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Abstract

English:

Living organisms are characterized by their ability to adapt themselves to the circum-

stances. Bacteria, for example, are able to detect chemical signal gradients with the

purpose of reorienting themselves. Ants in a colony organize themselves to distribute

tasks, even to develop strategies that are unfeasible at an individual level. Even humans

adapt continually our behavior to our dynamic context. This adaptation, based on the

ability to incorporate and process information, represents the germ of intelligent behavior.

In this thesis we have focused on providing a physical framework to describe some aspects

of those mechanisms. More concretely, we have used tools from statistical physics to

describe, in an effective way, the cognitive mechanisms that the organisms use to obtain

and process information in the context of search or foraging processes. Our framework

allows to analyze the impact of multiple cognitive layers over the organisms navigation

during these processes.

The thesis has been divided into two parts. During the first one, we explore how the

cognitive layers impact the search process efficiency in absence of interactions with other

individuals. We illustrate how the cognitive memory and the prospection (the ability to

sample the future) can represent fundamental ingredients to describe the behavior of

living organisms. In addition, we provide experimental evidence that seemingly indicates

that how humans quantify when the information of those layers is reliable enough (and

then, to make a decision) can be effectively described by a simple mechanism based on

concepts from information theory.

In the second part, we focus on the collective organization exhibited by a broad range of

living organisms and how it emerges from the interactions between them.More concretely,

we explore if the framework proposed for isolated individuals can be useful to describe

these situations. We provide multiple evidence in this direction, putting our effort in

two systems: pedestrian dynamics and ant foraging. For the first, we characterize how

the balance between the basic ingredients of pedestrian motion may generate collective

structures and how a description in a specific space (the time-to-collision space) can

adequately capture these structures. For the second, it is known that ants cooperate while

foraging to increase the colony survival. We explore how a better comprehension of the

complexity of collective foraging strategies can be gained with the help of spin-glass

frameworks.

In summary, this thesis illustrates how the understanding of the cognitive mechanisms of

living beings can be approached through models based on statistical physics.



Castellano: Los seres vivos se caracterizan por su capacidad de adaptarse según las

circunstancias. Las bacterias, por ejemplo, son capaces de detectar gradientes de señales

químicas con el fin de reorientar su movimiento. Las hormigas de una colonia se

distribuyen las tareas, para así desarrollar estrategias inviables a nivel individual. Incluso

los humanos adaptamos continuamente nuestro comportamiento a nuestro contexto

dinámico. Esta adaptación, basada en la capacidad de incorporar y procesar información,

representa el germen del comportamiento inteligente. En esta tesis nos hemos centrado

en proporcionar un marco físico para describir algunos aspectos de esos mecanismos.

Más concretamente, hemos utilizado herramientas de la física estadística para describir,

de forma efectiva, los mecanismos cognitivos que los organismos utilizan para obtener y

procesar información en el contexto de procesos de búsqueda. Nuestro marco permite

analizar el impacto de múltiples capas cognitivas sobre la navegación de los organismos

durante estos procesos.

La tesis se ha dividido en dos partes. En la primera, exploramos cómo las capas cognitivas

impactan en la eficiencia del proceso de búsqueda en ausencia de interacciones con

otros individuos. Ilustramos cómo la memoria cognitiva y la prospección (la capacidad

de simular el futuro) pueden representar ingredientes fundamentales para describir el

comportamiento de los organismos vivos. Además, aportamos pruebas experimentales

que parecen indicar que la forma en que los humanos cuantifican cuándo la información

de esas capas es lo suficientemente fiable (para así tomar una decisión) puede describirse

eficazmentemediante unmecanismo basado en conceptos de la teoría de la información.

En la segunda parte, nos centramos en la organización colectiva exhibida por una

amplia gama de organismos, y en cómo esta surge de la interacción entre ellos. Más

concretamente, exploramos si el marco propuesto para los individuos aislados puede

ser útil para describir estas situaciones. Proporcionamos múltiples pruebas en este

sentido, enfocándonos en dos sistemas: la dinámica de los peatones y la búsqueda de

alimento de las hormigas. Para el primero, caracterizamos cómo el equilibrio entre los

ingredientes básicos del movimiento de los peatones puede generar estructuras colectivas

y cómo una descripción en un espacio específico (el espacio de los tiempos de colisión)

puede capturar adecuadamente estas estructuras. En cuanto al segundo, se sabe que

las hormigas cooperan mientras buscan comida para aumentar la supervivencia de la

colonia. Exploramos cómo puede obtenerse una mejor comprensión de la complejidad de

las estrategias colectivas de búsqueda con la ayuda del marco de los vidrios de espín.

En resumen, esta tesis ilustra cómo puede abordarse los mecanismos cognitivos de los

seres vivos mediante modelos basados en la física estadística.



Català: Els éssers vius es caracteritzen per la seva capacitat d’adaptar-se d’acord amb les

circumstàncies. Els bacteris, per exemple, són capaços de detectar gradients de senyals

químics amb la finalitat de reorientar el seu moviment. Les formigues d’una colònia es

distribueixen les tasques, per a així desenvolupar estratègies inviables a nivell individual.

Fins i tot els humans adaptem contínuament el nostre comportament al nostre context

dinàmic. Aquesta adaptació, basada en la capacitat d’incorporar i processar informació,

representa el germen del comportament intel·ligent. En aquesta tesi ens hem centrat en

proporcionar un marc físic per a descriure alguns aspectes d’aquests mecanismes. Més

concretament, hemutilitzat eines de la física estadística per a descriure, demanera efectiva,

els mecanismes cognitius que els organismes utilitzen per a obtenir i processar informació

en el context de processos de cerca. El nostre marc permet analitzar l’impacte de múltiples

capes cognitives sobre la navegació dels organismes durant aquests processos.

La tesi s’ha dividit en dues parts. En la primera, explorem com les capes cognitives

impacten en l’eficiència del procés de cerca en absència d’interaccions amb altres individus.

Il·lustrem com lamemòria cognitiva i la prospecció (la capacitat de simular el futur) poden

representar ingredients fonamentals per a descriure el comportament dels organismes

vius. A més, aportem proves experimentals que semblen indicar que la forma en què

els humans quantifiquen quan la informació d’aquestes capes és prou fiable (per a

així prendre una decisió) pot descriure’s eficaçment mitjançant un mecanisme basat en

conceptes de la teoria de la informació.

En la segona part, ens centrem en l’organització col·lectiva exhibida per una àmplia gamma

d’organismes, i en com aquesta sorgeix de la interacció entre ells. Més concretament,

explorem si el marc proposat per als individus aïllats pot ser útil per a descriure

aquestes situacions. Proporcionem múltiples proves en aquest sentit, enfocant-nos en dos

sistemes: la dinàmica dels vianants i la cerca d’aliment de les formigues. Per al primer,

caracteritzem com l’equilibri entre els ingredients bàsics del moviment dels vianants pot

generar estructures col·lectives i com una descripció en un espai específic (l’espai dels

temps de col·lisió) pot capturar adequadament aquestes estructures. En quant al segon, se

sap que les formigues cooperenmentre busquenmenjar per a augmentar la supervivència

de la colònia. Explorem com pot obtenir-se una millor comprensió de la complexitat de

les estratègies col·lectives de cerca amb l’ajuda del marc dels vidres d’espín.

En resum, aquesta tesi il·lustra com pot abordar-se els mecanismes cognitius dels éssers

vius mitjançant models basats en la física estadística.
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Portrait of Erwin Schrödinger. Im-

age taken from [3].

Preface

0.1 Physics for studying living
organisms

Let me start this preface with an anecdote. It is related to

the scope of the thesis, and it is very probable that if you

have a background close to mine (statistical physics and

complexity), you have experienced something similar.

Let’s go back in time, looking to howphysicswas presented to

me . When I was at secondary school, I learned how an atom

was divided into protons, neutrons and electrons. When I

was twenty I was in the middle of the Physics bachelor, so in

college. At that point, I knewhow an electron exhibits particle

and wave properties simultaneously, which is called the

wave-particle duality [1]. Two years after, when I was twenty-

two, I obtained my Bachelor’s tittle.

Schrödinger’s quote

...living matter, while not elud-
ing the "laws of physics" as es-
tablished up to date, is likely to
involve "other laws of physics"
hitherto unknown, which how-
ever, once they have been revealed,
will form just as integral a part
of science as the former.

By that moment, I had

understood how, under some circumstances, the electrons

could move without dissipation through a material, making

emerge the astonishing phenomena of superconductivity

[2].

I take this electrons’ example because it describes very ap-

propriately how the physical knowledge is usually like a

pyramid, where new layers (new knowledge) are built on the

previous ones.

Electrons and their nature is not the unique topic I was

taught: I was given many lessons about quantum physics,

the framework that explains what happens to very small

things. I also attended to some relativity lessons, where the

framework to explain the phenomena at the cosmological

scale was presented to me.

Maybe you are a bit concerned at this point, wondering

why I am explaining all this. I assure you is not for the sake

of reviewing how many topics I have explored during my

formation. The underlying reason is much simpler. Where

is the physics that can describe the fundamental features of

our daily life? It is necessary to explore what is happening at

the nano and cosmological scales, but I firmly believe that
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the physics of our scale provides a deep list of incredibly interesting phenomena that

needs to be explored. During the undergraduate formation, the study of this topic is almost

residual. However, those very few moments where I was taught statistical mechanics

or biophysics were my favorite ones. They made me wonder how interesting could be

the study of a bacteria or the internet structure through the lens of physicists. Being

coherent with my own past, I engaged this thesis project with the aim of extending and

divulging the knowledge about these phenomena. My ultimate goal is then to provide

a physical framework for the daily life scenarios, most of which are closely related with

living organisms.

I’m sure that most of you have heard about black holes, worm holes or quantum coherence.

However, how our brain works [4, 5], how the stock market evolves [6, 7] or how the

animals forage [8] are also very awesome and relevant contexts where physics could play a

key factor to obtain a better comprehension about why and how these phenomena occur.

If you are not familiar with these topics, it is probable that you are wondering how physics

is related to the brain or the global economy. And that is a completely legit question. With

the purpose of giving you an answer, let me make a brief aside. During the first decades of

the XXth century, the science was built on different disciplines, such as biology or chemistry.

And at some time they grew as isolated islands focusing into the phenomena that, by

general agreement, belonged to that discipline.

However, there were great scientists, such as Niels Bohr or Erwin Schrödinger, that

pioneered in bridging the gap between those islands [9, 10]. Their aim was to create a

richer and deeper vision, where the knowledge of different disciplines could create a more

complete description of our reality. That is why my previous quote "...how our brain works,
how the stock market evolves or how the animals forage..." is not out of the scope of a physics
project. Continuing with the idea of these brilliant scientists, in the recent years there

have been many works that make the gap between disciplines more and more reduced, or

combine the knowledge of multiple disciplines to explore a given phenomenon. And the

gaps between physics and the rest of sciences is far from being an exception. So biological,

social or psychological (broadly speaking, our daily life or our scale) phenomena are being

addressed by physicists who are trying to develop mathematical frameworks to capture

their essential behavior [11–13].

Let’s focus on the case of how physics may be helpful to describe the features of living

organisms. The scientistswho live at thebridge (or the interface) between thewell established

disciplines of physics and life sciences study the living organisms, their behavior and their

fundamental processes through the lens of fundamental laws or quantitative rules, with

the aim of providing a mathematical or physical description [14–16].

During the recent years, there have been significant discoveries emerging from that kind of

collaborating work. At the microscopic scale (but yet very distant from the quantum scale),

the importance of the physical tensions in in cellular walls for the structure of organic

tissues (morphogenesis) has been revealed [17, 18]. Statistical physics has also been used

to describe the evolution of alleles frequencies and polygenic traits [19, 20]. It has been

explored how the bacteria movement patterns could be understood through diffusive
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(physically-based) and chemotactic models [21, 22]. And many other significant examples

could be mentioned.

Nevertheless, not all the contributions are focused onto the microscopic features. Works

such as [23] or [24] help us to understand with quantitative descriptions how the fruit flies

or the ants colonies organize themselves at the individual level to improve the food intake.

Some contributions have also been provided to understand physiological processes within

humans. For example, a physical description is useful to understand how our cellular

processes takes place [25], how the electric impulses between our neurons translates into

our behavior [26], the metastasys dynamics that cancer causes [27, 28] or even how we

interact with other people in the middle of a crowd or in social networks [29, 30], that

could lead to provide improved responses to global challenges such as COVID-19 [31,

32].

0.2 Scope and organization of this thesis

My fundamental aim with this thesis has been to continue the path, helping to provide

a physical description of behavior in living organisms. More concretely, I have spent the

last four years exploring physicals framework that can describe the movement patterns

of the living organisms in the light of the cognitive abilities that they exhibit as one goes

higher and higher in the evolutionary scale. A complete mathematical description of such

movement rules and/or generators is yet unknown. I have used concepts and tools coming

from the statistical physics field, such asmicroscopic interactions or entropic considerations,

as a way for developing that mathematical framework.

The writing of the thesis has been organized with the purpose of easing the reading and its

understanding. There are two main parts, which correspond to the physical description of

how living organisms move either when they are isolated or in a crowded media. For the

sake of completeness, I provide here a very brief outline of these two parts of this thesis:

I Part 1: Individual behavior. This is dedicated to the development of a physical

framework to describe the living organisms movement patterns. The framework

tries to account for biological and psychological mechanisms, for which I try to

reach an approximate physical description. I explore the resulting patterns of those

mechanisms in the context of a search process. I also discuss how the organisms

gather and process contextual information to readapt their movement to a given

context.

I Part 2: Collective behavior. This is dedicated to the development of physical tools to

describe the collective movement patterns. I provide different mechanisms coming

from statistical physics to explore the self-organization of living organisms. I also

explore experimentally if those collective patterns could represent a measure of

intelligence (interpreted in a broad sense), where organisms collaborate to improve

their overall performance.
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Individual behavior



Portrait of Stephen Hawking. Im-

age taken from [44].

Introduction

The movement of an organism, defined as a change in the

spatial location with time, is a fundamental biological trait,

exhibited across multiple scales. All organisms move during

their lives, with very different and significant implications

for individuals, populations and even at the species level

[33]. Through movement, organisms may locate food, mates,

a place to live or may avoid predators [34, 35]. In general,

the movement patterns of an organism plays a fundamental

role in all its basic functions: reproduction [36, 37], nutrition

[38, 39] and relation [40, 41].

There is a vast variability of movement patterns featured

by living organisms.

Hawking’s quote

Intelligence is the ability to adapt
to change.One trait of those patterns is that they

seem to be adapted to increase the organism efficiency, such

as increasing the food intake or the energetic income [42,

43].

This adaptation of the behavior according to the context has

been proposed as a feature of intelligence [45, 46]. With

that broad definition, one can consider bacteria or other

microorganisms as intelligent species [47–50], as they have

developed mechanisms to adapt to the specific context. To

do this, the organisms need sensory detectors to obtain the

relevant information from the current scenario. Bacteria, for

example, are able to detect chemical signal gradients with the

purpose of reorienting themselves [51–53]. That mechanism

is known as chemotaxis [54–56]. Macroscopic organisms also

use sensory inputs to adapt their behavior [57]. For instance,

visual [58] or olfactory [59] mechanisms allow insects and

animals to detect the relevant features of their habitats.

Also, the dynamic nature of some scenarios force the organ-

isms to modify constantly their movement patterns. The less

complex organisms adapt themselves through automatic re-

sponses to chemical signals. However, a complex processing

of the sensory information is an exclusive trait of high level

organisms. High level organisms are constantly facing chal-

lenging situations. A complex processing of that information

helps to provide responses or make decisions about those

situations more efficiently [60, 61].



6

Because movement is such a prevalent and important process, the development of a

physical framework to provide a better comprehension of how organisms process and

use the sensory information in this context is of great importance. For example, one can

wonder if a movement pattern for an organism while foraging could be described on a set

of rules. If these rules can capture the essence of the organism behavior, our understanding

of the movements and its intrinsic mechanisms would be more profound.

From a physical perspective, those rules driving the movement patterns of living organisms

can be condensed into effective forces. Thus, a physical description of the organisms

dynamics would have to translate or map the cognitive or sensing mechanisms involved in

such rule evaluation into such physical forces.

Figure 1.1: Scheme of the physical description of the cognitive processing. The graph a) corresponds to a given ecological
context. The graph b) corresponds to the cognitive processing of the ecological context by the organism. Each layer
corresponds to the information of the food location (w), the predators positions (p) and the orography of the region (r)
building the multidimensional potential g(r, w , p). The graph c) corresponds to the physical description of the same
given situation trough the mapping of the multivariable potential g into the one-dimensional energy landscape f (E).
The color code works as follows. Red regions are detrimental to the organism aims (high E), while green regions are
beneficial to the organisms aims (low E).

One can wonder how this mapping should be done. Let’s start by establishing a general

mathematical expression for the organisms dynamics
d2x
dt2

� −∇g(r, w , p), where x(t)
corresponds to the individual position in the space and g(r, w , p) is a general potential of a
set of environmental variables r, w , p , ... How the position evolves in time, and so how the

organism adapts itself, should depend on the circumstances. Consequently, the potential g
contains all the contextual information. For example, one can suppose that the orography

of the region, characterized by a magnitude r(x), is relevant for the dynamics. The same

could apply to the food location (w(x)) or the presence of predators (p(x)), or any other

relevant environmental trait.

Even so, the variables defined as fundamentals to adapt movement patterns may variate

between situations or species. Statistical physics, which allows us to connect microscopic

details of a system with overall measurable magnitudes, should provide tools to translate

the information contained in g(r, w , p , ...) into an effective statistical description. That
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is why we propose to map the multi-dimensional potential g(...), with all its variables,

to a uni-dimensional energetic landscape f (E), whose specific properties will obviously

depend on the particular situation studied. One can identify that energy E as a macroscopic,

or effective, representation of the cognitive processing done by the organisms. For a more

visual explanation, see figure 1.1.

Using this analogy, we can connect the physical idea that systems tend to minimize energy,

with the biological idea that organisms tend to maximize fitness (which is itself a function

of the environmental variables r, w , p , ...).

So that, the physical framework for the living organisms trajectories would be effectively

defined through
d2x
dt2

� −∇ f (E). The challenge is then how to construct realistic and

insightful descriptions for f (E) that could be helpful for the comprehension of organisms

behavior and for predicting their patterns.

Search processes are a paradigmatic scenario where a high cognitive processing of the

contextual information may adapt the movement patterns. In this thesis we intend to apply

this kind of framework to explore movement patterns of living beings while engaged

in search or foraging tasks. Living organisms are constantly searching for things. Food

foraging [62, 63], the search for nest settlement [37] or a sexual mate [64] are examples of

the ubiquity of search tasks. Previous studies have reported that mathematical exploration

of optimal search strategies is a relevant tool to understand biological behavior. For instance,

when a bird looks for the best suitable place to settle the nest or when a predator looks

for preys [65, 66] (see figure 1.2 for visual examples of searches). An efficient movement

pattern, or strategy, is defined as the one that minimizes the invested effort in comparison

to the obtained reward. For a fixed reward quality, the optimal search trajectory is usually

the one that finds the reward in a shorter time. Consequently, intelligent organisms adapt

their movement to minimize the search effort (time) through the use of the contextual

information.

Figure 1.2: Foraging is a
widespread search process
across many different species.
In this image, one can observe
a bear and a seagull while
searching. The images have
been taken from [67].

The foraging (food search) scenario is present at almost all scales, and while it is true

that our social organization may have modified some of our search situations, the search

processes keep being a constant feature in human daily life [68–71]. During the last years

there has been a combined effort to develop a theoretical and computational framework for

such processes, describing the relevant information that drives to an efficient performance

[72, 73]. More specifically, search strategies (or algorithms, depending on the context) have
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been proposed to optimize the search of targets under different circumstances, such as

rescue protocols [74] or searching in databases [75, 76]. As noticed before, the optimal

search strategy should give an answer to the dynamic situations that the individual faces

during the process.

The followingChapters try to explore plausible landscapes f (E) for different search contexts,

and how this physical representation of the cognitive mechanisms of the organism may be

able to recover some of the complex features of real movement patterns. By focusing on

how the sensory information may be translated into the physical magnitudes, we analyze

the emerging movement patterns and their corresponding search efficiency.
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1.1 The RandomWalk model

One can wonder how an organism moves when it does not

have any contextual information available or it is not able to

process it. This organism could not adapt its movement pat-

terns (it would not fit the criterion for an intelligent behavior

provided in Chapter I). However, it can be illustrative to ex-

plore first the properties of those non-informed movement

patterns. The analysis will serve as the starting point from

which we can construct more complex scenarios, where the

movement patterns are actually adapted to the context.

One can intuitively wonder whether a constant value f � ct

may represent thenon-informednature of the trajectory.How-

ever, such a landscape f � ct corresponds to the organism

being staked at the same position (
d2x
dt2

� 0). Instead, a more

realistic proposal would be to represent the non-informed

behavior with a random trajectory. Then, in absence of ex-

ternal forces, the velocity fluctuates randomly and
dx
dt � η,

where η corresponds merely to a noise term. Under these

circumstances, the potential f does not incorporate contex-

tual information and the trajectory of the individual is built

up from random steps. For example, this would be the case

of an entity of a very small (e.g. molecular) size, which is

then lacking any adaptive mechanism characteristic of living

beings, and so its movement is just a consequence of thermal

noise.

In physical and mathematical literature, the properties of

stochastic movements have been deeply explored [77, 78].

The mathematical approach to the random movement is

provided by the Random Walk model (RW) [79–81]. In the

following paragraphs, we review the basic properties of this

classic model.
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1.1.1 Definition and properties

A randomwalk is defined as a stochastic or random process that describes a path consisting

on a succession of random steps on a given space [77]. The space, and so the steps through

it, could be continuous or discrete. The analysis provided here focus on discrete spaces for

the moment, but an extension to the continuous case is presented below.

Figure 1.3: Scheme of the random walk dynamics in a one-dimensional discrete space. The probability to move from the
current site n to the anterior (n − 1) or the postterior (n + 1) sites are equivalent and fixed to 1/2. The image is taken
from [82].

To comprehend how the RW works, let’s use a straightforward example where a walker

moves isotropically through a discrete one dimensional space (figure 1.4). We define n as

the walker site within this discrete space. As the movement of the walker is assumed to

be homogeneous, the probability to move to the site n − 1 and to the site n + 1 are the

same. From a more general perspective, the probability of each option is pi �
1

k , k being

the coordination number, which measures the number of first neighbours for each cell in

the lattice. For the one-dimensional scenario studied here, the transition probabilities read

as pn−1 � pn+1 �
1

2
. As the number of steps, or time, tends to infinity (t →∞), the number

of forward and backward movements tends to be balanced. In consequence, the averaged

position of the walker at that time t will be the same that the initial one (according to the

figure 1.4, n).

Property I

The average walker’s position after a given number of movements is equal to its initial

position. Without loss of generality we consider an initial position x0 � 0. According to

that, the average position of the walker at time any time t reads

〈x(t)〉 � 0 (1.1)

Due to the stochastic, or erratic, nature of the RW dynamics, predicting its exact position

at a given time is impossible, and then the study of the distribution of positions must be

carried out in order to capture the relevant features of the dynamics. Since the average

position of the random walk, according to property I, provides only trivial information
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about the properties of the movement the analysis of further moments of the positions

distributions are of great interest to understand the RW dynamics. One can obtain the

second moment trough the analysis of a trajectory until the step k. For the one dimensional

case, the second moment reads

〈x2

k〉 � 〈(∆x1 + ∆x2 + ...∆xk)2〉, (1.2)

where ∆xi corresponds to the transition at the step i (which can be, with equal probability,

l or −l, where l is the distance between neighbor sites). If one defines nk �
∑k

i�1
∆xi , the

expression can be rewritten as

〈x2

k〉 � 〈n
2

k〉, (1.3)

where the term nk follows a Gaussian distribution whose standard deviation is σ � k (this

is only valid in the limit of large k). Then, the equation 1.3 can be rewritten as

〈x2

k〉 � l2

∫ k

−k
n2

1√
2πσ

exp

(
−

n2

k

2σ2

)
dnk . (1.4)

From this, one can derive then that the second moment after k steps reads

〈x2

k〉 � 2Dk , (1.5)

where D is the diffusion coefficient and corresponds to D �
l2

2
. The same procedure can be

generalized to derive the second moments of the walker’s position in higher dimensions.

Property II

The second moment of the position of the walker is defined as the Mean Square
Displacement (MSD). According to that, the MSD at time t reads as follows, where n is

the given dimension of the space.

〈x2(t)〉 � 2nDt (1.6)

The second moment provides information about the dispersion of the possible walker’s

position at time t. Despite being, in average, in the initial site, the distribution of possible

positions broadens as the walker advances.

1.1.1.1 From the discrete to the continuous space

Until this point, the analysis of the RW model has been done for a walker moving

through discrete spaces. However, the RW model can also describe the movement through

continuous spaces, extending thenotionof jumpsbetweendiscrete sites to afixedmovement

length l in a continuous space.
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For the one-dimensional scenario, the dynamics of doing movements of fixed length l is
equivalent to jump between sites of length l. In the two dimensional (rectangular) lattice,

thewalker can jump from the current site to a discrete number of sites, while in a continuous

space, a movement of length l can be done in an infinite number of directions. From a

general perspective, the properties I and II reported before for the discrete case are also

valid are for the continuous case, with the diffusion coefficient being D �
l2

2
.

We provide a comparison of the dynamics (trajectory and MSD) in both discrete and

continuous spaces in figure 1.4, for the sake of completeness. The asymptotic behavior for

the MSD provided by the Property II is clearly the same for both spaces, giving support to

the claim of properties I and II remaining valid.

Figure 1.4: Left: The trajectory of a random walker in a given set of 10
4 steps. Right: Mean square displacement of the

walker. The results are provided for a continuous random walk (blue) and a discrete random walk (red) when moving
trough a two dimensional space.

Alternatively, the results above can be derived from a continuous formalism based on the

well-known diffusion equation

∂ρ(x , t)
∂t

� D
∂2ρ(x , t)
∂x2

, (1.7)

where ρ(x , t) is the probability density to find the walker at position x at time t.

1.1.2 Target dynamics

Target dynamics refers to the process by which we measure the time the walker needs to

reach a particular region of the spatial domain representing the position of one or multiple

targets. The search for such targets may depend on a variety of different conditions. Targets

may be sparse or hidden. The targets may be mobile or immobile. They may have a finite
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life-time and vanish before they are detected. So to define a general estimator for how a

random walker performs in those scenarios is far from trivial and depends strongly on the

circumstances.

First, we focus on the case where the walker searches for a single immobile and non-

vanishing target. Mathematically, this process is as follows. The trajectory x(t) starts at a
initial position x(0) � x0. The target is defined as subdomain Z of the space domain. When

the position x(t) at a given time t pertains to the subdomain Z, the walker has found the

target.

Figure 1.5: Schematic representation of the target dynamics. a) Evolution of the walker’s position as a function of time
in a one-dimensional lattice. The two dots corresponds, respectively, to the MFPT of the site i (blue dot) and to the
coverage time Tc , when all the N sites of the finite lattice have been covered (green dot) . b) Evolution of the walker’s
position in a two-dimensional lattice. To avoid the nule measure of the trajectory, one defines a region of radius R around
the walker’s position.

Under those circumstances, one can propose different scenarios to characterize how

efficiently the walker performs during the process. One possible estimator of search

efficiency is the survival probability S(t). It is defined as the probability that, after a time

t since the beginning of the process, the walker has not reached the location of the target.

When the survival probability goes to 0, it means that the walker has reached the target.

For the specific case of a walker satisfying the diffusion equation 1.7 in 1D, one can compute

the survival probability by solving the equation in (0,∞) with a absorbing boundary

condition at x � 0 (representing the target). The specific solution (see [83]) is

S(t) � erf

(
x0√
4Dt

)
, (1.8)

which satisfies S(∞) � 0, so the target will be reached with certainty.

From the survival probability, one can obtain the average time the walker needs to reach

the target. The stochastic estimator of the number of steps to reach, on average, the

target position starting at x0 is called the mean first passage time (MFPT). For simple

random-walk models, this time can be derived analytically [83, 84]. We illustrate here the
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fundamentals of how that derivation is done for the simpler case of the classical random

walk reviewed above (for more details, see [85]).

The diffusion equation 1.7 is known as the forward Fokker-Planck equation, which describes

the evolution of ρ(x , t) for fixed initial conditions (x0, t0). Now, instead,weuse the backward

Fokker-Planck equation, which describes the evolution of ρ(x0, t0 |x , t) back in time and

space for fixed present conditions (x , t). We consider for simplicity a situation in which the

walker moves across a one dimensional space (0, L) with absorbing boundary conditions

at x � 0 and x � L (the absorbing boundaries stand for the presence of the target).

The survival probability after a moving time τ � t − t0 reads

S(τ, x0) �
∫ L

0

ρ(x , t |x0, t0)dx , (1.9)

which now in finite media must satisfy S(0, x0) � 1 and S(∞, x0) � 0. The first passage time

distribution f (τ, x0) can be connected to the survival probability through f (τ, x0) � ∂S(τ,x0)
∂t ,

and the MFPT (T) can be computed as

T �

∫ ∞

0

τ f (τ, x0)dτ �

∫ ∞

0

S(τ, x0)dτ. (1.10)

According to the relation 1.9, one can introduce the survival probability into the backward

Fokker-Planck equation. Now, it reads

∂S(τ, x0)
∂t

� D
∂2S(τ, x0)
∂x2

0

. (1.11)

Now, after the integration in τ from 0 to∞ it reads

−1 � D
d2T(x0)

dx2

0

, (1.12)

from where we can obtain a closed expression for the MFPT. The solution of this ordinary

differential equation leads finally to

T(x0) �
x0(L − x0)

2D
. (1.13)

A similar procedure can be done for multi-dimensional lattices [86]. However, for those

cases the probability to reach a point target at ®x = ®xc has null measure. In consequence,

one assigns to the walker a characteristic radius R to avoid the null measure problem.

Alternatively, an efficiency measure for scenarios where multiple targets cover homoge-

neously the whole spatial domain may require a different perspective, as the MFPT may

not capture all the details of the process. Under these circumstances, to measure how fast
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the walker covers the domain will provide a more suitable efficiency evaluation (as larger

the covered region is, higher the probability to find all the targets).

One estimator to analyze how the walker covers the space is themean covered region V(t).
It corresponds to the size of the region covered by the walker up to a time t, averaged over

all possible realizations, and reads

V(t) �
∫

R
dr

∫ t

0

dt f (r, t), (1.14)

where f (r, t) is the first passage distribution to reach the point r for first time. One can

find a detailed derivation of V(t) in [87]. In the limit of large times, it can be obtained that

V(t) ∼
√

2nDt, where n corresponds to the dimension of the space. One can observe that

the analysis of the MSD also provided the same result (equation 1.3), so both measures

coincide in the asymptotic limit.

Note that the volume covered by the random-walk grows indefinitely for infinite domains,

while in the case of finite domains it will saturate for long times. For this reason, when

the search region is finite, one alternative way to measure the efficiency at covering the

domain is given by the mean coverage time Tc , which describes the average time a walker

spends to cover an entire region [8, 88]. Coverage properties of random walks moving

within regular lattices dimensions have been extensively explored over the last thirty years

[89–92].

In the following, we illustrate how to derive the coverage time Tc of a walker in a one

dimensional (cyclic) lattice of N sites with periodic boundary conditions. The entire

derivation can be found in [89].

Let’s define Tc(N) as the time to cover the N sites of the domain. In order to cover N sites

the walker should first cover N − 1 sites and then proceed to cover the last one. The average

time required to cover N − 1 sites is identical to the coverage time for a ring (chain with

periodic boundary conditions) of N − 1 sites. So one can rewrite Tc(N) as

Tc(N) � Tc(N − 1) + t̄ , (1.15)

where t̄ is the average time required to cover the last site and it is identical to the MFPT

through the site N of a walker that started from the site 1 on a ring of N sites, and

corresponds to t̄ � N − 1.

One can sequentially repeat the same process for the N −1 case (Tc(N −1) � Tc(N −2)+ ...).
That sequence leads to a final expressionTc �

N(N−1)
2
≈ N2

for the periodic one-dimensional

lattice.

In two-dimensional (or higher-dimensional) lattices, the mathematical analysis is more

complicated. The number of paths to move from the initial site to the final one makes

impossible to find a simple analytical expression to t̄ in the same terms (see [86]). However,

the same conjecture of the coverage process being governed by the last site reaching (t̄) has
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been proposed in [91, 93]. In there, the distribution of first passage times of that last site

has been related with the lattice size N as

t̄
N log

2(N)
→ π

4

. (1.16)

The scaling of the coverage time Tc , if governed by that last stage, will be equivalent to this

scaling [94].

Property III

The averaged necessary time to cover all the sites of a finite space is called the coverage

time Tc . The mathematical analysis of the random walk trajectories provide that the Tc

for a given space scales with the number of sites N sites scales as

Tc ∼ N2

(1.17)

when the space is one dimensional and as

Tc ∼ N log
2(N) (1.18)

when the space is two dimensional (and higher dimensions).

In a finite and periodic lattice, one can define the general MFPT (〈T〉), which corresponds

to the MFPT to a given target site averaged over all starting sites. Within the last sites

conjecture, there is a special subset of stochastic movements that permits a relation between

the coverage time Tc and the general MFPT [95]. This subset corresponds to non compact

(or non-recurrent) walks (which is not the case of the RW explored here). All the models

that fit in that criterion show the same distribution of coverage times P(Tc) of a N sites

lattice when reescaled in terms of the general MFPT. The reescaling producing the collapse

is P(Tc) � Tc−〈T〉 ln N
〈T〉 .

1.1.3 The Persistent RandomWalk

In the previous paragraphswe have explored the navigation properties without considering

in any case correlations between subsequent steps. Living organisms usually tend to exhibit

persistence, which means that they keep moving in the same direction at least for a given

time.

The Persistent Random Walk model (PRW) provides a framework to include this feature

in the walker’s navigation [96, 97]. In the PRW, the jumping probabilities pi are conditioned

by the walker’s previous step.
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We use the one-dimensional case as an illustrative example. At each time step τ, the walker

does a step keeping the previous direction with a probability p � 1 − ατ (λ is the turning

rate) or it changes the direction with probability q � λτ.

According to this probability definitions, one can derive the navigation properties of the

walker as follows. Let ρ(x , t) be the probability density of the walker being at position x at

time t, and ρ−(x , t) and ρ+(x , t) the probability density that arrives to position x at time t
from the left and and from the right, respectively. Hence

ρ(x , t) � ρ+(x , t) + ρ−(x , t). (1.19)

The balance equations for ρ+(x , t) and ρ−(x , t) are

ρ+(x , t + τ) � pρ+(x − a , t) + qρ−(x − a , t) (1.20)

ρ−(x , t + τ) � pρ−(x + a , t) + qρ+(x + a , t) (1.21)

If one considers a → 0, τ → 0 but requiring
a
τ � ct, one can arrive to the telegrapher’s

equation from the treatment of the balance equations. It reads

τ
2

∂2ρ

∂t2

+
∂ρ

∂t
� D

∂2ρ

∂x2

. (1.22)

From that equation, one can derive that 〈x(t)〉 � 0. The persistence does not introduce any

anisotropy in the system (the initial step of each trajectory is done randomly). The MSD

calculation leads to the differential equation

τ
d2〈x2(t)〉

dt2

+
d〈x2(t)〉

dt
� 2D. (1.23)

This second order liner-differential equation can be solved under the initial conditions

〈x2(0)〉 � 0 and ( d〈x
2(t)〉

dt )t�0 � 0. One obtains

〈x2(t)〉 � 2Dτ
[ t
τ
+ exp

(
− t
τ

)
− 1

]
. (1.24)

The limits of this expression reads

〈x2(t)〉 � Dτt2, t � τ Ballistic regime (1.25)

〈x2(t)〉 � 2Dt , t � τ Diffusive regime (1.26)

Thus, the stochastic movement of a persistent walker does not yields a net movement.

However, it introduces a ballistic regime where the walker moves in the same direction. It
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means that there is a temporal correlation in the walker’s velocity during a time τ. Note

that τ → ∞ corresponds to an infinite ballistic regime, while τ � 0 is analogous to the

ordinary RW.

The MFPT can be computed as in Section 1.1.2. One obtains the expression

T(x0) �
x0(L − x0)

2D
+

L
2v
, (1.27)

where v corresponds to
a
τ � ct � v.

The coverage time Tc of the PRW is analogous to the results of the ordinary RW. The

coverage is governed by the last visit process, and in the limit t � τ, the walker’s navigation

is diffusive.

1.2 The Self-Avoiding Walk model

The framework f (E) introduced in Chapter I translates the sensory information and its

cognitive processing to a physical energetic landscape.

Focusing on search tasks, for instance, one can wonder how optimal search patterns may

emerge from the efficient information processing. For example, to retain the knowledge of

which regions have been explored during the task helps the individual to avoid exploring

again those regions. A realistic f (E) landscape could then add this cognitive layer.

Figure 1.6: A comparison between a pure random trajectory (left) and one self-avoiding trajectory (right). One can
observe how the loops of the common random walk are deleted for the self-avoiding walk. Source: [98]

Real biological organisms have developedmechanisms to incorporate that cognitive layer. At

the microspic level, bacteria represent a paradigmatic exemple. Bacteria deposite chemical

signals along their path. Through chemical detectors they can detect those signals to

modify their direction of motion [51, 53, 99, 100]. At the macroscopic level, the capacity to

retain information about olfactory, visual or hearing stimulus helps the organisms to avoid

previous regions [101–104].
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Self avoidance is defined as the mechanism of suppression of crossings or loops during a

given trajectory with its own previous path (see figure 1.6). This idea where the organism

avoids those revisits, can be introduced into the random walks framework through the

Self-Avoiding Walk models (or SAW) [105, 106].

Despite its own mathematical interest and its relation with complex movement patterns,

the SAW was first proposed to describe the structure of polymers [107, 108]. One polymer

is defined as a set (or chain) of individual units, known as monomers. A polymer is built

up from the concatenation of those units. Let’s suppose all the monomers are identical,

with a given size or length l. Since the number of units (n) present in the structure largely

determines the functionality and many of the physical properties of the whole chain, it is

particularly instructive to represent and analyze polymers in terms of the phase space of all

the possible configurations that those units can adopt, assuming that they cannot overlap

with others due to excluded volume reasons. From a SAW perspective, this is translated

into a stochastic structure avoiding crossings or loops with itself. This idea is illustrated in

figure 1.7.

Figure 1.7: The polymer structure can be modeled as a set of monomers of fixed length l, concatenated with random
orientations. The unique requisite is the excluded volume, so the self-avoiding walks represent a very complete
framework to study them. The image provides a three dimensional representation of the polymer, avoiding crossings. The
two-dimensional nature may lead to a misinterpretation of the crossing of the random path.

1.2.1 Definition and properties

The properties of SAWs on lattices have been extensively studied. An analytical treatment

is complicated as the next step of the walk depends on the entire previous history of the

walk (it is a example of non-Markovian dynamics). While some analytical results have been

found [109, 110], most of what is known about self-avoiding walks comes from computer

simulations [111].

Within the SAW framework, the trajectory of a walker in a discrete lattice consists of a set

of random steps with a constraint: a given site cannot be visited more than once (it would
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correspond to a crossing of the path with itself). Consequently, the probability to jump from

the current site to a site i that has been visited during the previous trajectory is pi � 0. As a

result of this, the SAW presents a special feature. During a given trajectory, the walker may

arrive to a situation in which all the possible sites available for jumping have been visited

before, and then, all the probabilities of the sites to jump into are pi � 0. In this situation,

the walker will face a dead end and the SAW process is terminated. That situation can

take place in any dimension, but as the dimensionality of the system becomes larger, the

probability of facing a situation like this goes to zero (Polya’s theorem [112]). The critical

dimension of the SAW is d � 2 [113], and so the navigation through higher-dimensional

spaces will provide analogous results to the RW ones. According to that definition, we

explore in the following the properties of a SAW.

Despite the presence of self-avoidance, the nature of the motion keeps being isotropic.

There is no a preferred direction. That fact leads to 〈x(t)〉 � 0, as stated above. We illustrate

this idea for one-dimensional case. Here, self-avoidance corresponds to move constantly

towards one direction (a direction shiftwould lead to a crossingwith the previous trajectory).

Mathematically, the probability density ρ(n , t) to be in a given site at a given time reads

ρ(n , t) � 1

2

δ(n − t) + 1

2

δ(n + t). (1.28)

The walker will always be at sites n or −n, corresponding n to the number of steps of the

trajectory (guessing the initial site is 0). The average of this distribution leads to 〈x(t)〉 � 0.

When referring to the navigation through two-dimensional (or higher dimensional) lattices,

a similar mathematical analysis is far from trivial. However, due to the isotropy of the

system, one can derive that the averaged position reads analogously 〈x(t)〉 � 0.

The suppression of crossings or loops may have an impact on how compact the walker

trajectories are. One can characterize that feature trough the analysis of the MSD. For

the one dimensional case, one can derive the MSD from equation 1.28. One obtains that

〈x2(t)〉 �
∫

x2ρ(x , t) ∼ t2
. These results report an analogous ballistic motion to the PRW

with infinite persistence (Section 1.1.3). As stated before, for this case the walker does the

first step of the trajectory randomly, but the subsequent steps are always in that direction.

For two and higher dimensions, random-walks become partially or completely non-

recurrent due to the topological properties of the system. In consequence, one cannot expect

ballistic motion. By using Renormalization Group techniques, one can derive that a walker

moving trough a two-dimensional lattice exhibits a super-diffusive behavior, characterized

by 〈x2(t)〉 ∼ t
3

2 [114–116]. That corresponds to broader trajectories if compared to the

common RW trajectories (where recurrence is not avoided). The probability to find a

possible loop during the paths goes to zero as the dimension of the lattice grows. As a result,

the statistical properties of the process become more and more similar to the diffusive case

as the dimension increases.

Despite the non-Markovian nature of the process, some asymptotic limits have been

proposed to characterize the coverage time Tc in the SAW. The derivation of Tc for a one
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dimensional lattice is trivial. As stated before, the walker moves constantly in one specific

direction. Thus, the number of steps to cover the entire structure is then equal to the lattice

size (Tc � N).

Again, for two dimensional lattices, obviously the analysis is more complicated. The process

is dominated by the search of the last site. However, that final stage depends on the entire

previous trajectory and an analytical treatment is far from simple. Through the last site

finding analysis it has been conjectured [117] and confirmed numerically [94] that the

scaling properties depend on system size as Tc(N) ∼ N log(N). That corresponds to a faster

lattice covering if compared to the ordinary RW case. As stated before, d � 2 corresponds

to the critical dimension of the SAW [113]. For higher dimensions, the scaling is analogous

to the RW one.

1.3 The Partial Self-Avoiding Walk

Self-avoidance in general should rely either on the use of complex cognitive memory [118,

119] or the ability of the individual to leave scent cues (e.g. pheromones) to mark regions

already visited, something that social insects and similar species have been proved to do

[120].

However, the SAW algorithm does not represent a useful representation for self-avoidance

in living organisms. In particular, the dead-end (or self-killing, as has been termed in [117])

effect described in the previous section lacks any meaning for biological trajectories.

To take into account these ideas, next, we introduce the concept of partial self-avoidance,
according to which revisits are unlikely but still possible. To do so, we construct a

probabilistic rule for self-avoidance,whichwhich is governedby an energetic landscape f (E)
representing the cognitive layer containing the information about sites visited previously.

This new scenario, where self-avoidance is partial, penalize the probability of the jumps

that revisit a previously visited site. However, and differently from the SAW, this pi will be

different from 0.

As introduced in Section 1.1, the probability to jump from the given site to another site i is
defined by pi . These probabilities will be characterized by the following algorithm. Each

site i, at the beginning of the trajectory, has an associated energy Ei . When the walker visits

a site i during its path, the value for this site i is modified. Then, the visited nodes energy

is different from the non-visited ones and minimization of the energy generates a tendency

to move towards lower energy sites.

1.3.1 Maximal Entropy Principle

When introducing and energetic landscape f (E) in the discrete walker’s dynamics, one has

to define exactly how that landscape modifies the probability to jump to a given site.
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To do so, information theory provides a constructive criterion for setting up probability

distributions on the basis of partial knowledge. It leads to a type of statistical inference

which is called the Maximum-Entropy Principle (MEP) [121, 122]. It is the least biased

estimate possible on the given information; the one that makes the fewest assumptions

about the true distribution of data. In the following, we proceed to provide the origin of

that criterion and how it can be adapted to compute the walker’s next step probabilities

pi .

First, we introduce the Shannon’s entropy (equation 1.29). It accounts for the level of

uncertainty of a given discrete distribution. The expression corresponds to any general case,

being then i the possible states of a given system and pi their corresponding probabilities.

When all pi are equal, the Shannon’s entropy S gets maximal, as it comes from an

homogeneous (information-less) probability distribution.

S(p) � −
∑

i
pi ln(pi). (1.29)

From any given distribution pi , one can estimate an average value for the system for any

magnitude. Let’s define the estimator f , which depends on the state of the system. Then fi

corresponds to the function f evaluated in the state i. Assuming that

∑
i

pi � 1 and 〈 f 〉 �
∑

i
pi fi , (1.30)

one can derive the maximal Shannon’s entropy that fulfills those constraints by introducing

the Lagrangian multipliers µ and λ.

That procedure leads to the equation

∂S
∂pi

�
∂
∂pi

[
−

∑
i

pi ln pi + λ(1 −
∑

i
pi) + µ(〈 f 〉 −

∑
i

pi fi)
]
� 0. (1.31)

The solution to this equation reads

pi �
1

Z(µ) exp

(
−λ − µ fi

)
, (1.32)

where Z(µ) is a normalization factor that reads

Z(µ) �
∑

i
exp

(
−µ fi

)
. (1.33)

The results may be rewritten as

λ � ln Z(µ) (1.34)
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and the averaged estimator value can be expressed as

〈 f 〉 � − ∂
∂µ

ln Z(µ). (1.35)

Redefining the estimator f as the energy E, the maximal entropy estimator leads to the

Boltzmann factor

pi �
exp(−βEi)

Z
, (1.36)

where Z �
∑

i exp(−βEi).

Back to our framework, the sites with lower Ei will have an associated higher probability

(the walker tends to go to those sites) when compared with the higher Ei ones. The

parameter β, which is known as the effective temperature in physics, modulates how strong

the self-avoidance is. When β � 0, the energetic value of a site becomes irrelevant, and

then the walker moves just as in the Random Walk model. When β→∞, when the walker

has to choose between a visited and a non visited node, the walker will always move

to the non-visited site. The tuning of β goes from a lack of self-avoidance to a perfect

self-avoidance (but avoiding dead end situations).

1.3.2 The binary Self-avoiding RandomWalk

One particular model for partial self-avoidance is provided by the framework of Self-

Attracting Walks [123–125], of which the binary self-avoiding random walk (bSAW)

represents a particular case.

As the ’binary’ term indicates, the energy associated to a given site i can just take two

values. The value for all sites is Ei � 0 when starting the trajectory. When the walker visits

a site i during its trajectory, the value for this site i is switched to Ei � 1. Then, the visited

nodes energy is equal to 1, and the energy of the non visited ones is equal to 0 (for the

Self-Attracting Walks, one just replaces the visited value 1 by −1). The energetic landscape

depends on just the first hitting to a given site i, meaning that posterior revisits does not

modify energy Ei (see figure 1.8).

The probability to jump to any given site is defined by equation 1.36. In consequence, the

walker will jump towards sites with an associated energy Ei � 0 more probably than to

sites with an associated energy Ei � 1. The parameter β modulates how the energies Ei are

translated to the probabilities pi . When β � 0, the bSAW corresponds to the common RW,

where the probability to jump to a given site is pi �
1

n , where n is the number of possible

sites to jump.

In the following paragraphs, we explore the properties of the bSAW as a function of the

parameter β.

To illustrate how the intensity of the self-avoidance impacts the walker’s trajectory, we

provide in figure 1.9 two paths corresponding to different β values. When β � 0, the
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Figure 1.8: Schematic trajectory and energetic landscape associated for a given walker path for the the bSAW model. he
energetic landscape depends on just the first hitting to a given site i, meaning that posterior revisits does not modify
energy Ei .

walker’s trajectory does not have any tendency to avoid overlaps. When the value of β
becomes larger, the trajectory becomes broader, as overlaps become energetically less

favorable. The isotropy preserves that 〈x(t)〉 � 0.

The analysis comes from the study of the MSD and how the binary partial self-avoidance

may impact the target dynamics. We illustrate in figure 1.9 the MSD in one and two

dimensional lattices for different β values. For the one-dimensional case, one can observe

the presence of two regimes for the MSD. Initially, the walker exhibits a ballistic behavior,

but it asymptotically tends to a diffusive one (MSD ∼ t
1

2 ). So the first part of the dynamics

replicates the SAW’s behavior (ballistic motion), while the asymptotic limit corresponds to

a diffusive behavior due to the eventual periods in which the walker gets trapped within

regions already visited whose size grows progressively with time. The intensity of the

self-avoidance β modifies the size of that initial ballistic region. Note that this parameter

can also be understood as the probability to misinterpret the energetic landscape. When β
becomes larger (more intensity, less probability to take the "bad" choice), the size of the

ballistic region gets increased. That switching between two different motion regimes makes

it difficult to develop an analytic treatment to obtain the diffusive coefficient D.

For two dimensional lattices, the initial ballistic region seems to be almost suppressed

as the walker has in general multiple paths available to avoid the overlap. So the bSAW

seems to exhibit diffusive motion at all times for two or higher dimensions. Also the case

where all the sites have been visited leads to a diffusive behavior (homogeneous energy

landscape).

Next, we focus on the target dynamics by studying how the intensity β impacts the

properties of the general MFPT and the coverage time Tc . The results derived from the
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Figure 1.9: Mean square displacement (MSD) as a function of the simulation time when the walker exhibits a binary
self-avoidance. Left panel corresponds to a one dimensional lattice (d � 1, N � 4096) and the right panel, to a two
dimensional lattice (d � 2, N � 256 × 256). The insets correspond to a given trajectories of the walker.

Figure 1.10: Left: Coverage time Tc of the walker when the parameter β is modified and when the walker exhibits a
binary self-avoidance. Right: General mean first passage time MFPT when the parameter β is modified. The space is
divided into a 1024 and 64 × 64 lattices (for 1D and 2D spaces, correspondingly) with periodic boundary conditions.

walker trajectories are reported in figure 1.10, being very similar for one and two dimensions.

When β is increased, the broader trajectories done by the walker become more efficient

when covering the entire space or when reaching a given position. From β ∼ 10 to higher
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values, the probability to jump to a visited site when there is another possibility is so small

that the results do not get modified. As stated in Section 1.1, the statistics of the coverage is

governed by the finding of the last sites. In the present model, this is still the case. However,

a universal relation between the general MFPT and the coverage time Tc cannot be found

as in [95] due to the strong memory effects present in the trajectory.

Figure 1.11: Scaling for the coverage time Tc with the system size N when the walker exhibits a binary self-avoidance.
Left panel corresponds to a one dimensional lattice (d � 1) and the right panel, to a two dimensional lattice (d � 2).

We analyze how the coverage time Tc scales with the size of the finite lattice in figure 1.11. For

a one-dimensional lattice, one can observe that scaling is Tc ∼ N2
. For a two-dimensional

lattice (and higher dimensional lattices), it scales as Tc ∼ N log
2(N). Those results are

equivalents to the reported scaling for a common RandomWalk in Section 1.1.

1.3.3 The true self-avoiding random walk

The bSAWmechanism is built up from an energy that can just take two different values.

However, one can wonder how cumulative effects during the trajectory may affect the

walker’s behavior. In this direction, a proposal that has attracted large interest is the true
self-avoiding randomwalk (tSAW) [117, 126–128]. Here, the energy Ei is considered equal

to the number of previous visits of the walker to site i. Then the energy of that site gets

increased each time the walker visits this site. Using the idea that such energy landscape

was a result of the chemical signal left by the walker as it advances, each revisit corresponds

to a new signal deposition (see figure 1.12).

The tSAW model has been applied to describe animal exploration/foraging [129, 130], but

also in search algorithms through the Internet [126, 131, 132], among other.

We proceed to analyze the tSAW properties when β becomes modified, as done for the

bSAW. Again, the isotropy preserves that 〈x(t)〉 � 0. The behavior of the MSD is presented

at figure 1.13. For the one-dimensional case, one can observe that there is again an initial

regime where the walker moves in a ballistic manner. However, the asymptotic region does

not tend to a diffusive behavior; it tends to a super-diffusive behavior. It seems that the
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Figure 1.12: Schematic trajectory and energetic landscape associated for a given walker path for the the tSAW model.
The energy Ei is considered equal to the number of previous visits of the walker to the site i.

ability to distinguish the number of visits enhances the dispersal capacity of the walker, so

it now can escape in a reasonably short time from the signal left by its own trajectory.

For two-dimensional lattices, the tSAW exhibits diffusive behavior (figure 1.13). The

navigation through higher-dimensional lattices should be asymptotically diffusive too, as

the critical dimension of the tSAW is d � 2.

Figure 1.13: Mean square displacement (MSD) respect of the simulation time when the walker exhibits a true
self-avoidance. Left panel corresponds to a one dimensional lattice (d � 1, N � 4096) and the right panel, to a two
dimensional lattice (d � 2, N � 256 × 256).

The analysis of the target dynamics reports very similar qualitative results when compared

to the bSAW (see figure 1.14). When the self-avoidance strength β becomes larger, the

general MFPT and the coverage time Tc get reduced. However, it seems again (as in the

bSAW) that over β ∼ 10, the self-avoidance is so intense that to increase its value does not

translate into significant changes in the dynamics. The tSAW seems to cover faster the
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lattice as the Tc is lower than the value found in the bSAW case for the same β and lattice

size N . The effect comes from the ability to distinguish between the number of previous

visits, which must be reckoned then as a helpful mechanism to avoid revisits that could

come after the first visit.

Figure 1.14: Left: Coverage time Tc of the walker when the parameter β is modified when the walker exhibits a true
self-avoidance. Right: General mean first passage time MFPT when the parameter β is modified. The space is divided
into a 1024 and 64 × 64 lattices (for 1D and 2D spaces, correspondingly) with periodic boundary conditions.

Figure 1.15: Scaling for the coverage time Tc with the system size N when the walker exhibits a true self-avoidance.
Left panel corresponds to a one dimensional lattice (d � 1) and the right panel, to a two dimensional lattice (d � 2).

Next, we analyze the scaling of the coverage time Tc as the system size gets increased

(figure 1.15). For a one-dimensional lattice, the coverage time scales as Tc ∼ N
3

2 . This scaling

is in between those of the RW (or bSAW) case and the SAW case. For a two dimensional

lattice, the coverage time scales as Tc ∼ N log(N), which is equivalent to that reported for

the SAW [94]. From that, one derives that a walker following the tSAW framework will

cover faster a lattice if compared to a walker following the bSAW framework. This effect is

increased as the lattice size becomes larger. For higher dimensions, as in the SAWmodel or

in the ordinary RW, the coverage time scales as Tc ∼ N log
2(N) for both models, and so

differences there become largely reduced.
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In summary, the dynamics of a walker that stores the number of visits (tSAW) instead of

an all or nothing rule (bSAW) provides results that are closer to the SAWmodel. Its own

nature favors the jumps to less visited regions, as the non-bounded Ei always permits to

detect those differences. According to those features, one would certainly expect that its

covering properties are similar to the SAW ones. In contrast, a large part the bSAW coverage

is invested to move diffusively across an homogeneous landscape of visited sites. This is

the reason why its properties are similar to the RW ones.

1.4 Impaired cognitive abilities

Cognitive processing of the contextual information is in general subject to fluctuations and

errors. For example, many animal species are expected to recall roughly the regions already

visited though they cannot retain particular details about all locations [133]. Chemical (as

well as other internal/external) signals, on its side, are subject to physical or physiological

processes that can reduce their effectiveness as a cue for driving the organism trajectory.

For instance, chemicals can diffuse or evaporate, so the memory effect they generate will

vanish progressively. As a whole, the physical or mental processes responsible for the

self-avoiding mechanism are prone to become impaired with time. Continuing with the

stochastic description we have used during the previous Sections, we incorporate into the

partial self-avoidance a new level of detail in the cognitive layer, which corresponds to a

finite retaining memory (or signal evaporation, depending of the example).

In this Section we explore how the impairment of a self-avoiding walker modify its

movement patterns and, consequently, its efficiency during the search process.

The impairment will be described now as follows. The walker will forget (or miss-assign)

part of its previous visits to some sites, using then an energy landscape during its movement

that does not record and/or retain perfectly the trajectory information. Instead, when the

walker arrives into a given site i, it stores the information only for a random time τ.

Figure 1.16: Visual guide for
the impairment process in the
case of a bSAW model. After
the walker first visit to the site
i (corresponding to a time tA),
the cognitive map stores the
information Ei � 1 during a
span τ1, obtained from ρ(τ).
Then, the site i information is
rewritten again as Ei � 0 at
time tB � tA + τ1, the energy
assigned to non-visited sites.
A second process is also exem-
plified with a given different
τ2, visiting the site i at tC and
forgetting the information at
tD � tC + τ2.
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In order to capture the properties of the random memory time, a characteristic memory/e-

vaporation timescale τm is introduced, with ρ(τ) representing the probability distribution

of that variable. For the sake of simplicity, here we use the exponential distribution

ρ(τ) � τ−1

m eτ/τm
. When τm � 0, the walker is not able to store any information, as it forgets

its previous trajectory instantaneously. Then, the walker understands each step as if it

was in a totally unexplored region. Its movement becomes then equivalent to a ordinary

RandomWalk. When τm →∞, the walker stores the information of the entire trajectory

without any limitation. In that case, we recover the partial self-avoidance models presented

in Section 1.3. For the sake of completeness, we have explored (not shown) that that a

fixed τ � τm would provide equivalent results to those obtained by choosing τ from the

exponential distribution.

The cognitive map is defined as the information that is being stored by the walker. To

facilitate the understanding of the cognitive map compared to the real information, we

provide two visual graphs for the bSAW case. The figure 1.16 corresponds to the evolution

of the energy values Ei associated to a given site i along the search process (so the evolution

of the information of a given site i). In figure 1.17 one can compare the previous trajectory

with the current cognitive map. As the memory time τm gets increased, the cognitive map

gets closer and closer to the total trajectory information.

Figure 1.17: a) The trajectory of a walker during a span of 17 time steps. The blue line is drawn to mark the sites that
have been visited during the process. b) Energy landscapes (or cognitive maps) that store the information about the
previous trajectories. Two memory times τm are shown.
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1.4.1 Impairment in the bSAW

As stated previously, self-avoiding dynamics leads the walker to promote movement in the

current direction as a way to ’escape’ from the regions that are left behind. However, further

revisits to those regions are now possible, as the information of the cognitive map would

probably be forgotten. That procedure reminds that of the Persistent Random Walk model

(PRW) (see Section 1.1.3). One can expect a similar behavior for the impaired bSAW, and then

one expects similar results in their properties. In agreement with that intuition, an initial

Figure 1.18: Mean square displacement of the walker when the parameters β and τ are modified. The space is divided
into a 1024 and 64 × 64 lattices (for 1D and 2D spaces, correspondingly) with periodic boundary conditions. The
self-avoidance is introduced according to the binary model.

ballistic region is observed when the MSD is plotted (figure 1.18), followed by an asymptotic

diffusive region. Furthermore, the mean square displacement exhibits differences when τm

is tuned. For larger memory times τm , the asymptotic diffusion coefficient D seems to be

increased. As the cognitive map stores a larger part of the trajectory, the movement strategy

gets closer to total self-avoidance, where the path avoids the overlap.

We focus now on how the retaining time τm modifies the target dynamics. The self-

avoidance intensity is encoded in the parameter β (eq. 1.36), so the parameter space to be

explored is given by all the possible combinations of τm and β. In the figure 1.19 we present

a detailed exploration of the results as a function of β for a few memory times τm , and one

can observe how the Tc and the general MFPT qualitatively present the same behavior

when β is tuned independently of τm (the stronger the self-avoidance mechanism is, the

more efficient the search process becomes).

To fully characterize the parameters space, however, we provide in figure 1.20 a more

detailed analysis of the effect of τm over Tc . Counterintuitively, this detailed study shows

us that the relation between the retaining cognitive capacity and the search performance is

far from trivial. Using a broad range of τm values shows us the existence of an optimal
τm that minimizes the coverage time Tc . In addition, this feature seems to be robust as it

appears for different self-avoidance intensities.
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Figure 1.19: Left: Coverage time Tc of the walker when the parameter β is modified. Different memory times τm are
provided. Right: General mean first passage time MFPT when the parameter β is modified. The space is divided into a
1024 and 64×64 lattices (for 1D and 2D spaces, correspondingly) with periodic boundary conditions. The self-avoidance
is introduced according to the bSAW.

We explore in the following why to store just part of the path in the cognitive map could

even be helpful and not detrimental for a more efficient coverage. Consider the case in

which the cognitive map stores the entire trajectory (τm →∞). In this scenario, one can

divide the coverage process approximately into two phases. When the process starts, the

walker performs a standard self-avoiding walk, where it avoids the immediately previous

sites. That procedure is maintained until the walker lacks locally new sites to be visited.

At this stage, the cognitive map is practically homogeneous, as the energy associated

to the majority of sites is Ei � 1. When the walker faces situations like these where the

energies of the available sites are identical, the next movement is chosen at random with

the same probability between all the options. According to this, the movement generated

by this cognitive map (despite it encodes the self-avoidance) produces a classical (diffusive)

random walk dynamics. To find the last unvisited sites reduces then to a diffusive search

through that homogeneous cognitive landscape. As stated in Section 1.1, the statistics of

the coverage is largely governed by the process of finding of the last sites available in the

lattice. In consequence, the final diffusive search for the remaining sites in the lattice will

increase considerably the cover time Tc .

To understand why a finite τm can reduce the search time if compared to the τm → ∞
case, let’s focus on the case where the information of the cognitive map could be partially

forgotten. When the walkers forget part of their information, the cognitive map stores

part of the visited nodes with an assigned energy Ei � 0 (miss-assignment). As a result,

even when there are just a few sites to visit to complete the coverage process, the walker

is always moving through a combination of seemingly explored and unexplored regions,

and not through a homogeneous landscape. The possibility to move towards seemingly
unvisited regions generates less recurrent trajectories (it is, a higher diffusion coefficient

D), so enhancing the area explored and making search more efficient. We provide a visual

guide of how those seemingly unvisited regions, that we could call mirages, can optimize
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Figure 1.20: Left: Coverage time Tc of the walker when the memory time τm is modified. Different values of the
parameter β are provided. Right: General mean first passage time MFPT when the memory time τm is modified. The
space is divided into a 1024 and 64 × 64 lattices (for 1D and 2D spaces, correspondingly) with periodic boundary
conditions. The self-avoidance is introduced according to the binary model.

the coverage in figure 1.21.

In short, this is the reason why to forget part of the previous path may become helpful.

For the sake of completeness, we provide at figure 1.22 how the cognitive map changes

with τm when the search process is in the final step. In a given search process, the white

regions correspond to seemingly unexplored regions (or mirages), while the real trajectory

has visited all sites but one.

1.4.2 Impairment in the tSAW

In the tSAW scenario, the energy site Ei corresponds to the previous number of visits to

the site. Then, to obtain a homogeneous energetic landscape is almost impossible. Still, one

can wonder if it is still possible in this situation to observe the presence of an optimal finite

τm , as occurs for the bSAW.
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Figure 1.21: Comparison between the cognitive maps generated by τm →∞ and a finite τm when lacks just two sites
to complete the coverage for the bSAWmodel. One can observe how the walker (red circle) will tend stochastically to move
faster towards the unvisited region when the memory is finite, while for the other case the navigation will be diffusive
with a lower D. That feature, called the mirage effect, helps the walker to reach faster the last targets when the retaining
memory is finite.

Figure 1.22: The cognitive map of the walker when the coverage process is finished for the case of i) τm � 10
3, ii)

τm � 10
4 and iii) τm � 10

5. The space is divided into a 64 × 64 lattice. The white color corresponds to the sites
considered as unvisited in the cognitive map, while the blue sites, to the considered as visited. The self-avoidance is
introduced according to the binary model.

In figure 1.23 one can see how the effect of β on Tc is very similar to what we have reported

for the bSAW. To increase the self-avoidance intensity makes the coverage time decrease

until the behavior saturates.

However, when exploring the τm space, it is found that themirage effect no longer appears

in this scenario (figure 1.24). One sees instead that the minimum Tc corresponds here

to an infinite retaining capacity τm → ∞. As the cognitive map here is intrinsically

heterogeneous, to forget part of the information does not destroy any homogeneity, and it is
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Figure 1.23: Left: Coverage time Tc of the walker when the parameter β is modified. Different memory times τm are
provided. Right: General mean first passage time MFPT when the parameter β is modified. The space is divided into a
1024 and 64×64 lattices (for 1D and 2D spaces, correspondingly) with periodic boundary conditions. The self-avoidance
is introduced according to the tSAW model.

always detrimental. The persistence is maintained even for infinite retaining times τm .

Figure 1.24: Left: Coverage time Tc of the walker when the memory time τm is modified. Different values of the
parameter β are provided. Right: General mean first passage time MFPT when the memory time τm is modified. The
space is divided into a 1024 and 64 × 64 lattices (for 1D and 2D spaces, correspondingly) with periodic boundary
conditions. The self-avoidance is introduced according to the tSAW model.

1.5 Prospection or the ability to sample the future

While random-walk mechanisms explored up to now could be possibly implemented by

primitive organisms able to leave a chemical signal across their trajectories, complex species,

such as mammals, are recognized for their ability to process the contextual information at a
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deep level and respond according to that processing. For deep level, we mean the capacity

to evaluate the different options that are available and planning a response according to

this, so breaking the classical stimulus-response paradigm which is prevalent in behavioral

biology. For this, some organisms can evaluate the potential consequences of their choices

into the future, computing mentally how the scenario will dynamically evolve if one option

is chosen. This mechanism where the complex organisms evaluate the advantages and

disadvantages of the different options bymixing sensory information and a projection of the

situation into the future is called prospection. It involves gathering the relevant information

from the scenario and projecting it into the future to evaluate its consequences.

Living organisms are constantly facing moments where the optimal answer to the given

situation involves prospection. Animal foraging represents a significant example: an ideal

performance should take into account (not just locally, but at a more global level) whether

the organism has explored the region before or if one direction is better than other according

to a given context. The idea of prospection has been extensively studied in cognition sciences

[134–136]. In pedestrian dynamics, for instance, it has been observed that we avoid people

by computing the time-to-collision and consequently choosing a new direction of motion

that avoids such collision [137, 138]. More generally, it has been revealed that our ability

to gather fundamental information impacts the efficiency of our decisions [139, 140].

Prospection does not only appear in human individuals, but also in animals [141, 142]. It

has been reported that rodents can predict immediate future behavior during navigation

[143] or that chimpanzees and orangutans override immediate drives in favor of future

needs [144, 145].

1.5.1 Causal entropic forces

To include prospection in the physical framework, one has to include suchmental projections

into the future within the definition of the energetic landscape f (E). One recent input in

that direction is the framework provided by Wissner-Gross and Freer: the Causal Entropic
Forces (CEF) [146]. In there, the authors develop a physical scheme to promote intelligent

or adapted behavior emerging from a forecast of the future scenarios. Its fundamentals

come from the notion of entropic forces. Entropic forces are commonly defined as those

forces that drive the system towards its maximal entropy states [147, 148].

The classical physical framework constructs the forces to emerge from energetic gradients,

as the systems tends naturally to minimal energy states. However, using common ideas

from statistical mechanics we know that the Hemholtz free energy E � U −TS involves two

contributions: the internal energy U and the entropic term TS related to the microscopic

disorder (where T corresponds to the temperature). Then, the entropic force is effectively

defined as the one deriving from the gradient of the entropic term F � T∇S, making the

system evolve towards maximal entropic configurations.

The novelty of the CEF framework comes from the statement that conscious or intelligent

behavior derives from the evaluation of the entropy built over the possible future paths
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available. The prospection is so included through the sampling of those future possible

paths.

One can wonder if CEF breaks causality. As the force F emerges from a stochastic sampling

of possible paths, the evaluated entropy is purely local in time, keeping causality unbroken.

In general, the common definition for an entropic force F associated with a generic

Figure 1.25: Schematic depiction of a causal entropic force. (a) A causal macrostate X with horizon time τ, consisting
of path microstates x(t) (future possible paths) that share a common initial system state x(0),in an open thermodynamic
system with initial environment state x∗(0). (b) Path microstates x belonging to a causal macrostate X,in which
(for illustrative purposes) there is an environmentallyimposed excluded path-space volume that breaks translational
symmetry, resulting in a causal entropic force F directed awayfrom the excluded volume. The image is taken from [146].

macrostate partition, {X}, is given by

F(X0) � T∇XS(X)|X0
(1.37)

where T is a proportionality constant, S(X) is the entropy associated with the macrostate

X, X0 is the current macrostate and ∇X is the gradient in the X space.

Following the ideas provided in [149–151], Wissner-Gross and Freer generalize the idea

of entropy force to a computation between the present and a future time horizon. More

formally, they treat the phase-space paths taken by the system x(t) over the time interval

0 ≤ t ≤ τ asmicrostates and partition them intomacrostates {X}. Two differentmicrostates,

or paths, x1(t) and x2(t) should start as the same state x1(0) � x2(0), thereby identifying

every macrostate X with a unique present system state x(0), as schematically illustrated

in figure 1.25. The CEF comes then from the sampling of possible paths starting from the

current state x(0) during the time horizon τ. The corresponding causal entropic force F
can then be expressed as

F(X0, τ) � Tp∇XSp(X, τ)|X0
(1.38)

where Tp is a proportionality constant that parametrizes the intensity of the system bias

toward macrostates that maximize causal entropy. More concretely, Tp can be interpreted as
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parametrizing the rate at which paths in a hypothetical dynamical ensemble of all possible

fixed-duration paths transition into each other, in analogy to the transitions between

configurational microstates of a classical physical system.

In their article, Wissner-Gross and Freer designed different "cognitive based" mechanical

systems to validate the adaptive behavior of the CEF framework. They successfully proved

that CEF can be used as a control mechanism to solve basical mechanical problems, such

forcing a particle to a center of a box or solving a puzzle with isolated tools.

1.5.2 Prospection in the partial self-avoiding models

The CEF framework provides a beautiful mathematical framework to explore the idea

of prospection as the ability to evaluate future options. When the self-avoidance and

the impairment where studied in the partial SAW models (Sections 1.3 and 1.4), the

walker’s movement patterns were exclusively based on local sensory information and the

external/cognitive limitations (retaining memory). However, if one intends to include the

prospection as a general trait of the intelligent behavior of some organisms, it is necessary

to consider the ability to introduce the non-local information to compute the different

probabilities pi driving the movement rules.

Figure 1.26: Prospected/sam-
pled paths with different dp .
The current position corre-
sponds to the red circle. The
color code corresponds to the
paths virtually sampled when
doing the prospection. The
energy E associated to those
paths corresponds to the av-
erage of Ei for all the sites i
visited during the path.

To incorporate this cognitive ability, we propose a mechanism inspired on the mathematical

formulation of CEF. The walker will have the ability to sample (or forecast) future paths

from the current position and incorporate the information of those paths to define the

probabilities pi (eq. 1.36). From a computational perspective, the sampling mechanism

is described as follows. The walker samples all the possible paths of length dp starting

from the current position. The case of dp � 1 will provide analogous results to Sections 1.3

and 1.4, in which the walker just uses the information of first-neighbour sites to build its
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cognitive map. In figure 1.26, one can see from a visual scheme the meaning of the future

dp paths. Instead of using the information from first neighbors to assign the energy Ei to

the neighbour site i, the walker now uses the information corresponding to those possible

paths starting from that site i. The energy Ei corresponds to the average over all those

possible paths, where the energy associated to each path is at the same time the average

energy over the sites that it would visit.

One can observe that we have adapted the entropic formulation of the CEF to an energetic

formulation. This has been done to keep the energetic criterion used in the previous

Sections, based on the f (E) framework.

Figure 1.27: Mean square displacement (MSD) respect of the simulation time when the cognitive map corresponds to
the bSAW model. Left panel corresponds to a one dimensional lattice (d � 1, N � 4096) and the right panel, to a two
dimensional lattice (d � 2, N � 256 × 256). Red color corresponds to dp � 1 and blue color, to dp � 5.

Figure 1.28: Mean square displacement (MSD) respect of the simulation time when the cognitive map corresponds to
the tSAW model. Left panel corresponds to a one dimensional lattice (d � 1, N � 4096) and the right panel, to a two
dimensional lattice (d � 2, N � 256 × 256). Red color corresponds to dp � 1 and blue color, to dp � 5.

The introduction of a prospection length dp has an impact over the evolution of the MSD

(see figure 1.27 for the bSAW and figure 1.28 for the tSAW). One can observe in the left panel

of both figures how the prospection length does not modify qualitatively the behavior of
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one-dimensional walkers. However, the right panels show that the two dimensional case

is different. The asymptotic walker’s behavior is diffusive, and the prospection length dp

modifies significantly the diffusion coefficient D. The ability to prospect could promote

persistent motion as the walker may detect the unexplored regions from larger distances.

Apart from that, when self-avoidance is strong, the walker exhibits again an initial ballistic

behavior, as found for the partial self-avoidance without prospection.

1.5.2.1 Target dynamics

We focus now on how the prospection ability modifies the efficient search strategy as a

function of the prospection length dp .

First, we study how the coverage time Tc depends on the prospection ability of the walker.

One can observe in figure 1.29 that the one-dimensional and two-dimensional dynamics

are here completely different. For the one-dimensional case, the prospection does not

apparently affect the walker’s performance (in agreement with the MSD results of figures

1.27 and 1.28). However, the results for 2d show a crossover (marked in the figure with

a vertical line) in the efficiency of the search process between prospecting for further

information (dp � 5) or just for nearby information (dp � 1) in two dimensional spaces.

Both mechanisms (the bSAW and the tSAW) provide similar results. In the computation

of the probabilities associated to each option, the effective temperature β weights the

information of the cognitive map. When the β value is low, the energetic differences

between the sites in the cognitive map result in similar probabilities; actually, in the extreme

case β � 0 all probabilities pi are the same. As the prospection length is increased, many

more paths are available for sampling, and by the Central Limit Theorem the corresponding

energies of those paths tend to be centered around a mean value while avoiding extreme

values, so the distribution of path energies becomes more peaked. As a result, the mean

values associated to each option become more similar as dp grows (the possible paths

will become more similar even though the initial direction was different). In consequence,

a low value of β will be ineffective in order to discriminate between better or worse

choices, so increasing the probability of the walker to choose a suboptimal site. When

β takes a higher value, instead, small energy differences still transform into significant

probability differences. In that case the walker, roughly speaking, processes more accurately

the gathered information. Thus, a longer prospection length dp can provide significant

information, and so it improves the coverage efficiency.

This suggests the importance of exploring in detail the parameter space given by β, τm and

dp . In figure 1.30, one can observe very clearly how the most efficient prospection strategy

depends on β. For β � 1, the prospection length that optimizes the search process is dp � 1.

As dp becomes larger, the coverage process becomes less and less efficient. The feature is

present both for the bSAW and the tSAW cognitive maps.

The opposite occurs when β � 100. In that case, the larger the prospection length dp is, the

more effective the coverage process. There is monotonous relation between dp and Tc . An

optimal τm is still found for the bSAW case (the ’mirage’ effect), though the existence of
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Figure 1.29: Coverage time Tc according to the effective temperature β. The left panel corresponds to a one dimensional
N � 1024 lattice while the right panel, to a N � 64 × 64 two dimensional lattice. Red color corresponds to dp � 1 and
blue color, to dp � 5. The inset is included to provide a visual guidance of the relative efficiency between dp � 1 and
dp � 5.The y-axis of the inset corresponds to the magnitude α � (Tdp�5

c − T
dp�1

c )/Tdp�1

c . The x-axis corresponds to β.
We define the region I as the region where α > 0, when the non-prospecting strategy (dp � 1) is more efficient. We
define the region II as the region where α < 0, when the prospecting strategy (dp � 5) is more efficient.

such optimum seems to be less noticeable as long as dp increases. The reason for this is that

the ability to detect unvisited sites from larger distances reduces (but does not completely

eliminate) the effect of the final diffusive phase emerging when only a few unvisited sites

remain.

Finally, we study how the coverage time Tc scales with the system size of the space to

explore. One can observe in figures 1.31 and 1.32 that the scaling reported in Section 1.3 is

maintained despite modifying the prospection length dp .

1.5.2.2 Variable prospection length

Real prospection strategies might vary between individuals. For example, different organ-

isms of the same specie may not have equal cognivite capacities [152]. Even those capacities

may evolve during the life of the individual [153, 154]. Even so, one can also consider that

the cognitive effort putted by an individual may be variable during its performance in a

given task. This, together with the intrinsic difficulty of gathering information from real

environments leads to consider that a random and variable length dp can be more realistic
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Figure 1.30: Coverage time Tc as a function of the evaporation time τ for β � 1 and 100. Different prospections lengths
dp are provided. Left panel corresponds to the binary cognitive map and the right panel, to the tSAW cognitive map. The
inset shows the Tc according to dp for a τ � 10N . Purple squares correspond to dp � 1, green circles to dp � 2, sky blue
triangles to dp � 3, yellow inverted triangles to dp � 4, red diamonds to dp � 5 and dark blue pentagons to dp � 6.

Figure 1.31: Scaling for the coverage time Tc with the system size N when the cognitive map corresponds to the bSAW.
Left panel corresponds to a one dimensional lattice (d � 1) and the right panel, to a two dimensional lattice (d � 2).
Red color corresponds to dp � 1 and blue color, to dp � 5.

than using a fixed value as done above. So, instead of fixing the prospection length, nowwe
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Figure 1.32: Scaling for the coverage time Tc with the system size N when the cognitive map corresponds to the tSAW
model. Left panel corresponds to a one dimensional lattice (d � 1) and the right panel, to a two dimensional lattice
(d � 2). Red color corresponds to dp � 1 and blue color, to dp � 5.

assume that dp is taken from a certain distribution ρ(dp) ∼ d−αp , with α > 0 and dp ≤ dmax
p ,

so an upper boundary on dp is used to take into account the finite prospection capacity of

the walker. We have chosen arbitrarily dmax
p � 6 for our study. That mechanism allows the

walker to incorporate non-local information but it still keeps the range of prospection very

distant to the size of the system. It combines, then, the six different lengths dp appearing in

figure 1.30 during a given path. When α � 0, all the prospection lengths are equiprobable.

When α � 0, the probability of gathering information from the neighboring sites is much

larger than that from distant ones.

We reproduce the analysis done above where now the parameters space is defined by β, τ
and α (instead of dp). We find that when α is modified (Fig. 1.33), the walker dynamics

looks qualitatively similar to the results obtained by modifying dp (Fig. 1.30). For low β,
the coverage time decreases as α grows (long prospecting paths are less probable), while

for high β values, we find again that the most efficient mechanism includes as many long

prospections as possible (so α→ 0).

From these results, we observe that the coverage process remains almost equivalent when

the walker prospects constantly with a given (large) dp or when the walker prospects

mainly for shorter paths but there is a small (but significant, meaning that at least the

1% of prospected paths corresponds to long ones) proportion of dp paths. We stress that

this feature is present both for the bSAW and for the tSAWmodels. We can quantify the

effect for the particular case α � 2. The probability of a prospected path of dp � 1 is 36

times larger if compared to the probability of a dp � 6 path (P(dp � 1)/P(dp � 6) � 36).

Despite the small probability of dp � 6 paths, the coverage properties are more similar to

the output of a fixed dp � 6 prospection length than to a fixed dp � 1 prospection length

for one for any β and τ.
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Figure 1.33: Coverage time Tc as a function of the evaporation time τ for β � 1 (region I) and 100 (region II). Different
prospections lengths distributions α are provided. Left panel corresponds to the bSAW and the right panel, to the tSAW
cognitive map. The inset shows the Tc according to α for a τ � 10N . Purple squares correspond to α � 5, green
circles to α � 4, sky blue triangles to α � 3, yellow inverted triangles to α � 2, red diamonds to α � 1 and dark blue
pentagons to α � 0.

Concluding remarks

I The self-avoidance mechanism, generated through a cognitive map or signal depo-

sition, increases the search efficiency of the randomwalk process. If the information

processing associated to the self-avoidance is partial or imperfect, however, that

efficiency can be drastically reduced. Interestingly, the combination of several of

these cognitive drawbacks (such as partial self-avoidance and impairment) can

lead to non-trivial optima in the search efficiency.

I Prospection stands for an efficient search strategy when the walker process accu-

rately the obtained information. Otherwise, to prospect for non-local information

may even increase the search time.
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Through adaptation, intelligent organisms develop more effi-

cient responses to the task they face. As stated before in this

thesis, the search process could be understood as a sequence

of situations that require the individual to provide an answer

to each. For example, deciding which one would be the next

direction of movement or whether to revisit a previously ex-

plored region. The random walk framework studied during

the previous Sections provides a perfect example to translate

the movement pattern of the search process into a sequence

of decisions. Within that context, each step of the walk could

be understood as a decision, where the walker has to choose

between different sites at which it can jump next. The cogni-

tive mechanisms, through the evaluation of the information,

are responsible for decoding which ones are the best options

in each case. These mechanisms could range from the simple

signal detection, leading to self-avoidance (as seen in Section

1.3), to a complex forecasting of the future consequences (as

suggested in Section 1.5). The f (E) framework, as explored

before, provides an effective description of that process.

From those ideas, a clear connection exists between efficient
search processes and optimal decision making. One could

assume from this that to incorporate more andmore informa-

tion would lead to better decisions, but this is not necessarily

the case. The living organisms need to provide fast and effec-

tive responses for their motor and mental tasks, so the time

devoted to the search process and the information gathering

shouldn’t be too large. In addition, there might be some

situations where more prospection does not provide neces-

sarily more useful information. In general, prospection will

be really useful as long as the quality of distant or non-local

information is significantly higher than the local one.

During theChapter 1,wehaven’t focusedmuch on the specific

dynamics of the cognitive mechanisms the individual uses

to process the information. In our effective description, we

have directly constructed the energetic landscape f (E) (and
then, probabilities) according to predetermined rules.
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One can argue that these challenges lie within the field of psychology. Nevertheless, in

the recent years there has been a growing interdisciplinary interest the quantitative study

of decision-making. Neural correlates in decision-making tasks constitute at present an

important source of information in cognitive and behavioral neuroscience [155–158]. The

strategies to improve the efficiency of our decisions constitute an important subject in game

theory and econophysics [159, 160] . Also, ideas from statistical physics and/or complex

systems also have made its way; while most contributions to date focus on decision-making

at the level of groups or collectives (see [161–165] for some reviews), tentative works

suggesting physical principles that could be involved in individual decisions do also exist

[166–170].

In this Chapter we will propose a possible mechanism to describe decisions carried out

by humans within such contexts, and we will provide support for it based through an

experimental sequential decision-making task carried out with human subjects on the

computer screen.

2.1 The Drift-Diffusion model

Large efforts have been put in understanding the dynamics and the characteristics of

perceptual decisions, it is, those where sensory information provides direct evidence for

choosing between the options available, as in the famous random dot motion task [171, 172].

During this task, a subject is asked to look into a set of dots in a computer screen. Those

dots are divided into two different groups, each moving in opposite directions (either right

or left). The subject then has to decide in a minimum time whether the majority of the

dots are moving to the left or to the right. The information is encoded in the screen, and

the individual integrates it visually. A correspondence between such sensory information
and the neuronal responses responsible for the evidence accumulation in the brain are

assumed to be identifiable, providing a physical measure or correlate of the neural processes

involved [173], captured by electroencephalography (EEG) techniques. A variation of this

experiment is the color dot task. There, the subject looks into a set of dots, that can be

either red or blue. Then, the subject is asked to identify the color that appears more often.

Again, one can establish a correspondence between such sensory information and evidence

accumulation.

There have been lots of efforts focused on developing a theoretical framework for those

situations. Most of them lie within the so-called accumulator framework, in which cognitive
evidence (described through some kind of stochastic process) is gained throughout the

time until it reaches a given threshold, which then triggers the decision. The paradigmatic

example of such approaches is the Drift-Diffusion model (DDM) [174]. The DDM was

proposed as a model of the cognitive processes involved in simple two-choice decisions.

Mathematically, the process of deciding between an option A and an option B is defined as

follows (see figure 2.1). The individual accumulates information about each option (those

accumulators represent the options payoffs and are labeled as EA and EB). A random

variable X � EA − EB denotes the relative evidence or the evidence accumulation between
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the two possible options. X is assumed to be driven by the combination of a diffusion process

(which introduces cognitive fluctuations or noise during the evidence accumulation), and

a drift process that accounts effectively for the evidence accumulation. That accumulation

drives X towards the correct answer gained through sensory information. The dynamic

evolution of X is typically assumed to be described through the equation X′ � D + η,
where D corresponds to the drift towards the correct option and η corresponds to noise

and/or fluctuations. Two thresholds, XA and XB are then defined. When X reaches one of

these thresholds, it represents that the amount of evidence is enough to take the decision

(A when XA is reached first and B when XB is reached first). In figure 2.1, a bi-optional

decision corresponding to the color dot experiment mentioned above is characterized by

the DDM. The gray line corresponds to X while the horizontal blue and red lines indicate

the thresholds. If X reaches first the upper (blue) threshold, the subject decides that the

number of blue dots is larger, and the opposite occurs if X reaches first the lower (red)

threshold.

Figure 2.1: Schematic representation of the DDM dynamics when deciding between two options in the color dots task.
The gray line corresponds to X, while the horizontal blue and red lines corresponds to the thresholds of both options. In
a), one option has to be taken between the red or blue dots being a majority. There is a clear majority of blue dots, so the
drift D drives the evidence accumulator towards the superior (blue) threshold. In b), the drift D is close to zero due to
the lack of a clear difference between red and blue numbers of dots. The noise η is a white noise where 〈η〉 � 0 and
η(t)η(t0) � δ(t − t0). The image is adapted from the Tajima et al article [175].

The rate of accumulation of information, or drift rate D, is usually assumed to be related

to the quality of the information extracted from the sensory stimulus. One can observe

this idea when comparing the a) and b) panels of figure 2.1. For b) it is difficult to reach a

decision as the number of points of each color are approximately the same (actually it is the

same in the figure) so there is no a clear drift D in the evidence accumulation towards one

decision or the other. Consequently, the dynamical process to reach one of the thresholds

may take a longer time than for a) case.
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This simple model has been widely used in psychology, neuroeconomics, and neuroscience

to explain the observed patterns of choice and response times in a range of binary choice

decision problems [176]. However, there are many cases where it requires modifications

or extensions to be useful. Non-constant threhsolds have been introduced to recover

realistic response times [177, 178]. The dynamic behavior could be introduced over different

realizations of a given decision or even evolve temporarily across the evidence accumulation

[179, 180]. Other studies have analyzed how dynamic changes of the drift D during the

process or according to the current state of X may explain some experimental features

[181–183]. Finally, other works have studied the role of the initial estimator of X [184] or

have tried to extend the DDM to multi-optional choices [185].

2.1.1 Sequential Probability Ratio Test

Another tool that has been extensively used in decision-making theory is the Sequential

Probability Ratio Test (SPRT), first introduced by AbrahamWald in 1946 [186]. The question

it addresses is when the information processed by the individual is supposed to be good

enough to make the decision. From a mathematical perspective, a quantitative criterion has

to be established to identify when the subject has enough information in order to make the

decision with some level of accuracy. Given two different options (A and B, each with its

corresponding reliability), we define the probabilities (as they are estimated by the subject

in terms of the information/evidence acquired) to take one of the options (A or B) as pA

and pB (which are assumed to be mutually exclusive options, so pA + pB � 1). The SPRT is

given in terms of the log-likelihood function

W � ln

(
pA

pB

)
(2.1)

and establishes that the decision should be taken as soon as the cumulative of W(t)
computed through evidence accumulation,

∑
i W �

∑
i ln(pA,i) −

∑
i ln(pB,i), exceeds (or

falls below) a given threshold (Wth). Here, pA,i and pB,i are defined as the probabilities for

each option (either A or B) when estimated through the accumulation of sensory evidence

(assuming for convenience that such process can be divided into discrete samplings

occuring sequentially, so the sum in the formula is carried out over all the samplings

i carried out up to a given time). Consequently, the SPRT criterion above establishes a

criterion to define the sufficient information to decide, and actually the DDM can be seen

as a particular continuum implementation of this [187, 188].

The SPRT, in fact, also admits an interpretation in terms of information theory. If we

redefine the probabilities of the options A and B as pA � 1 − p and pB � p then

W � ln

(
1 − p

p

)
�
∂S
∂p
, (2.2)

wherewehave introduced in the last step the Shannon’s entropy S � −p ln p−(1−p) ln(1−p)
(the extension frombinary options to ternary, ormore complex, decisions is straightforward).
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So that, the SPRT criterion can be seen as a threshold in the cumulative variation of entropy

with respect to variations in p during the process of evidence accumulation.

One can visualize in figure 2.2 (upper panel) how the SPRT criterion is used to describe

a binary choice when the evidence accumulation provides sufficient evidence to make a

decision (in analogy to the process shown for the DDM in figure 2.1). As stated above, the

evidence accumulation is described in terms of EA and EB (figure 2.2 lower panel). If one

defines canonically the probability for each option (as in equation 1.36), the SPRT criterion

is then W(t) � ln(pA/pB) � −β(EA − EB), the traditional SPRT could be interpreted as

a way to impose a threshold in the difference of the accumulators EA and EB computed

through prospection.

Figure 2.2: Scheme for the
accumulator mechanism. The
lower graph corresponds to the
evidence accumulation (EA
and EB) for perceptual deci-
sion making, with the Wald’s
ratio W (derived from EA and
EB) as quantifyingmagnitude
(upper graph). The label td
in the horizontal axis corre-
sponds to the decision time,
where the Wald’s ratio W
reaches a given threshold Wth .

2.2 The entropic mechanism

Perceptual decisions, as in the random dot tasks, are based on a fast response to a given

visual stimulus; for instance, in the random dot task responses/decisions typically span a

few tenths of a second. Alternatively, one can introduce another class of decision-making

processes in which reaching an answer is not trivial from sensory information alone because

the task involves complex consecutive decisions that may even have an influence over the

next ones. This obviously requires a higher cognitive capacity and amore reflective response

by the subject in order to process the information. This is the typical case involved in tasks

like playing board games as chess, or solving mazes or tasks presented in some intelligence

tests. Note that all these decisions involve building a bunch of future possibilities, it is,

carrying out a prospection of the possible situations that would occur after a single decision,

in a tree-like fashion. This entails with the idea of prospection, as introduced before in
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Chapter 1, that in general requires (and is actually coupled to) high memory and abstraction

capacities [189–191]. Following some existing literature (see, e.g, [192, 193] and references

there in), we will denote this kind of situations as sequential decision-making.

Stochastic mechanisms able to capture the dynamics of sequential, or more complex,

decision making are scarce [194]. To contribute to the development of a physical framework,

we adapt principles from statistical physics and information theory to show that human

decision-making in such contexts may be described by a mechanism which involves the

internal computation of informational entropy by the subject [5, 195].

During prospection, the individual carries outmental simulationswhich try to sample (at

least partially) the future possible scenarios/outcomes of the decision [196–199]. As the

number of samples grows, the amount of cognitive information processed by the subject

increases. Previous studies have reported that subjects tend to use a mental shortcut based

on selecting the first alternative they consider good enough rather than trying to evaluating

perfectly all of the possiblemental simulations [200, 201], so avoiding that decisions become

arbitrarily lengthy. Such finite sampling strategies suggest the existence of a cognitive

threshold that is used by humans to determine when the information prospected is enough

in order to discriminate adequately between the options, and so going on with the sampling

process can be probably unnecessary since it is unlikely that new significant information is

added.

The mechanism we propose to understand sequential decision-making is that it would be

the entropy itself, not its variations (as the SPRT mechanism implicitly considers through

equation 2.2), the relevant magnitude for reaching a state at which the decision can be taken

reliably. So that, we propose that onewill take its decision once S � −p ln p−(1−p) ln(1−p)
has reached a given threshold Sth . Note that entropy cannot be accumulated (contrary to

the case of evidence). Instead, our mechanism suggests that the initial state of the subject

is characterized by maximum entropy (or maximum uncertainty), and the progressive

information acquisition and prospection provides a better estimation of pA and pB, such

that when the entropy decays below a threshold Sth , this means that one can discriminate

well enough between the options available and so the decision will be taken. Accordingly,

evidence accumulation typical of the SPRT would be replaced in our proposed mechanism

by an entropy refinement process (Fig. 2.3).

To implement this mechanism we need to solve the problem of how the information

processed by the subject may be translated into the probabilities pA � p and pB � 1 − p
appearing in S.

If the information obtained during the prospection process results in a clear reward or

payoff (we denote here these estimations as EA and EB for the options A and B), then
the question reduces to find the mapping from the E’s to the probabilities. At this point,

we introduce the hypothesis that the prospection process is used by humans as a way to

estimate (through EA,B) the real mean value of the payoff (we denote it as µA,B), that can

be obtained from each choice (A and B). If that is the case, then a direct implementation

of the Maximum Entropy Principle (MEP) (see Section 1.3 for details) from information
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Figure 2.3: Scheme for the
accumulator and reliability
mechanisms. The left column
corresponds to the evidence
accumulation for perceptual
decision making (lower half),
whit the Wald’s ratio W as
quantifying magnitude (up-
per half). The right column
corresponds to the sequential
decision making mechanism
(lower half), with the Shan-
non’s entropy S being the
quantifying magnitude (up-
per half). The label td in the
horizontal axis corresponds to
the decision time.

theory states that the most neutral (or unbiased) choice of probabilities that we can assign

to each option i reads

pi �
exp(−βEi)

Z
, (2.3)

where β is a positive constant and Z a normalization factor.

One can observe that this pi definition is analogous to the ones for the random-walk models

in Chapter 1. From the energetic perspective, the entropic mechanism represents a estimator

to describe when the individuals consider the landscape f (E) provides sufficient reliability

to make the decision.

2.2.1 The SPRT and the entropic mechanisms in a toy model

As an introduction to the entropic mechanism, it can be illustrative to explore some of

its properties if compared to the classical SPRT criterion. This is a way to check whether

they lead to qualitative differences that can be later used as a way to discriminate between

models at an experimental level.

We propose the following toy model (a very simplified scenario) to compare both. As stated

before, we denote the real associated payoffs for options A and B as µA and µB. Then

we assume that, through the prospection process, successive estimates of EA and EB are

obtained by the subject in such a way that each sample made during prospection leads

to a set of estimates Ei � {E1

i , E
2

i , ...}, with i � A, B. After successive samples, the value

of Ei tends to the value of µi . Each estimate is taken from a Gaussian distribution of unit

variance centered at µA,B (see figure 2.4).
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Figure 2.4: a) Gaussian distributions corresponding to the possible payoffs that one can estimate for the A and B options.
Each sample corresponds to a given value EA,B obtained from the red (A) and blue (B) distributions. The real mean
payoffs of the distributions are represented by µA and µB , while the estimator after k samples corresponds to 〈EA〉
and 〈EB〉. b) Probability distribution for the number of of necessary samples (n) to reach the corresponding decision
threshold both for the entropic and Wald’s algorithms.

The average estimated payoff 〈Ei〉 obtained after n subsequent samples reads

〈En
i 〉 �

1

n

∑
j�1,n

E j
i . (2.4)

This estimator is used to compute the probabilities in equation 2.3. The fundamental

question to answer is which is the number of samples n that are necessary to overpass

(or fall below) a threshold, either in W (for the classical SPRT mechanism) or in S (for the

entropic mechanism), as a way to decide between options A and B.

The SPRT case exhibits a distribution of the number of samples that depends strongly on

the distance between the means ∆µ ≡ µA − µB (figure 2.4). Instead, for the criterion of

entropy refinement the distribution of necessary samples exhibits a power law behavior

P(n) ∝ n−3
, for a wide range of ∆µ and Sth . The distance ∆µ ≡ µA − µB is relevant for the

SPRT criterion but it is not for the entropic mechanism.

At this point, we have demonstrated at least one fundamental difference emerges between

using the SPRT or the entropy threshold, so we can use it as a criterion to discriminate

between these two mechanisms.

2.3 Navigation task in humans

The mental processing of sequential decision making is in general deeply complex and

hard to capture. Even with the help of brain activity monitoring, the information does

not usually admit a direct interpretation. As a example, let’s focus again on the case of

perceptual decisions and the color dot experiment. When we observe the color of one of
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these dots, the sensory information produces a signal in the brain activity corresponding

to the visual sensory. But when planning a chess movement (sequential decision making),

the assignment is far from trivial. So that, simple situations in which sensory information

can be assumed to reflect somehow such complex mental processing would be helpful.

With this purpose, we have designed a particular navigation task. The participant in this

task will have to move through a virtual maze with the goal of maximizing the number of

different regions visited in it.

Efficient navigation strategies in a maze involve a prospection process through visual

inspection of the possible paths available within the sight distance, so involving a gathering

of non-local evidence. In order to capture this dynamics, we prepare the setup in such a way

that we can estimate the paths prospected by the subjects with the help of eye-trackers.

2.3.1 Experimental setup

During the experiment, 18 clinically normal adults (11 women and 8 men) aged from 18 to

45 have participated. Anyway, the navigation task is done individually.

In the first part of the task, subjects are presented a discrete 7 × 7 regular lattice on the

computer screen, representing a discrete set of 49 nodes. This one is the structure where

the navigation process takes place (Fig 2.5, upper panel on the left). The nodes are linked

through paths connecting them only to neighbor nodes (4 paths per node, except for the

boundaries where paths are only 2 or 3). A fraction (20%) of the links between neighbour

nodes have been removed in order to introduce some disorder in the structure. We have

prevented isolated regions in the structure to be formed.

We asked the participants to visit the maximum amount of nodes of the resulting graph

within 49 steps. In each task trial, the subject starts from the center of the structure. One

step is defined as a transition between connected sites in the graph. They do this by clicking

with the mouse over the site to which they want to move next (Fig 2.5, middle panels, show

some realizations of the resulting trajectories). Heterogeneity of the graph then makes the

process nontrivial (note that for a regular lattice the optimal strategy to cover the maximum

number of nodes would be simply to perform a ladder-like trajectory). In our structure, they

would have to process the information to decide the better paths to increase the number of

visited nodes. Note that the navigation scenario described here is conceptually very similar

to the search processes we have explored numerically during Chapter 1.

To assess the subjects performance under different levels of complexity, the nodes of the

rectangular lattice are then reorganized in a circular way in two different ways. In the

first case (Circular Ordered), we keep the order of the rows of the first rectangular graph

(Fig 2.5 b)). For the third graph (Circular Disordered), we place the nodes following a

circular structure but with the maximum visual disorder (Fig 2.5 c)). We remark that

topologically the three structures are completely equivalent. However, intuitively we expect

that growing difficulty will appear to gather information and prospecting as long as the

visual distribution of nodes and paths gets disordered, resulting in a worse performance
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(it is, a lower number of different sites visited during the task). Additionally, we rotated

90º, 180º and 270º the rectangular structure (with their corresponding Circular Ordered

and Circular Disordered reorganizations) for randomizing the task (so 12 cases in total are

presented to each subject) without changing the topology of the structure. The final dataset

comprised 72 trajectories for each graph (Rectangular, Circular Ordered and Circular

Disordered).

Figure 2.5: a)Scheme of the experimental setup. The first column corresponds to the three 49 patch graphs. The paths
correspond to the allowed movement between nodes (absence of them meaning the nodes aren’t connected). The color
of the nodes is introduced to facilitate the understanding of the spatial reorganization. The second column shows one
individual trajectory within the structures (the color code corresponds to the current step of the 49 steps trajectory). The
third column shows the locations where the individual has gazed into during the trajectory (the color code corresponds to
the current step of the 49 steps trajectory). b) Scheme of how the eye-tracker works. It capture the locations of the screen
where the participant is gazing during the task. The images were obtained from [202].

During the task, one cannot infer directly the paths prospected by the subjects from their

trajectory. We have used eye fixations measured through an eye-tracker (figure 2.5, right

panels) to analyze (i) the number of nodes at which the subject gazes between consecutive

steps/decisions, and (ii) the time it remains gazing at particular sites, as a way to infer

how cognitive resources are being distributed throughout the prospection time. The eye

fixations are the sensory input from which we try to decipher part of the relevant cognitive

mechanisms driving the performance of the subjects in the task.

2.3.2 Quantifying prospection

With the obtained trajectories and associated datasets, one can analyze the participants

performance. The global performance of the individuals in the three different levels of

the graph is computed as the number of nodes that have been covered during the entire
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trajectory (Fig. 5.13 a)). The efficiency of the navigation task is measured through the

number of different sites covered during the trajectory.

Figure 2.6: a) Averaged number of covered nodes after the 49 steps trajectory for each one of the graphs. b) Averaged
decision time accounting all the movement of the trajectory for each one of the graphs.

For the Rectangular graph, the subjects visited in average 37.1 ± 3.8 nodes (this is, a 75, 7%

of the total 49 sites). For the Circular Ordered graph, they covered 29.1± 4.8 nodes (59, 4%)

and for the Circular Disordered graph, 26.4 ± 4.8 nodes (53, 9%). These results confirm

that the difficulty of the task depends strongly on the visual organization of the nodes

in the graph. Moreover, the averaged decision time shows us that the performance is not

improved just by spending more time deciding (figure 5.13 b)) (where the decision time

is considered to be equal to the time between two consecutive movements in the graph).

This seems to confirm that the difficulty of the task is clearly the main element driving the

subject efficiency.

The next step is to analyze the information gathered with the help of the eye-tracking

data. We define the distance db as the minimum number of steps/bonds between the

current patch and the one the individual is gazing at. The corresponding experimental

distributions of db are found to be completely different for the three visual organizations

considered (figure 2.7). The distance (in bonds) between any two nodes is exactly the same

in all cases; then it is clear that the individuals do not prospect equally in these cases. While

for the rectangular case a large amount of time is invested in gazing at nearby nodes, for the

Circular cases (specially for the Disordered one) frequent gazes at distant sites are observed,

which must be attributed either to (i) distractions caused by the presence of nodes which

are close on the screen configuration (though they are not easily accessible from the current

one), and (ii) the difficulty at identifying easily the nodes which are available in the next

few steps. Intuitively, an efficient prospection should combine an intensive exploration

of closer sites and a smaller (but not necessarily negligible) exploration of further ones.

We illustrate that idea in the inset of figure 2.7, where the cumulative probability of being

gazing at nearby nodes (defined as those with db ≤ 4) is shown to decrease drastically as a

function of the visual complexity of the task.

As a way to quantify and refine the ideas above, we propose to compare the subjects

performance in our task to that of virtual subjects. As a virtual subject, we have used the



2 Decision making 56

Figure 2.7: Distribution of
the bond distance db between
the current patch and the
nodes that have been gazed be-
fore doing amovement for each
one of the graphs. The inset cor-
responds to the accumulated
probability for gazing nodes at
a distance db ≤ 4.

bSAWmodel with prospection described in Section 1.5. The differences with the analysis

carried out in the Chapter reduce to the lattice (49 sites) being non-periodic and the

suppression of part of the connections of the regular lattice.

The walker computes the probability to jump to a given site i again through equation

2.3. The length of the prospected path is characterized by the prospection length dp . The

previous visits to a site are kept in memory by the walker during a characteristic number

of steps τm (according to the impairment mechanism, see Section 1.4). As a result, if a

certain choice would imply moving to regions that, according to the prospection length

and the memory capacity of the walker, are already visited, then the payoff associated to

that option would be large. Instead, if a certain choice is seen to drive the walker to a region

with a large number of non-covered sites, the corresponding payoff would be lower.

Figure 2.8: Diagram for the
walker covered nodes in com-
parison with experimental re-
sults. Regime I corresponds to
a worse averaged performance
than all geometries. Regime II
corresponds to a better perfor-
mance than in Circular Disor-
dered. Regime III corresponds
to a better performance than in
Circular Ordered and Disor-
dered. Regime IV corresponds
to a better performance than
in all geometries.

Themain adaptation of thewalkermechanism to the scenario is that successive prospections

of the paths available in each direction are carried out at random among all possible ones
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of length dp , and so values of the payoffs and the probabilities pi are continuously updated.

Here, the evaluation of the probabilities is done with the information given by a finite

number of samples. Note that for a given value of dp the number of paths that can be

prospected is of the order of ∼ 4
dp

(if assuming that all links between neighbor sites are

available). For large dp , one cannot expect the subjects to explore all those possible paths.

Conversely to the sampling mechanism explored in Chapter 1, the walker prospects here

only a fraction of those paths.

The decision of when to move to the next patch is taken by the random walker according

to the decision criterion described above in Section 2.2. After each single prospection of

one path in each direction, the walker computes the corresponding Shannon’s entropy

S �
∑

i −pi ln pi ; if the computed value falls below a fixed threshold Sth , the walker makes

the decision according to the probabilities pi computed at that time (in case the option

with the larger probability was always chosen by default, we have checked this would not

change qualitatively the walker dynamics). On the contrary, if S > Sth then the prospection

process continues. However, we additionally introduce a rule such that the maximum

number of prospections is limited to 100 to avoid (extremely unusual) situations in which S
would never decay below Sth because all options available persistently exhibit very similar

payoffs. We have carefully checked that this rule doesn’t modify any of the results reported

in a significant way. For the sake of simplicity, we fix here the parameter β � 5 during all

the simulations.

The rules above generate self-avoiding trajectories of the random walker (more or less

efficiently, in terms of the parameters dp and τm) without explicitly requiring it to maximize

the number of visited sites, as we do with the human subjects. As the performance of the

algorithm is independent of the visual organization of the lattice (Rectangular, or Circular)

we can use it as a reference model against which to compare the human performance in

our experiment, so assessing the prospection mechanisms that are being presumably used

by the human subjects.

By exploring the range of dp and τm values in the computational model, we can divide the

parameter phase space into four regions (figure 2.8). For region I the algorithm produces an

averaged number of visited nodes lower than the individuals in any of the three versions

of the experiment. The region II produces a performance which lies between the results

obtained between Circular Ordered and Circular Disordered. The region III overcomes the

results for the Circular Ordered performance but not for the Rectangular. The region IV,

finally, outperforms all the experimental results (region IV).

Hence, we conclude that relatively large values both of τm and dp are necessary to match or

improve the efficiency reached by the human subjects in the Rectangular graph, suggesting

that those subjects remember the visited sites and predict future outcomes efficiently in

this case. According to this, the ability to prospect seems a necessary condition to justify

the subjects performance in the experiments, at least for the Rectangular graph case, where

dp ≤ 4 is necessary to reproduce the experimental results. For the Circular structures,

instead, the individuals are probably not able to track the paths to distant nodes (there

is no sufficient local gathering); in consequence, the value of dp necessary to reproduce
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their performance is lower than in the Rectangular case, and even the non-prospecting case

(dp � 1) seems to be enough as long as memory is large (but if memory is shorter, as is

likely to be the case in our task, dp ≥ 1 seems to be necessary).

Figure 2.9: a) Evolution of the averaged remaining non-visited nodes during the subject and walker performance. b)
Distribution of final number of covered nodes obtained from the subject and walker performance. The dots correspond to
the experimental data while the solid lines correspond to the walker mechanism.

For certain values of dp and τm the random walker actually reproduces the distribution

of performances obtained from the experiments. In Fig. 2.9 we show results for the case

(i) dp � 6, τR
m � 70, (ii) dp � 3, τCO

m � 7, and (iii) dp � 2, τCD
m � 5, which provide the

best fits to the experimental data for each one of the three graphs, respectively. We also

analyze the dynamical trends of the experimental trajectories and the trajectories of the

fitted parameters (figure 2.9 left). The number of covered nodes presents in all cases a

monotonic growth, which is reduced as the trajectory progresses and overlaps can appear

in consequence. The experimental curves and those obtained from the algorithm with

the parameters mentioned above agree almost perfectly. Then, the model reproduces in

great detail the performance of human subjects throughout the experiment. Likewise,

the distribution of the final performances so obtained is also in perfect agreement to

experimental data (Fig. 2.9 right).

2.3.2.1 Coverage efficiency of the entropic mechanism

In analogy with Chapter 1, one can also explore how efficiently the random walkers above

cover the whole lattice by computing the cover time instead of stopping the simulation

after 49 steps. This provides an alternative measure of how efficient the walker is in terms

of navigating the maze as a function of the memory and prospection parameters, τm and

dp . In particular, we focus again on the coverage time (Tc).

The main conclusion we can extract (as one can deduce from the results in Fig. 2.10) is that

the ability to prospect future paths (so, having a large dp) is useless unless the individual

also has good memory skills (this is, a large τm value in our context). This makes clear

sense, as when the walker cannot remember the previously visited sites (low values of τm),

prospection would not be necessary or can be even detrimental; in that case the information
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Figure 2.10: Prospection
length that minimizes the cov-
erage time (Tc) of the walker
as a function of memory time
τm when the walker is placed
in the same structure of the
experimental design.

provided by further nodes represents just useless noise as the walker always sees them

as non-visited nodes. On the other side, for large τm the walker can correctly identify the

previously visited nodes (large values of τm), so then progressively higher prospection

lengths dp are found to optimize the coverage of the structure and the search of a target.

2.3.3 Entropic mechanism validation

In Section 2.2 we have introduced a decision-making criterion based on the acquisition of

sufficient decision reliability, based on a threshold for the informational entropy.

Oncewehave clear evidence that prospection is being used by the subjects during navigation

through the maze (specially for the Rectangular case), we want to characterize decision-

making dynamics within such context. For this we take now the eye-tracking data obtained

from the experiments to analyse the distributions of: i) the times between decisions, ii) the
times during which the subjects gaze at the same patch and iii) the number of different

nodes gazed before making a decision (n).

Despite the different performances found for the three levels (Rectangular, Circular Ordered

and Disordered) in previous Sections, the time distributions in all these cases exhibit

extremely similar properties (Fig. 2.11). This suggests a common underlying mechanism

for decision-making. What is more, all the distributions fit closely the power-law decay

P(t) ∼ t−3
in agreement with the predictions from our information-theoretical criterion

based on S (see figure 2.4). The only significant differences appear for smaller decision

times, which seem to be scarce in the Circular Disordered case (as suggested from Fig. 2.11

b)).

Figure 2.11: a) Distribution of times the subject is staring to a certain patch. b) Distribution of decision times
(consecutive movements). c) Distribution of the number of gathered nodes between consecutive movements. The results
are shown for the three structures: the Rectangular (R), the Circulard Ordered (Co) and the Circular Disordered (Cd).



2 Decision making 60

Intuitively, the decision timesmay be understood as the sum of the times that the individual

has been gazing at each individual patch. Then it could be that the power-law emerges

either from (i) the distribution of times the subject keeps looking at a given patch, or

(ii) the number of nodes that are gazed between decisions. Both cases would provide an

explanation for the scale-free feature of the decision time distributions as a consequence of

other distribution. However, we actually find that both distributions (for the number of

nodes gazed and for the gazing times) present the same scale-free decay (Fig. 2.11, middle

and right panels). So, the underlying mechanism yielding the power-law distribution for

decision times is apparently a nontrivial combination of both.

We reproduce the same analysis of figure 2.4, where the number of samples n to reach

the threshold Sth is explored. The results in figure 2.12 correspond again to the values tm

and dp fitted from the experiments. We observe that exponent −3 is also exhibited by the

walker dynamics.

Figure 2.12: Distribution of
the number of prospections n
performed by the walker to
force the entropy S to fall be-
low the threshold Sth .

The robustness of the −3 exponent is further supported by additional evidence. First, in Fig.

2.13 left we show the explicit dependence of this behavior on the entropy threshold, and

verify that the power-law behavior is kept as long as reasonable values of this parameter

are chosen (extreme choices, with, Sth → 0 for example, would modify the results, but this

represents a rather unrealistic case). We fix Sth > 0.5, as reducing it may give problems

with decisions with only two or three options. On the other side, we observe at Fig. 2.13

right that neither variations in dp nor in τm values modify significantly the ∼ n−3
behavior

as long as some significant level of memory and prospection is kept. This checks that the

exponent remains as a robust feature of the algorithm, independent of the memory and

prospection parameters, as well as the threshold Sth used in the algorithm.

We stress that the classical SPRT criterion, as well as other variations we have numerically

explored, are unable to reproduce the −3 exponent and would lead to much smaller

exponents and/or faster (exponential-like) decays in P(n). This, together with the reliability

analysis reported here, provides significant robustness to the entropy threshold criterion

proposed here.

To provide even further evidence of the compatibility of the experimental results with
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Figure 2.13: a) Distribution of the number of prospections performed by the walker before making a movement for
the fixed parameters dp � 6 and τm � 100 and a variable entropy threshold Sth . b) Distribution of the number of
prospections performed by the walker before making a movement for a fixed entropy threshold Sth � 0.5 and different S
and τm .

our information-theoretical (entropy refinement) criterion, we quantify the payoffs Ei and

the corresponding entropy S at the instant at which each decision is made by the subject

in the experimental task (figure 2.14). We remind that the SPRT criterion for canonical

probabilities (equation 2.3) is equivalent to impose that a threshold in the payoff difference

∆E triggers the decision (see Section 2.1.1), while for our criterion it is the entropy S which

must reach a fixed threshold for the decision to be taken. For the experimental navigation

task, we find that the difference ∆E (computed between the choices with lower and higher

payoffs at the decision time) is a monotonically growing function of the decision time,

so longer decisions require longer payoff accumulation (figure 2.14 a)). On the contrary,

the informational entropy S remains approximately independent of the decision time,

suggesting that this magnitude is really an invariant for all decisions and so supporting

the view that a threshold in S may trigger the decision (figure 2.14 b)). This seems to be

particularly robust for longer decisions, while shorter ones (< 2 seconds) may be probably

induced by an automatic response, or simply taken at random without a proper amount

of information gathering, so they probably do not follow the criterion above. Apart from

such situations, however, it is clear that our results support the compatibility between

experimental data and the entropy refinementmechanism for human choices under the

navigation task used.

The analysis used here, based on comparing the navigation abilities of virtual subjects

(or physical models) to those of human subjects, provides then an ideal way to reach

a quantitative characterization of the cognitive memory and the prospection ability

that should be required in sequential decision-making environments. Furthermore, the

distribution of decision (or gazing) times together with the study of the final values for S
reached at the moment of the decisions allows us to think that the criterion proposed here

provides a good approximation to the real mechanisms of information processing employed

by the subjects during the task. The fact that the power-law scaling scaling P(t) ∼ t−3
for

decision times in our mechanism emerges in the binary toy model in Section 2.2.1 as well

as in the virtual algorithms (where not binary but multiple choices are available) reflects

also the robustness of the results. At this respect, it is important to note that traditionally
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Figure 2.14: a) Experimental payoffs difference ∆E between the options (directions) with more and less accumulated
evidence when the decision is made. The x-axis groups the decisions by their corresponding decision time. The fitted curves
are f (x) � 0.17x + 2.02 (Rectangular),g(x) � 0.16x + 2.73 (Circular Ordered) and z(x) � 0.15x + 2.21 (Circular
Disordered). b) Experimental Shannon’s entropy S according when the decision is made. The x-axis groups the decisions
by their corresponding decision time. The fitted curves are f (x) � 0.001x+0.150 (Rectangular),g(x) � 0.000x+0.096

(Circular Ordered) and z(x) � 0.001x + 0.122 (Circular Disordered).

mean times to decision, as well as the ratio of the times corresponding to choosing option

A or B (for binary decisions) have been studied in detail by psychologists. On the contrary,

decision time distributions are rarely computed in decision-making experiments. Our work

has shown that such distributions can be used as a signature to discriminate between

models.

Concluding remarks

I Memory and prospection are experimentally found to take part in the cognitive

mechanisms that humans use for sequential decision making, as in navigation

trough mazes. That conclusion can be obtained through eye-tracking data without

a need for electroencephalographic (EEG) monitoring.

I Decision making dynamics used by humans in navigation tasks is compatible with

a mechanism based on the computation of informational entropy to reach a given

level of reliability.



Part II

Collective behavior



Portrait of Murray Gell-Mann. Im-

age taken from [204].

Introduction

In the previous Chapters of this thesis, we explored how

isolated individuals may adapt their movement strategies

for the sake of an efficient (intelligent) performance through

a physical description of their cognitive mechanisms.

Nevertheless, in most realistic situations living organisms

share their space and compete for resources with other

organisms.

M. Gell-Mann’s Quote

You don’t need something more to
get something more. That’s what
emergence means.

This constant relation between individuals may

altere their behavior [203], providing a broad range of

scenarios where the interactions have consequences at very
different levels.

For example, living in crowded ecosystems may affect the

reproduction and the population of species [205, 206]. Or the

competition for the food resources may drastically modify

their evolution [207, 208], leading to species migrations or

even extinctions.

However, not all the consequences of being part of a crowded

space are detrimental. Organisms lacking complex cognitive

capacities have been reported to interact with others to

provide a collective response to a given situation [209–211].

Individuals join or combine their capacities, leading to a

social cooperation [212]. That mechanism, that sums up

the cognitive capacities of simple individuals, allows the

individuals to process more contextual information (and

more accurately) for the sake of a better adapted response.

This collective ability corresponds then (loosely speaking) to

an intelligent trait.

That collective level of intelligence can be observed at dif-

ferent scales (see figure 3.1). Bacteria use collective behavior

to generate combat strategies [213, 214]. They also exhibit

collective growing (fractal) patterns in culture growth [215,

216]. Cells coordinate their movement and their actin dynam-

ics when migrating to shape tissues, to vascularize tissues,

in wound healing and others processes [217, 218].
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Ants in a colony organize themselves to distribute tasks, even to develop strategies that

are unfeasible at an individual level [219, 220]. In aquatic ecosystems, one can observe

how the fish form schools: through the coordination of their movement, the individuals

respondmore efficiently to stressful scenarios [221], such as predation risks [222, 223]. The

collective behavior also appears in aerial ecosystems. Birds species form flocks, where they

fly collectively [224], to increase the capacity to avoid predators or the food intake [225].

Humans also feature collective behavior in many scenarios [226–228]. The interactions

between many individuals could provide collective patterns such as pandemic dynamics

[229] or opinion contagion trough social media [230–232].

Figure 3.1: Left upper image corresponds to the fractal structure created by bacterial growth. It is taken from [233].
Right upper image corresponds to cooperative ant colony which creates a bridge trough the interaction between multiple
individuals. The image is taken from [234]. Left image corresponds to a fish school avoiding a predator. The image is
taken from [235]. Left lower image corresponds to a bird flock, where the individuals fly showing cohesion. The image is
taken from [236].

Physics has been dealing with the concepts of organization and synchronization, which

are the fundamental traits of collective behavior, for decades [237–239]. For example, many

materials exhibit a broad set of collective features, where the interactions between atoms,

molecules or colloids derive in collective movement patterns or spatial structures. The

spatial self-organization of the graphene atoms promotes the appearance of stimulating

physical properties, such as high termal and electric conductivities while keeping the

structure resistent and light [240]. The spins (magnetic moments of the molecules) interact

between them, yielding collective magnetic states in ferromagnetic materials [241]. Even

the transition between a liquid phase and a solid phase in a glass of water is due to

the collective organization of the molecules as a result of the underlying interactions
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[242]. These features, among others, have promoted the development of experimental and

theoretical studies to understand how interactions between the components of the system

lead to the emergence of collective patterns.

However, the major part of the existing physics literature focuses on the case where systems

are in equilibrium. The nature of living organisms keeps them far from equilibrium in

most cases, as they are continually modifying their state. This trait of living organisms

makes the development of complete theoretical frameworks difficult and enhances the role

of the computational analysis.

The second part of the thesis is dedicated to exploring how the straightforward framework

described previously for search patterns of isolated individuals can be extended to the

multi-organism scenario. By focusing on how the individuals interact and how their internal

mechanisms get affected by being part of crowded environments, we analyze the emerging

movement patterns and their consequences over their targets under different circumstances.

Combining experimental, theoretical and computational analysis, we address how the

contextual information processing (including relating with others) is transformed into

the physical energetic landscape f (E) and how the collective patterns emerge from that

mechanism.
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Nature is constructed mostly by very crowded environments,

where the individuals are obliged to compete or socialize.

The search process is not an exception to this, and the in-

teractions with other organisms may condition the optimal

movement strategies or even create new ones when referring

to efficient searches. For example, it has been extensively

reported that diverse species organize themselves at a social

level to increase the food intake [243–245].

The aim of this Chapter is to extend the Random Walk

scenario introduced in Chapter 1 to a multi-walker one,

maintaining the complexity of the cognitive mechanisms and

information processing used there. To be more concrete, we

focus on how the presence of a variable number of walkers

impacts the search efficiency, characterized by the coverage

time Tc .

Let’s start with the case of non-interacting walkers. For

this case, the situation is reduced to a superposition of

uncorrelated trajectories. Thus the coverage process is done

at a rate that depends on the number of walkers (n). One

can derive that the superposition of trajectories without any

interaction (either direct or indirect) between them leads to

the approximate expression Tc(n) ∼ Tc(1)
n when the walkers

positions lack any correlation between them. In this case,

Tc(n) corresponds to the time where all the sites have been

covered combining the n walker’s trajectories.

However, the validity of this relation when the walkers in-

teract between them, leading to correlated paths, is far from

clear. One can introduce the social effect into the walkers

dynamics in multiple ways. Here, we propose an indirect
interaction, where all the walkers share the information con-

tained within the cognitive map. Thus, the walker decision

algorithm is equivalent to the one of the isolated case, but

the energetic landscape is generated by the trajectories of

all the walkers. That shared memory has been shown to be

a fundamental part of insect navigation [246, 247]. It also

represents a proxy for signal deposition (chemotaxis) in
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bacterial or ants systems, where the individuals can detect the paths of other organisms.

We put the focus on the energy landscape generated by the bSAW model (Section 1.3).

During the next paragraphs, we provide a detailed study of how the cognitive parameters,

represented by the prospection length dp , the evaporation time τm and the self-avoidance

intensity β, coupled with the number of walkers n, modify the coverage time Tc . For the

sake of clarity, we split the analysis in two Sections: one corresponding to the process in a

one dimensional space and another one in a two dimensional space .

3.1 Searching through a one dimensional lattice

As a reminder of the bSAW model explored in Chapter 1, the space is discretized into

sites. The sites that have been visited are assigned an energy Ei � 1, while the non-visited

ones are assigned to an energy Ei � 0. The prospection length dp allow the walkers to

use the information of non-local sites to compute the next movement probabilities. The

evaporation time τm corresponds the average time in which the energy of visited site is

reset from Ei � 1 to Ei � 0 due to the impairment.

To start the analysis, we focus on the case where the evaporation time is infinite (τm →∞).

We provide the computational analysis of the coverage time Tc as a function of the number

of walkers n for different values of the self-avoidance intensity β and the prospection length

dp in figure 3.2. There, one can observe that the prospection length dp barely modifies the

search efficiency. The effect of β, on the contrary, is more complex. When the self-avoidance

is not very intense (β ≤ 1), the addition of more walkers reduces the coverage time. That

could be expected intuitively, as to add more walkers to cover a region of the same size

should be beneficial. In the lower panels of figure 3.2, one can observe that for those β

values, the coverage time asymptotically scales as Tc(n) ∼ Tc(1)
n with the number of walkers

(the coverage time Tc in the figure was rescaled by n , showing a constant plateau). Thus,

this case is equivalent to the non-interacting case, which implies that the indirect interaction

plays a minor role under these circumstances.

However, as the self-avoiding intensity gets increased, the dependence of Tc when there

are just a few walkers changes drastically (see figure 3.2). One can observe that the scenario

that minimizes the coverage time when β >> 1 is n � 1. Unexpectedly, there is a "more is
less" effect, where to add more walkers increases the coverage time. For β � 5 and β � 100

values (and for any dp), one observes that the maximum Tc (the worst search efficiency) is

produced when n � 2. Thus, the scaling with the number of walkers is far from trivial. It

has to be noted that the non-interacting scaling Tc(n) ∼ n−1
also appears when the number

of walkers is sufficiently large even for large β values. For this case, the probabilities pi are

strongly modified by the energetic landscape and the non-interacting feature should have

a different origin when compared to the low β case. As stated in Chapter 1, the coverage

time is governed by the finding of the last sites. When there is just one (or a few) site(s)

to visit, the shared energetic landscape is homogeneous and the process corresponds to a

superposition of diffusive trajectories (which is equivalent to the non-interacting case).
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Figure 3.2: Upper panel: Coverage time Tc as a function for of the number of walkers n for different β values (left image
corresponds to dp � 1 while the right image corresponds to dp � 5). Lower panel: Scaled coverage time Tc

n as a function
for of the number of walkers n for different β values (left image corresponds to dp � 1 while the right image corresponds
to dp � 5). All the results are obtained from a N � 1024 one dimensional lattice without impairment.

One can wonder whether these results become modified if a evaporation time τm is

introduced. We analyze how τm modifies the multi-walker dynamics. The information of a

site i is forgotten or evaporated (Ei � 1→ Ei � 0) after a random time τ starting from the

last visit to that site. For simplicity, again we will consider that this time is obtained from

an exponential distribution with characteristic time τm (as introduced in Chapter 1).

We provide the computational analysis of the coverage time Tc according to the number of

walkers n when the evaporation time is tuned at figure 3.3. For an intermediate intensity

of self-avoidance (β � 3, figure 3.3 upper panel), one can observe that the addition of

more walkers reduces the coverage time (except for the case of two walkers with large

evaporation time). The prospection length, again, does not seem to modify this dynamics.

However, for a very strong self-avoidance (β � 100), the computational results provide a

quite different scenario. When the walkers cannot prospect (dp � 1), the best strategy is to

restrict the search to a one individual. But how it evolves with the number of walkers is

strongly dependent on the evaporation time τm and the prospection length dp . The presence

of a finite optimal τm (explored in the first part of the thesis) seems to be maintained even

when there are multiple walkers.

That optimal τm is approximately of the size of the region to be covered. In these circum-



3 From one to multiple random searchers 70

stances, a larger prospection length is beneficial when the evaporation time is large, and

detrimental when the evaporation rate is increased.

Figure 3.3: Upper panel: Coverage time Tc as a function for of the number of walkers n for different τm values when
β � 3 (left image corresponds to dp � 1 while the right image corresponds to dp � 5). Lower panel: Coverage time Tc as
a function for of the number of walkers n for different τm values when β � 100 (left image corresponds to dp � 1 while
the right image corresponds to dp � 5). All the results are obtained from a N � 1024 one dimensional lattice.

3.1.1 The 2-walker scenario in one dimension

Given the unexpected feature that the addition of more walkers to the search can make the

process slower, we explore in detail the dynamics for the two-walker scenario and why

it can reduce or increase the coverage time of the one-walker search depending on the

parameter values.

When the search process is commanded by two (or more) walkers, in the initial step

each walker chooses randomly between the two possible directions available. However,

the possibility of crossings with the previous trajectory of the other walker will affect

significantly the subsequent dynamics of the coverage. The case when β → 0 is again

independent of the evaporation and prospection mechanisms, as both walkers moves

diffusively and there are no energetic landscape effects. The scenario becomes more

complicated when the self-avoidance gets important. A walker, in this case, tends to move

ballistically as long as it does not find the region which has been visited by the other, but

eventually it will interfere with the other walker’s path. When this happens, one can split

the corresponding situations into two classes.
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Figure 3.4: Schematic representation of how the dynamics is modified between the one-walker and two-walkers scenarios.
The blue squares corresponds to visited sites, while the white ones, to the unvisited sites. The two-walker version has
been defined to exemplify the crossing or collision between walkers, creating the escape region.

The first class corresponds to the situation where the two walkers are moving in the same

direction. Initially, both perform a ballistic movement. When one walker (walker A) meets

the path of the other one (walker B), the ballistic movement of the walker A is suppressed.

However, due to the periodic boundary conditions of the lattice, the walker B keeps its

ballistic movement until it reaches the path of the walker A. When that occurs, it means that

the entire lattice has been explored, and then, the cover process is over. If the walkers can

start the coverage process at any site of the lattice and with the consideration of periodic

boundary conditions, the average distance between the walkers A and B at the initial

step corresponds to ∆x �
N
4
. So the walker A covers in average

N
4
sites until its ballistic

movement is suppressed. Simultaneously, the walker B can cover ballisticaly the
3N
4

sites

until it reaches the path of the walker A. The dynamics described above, under those initial

circumstances, leads to an averaged coverage time Tc(2) ≈ 3

4
Tc(1) � 3N

4
.

The second class corresponds to the case when the two walkers move in opposite directions

at the initial step. Initially both walkers move ballistically again. However, there is a time

step where the walkers necessarily cross their paths (see figure 3.4). If the initial distance

between them is z, that process take T �
z
2
steps.

Since both walkers have left a visited region behind them, they find themselves in the

middle of a homogeneous energy landscape with sites with energy Ei � 1 (visited). For

this reason, both will move diffusively until they escape from the joint visited region that

they have created. The escaping time is

T ∼ z2

8D
�

z2

4

, (3.1)

where D �
1

2
(see Section 1.1). When z is large, this stage will be much larger than the

previous one and it will govern the coverage time Tc .

The last part corresponds to the new ballistic span that the first escaping walker performs

until the lattice is completely covered (we have dismissed the possibility of both walkers

escaping at similar times). As z sites has been covered in the first stage, the escaping walker
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needs N − z steps to complete the coverage.

The two scenarios described above can appearwith the same probability (
1

2
each). According

to all the initial positions where the walkers can start the process, one can derive an

approximate estimator of the Tc(2) that reads

Tc(2) ≈
1

2

{
3N
4

+
1

N

∫ N

0

(
z
2

+
z2

4

+ (N − z)
)

dz
}
, (3.2)

which leads to

Tc(2) ≈
N2

24

+
3N
4

. (3.3)

This expression is strongly dominated by the diffusive (quadratic) term when N is large.

Figure 3.5: Coverage time Tc as a function for of the evaporation time τm for two different prospection lengths and
slef-avoidance intensities when the number of walkers is 2 (left image corresponds to β � 2 while the right image
corresponds to β � 100). All the results are obtained from a N � 1024 one dimensional lattice.

The same mathematical procedure can be applied to the case of multiple walkers. However,

the straightforward analysis of the two walkers case provides a clear insight about why

adding more searchers to the process may become detrimental to the coverage time when

the self-avoidance is intense. The current analysis has been done for lattices with periodic

boundary conditions, but one can expect for the case of reflective conditions a stronger

effect since then the effect of trapping is produced also at the boundaries. On the contrary,

this feature is not relevant for lower self-avoidance intensities, as there the two walkers do

not necessarily move ballistically in the initial steps, but they get trapped into their own

visited region most of the time, so the influence of the path followed by the other walker is

relatively unimportant (it is generally diffusive from the beginning).

To complete the study of the two walkers scenario, we finally analyze how the combined

effect of all the prospection length dp , the self-avoidance intensity β and the evaporation

time τm impact the coverage efficiency for this concrete case. One can observe at figure
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3.5 how the optimal finite evaporation time already reported in Section 1.4, meaning that

to forget part of the previous trajectory optimizes the process, appears for any β or dp

considered here. We have reported in Chapter 1 that modifying dp does not modify the

walker dynamics once the walker moves ballistically (high β values). However, for the case

of two walkers, figure 3.5 reports that for large β values, a larger dp seems to reduce Tc . The

walkers can detect the end of the escape region from larger distances, and correspondingly,

the coverage will be reduced as each trapping stage is reduced.

3.2 Searching through a two dimensional lattice

One can wonder if the effect of the crossings between walkers and its consequences over the

search process would be different in a two dimensional space. According to the explanation

given in the previous Section, such crossings will largely depend on the topology of the

region to explore. In two dimensions, the walkers will more easily avoid the overlap with

previously visited regions (see figure 3.6).

Figure 3.6: Schematic representation of the dynamics when the number of walkers is n � 1 and n � 3 in a two
dimensional lattice. The blue squares corresponds to visited sites, while the white ones, to the unvisited sites.

In this Section, we explore how the self-avoidance intensity β, the evaporation time τm and

the prospection length dp combined with the presence of multiple walkers affect the search

process and if the "more is less" effect will appear in these circumstances.

By sampling computationally the parameter space, one can observe at figure 3.7 that for

the case without evaporation (τm → ∞), all studied cases reports the same results of a

non-interacting system, where Tc(n) ∼ Tc(1)
n .

If we explore the results as a function of the prospection length dp , they seem to reproduce

the same features of the one-walker case (reported in Chapter 1). When self-avoidance

intensity is low, to prospect for non-local information is detrimental for the coverage effi-

ciency. When the self-avoidance is sufficiently strong, to prospect for non-local information

optimizes the coverage process. That feature seems to appear for any number of walkers

(compare left and right panels in figure 3.7 for short and large dp , respectively).
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Figure 3.7: Upper panel: Coverage time Tc as a function for of the number of walkers n for different β values (left image
corresponds to dp � 1 while the right image corresponds to dp � 5). Lower panel: Scaled coverage time Tc

n as a function
for of the number of walkers n for different β values (left image corresponds to dp � 1 while the right image corresponds
to dp � 5). All the results are obtained from a N � 64 · 64 two dimensional lattice without impairment.

When the impairment, or finite evaporation time τm , is introduced in the simulations, the

results seems to remain unaltered. One can observe at the figure 3.8 that the coverage time

Tc keeps scaling as Tc(n) ∼ n−1
when τm is modified for any β and dp . In addition, it seems

that the optimal evaporation time that has been shown for the one-walker case is also

present in the multi-walker cases. One can observe that the lower curve (the more efficient

coverage) always corresponds to finite evaporation times around τm ∼ N (see figure 3.8).

Wewill not explore the behavior of the system for higher dimensions. Since d � 2 represents

the critical dimension of a single self-avoiding randomwalk trajectory, the results for higher

dimensions will be equivalent to those for regular random walks (including the scaling for

Tc(n)), and so the effect of self-avoidance and impairment will be marginal there.
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Figure 3.8: Upper panel: Coverage time Tc as a function for of the number of walkers n for different τm values when
β � 3 (left image corresponds to dp � 1 while the right image corresponds to dp � 5). Lower panel: Coverage time Tc as
a function for of the number of walkers n for different τm values when β � 100 (left image corresponds to dp � 1 while
the right image corresponds to dp � 5). All the results are obtained from a N � 64 · 64 two dimensional lattice.

Concluding remarks

I To add more individuals to a search process is not always beneficial. Under some

circumstances, one can find the "less is more" effect, which is due to indirect

interactions between the walkers, such that the signal left by one of them slows

down the advance of the others.

I The topology of system largely determines the nature the indirect interactions, so

it plays a fundamental role in the definition of an efficient search strategy.
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Among all living organisms featuring collective behavior,

the human beings probably exhibit the more variate set of

examples [248]. Through interactions, we organize ourselves

at many levels and we make collective patterns emerge, such

as what occurs with epidemic processes [249] or population

opinion evolution [165].

One subset of collective behavior in living organisms are

the movement patterns appearing when they move within

crowded environments. One example of collective motion
patterns can be observed in crowds. In a crowd, the individ-

uals may not be able to walk in their desired direction due to

the collective (long-range) fluxes appearing as a result of the

sum of interindividual (short-range) interactions. Another

example can be observed when people get on the subway.

When the density of pedestrians is high enough, people roll

into a ball when trying to cross the doors. Thus, the individu-

als get stacked [250] altough this is detrimental for they aims.

In both cases collective patterns govern the system dynamics,

even if they go partially against individual tendencies or

goals. However, through the interaction or communication

between the individuals, efficient patterns can also be de-

veloped within crowds. Lane formation is a paradigmatic

example. Pedestrians moving across a street can organize

themselves onto the creation of two regions. The pedestrians

moving towards the same direction of the street accumulate

in one of those regions, easing the pedestrian flow, as it per-

mits the individuals to move towards their targets with only

little mishaps. When in a non-ordered crowd, a pedestrian

dodges and faces constantly other pedestrians that come in

the opposite direction. Even so, the self-emergence of those

collective structures simplifies the cognitive complexity, eas-

ing the prospection for optimal paths and simplifying the

response to possible collisions. Similar lane structures can be

found in other systems, such ant colonies, which navigates

trough those lines or trails to increase their foraging efficiency

[251, 252].
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A description of how pedestrian flows emerge from individual interactions represents a

field of the greatest interest due to its direct impact on relevant issues of the daily life. For

example, in urban planning, monitoring of public spaces or optimization of evacuation

protocols, to name a few [253–255].

From a physical perspective, to implement the rules of ordering, alignment and self-

avoidance (among other) between individuals is a great challenge. Thus, a significant

effort has been put both in (i) understanding these interaction rules in order to recover

the patterns observed in real scenarios [256, 257] and (ii) identifying the minimal models

which are able to capture the essentials of such phenomena [258, 259].

4.1 How to model pedestrian dynamics

We explore in the next paragraphs the fundamentals of pedestrian modeling. In general,

the description is done in terms of agent-based models, where each agent represents a

pedestrian. Thus, the relevant work comes from the definition of the interactions and the

study of how they can lead to complex patterns at the collective level.

4.1.1 The social force

In pedestrian modeling, the interaction between individuals should account for the

contextual information coming from the other pedestrians or nearby obstacles. Traditional

physical systems interact through forces coming from well-known energetic potentials,

such as the electromagnetic or gravitational ones. The lack of an equivalent theoretical

framework for pedestrians has instead led the scientists to explore context-based forces.

Some examples can be found at [260, 261]. One approach that has been found to reproduce

many of the crowd patterns is the social force model [262]. It is based on introducing

a force composed by different terms, each describing a basic feature of the contextual

processing of pedestrians.

The pedestrian dynamics is characterized by its velocity ®v. The velocity ®vk of the pedestrian

k evolves according to

d ®vk

dt
� ®Fk + η(t) (4.1)

where
®Fk corresponds to the social force and η(t) corresponds to a white noise representing

the fluctuations in the pedestrians dynamics. The social force is composed by three terms:

®Fk �
1

τk
(®vp − ®vk) +

∑
j
−∇®rk j

Vk j(| |®rk j | |) +
∑

i
−∇®rki

Wki(| |®rki | |) (4.2)

The pedestrian, when moving, does it to reach a given target (or direction). The first

term forces the pedestrian to move in the direction of that target, which is defined by
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the vector ®ek(t). That will domain the pedestrian motion in the absence of obstacles or

other pedestrians. However, the pedestrians do not accelerate constantly under these

circumstances. To circumvent this, one uses the characteristic (or preferred) velocity ®vp
,

which is the velocity followed by the individual in the absence of obstacles or other

pedestrians.

Figure 4.1: a) Frame of a computational simulation where the pedestrians move across a corridor according to the social
force model. With each half of the agents tending to go in one direction, the rest of the terms are enough to construct the
collective lane pattern. The arrows correspond to the direction of the movement of the corresponding color agents. The
image is taken from [262]. b) Frame of a computational simulation where the pedestrians try to escape from a room
according to the social force model. The interactions lead to the collective to arrive to an undesired jammed state. The
image is taken from [263].

The second term accounts for the repulsion between pedestrians, which tends to avoid

being too close to others. This effect is introduced as a repulsive force governed by the

potential Vk j , which is supposed to decrease monotonically with the distance between the

pedestrian k and the pedestrian j (| | ®rk j | |).

Pedestrians are sometimes attracted by other persons or objects These attractive effects

contribute to the third and last term. Now, the potential Wki monotonically grows with the

distance between the pedestrian k and the pedestrian i (| | ®rki | |), as it promotes attraction

between the individuals. One expects the repulsive (second) term to dominate the pedestri-

ans interaction when the individuals gets closer. However, the attraction (third term) may
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dominate when pedestrians do not have to worry about immediate collisions.

To derive analytically the trajectory ®rk(t) from the global expression for
®Fk is almost

unfeasible. Nevertheless, one can run computer simulations to describe its behavior under

convenient circumstances. The social force is sufficient to reproduce lane formation when

the density of agents is high enough [262]. In figure 4.1 a), one can observe the self-

organization of the system onto that state, where the pedestrians flow is maximized in

comparison to a situation where the lanes are not formed. With the lanes structure, most

collisions and reorientations are suppressed, allowing the pedestrians to move closer to

their isolated ideal velocity. Other similar works have reported the clogging when the

pedestrians are forced to go through doors or small channels and also movement waves

that impacts into the collective dynamics (see figure 4.1 b)).

The social force framework is not the only way to describe pedestrian dynamics. It can also

be done in terms of a cellular automata [264, 265]. In this case, the space is discretized

and each pedestrian is assumed to occupy one single cell of the corresponding lattice. The

interactions between individuals are thus introduced into the computation of the jump

probabilities. As one can observe, this procedure is analogous to the one developed in

Chapter 3.

4.1.2 Repulsive term proposals

The lane formation or the jamming patterns can be attributed in the case of humans

to a complex decision-making based on visual information and subsequent prospection.

However, simple rules have been proved to be sufficient to make those patterns emerge, as is

the case of the Vicsekmodel for swarming dynamics [266, 267] or lattice-gas generalizations

[268, 269].

Despite all this, the heterogeneity of models used nowadays to generate such flows/dynam-

ics sometimes goes against the possibility of finding general and far-reaching conclusions.

So, existing models/works can sometimes provide different or even contradictory con-

clusions [270]. Works aimed at providing unified frameworks and/or at revealing the

common properties of these approaches are then convenient to promote understanding

and theoretical research within the field [271].

Within this context, a valuable insight has been recently provided by Karamaouzas et al
[272]. In their work, they have proposed an scheme to derive an inter-pedestrian force from

experimental data. By analyzing 1500 trajectories of pedestrians in outdoor environments

they found consistent evidence for an effective potential of interaction V(τ) between pairs,

which was found to depend only on the time-to-collision τ between the individuals and

not on the interparticle distance (as in the social force).

In addition, the time-to-collision concept is in line with the prospection of future outcomes

as one of the main driving forces for intelligent agents, as happens with the Causal Entropic

Forces [146, 273] discussed before in Section 1.5. Through cognitive mechanisms, the
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pedestrian predicts the next collisions and respond accordingly (adapting its movement to

avoid them).

In general, one can expect that bidirectional flows or lanes emerge from the tension between

pair interactions and the existence of subpopulations that have preference for moving in

opposite directions (representing the target or goals of the pedestrians). When the density

of individuals ρ is large enough, the pedestrians freedom of movement gets reduced in a

disordered medium due to collisions. The organization in lanes under these circumstances

allows them to avoid a large part of those collisions and facilitates to move according to

their targets.

In this Section, we explore numerically if the interaction mechanism by Karamouzas et al
[272] based on the τ-space could represent a framework compatible with the large variety

of inter-pedestrian interactions that can be found in the literature. More concretely, we

explore if those inter-pedestrians interactions, which commonly depend on the distance

between pedestrians and their velocity, can be mapped to a general interaction in the

τ-space that is responsible of the pedestrians patterns.

We consider in the following an agent-based system where the dynamics of the agents is

governed by a force

®F � ξ(®vp − ®v) + ®F(sa). (4.3)

Here, the first term accounts for the preference of each individual to maintain its preferred

velocity ®vp
(denoting ®v as the actual velocity) with a certain intensity that we call the

stubbornness, ξ. The value of ξ is strictly positive so that the first term acts as a restoring

force to reach the preferred velocity (similar to the first term in equation 4.2). In order

to generate bidirectional fluxes we assume two different subpopulations with the same

number of agents each, whose preferred velocities are the same in modulus but have

opposite directions. In particular, to avoid spurious effects in the simulations we sample for

each agent a stochastic preferred speed from a Gaussian distribution with mean 〈vp〉 � 1.3
m/s and standard deviation σv � 0.1 m/s. These specific values are in agreement with

those used in [272] and similar works on pedestrian dynamics [274, 275].

On the other hand,
®F(sa)

stands for the pair (self-avoiding) interaction between agents. For

the sake of completeness, we propose to compare the results for three rules/mechanisms for

®F(sa)
based on completely different grounds. The goal, as exposed before, is to understand

the origin of the interaction in the τ-space found in [272] and howuniversal such interaction

might be.

i) Repulsive interaction The first proposal we will study consists of a more ’physical’ pair

repulsive interaction in the radial direction, F(sa)
®rep
∼ r−k

(where r is the distance between
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pairs of pedestrians), with k > 0. We introduce a repulsive pair energy which is a function

of the distance r between the agents,

®F(sa)
rep � −A

rk
®ei j , (4.4)

where A > 0, ®ei j is a unit vector in the direction joining the pair of interacting agents, and

the distance r is measured in units of the pedestrian’s diameter, so r � 1 corresponds to

the distance between two adjacent agents. The parameter k regulates the decay of the force,

so implicitly it determines the range of scales where its effect is relevant, with the limit

k →∞ reproducing hard-disk interactions with a characteristic disk size A1/k
. In this case

the effect of F(sa)
rep is to pull all the individuals apart, regardless of the fact that they are

moving forward to a collision or not.

Figure 4.2: Representation of the differences between the interactions based on the distance r (left) and those in the
τ-space (right). The arrows represent the relative velocity of the agents respect to the orange agent at the origin. The
individuals filled with solid blue are the only ones contributing to interactions with the orange one (it is, in the second
case only those for which a finite and positive τ can be defined).

ii) Time to collision interaction The second one corresponds to the effective potential

empirically obtained in [272], this is, a repulsion in the time-to-collision (ttc) space,

F(sa)
ttc � −∇Vttc, with Vttc ∼ τ−2

. This time τ can be explicitly defined in terms of the relative

velocity ®vr and the relative position r between two given particles,

τ �
−®r ®vr −

√
(®r ®vr)2 − | ®vr |2(|®r |2 − D2)
| ®vr |2

. (4.5)

The rule reads then

®F(sa)
tcc � −∇(kττ−2e−

τ
τ

0 ), (4.6)
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with kτ > 0, τ0 > 0, and D corresponding to the agent’s diameter.

The potential so defined only applies to agents moving forward to a collision, such that

τ for that pair can be defined and is positive. Then, pairs for which a positive value of τ
cannot be found are considered as noninteracting agents. As a result, the set of agents

interacting with a given one is a dynamic object which is updated continuously throughout

the simulation (see figure 4.2). The exponential term is used as a cutoff to block the effect

of outermost collisions, so introducing the idea that agents possess a characteristic radius

of perception (τ0, defined in the τ-space). This idea of a finite perception horizon has been

explored before during this thesis: in Chapter 1, Chapter 2 and Chapter 3, the walkers

could prospect up to a distance dp . Both situations correspond to different manners of

introducing those perception limit, either in the real space or in the τ-space.

iii) Heuristic rule Finally, as a third case, F(sa)
heu

, we consider a nonphysical (heuristic) rule

which has been found to reproduce most features of collective behavior in pedestrians

[276]. This rule is based on recomputing continually the direction of motion in order to

maximize at each step the distance that the agent could travel without colliding with other

agents. So, each agent samples its possible future trajectories by simulating internally (with

a time horizon tm) where it will reach by moving in a given direction (characterized by an

angle α) for some fixed time, provided that the other agents are assumed to go onmoving in

their present direction. Again, a limit of perception is introduced to the algorithm through

the parameter tm . After sampling for a range of values of α (up to maximum αmax , to avoid

sudden or extreme changes of direction) the agent will choose the one that maximizes

the length covered d (assuming that all individuals maintain their current velocity and

direction of movement). The minimization is done according to the following equation

d(α) � d2

max + f (α)2 − 2dmax f (α) cos(α0 − α), (4.7)

where dmax corresponds to the maximum distance that would be covered without obstacles

in the time horizon tm and α0 corresponds to the angle of the target. After the election,

all the agents reorient synchronously and the internal simulation starts anew. A visual

representation of the algorithm can be seen at figure 4.3. The mechanism again resembles

the prospection mechanisms explored before.

There is a second rule, which determines the walking speedmodulus after the reorientation.

This is introduced in order to maintain a certain time to collision between the agent and the

obstacle in the chosen walking direction [276]. For this, we define a minimum time τmin

such that times-to-collision are forced to stay always below τmin by reducing adequately

the speed of the agents. That speed is then computed at practice as v(t) � min[v , dobs
τmin
]

where dobs is the distance between the agent and the first obstacle in the desired direction

α at that time step and v corresponds to the modulus of the current velocity.
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Figure 4.3: a) Schematic guide of a pedestrian p1 facing three other individuals and trying to reach the destination
point O1, which is marked in red. The blue dashed line corresponds to the perception limit. b) Illustration of the same
situation, as seen by pedestrian p1. c) Abstraction of the scene by a black and white visual field. Here, darker areas
represent a shorter collision distance. d) Graphical representation of the function f (α) reflecting the distance to collision
in direction α. The left-hand side of the vision field is limited by a wall. Pedestrian p4 is hidden by pedestrian p2 and,
therefore, not visible. Pedestrian p3 is moving away, so a collision would occur in position p

′
3
, but only if p1 moved

toward the right-hand side. The image has been taken from the original article [276].

4.1.2.1 Implementation and technical details

For the first two interactions, the number of agents is fixed to N � 512, while for the

heuristic rule the number is fixed to N � 128 due to the computational cost of its simulations

(different time steps ∆t are also used in each case for the same reason, see below). The

simulation time for the repulsive and time-to-collision mechanisms (it is, F(sa)
rep and F(sa)

ttc )

scales as ∝ N2
, as they require to compute pair interactions. Instead, the heuristic rule

prospects into the future the different α paths. This algorithm implies a scaling time

t ∝ N2mαdm , where mα is the number of explored directions α in each evaluation of the

rule (fixed in our case to mα � 50), and dm � tm/∆t is the number of time steps in the

prospection. The agents are placed in a two-dimensional simulation box with density ρ
using periodic boundary conditions. The pedestrians are considered as disks of diameter

1. The agent mass is settled as m � 1. The Verlet algorithm has been used to integrate

the movement equations. The system is studied for different values of the density in the

range ρ � [0.05, 0.32], which is accomplished by fixing the number of individuals to a

certain value N and changing the box size L, given ρ � N/L2
). The parameters used for

the implementation of the self-avoidance mechanisms are as follows:

I The repulsive interaction (equation 4.4) is fixed to k � 4 (unless indicated otherwise),

A � 2.5 and ∆trep � 0.001.

I The time-to-collision potential (equation 4.6) is fixed to k � 1.5, τ0 � 10 and

∆tttc � 0.005 according to [272]. The τ0 value is chosen in such a way it will not

affect the dynamics in the scaling region.
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I The heuristic rule is fixed to τm � 0.5 and dmax � vi tm , with tm � 5, αmax � 75
◦
and

∆theu � 0.05, according to [276].

4.1.3 Pedestrians phase diagram

First, we simulate the dynamics of a large number of pedestrians as a function of the stub-

bornness to follow their goal or preferred direction of motion. Numerical implementation

of the multi-agent system identifies, as expected, the existence of a phase transition for the

three mechanisms i), ii) and iii) from a disordered state to lane formation as a function

of the values of ρ and ξ. To characterize this transition we use the order parameter

φ � 〈cos(θ)〉, (4.8)

where θ is the angle between the actual and the preferred velocities (this is, between ®v and

®vp
) and the average is carried out over all the agents in the system. So, φ→ 0 corresponds

to the disordered state in which individuals cannot follow its preferred direction and spend

their time avoiding collisions in all directions, while φ→ 1 represents the case where the

agents are able to follow its desired direction of motion by adopting a collective pattern

with alternate lanes in one direction and the other.

Figure 4.4: Phase diagram of the order parameter φ for the three different mechanisms of self-avoidance as a function of
the density of the system ρ and the stubbornness ξ. The repulsive interaction is fixed to k � 4. For the sake of clarity, a
snapshot of the system is given both for the ordered and disordered states for the time-to-collision interaction.
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Figure 4.4 confirms that the three mechanisms of self-avoidance exhibit qualitatively a very

similar behavior for the order parameter φ at the stationary state. Low stubbornness and

high densities promote the disordered phase, while for high stubbornness and low densities

the system self-organizes into bidirectional lanes. In the disordered state the difference

between the actual direction of motion and the preferred one is relatively homogeneous in

(0, π). We can plot the probability distribution p(θ) of angle θ to visualize this (Fig. 4.5,

left). For the case of lanes, on the contrary, most of the individuals move in their desired

direction and then the probability distribution becomes clearly peaked at θ � 0 (Fig. 4.5,

right). Additionally, we observe how the heuristic mechanism exhibits a larger probability

for large deviations in the lane state than the other interactions; this is due to the intrinsic

properties of the algorithm, which allows larger reorientations provided they satisfy the

maximization of the traveled distance, as explained above.

Figure 4.5: Probability distribution of the relative angle θ. The left image corresponds to ξ � 0.025 and the right image
for ξ � 2, with ρ � 0.14 in both cases. The blue squares correspond to the repulsive interaction (k � 4), the red circles
correspond to the time to collision interaction, and the orange triangles correspond to the heuristic rule.

4.2 Universal inter-pedestrian interaction

4.2.1 Structure analysis

To understand in greater detail the properties of these two phases, we next study the spatial

distribution of the agents in stationary conditions through the radial distribution function
g(r) from the simulations using the three self-avoiding mechanisms mentioned. As in

classical fluids, g(r) here compares the density of interacting agents at a distance r with the

density obtained for a non-interacting system, with g(r) → 1 as r →∞. The corresponding

results are presented in Fig. 4.6. Despite some qualitative differences found due to the

different nature of the self-avoiding mechanisms, we observe that the results are relatively

consistent with those from the classical Ornstein-Zernike (OZ) approximation for fluid

systems [277], which predicts an asymptotic decay G(r) → r−0.5
(with G(r) ≡ g(r) − 1)
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when the system is far from the critical region where the phase transition occurs. The

oscillatory behavior observed in figure 4.6 is also characteristic from similar statistical

analysis on fluids [278], caused by the underlying periodic structure of the system. All the

points of the phase diagram that are far from the critical region satisfy approximately the

OZ scaling while those close to the critical region (separating disorder from lane formation)

exhibit a much slower asymptotic decay. In consequence, g(r) cannot be easily used to

discriminate the particular state (disordered vs lanes) in which the system is.

Figure 4.6: Comparison between ln[G(r)] as a function of the radial distance r over the phase diagram. The black
line corresponds to the OZ approximation (∼ ln G(r) ∼ −0.5 ln r) which is introduced for visual comparison. The
repulsive potential (k � 4) curves (left) correspond to a) ρ � 0.32 and ξ � 0.025 (disordered phase), b) ρ � 0.05 and
ξ � 0.5 (critical region) and c) ρ � 0.14 and ξ � 2 (lanes phase). The time to collision curves (center) correspond to
a) ρ � 0.32 and ξ � 0.025 (disordered phase), b) ρ � 0.32 and ξ � 0.1 (critical region) and c) ρ � 0.32 and ξ � 4

(lanes phase). The heuristic curves (right) correspond to a) ρ � 0.14 and ξ � 0.025 (disordered phase), b) ρ � 0.08 and
ξ � 0.5 (critical region) and c) ρ � 0.14 and ξ � 4 (lanes phase).

Going further, we reproduce the analysis in [272] by showing how g(r) gets modified if

the data is split into three parts according to the relative speed between pairs of individuals

i and j, vr � | ®vi − ®v j |. We find that individuals approaching each other with slow (vr < 1),

intermediate (1 < vr < 2) or fast (vr > 2) relative speeds exhibit very different behaviors in

all cases (Fig. 4.7, left column).

The authors in [272] concluded that the differences observed in g(r) for different values
for vr , reflect that such function is not a very appropriate descriptor for capturing the

effective interactions within the crowd or, stated in different words, the collective statistics

of the system does not apparently yield a consistent behavior in the physical r space of the

distances between individuals. To explore here this idea we introduce a new magnitude

g∗(r), defined as the radial structure function but only for pairs of colliding agents, which

are those for which τ is finite at that time step (see Fig. 4.2).

The splitting of g∗(r) into different values of the relative velocities still shows that the

results are strongly dependent on vr (Fig. 4.7, middle column), albeit the differences get

reduced for the mechanisms F(sa)
ttc

and F(sa)
heu

(since these two interaction rules only apply to

particles which are about to collide). Instead, for the rule F(sa)
rep

, which applies to all pairs
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of agents, the results found are almost the same as those for g(r). So, still the statistical

properties of the system are badly captured by the descriptor g∗.

Figure 4.7: Radial and partial distribution functions g(r), g∗(r) and g†(τ) when split into different regimes according
to the relative speed between pairs vr . Results are shown for ρ � 0.14 and ξ � 0.1, which corresponds to a disordered
state. The repulsive interaction is fixed to k � 4.

The intuition, however, gained from the results in [272] is that the dynamics of self-

avoidance should rather translate into a robust behavior within the τ-space, as the events
with low τ are the ones which must be avoided first. So, we finally introduce g†(τ), which is

the equivalent to g(r) but on τ-space, i.e. the density of agents found at a time-to-collision

τ divided by the density we would find at the same τ for the case of non-interacting

agents. The corresponding results are shown in Fig. 4.7 (right column). The idea that

interactions should occur in the τ-space is of course introduced by hand in our rule F(sa)
ttc

,

and also implicitly in the rule F(sa)
heu

, so when we explore the dynamics in the τ-space then
we observe that the collapse between the three curves (for low, intermediate and high
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relative speeds) is almost perfect. However, we unexpectedly find that the collapse between

the curves is considerably improved for F(sa)
rep

too, though in principle this self-avoiding

rule has nothing to do with τ. This suggests the existence of an underlying phenomena

enhancing the relevance (at least at the level of how collective structures emerge) of the

τ-space whenever self-avoidance and bidirectionality effects drive the system dynamics.

Note that the results in figure 4.7 do not necessarily mean that pair interaction occurs in the

τ-space (which is not the case for our repulsive potential, actually) but that at a collective

level this is the effective situation produced.

Figure 4.8: Radial and partial distribution functions g(r), g∗(r) and g†(τ) when split into different regimes according
to the relative speed between pairs vr . Results are shown for ρ � 0.14 and ξ � 4, which corresponds to a lane state. The
repulsive interaction is fixed to k � 4

For the sake of completeness, we show in figure 4.8 the equivalent to the partial distribution

analysis (Fig. 4.7) but now for the lanes state. The splitting in different ranges of vr in

this case has to be necessarily different to that for the disordered state due to the lack
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of intermediate relative velocities when the lanes are formed. All agents will be moving

either leftwards or rightwards (according to the preferred direction of each). Then relative

velocities are either very low (vr < 1, for agents in the same lane) or very large (vr > 2, for

agents in lanes with opposite directions). For this case, there is no statistics for intermediate

regime 1 < vr < 2 used in figure 4.7, as the agents are either are flowing in one direction or

another. Additionally, we often observe that particles persistently moving in the same lane

and very close to each other (so, with τ→ 0) artificially dominate the statistics, so these

have been removed when computing g†(τ) in Fig. 4.8.

The collapse observed in the distribution g†(τ) for different vr intervals confirms the

behavior already reported for the disordered phase (note that now even the repulsive

case satisfies the collapse to a great extent). This further supports the existence of an

underlying phenomena enhancing the prominence of the τ-space whenever self-avoidance

and bidirectionality effects drive the system dynamics.

4.2.2 Effective interaction in the τ-space

Next step is to derive an effective potential of interaction between agents in the τ-space.
For the classical theory of fluids, the reversible work theorem [279] in the r space links

the radial distribution function g(r) with interaction energy between pairs in the form

V(r) ∝ ln[g(r)]. Using an analogy with this classical result, the τ-space also admits an

equivalent derivation. Here we provide a formal derivation of the relation between the

distribution function g†(τ) and the effective potential V(τ). The derivation is a formal

adaptation of the classical one to the case where the phase space is assumed to be defined

by the times-to-collision between pairs of individuals, in agreement with the ideas stated

throughout the previous paragraphs. Since the derivation works in the τ-space (not the real
spatial space) then the concepts of force, work and potential must necessarily be interpreted

in an effective (non-physical) way. The concept of thermal equilibrium is meaningless

within this context. However, the idea of a canonical (Boltzmann-like) statistics is still

attainable using an information-theory perspective in virtue of the Maximum Entropy

principle (see Chapter 1). In particular, if one assumes that our knowledge about the system

is reduced to the average of an effective potential V(τ) in the τ phase space then the MEP

yields immediately such a Boltzmann-like statistics.

Within this context, the derivation works as follows. Consider a system of N particles

where V(τi , j) represents an effective pair interaction between individuals i and j, with

τi , j the time-to-collision between them. The global effective potential in the system reads

then VN � VN(τ1,2, τ1,3, . . . , τN−1,N) �
∑

i, j V(τi , j). The corresponding phase space then

consists of the N(N − 1)/2 times-to-collision resulting from all possible pair interactions.

We introduce now the magnitude ∇τ1,2VN ; for a classical conservative potential in the

®r-space this would correspond to the force between particles 1 and 2, so one could be

tempted to denote this magnitude as a generalized force. However, we will rather avoid

such notation (i) to avoid misunderstandings coming from comparing our derivation to the

classical one, and (ii) because that magnitude does not have dimensions of force, actually.
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If one averages this magnitude in the Boltzmann-like statistics over the rest of coordinates

of the phase space (this is, all except τ1,2) one has

〈
∇τ1,2VN

〉
�

∫ (
∇τ1,2VN

)
e−βVN dτ1,3dτ1,4 . . . dτN−1,N∫

e−βVN dτ1,3dτ1,4 . . . dτN−1,N
. (4.9)

This can be rewritten as

−
〈
∇τ1,2VN

〉
�

1

β
∇τ1,2

(
ln

∫
e−βVN dτ1,2dτ1,3 . . . dτN−1,N

)
. (4.10)

Next, if we define the distribution function g†(τ) as the probability that the individuals

1 and 2 will be found to have a particular value τ1,2 � τ then we expect within our

Boltzmann-like scheme that

g†(τ) ∼
∫

e−βVN dτ1,3dτ1,4 . . . dτN−1,N (4.11)

is satisfied. Accordingly, we can write

−
〈
∇τ1,2VN

〉
�

1

β
∇τ1,2

[
ln

(
g†(τ)

) ]
, (4.12)

which is valid independently of the specific value of the normalization constant implicit

in (4.11), since that constant is independent of τ1,2. Next, we observe that an effective pair

potential V(τ) between particles 1 and 2 can be introduced as

V(τ) ≡
∫

0

τ

〈
∇τ1,2V

〉
dτ1,2 (4.13)

Putting this expression together with (4.12) one obtains

Vτ � −
1

β
ln

(
g†(τ)

)
(4.14)

after replacing the integration limits, and considering V(τ � 0) � 0 to ensure that the

behavior of the effective potential is meaningful in the τ-space.

We warn that the derivation we have presented holds in a non-standard phase space and

by using Boltzmann statistics from an information-theory perspective, without introducing

any reference to thermal equilibrium in the classical sense. So that, the effective potential

considered must really be interpreted as an effective magnitude describing how statistics

work in the τ-space, and therefore one is not allowed to interpret the spatial gradient of

V(τ) as a real physical force between particles.
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Figure 4.9: Effective interaction V(τ) obtained from g†(τ) (see Eq. (4.14)) for ρ � 0.14 in the different states of the
phase space (the top image for ξ � 0.025 and the bottom image for ξ � 2).

The effective potential V(τ) obtained from the model is presented in Fig. 4.9. Surprisingly,

we find that the three self avoiding mechanisms collapse for intermediate times-to collision

(which is the significant region where most of the pair-pair interactions occur) into a

common power-law relationship V(τ) ∝ τ−γ, with γ ≈ 2 for the disordered state and

γ ≈ 1 for the state with lanes (in Table 4.1 we show the results obtained from fitting

the curves presented in Fig. 4.9). This common scaling is then apparently independent

of the self-avoiding mechanism, and would be a direct consequence of the bidirectional

nature of the flow considered. Note also that, contrary to what happened for the radial

distribution g(r) (Fig. 4.6), the g†(τ) and the corresponding V(τ) show a different decay

for the disordered phase and the case with lanes, so g†(τ) can be effectively used to

discriminate statistically between these two states.

According to Fig. 4.5 (left panel), in the disordered state collisions can be produced in any

orientation and the events corresponding to large τ are supressed by the shielding of closer

events. The decay exponent γ takes then a value of 2, in agreement with the power-law

proposed for pedestrians in [272]. While this is to be expected in the time-to-collision

interaction F(sa)
ttc

by definition, there is no apparent reason to justify why the same behavior

emerges for F(sa)
rep

and F(sa)
heu

. On the other side, the effective potential in the lane state exhibits

a completely different behavior. The homogeneity in θ is there completely broken (Fig. 4.5,

right panel) due to the two preferred directions of movement and most of the collisions

are produced in the frontiers between opposite lanes. There is not shielding effect in this

case and, as a consequence, the system is driven by a slower interaction decay, with γ ≈ 1.

For the moment it has not been possible, however, to find an analytical justification for the

specific values of γ emerging in each state; this remains an open question.

From the findings in figure 4.9 we obtain that the same effective potential, if computed

through Eq. (4.14) as done here, could emerge from a very wide range of interactions

between the agents. This suggests that the result V(τ) ∼ τ−2
experimentally reported in
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γ (disordered) γ (lanes)

Repulsive k � 2 2.2 ± 0.3 1.03 ± 0.06

Repulsive k � 3 2.13 ± 0.09 1.01 ± 0.04

Repulsive k � 4 2.07 ± 0.09 0.99 ± 0.05

Time to coll 2.09 ± 0.12 1.08 ± 0.07

Heuristic 1.97 ± 0.09 1.04 ± 0.06

Table 4.1: Fit for the power law effective interaction V(τ) obtained from g†(τ) (see Eq. (4.14)) for ρ � 0.14 in the
different states of the phase space (the left column for ξ � 0.025 and the right column for ξ � 2).

[272] is not necessarily determining the actual rule of interaction (or self-avoidance) used

by pedestrians, but it could rather be the manifestation of an overall dynamics exhibited
by a wide range of systems combining self-avoidance and bidirectionality. In particular,

the results in figure 4.9 confirm that it is not possible to discern whether pedestrians use a

time-to-colision potential (as in [272]) or a heuristic rule of path maximization (as in [276])

only from examining the shape of the distribution function g(τ), but additional analysis
would be required. Still, the scaling V(τ) ∼ τ−γ will presumably work as a useful effective
rule in bidirectional flows for different situations of interest. Such effective rule could be of

great utility in order to simulate bidirectional fluxes without caring too much about the fine

details of the interactions, and so it can be used as a toy approximation to computational or

analytical works in the field of pedestrian dynamics.

Concluding remarks

I The interplay between individual preferences and the tendency to avoid collisions

seems to be an important driver of collective organization for pedestrians. That

translates into the formation of lanes (for strong directionality and low densities

of pedestrians) independently of the nature of interactions between individuals.

I Alternative mechanisms of interaction collapse into an universal effective behavior

in space of time-to-collisions. That effective description allows to discriminate

between different levels of organization (lanes versus disorder).
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Among all living organisms, insects exhibit a broad set of

collective patterns [280]. Locusts [281] or crickets [282]

synchronize their movement, creating polarized swarms or

trails, respectively. Through this social organization, the
individuals can improve their performance in many different

tasks, such as food intake or nest allocation [283, 284].

Ants represents a paradigmatic example for both social or-

ganization and collective movement patterns. Ants have

been shown to perform collectively many tasks, such as

collecting, processing and distributing resources, or find-

ing, building and defending their nests [285, 286]. Either

through pheromone deposition or antennae contacts ant

colonies can adjust: (i) the recruitment efforts on different

tasks according to environmental fluctuations [287–289], (ii)

the structure and intensity of foraging trails according to dif-

ferent types and quantity of resources [252, 290], and/or (iii)

the amount of cooperative transport required [291]. These

collective strategies meets the needs of the collective (colony)

rather than individual ones. A superorganism is defined

as a coordinated and coherent type of collective behavior

performed by cognitively-limited interactive agents that en-

sures the survival as a whole over the individual level [292,

293]. Through this strategy, cognitive-limited organisms can

provide an adapted (intelligent) response to the contextual

circumstances, which fits perfectly the ants performance.

So far many studies of collective motion have focused on

informed-naive or leader-follower relative positions and be-

havioural relationships [294]. The multi-walker and pedes-

trians scenarios are explored in Chapter 3 and Chapter 4

according to this idea. In a superorganism, the interactions

between individuals should satisfy selection pressures and

adaptability at the collective level rather than at the individ-

ual level.

Within this context, statistical physics provides powerful

toolsets to ecologists to understand the theoretical founda-

tions of emerging phenomena [85, 295]. However, the
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characterization of the space occupancy dynamics has been far less studied. This lack of

knowledge is particularly relevant when trying to assess the concept of superorganism.

How coordinated groups/superorganisms move across the different regions of the space,

for example to explore for and exploit food spots or nests, is a fundamental question to be

answered.

The hypothesis we will pursue here is that collective and social organization within groups

(and superorganisms, in particular) should translate into a non-trivial spatial use and, as a

result, in complex space occupancy patterns. Then using spatial sites (not organisms) as

the main units of interest and applying statistical physics tools at that level would represent

a meaningful way to elucidate the existence of such complexity.

5.1 The Spin-Glass approach

5.1.1 State-based modeling

In the previous Chapters, we have described the collective dynamics in systems with

multiple individuals in terms of the interactions between those individuals. In Chapter

3, the walkers interact through a shared energetic landscape. In Chapter 4, pedestrians

interact between them through effective forces, making emerge non-trivial patterns such as

lane formation. This modeling method is commonly called agent-based modeling [296,

297]. However, multi-individual systems can be described in alternative ways. Some of

them even put away the notion of individual and put the focus on a more statistical or

effective description [298, 299].

One proposal in that direction came from the field-based models. In there, the individuals

are subsituted by an effective field. The field represents an averaged density, where the

individual dynamics is substituted by this averaged treatment [300, 301]. Among a broad

range of examples, the field models have been used to describe the evolution of bacterial

growth [302], the prey-predator populations [303, 304] or the role of the morphogenesis

in the brain development [305].

Despite both methodologies presented above represent the two typical approaches to

describe collective behavior, one can find other mechanisms that can be useful to char-

acterize multi-individual systems (see figure 5.1 for a comparison between the different

methodologies).

State-based modeling represents a paradigmatic approach which is gaining attraction in

the recent years. There, one focus on the possible configurations (states) that the system

can take, known as the phase space. Based on this, one builds again an energy landscape,

associating an energy E for each one of those states. The system evolution can then

be modeled as a unique agent moving through that energy landscape, as in the f (E)
framework.
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Figure 5.1: Schematic depicting of agent-based (left), field-based (middle) and state-based modeling (right). state based
modeling. The individual dynamics are substituted by the dynamics of a global agent (each position of this agent
representing a collective state of the system) trough a given energetic landscape.

The exploration of that energy landscape provides estimators of the different properties of

the system and localizes the more stable (minimal energy) states the system will tend to

move to. State based models have been shown to capture fundamental patterns of collective

phenomena such as neural self-organization [306], human communication [307] or insect

foraging strategies [308].

In the following Sections, we will use a state-based model to describe the collective foraging

patterns of ant colonies.
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5.1.2 The network representation

Networks have been widely used in biology [309, 310] at many different levels: prey-

predator interactions [311], extinction dynamics in food webs [312] or hierarchical

organization in social animals [313, 314] are just a few examples. For these, the network

nodes can be identified as the different species inside the same ecosystem (this can be

useful to study species or population survival and functioning within ecosystems), or as

the individuals within a given group (when the aim is to understand connections in a

hierarchical group).

Within the approachwewill present here, however, nodes represent biologicallymeaningful

spatial regions. In Fig. 5.2 a) and b) we illustrate the idea that even for the case of

relatively homogeneous landscapes, the environment can be always properly discretized

or partitioned according to some case-specific criterion. We stress that such kind of

discretization is convenient in many biological studies, and can be exploited at different

levels. This happens for example when using the concept of patches in fragmented habitats

[315], but also in metapopulation theory (where a population is fragmented in several

groups) [316, 317], in the context of polydomy (where a colony is established acrossmultiple

nest sites) [318], or in theoretical approaches as cellular automatas [319], to name a few.

Figure 5.2: Illustrative scheme of our approach to collective space use. (a) The biologically relevant regions of the space
are considered as (b) nodes of a network structure. (c) The presence or absence of individuals at node i for a given time
t is then understood as a binary signal Ii(t) representing occupancy of that region (with Ii(t) � 1 if occupied, and
Ii(t) � 0 if empty).

In order to characterize occupancy at each node of the spatial network wewill assume that a

time-discrete occupancy signal I(t) � I1(t), I2(t), I3(t), ..., IN(t) is available experimentally.

Here, Ii(t) (with i � 1, 2, ...,N) will be taken for simplicity as a binary variable that tells

us simply if the node i is occupied (Ii(t) � 1) at time step t or not (Ii(t) � 0), with N the

total number of nodes in the spatial network. We note that more complicated versions of

the approach could be proposed by relaxing this two-state (empty/occupied) hypothesis,

while here we will focus on this case to keep the notation and analysis simple.

The overall signal I(t) (Fig 5.2 c) then carries the information about the occupancy patterns

for a group of organisms. If the individuals within that group behave independently,

then occupancy patterns at each site, or node, will be independent of each other. On

the contrary, one should expect that in a superorganism-like system (that is, for strongly
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organized groups exploring space according to some interaction rules and a global strategy)

correlations between sites will emerge. Accordingly, a minimal model capturing such

possible correlations would be a valuable tool. Furthermore, for predictive purposes

and subsequent testing, such approach should be able not just to identify the statistical

properties of occupancy signals I(t), but also to (i) generate new artificial realizations

of those occupancy patterns and (ii) be flexible and meaningful enough to allow for

introducing variations in the model as a way to inquire or predict its behavior under

alternative conditions.

5.1.3 The Spin-Glass Hamiltonian and its construction

Spin glass models can be seen as a generalized version of the ubiquitous Ising model from

statistical physics. While the Ising model was originally aimed at deriving macroscopic

properties of magnetic systems from elementary pairwise interactions, it has been subse-

quently extended in many different ways. In particular, introducing randomly distributed

intensities for pairwise interactions has become a paradigm for frustrated systems, spin

glasses being a recurrent example. This idea has also pervaded many other areas of

research, including biology, up to the point that recent works [320] sustain that the physical

foundations for the origin of complexity (and so, collective behavior) in biology can be

outlined within that framework of frustrated systems and spin glasses.

Following the usual formulation of Ising-like systems, we will consider N interacting

units or spins (which in our context correspond to the sites within the spatial network

structure) whose individual dynamics is described by a binary signal si(t), with si(t) � ±1,

so the overall state S of the system is characterized by a specific realization of each, it is

S � {s1, ..., si , ..., sN}. The spins are assumed to interact through pairwise (both short-range

and long-range) interactionswith intensities Ji j , and are subject to external fields of intensity

hi , such that the resulting Hamiltonian for the spin glass reads

H(S) � −
N∑

i�1

hi si −
∑
i< j

Ji j sis j , (5.1)

where the second sum extends over all possible pairs of spins in the system.

Under equilibrium conditions, the spin-glass system is expected to satisfy a Boltzmann

distribution, so

P(S) � 1

Z
e−βH(S), (5.2)

must hold, where Z represents a normalization factor and β � 1 will be used from now on

for the sake of simplicity.

This Hamiltonian also admits an interpretation from information-theoretic grounds (see

[321] for a comprehensive discussion). In particular, it corresponds to the energy functional

that minimizes redundancy (or, equivalently, maximizes informational entropy) for mod-

eling the system, provided that the only information available are the time-averages of
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the spins (it is, 〈si(t)〉) and their pairwise time correlations (〈si(t)s j(t)〉). For this reason,
the spin-glass model is typically employed for assessing whether complex systems can be

possibly characterized or not only through pairwise correlations. Those correlations Ci j

between pairs read

Ci j �

∑
t(Ii(t) − 〈Ii〉t)(I j(t) − 〈I j〉t)√∑

t(Ii(t) − 〈Ii〉t)2
∑

t(I j(t) − 〈I j〉t)2
, (5.3)

and they encode information about how the nodes are related between them.

This idea has been already used, for example, to study the spike dynamics of different

kinds of neuron groups [306]. The spike/silent periods characteristic of these systems can

be mapped into a binary signal representing the activity of each neuron, such that activity

patterns of a group of neurons then provide information about their functional response

and connection patterns. Furthermore, in the recent years there has been a growing interest

in exploring the applicability of the spin-glass approach to different biological and social

systems, including social human and animal connections [307, 322] or financial markets

[323, 324].

To construct the Hamiltonian for the space use scenario one has to find the set of parameters

h and J that provide the best fit to the statistical properties of the occupancy signal. This

procedure is called an inverse problem, where one infers the model parameters from the

data instead the common procedure of tuning manually the parameters to fit the data.

More concretely, when one uses the Hamiltonian in equation5.1, the process is called the

inverse Ising problem.

One can define the distribution of collective states Pexp(S), where S corresponds to

S � {s1, ..., si , ..., sN} and the label exp refers to the experimental data. The fitting

procedure is then defined as the process of fitting the h and J parameters that produce a

Psim(S) ∼ Pexp(S), where sim labels the distribution of states coming from sampling states

from the Hamiltonian obtained through simulations.

At the heart of many methods to reconstruct the parameters of the Ising model is the

maximum likelihood framework. It consists on estimating the parameters by maximizing

a likelihood function, so that under the assumed statistical model the observed data is

the most probable. One can demonstrate that this procedure is equivalent to finding

the parameters that minimize the Kullback-Leibler divergence [325] between the two

distributions Psim(S) and Pexp(S).

For two general probability distributions Q and P, the Kullback-Leibler divergence (DKL)

reads

DKL(P | |Q) �
∑

i
P(i) ln

(
P(i)
Q(i)

)
. (5.4)

It is a non-negative quantity and when the two distributions are identical, the divergence

is exactly DKL � 0. To find the J and h parameters that minimize that divergence, one
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commonly uses Monte Carlo simulations, where the divergence is progressively minimized

trhough stochastic simulations [326, 327]. During the stochastic simulations, the procedure

involves sampling the whole phase space of parameters. Note that the model contains N
parameters of type hi and N(N − 1) parameters of type Ji j , for a total of N2

parameters in

the system, where N is the number of nodes in the network. So that, the computational

cost of generating a distribution Psim(S) for each point of the phase space also scales as

∼ N2
with the number of spins in the network. The cost of this method to reconstruct the

parameters scales then as ∼ N4
, making it unmanageable for large networks.

An alternative methodology to fit the experimental data comes from the maximum entropy

principle. By using information theory and Lagrangian multipliers (see Chapter 1), the

maximum-entropy estimate has been proposed as the most unbiased estimate of the

unknown probability distribution compatible with the observed expectation values [121,

122] (see Chapter 1). If one does some assumptions, the MEP can provide semianalytical

expressions for the h and J parameters as a function of the experimental data. The mean-

field approach [328], the TAP reconstruction [329], the Plefka expansion [330, 331] or the

Sassek-Monasson expansion [332] are examples of those pseudo-analytical derivations.

Those expressions allow to derive the parameters instantaneously. In consequence, they

have been largely used in substitution of the maximum likelihood estimator when its

computational cost makes it unfeasible. On the other side, the assumptions one has to make

to derive those expressions may not be appropriate for some data.

Given the scaling ∼ N4
of the computational time required for the maximum likelihood

estimator, the system size becomes then the critical criterion to decide when to use that

method or the one based on semi-analytical expressions. During the next Sections we will

provide two examples where we infer the Hamiltonian parameters from the data coming

from ant colony experiments. The reduced size of the network (N � 8) used to describe

the first experiment (Section 5.2) will allow to use the maximum likelihood estimator to

derive the Hamiltonian parameters for that case, while for the second experiment, in which

N � 620 (Section 5.3), we will apply the semi-analytical method.

5.2 Foraging in a simple environment

To illustrate the application of the method presented in the previous Section to a real

situation, first we carried out a simple experiment on ant foraging under laboratory

conditions specifically designed to suit the spatial network approach in figure 5.2. We

expect this experiment to provide a direct measure/evidence of superorganism-like

behaviour in ants by a comparison between the spin-glass approach and the experimental

occupancy signal exhibited by the colony.
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5.2.1 Experimental method

We put a colony of around 100 workers of Aphaenogaster senilis (previously collected from

the Campus of the Universitat Autònoma de Barcelona) in a plastic nest together with

several eggs and larvae to keep them stimulated for working. The eggs and larvae were not

renovated, but they were left to grow and become adult during the experiment; while this

introduced some non-stationarity in experimental conditions, we note that the duration of

the whole experiment (25 days) was relatively short compared with the time required for

the ants to mature to the adult stage, so we expect that this bias had minimum effects on

the results. The colony nest was connected to a tree structure (figure 5.3) by a plastic tube

finalizing in eight different Petri dishes of 4 cm diameter. Each of these dishes (nodes) is

then connected to a spiral plastic tube, whose end is used as the resource area where food

for the ants is laid at the start of the experiment.

Figure 5.3: a) Experimental set-up, labelling from 1 to 8 the nodes representing the endings of the tree structure. The
black arrows indicate the plastic spirals where the food is laid. (b) Equivalent network representation of the experimental
set-up, assuming every node can interact with any other.

While such a ramified structure does not represent a very natural environment for foraging,

it provides an ideal opportunity to explore how the ant colony distributes their exploration

resources (scouts) in a discrete network environment. In particular, the eight Petri dishes

in the structure (which have different topological distances between them) will represent

from now on the eight ‘nodes’ (see figure 5.3 b)) in our network (see figure 5.2).

The experiment was carried out through daily trials of 90 min during 25 days (in June and

July 2018), which were recorded using a time-lapse camera at a frame rate of 1 Hz. During

the 90 min of the trial, ants were allowed to explore the structure starting from the nest.

Before each trial, the food was placed at some of the resource areas (dead-end spiraling

tubes) departing from the eight nodes. Food consisted of single small mealworm pieces, so

recruitment through pheromone was so avoided (previous studies on the recruitment rules

ofA. senilis have shown that this species uses group recruitment only if the amount/density

of food to be carried exceeds a critical value [333]). Foraging then was expected to rely on

memory and landmarks solely. At the end of the 90 min trial, we removed the remaining

food in case the ants had not collected it. The overall quantity of food received by the
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colony according to this procedure (about three pieces of mealworm per day, in average)

was enough to nourish the colony while still keeping it active for foraging.

The resource areas containing food at each trial were decided according to probability

rules. They were used as a control variable in order to evaluate the response of the colony

to induced resource heterogeneity. So that, for days 1–13 (that we will denote as Regime
A), half of the nodes (nodes 1, 4, 5, 8) had a high probability to contain food (50%), and the

other half (nodes 2, 3, 6, 7) had a lower probability (25%), while in days 14-25 (Regime B),
the probabilities were inverted (nodes with 50% probability turned to have 25%, and vice

versa). Figure 5.4 shows the 25 day profile of the nodes where food was laid before the

experiment (white and yellow nodes), and when was the food collected by the ants (white

nodes).

Figure 5.4: Food dynamics in the network nodes during the 25 days of experiment. Black cells correspond to nodes
where food was not present at that day, white regions correspond to nodes which contained food and it was picked up by
the ants, and yellow cells correspond to nodes where the food was present but it was not picked up by the ants during the
trial. The red line separates the regimes A and B used in our analysis.

We expected to observe changes in the occupancy patterns of the network as a result of

variations in the resource availability on the nodes from food regime A (days 1 to 13) to

regime B (days 14 to 25). Though it was not possible from the experimental design to assign

directly the changes observed in space occupancy pattern to the change in the resource

distribution (due to a mixture of effects present in the system, including memory and/or

habituation effects), we intended to check if variations in the external conditions driving

foraging could reflect into a change in the collective occupancy patterns, which we could

observe through our spin-glass approach. So, despite not controlling all the biological

forces that may govern the behavior at both regimes (A and B), we decided for convenience

to analyze them separately in order to quantify their differences.

5.2.1.1 Construction of the binary signal

For extracting the experimental data, we used our own video-analysis code (implemented

in the open-source software Scilab) to determine the presence or absence of ants in each
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one of the 8 nodes at each frame (as stated above, we considered a node i as occupied
whenever one or more ants are detected at that node). After the processing of the videos,

the complete dataset of 135000 frames was transformed into an occupancy binary signal

S(t). So, every frame was characterized by a set of 8 binary variables, for a total set of

2
8 � 256 possible states where the system can be found.

Without losing generality, in the following we will explore the statistics of occupancies

Ii(t) (which take values 0 or 1) from that of spins si(t) (with values +1 and −1) by means of

the mapping si(t) � 2Ii(t) − 1. So, given the experimental signal of node occupancies, we

can then immediately find the corresponding states S and their probability distribution

Pexp(S).

We studied the daily profile of the average occupancy 〈I〉t (which corresponded to the

occupancy at a given time averaged over the 8 nodes) during the 90 min of experiment (i.e.

5400 s). From this we found that, as expected, the dynamics during food regimes A and B
were significantly different (see Fig. 5.5 a) and 5.5 b) and the corresponding captions). At

the beginning of each daily trial, the ants were in the nest and it took some time (around

10 minutes) before the nodes were visited for the first time. Then the average occupancy

during this transient period reads 〈I〉t � 0. After that period, there was a tendency for 〈I〉t
to grow until it reached saturation in 20 or 30 minutes. When we analyzed by separate those

nodes where food had a higher (50%, orange line) or lower (25%, blue line) probability to

be laid, we observe that for regime A the ants were clearly visiting the nodes with more

food with a higher frequency (Fig. 5.5 a)). On its side, for regime B the ants performed a

seemingly homogeneous exploration of the nodes independently of the presence of food

(Fig. 5.5 b)).

For the sake of completeness, we can also show the daily average of the occupancy

throughout the 25 days of the experiments, labeled as 〈I〉d . From this analysis we reach

again very similar conclusions as for the 〈I〉t (see figures 5.5 c) and 5.5 d)). For the regime

A, the nodes with larger quantities of food showed higher occupancy, while for regime

B the colony carried out a more homogeneous exploration, independent of the quantity

of food. In any case, this daily average shows that the occupancy is highly fluctuating

throughout the days.

One can wonder if a high/low probability node classification corresponds to an adequate

splitting. With the purpose of answering this question, we analyze if the conclusions

extracted fromfigure 5.5 becomemodifiedwhen a different node classification is considered.

In this case, we group the nodes in terms of the actual presence (or absence) of food. One

can observe in figure 5.6 that the new node classification leads qualitatively tot the same

conclusions extracted from the high/low probability classification. According to those

results, it sounds reasonable to keep using in the following the high/low node classification

during the rest of the analysis.
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Figure 5.5: Averaged daily occupancy 〈I〉t for a) regime A (〈I〉ht � 0.48 ; σ2

I � 0.012 and 〈I〉 lt � 0.34 ; σ2

I � 0.004)
and b) regime B (〈I〉ht � 0.57 ; σ2

I � 0.004 and 〈I〉 lt � 0.57 ;σ2

I � 0.006). Averaged occupancy split into nodes
with high or low probability of containing food during c) regime A and d) regime B. Differences between the two
types of nodes are statistically significant (T − Student test) for the regime A (〈I〉hd � 0.48 and 〈I〉 ld � 0.34 ;
|Ts | � 4.70 > T95% � 0.0002) but not for the case B (〈I〉hd � 0.57 and 〈I〉 ld � 0.57 ;|Ts | � 0.11 < T95% � 0.46).

Figure 5.6: Averaged daily occupancy 〈I〉t for those nodes where food is present (red) or not (blue), for a) regime A and
b) regime B. Comparison of stationary (2700-5400 s period) values leads to (〈I〉 f

t � 0.50 and 〈I〉n f
t � 0.34) for the case

in a), so showing significant departures, while for case in b) we find (〈I〉 f
t � 0.60 and 〈I〉n f

t � 0.55), so much less
differences are obtained.



5 Collective organization in ant foraging 104

5.2.2 Simulation and fitting details

As we mentioned previously, the spin glass approach we have proposed requires a learning

or fitting process to determine the parameters hi , Ji j based on the inverse Ising approach.

Since in the experiments occupancy signals present a transient period until exploration of

the space is possible for the ant colony (Fig. 5.5 c) and 5.5 d)), only the stationary part of

the signal (period 2700s − 5400s) was used for the learning protocol. Learning or fitting

procedures for the regimes A and B are carried out separately in order to see how the

differences observed in the space-use dynamics between both reflect into the spin-glass

approach.

As the number of nodes in the network is small, one can use the maximum likelihood
estimator to fit the parameters. Given the experimental signal of node occupation, we can

find the corresponding distribution of states Pexp(S).

Figure 5.7: Probability distribution of states (the x-axis contains the 2
8 � 256 possible states) for the experimental data

and the spin glass approach for a) regime A and b) regime B. The insets show the same probability distributions in
logarithmic scale.

The fitting procedure works as follows. First, one sets an initial (random) set of parameters

h and J. Then, one runs a Monte Carlo simulation (MC) using acceptance rules in the

spin-glass Hamiltonian to generate a distribution Psim(S). After this, one proposes a shift

to a parameter Ji j or hi (chosen randomly) to a new value J∗i j or h∗i and simulates again

the spin-glass dynamics to obtain a new distribution P∗sim(S). At this point, one computes

the DKL(Pexp(S)| |Psim(S)) and D∗KL(Pexp(S)| |P∗sim(S)) divergences. If D∗KL < DKL (which

means that the new Hamiltonian reproduces more accurately the experimental data), the

shifted parameter J∗i j or h∗i is accepted and a new set of parameters is established. This

procedure is repeated until the divergence DKL between the simulated and experimental

distribution falls below a fixed threshold. That methodology is often known as the gradient

descent method.

Before we carry out any subsequent analysis we show that after the training process, the re-

sulting spin-glass Hamiltonian is able to generate artificial occupancy signals (through new

Monte Carlo simulations) whose probability distribution are almost in perfect agreement
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with the experiments. Fig. 5.7 provides this comparison, and verifies that the agreement

reached so is excellent for both regimes A and B.

5.2.3 Time dynamics comparison

Once the spin-glass has been proved to reproduce the experimental distribution of states,

one can intend to compare the temporal evolution of the spin-glass and the experimental

data. For this, one has to define a relation between the Monte Carlo time (number of

steps) and the real time. By comparing the relaxation to the stationary state when starting

from I � 0, we conclude that a proper rescaling of the MC results consists of using the

equivalence that 1 MC step corresponds to 50s.

We run simulations with the parameters J and h obtained through the learning algorithm

above to compare the properties of the occupancy signals produced by the model with the

experimental ones. The agreement found at the level of stationary probability distributions

(see figure 5.7) is to be expected by default since this is the criterion used for fitting, but

the spin-glass approach is not necessarily expected to reproduce the time dynamics of the

experimental system beforehand. This is what we test in the following.

So, we first fix the initial state in the Monte Carlo simulations to I � 0 (or, equivalently,

S � −1), corresponding to the case where the eight nodes of the system are empty, for

reproducing the initial conditions of the experiments, and we study the behavior of the

corresponding average occupancy 〈I〉 during the 90 min of the trial. On average the

simulations recover almost completely the temporal signal of the experimental data for

both regimes (see Fig. 5.8 a) and 5.8 b) and corresponding captions). Furthermore, we

also find that the fluctuations around this average, measured through the corresponding

standard deviation σ among the different trials, are also very similar in all cases (Fig. 5.8 c)

and 5.8 d) and corresponding captions). The mean occupancy, when averaged over the

whole time period of the trial for each node, also recovers reasonably well the experimental

pattern observed (Fig. 5.8 e) and 5.8 f) and corresponding captions).

In order to expand on this idea we also measure the distribution of persistence times
at single nodes, defined as the amount of time one node stays in the same state (either

occupied or empty) before switching to the other. When looking at the corresponding

distribution of persistence times P(τ) experimentally for the ants, one can find it follows

a nontrivial behavior which corresponds to an intermediate decay between exponential

and power-law functions (Fig. 5.9). Though it is not possible to derive an expression for

that distribution from the analytical treatment of the Hamiltonian, we observe that the

spin-glass approach yields again a very good agreement to the experimental data, both for

regimes A (Fig. 5.9 a)) and B (Fig. 5.9 b)). Altogether, these results prove that the spin-glass

approach is able to reproduce dynamical properties, as well as the stationary statistics, in

the experimental conditions used.
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Figure 5.8:Averaged daily occupancy dynamics 〈I〉t for the spin-glass approach (with and without pairwise interactions)
and experimental data during a) regime A and b) regime B. The corresponding standard deviations are also shown
for c) regime A and d) regime B. Averaged occupancy in the stationary regime 〈I〉c for the spin-glass approach and
experimental data during e) regime A and f) regime B. The deviation of 〈I〉c obtained from the models to the experimental
one is computed from the variance of the departures from one to the other: for panel e) we find (σ2

SG � 0.0004 and
σ2

J�0
� 0.0065), and for panel f) (σ2

SG � 0.0011 and σ2

J�0
� 0.0025). In both regimes, the spin-glass model shows

smaller departures from the experiment than the null model. Additionally, an ANOVA test with α � 0.05 for null
differences with the experimental data leads to p − value � 0.80 (spin-glass) and p − value � 0.54 (null model) for
the regime A, and p − value � 0.96 (spin-glass) and p − value � 0.37 (null model) for regime B.

5.2.4 Biological interpretation of the model parameters

It would be desirable that the parameters hi and Ji j , obtained through statistical inference,

also admit a biological interpretation. In some contexts, the parameters hi and Ji j did

not necessarily possess such experimental interpretation, since spins or units lived in
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Figure 5.9: Probability distribution of persistence times P(τ) during a) regime A and b) regime B. An ANOVA test with
α � 0.05 for null differences with the experimental data leads to p − value � 0.86 (spin-glass) and p − value � 0.04

(null model) for the regime A, and p − value � 0.82 (spin-glass) and p − value � 0.09 (null model) for regime B.

an abstract phase space and could only be treated then as effective parameters. On the

contrary, for the case of our experiment we find that a relation between the experimental

data and these parameters comes straightforward (see figure 5.10). The external field hi ,

for instance, should determine the propensity that organisms have to occupy the i node
(i.e. the attraction towards node i) at an average level. Each term −hi si present in equation

5.1 drives the system in this direction. When hi is large (small), provided that the other

parameters remain unchanged, that node should have a tendency to be in average more

(less) time occupied. Using a physical analogy, when the sign of the spin is aligned with the

sign of the external field, the system’s energy gets reduced. The external field parameter hi

should thus correlate with the average occupancy 〈Ii〉 of each node; this is confirmed by

comparing the values of both magnitudes in both regimes considered (Fig. 5.11 a)).

Figure 5.10: Schematic rep-
resentation of the biological
meaning of the parameters 〈h〉
and 〈J〉. A larger external field
hi corresponds to a larger ac-
tivity in the node i, while a
larger pairwise interaction Ji j
corresponds to a greater corre-
lation between the nodes i and
j.

According to the previous result, the parameters hi capture the average node-occupancy of

the system; this should be good enough as long as one is not concerned about cooperation

and collective effects. The role of the interaction parameters Ji j , however, is extremely

relevant since they capture spatial correlations at a collective level (in particular, how likely

it is that two separate nodes/spots are simultaneously occupied by the colony). To confirm

this intuition we compare the Ji j parameters, obtained from the learning process, with
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pairwise correlations (see equation 5.3) of the experimental occupancy signal 〈IiI j〉 ≡ Ci j

(Fig. 5.11 b)). We again find a high correlation between both magnitudes, so confirming our

intuitive interpretation.

The alignment between the model parameters hi and Ji j , and the observables 〈Ii〉 and
Ci j is still found if computing average values by separate for the nodes with high and

low resource probability (Figure 5.12). Noteworthy, the average occupancy per node 〈Ii〉
and the spatial correlations Ci j , as well as the corresponding model parameters hi and Ji j ,

are statistically different in nodes with high and low resources (food) only for the case of

regime A, but it does not happen for regime B. This suggests either an habituation of the

colony to the experimental setup, or a memory-delayed process in order for the colony to

adjust the shift in high/low resourced nodes from regime A to regime B. Whatever the

underlying biological process, in regime B the ant colony shows a more homogeneous

activity, with no differences in attraction and correlation patterns based on the amount of

resources in the nodes (Figure 5.12), something that the spin-glass approach adequately

captures.

Figure 5.11: a) Averaged experimental occupancy for each node 〈Ii〉 in comparison to the learned external field hi . The
correlation coefficients are C � 0.991 for the regime A dataset (orange) and C � 0.982 for the regime B dataset (blue).
b) Experimental correlation between the nodes i and j, Ci j , in comparison to the learned pairwise interaction Ji j . The
correlation coefficients are C � 0.597 for the regime A dataset (orange), and C � 0.876 for the regime B dataset days
(blue).

Finally, one can also wonder about the effect that real topological distance between nodes

may have on the Ji j values, and whether there is an inverse correlation between both (so

distant nodes show weaker interactions). The distance is measured as the number of tree

bifurcations between the nodes (see left panel at figure 5.13). The results show that there

is not a reliable correlation of this topological distance to the interactions between the

nodes (Fig. 5.13). Then, in average, the distance doesn’t have a strong effect in the Ji j . In

summary, we find that the topological distance between nodes does not seem to be an

adequate descriptor for the occupancy dynamics in the experiments.
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Figure 5.12: a) Averaged experimental occupancy 〈Ii〉 for the different sets of nodes and experimental regimes A
(T − Student test: |Ts | � 2.21 > T95% � 0.06) and B (|Ts | � 0.23 < T95% � 0.41). b) Averaged field 〈hi〉 for the
different sets of nodes and experimental regimes A (|Ts | � 2.82 > T95% � 0.03) and B (|Ts | � 0.15 < T95% � 0.44).
c) Averaged pairwise correlations 〈Ci j〉 between the nodes of the same set in the experimental regimes A (|Ts | � 8.71 >
T95% � 0.00001) and B (|Ts | � 6.90 > T95% � 0.00001). d) Averaged pairwise interaction 〈Ji j〉 between the nodes
of the same set in the experimental regimes A (|Ts | � 3.83 > T95% � 0.001) and B (|Ts | � 2.18 > T95% � 0.03). H
corresponds to the set of nodes with high probability of food presence while L corresponds to the set of nodes with low
probability. A corresponds to the experimental regimes from days 1 to 13 of experiment, while B corresponds to the days
14 to 25.

Figure 5.13: Left panel: schematic representation of the distance between two nodes i and j. Right panel: averaged
pairwise interactions

(
Ji j

)
between the nodes i and j by distance for regimes A and B.
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5.2.4.1 Relevance of pairwise correlations in the occupancy patterns

We come back finally to the initial idea of checking whether pairwise correlations between

occupancies at different nodes are required in order to describe the overall occupancy

dynamics. If so, then such correlations would indicate that some kind of global strategy

is being used by the colony for exploring the arena and for distributing their foraging

resources. On the contrary, if ants acted as individual foragers then such correlations would

be almost negligible or they would not have any significant effect on the occupancy pattern

observed.

Figure 5.14: Experimental correlation between the nodes i and j
(
Ci j

)
exp in comparison to virtual correlations obtained

from MC simulations
(
Ci j

)
sim , for a) regime A and b) regime B.

The existence of non-zero correlations Ci j between nodes (Figure 5.11) tells us that some

collective effects emerge in ant colony space use, but one may still wonder whether these

correlations are key to reproduce the experimental data. In order to assess that idea we

compare the results obtained from the spin-glass approach to a null model in which all

pairwise interactions are set to zero, it is, Ji j � 0. After imposing such condition the fitting

algorithm is run again and the values for hi are determined anew. Also, in order to make

the comparison fair we redefine the time step in the Monte Carlo simulations for comparing

the artificial occupancy signal (obtained from the null model) to the experimental one; by

doing so we find that when single time steps in the simulation correspond now to 140s.

Then we obtain the best possible fit for the average global occupancy (Fig. 5.8 a) and b),

green lines). However, even if such rescaling is used to force that the average occupancies

of the null model fit the experimental ones, the other properties of the occupancy signal

perform poorly in comparison to the general model. In particular, fluctuations in the overall

occupancies (Fig. 5.8 c) and d), green lines), as well as characteristic switching times (Fig.

5.9, green dots) depart very much from those observed in the experiment, contrary to what

happens for the general model (see Figure captions to find the statistical significance of

these departures).

Additionally, it is evident that if Ji j � 0 is imposed in the null model, then experimental

correlations Ci j (equation 5.3) found experimentally cannot be reproduced. The model
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without interactions loses its capacity to reproduce the time correlations in the system, as

is confirmed in figure 5.14.

All this together proves that the statistical patterns exhibited by the colony cannot be

properly explained with the null model, so giving support to the superorganism-like

hypothesis and to the idea that pairwise correlations present in the general spin-glass

model are required to capture the system dynamics.

5.3 Foraging in a complex environment

In the previous Section, we have proved that the Spin-Glass approach could be a useful

tool to characterize hierarchical or superorganism-like behavior under simple experimental

conditions. Next we will try to test whether this can be extended to much more complex

scenarios, where the number of nodes present in the spatial network is much higher.

In particular, we address the collective organization of Alphaenogaster Senilis ants when

forced to find its food through large hexagonal mazes (see figure 5.15), where the food is

located either at deterministic or random locations. These two food configurations will

result in a larger or lower promotion of exploration through the domain, ginving us the

opportunity to interpret the resulting behavior in terms of the well-known exploration-

exploitation tradeoff [334, 335]. The exploration-exploitation trade-off states that the

colony must locate adequately its resources between those invested in consuming known

resources (exploitation) and those used in searching for new food sources (exploration),

which is an ubiquitous dilemma at many relevant biological scales [336–338].

5.3.1 Experimental method

Two ants colonies of the species Alphaenogaster Seniliswere collected independently (named

colony A and colony B) with 100 individuals each, approximately. We hold the colonies

isolated in independent plastic structures, with a darker region in it, as a nest.

A square PVC structure of 2 m of length and 2 cm of height was designed which represents

the experimental arena. The square is subsequently divided into two rectangular regions

(of 2x1 square meters each), such that each region represents the foraging region for one

of the colonies. Each of the regions contains an hexagonal lattice (figure 5.15) of channels

within the PVC structure, such that we subsequently cover the whole structure with a

semitransparent piece of cloth well stretched, so restricting the ants movements to the

channels. The movement of all individuals can be recorded with a set of cameras placed 1

m above the structure. As a result of the hexagonal nature of the lattice used as an arena,

the ants will experience continuous Y-intersections and so they will need to decide between

following one path or another of the crossing. The lattice is constituted by 620 of these

intersections, with channels of length 0.05 m separating the neighboring intersections.
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Figure 5.15: Frame of the
experimental set-up for one
colony. The square PVC struc-
ture is constituted by a set
oh hexagons. One can ob-
serve the connection between
the nest and the structure,
which represents the entrance
to the channels. The ants mov-
ing through the channels have
been rounded by a black cir-
cle for easing their localiza-
tion in the frame. Three differ-
ent nodes (of r � 20 mm) are
shown rounded by red circles.

The foraging experiments are carried out as follows. First, we introduce two pieces of

food (small worm pieces), each in a given crossing. Then, the nest is connected to the

main structure. From this point and for the successive 10800s, we capture a picture of the

structure on grounds of two frames per second. During this span, the ants move freely

within the structure while foraging.

Figure 5.16: Schematic representation of the resource location. In the left panel, we represent the scenario in which
both worm pieces are placed in the same patches in each daily experiment (A1 and A2). We name this scenario as the
condition D. In the right panel , we represent the scenario in which both worm pieces are placed in patches selected
at random in each daily experiment. We name this scenario as the condition S. Blue dots corresponds to the resource
location for a given daily trial i and the green ones, for the trial i + 1.

We perform this experiment on a daily basis during a 14 days period for each one of the

colonies, A and B. The environmental variability is introduced in the experiment through

two scenarios, D and S, which differ in how the worm pieces are placed (see figure 5.16).
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For the scenario D (Deterministic setting), the pieces are located in all daily trials in

the same intersections. For the scenario S (Stochastic setting), each piece is located by

choosing randomly one single intersection in the lattice. The structure is cleaned after

each experimental realization to avoid any possible chemical marks. The first 7 days of

experiments, the resources were placed accordingly to the scenario D for both colonies,

which, according to our observations and the previous experience with similar foraging

experiments [308, 339, 340] is a time large enough for the colony to get adapted to such

conditions. Then, during 7 additional days food was located in the maze following the

scenario S. While the colony A seems to explore more actively the structure than the colony

B, both picked all the worm pieces during all the experimental trials.

5.3.1.1 Construction of the binary signal

As done for the previous experiment presented in Section 5.2, we assign a value 1 (occupied)

to the i-node in the corresponding frame time if one or more ants are detected in there,

and otherwise, the value is settled to 0 (empty). So we have transformed the videos to a

binary signal of occupation for each node, with a framerate of 2 Hz.

Each intersection in the hexagonal lattice (figure 5.15) is defined as a node of the Spin-Glass

lattice using the idea from figure 5.2. To assign an intersections as occupied, we define a

radius r (which is approximately of the size of he intersection). When an ant is detected at

a lower distance than r from the center of a certain i-node (intersection) in a given frame,

we assign the ant to that i-node in that given frame. The value of r is related with the

hexagonal structure and the characteristic distance between the nodes. We have used a

value r � 20 mm. The total number of nodes of the resulting lattice is N � 620.

The large number of nodes in comparison to the colony population leads to the presence

of empty nodes during large time spans. The interesting point of the Spin-Glass method

relies on comparing and decoding why some nodes tend to be occupied or empty and

how are related between them. So we have coarse-grained the temporal signal in sets of

50 frames to amplify the behavior. If one (or more) of the 50 frames within the group

have a corresponding value 1 for the i-node, the new superframe or coarse-grained signal

would be considered as a occupied state. In any other case, the new superframe would be

settled as ’empty’. According this, 1 step in the coarse-grained signal corresponds to 25 s of

experimental data.

5.3.2 Simulation and fitting details

The fitting procedure provided in Section 5.2 becomes extremely expensive from a compu-

tational perspective when N is large. Here, the structure considered fulfills N � 620, so the

size of the parameter phase space is extremely large compared to the experiment in Section

5.2 (N � 8).
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For those situations, approximated analytical expressions have been derived to obtain the

parameters from the data-set, as stated before in Section 5.1.3. Here, we use the expression

derived in [332]. That approach, named as the Sassek-Monasson approach (SM), comes

from a second order variational approximation of the maximal entropy principle [121,

122]. The Sassek-Monasson expression describes the h and J parameters as a combination

of the first two moments of the experimental data: the node occupation mi and the

correlation between pairs Ci j . The SM approach is a refinement of the Independent Pair

approximation (IP), and the mathematical expressions corresponding to SM approach

include the expressions of the IP approach. The IP approach is obtained from a first order

expansion in the entropy potential between two spins [321]. The pairwise interaction in

the IP approach reads

J IP
i j �

1

4

ln

(
(1 + mi)(1 + m j) + Ci j

) (
(1 − mi)(1 − m j) + Ci j

)(
(1 + mi)(1 − m j) − Ci j

)
)
(
(1 − mi)(1 + m j) − Ci j

) (5.5)

The SM method, as stated, extends the expression for J IP
i j to the case of small correlations.

Then, the expression for the external fields hi and the Ji j in the SM approach are

hi � 0.5 ln

1 + mi

1 − m j
−

∑
j

J IP
i j −

∑
j

0.5 ln

(1 − m j − Ci , j)(1 − mi)
(1 − m j + Ci , j)(1 + mi) (5.6)

JSM
i j � J IP

i j − (C
−1)i j −

Ci j

(1 − m2

i )(1 − m j2) − C2

i j
(5.7)

where the sum in j extends over all the nodes that interact with the node i.

Once the parameters have been introduced, one can state that the corresponding spin-glass

model so obtained represents an in silico replica of the ant colony at the level of its spatial

distribution. To be more specific, we obtain from the fitting techniques four different

replicas. They correspond to ant colonies A and B in the conditions D and S. We validate

the method by comparing some of its predictions to the properties of the real experiments

done in the lab. The exact procedure we use for this is as follows. As done in Section

5.2 with the simple environment experiment, we set the initial state of the spin-glass at

I � 0, which corresponds to all nodes empty , so there are no ants within the arena. The

unique node settled as occupied is the one corresponding to the nest position. Then, the

system is stochastically allowed to evolve in time according to a Monte Carlo dynamics

with the Metropolis algorithm. According to this, new candidate states (with new occupied

nodes) will be proposed and subsequently accepted (rejected) if the corresponding state

approaches to (departs from) the most stable patterns (energy wells) of the spin-glass

Hamiltonian.

As a result of this procedure, the average occupancy 〈I〉 in the spin-glass is defined as the

average over the entire time window and the collective of nodes. From the figure 5.17, we

observe that replicas of the colonies generated by the spin-glass method reproduce almost
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Figure 5.17: Averaged occupation 〈I〉 in each node of the structure during the last 5400s of experiment of each daily
trial. The upper panel of each figure corresponds to the experimental data, while the lower panel corresponds to the
replica’s data.

perfectly the spatial patterns present in the experimental data. The colony A seems to

exploremore actively the structure than the colony B, producing a larger average occupancy

〈I〉. The computational replicas yield so consistent results for both colonies and for both

resource conditions.

These occupation patterns also tell us that the foraging strategies seem to differ between the

stochastic and the deterministic food conditions. For the stochastic (S) case, the spreading

of the colony through the arena exhibits radial symmetry from the nest. So the ants explore
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General Parameters

Field Pairwise

〈h〉 〈h f 〉 〈hn〉 〈J〉 〈J f 〉 〈Jn〉
Colony A - Deterministic -1.37±0.48 -0.43±0.03 -0.29 ±0.31 0.86±0.33 -0.03 ±0.11 0.02 ±0.08

Colony A - Stochastic -1.04±0.40 -0.99±0.25 -0.09 ±0.18 0.22±0.46 0.09±0.10 0.01 ±0.05

Colony B - Deterministic -1.85±0.53 -0.97±0.03 -0.88 ±0.36 3.13±0.99 -0.02±0.24 0.09 ±0.07

Colony B - Stochastic -1.41±0.36 -1.34±0.27 -0.62 ±0.29 0.35±0.82 -0.01±0.15 0.05 ±0.05

Table 5.1: Averaged external field and pairwise interaction for the entire structure (〈h〉 and 〈J〉), for the patches that
contain resources (〈h f 〉 and 〈J f 〉 ) and for the region close to the nest (〈hn〉 and 〈Jn〉). The results are presented for
both colonies and both experimental conditions.

in average randomly the structure. On the contrary, we observe for the deterministic (D)

condition that, in addition to the region close to the nest, there are two hot spots. They
correspond to the location of the resources in the real experiment in the lab. The ants exploit

the hot spots and spend significant times collecting the food therein. The computational

replica, accordingly, exploits these regions too and discards the exploration of the rest of

the structure. In summary, the average behavior of the colonies adapt its foraging strategy

from a more exploratory pattern (for stochastic food conditions), where the ants invest

more time exploring the entire structure, to an exploitation mechanism (for deterministic

conditions), where the ants focus on the hot spots, as a function of the conditions found.

5.3.3 Time dynamics comparison

Since foraging in ants is obviously a non-stationary process which proceeds through several

phases (recruitment, food gathering, ...), one can wonder whether the spin-glass results,

obtained from the experimental occupancy patterns without explicitly considering such

phases, are really meaningful. To check this we have compared the main properties of the

set of h and J parameters obtained with (i) those that appear if only the first half of each

trial (where searching and recruitment are dominant) is considered, and (ii) those obtained

for the second half of the trial (where food gathering is dominant). Despite the biological

differences between the two situations, we observe that the mean values of the spin-glass

parameters (〈h〉 and 〈J〉), and their corresponding dispersion, remains quite similar (see

Tables 5.1, 5.2 and 5.3) . This means that the information captured through such parameters

is not strongly dependent on the particular stage of the process, but mostly depends on the

foraging activity of the colony and their tendency for exploration or exploitation.

We observe that Colony A clearly shows higher values of 〈h〉 (corresponding to higher

foraging activity) than colony B. Also, we observe that 〈J〉 values are much higher for

the D scenario than for the S scenario. All these results are detailed in Table 5.1. This

corresponds to the case in which the whole spatial domain is analyzed. However, if we

only explore those particular regions either in the vicinity of the nest or the vicinity of

food, the correlations are expected to be relatively similar for both colonies and for both

scenarios. Then mean values of J will show very similar values independent of the colony

or the scenario; this is actually what we observe from our analysis (Table 5.1).

One can wonder if there is a dynamical evolution, or different regimes, for the colonies

behavior during each trial. We split the experimental data in two regimes (I and II)
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Temporal evolution of h
Regime I (3600 − 7200 s) Regime II (7200 − 10800 s)

〈h〉 〈h f 〉 〈hn〉 〈h〉 〈h f 〉 〈hn〉
Colony A - Deterministic -1.15±0.42 -0.12±0.02 0.04 ±0.14 -1.46±0.42 -0.58 ±0.03 -0.36 ±0.30

Colony A - Stochastic -0.86±0.31 -0.81±0.18 0.01 ±0.09 -1.06±0.26 -1.04±0.19 -0.14 ±0.21

Colony B - Deterministic -1.74±0.51 -0.79±0.04 -0.84 ±0.38 -1.88±0.52 -1.03±0.06 -0.89 ±0.36

Colony B - Stochastic -1.23±0.23 -1.05±0.18 -0.54 ±0.32 -1.57±0.20 -1.44±0.15 -0.63 ±0.30

Table 5.2: Averaged external field for the entire structure (〈h〉), for the patches that contain resources (〈h f 〉) and the
averaged field close to the nest (〈hn〉). The results are presented for both colonies and both experimental conditions. The
values are divided into two regimes, each one of them coming from a part of the temporal signal of the experiments.

Temporal evolution of J
Regime I (3600 − 7200 s) Regime II (7200 − 10800 s)

〈J〉 〈J f 〉 〈Jn〉 〈J〉 〈J f 〉 〈Jn〉
Colony A - Deterministic 0.70±0.33 -0.07±0.06 0.01 ±0.04 1.66±0.57 0.03 ±0.06 0.02 ±0.05

Colony A - Stochastic 0.22±0.32 0.06±0.21 0.01 ±0.04 0.23±0.43 0.11±0.20 0.01 ±0.03

Colony B - Deterministic 2.30±0.80 -0.15±0.06 0.08 ±0.07 3.81±1.30 0.14±0.12 0.07 ±0.07

Colony B - Stochastic 0.27±0.12 0.01±0.09 0.04 ±0.04 0.43±0.28 -0.01±0.06 0.05 ±0.04

Table 5.3: Averaged pairwise interaction for the entire structure (〈J〉), for the patches that contain resources (〈J f 〉) and
the averaged interaction and the averaged interaction close to the nest (〈Jn〉). To do the average, only the interaction
with patches located at a smaller distance of 200mm are taken. The results are presented for both colonies and both
experimental conditions. The values are divided into two regimes, each one of them coming from a part of the temporal
signal of the experiments.

corresponding to the second (I) and third (II) thirds of the experimental signal (3600− 7200

s and 7200 − 10800 s, respectively). We disregard the initial third to avoid the time region

in which the ants have not yet gotten out of the nest. One can observe in Tables 5.2 and 5.3

that the parameters h and J seem to be robust for both regimes.

Next, the dynamical trends predicted by the computational replica of the colony can be

compared to the patterns of the real colony, too, bymeasuring the distribution of persistence

times (τ). As noted in Section 5.2, the persistence time is defined as the amount of time one

node (or spin) stays in the same state (either occupied or empty) before switching to the

other one.

When we look at the corresponding distribution of persistence times P(τ) experimentally

for the ants, again it follows a non-trivial behavior which corresponds to an intermediate

decay between exponential and power-law functions (figure 5.18). Although it is not

possible to provide a simple fit for that distribution, we observe that the replicas yield a

very good agreement to the experimental data. So, these results again confirm that the

spin-glass method is able to reproduce dynamical properties, as well as the stationary

statistics, in the experimental conditions used.

5.3.4 Biological interpretation of the model parameters

Figure 5.19 summarizes qualitatively the most relevant biological information that can

be extracted from the spin-glass approach in the present context. Since the hi parameters

reflect the occupancy of each node i, then the mean 〈h〉, averaged over all nodes, provides

a measure of the foraging activity of the colony. More interestingly, when foraging efforts

are localized in small regions (exploitation) then we have both large regions unoccupied
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Figure 5.18: Probability distribution of the persistence time P(τ). The results for the experimental data (points) and the
replica simulations (solid lines) are provided. The left panel corresponds to the deterministic experimental condition D
and the right one, to the stochastic condition S.

(where Ji j between neighbour nodes will be large and positive, since occupancies follow

the same pattern), and small regions with a high occupancy (so there correlations between

neighbours are also large and positive).

Figure 5.19: Schematic rep-
resentation of the biological
meaning of the parameters 〈h〉
and 〈J〉. The obtained values
from the experimental dataset
represent a proxy for the strate-
gies the ant colony develops
during the foraging process.

On the contrary, when foraging efforts are disperse the correlation between the occupancy

patterns of neighbour nodes will be null or even negative (as occupied nodes will be in

general surrounded by empty nodes). Then most Ji j values are expected to be negative.

Accordingly, the mean 〈J〉 (averaged over neighbour nodes) provides a significant measure

to compare the level of exploitation and exploration that is being employed by the colony.

The intensity of the interactions can be well captured by the absolute value | Ji j | (figure
5.20). As intuitively expected, the interaction is more intense between closer nodes and

seems to decay without a characteristic scale length for short distances.
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Figure 5.20: Averaged pair interaction 〈Ji j〉 (in absolute value) between the nodes i and j according to the distance
between them. The left panel corresponds to the deterministic condition D and the right one, to the stochastic condition
S.

5.3.5 Foraging strategies and the exploration-exploitation trade off

Besides the useful value of the previous results in order to understand the foraging

patterns followed by the ant colonies in complex environments, one of the most interesting

advantages of building computational (spin-glass) replicas of the colony patterns is to

design in silico experiments for predicting their behavior under alternative scenarios. So,

for example, the flexibility of the foraging patterns exhibited under the resource conditions

S and D could be tested by analyzing its efficiency when alternatives food conditions are

considered.

The foraging patterns adapted to changing (random) conditions S, where exploration is

largely promoted in comparison to the condition D of deterministic food location, are

expected to offer amore flexible response.While this idea is easy and intuitive, quantification

of such effects is far from trivial under field or lab conditions, so in the following we present

several ways to address this idea from using our in silico replicas of the colonies.

5.3.5.1 Experiment I: Crossing food conditions

One can compute the time it takes for the computational replicas to reach the food locations

under crossed scenarios (so the replica adapted to random conditions is tested under D
food conditions, and vice versa).

Again, we set the initial state of the spin-glass at I � 0, which corresponds to all nodes

empty, so there are no ants within the arena, except for the nest position. Then, the system
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is stochastically allowed to evolve in time according to a Monte Carlo dynamics with the

Metropolis algorithm and develop its characteristic patterns.

We assume that the food will be picked up as soon the colony reached there, so we will use

as a measure of efficiency the foraging time T f , which is defined as the number of Monte

Carlo steps that the replica requires to reach both food pieces in the experiment.

According to the results found from this in silico experiment (figure 5.21), the replicas

adapted to S conditions require the same time T f to locate the food items independently of

how they are placed in space (randomly or deterministically). On the contrary, the replicas

D are much more efficient (one order of magnitude) when the resources are located in

the deterministic region, which is the case to which they are adapted, and perform much

worse under uncertain (S) conditions. The latter colony exploits the acquired knowledge

and is almost unable to forage through unexplored regions of the structure to which it is

not adapted

Figure 5.21: Averaged number of MonteCarlo steps (T f ) the replica uses to find both worm pieces. The data is presented
in a logarithmic format and the error bars correspond to the standard deviation. The color code corresponds to the
experimental condition, being the blue color the experiment with the resources located randomly and the red color, the
experiment with the resources in the hot spots. D corresponds to the replica trained with the data of the condition D,
while S trained with the data of the condition S.

5.3.5.2 Experiment II: Size of hot spots

How efficient the colonies adapted to one specific condition would be under more realistic

scenarios (where the location of food resources is not purely stochastic or deterministic)

represents another question of major interest. As a possible approximation to the answer,

we consider new in silico experiments where we compare the efficiency of the different

replicas under scenarios in which the resources are located in a circular region of radius R
around the intersection of the deterministic locations for conditions D (see figure 5.22).
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Figure 5.22: Schematic rep-
resentation of the scenario of
the in silico experiment. The
virtual worm pieces will be
located in a random intersec-
tion of the region delimited by
the circumferences of radius R
around the hot spots of condi-
tion D.

When R � 0 mm, the resource condition D is recovered. As long as R increases, the location

region covers the entire structure and the resource condition S is approached. Though

the lab experiments were conducted with two food (worm) pieces, the feasibility of in
silico conditions allow us to explore now foraging in many other situations. We will show

results for the cases when there are one, two or four worm pieces. According to the results

Figure 5.23: a) Averaged number of MonteCarlo steps (T f ) the replica uses to find the worm pieces according to the
size of the resource region R. Left panel corresponds to the replica trained with the data of the condition D and the right
panel corresponds to the replica trained with the data of the condition S. b) Coverage time comparison for the case of 4

worm pieces. The y-axis value corresponds to the relative difference between the T f of both replicas, and it is defined as

α � 1 −
TD

f

TS
f
.

provided in figure 5.23, we find that relative performance of the different replicas changes

as a function of the radius R. When the pieces are located around the deterministic locations

(in particular, if R < 200mm), the replica adapted to D conditions is more efficient than the

other one as the properties of the deterministic condition D still remain, approximately.

However, when R is increased and further regions need to be explored, the replica adapted

to the random (or S) conditions becomes more efficient. While the replica adapted to D
requires to complete the task a time that can vary up to two orders of magnitude, the

replica adapted to S exhibits a much more homogeneous behavior between the different

realizations of the process. These features reveal again that the preconditioning of the

colonies will largely affect its performance under unfamiliar scenarios. Interestingly, the

number of food items does not seem to modify the convenience of one strategy over the

other, as the point trade-off remains around R � 200 mm. The size of the regime in which

exploration is more efficient may be a relevant factor to characterize the trade-off and to

define a more optimal strategy under realistic (so complex) environments. For the sake
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of simplicity, we presented here the experiments with the colony A replicas; the same

experiments were conducted for the colony B, with similar conclusions.

5.3.5.3 Experiment III: Combining hot spots and randomness

Adding still a new level of detail on the previous scheme, realistic environments may

combine the presence of fixed exploitable sources together with more unpredictable or

random food sources. For those cases, again, it is far from clear which is the level of

randomness/uncertainty at which one replica or the other will show a higher efficiency.

Following this idea, we propose a scenario in which the resources may be either located

at the deterministic locations from conditions D, or randomly at any other place of the

arena. In particular, every food item will be located with probability Ps according to the D
conditions, or located randomly with probability 1 − Ps . Then the situations so considered

range from the random (S) condition for Ps � 0 to the deterministic (D) condition, when

Ps � 1.

Figure 5.24: a) Averaged number of MonteCarlo steps (T f ) the replica uses to find the worm pieces according to
the probability Ps . Left panel corresponds to the replica trained with the data of the condition D and the right panel
corresponds to the replica trained with the data of the condition S. b) Coverage time comparison for the case of 4 worm
pieces. The y-axis value corresponds to the relative difference between the T f of both replicas, and it is defined as

α � 1 −
TD

f

TS
f
.

In agreement with the results for the experiment II, the most convenient strategy changes

when the value of Ps is tuned, independently of the number of food items located in

the structure (figure 5.24). When the daily location is mainly stochastic (small Ps), the

exploration preconditioning (this is, the replica adapted to S conditions) is more effective.

When the scenario tends to be mostly deterministic, the replica adapted to the D conditions

reaches a higher efficiency (this is, it reaches food faster in average). While the replica

adapted to D requires foraging times that could vary up to two orders of magnitude,

the replica adapted to S finishes the process in times that are always of the same order.

Nevertheless, in this case we observe a relevant effect on the number of food items present

in the system on the value of Ps at which the switch occurs. When computing the time

required for acquiring the first piece of food, the turnaround in the more efficient replica

is produced around Ps � 0.6, Ps � 0.3 and Ps � 0.2 when there are 1, 2 or 4 pieces

in the structure, respectively. In consequence, it can be stated that the optimal foraging
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strategy is not just a consequence of the resource density and location but also of the

colony requirements. For the sake of simplicity, we presented here the experiments with

the colony A replicas; the same experiments were conducted for the colony B, with similar

conclusions.

Concluding remarks

I The complexity of Spin-Glass frameworks (as an example of state-baseddescription)

allows to capture collective space use by biological populations or superorganisms.

I Producing in silico replicas using these frameworks opens the possibility to explore

the behavior of those populations in a wide range of scenarios without a need for

extensive field experiments.



Conclusions6
This thesis has addressed the movement patterns of living with different levels of cognitive

ability/complexity, both in isolated and collective situations, developing theoretical models

rooted in statistical physics. Here, we summarize the main conclusions (•) and future

perspectives (�) for each chapter.

In Chapter 1, we proposed the use of stochastic movement models to describe the organisms

navigation.We started bypresenting the ordinaryRandomWalk. From this,we incorporated

multiple cognitive layers (self-avoidance, impairment and prospection) to the walker’s

dynamics, from which we draw the following:

• Wepropose two cognitive ormemorymechanisms (bSAWand tSAW) as an alternative

for the SAW. Both proposals avoid the presence of dead ends, representing then a

more adequate description of living organism navigation.

• Impairment in the walker’s cognitive memory has been revealed surprisingly benefi-

cial for the bSAW in some particular situations. This is because it avoids the ordinary

diffusive regime that appears when the energy landscape is homogeneous. However,

when the energy landscape is kept heterogeneous (as in the tSAW case), this effect

goes away.

• Prospection of non-local information has been shown to be beneficial just when the

walker’s process it accurately. In other cases, to focus on local information optimizes

the coverage process.

� In the future, alternative cognitive layers (including obstacles or alternatives objects,

or multiple signals, for instance) can be introduced into the energy landscape. How

these layers (and their interplay with the other ones) impact the walker’s navigation

would represent a interesting field of study to increase our comprehension of the

cognitive mechanisms exhibited by living organisms.

In Chapter 2, we proposed an entropic mechanism to describe how organisms quantify

when they have processed enough information to make a decision. We presented the

most common accumulator mechanism (DDM) and we proposed an ’entropy refinement’

mechanism to capture the way humans carry out decisions in certain particular navigation

tasks. From this study, we conclude:

• When presented sequential-decisionmaking tasks, humans explicitly use prospection

of the future outcomes. While this is not surprising, we have found a way to confirm

and quantify this property. Our random-walk algorithm reveals that the performance

of subjects in the experimental navigation task used could not be explained in absence

of such prospection mechanism.
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• An entropic refinement mechanism seems compatible with the way humans estimate

how reliable is to make a decision in a decision-tree context with a given amount of

information. It is plausible, then, that they implicitly compute that magnitude during

the prospection processes as a way to gain reliability on the options available. This

conclusion is supported both from the examination of eye-tracking data revealing (i)

the waiting time distributions between decisions shown by the subjects, and (ii) the

fact that final values of the entropy shown at the moment of taking the decisions are

approximately independent of the decision time.

� Explore the entropic mechanism and its validity in more complex scenarios through

the design of new sequential decision making experiments (for example, by removing

the fact that not all decisions were completely identical in the maze used in our

experiment). The new experiments may help to clarify the origin of the characteristic

power-law distributions (P(t) ∼ t−3
) reported in our navigation task.

In Chapter 3, we extended the coverage efficiency analysis of the cognitive walker of

Chapter 1 to the case where multiple walkers, sharing cognitive information in an indirect

way (through their trajectories), are considered. The main conclusion is:

• The topology of the region to cover can produce a ’more is less’ effect, where the

coverage time gets increased as more walkers are added to the search process. That

feature appears for one-dimensional searches of walkers with intense self-avoidance.

However, as the dimension of the region gets increased the intuitive result of more

walkers covering it faster is recovered.

� Explore the collective patterns and their impact over the search efficiency when direct

interactions (such as repulsive/attractive potentials or hydrodynamic forces) between

the walkers are considered.

Chapter 4 focuses on pedestrian dynamics. We explored how pedestrians can be described

in physical terms and how collective patterns emerge from the interactions between them.

We draw the following:

• One can propose effective forces to describe pedestrians interactions. The correspond-

ing balance between avoiding collisions and individual preferences make collective

patterns such as jamming or lane formation emerge.

• Multiple proposals of social force collapse to the same general behavior in the τ-space
(of times-to-collision). The structure analysis within τ-space allows to discriminate

if the crowd motion is disordered (which corresponds to an effective interaction

V(τ) ∼ τ−2
between pedestrians) or organized in lanes (which corresponds to an

effective interaction V(τ) ∼ τ−1
)), which increases the flow of pedestrians.

� Generalize the bidirectional scenario to a multi-directional one and explore if the

τ-space keeps yielding an effective description for those cases.
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� Study if the τ-space can describe adequately the collective patterns exhibited by

dense crowds in more complex scenarios, such as turbulence or stop-and-go waves.

In Chapter 5, we focus on how the Spin-Glass model can represent a convenient framework

to describe social organization in the way how space is collectively occupied and/or

explored by biological populations. More concretely, we use it to analyze the foraging

patterns of ant colonies. From this, we conclude:

• A state-based approach can capture adequately the correlations that characterize the

superorganism behavior of an ant colony. Trough the Spin-Glass model, we obtain a

description of the ants space use not only in the stationary state but also at the level

of the time evolution of the system.

• The Spin-Glass provides a virtual replica of the real system. With this replica, one

can design new in silico experiments. We have explored this for the exploration-

exploitation trade-off in ant colonies under different environmental conditions, which

represents a very relevant aspect to understand animal foraging.

� Extend the analysis the exploration-exploitation trade-off through new in silico
experiments to characterize the efficiency of the foraging strategies under variable

circumstances.

� Explore the use of the Spin-Glass model to as a tool to characterize collective

organization in living organisms or complex systems.

Globally, this thesis illustrates how cognitive mechanisms of living organisms can be gained

by models based on statistical physics. Thus, it encourages to extend this approach with the

aim of gaining a physical understanding of cognition and information processing. Thereby,

perhaps, this direction of study can devise general physical principles of mental processing

and its consequences in social organization.



Acronyms

The next list describes several acronyms that have been used during this thesis.

bSAW Binary Self-Avoiding Walk

DDM Drift Diffusion model

EEG Electroencephalography

IP Independent Pair approximation

MC Monte Carlo

MEP Maximal Entropy Principle

MFPT Mean First Passage Time

MSD Mean Square Displacement

PRW Persistent RandomWalk

RW RandomWalk

SAW Self-Avoiding Walk

SG Spin-Glass

SM Sassek-Monasson approximation

SPRT Sequential probability ratio test

tSAW True Self-Avoiding Walk
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