechnologies that allow to establish alternative communication channels
between the brain and external computing systems.

Neural sensing interfaces are an example of such links, which are used to measure
electrical or biochemical variables in the nervous system[11]. These signals, pro-
duced by neural activity, can present correlations with external stimulus or, simi-
larly, with internal cognitive variables. Sensing information from physical variables
encoded by the human brain can therefore be used to decode internal cognitive
variables such as the intention of a subject to undertake particular actions. Differ-
ent areas of the brain are typically associated with particular cognitive functions.
However, as novel technologies allow to detect brain activity in distant regions si-
multaneously with improved resolution, it is becoming increasingly clear that large-
scale neural networks are highly integrated[17]. Therefore, it is currently considered
that mapping large brain areas is critical to understand complex brain functions[22]
and to improve decoding of neural dynamics for brain-computer interfaces (BCIs).
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Furthermore, neural activity must be determined with a high spatial resolution
and high sensitivity in all frequency bands potentially involved in neural commu-
nication, ideally covering from infra-slow potential fluctuations (< 0.5Hz) to high
frequency activity generated by single neurons. An outstanding approach to map
brain activity with high spatio-temporal resolution is the use of electrophysiolog-
ical techniques based on the detection of electrical signals using voltage-sensitive
electronic devices. Typically, microfabricated electrodes are used, which can be ar-
ranged into arrays, that are placed in contact with the brain for signal detection.
In order to optimize the detection of neural signals, sensor arrays must be placed
in direct contact with the surface of the brain tissue (epi-cortically), penetrating
into the cortex (intra-cortically) or reaching into deeper brain structures. Making
such neural interfaces stable and biocopatible over long periods represents a great
challenge from a material science perspective.

This introduction is divided into three blocks. First, the interaction between brain
tissue and the implants is described, which is crucial for the long-term stability of
implants and must be carefully considered for chronic clinical applications. This
section motivates the development of flexible technologies, being flexibility one of
the key characteristics for highly biocompatible neural interfaces. Subsequently,
recent advances in the translation of novel neurotechnologies into clinical practice
are presented, from which the importance of increasing the sensor count, while
minimizing their invesiveness is derived. An important challenge ahead for neural
sensing interfaces is therefore the integration of a high number of highly sensitive
devices on mechanically compliant and biocompatible probes. However, the flex-
ibility requirement narrows down the list of materials available, which must also
present demanding functional properties in order to enable the integration of a high
number of sensors in neural probes. Following this discussion, the state of the art of
high-count neural probes currently used for neuroscientific research or undergoing
pre-clinical studies is presented. In the second block of this introduction, the princi-
ples of brain-machine communication are presented. Extraction of information from
the brain is based on finding correlations between the neural patterns of activity
and the cognitive or motor functions of interest, which can be then used for decod-
ing of neural features. A high bandwidth communication therefore requires the use
probes with high spatial resolution covering wide brain areas and a wide frequency
band to capture the neural responses at different spatio-temporal scales. Here, the
basic principles of decoding are presented, starting from high frequency spiking ac-
tivity, towards lower frequency local field potentials. To conclude, the third block
of this introduction presents the state of the art of graphene bioelectronics prior
to this thesis. This block is focused on the intrinsic properties of graphene as well
as the impact of structural defects on its performance, which will define the actual
functionality of graphene-based neural interfaces.
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1.1 Neural sensing interfaces

1.1.1 Biocompatibility: device and signal stability

In order to improve the long-term signal stability and reduce the rate of compli-
cations after surgical implantation of sensor arrays in the central nervous system
(CNS), it is critical to improve the biocompatibility of neural interfaces. The im-
plantation of devices in the brain can have multiple negative effects such as direct
trauma, disruption of the brain blood barrier, induction of gliosis or inflammation,
which can occur in the acute or chronic timescale[23]. The effect of the devices on
the tissue depends on the position of the implant, but also on the mechanical and
chemical properties of the materials used. Furthermore, the interaction between
tissue and device is bidirectional. Therefore, not only the implant can have nega-
tive effects on the tissue, but also the tissue can actively contribute to the device
degradation and loss of functionality. In this way, it is critical to develop novel
material engineering solutions that minimize the foreign body response (FBR) of
the tissue, enhancing not only the tolerability of the implant but also the biological
signal stability as well as the device longevity.

The first step to understand the requirements for the implanted materials is to un-
derstand in detail the response of the tissue to foreign objects. Although the neu-
ron is the cellular type most commonly associated with the brain, 75 % of its cells
are vascular-related or glial cells (oligodendrocytes, astrocytes, and microglia)[24].
While oligodendrocytes are dedicated to axon myelination in the CNS, astrocytes
and microglia are the main effectors of the FBR. Astrocytes and microglia have
different phenotypes under physiological or pathological conditions. In the physi-
ological state, astrocytes have multiple functions such as mechanical support, con-
trol of the chemical environment or buffering of neurotransmitters and ions for
modulation of neurons’ firing activity[24, 25]. On the other hand, microglia are
the resident macrophages in the neural tissue. Upon their activation, for instance
mediated via injury, the role of these glial cells changes. In the activated state,
astrocytes present enhanced migration, proliferation, hypertrophy in addition to
various anabolic changes[24]. Similarly, microglia also increase their proliferation,
assume a more compact morphology and upregulate production of lithic enzymes
for foreign body degradation. In addition, microglia secrete multiple factors to re-
cruit macrophages and activated microglia as well as pro-inflammatory cytokines.
Finally, microglia can secrete various cytotoxic and neurotoxic factors, which can
induce neuronal death[24].

These changes in the brain tissue can be acute or chronic depending on their du-
ration. In order to discriminate the acute effects after trauma, some studies have
evaluated the response to stab-like wounds[26] (i.e. probe implantation followed
by immediate removal). When a needle-like object is inserted in the cortex, it
may rupture capillaries, extracellular matrix (ECM) fibres or glial and neuronal cell
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membranes, ultimately producing displacement of the tissue and causing a local
increase of pressure around the device. Disruption of blood vessels leads to the
release of blood cells, activation of platelets, clotting factors and recruitment of
macrophages. In turn, accumulation of fluid and necrotic tissue can lead to edema,
which is typically observable up to 4 days post-implantation. Finally, microglia and
astrocytes in their activated phenotype proliferate around the implant following the
insertion. When the acute response declines, these cells typically continue accumu-
lating around the implant, creating a tight cellular sheath in few weeks referred to
as glial scar[27], which is not observed in stab-like wounds[26]. The main function
of this glial tissue is thought to be the physical separation of the foreign body from
the surrounding functional tissue[28]. However, such encapsulation is usually postu-
lated to have detrimental effects on the signal quality and stability[29–31]. Besides
the effects of glial scar on the signal attenuation and displacement of neurons from
the surrounding tissue, glial cells can have an active role in the neural signal activity
by modulating neuronal excitability, synaptic transmission or network activity[25].
Therefore, minimizing both the initial trauma as well as chronic inflammation and
formation of the glial scar is critical to detect unperturbed neural activity.

The main strategies to minimize the FBR in the brain are based on the use of flexi-
ble and soft materials, engineering the topographical and chemical properties of the
material surfaces as well as minimizing the implant footprint and traumatic wound.
The mammalian brain is a soft tissue. Its main cellular constituents, neurons and
glial cells, are very compliant, with Young moduli on the order of ten to few hundred
pascals[32]. These cells are surrounded by the ECM; however, the importance of the
ECM on the mechanical properties of the brain is relatively low compared to other
soft tissues in the body. The mechanical properties of the brain are consistent with
those of a dense colloidal system, with the cellular bodies being the colloids[32, 33].
In between this soft tissue and the skull there are several layers, including the pia
mater, the arachnoid and the dura mater. These layers play a protective role against
physiological movements, pressure changes and injury. The dura matter presents
a thickness of about 0.3 − 0.8mm[34] and a Young modulus of 0.5-1.2MPa[35] in
humans, much larger that that of the brain. One interesting approach to achieve
highly biocompatible implants is the so-called electronic dura[35], consisting of an
epi-cortical neural probe fabricated on a soft and stretchable polymeric substrate,
designed to substitute the dura mater and mimic its mechanical properties. These
mechanical match reduces the stress and possible friction between the pulsating
neural tissue and a more static and rigid implant. Similarly, extremely thin poly-
meric substrates (< 10µm) also present a lower flexural stiffness[36]. Such thin
and flexible objects are not only promising to replace the dura on the surface of
the brain, but have also been shown to reduce the FBR[37, 38] when inserted into
the cortex, leading to an improved stability of spiking single-unit activity (SUA)
detection[39]. In order to insert such flexible devices into the cortex, rather complex
insertion methods have been proposed with relative success[14, 39, 40].

In this thesis, the focus is placed on developing high bandwidth biocompatible neural
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probes for both epi-cortical as well as intra-cortical neural sensing. Flexibility is
critical to reduce the FBR and improve the signal stability in chronic recordings,
as well as to conform with the corrugated surface of large cortical areas. Therefore,
development of highly flexible neural interfaces has been a central objective of this
thesis.

1.1.2 Clinical translation

Implantation of electrical sensor arrays on the human brain for clinical applications
has been the focus of intensive research. In the last decades, multiple clinical trials
have been carried out seeking to translate advanced neural sensing interfaces into
clinical use. One of the most prominent biomedical applications of neural sensing are
brain computer interfaces (BCIs) used to restore certain sensory, cognitive or motor
functions via the communication between brain and computers. Such applications
can be based on electroencephalography (EEG) recordings, placing the sensors on
the surface of the scalp, or placing the sensor arrays intracranially, which provides a
much higher brain-computer communication bandwidth by enabling the detection
of higher frequency activity from local current sources. In such applications, the
internal brain variables correlated with the patients’ intention to perform a certain
action are identified. In some of such applications, the classified intentions are
then used to restore the impaired functions, enabling the patients to perform the
desired action through electromechanical devices. Examples of these applications
include the detection of motor intentions to activate the motion of paralyzed or
robotic limbs [21, 41] or the classification of speech intentions to articulate them
through a speech synthesizer[6]. Other interesting applications beyond BCIs are the
monitoring of brain activity to detect biomarkers related to neural diseases such as
epileptic seizures [42] or Parkinson’s disease[43]. In recent years, the concept of
closed-loop systems that stimulate the nervous tissue for a therapeutic effect based
on the detected brain signals has attracted increasing attention[44]. Finally, the
sensor arrays can also be used intraoperatively to monitor the brain activity as a
response of the electrical stimulation of the tissue [45, 46]. Such mapping enables the
determination of the tissue functionality, minimizing brain damage during surgery.
While the latter application only requires acute monitoring of the brain activity,
all the rest strongly rely on long-term mapping and therefore an excellent chronic
biocompatibility and stability of the implants is required.

One of the most successful initiatives toward the clinical application of intracranial
BCIs (iBCIs) has been the clinical trial of BrainGate. An initial trial was carried out
between 2004 and 2006 in which an array of intra-cortical electrodes were implanted
on the motor cortex of 4 tetraplegic patients. This study demonstrated for the first
time the ability of patients to move a cursor on a screen with high efficiency over
several months[47]. A second clinical trial (BrainGate2) is currently ongoing on 15
participants for the determination of the implant safety as well as establishment of
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Figure 1.1: a, Participant of the BrainGate2 clinical trial moving a robotic arm controlled
by an iBCI. Adapted with permission from Hochberg et. al.[21]. b, Utah array consist-
ing of 100 penetrating needles with a Si core coated with platinum, titanium-tungsten and
platinum and passivated with Parylene except for the tip. Adapted with permission from
Hochberg et. al.[47]. c, RNS NeuroPace implant (1), which can be interrogated and pro-
grammed wirelessly, is connected to a deep brain stimulation (DBS) electrode (2) and an
epi-cortical electrode strip (3). Reprinted with permission from Lee et. al.[48]. d, Electro-
corticography (ECoG) grid with 256 electrodes (photograph by Noah Berger/UCSF). The
inset shows the position of the electrodes on the cortical surface for decoding of spoken
sentences. Reprinted with permission from Anumanchipalli et. al.[6].

decoding and evaluation parameters for a larger clinical trial. Initial results have
led to some breakthroughs in the field: in 2012 a tetraplegic patient achieved the
movement of a robotic arm through her thought[21] (Fig. 1.1a), in 2017 functional
electrical stimulation (FES) of muscles was combined with motor cortex monitoring
to control the movement of a patient’s paralyzed arm[41] and in 2018 the brain
mapping technology was used to control a general purpose computer[49]. These
achievements are based on the use of a 100-sites intra-cortical array referred to as
the Utah array (Fig. 1.1b). The success of this technology stems from its high
stability and its sensitivity to record activity from single neurons due to its intra-
cortical configuration. Although these devices are the only penetrating cortical
sensor arrays that have been approved by the food and drug administration (FDA)
for long-term human studies, they are still highly invasive and cause significant
tissue damage[50].
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Alternatively, the use of less invasive epi-cortical sensor arrays has been explored
to detect local field potentials (LFP), which emerge from the superposed activity
of a myriad of neurons[51]. An important clinical application of epi-cortical sensor
arrays, also referred to as electrocorticography (ECoG) grids, is intraoperative map-
ping of the brain to localize the seizure foci in epileptical patients[52]. Similarly,
ECoG grids are also used in functional brain mapping, where local bipolar stimu-
lation is performed simultaneously with brain mapping in order to detect regions
with higher excitability, which can be related to seizure foci[52]. Functional brain
mapping is also used during brain tumour surgery to identify functional brain areas
to be protected during the resection [53]. The stimulation is used to momentarility
impair the function of the stimulated areas while the patient is asked to perform a
certain task. However, too low amplitudes would not impair their function and too
high aplitudes could affect adjacent areas. During functional brain mapping, ECoG
grids can be used to detect the evoked activity induced by the electrical stimulation
of the tissue and adjust the stimulation amplitude[53]. Besides the aforementioned
applications of ECoG grids, their use for chronic applications has also been investi-
gated. Clinical trials demonstrated the suitability of ECoG grids for the prediction
of epileptic seizures[42]; currently, there is a FDA-approved device (RNS system,
Fig. 1.1c) for intracranial monitoring of brain activity to predict epileptic seizure
and prevent it by stimulation of the seizure foci. This device has demonstrated a
safe functioning in a 2-years study, with 230 patients transitioning into a 7-years
study[10]. Its chronic and wireless functionality has also enabled the study of cor-
tical evoked responses to spoken sentences in natural ambulatory settings, showing
signals selective to phonetic features for over 1.5 years[54]. The actual application
of the RNS system for speech restoration is definitely not possible due to its lim-
ited bandwidth[54]; however, the results from these chronic studies are encouraging,
given that other ECoG grids with a higher bandwidth have demonstrated promising
performance for iBCIs in shorter-term implants. Prominent examples include the
demonstration of arm and hand movement in a patient with a 28-electrode ECoG
array implanted for up to four weeks[55] or decoding of spoken sentences using 256-
electrode grids[6, 56] (Fig. 1.1d). Basing neural signal decoding on the LFP or multi
unit activity (MUA) instead of single unit activity (SUA) from individual neurons
may present the additional advantage of higher signal stability over time[57]. Cur-
rently, several clinical trials are undergoing to evaluate the compatibility of ECoGs
with long-term BCI applications[58–61]. However, some studies have pointed out
at the relatively high probability of complications during implantation[62], which is
positively correlated with the total volume of the array or the number of cables con-
necting the electrodes[62, 63]. In addition, the implant can have an acute or chronic
effect on the surrounding tissue, therefore producing changes in the detected sig-
nals over time[31]. This evidence confirms that there is still a long way toward a
realistic use of high-density, large coverage area ECoG arrays for chronic biomedical
applications.
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1.1.3 High-count sensor arrays

The choice of biocompatible materials strongly constrains the palette of available
functional materials[11, 13] that are used in neuroelectronic sensing interfaces. The
previous discussion highlighted that one of the most important requirements for
neural implants is their flexibility. This characteristic is arguably also one of the
most limiting in terms of materials functionality and technology development.

Typically, the sensors used for the detection of electrical activity of neural tissue are
macro or micro electrodes coupled to a high input-impedance amplifier. Electrodes
typically consist of metallic discs, which are sometimes covered by high-surface
area conductive layers to reduce their impedance[64–67]. In a first instance, these
devices can be patterned on the substrate of choice by photolithographic methods,
including a metallic track to establish a connection with electronic instrumentation
for amplification and digitalization of the signals. Nevertheless, following this simple
approach, each electrode requires an individual connection, which strongly limits the
scalability of the micro-electrode arrays (MEA). Based on this device configuration,
the number of sensors can be hardly increased above few hundreds, even for research
oriented devices[68] (Fig. 1.2a).

In order to mitigate this problem, multiplexing strategies can be developed to send
the signals from multiple sensors through a shared communication channel. How-
ever, in order to multiplex signals from an electrode, the front-end amplifier must
be placed within each pixel of the array[69]. This local amplification of the sig-
nals allows doing time-domain multiplexing of sensors in a column/row addressable
matrix, in a similar approach as for readout integrated circuits (ROIC) used in
digital cameras. Unfortunately, the fabrication of such a complex circuitry can
currently only be achieved using standard silicon microelectronics, limiting their
implementation on flexible substrates. Fabrication of multiplexed MEAs on rigid
substrates have led to great advances in the field of in-vitro sensing of neural activ-
ity in slices or cell cultures. Initial demonstrations with over 16 thousand sensors
were reported almost two decades ago[70] and since then multiple technical devel-
opments have been reported[71, 72] (Fig. 1.2b). Nevertheless, their application for
in-vivo applications is strongly limited due to their lack of flexibility, which prevents
from conforming with the curved brain surface. Alternatively, multiplexing based
on silicon nanomembrane transistors on a flexible substrate has been proposed[73],
which allows to transduce the voltage signals to current on each pixel using a low
impedance buffer silicon transistor (Fig. 1.2c). The main challenge in this direction
is to properly insulate the silicon from the biofluids to prevent its fast degrada-
tion. Similarly, multiplexed sensor arrays based on organic semiconductors have also
been proposed, however, their slow frequency response limits the upscaling of the
array[74]. Great efforts have been made to improve these technologies, with novel
organic transistor architectures demonstrating an improved frequency response [75]
and novel passivation layers enabling 1024 channel sensor arrays based on silicon
nanomembranes[76]. However, to date, no multiplexed epi-cortical technology has

24



An introduction to high-bandwidth neural sensing interfaces

demonstrated simultaneously a high sensor count, high sensitivity and long term
stability in-vivo.

Figure 1.2: a, High-density and highly sensitive NeuroGrid device based on PEDOT:PSS
semiconducting polymer on an orchid petal. Adapted with permission from Khodagholy
et. al.[68]. b, Micro-electrode array based on a silicon complementary metal-oxide-
semiconductor (CMOS) rigid technology with 65,536 recording and stimulating electrodes.
Reprinted from Tsai et. al.[71]. c, Flexible, multiplexed sensor array with 380 recording
sites based on Si nanomembrane transistors (left). On the right, the schematic for a single
pixel of the array is shown which includes a buffer transistor coupled to an electrode and a
switching element. Adapted with permission from Viventi et. al.[73].

Intra-cortical devices present similar challenges; however, in this case rigid devices
can be inserted into the brain if their cross-section is small enough to minimize
tissue damage. An interesting approach recently reported[77] is based on interfac-
ing a bundle of stiff micro-wires with a high density CMOS-based readout inte-
grated circuit (Fig. 1.3a). Similarly, integrated circuits for signal amplification and
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multiplexing can also be fabricated on the base of high density silicon probes[78]
(Fig. 1.3b). However, the application of these technologies has been so far lim-
ited to animal studies and the number of detected units declines significantly after
implantation[79], presumably due to glial scar formation. In order to reduce the
FBR, some works have developed flexible intra-cortical probes[18], which must be
inserted using bioresorvable stiffener or using temporarily attached rigid shuttles.
Minimizing the cross-section of flexible neural probes has been shown effective for
monitoring SUA over chronic time points [39](Fig. 1.3c). In order to minimize the
tissue damage while maximising the bandwidth of the probes, increasing the num-
ber electrodes per thread and controlling the exact insertion position to prevent
blood vessels rupture has been proposed[14] (Fig. 1.3d).

From the previous discussion, it is clear that increasing the number of sensing
sites on neuroelectronic sensing interfaces has been the focus of intensive research.
Detection of SUA from a large number of neurons is expected to be an effective way
to increase the bandwidth of neural interfaces. However, detection of intra-cortical
activity is certainly more invasive than detection of LFP signals from the surface of
the cortex. In the following section, the principles of brain-machine communication
are introduced in order to justify the potential of surface probes compared to intra-
cortical devices for high bandwidth brain to computer communication.
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Figure 1.3: a, Schematic of the three-dimensional microwire arrays interfaced with rigid
CMOS technology. The inset shows a bundle of microwires for interfacing the CMOS
integrated circuit. The other end of the bundle, for interfacing the brain, must have a
lower density of microwires to limit tissue damage. Reprinted from Obaid et. al.[77].
b, Neuropixel high density intra-cortical Si probe with integrated circuits for digitization
and multiplexing of signals on the base of the probe. Printed with permission from Jun
et. al.[78]. c, 64 channel, 4-shank intra-cortical flexible probes (left) enabling to stack
up recording modules (right) up to 1024 channels. Adapted with permission from Chung
et. al.[39]. d, Neuralink’s device with dedicated integrated circuits for data amplification,
digitization and processing (A) and up to 3072 sites (96 threads) (B). Up to 12 chips are
integrated with the 3072 connectors (C) and data is transmitted through USB-C connector
(D). Threads are individually inserted with a robotic system to minimize vascular rupture
(bottom). Adapted from Musk et. al.[14]
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1.2 Brain machine communication

The final goal of neural sensing interfaces is to provide information about the neural
dynamics in the brain, which can be correlated with applied sensory stimuli or
controllable cognitive states, such as the intention to perform specific motor actions
or the intention to speak. These controllable variables will be referred here as the
stimuli, although in particular cases could be motor intentions or other cognitive
states controlled by the patient. Representation of such stimuli in the form of neural
activity patterns is referred to as neural encoding[80]. If the neural correlates of
stimuli are determined in a controlled setting, the neural responses evoked by a
particular stimulus can be determined. This knowledge of the neural response can
be expressed as the conditional probability of a neural response (r) happening given
a particular stimulus (s), which can be expressed as P [r|s]. In an analogous, but
opposite way, it is also possible to determine the state of the stimuli from their
neural correlates in a process referred to as neural decoding. The knowledge about
the stimulus when a certain neural response is observed can be expressed as the
conditional probability of observing a stimulus given the occurrence of a certain
neural response, P [s|r]. In this framework, the neural response, which presents an
intrinsic variability, and the stimulus are considered stochastic variables. Therefore,
neural coding (P [r|s]) and neural decoding (P [s|r]) are related through the basic
identity of probability theory, the Bayes theorem:

P [s|r] = P [r|s]P [s]/P [r] (1.1)

where the prior stimulus probability density of the stimulus (P [s]) and the response
(P [r]) express the statistical properties of the stimulus and response respectively[80].
In the previous section, we have described the materials and electrical engineering
strategies to produce neural sensing interfaces, distinguishing between epi-cortical
and intra-cortical devices. Using intra-cortical probes, the extracellular potentials
produced by single neurons can be detected. These signals represent the elementary
electrical signals in the brain and are responsible, in a great extent, for its infor-
mation processing capabilities[81]. Here, we maintain this distinction to discuss the
process of neural decoding based on signals detected intra-cortically or from the
surface of the brain.

1.2.1 Neural encoding and decoding based on spikes

The transmission of action potentials or spikes between neurons through synap-
tic connections allows the transmission and processing of information in neural
networks[81]. Information can be encoded in the form of spike rates and/or tim-
ing of spikes[80, 82–84]. Spike rate codes are also referred to as independent-spike
codes because no information is contained in the correlation among spikes. On the
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other hand, time codes can also referred to as correlation codes, because correlation
between spike times carry additional information. Although correlation codes have
been shown to encode relevant information in some cases[85, 86], spike rate codes
are generally simpler to analyse, and have been shown paramount for sensory and
motor information encoding[47, 87–89].

In independent spike codes all the information is assumed to be encoded in the
number of action potentials fired per unit of time. The firing rate represents a time
dependent neural response (r(t)) of stochastic nature[80], with a certain variability
among equivalent trials. Part of this variability is presumably intrinsic to the neu-
ronal response[90], and another part might arise from uncontrolled parallel process-
ing by the neuronal units which are not exclusively sensitive to a one-dimensional
stimulus[17]. Determining the neural response, it is possible to characterize the
term P [r|s], which describes the encoding of information by spike rates. Further-
more, according to Bayes theorem, this information can be used to decode the
information encoded by neural responses. In order to determine P [r|s], the stimuli
must be controlled while measuring the neural response. Knowing the relationship
between stimulus and neural response allows to extract the so-called tuning curve
f(s) for particular neurons, which represents the firing rate as a function of the
stimulus value. Such curve typically presents a maximum, corresponding to the
preferred stimulus and a Gaussian distribution around this maximum[80]. From
the uncertainty in f(s) it is possible to determine the probability density distri-
bution of P [r|s]. One way to estimate P [r|s] from the tuning curves is assuming
that the variability in the spikes number over a trial can be described by a homo-
geneous Poisson model[80] or more accurate statistical models[91]. Knowing P [r|s],
it is then possible to infer, or decode, the applied stimulus applied, for example by
choosing the stimulus value corresponding to the maximum of P [s|r] as the stimulus
estimate.

This framework allows to decode a stationary stimulus from the average neural
response. However, the variables to be decoded are typically time dependent (s(t)),
and the neural responses are not only selective for a particular stimulus, but also
for their dynamics[80]. A methodology to determine the preferred time dependence
of the stimulus is called the spike-triggered average stimulus (C(τ)). This function
of time represents the average value of the stimulus at a time τ before a spike is
generated. Therefore, it can be calculated by averaging s(ti − τ), where ti is the
time of occurrence of each spike. If the number of spikes is large enough to estimate
the time dependent firing rate (r(t)), the spike-triggered average can be calculated
from the convolution of r(t) and s(t)[80]:

C(τ) = 1/ < n >

∫ T

0
r(t)s(t− τ)dt (1.2)

where T is the time duration of the recording session. C(τ), similarly to a tuning
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curve, describes the relation between the stimulus and the neural response. There-
fore, given the knowledge of C(τ), the firing rate of a characterized neuron can be
estimated from the presented stimulus. In turn, knowing the spike-triggered aver-
age it is possible to estimate the stimulus from the neural response. However, note
that estimating the stimulus from the firing rates on real time is paradoxical. The
reason is that the neural response is caused by the stimulus over a certain period
preceding the response. Therefore, a certain time lag (τ0), typically in the range
of 100ms, must be introduced between the time the stimulus takes place and its
estimation[80? ]. The larger the time lag the more accurate the estimation becomes,
but the less practical it is for clinical applications. The first step towards construct-
ing an estimate or kernel (K), is to determine how each spike contributes to the
stimulus estimate. The contribution of each spike is the spike-triggered average,
shifted by τ0[80]. The convolution of this kernel with the neural response function
(ρ(t)), defined as a sum of Dirac delta functions at the spike times (

∑
δ(t − ti)),

gives an estimate of the controlled dynamical stimulus:

s(t− τ0) =

∫ ∞
−∞

(ρ(t− τ)− < r >)C(τ0 − τ)dτ (1.3)

Figure 1.4: a, Schematic representation of spike-triggered average stimulus. The stimulus
preceding each spike (represented within the gray boxes) are averaged leading to a preferred
stimulus dynamics for the neurons under study. b, Using the spike triggered average it is
possible to define a kernel for neural decoding. Each spike contributes with a kernel to a
delayed stimulus estimate. Figure based on the work by Dayan et. al.[80].

Spike-triggered average can be interpreted as the preferred time dependence of the
stimulus which is the most likely to cause a spike. The development of methods
based on linear filtering[92, 93] and optimum kernel determination based on spike
trains from large neural populations has led to important progress in the field of
BCIs, in particular for the motor control of limbs [21, 41, 47]. However, we have
previously seen that less-invasive epi-cortical neural probes typically do not have
access to the activity of single neurons; instead, they are limited to LFP detection.
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In the following section, the relation between single spikes and LFP is discussed in
order to justify the potential and limitations of LFP signals for neural decoding.

1.2.2 Origin and decoding of LFP signals

Although action potentials have been detected from the surface of the cortex[68],
all practical applications and the vast majority of neuroscientific studies based on
surface recordings focus on LFPs because single units are hardly accessible. The
reason is that the pia mater physically separates the sensors from the outermost
cortical neurons in layer 1, which is sparsely populated by neurons[94]. On the
other hand, LFPs emerge from the collective dynamics of neural populations and
are therefore easily accessible from the surface of the brain. LFP are correlated
with the activity of single neurons and therefore present a great potential for neural
decoding. However, their interpretation is complex and a better understanding of
their biophysical origin is crucial to improve the efficiency of their decoding.

When neurons in the brain elicit an action potential, ionic currents are generated
across the ECM, which cause electrical potential gradients parallel to the charge
flow. Constructive interference of currents generated by multiple neurons leads to
large amplitude LFP signals that can reach the mV scale. Therefore, the amplitude
of LFP activity strongly depends on the synchrony of local current sources (Fig.
1.5a). Slow extracellular currents, such as synaptic currents, are more easily syn-
chronous and therefore they constitute the main contributors to LFP[51]. Similarly,
long-lasting Ca2+ mediated spikes[95–97] can also affect significantly the LFP. Fast
(Na+) spikes, which last less than 2ms, rarely fire synchronously and therefore have
a relatively low, although not always negligible, contribution to LFP[51]. Due to the
strong dependence of LFP power on synchrony of local sources, measureable LFP
signals usually present oscillatory dynamics[98] that span over a frequency range
that covers from infra-slow (< 0.5Ḣz) to ultra-fast oscillations (200 − 600Ḣz)[98].
Interestingly, higher-frequency components of LFP are usually phase-locked to lower
frequency oscillations[99], presumably due to the interplay between excitatory and
inhibitory neurons at different time scales[100].

Due to the collective origin of oscillatory LFP signals, they are considered to reflect
large-scale brain dynamics[22] and are regarded as fingerprints of neural communica-
tion at different spatio-temporal scales[100–102]. Theta oscillations (4−12Hz)[103]
are a well-studied example of oscillatory LFP patterns. Theta oscillations can be
measured from the surface of the brain of small mammals such as the rat, although
the measured fields are mainly generated in the hippocampus and parahippocampal
areas and propagate through the cortex mostly via volume conduction[101]. Firing
of pyramidal neurons[104] in the hippocampus at specific phases of the theta rhythm
has been found to encode the spatial position of the animal[85], demonstrating the
potential importance of LFPs for neural decoding. Another example of widely stud-
ied dynamics are gamma oscillations (30 − 200Hz), which are also modulated by
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hippocampal theta[101]. Gamma oscillations have been observed in multiple neo-
cortical areas during wake and REM sleep states[99] and have been shown to depend
on the attention levels to sensory stimuli[105]. The origin of gamma dynamics is
considered to be at the interplay between principal excitatory and inhibitory in-
terneurons. When excitatory neurons fire stimulus-elicited action potentials, local
inhibitory neurons are activated, which induce the network silencing for a certain pe-
riod. When the inhibitory effects decline, excitability rises again in a timescale that
presumably leads to the gamma oscillation[99, 100]. In this way, afferent excitatory
inputs which are out of synchrony with the gamma oscillation in the target neural
group would not be as effective in triggering a response[100]. Coherence among neu-
ral populations has been therefore proposed as a mechanism coordinating functional
connectivity and it might enhance communication between distant neural popula-
tions, which is costly in terms of axonal connections[99]. The generation mechanism
of gamma activity implies a strong correlation of its power with synchronous SUA
in local clusters of neurons in the neocortex[101] (Fig. 1.5b), which in turn are coor-
dinated by lower frequency theta activity. From this perspective, the generation of
oscillatory LFP patterns might seem to be a mere epiphenomenon of synchronous
action potentials encoding information[51]. However, there is evidence supporting
that oscillatory LFP rhythms might have a causal role on spike synchronization via
ephaptic effects[106]. Independently of the cause/effect relationship between LFP
and spiking activity, it is the correlation of LFP to behaviourally relevant variables
that gives useful information for decoding.

Due to the highly localized nature of gamma activity and its correlation with sen-
sory input, it has been extensively investigated for decoding applications. Gamma
activity has been used for decoding visual attention and extraction of tuning curves
from the visual cortex[107, 108], decoding of attempted motor actions from the sen-
sorimotor cortex[55], determination of complex acoustic signals encoding and their
decoding from the superior temporal gyrus[109, 110]. Furthermore, it has been
used for the decoding of articulatory kinematic trajectories related to speech from
the sensorimotor cortex[6, 111]. As described above, LFP signals can be correlated
with local firing rate of neural populations and their coherence among distal regions
can be indicative of enhanced communication, showing similar or complementary
information to SUA. Strategies for neural decoding from LFP signals are thus, in
general, conceptually similar to the SUA-based decoding discussed in the previous
section. The first step for neural decoding based on LFP is also defining the neural
response feature for decoding. For SUA, the use of the firing rates was described
as the most common feature. For LFP instead, the signal power in different fre-
quency bands is generally used. Broad band gamma (30− 200Ḣz) analysis is most
commonly used, but in specific cases low frequency components have also been
found informative[6, 108, 112]. Having defined the feature of interest, a decoding
algorithm can be defined[113]. A common approach is to determine a filter kernel
also referred to as the stimulus reconstruction model (R(t, i))[109], which is used to
estimate the time dependent stimulus (sest(t)) by its convolution with the neural
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response (r(f, t, i)), in an analogous way as in Eq. 1.3(Fig. 1.5c), where i is the
index of each sensor.

Compared to SUA, LFPs could provide a better signal stability for chronic appli-
cations due to the lower impact of glial scar on the collective LFP than on the
local SUA[57, 112, 114]. Furthermore, LFP require a lower sampling rate than SUA
(10-fold lower for gamma and down to 1000-fold lower for low-frequency LFP[112]).
This reduction in sampling frequency potentially leads to a lower power consump-
tion, which is an important advantage for wearable devices. In order to increase the
information bandwidth of a neural probe, its spatial resolution should be improved
in order to provide a detailed information of the signals topography[76, 109]. As a
downside, an increase in the number of sensors also increases the amount of corre-
lated information and the complexity of the dataset. Therefore, principal component
analysis (PCA) is typically used to reduce the dimensionality of the extracted raw
data[113]. In addition to increasing the number of sensors, another way to increase
the information bandwidth of the neural probe would be to detect novel neural
features that are currently not available. An example of such activity is infra-slow
activity.

ISA could be an important feature for brain decoding applications due to its ex-
tremely low frequency, which could enable ultra-low power neuroprosthetics. Al-
though ISA has been to date seldomly investigated, infra-slow fluctuations of higher
frequency LFP bands have been reported[115]; further, ISA has been recently rec-
ognized as a possible mediator of brain sub-states[116] via the coordination of the
resting state network[117] or modulation of higher frequency activity[118]. Fur-
thermore, ISA has been found to correlate with the infra-slow blood oxygen level
dependent (BOLD) signal measured using fMRI[116, 119, 120], which has been the
standard method for the study of large-scale brain dynamics in the last decades.
fMRI studies have demonstrated the selective activation of distinct brain areas in
the infra-slow timescale for particular brain states, stimuli or tasks[116, 121]. How-
ever, BOLD has a poor temporal resolution[121] (in the scale of seconds), and
electrophysiological methods present a low spatial resolution in the ISA band[122].
Furthermore, fMRI studies are limited to immobile conditions due to the large size
of the magnetic resonance scanners, which has prevented the study of ISA correlates
of natural behaviour. The combination of these technical hurdles has hindered the
simultaneous characterization of infra-slow and high frequency dynamics with high
spatial resolution in behaviourally relevant environments. In turn, these limita-
tions have prevented the investigation of neural response features in the ISA band
for decoding applications. Development of a novel technology that combines the
large-scale coverage and ISA mapping capabilities of fMRI with the high temporal
resolution and wearability of electrophysiological recordings would allow to investi-
gate in greater detail the physiological role of ISA and evaluate its use for neural
decoding applications. In the following section, graphene bioelectronics are intro-
duced as a promising technology to bridge the gap between large-scale fMRI brain
mapping and high spatio-temporal resolution electrophysiological recordings.
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Figure 1.5: a, Recorded LFP signals from the cortical surface (top) and deeper layers
(middle) of the motor cortex in an anaesthetized cat. Intracellular trace from a layer 5
pyramidal neuron (bottom). The slow alternation of hyperpolarization and depolarization
of intracellular potential is reflected on the slow oscillations on the LFP. Higher spiking rates
present a correlation with increased high frequency LFP power. Adapted with permission
from Contreras et. al.[123]. Copyright 1995 Society for Neuroscience. b, Spatial topography
of spike-gamma coherence in the rat hippocampus computed from depth recordings using
multi-shank probes. Adapted with permission from Sirota et. al.[101]. c, High gamma
band power (70–150Hz, gray curves) induced in a single trial by a certain speech segment.
Recordings are from four different electrodes placed in the superior temporal gyrus. The
high gamma activity is z-scored and plotted in standard deviation units. Dark black traces
on the right-hand side correspond to the frequency tuning curves sorted by peak frequency
(marked by red bars) and normalized by maximum amplitude. The high gamma power is
convoluted with the reconstruction model R(t, i). The color map in the middle represents
the anatomical distribution of fitted weights in the reconstruction model (scale bar is 1 cm.
The right panel represents the reconstructed speech spectrogram. Adapted from Pasley et.
al.[109].

1.3 Graphene bioelectronics

The previous section described the importance of developing highly biocompatible,
flexible and ultra-thin neural interfaces. In addition, advanced neural interfaces can
benefit from having a high sensor-count and wide frequency bandwidth, ideally from
ISA band to SUA, in order to cover the entire frequency range of neural activity.
An optimum material for the fabrication of neural sensing technologies should be
highly inert, so that it does not degrade over time or causes chemical reactions in
the physiologic environment. Additionally, it must be highly flexible and stable in
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an ultra-thin conformation that can be handled and processed. Finally, in order to
implement active sensors, which might solve current challenges in terms of sensor
count and frequency bandwidth, an optimal material must present semiconductor
or semimetal properties and a high electrical mobility. In this section, graphene is
presented as an outstanding candidate to fulfil this challenging set of requirements.
A short survey of previous literature on graphene technology is presented in order
to describe the initial context of this work and outline the main challenges to move
graphene bioelectronics from a promising technology into fully functional devices.

1.3.1 Graphene properties

The remarkable properties of graphene, from a mechanical, chemical and elec-
tronic perspective, emerge from the robust sigma bond among sp2-hybridized car-
bon atoms. These covalent bonds enable the formation of a highly stable two-
dimensional hexagonal lattice, which is the building block of multiple carbon al-
lotropes besides graphene[124]. The sigma bonds in graphene represent a closed
valence shell, which is responsible for its high stability. On the other hand, the pz
orbitals, perpendicular to the graphene plane, also form covalent bonds but present
a half-filled delocalized π-orbital, which is responsible for the electronic properties
of graphene[125].

Electronic properties of graphene

The band structure of graphene, governing its electronic properties, can be mod-
elled by considering only the linear combination of its pz atomic orbitals. The first
calculation of the dispersion relation of graphene was based on the tight binding
model[126], which, when considering the interactions among nearest and next near-
est carbon atom[125] can be expressed as in Eq. 1.4.

E±(k)− ED = ±t
√

3 + f(k)− t′f(k) (1.4)

where, f(k) = 2cos(
√

3kya) + 4cos(
√
3
2 kya)cos(32kxa). Here, t and t′ stand for the

nearest neighbour and the next nearest-neighbour hopping energy, respectively. k
represents the momentum of electrons and a the distance among nearest carbon
atoms. If the interaction among next nearest neighbours is neglected, the dispersion
relation is symmetric for the bonding and antibonding π bands represented by the
+ and - signs in Eq. 1.4. If a finite value is assigned to t′, this symmetry is broken,
however the dispersion relation remains highly linear at the K and K′ points of the
Brillouin zone. At these points of the reciprocal space, the valence and conduction
bands merge at an energy referred to as the Dirac energy (ED). Fig. 1.6 shows the
energy dispersion relation and the so-called Dirac cone. Expanding Eq. 1.4 around
ED leads to:

35



High-Bandwidth Graphene Neural Probes

Figure 1.6: a, Crystalline lattice of graphene representing the unit cell and the lattice
vectors a1= (3,

√
3)a/2 and a2= (3,−

√
3)a/2. b, Brillouin zone of graphene and reciprocal-

lattice vectors b1= (1,
√

3)2π/3a and b2= (1,−
√

3)2π/3a. The K and K ′ points of the
Brillouin zone correspond to the position in reciprocal space of the Dirac point. c, Band
structure of graphene as defined by Eq.1.4. The inset shows the dispersion relation around
the Dirac point.

E±(q) ≈ ±vF | q | +O[(q)2] (1.5)

where q is the momentum measured relative to K and K′, O[(q)2] represents the
second order of the expansion around the Dirac point at which the Fermi velocity
vF was found equal to 106m/s[127, 128]. Interestingly, the linearity of the band
structure implies that the charge carriers have a vanishing effective mass (m∗) at
the Dirac point[128]. However, the average mass of electrons away from the Dirac
point increases due to the contribution of the finite effective mass in the trans-
verse direction of the Dirac cone[129]. The electrical mobility of charge carriers in
graphene with a finite effective mass is therefore limited to a finite value, domi-
nated by acoustic phonon-electron scattering in the ideal case. This intrinsic limit
is predicted to be 2.105 cm2/(V s) at room temperature[130]. This extraordinary
mobility is one of the main reasons for the interest on graphene for electronic appli-
cations. However, in addition to intrinsic sources of scattering, extrinsic scattering
mechanisms further limit the mobility of graphene.

A prominent source of extrinsic scattering is the interaction of charge carriers in
graphene with the substrate. One such source of scattering are infra-red (IR)-active
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remote interfacial phonons (RIP) in the substrate[130], which degrade the mobility
in graphene at room temperature down to maximum values of ∼ 4.104 cm2/(V s)
for SiO2 as well as certain polymeric substrates[130]. Other sources of scatter-
ing induced by the substrate such as microscopic corrugations[131] and charged
impurities[132] can also attenuate significantly the mobility in graphene. In addi-
tion to substrate-induced scattering, structural defects in the graphene lattice can
play a detrimental role on the electrical properties of graphene. Structural defects in
graphene are typically classified as point defects or one-dimensional defects[133]. In
the first group, it is possible to differentiate among Stone-Wales (SW) defects, which
occur when rotating a C-C bond by 90° on the graphene plane (Fig. 1.7a), vacancies
or adatoms. Point defects typically induce a certain degree of sp3 hybridization in
the carbon lattice[133]. SW and vacancies present a reconstruction of the lattice
from the original hexagons into a combination of heptagons and pentagons, which
present dangling bonds only in case of odd number of carbon atoms missing and rel-
atively high formation energies[133] (Fig. 1.7). A series of experiments determined
the effect of point defects and charged impurities on the mobility of graphene on
SiO2, showing that initial values in the order of 104 cm2/(V s) are attenuated pro-
portionally to the density of both charged as well as uncharged impurities[132, 134].
Similarly, the mobility in graphene has been found to depend on the presence of
one-dimensional grain boundaries among crystals, resulting in a low mobility in the
range of 103 cm2/(V s), which can eventually increase up to 2.104 cm2/(V s) after
grain boundary healing treatment[135]. In order to eliminate these extrinsic limits,
isolation of high quality graphene samples from the substrate has demonstrated mo-
bility values near to the intrinsic limit, up to 1, 4.105 cm2/(V s)). These record values
at room temperature were measured for field-effect transistors based on graphene
sheets exfoliated from graphite and subsequently encapsulated between hexagonal
boron nitride (hBN) films[136], demonstrating the strong effect of the substrate on
the properties of high-mobility graphene samples[137].

Mechanical and chemical stability of graphene

Due to the strong σ bonds among carbon atoms, graphene presents a relatively low
density of structural defects and its intrinsic strength is the highest ever measured
in any material[139–141]. These mechanical properties make graphene devices on
flexible substrates stable; however, the presence of structural defects can have a
strong impact on its mechanical and chemical properties. The presence of point
defects, in particular SW defects and vacancies, are expected to decrease the failure
strain of graphene and slightly decrease its Young’s modulus[142]. This prediction
has been confirmed experimentally by measuring the breaking strength and elastic
modulus of graphene with a controlled level of sp3 defects or vacancies induced by
oxygen plasma[143]. Results show that while oxygen adatoms and vacancies have a
relatively low impact on the graphene stiffness, the strength of the graphene lattice
is significantly compromised by vacancies[143].
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Figure 1.7: a, Transmission electron microscopy (TEM) image of a graphene lattice with
a SW defect (left) and its schematic representation (right). b, TEM image of a graphene
lattice with a single vacancy defect and its schematic representation (right). Panel a and b
have been reprinted with permission from Banhart et. al.[133], which in turn was reprinted
from Meyer et. al.[138]. Copyright 2008 American Chemical Society.

Similarly, structural defects also affect the chemical properties of graphene by in-
creasing its local reactivity[133]. One example of such increased reactivity de-
scribed theoretically is the covalent bonding of an hydrogen atom to a carbon in the
graphene lattice. The formation energy of such bond in pristine graphene is 1.5 eV
while its energy for a SW or a bi-vacancy is 0.3 and 0.93 eV respectively[144]. In-
terestingly, the chemisorption energy of an additional hydrogen atom is lower than
for the first one. However, in the case of defective graphene with SW or vacancy de-
fects, there is an energy barrier after the chemisorption of few hydrogen atoms (Fig.
1.7c). In contrast, in pristine graphene the chemisorption energy of an hydrogen
atom decreases monotonically with each hydrogen atom addition[144],suggesting
that realistic, imperfect, graphene might present local energy minima preventing
the complete degradation of the atomic layer in reactive environments. The oxy-
dation of graphene via the adsorption of hydroxyl groups or the dissociation of O2

molecules shares certain features with the adsorption of hydrogen atoms; however,
the effect of structural defects has not been investigated. While the chemisorption
energy for oxygen atoms on pristine graphene presents a global minimum for full
coverage[145], for hydroxyl groups it presents a global minimum for 75 % coverage
[145]. Nevertheless, graphene does not oxydize in standard atmospheric conditions

38



An introduction to high-bandwidth neural sensing interfaces

at low temperatures (< 200 °C), and the theoretical chemisorption energy for triplet
O2 molecules is very high, suggesting that the singlet O2 should play a role in the
oxydation of graphene[146]. This observation could be critical for the application of
graphene devices for neural sensing in chronic settings, where its chemical stability
is critical.

Another source of increased reactivity is the presence of charged impurities at the
substrate, which locally shift the Dirac energy in graphene, leading to an increase
in the density of states and consequently an increased electron-transfer reaction
rate to unoccupied electronic states of reactive species[147]. In pristine graphene,
the density of charge carriers at the Dirac point should be homogeneous and only
different from zero due to thermal fluctuations. However, local changes in the Dirac
energy induced by charged impurities lead to the so-called charge puddles[148].
Increased reactivity in graphene with charged impurities has been found to be more
prominent in single-layer graphene compared to multi-layer graphene and has been
found to be supressed by the use of a h-BN substrate[149].

Opto-electronic properties of graphene

Single layer graphene presents a high optical transmittance because of its monoatomic
structure[150]. However, scattering of photons with electrons and phonons in the
two-dimensional lattice provide rich information about the number of graphene lay-
ers, doping, density of defects or strain. In particular, Raman spectroscopy has been
shown to be a powerful tool for non-destructive analysis of graphene properties[151].
Raman spectroscopy is based on the inelastic scattering of photons by phonons.
When a photon with energy ~ωL interacts with the atomic structure it perturbs the
energy of electronic states, inducing an oscillation of electrons with frequency ωL.
This excited state is short-lived and it can be followed by either a direct relaxation
to the initial state (i.e. elastic scattering) or the interaction with the lattice phonons
producing a variation in the energy of the scattered photon ~ωS = ~ωL ± ~Ω (i.e.
inelastic or Raman scattering, where ~Ω is the energy of the phonon taking part in
the scattering process). Because of energy and momentum conservation and because
of the negligible momentum of photons, first-order Raman scattering only probes
the phonon states around the Γ point of the Brillouin zone, which corresponds to
the ED. However, scattering of multiple phonons can lead to the characterization of
higher momentum phonon states without violation of the momentum conservation
selection rule. Raman scattering typically involves multiple intermediate states, in-
cluding electronic excited states[152]. In addition, the effect of defects in graphene
can also modify the momentum of electronic states by electron-defect scattering and
therefore enable activate additional Raman modes.

In defect-free single layer graphene, the only one-phonon Raman-active mode is the
G-peak at (≈ 1585 cm−1). Another prominent peak appears due to the interac-
tion of two phonons with opposite wave vectors, the 2D-peak at (≈ 2685 cm−1).
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The relative intensity and energy of these two modes depends on the doping of
graphene[153]. On the other hand, the D and D’ band are activated by defects,
D-peak for intervalley scattering and D’-peak for intravalley scattering, and allow
to characterize the density of structural defects in the graphene lattice and to ex-
tract information about the nature of the structural defects. Experimental works
have shown that the intensity of the D band is primarily associated with sp3 hy-
bridization of carbon atoms while the intensity of the D’ increases for vacancy type
defects[154].

In summary, graphene presents outstanding mechanical, chemical and electrical
properties, which arise from its particular crystal structure and atomic orbitals
hybridization. While the structure of the graphene lattice governs the properties
of pristine graphene, real samples present multiple types of non-idealities, which
effectively govern the actual mechanical, chemical and electronic properties. In order
to use graphene in technological applications, controlling the presence of structural
defects and impurities is therefore paramount. In the following section, the state
of the art graphene production and processing techniques are described with the
aim of highlighting the main technological challenges and promising strategies to
improve the maturity of graphene-based bioelectronics.

1.3.2 Wafer-scale graphene technology

The electrical, mechanical and chemical properties of graphene depend on the struc-
tural defects and the presence of impurities in the graphene environment. Therefore,
in order to achieve high performance devices it is important to optimize three main
aspects of graphene technology; the graphene growth, its transfer onto the final
substrate and the microfabrication processes to produce functional graphene de-
vices. In order to move graphene electronics forward into industrial production
these three steps must be optimized at a wafer scale to produce high-performance
devices with high homogeneity and reproducibility. In addition, the final graphene
properties must meet particular specifications for different applications; therefore,
an application-oriented development is crucial to reach this technological maturity.
In the 1st stage of this thesis, the main focus is placed on thoroughly characterizing
and modelling of graphene transistors produced in a wafer-scale in order to evaluate
and optimize their performance for bioelectronic applications. In this section, the
state of the art large-area graphene technology is surveyed in order to define the
context of this thesis.

Graphene can be produced by several methods, including mechanical exfoliation
from graphite[155], chemical exfoliation[156], epitaxial growth on SiC[157] or by
CVD growth on catalitic metals. The highest quality has been reported for me-
chanically exfoliated samples, with carrier mobilities up to 1, 4.105 cm2/(V s) at
room temperature. However, the trade-off between large scale production and high
electrical performance is optimal for CVD growth, with production areas in the
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range of tens of inches[158] and carrier mobilities up to 5.104 cm2/(V s) at room
temperature[159]. CVD graphene is therefore the most promising technique for
large-area and high quality graphene production[160, 161]. In the CVD growth of
graphene, the precursor gas (typically CH4) is introduced into a chamber with a
controlled gas pressure and temperature. The precursor undergoes a reaction in
the gas phase to form active species (CxHy), which can then diffuse until reaching
the catalytic metal surface. The activated carbon species adsorb on the catalytic
surface and decompose into carbon atoms and hydrogen, which desorbs from the
surface[162]. If the diffusion of activated species in the gas phase is relatively slow,
it can be the limiting factor in the growth (i.e. diffusion-limited regime). Other-
wise, if the catalysed decomposition rate is the limiting factor, the growth occurs
in the reaction-limited regime. Changing the temperature, the gas pressure or the
catalytic metal, the growth regime can be tuned. On the other hand, if the cat-
alytic material presents a high carbon solubility, the carbon sources decompose on
the surface and the carbon radicals diffuse into the bulk (Fig. 1.8-top). When
the temperature is decreased, the dissolved carbon concentration exceeds satura-
tion and aggregates on the metal surface. This growth regime can be employed to
produce multilayer graphene samples; however, the growth of SLG cannot be easily
controlled. Alternatively, if catalytic metals with very low carbon solubility are
used, such as Cu, the carbon radicals formed onto the metal diffuse onto the surface
to form the graphene lattice (Fig. 1.8-top). This process is a self-limited growth,
which typically leads to a graphene monolayer[162] and it is therefore preferred for
large-area SLG growth.

Figure 1.8: Growth mechanism of graphene on catalytic metals with high carbon solubility
(top) and self-limited graphene growth on the surface of catalytic metals with low carbon
solubility (bottom). Adapted with permission from Li et. al.[163]. Copyright 2009 American
Chemical Society.

After the growth on a Cu substrate, the SLG must be transferred onto an insulating
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substrate. The transfer process typically requires the use of a support layer, which
provides sufficient mechanical strength to minimize cracks on the graphene sheet.
A typically used supporting layer material is poly(methyl methacrylate) (PMMA)
due to its sufficient strength, insolubility in water and solubility in solvents such as
acetone. After depositing the support layer, the Cu substrate must be separated
from the graphene layer. This process is typically done by wet etching of Cu. How-
ever, other methods such as electrochemical bubbling or dry transfer methods have
also been developed[164]. One of the main challenge in the transfer process is the
elimination of residues such as support polymer traces, metal residues or trapped
water between the graphene and transfer. In order to minimize the presence of
polymer residues, paraffin has been recently reported to be a promising alterna-
tive to PMMA, with non-covalent affinity to graphene, it leads to a clean surface
and high carrier mobilities above 1, 4.104 cm2/(V s)[165] which are close to the limit
imposed by substrate induced scattering at room temperature[130]. Similarly, dry
transfer using h-BN layer encapsulation, which presents a high van-der-Waals in-
teraction with graphene, has shown successful detachment from the Cu substrate
leading to high mobilities for graphene flakes in the order of 5.104 cm2/(V s) at room
temperature[159].

Finally, after completing the graphene transfer process, the graphene must be pat-
terned and metallic contacts usually defined. This process must be carried out by
lithographic methods, using photodefinable resists, which also represent a major
source of contamination. Graphene is especially prone to photo-resist residues due
to its 2-dimensional nature. First, because of its high surface to volume ratio the
effect of surface charges, defects and trap states has a huge impact on the graphene
properties. Second, because dry-etching methods typically used to eliminate re-
sist residues from the surface of bulk semiconductors cannot be directly applied in
graphene to prevent its etching. Therefore, development of specific cleaning meth-
ods and sacrificial layers to protect graphene is required. Cleaning of resist residues
by thermal annealing[166–168] or by ultra-violet ozone (UVO)[169] have been ex-
plored with relative success. Similarly, recent works reported the use of Cu sacrificial
layers to protect graphene against resist residues[170]. In this thesis, the focus is
placed on evaluating the technological maturity of devices based on CVD-grown
graphene transferred by a standard PMMA-based wet transfer process for neural
sensing. Following the characterization and modelling of the graphene biosensors,
the presence of resist residues has been found to be often related with performance
degradation and diverse procedures have been implemented to optimize the sensi-
tivity of graphene biosensors.

1.3.3 Graphene active sensors

As previously argued, increasing the frequency bandwidth and sensor count of neu-
roelectronic sensing interfaces is of great importance to measure the electrical activ-
ity generated by individual neurons and neural populations in the brain with high
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spatio-temporal resolution. As previously introduced, active sensors have emerged
as a promising building block for high bandwidth neural interfaces[11, 76, 171–173]
because they can be arranged in a multiplexed array[73, 174]. The detection prin-
ciple of active biosensors is based on the transduction of electrochemical potentials
signals in the environment into electric currents from the drain to the source of
a transistor[73, 173, 175–178]. Although active sensors present important advan-
tages compared to passive electrodes, their use has been typically constrained by
the demanding functional properties of the materials needed for their fabrication,
combined with the required biocompatibility and long-term stability. Graphene
solution-gated field-effect transistors (g-SGFETs) are a promising technology to sat-
isfy all these challenging requirements. This section, summarizes the basic proper-
ties of g-SGFETs, their stationary response and the understanding of low-frequency
noise in graphene transistors prior to this thesis.

As introduced in the previous section, the conduction and valence bands in graphene
are approximately symmetric and linear around the Dirac energy, where the density
of states is minimum. This band structure leads to ambipolar transfer characteristics
of graphene field-effect transistors (GFETs), which are approximately symmetric
for the hole and electron conduction regimes. The conductance minimum is found
at the charge neutrality point (CNP), where the average density of electrons in
graphene equals the average density of holes, leading to a transport dominated by
the residual carrier density (n0). n0 in GFETs takes a finite value due to thermal
excitation of carriers and variations in the Dirac energy[179, 180]. Away from the
CNP, the density of charge carriers (n) can be approximated as the charging of the
gate capacitance (Cgate) with respect to the potential at the CNP (UCNP )[179] (i.e.
n ∝

√
(Ugs − UCNP )2Cgate/e).

Due to the high stability of graphene in aqueous environments, the graphene chan-
nel in GFETs can be directly exposed to the electrolyte solution in a g-SGFET
architecture. The gate capacitance in this configuration is, in a first approximation,
given by the double layer capacitance (Cdl) that forms at the graphene-electrolyte
interface[181]. The double layer consists of a first charged layer in graphene and a
second layer of closely packed ions separated by the Debye length, in the nm scale.
This short separation leads to a high gate capacitance, which is paramount to ef-
fectively transduce electrochemical potentials at the gate into variations of charge
carriers. In addition to Cdl, the gate capacitance presents an additional term in se-
ries due to the low density of states in graphene around the Dirac point. This term,
referred to as the quantum capacitance (CQ)[182, 183], effectively limits the gate
capacitance around the CNP. CQ presents a minimum value at the CNP, which de-
pends on charged impurities nimp[183] and increases proportionally to the potential
drop at the quantum capacitance, or chemical potential (UQ)[183, 184](Eq. 1.6).
For eUQ� kT [183]:
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CQ ≈
2e2

~vF
√
π

√(
eUQ

~vF
√
π

)2

+ nimp (1.6)

where UQ = UgsCdl/(Cdl + CQ)).

From the dependence of the quantum capacitance on the gate bias (Eq. 1.6), the
conductance in graphene can be described as Gds = µen(UQ)W/L, where W and
L stand for the width and length of the transistors respectively, µ for the electrical
mobility and n(UQ) = n0 + kU2

Q/2 [184], neglecting the effect of nimp on CQ. The
complexity in modelling the stationary response of GFETs mostly comes from the
non-linear dependence of CQ on Ugs. Additionally, in g-SGFETs the drain-source
bias (Uds) is typically in the same order as Ugs, due to the high gate capacitance.
Therefore, the non-homogeneous effective gating across the graphene channel must
be taken into account in order to properly model the g-SGFET response[185, 186].
Implementation of such solution in a compact model compatible with circuit sim-
ulation tools provided an accurate description of the current-voltage relation and
the charge distribution across the channel, even for channel potentials values close
to the Dirac point[186].

Figure 1.9: a, Equivalent capacitive circuit of a GFET (bottom) and schematic of the
dispersion relation in graphene indicating relation between the variables UQ and U and
the position of the Fermi energy relative to the energy at the Dirac point. b, Transfer
characteristics of g-SGFETs for two different channel lengths. Experimental data (empty
symbols) correspond to the average for n = 16 g-SGFETs; the fitting (solid line) has been
done using the compact model reported in Landauer et. al.[186]. This data corresponds to
experiments reported in Schäfer, Garcia-Cortadella and Bonaccini et. al.[187].

Assuming a constant potential along the channel and a voltage independent capaci-
tance, a simplified expression can be derived to describe the current-voltage relation
in GFETs, which is accurate in the linear regime of the transfer characteristics. The
slope of the current-voltage relation or transconductance (Gm) can be expressed as:
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Gm = Uds
W

L
µe

dn

dUgs
≈ Uds

W

L
µCgate (1.7)

From this simplified expression it is clear that the transconductance of GFETs
is, in a first approximation, proportional to the electrical mobility in graphene
as well as their gate capacitance. Due to the exceptional µ in graphene and the
high double-layer capacitance enabled by its high stability in aqueous environ-
ments, g-SGFETs present a high transconductance in the range 1 − 4mS/V for
squared transistors, which is about two orders of magnitude higher than that of
flexible silicon-nanomembrane transistors[73]. An important technological aspect
of transistors, which is critical to maintain a high Gm, is the metal-graphene con-
tact resistance[188, 189]. The metal-graphene contacts are a challenging aspect of
graphene technology due to several factors. First, the mismatch between the work
function of graphene and metals as well as the low density of states in graphene limit
charge transfer[190, 191]. Secondly, the relatively high sheet resistance of graphene,
due to its two-dimensional nature, leads to the so-called current crowding effect
by which most of the current flows close to the contact end[192, 193]. In order to
minimize contact resistance, many works have focused choosing metals that inter-
act more strongly with graphene[190], creating dangling bonds in carbon atoms at
the contact [194–197] or reducing the distance between edge carbon atoms and the
contact end[136, 198]. Having a low contact resistance is therefore paramount to
achieve a high transconductance, and thus an efficient signal transduction.

In sensing systems basd on graphene transducers, the transconductance of the tran-
sistors is the first pre-amplification stage. After the electrical potential signals are
transduced at the transistor level, the resulting drain-source current signals are fur-
ther amplified by an external transimpedance amplifier, which converts the current
signals back to voltage prior to digitalization. Having high transconductance is
therefore critical to pre-amplify small neural signals above the intrinsic noise of the
amplifier chain. The higher the transconductance of GFETs, the higher will be
the relation between signal and the floor noise of the amplification system. How-
ever, active sensors also present an intrinsic noise, typically 1/f , that limits the
sensitivity of the recording system beyond the noise of the amplifiers. The intrinsic
sensitivity of g-SGFETs can be determined as the ratio between between Gm and
the RMS current noise Ids−rms, which is referred to as the equivalent noise at the
gate (Ugs−rms)[176]. This term is an important figure of merit, and corresponds to
the signal amplitude at the gate that equals the RMS noise. In order to improve
the sensitivity of g-SGFETs, it is therefore critical to understand the origin of 1/f
noise in graphene and mitigate its effects.

1/f or flicker noise appears in many kinds of devices and the nature of its gen-
eration has traditionally been a controversial topic[199, 200]. Fluctuations in the
conductance can arise from changes in the electrical mobility or in the number of
charge carriers. In the case of graphene, both contributions have been observed to
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be significant in different regimes[201]. On the one hand, fluctuations in the num-
ber of charge carriers can occur due to carrier excitation-relaxation events between
conduction and trap states in the environment of graphene. On the other hand, mo-
bility fluctuations can occur due to changes in the scattering cross-section of scat-
tering centres[202]. These transitions between different scattering cross-sections, or
between trap and conduction states can be characterized by their transition rate,
and can be described in the frequency domain by a Lorentzian spectral density
function. Below the characteristic frequency, the PSD remains constant while for
higher frequencies it presents a 1/f2 decay[201, 202]. The superposition of multiple
events with different time constants, homogeneously distributed across a particular
frequency range, leads to 1/f noise[201, 202](Fig. 1.10).

Figure 1.10: a, The charge trap states in the vicinity of graphene generate trapping-
detrapping noise with a time constant τ , which depends on the graphene-trap distance[201,
203]. b, The power spectral density of trapping-detrapping events presents a Lorentzian dis-
tribution, corresponding to a 1/f2 decay above the characteristic frequency. Superposition
of events with different time constants can lead to a 1/f decay.

1.3.4 Chapter outlook: towards high bandwidth graphene neural
probes

In this chapter, the rationale behind the need for high bandwidth neural interfaces
has been introduced. The bandwidth of a neural sensing interface can be defined
as the information per unit time that can be decoded from detected patterns of
neural activity. Neural decoding is based on determining the correlation between
the controlled cognitive states of interest in a set of training experiments, which are
then used to estimate the intentions of the patient in the final clinical application
[6, 21, 80]. The communication bandwidth of this neural interface depends on the
information contained in the correlation between the cognitive variables of interest
and the neural response (P [s|r]) which, in turn, depends on the spatio-temporal
resolution of the neural features detected. The intracranial implantation of sensor
arrays enables the detection of local neural activity with high resolution. However,
in order to prevent clinical complications, the implanted devices must be highly
biocompatible, mechanically compliant with the soft brain tissue, as well as chemi-
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cally and mechanically stable for long-term operation in chronic implants. Clinical
translation of neural implants for BCI applications has led to promising results when
using high-count sensor arrays, therefore motivating the development of advanced
technologies with higher sensor-count and improved long-term biocompatibility and
stability[14, 39, 76, 78, 204].

In this thesis graphene active sensor arrays are presented as a promising technol-
ogy to satisfy the technical requirements for intracranial, high sensor-count neural
probes for long-term mapping of brain activity. Graphene is an atom-thick crys-
talline material that presents a high chemical inertness in aqueous environments[144,
145], a high mechanical strength[141] and a very high electrical mobility[136]. This
combination of properties enables the operation of graphene field-effect transistors
in a solution-gated architecture, where the brain tissue represents the gate elec-
trode that modulates the conductance of the active graphene sensors. Furthermore,
graphene transistors can be arranged in an addressable matrix to enable the multi-
plexing of large sensor arrays. In order to move graphene-based neural probes from
a promising concept to advanced functional systems, this thesis presents three main
technology development stages.

In the first stage, the performance of graphene active sensors produced in a wafer-
scale is evaluated at the single-device level. The principle of detection is thoroughly
investigated; including the origin and mitigation of low-frequency noise, the fre-
quency response of the sensors and the mechanisms of signal distortion. In a second
stage, the performance of the sensors is evaluated at the system level, investigat-
ing the reproducibility and homogeneity of the arrays and integrating them in a
recording systems for a chronic brain mapping in freely moving rats. Finally, novel
strategies for the multiplexing of g-SGFETs are presented, which show a great po-
tential for the integration of hundreds of graphene sensors with a high stability,
chronic biocompatibility and high sensitivity. The combination of these results
makes graphene active sensor arrays a unique tool for the investigation of large-
scale brain dynamics and a promising technology for the implementation of high
bandwidth brain computer interfaces.
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Chapter 2

Single device characterization
and modelling:
Wide frequency band sensing

The sensitivity of graphene active sensors is a critical property for neu-
ral sensing of low-amplitude extracellular potentials. The sensitivity of
g-SGFETs results from the relation between their transconductance and
their intrinsic LFN. Therefore, understanding the current-voltage relation
of g-SGFETs and the origin of LFN in graphene is paramount to optimize
their performance. While the stationary response of g-SGFETs and the in-
trinsic LFN have been previously investigated, there are still existing gaps
in their understanding and technological optimization. The first stage of
technological development of this thesis is focused on the study of the per-
formance of g-SGFETs from a single device perspective. First, the relative
contribution of the contacts and the channel to LFN has been modelled in
order to guide the enginering of devices with low contact noise. Secondly,
the effect of non-idealities in the stationary and frequency response of g-
SGFETs has been investigated, leading to a deeper understanding of signal
distortion mechanisms and the optimization of their sensitivity in a wide
frequency band.
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2.1 Noise characteristics in graphene transistors

The intrinsic LFN in graphene transistors has been the subject of intense research.
The reason is that graphene is particularly promising for analog electronics, due to
its high electrical mobility and two-dimensional nature[205]. However, in opposi-
tion to digital electronics, applications such as radio-frequency communication[205],
chemical[206] and biological sensing[176] or optoelectronic applications[207] are sus-
ceptible to LFN. Furthermore, graphene is expected to be particularly prone to LFN
due to its high surface to volume ratio, which implies a strong interaction of car-
riers with trap states and charged impurities in its environment[208]. In addition
to the physical mechanism underlying the generation of LFN in graphene transis-
tors resulting from its interaction with the environment, another topic of debate is
the role of the metal-graphene contacts in noise generation. Previous works have
characterized LFN in GFETs generated at the contacts or in the active graphene
channel[208–210] (Fig. 2.1a). In particular, Heller et. al. [209] presented a model
of noise in g-SGFETs with a channel noise contribution independent of the contact
noise. The former contribution was assumed to be proportional to the transconduc-
tance of the g-SGFETs, leading to a noise power generated in the channel propor-
tional to g2m[209], as previously derived to describe LFN in silicon transistors[211].
However, this model presented deviations from the experimental data both away
from as well as close to the CNP. In order to correct deviations from the model
away from the CNP, the authors proposed to introduce a term proportional to I4ds
describing contact noise. Although the model described most features of the gate
bias dependence of LFN in g-SGFET, deviations around the CNP were presum-
ably related to the assumption of homogeneous charge distribution in the graphene
channel. Later works addressed the study of contact noise in further detail and
proposed that the current crowding effect, which reduces the effective area of the
metal-graphene contact, could be the physical origin of high contact noise[210].
However, this explanation implies that contacts with lower resistance (i.e. a shorter
current transmission length) would present a higher contact noise, which is not ob-
served. In short, a complete model of low-frequency noise in graphene transistors
describing the physical origin of contact noise, the effect of non-homogeneous charge
noise in the channel, and the relative contribution of channel and contact sources
is still missing.

2.1.1 Contacts noise modelling and mitigation

The 1st complementary article of this thesis addressed the evaluation of the relative
contributions from the contacts and the channel to LFN. For this purpose, the
current noise power (SI) generated in g-SGFETs was characterized for a wide range
of channel geometries. More details on the fabrication process are provided in the
experimental section of the 1st complementary article of this thesis (Appendix B).
In order to distinguish between the noise sources at the contacts (SRc) and in the
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channel (SRch), the relation between SRc , SRch and SI was derived. It can be shown
that the normalized current noise power (SI/I

2) is equivalent to the normalized
resistance noise power (SRT /R

2
T ), where RT is the total resistance of the conductor.

Assuming that fluctuations in the resistance of the channel and the contacts are
uncorrelated, the total power of resistance fluctuations can be expressed as the sum
of their individual contributions:

SI
I2ds

=
SRc + SRch

R2
T

(2.1)

From Eq. 2.1, the geometrical dependence of each of the contributions can be
expressed explicitely:

SIf

I4ds
= (kRc/W

3 + kRchL/W
3)/U2

ds (2.2)

where kRc and kRch include all the geometry-independent constants, which depend
on the physical origin of LFN (this is discussed in detail in the supporting infor-
mation of the 1st complementary article of this compendium). From Eq. 2.2, it is
shown that the dependence of contact and channel noise on the width (W ) is the
same. Therefore, the relation between the contribution of both terms only depends
on the device length (L). On the other hand, the contact noise is shown to be inde-
pendent of L, while the channel noise term is proportional to L. By measuring the
current noise from g-SGFETs with different channel lengths it was possible to show
that the noise in g-SGFET fabricated with our standard contact technology, con-
sisting of Ni/Au top-contacts, showed no dependence on L (Fig. 2.1b). This result
was consistent with a contact noise dominated response, indicating that the contact
technology should be optimized for an optimal sensitivity. This high contact noise
was also related to a high contact resistance, in the range of 4 kΩ.µm, which was
far from previously reported record-low resistance values in the range of 100 Ω[212].
We hypothesised that a high contact resistance, caused by photolithography resist
residues accumulated at the graphene surface prior to metallization could be the
origin of a high contact resistance as well as LFN.

In order to minimize the level of contamination at the interface, we reproduced a
previous work on the use of ultra-violet ozone (UVO)[169] to decrease the contact
resistance. In addition to eliminating residues, ozone can also introduce structural
defects in graphene, which are considered to enhance charge transfer between the
metal and graphene[169, 195, 196]. After ozone treatment, we could validate that
contact resistance was significantly reduced to 0.7 kΩ.µm. More importantly, when
we measured the contact noise in the g-SGFETs with UVO-treated contacts, LFN
was significantly attenuated (Fig. 2.1c). This trend was followed by a change
in the dependence of the normalized noise with the channel length (Fig. 2.1b,
from a contact-dominated dependence to a channel-dominated regime). From this
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characterization, it was possible to determine the channel length for which the
LFN contribution from untreated contacts equaled the channel noise (dominating
in UVO-treated devices). This length was found to be ∼ 50µm, which is a typical
value for g-SGFETs used for neural sensing, ranging between 10µm to few 100µm.
Below this characteristic channel length, g-SGFETs fabricated with the UVO treat-
ment showed a lower intrinsic noise and therefore an improved sensitivity (Ugs−rms)

(Fig. 2.1d). The evaluation of the normalized current noise Ids−rms/I
2
ds ∝

√
SI/I4ds)

demonstrates that the improvement in Ugs−rms is not only due to an improvement
in Gm caused by the Rc reduction, but also by a reduction of the term SRc . In-
terestingly, from Eq. 2.1, the previously reported dependence of contact noise on
Ids and Rc can be recovered. If Rc is considered voltage independent, which is
expected for contacts not modulated by the gate, the only dependence of SI on Ugs
corresponds to the term I4ds in Eq. 2.2[209]. On the other hand, if the term SRc is
evaluated for contacts modulated by a back gate, the gate bias dependence of the
contact noise term is given by the voltage dependence of kRc , which depends on
the physical origin of contact noise. In case of charge trapping-detrapping events,
suggested as the dominant source in previous works[210], kRc ∝ 1/n2, leading to:

SRc = (KBTλNT /A)R2
c/n

2
c (2.3)

where λ is a constant accounting for the tunnelling probability of electrons between
graphene and trap states, KB is the Boltzmann constant, T the temperature and
NT the density of trap states[213] and A the active area of the contact. Assuming
a linear relation between Rc and the number of carriers at the contact (nc), SRc
is proportional to R4

c . This dependence is the main evidence supporting that high
contact noise originates from trapping-detrapping events[210]. However, in previous
studies[210], high contact noise was tentatively attributed to the effect of current
crowding, presumably due to the small area contributing to charge transfer. Note
that if the sheet resistance of graphene under the metal is increased, the current
crowding effect is enhanced. Similarly, if the charge transfer from the metal to
graphene is optimized, the current crowding effect is also enhanced. Applying the
UVO-treatment on the contacts, the contact resistance was shown to decrease due
to an enhancement of charge transfer at the metal-graphene interface. Yet, the
contact noise also dropped, suggesting that current crowding is not a direct cause
of high contact noise in g-SGFETs.

In order to explain the contact noise reduction produced by the UVO-treatment,
the metal-graphene contact was simulated using a finite elements model (FEM).
The simulation consists of three stacked domains conforming the graphene plane,
the charge-transfer plane and the metal electrode. This simulation allowed to de-
termine the current profile along the transmission-line contact (see supporting in-
formation in the 1st complementary article of this thesis). The solution of such a
transmission-line contact can be easily computed analytically; however, using the

51



High-Bandwidth Graphene Neural Probes

numerical model it was possible to simulate the effect of local fluctuations in the
graphene resistance along the contact. Due to the current crowding effect, resistance
fluctuations in the graphene sheet close to the channel have a much stronger impact
on contact noise that those further inside the contact, where little charge transfer
occurs. The differential equation which describes a transmission line contact with
non-homogeneous resistance has, to our knowledge, no analytical solution (see sup-
porting information of the 1st complementary article of this thesis). Therefore, in
order to compute the effect of local sources of LFN on the overall contact resistance
the numerical model was required. For this purpose, the domain representing the
graphene sheet was divided into 50 sections and the effect of changes in their sheet
resistance Rsh,c on the total contact resistance Rc was evaluated for each of them
individually (Fig. 2.1a). Following this approach, it was possible to determine the
terms dRc/dRsh,c(x) at each of the partitions, from which the effect of local noise
sources on the total contact resistance noise (SRc) could be calculated. The power
of local contributions, weighted by the term (dRc/dRsh(x))2, was then summed for
all partitions, as a discrete approximation of the integral along the contact:

fSRc =

∫ Lc

0

kR2
sh,cdx

W 3

( dRc
dRsh,c(x)

)2
(2.4)

where k stands for the geometry independent terms, which depend on the physical
origin of the LFN (see supporting information of the 1st complementary article of
this thesis). In order to validate the model, the simulations where repeated after
doubling the number of sections of the graphene domain leading to a difference
< 1.1 %. As expected, we could observe that noise sources at the graphene partitions
closer to the contact end had a stronger influence on SRc (Fig. 2.1e). Furthermore,
when the conductance through the z-plane (Gz) was enhanced in the model, the
simulated contact resistance decreased as expected. This drop is related with a
larger relative influence of Rsh,c, which enhances the current crowding effect, forcing
a larger fraction of the current to flow closer to the contact end. Similarly, increasing
Rsh,c, which is also expected to occur with UVO treatment, also enhances the
current crowding effect and reduces contact noise (Fig. 2.1f). Interestingly, the
numerical solution of the discrete approximation of Eq. 2.4 leads to the conclusion
that enhanced current crowding leads to a reduced contact resistance noise. This is
consistent with the observation that both contact resistance and noise decrease with
the UVO treatment time (Fig. 2.1c). For very long UVO treatment times, it was
possible to observe a clear increase in Rc(Fig. 2.1c), presumably associated with an
increase in Rsh,c not compensated by an increase of Gz. However, the contact noise
did not increase significantly, possibly due to the dominance of channel noise. The
independence of noise on UVO treatment time is expected to dissapear for longer
UVO treatment times, when the increase of Rc in Eq. 2.3 or the increase in mobility
fluctuation noise at the contacts dominates over the channel noise contribution.
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Figure 2.1: a, Schematic of the g-SGFET (top) and the metal-graphene contact (bottom).
The contact (Rc) and channel (Rch) resistance present fluctuations with a power SRc

and
SRch

respectively. The electrical response of contacts is described by a transmission line
model, where the term Gz represents the conductance per unit area at the metal-graphene
interface and Rshc

the sheet resistance of graphene under the metal. Contact noise is
presumably generated by local resistance fluctuations in Rshc . b, Ids−rms/I2ds, which is
proportional to SI/I

4
ds, shown for different channel lengths and for both ozone-treated and

untreated devices. Number of non-treated g-SGFETs is 66 and number of treated g-SGFETs
is 61. Minimum number of g-SGFET per L value is 5. c, Rc and Ids−rms/I

2
ds for different

ozone treatment times. The noise values correspond to L = 2, 5µm, with a minimum of 4
g-SGFETs per treatment time. The Rc values are obtained from 66, 54, 61, 35 and 31 g-
SGFETs for the UVO treatment times 0, 10, 20, 30 and 40 minutes respectively. d, Ugs−rms

for different channel lengths, for ozone-treated and untreated devices. Scatter plot indicates
the individual values for each g-SGFET e, Simulated local noise (SRsh,c

) contributions to
SRc

along the contact for different Gz values.f, Simulated Rc and SRc
for different Gz and

Rsh,c. Figure adapted with permission from Schäfer, Garcia-Cortadella and Bonaccini-Calia
et. al.[214].
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2.1.2 Understading the bias dependence of channel noise

Having understood in greater detail the origin of contact noise, its relative con-
tribution with respect to channel noise and how to mitigate it, the next step was
to investigate the physical origin of channel noise and model its bias dependence.
This issue was addressed in the 2nd complementary article presented in this thesis
(Appendix B). In this work, the LFN in g-SGFETs with different channel lengths
was characterized for different bias conditions (Ugs and Uds). The first objective of
the study was to understand the gate bias dependence of the normalized current
noise (SI/I

2
ds). This term has been reported to show a peculiar V-shape dependence

with Ugs close to the CNP[215], which changes to an M-shape when the gate bias
range is extended[216]. However, this behaviour is not described by typically used
models of LFN in semiconductors, such as the phenomenological Hooge model[217]:

SIdsf

I2ds
=
αH
nA

(2.5)

where αH is an scaling factor and A the device area, or the McWhorther model,
which describes the LFN generated by charge trapping-detrapping events:

SIdsf

I2ds
=
KBTλNT

An2
(2.6)

which holds if the contact resistance contribution can be neglected. Note that both
typically used models in Eq. 2.5 and Eq. 2.6 predict an increase of LFN close the
CNP, where n is minimal. However, LFN in graphene shows an opposite dependence
with n, showing a local minima at the CNP. In order to describe the resulting M-
shape, previous works proposed the use of a term ∝ gm[209], which has also been
used for the modelling of charge noise in silicon transistors[211] under constant
charge noise along the channel. However, the validity of this model to describe the
bias dependence close to the CNP is not clear. The relation between fluctuations in
the drain-source current (δIds) and the charge fluctuations in graphene (δQgr) can
be expressed as follows:

δIds
Ids

=
1

Ngr

δQgr
δQt

δNt (2.7)

where Ngr and Qgr stand for the number of carriers in graphene and the charge
accumulated in graphene respectively. Nt and Qt stand for the number of trapped
carriers and the trapped charge respectively. Rewriting Eq. 2.7, it is possible to
show that the normalized current noise can be expressed as proportional to a term
gm/Ids, under the assumption of homogeneous charge along the channel.
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δIds
Ids

=
e

Qgr

δQgr
δUgs

δUgs
δQt

δNt =
egm
Ids

δUgs
δQgr

δQgr
δQt

δNt (2.8)

where the term δNt represents the fluctuations in the number of carriers trapped,
which can be expanded as

√
kBTλNT /A. However, the term δUgs/δQt also presents

a certain bias dependence. If we assume CQ >> Cdl, which holds away from the

CNP, then
δUgs
δQgr

≈ 1/Cdl and δQgr/δQt ≈ 1 as assumed in previous literature[209].
Under this assumption, the bias dependence of charge noise in graphene is given by
the term gm/Ids. However, this assumption does not hold close to the CNP[185,
218], where the term δQgr/δQt will modulate the bias dependence of the normalized
noise. Therefore, deviations from the gm/Ids relationship occur due to the effect
of the quantum capacitance, which limits the graphene charging around the CNP.
According to charge conservation law, any change in the charge accumulated in trap
states must be compensated by an opposite change in the charge accumulated in
graphene or at the double layer(i.e. δQgr + δQdl + δQt = 0) (see supporting infor-
mation in the 2nd complementary article of this thesis). In turn, δQgr = −CQδUQ
and δQdl = −CdlδUQ. Thus, it is possible to rewrite δQgr and δQt in Eq. 2.8 as:

δIds
Ids

=
1

Ngr

CQ
CQ + Cdl

δNt (2.9)

Assuming that CQ ∝ UQ (i. e. neglecting the effect of impurities in Eq. 1.6 for
simplicity) one can integrate over UQ to obtain the dependence of Qgr on the applied
potential, Qgr = ekU2

Q/2 + ρ0, where ρ0 represents the residual charge. Given that
CQ < Cdl close to the CNP, the bias dependence of Eq. 2.9 can be approximated
as:

δIds
Ids

=
ekUQ(

kU2
Q/2 + ρ0)

δNt (2.10)

where k is the constant defining the relation between CQ and UQ defined in Eq. 1.6.

If the residual charge tends to zero, then the bias dependence in Eq. 2.10 is simply
1/UQ, which does not explain the M-shape. However, if ρ0 takes a finite value, the
normalized noise becomes propoortional to UQ around the CNP, explaining the ob-
served M-shape (Fig. 2.2a). Note that in cases of very low ρ0, a Λ-shape is expected,
which has been sometimes reported for low Uds values[219]. In fact, ρ0 mainly re-
sults from charge inhomogeneities, which can origin from charge puddles[220] or,
similarly, by Uds values close to Ugs. This is exactly the case close to the CNP;
however, note that the model presented in Eq. 2.10 still does not take into account
charge inhomogeneities along the channel. In order to take this effect into account
it is necessary to first have a model of the electrostatic response of the g-SGFET.
This allows to extract the profile of UQ along the channel and therefore to cal-
culate the magnitude of local sources of noise. For this purpose, it is possible to
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Figure 2.2: a, Effect of residual charge (ρ0) on the bias dependence of LFN in g-SGFETs.
from Mavredakis et. al[213] with permission from The Royal Society of Chemistry. b,
V-shape bias dependence of contact noise dominated characteristics for g-SGFETs with
standard contact technology and M-shape bias dependence observed in g-SGFETs with
optimized contacts by ozone treatment. Contact noise term model assumes that Rc is
voltage independent, leading to a term ∝ I4ds[187] and the channel noise is modelled with
the compact model presented in Mavredakis et. al.[213]. Figure reprinted with permission
from Schäfer, Garcia-Cortadella and Bonaccini et. al.[187].

use the previously introduced compact model[184, 186] (see Fig. 1.9), which can
be solved analytically and can be therefore easily integrated in circuit simulators.
Knowing UQ(x) it is then possible to calculate the contributions from local noise
sources on the drain-to-source current in a procedure previously described for sili-
con transistors[221] and translated to the GFETs case by N. Mavredakis[213] (see
the 2nd complementary article of this thesis). Assuming that all local noise sources
are uncorrelated, the contribution from multiple channel sections can be integrated.
The noise in a particular channel section, between x and x+ ∆x, can be modelled
as a current source (δIn) connected in parallel with the resistance of the section ∆R
(Norton equivalent) and in series with the remaining noiseless part of the transis-
tor. The conductance of the noiseless part of the transistor tends to Gds due to the
infinitesimal length of the noise local sources. Therefore, the current fluctuations
generated by the local source at the drain can be expressed as:

δInD = Gds∆RδIn (2.11)

which can be integrated along the channel to describe the total current noise:

SID =

∫ L

0
G2
ds∆R

2 δI
2
n(ω, x)

∆x
dx (2.12)

where G2
ds∆R

2 = (∆x/L)2. Combining Eq. 2.12 and Eq. 2.9 it is possible write
down the integral that describes the current noise in the whole range of Ugs and Uds.
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Changing the integration variable from x to the UQ, it is possible to solve equa-
tion 2.12 analytically, taking into account the electrostatic changes in the channel
conductance as derived from the previously reported compact model[184, 186]. The
resulting model represents a physics-based description of the bias dependence of the
noise characteristics of GFETs and accurately describes the effect of the quantum
capacitance and non-homogeneous charge along the graphene channel. This accu-
rate description of channel noise could be combined with the model of contact noise
to describe LFN in g-SGFETs for different contact technologies. Fitting of the noise
characteristics for transistors with non-treated and with UVO-treated contacts con-
firmed the change from a contact dominated regime to a channel noise dominated
regime (Fig. 2.2b). Note that Idsrms in Fig. 2.2b is not normalized, therefore it
does not directly represent the noise sources SRc and SRch . These results represent
a complete modelling of the noise characteristics in g-SGFETs, which accurately
describes the contributions from distinct local sources and provides new insights
into the physical origin of low-frequency noise in graphene devices.

2.2 Distortion mechanisms in graphene active sensors

The transduction factor that relates the amplitude of voltage signals applied at the
gate with the drain-souce current changes can be, in a first aproximation, modelled
by a constant transconductance. However, the relation between the output cur-
rent and input voltage, or transfer function, might present a significant voltage and
frequency dependence. Recent results have evidenced the importance of detecting
neural activity of high amplitude and with wide band frequency components, from
infra-slow to single unit activity using g-SGFETs[222]. Large amplitude voltage
fluctuations, typically occuring in the low frequency range of LFP, could eventu-
ally lead to harmonic distortion caused by a voltage-dependent transfer function.
Further, recording of neural signals in a wide frequency band could lead to phase-
amplitude distortion. In addition, a frequency dependence of the transfer function
could lead to loss of sensitivity in particular frequency bands. The 1st main arti-
cle of this thesis (Appendix A), presents a detailed characterization and modelling
of the stationary and dynamic response of g-SGFETs aiming to understand the
mechanisms of signal distortion in graphene transducers.

2.2.1 Voltage-dependent transfer function

Harmonic distortion can appear in any amplifying system due to a voltage-dependent
gain. In the specific case of g-SGFETs, the voltage dependence of Gm introduced
by non-linearities in the Ids − Ugs curves will lead to harmonic distortion of the
signals, which can be modelled from the Taylor expansion of the Ids − Ugs.
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Ids(t) = Ids
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(2.13)

Where Asig stands for the amplitude of the transduced signal, f its frequency and
Ugs0 the gate bias under stationary conditions. This description has been previ-
ously proposed and evaluated for the harmonic distortion in a theoretical GFET
model[223]. However, predicted distortion levels have not been compared with
experimentally obtained values. Therefore, validating the relation between non-
linearities in the Ids−Ugs curves and harmonic distortion experimentally is required
to understand and optimize the operation of graphene transducers.

For this purpose, the stationary response of g-SGFETs (Ids−DC = Ids|Ugs0) and their
dynamic response (Ids−sig) to a 10Hz pure tone applied at the gate were measured
under different gate bias conditions (Fig. 2.3a). From Ids−sig, the amplitude of the
transduced signal could be determined together with the generated high order har-
monics. Fig. 2.3b shows the measured bias dependence of the first three harmonics
as well as the predicted values from the Taylor expansion of the stationary Ids−Ugs
curves. These results show the close agreement between the measured harmonic dis-
tortion and the values derived from the stationary response, which holds for a wide
range of signal amplitudes (see the 1st main article of this thesis). Having validated
the stationary model of harmonic distortion, it is possible to compute a map rep-
resenting the signal-to-distortion ratio (SDR) over a wide Ugs and Asig range (Fig.
2.3c). This figure of merit can be used to evaluate the impact of distortion on the
signal quality. The SDR presents a maximum at Ugs−UCNP ≈ ±100mV , where the
stationary transfer characteristics are most linear. Fig. 2.3c also reveals the drop of
SDR for higher Asig values. This dependence is explained by the linear, quadratic
and cubic relationship of the 1st, 2nd and 3rd order harmonics, respectively, with
Asig (see supporting information of the 1st main article). The SDR map can guide
the selection of the optimum bias conditions in terms of harmonic distorion; how-
ever, LFN is typically considered to be the dominant source of signal degradation.
In order to compare the impact of harmonic distortion and of LFN on the signal
quality, one can evaluate the distortion-to-noise ratio (DNR). Fig. 2.3d shows the
DNR for the noise integrated in a one-decade frequency band (i.e. 4-40Hz). The
0 dB contour line indicates the parameters for which distortion and noise contribute
with the same power to the degradation of signal quality. These results highlight
the importance of choosing a right gate bias to minimize the impact of harmonic
distortion, especially for large amplitude signals.
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Figure 2.3: a, Typical transfer characteristics of a g-SGFETs. Gm is indicated as
∆Ids/∆Ugs. b, RMS amplitude of the 1st, 2nd and 3rd order harmonics extracted from the
PSD of the measured Ids (dots) and from the Taylor expansion of the transfer characteristics
(solid lines). Error bars and filled areas show the standard deviation (for 4 g-SGFETs). The
noise is evaluated from the power spectrum at 28Hz (slightly below 3fsig). The measured
and calculated harmonics correspond to a 10Hz signal with an amplitude of 8mVRMS . c,
Evaluation of the signal-to-distortion ratio (in dB) in the Asig-Ugs parameter map. The
solid lines indicate the contour lines of the SDR every 20 dBs. d, Distortion-to-noise ratio
(in dB); the contour lines represented by solid lines every 20 dBs. The maps in panel c and
d are calculated using the Taylor expansion of the stationary Ids − Ugs curves fited to the
experimental data. Figure adapted from Garcia-Cortadella et. al.[224].

2.2.2 Frequency-dependent transfer function

The frequency response of g-SGFETs has been typically assumed to be approx-
imately constant up to high frequencies due to the high electrical mobility of
graphene. However, the dynamics of the graphene-electrolyte might present slow
time constants due to poor ion mobilities or slow transitions in the occupation of
trap states in the graphene environment [225, 226]. In addition, displacement cur-
rents through parasitic capacitances can result in an attenuation of the tranduced
signals[227]. In the 1st main article of this thesis, the frequency response in g-
SGFET has been characterized with the aim to propose and validate an equivalent
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circuit and its analytical transfer function.

For this purpose, the frequency response of g-SGFETs in the frequency range be-
tween 0.4Hz and 200 kHz was measured. Fig. 2.4a shows the module and phase
of the frequency response as well as the gm computed from the stationary Ids−Ugs
curves (where gm ≡ Gm/Uds, see Eq. 1.7). In the measured frequency response,
three regimes can be distinguished (Fig. 2.4a). First, in the 0.4Hz-3 kHz range it
is possible to observe a fractional-order attenuation of the transconductance with
frequency (i. e. a constant slope in log-scale) and an approximately constant phase
deviation few degrees from 180 (expected in the holes conduction regime). In
the 3 kHz-40 kHz range, another regime can be observed for low ionic concentra-
tions (Fig. 2.4a), which presents an abrupt attenuation of the gain with frequency
(∼ 1/f). This attenuation of the magnitude is followed by a negative shift of the
phase. Finally, the high frequency regime (> 40 kHz) is characterized by an increase
of the magnitude and phase of the transconductance.

Figure 2.4: a, Bode diagram of g-SGFETs (for 4 g-SGEFTs). Three different response
regimes are displayed together with the Gm extracted from the DC characteristics: CPE
dominated regime, a regime where the gm drops with approximately 1/f and finally a gm
increase due to capacitive currents. The experimental data corresponds to the average of
4 g-SGFETs. The fitting of the data using the analytical transfer function (TF) from Eq.
2.15 is represented by the dashed lines. The filled area indicates de standard deviation. b,.
Small signal model of the g-SGFET frequency response. The gate-to-source bias (Ugs) and
the drain voltage (Ud) are defined. The voltage drop at the graphene-electrolyte interface is
defined as Uint. The CPEg−e represents the constant phase element (CPE) describing the
non-ideal capacitive behavior of the graphene-electrolyte interface. The CPE describing the
leakage through parasitic elements is defined as CPEpar. The resistance of the electrolyte
(Rele) and the contact resistance of the g-SGFET (Rc) are also defined. The dynamic
response of the g-SGFET is modelled by the current source (UintGm(f)) and its stationary
response is modelled by the resistance in parallel Rds−DC . c, The equivalent circuit shown
in c. is drawn on a schematic of the g-SGFET to illustrate the physical origin of each
element. Figure adapted from Garcia-Cortadella et. al.[224].
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Having identified the different regimes of dynamic response, a small signal model
can be proposed (see Fig. 2.4b,c). In the proposed model, the graphene-electrolyte
interface is not modelled as an ideal capacitor, as typically proposed in standard
models[185, 227], but as a constant phase element (CPEg−e), which is commonly
required to describe the response of a double-layer capacitance [228, 229]. In the
particular case of the graphene-electrolyte interface, the CPE behaviour has been
previously reported in impedance measurements[229]. The equivalent circuit in Fig.
2.4b,c also includes the resistance of the electrolyte Rele and the contacts Rc in series
with the graphene-electrolyte interface. The stationary response of the g-SGFET is
modelled by the resistance Rds−DC , while the dynamic response can be modelled by
a current source with an amplitude UintGm(f), where Uint stands for the effective
voltage drop at the graphene-electrolyte interface. Finally, an additional CPE is
added in parallel with CPEg−e to account for any parasitic capacitance of the
device (CPEpar). From the proposed equivalent circuit it is possible to derive an
analytical expression, describing the frequency response of g-SGFETs.

Gm(f) =
dIds
dUint

∣∣∣∣∣
Uds

dUint
dUgs

+Gm,eff (2.14)

The first factor on the right hand side of Eq. 2.14 corresponds to the intrinsic
tranconductance of the g-SGFETs. Its frequency dependence results from the CPE
behaviour of the graphene-electrolyte interface (dIds/dUint|Uds = kCCPEg−e(f)).
The second factor in Eq. 2.14 results from the contribution of the resistance in
series Rs with the g-SGFET (i.e. Rc plus Rele) and CPEpar in parallel with the
transistor, which lead to a voltage divider and the corresponding attenuation of
Uint at high frequencies. The last term in Eq. 2.14 accounts for the measured
increase of the gm magnitude at high frequencies. This term represents the direct
contribution from displacement currents through CPEg−e and CPEpar, from the
drain to the gate. This contribution is not result of the field-effect modulation, and
can be therefore regarded as an effective transconductance (Gm,eff ). Expressing
the frequency dependence of the terms in Eq. 2.14 explicitly, the following transfer
function is obtained:

Gm(f) = ± Qg−e
(2πf)1−α

ei
π
2
(αg−e−1) 1

1 + 2Rs[Qg−e(2πf)αg−eei
π
2
αg−e +Qpar(2πf)αparei

π
2
αpar ]

...+Qg−e(2πf)αg−eei
π
2
αg−e +Qpar(2πf)αparei

π
2
αpar

(2.15)

where αg−e and αpar are the CPE ideality factors for CPEg−e and CPEpar respec-
tively and Qg−e, Qpar represent the magnitude of the same CPEs. The derived

61



High-Bandwidth Graphene Neural Probes

analytical transfer function has been used to fit the experimentally obtained fre-
quency response (Fig. 2.4a). All the main features of the frequency response are
properly captured, supporting the validity of the proposed model. The understand-
ing of the frequency response provided by this model represents a strong basis
for the improvement of the sensitivity of g-SGFETs at high frequencies. Further-
more, the derived transfer function can be used to define a calibration procedure
to correct the phase-amplitude distortion produced by the non-ideal dynamic re-
sponse of g-SGFETs (see section3.2.2). The derived transfer function in Eq. 2.15,
the CPE-dominated regime extends to arbitrarily low frequencies, predincting a
rather constant transconductance for low frequencies. This response of the active
graphene sensors is radically different from the response of micro-electrodes coupled
to high input-impedance amplifiers[122], as recently revealed by Masvidal-Codina
et. al. [222]. This advantage is expected to be valid for all FET-based sensor
technologies with stable transfer characteristics; however, experimental proof has
been only shown for graphene active sensors, which present a particularly high
chemical inertness[222]. Signal detection based on the field-effect mechanism there-
fore allows to prevent the signal distortion and gain loss observed for small passive
sensors at low frequencies. However, at high frequencies, g-SGFETs present a signif-
icant transconductace drop, which should be corrected by engineering an optimized
graphene-electrolyte interface.

2.3 Chapter outlook: Improving the high frequency
sensitivity

Following the characterization and modelling of the non-ideal frequency response
of g-SGFETs, its optimization was addressed. The fractional order attenuation of
gm, which can be explained from the CPE behaviour of the graphene-electrolyte
interface, has been shown to depend on the conductivity of the electrolyte as well as
on the presence of contaminants on the graphene surface[229]. In order to investigate
the effect of contaminants on the frequency response of g-SGFETs, a new fabrication
process has been explored in which the graphene channel is protected against resist
residues and other contaminants[170]. The protective layer consists of a Cu film,
which is deposited by electron-beam evaporation after the transfer of graphene
onto the final substrate. The Cu sacrificial layer can be etched using ammonium
persulfate after completing the fabrication, allowign to remove all the contaminants
accumulated on the Cu film (Fig. 2.5a). More details on the standard fabrication
process can be found in the experimental section in the 1st main article of this
thesis.

The graphene quality before Cu deposition and after Cu etching was evaluated
with Raman spectroscopy. Fig. 2.5b shows the distribution of D-band intensity
to G-band intensity ratio, related to structural defects in graphene[152]; after Cu
etching, a bimodal distribution is observed. This feature might be related to defects
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Figure 2.5: a, Optical micrograph of the g-SGFET array used for Cu-protection char-
acterization. GFET with a Cu sacrificial layer during fabrication before (left) and after
(right) Cu removal by ammonium persulfate etching. b, D/G Raman band intensity ratio
before Cu deposition (black), after Cu-etching (green) and after passivation in control de-
vices without Cu protection (orange). c, Frequency of the 2D-band Raman shift vs G-band
shift in graphene before Cu deposition (PRE), after Cu etching for 2 min (POST2min), as
well as in non-protected control devices after SU8 passivation (NoCuPSU8).

induced by Cu or oxygen adatoms or hydroxyl groups induced by the oxidant etching
solution[133]. However, the D/G intensity distribution after Cu etching presents a
higher fraction of Raman spectra with an undetectable D-peak compared to the
standard technology. This leads to a lower median of the D/G distribution in Cu-
protected devices compared to the standard SU-8 passivated devices (0.11 and 0.15
respectively). Fig. 2.5c shows the frequency of the 2D-band and G-band, which
indicates the doping and strain in graphene[230]. Importantly, in devices protected
with Cu during fabrication, it is possible to observe a doping level close to the as-
transferred graphene, in strong contrast with the standard technology, where the
accumulated residues lead to a strong doping.

Following Raman spectroscopy, the electrical performance of the g-SGFETs pro-
tected with Cu was characterized and compared to control devices fabricated fol-
lowing the standard process. Comparison of UCNP for both procedures confirms
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the reduced doping of graphene in the Cu-protected transistors (see boxplot in Fig.
2.6a, n between 22 and 25 for all devices). The drain-source current in Cu-protected
devices is higher (Welch’s t-test, p = 1, 2.10−23) and presents a lower resistance at
the CNP. In terms of transconductance, Cu-protected devices present a larger mean
value µ = −0.146mS/V compared to control devices µ = −0.123mS/V (Welch’s
t-test, p = 2, 7.10−11) but non-significant differences in equivalent noise at the gate
(Welch’s t-test, p = 0.62). Most importantly, Cu-protected g-SGFETs showed a
much better frequency response, as shown in the Bode diagram in Fig. 2.6b. Inter-
estingly, the gm module in Cu-protected devices presents a fractional-order (∝ 1/fα)
attenuation, with a factor α = 0.022 for PBS 10mM , lower than in previously char-
acterized devices fabricated without Cu-protection (0.03 for PBS 100mM and 0.1
for PBS 0.5mM).

Figure 2.6: a, Static electrical response parameters are shown for different devices fabri-
cated either using the Cu sacrificial layers or the standard process (n between 20 and 24
g-SGFETs for each device). Ids, Gm and Ugs−rms are extracted at Ugs − UCNP = −0.1V .
b, Frequency response of Cu-protected and control devices fabricated following the stan-
dard method without Cu sacrificial layers. Magnitude (top) and phase (bottom) shown a
much constant transconductance with a phase closer to zero for protected devices.

The results obtained during the 1st stage of this thesis, and summarized in chapter 2,
provide a deeper understanding of the origin of LFN in g-SGFET as well as the effect
of non-linearities in their transfer characteristics and transconductance drop at high
frequencies. This understanding has guided the development of novel fabrication
methodologies that can be applied to improve the sensitivity of g-SGFETs, such
as UVO treatment of the contacts for the mitigation of contact noise[187] or the
protection of the graphene channel with Cu films to improve their sensitivity at
high frequencies (unpublished). Together, these improvements are deemed crucial
for the miniaturization of g-SGFETs while preserving a high sensitivity, which can
open the door to the detection of SUA using graphene sensors.
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Chapter 3

System evaluation in an
operational environment:
Chronic implants in freely
moving animals

Application of graphene bioelectronics for neural sensing primarily relies
on the performance of the individual sensors, which has been the focus of
the previous chapter. However, in order to provide reliable tools for neuro-
science and biomedical engineering, they must be integrated in a functional
system and its performance demonstrated in an operational environment.
Characterization of the performance of g-SGFETs from a system perspec-
tive should include an evaluation of the reproducibility and homogeneity
of graphene sensor arrays, characterization of their long-term stability and
biocompatibility as well as development of dedicated amplification elec-
tronics. Finally, their applicability should be demonstrated by recording
electrophysiological signals with improved performance. In the 2nd main
article of this thesis, this challenge is tackled by developing and charac-
terizing an advanced wireless recording system and by demonstrating its
applicability to a chronic cortical recording in a freely behaving animal.
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3.1 Recording system design and characteristics

In order to demonstrate the actual performance of graphene active sensors for neural
sensing, a recording system based on a quasi-commercial, wireless headstage and 64
g-SGFET neural probes was developed. This system was developed in collaboration
with Multi Channel Systems GmbH, adapting their commercial wireless headstage
for passive sensor arrays. This adaptation consisted in modifying the amplification
layer of the commercial system, which also includes a digitalization and wireless
data transmission layer (see Fig. 3.1a, more details are provided in the supporting
information of the 2nd main article of this thesis). The g-SGFETs in the neural
probes were designed with a size of 100µmx100µm and an intersite separation of
400µm for mesoscale epi-cortical LFP analysis[231] (Fig. 3.1a). More details on
the fabrication process of these neural probes can be found in the methods section
of the2nd main article of this thesis (see Appendix A).

3.1.1 Homogeneity and sensitivity of graphene active sensors

Development of high-count neural recording systems based on graphene active sen-
sors requires a thorough evaluation of the homogeneity and reproducibility of the
graphene technology. Two of the main challenges in the development of graphene
technology have typically been the production of high quality single-layer graphene
(SLG) and its transfer onto the required substrate. In the last decade, development
on these areas has concentrated many efforts both from academic institutions as
well as from industry[160, 162]. In the 2nd main article of this thesis, it is demon-
strated that the quality of commercially available single-layer graphene produced by
CVD and transferred onto polymeric substrates is currently high enough to enable
a reproducible fabrication of g-SGFET arrays with high performance and yield.

Fig. 3.1b shows the gm of nine neural probes, each of them containing 64 g-SGFETs.
These probes were randomly selected from three wafers, all of them processed in
independent batches. It is possible to observe a high homogeneity and yield in terms
of gm, with 99 % of channels showing a gm above 0.7 times the median, and a high
median value compared to competing active sensor technologies[73, 75, 172]. In Fig.
3.1c, the equivalent noise at the gate of the same neural probes is shown. Although
Ugs−rms presents a larger dispersion than gm, it is possible to identify 3 out of 9
probes with 96 % of the sensors showing a Ugs−rms below 10µV . The discrepancy
in the homogeneity of gm and Ugs−rms suggest that these two parameters are not
directly proportional, as one could expect from the dependence of Ugs−rms on the
variability of the density of trap states[232]. The histograms in Fig. 3.1b,c show the
distribution of gm and Ugs−rms for the neural probe #3, which was subsequently
implanted for the in-vivo study. The dispersion in the transconductance can be
corrected by calibrating the neural signals (see section 3.2.2). Therefore, the truly
limiting factor in terms of homogeneity of the g-SGFET arrays is the equivalent
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noise at the gate. Ugs−rms presents a log-normal distribution[232, 233] with a mean
of 4.13µV and a standard deviation of 1.14µV (excluding the outlier indicated in
Fig. 3.1c-left). These results show that graphene-based neural probes produced in a
wafer-scale process present a promising homogeneity and high sensitivity for neural
sensing.

Figure 3.1: a, Photograph of the wireless headstage designed for these experiments (top-
left) and a 64 g-SGFET array mounted on a customized connector (bottom-left) and zoomed
image of the probe active area (right). The red squares indicate the 8 g-SGFETs on the
array, which are connected to the 8 DC-coupled channels of the headstage. b, Left: boxplot
of gm for nine randomly selected probes from three different wafers produced in independent
batches. The yield in terms of gm above 70 % of the median is indicated. Right: histogram of
gm for the 64 g-SGFETs of probe #3 and Gaussian fit of the histogram excluding the outliers
shown in the boxplot. c, Left: boxplot for Ugs−rms measured in the 1 − 10Hz frequency
range and plotted for the same neural probes evaluated in panel b. Right: histogram of
Ugs−rms for the 64 transistors in probe #3 and log-normal fit of the histogram excluding
the outliers shown in the boxplot. All probes consisting of 64 g-SGFETs. The boxes extend
from the lower to the upper quartiles, with a line at the median. The whiskers extend 1.5
times the inter-quartile range and the data points beyond the whiskers are indicated by a
dot. Figure adapted with permission from Garcia-Cortadella and Schwesig et. al.[234]

3.1.2 Characteristics of the quasi-commercial system for wireless
recording

An important challenge in the implementation of graphene active sensor arrays for
neural sensing is the development of dedicated electronics for the amplification and
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digitalization of the signals. The operation of g-SGFETs requires the acquisition
of the stationary currents (Ids−DC) in order to determine the optimal Ugs with
respect to UCNP and to detect low frequency components of the signal, which would
otherwise be filtered[222]. Acquisition of the full-band signal using graphene active
sensors has been shown to enable the detection of large amplitude infra-slow brain
activity with high fidelity[222]; however, their sensitivity in this frequency band has
not been quantified. The amplification of the signals in the infra-slow frequency
band could be limited by LFN sources from the transimpedance amplifiers and the
voltage references. Furthermore, the amplification of full-band signals, containing
large stationary offsets, is challenging for the analog-to-digital converter (ADC).
In order to digitalize signals with such a large dynamic range, while minimizing
quantization noise, a two-stage amplifier was implemented. The first stage amplifies
the full-band signal, while a second stage further amplifies the high-pass filtered
signal to fill the full scale of the ADC. In order to enable the selection of the DC or
AC coupled signals from the first and second stage respectively, a multiplexer was
implemented (see the 2nd main article of this thesis). In order to minimize power
consumption and, therefore, battery weight and volume of the headstage, only 8 of
the 64 channels included a multiplexer and therefore only 8 of the channels allowed
DC-coupling.

In order to validate that the sensitivity of the recording system is not limited by
the noise of the amplification and digitalization chain, the PSD of the output noise
was characterized. Fig. 3.2a presents the PSD of the equivalent noise at the gate
(SUgs), defined as SI/G

2
m. The central part of the spectrum, from roughly 0.05Hz

to 10Hz, is dominated by the 1/f intrinsic noise of the graphene transistors. For
frequencies below 0.05Hz, the DC-coupled channels show a slight increase above the
1/f noise, which can be attributed to the contribution of additional noise sources
in the amplification chain (see the supporting information of the 2nd main article
of this thesis). Above 10Hz the noise spectra also present a significant increase
above the 1/f decay, caused by the quantization noise, which is more pronounced
in DC-coupled channels. The impact of extrinsic noise sources can be determined
by integrating SUgs in different frequency bands. Fig. 3.2b shows the integrated
noise for all g-SGFETs in probe #3. The three maps show that the system presents
a rather constant sensitivity per frequency decade in a wide frequency range. Al-
though the DC-coupled channels present a higher noise in the 20 − 200Hz band,
all sensors (except for an outlier) present a Ugs−rms < 15µV . These results demon-
strate the high sensitivity of the system in a wide frequency band and the low
impact of extrinsic flicker noise in the ISA band. Importantly, smaller g-SGFETs
are expected to present a higher intrinsic noise, therefore, recording systems based
on g-SGFET with areas below 100µmx100µm are expected to exhibit the intrinsic
sensitivity of g-SGFETs in the ISA band. This is in contrast with the case of passive
micro-electrodes, where the gain attenuation at low frequencies is more prominent
for smaller areas[122, 222].
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Figure 3.2: a, Power spectral density (PSD) of the noise from DC channels (black) and
AC channels (orange) in probe #3 presented in Fig. 3.1. The 1/f dependence is represented
by the solid red line. The vertical orange line indicates the hardware high-pass filter applied
to AC channels at 0.15Hz. The quantization noise of the DC and AC channels is indicated
by the horizontal dashed red lines. b, Representation of the Ugs−rms for all g-SGFETs in
probe #3 shown for different bandwidths; 0.05 − 0.5Hz band for the DC-channels (left),
1 − 10Hz band (middle), and 20 − 200Hz (right). The position of the g-SGFETs on the
array connected to DC-channels of the headstage is indicated by the red squares. Figure
adapted with permission from Garcia-Cortadella and Schwesig et. al.[234].

3.2 Chronically implanted epi-cortical devices in-vivo

Following the characterization of the recording system in-vitro, a neural probe was
chronically implanted on the cortex of a Long Evans rat to demonstrate its in-
vivo applicability (see the 2nd main article of this thesis). These experiments were
carried out in collaboration with Gerrit Schwesing and Prof. Sirota from Ludwig-
Maximillians-Universität. The implanted device allowed to evaluate the long-term
stability of g-SGFETs in-vivo, determining the degradation of the graphene sensors
as well as the impact of changes in the surrounding tissue on the signal quality.
Furthermore, non-functional graphene devices were developed by collaborators in
order to test the biocompatibility of graphene-based epi-cortical probes in acute as

69



High-Bandwidth Graphene Neural Probes

well as chronic conditions. Finally, the graphene active sensor arrays were used for
the mapping of wide frequency band brain activity in a freely moving rat, demon-
strating the potential of this technology for the mapping of ISA and its correlation
with high frequency LFP activity.

3.2.1 Longitudinal evaluation of sensitivity in-vivo

The long-term stability of neural probes is a critical factor for the investigation of
brain dynamics as well as for the development of chronic neuroprosthetics. Pristine
graphene has shown excellent chemical stability due to its sp2 hybridization[133].
However, dangling bonds at edges, grain boundaries, atomic vacancies or reconstruc-
tions in the atomic lattice increase the reactivity of graphene, which might lead to
the increase of the defects density over time. Furthermore, there could be mechan-
ical causes of performance degradation such as the detachment of graphene from
the substrate or bending-induced strain on the graphene lattice and metal contacts.
Finally, the encapsulation of the device by the glial scar could lead to an attenuation
of the signal, in particular at high frequencies. Changes in the graphene-electrolyte
interface can also cause doping of graphene, leading to drifts in the measured DC-
coupled signals. Such drifts can be confused with electrophysiological infra-slow
signals and ultimately change the effective gate bias of the transistors, leading to
a drop of the sensitivity. Having a controllable doping and a homogeneous CNP
among sensors is therefore necessary to maintain a good performance of the array
over time.

Fig. 3.3a shows the evolution of the transfer characteristics of the DC-coupled
channels over four weeks after implantation of the neural probe. The observed
shift of the CNP is presumably due to the adsorption of charged chemical species
present in the environment or changes in the reference potential (see supporting
information of the 2nd main article of this thesis). The accumulated drift in the
CNP during the first 24h of recording reached approximately 50mV , however, this
drift could be corrected on a daily basis without affecting significantly the sensitivity
of the system (see the 2nd main article of this thesis). In addition to changes in the
doping of graphene, it was possible to monitor the change in the gm and Ugs−rms
of the DC-coupled g-SGFETs over 4 weeks (Fig. 3.3b). These results demonstrate
that the sensitivity of g-SGFETs remains within a functional range for at least four
weeks. In order to determine the fraction of working g-SGFETs, the signals detected
in AC-coupled channels were analysed. The PSD at high frequencies (> 200Hz)
is dominated by the flicker noise of g-SGFETs due to the transient nature and
low amplitude of high frequency neural oscillations. Therefore, evaluation of the
noise at high frequencies allowed to determine the evolution of flicker noise in g-
SGFETs in-vivo. Fig. 3.3c shows the integrated current noise estimated from this
measurement for all g-SGFETs in the implanted array (see supporting information
of the 2nd main article of this thesis). From the evaluation of the output noise
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level it was also possible to estimate the percentage of working g-SGFETs over the
course of the chronic implant (see Fig. 3.3c). Finally, the frequency response of the
g-SGFETs was also determined in-vivo in order to evaluate the impact of potential
device encapsulation by the glial scar on the signal quality. For this purpose, two
Pt-Ir electrodes were implanted on both sides of the neural probe (see inset in
Fig. 3.3d) and 1µA amplitude pure tone signal at different frequencies was applied
using a current source. Fig. 3.3d shows the magnitude of gm(f) for different days
after implantation of the neural probe normalized by the mean magnitude at 1Hz.
Note that the fractional order attenuation of the magnitude reported in PBS is
also observed in-vivo with an slightly larger decay of ∼ 1/f0.1. However, the decay
factor is approximately constant over time, indicating that there is not a significant
increase in the electrical impedance in series with the graphene-electrolyte interface
due to device encapsulation (see section 2.2).

3.2.2 Voltage and frequency dependent signal calibration

Graphene active sensors transduce voltage signals at the gate into current signals
between drain and source. In order to interpret the neural signals correctly, the
measured currents must be converted back to units of volts by dividing the measured
current signal by the transconductance of the g-SGFETs. In a first approximation,
the stationary transconductance can be used. However, as described in section 2.2,
neural signals with a large amplitude can be distorted by the voltage dependence
of the transfer function. Similarly, signals at different frequencies will be amplified
with a different factor and errors in the phase might be introduced as a result of
a frequency dependent transfer function. In order to correct such distortions, a
method has been proposed in the 1st main article of this thesis, which takes into
account the voltage and frequency dependence of the transfer function.

In the first place, in order to correct the harmonic distortion introduced by the
graphene active sensors, it is possible to interpolate the measured full-band signals
into the non-linear transfer curves of each g-SGFET. In order to determine the
effect of this calibration method on the attenuation of high order harmonics, a
high-amplitude test-signal was applied on the gate of g-SGFETs and the amplitude
of high order harmonics was compared for the standard calibration using a constant
Gm and the interpolated signals. Fig. 3.4a shows the amplitude of the 2nd order
harmonic, which is significantly attenuated in the bias range of lower SDR (see the
1st main article of this thesis for more details). Following the correction of harmonic
distortion, the signals can be further processed in order to correct the frequency
dependence of the transfer function. Fig. 3.4b shows the magnitude and phase
of the transfer function measured in-vivo using the methodology described above
(see section 3.2.1). Fitting of the measured response with the analytical function
presented in Eq. 2.14 shows a close agreement with a response dominated by the
CPE behaviour of the graphene-electrolyte interface. This response leads to an
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Figure 3.3: a, CNP vs time over 4 weeks. The inset shows the Ids−Ugs curves. Mean and
standard deviation for n = 7 g-SGFETs (1 outlier was excluded from the dataset). b, gm
(top) and Ugs−rms (bottom) measured over 4 weeks post-implantation; gm was obtained
from the Ids–Ugs curves of the DC-coupled channels (n = 7 g-SGFETs, 1 outlier was
excluded from the dataset). c, Current noise over 4 weeks after implantation (n = 64 g-
SGFETs). The numeric values indicate the yield of working devices. The boxes in panels a-c
extend from the lower to the upper quartiles, with a line at the median. The whiskers extend
1.5 times the inter-quartile range and the data points beyond the whiskers are indicated
by a dot. d, Average and standard deviation of the frequency-dependent transconductance
(‖gm‖(f)) shown for different days after the implantation (n = 10 g-SGFETs). The inset
shows the approximate position of the Pt-Ir electrode close to the array, the simulated
equipotential contour lines in a conductive plane and the relative signal amplitude measured
by each of the g-SGFETs in the array. Figure adapted with permission from Garcia-
Cortadella and Schwesig et. al.[234].

approximately constant phase of the transfer function in the typical frequency range
of LFP signals. The analytical transfer function has been implemented numerically
following Oustaloup’s method which synthetizes the TF by the recursive distribution
of (2N + 1) zeros and poles[235], which can be easily implemented digitally for real-
time calibration of the neural signals (see the supporting information of the 1st main
article of this thesis).
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Figure 3.4: a, Amplitude of the 2nd harmonic in the equivalent voltage at the gate for
Asig = 8mVrms, showing the values calibrated using a constant transconductance (dots)
and using the interpolation into the transfer characteristics (solid orang line). The solid
black line shows the average intrinsic noise of the g-SGFET measured at 17Hz and 23Hz
(i.e. 3Hz below and above 2fsig). The errorbars and filled area show the standard devia-
tion for n = 4 g-SGFETs. b, Frequency response measured in-vivo usign bipolar current
stimulation. The filled area shows the standard deviation (for n = 4 g-SGEFTs) and the
orange dashed line the fitting using the derived transfer function (αg−e = 0.9). Figure
adapted with permission from Garcia-Cortadella et. al.[224].

3.2.3 Biocompatibility of graphene neural probes

In order to assess the applicability of g-SGFET arrays for long-term monitoring of
brain activity, it is critical to assess the biocompatibility of graphene-based neural
probes in-vivo. For this purpose, a cohort of Sprague Dawley rats were implanted
with non-functional devices comprising a large area covered by graphene, platinum
or PI (Fig. 3.5a), or had the full surgery without the implantation of any device
(sham control). A cohort of näıve animals who underwent no intervention were
also used as a control. Subsequently, the immunohistochemical response of the
tissue was investigated over three time points; 2 weeks, 6 weeks and 12 weeks post-
implantation (see the 2nd main article of this thesis). This work was conducted by
collaborators in the University of Manchester (see author contributions in section
0.2).

Evaluation of the inflammatory response was carried out by performing immunohis-
tochemical analysis for activated microglia and an enzyme-linked immunosorbent
assay (ELISA) of blood and brain tissue for a panel of four inflammatory cytokines.
Evaluation of cytokines in blood serum presented no significant differences at any
of the timepoints or for any materials implanted (see supporting information of the
2nd main article of this thesis). Cytokine levels in brain tissue presented signifi-
cantly higher values for graphene and platinum devices at the 2 weeks timepoint,
when compared to the contralateral control. At the 6 weeks timepoint there was
still a significant difference in two of the four tested cytokines for graphene and
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platinum devices compared to the control. However, by 12 weeks after implan-
tation, there was no significant expression of any cytokine for any material (see
Fig. 3.5b and the supporting information of the 2nd main article of this thesis for
the complete dataset). In order to confirm these results, activated microglia were
manually counted following an Iba-1 immunofluorescent staining (Fig. 3.5c). Fig.
3.5d shows the percentage of activated microglia, which is significantly increased in
all the devices as well as in the sham control. Similarly to cytokine levels, at the
12 weeks timepoint the percentage of activated microglia was back to the baseline
level. These results indicate that the tissue response to graphene devices is transient
and comparable to the platinum clinical standard. The increased level of activated
microglia in the sham control indicates that their activation could be more suscep-
tible to the surgical procedure and probe insertion, while inflammation measured
by the cytokine levels in the brain could be primarily affected by the properties of
the implanted material.

Figure 3.5: a, Schematic of the g-SGFET prototype with an enlarged graphene area
developed for biocompatibility testing in-vivo. b, Inflammatory marker IL-17a in the brain
tissue for all groups and timepoints. Evaluated for n = 4 animals after 2 and 6 weeks, and
n = 3 animals at 12 weeks. c, Iba-1 immunoflourescent staining to assess activation status
of microglia at the surgical site obtained from 40 sections per animal. Scale bar equals
500µm (50µm at the insets). d, Microglial activation state, expressed as a percentage
of total microglial presence in the site surrounding the electrodes. n = 3 animals at 2
and 12 weeks, n = 2 animals (or 3 for the contralateral hemisphere) at 6 weeks. Bars
in panels b and d indicate the mean and range of data point. In panels b and d two
way ANOVA test with Dunnett’s multiple comparison to the näıve control within each
timepoint with n = 3 or larger: **, *** and **** indicate p = 0.015, p = 0.007, p = 0.0016
and p < 0.0001 respectively. Figure adapted with permission from Garcia-Cortadella and
Schwesig et. al.[234].
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3.2.4 Long-term monitoring of wide frequency bandwidth brain
activity

In order to demonstrate the performance of the system in an operational environ-
ment, the cortical dynamics of the Long Evans rat with the implanted g-SGFET
array were monitored during natural behaviour. The main advantage of non-
multiplexed graphene active sensor arrays with respect to passive electrodes is
their sensitivity in the ISA band. ISA has recently attracted increasing atten-
tion due to its unique neurophysiological basis[236] and its relation to resting-state
networks[117, 119, 237, 238] and to brain states[116, 118, 237, 239]. Therefore, it
is paramount to demonstrate that the sensitivity of graphene active sensors in the
typical LFP band is sufficient to capture typical patterns of brain activity related to
distinct brain states. In order to take full advantage of the sensitivity of g-SGFETs,
the long-term stability demonstrated in section 3.2.1 becomes particularly relevant
to detect ISA events across sparse brain-state transitions with sufficient statistical
power. For this purpose, the motion of the animal was tracked during the electro-
physiological recordings for up to 24h uninterruptedly, except for sporadic battery
replacement (Fig. 3.6a,b). The electrophysiological recordings allowed to detect
the wide frequency band LFP activity that clearly reflected slow-wave (SW) states,
theta states and sparsely occurring high-voltage spindles (HVS)[240, 241] (Fig. 3.6c-
top). The combination of the activity states and electrophysiological data was used
to classify the brain state of the animal among slow-wave sleep (SWS), rapid eye
movement (REM) sleep, Awake Theta (AwT) and Awake Non-Theta (AwNT) as
described in the 2nd main article of this thesis and illustrated in the example shown
in Fig. 3.6c. During most of the hours of the recording all four sleep/wake states
were present, as expected from the polyphasic nature of rat sleep[242].

Following the classification of brain states, the relation between ISA patterns and
higher frequency LFP activity could be investigated. In the first place, the infra-
slow fluctuations associated with HVS events were analysed. Fig. 3.7a shows the
HVS-triggered averaged of the signals monitored in the 8 DC-coupled channels of
the system. Benefiting from the long-term stability of the system, a large num-
ber of HVS events could be detected during immobility (IMM) (n = 566 events),
and more sparsely during REM (n = 92 events), which is typically not associated
with HVS. The infra-slow patterns associated with HVS presented a clear phase
reversal from anterior to posterior sites, which was preserved across brain states
(i.e. during IMM and REM sleep states) and illustrates the importance of resolving
the spatial topography of ISA dynamics. While the ISA component associated with
HVS events did not present significant differences in distinct brain states, the higher
frequency components of HVS did present significant differences in their spectral
peak frequency and power between IMM and REM sleep (see Fig. 3.7b and the
2nd main article of this thesis). Following on the analysis of state dependent ISA
patterns, we investigated the modulation of physiologically established oscillatory
dynamics by the ISA phase. Interestingly, we found the modulation of hippocam-
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Figure 3.6: a, Illustration of the rat with the untethered recording system implanted.
The headstage and the 3D-printed frame to hold it are covered by a 3D-printed enclosure.
On top, the position markers of the motion capture (Mocap) system are fixed, which reflect
light back to the Mocap cameras placed in the room. The neural signals transduced by
the graphene sensors are digitized and transmitted wirelessly to the signal receiver, which
is connected to a computer for signal recording. b, Top: percentage of time in the active
vs inactive state (interruptions to replace the battery not included). Bottom: percentage
of time the rat was in each main brain state. c, The spectrogram and raw LFP signal of
an illustrative channel is displayed for distinct brain states (top); slow-wave (SW), high-
voltage spindles (HVS) and Theta. Movement speed is displayed along with classification
of motor state (middle) and brain states (bottom). Figure adapted with permission from
Garcia-Cortadella and Schwesig et. al.[234].

pal theta by the epi-cortical ISA phase during REM sleep (see Fig. 3.7c-right),
which presented a clear spatial topography as shown in Fig. 3.7c-left. Similarly,
the power in the spindle band (10− 14Hz) was modulated by the ISA during SWS
(see the 2nd main article of this thesis). Subsequently, we also investigated the
state-specific changes in the ISA band power; as an example Fig. 3.7d shows the
averaged spectrogram in the 0.0015−4Hz band triggered in the transition between
SWS and REM sleep. Note that the ISA power increases in the REM state in
opposition to the power in the SW band. This observation supports previous evi-
dence on the unique neurophysiological basis of ISA[236]. Finally, the performance
of the graphene active sensor arrays to detect high frequency band activity was
addressed. Due to the fractional order drop of transconductance with frequency
and the impact of quantization noise, it is important to determine the functionality
of the system in the high frequency band. Analysis of gamma activity showed that
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the power of gamma in the range of 60− 120Hz was modulated by the ISA phase,
proving the sensitivity of the system at high frequencies and providing new insights
into the electrophysiology of ISA. Similarly, the power in the high-gamma range of
120 − 150Hz was modulated by the phase of theta oscillations as expected from
previous works[101]. To conclude the investigation of high-frequency oscillations,
the relationship between broad range gamma (60− 200Hz) and sparsely occurring
rearing events was analysed. Fig. 3.7f shows the average spectrogram triggered in
the rear onset. While the gamma in the 60−70Hz band presented a power increase,
high gamma activity in the range of 120− 200Hz presented a clear power increase,
which could be identified at the single trial level (see the 2nd main article of this
thesis). These results demonstrate the capabilities of the graphene active sensors to
detect diverse gamma oscillators. Although future research is needed to replicate
these results in a larger cohort of animals, these long-term recordings allowed to
detect a large number of sparsely occurring physiological patterns and behavioural
events, which enabled a detailed quantitative analysis of the relation between ISA
and physiologically established oscillatory dynamics in freely behaving animals.
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Figure 3.7: a, Average DC LFP traces triggered on HVS onset during immobility and
REM sleep (channels arranged as in Fig. 3.2b), inset showing anatomical localization of
DC ECoG recording sites). b, Average AC LFP spectrograms triggered on HVS onset
during immobility (top) and REM sleep (bottom). The spectrograms correspond to anterior
positions on the array. c, Left: topography of ISA phase modulation of LFP power in theta
band during REM. ISA phase derived from DC channel marked with a red square. Right:
color-coded strength of modulation of LFP power across slow frequency range (y-axis) for
one channel by the phase of ISA across 0.05 − 0.2Hz range derived from one DC channel
(see left panel) during REM sleep. Inset, circular plot of LFP theta power with respect to
respective ISA phase. d, Average 0.015−4Hz spectrogram for one DC channel triggered on
REM episode onsets (n=44). e, Color-coded strength of modulation of LFP power across
gamma frequency range (y-axis) for one channel by the phase of ISA across 0.05 − 0.2Hz
range derived from one DC channel (left panel) and by the phase of LFP in the slow
frequency range (right panel) during REM. Inset, circular plot of LFP gamma power with
respect to respective (ISA or theta) phase. f, Average spectrogram for high frequency
range of LFP on posterior channel triggered on rear onset (n = 162). Figure adapted with
permission from Garcia-Cortadella and Schwesig et. al.[234].
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3.3 Chapter outlook: Improved technology for chronic,
wide frequency band recordings

Demonstration of the wide frequency band sensitivity of g-SGFETs and their ap-
plicability in freely moving rodents in a chronic setting has important implications.
Recording of ISA with a high spatial resolution has been so far limited to head-fixed
experiments[116] either using optical methods[243] or fMRI studies[116, 121]. In ad-
dition, both of these methods are limited in temporal resolution to the infra-slow
band. Therefore, graphene active sensor arrays present unique properties for the
simultaneous detection of infra-slow and higher frequency LFP signals with high
spatial resolution and in freely moving animals. Having stablished the sensitivity of
g-SGFET arrays in a wide frequency LFP band, two technological aspects should
be addressed. First, the capability of the g-SGFETs to detect single-unit activity,
which remained unresolved due to the planar design of the neural probes used in
this study. Secondly, the stability of g-SGFETs in-vivo might be compromised by
extrinsic causes of instabilities, mainly failure of the SU-8 passivation layer. There-
fore, optimization of the passivation layers might significantly improve the long-term
stability reported in the present study.

Following the implementation of Cu-protected g-SGFETs to improve their frequency
response (section 2.3), it is possible to investigate the passivation of Cu-protected
g-SGFETs with non-photodefinable passivation layers. Replacement of SU-8 by
polyimide could significantly improve the long-term stability of graphene sensors
while providing an improved sensitivity in the high frequency band. For this pur-
pose, intra-cortical graphene neural probes were designed and fabricated following
the protection of the channel by Cu thin films. Having a Cu-protective layer, it be-
comes possible to pattern a non-photodefinable passivation layer with non-selective
dry etching methods without damaging graphene. In order to demonstrate the
potential of Cu-protected g-SGFETs to detect spikes, the graphene sensors were
fabricated on a narrow polyimide thread for intra-cortical recording and a wave-
form generator was used to apply spike-like activity of relatively low amplitude
for in-vitro testing of the devices. Following this approach, artificial spike-like sig-
nals with an amplitude of ∼ 100µV could be reliably detected Fig. 3.8a. The
improved sensitivity is the high frequency range can be attributed to the approx-
imately constant |gm|(f) up to > 1 kHz (Fig. 3.8b) achieved with the protection
of the graphene channel with Cu sacrificial layers. Integration of the intrinsic 1/f
from the g-SGFETs in different frequency bands, yields a constant Ids−rms per fre-
quency decade up to at least 10 kHz (Fig. 3.8c). Combined with the constant
Gm at high frequencies it leads to a constant Ugs−rms per frequency decade for
Cu-protected graphene sensors. In contrast, devices fabricated with the standard
fabrication proces present an increase of the equivalent noise at the gate in the SUA
frequency band (Fig. 3.8d,e). More information about the standard fabrication
process is provided in the experimental section of the 1st main article of this thesis

79



High-Bandwidth Graphene Neural Probes

(Appendix A). Future experiments should address the evaluation of the sensitivity
of g-SGFETs in the SUA frequency band in-vivo and development of large-scale
graphene sensor arrays for intra-cortical recording of neural activity.

Figure 3.8: a, Optical micrograph of a 4 channel (25µm x 25µm g-SGFETs) in a 70µm
wide shank and 8 channels (15µm x 15µm) in a 100µm wide shank passivated with poly-
imide. Right: Artificial signals corresponding to hippocampal spikes with ∼ 100µV ampli-
tude detected with 25µm x 25µm g-SGFETs in PBS. The holes in the tip could be used for
insertion using a customized rigid shuttle. b, Frequency response of the polyimide-polyimide
fabricated using Cu sacrificial layers and polyimide-SU8 devices without Cu protection. The
improvement in the frequency response achieved with Cu sacrificial layers (Fig. 2.6) holds
for polyimide-polyimide devices (n=8 g-SGFETs) with geometry 25µm x 25µm. c, Cur-
rent power spectral density of a representative Cu-protected polyimide-polyimide g-SGFET
and the fitting of 1/f . d, Integrated equivalent noise at the gate in the 3−30Hz range cal-
culated with |Gm|@10Hz (left) and integrated in the 400Hz-4 kHz range calculated with
|Gm|@1 kHz (right) for Cu-protected and non-protected devices. e, Equivalent RMS noise
at the gate (Ugs−rms) integrated in the 3− 30Hz band for Cu-protected and unprotected
devices.
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In summary, the thorough in-vitro and in-vivo evaluation of the sensing and long-
term recording capabilities of graphene active-sensors from a system perspective
demonstrates the maturity of this technology and supports its application for the
study of ISA without sacrificing the detection of high frequency neural dynamics.
In this direction, we have successfully evaluated ISA patterns during distinct brain
states and their correlation with higher frequency oscillations. These results repre-
sent an important step towards the broad implementation of graphene active-sensor
arrays for neuroscience research, offering a stable and biocompatible sensing tech-
nology for long-term mapping of wide frequency band epi-cortical brain activity
during spontaneous behaviour.

One potential disadvantage of g-SGFET arrays compared to fMRI and optical meth-
ods for the study of ISA is the coverage area. Upscaling sensor arrays is typically
constrained by the difficulty in connecting each sensor to an individual macro-
scopic connector. However, g-SGFETs are also promising to implement multiplex-
ing strategies, which allow transmitting the signals from multiple sensors through
a shared micro-wire. The combination of wide frequency band sensitivity of g-
SGFETs and their operation in multiplexed mode would raise graphene active sen-
sor arrays as a unique tool for the study of large-scale brain dynamics. In the
following section, novel strategies for g-SGFET array multiplexing are presented.
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Chapter 4

Multiplexed graphene neural
probes:
Large-scale brain mapping

Previous sections have discussed how graphene active sensors allow a high
sensitivity in a wide frequency band in addition to a high biocompatibil-
ity and long-term stability. Furthermore, g-SGFETs can be arranged in
addressable arrays, which together with their expected drain-source fre-
quency response, raises them as promising candidates as a building block
for multiplexed sensor arrays. This chapter presents two strategies for the
multiplexing of graphene sensor arrays, which do not need on-site flexible
switches. The first strategy is based on time-division multiplexing (TDM)
in which the drain bias Uds is applied sequentially to all columns of the g-
SGFET array, dividing the sampling resources of the readout circuits among
all columns. In this mode, the switching among columns is performed ex-
ternally, using rigid silicon-based transistors. In a second approach, the use
of frequency-division multiplexing (FDM) is proposed, in which a carrier
signal with a particular frequency is applied on each column, continuously
biasing all the g-SGFETs on the array. In this mode, the graphene tran-
sistors operate as mixers, multiplying the carrier signals by the transduced
neural signals, leading to their amplitude modulation (AM). Following the
FDM strategy, each readout circuit amplifies the signals from all g-SGFETs
in continuous time, with each column of the array modulated at different
carrier frequencies. This chapter summarizes a proof-of-concept for each of
these multiplexing modes, focusing on their performance and scalability.
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4.1 Time-Division Multiplexing of graphene transistors

Time-division multiplexing of neural signals detected by active sensor arrays has
been previously proposed[11, 69, 76, 174]. However, state of the art multiplexed
sensor arrays are currently limited by the properties of the flexible semiconductors
used, which present a limited switching speed, a limited long-term stability and/or
a poor sensitivity. Graphene-based active sensors have demonstrated a high sta-
bility in-vivo and present a high electrical mobility, which is critical for high-speed
operation. However, due to the gap-less nature of its band structure, graphene
cannot be used to produce switching devices. To date, all proposed approaches
for multiplexing of active sensors on flexible substrates rely on the use of on-site
switching elements on the neural probe to select the biasing of particular columns
in the array[11, 69, 76, 174]. The use of switches is unavoidable in TDM operation,
however, in the 3rd complementary article of this thesis (Appendix B), the use of
graphene transistors in combination with external switching arrays is presented as
a promising alternative to the use of on-site switches. This section summarizes the
results from this article together with recent results on the scalability of TDM.

4.1.1 Validation of the time-division multiplexing principle

For the operation of g-SGFET arrays in TDM, a system based on discrete electronic
components was developed to multiplex arrays of up to 16x16 g-SGFETs (Fig.
4.1a). The developed system comprises of a data acquisition system (DAQ-card
from National Instruments) for signal digitalization and control of the source and
gate bias. An external switching array, consisting of MOSFET silicon transistors,
is controlled by the digital outputs of the DAQ-card to switch among the columns
of the array. The front-end electronics consist of two amplification stages: first,
a transimpedance amplifier with a low-pass filter at 10 kHz and, second, a stage
consisting of a high-pass filter at 0.1Hz and a voltage amplifier (see Fig. 4.1a).
Using this system, the sensitivity of 8x8 g-SGFET arrays could be evaluated in-vitro
as well as in-vivo[187] (see the 3rd complementary article of this thesis). Fig. 4.1b
shows the detection of a signal generated in-vitro representing an electrocardiogram
pattern, detected in TDM mode and in standard static acquisition mode, which
show comparable signal quality. Following the characterization in-vitro, g-SGFETs
arrays in TDM operation were benchmarked against commercial µ-ECoG arrays
on the cortex of an anaesthetized Long-Evans rat[187] (see the 3rd complementary
article of this thesis). The spectrogram in Fig. 4.1c shows the comparison between
a signal detected with a g-SGFET of 50µm x 50µm in TDM mode and the signal
detected in the contralateral hemisphere with a Neuronexus commercial electrode
array (100µm-diameter circular platinum electrodes). The spectrograms reveal a
similar signal to noise ratio for both systems in the measured frequency range.
Furthermore, multiplexing of g-SGFETs in TDM mode preserves the sensitivity of
g-SGFETs in the infra-slow frequency band. Fig. 4.1d shows the detection of a
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cortical spreading depression (CSD), triggered following the procedure described
in previous literature[222], and its propagation across the cortical area under the
multiplexed sensor array. These results demonstrate the potential of TDM graphene
neural probes for studying the topography of wide frequency-band LFP dynamics
on the surface of the brain.

Figure 4.1: a, Schematic of the main components of the TDM system, consisting of the
256 g-SGFET array, a front-end signal amplifier, an external switching matrix and a data
acquisition (DAQ-card) system. b, Electrocardiogram pattern generated artificially using
a low noise waveform generator and detected using g-SGFETs in TDM operation (top)
and in static acquisition (bottom). c, Spectrogram of neural signals in the typical LFP
frequency range from the cortex of an anaesthetized rat. Signals detected with a commercial
electrode from Neuronexus (top) or using g-SGFETs in TDM operation (bottom). d, DC-
coupled signal detected with a g-SGFET in TDM operation (left-axis) and high-pass filtered
signal ¿0.1Hz (right axis) during the occurrence of a cortical spreading depression (top).
Propagation of a CSD across the cortex under the µ-ECoG grid (bottom).

One of the main disadvantages of TDM based on external switching, in comparison
to other technologies incorporating on-site switches, is that the impedance of the
sensors cannot be controlled externally. This relatively low impedance leads to an
increased susceptibility to crosstalk among columns and rows. When the source
potential (Us) is applied on a particular column, it generates a drain-source current
through all g-SGFETs sharing this column. In a first approximation, the current
flowing to the readout channels at the rows level contains only the neural signals
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detected by g-SGFETs in the selected column. However, the presence of parasitic
resistance at the metal tracks due to their finite conductance, generates a common-
mode voltage, which results in crosstalk among g-SGFETs in the same column or
row. Measurement and simulation of this coupling confirmed that the crosstalk
level among g-SGFETs in the same column or row is equal to the ratio between the
track resistance and the g-SGFET resistance. Understanding the origin of crosstalk
guided the design of the neural probes to present a minimal track resistance, lowering
the signal-to-crosstalk level to 40dB. Moreover, having an accurate model of its
generation, it is possible to correct the crosstalk level in a calibration process, as
described in section 4.2.3 and the supporting information of 3rd main article of this
thesis (Appendix A).

4.1.2 Scalability of TDM graphene neural probes

Having demonstrated the good performance of g-SGFETs in TDM and having un-
derstood the origin and magnitude of crosstalk, the next step is to upscale the sensor
count on the neural probes. For this purpose, we have designed and fabricated 16x16
graphene sensor arrays on a flexible substrate (see Fig. 4.2a), following the process
described in the methods section of the 3rd complementary article of this thesis.
This design offers a high density of sensors capable of covering a relatively large
area of the cortex of the rat or mouse brain with high spatial resolution. The active
sensors have a reduced area of 50µm x 50µm, in comparison to the devices pre-
sented in the chapter 3, which is expected to slightly increase their intrinsic noise.
Characterization of the g-SGFETs revealed an average sensitivity in the range of
20µV RMS, and a high yield, with 99 % of the sensors presenting a sensitivity below
80µV . However, the system exhibited an increase in the Ugs−rms at high frequen-
cies (Fig. 4.2c). This increase is caused by the contribution at high frequencies of
white noise sources. These noise sources are increasingly dominant for larger-scale
arrays due to two main reasons. Firstly, sources of noise from the amplifiers and
voltage references are amplified with a gain factor that is inversely proportional
to the impedance of the sensor array (see supporting information of the 2nd main
article of this thesis). Due to the lack of on-site switches, the impedance of the
array drops as the number of sensors is increased, enhancing the amplification of
extrinsic noise sources. The second reason for an increased high frequency noise is
the downsampling of the acquired signal in TDM. This downsampling implies that
the frequency of the antialiasing filter, which eliminates high-frequency noise, must
be higher than the final sampling frequency per channel. Downsampling the signal
without a proper antialiasing filter leads to folding of high frequency noise into the
frequency band of operation by aliasing. This folding effectively increases the floor
noise of the system. Therefore, the larger the number of columns in the array, the
larger the floor noise of the system will be.

Fig. 4.3a shows the output current in a row for a 16x16 g-SGFET array using the
acquisition system presented in Fig. 4.1. The sampling rate (Fs) in each row was
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Figure 4.2: a, Optical micrograph of a 16x16 g-SGFET array. b, Color-map of the
equivalent noise at the gate (Ugs−rms) in the 1 − 10Hz band for the g-SGFET array in
panel b. c, Histogram representing the distribution of the sensitivity of the g-SGFETs in a
16x16 sensor array in the 0.05− 0.5Hz band (top), the 1− 10Hz frequency band (middle)
and in the 10− 100Hz band (bottom).

equal to 62.5 kHz; however, switching among columns occurred every 20 samples
(Tsw = 320µs), in order to allow for the stabilization of the g-SGFETs response.
The slow stabilization observed in Fig. 4.3a can be attributed to a transient ca-
pacitive current, which produces an offset in the multiplexed signals. The cause of
this capacitive current is presumably the voltage pulse applied from drain to source
during switching among columns, which produces the charging of the graphene-
electrolyte interface capacitance. The resulting source-to-gate current adds to the
measured drain-to-source current. However, this capacitive contribution does not
attenuate the amplification of the signal by field-effect, as shown in Fig. 4.3b, lead-
ing to an intact transconductance. After stabilization, the sampling rate per sensor
was equal to the switching rate (Fsw) divided by the number of columns (16 in this
case), resulting in a downsampling to Fs−ch = 195Hz per sensor. Fig. 4.3c rep-
resents the aforementioned frequencies together with the antialiasing filter, which
must be above Fsw. Therefore, part of the high-frequency noise between Fs−ch and
Fsw (bandwidth of x16 for 16 columns) will be folded into the band of operation,
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increasing the floor noise level and introducing high frequency pick up noise by
aliasing. Fig. 4.3d shows the PSD of the noise for a particular channel of the array
when taking only the last sample of each period between switching events Tsw, or
by averaging multiple samples. These results show how averaging of samples within
Tsw mitigates aliasing of high frequency noise. Nevertheless, part of the effect of
aliasing is intrinsic to the TDM operation mode and will occur even using on-site
switches. Fig. 4.3e shows the average PSD for 256 g-SGFETs characterized in static
operation or in TDM mode. It is possible to see that although the sensitivity in the
low frequency range is approximately equal, the floor noise in TDM mode is higher,
approaching a 16-fold increase with respect to the static acquisition when averaging
multiple samples within Tsw.

Having characterized the response of high-count sensor arrays in TDM mode, it
is clear that the readout circuits and voltage references for biasing the devices
must present a very low noise level in addition to very high sampling speed. In
order to optimize TDM of high-count sensor arrays, it is therefore convenient to
develop an application specific integrated circuit (ASIC), which can be embedded
in a lightweight, implantable headstage for freely moving rodents. Collaboration
with the group led by Prof. Serra-Graells at the Microelectronics National Center
(CNM-IMB) led to the design of an ASIC for the operation of up to 32x32 g-SGFET
arrays in TDM[244] (Fig. 4.4). In order to reduce the floor noise of the system, the
ASIC incorporates a correlated double sampling stage[244], which effectively filters
out the noise from the transimpedance amplifier below a characteristic frequency
of 100 kHz. Moreover, the ASIC includes a programmable resistance array for
offset cancelation. The importance of offset cancelation stems from the fact that
the amplification chain must be DC-coupled in order to detect infra-slow activity
and to acquire the transfer curve of the g-SGFETs, which is required for gain
calibration in-vivo. However, the static current in g-SGFET represents a large offset,
which increases very significantly the dynamic range of the measured current. One
possible solution is to include two amplification stages, as presented in Fig. 4.1,
the first providing the DC-coupled signal and the second providing the high-pass
filtered signal. However, this solution is not optimal as it duplicates the sampling
requirements for the ADC. Furthermore, the high-pass filter in the AC-coupled
channel can induce additional crosstalk around its cut-off frequency. Using the
programmable resistance array of the ASIC[244], it is possible to keep the DC-
coupling in the amplifiers while reducing the dynamic range of the signal (Fig.
4.4). The proposed circuit subtracts the required current before the transimpedance
amplifier stage and, therefore, allows to operate the g-SGFETs with a much higher
Uds, which is an important advantage to increase the signal amplitude above the
floor noise of the system.

In order to test the sensitivity of the ASIC-based system, the dependence of Gm and
Ugs−rms on Uds was first evaluated. Operating the g-SGFETs with Uds in the range
of the gate bias (i. e. 0 − 0.4V ) causes a non-homogeneous charge distribution
along the channel, due to the effective gating induced by the potential gradient
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Figure 4.3: a, Output current from a row of a 16x16 g-SGFET array. Sampling period
(Ts), switching period (Tsw) and the sampling period per recording channel (Ts−ch) are
indicated. b, Demultiplexed signal from a single recording channel by taking the last
sample in each switching period or by taking the first sample, after stabilization of the low-
pass filter. c, Representation of the sampling frequency (Fs), switching frequency (Fsw),
sampling frequency per channel (Fs−ch) and the low-pass filter cut-off in the frequency
domain. d, PSD of the demultiplexed signal from one g-SGFET obtained by taking the last
sample in each switching period or by averaging multiple samples. e, Average PSD from all
256 g-SGFETs in the array measured sequentially at maximum sampling frequency (black)
or measured in TDM mode and averaging 8 samples per switching period. The filled area
indicates de standard deviation.

along the channel. Such non-linearities imply that the gradient of the quasi-Fermi
level driving the current is non-homogeneous. In turn, regions of the channel with
a lower gradient are expected to have a lower contribution to the transconductance.
In order to evaluate the linearity of the g-SGFETs response with Uds, the g-SGFETs
were biased at Ugs = 0.18V (approximately −0.1V from the CNP) in a wide Uds
range, from 0.05 to 0.4V . Fig. 4.5a reveals that Gm and Ids−rms scale linearly with
Uds, leading to a flat Ugs−rms in a wide Uds range. This linearity in the sensitivity
of the system is only compromised at low Uds values, where the low Gm prevents
the transduction of signals above the floor noise.
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Figure 4.4: Main components of the ASIC system, consisting of a front-end signal amplifier
and a switching matrix. A correlated double sampling stage (marked in red) for noise
cancelation and a programmable resistance array (marked in green) for offset cancelation
are implemented. Copyright IEEE. Adapted, with permission, from Cisneros-Fernandez et.
al., ”A 1024-Channel GFET 10-bit 5-kHz 36-µW Read-Out Integrated Circuit for Brain
µECoG, Nov. 2020[244].

Having determined the linearity of the g-SGFETs response with Uds, the sensitivity
of the ASIC-based system was evaluated. For this purpose, we used a test-ASIC
with the number of readout channels reduced to four. For the characterization,
large-scale probes of 16x16 g-SGFET arrays were used in order to test the operation
of the system under real conditions, which includes a low impedance of the array.
Evaluation of the sensitivity of the system in the low frequency range confirmed that
the LFN of the g-SGFETs dominates in this band (Fig. 4.5b) allowing to detect
signals of relatively low amplitude (100µVpk, see Fig. 4.5c). Fig. 4.5d presents
the PSD of the equivalent signal at the gate for a 10µVpk, 10Hz, pure tone signal
applied at the gate. The PSD indicates the frequency range in which the flicker noise
of the g-SGFETs dominates. In this frequency range (< 20Hz), the sensitivity of
the system is equal to the intrinsic sensitivity of the graphene sensors (i.e. ∼ 30µV
per frequency decade) for a Uds = 0.2V . Above this frequency, the RMS noise per
frequency decade will increase proportionally with the frequency. Although these
results are promising for the detection of LFP activity up to the low-gamma range
(30 − 60Hz) with large-scale probes, detection of higher frequency activity, from
high gamma to action potentials would be constrained by the noise of the amplifiers.
In order to improve the high frequency sensitivity, frequency-division multiplexing
could be implemented. As discussed in the next section, FDM does not imply the
downsampling of the acquired data and therefore does not cause aliasing of high-
frequency noise into the band of operation.

89



High-Bandwidth Graphene Neural Probes

Figure 4.5: a, Dependence of Gm, Irms and Ugs−rms on Uds. b, Ugs−rms vs Ugs in
the 1 − 10Hz band, demonstrating the high sensitivity of the ASIC-GFET system in the
low frequency range. c, Signal recorded with the ASIC-GFET system while a applying
a 100V − peak pure tone at 10Hz. d, PSD of the output current measured during the
application of a pure tone, 10µVpk, 10Hz signal on the gate. PSD calculated from the signal
recorded over 150 s. The frequency band where the 1/f noise of the g-SGFETs dominates
is marked in blue.
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4.2 Frequency-Division Multiplexing of graphene tran-
sistors

FDM represents a novel strategy for the multiplexing of neural signals, which allows
mapping the brain activity at high frequencies without downsampling the acquired
data. In the 3rd main article of this thesis (Appendix A), the performance of
graphene sensors in FDM operation was characterized for the first time and bench-
marked against the standard acquisition with g-SGFETs in static mode. In order
to demonstrate the applicability of the sensor arrays in-vivo, a recording system
based on a high speed acquisition system was developed. In this work, the scala-
bility of FDM was also addressed by studying the effects of non-linearities in the
output characteristics, the drain-source frequency response of g-SGFETs at high
frequencies, the effect of crosstalk and the effect of heat dissipation in large-scale
arrays.

4.2.1 Frequency-division multiplexing principle

The electrical response of graphene active sensors can be modelled, as described in
section 2.2.2, by a stationary response term proportional to the static conductance
of the transistor Gds−DC , and by a dynamic term depending on the signal applied
at the gate and the transconductance (UsigGm). In the typical operation mode
discussed so far (i.e. DC mode), the drain-source bias is constant; thus the only time
dependence in the dynamic response of the g-SGFETs is given by Usig. However, in
FDM (also referred to as amplitude modulation - AM mode), the drain-source bias
is a pure tone carrier signal (Ucarrier(t)). Therefore, the dynamic response of the
g-SGFET is expressed as the product Ucarrier(t)(gmUsig(t) +Gds−DC) (Fig. 4.6a).

The multiplication of Ucarrier and Usig produces the folding of their frequencies. In
the frequency domain this folding means a peak at the carrier frequency (fc) (with
an amplitude proportional to Gds−DC), and two side bands at fc−fsig and fc+fsig
containing the neural information (with an amplitude proportional to UsigGm) (Fig.
4.6b-left). This mixed signal can then be demodulated in a lock-in amplifier (Fig.
4.6b-middle), producing the folding of the side bands back to the baseband frequency
(Fig. 4.6b-right), with the DC-offset corresponding to the stationary component of
Ids. Applying different carrier frequencies on each column of the array, it is possible
to demodulate each carrier signal independently at the row level and to recover the
neural signals detected in each of the sensors (see Fig. 4.6c).

91



High-Bandwidth Graphene Neural Probes

Figure 4.6: a, Typical Gds − Ugs curve of g-SGFETs. The definition of normalized
transconductance (gm) as the slope of the Gds − Ugs curve, is indicated in the graph. The
g-SGFETs acts as a multiplier of the drain-to-source voltage and the signal at the gate. The
resulting Ids in the DC and AM modes is illustrated. b, The signal folded by the carrier is
shown in the frequency domain (left). Demodulation scheme (middle): the multiplication
of the modulated signal by an oscillator at the carrier frequency of interest and the π/2
radians phase shifted oscillator allows to recover the module of the signal in the baseband
(right). c, Basic schematic of the addressable g-SGFET array, which allows modulating
the signals at the gate of different g-SGFETs with different carrier frequencies. The mixed
signals, containing multiple carrier frequencies, are demodulated after current-to-voltage
conversion and digitization. Figure adapted with permission from Garcia-Cortadella and
Schäfer et. al.[245].
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4.2.2 In-vitro characterization of FDM graphene neural probes

In order to validate the performance of g-SGFETs in AM mode, multiplexed arrays
of up to 4x8 sensors were fabricated (see the 3rd main article of this compendium).
For the characterization of the FDM sensor arrays and their operation in-vivo,
a recording system based on a PXIe for high sampling speed and a custom built
front-end amplifier for current-voltage conversion was developed (see the supporting
information of the 3rd main article of this thesis). The sensitivity of the graphene
sensor arrays in the AM mode was then characterized and compared with the sen-
sitivity in DC mode. The transconductance of the transistors can be characterized
from the demodulated stationary Ids − Ugs curves or by applying signals of vari-
ous frequencies at the gate and measuring the demodulated dynamic response. Fig.
4.7a presents the frequency dependent transfer function obtained following the latter
strategy. The obtained transfer function is compared with the response in DC mode.
The effective transconductance increase at high frequencies, previously described in
section 2.2.2, which corresponds to displacement currents between gate and source,
is not present in the AM mode. The reason is that capacitive currents are not con-
cequence of the field-effect modulation of the graphene conductance, and therefore
are not modulated by the carrier signal. Similarly, extrinsic sources of LFN from the
amplifiers are not modulated and therefore do not contribute to signal degradation.
Following the characterization of the transfer function in AM mode, the Ids−rms
noise was determined in order to compare the Ugs−rms in DC and AM mode. The
results shown in Fig. 4.7b demonstrate that the sensitivity of g-SGFETs in both
operation modes are approximately equivalent, presenting only a slight difference
in its Ugs dependence. This difference presumably arises from the changes in the
effective gating in both modes (see supporting information of the 3rd main article
of this thesis). In turn, the effective gating is also responsible for non-linearities in
the output characteristics of g-SGFETs, introduced by the dependence of Gds on
Uds. These non-linearities lead to a certain harmonic distortion of the carrier sig-
nals that introduces high order harmonics at frequencies multiple of fc (Fig. 4.7c).
In this way, harmonic distortion will constrain the selection of carrier frequencies:
high order harmonics must not lie within the frequency band of operation. Thereby,
the frequency of all carriers must be below the 2nd order harmonic of the carrier
with the lowest frequency (Fig. 4.7c). In addition, the Nyquist frequency (Fs/2)
must be above the 2nd order harmonic of the highest frequency carrier to prevent
folding of the 3rd harmonic into the band of operation by aliasing. Finally, another
aspect that might constrain the selection of carrier frequencies is the drain-source
frequency response of g-SGFETs. The graphene-electrolyte interface can be mod-
elled as a transmission line circuit consisting of distributed capacitive and resistive
elements[218], which leads to a parallel current path through the electrolyte at high
frequencies. However, due to the relatively high mobility of g-SGFETs compared
to other active sensors[173], the cut-off frequency is expected at relatively high fre-
quencies. Fig. 4.7d confirms that the current leakage through the electrolyte is only
significant for frequencies above ∼ 500 kHz for channel lengths above 100µm.
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Figure 4.7: a, Magnitude of gm over frequency of the signal applied at the gate is shown
for the two modes. The response was measured in a 2x2 g-SGFET array. b, Ugs−rms for
an integration bandwidth of 1− 10Hz measured in the AM and DC modes; measurements
performed with a 3x3 g-SGFET array. c, Two carrier signals and their 2nd and 3rd order
harmonics are represented in the frequency domain. The frequency which defines the band-
width of operation (Fmax) and the position of the Nyquist frequency (Fs/2) with respect
to Fmax are indicated by the vertical lines. d, The Ids normalized by its value at 10 kHz
is shown for different channel lengths. The filled area represents the standard deviation
(n = 3). Figure adapted with permission from Garcia-Cortadella and Schaefer et. al.[245].

4.2.3 Scalability of FDM graphene neural probes

Considering the ultimate goal of enabling the upscaling of graphene sensor arrays,
investigating the scalability of FDM graphene neural probes is critical. The con-
strains in the carrier frequency selection described in the previous section are lim-
iting factors in the scalability of this technique (see the 3rd main article of this
compendium). However, more constraining aspects might be crosstalk or the re-
quirements for high-speed data acquisition system.

In FDM, no switching among sensors is required. Although this feature bears a clear
advantage for ease of fabrication of the neural probes, it prevents from doing on-
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site switching of the sensors and can therefore lead to an increased susceptibility to
crosstalk. In order to understand and mitigate crosstalk in FDM g-SGFET arrays,
we developed a method to selectively bias individual g-SGFETs on the array and ap-
ply signals locally (see Fig. 4.8a and supporting information of the 3rd main article
of this thesis). This method, based on ink-jet printing of solid polyelectrolyte gates
on individual g-SGFETs, allowed determining the crosstalk level under different bias
conditions. Fig. 4.8b shows the signal amplitude and the crosstalk peaks measured
in a 3x3 g-SGFET array using this approach. These results confirm that g-SGFETs
in the same column or in the same row present an equivalent crosstalk, while the
rest of sensors in the array present a much higher signal-to-crosstalk ratio. Besides,
the gate bias dependence of the crosstalk level is proportional to Rs/Rg−SGFET , as
theoretically predicted (see supporting information of the 3rd main article of this
thesis), where Rs is the resistance in series with the g-SGEFTs. Given that both
the resistance in series with all g-SGFETs and the impedance of the g-SGFETs can
be measured experimentally, it is possible to mathematically correct the crosstalk
among sensors. This correction requires to solve the system of linear equations
schematized in Fig. 4.8c. Knowing the measured signals represented by M(t) and
the inverse of the k matrix, which represents the coupling factors among g-SGFET,
it is possible to determine the matrix S corresponding to the unperturbed signals
at the gate (see supporting information of the 3rd main article of this thesis). Fig.
4.8b,c shows the resulting crosstalk level after applying this correction procedure:
it leads to a signal-to-crosstalk ratio of 52 dB approaching the values achieved using
on-site switches [73].

One important advantage of FDM compared to TDM is that it acquires the signals
in quasi-continuous time, without having to share the sampling speed among active
columns. Therefore, there are not problems derived from aliasing of high frequency
noise. Nevertheless, continuous biasing of all columns leads to the superposition of
the current from all columns of the array. This fact limits the maximum amplitude
of each carrier and therefore may limit the transduced signal amplitude. In order to
optimize the amplitude of the carriers, the phase of the carriers must be carefully
selected to prevent constructive periods with high amplitudes (Fig. 4.8d). Using
this technique, a high sensitivity, dominated by the intrinsic noise of the g-SGFETs,
could be demonstrated up to 100Hz using 4 carriers and a modest 12-bits ADC (Fig.
4.8e). Finally, the continuous biasing of all g-SGFETs might lead to a relatively
high power consumption and therefore a high heat dissipation into the brain tissue.
In order to estimate the temperature increase produced by a 1024-channel system, a
FEM simulation was implemented. Assuming a thermal conductivity of the human
brain cortex of 0.5W/m.K[246], considering that the temperature of the brain is
unperturbed 5 cm away from the array and neglecting the effects of convection or
heat dissipation by blood vessels, an upper bound for the temperature increase can
be found. For a single g-SGFET, the temperature increase was found to be 0.005 ◦C
while for 1024 g-SGFET arrays, the maximum temperature increase in the center
of the array was 0.013 ◦C (see supporting information of the 3rd main article of this
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thesis). These values are much lower than the typical temperature increase allowed
in optogenetic studies, which is in the order of 2− 0.2 ◦C[247].

4.2.4 In-vivo characterization of FDM graphene neural probes

Having determined the sensitivity of FDM graphene neural probes in-vitro, the in-
vivo performance of the neural probes was evaluated by recording electrical activity
from the cortex of an anaesthetized Long Evans rat using 4x8 FDM graphene neural
probes. With this experiment, the performance of FDM neural probes in an opera-
tional environment could be evaluated, including the implementation of software for
real time signal demodulation and visualization, the protocol for acquisition of sig-
nals with a maximum sensitivity, the wide frequency-band sensitivity of the sensors
and the effect of crosstalk on the mapping of epi-cortical brain dynamics.

In order to maximize the sensitivity of the neural probes, the transfer curves were
first obtained in-vivo for low carrier amplitudes. After selecting the optimal gate
bias, typically close to the CNP, the carrier amplitude was swept in order to de-
termine the linear-response range (not saturating the ADC), allowing to maximize
the carrier amplitudes (see the 3rd main article of this thesis for more details). Fol-
lowing this procedure, the sensitivity of the graphene transistors to high-frequency
LFP activity was evaluated by measuring visually evoked potentials. The graphene
sensors, directly placed on the primary visual cortex V1, detected a sharp response
with a short delay from the trigger (Fig. 4.9a,b), while sensors placed further
away from V1 presented a lower response and extended delay (Fig. 4.9b), which
is consistent with previous literature[171]. Fig. 4.9a presents the signal before
and after crosstalk correction, which do not differ significantly, indicating that 4x8
probes present a low crosstalk among sensors (see the supporting information of the
3rd main article of this thesis). Having characterized the sensitivity of the FDM
graphene neural probes for high frequency LFP signals, the sensitivity of the system
in the infra-slow frequency range was also investigated. For this purpose, a CSD was
triggered by injecting KCl into the brain cortex following the procedure described
previously[222]. Fig. 4.9c shows the signal from channel in position (4,5) filtered
in the 1 − 50Hz frequency band (blue) together with the wide frequency band
signal in the 0.001− 50Hz band. It is possible to clearly observe the typical infra-
slow depolarization associated with CSD events and the associated suppression of
spontaneous LFP activity during the depolarization wave. Fig. 4.9d illustrates the
position of KCl injection and the g-SGFET array on the rat cortex. The triggered
CSD propagated from anterior to posterior areas covered by the sensor array are
precisely captured in Fig. 4.9e, demonstrating the capabilities of FDM graphene
neural probes to study topography of wide-band oscillatory dynamics in the brain.
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Figure 4.8: a, Equivalent circuit of a 3×3 g-SGFET array. The metal track resistance
of the columns and rows is modeled by Rcol and Rrow respectively. Each column is biased
with a different carrier (Ucar1, Ucar2, and Ucar3). Common voltage oscillations (Ucom,col

and Ucom,row) produce changes in Uds,eff . The light blue area indicates the position of four
polyelectrolyte gates printed on a 3×3 array. b, Response to a 5Hz signal measured in
different g-SGFETs on a 3x3 array for different Ugs values. The color of the symbols and
lines indicate the position of the corresponding g-SGFET in the 3x3 array shown in part a.
The solid lines indicate the fitting by the analytical model. The noise (dashed black line)
was measured at 7Hz. The empty blue and orange circles indicate the crosstalk level after
correction. The signal-to-crosstalk values (in dB) corresponding to uncorrected, corrected
and second order crosstalk are marked by the vertical lines. c, Signal measured in different
g-SGFETs before (left) and after (right) crosstalk correction. The black line corresponds
to the g-SGFET where the signal was applied using printed polyelectrolyte gates. The
orange and blue line correspond to g-SGFETs in the same column and row, respectively. d,
Histogram of 32 superposed carriers with phase optimization to minimize the peak-to-peak
amplitude (black), and with all carriers in phase (red). The inset shows a fragment of the
resulting signals. e, Average power spectral density measured in a 4x8 g-SGFET array.
The 1/f noise of the g-SGFETs and the white noise from the DAQ are indicated. Figure
adapted with permission from Garcia-Cortadella and Schaefer et. al.[245].
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Figure 4.9: a, Visually-evoked potential averaged over 10 consecutive events shown for
a g-SGFET placed on the lower-left corner of the array before (black) and after (green)
crosstalk correction. b, Visually-evoked potential averaged over 10 consecutive events for
all g-SGFETs on the 4x8 array. The colour map represents the delay between stimulus
and the peak of the response. c, CSD event recorded in a single g-SGFET. The top graph
shows the activity in the 1-50Hz band (blue, left axis) and the wide-band activity (0.001-
50Hz) (black, right axis). The corresponding spectrogram in the 1-50Hz band is shown
below. d, Illustration of a rat skull indicating the position of the craniotomy, the g-SGFET
array and the place of KCl injection to trigger a CSD event. e, The colour maps indicate
the signal amplitude in each of the g-SGFETs on the array at different times during the
CSD propagation. Figure adapted with permission from Garcia-Cortadella and Schaefer et.
al.[245].
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4.3 Chapter outlook: Upscaling of multiplexed g-SGFET
arrays

This chapter has discussed the use of g-SGFETs as a building block of multiplexed
sensor arrays for neural sensing. Frequency-division and time-division multiplexing
using external switching arrays enable the operation of large-scale sensor arrays
with a reduced complexity of the connectors while preventing the use of on-site
switching devices. Investigation of the frequency response of g-SGFET arrays and
crosstalk in multiplexed arrays has revealed that neural probes based on graphene
transistors could be upscaled up to 32x32 sensing sites (see the 3rd main article and
the 3rd complementary article of this thesis). For the operation of such large-scale
probes, the use of a dedicated ASIC is required in order to optimize the operation
of the multiplexed arrays and miniaturize the dimensions of the recording system.
Preliminary results on TDM have demonstrated the high performance of an ASIC
to record neural signals in the LFP range, from ISA to the gamma band. Never-
theless, detection of neural activity in higher frequency bands remains challenging.
The main reason is that operation of the multiplexed probes in TDM implies down-
sampling of the acquired data, producing aliasing of high-frequency noise into the
frequency band of operation. In order to mitigate this problem, the ASIC developed
for TDM incorporates offset subtraction to enable a higher g-SGFET transconduc-
tance and implements a correlated double-sample to lower the floor noise of the
transimpedance amplifier. In order to circumvent the intrinsic limitations of TDM,
FDM could be used, allowing to prevent aliasing of high-frequency noise by acquiring
the signals from all sensors simultaneously. As a downside, the continuous acquisi-
tion of all sensors simultaneously implies the superposition of all carrier signals on
each row, leading to an output current with a large dynamic range. Digitalization
of signals with such a large dynamic range with high resolution is challenging for
the ADC. Therefore, quantization noise is the main expected source of noise at high
frequencies for FDM sensor arrays. In order to mitigate this problem, it is critical
to implement the phase optimization of all carrier signals, as presented in the 3rd

main article of this thesis. In addition, an advanced system for the operation of
sensor arrays in FDM should include carrier cancelation techniques to subtract part
of the output current.

Having demonstrated the capabilities of TDM and FDM and their potential for
the operation of large-scale neural probes, the focus was placed on upscaling the
g-SGFET arrays to 512 sensors for pre-clinical research in rats. Fig. 4.10a,b shows
the design of the 32x16 neural probes. The tip of the probe contains two active
areas comprised of 16x16 g-SGFET arrays each. This neural probe covers a large
fraction of the cortical surface of the rat brain bilaterally (Fig. 4.10a,b) with a
separation among g-SGFETs of 282µm and sensors size of 100µm x 100µm. The
neural probe also includes holes in the PI structure with a pitch of 400µm, which
improves the contact of the sensors with the brain surface by enabling the flow of
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fluids during implantation. Furthermore, the holes are sufficiently large to enable
the insertion of intra-cortical probes, which are crucial to study the depth profile
in particularly interesting spots of the epi-cortical grid. In between the two active
areas of the neural probe, there is a narrow path for the tracks corresponding to
the rows of the array, which covers the area on top of the longitudinal fissure of the
brain.

In order to characterize the devices, the discrete electronics system presented in the
3rd complementary article was modified to include 32 acquisition channels and to
selectively switch among up to 32 columns. The distribution of the 512 channels
into 32 rows and 16 columns was chosen in order to take advantage of the 32
readout circuits. This layout increases the speed of the sequential characterization
of multiple columns and is expected to be optimum for the operation of multiplexed
arrays using both FDM as well as TDM. The electrical characterization of the
devices revealed a high homogeneity and yield. The gm of the devices is represented
in Fig. 4.10c, which presents only 6 outliers (∼ 1%) that have been excluded
from the graph. In Fig. 4.10d the position of these outliers on the array and the
distribution of gm at a particular bias point (0.25V ) is shown for all 512 g-SGFETs.
Note that with this layout, the 512-channel probes have a simple connector with
32+16 contacts, which does not represent anymore the bottleneck for the scalability
of the sensor arrays.

The demonstration of g-SGFET arrays multiplexed in TDM and FDM, together
with the fabrication of large-scale sensor arrays with a high yield and homogeneity
represent an important step towards the implementation of high-count sensor arrays
for high bandwidth graphene neural interfaces. In the following stages of research,
the large-scale graphene sensor arrays, operated with the ASIC presented in this
chapter could provide a unique tool for the investigation of brain activity in freely
moving animals and the development of advanced brain-computer interfaces.
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Figure 4.10: a, Layout of a 512-channel array. The inset shows the position of sensors and
holes in the structure of the probe. b, Photograph of the neural probe. The inset shows an
optical micrograph of the active area of the neural probe. c, gm vs Ugs for 506 out of 512
g-SGFETs (6 outliers are not shown). d, Color-map representation of gm at a particular
bias point Ugs = 0.25V .
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Chapter 5

Future research and conclusions

This PhD thesis has presented graphene active sensors as a biocompatible and stable
building block for high bandwidth neural interfaces. The improvement in commu-
nication bandwidth of these devices is achieved by demonstrating their sensitivity
in a wide frequency band and by developing multiplexing strategies that enable a
higher sensor-count. From these results, there are two main research fields in which
graphene sensor arrays can have a strong impact. First, high-count epi-cortical sen-
sor arrays are currently not commercially available and have not been extensively
used for research in animal models. Therefore, µ-ECoG arrays with hundreds of
sensing sites based on graphene can provide new insights into large-scale brain dy-
namics. In this direction, it is particularly interesting to investigate the correlation
of ISA with higher frequency bands. Secondly, graphene active sensors have shown
a promising biocompatibility and long-term stability in-vivo that makes them very
attractive for chronic neuroprosthesis. Optimization of large-scale sensor arrays to
comply with regulatory guidelines for human applications implies improvement of
the passivation layers and use of novel leakage limiting strategies. In this chapter,
these two future stages of research are described in greater detail.

5.1 Wide frequency band, large-scale brain activity in
freely moving animals

One of the objectives of this thesis has been to develop graphene active sensor
arrays to overcome current limitations in basic electrophysiology. For this purpose,
the focus has been centered on increasing the spatio-temporal resolution of large-
area sensor arrays and providing access to a wide frequency band, including ISA.
Having developed reliable recording systems for proof-of-concept electrophysiology,
it has been possible to demonstrate the performance of graphene active sensors to
resolve the topography of wide frequency band LFP, from ISA to high-gamma. In
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this section, the current understanding on the physiology of infra-slow brain activity,
in terms of its correlation with higher frequency rhythms and its biophysical origin,
are first discussed. Secondly, the preliminary observations reported in this thesis on
large-scale and wide frequency band brain activity are summarized with the aim of
discussing promising future experiments.

In the study of neural dynamics across large-scale networks, fMRI has become a
standard in the last few decades[121]. The widespread use of fMRI stems from
its non invasiveness and its high spatial resolution in large areas, that allowed to
identify networks of increased functional connectivity and their activation under
particular brain states, stimuli or tasks[116, 121, 248]. However, fMRI presents
certain fundamental and practical limitations for the study of brain dynamics. In
the first place, the BOLD signals are infra-slow in nature and do not represent a
direct measure of neural activity, making it more difficult to interpret the results[121,
249, 250]. This feature is of particular interest for our discussion, given that infra-
slow electrical activity detected by graphene sensors might allow to connect fMRI
results with their electrophysiological correlates. Secondly, fMRI is limited to head-
fixed conditions; therefore, ISA detected with graphene active sensors might provide
access to currently non-accessible infra-slow dynamics in freely moving animals.

BOLD activity has a neurovascular origin[250, 251], which in turn is linked to
the electrical activity of neurons[248, 252] via their consumption of glucose, which
causes the regulation of vasodilation[251]. This coupling leads to a certain cor-
relation of BOLD signals with LFP and spiking activity[120, 248, 252]. How-
ever, this correlation is not direct, as evidenced from their distinct coupling in
different frequency bands. The higher correlations have been observed between
BOLD and gamma activity[120, 253, 254], suggesting that it originates from the
metabolic consequences of postsynaptic currents[254]. On the other hand, its corre-
lation with spiking activity or LFP in the alpha (8− 13Hz) and beta (13− 30Hz)
bands has been found lower[120, 253, 254], or even negative in the delta and theta
bands[255]. Similarly, previous works have demonstrated the correlation between
ISA and BOLD signals[117, 119, 236, 238], which could present a common physio-
logical cause, although it has been reported that their correlation presents a certain
time dependence[238]. Recent works on the biophysical origin of ISA have found
supporting evidence, through simulation, that ISA could originate on the dynamics
of ion concentrations that are regulated by Na+ and K+ pumps, glial K+ buffering,
as well as excitatory and inhibitory synaptic currents[256]. In turn, re-establishing
ion gradients through active pumping is expected to cause fluctuations in the BOLD
signal[256]. This mechanism could explain the correlation between ISA and the
BOLD signal; however, further studies on the effects of ion concentrations on the
generation of ISA and its neurovascular coupling should be carried out to elucidate
their correlation. In order to expand our understanding on the physiological role
of ISA, its correlation with higher frequency activity should be resolved with high
spatio-temporal resolution in freely behaving animals and the underlying current
sources resolved with high-density depth probes.

103



High-Bandwidth Graphene Neural Probes

The chapter 3 of this thesis presents preliminary evidence showing distinct patterns
of ISA across the cortex of the rat brain. These results include brain state-dependent
ISA patterns that modulate higher frequency bands, which are shown for the first
time with high spatial resolution. In particular, a strong modulation of theta power
by ISA-phase was observed during REM sleep in a rat model, which presented a
clear topography, consistent with the location of underlying theta current genera-
tors in the hippocampus. These results suggest the presence of global ISA dynamics
that co-modulate limbic and cortical circuits. Based on these preliminary results, it
would be promising to analyse the modulation of theta power by ISA-phase during
awake theta states. Its modulation might explain an important fraction of variabil-
ity in theta power observed during exploratory behaviour. Similarly, spindle band
activity was also modulated by ISA phase during slow-wave sleep, but with a much
weaker coupling, which might reflect the activity from more strongly modulated
thalamo-cortical subcircuits. Additionally, it was also possible to observe modula-
tion of gamma activity with the ISA phase, which in turn adds further support to
the wide frequency band sensitivity of our graphene-based recording system. At
present, topography of gamma modulation by ISA-phase has not been explored in
this thesis or in any previous works. However, due to the local nature of gamma
generation on superficial cortical layers[257], and the modulation of gamma activity
by ISA reported in this thesis, it is reasonable to expect gamma activity clusters
to be modulated by ISA. Such modulations might be very diverse depending on
the gamma-oscillator frequency, cortical area and the ongoing brain state. Addi-
tionally, it would be also promising to explore if gamma generators modulated by
hippocampal theta (measured via volume conduction) are also modulated by ISA
under REM sleep and awake theta states. Finally, phase locking of high frequency
(> 0.5Hz) oscillations to different phases of ISA, or a spatial structure in the ISA-
phase, could reflect coordinated activation of distinct cortical areas in an infra-slow
timescale[100, 254].

In future stages of research, it would be particularly useful to investigate the topog-
raphy of ISA on the cortical surface in a larger cohort of rodents under freely moving
conditions and with an increased spatial resolution. For these experiments, the 512-
channel epi-cortical sensor arrays presented in this thesis could be used for a large
bi-lateral brain coverage (Fig. 4.10). Fig. 5.1a,b shows a preliminary experiment
done by collaborators Nathan Schäfer and Gerrit Schwesig in which a 256-channel
array was implanted on the rat cortex with a large bilateral coverage. In this case,
acquisition of the neural activity was carried out using the discrete electronics sys-
tem presented in this thesis. Therefore, recordings were susceptible to aliasing of
high-frequency noise and a rather thick bundle of wires was required to transmit
the analog signals to the front-end electronics. Nevertheless, results are promising,
showing LFP trajectories with high sensitivity and spatial resolution (Fig. 5.1a).
Integration of the ASIC characterized in this thesis, which operates in TDM with
improved noise characteristics, in a compact headstage would be highly advanta-
geous to reduce the constrains in the movement of the animals. Fig. 5.1b,c show
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the packaged ASIC on the chip carrier PCB and a second layer of the headstage
containing the FPGA implementing the communication between the ASIC and a
general-purpose computer. This system would allow to replicate preliminary results
with even higher sensor counts and improved wide frequency band sensitivity.

Figure 5.1: a,. Trajectories of LFP in the 4− 11Hz band detected from the surface of a
freely moving rat using a 256 g-SGFET array covering a large fraction of cortical surface on
both hemispheres (see panel b). Spatial Gaussian filtering of the data has been applied with
a standard deviation of 1 pixel using scipy python package. Anterior (A)/posterior (P) axis
and the right (R)/left(L) hemispheres are labelled next to the spatial maps. b, Photograph
of a 256 g-SGFET epi-cortical graphene neural probe covering both hemispheres of the rat
cortex. Picture taken in an experiment by Gerrit Schwesig and Nathan Schäfer. c, Packaged
ASIC on the xip carrier PCB by the group of integrated circuits and systems (ICAS) at
the National Microelectronics Center of Barcelona (CNM-IMB). d, The headstage layer
containing the field programmable gate array (FPGA) to communicate the digital output
of the ASIC to a general purpose computer. Headstage designed by Multichannel Systems
MCS GmbH.

In order to investigate the biophysical origin of ISA, it would be also interesting to
detect SUA and wide frequency band LFP across cortical laminae and in deeper
brain structures. For this purpose, the same methodology stablished for epi-cortical
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recordings could be followed, but now implanting intra-cortical graphene probes.
Recently, efforts have dedicated to develop high-density multishank probes for re-
solving wide frequency band activity with high spatial resolution. Alternatively,
insertion of single-shank neural probes on particularly interesting spots identified
from surface mapping could also be very informative. Based on these recordings, it
should be possible to determine the laminar structure of ISA and its physiological
origin. For the determination of ISA generators, independent component analysis
(ICA) of current-source density (CSD) maps should be performed[258]. In turn,
detection of coherent spiking activity in distinct cortical and hippocampal layers
could allow to determine the relationship between LFP modulation by ISA and the
functional connectivity among distinct neuronal circuits.

The study of the relation between infra-slow and higher frequency LFP bands using
electrophysiological measurements, with high spatio-temporal resolution, in freely
behaving animals is completely unexplored. Therefore, its characterization has a
great potential to provide novel insights into the generation and physiologic role
of ISA across brain states, including active behaviour. A detailed determination
of their relationship could have a strong impact on the understanding of the role
of ISA on the coordination of large-scale brain dynamics, with important implica-
tions on the study of f-MRI brain mapping in humans and for fundamental brain
electrophysiology. This research could prompt the study of ISA across multiple ex-
perimental conditions, such as distinct behavioural paradigms or using pathological
animal models, which can provide a better understanding of pathological states and
identification of novel biomarkers.

5.2 Clinical translation of high bandwidth
graphene neural interfaces

High bandwidth graphene neural interfaces, presenting a high sensitivity in the
ISA band, a high sensor-count and a high biocompatibility and stability represent
a promising technology for chronic clinical applications. ISA detected with high
spatial resolution represents a neural feature that could provide additional informa-
tion for neural decoding in iBCIs. In this thesis, preliminary data has been shown
indicating that ISA modulation of higher frequency bands is spatially structured
and brain-state dependent. Modulation of higher frequency activity by ISA could
imply the representation of spatially filtered high frequency activity at lower fre-
quencies, which could be advantageous for reducing power consumption in wearable
neuroprosthesis. Alternatively, ISA could also contain orthogonal components to
the higher frequency LFP patterns on the brain surface, and might therefore pro-
vide additional information for neural decoding. Analysis of spatial maps of LPF
signals, such as those presented in Fig. 5.1a, could be performed to extract princi-
pal components across multiple time scales leading to an increased communication
bandwidth for iBCIs.
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Having demonstrated the performance of g-SGFETs in multiplexed operation, their
translation to safe neural implants requires the prevention of leakage currents. This
is typically an important disadvantage of active sensors with respect to passive
electrodes, due to active biasing and the low impedance of the amplifiers. However,
following the proof-of-concept experiments in FDM, an additional advantage of
operation in AM compared to the DC mode was noticed, which can solve this
limitation. Due to the modulation of the g-SGFETs at high frequencies in AM
mode, it is possible to place a capacitor in series with the transimpedance amplifier
(Cd), which does not attenuate the high frequency carrier signal and the side bands
containing the brain signals, but prevents eventual DC leakage currents (Fig. 5.2).

Figure 5.2: Equivalent circuit of a FDM array with decoupled DC bias. The gate to source
bias is given by Us which is followed by a high value resistor RDC which limits eventual
leakage currents to the brain. The carrier signals (Ucarr,1 to Ucarr,n) can be applied on
all columns, which present Cs in series to decouple the DC component from the GFET.
Cd decouple the DC component from the transimpedance amplifier. Figure adapted from
patent application EP20382819[259].

Having this decoupling, it is possible to apply a DC potential at the source (Us) in
order to bias the g-SGFET at the optimal Ugs and add a large resistance (RDC)
in series to prevent DC currents (Fig. 5.2). The gate bias is then defined by the
voltage divider between RDC and the Faradic resistance of the graphene-electrolyte
interface, which is typically above the 100MΩ[218]. In case of device failure, RDC
would limit the leakage current flowing from the device into the brain. Due to the
high Faradic resistance of graphene, RDC can take values in the order of 100 kΩ,
limiting leakage currents to the µA range. Finally, note the presence of Cs, which
allows to decouple the DC component of the carrier signal source. This safety
measure is very relevant for the translation of the graphene active sensors into
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clinical use. This concept has been recently presented as a patent application[259]
and collaborators within the BrainCom project have recently developed a second
ASIC operating in FDM mode[260] in order to apply this technique in large-scale
g-SGFET arrays.

In addition to control the leakage current in case of device failure, use of improved
passivation layers is critical to ensure low leakage currents during stable operation of
the devices and their long-term stability. In this thesis, the use of g-SGFET arrays
passivated with SU-8 photodefinable resist has been shown in a chronic setting,
demonstrating the relatively high stability of the devices. Nevertheless, it is known
that SU-8 is prone to failure in aqueous environments due to permeation of water
and delamination from the substrate. Failure of SU-8 passivation is likely the main
cause of performance degradation observed in-vivo. In order to improve the stability
of devices, a new fabrication process has been developed in the frame of this thesis
to passivate g-SGFETs with non-photodefinable materials (see chapter 3). The
proposed process allows to etch the passivation layers non-selectively by protecting
the graphene channel with a thin Cu layer, which can be selectively etched after
the fabrication is completed. This process has been demonstrated with the use
of non-photodefinable PI, which presents a higher tensile strength than SU-8 and
shows stable mechanical properties in PBS [261, 262]. Furthermore, demonstration
of the use of non-photodefinable passivation materials opens the door to further
improvements in the technology. It is known that polymeric passivation layers
present a significant permeation to water that can lead to current leakage[13, 262]
and also corrosion of the metal lines. In order to prevent such corrosion, the use of
inorganic passivation layer has been proposed, which present much lower permeation
to water[13]. As a downside, inorganic materials are typically more fragile, and
thin films are prone to present pinholes and cracks[13]. In order to ensure a lower
permeability to water and ions while preventing a high leakage current through
cracks, the combination of inorganic and organic materials could be implemented.
In this direction, it has been shown that certain inorganic layers can enhance the
adhesion between metals and polymeric passivation layers[263]. Development of
such advanced passivation technologies is expected to drastically improve the long-
term stability of g-SGFETs.

The demonstration of DC-decoupled operation and improved passivation layers
would be very promising towards the clinical translation of graphene neural probes.
In order to test devices in a model closer to the human brain, an animal model
with similar characteristics in terms of size and physiology should be used. For this
purpose, new experiments in minipigs are planned within the BrainCom project.
Fig. 5.3a shows the schematic of a 512-channel probe designed for implantation in
the minipig. Note that the wafer scale production of graphene devices allows the
fabrication of neural probes in the few-centimetres scale with large active areas.
Furthermore, the implantation in a minipig requires long traces at the base of the
probe in order to allow the connection through the thick skull to a headstage im-
planted on the scalp of the animal. The tail of the probe must be relatively narrow
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in order to minimize the dimensions of the opening in a chronic setting. This feature
is radically different in rat models due to their particularly strong immune system,
but it must be taken into account for the translation of the technology to human
use. In order to minimize the resistance of the metal tracks in such large devices,
metal lines are distributed in the two levels separated by PI. Large animals, such
as the minipig, represent a great model to implement ultra high-count neural inter-
faces covering large cortical areas with thousands of sensing sites. Fig. 5.3b shows
a preliminary design of a headstage for minipigs comprising multiple ASIC layers
in a stackable design (courtesy of Christoph Jschke, MCS), which could enable the
recording from up to 4096 sensors simultaneously.

Figure 5.3: a, Schematic of a 512 g-SGFET epi-cortical graphene neural probe to cover
with high resolution a large area of the cortical surface of the minipig. A relatively long
and narrow tail is required. The inset shows the active area of the array in greater detail.
The 100µm x 100µm g-SGFETs are separated by 755µm. Every two vertical tracks are
connected together to an horizontal metal line in the bottom metal level through VIA holes
(red). b, Schematic of a multi ASIC headstage for implantation of multiple graphene probes
simultaneously. Four ASIC carrier layers can be observed in addition to an FPGA layer
for data communication. Multiple connectors to the large-scale neural probes are placed
on the edges of the PCB (coloured in yellow). Headstage design by Christoph Jeschke in
Multichanel Systems MCS GmbH.

5.3 Conclusions

In this doctoral thesis, high-bandwidth graphene-based neural interfaces have been
developed and validated in a pre-clinical environment. In the first stage of tech-
nological development, the sensitivity of g-SGFETs at a single device level has
been studied and optimized. This research has led to a deeper understanding of
low-frequency noise generation in graphene transistors and the effect on non-ideal
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transfer function on the distortion of transduced signals. This knowledge has led
to the improvement of the sensitivity of graphene-based neural sensors by miti-
gating the noise generated at the contacts and improving the frequency response
of the graphene-electrolyte interface at high frequencies. In a second development
stage, graphene active sensor arrays have been integrated in recording systems for
electrophysiology in order to demonstrate the performance of these sensor arrays
at the system level in an operational environment. For this purpose, a recording
system based on 64 g-SGFET probes and a wireless headstage has been developed.
Using this system, the reproducibility, wide frequency band sensitivity, long-term
stability and biocompatibility could be demonstrated, leading to the observation of
preliminary evidence for various electrophysiological phenomena. These observa-
tions include the spatial structure of theta and spindle band activity modulation by
ISA, the infra-slow correlates of HVS or the ISA power changes in the SWS to REM
sleep states transition. Finally, in order to fully exploit the capabilities of active
sensors, we have developed novel multiplexing strategies that allow to upscale the
neural probes up to at least 512 recording channels. The large-scale probes present
a high homogeneity and sensitivity. Operation of multiplexed arrays in TDM has
been demonstrated using an ASIC to optimize the performance of the recording sys-
tems. Furthermore, FDM is proposed as novel multiplexing strategy to maximize
the sensitivity of the recording systems at high frequencies and prevent the risk of
current leakage to the brain. Together, these results demonstrate the potential of
graphene active sensor arrays for the study of large-scale brain dynamics across a
wide frequency band and for the implementation of chronic, high bandwidth, brain
computer interfaces.
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B. Karsh, P. Ledochowitsch, C. M. Lopez, C. Mitelut, S. Musa, M. Okun,
M. Pachitariu, J. Putzeys, P. D. Rich, C. Rossant, W.-l. Sun, K. Svoboda,
M. Carandini, K. D. Harris, C. Koch, J. O’Keefe, and T. D. Harris, “Fully
integrated silicon probes for high-density recording of neural activity,” Nature,
vol. 551, no. 7679, pp. 232–236, 2017.

[79] A. L. Juavinett, G. Bekheet, and A. K. Churchland, “Chronically implanted
neuropixels probes enable high-yield recordings in freely moving mice,” eLife,
vol. 8, 2019.

[80] P. Dayan, “Neural Encoding I: Firing Rates and Spike Statistics BT - Theo-
retical Neuroscience,” Theoretical Neuroscience, p. 460, 2005.

[81] B. B. Averbeck, P. E. Latham, and A. Pouget, “Neural correlations, popu-
lation coding and computation,” Nature Reviews Neuroscience, vol. 7, no. 5,
pp. 358–366, 2006.

[82] R. Q. Quiroga and S. Panzeri, Principles of neural coding. 2013.

[83] C. I. Petkov and D. Bendor, “Neuronal Mechanisms and Transformations
Encoding Time-Varying Signals,” Neuron, vol. 91, no. 4, pp. 718–721, 2016.

[84] A. Azarfar, N. Calcini, C. Huang, F. Zeldenrust, and T. Celikel, “Neural cod-
ing: A single neuron’s perspective,” Neuroscience and Biobehavioral Reviews,
vol. 94, pp. 238–247, 2018.

118



Multiplexed graphene neural probes
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[175] P. Fromherz, A. Offenhäusser, T. Vetter, and J. Weis, “A neuron-silicon junc-
tion: A Retzius cell of the leech on an insulated-gate field-effect transistor,”
Science, vol. 252, no. 5010, pp. 1290–1293, 1991.

[176] L. H. Hess, M. Seifert, and J. A. Garrido, “Graphene transistors for bioelec-
tronics,” Proceedings of the IEEE, vol. 101, no. 7, pp. 1780–1792, 2013.

[177] H. Fang, K. J. Yu, C. Gloschat, Z. Yang, E. Song, C. H. Chiang, J. Zhao, S. M.
Won, S. Xu, M. Trumpis, Y. Zhong, S. W. Han, Y. Xue, D. Xu, S. W. Choi,
G. Cauwenberghs, M. Kay, Y. Huang, J. Viventi, I. R. Efimov, and J. A.
Rogers, “Capacitively coupled arrays of multiplexed flexible silicon transis-
tors for long-term cardiac electrophysiology,” Nature Biomedical Engineering,
vol. 1, no. 3, pp. 1–12, 2017.

[178] G. D. Spyropoulos, J. N. Gelinas, and D. Khodagholy, “Internal ion-gated
organic electrochemical transistor: A building block for integrated bioelec-
tronics,” Science Advances, vol. 5, no. 2, p. eaau7378, 2020.

[179] I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard,
“Current saturation in zero-bandgap, top-gated graphene field-effect transis-
tors,” Nature Nanotechnology, vol. 3, no. 11, pp. 654–659, 2008.

[180] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing,
and A. Yacoby, “Observation of electron-hole puddles in graphene using a
scanning single-electron transistor,” Nature Physics, vol. 4, no. 2, pp. 144–
148, 2008.

[181] J. d. P. P. Atkins, P. W. Atkins, Physical Chemistry. 2014.

[182] S. Luryi, “Quantum capacitance devices,” Applied Physics Letters, vol. 52,
no. 6, pp. 501–503, 1988.

[183] J. Xia, F. Chen, J. Li, and N. Tao, “Measurement of the quantum capacitance
of graphene,” Nature Nanotechnology, vol. 4, no. 8, pp. 505–509, 2009.

126



Multiplexed graphene neural probes
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G. Schwesig, C. Jeschke, J. Martinez-Aguilar, M. V. Sanchez-Vives, R. Villa,
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Brunet, A. Sirota, and J. A. Garrido, “Graphene active sensor arrays for long-
term and wireless mapping of wide frequency band epicortical brain activity,”
Nature Communications, vol. 12, no. 1, pp. 1–17, 2021.

[235] A. Oustaloup, F. Levron, B. Mathieu, and F. Nanot, “Frequency-band com-
plex noninteger differentiator: characterization and synthesis,” IEEE Trans-
actions on Circuits and Systems I: Fundamental Theory and Applications,
vol. 47, no. 1, pp. 25–39, 2000.

[236] A. Mitra, A. Kraft, P. Wright, B. Acland, A. Z. Snyder, Z. Rosenthal, L. Cz-
erniewski, A. Bauer, L. Snyder, J. Culver, J. M. Lee, and M. E. Raichle,
“Spontaneous Infra-slow Brain Activity Has Unique Spatiotemporal Dynam-
ics and Laminar Structure,” Neuron, vol. 98, no. 2, pp. 297–305.e6, 2018.

[237] A. Mitra, A. Z. Snyder, E. Tagliazucchi, H. Laufs, and M. E. Raichle, “Propa-
gated infra-slow intrinsic brain activity reorganizes across wake and slow wave
sleep,” eLife, vol. 4, p. 10781, 2015.

[238] J. K. Grooms, G. J. Thompson, W. J. Pan, J. Billings, E. H. Schumacher,
C. M. Epstein, and S. D. Keilholz, “Infraslow Electroencephalographic and
Dynamic Resting State Network Activity,” Brain Connectivity, vol. 7, no. 5,
pp. 265–280, 2017.

[239] A. C. Kelly, L. Q. Uddin, B. B. Biswal, F. X. Castellanos, and M. P. Mil-
ham, “Competition between functional brain networks mediates behavioral
variability,” NeuroImage, vol. 39, no. 1, pp. 527–537, 2008.
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1. Introduction

Graphene has attracted much attention for its application on 
sensing due to its high carrier mobility,[1] chemical stability,[2] 
high stretchability,[3] and transparency.[3–5] Many applications 
have been explored, and more are under study, in which active 
graphene sensors are used to transduce the physical property of 

Graphene solution-gated field-effect transistors (g-SGFETs) are promising 
sensing devices to transduce electrochemical potential signals in an elec-
trolyte bath. However, distortion mechanisms in g-SGFET, which can affect 
signals of large amplitude or high frequency, have not been evaluated. Here, 
a detailed characterization and modeling of the harmonic distortion and non-
ideal frequency response in g-SGFETs is presented. This accurate description 
of the input–output relation of the g-SGFETs allows to define the voltage- 
and frequency-dependent transfer functions, which can be used to correct 
distortions in the transduced signals. The effect of signal distortion and its 
subsequent calibration are shown for different types of electrophysiological 
signals, spanning from large amplitude and low frequency cortical spreading 
depression events to low amplitude and high frequency action potentials. The 
thorough description of the distortion mechanisms presented in this article 
demonstrates that g-SGFETs can be used as distortion-free signal transducers 
not only for neural sensing, but also for a broader range of applications in 
which g-SGFET sensors are used.
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interest into an electrical signal. Prominent 
examples include biochemical sensors,[6–8] 
gas sensors,[9,10] pH sensors,[11,12] ion sen-
sors,[13] or transducers of electrical poten-
tial for neural interfaces.[14–17] The latter, 
has recently attracted increasing attention 
due to the potential of graphene solution-
gated field-effect transistors (g-SGFETs) to 
record infra-slow[18] brain activity with a 
high spatial resolution.[19] This capability 
opens the door to full-band neural activity 
sensing from large amplitude infra-slow 
oscillations to small amplitude but faster 
signals such as local field potentials (LFPs) 
or action potentials (APs).

In g-SGFETs, the graphene channel 
is in contact with an electrolyte, which 
comprises the gate of the g-SGFET (see 
Figure 1a). The electrochemical potential 
in the electrolyte can therefore be regarded 
as the gate-to-source voltage (Vgs), which 

couples with the channel through the graphene–electrolyte 
interface capacitance (Cint).[20,21] The electric field at the inter-
face produces a change in the number of charge carriers in 
the graphene channel and therefore a variation in the drain-to-
source current (Ids–sig) for a constant drain-to-source bias (Vds). 
These current changes are proportional to the signal at the 
gate (Vgs–sig) and to the transconductance (Gm) (see Figure 1b), 
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which represents the input-output relation of the g-SGFET, also 
referred to as its transfer function. The Gm in g-SGFETs is, in 
a first approximation, proportional to the electrical mobility 
of graphene and Cint per unit area;[22] therefore presenting 
no dependence on the area of the active channel. This is the 
main cause for the improved sensitivity of g-SGFETs in the 
infra-slow frequency band in comparison with conventional 
micro-electrodes.[23]

Despite the great potential of g-SGFETs for full-band neural 
activity monitoring and other applications in sensing, the signal 
distortion introduced by these transducers remains a key aspect, 
which has been so far largely underestimated. Signal distortion 
can appear in any amplifying system due to several reasons, 

including voltage-dependent gain, which leads to harmonic dis-
tortion, frequency-dependent gain that leads to different ampli-
fication of various frequency components and phase distortion 
due to a non-null imaginary part of the gain. In the specific case 
of the g-SGFET, a voltage or frequency dependence of Gm will 
lead to signal distortion. In the first place, non-linearities in the 
Ids−Vgs curves, lead to a dependence with Vgs and therefore to 
harmonic distortion of the signal (see Figure 1b,c). The ampli-
tude of the harmonics introduced can ideally be derived from 
the Taylor expansion of the Ids–Vgs curves. This description 
has been previously presented and evaluated for a graphene 
field-effect transistor (GFET) analytical model.[24] However, 
theoretically predicted parameters have never been compared 
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Figure 1.  a) Drawing of a g-SGFET showing the graphene channel, metal contacts, SU8 passivation, electrolyte gate, and reference electrode together 
with the applied bias. b) Typical transfer characteristics of a g-SGFET. Gm is indicated as I V/ds gs∆ ∆ . c) Typical PSD of the distorted output signal of a 
g-SGFET. The two tones fsig,1 = 10 Hz and fsig,2 = 1 kHz illustrate the effect of transconductance attenuation at higher frequencies. The effect of harmonic 
distortion on the 10 Hz signal results in the appearance of the harmonic components at f = 2fsig and 3fsig. d) Representation of a typical CSD event, 
LFP in the 1–10 Hz band and an AP. The original electrophysiological signal is multiplied by the Gm of the device which might present a Vgs depend-
ence (centre-top), producing harmonic distortion shown in red (top-right), or a non-ideal frequency response (center-bottom), producing frequency 
response distortion of the detected signals. e) Circuit diagram of the custom built electronic setup used for the characterization of g-SGFETs and 
recording of electrophysiological activity. The reference electrode is set at ground (GND), −Vgs is applied between gate and source and Vds−Vgs between 
gate and drain. The current Ids is preamplified by the current-to-voltage converter (I/V).
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to experimentally measured distortion levels in GFETs. Vali-
dating the relation between non-linearities in the Ids–Vgs curves 
and harmonic distortion is critical to understand and mitigate 
its effect on the sensing capabilities of g-SGFETs. On the other 
hand, the transfer function or Gm also shows a dependence 
with the signal frequency (fsig), as illustrated in Figure 1c, and 
a non-null imaginary part, introducing frequency response dis-
tortion. A detailed characterization of the frequency response 
is the first step toward the derivation of a complete analytical 
transfer function to describe the distortions introduced by a 
non-ideal frequency response in g-SGFETs.

While harmonic distortion is expected to affect more strongly 
signals of large amplitude, the frequency response is expected 
to affect more prominently signals with higher frequency com-
ponents. Due to the wide range of amplitudes and frequencies 
found in sensing of full-band neural activity, this application 
is expected to be particularly sensitive to signal distortion. To 
show the impact of non-ideal response on the sensing capa-
bilities of g-SGFETs, we have measured full-band electro-
physiological activity on the rat cortex and in a cell culture. 
Figure  1d illustrates the effect of distortion on the different 
signals measured, from large amplitude and low frequency 
cortical spreading depression (CSD) events (Figure  1d-top) to 
high frequency and low amplitude APs (Figure 1d-bottom). In 
order to recover the equivalent signal at the gate (Vgs–sig), the 
measured Ids–sig has to be calibrated by using the inverse of  
the transfer function. If voltage and frequency dependence of 
the transfer function, as well as its imaginary part are taken 
into account, the inverse transfer function will correct the dis-
tortions in the output signal, leading to the distortion-free input 
signal. In order to anticipate changes in the transfer function of 
the g-SGFET under different conditions and prevent defective 
calibration, the phenomena involved in signal distortion must 
be properly understood.

The characterization and modeling of the g-SGFET response 
reported in this work comprises an important step toward the 
mitigation of signal distortion in g-SGFETs. On the one hand, 
the theoretical understanding provided, represents a solid basis 
for the improvement of the linearity and frequency dependence 
of the g-SGFET response. On the other hand, the calibration 
procedure presented represents a method for the acquisition of 
quasi-distortion-free signals using g-SGFET transducers, with 
special potential for the sensing of full-band neural activity.

2. Results and Discussion

In this section, the characterization of harmonic distortion 
and frequency response of g-SGFETs is presented. The meas-
urements have been performed using g-SGFETs on a flexible 
polyimide substrate (see Experimental Section for details on 
the fabrication procedure). The devices have been immersed 
in a phosphate buffered solution (PBS) bath and the gate 
bias has been applied using an Ag/AgCl reference electrode. 
The stationary response of the g-SGFETs (Ids–DC) and their 
dynamic response (Ids–sig) have been characterized under dif-
ferent Vgs bias conditions (see Figure  1e). The quasi-DC cur-
rent and the alternating current signals have been decoupled 
in order to adapt their dynamic range to fill the full scale of 

the analog-to-digital converters (see Experimental Section for 
more details).

2.1. Characterization of Harmonic Distortion

Harmonic distortion, caused by the voltage dependence of the 
transfer function in g-SGFET is the result of non-linearities in 
the Ids–Vgs curves. Ideally, GFETs present a particularly linear 
Ids−Vgs relation around their conduction minimum,[25] also 
referred to as the charge neutrality point (CNP). However, there 
are various factors that can introduce non-linearities in the 
response of GFETs.[22] For instance, the resistance between the 
metal contacts and the graphene channel limits the conduct-
ance of the transistor, which can eventually result in a curved 
Ids−Vgs relation away from the CNP. On the other hand, the 
conductance minimum at the CNP should ideally be perfectly 
sharp, only limited by thermal fluctuations of charge carriers. 
However, any inhomogenous doping of the graphene channel, 
for instance, due to substrate inhomogeneities, can lead to a 
broadening of the CNP.[26]

Harmonic distortion is commonly characterized by applying 
test signal and measuring the higher order harmonics gener-
ated by signal distortion. In Figure  1c, harmonic distortion 
is represented in the frequency domain where harmonics at 
frequencies multiple of fsig can be distinguished. In this sec-
tion, the harmonic distortion introduced by the g-SGFETs is 
experimentally determined following this methodology, that 
is, applying a pure tone signal at the gate (Vgs–sig) and meas-
uring the amplitude of higher order harmonics. Besides, har-
monic distortion is also calculated from the Taylor expansion 
of the stationary Ids−Vgs curves. The 0th order term of the 
Taylor expansion corresponds to the DC current Ids–DC and the 
1st order term represents the linear conversion of the signal 
at the gate. The 2nd and 3rd order terms of the Taylor expan-
sion represent the 2nd and 3rd order harmonics produced by 
the curvature and changes in the curvature of the Ids versus Vgs 
curves respectively. Comparing the harmonic distortion levels 
obtained following these two approaches can be used to vali-
date the stationary description of harmonic distortion, which is 
critical to correct harmonic distortion in a calibration process.

In Figure 2a,b, this comparison is shown for signals of 
different amplitudes (Asig  = 2, 4, and 8 mVrms) in a wide 
Vgs range for a frequency of 10  Hz. An excellent agreement 
between the measured and calculated values is shown for the 
1st and 2nd order harmonics in the whole Vgs and Asig range. 
For the 3rd order harmonic this validation is only shown for 
the Asig  = 8 mVrms due to the contribution from the 1/f noise 
of the g-SGFET, which masks the low amplitude 3rd har-
monic for small Asig values (see Figure  2b and Supporting 
Information S1).

Once we have validated the calculation of harmonic distor-
tion by the Taylor expansion of the Ids−Vgs curves, it is possible 
to calculate the signal-to-distortion ratio (SDR) (i.e., the 1st 
order harmonic amplitude over the sum of 2nd and 3rd order 
harmonics) for any combination of Asig and Vgs bias conditions 
(see Figure 2c). The SDR is a figure of merit that can be used 
to evaluate the impact of distortion on the signal quality. The 
SDR presents a maximum at Vgs−VCNP ≈ ±100 mV, where the 
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linearity of the Ids−Vgs curve is maximal. The SDR exhibits a 
minimum close to the CNP due to the abrupt drop of transcon-
ductance and the increase of the 2nd order harmonic ampli-
tude. Besides, Figure  2c also reveals that the SDR increases 
with decreasing Asig values. This dependence is explained by the 
linear, quadratic, and cubic relationship of the 1st, 2nd and 3rd 
order harmonics, respectively with Asig (see Supporting Infor-
mation S1). Another useful way to represent the impact of the 
harmonic distortion on the signal quality is to compare it to the 
intrinsic 1/f noise of the g-SGFET, which is usually considered 
to limit the signal quality in g-SGFETs.[14,27] Figure  2d shows 
the distortion-to-noise ratio (DNR) for the noise integrated in a 
one-decade frequency band (i.e., 4–40 Hz). The DNR presents 
its minimum at Vgs−VCNP ≈ ±100 mV, its maximum at the CNP 
and it decreases, as expected, with Asig. The 0 dB contour line 
indicates the parameters for which distortion and noise will 
contribute with the same power to the degradation of signal 
quality (see Supporting Information S1 for more details). These 
results highlight the importance of choosing a right gate bias 
to minimize the impact of harmonic distortion on the signal 
quality, especially for large amplitude signals. The methodology 
followed here for the validation of the stationary model of har-
monic distortion in g-SGFETs could be extended to other types 
of GFET based devices. The SDR and DNR maps can be applied 

to other sensor types by a proper 
rescaling the Vgs and Asig axes. 
The Vgs axis can be rescaled by the 
ratio between the gate capacitance 
of any sensor and the graphene–
electrolyte interface capacitance of 
the devices reported here.[20] The 
Asig axis can also be rescaled in 
the same manner for any GFET-
based device in which a small 
voltage signal applied at the gate 
is detected.

2.2. Characterization and Mod-
eling of the Frequency Response

In addition to harmonic distor-
tion, non-idealities in the fre-
quency response can also limit 
the recording capabilities of 
g-SGFETs. Deviations from a 
frequency-independent transcon-
ductance might appear due to 
for instance a slow charging of 
the graphene–electrolyte inter-
face capacitance or a slow filling 
and depletion of trap states in the 
graphene environment.[28,29] In 
addition, displacement currents 
through parasitic capacitances at 
the graphene–electrolyte inter-
face can also result in the attenu-
ation of the signal.[30] Here, we 
have characterized the frequency 

dependence of the magnitude and phase of the g-SGFETs 
transfer function. The aim of this section is to propose and 
validate an equivalent circuit and its analytic transfer function, 
which fully describes the frequency response of the g-SGFETs 
in a wide range of signal frequencies and under different exper-
imental conditions. Having such a complete model, a calibra-
tion method could be proposed to correct signal distortions 
introduced by the frequency response of g-SGFETs.

For this purpose, the response of g-SGFETs to input sig-
nals ranging from 0.4 Hz to 200 kHz has been measured (see 
Experimental Section for more details). This characterization 
has been performed for different electrolyte concentrations in 
order to show the effect that changing the electrolyte (e.g., to 
physiological medium) could cause on the frequency response. 
Figure 3a shows the experimentally-obtained module and 
phase of the transfer function (Bode diagram) compared with 
the Gm extracted from the stationary Ids−Vgs curves. The Bode 
diagrams in Figure 3a correspond to the frequency response in 
a bath with two different ionic concentrations. Apart from the 
stationary response, they present three regimes of frequency 
response, each of them represented by a colored region. The 
0.4 Hz to 3 kHz range corresponds to a regime characterized by 
a slight attenuation of the transconductance with an approxi-
mately constant slope (in log-scale) and an approximately 
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Figure 2.  a) 1st, 2nd, and 3rd harmonics rms-amplitude extracted from the power spectrum of the meas-
ured Ids (dots) and from the Taylor expansion of the transfer characteristics (solid lines). Error bars and 
filled areas show the standard deviation (for 4 g-SGEFTs). The noise is evaluated from the power spectrum 
at 28 Hz (i.e., slightly below 3fsig). The measured and calculated harmonics correspond to a 10 Hz signal 
with an amplitude of 8 mVrms. b) The harmonics obtained experimentally for different signal amplitudes 
(2, 4, and 8 mVrms) are displayed (dots) together with the calculated values derived from the Taylor expan-
sion. The standard deviation of the measured data with for 4 g-SGEFTs is smaller than the radius of the dots 
used to display the data. The data was evaluated at Vgs−VCNP = −0.05 V. c) Evaluation of SDR (in dB) in the 
Ags–Vgs parameter map. The solid lines indicate the contour lines of the SDR every 20 dBs. d) Distortion-
to-noise ratio (in dB) and the contour lines represented by solid lines every 20 dBs. The maps in (c,d) are 
calculated using the Taylor expansion of the stationary Ids−Vgs curves.
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constant phase deviating few degrees from 180° (expected in 
the holes conduction regime). In the 3–40 kHz range, another 
regime can be observed, in this case only for the low ionic con-
centration experiment, which consists of an abrupt attenuation 
of the gain with frequency (≈1/f). The attenuation in magnitude 
goes along with a negative shift of the phase. Finally, a high fre-
quency regime (above 40 kHz) is characterized by an increase 
of both the magnitude and phase of the transconductance.

Having identified these three regimes of frequency response, 
it is now possible to propose a small signal model of the 
g-SGFET (see Figure 3b,c). In the proposed equivalent circuit, 
the graphene–electrolyte interface is not modeled as an ideal 
capacitor, as done in standard models,[22] but instead as a con-
stant phase element (CPEg–e) which is commonly required 
to properly describe the response of a double-layer capaci-
tance.[31,32] Although CPEs are often used in electrochemical 
impedance modeling, its physical origin is still a topic under 
discussion.[33,34] In the particular case of the graphene–elec-
trolyte interface it has been previously reported in impedance 
measurements.[32] The equivalent circuit in Figure  3b,c also 
includes the resistance of the electrolyte Rele and the contacts 
Rc in series with the graphene–electrolyte interface. The Vgs 
applied causes a voltage drop at the graphene–electrolyte inter-
face (Vint) which is transduced by the g-SGFET. The conver-
sion of AC signals at the gate is modeled by a current source 
element VintGm(f) while the DC current flowing through the 
g-SGFET is modelled by the element Rds–DC. Finally, an addi-
tional CPE, CPEpar, is added in parallel with CPEg–e to account 
for parasitic capacitances in the device. Possible parasitic ele-
ments might originate in a capacitive coupling of the electrolyte 
with the metal lines in the device, caused by an excessively thin 
or defective passivation of the metal lines. Using this equivalent 
circuit, we can derive an analytic expression which describes 
the frequency dependent transfer function of the g-SGFET.

d
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The first factor on the right hand side of Equation (1) corre-
sponds to the intrinsic transconductance, and it presents a fre-
quency dependence that results from the non-ideal capacitive 
behavior of the interface,[35] that is, d /d | ( )ds int CPEds g eI V kC fV = −  
(see Supporting Information S2 for more details). The second 
factor in Equation (1) results from the contribution of the 
resistance in series (Rs) with the g-SGFET (i.e., Rc plus Rele) 
and CPEpar in parallel with the transistor, which are respon-
sible for the attenuation of the signal at the interface Vint with 
frequency[22] (see Supporting Information S2 and S3). The 
last term in Equation (1) has to be included to account for 
the measured increase of the transconductance at high fre-
quencies. When a signal is applied at the gate, the CPEg–e and 
CPEpar elements represent a direct current path between gate 
and the g-SGFET contacts. The impedance of these CPE ele-
ments characterizes this capacitive current, which adds-up to 
the drain-to-source current. This contribution is not result of 
the field-effect coupling, and can be therefore regarded as an 
effective transconductance (Gmeff) term. Above a certain fre-
quency, this capacitive contribution to the current measured at 
the drain is expected to dominate the frequency response, as 
shown in Figure  3a. The frequency dependence of the terms 
in Equation (1) can be expressed explicitly as shown in the 
Supporting Information S2.

Figure 3a shows the fitting of the experimentally obtained fre-
quency response (magnitude and phase) with the transfer func-
tion derived using the equivalent circuit of Figure  3b (fitting 
parameters can be found in the Supporting Information S2). 
All the main features of the frequency response described 
previously are properly captured. The close match between  
experimental data and the derived Gm(f) validates the proposed 
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Figure 3.  a) Bode diagram of g-SGFETs (for 4 g-SGEFTs). Three different response regimes are displayed together with the Gm extracted from the 
DC characteristics: CPE dominated regime, a regime where the Gm drops with approximately 1/f and finally a Gm increase due to capacitive currents. 
b) Small signal model of the g-SGFET frequency response. The gate-to-source bias bias (Vgs) and the drain voltage (Vd) are defined. The voltage drop 
at the graphene–electrolyte interface is defined as Vint. The CPEg–e represents the constant phase element (CPE) describing the non-ideal capacitive 
behavior of the graphene–electrolyte interface. The CPE describing the leakage through parasitic elements is defined as CPEpar. The resistance of  
the electrolyte (Rele) and the contact resistance of the g-SGFET (Rc) are defined. The dynamic response of the g-SGFET is modelled by the current source 
(VintGm(f)) and its stationary response is modelled by the resistance in parallel Rds–DC. c) The equivalent circuit shown is drawn on a schematic of the 
g-SGFET to illustrate the physical origin of each element.
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equivalent circuit. The understanding of the frequency 
response provided by this model represents a strong basis for 
future improvements of the g-SGFET response (see Supporting 
Information S4). Furthermore, the derived transfer function 
can be used to set a calibration procedure to cancel signal dis-
tortions introduced by the non-ideal frequency response of the 
g-SGFETs.

2.3. Calibration of Harmonic Distortion Using  
the Non-Linear Stationary Ids–Vgs Curve

We have previously discussed that harmonic distortion can 
degrade the signal quality significantly, especially for signals 
with large amplitudes and for not optimum gate bias condi-
tions. Under these conditions, correction of the harmonic 
distortion by a proper calibration methodology can be critical. 
The conversion of measured signals in current (Ids–sig) back 
to an equivalent voltage at the gate (Vgs–sig) is commonly done 
using a constant factor, that is, the voltage-independent Gmof 
the GFETs, which is estimated at the bias point of operation. 

However, following this approach harmonic distortion is 
rescaled together with the original signal, but not corrected. 
In order to correct harmonic distortion we propose to interpo-
late the measured Ids–sig into the Ids−Vgs curves (see Supporting 
Information S5).

In order to validate this calibration procedure, which takes 
into account the voltage dependence of Gm, we have quantified 
the attenuation of the 2nd harmonic after calibration. Figure 4a 
shows the 2nd harmonic of a pure tone signal applied at the 
gate after calibration using a constant Gm or by interpolating 
into the Ids−Vgs curves. Using the interpolation method, we can 
obtain a very effective attenuation of the distortion, confirmed 
by the observation that the 2nd harmonic drops to values very 
close to the noise level (black line). Yet, the amplitude of the 
second order harmonic increases significantly around the CNP 
due to the loss of transconductance and inaccuracies in the 
determination of the Ids−Vgs curves. Another possible source of 
deviation from an ideal correction of harmonic distortion is the 
frequency dependence of Gm (see Supporting Information S6). 
This calibration procedure could be applied to any sensor that 
detects a voltage fluctuation applied at the gate.

Small 2020, 1906640

Figure 4.  a) Amplitude of the second harmonic in the equivalent voltage at the gate for Asig  = 8mVrms, showing the values calibrated using a 
constant transconductance (dots) and using the interpolation into the transfer characteristics (solid orange line). The solid black line shows the 
average intrinsic noise of the g-SGFET measured at 17 and 23 Hz (i.e., 3 Hz below and above 2fsig). The errorbars and filled area show the standard 
deviation for 4 g-SGFETs. b) A CSD signal recorded from the cortex of a rat calibrated with the non-linear transfer characteristics and distorted 
according to static non-linearities far and close to the CNP. c) Frequency response measured in vivo of the g-SGFETs used for the recording of LFP 
signals. The filled area shows the standard deviation (for 4 g-SGEFTs) and the orange dashed line the fitting using the derived transfer function 
(α = 0.88). d) A LFP signal recorded from the cortex of a rat (see Experimental Section) is shown in the 1–10 Hz bandwidth. The signal calibrated 
using a constant Gm is shown in black while the signal calibrated using the derived transfer function is plotted in orange. e) Average of 15 APs 
recorded from a HL-1 cardiomyocyte. The filled area shows the standard deviation and the orange line the calibrated signal using the derived TF. 
The frequency response for this device is shown in the Supporting Information S4. f ) PSD of the equivalent voltage noise at the gate obtained 
from calibrating with a constant Gm (black) or interpolating into the transfer characteristics (orange). The Vgs–rms indicates the rms of the PSD 
withing the dashed vertical lines.
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In order to show the impact of harmonic distortion on 
relevant electrophysiologic data, CSD events have been 
recorded in a headfixed rat model (see Experimental Section 
and ref. [15]). These signals are especially prone to harmonic 
distortion because of their large amplitude. Figure 4b shows 
the electrophysiological signal recorded using a g-SGFET for 
a Vgs−VCNP  = −0.04 V and subsequently calibrated using a 
constant Gm (black line) or by interpolation of the signal into 
the Ids−Vgs curves (orange line). The results show that har-
monic distortion modifies the amplitude of the CSD signals, 
reaching changes of ≈ 1.5 mV (i.e., ≈10% of the total ampli-
tude) in a Vgs range where g-SGFETs present an otherwise 
proper performace (see Supporting Information S5 for more 
details).

2.4. Calibration of LFP Activity and APs Using the Inverse 
Transfer Function

The dependence of Gm on the non-ideal double layer capaci-
tance of the graphene–electrolyte interface makes the response 
of the g-SGFETs to change with frequency even at low frequen-
cies. Small deviations from ideality can cause relatively large 
changes in the Gm amplitude and phase. Signals showing a 
wide band activity such as LFPs, with frequency components 
ranging from ≈1 Hz to ≈200 Hz,[36,37] will present a more pro-
nounced distortion of the signal shape produced by different 
amplification of various frequency components. In addition, 
phase distortion might cause defective phase determination in 
LFPs.[23] To show the impact of non-ideal frequency response 
on actual physiologic data, LFPs have been recorded in vivo on 
the rat cortex using epicortical g-SGFET flexible probes (see 
Experimental Section) and APs have been recorded from a 
HL-1 cell culture on a g-SGFET array fabricated on a SiO2 rigid 
substrate (see Experimental Section).

In order to calibrate the electrophysiological data, the fre-
quency response of the g-SGFETs under in vivo conditions and 
in the culture medium must be known. Figure  4c shows the 
frequency response of the g-SGFETs measured on the rat cortex 
(see Experimental Section), while the response of the g-SGFETs 
in the culture medium is shown in Supporting Information 
S4. In the frequency range relevant for the recording of LFPs 
and APs, the Bode plots show a frequency response dominated 
by the CPE behavior described previously. In this regime, the 
Gm(f) can be approximated by Gm(f = 1 Hz)/f 1−α (see fitting in 
Figure 4c and the Supporting Information S7 for a description 
of the numerical implementation of the frequency dependent 
transfer function).

The impact of such distortions can be shown by calibrating 
the recorded signals using the inverse of the fitted Gm(f). 
Figure  4d shows an LFP signal (in the 1–10  Hz frequency 
band) calibrated using a frequency-independent Gm and using 
the frequency dependent transfer function of the g-SGFETs in 
the in vivo conditions. The non-ideal frequency response causes 
changes in the signal amplitude as well as phase shifts of ≈10°. 
Similarly, Figure  4e shows an average of 15 APs recorded in 
an in vitro cardiomyocyte culture. In the case of the APs, 
neglecting the effect of frequency response leads to a signifi-
cant error in the amplitude determination (an underestimation 

of ≈30% of the actual amplitude) due to the high frequency of 
these signals.

Finally, Gm loss at high frequencies will cause loss of signal-
to-noise ratio that cannot be corrected by calibration. Figure 4f 
shows the effect of Gm loss on the power spectral density (PSD) 
of the calibrated noise ( VgsS ). The understimation in the noise 
power made by using a constant Gm for calibration can be 
quantified by integrating the PSD in different frequency band-
widths (see Figure 4f), leading to different values of equivalent 
noise at the gate (Vgs–rms).

These results emphasize the importance of understanding 
and improving the frequency response of g-SGFETs, especially 
for sensing high frequency and low amplitude signals. It is also 
shown the importance of characterizing the frequency response 
of the g-SGFETs in the environment used for the final applica-
tion, in our case on the brain cortex, for a proper calibration of 
the signal.

3. Conclusion

In summary, this work provides a detailed characterization and 
modeling of the signal distortion mechanisms in g-SGFETs, 
describing their impact on the recording capabilities of these 
devices. The effect of distortion on electrophysiological signals 
has been evaluated in a wide frequency and amplitude range. 
It has been shown that non-linearities in the Ids−Vgs curves can 
have a significant impact on the amplitude and shape determi-
nation of large amplitude signals, such as spreading depres-
sion events. This distortion can be corrected by a calibration 
procedure which takes into account the voltage dependence 
of Gm. On the other hand, the non-ideal frequency response 
of g-SGFETs results in a significant effect on the amplitude 
determination of LFPs and APs as well as on the phase extrac-
tion for LFPs. These distortions can be calibrated using the 
frequency dependent transfer function presented in this work, 
following a similar approach as previously proposed for micro-
electrodes when a frequency independent gain cannot be 
obtained.[23]

In spite of performing a proper calibration of the signal, 
conventional microelectrodes introduce dramatic SNR loss 
at infra-slow frequencies.[23] Alternatively, g-SGFETs present 
a high Gm at low frequencies, allowing to record infra-slow 
neural activity with a high sensitivity. This high Gm slightly 
drops as the frequency is increased, therefore producing a 
progressive loss of SNR. Eliminating the frequency depend-
ence of Gm is thus a clear strategy toward improving the 
already outstanding sensitivity of g-SGFETs at high frequen-
cies. The understanding of the g-SGFET response provided in 
this work sets the ground to their frequency response as well 
as to mitigate harmonic distortion by operating the devices 
at optimum bias conditions. Finally, and more importantly, 
the calibration procedures presented in this work have been 
shown effective to correct the impact of signal distortion on 
the recording capabilities of g-SGFETs. These results demon-
strate the potential of g-SGFETs as a highly sensitive, distor-
tion-free platform, not only for full-band neural sensing, but 
also for a broader range of applications in which g-SGFET 
sensors are used.
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4. Experimental Section
Fabrication of g-SGFETs: Arrays of g-SGFETs were fabricated on a 

10  µm thick polyimide (PI-2611, HD MicroSystems) film spin coated 
on a Si/SiO2 4″ wafer and baked at 350  °C. A first metal layer (10  nm 
Ti/100 nm Au) was deposited by electron-beam vapor and then structured 
by a lift-off process. Afterward, the graphene grown by chemical vapor 
deposition on Cu was transferred (process done by Graphenea S.A.). 
Graphene was then patterned by oxygen plasma (50 SCCM, 300  W for 
1  min) in a reactive ion etching after protecting the graphene in the 
channel region with HIPR 6512 (FujiFilm) positive photoresist. After the 
graphene etching, a second metal layer was patterned on the contacts 
following the same procedure as for the first layer. The lift-off was 
followed by annealing in ultra-high vacuum consisting a temperature 
ramp from room temperature to 300  °C. Subsequently, the transistors 
were insulated with a 3-µm-thick photodefinable SU-8 epoxy photoresist 
(SU-8 2005 Microchem), keeping uncovered the active area of the 
transistors channel and the contacting pads. The polyimide substrate was 
structured in a reactive ion etching process using a thick AZ9260 positive 
photoresist (Clariant) layer as an etching mask. The neural probes were 
then peeled off from the wafer and placed in a zero insertion force 
connector to be interfaced with the custom electronic instrumentation 
described below. Finally, the devices were rinsed for 2 min in ethanol to 
eliminate remaining resist residues on the graphene channel.

Electrical Characterization in PBS: To measure the DC and AC 
accurately, the electrical current from drain to source was pre-amplified 
in a first amplification stage with a “low” 104 gain. The pre-amplified 
signal was then low-pass filtered and subtracted from the pre-amplified 
signal, thus canceling its low frequency (i.e., DC level) components. The 
resulting signal could therefore be further amplified and low-pass (anti-
aliasing) filtered in a second stage with an additional 102 gain factor. A 
custom built circuit was used for the amplification of the current signals, 
which were digitalized using an NI DAQCard in all characterization 
procedures in vitro.

For the characterization of harmonic distortion, the DC and AC 
components of the signal were measured. The 1st, 2nd, and 3rd order 
harmonics of a 10 Hz signal applied at the gate were determined from 
the output of the second amplification stage while the stationary Ids−Vgs 
curves used to calculate harmonic distortion were obtained from the 
first amplification stage.

The frequency response was characterized by applying a composed 
signal on the electrolyte containing the superposition of sine waves (12 
frequencies per decade with a peak amplitude of 1 mV) in the bandwidth 
of interest (i.e., 0.4  Hz–200  kHz). Different concentrations of PBS 
(0.05× and 10×) were used in order to assess the effect of the electrolyte 
conductivity on the frequency response, where the composition of PBS 
1× is 10 mm Na2HPO4, 1.8 mm KH2PO4, 2.7 mm KCl, and 137 mm NaCl. 
The signal from the first amplification stage was used to have access to 
a wider frequency bandwidth (from 0.35 Hz to 200 kHz).

Ethical Approval and Animal Handling: All experimental procedures 
were conducted in accordance with the European Union guidelines on 
protection of vertebrates used for experimentation (Directive 2010/63/
EU of the European Parliament and of the Council of September 22, 
2010). The experiments for the recording of CSD events were approved 
by the ethics committee of the Hospital Clinic de Barcelona. Rats were 
kept under standard conditions (room temperature 23 ± 1  °C, 12:12 h 
light–dark cycle, lights on at 08:00), with food (A04, Harlan) and water 
available ad libitum. Experiments for the recording of LFP were in 
accordance with the German Law for Protection of Animals (TierSchG), 
and were approved by the local authorities (ROB-55.2-2532.Vet_02-16-
170). Rats were kept under standard conditions (room temperature 
22 ± 2 °C, 12:12 h light–dark cycle, lights on at 10:00), with food (V1534-
000, SSNIFF) and water available ad libitum.

Recording of CSD Events in a Rat Model and Calibration of Harmonic 
Distortion: The procedure followed has been thoroughly described 
previously.[19] The data from one of the rats used in this previous study 
had been used for evaluating the effect of harmonic distortion on infra-
slow CSD signals.

The adult Wistar rats used for this study were deeply anaesthetized 
with isoflurane (4% induction, 1–3% maintenance) and all pressure 
and incision points were infiltrated with local anesthetic lidocaine. A 
craniotomy was performed on the left hemisphere (centered at 43 mm 
anterior-posterior (AP) and 42.5 mm medio-lateral (ML) and was 6 mm 
AP by 4.5 mm ML in size). An additional craniotomy was performed on 
the prefrontal cortex to administer 5 mm KCl to induce CSD events. An 
Ag/AgCl electrode pellet was inserted in temporal muscle and used as 
reference both for recordings and for the measurement of the transistor 
transfer curve.

The DC signals from the first amplification stage and bias control 
were managed by a data acquisition system (National Instruments USB-
6353). On the other hand, the AC signals from the second amplification 
stage were directly acquired by a commercial electrophysiological 
recording system consisting of a programmable gain amplifier 
(Multichannel Systems) and digitizer interface (CED 1401 and Spike2 
software, Cambridge Electronic Design). The DC and AC bands were 
sampled at 1  Hz and 5  kHz respectively. Before the beginning of the 
recordings, the transfer curve of the g-SGFET was measured in situ.

Recording of LFP Activity on the Rat Cortex: An adult Long–Evans 
rat was used for the measurement of LFP signals in this study. The 
rat, weighing 580  g, was deeply anaesthetized with MMF (midazolam  
2 mg kg−1, medetomidin 0.15 mg kg−1, fentanyl 0.005 mg kg−1). Starting 
1 h after MMF induction isoflurane was supplemented for maintenance 
at 1% and metamizol was given at 110  mg kg−1. The posterior-dorsal 
area of the head was shaved, the skin locally disinfected with povidone-
iodine and subcutaneously infiltrated with local anesthetic bupivacaine. 
Subsequently the skin was incised and the dorsal skull cleaned carefully 
by blunt dissection. The dried skull was covered with UV-curing adhesive 
OptiBond (Kerr) and a 3D printed base ring was anchored to skull with 
screws and Metabond cement (Parkell).

Symmetric craniotomies with a maximum width of 5  mm were 
performed bilaterally, extending between +2  mm and −8  mm with 
respect to bregma in the anterior–posterior axis.

The dura mater was incised and removed within these craniotomies. 
A further craniotomy of 1 × 1 mm was performed over the cerebellum. 
All craniotomies were covered with prepolymerized PDMS (Sylgard 184, 
Dow Corning, USA) with mixing ratio 1:10 and sealed with Vetbond 
(Animal Care Products, USA). The skin margins around the implant 
were sutured and the implant closed with a protective cap.

After 1 week of recovery the g-SGFET array was implanted under 
isofluran anesthesia (5% induction 1% maintenance). After partial 
opening and sideward flapping of the polymer covering the right 
hemisphere the array was placed onto the pial surface positioned such 
as to cover the posterior aspect of the right hemisphere (approximately 
−7 to −2 mm from bregma). In addition two Pt–Ir wires were implanted 
at either side of the g-SGFET array. One proximal to the array, the other 
distally on the opposing hemisphere. The polymer cover was flapped 
back into position with the flexible cable of the g-SGFET array leaving 
through the remaining slit. A second PDMS cover was used to cover 
both the incised polymer and array, anchored to the skull with Vetbond 
and Evoflow (Ivoclar Vivadent, Liechtenstein) and sealed with silicon gel 
3–4680 (Dow Corning, USA).

An Ag/AgCl electrode was placed in contact with the cerebellum as 
a reference for the recording of LFP as well as the curves and frequency 
response for calibration of the neural signals.

The recordings were performed using a custom built data acquisition 
system with capabilities to switch between the output of the 1st and the 
2nd amplification stages. The former was used for the acquisition of 
LFP activity while the latter was used for the determination of the curves 
needed for calibration.

Characterization of Frequency Response In Vivo for Calibration of LFP: 
The frequency response of the g-SGFETs had been observed to depend 
on the ion concentration in the electrolyte. For this reason, the frequency 
response had to be properly determined in vivo for subsequent 
calibration of detected neural activity.

To obtain the frequency response in vivo, two Pt–Ir wires were 
implanted at either side of the g-SGFET array. The two Pt–Ir wires 
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were then connected to a current signal generator to perform a bipolar 
current stimulation at different frequencies. The current signal generator 
was decoupled from the recording system in order to avoid any current 
to leak through the g-SGFETs. The amplitude of the current signal was 
1 μA which was small for causing ephaptic effects. The amplitude of 
stimulation was decreased by twofold to validate that the measured Gm 
dropped by the same factor. The signal was applied in current to avoid 
any effect of the electrode and tissue impedances on the amplitude of 
the signal at different frequencies. By imposing a current, the amplitude 
in volts at the g-SGFETs site was expected to be constant with frequency. 
The drawback of this approach was that the amplitude in volts of the 
signal applied was not known and therefore the extracted magnitude of 
the Bode must be expressed in arbitrary units.

The parameters of the analytic transfer function which describe the 
frequency response could be obtained by fitting the Bode plot. The only 
parameter that cannot be obtained from this fitting was the scaling 
factor or transconductance at f = 1 Hz. However, this parameter could be 
obtained from the first derivative of the static Ids−Vgs curves with small 
uncertainty as shown in Figure 3a. Having all the extracted parameters, 
it was possible to define the inverse Gm(f), which could be then used to 
calibrate the data recorded in vivo.

Culture of HL-1 Cardiomyocytes and Recording of APs: The HL-1 cell 
line was obtained from the LSU Health Sciences Center New Orleans, 
USA. Cells were culture on Claycomb medium supplemented with 
10% FBS, penicillin/streptomycin (100 U mL−1:100  µg mL−1), and 
L-glutamine (2  mm) on a flask coated with fibronectin/gelatin and 
incubated at 37  °C with 5% CO2. The culture medium was exchanged 
daily and supplemented with fresh norepinephrine 0.1  mm. When 
the cells were beating, they were subcultured on new flask or on the 
g-SGFET arrays as needed. To do so, cells were detached from the flask 
using trypsin and after a few minutes’ incubation at 37 °C the enzymatic 
activity was neutralized using twice the volume of culture media. The 
solution containing the cells was centrifuged at 120  g for 2 min and 
the supernatant was aspired before re-suspending the cells on fresh 
culture media. The cells were seeded then on the desired substrate. To 
prepare them for culture, the g-SGFET were sterilized in 70% ethanol 
for 15 min, rinsed several times with PBS, and coated with fibronectin/
gelatine for at least 2 h. Then the fibronectin/gelatine was aspired and 
the device was rinsed again with PBS. Experiments were performed 
48–72 h after subculture.

All chemicals were bought from Sigma-Aldrich unless otherwise 
noted. The APs recording was performed using the home-built system 
schematized in Figure  1e and described before. The signals were 
digitalized from the second amplification (band-pass filtered) stage. 
The transistors were operated at a constant source-drain and gate 
voltage. Signals were recorded at a sampling frequency of Fs = 20 kHz 
and digitally band-pass filtered from 55 Hz to 4 kHz after digitalization. 
The same setup used for the characterization of the g-SGFETs in a PBS 
bath was used for the recording of electrophysiological signals from 
the cell culture. The output from the 1st amplification stage was used 
for the determination of the transfer characteristics while the output 
from the 2nd stage was used for the recording of recording of APs. The 
frequency response was determined following the same approach as for 
its characterization in a PBS bath.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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S1. Comparison of calculated harmonic distortion with experimental data 

As mentioned in the introduction of the main text, harmonic distortion introduced by the GFETs can, 

in principle, be calculated from the Taylor expansion of the ܫௗ௦ − ௚ܸ௦   curves (Equation (S1)). The 

expansion to the 3rd order can be expressed as follows: 

  

 

ௗ௦ܫ = ௗ௦|௏೒ೞ௢ܫ +
ௗ௦ܫ݀
݀ ௚ܸ௦

ቤ
௏೒ೞ௢

௦௜௚ܣ sin(2ݐ݂ߨ) +
1
2! 	
݀ଶܫௗ௦
݀ ௚ܸ௦

ଶቤ
௏೒ೞ௢

௦௜௚ଶܣ

2 sin(4ݐ݂ߨ) + 	
1
3! 	
݀ଷܫௗ௦
݀ ௚ܸ௦

ଷቤ
௏೒ೞ௢

௚௦௜௚ଷܣ

4 sin(6ݐ݂ߨ) 

(S1) 

 

where ܣ௦௜௚ represents the amplitude of the small signal applied at the gate  ௚ܸ௦ି௦௜௚  (see Figure 1b) in 

the main text. 

Figure 2a in the main text shows the agreement between measured harmonic distortion and the 

values calculated from the stationary ܫௗ௦ − ௚ܸ௦   curves for a signal amplitude ܣ௦௜௚ = 8݉ ௥ܸ௠௦. Here 

the agreement for the other measured signal amplitudes (ܣ௦௜௚ = 4  and 2	݉ ௥ܸ௠௦) is also shown for a 
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wide ௚ܸ௦  range. The noise level (in this case at 2 ௦݂௜௚ or frequency of the second harmonic) is 

displayed in Figure S1a and S1b. Figure S1c shows, the rms noise integrated in the 4-40Hz bandwidth, 

which was used to calculate the DNR displayed in Figure 2d. Figure S1d shows the S/(D+N) ratio, a 

figure of merit that can be defined to show the impact of distortion on the signal quality for a wide 

௚ܸ௦ − ௦௜௚ܣ  range. The rms noise shown in Figure S1c was also used to calculate the S/(D+N) ratio. 

 

a              b 

 

 

 

 

 

c          d 

 

 

 

 

 

Figure S1: a) 1st, 2nd, and 3rd harmonics rms-amplitude extracted from the power spectrum of the measured 

ௗ௦ି௦௜௚ܫ 	 (dots-errorbar) and from the Taylor expansion of the ܫௗ௦ − ௚ܸ௦   curves (solid lines-filled area) for a signal 

amplitude ܣ௦௜௚ of 4݉ ௥ܸ௠௦.. Error bars and filled area shows the standard deviation (for 4 g-SGFETs). The noise 

is evaluated from the power spectrum at 18Hz (i.e. slightly below 2 ௦݂௜௚). b) The same as part a) for a signal 

amplitude ܣ௦௜௚ of 2݉ ௥ܸ௠௦. c) The integrated noise in the 4-40 Hz is shown. These values were used to calculate 

the DNR in Figure 2d of the main text and Figure S1d. d) Signal to distortion plus noise in a wide ௚ܸ௦  ௦௜௚ܣ−

range. 
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S2. Derivation of analytic transfer function 

The derivation of the analytic transfer function describing the frequency response of the g-SGFETs is 

summarized in the main text. Here, the frequency dependence of the terms in Equation (1) of the 

main text are expressed explicitly. 

The first factor in Equation (1) (݀ܫௗ௦/݀ ௜ܸ௡௧|௏೏ೞ), referred to as the intrinsic transconductance of the 

g-SGFET expresses how an electrical potential at the graphene-electrolyte interface couples with the 

channel conductivity, producing changes in the drain-to-source current. This term is therefore 

proportional to the capacitance of the interface, which is usually considered independent of the 

frequency, as expressed in Equation (S2).  

௠ܩ = 	 ௗூ೏ೞ
ௗ௏೔೙೟

ቚ
௏೏ೞ

= 	 ௗܸ௦
ௐ
௅
μ	ܥ௜௡௧                                          (S2) 

where ܹ and ܮ stand for the width and length of the channel respectively, and μ  for the charge 

carriers electrical mobility.  If the interface capacitance does not present an ideal capacitive behavior, 

but a constant phase element (CPE)-like response, a frequency dependent equivalent capacitance 

can be derived. Equating the imaginary part of the CPE impedance with the impedance of a pure 

capacitance the following equivalent capacitance  (ܥ஼௉ா ) has been presented previously:[1] 

஼௉ாܥ =
ܳ଴
߱ଵିఈ (sin	(2/ߨߙ)− ݅	cos	(2/ߨߙ))	 

(S3) 

Where ܳ଴ is the inverse of the impedance at 1	ݏ/݀ܽݎ and (− ఈగ
ଶ

) is the constant angle of its 

impedance in radians. Substituting Equation (S3) for ܥ௜௡௧ in Equation S2, the term regarded as “CPE 

dominated” in Equation (1) of the main text can be derived.   

The second factor in Equation (1) of the main text (݀ ௜ܸ௡௧/݀ ௚ܸ௦ ) represents the effect of the voltage 

divider composed by the impedance of the graphene-electrolyte interface and the resistance in 

series (ܴ௦) which includes the contact resistance of the GFET (ܴ௖) and the resistance of the 

electrolyte (ܴ௘௟௘). In addition, if there is a parasitic impedance in parallel with the graphene-

electrolyte interface, it must be taken into account to calculate the attenuation of voltage drop at the 

interface ( ௜ܸ௡௧) with respect to the signal applied ( ௚ܸ௦ ). This parasitic impedance could be dominated 

by either leakage through the metal contacts accidentally exposed to the electrolyte or through the 

capacitive coupling of the metal tracks with the electrolyte through the 2	݉ߤ thick passivation layer. 
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A similar explanation to this cut-off frequency has been reported before.[2] This attenuation factor or 

voltage divider can be therefore expressed as:   

݀ ௜ܸ௡௧

݀ ௚ܸ௦
= 	

ܼ஼௉ா೒ష೐//ܼ஼௉ா೛ೌೝ
ܼ஼௉ா೒ష೐//ܼ஼௉ா೛ೌೝ + 2ܴ௦

 

(S4) 

where the factor of 2 multiplying ܴ௦ comes from the definition of ܧܲܥ௚ି௘  and ܧܲܥ௣௔௥ in the 

equivalent circuit shown in Figure 3 of the main text. Writing the frequency dependence in Equation 

(S4) explicitely: 

݀ ௜ܸ௡௧

݀ ௚ܸ௦
= 	

1

1 + ݏܴ	2 ቂܳ݃−݁(2݂ߨ)݃ߙ−݁݁݅
ߨ
݁−݃ߙ	2 + ݅݁ݎܽ݌ߙ(݂ߨ2)ݎܽ݌ܳ

ߨ
ቃݎܽ݌ߙ	2

 

     (S5) 

Finally, an additional term contributes positively to the gain at high frequencies. The high interface 

capacitance causes a direct capacitive current between gate and source through the channel as well 

as through ܧܲܥ௣௔௥. These capacitive currents are distributed to drain and source equally. This 

contribution can be expressed as: 

௠௘௙௙൫ܩ ௦݂௜௚൯ = 1/(2ܼ஼௉ா) + 1/(2ܼ஼௉ா೛ೌೝ)	 

(S6) 

writing the frequency dependence of Equation (S6) explicitly, the last term in Equation (1) of the 

main text can be derived: 

௠௘௙௙൫ܩ ௦݂௜௚൯ = ݅݁݁−݃ߙ(݂ߨ2)݁−݃ܳ
ߨ
݁−݃ߙ	2 + ݅݁ݎܽ݌ߙ(݂ߨ2)ݎܽ݌ܳ

ߨ
ݎܽ݌ߙ	2  

(S7) 

Merging Equation (1) in the main text, Equation (S3), (S5) and (S7), the frequency dependence of the 

transfer function for g-SGFETs can be expressed as: 

High-Bandwidth Graphene Neural Probes

148



  

5 

 

(݂)௠ܩ = ±݇
ܳ௚ି௘

ଵିఈ(݂ߨ2)
݁௜
గ
ଶ	(ఈ೒ష೐ିଵ) 1

1 + 2	ܴ௦ ቂܳ௚ି௘(2݂ߨ)ఈ೒ష೐݁௜
గ
ଶ	ఈ೒ష೐ +ܳ௣௔௥(2݂ߨ)ఈ೛ೌೝ݁௜

గ
ଶ	ఈ೛ೌೝቃ

+ ܳ௚ି௘(2݂ߨ)ఈ೒ష೐݁௜
గ
ଶ	ఈ೒ష೐ + ܳ௣௔௥(2݂ߨ)ఈ೛ೌೝ݁௜

గ
ଶ	ఈ೛ೌೝ 	 

(S8) 

where ± takes the positive value in the electron conduction regime and negative in the hole 

conduction regime (producing a 180° degrees phase shift). ܳ௚ି௘ and ܳ௣௔௥ 	stand for the inverse of 

the impedance at 1	ݏ/݀ܽݎ for the terms ܧܲܥ௚ି௘ and ܧܲܥ௣௔௥ respectively. Equation (S8) describes 

the effect of the CPE behavior on the frequency response, which causes a drop of ܩ௠with frequency 

to a fractional order (i.e. ܩ௠(݂) ∝	݂ଵିఈ೒ష೐ ). In this regime, the phase of the transfer function 

depends on ߙ as 2/ߨ	ߙ) − 1). The second factor in the first term of Equation S8 describes the drop 

of ௜ܸ௡௧ with frequency, which is responsible for a drop in the ܩ௠(݂)	 magnitude together with a 

negative phase shift. Finally, the second term in Equation S8, corresponding to capacitive currents 

through ܧܲܥ௚ି௘  and ܧܲܥ௣௔௥, which produce an increase in the ܩ௠(݂)	 magnitude and a positive 

phase shift.  

Fitting of the experimentally obtained Bode plot can be used to extract the relevant parameters 

modelling the frequency response of the g-SGFETs. The following table summarizes the parameters 

extracted from the fitting shown in Figure 3a of the main text: 

 PBS 100mM PBS 0.5mM 

ܳ௚ି௘  1.8μݏܨఈିଵ/ܿ݉ଶ  1.6μݏܨఈିଵ/ܿ݉ଶ 

 10ି଼݉ଶ 10ି଼݉ଶ ܽ݁ݎܣ

௚ି௘ߙ  0.97 0.905 

݇	[ ௗܸ௦μܹ/5.10ି [ܮଷ݉ଶ/4.10ି ݏଷ݉ଶ/ݏ 

ܳ௣௔௥  ఈିଵݏܨఈିଵ 8݊ݏܨ8݊ 

௣௔௥ߙ  0.65 0.6 

ܴ௦ 3݇ߗ240݇ ߗ 

Table S1: Parameters extracted from the Bode plot fitting in Figure 3a of the main text. 
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S3. Effect of transistor geometry on the harmonic distortion 

The data presented in the main text validates the stationary model of harmonic distortion for single 
layer graphene SGFETs. A width=length=100µm was chosen for these experiments. If the width of 
the g-SGFETs is increased, the drain-source current will increase proportionally. However, the ratio 
between the contact resistance and the channel resistance remains constant. Therefore, the 
ௗ௦ܫ − ௚ܸ௦  curves for different widths are equivalent except for a ௚ܸ௦–independent multiplicative 
factor. This constant factor results into a linear increase of all terms in Equation S1 and therefore the 
SDR remains unchanged. On the other hand, if the length of the channel is shortened, the contact 
resistance will have a stronger impact on the curvature of the ܫௗ௦ − ௚ܸ௦  curves. Figure S2a shows the 
amplitude of the 1st harmonic for different channel lengths. These values have been obtained from 
the measured stationary ܫௗ௦ − ௚ܸ௦  curves using Equation S1, for a signal amplitude of 10mVpk. 
Figures S2b and S2c show the 2nd and 3rd harmonic amplitude respectively for the same devices and 
Figure S2d shows their SDR. A trend towards the increase of SDR for longer channels can be 
observed, which can be attributed to the lower impact of the contact resistance on the stationary 
response of the g-SGFETs. These results can be compared with those presented in the main text. The 
validity of the stationary model in devices of different lengths is expected to hold as long as the CPE 
regime dominates the frequency response as for the W=L=100µm devices shown in the main text. 
Figure 1 shows the frequency response for g-SGFETs with different channel lengths, demonstrating 
the CPE dominated response below ~30kHz. Only above this frequency, changes in the length 
produce changes in the frequency response as expected from the derived transfer function in 
Supplementary information S2.  
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a                 b         c  

 

 

 

 

 

 

 

 

d      e    

 

Figure S2: Effect of the channel length on harmonic distortion: a. 1st harmonic, b. 2nd harmonic and c. 3rd 
harmonic calculated from the measured stationary response for g-SGFETs of different lengths. d. SDR 
calculated from data in parts a-c. In all plots, the mean is indicated by the solid lines and the standard deviation 
by the filled area. 7 g-SGFET were measured for L=40μ݉ and L=10μ݉, 3 g-SGFETs were measured for L=5μ݉ 
and L=2.5μ݉. e. Frequency response of g-SGFETs with different channel lengths measured in 10mM PBS. 7 g-
SGFET were measured for L=60μ݉ and L=5μ݉, 3 g-SGFETs were measured for L=20μ݉. 

 

 

S4. Effect of carrier mobility in graphene on the harmonic distortion 

Different density of defects in the graphene lattice might produce changes in the mobility, which in 
turn, might result in different harmonic distortion levels. Lower mobilities, imply a higher channel 
resistance and therefore it is expected that devices with lower mobilities present a higher SDR. To 
validate this intuition, we have used a numerical model of the g-SGFET[2] implemented in Matlab. 
Figure S3a shows the ܫௗ௦ − ௚ܸ௦  curves simulated for the parameters in Table S2, which include 
multiple mobility values. The simulation corresponding to a mobility of 1550 cm2/Vs fits the data for 
the 40 µm x40 µm transistors. Figure S3b shows the Raman spectra measured in these devices, 
demonstrating a relatively low D/G ratio, which indicates the density of defects. Figure S3c shows the 
SDR for different mobilities, confirming that a lower mobility increases the SDR due to a higher 
channel resistance.  
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a            b            c 

 

 

 

 

Figure S3: Effect of the carrier mobility on harmonic distortion: a. ܫௗ௦ − ௚ܸ௦  characteristics measured (dot) for 
50	μ݉ x 50	μ݉ g-SGFETs and simulated for different carrier mobilities (line). b. Histogram showing the 
distribution of the ration between Raman D-band and G-band. The inset shows the Raman spectrum for a 
specific point and indicates the position oft he D and G bands. c. SDR simulated for different carrier mobilities.  

 

ܴ௖  
[kΩ.µm] 

ܹ [µm] ܮ	 

[µm] 

μ 
[cm2/Vs] 

݊௜௠௣	[1/m2] ݊଴ [1/m2] ܥௗ௟  [µF/cm2] ஼ܷே௉  [V] 

7.5  40  40 550 

1050 

1550 

2050 

2550 

3050 

4.1011 

 

4.1011 

 

2  0 

Table S2: Parameters used for the simulation of the stationary response of the g-SGFETs for different carrier 

mobilities. 

 

S5. Effect of leakage through metal contacts exposed to the electrolyte 

The signal attenuation at high frequencies due to the voltage divider between ܧܲܥ௚ି௘  and ܴ௦  might 

be affected by the parasitic capacitance from a poor insulation of the metal contacts of the g-SGFETs. 

In order to determine whether this is the case or the impedance of the graphene-electrolyte 

interface dominates the attenuation in the transconductance, two sets of devices, with and without a 
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part of the metal contacts exposed to the electrolyte have been characterized. The access length 

 which is defined as the distance between the end of the metal-graphene contacts and the ,(௔௖௖௘௦௦ܮ)

uninsulated graphene channel can be defined as negative (i.e. -2	݉ߤ) in the first case and positive 

 .in the second. In Figure S4, the frequency response for these two types of device is shown (݉ߤ	1.5)

First, it can be observed that at low frequencies (below 10݇ݖܪ) the CPE behavior dominates the 

frequency response with a ߙ = 0.89 (PBS concentration was equal to 0.5mM). In a second place, it 

can be observed that in the 3݇ݖܪ −  band, the attenuation due to the previously described ݖܪ40݇

voltage divider dominates the frequency response. In this frequency range, the attenuation is more 

pronounced for the ܮ௔௖௖௘௦௦ =   .due to increased parasitic currents ݉ߤ2−

It is interesting to note that despite the voluntary exposure of the metal contacts to the electrolyte, 

the frequency response is not dominated by the ௜ܸ௡௧ drop term in the frequency bandwidth of 

interest for neural sensing (i.e. <  The action potentials shown in Figure 4e in the main text .(ݖܪ10݇

were recorded with the devices corresponding to the Bode plot in Figure S4b (for ܮ௔௖௖௘௦௦ =   .(݉ߤ2−

a      b 

 

 

 

 

 

 

 

 

 

Figure S4: a) The equivalent circuit for the small signal model of the g-SGFET is schematized, indicating the 

meaning of ܮ௔௖௖௘௦௦. b) The Bode representation for two different groups of g-SGFETs: with (ܮ௔௖௖௘௦௦ =  (݉ߤ1.5

and without (ܮ௔௖௖௘௦௦ =  .access region. The filled area indicates the standard deviation (for 4 g-SGFETs) (݉ߤ2−

The devices with	ܮ௔௖௖௘௦௦ =  .were used for HL-1 AP recording ݉ߤ2−
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S6. Effect of impurities on the frequency response 

It has been previously speculated that impurities on the graphene channel might play a crucial role in 

the CPE behavior of the graphene-electrolyte interface.[3] This dependence on the surface charge 

could also explain the dependence of the CPE behavior with the ionic concentration in the 

environment.  Figure S5a shows the frequency response of a macroscopic g-SGFETs where the 

graphene was not processed after the transfer (i.e. the channel of the g-SGFET consists of the 

complete graphene layer transferred on the substrate and the passivation was done manually using 

epoxy). This device shows a flat frequency response, with a phase of −180° (corresponding to the 

holes conduction regime).  The increase of the ܩ௠  magnitude and phase for frequencies above 10ݖܪ 

can be attributed to the capacitive currents described in the main text, which present a much larger 

contribution in this case due to the large area of the device (i.e. 5݉݉	ݔ	5݉݉). The effect of 

contamination can also be observed from the effect of cleaning with ethanol the finalized devices 

fabricated using photolithographic means (see Figure S5b). The pronounced loss of ܩ௠  magnitude 

due to contamination is followed by an increased hysteresis in the ܫௗ௦ − ௚ܸ௦  curves and a doping of 

graphene which results in an increased minimum number of charge carriers and displacement of the 

CNP. The sign of the hysteresis (i.e. increase/decrease of the current for an increasing/degreasing 

voltage) confirms that it is caused by a slow charging of the interface capacitance.[4,5]  
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a                 

 

 

 

 

 

b         c 

 

 

 

 

 

 

Figure S5: a) Bode representation of the macroscopic (unprocessesed) g-SGFET frequency response. b) 

Magnitude of the ܩ௠ over frequency for the processed g-SGFETs before and after cleaning with ethanol (for 4 

g-SGFETs). c) Effect of cleaning with ethanol on the ܫௗ௦ − ௚ܸ௦ curves of the g-SGFETs. The filled area in all graphs 

indicates the standard deviation (for 4 g-SGFET). 
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S7. Correction of harmonic distortion by interpolation into the ܫௗ௦ − ௚ܸ௦  curve 

The schematic shown in Figure S6a illustrates the interpolation approach used to calibrate the 

signals. The distorted signal (dashed-red line) when interpolated into the ܫௗ௦ − ௚ܸ௦  curve is rescaled 

and the harmonic distortion simultaneously corrected. The resulting signal is shown by the solid-red 

line. The effect of calibration on the amplitude of the second harmonic is shown in Figure S6b for two 

different ܣ௦௜௚ values. The three vertical lines in Figure S6b indicate the bias conditions for the spectra 

shown in Figure S6c. In Figure S6c it is possible to see that the increase of amplitude at 2 ௦݂௜௚ around 

the CNP is due to calibrated noise level with small transconductance. The effectivity of the calibration 

method is also confirmed by showing the SDR (after calibration) on top of the ܣ௦௜௚- ௚ܸ௦  parameter 

map from Figure 2c in the main text. It is shown that the SDR is approximately flat over a wide ௚ܸ௦   

range and its dependence with ܣ௦௜௚ is effectively canceled.  

 

The measured CSD events have been calibrated following the interpolation method. Afterwards, the 

calibrated signal corresponding to a quasi-distortion free signal has been artificially distorted for 

different ௚ܸ௦  values to show the effect of bias on the signal distortion (see Figure S6e). It is possible to 

observe a transition from a signal amplitude underestimation (for ௚ܸ௦  far away from the CNP) to a 

signal amplitude overestimation (close to the CNP). Figure S6f shows the difference in the CSD 

amplitude obtained by calibrating with a constant ܩ௠  and with the interpolation method. The error 

made in the signal amplitude determination by using a constant ܩ௠  becomes zero around 

௚ܸ௦ − ஼ܸே௉ ≈ −110ܸ݉ where the impact of distortion is minimal as shown in Figure S6b and S6d. 

 

 

 

 

 

 

High-Bandwidth Graphene Neural Probes

156



  

13 

 

 

a       b      c 

 

 

 

 

 

d        e      f  

 

 

 

 

Figure S6: a) Scheme of the calibration approach. Input signal in current is interpolated into the ܫௗ௦ − ௚ܸ௦ curve 

leading to a calibrated signal in voltage with the harmonic distortions corrected. b) The amplitude of the 

second harmonic in the equivalent voltage at the gate is shown for  ܣ௖ = 8ܸ݉ and 4ܸ݉ and calibrated using a 

constant ܩ௠ (dots) and using the interpolation into the ܫௗ௦ − ௚ܸ௦  curves (solid lines). The errorbars and filled 

area show the standard deviation for 4 g-SGFETs. c) Spectra at different representative ௚ܸ௦  values (marked by 

vertical lines in part b). The high SDR ratio close to the CNP appears due to an increase in the equivalent noise 

at the gate rather than an increase of higher orders. d) The SDR shown in Figure 2d is now plotted with the SDR 

after calibration with the non-linear ܫௗ௦ − ௚ܸ௦  curves. e) Effect of harmonic distortion on the recording of CSDs 

for different bias conditions. f) The error in the amplitude of the CSD due to harmonic distortion is shown for 

different  ௚ܸ௦  values. The colored dots indicate the bias conditions corresponding to the CSD curves in part e). 

 

S8. Limits in the static model of harmonic distortion 

The slow charging of the graphene-electrolyte interface capacitance leads to a hysteretic response of 

the ܫௗ௦ − ௚ܸ௦  curve as shown in Figure S5c. The impact of the hysteresis on the harmonic signal 

distortion, which is related to a non-ideal frequency response, can be better evaluated by measuring 
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harmonic distortion at different frequencies. To evaluate the impact of the non-ideal frequency 

response on the harmonic distortion, the comparison between measured harmonic distortion  and 

calculated values from the Taylor expansion of the ܫௗ௦ − ௚ܸ௦  curve has been performed for a 1݇ݖܪ 

pure tone. Figure S7a shows the result of this comparison; it is possible to observe a discrepancy 

between the DC and AC-derived values. This deviation for the 1st harmonic (corresponding to the 

applied signal) is proportional to the drop observed in the magnitude of the frequency dependent 

transfer function (∆ܩ௠ shown in Figure S7a and S7b). Interestingly, the 2nd harmonic and the 3rd 

harmonic drop by the same factor (∆ܩ௠) squared and cubed respectively. This attenuation 

corresponds to divide the signal at the interface ( ௜ܸ௡௧) by a factor ∆ܩ௠. The close match between the 

actual distortion and the values extracted from the DC characteristics after correcting the signal 

amplitude indicates that the hysteretic response does not change significantly the harmonic 

distortion (Figure S7c), but only the effective signal at the gate ௜ܸ௡௧.  

This deviation from the stationary response, however, has a small impact for the calibration of 

electrophysiological signals. Signals with a large amplitude of few mV are typically in the slow 

frequency range and therefore close to the stationary response. A deviation from the 

transconductance of the measured  ܫௗ௦ − ௚ܸ௦  curve and the actual transconductance at the 

frequency of the signals will cause a second order error in the signal amplitude determination.  
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Figure S7: a) Comparison of signal amplitude, 2nd and 3rd order harmonics amplitude extracted from the Taylor 

expansion of the static ܫௗ௦ − ௚ܸ௦  curve and measured by applying a 1kHz pure tone signal at the gate. b) 

Magnitude of the ܩ௠ over frequency and DC ܩ௠ of the g-SGFETs used for the characterization of harmonic 

distortion shown in graph (a) and (c). c) Comparison of AC-derived harmonic distortion and the values 

extracted from the Taylor expansion of the ܫௗ௦ − ௚ܸ௦  curve corrected with the the frequency drop of ܥ஼௉ா  at 

  .The errorbars and filled area in all graphs show the standard deviation for 4 g-SGFETs .ݖܪ1݇

 

S9. Numerical implementation of the analytic transfer function 

To implement the transfer function of fractional order it has to be approximated as a higher (and 

integer) order system which mantains a constant phase over a certain bandwidth.[6] Figure S8 shows 

the approximation of the transfer function using Oustaloup’s method which synthetizes the TF by the 

recursive distribution of (2ܰ + 1) zeros and poles.[7] This method gives an accurate description of the 

non-integer order TF within a defined bandwidth [߱௕ ,߱௛] (see Figure S8). In addition, it has the 

advantage over other modelling tools that its digital implementation for real-time applications is 

given in a straight forward manner from its finite number of zeros and poles. 
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Figure S8:  Analytical transfer function (blue) and approximated TF using Oustaloup’s method for 

different bandwidths and number of poles and zeros. 
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ARTICLE

Graphene active sensor arrays for long-term and
wireless mapping of wide frequency band
epicortical brain activity
R. Garcia-Cortadella1,9, G. Schwesig2,9, C. Jeschke3, X. Illa 4,5, Anna L. Gray6, S. Savage6, E. Stamatidou6,

I. Schiessl 7, E. Masvidal-Codina4,5, K. Kostarelos 1,6, A. Guimerà-Brunet4,5, A. Sirota2✉ &

J. A. Garrido 1,8✉

Graphene active sensors have demonstrated promising capabilities for the detection of

electrophysiological signals in the brain. Their functional properties, together with their

flexibility as well as their expected stability and biocompatibility have raised them as a

promising building block for large-scale sensing neural interfaces. However, in order to

provide reliable tools for neuroscience and biomedical engineering applications, the maturity

of this technology must be thoroughly studied. Here, we evaluate the performance of 64-

channel graphene sensor arrays in terms of homogeneity, sensitivity and stability using a

wireless, quasi-commercial headstage and demonstrate the biocompatibility of epicortical

graphene chronic implants. Furthermore, to illustrate the potential of the technology to detect

cortical signals from infra-slow to high-gamma frequency bands, we perform proof-of-

concept long-term wireless recording in a freely behaving rodent. Our work demonstrates the

maturity of the graphene-based technology, which represents a promising candidate for

chronic, wide frequency band neural sensing interfaces.
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Increasing the bandwidth of neuroelectronic interfaces in terms
of spatial resolution and sensitivity in a wide frequency range
is a major and ongoing challenge in neural engineering. In the

last decades, large efforts have been dedicated to the development
of neural sensing interfaces with high sensor-count on conformal
substrates1–10, which are required for highly biocompatible
intracranial neural probes11–14. In this line, active sensors have
emerged as a promising building block for high-bandwidth neural
interfaces4,6,15–19 because they can be arranged in a multiplexed
array2,4,6–9 enabling high sensor-count probes. The detection
principle of active sensors is typically based on the modulation of
the conductivity of a transistor channel, which is electrically
coupled with the biological environment through its
gate8,9,15,18,20–22, producing a local signal pre-amplification.
Although active sensing technologies present substantial advan-
tages over conventional micro-electrode arrays, their imple-
mentation is currently limited by the demanding material
properties required. In order to achieve long-term and highly
sensitive neural recordings, materials for active sensing are
expected to exhibit semiconducting or semimetallic properties, a
high electrical mobility and low intrinsic noise, in addition to a
high stability, easy integration in flexible substrates and bio-
compatibility. Some active sensors based on organic semi-
conductors and thin Si nanomembranes have exhibited
promising performance, with novel transistor architectures17,22

and insulating technologies4,14 improving their performance in
some typically constrained aspects such as their frequency
response or their long-term stability. Graphene-based active
sensors are another promising candidate to meet these require-
ments due to the flexibility of graphene23,24, its high expected
stability25 and biocompatibility26,27, as well as its electronic
properties, including a high mobility of charge carriers28,29.
Graphene solution-gated field-effect transistors (g-SGFETs) have
demonstrated a high sensitivity for the detection of local field
potentials15 (LFP), as well as a high performance in multiplexed
operation6,7. In addition, g-SGFETs have recently demonstrated a
high sensitivity for the mapping of infra-slow (<0.5 Hz) brain
activity (ISA)30–32 with high spatial resolution6,7,33,34.

ISA has recently attracted increasing attention due to its unique
neurophysiological basis30 and its relation to resting state net-
works31,35–37 and to brain states36,38–40. To date, ISA has been
typically studied using full-band electroencephalography (fb-
EEG)41,42. However, increasing spatial resolution of ISA mon-
itoring by using small size electrodes is ultimately limited by the
dependence of the amplifier gain on the impedance of the elec-
trodes used. This dependence leads to signal-to-noise loss and
signal distortion43 at low frequencies. For this reason, studies of
ISA with high spatial resolution have been typically restricted to
indirect measurement methods such as functional magnetic
resonance imaging31,37, optical methods44 or the analysis of infra-
slow changes of signal power at higher frequencies45. G-SGFETs,
as active sensors, transduce the electrochemical potential signals
in the brain (Vsig) into drain-to-source current (Ids) signals (see
Fig. 1a). The amplitude of the transduced signals is proportional
to the transconductance (gm), defined as the slope of the Ids–Vgs

curves divided by Vds (see Fig. 1b). gm is proportional to the gate
capacitance per unit area (intensive property) and to the W/L
ratio of transistor, but not to its active area17,46–49. Signal
detection based on the field-effect mechanism, therefore, allows to
prevent the signal distortion and gain loss observed for small
passive sensors in the infra-slow frequency band. This advantage
is expected to be valid for all FET-based sensor technologies with
stable transfer characteristics, however, experimental proof has
been only shown for g-SGFETs, which present a particularly high
chemical inertness25,33. The properties of g-SGFETs represent a
qualitative change in the study of ISA, allowing to explore its

physiological role with an improved spatial resolution. However,
in order to advance in the actual application of g-SGFET arrays,
several technical aspects remain to be thoroughly evaluated.

In this article, we present a sensing system composed of a
flexible 64-channel g-SGFET array and a wireless headstage
(Fig. 1c–f and supplementary information S1), which we use to
demonstrate the maturity of this technology in terms of long-
term and wide frequency band recording capabilities in freely
moving animals from a system perspective. First, the focus is
placed on the assessment of the in vitro characteristics of the
system; including the yield and homogeneity of the graphene
sensors, their intrinsic noise and the impact of the data-
acquisition (DAQ) system on the sensitivity of these devices.
Second, critical aspects for their chronic application in vivo have
been resolved; including the stability of the graphene doping, the
long-term stability of the g-SGFETs sensitivity and their acute, as
well as chronic biocompatibility. Finally, we have applied this
methodology to monitor the epicortical local field potentials
(LFP) in a freely moving rat model simultaneously with its three-
dimensional (3D)-position during long sessions of up to ∼24 h.
The combination of behavioral and electrophysiological data has
been used to assess the capabilities of the wireless recording
system to monitor brain dynamics across unperturbed alternation
of brain states and validate its sensitivity to detection of high-
frequency oscillations associated with sparse behavioral events. As
an illustration of unique features of the g-SGFET recording we
provide a first case demonstration of infra-slow topographically
specific and brain-state invariant pattern associated with high-
voltage spindles (HVS). Furthermore, we find changes in infra-
slow signal power between slow wave sleep (SWS) and rapid eye
movement (REM) sleep and identify the modulation of theta
oscillations and sleep spindles by the phase of the DC-signal
infra-slow dynamics during REM and SWS, respectively. The
results reported here demonstrate that neural probes based on
graphene active sensor arrays represent a mature technology, with
a high sensitivity, stability and biocompatibility, which allows to
chronically map wide frequency band epicortical brain dynamics
in freely behaving animals.

Results
Homogeneity and sensitivity of graphene active sensor tech-
nology. For the implementation of graphene active sensor arrays
as a readily available tool for neuroscientific research, the
maturity of large-scale, flexible graphene electronics is critical.
Two of the main challenges in the development of these tech-
nologies have typically been the production of high-quality sin-
gle-layer graphene (SLG) and its transfer onto the required
substrate. The development of wafer-scale methods to produce
SLG has concentrated many efforts and investment in the last
decade50, recently leading to important progress on the growth of
graphene by chemical-vapor deposition (CVD)51. Here, we show
that the quality of commercially available single-layer graphene
produced by CVD and transferred on a flexible polymeric sub-
strate (spin-coated on a 4-inch Si wafer) is high enough to enable
the fabrication of g-SGFET arrays with a homogeneous good
performance both in terms of gm and electrical low-
frequency noise.

Figure 2a shows the boxplot for the gm of nine neural probes,
each of them containing 64 g-SGFETs (with a size of 100 × 100
μm2 chosen for mesoscale epicortical LFP analysis10). These
probes were randomly selected from three wafers, all of them
processed in independent batches (see “Methods” for fabrication
details). It is possible to observe a high homogeneity and yield in
terms of gm, with 99% of channels working (defined as transistors
having a gm above 0.7 times the median). The measured median
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gm, 1.9 mS/V, is relatively high with respect to flexible silicon
FETs8 and comparable with typical organic transistor values17,52

due to the high electrical mobility and gate capacitance of
g-SGFETs. In Fig. 2b the equivalent noise at the gate (Vgs-rms) of
the same devices is shown (see supplementary information S2).
Vgs-rms is an important figure of merit to evaluate the sensitivity
of the sensors47, which is defined as the ratio between the
integrated current noise (Ids-rms) of the transistor and its
transconductance. Although this parameter presents a larger
dispersion than gm, it is possible to identify 3 out of 9 probes with
96% of the g-SGFETs showing a Vgs-rms below 10 µVrms,
suggesting that the measured noise is not directly related to gm.
In fact, low-frequency noise in graphene has been reported to
originate from charge trapping-detrapping events53, which makes
noise directly proportional to the density of traps and thus,
sensitive to impurities in the environment of graphene. Figures 2c,
d show the distribution of gm and Vgs-rms, respectively, for the
probe #3 labeled with an asterisk in Fig. 2a. The dispersion in the
transconductance of the g-SGFETs can be taken into account in
the calibration of the neural signals, correcting dispersion in the
signal amplification. Therefore, the truly limiting factor in terms
of homogeneity of the g-SGFETs performance is the equivalent
noise at the gate. Vgs-rms presents a log-normal distribution54 with

a mean of 4.13 μVrms and a standard deviation of 1.14 μVrms
(excluding the outliers shown in Fig. 2b). These results show that
graphene-based neural probes prepared using a 4-inch wafer-
scale fabrication process can be obtained with a high homo-
geneity and sensitivity. Additionally, upscaling of the fabrication
process to an industrial scale is expected to further improve the
homogeneity of g-SGFETs characteristics, especially in terms of
the contamination-dependent charge noise47,53.

Wireless headstage design and characteristics. Another aspect
that contributes to the sensitivity of the recording system is the
noise introduced by the headstage in the amplification and digi-
tization process. The amplification of the wide frequency band
activity requires a DC-coupled system, which implies the digiti-
zation of signals with large DC-offsets. In order to digitize signals
with such a large dynamic range and minimize quantization
noise, a two-stage transimpedance amplifier has been imple-
mented (see schematic in Fig. 2e). The first stage converts the Ids
currents from the g-SGFETs into voltage, which contains a wide
frequency band signal, including the infra-slow frequency com-
ponents of Ids. In the second amplification stage (see Fig. 2e), the
signal is high-pass filtered to remove the DC offset and fill the full
scale of the analog-to-digital converter (ADC). In order to

Fig. 1 Graphene active sensor arrays for chronic, wireless monitoring of wide frequency band epicortical neural activity. a Schematic of a g-SGFET and
its equivalent circuit. The small-signal transduction from voltage to current is modeled by the current source GmVsig, where Gm≡ dIds/dVgs. The DC current
is modeled by the Rds element. b Average stationary transfer characteristics of 8 g-SGFETs (left axis) and the gm of 64 g-SGFETs (right axis). The filled area
indicates the standard deviation. c Illustration of the rat with the untethered recording system implanted. The headstage and the 3D-printed frame to hold it
are covered by a 3D-printed enclosure. On top, the position markers of the motion capture (Mocap) system are fixed, which reflect light back to the Mocap
cameras placed in the room. The neural signals transduced by the graphene sensors are digitized and transmitted wirelessly to the signal receiver, which is
connected to a computer for signal recording. d g-SGFET array placed on the rat cortex; the position of the reference electrode in contact with the
cerebellum and two Pt-Ir electrodes at either side of the g-SGFET array are marked with arrows. e Photograph of the wireless headstage designed for these
experiments. f Photograph of the 64 g-SGFET array mounted on a customized connector (left) and zoomed image of the probe active area (right). The red
squares indicate the g-SGFETs on the array, which are connected to the headstage inputs with DC capabilities.
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dynamically choose between a DC or AC coupling for each
channel, a multiplexer has been added to switch between the
output of the first and the second stages, see Fig. 2e. Multiplexers
have been implemented in only 8 of the 64 channels in order to
minimize power consumption and, therefore, battery weight and
volume of the dedicated wireless headstage.

Having a relatively high transconductance is important in
order to pre-amplify the signals above the noise floor of the
transimpedance amplifiers. However, active sensors typically
present an intrinsic 1/f noise, which scales with the drain-to-
source current47. Therefore, Vgs-rms is a more suitable figure of
merit to evaluate the sensitivity of active sensors. In order to
validate that the sensitivity of the recording system is limited by
the intrinsic noise of the active sensors, it is paramount to
evaluate the impact of the amplification electronics on the
sensitivity of the system in a wide frequency band. The noise level
for DC and AC channels can be evaluated from the power
spectral density (PSD) of the equivalent voltage noise at the gate

(SVgs(f)), defined as the PSD of the current noise over the
transconductance (see Fig. 2f). The central part of the spectrum,
from roughly 0.05 Hz to 10 Hz, is dominated by the 1/f intrinsic
noise of the graphene transistors53. For frequencies below 0.05
Hz, the DC-channels show a slight increase above the 1/f noise,
which is attributed to the contribution of additional noise sources
in the amplification chain, leading to slightly larger Vgs-rms values
in the 0.005–0.05 Hz band (see supplementary information S2).
Above 10 Hz the noise spectra present a significant increase above
the 1/f noise, caused by the quantization noise of the headstage
amplifiers, which is more pronounced in DC-channels. The
SVgs(f) integrated in different frequency bands is shown in Fig. 2g
for all channels on the neural probe #3. The three maps
demonstrate the similarity of the sensitivity of the system in the
different ranges, with only a significant increase in the 20–200 Hz
band. In this band, the noise of the DC-channels exceeds
the noise of the AC channels; however all the graphene
sensors (except for an outlier) keep Vgs-rms values below 15 µV.

Fig. 2 Evaluation of system sensitivity. a Boxplot of gm for nine randomly selected probes from three different wafers produced in independent batches.
The yield in terms of gm above 70% of the median is indicated. b Boxplot for Vgs-rms measured in the 1–10 Hz frequency range, plotted for the same neural
probes evaluated in part a. All probes consisting of 64 g-SGFETs. The boxes extend from the lower to the upper quartiles, with a line at the median. The
whiskers extend 1.5 times the inter-quartile range and the data points beyond the whiskers are indicated by a dot. c Histogram of gm for the 64 g-SGFETs of
probe #3 (labeled in panel a) and Gaussian fit of the histogram excluding the outliers shown in panel a. d Histogram of Vgs-rms for the 64 transistors in
probe #3 (see panel b) and log-normal fit of the histogram excluding the outliers shown in panel b. e Equivalent circuit of the wireless headstage. f Power
spectral density (PSD) of the noise from DC channels (black) and AC channels (orange) in probe #3. The 1/f dependence is represented by the solid red
line. The vertical orange line indicates the hardware high-pass filter applied to AC channels at 0.15 Hz. The quantization noise of the DC and AC channels is
indicated by the horizontal dashed red lines. g Representation of the Vgs-rms for all g-SGFETs in probe #3 shown for different bandwidths; 0.05-0.5 Hz band
for the DC-channels (left), 1–10 Hz band (middle), and 20–200Hz (right). The position of the g-SGFETs on the array connected to DC-channels of the
headstage is indicated by the red squares. h Time domain representation of the noise spectra shown in part f and g (DC-channels filtered in the 0.05–0.5
Hz band and AC channels in the 20–200Hz band). Signal from eight channels are overlapped.
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The digitization noise for AC channels might be decreased by
further optimizing the gain of the second amplification stage.
However, the intrinsic noise of the amplifier is expected to
dominate for large amplification gains. In order to better illustrate
the constant sensitivity over frequency, Fig. 2h shows the time
domain representation of the noise signal filtered in the ISA band
(0.05–0.5 Hz) and the high-frequency band (20–200 Hz). The
histogram plotted next to the time-domain representation of both
signals shows their probability density distribution, which
demonstrates the similarity of their variance, as expected from
the integration of a 1/f spectrum in these frequency bands. Note
that the apparently lower amplitude in the time-domain
representation of the infra-slow noise is due to the different
timescales of 1/f noise in both frequency bands, but not due to a
different signal variance.

These results show the high sensitivity of the system in a wide
frequency band, with Vgs-rms below 5 μV in the infra-slow
frequency band. In the design of the headstage, we have
considered the compromise between reaching maximum sensi-
tivity in the high-frequency range and minimizing the power
consumption of the DC-coupled recording system with a
relatively high channel count. Smaller g-SGFETs are expected
to present a higher intrinsic noise (see supplementary informa-
tion S2), as expected for any active or passive sensor. Therefore,
our results indicate that the sensitivity of g-SGFETs in the infra-
slow frequency is not affected by the amplification electronics for
sensor areas below 100 × 100 μm. This is in strong contrast with
ISA detection using passive electrodes, for which the gain loss and
signal distortion is expected to increase for smaller sensor
dimensions. These results demonstrate the limits and the
scalability of the g-SGFET technology towards higher density
arrays with ISA detection capabilities.

Signal stability and sensitivity over time. Once the performance
of the graphene transistors and the headstage is properly assessed,
the stability of the g-SGFETs in an in vivo chronic setting needs
to be evaluated in order to ensure the reliability of the recording
system.

The Ids–Vgs curves of the g-SGFETs describe the relationship
between the measured drain-to-source current and the electro-
chemical potential at the graphene-electrolyte interface. The
minimum in Ids occurs at a particular gate voltage, referred to as
the charge neutrality point (CNP), which is also related to a
minimum in the sensitivity of the device (see Fig. 1a). The CNP
corresponds to the bias conditions for which the Fermi energy in
the graphene channel is, on average, closest to the energy with a
minimum density of states (i.e., the Dirac point)55. The Vgs

overpotential required to reach this energy depends on the
doping56 of the graphene channel, as well as on the electro-
chemical potential of the reference electrode. Therefore, instabil-
ities in any of these two parameters will produce a shift of the
transfer characteristics in the Vgs axis. In turn, this shift implies
that Ids will present a drift and that the sensitivity of the g-
SGFETs might vary over time for a constant Vgs overpotential.
Having a controllable doping of the g-SGFET and a homogeneous
CNP among sensors is, therefore, of paramount importance to
maintain a good sensitivity of the sensor array.

Figure 3a shows the evolution of the transfer characteristics
over 4 weeks after implantation of the neural probe (see
“Methods” for implantation details). The observed shift in the
CNP is presumably due to a combination of factors, including
desorption of contaminants by electrochemical cleaning of
the graphene-electrolyte interface57, adsorption of charged
chemical species present in the environment or changes in
the reference electrode potential (see supplementary

information S3). However, from these results it is not possible
to distinguish among all different contributions. The accumu-
lated drift in the CNP measured during the first 24 h of
recording reaches approximately 50 mV, with a maximum
change rate of ∼20 mV/h in the first hour (see supplementary
information S3). Figure 3b shows the measured signal in two
DC-coupled channels (high-pass filtered at 1 mHz) during the
first 2 h of recording. Figure 3c shows the amplitude-phase
relationship between these two DC-coupled channels in the
0.005–0.05 Hz band (see “Methods” section). The left panel
shows the amplitude-phase coupling measured in PBS, while
the right panel shows the equivalent results in vivo. The in vivo
signals exhibit fluctuations with a much larger amplitude than
the signals recorded in PBS, ruling out the transistor 1/f noise
and the headstage noise as the origin of these infra-slow
oscillations. Further, the in vivo signals recorded in the
0.005–0.05 Hz band present fluctuations in anti-phase, which
confirm that neither instabilities in the reference electrode nor
adsorption/desorption of chemical species on graphene are
responsible for these fluctuations. To conclude this discussion,
Fig. 3d shows the effect of drifts in the graphene doping on the
Vgs-rms of graphene sensors. These results demonstrate that
their sensitivity does not change significantly due to the
accumulated drifts during up to 24 h if the initial bias is
selected properly. Therefore, daily tracking of the CNP and
readjustment of the Vgs overpotential back to optimum values is
enough to keep a constant sensitivity over long-term monitor-
ing of the brain dynamics.

In addition to changes in the doping of graphene, the
transconductance and noise of the g-SGFETs might vary over
time due, for instance, to the creation of defects in the graphene
lattice. Pristine graphene has shown excellent chemical stability
due to its sp2 hybridization25. However, dangling bonds at edges,
grain boundaries, atomic vacancies or reconstructions in the
atomic lattice increase the reactivity of graphene, which might
lead to the creation of defects over time25. In addition, there
might be mechanical causes of performance degradation such as
detachment of graphene from the substrate or bending-induced
strain on the graphene lattice and metal-graphene contacts.
Another possible cause of sensitivity degradation could be the
encapsulation of the device by glial scar tissue58. This layer of
tissue can be modeled as an electrical impedance in series with the
graphene-electrolyte interface59, which can eventually lead to a
degraded frequency response of the g-SGFETs.

In order to track changes in the sensitivity over time in a
chronic implant, the gm extracted from the Ids–Vgs curves and the
Vgs-rms were periodically measured for the 8 DC-coupled
channels over 4 weeks. Figure 3e shows that gm remained
approximately constant, suggesting that there are no major
creation of defects in the graphene channel in the in vivo
environment. Similarly, the Vgs-rms shows only a slight increase in
the last days. Figure 3f shows the current noise (Ids-rms) for all the
64 channels measured at 200 Hz over 4 weeks. At this frequency,
it is possible to estimate changes in the sensitivity of the recording
system due to the low average power of high-frequency neural
signals (see supplementary information S4). The numeric values
displayed in Fig. 3f indicate the percentage of g-SGFETs working
(see supplementary information S4). The frequency response of
the transconductance (gm(f)) has also been measured in vivo over
4 weeks after implantation. For this purpose, two Pt-Ir electrodes
were implanted on both sides of the g-SGFET array (see inset in
Fig. 3g) and 1 µA amplitude pure tone signals of different
frequencies were applied using a current source. Figure 3g shows
the magnitude of gm(f) for different days after implantation of
the neural probe normalized by the mean magnitude at 1 Hz; the
phase of gm(f) is shown in the supplementary information S5. The

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20546-w ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:211 | https://doi.org/10.1038/s41467-020-20546-w |www.nature.com/naturecommunications 5

Appendix A: main articles

165



approximately constant slope (in a log-log scale) follows a
fractional order attenuation (i.e., approximately ∝1/f0.1), which
has been recently attributed to the non-ideal capacitive response
of the graphene-electrolyte interface34. A calibration method to
correct such transconductance variation has also been pro-
posed34. The evolution of the frequency response does not show
major changes in the slope of the gm attenuation, indicating that
there is not a significant increase in the electrical impedance in
series with the graphene-electrolyte interface due to device
encapsulation60. To conclude, Fig. 3g shows the recorded neural
activity in a state of increased theta power in day 1 and day 6 after
implantation, illustrating the good homogeneity and stability of
the g-SGFETs performance. Future studies could address in

greater detail, by studying a large animal cohort, the stability of
the biological signal over time, a critical aspect in electrophysiol-
ogy research and for the long-term performance of brain-
computer interfaces61,62. Furthermore, the polymers used as a
substrate and passivation layers could be modified to reduce the
moisture absorption14,63 and displace the neutral plane of the
device at the position of the graphene channel (see “Methods”
section). Yet, the results presented in this section reveal a
promisingly stable performance over time, which sets a lower
bound for the stability of g-SGFETs in a chronic implant
environment. Besides, from a system perspective, we show that g-
SGFET arrays can measure very slow biological signals (high-pass
filtered above 1 mHz).

Fig. 3 g-SGFET stability in-vivo. a CNP vs. time over 4 weeks. The inset shows the Ids–Vgs curves. Mean and standard deviation for n= 8 g-SGFETs
(1 outlier excluded). b Signal from two DC-coupled channels. Indicated positions corresponding to map in panel h. The spectrogram of channel (5,7) is
shown (bottom). c The phase-amplitude relation between the channels in panel b, for the noise measured in the beaker (left) and for the signals measured
in vivo (right). d Boxplot of Vgs-rms vs. shifts in the effective gating (Vgs–VCNP) of the 64 g-SGFETs. The colored area indicates the measured drift in the CNP
referred to a Ag/AgCl electrode during the first 24 h of recording. The initial bias and the CNP are indicated by the red and green vertical lines respectively.
e gm (top) and Vgs-rms (bottom) measured over 4 weeks post implantation; gm was obtained from the Ids–Vgs curves of the DC-coupled channels (n= 8 g-
SGFETs, 1 outlier excluded). f Current noise over 4 weeks after implantation (n= 64 g-SGFETs). The numeric values indicate the yield of working devices
(see supplementary information S4). The boxes in panels a and d–f extend from the lower to the upper quartiles, with a line at the median. The whiskers
extend 1.5 times the inter-quartile range and the data points beyond the whiskers are indicated by a dot. g Average and standard deviation of the
frequency-dependent transconductance (|gm | (f)) shown for different days after the implantation (n= 10 g-SGFETs). The inset shows the approximate
position of the Pt-Ir electrode close to the array, the simulated equipotential contour lines in a conductive plane and the relative signal amplitude measured
by each of the g-SGFETs in the array (see supplementary information S5). h Signals measured by all g-SGFETs on the array during a state of increased theta
activity on day 1 and day 6 after implantation.
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Biocompatibility of graphene devices following subacute and
chronic implantation. In order to assess the applicability of g-
SGFET arrays for the long-term monitoring of brain activity under
natural behavior we have also investigated the biocompatibility of
graphene-based epicortical devices. For this purpose, animals were
implanted with one of three devices onto the parietal cortex of the
brain, or had the full surgery without the implantation of any device
(sham control). A cohort of naive animals who had no intervention
were used as a control. Three time points were chosen to assess
tissue response: 2 weeks, 6 weeks, and 12 weeks post implantation
(Fig. 4a). Non-functional devices were custom-designed with an
enlarged surface area of CVD graphene, in order to maximize
exposure of the material to the brain tissue (see Fig. 4b for device
dimensions). The experiments were designed following the gui-
dance from the ISO 10993 standard, which details the biological
evaluation of medical devices. Ethylene oxide sterilization was
applied prior to implantation64. After implantation, the immuno-
histochemical response of the tissue and potential effects on the
behavior were investigated.

Behavior was assessed with the novel object recognition (NOR)
test, used to assess impairment of cognition and memory65. No

significant differences in the discrimination ratio were found in
animals implanted with any device at any of the timepoints
(Fig. 4c). The inflammatory response of the tissue was evaluated
using two main techniques: ELISA of blood or brain tissue for a
panel of inflammatory cytokines, and immunohistochemical
analysis of brain tissue for cells associated with inflammation.
ELISA was performed for four cytokines: interleukin-6 (IL-6),
interleukin-17a (IL-17a), interferon gamma (IFN-γ), and tumor
necrosis factor alpha (TNF-a). In blood serum, there were no
significant differences between any of the materials at any
timepoints (see Fig. S6). For cytokine expression in brain tissue,
significantly higher levels of all four cytokines in both graphene
and platinum devices were found at the 2 weeks timepoint, when
compared with the contralateral hemisphere control. Whilst
release of these factors is typically intended to prevent further
damage to the CNS tissue, prolonged expression can be
detrimental. By 6 weeks post implantation, there was still a
significant elevation of both IL17a and IFN-γ for graphene and
platinum devices vs. control expression, and by week 12, there
was no significant expression of any cytokine for any treatment
group (Fig. 4d and Fig. S7). These findings demonstrate that the

Fig. 4 Biocompatibility testing of non-functional g-SGFET vs. control devices. a The timeline describes the procedures carried out on animals during the
biocompatibility study. b Schematic of the high-surface area g-SGFET prototype developed for biocompatibility testing in-vivo. c Discrimination ratio from
NOR test over different days after implantation (see “Methods” section). For all five groups tested, the discrimination ratio was above 0.5 at all timepoints.
Evaluated for n= 7 animals per group at all timepoints, except 12 weeks which had n= 3 (sham), n= 4 (platinum and naive) and n= 7 (blank). The boxes
from the lower to the upper quartile, while whiskers represent minimum and maximum values. d Inflammatory marker IL-17a in the brain tissue for all
groups and timepoints. Evaluated for n= 4 animals after 2 and 12 weeks, and n= 3 animals at 12 weeks. e Microglial activation state, expressed as a
percentage of total microglial presence in the site surrounding the electrodes. n= 3 animals at 2 and 12 weeks, n= 2 animals (or 3 for the contralateral
hemisphere) at 6 weeks. Bars in panels d and e indicate the mean and range of data point. f Iba-1 immunoflourescent staining to assess activation status of
microglia at the surgical site obtained from 40 sections per animal. Scale bar equals 500 µm (50 µm at the insets). g Haemotoxylin and Eosin staining at
2 weeks post implantation shows there is no structural damage to the cortical layers directly at the device implantation site. Forty sections at 25 µm per
animal were imaged. Scale bar equals 1 mm (top) and 200 µm (bottom). In panels d and e two-way ANOVA test with Dunnett’s multiple comparison to the
naive control within each timepoint with n= 3 or larger: *, **, ***, and **** indicate p= 0.015, p= 0.007, p= 0.0016, and p < 0.0001, respectively.
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adverse tissue response to graphene is transient in nature,
comparable to the current clinical standard and specific to the
implantation site, with no observed systemic complications.

To confirm the ELISA data, manual counting of the activation
state of microglial cells was also performed to assess the
inflammatory state within the brain. Microglial cells are always
present within the brain, but their morphology serves as an
indicator of the inflammatory state within the brain62. Expression
of activated microglia was increased at both the 2 weeks and
6 weeks post implantation timepoints, and this activation was
present to a significant level at 2 weeks post implantation in all
four treatment groups when compared with the contralateral
hemisphere. However, similar to the ELISA, the activation of
microglia had returned to baseline levels by 12 weeks, indicating
no prolonged inflammatory reaction to the devices (Fig. 4e, f and
Fig. S8). TUNEL cell counting was also performed, to assess any
cell death within the tissue as a result of the implantation of
devices. At 2 weeks post implantation, there was a significant
increase in the number of TUNEL-positive cells for both
graphene and sham surgery groups. However, by 6 weeks there
was no evidence of cell death, which was also true at 12 weeks
(Fig. S9). Finally, there was no obvious morphological changes
seen with haemotoxylin and eosin staining. There was an
appearance of sunken cortex in some brains, however, this was
due to perfusion fixation with the glass window in place, and
there was no effect on the thickness of the cortical layers below
the implantation site, as shown in Fig. 4g.

Overall, both cytokine expression and histological analysis of
the brain area at the implantation site showed an acute reaction to
the implantation of devices. However, this was not specific to the
graphene devices, even though an enlarged surface area of
graphene was used in order to maximize the material specific
response. By 6 weeks, the reaction showed clear signs of
amelioration, and by 12 weeks, there was no detectable reaction
to the devices using any technique. Graphene and Pt devices
showed a similar level of microglia activation compared to
“blank” devices, while the latter shows much smaller presence of
inflammatory markers than for Graphene or Pt. These results
suggest that microglia activation is more strongly associated with
surgical procedure and probe insertion, while inflammation is
primarily affected by the device material. In this way, functional
sensor arrays, which present a much lower graphene area, are
expected to cause an inflammation closer to that caused by
“blank” devices. In addition, according to NOR test, graphene
devices did not affect significantly the animal behavior neither in
acute nor chronic timepoints. Based on these results, graphene-
based devices presented adequate biocompatibility for chronic
implantation, comparable to the equivalent platinum-based
devices.

Long-term monitoring of wide frequency band epicortical
brain activity during natural behavior. During the longitudinal
in vivo assessment of the g-SGFET sensitivity, we recorded epi-
cortical brain activity in a freely behaving rat for up to 24 h.
Throughout the recording period, the 3D-motion of the animal
was tracked with a motion capture (Mocap) system (see “Meth-
ods” section and Fig. 5a). The conjunctive recording of animal
motion and wide frequency band epicortical signals was used to
classify brain states and behavioral states over the recording
period. In turn, this classification was used to support two main
purposes. First, to validate the ability of the graphene-based
wireless recording system to perform long-term stable recordings
in freely moving rat across multiple brain states, and test its
suitability to study infra-slow epicortical LFP dynamics. Second,
to assess the g-SGFET sensitivity in the high-frequency range of

the LFP dynamics related to spontaneous behavior. The analysis
of the relationships between epicortical brain activity and freely
moving behavior was performed over timescales enabled by the
wireless recording system. This capability is critical for the study
of sparsely occurring behavior events, as well as ISA patterns over
distinct brain states.

Brain states were classified through a combination of spectral
features in the epicortical LFP signal and motor data. In this way
we distinguished the following classes: slow wave sleep (SWS),
REM sleep (REM), Awake Theta (AwT), and Awake Non-Theta
(AwNT). Figure 5b illustrates the criteria for the brain states
classification, described in detail in the “Methods” section. First,
slow wave (SW) states, showing increased power in the 1–25 Hz
band, and Theta states were identified (see Fig. 5b). The behavior
of the animal was then classified in either active or inactive
periods from the motion tracking data (see Fig. 5b and “Methods”
section). During inactive motor behavior, SW states were
classified as SWS except in direct proximity to HVS events,
while Theta states were categorized as REM if directly preceded
by SWS. On the other hand, Theta states occurring during active
behavior were classified as AwT and SW states as AwNT. Finally,
periods not assigned to Theta or SW states were classified as
AwNT regardless of the behavior of the animal. During the
majority of recording hours all four sleep/wake states were
expressed at least once in line with the polyphasic nature of rat
sleep66–68. Their relative prominence however varied substan-
tially over the course of the recording day paralleling the changes
observed in motor states (Fig. 5c), in line with circadian
rhythmicity.

Classification of brain states is typically based on the delta,
alpha-beta and theta frequency bands (see “Methods” section),
reflecting fast-time scale state-specific network dynamics. How-
ever, some recent research highlighted the role of infra-slow
dynamics in the regulation of brain sub-states40, via modulation
of higher LFP frequency bands during sleep39,45,69 and dynamic
coordination and segregation of the resting state35,70. These
results show the potential importance of ISA for a complete
classification and study of brain-states. The graphene-based
recording system presented here represents an ideal tool for the
study of cortical ISA signals with a high accuracy and spatial
resolution in freely behaving animals. The spectrogram in Fig. 5b
illustrates changes of the spectral power for frequencies between
0.015 and 4 Hz over the transition between SWS and REM. It is
possible to observe clear increase in the ISA-band power
following the transition from SWS to REM, even at the single
trial level (see Fig. 5b). Taking advantage of the long-term
recording capabilities of our system, we could sample 44 of such
sparsely occurring SWS-REM (REM duration longer than 40 s)
state transitions within a 24 h period. Besides, the spatial mapping
of ISA enabled by the g-SGFET technology allows to resolve the
topographic region-specific modulation of ISA at the SWS-REM
state transition (see supporting information S12). Interestingly,
delta-band power, associated with slow oscillations, and infra-
slow power showed changes in opposite directions between SWS
and REM sleep. While delta band power expectedly decreases
from SWS to REM, associated with desynchronized cortical state,
infra-slow power increases in REM (see Figs. 5d, e and Fig. S12
and statistical analysis in “Methods”).

In order to further illustrate the wide frequency band
sensitivity of the recording system, we quantified the strength
of modulation of LFP power in the slow frequency range (1–15
Hz) by the phase of the ISA activity during REM and
SWS. Interestingly, ISA phase significantly modulated theta
power (8–9 Hz) during REM sleep (Fig. 5f-left) and spindle band
power (9–13 Hz) during SWS (Fig. 5f-right). The strength of
ISA phase modulation was tenfold higher during REM compared
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to SWS, and the ISA phase of maximal LFP power differed
between states being close to the peak (~340°) in REM and
ascending phase (~300°) in SWS. Taking advantage of the
coverage of a significant section of dorsal cortical mantle by our
array, we assessed the spatial extent of the ISA phase modulation

of LFP power across cortex, with both theta power during REM
and spindle power during SWS showing strongest modulation in
posterior part of the array (Fig. 5g). While theta oscillations
measured on the cortical surface are generated by volume
conduction of multiple theta-rhythmic current generators of

Fig. 5 Infra-slow to high-gamma correlates of sleep and behavioral states. a 3D trajectories of the head position of the rat. The inset shows a scheme of the
position of the Mocap. b The spectrogram and raw LFP signal of an illustrative channel is displayed for distinct brain states (top); slow-wave (SW), high-voltage
spindles (HVS) and Theta. Movement speed is displayed along with classification of motor state (middle) and brain states (bottom). c Top: percentage of time
in the active vs. inactive state (interruptions to replace the battery not included). Bottom: percentage of time the rat was in each main brain state. d Average
0.015–4Hz spectrogram for one DC channel triggered on REM episode onsets (n= 44). eMedian PSD across SWS-REM transition episodes (n= 44) for 30 s
periods pre and post REM onset. Shaded area marks frequency bins with significant difference (p < 0.05, permutation test). f Color-coded strength of
modulation of LFP power across slow frequency range (y-axis) for one channel by the phase of ISA across 0.05–0.2 Hz range derived from one DC channel (see
panel g) during REM sleep (left) and SWS (right) states. Gray color indicates nonsignificant modulation. Insets show circular plot of LFP power in theta/spindle
band as a function of ISA phase. g Color-coded topographic maps of ISA phase modulation of LFP power in theta band during REM (left) and spindle band
during SWS (right). ISA phase derived from DC channel marked with a red square. h Color-coded strength of modulation of LFP power across gamma frequency
range (y-axis) for one channel by the phase of ISA across 0.05–0.2 Hz range derived from one DC channel (left) and by the phase of LFP in the slow frequency
range rhythm (right) during REM. Inset, circular plot of LFP gamma power with respect to respective (ISA or theta) phase. i Average spectrogram for high-
frequency range of LFP on posterior channel triggered on rear onset (n= 162). j Head elevation (bottom) and high gamma power (top, same channel as in i)
color-coded and centered on rearing onset shown for all events sorted by duration of rear event.
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entorhino-hippocampal circuits71,72, sleep spindles are generated
by rhythmic currents of thalamo-cortical projections to granular
cortical layers73. The fact that power of hippocampal theta and
cortical spindle band is modulated by the phase of ISA derived
from cortical surface likely reflects global infra-slow dynamics
that co-modulates both limbic and cortical circuits. While the
topographic profile of theta power (Fig. 5g) modulation by ISA
phase is consistent with anatomical localization of underlying
hippocampal theta current generators, stronger modulation of the
spindle power on posterior cortical areas might reflect anatomical
thalamo-cortical subcircuits that are more strongly co-modulated
by ISA dynamics than derived from epicortical DC signal. Finally,
we tested whether g-SGFETs SNR is sufficient to detect
fluctuations in the high-frequency LFP dynamics at different
time scales and to this end quantified the strength of modulation
of broad range gamma power (30–200 Hz) by both ISA phase and
theta rhythm phase during REM sleep. Gamma power in in the
range of 60-120 Hz was modulated by the ISA phase reaching
maximum power at the peak of the ISA (~10°) (Fig. 5h-left) and,
consistently with published work based on intracranial record-
ings73, high gamma (120–150 Hz) power was modulated by theta
phase (Fig. 5h-right).

Having established that we can record state-selective
epicortical signals with g-SGFETs across a range of brain/
motor states, we subsequently went on to demonstrate
applicability of the technique for linking behavior and cortical
physiology. To this end we focused on a specific and sparsely
occurring spontaneous behavior, rearing on the hindlimbs.
Rearing is a exploratory behavior in rodents, which is context-
and stress-sensitive74,75, has been hypothesized to support
sampling of distal landmarks for construction of a cognitive
model of the surrounding environment75,76 and is implicated
in modulation of cortico-hippocampal interactions in theta and
gamma frequencies76,77. In general, due to the sporadic and
spontaneous occurrence of rearing events their neural physiol-
ogy has been less widely investigated with conventional
recording methods compared to task-specific trained motor
actions. Technologies that combine long-term recording
stability, high spatial resolution, wireless methodology and
precise 3D-tracking of animal behavior, as presented here,
open the door to investigating this class of phenomena with a
great level of detail. Therefore, we took advantage of the
presented technology to collect a large number of individual
spontaneous rearing events during a full 24 h period. Evaluat-
ing the signature of rearing on the gamma epicortical activity
band is of additional interest for our study, since it can be used
to illustrate the capabilities of the g-SGFETs in the high-
frequency LFP range. In order to robustly detect rearing
episodes we took advantage of the continuous 3D tracking,
detecting rearing events (n= 163) based on head elevation
above ground (see “Methods” and supplementary informa-
tion S6). While rearing events occurred throughout the
recording period, expression of rearing activity was highly
variable across the day, as with overall motor activity, ranging
from 250 s to 0 s spent rearing per hour (mean 43.8 ± 12.1 s,
supplementary information S10). Additionally, rearing events
expressed variability in terms of height (mean 250,6 ± 2.7 mm,
see Fig. 5j and Fig. S10d) and duration (mean 5.7 ± 2.8 s, see
Fig. S10e).

Having detected this set of spontaneous rearing episodes we
proceeded to analyze the power spectra of epicortical LFP, which
showed distinct rearing-associated changes in brain signals for
specific frequency ranges. Rearing was associated with the
suppression of epicortical high-frequency (90–200 Hz) activity
(Fig. 5i), which was also observable on the single trial level across
the range of rear heights (Fig. 5j) and most prominently observed

on more frontal channels of our array (see supplementary
information S11). In strong contrast no such suppression was
observed in the gamma band between 60 and 70 Hz (see Fig. 5i
and supplementary information S11).

Subsequently, we took advantage of the infra-slow recording
capability of g-SGFET arrays to characterize topographic infra-
slow and spectral AC epicortical signals associated with rare
highly synchronous high-voltage spindle (HVS) oscillations78,79,
as the most likely cortical dynamics associated with large infra-
slow currents, similar to those shown during epileptiform activity
in development80. Consistent with previous studies78,79, HVS
occurrence was associated primarily with alert immobility states
(IMM) (566 events, Fig. 6a), where IMM is defined as the
intersection between inactive and awake states. Benefiting from
the long-term unperturbed recording allowed by our system we
could also sample significant number of HVS events during REM
sleep (92 events), where they coexisted with hippocampal theta
oscillations visible on posterior derivations (Fig. 6b). While
median duration of HVS events was comparable in immobility
and REM sleep (~5 s, Fig. 6c-top), the rate of detected HVS events
varied across the recorded 24 h period, (Fig. 6c-bottom).
Interestingly, HVS during both brain states were associated with
transient infra-slow fluctuations as visible in single examples
(Fig. 6a, b) and average profiles (Fig. 6d, e). Specifically, positive
(putative source) and negative (putative sink) infra-slow tran-
sients in, respectively, posterior and frontal positions on the array
coincided in duration (median 5 s) with oscillatory dynamics of
HVS (Fig. 6c, d, e). Topographic profiles of spectral peak power of
HVS were comparable for both states and showed maximal
increase to baseline in frontal derivations overlaying sensory-
motor cortex (Fig. 6f). REM-associated HVSs were, on average,
slower and larger in power than immobility-associated ones
(Wilcoxon ranksum test, p < 1e-19 for power and p < 1e-8 for
frequency, Fig. 6g). In contrast, spatial structure and magnitude
of infra-slow fluctuations associated with HVS as expressed by
positive fluctuations on posterior and negative fluctuation on
frontal DC channels, were comparable for both states (Wilcoxon
ranksum test between IMM and REM, p= 0.5 for posterior peak
magnitude and p= 0.9 for frontal trough magnitude, Fig. 6h).

Although future work is required to replicate these observa-
tions in a large cohort of animals, our long-term recordings
enabled detailed quantitative analysis of rare physiological
patterns and illustrate the power of this technology. Because of
their sparse, strongly state dependent occurrence and distribution
over a wide frequency band these events illustrate the class of
phenomena whose functional study necessitates the integration of
neural-behavioiral measurements with both high spatio-temporal
resolution and large spatio-temporal span in freely moving
animals, as enabled by our wireless electrophysiology system.

Discussion
Graphene active-sensor arrays represent an emerging technology
in neural engineering, which has recently demonstrated a strong
potential for the production of high-count sensor arrays6,7, as
well as for wide frequency band neural sensing33. In this article,
we have presented a detailed characterization of various technical
aspects required for their actual application, such as the homo-
geneity in the performance of the graphene sensors, the specifi-
cations required for a dedicated headstage, the limits in the
sensitivity of g-SGFETs or their chronic stability and bio-
compatibility in vivo and demonstrated lines of investigation
enabled by their technical characteristics.

In the first place, we have demonstrated the high yield and
homogeneity of the g-SGFETs produced in a wafer-scale process
using commercially available CVD graphene. This demonstration
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represents an important milestone towards the production of
graphene-based neural probes at an industrial scale. On another
front, the application of graphene transistors for neural sensing
also requires the development of specific electronic equipment for
biasing the sensors and converting the measured drain-to-source
currents into equivalent voltage signals at the gate. In this study,
we have presented a dedicated wireless headstage, which allowed
describing the impact of the signal amplification and digitization

process on the sensitivity of the recording system. In this way, we
have identified the challenges in the design of full-band amplifiers
given specific energy and weight constrains for wireless applica-
tions. Furthermore, using a dedicated headstage we have
demonstrated that the sensitivity of graphene active sensors in the
ISA band is not significantly affected by the rest of the data-
acquisition system components. Yet, we observed slow drifts in
the measured signals in vivo, which were presumably attributed

Fig. 6 Topography of AC and DC dynamics associated with high-voltage spindles. a, b examples of HVS events during immobility (a) and REM sleep (b).
Spectrograms at posterior (top) and anterior (middle) positions on the array visualize dynamics of HVS (vertical lines at onsets) and ongoing oscillatory
dynamics (low-frequency synchrony in IMM, theta oscillation in REM). Bottom two panels show DC LFP signals from posterior (green) and anterior
(brown) positions on the array and head speed. c Distribution of duration of single HVS events for immobility and REM (top) and total hourly duration of
HVS across recorded period (bottom). d Average DC LFP traces triggered on HVS onset during immobility and REM sleep (channels arranged as in Fig. 2g-
left, inset showing anatomical localization of DC ECoG recording sites). e Average AC LFP spectrograms triggered on HVS onset during immobility (left)
and REM sleep (right). The spectrograms at posterior (top) and anterior (bottom) positions on the array contrasting spectral content associated,
respectively, with theta (posterior) and HVS (anterior) oscillations. Pseudo-color, spectral power (a.u.). f Topographic maps of change, relative to baseline,
in HVS power at peak oscillation frequency during immobility (left) and REM sleep (right). g Distributions of power and peak frequency of individual HVS
during immobility (blue) and REM sleep (red). h Distribution of DC fluctuation magnitude at posterior lateral and frontal medial derivations for single HVS
during immobility and REM (color code as in g).
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to adsorption of charged molecules on the graphene channel or
drifts in the electrode reference potential. These drifts were easily
eliminated with a high pass filter at 1 mHz; however, future
experiments could explore the functionalization of the graphene
channel and use of alternative reference electrodes to maintain a
more stable doping level.

Moreover, we have demonstrated the stability of the graphene
sensors in vivo by characterizing their sensitivity over 4 weeks. In
order to determine the stability of the signal quality we have also
evaluated the signals induced by bipolar stimulation in the LFP
frequency band, demonstrating a rather stable frequency response
over time. These results suggest that the impedance of glial tissue
surrounding the implant does not significantly affect the sensi-
tivity of the g-SGFETs in vivo. To conclude the characterization
of the device stability, we have evaluated the biocompatibility of
graphene devices over 12 weeks via behavioral and histological
markers. These results demonstrate an acute foreign body
response comparable to platinum-based devices, which returns to
values close to those of control animals 12 weeks after implan-
tation. The demonstration of the graphene biocompatibility and
long-term stability in a chronic implant represents another
important turning point towards the large-scale production of
graphene-based neural probes.

The experimental validation of this technology opens up many
opportunities for electrophysiology studies in which having access
to unconstrained behavior and multichannel recordings with
sensitivity in a wide frequency band is relevant. In this study, we
have shown quasi-continuous monitoring of brain activity in long
recording sessions of up to 24 h, which allowed us to acquire large
samples of neural activity across unperturbed behavioral and
brain states. In combination with 3D-tracking, the wireless
technology allowed us to explore the relation between neural
activity patterns and behavior events, which occur sparsely over
time, with sufficient statistical power. In particular, analyzing
epicortical LFP signals with respect to rearing behavior we
observed differential modulation of the 60–70 Hz gamma
and 90–200 Hz high gamma range. While high-frequency
activity between 90 and 200 Hz was consistently suppressed in
a topographic manner, no such suppression was observed for the
60–70 Hz range, pointing towards distinct behavioral selectivity
of underlying circuit mechanisms. The determination of
frequency-specific power modulation in the gamma range, even
for single rearing events, demonstrates the high sensitivity of the
system in the high-frequency spectrum of the LFP.

In the low-frequency range, we found that infra-slow power
<0.2 Hz increased significantly across DC sites during REM sleep
episodes compared to SWS and thus showed the opposite state
dependence than power in the slow oscillation band (1–4 Hz).
Interestingly, infra-slow dynamics modulated power of theta and
gamma rhythm during REM and with lower strength, power of
sleep spindles during SWS. While modulation of LFP power in
theta, beta and gamma bands by ISA phase derived from BOLD
signal and DC EEG has been shown in humans81,82 and recently
in anesthetized rats70, the present result is the first demonstration
of interaction between physiologically established oscillatory
dynamics, theta, spindle and gamma oscillations, and ECoG-
derived ISA in freely moving rodent. Consistent with published
intracranial work73, volume conducted hippocampal theta mea-
sured at the cortical surface also modulated cortical gamma
power, thus demonstrating that the developed technology is
sufficiently sensitive to characterize known gamma dynamics.

While power of ISA modulating sleep spindle oscillations
power during SWS was much lower than that during REM, a
related hypersynchronous thalamo-cortical rhythm, HVS, was
associated with much larger DC transients. Long-term wireless
recording allowed us to evaluate the characteristics of HVS in a

large statistical sample of events. The rate of occurrence during
different brain states could be determined over a 24 h period,
highlighting their occurrence also outside the awake resting state
in which they are commonly reported to be selectively occurring.
Specifically, we found them prominently expressed during REM
sleep83. Having established this bimodal state specificity, we
analyzed HVS events separately for awake immobility and REM
sleep. Topographic analysis of the HVS peak power demonstrated
that sensory-motor cortical preponderance for these oscillations
is comparable for these two states. In contrast, the large sample
size of events in both states allowed to identify a significant dif-
ference in both frequency content and power of the HVS between
these two brain states. Furthermore, the capabilities to simulta-
neously map ISA patterns allowed to determine the distinct
topographic structure of spatially specific infra-slow frequency
components associated with HVS, showing phase-reversal across
anterio-posterior axis. Importantly, these ISA features were con-
served between REM-sleep and awake immobility, highlighting
that the underlying origin of the DC signal is related to the HVS
event itself and is independent of the brain state.

Future work is required to replicate the presented results in a
large cohort of animals, follow them longitudinally and relate the
surface pattern to intra-laminar and subcortical theta, spindle,
gamma77 and HVS84 generators. Although we have focused the
attention on epicortical ISA patterns, analyzing their correlation
with ISA dynamics across cortical laminae could provide
important insights into the origin and implications of ISA. A
promising strategy in this direction is to combine the epicortical
arrays presented here with graphene-based depth probes33.
Future chronic recordings of depth and large-scale LFP signals
across behaviors and behavioral states in freely moving uncon-
strained animals will lay the foundation for a new qualitative step
in the brain dynamics investigation from infra-slow to very fast
frequencies72, contributing to our understanding of the origins of
ISA dynamics in the context of resting states and default mode
networks and its links to faster brain dynamics.

In summary, the thorough in vitro and in vivo evaluation of the
sensing and long-term recording capabilities of graphene active
sensors from a system perspective demonstrates the maturity of
this technology and supports its application for the study of ISA
without sacrificing high-frequency LFP components. In this
direction, we have successfully evaluated ISA patterns during
distinct brain states and the correlation of high-frequency oscil-
lations with specific sparsely occurring behaviors. Our results
represent an important step towards the broad implementation of
graphene active-sensor arrays for neuroscience research, offering
a stable and biocompatible sensing technology for long-term
mapping of wide frequency band epicortical brain activity during
spontaneous behavior.

Methods
Fabrication of g-SGFET arrays. Arrays of g-SGFETs and devices for bio-
compatibility were fabricated on a 10 μm thick polyimide (PI-2611, HD Micro-
Systems) film spin coated on a Si/SiO2 4” wafer and baked at 350 °C. Polyimide was
chosen as a substrate due to its thermoxidative stability, high mechanical strength,
insulating properties and chemical resistance63,85, as well as its expected bio-
compatibility and previously reported stability for chronic implants4,5. A first metal
layer (10 nm Ti/100 nm Au) was deposited by electron-beam vapor on a previously
photodefined-negative AZ 5412E (Clariant, Germany) and then structured by a
lift-off process. Afterwards, the graphene grown by chemical-vapor deposition on
Cu was transferred (process done by Graphenea s.a.). In platinum devices for
biocompatibility studies, another photolithography, metal evaporation and lift-off
followed the first one. Graphene was then patterned by oxygen plasma (50 sccm,
300W for 1 min) in a reactive ion etching (RIE). The photodefinable resist used to
protect the graphene in the channel region was HIPR 6512, chosen to minimize the
level of contamination. After the graphene etching, a second metal layer was
patterned on the contacts following the same procedure as for the first layer. The
lift-off step was followed by an annealing in ultra-high vacuum to improve the
contact resistance and to eliminate resist residues from the graphene channel.
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Subsequently, the transistors were insulated with a 3-µm-thick photodefinable SU-
8 epoxy photoresist (SU-8 2005 Microchem), keeping uncovered the active area of
the transistors channel. The SU-8 photoresist was chosen as insulating material
because it is photodefinable and because its use in chronic implants has been
previously reported86,87. The use of a photodefinable passivation polymer is
required in the current graphene technology because etching of the passivation
layer would also etch the underlying graphene channel. The polyimide substrate
was structured in a reactive ion etching process using a thick AZ9260-positive
photoresist (Clariant) layer as an etching mask. The neural probes were then peeled
off from the wafer and placed in a zero insertion force connector to be interfaced
with our custom electronic instrumentation. Finally, the devices were rinsed in
ethanol to eliminate remaining resist residues on the graphene channel.

Phase-amplitude coupling evaluation. The signal inversion observed between
channels in the infra-slow frequency band (0.005–0.05 Hz) was quantitatively
evaluated by calculating the probability density of a signal amplitude as a function
of its phase with respect to a second signal. In order to estimate the phase between
the two signals the Hilbert transform of each of them was computed using the
python library scipy and the difference between their phase calculated. A two-
dimensional histogram was then used to express the probability density of the
signal amplitude in the amplitude-phase space (Fig. 3c).

Ethical approval and animal handling. The experiments in-vivo were in accor-
dance with the European Union guidelines on protection of vertebrates used for
experimentation (Directive 2010/63/EU of the European Parliament and of the
Council of 22 September 2010). Electrophysiological experiments with Long Evans
rats were carried out under the German Law for Protection of Animals (TierSchG)
and were approved by the local authorities (ROB-55.2-2532.Vet_02-16-170).
Experimental procedures using Sprague Dawley rats for biocompatibility assess-
ment were carried out according to the United Kingdom Animals (Scientific
Procedures) Act, 1986 and approved by the Home Office and the local Animal
Ethical Review Group, University of Manchester. Rats were kept under standard
conditions (room temperature 22 ± 2 °C, 12:12 h light–dark cycle, lights on at
10:00), with food and water available ad libitum.

Implantation of the graphene-sensor arrays for electrophysiological mea-
surements. As described previously in Garcia-Cortadella et. al.34, an adult Long
Evans rat, weighing 580 g, was anaesthetized with MMF (Midazolam 2mg/kg,
Medetomidin 0.15 mg/kg, Fentanyl 0.005 mg/kg). 1 h after, MMF induction Iso-
flurane was supplemented at 1% to maintain the rat anaesthetized and Metamizol
was given at 110 mg/kg. The posterior-dorsal area of the head was shaved, the skin
locally disinfected with Povidone-iodine and subcutaneously infiltrated with local
anesthetic Bupivacaine. The skin was then incised and the dorsal skull cleaned
carefully by blunt dissection. The dried skull was covered with UV-curing adhesive
Optibond (Kerr) and a 3D-printed base ring was anchored to skull with screws and
Metabond cement (Parkell).

Symmetric craniotomies with a maximum width of 5 mm were performed
bilaterally, extending between +2 mm and −8 mm with respect to Bregma in the
anterior-posterior axis. The dura mater was incised and removed within these
craniotomies. A further craniotomy of 1 × 1 mm was performed over the
cerebellum. All craniotomies were covered with prepolymerized
polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning, USA) with mixing ratio
1:10 and sealed with Vetbond (Animal Care Products, USA). The skin margins
around the implant were sutured and the implant closed with a protective cap.

After 1 week of recovery the g-SGFET array was implanted under Isofluran
Anesthesia (5% induction 1% maintenance). After partial opening and sidewards
flapping of the polymer covering the right hemisphere the array was placed onto
the pial surface positioned such as to cover the posterior aspect of the right
hemisphere (ca −7 to −2 mm from bregma). In addition, two Pt-Ir wires were
implanted at either side of the g-SGFET array. One proximal to the array, the other
distally on the opposing hemisphere. The polymer cover was flapped back into
position with the flexible cable of the g-SGFET array leaving through the remaining
slit. A second PDMS cover was used to cover both the incised polymer and array,
anchored to the skull with Vetbond and Evoflow (Ivoclar Vivadent, Liechtenstein)
and sealed with silicon gel 3-4680 (Dow Corning, USA). Finally, an Ag/AgCl
electrode was placed in contact with the cerebellum as a reference for the recording
of neural activity.

Implantation of the graphene, platinum, and PI devices for biocompatibility
evaluation. Sprague Dawley rats (200–280 g) were anesthetized using isoflurane
inhalation (typically at 3.5% for induction and between 1.5 and 2.5% for main-
tenance) in 100% oxygen. The top of the animal’s head was shaved and the animal
was positioned within a stereotactic frame with tooth and ear bar fixation. Animals
were placed on a heated blanket, with a pulse oximeter attached to the foot and a
rectal probe inserted to monitor body temperature. Viscotears liquid gel (Bausch &
Lomb, UK) was applied to the eyes for protection during the procedure. Depth of
anesthesia was confirmed and maintained throughout the surgery via absence of a
pedal reflex. All experimental animals received a subcutaneous injection of
buprenorphine (0.03 mg/kg). The head was swabbed with iodine and a large flap of

skin removed to expose the skull but not the temporal muscle. The periosteum was
removed using a bone scraper. The skin around the perimeter of the removed tissue
was glued to the bone using Vetbond tissue adhesive (3M, UK). A craniotomy (~4
mm x 6mm) was performed using a high speed surgical micro drill. Lambda was
used as a posterior reference for the craniotomy, which was positioned at least 1
mm lateral to the midline, to avoid the sagittal sinus. The drilling region was rinsed
regularly with saline to prevent heat damage. Once the bone around the border of
the craniotomy was sufficiently thin, all bone shavings and other debris were
removed using compressed air and the bone flap was gently removed. The cortical
surface was kept moist using Ringer’s solution. A fine needle with the tip bent at a
90° angle was used to gently lift the dura away from the cortical surface and
another needle was used to create a slit in the dura, carefully positioned to avoid
blood vessels. A pocket was created by lifting the dura next to the opening using
fine forceps and the device was carefully placed on the cortical surface. The dura
was then repositioned to hold the device in place. A glass window (UQG Optics,
UK) of the appropriate size was positioned to fill the craniotomy and was fixed in
place using dental cement (Superbond C&B, Prestige Dental). The animals received
a subcutaneous injection of 0.9% saline (1 ml) and were placed in a recovery cage
until the anesthetic had worn off.

Behavioral testing for biocompatibility evaluation. All animals had pre-surgical
behavioral baselines taken at the age of 5 weeks. One week later, all animals were
assigned to one of five groups; graphene electrode, platinum electrode, blank
electrode, sham surgery (no electrode implanted), or naive (no surgery). Animals
were then tested at one or two timepoints—2 weeks, 2 and 6 weeks, or 6 and
12 weeks post-surgery. Timepoints were chosen in line with ISO 10993 definitions;
where prolonged exposure is classified >24 h but <30 days, and permanent expo-
sure is defined as >30 days (ISO 10993-6:2007).

Prior to the first exposure to NOR rats were placed into the empty arenas the
day before testing for 20 min with their cage mates for acclimatization purposes.
The square Plexiglas boxes (measuring 52 cm by 52 cm at the base with a height of
30 cm) had a white floor and black walls. Animals were acclimatized to the NOR
arena before experiments began by placing them into the arena for 3 min while
there were no objects within the arena. The NOR test comprises a training and
testing trial, separated by an inter-trial period. In the training session, two identical
objects were placed within the arena, such as two bottles of the same shape and
size. In the testing session, two new objects were placed in the arena, one object
identical to that during the training session, and one completely new object, such as
a can. For training sessions, animals were placed in the arena and allowed to
explore for 3 min, before returning to the home cage. Animals were left in the
home cage for 30 min, before being placed into the arena for the testing session,
again remaining in the arena to freely explore for 3 min. The time the animal spent
interacting with the objects was measured in both the training and testing trials. In
a healthy animal, the animal should spend more time interacting with the novel
object during the testing session. Ideally these tests should not be used >3 times for
any animal, and therefore animals in the 12 week implantation group were tested
for NOR at baseline and then at 6 and 12 weeks post implantation. All other
animals were tested at every selected timepoint available before sacrifice.

Videos of NOR test trials were manually scored by blinded researchers using an
online stopwatch (http://jackrrivers.com/program/). Animals were classed as
interacting with an object if their nose or paws touched the object. The amount of
time spent interacting with the two objects was analyzed, and a discrimination ratio
was determined by dividing time spent interacting with the novel object with time
spent interacting with the known object. A discrimination ratio >0.5 indicated an
animal had a preference for the novel object, a sign of normal cognition.

Tissue collection and processing. At 2 weeks, 6 weeks or 12 weeks post
implantation of devices, animals were culled using an appropriate method for the
type of subsequent analysis. For histology, animals underwent perfusion fixation
using heparinised saline, followed by 4% paraformaldehyde (PFA; Sigma-Aldrich,
UK; 441244) in phosphate-buffered saline (Sigma-Aldrich, UK; D8537). Tissue was
stored a minimum of 24 h in PFA, transferred to a sucrose solution for 48 h, and
frozen before cryosectioning 40 sections at 25 µm per animal. Cryosections were
stained for one of three markers: (i) ionized calcium binding adaptor molecule 1
(Iba1) to quantify microglial population, (ii) terminal deoxynucleotidyl transferase
dUTP nick-end labeling (TUNEL) staining to assess apoptosis, or (iii) haemotixylin
and eosin (H&E) to assess gross morphology of the brain tissue. Tissue sections
were blocked in 5% goat serum in PBS with 0.1% triton-X, before incubation with
Iba1 primary antibody (1:200, 019-19741, Wako) overnight. A goat anti-rabbit
Alexa 594 secondary antibody (1:1000, A11012, Invitrogen) was used for visuali-
zation. For immunofluorescently stained tissue, a DAPI counterstain was per-
formed before slides were mounted using ProLong Gold mountant (P10144,
ThermoFisher).

For TUNEL staining, the manufacturer’s instructions were followed using a
DeadEnd™ Colorimetric TUNEL System (G7360, Promega). Following
diaminobenzidine (DAB) visualization of the TUNEL staining, slides were
counterstained using methyl green (0.1% w/v aqueous solution, Alfa Aesar). H&E
staining was performed as standard, using a 1-min haemotoxylin staining time,
followed by an acetic acid rinse, and a 30-s eosin staining time. Slides for both TUNEL
and H&E staining were mounted using DPX mountant (06522, Sigma-Aldrich).
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Slides were imaged using the 3D Histec Pannoramic250 slide scanner, and images
analyzed using CaseViewer (Version 2.2, 3DHistech Ltd). TUNEL-positive cells were
counted and averaged across the cortical surface in forty 25 µm sections per
hemisphere. Microglial cells were individually classified into one of four
morphologies; Grade 0 (resting/ramified), Grade 1 (de-ramifying/re-ramifying),
Grade 2 (activated/ameboid) or Grade 3 (clustered & activated) as previously
described88. Activation was determined as a percentage of total microglial cells, which
were either Grade 3 or 4.

For ELISA, animals were culled by rising concentration of CO2, before cardiac
puncture was performed to extract blood. Brain tissue was extracted, snap frozen in
liquid nitrogen, and stored at −80 °C until further use. The extracted blood was
collected in a blood collection tube (Vacutainer, Becton Dickson, UK) and allowed
to clot at room temperature for 15–30 min. The tube was centrifuged at 5000RPM
for 10 min at 4 °C, and the resulting serum supernatant was collected and stored at
−80 °C until further use. There were insufficient serum samples to be run from the
naive control group, so this group was excluded from analysis. Brain tissue was
lysed by addition of liquid nitrogen and grinding the tissue to create a powder, to
which NP-40 lysis buffer (150 mM NaCl, 50 mM Tric-Cl, 1% Nonidet
P40 substitute, Fluka, pH adjusted to 7.4) containing protease and phosphatase
inhibitor (Halt™ Protease and Phosphatase Inhibitor Cocktail, ThermoFisher
Scientific) was added to the tissue. Samples were centrifuged at 5000RPM for
10 min, and the supernatant stored at −80 °C until further use. ELISA kits for four
cytokines were used, IL-17a (437904, Biolegend), IFN-γ (439007, Biolegend), TNF-
α (438204, Biolegend), and IL-6 (437107, Biolegend). Manufacturer instructions
were followed for all four kits.

Motion capture and behavioral states classification. The rat was recorded for up
to 24 h during spontaneous behavior in a recording arena of 100 × 100 cm to which it
was prehabituated. During the recording session it had ad libitum access to food and
water. The battery of the wireless system was exchanged once every 6 h. A motion
capture (Mocap) system (Optitrack) using passive reflective markers and 8 cameras
was used to track the motion of the animal head in three-dimensional space. Four
reflective markers were anchored to the protective cap and their position averaged to
infer the position in 3D and orientation of the head. Instantaneous headspeed in 3D
was computed as time derivative of the modulus of the spatial coordinates. Motive
2.2 software was used for the analysis of Mocap data.

For the classification of the behavior as active or inactive, periods where
headspeed exceeded 100 mm/s were labeled as active. In a second step active
periods shorter than 5 seconds were skipped while gaps in active periods shorter
than 5 s were concatenated with the neighboring active state. Timepoints, that did
not fall under this definition of active, were labeled as inactive. The ratio of active
and inactive periods varied substantially across total recording period (between
6.6% and 88.0% active per hour, mean 40.2% ± 4.7% active per hour).

Rear events were defined as short elevations of the head to heights that
necessitate the animal to stand on its hindlimbs. After visual inspection of z
elevations throughout the recordings a threshold of 200 mm elevation from ground
was determined to effectively separate punctuate rearing onsets/offsets from
ongoing height variations at lower z positions (see supplementary
information S10). While active and inactive states were defined as mutually
exclusive, rear events were considered to be a substrate of the active motor state.

Neural signals processing and analysis. The wireless headstage was controlled
using Multi Channel Experimenter 2.12.1 software and the recorded data was
converted to HDF5 format using Multi Channel Data Manager 1.13.1. Neural data
was calibrated according to the transconductance of g-SGFETs using Python
2.7 scripts and exported to Neuroscope software for data exploration (see data and
code availability statement). Analysis of neural signals was carried out using Matlab
2016b scripts (see code availability statement).

Brain states classification. Two channels of the epicortical array were chosen for
the separation of brain states. One channel was selected from the posterior area of
the array, putatively overlying the hippocampal formation and exhibiting promi-
nent theta oscillations. A second channel was selected from the frontal area,
recording from the region and neighborhood of somatosensory cortex, where high-
voltage spindles are expressed most prominently. Power spectra were computed on
whitened LFP signals in the range from 1 to 200 Hz using multitaper methods
using 4-s windows in sliding 0.5 s steps. First, slow wave (SW) states were identified
as periods were the z-score of the summed power of delta (1–4 Hz), alpha-beta
ranges (10–25 Hz) exceeded −0.1. Gaps shorter than 5 s were concatenated with
neighboring periods.

SW states coinciding with inactive motor state and >10 s temporal distance
from the last preceding high-voltage spindle (HVS) event were defined as slow
wave sleep (SWS). Following previous literature we assumed incompatibility
between HVS and deep slow wave sleep in unanaesthetized Long Evans rats84. HVS
are close in frequency to theta oscillations, but differ markedly in their expression
of multiple higher harmonics due to their strongly non-sinusoidal waveshape.
Owing to this fact spectral power in the frequency band from 20 to 50 Hz on the
HVS reference channel was used to selectively detect HVS episodes and distinguish
them from theta activity. The mean of multitaper power spectra from 20 to 50 Hz

was calculated and subsequently z-scored. Periods with z-score values exceeding 0.7
were labeled HVS. Candidate HVS periods shorter than 1 s were skipped to
minimize false positives from occasional sharp single wave transients of
undetermined physiological nature. Spectral profiles of the individual HVS events
were post-hoc classified to remove artifact contamination. Onset and offset of peak
power, instantaneous frequency and power of the first spectral peak were extracted
from each event.

Theta states were defined based on the ratio between power in the theta (5–9.5
Hz) and delta (2–4 Hz) ranges on the theta reference channel. Gaps shorter than
10 s were concatenated with neighboring Theta periods. Theta coinciding with an
Inactive motor state was labeled Inactive Theta. All Inactive Theta periods that
were preceded by a SW state within 1 s and which were longer than 5 seconds were
considered REM sleep. All remaining Theta periods were considered Awake Theta.
Finally, all periods that were neither SWS nor REM nor Awake Theta were defined
as Awake Nontheta. It should be noted that the existence of low amplitude
microstates during NREM sleep has been described previously89. It remains to be
determined to which degree a subset of periods with low amplitude in the SW
range assigned to Awake-Nontheta in this study maps onto states defined as low
activity sleep microstates by Miyawaki and colleagues89.

All states were considered to be mutually exclusive with the exception of HVS,
which was considered an event occurring during but not interrupting ongoing
background states. Therefore, for each HVS episode the brain states immediately
preceding and following were merged if they belonged to the same state. All spectral
analysis was performed using custom-developed Matlab implementation of
multitaper estimate90. Analysis of the g-SGFET performance was done in Python. ISA
brain dynamics analysis was limited to immobility and REM sleep, for which potential
influence of motion artifacts on the infra-slow fluctuations could be discarded.

Statistical analysis. For the evaluation of the yield and homogeneity of the g-
SGFETs performance, 9 neural probes with 64 g-SGFETs each were characterized
in vitro. This data is plotted in the boxplots in Fig. 2, the boxes extend from the
lower to the upper quartiles, with a line at the median. The whiskers extend 1.5
times the inter-quartile range and the data points beyond the whiskers are indi-
cated by a dot. The longitudinal evaluation of g-SGFETs stability in-vivo was
performed with one 64-channel array implanted on the cortex of a rat. The box-
plots shown in Fig. 3 are defined as those in Fig. 2. In panels a and e of Fig. 3, the
statistical sample are all 8 g-SGFET connected to the DC-coupled channels of the
headstage. Panels d and f of Fig. 3 correspond to all 64 g-SGFETs on the array.
Finally, panel g shows the normalized response of the 10 g-SGFETs on the posi-
tions under the highest induced electric field during bipolar stimulation.

For biocompatibility assessment, three device types; platinum, graphene, and
polyimide (blank) were fabricated. The rats in each of these groups were implanted
with one of the three device types on the parietal cortex of the brain. A fourth
group of animals had the full surgery without the implantation of any device (sham
control) and a fifth group (naive) had no surgery. For NOR testing, the number of
rats used was n= 7 for all groups at all timepoints, except 12 weeks, which had n=
3–7 depending on the group. For cytokine detection in the brain tissue, the number
of rats was n= 4 at 2 and 6 weeks, and n= 3 at 12 weeks post implantation. For
microglial activation, the number of rats was n= 3 at 2 and 12 weeks and n= 2 at
6 weeks (or 3 for the contralateral hemisphere). In all cases, the contralateral
hemisphere was also evaluated as a control. Data where n= 3 or higher were
analyzed using a two-way ANOVA to compare all timepoints and interventions.
Dunnett’s multiple comparisons were then performed at each timepoint comparing
each surgical intervention to the control. *p < 0.05, **p < 0.005, ***p < 0.001,
****p < 0.0001 are indicated for each surgical intervention in Fig. 4.

The measurement of gamma activity modulation during rearing was evaluated
for 163 rearing events measured in the course of a 24 h recording in one rat. HVS
were also measured during the same 24 h recording. Five-hundred sixty-six events
were detected during immobility and 92 events during REM sleep. Differences in
spectral content of HVS during distinct states (IMM and REM) was evaluated by a
Wilcoxon ranksum test (the p-values are indicated in the main text). The
electrophysiological data shown corresponds to one rat. The large statistical sample
of events allows illustrating the capabilities of the graphene-based technology,
however, the interpretation of these results should be subject to variability across
measurements and animals.

The modulation of ISA power by REM state vs. SWS was evaluated in two ways:
first, for the period directly around the state transition (−30 to 30 s around the
REM onset). Second, we evaluated the ISA power in both states over their entire
duration, not only in the SWS-REM transition. ISA power comparison between
REM vs. SWS states was restricted to the 44 REM episodes lasting more than 40 s
(see Supplementary Information S12B). To test for frequency-specific changes
across the state transition we compared the distributions of median spectral power
across trials for the 30 s pre vs. post SWS-REM transition for each frequency bin.
Significance was assessed by permutation test for each frequency bin (n= 1000
permutations, see Fig. 5d example channel and Supplementary Information S12C
for all working DC channels). Increase of ISA and concurrent decrease of 1–4 Hz
power during SWS-REM transition is significant after permutation test (n= 1000
permutations) on all DC channels except one excluded channel, same as for
longitudinal evaluation in Fig. 3a, e, due to poor signal to noise (Supplementary
Information S12C). Second, we tested for statistical differences between
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distributions of the integrated power in the ISA (0.01–0.1 Hz) band in SWS and
REM states using Wilcoxon rank sum test (see Fig. 5e, test results for each channel
in Supplementary Information S12D).

Modulation of the LFP power by the DC signal-derived ISA and LFP phase was
quantified using instantaneous fast frequency power-weighted resultant length of
the instantaneous slow frequency phase vectors normalized by mean LFP power in
the respective band72 for which magnitude reflects the strength of LFP power
modulation to a preferred phase of the ISA or LFP. ISA and LFP phase and LFP
power were computed as angle and absolute value of the analytical signal of the
respective AC and DC channel signals that were band-pass filtered, with 0.04 and
0.4 Hz bandwidth, respectively. Significance of the modulation was tested based on
1000 surrogate phase-power pairs randomly shifted with respect to each other by
up to 100 s. Resulting empirical p-value was corrected following false-discovery-
rate control procedure at the error rate of 0.001. For constructing topographic
maps of theta and spindle power band modulation we used mean modulation
strength for the LFP power band 8–9 Hz (theta) and 10–14 Hz (spindle band), and
the ISA phase frequency of 0.05-0.1 Hz computed for every AC channel (LFP
power) and one fronto-medial DC channel (ISA phase).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Device characterization and raw electrophysiological data examples are available in GIN
repository with the identifier (https://doi.org/10.12751/g-node.4zw2lt). The complete
electrophysiological dataset is available from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
Custom code for the analysis of devices characterization is provided in GIN repository
with the identifier (https://doi.org/10.12751/g-node.4zw2lt). The complete code for
analysis of electrophysiological data is available from the corresponding author upon
request.
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S1. Specifications of wireless recording system 

The wireless system developed by Multichannel systems (MCS) to bias and record from the 
graphene active sensor arrays consists of two amplification stages followed by a multiplexer to select 
the output from the first (DC-channel) or second stage (AC-channel). Subsequently the signals are 
digitized and transmitted in the 2.4GHz band to the receivers (W2100-RE-AO from MCS).  The 
communication between receivers and the computer is done by the interface board (MCS-IFB-in-vitro 
from MCS). The software used to communicate with the interface board is the commercial software 
Multi Channel Experimenter. To control the bias conditions 𝑉𝑔𝑠 and 𝑉𝑑𝑠 of the active graphene sensors 
a specific software has been developed, which also allows to quickly extract the 𝐼𝑑𝑠 − 𝑉𝑔𝑠 needed to 
control changes in the charge neutrality point (CNP) of the graphene transistors. The following table 
summarizes the technical specifications of the wireless system. Fig. S1 shows the dimensions of the 
wireless headstage, which is connected to a flexible PCB (orange component). The flexible PCB is 
connected to the headstage on one side and to a PCB containing a zero-insertion-force (ZIF) connector 
on the other side. The connection between the flexible and rigid PCBs is done by a Molex connector. 
The flexible PCB eases the alignment of the neural probe on the desired location on the cortex.  

 

DC-Channel count  8 

AC-Channel count (with DC 
enabled) 

64 (56) 

Input Frequency Range AC (DC) 0.15 Hz – 5 kHz (DC – 7.35kHz)  

Maximum input current AC (AC) +/- 11.5 µA (+/- 115 µA) 

Gain AC (DC) 120000 (12000) 

Wireless transmission range 5m (depending on environment 10-15m) 

OpAmps consumption 52.8mA  

ADCs (at Fs = 20kHz) consumption 16mA 

RF-Chips consumption 116mA 

Battery 3.7V/700mAh duration ~6h 

Battery 3.7V/700mAh charging time ~1h 

Battery 3.7V/700mAh weight 15g 

Headstage weight 7.9g 

Flex-PCB weight 0.5g 

Weight of 3D printed base ring, 
headstage support and protective cap 

15g 

Table S1. Technical specifications of the wireless system 
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Figure S1. Dimensions of the wireless headstage and connectors. The green component on the left 
represents a small PCB containing a ZIF connector to the neural probe and a Molex connector to the 
flexible PCB (orange component). The component on the right represents the wireless headstage 
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S2. Intrinsic 1/f noise and headstage noise 

The equivalent voltage noise spectrum at the gate is shown in Fig. S2A for g-SGFETs 
connected to DC and AC- coupled channels of the headstage. In the central part of the spectrum (~0.05-
10Hz) the 1/f trend corresponding to the intrinsic noise of the g-SGFETs dominates. The intrinsic noise 
is expected to present a 1/√𝐴 dependence1, where A stands for the area of the active part of the graphene 
channel. Here we have validated that the expected trend holds for the technology presented in this 
article. Having this validation it is possible to extrapolate the results from this work to devices with 
different areas. Fig. S2B shows 𝑉𝑔𝑠−𝑟𝑚𝑠 measured for g-SGFETs of different areas fabricated on a 
flexible PI substrate following the procedure detailed in the Methods section. Note that the values 
displayed in Fig. 2 of the main text for an area of 100x100 µ𝑚2match with the trend observed in Fig. 
S2B.  

The intrinsic noise of the g-SGFETs in the infra-slow (< 0.5𝐻𝑧) frequency bandwidth is 
expected to follow the same 1/f trend as in the rest of the frequency spectrum2. However, the low 
frequency noise from other components of the recording system might contribute significantly in this 
frequency band. Fig. S2D (top) shows a schematic for the transimpedance amplifier in the first 
amplification stage, and Fig. S2D (bottom) shows the noise sources in this circuit. The voltage source 
(𝑉𝑑𝑠) as well as the op-amp present several sources of noise. Fluctuations in 𝑉𝑑𝑠 are common for all the 
g-SGFETs and would therefore cause coherent noise in all the channels. Conversely, each channel has 
an independent op-amp and therefore the noise from this source is expected to be uncorrelated among 
channels. Table S2 shows the contributions from each of these noise sources, separated between 
coherent and non-coherent. Fig. S2C shows the coherence between two DC-coupled channels connected 
to a 2kΩ resistance (red) and to g-SGFETs (black). In the central frequency range, the coherence in the 
noise of different channels is larger when a resistance is connected instead of the g-SGFETs. The reason 
is that the intrinsic noise of g-SGFETs is completely uncorrelated among different sensors. At higher 
and lower frequencies, the coherence increases, presumably due to the effect of quantization noise and 
correlated noise sources respectively. Finally, Fig. S2E shows the power spectral density measured in 
DC-coupled channels connected to g-SGFETs in the ISA band (0.005-0.4Hz). The noise below 0.05Hz 
is shown to clearly deviate from the 1/f trend, indicating a significant contribution of low-frequency 
noise sources from the headstage. Nevertheless,  integrating the noise spectrum in the 0.005-0.05Hz 
shows that the rms noise increases only by roughly a factor of 2 as compared to the intrinsic noise values 
shown in Fig. 2 of the main text (see Fig. S2F).  
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Figure S2.  Intrinsic graphene noise and low-frequency contributions from the headstage. (A), 
Power spectral density of signals from DC-coupled channels (black) and AC channels (orange) 
measured for g-SGFETs in the beaker (solid) and for 2kΩ resistors (dashed). The red lines indicate the 

1/f trend corresponding to intrinsic noise and quantization noise. (B), The intrinsic noise of g-SGFETs 
(Vgs-rms in the 1-10Hz) versus the area of the channel is plotted. The red line indicates the 1/√𝐴 
dependence. (C), The coherence for a DC-coupled channel is shown for a resistor (red) and for a g-
SGFET (black). (D), The equivalent circuit of the g-SGFET connected to the transimpedance amplifier 
is shown (top) together with the equivalent circuit for the expected noise sources (bottom). (E), The 
power spectral density for the DC-coupled channels with g-SGFETs connected is shown in the infra-
slow frequency band. The 1/f trend is indicated by a red line. (F), The integrated noise (Vgs-rms) in the 
0.005-0.05Hz band is shown for all the 8 g-SGFETs connected to DC-coupled channels of the 
headstage. 
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Non-coherent noise sources Coherent noise sources 

Vout−Rds =  √Rds4KBT
Rg

Rds
 

 

Vout−Vds = evds

Rg

Rds
 

Vout−Rg =  √Rg4KBT 

 

Vout−Iamp =  IampRg 

 

Vout−Igate = gmegateRg 

Vout−eamp = eamp

Rg + Rds

Rds
 

 

Table S2: Output voltage noise produced by coherent and non-coherent noise sources in 
the amplification chain.  
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S3. Signal stability  

 The shift in the CNP presumably caused by adsorption/desorption of charged chemical species 
on the graphene channel and changes in the reference electrode potential cause very slow drifts of the 
measured signal. Fig. S3A shows the measured signal in-vivo over the first 24h of recording. The 
observed drift shows an initial rate of ~20mV/h during the first 1-2 hours, which afterwards tends to 
stabilize. Fig. S3A also shows the high-pass filtered signal above 1mHz, in which the drift is not 
observed.  

Besides long-term changes in the doping of the graphene channel and the reference electrode 
potential, the reference electrode might present short term instabilities, which could lead to an 
uncontrolled biasing of the graphene transistor. The use of stainless steel screws to fix the implant on 
the skull and simultaneously provide a reference potential is a common practice in electrophysiology3. 
However, controlling the bias of active sensors requires the application of a controlled overpotential, in 
contrast to conventional electrode-based electrophysiological measurements. In this work, it was found 
that stainless steel screws do not provide a stable reference potential for the operation of g-SGFETs, 
which might be caused by a poor contact with the dura. In order to circumvent this problem we have 
used an Ag/AgCl electrode implanted in direct contact with the cerebellum.  

The transfer characteristics obtained using a stainless-steel screw in the skull as reference 
electrode presented inconsistencies for different Vgs sweep rates. The stabilization of Ids after changing 
the gate voltage was very slow causing a defective acquisition of the Ids - Vgs curves. Fig. S3B shows 
the transfer curves for this type of reference electrode obtained by changing 𝑉𝑔𝑠 at two different rates 
(2s/step and 40s/step). The differences between the two curves demonstrate that the stationary 
conditions are not reached. An important drift of the current can be observed which explains the 
discrepancies between sweep rates in Fig. S5C. In order to eliminate these drifts, an Ag/AgCl electrode 
was implanted on the cerebellum.  Fig. S5D shows the close match between the transfer characteristics 
obtained for different Vgs sweep rates using a Ag/AgCl electrode. Fig. S5E shows the Ids over time during 
the Vgs sweep for this reference electrode, demonstrating a much faster stabilization. These results 
demonstrate that Ag/AgCl allows to accurately control the bias of the graphene channel during 
operation in-vivo. 
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Figure S3. Signal stability. (A), The signal for a DC-coupled channel during the first 24h of recording 
in-vivo is shown in pink and the high pass filtered signal (>1mHz) is plotted in black.  (B), Ids – Vgs 
curves measured applying two different sweep rates using a Ag/AgCl implanted on the cerebellum (n=7 
g-SGFETs). One outlier removed. (C), Ids – Vgs curves measured applying two different sweep rates 
using a stainless steel screw implanted on the skull (n=4 g-SGFETs). Solid lines in panels (B) and (C) 
represent the mean and the error bands the standard deviation. (D,E), The 𝐼𝑑𝑠 over time during a  Vgs 
sweep rate of 20s using an Ag/AgCl in contact with the cerebellum (D) and a sweep rate of 40s per step 
and using a stainless steel screw (D)is shown. The discontinuity in panel D corresponds to an 
interruption in the applied voltage (see Source Data file). 
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S4. Determination of intrinsic noise in g-SGFETs over time  

The noise performance of the g-SGFETs is susceptible to degradation over long-term 
implantation. In order to evaluate the equivalent evolution of intrinsic noise over time the noise power 
must be measured. Due to the presence of neural activity detected by the g-SGFETs, the in-vivo 
determination of the noise power must be estimated from a frequency band in which, on average, the 
power of neural activity is below the power of 1/f noise. Fig. S6 shows the PSD of the calibrated signal 
(i.e. equivalent signal at the gate) for all the g-SGFETs in the array for day 1 and day 11 after the 
implantation. It is possible to see that above a certain frequency, the power of neural activity goes below 
the 1/f from the intrinsic noise of the g-SGFET and the quantization noise from the ADC. In order to 
determine the evolution of the intrinsic noise of the g-SGFETs we measured the power density at 200Hz 
over time. Assuming a 1/f response the intrinsic noise of the g-SGFET can be estimated for any 
frequency band of interest. Note that this noise value will always be equal or larger than the actual 
intrinsic noise of the g-SGFETs due to possible contributions from the quantization noise or neural 
signal power. Fig. 3f and 3g of the main text show the 𝑉𝑔𝑠−𝑟𝑚𝑠 and 𝐼𝑑𝑠−𝑟𝑚𝑠 values in the 1-10Hz 
frequency band estimated following this approach. Note that the  𝑉𝑔𝑠−𝑟𝑚𝑠 values obtained in-vivo are 
close to the ones extracted in PBS, indicating the accuracy of this estimation.  

Finally, the orange line in Fig. S4 shows the PSD for a broken g-SGFET. When the transistor 
degrades and the channel breaks, no current can flow through the transistor. Therefore, the flicker noise 
from the g-SGFETs does not contribute significantly and only the noise from the amplifiers in open 
circuit remains (see supplementary information S2). This causes a significant drop in the noise as shown 
in Fig. S4, which is a clear indicator that the channel has broken. Fig. 3F in the main text shows the 
yield of g-SGFETs working over time based on this indicator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Power spectral density of Ids measured in-vivo. The PSD for all 64 g-SGFETs in the array 
is shown for day 1 and day 11 after the implantation. The red line indicate the 1/f trend. The orange line 
corresponds to the PSD of a channel which resistance has increased dramatically, probably due to 
breaking of the graphene sheet. 
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S5. Frequency response of the g-SGFETs 

The magnitude and phase of the transconductance over frequency have been measured in-vivo. 
A certain attenuation of the gain magnitude with an approximately constant slope in a log-log has been 
observed, which has been previously reported1. This slope can be described from the fractional order of 
constant phase element (CPE) that models the non-ideally capacitive response of the graphene-
electrolyte interface. The drop in the magnitude of gm with frequency presents a 1/𝑓1−𝛼, where alpha 
is the ideality factor of the CPE element. This element also introduces a phase delay in the transduced 
signal of 𝜋/2 (𝛼 − 1), as shown in Fig. S5. Deviations from this model can be observed above 
~100𝐻𝑧. This positive shift of the phase has been previously reported when capacitive currents from 
the electrolyte gate to the drain and source of the g-SGFETs occur1.  

 

 

 

 

 

 

 

 

 

 

Figure S5. Transconductance over frequency of g-SGFETs in the first day after implantation. The 
graph on top shows the magnitude of the transconductance while the bottom plot presents the phase of 
the transconductance (solid line corresponds to the mean and error bands indicate the standard 
deviation, n=10 g-SGFETs). 
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S6. Cytokine levels in serum 

 

Figure S6. Inflammatory cytokine levels expressed in serum from animals implanted with devices 
or control animals. Over the four inflammatory markers analysed, IL-17a, TNF-α, IFN-γ and IL-6, 
there was a significantly higher expression of TNF-α at 2 weeks post implantation for graphene devices 

compared to sham controls. By 6 weeks this reaction had subsided. No other cytokines showed any 
significant difference at any timepoint. Bars in panels d and e indicate the mean and range of data point. 
Two-way ANOVA with Dunnett's multiple comparisons test, compared to sham control for all 
timepoints. ** indicates p= 0.006. 
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S7. Cytokine levels in brain tissue 

 

Figure S7. Inflammatory cytokine levels expressed in brain tissue at the surgical site. Over the four 
inflammatory markers analysed, IL-17a, TNF-α, IFN-γ and IL-6, there was a significantly higher 
expression at 2 weeks post implantation for graphene and platinum devices compared to naïve animal 
controls. By 6 weeks, this expression was still significant for both IL-17a and IFN-γ, however by 12 

weeks this reaction had subsided. n=4 at 2 and 6 weeks, n=3 at 12 weeks. Bars in panels d and e indicate 
the mean and range of data point. Two-way ANOVA with Dunnett's multiple comparisons test, 
compared to naïve control for all timepoints. In all panels,  **** indicates p<0.0001. For IL-17a, *** 
indicates p=0.0016. For IL-6, * and *** indicate p = 0.045 and p = 0.0006 respectively. For rIFN-
gamma, * indicates p = 0.012 (for 2 weeks timepoint) and p =0.035 (for 6 weeks timepoint).  
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S8. Immunoflourescent staining 

 

Figure S8. Iba-1 immunoflourescent staining to assess activation status of microglia at the surgical 
site. (A), Microglial cells were counted for both the operated hemisphere, and the unoperated 
hemisphere. Scale bar corresponds to 2mm. (B), Exemplar images, taken from the highlighted region  
in panel A. Left column corresponding to the 2 weeks timepoint and left column to the 12 weeks 
timepoint. Areas highlighted with white dashed lines are shown with higher magnification. Scale bars 
correspond to 500µm and 50µm  for left and right images respectively within each timepoint.  
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 S9. TUNEL cell counting 

Figure S9. TUNEL positive cell counts from the cortical surface at the implantation site of devices. 
(A), A gross morphological map of the cortex, outlining where representative images were taken from. 
Scale bar corresponds to 1mm. (B) Representative images of TUNEL positive cells counted across 40 
sections of the brain per animal. Scale bar corresponds to 100µm (20 µm for the insets).  (C), The 
average counts of TUNEL positive cells at the cortex showed that graphene based devices showed a 
significant increase in apoptosis in the acute period after implantation, as did the shame operated 
controls, compared with counts of the contralateral hemisphere. By 12 weeks, there was no significant 
elevation in apoptosis in the surgical area. n=3 for 2 and 12 week timepoints, n=2 for 6 week timepoints. 
Bars in panels d and e indicate the mean and range of data point.  Two-way ANOVA with Dunnett's 
multiple comparisons test, compared to contralateral hemisphere for 2 and 12 weeks. *  indicates 
p=0.034, *** indicates p=0.0002, 
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S10.  Rearing event detection 

Head elevation of the animal varied widely between 20 and ca 330 mm above ground.  The 
distribution of all head elevation values during the 22h recording displayed marked peaks due to distinct 
long duration behavioral states (like lying on ground, sitting, walking). In contrast the animal spent only 
very few time points with its head elevated to more than 200 mm above ground. As can be seen in the 
time-domain (Fig S10A) these timepoints correspond to repeated very shortlived elevations occurring 
intermittently during active behavior. Elevations of the head beyond 200 mm from ground were 
therefore labelled as rearing events. 

 

Figure S10. Detection of rearing events. (A), Time spend on rearing over time. (B), Example time 
series of head elevation illustrating the transient and discrete occurrence of rearing events (denoted by 
*), elevation threshold used for rear detection marked in red. (C), Histogram of head elevation during 
22h continuous recording period. Threshold for rear event detection marked in red. Zoom-in of same 
distribution shown in inset. (D), distribution of maximum heights for all individual rear events (mean 
250,6 ± 2.7 mm). (E), distribution of rearing duration for all rear events (mean 5.7 ± 2.8 s ). The boxes 
in panels D and E extend from the lower to the upper quartiles, with a line at the median. The whiskers 
extend 1.5 times the inter-quartile range and all individual data points are indicated by a dot. 
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S11. Modulation of high-gamma activity during rearing 

 

 

Figure S11. Evaluation of gamma modulation during rearing events.  (A),  Spatial map of 
normalized power in the high gamma band for pre-rear (-4s to 0s from rear onset) (left) and rear (0s to 
4s from rear onset) (right) (B) Head elevation for each rear height event sorted by rear duration (left) 
and spectral power in 60-70 Hz band for each trial extracted from the same channel as in Fig. 5i, sorted 
by rear height (right). 
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S12. Slow and infra-slow power in the SWS-REM transition 

S12. Infra-slow vs slow oscillation band power during SWS/REM sleep: (A), Average spectrogram 
triggered on REM onsets (n=44) for 7 DC channels with high signal to noise. (B), Head speed in the 
SWS to REM transition for all detected events (left). On the right plot the same data is shown for a 
shorter time window, where the REM events with duration longer than 40s (n=44) can be identified. 
(C), Median PSD computed for the 30s pre and post REM onsets. Colored area indicates statistically 
significant difference (two-sided permutation test n=1000 permutations, p<0.05), one channel showing 
unstable signal is removed. n=44 state transitions. (D), Kernel density estimates for the integrated power 
in 0.01-0.1Hz band during SWS and REM state. p-value for the two-sided Wilcoxon ranksum test are 
indicated.   
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ABSTRACT: Sensor arrays used to detect electrophysiological
signals from the brain are paramount in neuroscience. However, the
number of sensors that can be interfaced with macroscopic data
acquisition systems currently limits their bandwidth. This bottle-
neck originates in the fact that, typically, sensors are addressed
individually, requiring a connection for each of them. Herein, we
present the concept of frequency-division multiplexing (FDM) of
neural signals by graphene sensors. We demonstrate the high
performance of graphene transistors as mixers to perform amplitude
modulation (AM) of neural signals in situ, which is used to transmit
multiple signals through a shared metal line. This technology
eliminates the need for switches, remarkably simplifying the
technical complexity of state-of-the-art multiplexed neural probes. Besides, the scalability of FDM graphene neural probes has
been thoroughly evaluated and their sensitivity demonstrated in vivo. Using this technology, we envision a new generation of high-
count conformal neural probes for high bandwidth brain machine interfaces.

KEYWORDS: Multiplexing, graphene, active sensors, bioelectronics, neural sensing

Over the last decades, progress in neurotechnology has
enabled a deeper understanding of brain functions such

as motor control1,2 or speech processing and synthesis.3,4 In
turn, these insights have prompted the realization of
technological breakthroughs in the field of brain-computer
interfaces (BCIs) such as partial restoration of movement5 or
decoding of speech from neural activity.6 Cortical functions
involved in such tasks often emerge from the integration of
information in distinct brain regions, yet local activity from
small groups of neurons carries essential information for neural
coding.7 Therefore, combining the coverage of large brain
areas with high sensor density (i.e., high sensor count) is
paramount for both neuroscientific and biomedical applica-
tions.8−10 In this sense, one of the main limitations in current
neurotechnologies originates in the need of individually
connecting each sensing element to a signal amplifier. This
constrain implies having as many conductive lines as sensors in
the neural probes, which imposes a trade-off between sensor
density and coverage area. One way to overcome this constrain
is to perform multiplexing among sensors which allows the
transmission of multiple signals over a shared wire.
State-of-the-art sensing technologies for neuroscientific

research are mostly based on micro electrode arrays, which
can be embedded either in a narrow shank for intracortical
mapping11−14 or in a planar configuration.8,15−18 Intracortical

electrode arrays can be fabricated on rigid substrates,19

therefore enabling the incorporation of integrated-circuits
(ICs) on the probes12 to amplify and multiplex the measured
signals. However, planar arrays on rigid substrate are not
conformal with the surface of the brain and are therefore
limited to in vitro studies.16−18 Alternatively, flexible electro-
corticography (ECoG) arrays are conformal, enabling the
detection of local field potentials20 (LFP) from the surface of
the brain.8,15 ECoGs represent an interesting technology for
biomedical applications, since they could be applied to extract
a similar information than that obtained with intracortical
probes21,22 but with the additional advantage of lower
invasiveness. Nevertheless, the flexible substrate strongly limits
the use of nanofabrication methodologies and available
materials to fabricate integrated circuits on the neural probe,
thus restricting the implementation of in situ signal
amplification for time-division multiplexing (TDM) of neural
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signals.23 Flexible materials have been proposed to perform
switching among active sensors in an addressable array
configuration, including organic semiconductors24 or ultrathin
silicon layers.25 However, organic semiconductors present an
insufficient mobility for high-speed operation, which is critical
to achieve high sampling speed for a large number of sensors,
and the high complexity of ultrathin silicon technology on
flexible substrates limits its widespread application.
Herein, we present a novel approach that uses frequency-

division multiplexing (FDM) of graphene solution-gated field-
effect-transistors (g-SGFETs) in order to eliminate the need
for on-site switches and to reduce the fabrication complexity of
high-count neural probes. In this approach, neural signals

detected by different graphene active sensors on the array are
amplitude modulated (AM) by different carrier signals,
allowing the transmission of multiple signals through a shared
communication channel. We present the fabrication of g-
SGFET arrays on an addressable column/row matrix
configuration to demonstrate their high performance for
FDM operation in vivo, sensing wide-band neural activity
from the surface of the rat brain. Besides, we carefully assess
the scalability of this technique, demonstrating the operation of
g-SGFETs for a wide range of carrier frequencies, the low
impact of crosstalk, and the requirements for an application
specific integrated circuit (ASIC) to operate large-scale flexible
arrays. The simplification of the technological complexity,

Figure 1. Frequency-domain multiplexing of g-SGFET arrays (a) Equivalent circuit of the g-SGFET together with an illustration of the device. (b)
Schematic of the neural probe layout. On the left, the whole probe is displayed. A zoom-in of the probe tip is shown on the top-right image. The
orange/yellow colors represent the first/second metal layers, separated by a 2 μm thick polyimide layer. A zoom-in of a single pixel is shown within
the red dashed-line square. The bottom schematic depicts a side view of the g-SGFET, showing the connection between the first and second metal
layer through a VIA hole in the PI. (c) Typical Gds−Vgs curve of g-SGFETs. The filled area represents the standard deviation (n = 8). The definition
of normalized transconductance (gm) as the slope of the Gds−Vgs curve is indicated in the graph. The g-SGFETs acts as a multiplier of the drain-to-
source voltage and the signal at the gate. The resulting Ids in the DC and AM modes is illustrated. (d) The signal folded by the carrier is shown in
the frequency domain (left). Demodulation scheme (middle): the multiplication of the modulated signal by an oscillator at the carrier frequency of
interest and the π/2 radians phase-shifted oscillator allows the recovery of the module of the signal in the baseband (right). (e) Basic schematic of
the addressable g-SGFET array, which allows modulating the signals at the gate of different g-SGFETs with different carrier frequencies. The mixed
signals, containing multiple carrier frequencies, are demodulated after current-to-voltage conversion and digitization.
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achieved by the elimination of switches and the use of
graphene electronics, opens the door to the implementation of
high-count flexible neural probes as a readily available
technology for neuroscientific studies as well as clinical
applications.

■ FREQUENCY-DIVISION MULTIPLEXING OF
G-SGFET ARRAYS

g-SGFETs have been proposed as signal transducers in the
field of biosensing and bioelectronics,15,26−28 presenting
unique properties for the detection of full-band neural signals
from infraslow to high-frequency components with a high
spatial resolution.29 Besides, as active sensors g-SGFETs
provide an intrinsic preamplification of the signal and can be
arranged in a column/row addressable matrix due to their two
terminal (i.e., drain and source) configuration (see Figure
1a,b). These properties, combined with their remarkable

frequency response,30 make g-SGFETs an ideal technology
for the implementation of frequency-division sensor arrays.
In g-SGFETs, the graphene channel is placed in contact with

an electrolyte gate, that is, the brain tissue in the case of neural
sensing applications. Electrical potential fluctuations in the
environment influence the conductivity of the transistor
channel through the gate capacitance. The constant of
proportionality between drain-source conductance (Gds) and
the electrical potential at the interface (Vgs) is referred to as the
transconductance31 (gm). g-SGFETs can be modeled by the
equivalent circuit shown in Figure 1a. Its stationary response to
a constant bias (Vgs− DC) is described by the voltage dependent
term Gds− DC, while its dynamic response to a small-amplitude,
time-dependent signal (Vsig) is characterized by the term
Vsiggm. In the typical operation mode (DC mode), the drain-
source bias Vds is constant; thus, the only time variations in the
drain-source current (Ids) are caused by variations in Gds

Figure 2. In vitro evaluation of g-SGFET performance in the AM mode. (a) gm−Vgs relationship in the AM and DC modes, measured in a 3 × 3 g-
SGFET array. (b) The magnitude of gm over frequency of the signal applied at the gate is shown for the two modes. The response was measured in
a 2 × 2 g-SGFET array. (c) Vgs−rms for an integration bandwidth of 1−10 Hz measured in the AM and DC modes; measurements performed with a
3 × 3 g-SGFET array. (d) Schematic representation of a g-SGFET and the Fermi energy in the graphene for the DC and AM mode (top). The
band structure at the charge neutrality point (CNP) is shown along the graphene channel for the DC (middle) and AM (bottom) modes. (e)
Dependence of Ids on Vgs and Vds, revealing the shift in the CNP, as well as the nonlinearities in the Ids−Vds produced by the effective gating. (f)
Three-dimensional representation of the Ids dependence on Vgs and Vds. The relation between shifts of Ids−Vgs along the Vgs axis and nonlinearities
introduced in the Ids−Vds curves can be observed. (g) Two carrier signals and their second and third order harmonics are represented in the
frequency domain. The frequency which defines the bandwidth of operation (Fmax) and the position of the Nyquist frequency (Fs/2) with respect
to Fmax are indicated by the vertical lines. (h) The Ids normalized by its value at 10 kHz is shown for different channel lengths. The filled area
represents the standard deviation (n = 3).
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(Figure 1c). On the other hand, in FDM (or amplitude
modulation- AM mode), the drain-source bias is typically a
pure tone signal (Vcarrier(t)). Therefore, Ids results from the
product of Vcarrier(t)(gmVsig(t) + Gds−DC) (see Figure 1c).
The multiplication of Vcarrier and Vsig produces the folding of

their frequencies. In the frequency-domain representation of
Vcarrier(t) * Vsig(t) (Figure 1d, left), a peak at the carrier
frequency ( fc) can be observed, which is proportional to
Gds−DC. In addition, two side bands (at fc − fsig and fc + fsig)
appear, the amplitude of which is proportional to gmVsig. This
mixed signal can then be demodulated by a lock-in amplifier
(see Figure 1d, middle) producing the folding of the side
bands back to the baseband frequency (see Figure 1d, right)
with the DC-offset corresponding to the stationary component
of Ids. This demodulation can be repeated for different carrier
frequencies to recover the neural signals detected in each of the
graphene sensors. The schematic in Figure 1e represents the
FDM of a 2 × 2 sensor array. Carrier signals with different
frequencies ( fc) are applied at each column of the array and
independent data-acquisition channels are connected to each
of the drains to reliably recover the information from the

multiplexed sensors. Here, we present frequency-division
multiplexed arrays of up to 4 × 8 graphene sensors fabricated
on a flexible polyimide (PI) substrate (see Figure 1b and
Supporting Information for more details of the fabrication
method). For the characterization of the FDM sensor arrays
and their operation in vivo, we have developed a recording
system based on a PXIe for high sampling speed and a custom
built front-end amplifier for current−voltage conversion (see
Supporting Information).

■ IN VITRO CHARACTERIZATION OF FDM
GRAPHENE NEURAL PROBES

In order to validate the suitability of g-SGFETs for frequency-
division multiplexing, their sensitivity in the AM mode must be
characterized and compared with the sensitivity in the DC
mode. The characterization of gm can be performed of the
following two approaches: from the derivative of the stationary
Gds−Vgs curve or from the dynamic response of g-SGFETs to
signals with various frequency components applied at the gate
(see Figure 1c). Figure 2a shows the gm−Vgs curves extracted
following the first approach for a 3 × 3 g-SGFET array,

Figure 3. Scalability of g-SGFET arrays multiplexed in the frequency-domain: (a) Equivalent circuit of a 3 × 3 g-SGFET array. The metal track
resistance of the columns and rows is modeled by Rcol and Row respectively. Each column is biased with a different carrier (Vcar1, Vcar2, and Vcar3).
Common voltage oscillations (Vcom,coll and Vcom,row) produce changes in Vds,eff. The light blue area indicates the position of four polyelectrolyte gates
printed on a 3 × 3 array. (b) Response to a 5 Hz signal measured in different g-SGFETs on a 3 × 3 array for different Vgs values. The color of the
symbols and lines indicate the position of the corresponding g-SGFET in the 3 × 3 array shown in panel a. The solid lines indicate the fitting by the
analytical model. The noise (dashed black line) was measured at 7 Hz. The empty blue and orange circles indicate the crosstalk level after
correction. The signal-to-crosstalk values (in dB) corresponding to uncorrected, corrected, and second order crosstalk are marked by the vertical
lines. (c) The right axis indicates the normalized transconductance for g-SGFETs of (50 μm x 50 μm, n = 4). The carrier frequencies selected for
the in vivo proof of concept (4 × 8 array) are shown in green and those proposed for a 32 × 32 sensor array are indicated in black. High order
harmonics are indicated together with the required sampling frequency. (d) Histograms of Vgs −rms from htree neural probes of 32 g-SGFETs
integrated in the 1−10 Hz frequency. The log-normal distribution indicates the mean and standard deviation of Vgs−rms. The values from the
specific neural probe which was implanted is shown in the inset. (e) Histogram of 32 superposed carriers with phase optimization to minimize the
peak-to-peak amplitude (black) and with all carriers in phase (red). The inset shows a fragment of the resulting signals. (f) Histogram of the 4
superposed carriers used for the in vivo proof of concept compared to the amplitude of a 32-carrier signal with phase optimization.
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demonstrating the equivalence of the stationary response in the
DC and AM operation modes. Figure 2b presents the
frequency dependence of gm measured following the second
approach. The magnitude of gm presents similar values in both
modes for frequencies <1 kHz, above which the effect of
capacitive currents contributes significantly in the DC mode
(see Supporting Information). In addition to the trans-
conductance, the intrinsic electrical noise of the graphene
transistors shall be considered in order to fully characterize the
sensitivity of the graphene sensors. In Figure 2c, the equivalent
noise at the gate (Vgs−rms), defined as the RMS current noise
(Ids−rms) normalized by the transconductance, is represented
under different Vgs bias conditions for a transistor area of 50
μm × 50 μm. Figure 2c demonstrates that the sensitivity of g-
SGFETs, defined by their noise performance, does not differ
dramatically in both modes, showing only slight changes in its
Vgs dependence.
These slight discrepancies presumably arise from the

differences in the drain-source bias in both modes. The
gradient in the work function of graphene along the channel
induced by this bias causes a nonhomogeneous effective gating
of the transistor (see Figure 2d and Supporting Information).
In the DC mode, this gradient is constant over time, producing
a constant offset in the channel doping for a certain Vds bias.
Changing Vds produces a shift of the transfer curves of the g-
SGFETs along the Vgs axis (see Figure 2e). This effective
gating is also responsible for the dependence of Gds on Vds,
which introduces nonlinearities in the output characteristics
shown in Figure 2e. Figure 2f shows a three-dimensional
representation of the Ids−Vgs and Ids−Vds characteristic curves
of the g-SGFETs. In the DC mode, the g-SGFETs are operated
at a stationary point in the Vgs−Vds plane but in the AM mode
the drain-source bias oscillates along the Vds axis. In this way,
nonlinearities in the Ids−Vds curves will lead to distortion of the
carrier signal, introducing harmonics at frequencies multiple of
fc (see Figure 2g and Supporting Information). Harmonic
distortion constrains the selection of carrier frequencies that
can be used for AM: high order harmonics must not lie within
the frequency band of operation dedicated to the carrier
signals. Thereby, the frequency of all carriers must be below
the second order harmonic of the carrier of lowest frequency
(see Figure 2g). In addition, the Nyquist frequency ( fs/2)
must be above the second order harmonic of the highest
carrier frequency in order to prevent folding of third order
harmonics into the band of operation by aliasing.
Another important aspect affecting the selection of carrier

frequencies is the frequency response of g-SGFETs. The
graphene−electrolyte interface exhibits a capacitive response,
which at high frequencies allows a displacement current to flow
from drain to source through the electrolyte,30 degrading the
device performance. The characteristic cutoff frequency of this
phenomenon appears at relatively high frequencies due to the
high ratio between mobility and interface capacitance in
graphene. Other active sensors, such as organic electrochemical
transistors, which present a lower mobility and a larger
interface capacitance,32 are expected to present a worse
frequency response.30 Figure 4e shows the frequency response
of g-SGFETs for multiple channel lengths, demonstrating an
approximately constant response for channels shorter than 100
μm and frequencies below 500 kHz at least.

■ SCALABILITY OF FDM GRAPHENE NEURAL
PROBES

Considering the ultimate goal of enabling high-density, large-
area sensor arrays, the scalability of the FDM graphene neural
probes has to be thoroughly explored. Important aspects
limiting the scalability of FDM are the crosstalk in the g-
SGFET array, the constrains in the selection of carrier
frequencies, and the requirements for the electronics used to
operate the arrays.
In FDM, no switching among sensing sites is required.

Although this feature bears a clear advantage for ease of
fabrication of the neural probes, it prevents from doing on-site
switching of the sensors and can therefore lead to an increased
susceptibility to crosstalk. Crosstalk can appear between g-
SGFETs in the same row (i.e., sharing a readout channel) as
well as in the same column (i.e., biased by the same carrier)
due to common-mode voltage (Vcom) oscillations in the
resistance of metal tracks in series with the drain (Rrow) and
source (Rcol). By analyzing the equivalent circuit in Figure 3a,
an analytical expression can be derived, which indicates that
crosstalk among rows and among columns is proportional to
Rrow and Rcol, respectively (see Figure 3a and Supporting
Information). Additionally, crosstalk signals couple with g-
SGFETs that are out of the same column and row, causing a
second order crosstalk (see Supporting Information S4). In
order to experimentally determine the crosstalk level, we have
patterned multiple polyelectrolyte gates on the graphene
sensor arrays by inkjet printing (see Figure 3a and Supporting
Information S5). Figure 3b shows the signal measured by an
individually gated g-SGFET (black) and the crosstalk it
induced on sensors in the same column (orange), the same
row (blue), and on the rest of g-SGFETs (red), together with
the fitting of the experimental data using the analytical
expression presented in the Supporting Information. A
crosstalk of ∼36 dB/∼73 dB is observed for g-SGFETs
within/outside the same column or row, which corresponds to
a Rrow ≈ Rcol = 50 Ω. In order to reduce the crosstalk to the
level achieved using on-site switches (∼65 dB),33 the
resistance of the tracks should be reduced to the range of
few ohms. This target could be met by increasing the width of
the metal lines, which can be implemented easily when
translating this technology from rodents research into human
clinical applications (see Supporting Information S8). More-
over, knowing the mechanism of crosstalk generation and the
coupling parameters among all sensors, it is possible to define a
mathematical method for crosstalk cancelation (see Supporting
Information S8). Using such calibration, a mitigation of
crosstalk by an additional ∼15 dB was achieved (see Figure
3b).
Another important aspect related to the scalability of FDM

graphene neural probes is the selection of the carrier
frequencies, which are constrained by the frequency response
of g-SGFETs and the harmonic distortion of the carrier signals.
The gm( fc) was characterized by sweeping fc and measuring the
dynamic response of the graphene sensors to pure tone signals
applied at the gate. Figure 3c shows that gm remains
approximately constant for carrier frequencies up to at least
Fmax = 600 kHz and a channel length of 50 μm, while the
current noise remains approximately constant (see Supporting
Information S10). This bandwidth limitation is presumably
caused by the capacitive leakage through the electrolyte
characterized in Figure 2h and could therefore be expanded by
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shortening the channel length of g-SGFET. Sampling at four
times this Fmax (i.e., Fs ≥ 4Fmax = 2.4 MHz) allows the use of
carriers of up to ∼600 kHz. Figure 3c shows a combination of
carrier frequencies which meets all the requirements to allow
the operation of 32 × 32 graphene sensor arrays. In this
configuration, operation in quadrature AM34 can be used to
maximize the frequency bandwidth of each sensor to 10 kHz
(see Figure 3c). The demodulated signals can then be high-
pass filtered in the digital domain above ∼5 kHz, given that

neural activity does not present significant power above such
frequency. Importantly, the demodulated signals are still
sampled in the megahertz range, allowing for an arbitrarily
high oversampling. In this way, a 10 kHz guard-band between
carriers can be kept to ensure a correct channel discrimination.
The discrete electronics system designed for the validation

of the technology in vivo is limited to operate arrays of up to 4
× 8 g-SGFETs. This limitation comes from the constrained
scalability of discrete electronics in opposition to ASICs.

Figure 4. In vivo validation of FDM graphene neural probes for brain recordings. (a) Acute experiment setting. The g-SGFET array interfaces the
brain with the custom-built front-end amplifier. (b) Illustration of a rat skull indicates the position of the craniotomy, the g-SGFET array, the LED,
and the place of KCl injection. (c) Average and standard deviation of the Ids−Vgs and Ids−Ac curves obtained in vivo for the 32 channels. (d) The
visually evoked potential averaged over 10 consecutive events is shown for the g-SGFET placed on the lower-left corner of the array before (black)
and after (green) crosstalk correction. (e) Visually evoked potential averaged over 10 consecutive events for all g-SGFETs on the 4 × 8 array. The
color map represents the delay between stimulus and the peak of the response. (f) Map of spontaneous activity under anesthesia. (g) Spontaneous
activity filtered in two different bands indicates the presence of low-frequency components (<1 Hz) for channel in position (4,5). (h) CSD event
recorded in a single g-SGFET. The top graph shows the activity in the 1−50 Hz band (blue, left axis) and the wide-band activity (0.001−50 Hz)
(black, right axis). The corresponding spectrogram in the 1−50 Hz band is shown below. (i) The color maps indicate the signal amplitude in each
of the g-SGFETs on the array at different times during the CSD propagation.
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Figure 3c shows the combination of carrier frequencies used
for the in vivo proof of concept. The Vgs−rms from three probes
of 4 × 8 g-SGFET arrays operated with this carrier’s
configuration is shown in Figure 3d, demonstrating a mean
sensitivity of 6.29 μV with a standard deviation of 1.37 μV and
a yield of 100%. This high sensitivity can eventually degrade
due to the superposition of a large number of carrier signals,
the large amplitude of which might challenge the resolution of
the data acquisition (DAQ) system. The quantization error of
the analog-to-digital converter (ADC), given by its less-
significant bit (LSB), must be low enough to ensure signal
integrity. When increasing the number of carriers, their
amplitude (Ac) must be reduced in order to prevent saturation
of the ADC (see Supporting Information S11). This decrease
in Ac implies an attenuation of the transconductance (i.e.,
Acgm) of the g-SGFETs, while the LSB of the ADC remains
unchanged. To minimize the amplitude of the carriers
superposition for a certain Ac, the phase of the carriers can
be adjusted. Figure 3e shows the improvement obtained by
phase optimization for the combination of 32 carrier signals
defined in Figure 3c, revealing a three-fold attenuation in the
amplitude of the carrier superposition. The comparison with
the superposition of the 4 carriers used for this proof of
concept shows that upscaling to 32 carriers causes an increase
in the amplitude by a factor of 2.8, which could be
compensated by increasing the resolution of the ADC by 1−
2 bits.35 These results, together with the evaluation of crosstalk
and the high frequency response of g-SGFETs, demonstrate
the potential of this technology for high-count flexible neural
probes.

■ IN VIVO EVALUATION OF FDM GRAPHENE
NEURAL PROBES

Previous works have shown that g-SGFETs operated in the DC
mode present a high sensitivity for the recording of neural
activity.15,26 Moreover, g-SGFETs have demonstrated a unique
capability for the recording of infraslow neural activity with a
high spatial resolution.29 The FDM operation of g-SGFETs is
not only expected to preserve their sensitivity for infraslow
signals but to enhance their performance by eliminating flicker
noise from the amplifiers due to the lock-in amplification in the
AM mode. In addition, due to the low power consumption of
g-SGFETs, heating of the tissue is not expected to be
significant even for large scale arrays (see Supporting
Information S12). To validate the in vivo functionality of
FDM graphene probes, we have recorded electrical activity
from the cortex of a Long Evans rat in an acute setting using a
4 × 8 FDM graphene neural probe (see Figure 4a,b and
Supporting Information). The optimum Vgs, which maximizes
gm, and the highest carriers amplitude (Ac), which fills the
dynamic range of the amplifiers, were determined in vivo (see
Figure 4c).
The sensitivity of the sensors to high-frequency LFP activity

was evaluated by measuring visually evoked potentials36

triggered by a blue LED emitting light-pulses of 100 ms
every 5 s. The sensors directly placed on the primary visual
cortex V1 (lower left) exhibit a sharp response with 50 ms
delay and 250 μV peak amplitude lasting until 100 ms after the
initial trigger (Figure 4d). Sensors placed further away from
the V1 show a distance-dependent suppressed response of
smaller amplitude and extended delay (Figure 4e). This result
is in full agreement with previously reported values,36

demonstrating the preserved sensitivity of g-SGFETs in this

frequency band in the FDM operation mode. Besides, the
crosstalk correction method discussed above showed the low
impact of crosstalk in these signals (see Figure 4d and
Supporting Information).
Similarly, the distortion-free recording of infraslow activity

using g-SGFET has been previously shown in the DC mode by
the recording of cortical spreading depression (CSD) events.29

CSDs are a slowly propagating wave of depolarizing neurons
and astrocytes, which has been clinically related to stroke, brain
injury, and migraine.37,38 CSDs can be easily triggered by
injecting KCl into the brain cortex and present a propagation
speed of approximately 5 mm per minute across the cortex.
Figure 4f shows the spontaneous activity under anesthesia
where highly coherent transitions from up to down states can
be observed. Figure 4g shows the signal from channel in
position (4,5) filtered in the 1−50 Hz frequency band (blue)
together with the signal filtered in the 0.001−50 Hz band. This
spontaneous activity is strongly suppressed during the
depolarization wave, which results in a large infraslow signal
drift with a duration over 70 s. Figure 3h shows the
propagating front of the CSD wave across the array,
demonstrating the capabilities of FDM graphene neural probes
to study topography of wide-band oscillatory dynamics in the
brain.

■ DISCUSSION
In summary, we have presented the concept of frequency-
division multiplexing of graphene active sensor arrays to reduce
the number of wires required for high sensor-count neural
probes. This novel approach presents two main advantages
over time-division multiplexing resulting from its switchless
operation. First, the elimination of switches implies an
enormous simplification of the technological complexity,
eliminating the need for high-mobility and wide band gap
flexible materials, such as ultrathin SiO2. Second, FDM
operates in a continuous mode, fully circumventing the
problems derived from limited switching speed and artifacts
in TDM, which ultimately limit the scalability of the arrays.
Moreover, the signals from all sensors are continuously
sampled at high speed in the megahertz range. Although the
frequency separation between carriers determines the
bandwidth of the sensors, the high sampling speed allows
one to acquire the neural signals with an arbitrarily high
oversampling. Finally, the modulation and subsequent
demodulation of the signals in the FDM mode is based on a
lock-in amplification scheme, which eliminates flicker noise
from the amplifiers and improves the sensitivity of the system
in the infraslow frequency band.
Our results demonstrate the high performance of g-SGFETs

as mixers to perform on-site amplitude modulation of neural
signals. We have shown their high sensitivity for wide-band
neural signals both in the beaker as well as in vivo. Besides, we
have also demonstrated the outstanding drain-source fre-
quency response of solution-gated graphene sensors, validating
their performance for high carrier frequencies, required for the
operation of large-scale arrays. In addition, we have evaluated
the crosstalk among sensing sites, which could reach the same
level as for TDM with on-site switches when translating this
technology to human scale neural probes. In order to maintain
the sensitivity of the system for large arrays with up to 32
superposed carriers, we have described the use of carrier phase
optimization as well as the requirements for the DAQ system,
which could be met by an ASIC.35
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The viability of large arrays controlled by an ASIC allows
one to envision the realization of a new generation of high-
density and large-area sensor arrays. The simplicity and
robustness of the switchless, FDM methodology compared
to state-of-the-art alternatives,33,39 together with the high
sensitivity, flexibility and biocompatibility of graphene active
sensors make the implementation of these technologies very
promising for both neuroscientific research as well as clinical
applications.
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Investigacioń Biomed́ica en Red en Bioingenieriá, 08193
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Biomed́ica en Red en Bioingenieriá, 08193 Madrid, Spain
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Gerrit Schwesig − Bernstein Center for Computational
Neuroscience Munich, Munich Cluster of Systems Neurology

(SyNergy), Faculty of Medicine, Ludwig-Maximilians
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S1. Device fabrication 

In a first step 10um thick biocompatible Polyimide (PI-2611 HD MicroSystems) was 

spun on 4’’ Si/SiO2 support wafers and cured under nitrogen atmosphere at 350 °C. The 

perpendicular metal lines of the array (columns/ rows) were patterned in two standard lift-off 

steps (negative photoresist AZ5214E, Clariant, Germany) with the metal deposited by e-beam 

evaporation (30nm Ti/ 300nm Au, 10nm Ti/ 100nm Au) and separated by a 2um PI spacer 

layer (as in step 1). Interconnecting via-holes through the spacer layer were etched by oxygen 

plasma asher (Tepla Gigabatch 360M, 200W, 200 sccm O2, 40 sccm CF4) using a 

photolithographically defined protective aluminum mask (AZ5214E, 300nm Al). Then, single 

layer graphene, grown and transferred by Graphenea, is patterned by photolithography 

(HiPR6512 photoresist, FujiFilm) and etched by oxygen-based Reactive-Ion-Etching (Alcatel 

AMS110-DE, 150W for 1min) to form the transistor channel area. A third metal layer (20nm 

Ni/ 200nm Au) is added to form sandwich contacts improving the g-SGFET’s durability and 

lowering its contact resistance due to work function matching [9, 10]. A subsequent thermal 

annealing step at 300°C was conducted in ultra-high vacuum. To passivate the metal leads, a 

2um thick layer of SU8 epoxy photoresist (SU-8 2005 MicroChem) was deposited, leaving 

open windows in the channel regions to allow a direct electrolyte graphene interface. In a final 

step, the polyimide was structured by deep reactive ion etching using a photoresist etching 

mask (AZ9260, Clariant) and the flexible probes were mechanical peeled from the support 

wafer. 
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S2. Electrical setup hardware and software 

For the characterization of graphene active sensor arrays in the amplitude modulation 

mode (AM-mode) as well as for the in-vivo proof of concept we developed a discrete 

electronics system based on both commercial and custom built components. In order to meet 

the demanding requirements in terms of high sampling speed and high number of inputs a 

commercial PXIe system (PXIe-1071 chassis with one PXIe-5105 scope module implementing 

8 high speed input channels) was used. For the current-voltage conversion, a custom built 

circuit was used, which also provided the driver to bias the g-SGFETs. The carrier signals were 

provided by two PXIe-5413 modules with 2 signal generators each. 

Together with the hardware, a custom software based on Python was developed for 

controlling the data acquisition systems. The aim of this software is to provide tools for the 

characterization of the g-SGFETs as well as for real-time data acquisition and visualization of 

electrophysiological recordings. Table 1.1 summarizes the main specifications of the 

developed software, which includes a graphical user interface to tune the operation parameters 

and for real-time visualization of the signals in both the time and frequency domains. 
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Table S1. Summary of the main specifications of the data acquisition system. 

 

 S3. Animal handling and device implantation 

Experiments were performed in accordance with the European Union Directive 

2010/63/EU and the German Law for Protection of Animals (TierSchG), and approved by the 

local authorities (ROB-55.2-2532.Vet_02-16-170). Long Evans rats (Charles River) were 

housed under controlled standard conditions  (room temperature 22 ± 2 °C, 12:12 h light–dark 

cycle, lights on at 10:00) and  provided food and water ad libitum.  

 In order to perform electrophysiological measurements rats were deeply anaesthetized 

with MMF (Midazolam 2mg/kg), Medetomidin 0.15 mg/kg, Fentanyl 0.005 mg/kg). About 1h 

into the surgery the initial MMF injection was supplemented with Isoflurane 0.5%-1% and 110 

mg/kg Metamizol. The dorsal surface of the head was shaved and Bupivacain injected 

subcutaneously in the exposed area. Subsequently a dorsal midline cut was done and the dorsal 

skull surface cleaned from overlying tissue. In the next step craniotomies were performed 
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bilaterally with a maximum lateral width of 5 mm each while their anterior and posterior 

maxima were located ca. +2 mm and -8mm from bregma respectively. After careful resection 

of the dura mater the brain surface was covered with prepolymerized PDMS (mixing ratio 1:10, 

Sylgard 184, Dow Corning) and Vetbond (3M) was used to fasten the edge of the PDMS cover 

to the skull. After temporarily lifting the polymer cover the gSGFET array was placed on the 

right hemisphere partially overlying the primary visual area. After careful placement of the 

surface array, the PDMS covers were refastened to the skull with Vetbond to constrain brain 

movement and preventing drying of the brain surface. 

 Spontaneous activity was recorded at 0.5% Isoflurane and isolated events of cortical 

spreading depression (CSD) were induced by local application of 1 uL KCL (3mMol) with a 

Nanoject II micropipette injection device (Drummond Scientific). The CSD induction point 

was located about 4 mm anterior to bregma (approximately 7 mm from nearest site on recording 

array). Optical evoked responses were recorded at 2% Isofluran and triggered with 100 msec 

short light pulses delivered at 0.2 Hz to the contralateral visual field. 

Signals of the gSGFET array were referenced to an Ag/Ag-Cl wire, positioned in either the 

temporal muscle and acquired with custom build electronics described in supplementary 

information S2. 

 

S4. Frequency response at high frequencies 

The frequency response of the g-SGFETs (i.e. 𝐺𝑚(𝑓) ) for signals applied at the gate 

differs between the DC and AM operation modes as described in the main text. The difference 

occurs at high frequencies, for which capacitive currents through the gate and parasitic 

capacitances flow into drain and source (see Fig. S2a). Fig. S2b shows the frequency response 

in the DC mode, indicating the contribution from capacitive currents. In the AM mode, these 
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fluctuations in the measured drain-to-source current do not contribute to 𝐺𝑚 because they are 

not multiplied by the carrier signal. Therefore, when demodulating the drain-to-source current, 

this contribution is folded with the carrier frequency out of the bandwidth of sensing.  

a                b    

 

Figure S1| Frequency response at high frequencies in the DC mode. a. Equivalent circuit 

of the g-SGFET, including parasitic capacitances through the insulation layer. The gate current 

𝐼𝑔(𝑓) flows into the drain and source. b. Bode representation of 𝐺𝑚(𝑓), The increase in the 

magnitude at high frequencies can be explained by the contribution from capacitive currents 

through the gate (black line). The phase at high frequencies increases and tends towards −𝜋/2. 

Filled area indicates the standard deviation (n=4). 

 

S5. Electrical doping of graphene along the channel 

The drain-to-source bias produces a change in the Fermi level of the graphene with 

respect to the vacuum level (Fig. S2a-top). When brought in contact with the electrolyte gate, 

the Fermi energy in the graphene and electrolyte equalises. This would typically lead to band 

bending in a conductor-semiconductor interface. In the case of graphene, band bending does 

not occur, but a shift in the Dirac energy with respect to the Fermi energy can be observed3.  
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This shift translates into an accumulation of charges at the graphene-electrolyte interface due 

to effective gating (see Fig. S2a). This effective gating causes a shift in the CNP for different 

𝑉𝑑𝑠 values in the DC-operation mode (see Fig. S2b).  This shift however is not observable in 

the AM-mode because of the oscillatory drain-to-source voltage applied. Fig. S2c shows the 

𝐼𝑑𝑠 − 𝑉𝑔𝑠 curves obtained in the AM-mode for different carrier amplitudes in the same range 

as in Fig. S2b. 

a          b 

        c 

 

Figure S2| Effective gating induced by the drain-to-source bias. a. The gradient in the Fermi 

energy induced in the channel by the drain-to-source bias is shown together with the energy of 

the bandstructure in graphene. The effective doping induced results in a non-homogenous 

charge density along the channel. The bottom schematics represent the bandstructure of 

graphene before and after getting in contact with the electrolyte gate at two positions along the 

graphene channel. b. The 𝐼𝑑𝑠 − 𝑉𝑔𝑠 curves for different 𝑉𝑑𝑠 values in the DC mode are plotted. 
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The shift in the CNP is marked with the straight black line. c. The 𝐼𝑑𝑠 − 𝑉𝑔𝑠 curves for different 

carrier amplitudes in the AM mode are plotted. 

 

S6. Harmonic distortion of signals at the gate and carrier signals 

The effective gating induced by 𝑉𝑑𝑠 on the graphene channel does not produce a 

measurable shift in the CNP in the AM mode. However, it might produce slight changes in the 

shape of the  𝐼𝑑𝑠 − 𝑉𝑔𝑠 curves. This changes can be quantified by comparing the harmonic 

distortion of the signals applied at the gate measured in the AM mode and calculated from the 

Taylor expansion of the 𝐼𝑑𝑠 − 𝑉𝑔𝑠 curves in the DC mode. Fig. S3a shows this comparison, 

which demonstrates that although the 1st order harmonic, corresponding to the 

transconductance term, matches with the measured response, the 2nd and 3rd order harmonics 

are significantly lower in the AM-case. This deviation can be attributed to slight changes in the 

curvature of the transfer characteristics due to the different effective gating in both modes. 

On the other hand, the harmonic distortion introduced in the carrier signal can also be 

compared to the values expected from the Taylor expansion of the output characteristics (i.e. 

the 𝐼𝑑𝑠 − 𝑉𝑑𝑠 curves). Fig. S3b shows the comparison of measured and calculated amplitudes 

for the 1st, 2nd and 3rd harmonics of the carrier. The measured amplitude of the 2nd and 3rd order 

harmonics is clearly below the expected values from the non-linearities in the 𝐼𝑑𝑠 − 𝑉𝑑𝑠 curves. 

We attribute this deviation to the fact that non-linearities arise from the effective doping in the 

graphene channel produced by the drain-to-source bias. At the high frequencies used for the 

carriers, the response of the graphene-electrolyte interface is attenuated, thus reducing the 

impact of effective gating.   
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a           b 

Figure S3| Harmonic distortion in the baseband. a. The 1st, 2nd and 3rd order harmonics 

introduced by the g-SGFET on a signal applied at the gate are shown for different 𝑉𝑔𝑠 bias 

conditions (dots). The terms derived from the Taylor expansion of the stationary transfer 

characteristics are also shown (lines). b. The 1st, 2nd and 3rd order harmonics introduced by the 

g-SGFET on a carrier signal are shown for different 𝑉𝑔𝑠 bias conditions (dots). The terms 

derived from the Taylor expansion of the output characteristics are also shown (lines). The 

filled area and error bars indicate the standard deviation (n=4). 

S7. Crosstalk analytical modelling 

The crosstalk level induced by common mode oscillations (𝑉𝑐𝑜𝑚) at the resistance of 

the metal tracks, connectors, wires, etc in series with the transistors in row 𝑗 (𝑅𝑟𝑜𝑤,𝑗) and in 

column 𝑖 (𝑅𝑐𝑜𝑙,𝑗) can be expressed by an analytical expression. This expression can be derived 

by calculating how signals applied on a specific g-SGFET modify the effective drain-to-source 

bias (𝑉𝑑𝑠,𝑒𝑓𝑓) of g-SGFETs at different positions on the array. For a g-SGFET on position (𝑖, 𝑗) 

(see Fig. S4). 

𝑉𝑑𝑠,𝑒𝑓𝑓,𝑖𝑗 = 𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖 − 𝑉𝑐𝑜𝑚,𝑟𝑜𝑤,𝑗 − 𝑉𝑐𝑜𝑚,𝑐𝑜𝑙,𝑖  

Eq. S1a 
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+𝑉𝑐𝑜𝑚,𝑟𝑜𝑤,𝑗 = [∑
𝑉𝑑𝑠,𝑒𝑓𝑓,𝑖𝑗

𝑅𝐺𝐹𝐸𝑇,𝑖𝑗
𝑖 + ∑ 𝑉𝑑𝑠,𝑒𝑓𝑓,𝑖𝑗 𝑔𝑚,𝑖𝑗  𝑉𝑠𝑖𝑔,𝑖𝑗𝑖 ] 𝑅𝑟𝑜𝑤,𝑗 

Eq. S1b 

𝑉𝑐𝑜𝑚,𝑐𝑜𝑙,𝑖 = [∑
𝑉𝑑𝑠,𝑒𝑓𝑓,𝑖𝑗

𝑅𝐺𝐹𝐸𝑇,𝑖𝑗
𝑗

+  ∑ 𝑉𝑑𝑠,𝑒𝑓𝑓,𝑖𝑗 𝑔𝑚,𝑖𝑗 𝑉𝑠𝑖𝑔,𝑖𝑗

𝑗

 ]  𝑅𝑐𝑜𝑙,𝑖  

Eq. S1c 

In a zeroth order approximation, 𝑉𝑑𝑠,𝑒𝑓𝑓,𝑖𝑗(𝑂0) can be considered equal to 𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖 in Eq. 

S1b and S1c, because 𝑉𝑐𝑜𝑚 ≪ 𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖, i.e.: 

     
𝑅𝑐𝑜𝑙,𝑖

𝑅𝐺𝐹𝐸𝑇,𝑖𝑗+𝑅𝑐𝑜𝑙,𝑖+𝑅𝑟𝑜𝑤,𝑗
≪ 1           Eq. S2a 

𝑅𝑟𝑜𝑤,𝑖

𝑅𝐺𝐹𝐸𝑇,𝑖𝑗+𝑅𝑐𝑜𝑙,𝑖+𝑅𝑟𝑜𝑤,𝑗
≪ 1    Eq. S2b 

and, 

𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖 𝑔𝑚,𝑖𝑗  𝑉𝑠𝑖𝑔,𝑖𝑗𝑅𝑐𝑜𝑙,𝑖 ≪ 𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖    Eq. S2c 

𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖 𝑔𝑚,𝑖𝑗  𝑉𝑠𝑖𝑔,𝑖𝑗𝑅𝑐𝑜𝑙,𝑖 ≪ 𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖   Eq. S2d 

 

Following this approximation, Eq. S1a describing a first order approximation of the effective 

drain-source voltage can be defined as: 

𝑉𝑑𝑠,𝑒𝑓𝑓,𝑖𝑗(𝑂1) = 𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖 − 𝑉𝑐𝑜𝑚,𝑟𝑜𝑤,𝑗(𝑂1) − 𝑉𝑐𝑜𝑚,𝑐𝑜𝑙,𝑖(𝑂1)     

Eq. S3a 

where: 

𝑉𝑐𝑜𝑚,𝑟𝑜𝑤,𝑗(𝑂1) = [∑
𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖

𝑅𝐺𝐹𝐸𝑇,𝑖𝑗
𝑖 + ∑ 𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖 𝑔𝑚,𝑖𝑗 𝑉𝑠𝑖𝑔,𝑖𝑗𝑖 ] 𝑅𝑟𝑜𝑤,𝑗   
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Eq. S3b 

𝑉𝑐𝑜𝑚,𝑐𝑜𝑙,𝑖(𝑂1) = [∑
𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖

𝑅𝐺𝐹𝐸𝑇,𝑖𝑗
𝑗 + ∑ 𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖 𝑔𝑚,𝑖𝑗 𝑉𝑠𝑖𝑔,𝑖𝑗𝑗  ]  𝑅𝑐𝑜𝑙,𝑖    

Eq. S3c 

In this way, the current flowing through a specific g-SGFET e.g. at position (1,1), can be 

estimated: 

𝐼𝑑𝑠,11(𝑂1) =  
𝑉𝑑𝑠,𝑒𝑓𝑓,11(𝑂1)

𝑅𝐺𝐹𝐸𝑇,11
+ 𝑉𝑑𝑠,𝑒𝑓𝑓,11(𝑂1) 𝑔𝑚,11 𝑉𝑠𝑖𝑔,11 

Eq. S4 

If a signal is applied on g-SGFET on position (1,1), 𝐼𝑑𝑠,11(𝑂1) presents the 

multiplication of the main component 𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟1 by 𝑉𝑠𝑖𝑔,11 in the second term of Eq. S4. After 

demodulation, the signal of interest 𝐺𝑚𝑉𝑠𝑖𝑔,11 is determined from this product. Besides, 

𝑉𝑑𝑠,𝑒𝑓𝑓,11(𝑂1) in the second term of Eq. S4 also includes the term 𝑉𝑐𝑜𝑚,𝑟𝑜𝑤,1(𝑂1), which 

contains a component at all carrier frequencies attenuated by a factor 𝑅𝑟𝑜𝑤,1/𝑅𝐺𝐹𝐸𝑇,𝑖1 as 

described by Eq. S3b. The product of 𝑉𝑠𝑖𝑔,11 with 𝑉𝑐𝑜𝑚,𝑟𝑜𝑤,1(𝑂1) therefore causes a wrong 

attribution of 𝑉𝑠𝑖𝑔,11, attenuated by a factor 𝑅𝑟𝑜𝑤,1/𝑅𝐺𝐹𝐸𝑇,𝑖1, to all g-SGFETs in row 1. On the 

other hand, regarding crosstalk among transistors in the same column; the signal applied 

(𝑉𝑠𝑖𝑔,11) causes a change in 𝑉𝑐𝑜𝑚,𝑐𝑜𝑙,1(𝑂1) as described in Eq. S3c. The current through all j 

transistors in column 1 (𝐼𝑑𝑠,1𝑗) then presents a term proportional to 𝑔𝑚,11𝑉𝑠𝑖𝑔,11 attenuated by 

the factor 𝑅𝑐𝑜𝑙,1/𝑅𝐺𝐹𝐸𝑇,1𝑗.  

 

Finally, a 2nd order crosstalk appears in 𝐼𝑑𝑠,𝑖𝑗(𝑂2): 
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𝐼𝑑𝑠,𝑖𝑗(𝑂2) =  
𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖 − 𝑉𝑐𝑜𝑚,𝑟𝑜𝑤,𝑗(𝑂2) − 𝑉𝑐𝑜𝑚,𝑐𝑜𝑙,𝑖(𝑂2)

𝑅𝐺𝐹𝐸𝑇,11

+ (𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖 − 𝑉𝑐𝑜𝑚,𝑟𝑜𝑤,𝑗(𝑂2) − 𝑉𝑐𝑜𝑚,𝑐𝑜𝑙,𝑖(𝑂2)) 𝑔𝑚,11 𝑉𝑠𝑖𝑔,11 

Eq. S4 

where 𝑉𝑐𝑜𝑚,𝑐𝑜𝑙,𝑖(𝑂2): 

𝑉𝑐𝑜𝑚,𝑐𝑜𝑙,𝑖(𝑂2) = [∑
𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖 − 𝑉𝑐𝑜𝑚,𝑐𝑜𝑙,𝑖(𝑂1) − 𝑉𝑐𝑜𝑚,𝑟𝑜𝑤,𝑖(𝑂1)

𝑅𝐺𝐹𝐸𝑇,𝑖𝑗
𝑗

+ ∑(𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖 − 𝑉𝑐𝑜𝑚,𝑐𝑜𝑙,𝑖(𝑂1) − 𝑉𝑐𝑜𝑚,𝑟𝑜𝑤,𝑖(𝑂1)) 𝑔𝑚,𝑖𝑗 𝑉𝑠𝑖𝑔,𝑖𝑗

𝑗

 ]  𝑅𝑐𝑜𝑙,𝑖 

Eq. S5 

Also presents a component at all carrier frequencies (i.e. 𝑉𝑐𝑜𝑚,𝑟𝑜𝑤,𝑖(𝑂1) ≈

∑
𝑉𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑖

𝑅𝐺𝐹𝐸𝑇,𝑖𝑗
𝑖 𝑅𝑟𝑜𝑤,𝑗 in the first term of Eq. S5). This term, translates the crosstalk from the 

transistors in the same column to all the rest of columns. This 2nd order crosstalk affects all g-

SGFETs out of the same column and row, and presents an attenuation by a factor 

𝑅𝑐𝑜𝑙,1𝑅𝑟𝑜𝑤,1/(𝑅𝐺𝐹𝐸𝑇,1𝑗)2, which is basically the squared attenuation factor. For the fitting of 

the experimental crosstalk, the aforementioned attenuation factors have been used. Leading to 

a 𝑅𝑐𝑜𝑙,1 ≈ 𝑅𝑟𝑜𝑤,1 ≈ 50𝛺. 
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Figure S4: Equivalent circuit of a 3x3 g-SGFET array. The dimensions corresponding to 

index i and j used in Eq. S1 are indicated as well as the position of index (1,1), where a signal 

at the gate is applied. In red, the crosstalk induced in g-SGFET in row 1 is illustrated, which 

is caused by changes in 𝑉𝑑𝑠,𝑒𝑓𝑓,𝑖1. The crosstalk induced in g-SGFETs in column 1 is 

illustrated in blue, which is caused by changes in 𝑉𝑑𝑠,𝑒𝑓𝑓,1𝑗. 

 

S8. Crosstalk cancelation and scalability 

The experimental determination of crosstalk by individually gating g-SGFETs allowed 

determining the mechanism responsible for crosstalk generation. The experimental results 

show that a simple model of voltage oscillations in the metal tracks (𝑅𝑡𝑟𝑎𝑐𝑘) explains the 

magnitude and the gate voltage dependence of the crosstalk. In order to mathematically 

eliminate the effects of crosstalk, the information about the coupling factors (𝑘 =

𝑅𝑡𝑟𝑎𝑐𝑘/𝑅𝑔−𝑆𝐺𝐹𝐸𝑇, see Figure  S4) is sufficient. 
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Due to crosstalk, the signals measured for one specific sensor are the linear superposition of 

multiple devices, with each contribution weighted by the specific coupling factor 𝑘𝑖𝑗−𝑖′𝑗′ 

between the g-SGFETs in positions 𝑖𝑗 and another position (𝑖′𝑗′). Knowing all coupling factors 

and the measured signals from all 𝑁 sensors we have a system of 𝑁 linear equations and 𝑁 

variables (i.e. the actual biological signals from the 𝑁 sensors). Expressed in matrix form: 

 

[
𝑘11−11 … 𝑘11−𝑚𝑛

⋮ ⋱ ⋮
𝑘𝑚𝑛−11 … 𝑘𝑚𝑛−𝑚𝑛

] [
𝑀11

⋮
𝑀𝑚𝑛

] = [
𝑆11

⋮
𝑆𝑚𝑛

] 

Eq. S6                

where 𝑛 ×  𝑚 = 𝑁. 𝑀𝑖𝑗 represents the measured signal in sensor 𝑖, 𝑗 and 𝑆𝑖𝑗 the actual 

electrophysiological signal without crosstalk effects in sensor 𝑖, 𝑗. The array of variables 𝑆 can 

be determined by multiplying the inverse of the coupling coefficients matrix (𝑘) by the array 

of measured signals (𝑀): 

𝑆 = 𝑘−1𝑀 

Eq. S7 

The coupling matrix 𝑘 can be directly determined from the resistance values of the metal tracks 

and the g-SGFETs, which can be estimated with a high accuracy from the probe layout, a 

measurement of the metal sheet resistance using test structures and the 𝐼𝑑𝑠−𝐷𝐶 measured. 

Following this approach, the crosstalk in our proof-of-concept can be determined and 

mitigated. We have validated the method using the signals detected by individually gating the 

g-SGFETs using polyelectrolyte gates. The results show a dramatic decrease in the crosstalk, 

which is shown in Fig. S5a and Fig. 4b in the main text. Besides, we have used this method to 

estimate the actual effect of crosstalk on the signals detected in-vivo. Fig. S5b and S5c below 

show the map of visually evoked response with and without the crosstalk correction, revealing 

that only a very small crosstalk is present in the measurements.  
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However, crosstalk might become more severe if the density of the sensors is increased, due to 

reduced space for the metal tracks or due to high correlation among signals detected in multiple 

sites. The experimental determination and modelling of crosstalk presented in our manuscript 

demonstrate that crosstalk originates from common-mode voltage oscillations induced by non-

zero resistance of the metal tracks. Therefore, reducing 𝑅𝑡𝑟𝑎𝑐𝑘 as well as increasing the 

resistance of the g-SGFETs will mitigate the effect of crosstalk (see supporting information 

S7). For the 𝑅𝑡𝑟𝑎𝑐𝑘=50Ω  and width to length ratio (W/L=1) presented in our proof of concept, 

a crosstalk level of ~1.5% (i.e. 36.7dB) is determined. However, this value does not represent 

the ultimate limit of the technology: it has been determined in a non-optimized test device for 

the sole purpose of demonstrating the origin of crosstalk. The g-SGFET array can be designed 

to meet rigorous constrains in terms of crosstalk, minimizing the tracks resistance and adjusting 

the W/L of the g-SGFET. Fig. S5d below represents the crosstalk-to-signal ratio (CTSR) 

calculated for different 𝑅𝑡𝑟𝑎𝑐𝑘 and W/L values using the crosstalk factor (𝑅𝑡𝑟𝑎𝑐𝑘/𝑅𝐺𝐹𝐸𝑇) 

derived in supporting information S7. Given this map, it is possible to define a design rule for 

specific applications. For the mapping of local field potentials (LFP) using surface probes, as 

demonstrated in our manuscript, the density of the array does not need to be particularly high; 

instead, a high-count probe covering large areas is typically required4. For relatively low 

densities, the metal tracks can be wide, therefore enabling to reduce the tracks resistance to 

~10Ω, which decreases the CTSR to the range of  -50dB for a W/L=1 or  -60dB for a W/L 

=1/3. Moreover, using the crosstalk correction method described above an additional 

attenuation of the CTSR of ~15dB can be achieved (see Fig. 4b in the main text), which would 

strongly relax the design rules shown in Fig. S5d.  
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Figure S5: Validation of crosstalk cancelation method. a. Signal measured in different g-

SGFETs before (left) and after (right) crosstalk mitigation. The black line corresponds to the 

g-SGFET where the signal was applied using printed polyelectrolyte gates. The orange and 

blue line correspond to g-SGFETs in the same column and row respectively. b. Spatial map of 

visually evoked response averaged for 10 stimulus. The red line represents the measured signal 

and the green line represents the signal after correction. c. Signal corresponding to the bottom-

left position (i.e. 4,8) on the array. d. Map of CTSR for different 𝑅𝑡𝑟𝑎𝑐𝑘 and W/L values. The 

experimentally determined crosstalk level is indicated in orange. A realistic design target is 
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indicated in green while crosstalk level for technologies with on-site switches is indicated by 

the blue line. Note that the effect of the crosstalk mitigation method is not considered in this 

figure.    

 

S9. Validation of polyelectrolyte gating and frequency response in the DC-mode 

Polyelectrolytes consist of immobile charged polymer chains with mobile counter-ions. 

This solid electrolytes present a high electrochemical stability5,6, which minimizes 

electrochemical reactions at the interface and ensures field-effect operation. Polyelectrolytes 

have been recently attracting increasing interest for the gating of flexible field-effect transistors 

due to the high interface capacitance that can be achieved7,8. This high capacitance is in the 

same range as for solution-gated devices, therefore it represents a suitable material to model 

the response of g-SGFETs with a solid gate. Therefore, we have patterned the polyelectrolyte 

on different groups of graphene FETs on the array in order to apply signals on specific sites 

and measure the crosstalk induced on the rest of the array. The electrical potential in the 

polyelectrolyte has been controlled by coplanar gold gates as illustrated in Fig. S6a. 

For the patterning of polyelectrolyte gates, inkjet printing has been chosen as an 

alternative to photolithographic methods. Photolithographic definition of spin-coated or dip-

coated polymers is highly scalable, however, the patterned polymers must be photodefinable9 

or compatible with photodefinable resists and resist developers. Inkjet printing allows to 

circumvent this limitation, with the only constrains being the strict rheological properties that 

inks must meet10. 

The polyelectrolyte solution used here was specifically formulated to be compatible 

with a drop-on-demand piezoelectric printer.  The ink was prepared by dissolving 

poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) pellets (M𝑤̅ = 400000, d = 

1.78g/mL) and ion liquid 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] with 
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a b s t r a c t

Poor metal contact interfaces are one of the main limitations preventing unhampered access to the full
potential of two-dimensional materials in electronics. Here we present graphene solution-gated field-
effect-transistors (gSGFETs) with strongly improved linearity, homogeneity and sensitivity for small
sensor sizes, resulting from ultraviolet ozone (UVO) contact treatment. The contribution of channel and
contact region to the total device conductivity and flicker noise is explored experimentally and explained
with a theoretical model. Finally, in-vitro recordings of flexible microelectrocorticography (m-ECoG)
probes were performed to validate the superior sensitivity of the UVO-treated gSGFET to brain-like
activity. These results connote an important step towards the fabrication of high-density gSGFET m-
ECoG arrays with state-of-the-art sensitivity and homogeneity, thus demonstrating the potential of this
technology as a versatile platform for the new generation of neural interfaces.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

With its exceptional properties such as high mobility [1],
biocompatibility [2], transparency [3] and mechanical strength [4],
graphene has been extensively investigated for application in
numerous fields such as electonics [5], photonics and optoelec-
tronics [6], and more recently biomedical engineering [7e9].
Despite the vast potential of graphene, graphene-based devices
often fall short of demonstrating their full capabilities, as large
metal-graphene contact resistance [10], inhomogeneity among
devices [11] and high 1/f noise [12] still hamper their performance.

Hence, great efforts have been undertaken to properly understand
the source of noise and of the high contact resistance as well as to
find ways to minimize their impact on the device performance.

In a graphene-based field-effect transistor (FET), we can
distinguish several contributions to low-frequency noise [12]. For
instance, variations in the scattering cross-section of lattice defects
generate mobility fluctuations which ultimately cause changes in
the resistance of graphene. In addition, charge trap states in the
graphene channel or in the surrounding materials such as the
substrate, gate dielectrics or encapsulation layers can cause fluc-
tuations in the number of charge carriers. Due to the 2-dimensional
nature of graphene, the latter is expected to be dominant, as shown
for certain transistor configurations [13]. The use of buffer layer
materials such as hexagonal boron nitride (hBN) [14] or engineer-
ing free-standing graphene channels [15] has been proposed to
decouple the graphene sheet from the environment, and thus
reduce flicker noise. Degradation of the electrical properties due to
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the closer environment the is not restricted to graphene but has
been also observed for other two-dimensional materials such as
transition-metal-dichalcogenites (e.g. MoS2) [16] and layered III-VI
semiconductors (i.e. InSe) [17].

High contact resistance, resulting from the work function
mismatch between graphene and metals as well as from the low
density of states of graphene, has a negative impact on the per-
formance of graphene FETs, resulting in a poor charge transfer and
thus in a low conductance of graphene FETs [10,18,19]. Common
strategies to reduce contact resistance include the use of metals
which interact strongly with graphene [20e22] or the creation of
defects in the graphene lattice; for instance, the introduction of
dangling bonds can enhance the graphene-metal interaction.
Typical ways to create defects in graphene include, patterning the
graphene sheet beneath the metal contacts, increasing the gra-
phene edge length [23e25], as well as treating the contacted gra-
phene with oxygen plasma [26] or ozone [27]. Despite the vast
number of available techniques to provide low contact resistance,
the goal of most published studies focuses on setting new perfor-
mance benchmarks for a single device by using nanofabrication
techniques and exfoliated graphene [14,28], and only very few of
them address the technique’s scalability for wafer-size fabrication
[29]. Since the success of 2D materials will ultimately depend on
their translation from the laboratory to industry, demonstration of
large-scale fabrication processes with high homogeneity and high
yield are of critical importance. In addition to their impact on the
current-voltage characteristics of the transistor, metal-graphene

contacts have also been reported to exhibit time-dependent resis-
tance fluctuations [30], thus contributing to the low-frequency
noise. Although significant efforts have been devoted to a better
understanding of the electrical noise in graphene [12], no
consensus has been reached yet on whether channel or contact
noise is dominant in graphene FETs, what the underlying noise-
generating mechanisms are and how noise depends on channel
and contact geometry [28,31e35].

Here we use wafer-processed graphene solution-gated field-
effect transistors (gSGFETs) to demonstrate the effect of the contact
resistance on the sensing performance of these devices. gSGFETs
have been widely explored for application in micro-
electrocorticography (m-ECoG) arrays to record neural activity
[9,36,37]. As neural signals are usually extremely small in ampli-
tude (typically below 100 mV), having devices with good signal-to-
noise ratio (SNR) is of paramount importance for high-quality re-
cordings. Previous work investigated the bias-dependence of low-
frequency noise in gSGFETs and demonstrated that carrier density
fluctuations can generate low-frequency noise in the channel [13].
However, the impact of contact noise in g-SGFETs has not been
addressed so far. In this work, in addition to present a fundamental
noise study, we also explore the impact of low contact resistance on
the actual recording quality of neural sensor-arrays considering
factors such as signal-to-noise ratio, sensor homogeneity and
linearity of signal transduction.

Fig. 1. Improving contact resistance by surface cleaning and defect creation. a. Schematic of device fabrication with UVO applied to the graphene contact region prior to the
metal deposition. b. Raman spectra after 5 min and 20 min treatment, indicating an increase of the D-peak with treatment duration. c. Surface roughness of the graphene layers
measured by AFM. The lowering of the root-mean-square values with longer UVO treatments (2.1 nm, 1.3 nm, 1.1 nm and 0.8 nm, for 0 min, 5 min, 20 min, and 40 min duration,
respectively) indicates the continuous cleaning of surface residues. d. Ratio of peak intensities of the D-band and G-band of single-layer graphene used as an indicator for the
amount of residues and defects in the graphene sheet. Rc (e) and Rsh (f) measured as a function of applied gate bias for UVO-treated and non-treated devices. The shaded region
close to the charge neutrality point (CNP) does not yield reliable values for Rc, as here the applied gate bias reaches similar values than the drain-source bias (Uds ¼ 20 mV), leading
to a non-constant Rsh along the channel. g. Rc at Ugs - CNP ¼ �0.5 V as a function of UVO-treatment duration, showing optimal results for 20 mine30 min UV ozone exposure. (A
colour version of this figure can be viewed online).
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2. Experimental

2.1. Graphene CVD growth and wet transfer

The copper foil used for the chemical vapor deposition of gra-
phene (25 mm thick Alfa Aesar coated of size 4.5 cm � 7 cm) was
first electropolished for 5 min in a solution (1 L of H2O, 0.5 L of
H3PO4, 0.5 L of ethanol, 0.1 L of isopropanol and 10 g of urea) at a
fixed current density of 62 mA/cm2 and subsequently loaded into a
planar quartz tube (length of 160 cm and diameter of 6 cm) heated
by a three-zone oven. A thermal annealing was performed for 1 h at
1050 �C (under 400 sccm Argon flow at 100 mbar pressure) to
stabilize the temperature prior to the 10 min graphene growth step
(gas mixture of 1000 sccm of Argon, 200 sccm of hydrogen and 2
sccm of methane, at 12 mbar pressure). The sample is then
quenched down to room temperature by removing the tube from
the heating zone. To transfer the graphene film, poly(methyl
methacrylate) (PMMA A4) was spun onto the sample and dried at
room temperature for 12 h. Afterwards, the backside graphene was
removed by oxygen plasma and the sample was kept floating for at
least 6 h in solution of FeCl3/HCl to remove the copper. Subse-
quently, the sample was cleaned several times in deionized water,
before being transferred onto the substrate. The wafer was then
dried and thermally annealed in ultra-high vacuum (30 min at
40 �C, then gradually ramped up to 180 �C), before the PMMA was
dissolved in acetone and isopropanol. Right after the growth, the
quality and uniformity of the graphene monolayer is assessed by
scanning electron microscopy (SEM) and Raman Spectroscopy
(30 mm � 30 mm mapping). As detailed in the supplementary in-
formation, the graphene layers exhibit a domain size between
10 mm and 20 mm, a low defect density and high uniformity across
the entire sample. The averaged full-width-half-maximum of the
2D Raman peaks of the used samples is around 33 cm�1, indicating
a low percentage of second nucelation.

2.2. Device fabrication

The devices for the transfer length method (TLM) study were
fabricated by contact photolithography on 4 inch Si/SiO2 wafers. In
a first step, graphene was transferred, patterned (HiPR6512
photoresist, FujiFilm) and etched by deep reactive-ion etching
(DRIE) for 1 min at 150 W in oxygen plasma. Subsequently, the
photoresist for the contact metal layer was deposited, illuminated
through a chromium mask and developed. Before evaporating
20 nm Ni and 200 nm Au (using an e-beam evaporator) the wafer
was exposed to UV-ozone [Jelight Model 42] [27]. After lift-off, a
2 mm passivation layer (SU8-2005 MicroChem) is deposited with
open windows in the channel region.

The flexible ECoG-probes were processed following the same
protocol; however, a 7 mm layer of polyimide (PI-2611 HD Micro-
Systems) was spun onto the Si wafer prior to fabrication to serve as
the flexible substrate and structured via DRIE to allow individual
peeling of each probe after all steps are finished. Due to the higher
mechanical stress in the flexible probes, an additional metal layer
(20 nm Ti and 200 nm Au) was used to improve adhesion between
the topmetal layer and the substrate, yet not directly contacting the
graphene channel.

2.3. Device characterization and recording setup

Transfer characteristics and noise were measured with custom-
built electronics, performing current-to-voltage conversion,
filtering and bias-control of up to 16 transistors simultaneously. To
allow sensitivity towards large DC currents and high gain for noise
detection, the converted signals are split into DC

(frequency < 0.1 Hz) and AC (0.1 Hz < frequency < 5 kHz) compo-
nents. A commercial data acquisition system (National Instruments
USB-6363) was used to provide the applied biases and record the
voltage signals after conversion [36].

2.4. Raman spectroscopy and atomic force microscopy

The Raman spectra were acquired with a Witec spectrometer in
backscattering configuration, using a 600 gr/nm grating which
provided a spectral resolution of 3 cm�1/pixel. A 488 nm excitation
laser (1 mW power) was focused on the sample with a 50x objec-
tive leading to a spatial resolution below 0.8 mm. The integrated
peak intensity ratio AD/AG is calculated by fitting each peak with a
Lorentzian after previously substrating the background. Each data
point shown in Fig. 1a was obtained from the statistical analysis of
Raman mappings of 15 mm � 40 mm contact region. An Asylum
MFP-3D atomic force microscope (AFM) was used to characterize
the surface in standard air-tapping mode (Fig. 1c).

2.5. Contact resistance from transfer length method

The contact resistance (Rc) and the sheet resistance ðRsheet)
values shown in Fig. 1eeg have been extracted by applying the TLM
to different devices of 2.5 mm, 5 mm, 8 mm,10 mm, 20 mm and 40 mm
channel length and 40 mm channel width. For each length, the
resistance value has been extracted from the mean value of several
measurements and fitted with a linear regression model to extract
the values for Rc and Rsheet . To further improve the accuracy of this
approach, outlier resistance values which strongly deviate from the
median of each transistor type (outside the 25th and 75th
percentile) were not used in the analysis.

3. Results and discussion

3.1. Low contact resistance by surface cleaning and defect creation

Ultraviolet ozone (UVO) treatment has been previously reported
as an efficient way to reduce contact resistance in graphene FETs
[27,29]. Part of the effect is attributed to removal of fabrication
residues which leads to a decrease of the intensity ratio of the D-
peak to the G-peak (AD/AG). However, longer treatment durations
are known to break up the sp2-bonds and cause defects, which
increases AD/AG. During the initial phase of defect creation, UVO
exposure predominately leads to the formation of sp3-bonds
through the attachment of oxygen containing groups [38]. On the
other hand, in the case of high defect density (nD/nC above 10�3)
due to long UVO treatment durations or increased sample tem-
perature during the treatment, it has been shown that a transition
from sp3-type towards vacancy-type dominated defects takes place
[42,43]. In our study, the UVO has been applied at room tempera-
ture and due to the relatively small size of the exposed contact
region, surrounded by areas covered with photoresist, defects in
the graphene film at the contacts are induced at a slow rate. In the
case of the 20min UVO duration, the resulting lowAD/AG-ratio (0.3)
together with the absence of a noticeable D’ band indicates a low
defect density, predominantly with a sp3-type nature [42,43]. Since
the sp2 orbitals hinder charge injection along the z-plane [44,45],
the creation of defects by long UVO-treatments further decreases
the contact resistance.

Fig. 1d shows the evolution of AD/AG as a function of treatment
duration. The results are comparable to the ones presented in
literature [27], with the exact duration depending on the experi-
mental conditions of the UVO-treatment. The accompanying
change in surface topology was analyzed by AFM. Fig. 1c illustrates
the surface roughness before and after treatments of varying
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duration, revealing the continuous cleaning of surface residues;
this results in a lowering of the measured roughness (from a root-
mean-square value of 2.1 nm for no treatment, down to 0.8 nm for
40min of UVO treatment) and a better visualization of the wrinkled
surface of the graphene sheet. Fig. 1e and 1f shows the UVO in-
fluence on the contact resistance and sheet resistance of the gra-
phene channel. The symmetric decrease (for electrons and holes) of
Rc away from the charge neutrality point (CNP) has been previously
reported for back-gated graphene FETs using Ni contacts [18,21]
and has been associated to the poor charge screening in 2D mate-
rials with low charge carrier densities [46]. It is important to note
that the TLM assumes a constant sheet resistance per unit area
across the whole transistor channel. However, this assumption is
only correct for cases in which the applied gate bias is much larger
than the drain-source bias. While this is mostly true for field-effect-
transistors that usea relatively thick dielectrics, solution-gated FETs
are normally operated at much lower gate voltages. In this case, the
potential difference between channel and gate is not constant but
changes gradually along the channel, which leads to a non-uniform
sheet resistance and can result in unreliable values for Rc in the
grey shaded region of Fig. 1e. Values for Rc far away from the CNP
(Fig. 1g), yield around 3-4 kUmm for the case of a pristine Ni/Au top-
contact structure and reach a minimum as low as 600 Umm for a
20e30min UVO treatment duration. Longer treatments result in an
increase of contact resistance, as a high defect density in the UVO-
treated graphene sheet eventually hampers charge conduction. On
the other hand, the sheet resistance remains independent of the
UVO treatment as expected, since the channel region is protected
by the photoresist.

3.2. Improved linearity of signal transduction, homogeneity and
signal-to-noise ratio in short channel transistors

When planning the use of gSGFETs as a transducer for neural
activity, there are several factors to be considered to obtain
distortion-free, high-resolution recordings. Fig. 2 illustrates how
contact resistance influences the sensing performance of gSGFETs,
by comparing devices (of varying channel length and 40 mm
channel width) with low (20 min UVO treatment) and high contact
resistance (no UVO treatment). The suitability of the gSGFET for
sensing applications, in which the device converts the voltage
variation of a signal at the gate into a current modulation between
the drain and source terminals, depends on the linearity of its
transfer characteristics. A high contact resistance at the metal-
graphene interface causes a flattening of the transfer curve away
from the CNP (Fig. 2a), limiting the range of linear operation. The
resulting non-linearities can cause distortions in the transduced
signal, thus degrading the recording quality of the graphene tran-
sistors. Furthermore, a flattening of the transfer curve also limits
the gSGFET’s transconductance, defined as the change of drain-
source current induced by a changing gate bias (gm ¼ dIds=dUgs),
which is a measure for the device’s sensitivity. The gSGFET is
commonly operated at the bias conditions which provide peak
transconductance (illustrated in Fig. 2b). Fig. 2d shows how the
normalized peak-transconductance value changes for devices of
varying channel length (L ¼ 5 mm, 8 mm, 10 mm, 20 mm, 40 mm,
60 mm) and constant channel width (W ¼ 40 mm). In case of low Rc
(i.e. for UVO-treated devices) the gm=Uds exhibits a near-linear in-
crease with W/L, while for devices with high Rc (non-treated) it is
increasingly limited for short channels. As a high transconductance
is generally desirable for sensing applications to allow for best

Fig. 2. Effect of contact resistance on linearity of signal transduction, homogeneity and signal-to-noise ratio of gSFGETs. Average value and standard deviation of transfer
curves for a. drain-source current Ids , b. transconductance gm and e. effective gate noise Urms

G for devices of 5 mm channel length and 40 mm channel width. d. Normalized
transconductance gm=Uds (values within 25th and 75th percentile) versus width-to-length ratio of the channel. The statistical variation of the Rds (c) and Urms

G (f) values at peak
transconductance (Ugs ¼ CNP - 0,1 V) for devices of different length are also shown. (A colour version of this figure can be viewed online).
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signal transduction, the influence of the contact resistance has to be
considered for the choice of the sensor channel geometry.

Arguably, one of the most critical performance indicators of the
gSGFET is its equivalent rms gate noise Urms

G (Fig. 2e), which relates
the intrinsic rms current noise Irms

ds (integrated current noise over
the frequency bandwidth of interest; here filtered between 1 and
100 Hz) of the transistor with its transconductance (Urms

G ¼ Irms
ds =

gm), and represents the detection threshold for signals applied to
the gate. At peak-gm a significant reduction of the effective gate
noise can be seen in the UVO-treated devices, which is most
striking for short channel lengths. This difference becomes more
pronounced when moving further away from the CNP: Urms

G re-
mains fairly constant in the case of low Rc and increases rapidly for
devices with high Rc. This is particularly interestingwhen operating
the gSGFET in-vivo, which typically requires using a common bias
point for all devices. However, local changes in doping across the
different recording sites, as well as electrochemical drifts of the
reference electrode during long-lasting chronic recordings make it
virtually impossible to operate all devices simultaneously at their
ideal bias condition. As neural interfaces are mainly considered for
long-term recordings, ranging from several days up to months or
even years of implantation time, stable recording quality is
mandatory. Consequently, having a constant SNR in a large bias
window, resulting from a voltage-independent Urms

G , is crucial to
providing optimal sensing capabilities across the sensor array
throughout long recording times. In addition to the positive effect
of the UVO treatment on the contact resistance and noise of the
devices, Fig. 2f shows that the dispersion across different recording
sites is significantly reduced in the case of devices with the UVO
treatment. This suggests that poor contact interfaces are

responsible for the dispersion observed in the array in terms of
noise (Fig. 2f) and conductance (Fig. 2c), possibly overruling the
contribution of the dispersion in graphene quality in the channel.

3.3. Noise contribution from contact and channel

The improvement in device performance resulting from the
contact treatment directly leads to two questions: i) What is the
contribution from the contact noise compared to the channel
noise?, and ii) What is the reason for the contact noise improve-
ment? Answering these questions is critical for knowing to which
extent contact noise mitigation will affect the total noise in g-
SGFETs, and to understand how to optimize the contact treatment
procedure. The total normalized noise SI/I

2
ds generated in a gSGFET

includes the contribution from the contacts (SRc
) and from the

channel (SRch
) (see Fig. 3a-top). The contributions of these terms to

the measured current noise can be added linearly with the proper
normalization:

SI
I2ds

¼ SRc
þ SRch

R2T
(1)

where RT is the total resistance of the transistor. The dependence of
each of these terms on the channel width (W) and length (L) will
determine their relative contribution to the total noise for different
geometries and sizes. The dependence on geometry of SRc

and
SRch

can be expressed explicitly:

Fig. 3. Geometrical dependence of contact and channel noise in gSGFETs. a. Top: schematic of a gSGFET showing the contact resistance (Rc ¼ Rc;1 þ Rc;2), channel resistance
(Rch) and the noise contributions from the contacts (SRc

¼SRc;1
þ SRc;2

) and channel (SRch
). Bottom: Schematic of the equivalent circuit of the transmission-line contact at the

graphene-metal interface. The distributed elements representing the sheet resistance of graphene along the contact (Rsh;c(x)) are defined together with the local fluctuations in the
sheet resistance (dRsh(x)). The drain voltage (Vd) and the potential at the channel/contact interface (Vch) are also defined. b. Dependence of the normalized noise (Irms

ds = I2ds) versus
the channel length (L) for devices with non-treated contacts and for devices with contacts treated with UVO for 20 min (Ugs ¼ CNP� 0:1 V). A change from an approximately
L-independent regime to af

ffiffiffi
L

p
regime is observed. c. Experimentally obtained integrated noise Irms

ds versus Ugs , plotted for non-treated contacts and contacts treated with UVO for
20 min and channel length of 5 mm. The lines correspond to the fitting of the experimental data with a model that considers the contributions of the channel noise (solid line) only
and of the channel plus contact noise (dashed line). In UVO-treated devices the channel noise model fully describes the Ugs dependence of Irms

ds (both curves exactly overlap). d.
Local contribution of resistance fluctuations to SRc

along the contact, shown for different values of conductance across graphene-metal interface (Gz), according to the FEM model
described in the main text. e. Evolution of Rc (left axis) and SRc

(right axis) with Gz (top) and Rsh;c (bottom). f. Experimentally obtained Rc (left axis) and Irms
ds = I2ds (right axis) shown

for different UVO treatment durations and channel length of 5 mm. (A colour version of this figure can be viewed online).
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SIf

I4ds
¼

h
kRc

.
W3 þkRch

L
.�

W3
�i,

V2
ds (2)

where kRc
and kRch

include all the constants which are independent
of the channel dimensions for SRc

and SRch
respectively (see sup-

plementary information). The relative contribution of each term
can therefore be identified by evaluating the dependence of noise
on L. Fig. 3b shows the normalized integrated current noise, Ids

rms=

Ids
2 (where Irms

ds f
ffiffiffiffi
SI

p
), for different channel lengths. As demon-

strated above, the measured noise is reduced for devices with the
UVO treatment. Interestingly, the derived dependence of the
measured noise on L reveals the transition from a regime domi-
nated by contact noise to a regime dominated by channel noise. The
channel length for which the two terms contribute equally is
approximately 60 mm. For devices with shorter channel length the
UVO treatment results in a significant improvement on the total
noise of the g-SGFETs. It is important to note that the improvement
in Urms

G is not only caused by the increase in gm (Fig. 2), but also by
the reduction of the intrinsic noise of the contact SRc

. The transition
from a regime dominated by contact noise to one dominated by
channel noise can be confirmed by modelling the Ugs-dependence
of the measured current noise. Following the model presented in
Ref. [13], which describes the Ugs-dependence of Irms

ds when channel
noise dominates, and including the contribution of the contact
noise using Eq. (1) (assuming a constant Rc), we have fitted the
experimental data to separate the contributions of contact and
channel to the total noise. Fig. 3c compares the measured Irms

ds � Ugs

for g-SGFETs with UVO-treated and non-treated contacts. In the

case of the non-treated devices the contribution from the contacts
dominates the total transistor noise in most of the Ugs range.
Conversely, for UVO-treated devices the Ugsdependence of the
channel noise presents a characteristic M-shape, which has been
attributed to the dominance of channel noise [13]. Note that in
Fig. 3c the Irms

ds is not normalized, therefore it does not directly
represent the noise sources SRc

and SRch
.

We turn now to discussing the cause of the contact noise
improvement by the UVO treatment. To this end, we start by
modelling the contact in graphene with the transmission-line
model equivalent circuit shown in Fig. 3a, with Gz representing
the conductance through themetal-graphene interface z-plane and
Rsh;cðxÞ representing the local values of the graphene sheet resis-
tance at the contact. In this type of contacts, the current crowding
[47] effect causes a non-homogenous current injection into the
graphene sheet, with the highest current flowing next to the metal
edge and the lowest at the end of the contact (see supplementary
information). This attenuation of the current density at the contact
is characterized by the transfer length LT , at which the current
density has decreased by a factor e. We suggest that the UVO
treatment causes an increase in Gz, possibly due to elimination of
fabrication residues and/or the creation of defects in graphene [27].
Such defects also produce an increase in the sheet resistance of
graphene (Rsh;c) at the contacts, see Fig. 3a and [48]. Note that both
the increase of Gz and increase of Rsh promote the current crowding
effect, producing the shortening of LT (see supplementary infor-
mation). Following previous work [14], we assume that the noise
originates from resistance fluctuations in the graphene sheet under
the metal contacts. These fluctuations can be caused by mobility

Fig. 4. In-vitro assessment of recording quality of gSGFETs using hippocampal population spike-like signals. a. Schematic and optical images of a flexible epicortical probe with
16 gSGFET sensors (20 mm � 20 mm channel area), with UVO-treated and non-treated sensors arranged in a chessboard layout. b. Map of a single spike event recorded by each
transistor of the array. c. Overlapped presentation of all recordings for several spike events. d. The root-mean-square (rms) value of the recorded signal (for each point integrated
over a timespan of 200 ms) and its standard deviation are shown for each individual gSGFET as well as the mean value of all devices, revealing a significant improvement of the
signal-to-noise ratio. (A colour version of this figure can be viewed online).
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fluctuations or by changes in the number of charge carriers trapped
in the graphene substrate. Considering the equivalent circuit
shown in Fig. 3a, the power of local fluctuations in the sheet
resistance of graphene dRsh;c adds up linearly. However, in this
distributed elements circuit the resistance fluctuations at different
positions along the contact contribute differently to the overall
contact noise. The contribution of each local noise source can be
calculated by weighting its noise power with the term dRC=
dRsh;cðxÞ and integrating over the whole contact length (Lc) (see
supplementary information). To perform this calculation, we have
modelled the transmission-line contact using the finite elements
method (FEM), as detailed in the supplementary information.
Fig. 3d shows the calculated local contribution from each section of
the contact for different values of conductance across the z-plane
(Gz). When the current crowding effect is enhanced, the contribu-
tion to noise from local sources is confined closer to the metal edge.
Similarly, when Rsh;c is increased the same effect occurs (see sup-
plementary information). The total integrated contact noise SRc

is
shown in Fig. 3e together with Rc as a function of Gz and Rsh;c,
revealing that the simultaneous drop in Rc and in SRc

can only be
caused by an increase in Gz . Fig. 3f shows the measured Rc and SRc

of the gSGFETs for different UVO treatment durations. It is possible
to observe a monotonic decrease of both parameters until 20 min
treatment duration, indicating that the contact noise mitigation in
this range of UVO treatment is caused by an increase in Gz, rather
than by an increase in Rsh;c. For UVO treatments above 30 min,
however, the trend changes: Rc increases with the treatment
duration, while SRc

remains approximately constant (see supple-
mentary information).We tentatively explain the increase in Rc as a
result of the creation of defects on the graphene sheet at the con-
tact, that causes a significant increase in Rsh;c [39]. These results
demonstrate the reduction of the noise contributions from the
contacts by UVO treatment and offer an explanation to understand
the origin and limits of this improvement.

3.4. Enhanced performance of flexible gSGFET ECoG-array for
neural interfaces

After the above discussion on the effect of contact resistance on
overall gSGFET performance and its low-frequency noise, we
examine now how this improved performance is translated to the
application of flexible gSGFET probes for neural activity recordings.
Fig. 4a shows an illustration of this technology, combining several
metal and passivation layers on a flexible polyimide substrate
(fabrication described in the experimental section), corresponding
to an array of 16 microtransistors. A squared channel geometry of
20 mm � 20 mm for each transistor is used to validate the perfor-
mance of the flexible probe. The distance between transistors is
400 mm.

To exclude the variability due to the use of different graphene
samples, the graphene transfer procedure or local changes of
electronic properties in the graphene sheet, UVO-treated and non-
treated gSGFETs are distributed in a chessboard arrangement on the
same array (see transfer curves in Fig. S4 in supplementary infor-
mation). A reliable comparison of recording quality across different
recording sites is difficult in-vivo, as locally recorded signals
depend onmany factors such as the underlying brain tissue and the
adhesion of each sensor to it. Therefore, a periodically generated
artificial hippocampal population spike (Multi Channel Systems
signal generator ME-W-SG) was applied to a phosphate-buffered
saline solution (PBS, 10 mM). Fig. 4b displays one spike event
recorded by each transistor of the array. Fig. 4c overlaps all the
recordings for several events, demonstrating the improvement of
SNR for the UVO-treated devices. To better quantify the SNR, the
root-mean-square value of the recording in Fig. 4c and its standard

deviation are plotted in Fig. 4d, showing average noise values
around 80 mV for non-treated and 30 mV for UVO-treated devices.
This presents an over twofold improvement of signal resolution for
such sensor geometry, due to the improved metal-graphene con-
tacts and compares very favorably to previously reported noise
values in gSGFETs [36] (see Fig. S4d in supplementary information).
Significantly reduced noise values due to the contact treatment
have been reproduced across several probes on a single wafer and
between different batches, validating the high reliability of this
technique (see Fig. S4c in supplementary information). Small
dispersion in noise values can be explained by minor variations in
graphene quality and by the amount of surface residues between
different devices.

4. Summary

Here we have shown the critical importance of the contact
resistance for the performance of graphene solution-gated field-
effect transistors in neural sensing applications. Poor contacts
reduce the linearity of the transfer characteristics causing signal
distortions, lower the signal-to-noise ratio of the recorded signal
and limit the sensor homogeneity. Exposing the contact region of
the graphene channel to UV-ozone before deposition of the con-
tacting metal, is shown to significantly improve charge injection at
the contacts by a combination of surface cleaning and defect cre-
ation. A theoretical model is used to understand the transition from
contact-dominated to channel-dominated noise as a consequence
of low contact resistance, and to assess its effect on the total noise
of gSGFETs with different channel geometries. Finally, the
compatibility of the contact improvement treatment with flexible
substrates is validated, demonstrating the fabrication of flexible
ECoG-arrays of gSGFETs exhibiting high signal-to-noise ratio.

The development of a novel class of brain-machine interfaces
capable of providing further insights into the working paradigms of
the brain and granting accurate control of neuro-prostheses might
eventually require integrating brain-machine interfaces (BMIs)
with single-neuron resolution (cell-body only several mm in size).
Considering the increasing dominance of poor contacts on the SNR
with decreasing sensor size, improved contact interfaces will
become indispensable when moving the gSGFET technology to-
wards this goal. Our work demonstrates a scalable technique to
provide high-quality metal-graphene interfaces with low contact
resistance, paving the way for low noise, high-density neural in-
terfaces based on graphene transistors.
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Supplementary Material 

Expansion of 𝑺𝑹𝒄
 and 𝑺𝑹𝒄𝒉

terms 

Expanding the terms in Eq. 1 in the main text, the following general expression can be written 

for both contact and channel noise if homogeneous noise generation along the graphene sheet 

is not assumed. 

𝑺𝑹𝒇 = ∫
𝑹𝒔𝒉

𝟐𝒌

𝑾𝟑
𝒅𝒙 

Eq. S1 

When 𝒌 is assumed independent of 𝒙, the right hand side of Eq. S1 becomes 𝒌𝑹𝟐/𝑨, which 

can also be expressed as 𝒌′𝑳/𝑾𝟑 as in Eq. 2 of the main text. The error made with this 

approximation for the channel noise term decreases away from the charge neutrality point [1] 
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(CNP) where charge is approximately homogenously distributed along the channel. In this 

case, 𝒌𝑹𝒄𝒉
 can take different values, depending on whether mobility fluctuations dominate or 

charge noise does. If noise is considered to follow Hooge’s law, then 𝒌𝑹𝒄𝒉
=𝜶𝑯𝑹𝒔𝒉

𝟐 . On the 

other hand, if charge trapping-detrapping noise dominates, as previously shown for gSGFETs 

[1]; 

𝒌𝑹𝒄𝒉
≈  

𝑲𝑩𝑻 𝑵𝑻 𝑹𝒔𝒉
𝟐

𝟒𝜶 𝒏𝟐
 

Eq. S2 

where 𝒌𝑩 and 𝑻 are the Boltzman constant and temperature, respectively, 𝑵𝑻 the volumetric 

density of traps in the environment surrounding the channel, 𝜶 is a tunneling constant and 𝒏 

the density of charge carriers in the channel [1,2]. 

For the case of contact noise, the approximation of homogeneous noise generation along the 

graphene sheet is not valid unless most of the current is injected at the graphene edge, as it 

migh occur for graphene-metal edge contacts [3,4]. Otherwise, the contribution from each local 

noise source along the contact has a significantly different contribution to the total contact 

noise. The dependence of contact noise on the charge transfer length (𝑳𝑻) is derived in a 

following section. In any case, 𝒌𝑹𝒄
 is independent of the length of the channel, therefore Eq. 2 

in the main text can be derived.  

 

Finite Elements Method modelling of the metal-graphene contact 

The potential distribution in a transmission line model can be solved numerically using finite 

elements method (FEM). Figure S1a-top shows the potential distribution in a model of such a 

contact. The three domains of the model shown in figure S1a correspond to the metal (top-

domain), the graphene sheet under the metal (bottom-domain) and the metal-graphene interface 

resistance (middle-domain), as illustrated by the equivalent circuit shown in figure S1a-bottom. 

This non-homogeneous potential distribution leads to a non-homogeneous charge injection 

through the z-plane (i.e. metal-graphene interface). Figure S1b shows the current density in the 

z-direction (𝑱𝒛) along the contact for different conductance values across the interface (𝑮𝒛). It 

can be observed how the current density is larger in the vicinity of the metal edge, and this 

feature is more pronounced for higher 𝑮𝒛 values. Similarly, the current density is more 

inhomogeneous for increasing 𝑹𝒔𝒉 values. 
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a    b        c 

 

 

 

 

 

Figure S1: Finite elements method modelling of a transmission line metal-graphene contact. a. The FEM 
model of the TLM contacts is shown. The model consists of three domains accounting for the metal (top) for the 
metal graphene resistance  (middle) and graphene (bottom). In the top image the voltage gradient in the contact is 
shown. A larger gradient is present in the vicinity of the channel (with potential 𝑽𝒄𝒉). The schematic in the bottom 
shows the equivalent distributed elements circuit on top of the FEM model.  𝑹𝒛 and 𝑹𝒔𝒉,𝒄 stand for the metal-
graphene resistance and the graphene sheet resistance at the contact respectively. b. 𝑱𝒛 − 𝒙 relationship for 
different values of conductance through the graphene-metal interface (𝑮𝒛). c. 𝑱𝒛 − 𝒙 relationship for different 
sheet resistance values for the graphene under the metal contacts. 

 

Modelling the dependence of 𝒌𝑹𝒄
 on 𝑳𝑻 

In the transmission line model (TLM) describing the metal-graphene interface, the charge 

injection is distributed non-homogeneously, as shown previously. This implies that changes in 

the resistance of the graphene sheet at different positions along the contacts have a different 

effect on the total resistance of the transmission line. Thus, 𝑹𝒄 is a function of 𝑹𝒔𝒉(x). If 𝑹𝒔𝒉 

is homogenous along the contact, the differential equation defining their relation can be solved 

analytically [5]. However, the differential equations defining the current flow through the 

graphene-metal interface, including fluctuations in 𝑹𝒔𝒉 at x=l (i.e. 𝜹𝑹𝒔𝒉 [𝜹𝑫𝒊𝒓𝒂𝒄(𝒍 = 𝒙)]): 

 

𝑹𝒔𝒉 + 𝜹𝑹𝒔𝒉 [𝜹𝑫𝒊𝒓𝒂𝒄(𝒍 = 𝒙)]

𝑾
 𝒊(𝒍) =  −

𝒅𝑼(𝒍)

𝒅𝒍
 

 

𝑾

𝑹𝒈
 𝑼(𝒍) =  −

𝒅𝒊(𝒍)

𝒅𝒍
 

 Eq. S3a and S3b 

which leads to: 

 

𝑼(𝒍) −
𝑹𝒈

𝑹𝒔𝒉 + 𝜹𝑹𝒔𝒉 [𝜹𝑫𝒊𝒓𝒂𝒄(𝒍 = 𝒙)]

𝒅𝟐𝑼(𝒍)

𝒅𝒍𝟐
= 𝟎 
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has, to our knowledge, no analytical solution. Therefore, the term 𝑹𝒄(𝑹𝒔𝒉(𝒙)) must be 

determined numerically. For this purpose, we have modelled the transmission-line contact 

using finite elements method (FEM). The contact was divided in 50 parts and the effect of 

fluctuations in 𝑹𝒔𝒉 of each partition on 𝑹𝒄 was evaluated to estimate 𝒅𝑹𝒄/𝒅𝑹𝒔𝒉(𝐱). The model 

was validated by doubling the number of parts and comparing the results (showing only a 1.1% 

difference). Having determined this term for different positions along the contact, it is possible 

to calculate how local fluctuations in the resistance of graphene propagate to resistance 

fluctuations in the total contact resistance. The power of the local contributions, weighted by 

the term (𝒅𝑹𝒄/𝒅𝑹𝒔𝒉(𝐱))𝟐, can be integrated along the contact length to determine  𝑺𝑹𝒄
. 

𝑺𝑹𝒄
𝒇 =  ∫

𝒌𝑹𝒔𝒉
𝟐𝒅𝒙

𝑾𝟑
 (

𝒅𝑹𝒄

𝒅𝑹𝒔𝒉(𝐱)
)

𝟐𝑳𝒄

𝟎

 

Eq. S4 

where 𝑘 stands for the geometry independent terms, which depend on the origin of noise. 

If noise is caused by charge trapping-detrapping events, 𝒌 =
𝑲𝑩𝑻 𝑵𝑻 

𝟒𝜶 𝒏𝟐
. In this way, local 

fluctuations in the sheet resistance in the vicinity of the metal edge cause a stronger contribution 

to the total contact noise as shown for different 𝑮𝒛 values in figure 3d in the main text. It can 

be observed that the more confined the current density to the metal edge, the lower the 

integrated contributions to contact noise. Similarly, Figure S2 shows the effect of local 

fluctuations to total contact noise for different sheet resistance values. Again, higher resistance 

values, which lead to a more confined current density (i.e. smaller 𝑳𝑻) lead to a smaller total 

contact noise. 

  
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2: Local contributions to total contact noise along the contact length. The local contributions to 
contact noise are calculated using a discrete approximation of Eq. S3. The terms (𝒅𝑹𝒄/𝒅𝑹𝒔𝒉(𝐱))𝟐 are calculated 
using the FEM model shown in supplementary information S2, discretizing the contact in 50 parts.  
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Dominance of channel noise in gSGFETs with high 𝑹𝒔𝒉 

Contact resistance increases after reaching a minimum for excessively long UVO treatment 

times. This increase can be attributed to the creation of defects on the graphene sheet under the 

metal contacts. Nevertheless, this increase in 𝑹𝒔𝒉 is expected to further reduce the contact noise 

as described above. Figure S3a shows the dependence of the normalized integrated noise on 

the channel length for gSGFETs with contacts treated with UVO for 40 min, which led to an 

increased contact resistance. It is possible to validate that the relationship with 𝑳 corresponds 

to a channel noise dominated regime. These results can be further supported by the bias 

dependence of the integrated noise in Figure S3b, which can be explained by the noise 

contribution from the channel in opposition to the contacts. The fact that contact noise does not 

increase with the density of defects in the graphene sheet at the contacts implies that noise 

origins in trapping-detrapping events. Nevertheless, the improvement of contact noise with the 

density of defects in the graphene sheet must have a limit, which is likely to be the rise of 

mobility noise for large density of defects. 

 

          a        b 

 

 

 

 

 

 

Figure S3: Dominance of channel noise in gSGFETs with increased contact resistance. a. The normalized 
integrated noise 𝑰𝒅𝒔−𝒓𝒎𝒔/𝑰𝒅𝒔

𝟐  for gSGFETs with contacts treated with UVO for 40 min is shown for different 

channel lengths. The red straight line indicates the ∝ √𝑳 trend corresponding to channel dominated noise. b. The 
𝑽𝒈𝒔 bias dependence of 𝑰𝒅𝒔−𝒓𝒎𝒔 is shown for gSGFETs with a 5 µm long channel and contacts treated for 40 min 
with UVO.  

 

Performance, repeatability and benchmarking of UVO treated gSGFET-array 

Figure S4a and b show the transconductance 𝐆𝐦 and the effective gate noise 𝐔𝐆
𝐫𝐦𝐬 as a 

function of applied gate bias for the gSGFET array shown in figure 4 of the main text. Both 

represent the most important parameters for the gSGFET’s performance, as the 

transconductance specifies the device’s sensitivity and the effective gate noise sets it into 
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comparison with its current noise 𝐈𝐝𝐬
𝐫𝐦𝐬. Both show a clear improvement with the UVO contact 

treatment, resulting in a strongly improved detection limit of the device. As repeatability is an 

essential criterium when introducing technology improvements for large-scale device 

fabrication, we also assessed the reliability of the UVO treatment to provide low contact 

resistance and reduced contact noise in gSGFETs. Therefore, the procedure has been applied 

to independent wafers undergoing identical process flows. Figure S4c compares the effective 

gate noise of UVO-treated and non-treated gSGFETS (all channel size of 20 µm x 20 µm) of 

several devices on independent wafers.  

 
Figure S4: Repeatability of UVO treatment and comparison to previously reported noise values. 
Transconductance 𝒈𝒎 (𝐚. ) and effective gate noise 𝑼𝑮

𝒓𝒎𝒔 (b.) as a function of applied gate bias 𝑼𝒈𝒔 of the 
flexible gSGFET array in figure 4 of the main text. c. Comparison of the effective gate noise 𝐔𝐆

𝐫𝐦𝐬 (integrated 
from 1 Hz to 100 Hz) for different gSGFET-arrays (all size 20 µm x 20 µm)  across several wafers indicates the 
high repeatability of the technique. For each device group the mean value and standard deviation as well as the 
individual data points are shown.  d. 𝐔𝐆

𝐫𝐦𝐬 mean value (integrated from 1 Hz to 5 kHz) and standard deviation 
obtained with the UVO contact improvement presented in this work compared to previously reported noise values 
for gSGFETs with a sandwich contact configuration [6]. 
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While small variations in measured noise values can be seen between different devices, which 

are attributed to non-identical graphene quality and changes in the amount of surface residues, 

the mean noise value of the UVO-treated gSGFETs always compares highly favorably towards 

the one of the untreated devices. In previous work [6], a mean effective gate noise value of 21 

µV ± 2 µV (integrated from 1 Hz to 5 kHz) has been reported for gSGFETs of size 30 µm x 80 

µm. To compare this value to the one obtained for UVO-treated gSGFETs it has to be 

renormalized by a surface ratio term to account for the 𝟏/√𝑨 dependence of flicker-noise, 

yielding an expected mean effective gate noise of 52 µV ± 5 µV for devices of size 20 µm x 

20 µm. Figure S4d compares this predicted noise value to the ones measured for gSGFETs 

with the UVO contact improvement, showing the clear impact the treatment has on the noise 

performance 

 

Graphene quality and homogeneity 

The graphene quality has been characterized by Raman spectroscopy and scanning electron 

microscopy (SEM) on the sample on copper right after growth. Figure S5a and b shows SEM 

images of an open graphene layer for short growth time (2 min) and of a closed layer for the 

full growth duration (10 min). Domain sizes around 10 µm to 20 µm are clearly visible and 

result in a homogeneous single layer film with only minor amount of second nucleation.  

Figure S5c compares the Raman spectra for regions of monolayer graphene and regions with 

second nucleation. Figure S5d displays the histogram of the 2D Raman peak width, Γ2D, of a 

30 µm x 30 µm mapping area, resulting in a median value of 30.4 cm-1. To more carefully 

assess the homogeneity of the graphene film across the entire substrate, Raman maps in 3 

different regions (left, center, right) of the 4.5 cm x 7 cm substrate have been collected 

periodically over many samples, resulting in a median Γ2D of 33 cm-1 with a 6% increase 

towards the edges of the sample compared to the central region. A small Γ2D value with a high 

homogeneity across the entire sample confirms the consistently low percentage of second 

nucleation and thus the high quality of the graphene film. 
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Figure S5: Raman and SEM analysis of graphene layer on copper. a. SEM picture of an open graphene layer 
after short growth time (2 min) showing domain sizes around 10 µm to 20 µm. b. SEM picture of a closed graphene 
layer after a full growth cycle (10 min). c. Typical Raman spectra for a region of single layer graphene (blue) and 
a region with second nucleation (red), crosses in figure S5b indicate positions. d. Histogram of the full-width half-
maximum of the 2D Raman peak Γ2D over an area of 30 µm x 30 µm in the center of the sample.  
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Understanding the bias dependence of low
frequency noise in single layer graphene FETs†

Nikolaos Mavredakis, *a Ramon Garcia Cortadella,b Andrea Bonaccini Calia,b

Jose A. Garridob and David Jiméneza

This letter investigates the bias-dependent low frequency noise of single layer graphene field-effect tran-

sistors. Noise measurements have been conducted with electrolyte-gated graphene transistors covering a

wide range of gate and drain bias conditions for different channel lengths. A new analytical model that

accounts for the propagation of the local noise sources in the channel to the terminal currents and vol-

tages is proposed in this paper to investigate the noise bias dependence. Carrier number and mobility

fluctuations are considered as the main causes of low frequency noise and the way these mechanisms

contribute to the bias dependence of the noise is analyzed in this work. Typically, normalized low fre-

quency noise in graphene devices has been usually shown to follow an M-shape dependence versus gate

voltage with the minimum near the charge neutrality point (CNP). Our work reveals for the first time the

strong correlation between this gate dependence and the residual charge which is relevant in the vicinity

of this specific bias point. We discuss how charge inhomogeneity in the graphene channel at higher drain

voltages can contribute to low frequency noise; thus, channel regions nearby the source and drain term-

inals are found to dominate the total noise for gate biases close to the CNP. The excellent agreement

between the experimental data and the predictions of the analytical model at all bias conditions confirms

that the two fundamental 1/f noise mechanisms, carrier number and mobility fluctuations, must be con-

sidered simultaneously to properly understand the low frequency noise in graphene FETs. The proposed

analytical compact model can be easily implemented and integrated in circuit simulators, which can be of

high importance for graphene based circuits’ design.

Introduction

The outstanding characteristics of graphene such as its high
carrier mobility and saturation velocity have attracted signifi-
cant interest to use this material in future high-performance,
high frequency electronics. Although its gapless nature
renders it inappropriate for digital circuitry, it can result in a

tremendous performance boost in both analog and radio fre-
quency (RF) applications.1,2 In addition, graphene could also
be successfully used in chemical and biological sensors3–9 as
well as in optoelectronic devices.10 Such applications, though,
are extremely prone to Low Frequency Noise (LFN) which can
limit the sensitivity of sensors and can also be up-converted to
undesired phase noise in voltage controlled oscillators.
Furthermore, LFN is a very powerful tool for characterizing the
quality and reliability of graphene devices.11,12

LFN is also referred to as 1/f (flicker) noise when its Power
Spectral Density (PSD) is inversely proportional to frequency,
which is usually the case in devices with channel lengths typi-
cally longer than few hundreds of nanometres. The capture
and subsequent emission of charges at border traps near the
dielectric interface of oxide semiconductors is the main effect
responsible for the generation of LFN.13 Each carrier that gets
trapped causes a Random Telegraph Signal (RTS) in time
domain, corresponding to a Lorentzian spectrum determined
by a time constant. The high number of such Lorentzians in
large devices and the uniform spatial distribution of these
traps that results in a uniform distribution of time constants,
are responsible for the 1/f behavior of noise. This noise

†Electronic supplementary information (ESI) available: At first, a more detailed
description of the theoretical derivation of both carrier number and mobility
fluctuation models is provided. Then, Fig. S1 illustrates the behavior of graphene
channel charge at every position of the channel under different bias conditions.
After that, the analytical extraction of noise models without considering the
residual charge is shown with Fig. S2 showing the local ΔN and Δμ noise contri-
butions after neglecting ρ0. Fig. S3 is shown which presents the 1/f noise results
for the rest of channel lengths and drain voltages available. Then, the simplified
∼(gm/ID)2 carrier number fluctuation model with and without correlated mobility
fluctuation effect is derived for graphene and is presented in Fig. S4. Finally,
Fig. S5 represents the B = f × Area × SID/ID

2 factor which is crucial for comparison
with other works. See DOI: 10.1039/c8nr04939d
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mechanism is called carrier number fluctuation effect (ΔN)
and was first proposed by McWhorter.14 This phenomenon is
adequately described by a number of basic LFN models for
metal–oxide–semiconductor field-effect transistors (MOSFETs)
available in bibliography.15–19 In addition to carrier number,
mobility fluctuation (Δμ) is also considered a main contri-
bution to LFN in semiconductor devices and can be generated
due to fluctuations in the scattering cross-section of scattering
centres. This effect is described by the empirical Hooge
formula.20

In this letter we focus on the effect of LFN on single layer
graphene devices (GFETs) and more specifically on long
channel solution-gated transistors,21 which are broadly used in
biosensing and bioelectronics applications (Fig. 1a) (details on
the fabrication of these devices can be found in Experimental
data section). A map of the 2D/G Raman bands intensity ratio
and the average Raman spectrum over the graphene channel
are shown in Fig. 1b and c respectively. According to the
values of the 2D/G band intensity map, a low second nuclea-
tion density as well as a relatively good SLG homogeneity can
be derived. The D/G ratio in the average spectrum indicates a
low density of defects in the graphene channel. Flicker noise
which prevails in these transistors, is of high interest because
of its unique characteristics.22 As a semimetal, graphene
presents mobility fluctuations which can generate 1/f noise.
On the other hand, single-layer graphene (SLG), as a 2D
material is extremely prone to trapping effects leading to high

amplitude carrier number fluctuations. In fact, a recent study
illustrated that LFN can either be dominated by carrier
number fluctuations (surface noise) or mobility fluctuations
(volume noise) effect depending on the number of Graphene
layers;23 the lower this number the more dominant the surface
LFN is. The addition of these two contributions, combined
with the unusual transfer characteristics of graphene FETs and
the noise originated at the contacts24 leads to a rather complex
dependence of noise on the gate voltage. More specifically, it
has been stated that 1/f noise follows a V-shape dependence
close to the Dirac or charge neutrality point (CNP) with the
minimum of the V-shape at this gate voltage; this behavior can
turn into an M-shape in case the gate bias is extended.4,25–33

The gate dependence has been shown to strongly depend on
the spatial charge inhomogeneity related to the presence of
both electron and hole puddles near the CNP31 and it has
been observed in both top-gated4,25–30 and back-gated26–28,31–33

devices. We will also show that the charge inhomogeneity
induced in graphene devices at higher drain voltage values,
which is more intense at CNP, has a significant effect on the
LFN. In case of GFETs on particular substrates such as boron
nitride, not only 1/f noise is reduced in comparison to stan-
dard SiO2 substrates but also the M-shape is eliminated or
almost disappears.31,32 It will be shown that the latter occurs
in cases where less charge is induced by impurities near CNP,
also known as residual charge.34 Furthermore, flicker noise is
shown to be reduced after the effect of electron-beam

Fig. 1 (a) Schematic of a solution-gated GFET, (b) the colour scale indicates the 2D/G Raman band intensity ratio. The colour map overlapped with
the optical image of the graphene transistor, represents the local value of the 2D/G ratio measured in the channel area. (c) Average Raman spectrum
over the whole graphene channel. (d) Energy dispersion relation of a single layer GFET (top) and its capacitive network are shown with Cq: quantum
capacitance, Ctop, Cback: top and back oxide capacitances, Vc(x): chemical potential, V(x): quasi-Fermi channel potential, VG(B)S − VG(B)S0: top and
back gate source voltage overdrives (back gate is not active in devices under test of (a) but is included in the capacitive network of (d) to support the
generalizability of the model). Drain current ID vs. top gate voltage (VGS − VCNP) measured in solution -gated GFETs with (e) W = 40 μm for different
channel length values (L = 43, 23, 13, 8, 5.5 μm) at VDS = 20 mV and (f ) VDS = 20, 40, 60 mV for L = 43, 5.5 μm. Symbols: Experimental data, solid
lines: model.
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irradiation35 while the introduction of graded thickness
throughout the graphene channel, with a single layer in the
middle and two or more layers close to the contacts, also
reduces 1/f noise whereas it still ensures a high mobility.36

Classical Hooge formula alone cannot predict such M-shape
behavior since residual charge does not play a significant role
as it will be shown and this can only lead to a Λ-shape gate
bias dependence.37 On the other hand, V and M shapes can be
explained in terms of carrier number fluctuations due to
charge trapping/detrapping processes.26,28

There have been several attempts to model 1/f noise in
GFETs considering either carrier number fluctuations4,38–42

(ΔN) or mobility fluctuations effects27 (Δμ), while in some
cases both effects have been taken into account simul-
taneously.28 Usually noise models are taken from conventional
Si devices4,28,41,42 assuming that noise is homogeneously gen-
erated over the channel. This assumption is consequence of
considering charge to be homogeneously distributed along the
channel leading to a carrier number noise which is pro-
portional to the transconductance.4 In few reports, detailed
formulas are derived; however, they are not compact38–40 and,
thus, they cannot be solved analytically by a circuit simulator.
Finally, in some cases there is no validation of the proposed
models with experimental data.39–41 It is clear that there is still
missing a complete approach that combines physics validity
with analytical equations that can be easily integrated in a
circuit simulator and provide fast and robust solutions.

Results and discussion

Thus, the main goal of this work is to propose a physics-based
model which accounts for both carrier number and mobility
fluctuation noise sources inhomogeneously distributed over
the graphene channel and which can be solved analytically.
Furthermore, we validate that the developed model can accu-
rately capture the experimentally obtained M-shape gate
dependence of 1/f noise data measured in solution-gated
GFETs at different bias conditions and for several channel
lengths. Residual charge, which is dominant near CNP, will be
shown to be responsible for the M-shape dependence, however
channel charge inhomogeneity is also found to be significant
to the LFN minimum at CNP. As well as this, ΔN model is the
main 1/f noise contributor for SLG FETs as it was expected23

but Δμ also contributes near CNP. The contact resistance has a
significant effect on 1/f noise at high gate voltages because of
the increased and bias dependent contact resistance experi-
mentally observed in this regime.24 The model also works
properly for data from solid-gated GFETs taken from
bibliography.30,32,33

The basic methodology for the derivation of the physics-
based 1/f noise equations in this work is based on a procedure
developed for MOSFET devices.15,19,43,44 The implementation
of a correct 1/f noise model requires the existence of a reliable
current–voltage (I–V) model that can qualitatively capture the
bias dependence of the drain current of the device. Since LFN

expresses the fluctuation of current, thus the absolute current
has to be well described. The model for 1/f noise in GFETs has
been implemented considering the chemical potential based
compact model reported in ref. 45 and 46. According to this
model, a GFET can be represented by the equivalent capacitive
circuit shown in Fig. 1d. Graphene charge Qgr is stored in the
quantum capacitance (Cq); the chemical potential Vc(x) rep-
resents the voltage drop across Cq at position x. Vc(x) is
defined as the difference between the potential at quasi-Fermi
level and the potential at the CNP, as shown in the energy dis-
persion relation scheme of graphene in Fig. 1d where Vc(0) =
Vcs at the source end (x = 0) and Vc(L) = Vcd at the drain end
(x = L). VGS − VGS0, VBS − VBS0 are the top and back gate source
voltage overdrives while Ctop and Cback are the top and back
gate capacitances, respectively. The quasi-Fermi potential V(x)
is the voltage drop in the graphene channel at position x,
which is equal to zero at the source end (x = 0) and equal to
VDS at the drain end (x = L).

Drain-to-source current and 1/f noise spectra were
measured in single layer, top liquid-gated GFETs with W =
40 μm and five different channel lengths (L = 43, 23, 13, 8,
5.5 μm) (see Experimental data section). Data were obtained
from 4 samples for L = 5.5, 8, 23 μm, 3 samples for L = 13 μm
and 2 samples for L = 43 μm, at three different drain voltage
levels (VDS = 20, 40 and 60 mV). Top gate potential was swept
from VGS = −0.4 to 0.6 V with a step of 20 mV, covering the
whole range from strong p-type conduction to strong n-type
conduction. These extended bias conditions allowed a
thorough examination of 1/f noise at all the operation regimes.
The measured frequency range from 1.5 Hz up to 1.5 kHz.
Fig. 1e and f confirm the excellent agreement of the drain
current model and the experiment for all bias and geometry
conditions. The compact model reported in ref. 45 and 46 was
used to fit the experimental data obtained from the investi-
gated solution-gated FETs. The values of the model parameters
extracted from the fitting of the experimental data are shown
in Table 1. The fundamental parameters which are going to be
used in noise equations are the carrier mobility (μ), the
residual charge density (ρ0), the top gate capacitance (Ctop), the
contact resistance (Rc) and the flat band top gate voltage
(VGSO). One parameter set is used for all bias conditions at
each channel length; even for different channel lengths, the
parameters are quite close to each other. Fig. 2a shows the
measured spectra of the L = 23 μm devices at VDS = 40 mV
where it can be observed the 1/f dependence of noise ampli-
tude. LFN can be originated by the local random fluctuations
of the carriers’ density and of the mobility which correspond
to the above described ΔN and Δμ effects, respectively. We
develop a physics-based analytical model describing these
effects, considering the channel of the device divided into
elementary slices.43 Here, the chemical potential based analyti-
cal current model will be used to define the conditions at each
channel slice. The fluctuations generating LFN are always
small and, consequently, the analysis of the propagation of the
noise sources to the voltages or currents at the contact term-
inals reduces to linear analysis. Therefore, the principle of
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superposition can be used for adding the effects of the local
noise sources along the channel.43 These local fluctuations
can be modeled by adding a random local current noise
source δIn with a PSD SδI2n as shown in Fig. 2b. The local fluc-
tuations propagate to the terminals resulting in fluctuations of
the voltages and currents around the DC operating point. The
local noise sources are assumed to be spatially uncorrelated
and, therefore, their PSDs can be summed. For detailed expla-
nation of the general methodology, see ESI A.†

The model considers a non-homogeneous charge distri-
bution along the device channel, according to the physics of
GFET, making this approach more realistic. Fig. 2c illustrates,
in left y-axis, the chemical potential Vcs,d at source and drain
terminal respectively, calculated by the employed current
model,45,46 vs. top gate voltage overdrive at the lower and
higher drain voltage values used in the experiments (VDS = 20,
60 mV). As predicted by the model, Vcd approaches Vcs for low
Vds values. This effect can be justified from the larger charge
homogeneity in the channel at low drain voltage; under these
bias conditions Vc is approximately the same at every position
in the graphene channel. At VDS = 60 mV, the channel charge
non-homogeneity increases with respect to a VDS = 20 mV and
as a result, Vcd differs more significantly from Vcs especially
around CNP (see Fig. 2c). At high gate voltages the difference
between Vcd and Vcs becomes less important even for the

higher drain voltages, which indicates that the non-homo-
geneity of the channel is more pronounced near CNP. In the right
y-axis of Fig. 2c, the relative fluctuation of Qgr(x) from source
terminal to the middle of the channel, |Qgr(0) − Qgr(L/2)|/
Qgr(L/2) (%), is shown vs. top gate voltage overdrive for the
same drain voltages (VDS = 20, 60 mV). The homogeneity of the
channel for the small VDS away from VCNP is clear since the
observed relative fluctuation of Qgr(x) is insignificant (∼1%).
As we approach CNP, this fluctuation increases since the
channel starts to become non-homogeneous even for this
small VDS. At abs(VGS − VCNP) ≈ 0.1 V, the relative fluctuation of
Qgr(x) reaches its maximum value (∼6%) and then it starts to
decrease leading to an M-shape behavior similar to that
observed in LFN data. This can be justified in terms of the
residual charge (e·ρ0 = 8 × 10−8 C cm−2) which starts to contrib-
ute to Qgr(x) at this operating point. At VCNP, ρ0 is dominant at
almost every position of the channel and this leads to the
minimum of the relative fluctuation of Qgr(x) observed for the
low VDS value (∼1%). For the higher VDS, an M-shape is also
observed for the relative fluctuation of Qgr(x) from source term-
inal to the middle of the channel but the more intense non-
homogeneity leads to higher values. More specifically, the
maximum values of the relative fluctuation at abs(VGS − VCNP)
≈ 0.1 V are almost ∼20%. At VCNP, the effect of ρ0 decreases the
relative fluctuation at a minimum value of ∼4% which is sig-

Table 1 Drain current and 1/f noise model parameters

Parameter Units L = 43 μm L = 23 μm L = 13 μm L = 8 μm L = 5.5 μm Ref. 30 Ref. 32 Ref. 33

μ cm2 (V s)−1 3400 3250 3400 3400 3600 950 3000 4500
Ctop μF cm−2 1.9 1.9 2.05 2.05 2.2 0.65 Cback = 1,9.10−2 Cback = 1.15 × 10−2

VGSO V 0.09 0.09 0.095 0.095 0.095 0 VBS0 = 7,75 VBS0 = 4
ρ0 cm−2 5·1011 4.6 × 1011 5.3 × 1011 5 × 1011 4.8 × 1011 5.9 × 1012 1.3 × 1013 1.2 × 1011

Rc Ω 120 120 120 120 120 — — —
NT eV−1 cm−3 1.3 × 1020 1.1 × 1020 1 × 1020 9 × 1019 5.5 × 1019 3 × 1020 3.5 × 1021 2 × 1020

αH — 1.5 × 10−3 1.3 × 10−3 1.3 × 10−3 1.2 × 10−3 1.1 × 10−3 3 × 10−3 7 × 10−3 3 × 10−4

Fig. 2 (a) Relative power spectral density of drain current noise SID for solution top-gated GFETs with W = 40 μm and L = 23 μm at VDS = 40 mV for
different top gate voltage values (VGS = −0.4, −0.3, −0.2, −0.1, 0.2, 0.3, 0.4 V); the dashed line corresponds to a 1/f slope. (b) Device cross-section.
The equivalent circuit for a local current noise contribution to the total noise is illustrated. Each noise-generating slice of the channel is connected
to two noiseless GFETs, M1 and M2 respectively. The local current noise source (δIn) generates a δInD current fluctuation at the drain. (c) Chemical
potential Vc (left y-axis) and the relative fluctuation of graphene charge |Qgr(0) − Qgr(L/2)|/Qgr(L/2) (right y-axis) from the beginning (x = 0) to the
middle (x = L/2) of the channel are plotted vs. top gate voltage overdrive (VGS − VCNP) for two drain voltage values of 20 and 60 mV.
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nificantly higher than the minimum observed at CNP for the
lower VDS. This also occurs because of the inhomogeneity of
the channel at the higher VDS. For detailed explanation of the
behaviour and value of Qgr(x) at every channel position x under
different bias conditions, see ESI B (Fig. S1†).

Considering the carrier number fluctuation effect, if a
certain number of carriers is trapped at channel position x,
the relative current fluctuation can be calculated as:

δIDðxÞ
ID

¼ δNgr

Ngr
¼ 1

Ngr

δQgr

δQt
δNt ð1Þ

where Ngr is the graphene carrier density and Qt, Nt are the
trapped charge and density respectively; charges and number
of carriers are expressed per unit area since they are referred to
a channel slice. Fluctuations of the trapped charge δQt can
cause a variation in the chemical potential δVc which can lead
to a change of charges that depend directly on the chemical
potential such as the graphene charge, the top gate and the
back gate charge. By applying charge conservation law and by
considering a linear dependence of the quantum capacitance
Cq and the chemical potential Vc(Cq = k·|Vc|),

45,46 with k
defined in ESI A,† the following expression is derived:

δIDðxÞ
ID

¼ e
Qgr

Cq

Cq þ Ctop þ Cback
δNt ð3Þ

and the PSD of the local noise source normalized by squared
drain current can then be calculated as (see ESI A†):

SδIn2
ID2 ΔNj ¼ e

Qgr

Cq

Cq þ Ctop þ Cback

� �2KTλNT

WΔxf
ð4Þ

where NT is the dielectric volumetric trap density per unit
energy (in eV−1 cm−3) which is used as a fitting parameter, K is
the Boltzmann constant, T is the absolute temperature, e the
electron charge, λ ∼ 0.1 nm is the tunneling attenuation dis-
tance since the trapping/detrapping mechanism is considered
a tunneling process. The analysis of this process is difficult at
atom level, thus the best possible approach is to model the
capture cross-section according to P(z) = exp(−z/λ), where P is
the tunnelling probability of a carrier to get captured by a trap
located at a barrier depth z into the dielectric. Cback is not
defined for the measured devices in this work but is included
in the equations for better generalizability of the proposed
model. By integrating the PSD of the local noise source in the
entire channel length41 and by changing the integration vari-

able from length to chemical potential at source and drain
terminals,45,46 it is possible to derive the following analytical
formula for the relative PSD of the total fluctuation of the
drain current resulting from a carrier density fluctuation ΔN:

SID
ID2 f ΔNj ¼ SD ΔNj �KD ΔNj

g VCð Þ½ �VcdVcs

ð5Þ

SD/ΔN = 2·KT·λ·NT·e
2|(C·WL·k) is a bias independent term

representing the amplitude of the ΔN effect noise, where C =
Ctop + Cback. KD/ΔN is a bias dependent term of the ΔN model
and is defined by eqn (2), where α = 2·ρ0·e. Finally, g(Vc) is a

bias dependent term proportional to the drain current45,46 (see
also ESI A†). As far as the mobility fluctuation effect is con-
cerned, by using a methodology identical to the presented
above, the following analytical formula is obtained:

SID
ID2 f Δμj ¼ SD Δμj �KD Δμj

g VCð Þ½ �VcdVcs

ð6Þ

for Vcs;cd > 0;KD Δμ ¼ CVc þ kVc2

2

� �Vcs
Vcd

�����
for Vcs;cd , 0; KD Δμ ¼ CVc � kVc

2

2

� �Vcs
Vcd

�����
ð7Þ

(see ESI A†). The bias dependent term KD/Δμ is given by eqn (7)
where residual charge related term α does not play any role
and SD/Δμ = 2·αH·e/(C·WL·k) where αH is the unitless Hooge
parameter which is used as a fitting parameter. In order to cal-
culate the total 1/f noise of the device, the two different contri-
butions have to be added as:

SID
ID2 ¼

SID
ID2

����
ΔN

þ SID
ID2

����
Δμ
: ð8Þ

The strong dependence of 1/f noise on both residual charge
and channel charge inhomogeneity makes it essential to
thoroughly investigate these phenomena. Fig. 3a illustrates the
dependence of the two 1/f noise models, ΔN and Δμ, on the
residual charge and Fig. 3b on the drain voltage. In Fig. 3a the
contributions of both noise mechanisms ΔN and Δμ are
shown for different values of the residual charge density ρ0 at
VDS = 20 mV. The value (4.6 × 1011 cm−2) corresponds to the
value experimentally extracted from fitting the I–V data (see
Fig. 1e and f). In addition, the model is tested at three other
lower values of ρ0 (3 × 1011, 4.6 × 1010, 0 cm−2). It can be con-

for Vcs;cd > 0;

KD ΔN ¼ 1
αk þ C2ð Þ

���� αk ln αþ kV2
c

� �� 2αk ln αð Þ þ 2C2 ln C þ kVcð Þ � 4C2 ln Cð Þ � 2
ffiffiffiffiffi
αk

p
C� arctan

ffiffiffi
k
a

r
Vc

 !" #Vcs
Vcd

for Vcs;cd , 0;

KD ΔN ¼ 1
αk þ C2ð Þ �αk ln αþ kV2

c

� �� 2C2 ln C � kVcð Þ � 2
ffiffiffiffiffi
αk

p
C� arctan

ffiffiffi
k
a

r
Vc

 !" #Vcs
Vcd

�����

ð2Þ
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cluded from Fig. 3a that the ΔN effect is responsible for the
M-shape bias dependence in case of relatively high ρ0 values
are considered (see Fig. 2c) while for low ρ0 values, a Λ shape
behavior is obtained. Δμ model always provides an Λ shape be-
havior with an increased maximum at CNP as ρ0 decreases
since ρ0 only affects normalized drain current term g(Vc) in
eqn (6) and not the bias dependent term KD/Δμ of eqn (7) (for
more information, see ESI C†). Regarding the drain voltage
dependence, Fig. 3b indicates that the increase of VDS (20,
60 mV) increases the contribution of the ΔN noise near the
CNP resulting from the increased graphene charge inhom-
ogeneity observed at higher VDS (see Fig. 2c) while Δμ noise
remains unaffected. At higher gate voltages no drain voltage
dependence can be observed by any of the noise mechanisms
confirming that Qgr is homogeneous at high VGS values.
According to Fig. 2c, Vcs, Vcd are very close for higher VGS
values and since eqn (2), (5)–(7) show that the bias dependence
of both noise mechanisms ΔN and Δμ, is exclusively expressed
in terms of chemical potentials Vcs, Vcd, the drain voltage inde-
pendence of both ΔN and Δμ noise mechanisms for higher
gate voltages can be explained. In Fig. 3c, the local noise at
each channel position x is shown at VGS = VCNP and at VGS −
VCNP = 0.5 V for both noise mechanisms ΔN and Δμ, as it is
calculated by eqn (4) and (A12)† respectively for VDS = 20,
60 mV. At VCNP, the total noise ΔN propagated to the terminals
is mainly determined by the local noise at the source/drain
ends while away from CNP, all the points along the channel
contributes equally. This proves the homogeneity of the
channel at higher gate voltages while the different contri-
butions of the charge distributed along the channel at VCNP
indicate the channel inhomogeneity close to CNP, especially
for the higher VDS, as described in Fig. 2c. Regarding Δμ noise,
all the points of the channel contribute similarly at every bias
condition. By summing the local ΔN and Δμ noise sources
throughout the channel, we can accurately obtain the values of
the total ΔN and Δμ noise PSD as calculated by eqn (5) and (6)
and as shown in Fig. 3b for the operating conditions under
study. The effect of ρ0 in the local LFN is shown in ESI C.†

Fig. 4 shows the experimental noise data averaged in the
bandwidth of 10–40 Hz, referred to 1 Hz. The data are fitted
using the same parameters extracted from the current compact
model and adjusting only the NT and αH values. Fig. 4a and b
present the normalized noise data for transistors with two
different channel lengths, L = 43 μm and L = 5.5 μm, respect-
ively, at two drain voltage values (20 and 60 mV). Fig. 4c shows
the fitted normalized noise data for two other channel lengths
(23 and 8 μm) at all the drain voltage values (20, 40, 60 mV)
(see Fig. S3 in ESI D† for the complete set of data). The
symbols correspond to the experimental data and the solid
lines represent the total 1/f noise model. The well-known
M-shape trend is observed in our data near the CNP. The
change in the minimum value at the CNP with VDS caused by
the charge inhomogeneity is also properly described. Away
from the CNP, the measured noise is independent on the
drain voltage and the model follows this trend as well. Dashed
lines representing the different 1/f noise contributors in
Fig. 4a and b, provide additional insights on the contributions
of the different noise mechanisms. The dotted lines in Fig. 4a
present the simplified (gm/ID)

2 model16,17 (see ESI E, Fig. S4†)
for both drain voltages available. It is apparent that the
specific approach cannot capture the drain voltage depen-
dence of LFN near CNP since it considers a uniform charge
along the channel. The ΔN mechanism is responsible for the
M-shape, as it was shown previously in Fig. 3a. Despite the fact
that the ΔN model can predict the drain voltage dependence
near CNP, it significantly underestimates the minimum of
noise near the CNP. On the other hand, the Δμ model predicts
a Λ-shape dependence with the gate bias which is independent
on the drain voltage. This term can have a significant effect
near CNP, setting a minimum noise value that helps to fit
better the experimental data (see Fig. 4a and b). The distinc-
tion of the ΔN and Δμ contributions near the CNP is shown in
this work for the first time. The normalized noise increases
with decreasing device area, as it is apparent in Fig. 4c; this is
expected since 1/f noise is known to scale inversely pro-
portional with the device dimensions. As it can be derived

Fig. 3 Output current noise divided by squared drain current, SID/ID
2, referred to 1 Hz, vs. top gate voltage overdrive VGS − VCNP for solution top-

gated GFETs. (a) ΔN and Δμ effects at VDS = 20 mV for four different values of residual charge (ρ0) and for W/L = 40 μm/23 μm. (b) ΔN and Δμ contri-
butions for two VDS values (20, 60 mV). The experimental ρ0 value (4.6 × 10−11 cm−2) extracted from the current data is used for the calculations. (c)
Normalized PSD of the local noise, SδIn/ID

2, referred to 1 Hz, vs. channel position x.
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from eqn (5) and (6). The higher noise measured in the n-type
conduction regime, more pronounced at higher gate voltages
and at shorter channel lengths, is tentatively attributed to the
bias dependent contact resistance experimentally observed in
this bias regime.24 Fig. 4d shows the model corrected to
include a contact noise contribution24 as reported previously.
To calculate the magnitude of this contribution, the contact re-
sistance has been calculated using a transmission line method
(TLM) analysis. The contact noise model used to refine the
fitting of the experimental noise also proves that contact noise
is negligible near the CNP. All the extracted 1/f noise para-
meters are shown in Table 1; it is important to highlight that
for a fixed channel length, the same parameters are used to fit
the whole range of bias conditions. Regarding the level of nor-
malized 1/f noise, the values of the extracted noise parameters
are in the same order of magnitude or lower than what is avail-
able in bibliography for graphene devices. The αH parameter is
lower than many reports28,30,37 even considering that the
Hooge model underestimates 1/f noise, since the ΔN effect is
more dominant as shown in Fig. 4. In some reports,4,42 the NT

parameter is also derived and it is quite comparable with the
values in Table 1; still, NT is higher than its typical range at Si
devices (NT ∼ 1016–1018 eV−1 cm−3).19,43 The noise amplitude
B = f·area·SID/ID

2, can be easily found to range from 10−7–10−6

μm2 in the present work (see Fig. S5 in ESI F†), which is
similar or lower in comparison with other works.4,28,29,33,37,38

In order to confirm the generalizability of the proposed
model, we have tested it with datasets of three solid gated
GFETs taken from literature.30,32,33 Fig. 5a shows the SID/ID

2

noise data for a top-gated device with W/L = 12 μm/0.35 μm
from ref. 30 (Fig. 4b, T = 300 K) at VDS = 0.2 V, Fig. 5b presents
the SID/ID

2 noise data for a back-gated device with W/L =
6.3 μm/2.1 μm from ref. 32 (Fig. 4a, Si/SiO2 data) at VDS = 0.01
V and Fig. 5c illustrates the SVD/VD

2 1/f noise data for a back-
gated GFET with W/L = 12.7 μm/11 μm from ref. 33 (Fig. 3b,
T = 1.6 K) at VDS ∼ 0.6 mV. The two different representations of
normalized noise displayed in Fig. 5 (SID/ID

2 and SVD/VD
2) are

equivalent. The symbols represent the measurements and the
total model is shown by the solid lines, the ΔN and Δμ contri-
butions are also shown with dashed and dotted lines respect-
ively. Regarding Fig. 5a where the M-shape dependence of
noise is also observed, the total model behavior is acceptable.
Additionally, both ΔN and Δμ effects have a significant contri-
bution especially near CNP, similarly as in Fig. 4. In Fig. 5b,
the M-shape dependence of noise is intense probably due to a
higher residual charge value and our model captures well this
shape. ΔN effect is the dominant noise source while Δμ effect
has a small contribution near CNP. The LFN data in Fig. 5b
are asymmetrical with an increased value at p-type region
while our model is equivalent in both n- and p-regions. We
extracted the noise parameters by targeting a better perform-
ance in n-type conduction but we could achieve an overall

Fig. 4 Output noise divided by squared drain current SID/ID
2, referred to 1 Hz, vs. top gate voltage overdrive (VGS − VCNP), for solution top-gated

GFETs with W = 40 μm. (a) Data from transistors with a channel length L = 43 μm and VDS = 20 and 60 mV. The experimental data is fitted with the
derived compact model (the ΔN and Δμ contributions are displayed separately). The simplified (gm/ID)

2 noise model4,16,17 (ESI E, eqn (A24)),† which
considers charge homogeneous along the channel is plotted with dotted lines for both VDS values. (b) Data from transistors with an L = 5.5 μm and
VDS = 20 and 60 mV. A fitting of the data and the individual contributions from ΔN and Δμ are also plotted. (c) Data from transistors with a channel
length L = 23 μm and 8 μm at VDS = 20, 40 and 60 mV is plotted together with the fitting provided by the analytical model. (d) Experimental data
from transistors with L = 5.5 μm and VDS = 20 mV is shown. A contact noise term23 (dotted line) is added to the compact model to correct the devi-
ations from experimental data away from the CNP.
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better fitting by using different LFN parameters below and
above CNP. Finally, Fig. 5c shows that the 1/f normalized noise
follows a Λ-shape behavior. By fitting the noise curve with our
model, it is possible to distinguish between the ΔN and the Δμ
effects due to the different slopes of their curves. This finding
can be explained by the relatively small value of the residual
charge ρ0 = 1.2 × 1011 cm−2 in this device. The parameters
extracted are also presented in the last three columns of
Table 1. For all devices, the NT parameter is a little higher than
the ones extracted for our dataset. Regarding the αH para-
meter, it is in the same level as in our data set for the plot in
Fig. 5a while it is quite lower in the Fig. 5b but in this case the
error of the fitting can be quite significant.

Conclusions

In conclusion, this paper investigates the bias-dependence of
1/f noise in liquid gated, single layer GFETs. An analytical
compact model is developed considering both carrier number
and mobility fluctuation mechanisms. According to this pro-
cedure, the noise in an elementary slice of the channel is cal-
culated based on physical laws; after integrating along the
channel, the local noise sources are propagated to the term-
inals and the final formulas are derived. In this compact
format the model can be easily implemented in Verilog-A code
and integrated in circuit simulators, which could be instru-
mental to bridge the gap between device and circuit levels. The
model is capable of quantitatively capture the experimental
M-shape of normalized output noise which is observed for all
channel lengths and drain voltages available. The simul-
taneous contribution of the ΔN and Δμ noise mechanisms sig-
nificantly improves the prediction accuracy of the model, con-
firming that both noise contributions are needed to properly
model noise in graphene FETs. Additionally, a previously
reported contact noise term based on carrier number fluctu-
ations proved to be effective to account for such contribution.
An analytical solution of the LFN generated by contact resis-

tance is an essential future step so as our model to be capable
of capturing additional behaviours of LFN mentioned in
bibliography such as an extended V-shape vs. gate voltage and
thus, to be considered complete. The analytical model pre-
sented in this work encompasses all the main contributions to
1/f noise in graphene FETs, taking into account the non-
homogeneities in the channel. Such an analytical and yet
complete model can be of high interest to identify and under-
stand the main causes of noise as well as for boosting the
design of integrated circuits based on graphene.

Experimental data
Graphene CVD growth and transfer

Graphene is synthesized by chemical vapour deposition (CVD)
technique on a copper foil. A chemical wet transfer method is
used to transfer the graphene from the Cu foil to the SiO2 sub-
strate. First, the graphene is protected with a sacrificial poly
(methyl meth-acrylate) PMMA layer. Subsequently, the back
side graphene is removed by oxygen plasma treatment. The Cu
foil is then placed in FeCl3 0.5 M/HCl 2 M (1 : 2) etchant solu-
tion until all the Cu is chemically dissolved. Before the final
transfer onto the desired SiO2 substrate, the graphene/PMMA
stack is placed several times in DI water to rinse the residual
etchant solution away. The wafer is dried for 30 minutes at
40 °C on a hot plate and then gradually increased up to 180 °C
in a vacuum oven. Finally, the PMMA is removed in acetone
and IPA.

Devices fabrication

Arrays of graphene transistors are fabricated on 4-inch Si/SiO2

wafer with a 285 nm thick layer of thermal silicon oxide. A first
metal layer of Ti/Au is deposited by electron-beam evaporation
and structured by a lift-off process. Afterwards, the CVD-gown
graphene is transferred as previously described. The graphene
transistor active area is protected by a photo definable resist
HIPR 6512. Thus, graphene is patterned by oxygen plasma in a

Fig. 5 (a) Output current noise divided by squared drain current SID/ID
2, referred to 1 Hz, vs. top gate voltage overdrive (VGS − VCNP), for a top-gated

GFETs with W/L = 12 μm/0.35 μm at VDS = 0.2 V (ref. 30). (b) Output current noise divided by squared drain current SID/ID
2, referred to 1 Hz, vs. back

gate voltage overdrive (VBS–VCNP), for a back-gated GFETs with W/L = 6.3 μm/2.1 μm at VDS = 0.01 V (ref. 32). (c) Output voltage noise divided by
squared voltage potential SVD/VD

2, referred to 1 Hz, vs. back gate voltage overdrive (VBS–VCNP), for a back-gated GFETs with W/L = 12.7 μm/11 μm at
VDS ∼ 0.6 mV (ref. 33). Symbols: Data,30,32,33 solid line: model, dashed lines: different noise contributions, ΔN and Δμ.
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reactive ion etching (RIE) system. Top contacts of Ni/Au are de-
posited by evaporation and defined by lift-off. In order to
prevent any damage of graphene, the lift-off is performed by
leaving the wafer 1 hour in acetone and flushing it with a
syringe. After 2 hours annealing step at 300 °C in ultra-high
vacuum, a 2 μm thick SU8 negative epoxy resist (SU-8 2005
MicroChem) layer is spin coated and structured such that only
the graphene between source and drain contact is exposed to
the electrolyte.

Electrical characterization

The liquid-gated graphene-transistor characteristics are
measured in a 10 mM PBS electrolyte. The gate voltage is
applied versus an Ag/AgCl reference electrode. At each polari-
zation, the drain-to-source current signal is measured with a
custom-made current-to-voltage converter with two parallel
inputs for DC (low-pass filter at 0.1 Hz for I–V characteristics)
and AC (band-pass filter from 0.1 Hz to 7 kHz for noise charac-
terization). The data acquisition is performed using a National
Instruments DAQ-card system (NI 6363). In order to stabilize
the IDS current value at each gate bias, the sampling condition
is dIDS/dt < 1 × 107 A s−1 before each recorded point. For the
noise characterization, the sampling frequency was set to 50
kHz for a period of time of 13 seconds choosing the Welch’s
method in which 10 segments overlap by 50%.

Data availability

The data that support the findings of this study are available
from Ramon Garcia Cortadella and Andrea Bonaccini Calia.
Please, address your requests to ramon.garcia@icn2.cat and
andrea.bonaccini@icn2.cat.
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A. Supplementary Information: Thorough theoretical procedure for equations extraction

Generalized Noise Modeling methodology:

Under the assumption that the channel of the device is noiseless apart from an elementary slice 

between positions χ and χ+Δχ as it is shown in Fig. 2b in the manuscript, the microscopic noise coming 

from this slice of the channel can be modeled as a local current source δIn with a PSD SδI
2

n which is 

connected between χ and χ+Δχ in parallel with the resistance of the slice ΔR (Norton equivalent) 43. The 

transistor then can be split into two noiseless transistors M1 and M2 on each side of the local current 

noise source, at the source and drain side ends with channel lengths equal to χ and L-χ respectively. 

Since the voltage fluctuations on parallel resistance ΔR are small enough compared to thermal voltage 

UT, small signal analysis can be used in order to extract a noise model according to which, M1 and M2 

can be replaced by two simple conductances GS on the source side and GD on the drain side. The total 

channel conductance comes from the series connection of GS and GD as: 1/GCH=1/Gs+1/GD
43. The 

fluctuation of the current due to the local current noise source at the drain side δInD and its 

corresponding PSD SδI
2

nD are given by the following equations43:

                                                                                                         (Eq. A1)nD CH nI G R I  

                                                                                            (Eq. A2)   2 2

2 2, ,
nD n

CHI I
S x G R S x
 

  

The PSD of the total noise current fluctuation at the drain side SID due to all different sections along 

the channel is obtained by summing their elementary contributions SδI
2

nD assuming that the contribution 

of each slice at different positions along the channel remains uncorrelated43:
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                (Eq. A3)
 

 2

2

2

2 2 2 2

2

, 1
, ,

0 0

n

n

I

ID CH CHI

L LS x x
S G R dx xS x dx where G R

x L L





            

Carrier Number Fluctuation Effect:

As mentioned in the manuscript, the fluctuation of the trapped charge δQt can cause a variation in the 

chemical potential δVc which can lead to a change to all charges that depend directly on chemical 

potential such as the graphene charge, the top gate and the back gate charge. The application of the 

charge conservation law gives:

                                                                                                          (Eq. A4)0gr top back tQ Q Q Q      

These induced fluctuations of the graphene, top gate and back gate charges can be related to the 

fluctuation of the chemical potential δVc as15, 43-46:

                                                                                                                                     (Eq. A5)

gr q c

top top c

back back c

Q C V

Q C V

Q C V

 

 

 

 

 

 

If eqns (A4, A5) are taken into account then eqn (1) is transformed in eqn (3) in the manuscript. If the 

linear relationship between quantum capacitance and chemical potential mentioned in the manuscript, 

is integrated, charge of graphene can be calculated as: 

                                                                                                                                  (Eq. A6)
2

02
c

gr

k V
Q e

  

 The PSD of the local noise source is calculated by eqn (4) in the manuscript. Taking the integral of this 

from Source to Drain in order to calculate the total 1/f noise PSD as in eqn (A3)15, 43, we have:

                                            (Eq. A7)

2
2

2 2

1

0

DI q

D gr top back q

L KT NS Ce Tf dx
I L Q C C C W

   
             

In order to express this integral in terms of chemical potential Vc, we have to change the integral 

variable as45-46:

                                                                                                                (Eq.A8)
gr q top back

c D top back

WQ C C Cdx

dV I C C

  




Where drain current is given as45-46:

High-Bandwidth Graphene Neural Probes

252



                                                                                                                              (Eq.A9) 
2

cdV

D C Vcs
g

Wk
I V

L


   

With k=2·e3/(π·h2·v2f)45-46 where vf is the Fermi velocity (=106 m/s) and h the reduced Planck constant 

(=1,05·10-34 J·s). Bias dependent term g(Vc) 
 is calculated as45-46:

                         (Eq.A10)        
3 3

4 4 02
sgn sgn

3 4

cdV
cs cd DS

C cd cd cs csVcs
top back

V V k eV
g V V V V

C C k
V


   


  

eqn (A7) is transformed because of eqns (A8, A9, A10) to:

        (Eq.A11)
      2

0

2 2

2

4
2

D

cd

cs

cs

cd

I

V

D c V

V
cT

c
V c top cbacktop back

S
f

I

e

g V

KT N k V
dV

kV e C C k VWL C C





      

The integral in eqn (A11) can be solved analytically and gives the eqns (2, 5) in the manuscript.

Mobility Fluctuation Effect:

In the empirical Hooge model, the PSD of the local noise source is expressed as43:

                                                                                                                    (Eq.A12)
2

2

In H

D gr

S e

I Q W xf
 

 
 

If eqn (A12) is integrated along the channel as eqn (A3), the total noise PSD due to mobility fluctuations 

effect can be calculated as43:

                                                                                             (Eq. A13)
2 2

0

1
DI H

D

L

gr

S e
f

I
dx

WL Q



 

If eqn (A8) is applied in order to change the integration variable from x to Vc:

                                      (Eq.A14)
   2 2

D

cs

cd

I gr

c

D gr D

V
H

c top back
Vtop back

S WQe
f

I Q I
k V C C dV

LW C C








 

 

Where Qgr is simplified in eqn (A14) and does not play a role in mobility fluctuation effect. If eqns (A9, 

A10) are also taken into account, then:

                            (Eq.A15)
     2

2
D

cd
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cd

I

V c

D c V

V
H
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Vtop back

S e
f

I g V
k V C C dV

WLk C C



   

 
 

The integral in eqn (A12) can be solved analytically and gives the eqns (6, 7) in the manuscript.
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B. Supplementary Information Figure S1: Detailed examination of graphene charge along the 

channel.

Figure S1. Graphene charge Qgr(x) vs. channel position x, for VGS-VCNP = -0,5 V (a), 0 V (CVP) b) and 0,5 

V (c) at VDS = 20, 60 mV for W/L=40 μm/43 μm.

Away from CNP (Fig. S1a-S1c), Qgr(x) is ~6-6.5∙10-7 C.cm-2 all along the channel for both drain voltage 

values. Considering the relative fluctuation of Qgr(x) from source terminal to the middle of the channel 

shown in Fig. 2c of the manuscript, the homogeneity of the channel is shown at high gate voltages for 

both VDS values. Near CNP (Fig. S1b), Qgr(x) is equal to residual charge, e·ρ0, at x=L/2 for both high and 

low VDS. This value remains almost constant throughout the channel for VDS=20 mV but it is increased 

significantly for VDS=60 mV confirming the inhomogeneous channel under these conditions.     

C. Supplementary Information: Detailed examination of effect of residual charge in the M-shape bias 

dependence of 1/f noise.

If the procedure of the extraction of the theoretical equations regarding carrier number fluctuation 

effect takes place without considering residual charge, this can lead to very significant conclusions 

regarding the effect of residual charge on noise behavior. If residual charge is considered insignificant, 

then it must be eliminated in eqns (A6, A10). This results in the extraction of the following equation 

regarding 1/f noise due to carrier number fluctuation effect if the equivalent integral of eqn (A8) is 

solved:

                                                   (Eq.A16)
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and KD/ΔN is now given as:

                        (Eq.A17)
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eqn (A17) is much simpler that eqn (2) of the manuscript. Regarding Hooge model, residual charge 

plays a role only in g(Vc) factor in eqn (A10). As it can be seen in Fig. 3a of the manuscript, the omission 

of the residual charge lead to a Λ – shape behavior even for the carrier number fluctuation effect while 

the less the residual charge, the steeper Λ – shape trend with a higher maximum is observed for both 

carrier number and mobility fluctuation effects.

It would be very useful to observe how the absence of the residual charge affects both noise 

mechanisms ΔΝ and Δμ locally in the transistor channel. Regarding ΔΝ local noise model described by 

eqn (4) of the manuscript and Δμ local noise model described by eqn (A12), residual charge has an effect 

only in Qgr as this is defined in eqn (A6). As it can be seen in Fig. S2, residual charge does not affect local 

noise at higher gate voltages for both noise mechanisms as it was expected (see Fig. 3a of the 

manuscript) since there ρ0 does not affect significantly Qgr. On the contrary at CNP, where ρ0 

approximately dominates Qgr, the effect on local noise mechanisms is important. Fig. S2a shows the 

increase of ΔΝ local noise when ρ0 is ignored leading to the Λ-shape of Fig. 3a of the manuscript. Similarly 

Fig. S2b shows the increase of Δμ local noise when ρ0 is ignored.   

Figure S2. Normalized PSD of the local noise, Sδin/ID
2, referred to 1 Hz, vs. channel potential x for ΔΝ 

(a) and Δμ (b) noise mechanisms.   

a) b)
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D. Supplementary Information Figure S3: similar analysis with Fig. 4a and 4b of the manuscript but 

for the rest of the channel lengths

Figure S3. Output noise divided by squared drain current SID/ID
2, referred to 1 Hz, vs. top gate voltage 

overdrive VGS – VCNP, for liquid top-gated GFETs with W=40 μm for channel length L=23 μm (a), L=13 μm 

(b) and L=8 μm (c) at VDS = 20, 60 mV. markers: measured, solid lines: model, dashed lines: different 

noise contributions.

E. Supplementary Information: Derivation of an (gm/ID)2 related LFN model with and without 

correlated mobility fluctuations

A very common approximation for modeling LFN in Si MOSFETs relates the output noise divided by 

squared drain current SID/ID
2, with the squared transconductance to current ratio (gm/ID)2 15-16. Despite 

the fact that this model is widely used in circuit simulators, is valid only under uniform channel 

conditions. This method has also been applied in Graphene FETs4 and has been found to underestimate 

LFN at CNP where the channel is non-uniform even for a small VDS as shown in Figure 2c of the main 

manuscript. In this section we will follow a similar approach as in References 15-17 in order to show how 

this model is extracted for Graphene FETs with and without the effect of correlated mobility fluctuations. 

For reasons of simplicity and since back gate voltage is not active in the devices used in this work, both 

back gate voltage and capacitance will be ignored. 

Initially, we will show that the model proposed in Reference 16 (SID/ID
2= (gm/ID)2.SVfb ) can be also 

applied in SLG FETs. From basic GFET electrostatics and if back gate is ignored we have:

                                                                                               (Eq. A18)    0gr t GS GS cQ x C V V V x   

From Drift-Diffusion theory43-45, we can assume that:
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                                                  (Eq. A19)   
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From eqn (A18) we can conclude that dVGS/dQgr(x)=-1/Ct while if we assume that KVc>>qT which means 

that we are away from CNP and thus Cq>>Ct then from eqns (1, 3) of the main manuscript we have 

dQgr(x)/dQt=1. So eqn (A19) becomes:

                    (Eq. A20)
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Again from Drift-Diffusion theory we have:

                                                                                       (Eq. A21)    D
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Under the assumption of a uniform channel where the graphene charge Qgr and the electric field dV/dx 

are constant along it we have:

                                                                                                (Eq. A22)
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From eqns (A20, A22) and since dID/dVGS=gm we conclude:

                                   (Eq. A23)
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Which leads to:

                                                                                                   (Eq. A24)
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The above eqn is exactly the same with eqn (9) of Reference 16 with the constant term to represent 

the flat band voltage fluctuations SVFb. As we proved before, this model is valid only under uniform 

channel conditions and away from the CNP.

According to Reference 17, the model of eqn (A24) can be expanded including the correlated mobility 

fluctuations as:

                                                                            (Eq. A25)
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where αc is the Coulomb scattering coefficient in V.s/C and μ is the mobility of the device. Figure S4 

below presents the behavior of this simple approach described above with (eqn A25) and without (eqn 

A24) the effect of correlated mobility fluctuations for the shortest device with L=5.5 μm at VDS=20 mV 

and VDS=60 mV. 

Figure S4. Output noise normalized with area and divided by squared drain current SID/ID
2, referred to 

1 Hz, vs. top gate voltage overdrive VGS – VCNP (a) and vs. drain current in both p- and n-type region (b) 

for liquid top-gated GFETs with W/ L=40 μm / 5.5 μm at VDS=20 mV and VDS=60 mV. markers: measured, 

solid lines: eqn (A25) model, dashed lines: eqn (A24) model.

Figure S4a presents the normalized SID/ID
2 LFN vs top gate voltage overdrive VGS – VCNP and what can 

be observed is that the model of eqn (A24) (αc=0) underestimates LFN as it is also shown in Figure 4a of 

the manuscript for the longest device. Furthermore it is clear that the behavior of LFN is independent of 

VDS even at the CNP because of the consideration of a uniform channel. If correlated mobility fluctuations 

model of eqn (A25) is activated then for a value of αc=450 Vs/C the model captures the level of LFN at 

CNP still with no drain voltage dependence. But simultaneously the model overestimates LFN at higher 

gate voltages. Even if we assume that with an appropriate combination of αc and αH parameters we 

could achieve a better fitting, still the model would be independent of VDS due to the homogeneous 

channel consideration.  

Figure S4b presents the results of Figure 4a versus drain current ID in log scale. Since ID is symmetrical 

below (p-type) and above (n-type) CNP as it is shown in Figure 1c of the main manuscript, the two regions 

should be shown separately in log-scale. In an illustration similar to Figure S4b for Si MOSFETs, SID/ID
2

 

LFN is maximum and constant in weak inversion region and decreases as we get deeper in strong 

inversion (See Figure 6 of Reference 17). Regarding weak inversion regime, this occurs because gm/ID
 

a) b)
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term is maximum and constant in the specific region and thus, eqn (A24) becomes equivalent to eqn 

(A25) since αc is negligible. Consequently, NT parameter which is included in SVfb term is extracted. As the 

drain current gets higher, LFN decreases and αc parameter is extracted from this higher current regime. 

This is not the case in GFET though as it can be seen from Figure S4b since (gm/ID)2 is not constant in 

lower current regime. 

F. Supplementary Information Figure S5: normalized output noise with device area - WLSID/ID2

Figure S5. Output noise normalized with area and divided by squared drain current WLSID/ID
2, referred 

to 1 Hz, vs. top gate voltage overdrive VGS – VCNP for liquid top-gated GFETs with W=40 μm for different 

channel length values (L=43, 23, 13, 8, 5.5 μm) at VDS=20 mV (a), VDS=40 mV (b) and VDS=60 mV (c). 

markers: measured, solid lines: model.

a) b) c)
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Abstract 

Electrocorticography (ECoG) is a well-established technique to monitor electrophysiological activity from the surface of the 
brain and has proved crucial for the current generation of neural prostheses and brain-computer interfaces. However, existing 
ECoG technologies still fail to provide the resolution necessary to accurately map highly localized activity across large brain 
areas, due to the rapidly increasing size of connector footprint with sensor count. This work demonstrates the use of a flexible 
array of graphene solution-gated field-effect transistors (gSGFET), exploring the concept of multiplexed readout using an 
external switching matrix. This approach does not only allow for an increased sensor count, but due to the use of active sensing 
devices (i.e. transistors) over microelectrodes it makes additional buffer transistors redundant, which drastically eases the 
complexity of device fabrication on flexible substrates. The presented results pave the way for upscaling the gSGFET 
technology towards large-scale, high-density μECoG-arrays, eventually capable of resolving neural activity down to a single 
neuron level, while simultaneously mapping large brain regions. 

Keywords: Multiplexed µECoGs, graphene solution-gated field-effect transistor, flexible probes, neurosensing 

1. Introduction 

Exploration of novel materials and improved micro- and nano-
fabrication techniques are bringing up a new class of brain-
computer interfaces (BMIs) which promise to revolutionize 
neuroprosthetics and unveil the underlying vast functionalities 
of the brain. Impressive breakthroughs have been recently 
achieved in motor control rehabilitation, understanding the 
mechanisms for learning and formation of memory, treating 
neuropsychiatric disorders (e.g. depression) and synthesizing 
audible speech using machine learning algorithms, 
emphasizing the immense potential BMIs have.[1–10] While 

the presented capabilities to interface with the brain are 
already very impressive, they mostly rely on relatively simple 
epi-cortical electrode arrays with low number of recording 
sites and large inter-site spacing, and are unsuitable for long 
chronic implantation. Higher cognitive functions do typically 
arise from a complex interplay of activity in several brain 
regions at once, therefore a detailed analysis of the neural 
activity underlying such functions would require sensor arrays 
recording from all involved areas with high local resolution in 
each of them. Current commercially available neural sensor 
arrays fail to provide the high sensor counts necessary for such 
endeavor, mostly due to the technologic challenge of 
excessive wiring with increasing array size, which could only 
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be overcome by the employment of multiplexed read-out 
circuitry. Multiplexing strategies are not new to the field of 
neuro-sensing and have previously been used as a versatile 
tool to manage large amounts of recording sites. Most of the 
emerged technologies are based on a CMOS-compatible 
monolithic integration of recording electrodes and read-out 
electronics to minimize connection distance for preserving 
signal integrity and maximizing the density of recording sites. 
Using rigid silicon substrates, however, restricts such concepts 
to applications in which device flexibility is expendable such 
as depth-probes or MEAs for ex-vivo recordings.[11–14] Yet, 
considering the extensive damage rigid depth-probes cause to 
the brain tissue, sets a clear limitation to the amount of 
insertable shanks and thus the simultaneously mappable brain 
regions. Here, electrocorticography offers a minimally 
invasive alternative with clear advantage on sensor resolution 
over large areas by using flexible µECoG arrays to record 
from the surface of the cortex.[15] Still, so far only very few 
examples of multiplexed µECoG arrays have been realized, 
due to the scarcity of durable materials for low-noise, high-
performance switches compatible with flexible substrates as 
well as the high level of complexity such device fabrication 
requires. An example is the work of Rodgers which utilizes a 
combination of buffer and addressing transistor (ultrathin Si) 
to process the signals of an array of 360 passive platinum 
electrodes.[16, 17] Using passive elements, i.e. electrodes, as 
sensors requires the implementation of an additional 
transducer (buffer transistor) to decouple the electrode from 
the read-out circuitry, which otherwise would lead to load 
currents affecting the electrodes performance. This additional 
complexity can be avoided by directly using active elements 
i.e. transistors to interface with the brain. Such approach has 
recently been explored for organic electrochemical transistors 
(OECTs) with the conductive polymer poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) 
(PEDOT:PSS) as channel material.[18, 19] However, it has 
only been used to selectively address different sites, but not 
yet to actually acquire signals in multiplexed operation, which 
might be due to the relatively low carrier mobility in 
PEDOT:PSS prohibiting the rapid switching needed for 
multiplexing. 
As the brain consists of corrugated soft tissue moving at every 
heartbeat, highly flexible probes are imperative to create 
intimate interfaces for best signal quality and to avoid gradual 
cicatrizing of the neural tissue. In this work, we present 
flexible multiplexed μ-ECoG arrays based on active sensing 
devices, namely graphene solution-gated field-effect 
transistors (gSGFETs). The gSFGET has emerged as one of 
the most promising technologies for brain-machine interfaces 
(BMIs) as it provides essential properties such as 

biocompatibility, chemical stability, mechanical flexibility 
and high signal-to-noise ratio.[20, 21] In particular, it has 
shown great potential for application in µ-ECoG arrays with 
its high sensitivity over a broad frequency range (0.001Hz up 
to 10kHz), making it an efficient transducer of both infra-slow 
and fast neural activity.[20, 22] While the gSGFETs 
suitability to provide high-quality recordings has already been 
proven for up to 16 recording sites in previous publications, 
its potential has never been evaluated for high-density arrays 
of large sensor count. Graphene is commonly considering as 
an ideal material for high-frequency application, as its 
reported mobilities up to 350 000 cm2V-1s-1 for CVD grown 
graphene, can easily surpass materials such as Si and 
PEDOT:PSS with respective mobilities of 1400 cm2V-1s-1  and 
0.01 cm2V-1s-1, which makes it an interesting candidate to 
consider for multiplexed devices.[23, 24] Moreover, we 
demonstrate that by using active sensing devices, the 
integration of multiplexing circuitry, i.e. buffer and switching 
transistors, is unnecessary, thus drastically easing the 
complexity of fabricating flexible multiplexed sensor arrays. 

2. Methods 

2.1 Probe fabrication 

In a first step 10um thick biocompatible Polyimide (PI-2611 
HD MicroSystems) was spun on 4’’ Si/SiO2 support wafers 

and cured under nitrogen atmosphere at 350 °C. The 
perpendicular metal lines of the array (columns/ rows) were 
patterned in two standard lift-off steps (negative photoresist 
AZ5214E, Clariant, Germany) with the metal deposited by e-
beam evaporation (30nm Ti/ 300nm Au, 10nm Ti/ 100nm Au) 
and separated by a 2 µm PI spacer layer. Interconnecting via-
holes through the spacer layer were etched by oxygen plasma 
using a photolithographically defined protective aluminum 
mask (AZ5214E, 300nm Al). Then, single layer graphene, 
grown and transferred by Graphenea, is patterned by 
photolithography (H6512 photoresist) and etched by oxygen-
based reactive ion etching (100W for 1min) to form the 
transistor channel area. A third metal layer (20nm Ni/ 200nm 
Au) is added to form sandwich contacts improving the 
gSGFET’s durability and lowering its contact resistance due 

to work function matching. A subsequent thermal annealing 
step at 300°C in ultra-high vacuum has been found to reduce 
surface contamination from photoresist residues and 
improving the conformality of the Ni-graphene interface, thus 
improving contact resistance and device performance. To 
passivate the metal leads, a 2 µm thick layer of SU8 epoxy 
photoresist (SU-8 2005 MicroChem) was deposited, leaving 
open windows in the channel regions to allow a direct 
electrolyte graphene interface. In a final step, the polyimide 

Appendix B: complementary articles

261



Journal XX (XXXX) XXXXXX Author et al  

 3  
 

was structured by deep reactive ion etching using a photoresist 
etching mask (AZ9260, Clariant) and the flexible probes were 
mechanical peeled from the support wafer. 

2.2 Characterization and multiplexing setup 

Custom-build electronics were used for bias control and to 
convert the drain source current signal into voltage by a 
transimpedance amplifier (10k gain). The voltage signal was 
split into DC (frequency < 0.1 Hz) and AC (0.1 Hz 
< frequency > 5 kHz) components. The AC signal is amplified 
by an additional factor of 100 for the noise evaluation. The 
voltage read out was done by a standard data acquisition 
system (National Instruments DAQ-Card, USB-6363). For the 
multiplexed data acquisition, a similar system was used as for 
the probe characterization, however the gain of the AC stage 
was reduced by a factor of 10 to prevent saturation of the 
amplifier’s dynamic range due to mismatch in transistor 
resistance. The digital output lines were used to address the n-
type MOSFET switching matrix by applying either +5V for 
ON- and 0V for OFF-state. All software to control the DAQ-
Card and handle data acquisition is based on self-built python 
code. 

2.3 In-vivo experiments 

Long Evans rats (Charles River) were kept under standard 
conditions (room temperature 22 ± 2 °C, 12:12 h light–dark 
cycle, lights on at 10:00). Food and water were provided ad 
libitum. All experiments were performed in accordance with 
the European Union Directive 2010/63/EU as well as the 
German Law for Protection of Animals (TierSchG) and 
approved by the local authorities (ROB-55.2-2532.Vet_02-
16-170). Three adult rats (2 males, 1 female), 3-8 month of 
age, weighing in the range of 400-600g were used in this 
study. In preparation of electrophysiological measurements, 
they were deeply anaesthetized with MMF (Midazolam 
2mg/kg), Medetomidin 0.15 mg/kg, Fentanyl 0.005 mg/kg) 
and supplemented after 1h with Isoflurane 0.5%-1% and 
Metamizol at 110 mg/kg. After subcutaneous infiltration with 
Bupivacain the skin above the cranium was incised and the 
dorsal skull surface exposed. Craniotomies were performed 
bilaterally, with a maximum width of 5 mm and extending 
anterior-posteriorly between +2 mm and -8mm with respect to 
bregma. The dura mater was opened and carefully resected. 
The craniotomies were subsequently covered with 
prepolymerized PDMS (Sylgard 184, Dow Corning) with 
mixing ratio 1:10 and fastened with Vetbond (3M). In one rat 
an additional 1x1 mm craniotomy was performed over the 
cerebellum for the placement of a reference wire. For 
placement of the recording arrays the PDMS covers were 

flapped open partially and the gSGFET array was placed on 
the right hemisphere while the NeuroNexus array (E32-600-
10-100) was symmetrically positioned on the left hemisphere, 
(between ca -7 to -3 mm from bregma) each partially covering 
the primary visual cortex. Subsequently the PDMS covers 
were flapped back to cover arrays and craniotomies. A 
reference wire (Ag/Ag-Cl) was inserted either in the cerebellar 
craniotomy (n=1) or temporal muscle (n=2). Data from the 
NeuroNexus array was acquired at 25 kHz using the eCube 
recording system (WhiteMatter LLC) while data from the 
gSGFET was acquired using custom build electronics 
described in the previous section. Anesthesia was kept at 0.5% 
isoflurane during the recordings of spontaneous activity and 
cortical spreading depression (CSD) and 2% isoflurane for the 
recording of optically evoked activity with reduced 
spontaneous activity. The CSD event was triggered by 
application of 1uL KCl (3 mMol) with a glass-micropipette 
and Nanoject II injection device (Drummond Scientific) at ca 
4 mm anterior to bregma, approximately 7 mm anterior to the 
closest site on the recording array. The optically evoked 
response was triggered by a contralaterally placed blue LED 
in front of the left eye, which delivered 100 msec light pulses 
every 5 seconds. 

3. Results and discussion 

3.1 Device performance and multiplexing methodology 

Scalable thin-film technology of 8x8 gSGFET sensor arrays 
was fabricated on 7um-thick flexible polyimide (PI) using 4-
inch support wafers. The layout of the probe can be seen in 
Figure 1a and consists of a stack of two metal layers 
constructing the perpendicular lines of the sensor grid with a 
separating PI layer in between. The 64 gSGFET sensors have 
single-layer graphene channels of 50μm x 50μm dimension 

and 400μm inter-site separation (detailed description of probe 
fabrication in experimental section). A picture of the final 
probe, after releasing it from the Si support wafer is shown in 
Figure 1c. In contrast to their solid-state counterparts, 
solution-gated transistors are being modulated through the 
creation of a charge double layer at the interface between 
transistor channel and an electrolyte solution. Potential 
fluctuations in the surroundings (e.g. neural activity) can 
modulate this double layer and result, in turn, in a shift of the 
Fermi level of the channel material, which is detectable as a 
current fluctuation. Graphene’s ability to create a stable 

interface with aqueous solutions in combination with its high 
transconductance, resulting from its large interfacial 
capacitance and carrier mobility, makes the gSGFET an ideal 
device for bio-sensing.[20–22, 25–28] 
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Figure 1. Multiplexed gSGFET μECoG-array: a. Layout and cross section of flexible ECoG array with 64 gSGFETs showing the grid 
construction with two metal layer and tapered via-holes (Figure S1 in supporting information) crossing the PI interlayer. b. gSGFET’s transfer 
curve showing the change of drain-source current with applied gate bias (Ids-Ugs, measured at Uds=100mV), its transconductance (Gm-Ugs) 
and the device’s equivalent gate noise (Urms-Vgs). Also, the respective distribution of each parameter at peak Gm (bias point yielding highest 
absolute transconductance) across the array is being shown in the adjacent color map. c. Picture of flexible probe after release from Si support 
wafer. d. Schematic of discrete multiplexing setup using a DAQ-card for bias control and read-out (blue) and a custom-build PCB board for 
switching (yellow), filtering and current-to-voltage conversion (red). e. Acquired DC and AC raw signal for one column showing eight 
distinct current levels corresponding to the transistors in each row, which repeat for every cycle (grey dashed line). Due to the high gain 
(100k) applied to the AC component of the signal, the dynamic amplifier range sets a limit to the allowable current mismatch between devices, 
before amplifier saturation occurs (solid red line). f. From the 10 data points taken for each transistor per cycle, an average value of the last 
5 points is taken, to yield one sample in the final reconstructed signal for each sensor. 
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Figure 1b shows a performance and homogeneity assessment 
of the gSGFET array. The transfer curve, namely the change 
of drain-source current Ids with applied gate bias Ugs is 
presented as an averaged value and for all 64 individual 
devices, with the boxplot indicating the variation of charge 
neutrality point (CNP). Also, the transconductance Gm is 
shown (normalized to each transistor’s CNP), which is defined 

as the first derivative of Ids over Ugs. Of crucial importance to 
any sort of sensor array is the signal-to-noise ratio (SNR) and 
its homogeneity across recording sites. The SNR in the 
gSGFET is mainly affected by two physical parameters: the 
transconductance, which sets the transistor’s sensitivity to 

signal fluctuations at the gate and the intrinsic device noise 
integrated over the relevant frequency range Irms. A common 
figure of merit to quantify the gSGFET’s SNR is the Urms 
value (Irms/Gm), which represents the equivalent gate noise 
below which signals are undetectable. As can be seen, the Urms 
values of the gSGFETs on the array, are around 40 μVrms (for 
the frequency band from 1Hz to 100Hz), which allows the 
detection of local field potentials (typical amplitude above 
100μV) from the surface of the brain. The distribution across 
the array of each parameter (Ids, Gm, Urms), calculated at the 
bias point of highest absolute transconductance (peak-Gm), 
where the device shows lowest Urms, is shown in the 
corresponding color maps. With yields above 90% on a 4-inch 
wafer (each wafer carrying 14 probes) and large, evenly 
distributed SNR across all recording sites, the gSGFET 
technology shows high maturity and homogeneity, which is a 
key requirement to enable multiplexed addressing schemes.  
The most common type of multiplexing is time-division 
multiplexing (TDM), which refers to a technique of 
sequentially addressing the columns of a sensor array, while 
continuously measuring from its rows. Such addressing is 
normally being achieved by switches, which can be placed 
either directly on the array or externally.[14, 17, 18] While 
placing the switches directly on the array has the advantage of 
reducing inter-site crosstalk it requires complex fabrication of 
flexible switching technology, as  previously mentioned.[17] 
Complementing arrays of passive sensing elements (i.e. 
electrodes) with an external addressing configuration is 
challenging, as their recorded voltage signal is prone to pick 
up noise; if the preamplifier is placed far from the electrode, 
additional buffer transistors are required to convert the signal 
into current and feed it to the read-out circuitry. The use of 
active sensing elements (i.e. transistors) offers a great benefit 
here, as they feature an intrinsic voltage-to-current 
conversion, making the recorded signal more robust to noise. 
A schematic representation of the addressing and acquisition 
methodology is shown in Figure 1d. For this purpose, a 
custom-build PCB board consisting of two main functional 

blocks has been developed using discrete electronics. One 
functional block performs the filtering and amplification of the 
simultaneously acquired AC and DC signals; the other block 
selects the row to which the bias difference is applied to, using 
the external switching matrix for addressing. Figure 1e 
illustrates the acquired AC and DC raw input signals for a 
column of eight gSGFETs and how they can subsequently be 
used to reconstruct the original signal at each site (Figure 1f). 
Resistance mismatch between different transistors leads to 
current jumps when switching between transistors, which 
results in the different DC levels in the acquired signal (each 
gSGFET corresponds to one color in Figure 1e). The vertical 
dashed grey line in Figure 1e indicates the point at which all 
eight rows were addressed and a new readout cycle begins. At 
each site a total of 10 points is taken at 100 kHz sampling 
speed; we discard the first 5 to avoid any switching artefacts 
and average the rest to a single data point resulting in 1.25 kHz 
effective sampling rate. It should be here emphasized that 
array homogeneity carries an additional importance in 
multiplexed operation owing to two reasons. First, the trade-
off between applicable AC signal gain and transistor 
resistance mismatch; as previously mentioned, current jumps 
can exceed the dynamic range of the amplifier (indicated in 
Figure 1e) leading to saturation and signal loss. Second, the 
switching artefacts scale with the level of mismatch between 
devices, requiring longer stabilization times before reliable 
data points can be collected. 

3.2 Scalability and in-vitro assessment 

With the goal of creating a high-density, large-scale sensor 
array, an important discussion to undertake is the one on 
scalability of this technology. The most important aspects to 
consider here are the transient response of the transistor, which 
limits the achievable switching speeds, and the increase of 
inter-site crosstalk with array size and track resistance. To 
obtain distortion-free, high-quality recordings in multiplexed 
operation, it is important to allow sufficient stabilization time 
after switching, for the transistor to adjust to the changed 
drain-source bias conditions. This stabilization time is device 
specific and generally scales with channel length and carrier 
mobility. Owing to the high carrier mobility of graphene, 
which is for our devices 1000-2000 cm2V-1s-1  but can 
potentially reach up to 350 000 cm2V-1s-1, the transient 
response of the gSGFET is extremely short (Figure 2a) 
compared to other technologies (e.g. transistors based on 
silicon or conducting polymers).[23] The ON-state is reached 
before 1µs, which is the time resolution of the used 
measurement equipment (NI DAQ-Card X-Series 6363); for a 
channel length of 50μm and a carrier mobility of 2000 cm2V-

1s-1 the actual stabilization time from a time-of-flight 
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estimation is expected to be in the range of hundred 
nanoseconds. Such fast device stabilization can eventually 
allow switching speeds beyond 1MHz (our current 
configuration is limited by the electronics to 10kHz). Thus, 
much larger arrays could be operated this way while 
maintaining enough sampling speed (>10kHz) to record even 
high frequency activity such as spikes. Due to the solution-
gated nature of the device, a small drift occurs during the ON-
state of the device which is tentatively associated to the 
migration of ions when the bias conditions in the channel 
change under switching. This phenomenon happens at a much 
slower time scale due to the low ionic mobility; however, it 
does only create a minor inaccuracy in the measured DC 
current and does not impact the AC recordings. 
As previously stated, the use of external switches bears the 
disadvantage of not allowing to cut the connections to non-
addressed sensors within the array, which leads to the so-
called crosstalk. The lack of on-site switches opens alternative 
current pathways leading to current contribution from adjacent 
sites which carry signals from the respective gates and are 
wrongly attributed to the measured sensor (see Figure 2b). 
Such crosstalk can be strongly reduced and, in the ideal case 
of vanishing track resistance, even fully suppressed by setting 
the bias point of the non-addressed rows to the same voltage 
as the data lines, thus preventing any current flow through 
non-addressed lines.[18] However, in real-world applications 
the issue of finite track resistance cannot be completely 
avoided, as the requirements of high sensor density and probe 
flexibility limit the allowed width and thickness of the metal 
lines. The presence of these additional resistances create local 
potential drops, driving current through otherwise suppressed 
pathways whose amplitude depends on the ratio between track 
resistance (Rtrack) and transistor resistance (RgSGFET) as well as 
the number n of columns and rows in the array. To quantify 
crosstalk in the gSGFET array experimentally, lateral Ag-
gates and confined pads of solid polyelectrolyte were placed 
at each gSGFET of a 2x2 array by means of inkjet printing 
(Figure 2c). This approach allows for selective gate control, 
which is not possible in a shared liquid electrolyte. Figure 2d 
shows the measured signal at each of the transistors, with a 
test signal (sine wave of 10Hz frequency and 30mV 
amplitude) only being applied to one of them (black circle in 
Figure 2c). Sensors on the same column (red curve in Figure 
2d) or row (dark-red curve in Figure 2d) as the applied signal 
are the ones with the largest impact of crosstalk, showing a 

crosstalk level of -40dB at peak transconductance compared 
to the signal amplitude. 
Diagonally placed sensors (orange curve in Figure 2d) are 
much less affected; however, in the latter case the exact level 
of crosstalk cannot be extracted with accuracy because the 
signal lies below the floor noise of the electronics. To validate 
this estimation of the crosstalk, we compared the experimental 
data with the results obtained from a PSpice simulation of a 
gSGFET array in which we used a standard p-type MOSFET 
element tailored to fit the gSGFET’s transfer curve (Figure 

S2a-b in supporting information). Figure 2e shows the 
aggregated crosstalk on a single site depending on the track 
resistance and the array size, assuming identical signals on all 
remaining sites of the array which sum up to the total crosstalk 
value. The PSpice model validates the expected near-linear 
relation with both track resistance and array size. For a 2x2 
array with 20Ω track resistance and a gSGFET resistance of 

1,25kΩ, both the experiment and the simulation model yield a 

crosstalk of -40dB. Extrapolating to an array of size 32x32 
(1024 sensors), a crosstalk lower than -20dB can be obtained 
by reducing the track resistance below 5 Ω or by increasing 

the resistance of the gSGFET. Such track resistance reduction 
could be achieved by increasing metal track thickness, using 
higher number of stacked metal layers and, most importantly, 
relaxing constraints on probe dimensions. While the ECoG 
array in this work was designed for application in rodents, 
which imposes strict size restrictions due to the dimensions of 
the craniotomy, many other application (e.g. neural probes for 
large animals or humans) would loosen those significantly. 
To validate the fidelity of the gSGFET recordings in the 
multiplexed operating mode, the recording quality must be 
compared to the one obtained in steady, non-multiplexed 
operation. For instance, the rapid switching between devices 
can potentially increase the noise or generate artefacts in the 
multiplexed operation mode. Figure 2f compares recordings 
of an artificially generated electrocardiogram signal (ME-W-
SG, Multichannel Systems), containing components of 
different frequencies. The multiplexed and non-multiplexed 
representation of both test signals are nearly identical, 
suggesting that the rapid sequential addressing by the 
multiplexed mode does not generate any visible artefacts, 
neither in the low nor in the mid frequency band. The root-
mean-square value of both recordings is also compared, 
showing equivalent SNR ratio (Figure 2g) in both acquisition 
modes. 

Appendix B: complementary articles

265



Figure 2. Scalability and in-vitro assessment: a. Transient response of gSGFET when switched between ON and OFF state, showing short 
stabilization time of the device. Response below 1µs cannot be resolved due to sampling rate limitation of the setup (1MHz) . b. Origin of 
crosstalk in array without on-site switches and finite track resistance. Biasing to Udrain of non-addressed columns significantly decreases the 
amount of crosstalk. c. Location of measured gSGFETs on a 2x2 probe for crosstalk evaluation, utilizing inkjet printing to pattern confined 
gates consisting of Ag and polyelectrolyte pads. d. Crosstalk versus gate bias when applying a test signal (sinewave 30mV, 10Hz) to a single 
gSGFET and measuring the signal on each of the adjacent sensors. The devices in the same column and row as the one, to which the test 
signal is applied to, show a crosstalk of -40dB while the device on the diagonal shows crosstalk lower than -50dB (below floor noise of 
electronics). e. Simulated (PSpice) crosstalk for a 2x2, 8x8 and 32x32 arrays in dependence of the track resistance. The aggregated crosstalk 
value is presented assuming a superposition of identical signals on all but the probed sensor. f. Recordings of one gSGFET on the same 8x8 
μECoG-array, acquired in either multiplexed or steady (non-multiplexed) acquisition. An artificial electrocardiogram signal was used to 
compare the fidelity of both acquisition modes. In both cases, the same averaging method was applied (cycles of 10 points, discarding first 5 
points and averaging last 5 points), to ensure comparability. g. For each acquisition mode, the root-mean-square (RMS) value is calculated 
as the mean value of all 8 gSGFETs on one column, indicating the signal-to-noise ratio of the recorded signal.  
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3.3 In-vivo validation 

Having confirmed the recording fidelity of the gSGFET in the 
multiplexed operation compared to the standard non-
multiplexed acquisition mode, we demonstrate the unimpaired 
sensitivity of the multiplexed μECoG-array towards biological 
signals. Electrocortiography is primarily used to record local 
field potentials (LFPs) from the surface of the brain, which 
originate from spatio-temporal summation of transmembrane-
currents generated by synaptic and active conductances, 
excluding the action potentials.[29, 30] The characteristic 
spectral content of the LFP signal reflects the time scale of 
network synchronization and ranges from <1Hz to hundreds 
of Hz. Figure 3a shows a time trace of spontaneous LFP 
activity in an anesthetized Long Evans rat, recorded in an 
acute in-vivo experiment using an array of gSGFETs operated 
in the multiplexed mode (more details in methods section). 
Under deep anaesthesia, such cortical LFP reflects slow 
oscillations that are highly coherent across the whole cortical 
mantle; indeed, no significant differences in signal shape can 
be seen across all the 64 sensors in the array.[31] To 
benchmark the recording capabilities of the gSGFET array 
against other state-of-the-art technologies, a NeuroNexus 
ECoG array (with 32 circular platinum electrodes of 100μm 

diameter) was simultaneously placed on the opposite 
hemisphere (Figure S3 in supporting information). Figure 3c-
d show recordings and corresponding spectrograms from an 
electrode and a gSGFET, displaying the expected 
synchronicity in activity of both hemispheres. Filtering the 
signals from 0.1Hz to 200Hz (dark-blue and red curve in 
Figure 3c), a clear difference in signal shape can be noticed. 
This difference reflects the high-pass filter of the AC-coupled 
headstage used for passive ECoG recordings (see 
Experimental Section), which is necessary to prevent 
amplifier saturation due to drifts; also the high impedance of 
passive ECoG electrodes at low frequency leads to reduced 
gain in such signals, which  results in an attenuation of the 
infraslow frequency content in the LFP signal.[22] Removing 
these low-frequency components from the gSGFET signal 
(green curve in Figure 3c), it is possible to validate that both 
technologies show very similar recordings of the LFP activity 
as can also be seen in the corresponding spectrograms. 

Visually evoked LFP activity exhibits a well-defined spatial 
topography and thus can be used for validating the mapping 

capabilities of the multiplexed gSGFET technology.[32] 
Figure 3b shows the averaged response over 10 consecutive 
evoked events recorded with an array of gSGFETs in the 
multiplexed mode. Visually evoked activity typically exhibits 
a clear response with a delay of 40 ms after both the ON- and 
OFF-switching of the stimulus (Figure 3e). The recordings 
show a main peak (ON response) lasting until 70 ms after the 
stimulation with and peak amplitude of 500 μV. Hence, signal 

shape and amplitude are in nice agreement with previously 
reported results of non-multiplexed gSGFETs.[20] Further, 
Figure 3f presents the spatial distribution of both amplitude 
and time-delay of the ON-peak. The earliest response is 
detected on the lower end of the array which represents 
sensors directly placed on the primary visual cortex (V1) 
where the activity originates, and spreads then radially 
towards other higher visual cortical areas. However, highest 
peak-amplitude is measured in the centre-left region 
(secondary visual cortex, V2) which likely reflects a different 
magnitude and proximity current dipole, that gives rise to the 
surface LFP (LGN input to LIV in V1 vs V1 input to L2/3 
pyramidal cells in V2).[33] 

In addition, to its capability to record LFPs, the gSGFETs 
exhibit a unique sensitivity towards slow and infra-slow 
(below 0.1Hz) signals, which in the case of passive electrode 
recordings are hidden by baseline drifts and the impedance-
related loss of gain at low frequency.[22] In order to confirm 
that multiplexed acquisition preserves signal quality in this 
frequency band, we have investigated recordings of a cortical 
spreading depression (CSD). CSDs emerge due to a cellular 
depolarization of neurons and astrocytes which is associated 
to brain injury and migraines among others.[34] Here, the 
CSD was artificially triggered by injecting KCl into the cortex 
that caused a slowly propagating wave moving across the 
cortex. Figure 3g depicts the recording of a gSGFET in the 
array. The DC component of the signal shows the 
characteristic large shift of 15mV amplitude. The AC 
component and its corresponding spectrogram (Figure 3h) 
reveals a silencing of the high-frequency activity during the 
event, caused by the cellular depolarization and which is 
characteristic for the CSD. The maps below (Figure 3i) show 
the respective position of the depolarising wave at different 
times after KCL injection, moving from the top right to the 
bottom left at about 7mm per minute speed. 
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Figure 3. In-vivo validation of multiplexed gSGFET µECoG-array: a. Map of spontaneous LFP activity showing near identical shape across 

all sites. b. Map of visually evoked activity averaged over 10 consecutive events (dashed red line indicates timing of optical stimulus; dashed 

black curves are interpolated values from neighbouring sites for non-functioning sensors. c. Recording trace derived from AC-coupled 

passive ECoG-array (NeuroNexus, platinum electrode) as well as DC and AC-filtered gSGFET’s. Note prominent infraslow oscillations (0.1-

0.4Hz), which are not visible in the AC electrode recordings. d. Corresponding spectrograms of both, NeuroNexus and gSGFET recordings. 

e. Visually evoked response recorded on a single sensor (dashed grey box in Figure 3b), with an ON- and OFF-response of 50 ms delay and 

500μV peak amplitude. f. Array maps displaying the distribution of amplitude and time-delay of the ON-peak response across all sites. While 

the shortest delay is measured for the sensors placed directly on the primary visual cortex (V1), the highest peak-amplitude is seen in the 

secondary visual cortex (V2). g. DC-signal (blue, lowpass-filtered below 20Hz) and AC signal (red, bandpass-filtered between 1-20Hz) of a 

single gSGFET during the cortical spreading depression (CSD). A strong DC shift of -15mV occurs simultaneously with a silencing of high-

frequency activity, which is characteristic for a CSD. h. Corresponding spectrogram of CSD event to validate the silencing. i. Array map 

showing the propagating front of the spreading depolarization wave across the array from the right upper to the left lower corner.  
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4. Conclusion 

This work demonstrates the compatibility of graphene 
solution-gated field-effect transistors (gSGFETs) with time-
division multiplexed acquisition mode, utilizing a strongly 
simplified addressing concept to overcome the hurdle of 
excessively complex device fabrication. The superiority of 
graphene over silicon and organic polymers for high-speed 
applications makes the gSGFET an ideal device for 
multiplexed sensor arrays. In-vitro and in-vivo assessments 
confirm the fidelity of broad-band signal representation (infra-
slow oscillations and local field potentials) in multiplexed 
operation, with signal quality comparable to the state-of-the-
art of commercially available neuro-sensors. Consequently, 
next to their potential as efficient transducers of neural 
activity, gSGFETs show great promise as a building block for 
multiplexed brain-machine interfaces of high sensor count. 
Thus, this work represents an important cornerstone in the 
development of large-scale, flexible gSGFET μECOG arrays 

capable of providing high resolution mappings of neural 
activity to control neuroprosthetics and to help exploring the 
operation and functionalities of the brain. 
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Figure S1. Tapered via-hole technology: a. Profile of a polyimide via-hole from a profilometer measurement, showing a 

smooth slope enabling reliable metal-metal interconnections. b. Fabrication steps for via-holes through patterning of 

photoresist to define the protective aluminium mask, etching of the tapered profile with isotropic oxygen plasma and deposition 

of top metal layer. Microscopic images after each step illustrate the procedure.  
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Figure S2. Crosstalk evaluation: a. Schematic of tailored PSpice MOSFET element used to simulate the crosstalk in the 

gSGFET array. b. Drain-source current as a function of applied gate voltage for the PSpice model and for the experimentally 

measured gSGFET showing near-identical transfer characteristics. c. In-vivo measured gradient in signal amplitude when a 

bipolar current stimulation is applied across the sensor-array (Multichannel Systems STG4002). Centric between both 

stimulating electrodes, the opposite polarity of both waves leads to destructive interference. This serves as a final validation, 

that no significant crosstalk is observed in the 8x8 array, as this would otherwise prohibit full amplitude cancelation in the 

recorded signal. 
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Figure S3. Setup of acute in-vivo experiments a. Positioning of both, the gSGFET (right hemisphere) and the NeuroNexus 

ECoG array (left hemisphere) during the in-vivo recordings. The visually evoked response is triggered by a contralaterally 

placed LED in front of the left eye. Also, the location of the KCl injection (micro-pipette) which is triggering the cortical 

spreading depression is indicated. b. Time trace of spontaneous activity for each electrode on the NeuroNexus ECoG array. 
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Figure S4. Quality of graphene films a. Optical image of typical graphene film on Si/SiO2 wafer (90 nm oxide thickness) 

showing the density of multilayer graphene (around 3% of surface area) and of cracks in the film. b. Raman spectrum of 

graphene on Si/SiO2 wafer (90 nm oxide thickness) showing a full-width half-maximum of the 2D-peak of 39.92 cm-1, a I2D/IG-

ratio of 2 and an ID/IG-ratio of 0.05. 
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