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Introduction 

 

 Volatility of firm’s assets is one of the fundamental variables in credit risk 

modeling and refers to a degree of fluctuation of firm's asset returns. While equity 

volatility and its time-series properties have been extensively studied in the finance 

literature, little is known about the time-series behavior of volatility of firm's assets. The 

main reason for such a gap in the literature lies in the unobservability of the underlying 

value of the firm’s assets. For that reason, many practical applications applied in credit 

risk modeling are based on the use of stock return volatility as a proxy variable of asset 

volatility. However, recent studies point out in the direction that equity volatility has 

different time-series properties when compared to asset volatility. Thus, the main goal 

of this research is to study the time-series properties of firm’s asset volatility, the 

eventual differences it presents with respect to equity volatility, and to provide an in-

depth understanding of its most relevant features such as asymmetry and long-range 

persistence in the context of volatility modeling and forecasting. 

This research is structured as follows: First, we examine the persistence 

properties (long memory) of firm’s asset volatility and its relationship with equity 

volatility. Second, we determine which model or models, considering the discrete-time 

family of GARCH (Generalized Auto-Regressive Conditional Heteroskedasticicty) 

models are the best to estimate and forecast conditional asset volatility. We analyze in 

detail the implications of asymmetry and long-range persistence on modeling and 

forecasting firm's asset volatility. Third, we provide a practical application by 

estimating a CDS implied firm’s asset volatility and by analyzing its time-series 

properties. Throughout this research we use as a baseline sample a sample of 52 non-



3 

 

financial iTraxx Europe companies during the 2004-2016 period, and estimate 

underlying firm’s asset values using different, commonly applied procedures. 

In the first Chapter we study the persistence properties of firm's asset and equity 

volatility. We estimate the degree of persistence on a firm-specific basis using the 

FIGARCH model and find strong evidence of long-memory in the conditional variance 

of both firm’s asset and equity returns. The estimated degree of persistence of firm’s 

asset and equity volatility is lower than 0.5 for the vast majority of companies 

considered. We find the persistence of equity volatility to be slightly higher than the 

persistence of firm's asset volatility. However, this difference is not statistically 

significant. Our findings show that the persistence of both firm's asset and equity 

volatility is positively related to leverage and negatively related to relative idiosyncratic 

volatility. A DFA analysis of absolute returns confirms the long-memory behavior of 

both volatility series.  

In the second Chapter we analyze the relevance of asymmetry and long-memory 

in modeling and forecasting firm-level volatility. The degree of asymmetric effect 

seems to be more pronounced for equity than for firm's asset volatility, and is 

decreasing with financial leverage. The degree of long-memory is in general slightly 

higher for equity than for firm's asset volatility, and this difference is decreasing with 

leverage. However, once the asymmetry is allowed in the model in addition to long-

memory, firm's asset volatility turns out to be more persistent than equity volatility for 

higher leverage groups. A horse race among different GARCH-type model 

specifications (GARCH, EGARCH, IGARCH, FIGARCH, HYGARCH, FIEGARCH, 

and FIAPARCH) in forecasting firm’s asset and equity volatility, shows that more 

sophisticated (FIEGARCH and FIAPARCH) models outperform other specifications in 
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out-of-sample firm-level volatility forecasting. In turn, the simplest GARCH and 

IGARCH models show the worst performance. 

In the third Chapter we analyze time-series properties of the unobserved 

volatility of asset returns implied in market observable CDS spreads (i.e. CDS implied 

firm's asset volatility). We fit different ARFIMA and ARIMA models to the obtained 

time-series to forecast future firm's asset volatility for the purpose of CDS pricing. We 

observe that implied firm’s asset volatility is also highly persistent with the degree of 

fractional integration lying within the non-stationary region, although, on average the 

process eventually mean-reverts in the very long-run. The in-sample-fit and out-of-

sample forecasting performance shows that ARFIMA models on average outperform 

ARIMA models. Out of all ARFIMA specifications, we find that the non-stationary 

ARFIMA(0,d,0) model provide best in-sample fit to the data and perform best in out-of-

sample forecasting of firm's asset volatility and credit spreads.  
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Chapter 1 

Persistence in firm's asset and equity volatility
1
  

 

1. Introduction  

Equity volatility and its properties have been extensively studied in the finance 

literature. A general conclusion is that the equity volatility process is highly persistent 

and characterized by a slow decay of volatility shocks (Bollerslev and Mikkelsen, 

1996). In contrast, only a few studies focus on the underlying firm’s assets volatility, 

which represents a key parameter in credit risk assessment and management. The main 

reason for such a gap in the literature is that equity volatility can be easily estimated 

from observable stock prices, whereas estimation of the firm's asset volatility is 

hindered by the latent nature of the underlying firm's asset values. Recent studies by 

Choi and Richardson (2016) and Lovreta and Silaghi (2017), however, point to possible 

significant differences between the properties of equity and firm's asset volatility. Choi 

and Richardson (2016), for example, argue that equity volatility shows greater 

persistence when compared to the volatility of the corresponding firm’s assets and they 

attribute this difference to financial leverage. Their conclusions are primarily based on 

the autocorrelogram characteristics of firm's asset and equity volatility as well as on the 

parameters of the EGARCH model proposed by Nelson (1991), which, by definition, 

considers only short-run effects. Formal analysis of the persistence properties of firm’s 

asset volatility in the context of a long-memory model however, has not been done in 

the previous literature. In this paper, we fill this gap.  

                                                             
1  Published as "Persistence in firm's asset and equity volatility" in Physica A: Statistical 

Mechanics and its Applications, 535 (1), 122265, 2019.   

https://doi.org/10.1016/j.physa.2019.122265 

https://doi.org/10.1016/j.physa.2019.122265


6 

 

The analysis of the long-memory properties of the levered and unlevered 

volatility has important theoretical and empirical implications for asset pricing and 

trading, risk management, and portfolio management. On the one hand, understanding 

the dynamics of the firm's asset value process is a critical issue in credit derivative and 

bond pricing. The price of a corporate bond, Credit Default Swap (CDS) or any other 

single credit sensitive instrument depends crucially on the firm-specific probability of 

the default, which in turn is a function of the firm-specific asset volatility. If firm's asset 

volatility has long-memory properties, many of the existing pricing models would need 

to be reconsidered to incorporate this feature. Furthermore, given that firm's asset 

volatility could only be considered at the firm-specific level, any potential analysis of its 

long-memory properties at the market level, as well as a comparison with its 

corresponding equity volatility needs to be based on the bottom-up approach, that is, by 

aggregating firm-level results. On the other hand, total volatility of equity returns is a 

key input in option pricing. Therefore, at the firm-level it becomes important to consider 

not only the long-memory behavior of the systematic volatility (reflected in the readily 

available well diversified equity indexes) but also the effect of idiosyncratic features on 

the total equity volatility persistence. Finally, an analysis of the persistence properties at 

the firm-level allows understanding of the cross-sectional behavior of equity and firm's 

asset volatility. These two measures of the firm-level risk are particularly important in 

portfolio allocation problems and risk management.  

The concept of long-memory was originally introduced by Hurst (1951) in his 

study on the seasonal variation in river flow and later formalized in the work of 

Mandelbrot and Van Ness (1968), Mandelbrot (1971), Granger (1980), Granger and 

Joyeux (1980) and Hosking (1981), among others. It refers to a long-run dependence 

between observations that are far from each other. Accordingly, the degree of 
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persistence, or the degree of long-memory, refers to a degree of decay of dependence 

between observations as the time distance between them increases. A large volume of 

literature on long-memory in financial time-series has emerged following the work of 

Greene and Fielitz (1977), who studied the persistence of returns on common stock. 

Although long-memory in raw financial returns is questioned in the literature (e.g. Lo, 

1991; Lobato and Savin, 1998; Gil-Alana, 2006), it has been well documented in the 

volatility of financial returns (e.g. stock returns and stock index returns, commodity 

returns, exchange rates). There is an overwhelming amount of empirical evidence that 

market volatilities exhibit slow decay features, converting persistence into one of the 

stylized features of volatility (Ding et al. 1993; Baillie et al., 1996; Baillie, 1996; Engle 

and Patton, 2001). 

Long-run temporal dependencies in equity volatility (volatility of stock returns 

and stock index returns) have been extensively studied in the context of the FIGARCH 

(Fractionally Integrated GARCH) model proposed by Baillie et al. (1996). Some of the 

contributions include, Dionisio et al. (2007), Kang and Yoon (2007), Lux and Kaizoji 

(2007), Kasman et al. (2009), Kang et al. (2010) and Bentes (2014).
2
 When financial 

time-series is characterized by a long-memory, Bollerslev and Mikkelsen (1996) and 

Baillie et al. (1996) show that FIGARCH models are more appropriate than GARCH (or 

EGARCH) and IGARCH models. The FIGARCH model explicitly considers the degree 

of long memory, which is measured with the fractional differencing parameter d. The 

model therefore provides a precise measure of the persistence in the observed data, and 

is able to distinguish between process with an exponential decay of shocks and a 

process with a permanent effect of shocks, allowing for an intermediate range of 

dependence.  
                                                             
2 The FIGARCH model has been considered in volatility of commodity returns (e.g. Cochran et 

al. 2012
; 
Bentes, 2015), commodity futures returns (e.g. Jin and Frechette, 2004; Baillie et al. 

2007), exchange rates (e.g. Baillie et al. 1996; Vilasuso, 2002; Beine et al. 2002). 
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In this paper, we build on the recent evidence on the persistence of firm's asset 

and equity volatility by providing precise parametric estimates of the degree of 

persistence of both volatilities at the firm-specific level. We consider 52 European non-

financial companies that belong to the iTraxx Europe index during the 2004-2016 

period. We contribute to the existing literature in several ways.  

First, we contribute to the relatively scarce literature on firm’s asset volatility by 

providing strong evidence of long-memory in the daily firm's asset volatility. We 

estimate the degree of persistence using the FIGARCH model, which although applied 

to conditional volatility of equity returns, has not been considered in the case of the 

firm's asset returns. We find that the estimated fractional differencing parameter is 

statistically significant for all firms in the sample, with a cross-sectional average of 

0.35. This finding has implications for pricing credit-sensitive instruments due to their 

analogy with stock options (Merton, 1974).
3
 Bollerslev and Mikkelsen (1996) illustrate 

the practical importance of long-run volatility characteristics on the pricing of long-

maturity stock option contracts. Given that bonds or Credit Default Swaps (CDSs) 

embed features similar to a short position in long-maturity put options, with firm’s asset 

value as the underlying state variable, the presence of long-memory in firm’s asset 

volatility should be an important aspect to consider when pricing these instruments.  

Second, we provide further evidence on the persistence of equity volatility. 

Although volatility of stock index returns has been extensively studied in the literature 

in the context of a long-memory model (Dionisio et al, 2007; Kang and Yoon, 2007; 

Kang et al, 2010; Bentes, 2014), there have been only a few applications to firm-

specific stock returns. Lux and Kaizoji (2007), for example, estimate the FIGARCH 

model for a sample of Japanese stocks. They report the cross-sectional mean of the 

                                                             
3 Debt and equity are treated as contingent claims on the underlying firm asset value. 
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fractional differencing parameter of 0.34 for 100 companies with the largest trading 

volume, and 0.37 for a random sample of 100 companies. Uctum et al. (2017) analyse 

the conditional volatility of four French stocks using intraday returns, and report a 

degree of long-memory between 0.22 and 0.59. Our results are in line with these 

findings. For our sample of European companies, the cross-sectional average of the 

estimated fractional differencing parameter amounts to 0.37.  

Third, we compare the persistence of equity and firm’s asset volatility for our 

matched sample. Our findings show that equity volatility is on average slightly more 

persistent than a firm's asset volatility. Although this result is initially in line with that 

obtained by Choi and Richardson (2016) using a different methodology, we do not find 

this difference in persistence to be statistically significant. Moreover, we find no 

statistically significant evidence of higher persistence of equity volatility even for the 

more levered subsample of companies.  

Fourth, the firm-specific orientation that we adopt in this paper allows us to 

relate the estimated degree of persistence of volatility in both a firm’s asset and equity 

returns to firm-specific characteristics. More specifically, we consider financial 

leverage, size and firm’s relative idiosyncratic volatility. We find that a firm's asset and 

equity volatility are both positively related to leverage and negatively related to the 

firm's relative idiosyncratic volatility. Although long-range dependence measures have 

been previously related to firm-specific variables in Cajueiro and Tabak (2005), our 

work differs from theirs in two major aspects. Namely, Cajueiro and Tabak (2005) 

relate firm-specific variables to long-range dependence in raw stock returns measured 

by the Hurst exponent, whereas we consider persistence of conditional volatility 

measured by the fractional differencing parameter.  
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Finally, to complement our analysis, in addition to estimating the conditional 

variance using the FIGARCH model, we use absolute daily returns as a direct proxy for 

volatility and estimate the degree of long-memory using a non-parametric DFA 

approach. The results of the DFA analysis are in line with our previous findings and 

show strong evidence of long-memory in the daily absolute firm's asset and equity 

returns. The scaling exponent, used as a measure of the degree of persistence, lies in the 

region between 0.5 and 1, and is slightly higher for absolute equity returns than for 

absolute firm's asset returns (0.85 vs. 0.81). In this case, the difference in mean is 

statistically significant. 

 The rest of the paper is organized as follows. Section 2 provides a summary of 

the FIGARCH model framework. Section 3 summarizes the estimation methods of the 

firm's asset value. Section 4 provides a description of our data set. Section 5 provides 

our empirical results on the persistence of firm’s asset and equity volatility. Section 6 

conducts robustness analysis using a DFA methodology. Finally, our conclusions are 

presented in Section 7. 

2. Model framework  

The FIGARCH model, introduced by Baillie et al. (1996), is a conditional 

volatility model that allows a slow hyperbolic rate of decay for the lagged squared 

innovations in the conditional variance. In other words, the FIGARCH model allows for 

long-memory in volatility. This model property contrasts with the GARCH model 

(Bollerslev, 1986) that only considers short-term memory, or the IGARCH model 

(Engle and Bollerslev, 1986) that only assumes infinite memory. In the GARCH model, 

the effect of the lagged squared innovations in the conditional variance decays at an 

exponential rate. As such, the GARCH model may not be appropriate for describing 

processes that evidence long-range dependence. Specifically, Baillie et al. (1996) show 
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that when a short-memory model is applied to a process that exhibits long-memory, the 

estimated parameters of the short-memory model quite often tend to point to an 

integrated process, that is, to infinite persistence. This may spuriously suggest that an 

IGARCH model, in which a volatility shock has a permanent effect, might be 

appropriate. The infinite memory assumption, however, may be quite unrealistic when 

applied to financial data. By contrast, the FIGARCH model is more flexible and 

imposes a more realistic slow hyperbolic decay in the conditional volatility, in such a 

way that the effect of a volatility shock is very persistent, but eventually mean reverting.  

 To fully define any GARCH-type model a specification of a conditional mean 

equation, conditional variance equation and a conditional error distribution is required. 

In this paper, we model the conditional mean equation of each return series as a k-order 

autoregressive process,      , given by: 

                         ,                       (1) 

For    , the conditional mean equation is reduced to a model with only a constant 

(i.e.         ). The error term,   , could be expressed as        , where    is an 

i.i.d. sequence.  

 The FIGARCH model for the conditional variance is given by: 

                 
    [      ]                   (2) 

where,      
    

  are innovations in the conditional variance (with an expected 

value of zero and serially uncorrelated),   denotes the lag operator,        is a 

fractional difference operator,       is the fractional differencing parameter and all 

the roots of      and [      ]  lie outside the unit circle. The process is strictly 

stationary and ergodic for      . Therefore, the FIGARCH model formally 

considers long-memory in volatility through the fractional differencing (or long-

memory) parameter, d, subsuming at the same time the GARCH and IGARCH models 
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as a special case. That is, the FIGARCH behaves as a GARCH process when      and 

as an IGARCH process when    , whereas for       is a long memory process.  

 The model assumed for    distribution is the generalized error distribution 

(GED). The choice of the GED distribution is motivated by the results of (Gao et al, 

2012) who show that this distributional assumption can adequately account for fat tails. 

The density of a GED random variable with mean 0 and variance of 1 is given by: 

       
 

   
     ⁄      ⁄  

   [ (
 

 
) |   ⁄ | ]           (3) 

where,   is a tail thickness parameter that takes the value      ,      is the gamma 

function, and    [     ⁄      ⁄      ⁄  ⁄ ]
  ⁄

.  

The FIGARCH model is estimated by maximizing the log-likelihood function. The 

GED log-likelihood function (of a normalized random variable) is given by: 

      ∑ [      ⁄      |
  

  
|
 

                    ⁄           
  ] 

       (4) 

3. Estimation of the firm’s asset values 

 In order to be able to study time-series properties of the firm’s asset volatility we 

must first estimate the unobserved underlying firm’s asset value process and the firm's 

asset returns. The literature offers several approaches for estimating the latent firm's 

asset value: the structural model framework, the naïve approach of Charitou et al. 

(2013), the Bharath and Shumway (2008) KMV procedure, and the Choi and 

Richardson (2016) procedure based on market prices of equity, bonds and loans. To 

provide robustness to our results, in this paper we consider three basic procedures. A 

detailed description follows: 

 In our baseline approach, we consider the possibility of using structural models 

of default to infer the underlying firm asset value (Forte, 2011; Lovreta and Silaghi, 

2017). Structural models originated from the seminal model of Merton (1974), which 
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applied the option pricing theory developed by Black and Scholes (1973) to value 

corporate securities: debt and equity. Under the structural model framework, debt and 

equity are treated as contingent claims on the underlying firm's asset value, V, which is 

assumed to evolve according to the continuous diffusion process of the following 

general form: 

                ,                                            (5) 

where   is the expected rate of return on asset value,   is the fraction of the asset value 

paid out to investors,   is the asset return volatility, and   is a standard Brownian 

motion. In the structural setting, default is explicitly linked to the underlying firm’s 

asset value and will occur when V reaches a lower threshold boundary called the default 

barrier (  ). Provided that equity for traded firms is observable, for a given equity 

pricing equation of the structural model at hand,       , we can back-out the 

underlying firm's asset value.
4
 

 In our baseline case, the structural model and the model estimation methodology 

is the one suggested by Forte (2011). Specifically, in Forte (2011) the default barrier 

(  ) is defined as the fraction   of the nominal value of the total debt  . The exact 

value of   is calibrated to market observable Credit Default Swap (CDS) spreads, 

whereas   is approximated with the sum of the book value of short-term liabilities 

(   ) and long-term liabilities (   ). The debt structure is assumed to consist of 10 

coupon bonds, with maturities ranging from 1 to 10 years           . The principal 

of the 1-year maturity bond is equal to the book value of the    , whereas the principal 

of the bonds with maturities from 2 to 10 years is equal to 1/9 of     each. The coupon 

of each individual bond is determined as a part of the total interest expenses, 

proportional to the ratio of the bond's principal to the nominal value of the total debt. 

                                                             
4
 Specific equity pricing equation will depend on the structural model at hand. 
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The risk-free rate for each bond is proxied with the swap rate of the corresponding 

maturity. The value of -maturity individual bond at any point in time t is then 

determined using the expressions provided by Leland and Toft (1996): 

               
    

 
     [     

    

 
] [      ]  [           

    

 
]     ,    (6) 

where,      is the principal of the τ-year maturity bond,      is the coupon of the τ-year 

maturity bond,   is the risk-free rate,   [   ] represents bankruptcy costs, and specific 

expressions for      and      are given in the Appendix A.  

 In the Forte (2011) model, the total value of debt       equals the sum of the 

values of the 10 individual bonds, and the equity pricing equation is given by:  

                                                           |    ,                                             (7) 

where     |     is the value of the total debt when bankruptcy costs equal zero. 

Finally, for a series of observable equity prices, the firm's asset values at each point in 

time are determined using an iterative algorithm. We refer here interested readers to the 

original paper for details. The market value of the firm’s assets using the structural 

model framework will be denoted as,     and firm's asset returns calculated as 

          (            ⁄ ). 

 The nominal value of the total debt,  , used in deriving the     is determined on 

the basis of accounting data. Unfortunately, accounting data is not available on a daily 

basis. Therefore, we are in principle left with two options, either to carry out an 

interpolation between available observations (Forte, 2011), or to keep P constant and 

equal to the last available value reported in a firm's balance sheet. Our baseline 

approach considers the linear interpolation method with the objective to capture the 

evolution of the accounting variables over time. However, it seems reasonable to show 

that our results are not affected by this procedure. As a robustness check, we consider 

the second option, and use the book value of total liabilities reported in the last available 
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annual firm's balance sheet. The market value of the firm’s assets using the structural 

model framework and no interpolation of accounting data (   ,    , interest expenses 

and cash dividends) will be denoted as,       and corresponding firm's asset returns as 

         .
5
  In this case, for the purpose of the time-series analysis of firm's asset 

returns, it is necessary to discard return observations corresponding to January 1
st
. If 

these observations were included, it would imply that all the adjustment of the book 

level of debt (which occurs throughout the year) occurs in one single day. This quite 

unrealistic assumption would then imply the existence of artificial one-day jumps 

spaced at regular yearly intervals, which would subsequently overestimate the volatility 

of firm's asset returns and underestimate its persistence. Accordingly, these 12 return 

observations are treated as outliers.  

 In order to show that our results are general and do not depend on the specific 

assumptions of the structural model at hand, we also use two additional naïve 

estimations of the firm's asset value as a robustness check. First, we consider the naïve 

procedure considered in Bharath and Shumway (2008), in which the firm's asset value is 

simply the sum of the market value of equity ( ) and the default barrier (  ), which is 

set as in KMV to the value of            . The market value of firm’s assets 

resulting from this approach will be denoted as,      and firm's asset returns calculated 

as            (              ⁄ ). Second, we consider the approach by Charitou et 

al. (2013), in which the firm's asset value is treated as observable and is proxied with 

the sum of the market value of equity ( ) and the face value of debt ( ). The market 

value of firm’s assets using this approach will be denoted as,       . In this case, 

however, in order to resemble the naïve approach considered for robustness purposes in 

Choi and Richardson (2016), firm's asset returns,  (      ) , are then calculated as 

                                                             
5
 It should be noted that although the nominal value of debt is kept constant, the market value of debt, 

which is derived by inverting the equity pricing equation, is changing on a daily basis. 
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follows:     
      (          ⁄ )    

       (          ⁄ )  
 
, that is, debt is assumed to be 

risk-free.
6
 

4. Data Set 

The estimation of firm's asset values requires calibration of the default barrier to 

market observable CDS spreads. Therefore, our sample is limited not only to companies 

with traded equity but also to companies with highly liquid CDS spreads. Our initial 

sample was chosen from constituents of the iTraxx Europe index which comprises the 

most liquid 125 CDS referencing European investment-grade companies, starting from 

the year 2004, in which the index was introduced. We exclude companies in the 

banking and financial sector due to their different capital structure, private companies, 

and companies for which we lack data on either market capitalization or CDS spreads 

for the overall sample period. Additionally, we exclude all companies involved in 

corporate operations that resulted in significant jumps in the market capitalization time-

series but not in the time-series of adjusted prices. Our final sample is comprised of 52 

non-financial companies that we track over the 2004-2016 period.  

A complete list of the companies considered, its market capitalization and sector 

classification is provided in Table 1. The average company in the sample has a market 

capitalization of €25.4 billion, a leverage of 0.52 and a historical equity volatility of 

30%. The leverage ranges from 0.27 to 0.86 and historical equity volatility from 21% to 

48%. Leverage is calculated as the ratio of the book value of total liabilities to the sum 

of the market value of equity and the book value of total liabilities. Historical equity 

volatility is calculated as the annualized standard deviation of the continuously 

compounded returns on equity.  

  

                                                             
6
 We do not use the baseline approach of Choi and Richardson (2016) due to data limitations on the 

market prices of bonds and loans. 
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Table 1. List of companies 

No. Company MC in m € Sector Subsector 

1 AB Volvo 13,628.76 Industrial Engineering Commercial Vehicles & Trucks 

2 BMW AG  33,359.36 Automobiles & Parts Automobiles 

3 Michelin SCA 10,639.76 Automobiles & Parts Tires 

4 Continental AG 17,302.49 Automobiles & Parts Tires 

5 Daimler AG 51,141.31 Automobiles & Parts Automobiles 

6 Peugeot SA 8,266.57 Automobiles & Parts Automobiles 

7 Renault SA 17,540.90 Automobiles & Parts Automobiles 

8 Valeo SA 4,243.23 Automobiles & Parts Auto Parts 

9 Deutsche Lufthansa AG 6,176.73 Travel & Leisure Airlines 

10 Kingfisher PLC 8,147.19 General Retailers Home Improvement Retailers 

11 Koninklijke Philips NV 23,991.42 Health Care Equipment & Services Medical Equipment 

12 LVMH SE 50,950.98 Personal Goods Clothing & Accessories 

13 Marks & Spencer Group PLC 9,150.33 General Retailers Broadline Retailers 

14 Kering SA 14,755.60 General Retailers Apparel Retailers 

15 Sodexo SA 8,543.53 Travel & Leisure Restaurants & Bars 

16 BAT PLC 59,806.73 Tobacco Tobacco 

17 Carrefour SA 23,186.11 Food & Drug Retailers Food Retailers & Wholesalers 

18 Casino Guichard SA 6,979.49 Food & Drug Retailers Food Retailers & Wholesalers 

19 Diageo PLC 43,243.94 Beverages Distillers & Vintners 

20 Danone SA 29,692.63 Food Producers Food Products 

21 Henkel & Co KGaA AG 11,725.60 Household Goods & Home Construction Nondurable Household Products 

22 Imperial Tobacco Group PLC 25,595.60 Tobacco Tobacco 

23 J Sainsbury PLC 7,775.60 Food & Drug Retailers Food Retailers & Wholesalers 

24 Tesco PLC 33,715.80 Food & Drug Retailers Food Retailers & Wholesalers 

25 Unilever NV 42,970.03 Food Producers Food Products 

26 BP PLC 125,691.29 Oil & Gas Producers  Integrated Oil & Gas 

27 E.ON SE 44,600.90 Gas, Water & Multiutilities Multiutilities 

28 EDP Energias de Portugal SA 9,757.37 Electricity Alternative Electricity 

29 Iberdrola SA 30,735.58 Electricity Conventional Electricity 

30 Repsol SA 23,708.21 Oil & Gas Producers Integrated Oil & Gas 

31 RWE AG 24,318.96 Gas, Water & Multiutilities Multiutilities 

32 Akzo Nobel NV 11,723.31 Chemicals Specialty Chemicals 

33 Anglo American PLC 33,491.23 Mining General Mining 

34 BAE Systems PLC 16,096.54 Aerospace & Defense Defense 

35 Bayer AG 49,976.78 Pharmaceuticals & Biotechnology Pharmaceuticals 

36 Saint Gobain SA 19,022.46 Construction & Materials Building Materials & Fixtures 

37 Investor AB 8,367.33 Financial Services Specialty Finance 

38 Linde AG 17,498.17 Chemicals Commodity Chemicals 

39 Rolls-Royce Holdings PLC 14,296.92 Aerospace & Defense Aerospace 

40 Siemens AG 69,649.35 General Industrials Diversified Industrials 

41 Stora Enso OYJ 5,040.96 Forestry & Paper Paper 

42 UPM Kymmene OYJ 7,002.66 Forestry & Paper Paper 

43 BT Group PLC 28,121.99 Fixed Line Telecommunications Fixed Line Telecommunications 

44 Deutsche Telekom AG 53,768.38 Mobile Telecommunications Mobile Telecommunications 

45 Orange SA 42,617.39 Fixed Line Telecommunications Fixed Line Telecommunications 

46 Hellenic Telecom. Org. SA 5,530.32 Fixed Line Telecommunications Fixed Line Telecommunications 

47 Koninklijke KPN NV 15,613.93 Fixed Line Telecommunications Fixed Line Telecommunications 

48 Pearson PLC 9,484.90 Media Publishing 

49 STMicroelectronics NV 7,999.00 Technology Hardware & Equipment Semiconductors 

50 Telefonica SA 65,947.77 Fixed Line Telecommunications Fixed Line Telecommunications 

51 Wolters Kluwer NV 5,740.91 Media Publishing 

52 WPP PLC 14,099.36 Media Media Agencies 

This table reports the list of the 52 non-financial companies analyzed in the paper. MC refers to market 

capitalization. Sector and Subsector classification is based on the ICB (Industry Classification 

Benchmark) codes downloaded from Datastream. 
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The data needed for the estimation of firm's asset values: daily data on market 

capitalization, CDS spreads, and 1-10 year swap rates, as well as yearly data on current 

liabilities, total liabilities, interest expenses and cash dividends, is downloaded from 

Datastream. In our baseline case, daily data on accounting items is obtained using linear 

interpolation. In the case of CDS spreads, we consider only the most liquid 5-year Euro-

denominated CDS contracts on senior unsecured debt.  

 The cross-sectional average of the main descriptive statistics for daily equity and 

firm's asset returns are shown in Panel A of Table 2. In total, for each firm in the sample 

the equity and the firm's asset time-series consists of 3,391 observations of daily 

returns.
7
 The mean equity and firm’s asset returns are both positive, but statistically not 

significantly different from zero. Equity returns exhibit a larger variance compared to 

the variance of the estimated firm’s asset returns. In other words, equity volatility is 

higher than the firm’s asset volatility and this finding is consistent with the literature 

(Choi and Richardson, 2016). Interestingly, equity returns are positively skewed while 

the firm’s asset returns on average show a negative-skewed behaviour. Both return 

series exhibit high kurtosis. The returns of the estimated firm’s asset values have similar 

magnitudes in terms of mean, standard deviation, skewness and kurtosis for the four 

estimation procedures    ,      ,     and       .  

 We perform several diagnostic statistical tests on the time-series of equity and 

firm’s asset returns. The main cross-sectional results are reported in Panel B of Table 2. 

First, we check for the presence of serial correlation in returns and squared returns using 

the Ljung-Box test with 10 lags. The Ljung-Box test rejects the null hypothesis of no 

serial correlation at the 5% level for 78.85% of the companies in the case of equity 

returns and for 63.46% of the companies in the case of firm’s asset returns. For those 

                                                             
7
 For           the total number of observations is 3,379. 
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companies for which return series show evidence of serial correlation, the mean 

equation in the FIGARCH model is modelled as an AR(k) process, where k>0. In the 

case of squared returns, the Ljung-Box test rejects the null hypothesis of no serial 

correlation at the 5% level for practically all of the companies considered. On this 

matter, we additionally perform the Engle’s ARCH test for heteroscedasticity. The 

results confirm strong evidence of conditional heteroscedasticity in all return series. The 

Jarque-Bera test for normality rejects the null hypothesis of Gaussianity at the 1% 

significance level in all of the equity and firm’s asset returns. Finally, Panel C of Table 

2 presents the results of the unit-root tests. To account for possible structural breaks in 

the data we perform a two-break unit root test of Clemente et al. (1998), with both the 

additive outlier (AO) and the innovational outlier (IO) approach. The double mean shift 

test rejects the null hypothesis of unit-roots in all of the cases considered. We also 

perform an AO and IO one-break tests of Perron and Vogelsang (1992) which also 

rejects the unit root null hypothesis for both firm’s asset and equity returns.
8
 Finally, we 

perform the standard Augmented Dickey-Fuller test (ADF) which confirms the 

stationarity of all return series. Overall, the preliminary analysis shows that data 

employed in this study presents common features of financial returns data. 

  

                                                             
8
 The Clemente et al. (1998) and Perron and Vogelsang (1992) tests have been performed using Stata 

routines developed by Baum (2004). For the Perron and Vogelsang (1992) one-break test, the 5% 

trimming was used. For the Clemente et al. (1998) two-break tests, the calculation of the unit-root test 

statistics with 5% trimming was not feasible for our sample of      daily time-series with 3,391 

observations each. To make the calculations feasible, we have employed a 25% trimming, which 

essentially implies that the possible break-dates are confined to the interval April 2007 – October 2013, 

including therefore the probable break events related to the global financial crisis and the European 

sovereign debt crisis. 
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Table 2. Descriptive statistics of equity and firm’s asset returns 

 r(E) r(VSM) r(VSMN) r(VKMV) r(VProxy) 

Panel A      

Mean 0.00015 0.00016 0.00010 0.00015 0.00014 

Variance 0.01890 0.00860 0.00856 0.00860 0.00860 

Skewness 0.08304 -0.03682 -0.06909 -0.04363 -0.06960 

Kurtosis 15.43038 11.77791 11.00821 11.69407 11.36487 

Panel B 
     

Q(10) 25.6132 

(78.85%) 

22.9192 

(63.46%) 

22.9623 

(67.31%) 

22.7408 

(65.38%) 

22.4136 

(63.46%) 

Q
2
(10)    788.2130 

(98.08%) 

  524.7031 

(96.15%) 

521.3927 

(96.15%) 

  520.5706 

(96.15%) 

   513.1666 

(98.08%) 

ARCH      92.2538 

(100%) 

    77.5149 

(100%) 

    76.1948 

(100%) 

77.0270 

(100%) 

73.8417 

(100%) 

J-B 131,614.80 

(100%) 

   25,039.54 

(100%) 

17,961.27 

(100%) 

24,040.52 

(100%) 

21,520.91 

(100%) 

Panel C      

CMR(AO) -26.7459 

(100%) 

   -27.7460 

(100%) 

-28.3229 

(100%) 

-27.8874 

(100%) 

-27.9368 

(100%) 

CMR(IO) -35.1810 

(100%) 

-33.5940 

(100%) 

-33.7785 

(100%) 

-34.2121 

(100%) 

-33.7312 

(100%) 

PV(AO)  -28.8787 

(100%) 

-28.5874 

(100%) 

-28.7958 

(100%) 

-28.5148 

(100%) 

-28.3900 

(100%) 

PV(IO) -34.6168 

(100%) 

-35.6646 

(100%) 

-34.0869 

(100%) 

-35.6102 

(100%) 

-35.7983 

(100%) 

ADF    -58.0923 

(100%) 

   -58.1000 

(100%) 

   -58.0274 

(100%) 

-58.0179 

(100%) 

-58.1711 

(100%) 

Panel A of Table 2 reports the cross-sectional average of the main descriptive statistics (mean, variance, 

skewness and kurtosis) of equity     , and firm's asset returns       ,         ,        , and 

 (      ), for the set of 52 non-financial companies. Panel B of Table 2 reports the results of the four key 

diagnostic tests: Q(10) and Q
2
(10) refer to the Ljung-Box statistics for tenth-order serial correlation in 

returns and squared returns, respectively; ARCH is the Engle’s ARCH test; J-B refers to the Jarque-Bera 

normality test. Panel C of Table 2 reports the results of the unit-root tests. CMR is the Clemente et al. 

(1998) double-break unit root test statistics for the additive outlier (AO) and innovational outlier (IO), 

respectively (the 5% critical value is -5.49); PV is the Perron and Vogelsang (1992) single-break unit root 

test statistics for AO (the 5% critical value is -3.56) and IO (the 5% critical value is -4.27) model; ADF is 

the Augmented Dickey-Fuller unit root test. For each test, the cross-sectional average of the test statistics 

as well as the percentage of companies for which the null hypothesis is rejected at least at the 5% 

significance level (in parenthesis), are reported. 

  



21 

 

5. Empirical results 

In this section, we report the main empirical results from estimating the 

FIGARCH(1,d,1) model for equity and firm's asset returns. As mentioned in the Section 

2, the conditional mean equation is specified as an       model. The exact 

specification is defined on a case by case basis using the following algorithm. In the 

initial step, raw returns (after subtracting the mean) are tested for the presence of 

autocorrelation. If there is no evidence of autocorrelation the mean equation is specified 

as a constant only model (i.e.    ). If, on the contrary, the null hypothesis for the 

Ljung-Box Q(10) statistics is rejected at 5% level, one autoregressive term is added to 

the mean equation (i.e.    ). The fit of the lag-augmented model is subsequently 

tested on the basis of the Ljung-Box statistics for tenth-order serial correlation in 

residuals. This procedure is repeated until the adequate fit of the model, based on the 

5% criteria, is achieved.  

The FIGARCH(1,d,1) model is estimated using the G@RCH 6.1 developed by 

Laurent and Peters (2002), which is an OxMetrics module used for estimation of 

univariate or multivariate ARCH-type models. The FIGARCH model has been 

estimated using a Maximum Likelihood Estimation (MLE) approach. In particular, 

OxMetrics uses two main methods to estimate models. By default parameters are 

estimated with a quasi-Newton method of Broden, Fletcher, Goldfarb and Shanno 

(BFGS). However, if any constraint is imposed, parameters are estimated with a 

constraint optimization method that implements a sequential quadratic technique to 

maximize a non-linear function subject to non-linear constraints (MaxSQF algorithm). 

The computation method used to calculate the covariance matrix of the estimates, and 

therefore, to obtain the standard deviations of the estimated parameters is based on 

second-order derivatives. This method computes the hessian matrix, which contains the 
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second-order partial derivatives of the Likelihood function evaluated at the estimated 

MLE value. OxMetrics uses numerical methods to compute the hessian matrix 

approximating derivatives of the log-likelihood function. More details about the 

implementation of these estimation methods can be found in OxMetrics documentation 

(Laurent and Peters, 2002). 

In practical applications the conditional distribution of the error term is generally 

modelled with normal distribution, student’s t-distribution and the generalized error 

distribution (GED). Normal distribution is not usually employed when modelling equity 

returns, as it is unable to capture fat-tailed behaviour. Student’s t-distribution is fat-

tailed and generally performs better fit than normal distribution in asset returns. Nelson 

(1991) suggested the use of GED as error distribution, which allows a range of kurtosis 

through the value of shape parameter, that determines the thickness of the tail 

generating fat-tailed and thin-tailed error term distributions. In this research we assume 

that the conditional distribution of the error term follows a GED distribution density. 

This choice is motivated by Ferenstein et al. (2004), Gao et al. (2012), and Gabriel 

(2012), who provide evidence that GED distribution in GARCH-type modelling of asset 

returns outperform other return distributions. It is important to mention that as a 

robustness check, all of the FIGARCH(1,d,1) estimates were obtained with both GED 

and Student-t distributions (which are available upon request), concluding that results 

do not differ depending on the error distribution selected. 

The estimation results of the FIGARCH(1,d,1) model are depicted in Table 3. To 

save space, we report only the cross-sectional mean of the estimated coefficients and the 

percentage of companies for which the coefficients are statistically significant.
9
 The 

fractional differencing parameter, as a measure of persistence of the conditional 

                                                             
9
 Detailed results are available upon request. 
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volatility, is significant at least at 5% level in virtually all of the cases, providing strong 

evidence of long-range dependence in firm-specific equity and firm’s asset volatility. 

The cross-sectional mean of the estimated persistence for equity volatility is 0.37, which 

is in line with the common findings in the literature on the volatility of stock returns 

(Lux and Kaizoji, 2007) and stock index returns (Dionisio et al, 2007; Kang and Yoon, 

2007; Kang et al, 2010). On the other side, the estimated persistence for firm's asset 

volatility is slightly lower, with the cross-sectional mean of 0.35 in our base case (VSM). 

In addition, we find no substantial difference in the estimate of the persistence 

parameter among different procedures used to assess the underlying firm’s asset value. 

This result provides robustness to our novel evidence on the long-range dependence in 

firm’s asset volatility. Finally, we reject the null hypothesis that     (GARCH model) 

or alternatively, that     (IGARCH model), in all of the cases considered. This result 

supports the use of the flexible FIGARCH model, which allows for intermediate ranges 

of persistence. 

 The results of the Ljung-Box test on standardized residuals and squared 

standardized residuals, reported in Table 3, indicate an adequate fit of the model. We 

find no additional autocorrelation in the standardized residuals. In the case of squared 

standardized residuals, we fail to reject the null hypothesis of conditional 

homoscedasticity for 98.08% of the companies in the case of equity, and 96.15% of the 

companies in the case of firm's assets. As well, it is important to note that the GED 

parameter   is statistically significant and considerably lower than 2 in all of the cases 

which indicates that the distribution of   has thicker tails than the normal distribution.
10

 

Overall, these results provide support that the specified AR(k)-FIGARCH(1,d,1) model 

fit the data reasonably well. 

                                                             
10

 The maximum is 1.44 in the case of equity and 1.48 in the case of baseline firm’s asset data. 
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Table 3. Estimated coefficients for the FIGARCH(1,d,1) model with GED errors 

 E VSM VSMNI VKMV VProxy  

w  1.5690·10
-5

 4.5348·10
-6

 4.3760·10
-6

 4.4467·10
-6

 4.4515·10
-6

 

  (96.15%)  (90.38%)  (90.38%)  (92.31%)  (94.23%) 

d 0.3745 0.3493 0.3534 0.3495 0.3574 

 (100%)  (100%)  (100%)  (100%)  (98.08%) 

α 0.2643 0.3085 0.3157 0.3081 0.3005 

 (80.77%)  (82.70%)  (86.54%)  (80.77%)  (82.70%) 

β 0.5437 0.5683 0.5792 0.5682 0.5717 

  (98.08%)  (94.23%)  (94.23%)  (94.23%)  (98.08%) 

GED 1.2304 1.2639 1.2679 1.2654 1.2637 

  (100%)  (100%)  (100%)  (100%)  (100%) 

Q(10) 9.9097 10.6097 10.7374 10.4691 10.5634 

  (100%)  (100%)  (100%)  (100%)  (100%) 

Q
2
(10) 6.4845 6.8839 6.9538 6.8178 6.8143 

  (98.08%)  (96.15%)  (96.15%)  (96.15%)  (96.15%) 

This table reports the cross-sectional average of the estimated FIGARCH(1,d,1) coefficients. The figures 

in parenthesis correspond to the percentage of companies for which the estimated coefficients of the 

model are statistically significant at least at the 5% level. The Q(10) and Q
2
(10) refer to the Ljung-Box 

statistics for tenth-order serial correlation in standardized residuals and squared standardized residuals, 

respectively. 

Table 4 reports main cross-sectional descriptive statistics for our parameter of 

interest. The standard deviation of the persistence parameter for equity volatility is 

higher than the standard deviation of the persistence parameter for firm’s asset 

volatility, which suggests a larger variability in the estimated equity volatility 

persistence. The equity volatility persistence ranges between 0.17 and 0.72, whereas 

firm’s asset volatility persistence ranges between 0.15 and 0.54 (in our baseline case). In 

general, for the absolute majority of the companies considered, the parameter d is lower 

than 0.5.  
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Table 4. Descriptive statistics and distribution of companies by the value of d 

 E VSM VSMNI VKMV VProxy  

Mean 0.3745 0.3493 0.3534 0.3495 0.3574 

Median 0.3684 0.3474 0.3569 0.3469 0.3602 

Minimum 0.1706 0.1524 0.1498 0.1607 0.1498 

Maximum 0.7235 0.5367 0.5322 0.5341 0.5466 

Std. dev. 0.0898 0.0833 0.0831 0.0828 0.0829 

Number of firms with       3 4 4 4 4 

Number of firms with       49 48 48 48 48 

This table reports the main descriptive statistics of the estimated fractional differencing parameter within 

the FIGARCH(1,d,1) model for equity and firm’s asset conditional variance.  

5.1. Equity vs. firm’s asset volatility  

 As previously described, the mean (and median) value of the fractional 

differencing parameter is higher for equity volatility. On a firm specific basis, equity 

volatility is more persistent than firm’s asset volatility for as many as 38 companies, 

that is, for 73% of the sample. If this difference is significant it would imply that shocks 

to equity volatility die at a slower rate than shocks to firm’s asset volatility. We 

therefore find it suitable to analyse whether this apparent difference is statistically 

significant or not. For that, we use the Welch t‐test for equality of means. The results, 

depicted in Table 5, demonstrate that we fail to reject the null hypothesis of equality of 

means. In other words, according to the results, there are no significant differences 

between the persistence of firm's asset and equity volatility, and this result holds true 

irrespective of how a firm's asset values are computed.  

 We further check the statistical significance of the difference in volatility 

persistence after controlling for financial leverage. According to Choi and Richardson 

(2016), we should expect a higher persistence for the more levered firms. We divide our 

sample of 52 companies into two groups according to financial leverage, setting as the 

cut-off the mean level of 0.52. The high leverage group has a mean leverage of 0.631 
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and the low leverage group a mean of 0.417. For both leverage groups the estimated 

fractional differencing parameter ( ) for asset volatility is on average lower than the one 

for equity volatility. However, as before, the test for equality of means fails to find 

significant differences in the level of persistence (see Table 5).  

Table 5. Welch t‐test for equality of means 

 
mean d Welch t-test 

 
firm's assets equity t‐stat p-val 

d(VSM) 0.3493 0.3745 -1.4831 0.1411 

d(VSMNI) 0.3534 0.3745 -1.2464 0.2155 

d(VKMV) 0.3495 0.3745 -1.4765 0.1429 

d(VProxy) 0.3574 0.3745 -1.0087 0.3155 

leverage > 0.52     

d(VSM) 0.3702 0.3929 -0.9751 0.3343 

d(VSMNI) 0.3768 0.3929 -0.7105 0.4807 

d(VKMV) 0.3679 0.3929 -1.0639 0.2926 

d(VProxy) 0.3812 0.3929 -0.4992 0.6199 

leverage < 0.52     

d(VSM) 0.3285 0.3561 -1.5642 0.2535 

d(VSMNI) 0.3300 0.3561 -1.0796 0.2859 

d(VKMV) 0.3311 0.3561 -1.0533 0.2978 

d(VProxy) 0.3337 0.3561 -0.9612 0.3417 

This table reports the results of the Welch t‐test for the equality of means. 

Our empirical findings differ from Choi and Richardson (2016) who argue that 

equity volatility is significantly more persistent than asset volatility for levered firms. 

However, it is important to mention that Choi and Richardson (2016) do not estimate 

the degree of persistence within a formal long-memory framework as we do. That is, 

their approach doesn’t include the estimation of the long-memory parameter but is 

based on the autocorrelogram characteristics of firm's asset and equity volatility as well 

as on the parameters of the EGARCH(1,1) model, which by definition considers only 

short-run effects. At the same time, and consistent with Choi and Richardson (2016), we 

are able to observe that the persistence increases with leverage for both firm's asset and 

equity volatility. The persistence of equity volatility increases from 0.36 to 0.39 when 

moving from the low to the high leverage group. The persistence of firm's asset 
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volatility, in turn, increases from 0.33 to 0.37 for our base case (VSM). The two naïve 

approaches show similar behaviour of values for the d parameter when moving from the 

low to the high leverage group. We investigate this issue in more detail below.  

5.2. Volatility persistence and firm-specific characteristics 

In this section, we relate the persistence level to several firm-specific 

characteristics shown in the literature to be related to persistence in volatility. To be 

precise, we estimate a parsimonious cross-sectional regression model in which we relate 

the parameter d to a small set of explanatory variables: financial leverage (LEV), firm 

size (SIZE) and relative idiosyncratic volatility (IVOL). 

                                                            ,                             (8) 

 The first explanatory variable that we consider is financial leverage, calculated 

as before, as the ratio of the book value of total liabilities to the proxy for the market 

value of the firm. Choi and Richardson (2016) report higher persistence for both firm's 

asset and equity volatility for highly levered firms. Similarly, although they were 

considering the relationship between firm-specific variables and long-range dependence 

in raw stock returns, Cajueiro and Tabak (2005), find positive relationship between 

financial leverage and the long-range dependence parameter measured by the Hurst 

exponent. Therefore, we expect a positive relationship between persistence and 

leverage.  

The second firm-specific variable that we consider is firm size, measured by the 

log of market capitalization. Brooks et al. (2001) find that small firms exhibit higher 

persistence in equity volatility. Along the same lines, Cajueiro and Tabak (2005) argue 

that market capitalization should be negatively related to long-range dependence in 

stock returns given that firms with higher market capitalization have higher trading 
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activity, which ultimately fosters market efficiency. We therefore expect persistence in 

volatility to be negatively related to firm size. 

 Finally, we introduce a measure of relative idiosyncratic volatility. Xu and 

Malkiel (2003) report that idiosyncratic volatilities are much less persistent than the 

total market volatility. We therefore would expect the persistence of firm's asset and 

equity volatility to be negatively related to the ratio of idiosyncratic to market volatility. 

Moreover, Fu (2009) argues that idiosyncratic volatility reflects firm-specific 

information which is highly volatile in nature, and, therefore, there is no theoretical 

reason to assume high persistence in idiosyncratic volatility. In this paper we use the 

log-transformed relative idiosyncratic volatility of Ferreira and Laux (2007) and 

Kapadia and Pu (2012). The relative idiosyncratic volatility is calculated as the   [   

      ], where 1-R
2
 represents the ratio of the idiosyncratic variance to total variance 

calculated from the market model. To estimate the market model we estimate a 

regression of excess firm-specific stock returns on the excess return on STOXX Europe 

50.  

 The results of the cross-sectional regression described in Equation 8 are reported 

in Table 6. These results show the equity volatility persistence parameter is positively 

related to financial leverage which is statistically significant at 5% level and negatively 

related to relative idiosyncratic volatility, which, in turn, is statistically significant at 1% 

level. Firm size is not found to be statistically significant. The overall adjusted R
2
 in 

equity regressions amounts to 17.15%. The persistence of firm asset volatility is also 

positively related to leverage and negatively related to relative idiosyncratic volatility. 

The leverage variable is statistically significant at 10% in our base case d(VSM), not 

statistically significant for d(VKMV) and statistically significant at 5% level for d(VSMNI) 

and d(VProxy). In turn, the relative idiosyncratic volatility variable is statistically 
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significant at 1% level in all of the cases. Interestingly, the adjusted R
2
 is considerably 

higher in the case of firm’s asset volatility persistence and amounts to 29.30% for 

d(VSM), 33.53% for d(VSMNI), 31.16% for d(VKMV), and 32.64% for d(VProxy). This 

difference in the explanatory power seems to be mainly related to the relative 

idiosyncratic volatility which explains more of the cross-sectional variation in the 

degree of a firm’s asset volatility persistence than in the degree of equity volatility 

persistence.  

Table 6. Cross-sectional regression 

Variable Coeff. Equity d(E) 
Firm's Asset d 

   d(VSM)  d(VSMNI)  d(VKMV)    d(VProxy) 
            

const. γ0 0.3697 *** 0.2715 * 0.2817 ** 0.2870 ** 0.3174 ** 

  (0.0829)  (0.1363)  (0.1286)  (0.1348)  (0.1368)  

LEV γ1 0.1203 ** 0.1231 * 0.1554 ** 0.1027  0.1641 ** 

  (0.0558)  (0.0666)  (0.0638)  (0.0668)  (0.0708)  

SIZE γ2 -0.0020  0.0058  0.0036  0.0055  -0.0002  

  (0.0093)  (0.0126)  (0.0116)  (0.0125)  (0.0124)  

IVOL γ3 -0.0763 *** -0.0855 *** -0.0885 *** -0.0896 *** -0.0873 *** 

  

 

(0.0219)  (0.0223)  (0.0224)  (0.0197)  (0.0213)  

    

    
  

    
 

Adj R
2
   0.1715  0.2930  0.3353  0.3116  0.3264  

This table reports coefficients and standard errors (in parentheses) from a cross-sectional regression of the 

persistence in volatility, measured by the parameter d from the FIGARCH(1,d,1) model, on leverage 

(LEV), log of market capitalization (SIZE) and relative idiosyncratic volatility (IVOL). Standard errors 

are calculated as White Standard Errors. *, **, and *** denote significance at the 10%, 5% and 1% levels, 

respectively. 

6. Detrended Fluctuation Analysis (DFA) 

 In this section, we complement our findings on the long-memory property in 

volatility of firm's asset and equity returns by considering a non-parametric measure of 

persistence and a direct proxy for volatility – the absolute value of the daily log returns. 

More specifically, as a measure of the degree of long-range dependence we consider the 

scaling exponent calculated using the Detrended Fluctuation Analysis (DFA) method 

developed by Peng et al. (1994) and widely used to study long-range dependence in 
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financial returns and volatility (Grau-Carles, 2001; Cajueiro and Tabak, 2005; Oh et al, 

2008; among others).
11

  

 The DFA method comprises several steps that could be briefly described as 

follows: First, the original time-series      of length   is integrated by computing the 

cumulative sum of the demeaned series,      ∑ [      ̅] 
   ,         . In the 

second step,      is divided into     boxes (i.e. non-overlapping subsamples) of equal 

length, n. Third, for each box a local trend is determined by fitting a least squares line to 

the data and the integrated time series      is subsequently detrended by subtracting the 

local trend      . Fourth, the DFA fluctuation function is defined as the square root of 

the average variance of the detrended time series: 

                                          √
 

 
∑ [          ] 

 
   ,                                              (9) 

This procedure is repeated for different box sizes, that is, for different values of  . The 

fluctuation function      behaves as a power-low of  ,        , and the power-law 

assumption is tested by running a regression of the           on the       . The 

parameter of interest is the scaling exponent   (or the Hurst exponent) which is 

therefore determined by the slope of the line. If        , the time series is anti-

persistent, if        , it is persistent, and in the case of        , it becomes a 

random walk. A detailed description of the DFA algorithm is given in Peng et al. 

(1995). 

 The results of the DFA analysis presented in Table 7, Table 8 and Table 9, 

undoubtedly indicate that the absolute returns have a positive long-range dependence 

with a long-memory behavior.
12

 First, from the main descriptive statistics presented in 

                                                             
11

 We thank the anonymous referee for suggesting this line of research. 
12

 In line with Oh et al. (2008), we have also tested the effect of autocorrelation in raw returns and 

calculated the scaling exponent by considering the absolute errors from the conditional mean equation 
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Table 7, we can observe that the scaling exponent ranges between 0.73 and 0.9 for our 

base case firm's asset volatility and between 0.75 and 0.97 for equity volatility. In all of 

the cases, scaling exponent is significantly higher than 0.5 and lies within the region 

       , which provides strong evidence on the long-memory characteristics of the 

examined volatility series. In line with our previous analysis, the standard deviation of 

the persistence parameter for equity volatility is higher than the standard deviation of 

the persistence parameter for firm’s asset volatility. As before, we find that equity 

volatility persistence (with a mean of 0.85) is on average slightly higher than asset 

volatility persistence (with a mean of 0.81). In this case, we find that the difference in 

mean is statistically significant (see Table 8). However, and in line with our previous 

analysis, although the persistence increases with leverage the difference in mean cannot 

be attributed to leverage (the difference is statistically significant for both high and low 

leveraged firms). Finally, Table 9 replicates the analysis on volatility persistence and 

firm-specific characteristics. The relative idiosyncratic volatility, as before, seems to be 

the crucial explanatory variable of the degree of persistence for both firm’s asset and 

equity volatility. In all of the cases, relative idiosyncratic volatility is statistically 

significant at 1% level and is negatively related to the degree of persistence. Leverage, 

as before, is positively related to firm's asset volatility persistence. Interestingly, when 

we consider the scaling exponents of the absolute return series, we find that firm size is 

statistically significant and positively related to the degree of persistence, although a 

negative sign was expected.
13

 This could be due to the fact that daily volatility is 

proxied using one-day observation data, because all considered firms are big in size, 

highly liquid and investment-grade so that the size variable is not adequately reflecting 

                                                                                                                                                                                   
instead of the absolute raw returns. The results obtained with       filtered returns are virtually identical 

to those reported in the paper.  
13

 As a robustness check, we have also examined the relationship between the firm-specific variables and 

scaling exponents for return series. In line with Cajueiro and Tabak (2005), we find that firm size in this 

case is negatively related to the degree of long-memory in return series. 
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the trading activity effect, or simply because for such a firm category an opposite effect 

holds.   

Table 7. Scaling exponent from the DFA analysis 

  E VSM VSMNI VKMV VProxy  

Mean 0.8455 0.8088 0.8106 0.8093 0.8115 

Median 0.8463 0.8107 0.8091 0.8108 0.8132 

Minimum 0.7451 0.7264 0.7312 0.7065 0.7232 

Maximum 0.9728 0.8995 0.8999 0.9002 0.8842 

Std. dev. 0.0421 0.0368 0.0386 0.0376 0.0372 

No of firms with         52 52 52 52 52 

This table reports the main descriptive statistics of the DFA scaling exponent for equity and firm’s asset 

absolute returns.  

Table 8. DFA analysis - Welch t‐test for equality of means  

  mean   Welch t-test 

  firm's assets equity t‐stat p-val 

 (VSM) 0.8088 0.8455 22.3389 0.0000 

 (VSMNI) 0.8106 0.8455 19.4303 0.0000 

 (VKMV) 0.8093 0.8455 21.3711 0.0000 

 (VProxy) 0.8115 0.8455 18.9841 0.0000 

leverage > 0.52 
    

 (VSM) 0.8165 0.8496 9.7225 0.0031 

 (VSMNI) 0.8188 0.8496 7.9823 0.0069 

 (VKMV) 0.8157 0.8496 9.5604 0.0033 

 (VProxy) 0.8210 0.8496 6.9553 0.0113 

leverage < 0.52 
    

 (VSM) 0.8012 0.8413 12.7684 0.0008 

 (VSMNI) 0.8023 0.8413 11.6909 0.0013 

 (VKMV) 0.8028 0.8413 11.8325 0.0012 

 (VProxy) 0.8020 0.8413 12.7076 0.0008 

This table reports the results of the Welch t‐test for the equality of means.  
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Table 9. DFA analysis - Cross-sectional regression 

Variable Coeff. Equity α(E) 
Firm's Asset  

   α(VSM) α(VSMNI) α(VKMV) α(VProxy) 

                        

const. γ0 0.7219 *** 0.6455 *** 0.6527 *** 0.6532 *** 0.6437 *** 

  (0.0654)  (0.0671)  (0.0668)  (0.0669)  (0.0677)  

LEV γ1 0.0540 
 

0.0648 * 0.0730 ** 0.0559 * 0.0863 ** 

  (0.0373)  (0.0325)  (0.0344)  (0.0326)  (0.0348)  

SIZE γ2 0.0115 * 0.0147 ** 0.0140 ** 0.0145 ** 0.0140 ** 

  (0.0061)  (0.0055)  (0.0055)  (0.0056)  (0.0055)  

IVOL γ3 -0.0353 *** -0.0287 *** -0.0345 *** -0.0314 *** -0.0290 *** 

  

 

(0.0059)  (0.0086)  (0.0085)  (0.0093)  (0.0092)  

    
 
             

Adj R
2
   0.2669  0.3362  0.3852  0.3439  0.3581  

This table reports coefficients and standard errors (in parentheses) from a cross-sectional regression of the 

persistence in volatility, measured by the scaling exponent from the DFA analysis, on leverage (LEV), 

log of market capitalization (SIZE) and relative idiosyncratic volatility (IVOL). Standard errors are 

calculated as White Standard Errors. *, **, and *** denote significance at the 10%, 5% and 1% levels, 

respectively. 

7. Conclusions 

The main objective of this paper is to understand and analyse the persistence 

properties of firm’s asset volatility and the eventual difference it presents with respect to 

the equity volatility of the same underlying firm. Using the FIGARCH model, we find 

strong evidence of long memory in the conditional variance of both firm’s asset and 

equity returns. The firm’s asset volatility is less persistent than equity volatility for the 

vast majority of the companies considered. However, we do not find statistically 

significant differences in the level of firm’s asset and equity volatility persistence. In a 

parsimonious econometric model we show that both equity and firm’s asset volatility 

are related to firm-specific variables: positively to leverage and negatively to relative 

idiosyncratic volatility. A complementary DFA analysis based on an alternative 

definition of volatility confirms strong evidence on the long-memory characteristics of 

both volatility series.  
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These results have several important implications in finance. In particular, the 

presence of long-memory in firm’s asset volatility should be an important aspect to 

consider in pricing credit-sensitive instruments (e.g. bonds, CDS), and therefore, in 

credit risk assessment and management. As these instruments are fundamentally 

analogous to long-maturity equity options, the pricing effect of long-memory 

characteristics of firm’s asset volatility could be even more pronounced in comparison 

to the effect long-memory has on pricing equity options. In the same way the averge 

option pricing errors substantially decline when moving from short- to long-memory 

models (Bollerslev and Mikkelsen, 1996; Bollerslev and Mikkelsen, 1999), pricing 

errors of corporate credit instruments could be potentially reduced if long-memory 

feauters are accounted for in a volatility model specification. This is, of course, an 

empirical question and represents an important area for future research. From the equity 

volatility perspective, although the implications of long-memory in equity volatility 

have been previously studied at the aggregate market level, this paper brings a new 

aspect to consider when pricing individual options or defining the optimal efficient 

portfolio. Namely, the relative proportion of idiosyncratic risk seems to be an important 

determinant of the degree of long-memory in the total equity volatility. The results of 

the paper further suggest that there are no substantiall differences between the level and 

the determinants of the degree of long-memory in firm's asset and equity volatility. This 

implies that the existing knowledge on the equity volatility dynamics could be directly 

used to improve the modelling of the unlevered volatility process.  
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Appendix B 

Test statistics for the Perron and Vogelsang (1992) unit root test with single mean shift (AO and IO 

models). 

 

r (E) r (VSM) r (VSMN) r (VKMV) r (VProxy) r (E) r (VSM) r (VSMN) r (VKMV) r (VProxy)

c1 -31.0840 -28.9612 -28.7185 -28.9771 -28.9581 -28.6678 -29.0266 -28.5754 -29.0449 -29.0231

c2 -27.4000 -27.5972 -33.4667 -27.6257 -27.7786 -27.8339 -28.1121 -27.8309 -28.1372 -28.3346

c3 -25.3890 -25.3851 -25.2997 -25.4018 -25.4418 -28.6797 -28.8581 -28.7787 -28.8682 -28.8674

c4 -27.5610 -27.7026 -27.7266 -27.8216 -24.3184 -57.2822 -27.9671 -27.9517 -27.9760 -27.9709

c5 -25.2760 -25.3575 -25.2806 -25.3457 -26.8371 -27.4969 -27.2208 -27.1841 -27.2058 -27.2147

c6 -41.9940 -27.3582 -28.0111 -27.2382 -27.3292 -41.9849 -27.1902 -28.0258 -27.0645 -27.1155

c7 -25.7850 -26.6863 -26.8732 -26.6928 -26.6725 -34.6318 -54.9146 -54.9481 -54.8920 -54.9845

c8 -30.2090 -24.7372 -24.7252 -24.7216 -24.8597 -30.7527 -30.9261 -30.9223 -30.9012 -31.0880

c9 -27.1170 -26.8597 -27.0078 -26.8464 -26.8040 -27.5539 -27.3212 -27.4789 -27.3042 -27.2541

c10 -25.8300 -28.3228 -28.3713 -28.3053 -28.3193 -27.8175 -28.4179 -28.4844 -28.4043 -28.4381

c11 -27.0650 -29.7018 -29.6832 -29.6984 -29.7434 -43.2797 -59.4905 -59.2843 -59.4608 -59.4667

c12 -31.0550 -36.6282 -31.0850 -31.1096 -31.1413 -36.8909 -36.7220 -36.6865 -36.7416 -36.7330

c13 -25.1710 -24.8953 -27.3946 -24.9159 -24.9701 -57.6596 -57.3980 -27.5727 -27.6812 -27.6577

c14 -25.5600 -41.5985 -41.5342 -41.6560 -41.6218 -27.4887 -27.8346 -27.7548 -27.8386 -27.8851

c15 -28.0300 -27.9754 -28.0365 -27.9636 -27.9795 -28.5835 -28.2346 -28.3055 -28.2208 -28.2451

c16 -25.3940 -25.5003 -25.2835 -25.5095 -25.5394 -38.7121 -37.8166 -37.6221 -37.8350 -37.7690

c17 -43.6260 -29.4224 -29.4415 -29.4159 -29.5168 -43.6132 -43.3413 -43.2829 -43.3273 -43.4353

c18 -25.6810 -24.4115 -25.1181 -24.4306 -24.5294 -26.6106 -42.7836 -43.1686 -42.6950 -42.9504

c19 -25.9630 -25.9051 -25.9149 -25.9471 -25.9980 -37.9706 -37.4587 -37.3163 -37.3835 -37.4060

c20 -29.5520 -29.1124 -29.2533 -29.1719 -29.1874 -38.3257 -37.6057 -37.8018 -37.7002 -37.8170

c21 -27.7200 -27.4088 -27.3072 -27.4143 -27.3024 -27.9396 -27.5964 -27.5139 -27.5160 -27.5958

c22 -26.0240 -37.5218 -36.8288 -37.3308 -37.4071 -38.3778 -38.2005 -37.2199 -37.9544 -38.0046

c23 -25.8670 -25.9023 -26.0223 -25.9085 -25.9430 -36.3902 -26.0615 -26.2273 -26.0675 -26.0773

c24 -29.7640 -29.6719 -27.0047 -26.8238 -29.7118 -30.0212 -29.6930 -29.7555 -29.7279 -29.7095

c25 -26.7950 -26.7142 -26.6938 -26.7001 -26.7199 -30.1508 -30.0256 -29.8819 -30.0154 -30.0389

c26 -43.3920 -24.9930 -25.0153 -25.0252 -25.0866 -36.2521 -36.3180 -36.2433 -36.2210 -36.1036

c27 -24.8410 -25.0936 -25.5645 -25.0304 -25.0058 -25.3876 -26.2655 -26.4041 -26.2033 -26.2165

c28 -25.8900 -25.1334 -25.2297 -25.2278 -25.3955 -26.4236 -25.4435 -25.5286 -25.5507 -25.8742

c29 -37.1880 -37.2804 -45.7659 -37.2344 -37.2513 -29.0287 -38.4978 -37.9096 -38.4189 -38.3786

c30 -24.3160 -26.8678 -27.2317 -26.9390 -26.8635 -35.5444 -56.1959 -27.6793 -56.2041 -56.2170

c31 -27.0340 -26.6643 -26.8697 -26.6506 -26.8969 -56.7540 -42.3727 -42.4848 -42.3866 -56.1185

c32 -25.9730 -30.0453 -29.9716 -30.0628 -30.0552 -26.2403 -25.6717 -25.4759 -25.6554 -25.6766

c33 -25.9400 -36.3690 -30.9712 -36.3334 -31.0041 -31.7279 -36.6711 -36.2555 -36.6295 -28.6071

c34 -26.2610 -26.0519 -26.1443 -26.0117 -26.1195 -28.6920 -43.6984 -43.5094 -43.6139 -43.6217

c35 -25.6190 -25.1894 -25.2588 -25.1661 -25.1350 -36.1165 -35.5269 -35.5918 -61.3775 -61.5134

c36 -28.3580 -28.3577 -28.3282 -28.3606 -28.4619 -28.8131 -28.5859 -28.5795 -28.5966 -28.6636

c37 -28.5030 -28.4358 -28.3395 -28.4953 -28.5074 -29.0622 -28.9403 -28.8416 -29.0174 -29.0302

c38 -24.7810 -26.7278 -24.5422 -34.8855 -26.7105 -35.6951 -35.0118 -35.5602 -35.0065 -34.9743

c39 -28.1920 -28.2573 -26.3426 -28.3514 -28.3856 -28.5600 -28.4479 -28.4258 -28.5506 -28.5036

c40 -27.9110 -27.3634 -27.3086 -27.3742 -27.3552 -28.1311 -27.6343 -27.5726 -27.6379 -27.6180

c41 -41.1790 -26.0181 -26.0651 -25.9948 -26.2068 -57.1885 -57.6687 -57.7035 -57.5924 -57.7695

c42 -27.3450 -24.7562 -34.7797 -24.7188 -24.9328 -35.1044 -57.3005 -57.0816 -57.2842 -57.2796

c43 -26.4370 -28.3346 -28.2733 -28.3276 -28.4363 -26.8052 -26.6695 -26.6741 -28.6976 -28.7904

c44 -27.7320 -25.7631 -25.8245 -25.7487 -27.3708 -26.9336 -26.7041 -26.7728 -26.6758 -28.4608

c45 -28.2820 -26.1835 -26.0757 -26.1409 -28.2889 -28.8649 -26.8939 -26.7795 -26.8261 -27.1129

c46 -31.5470 -33.2323 -33.1089 -33.0349 -33.0784 -31.7751 -33.1437 -33.1158 -32.9362 -33.0019

c47 -31.8060 -36.4342 -36.5623 -36.4582 -36.5547 -66.2596 -36.9990 -37.0815 -37.0394 -37.0078

c48 -28.1770 -31.2329 -31.1704 -25.8402 -25.8983 -31.3386 -31.3947 -31.3211 -31.3954 -31.4092

c49 -41.7270 -41.7304 -41.7009 -41.7193 -41.7404 -23.7375 -56.9906 -35.1204 -56.9469 -56.9957

c50 -27.9760 -25.2927 -25.3825 -25.2584 -25.3276 -28.7057 -28.0664 -28.1502 -28.0535 -28.1709

c51 -27.3730 -26.9342 -26.8442 -26.9352 -27.0805 -59.0661 -58.4842 -58.4442 -58.4144 -58.4614

c52 -27.0000 -26.4656 -26.6282 -28.4718 -28.4997 -27.1478 -28.7452 -28.6376 -28.8368 -28.8525

AO model IO model
comp
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Appendix C 

 

Test statistics for the Clemente et al. (1998) unit root test with double mean shift (AO and IO models). 

r (E) r (VSM) r (VSMN) r (VKMV) r (VProxy) r (E) r (VSM) r (VSMN) r (VKMV) r (VProxy)

c1 -25.5390 -28.8660 -28.7380 -28.8650 -28.8500 -28.8550 -29.1715 -29.0577 -29.1981 -29.1589

c2 -27.4970 -27.6170 -27.3640 -27.6460 -27.6670 -28.0800 -27.8370 -27.6727 -27.8982 -27.9823

c3 -24.8640 -25.6610 -25.5840 -25.6780 -25.7270 -28.9460 -29.1842 -29.1152 -28.8408 -29.2005

c4 -24.4970 -28.0270 -40.9480 -28.1020 -28.0310 -58.0770 -28.0521 -28.1167 -28.1860 -28.0115

c5 -27.5640 -27.0150 -26.9920 -26.9960 -27.0070 -28.7090 -27.8019 -27.7709 -27.7849 -27.7589

c6 -26.7840 -24.4760 -28.2030 -27.6460 -27.7690 -42.2110 -27.8307 -28.2801 -27.6399 -27.8332

c7 -24.0660 -27.1880 -27.3120 -27.1960 -27.1620 -35.4460 -27.6173 -27.7262 -27.6309 -27.6165

c8 -30.8440 -31.0290 -30.9510 -31.0080 -31.1010 -31.4770 -31.3321 -31.2614 -31.3176 -31.3631

c9 -24.4530 -24.3270 -24.5190 -24.2990 -24.3430 -27.7870 -27.5027 -27.6635 -27.4790 -27.4784

c10 -25.7450 -28.2930 -28.3490 -28.2720 -28.3040 -28.2120 -28.5352 -28.6045 -28.5268 -28.5823

c11 -30.3420 -30.0300 -30.0120 -30.0370 -30.0500 -43.8570 -59.9927 -59.7777 -59.9740 -59.9317

c12 -28.1510 -31.3350 -31.3060 -31.3540 -31.3810 -37.4600 -37.1203 -37.0831 -37.1690 -37.1498

c13 -25.8540 -25.6860 -28.1740 -25.6580 -25.7210 -36.7459 -28.8545 -28.6572 -28.8589 -28.8333

c14 -27.4870 -41.8420 -41.7690 -41.8950 -28.0390 -28.4388 -27.8973 -27.7926 -27.8976 -28.0146

c15 -25.9940 -25.6760 -25.6850 -25.6680 -25.7410 -29.0609 -28.2903 -28.3626 -28.2820 -28.2619

c16 -25.6420 -25.5790 -25.3820 -25.5890 -25.6400 -39.4784 -38.4288 -38.2269 -38.4484 -38.3618

c17 -24.7670 -24.0370 -24.1190 -24.0470 -24.1950 -44.0063 -43.7668 -43.7238 -43.7530 -43.8470

c18 -25.9810 -24.6590 -25.3580 -24.6550 -24.8520 -43.7570 -43.5163 -43.9311 -43.4043 -43.7121

c19 -26.1040 -25.9980 -25.1700 -26.0560 -26.1360 -38.2117 -37.6490 -37.0953 -37.5878 -37.6326

c20 -29.2490 -28.8730 -28.9460 -28.9160 -28.9690 -38.4888 -37.6517 -37.9729 -37.7604 -37.8819

c21 -25.6370 -27.6360 -27.2190 -27.6200 -27.5960 -28.3838 -27.8925 -27.7349 -27.8594 -27.8591

c22 -25.7980 -32.3970 -31.8400 -32.3100 -32.3650 -33.9427 -38.0994 -37.5499 -33.3708 -37.9328

c23 -25.8610 -25.8890 -25.9400 -25.8900 -25.9290 -37.3140 -26.7368 -26.8281 -26.7092 -26.7478

c24 -26.4610 -26.6820 -26.8370 -26.6410 -26.6540 -29.6225 -29.7174 -29.7849 -29.7526 -30.0475

c25 -24.4070 -24.3270 -24.3530 -24.3080 -24.3100 -30.5231 -30.3619 -30.2241 -30.3463 -30.3709

c26 -24.1050 -24.7660 -24.7850 -24.8000 -24.8540 -36.5682 -36.6741 -36.5804 -36.5797 -36.4129

c27 -24.7640 -24.9910 -25.6060 -24.9310 -24.8840 -25.7556 -26.9665 -27.1522 -26.8971 -27.0141

c28 -25.7890 -25.3170 -25.4030 -25.3990 -25.6620 -26.0743 -26.0069 -25.3200 -26.1027 -26.4757

c29 -25.4710 -27.6880 -25.1530 -27.7250 -27.8260 -29.7258 -39.3845 -38.5140 -39.2866 -39.2653

c30 -24.4500 -24.3590 -24.7030 -24.4290 -23.7920 -36.3380 -42.1151 -56.9898 -42.1809 -42.1126

c31 -26.9240 -26.0380 -26.4960 -26.0490 -26.2600 -56.9828 -43.0573 -28.3484 -43.0428 -42.8018

c32 -26.2390 -26.1910 -26.0490 -26.1570 -26.1660 -25.9868 -25.7685 -25.5681 -25.7508 -25.7720

c33 -31.3790 -26.3470 -36.1750 -36.5090 -36.6050 -32.0356 -28.7557 -28.7398 -28.7943 -28.8124

c34 -25.8340 -26.0600 -26.6400 -26.0220 -26.1410 -28.6976 -36.4772 -36.3235 -43.8813 -36.3760

c35 -25.4030 -25.4780 -25.0900 -25.4520 -25.4200 -36.4081 -35.7194 -35.7986 -61.6821 -35.6360

c36 -28.6580 -28.5440 -28.4910 -28.5540 -28.6620 -29.6411 -28.8014 -28.7769 -28.8182 -28.8974

c37 -26.2860 -26.2870 -26.3780 -26.3810 -26.3420 -29.5668 -29.3298 -29.2195 -29.3887 -29.4193

c38 -24.7490 -23.9060 -24.5460 -23.9090 -23.7900 -36.5111 -35.5207 -36.2273 -35.5000 -35.5112

c39 -28.0740 -28.2330 -35.4700 -26.3080 -28.3850 -28.6629 -28.5263 -28.5149 -28.7429 -28.6802

c40 -24.9530 -29.3290 -29.2690 -29.3430 -29.3250 -28.8153 -27.9668 -27.9795 -28.0437 -27.9317

c41 -26.5710 -26.1310 -26.1570 -26.1160 -26.3420 -57.4867 -57.9179 -57.9400 -57.8626 -58.0200

c42 -27.2890 -24.9550 -24.8220 -24.9210 -29.9270 -35.3914 -57.3373 -57.1163 -57.3218 -57.2645

c43 -27.0430 -28.5680 -28.5710 -28.5790 -28.7110 -27.4827 -26.9069 -26.9675 -28.9818 -29.0808

c44 -25.6720 -25.6610 -25.7590 -27.1480 -34.0870 -28.9057 -26.5087 -26.5715 -26.4821 -28.4190

c45 -28.3120 -25.9920 -25.8820 -25.9560 -26.2570 -28.9129 -26.7792 -26.6701 -26.7115 -27.0272

c46 -31.4390 -33.3160 -33.2220 -33.1080 -33.0460 -31.4570 -33.3269 -33.2375 -33.1168 -33.0661

c47 -33.7030 -35.2740 -35.4310 -35.2660 -35.5830 -60.2619 -36.7141 -36.8659 -36.7267 -36.9042

c48 -30.8230 -31.0670 -31.3100 -28.0200 -28.0750 -43.6123 -31.5836 -31.5187 -31.6116 -31.5429

c49 -29.7110 -41.6900 -41.6830 -41.6930 -41.6850 -35.4187 -23.7408 -35.0975 -23.7381 -23.7358

c50 -25.5550 -25.4930 -25.5700 -25.4430 -25.5450 -28.9003 -26.5964 -26.6318 -28.5108 -28.6474

c51 -24.6500 -26.8580 -26.8230 -26.8610 -27.1060 -59.2877 -58.5163 -58.6669 -58.4448 -58.4959

c52 -27.3540 -31.1080 -26.2380 -28.7160 -28.6980 -27.4330 -29.0503 -29.1319 -29.1519 -29.1278

comp
AO model IO model
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Appendix D 

 

This table reports the firm level estimates of the FIGARCH(1,d,1) coefficients for equity returns. 

Standard errors for the estimated coefficients are given in parenthesis. 

  

comp w s.e. d s.e. α s.e. β s.e. GED s.e.

1 0.180 (0.071) 0.3855 (0.062) 0.1971 (0.085) 0.5156 (0.104) 1.2765 (0.040)

2 0.084 (0.037) 0.4195 (0.068) 0.2813 (0.060) 0.6272 (0.082) 1.3466 (0.045)

3 0.148 (0.061) 0.3668 (0.058) 0.1954 (0.073) 0.5150 (0.097) 1.3962 (0.046)

4 0.208 (0.095) 0.3973 (0.075) 0.1950 (0.130) 0.4452 (0.166) 1.2161 (0.041)

5 0.125 (0.045) 0.4471 (0.077) 0.1443 (0.054) 0.5527 (0.091) 1.2898 (0.043)

6 0.164 (0.078) 0.4208 (0.069) 0.3083 (0.089) 0.6059 (0.113) 1.2113 (0.037)

7 0.103 (0.047) 0.4633 (0.086) 0.2590 (0.047) 0.6761 (0.084) 1.4293 (0.046)

8 0.115 (0.049) 0.3940 (0.061) 0.3746 (0.067) 0.6686 (0.075) 1.2764 (0.041)

9 0.230 (0.085) 0.3149 (0.053) 0.3161 (0.085) 0.5466 (0.092) 1.2187 (0.039)

10 0.123 (0.052) 0.3627 (0.062) 0.3579 (0.076) 0.6177 (0.091) 1.2537 (0.041)

11 0.205 (0.086) 0.3014 (0.052) 0.2188 (0.087) 0.4834 (0.110) 1.2737 (0.041)

12 0.199 (0.070) 0.3080 (0.043) 0.0767 (0.101) 0.3528 (0.120) 1.3107 (0.042)

13 0.298 (0.121) 0.3138 (0.100) 0.2993 (0.103) 0.4807 (0.128) 1.0378 (0.029)

14 0.067 (0.026) 0.4532 (0.071) 0.3033 (0.055) 0.6703 (0.065) 1.1422 (0.036)

15 0.047 (0.019) 0.4183 (0.072) 0.4812 (0.069) 0.7287 (0.064) 1.2163 (0.037)

16 0.117 (0.051) 0.2938 (0.060) 0.2932 (0.088) 0.5099 (0.107) 1.4362 (0.049)

17 0.071 (0.030) 0.4052 (0.066) 0.3773 (0.060) 0.6886 (0.068) 1.2123 (0.039)

18 0.122 (0.049) 0.4106 (0.084) 0.2688 (0.085) 0.5626 (0.115) 1.0506 (0.034)

19 0.053 (0.022) 0.3729 (0.067) 0.3874 (0.059) 0.6635 (0.065) 1.3560 (0.046)

20 0.095 (0.039) 0.3406 (0.065) 0.3398 (0.083) 0.5603 (0.101) 1.2695 (0.041)

21 0.155 (0.089) 0.2653 (0.053) 0.3717 (0.165) 0.5564 (0.175) 1.2147 (0.039)

22 0.501 (0.000) 0.1706 (0.022) 0.0052 (0.000) 0.0146 (0.000) 1.2343 (0.038)

23 0.121 (0.044) 0.3853 (0.070) 0.3295 (0.079) 0.6063 (0.085) 1.0300 (0.029)

24 0.070 (0.027) 0.4642 (0.091) 0.3666 (0.069) 0.7047 (0.078) 1.2097 (0.036)

25 0.080 (0.033) 0.3313 (0.059) 0.3380 (0.082) 0.5808 (0.095) 1.2459 (0.040)

26 0.093 (0.036) 0.3829 (0.061) 0.2668 (0.088) 0.5381 (0.107) 1.3520 (0.045)

27 0.158 (0.054) 0.3667 (0.061) 0.1851 (0.092) 0.4451 (0.109) 1.1650 (0.036)

28 0.190 (0.068) 0.3911 (0.079) 0.1337 (0.109) 0.4321 (0.144) 1.0435 (0.031)

29 0.067 (0.023) 0.5425 (0.078) 0.2403 (0.078) 0.5793 (0.092) 1.1319 (0.035)

30 0.082 (0.031) 0.4701 (0.070) 0.1986 (0.061) 0.5901 (0.083) 1.2164 (0.040)

31 0.166 (0.073) 0.3430 (0.059) 0.3112 (0.137) 0.4995 (0.149) 1.1972 (0.039)

32 0.225 (0.085) 0.3019 (0.051) 0.1790 (0.128) 0.3782 (0.139) 1.1110 (0.033)

33 0.091 (0.040) 0.7235 (0.167) 0.1082 (0.082) 0.8076 (0.092) 1.4111 (0.048)

34 0.219 (0.091) 0.2835 (0.057) 0.3104 (0.104) 0.4876 (0.121) 1.2957 (0.041)

35 0.186 (0.074) 0.3204 (0.059) 0.1940 (0.084) 0.4520 (0.108) 1.2948 (0.044)

36 0.049 (0.021) 0.5504 (0.081) 0.2620 (0.053) 0.7201 (0.055) 1.2829 (0.042)

37 0.114 (0.039) 0.4266 (0.066) 0.1115 (0.061) 0.4796 (0.090) 1.4148 (0.049)

38 0.115 (0.058) 0.3303 (0.077) 0.3763 (0.099) 0.6042 (0.120) 1.1146 (0.033)

39 0.437 (0.163) 0.2858 (0.047) 0.0110 (0.172) 0.2269 (0.191) 1.1492 (0.034)

40 0.116 (0.048) 0.3660 (0.064) 0.2118 (0.077) 0.5215 (0.104) 1.2053 (0.040)

41 0.094 (0.043) 0.4159 (0.068) 0.3767 (0.058) 0.6979 (0.069) 1.2549 (0.044)

42 0.257 (0.112) 0.3150 (0.048) 0.1950 (0.133) 0.4475 (0.151) 1.0714 (0.035)

43 0.099 (0.039) 0.3919 (0.080) 0.3813 (0.058) 0.6823 (0.066) 1.1570 (0.034)

44 0.129 (0.049) 0.3653 (0.065) 0.1282 (0.097) 0.4301 (0.125) 1.0960 (0.033)

45 0.212 (0.086) 0.2641 (0.047) 0.3317 (0.101) 0.5435 (0.111) 1.2131 (0.038)

46 0.244 (0.093) 0.3700 (0.054) 0.3016 (0.088) 0.5496 (0.097) 1.1661 (0.041)

47 0.571 (0.000) 0.1938 (0.038) 0.0133 (0.000) 0.0437 (0.000) 0.9806 (0.029)

48 0.122 (0.162) 0.2767 (0.090) 0.5744 (0.306) 0.7152 (0.322) 1.2089 (0.037)

49 0.181 (0.070) 0.3535 (0.053) 0.3932 (0.068) 0.6710 (0.068) 1.3297 (0.044)

50 0.072 (0.022) 0.4899 (0.082) 0.2124 (0.059) 0.6027 (0.076) 1.2717 (0.041)

51 0.070 (0.028) 0.3834 (0.066) 0.3556 (0.068) 0.6395 (0.077) 1.2693 (0.042)

52 0.118 (0.050) 0.3654 (0.063) 0.2916 (0.090) 0.5511 (0.111) 1.4232 (0.049)
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Appendix E 

 

This table reports the firm level estimates of the FIGARCH(1,d,1) coefficients for firm's asset returns (the 

base case estimation of the firm's asset values). Standard errors for the estimated coefficients are given in 

parenthesis. 

 

 

comp w s.e. d s.e. α s.e. β s.e. GED s.e.

1 0.034 (0.014) 0.3530 (0.054) 0.2578 (0.076) 0.5604 (0.090) 1.4108 (0.045)

2 0.010 (0.004) 0.3478 (0.059) 0.3714 (0.065) 0.6452 (0.077) 1.3745 (0.046)

3 0.029 (0.012) 0.3854 (0.059) 0.2252 (0.067) 0.5584 (0.087) 1.3840 (0.045)

4 0.139 (0.189) 0.2630 (0.100) 0.0962 (0.684) 0.2280 (0.765) 1.2581 (0.043)

5 0.004 (0.002) 0.5357 (0.077) 0.1936 (0.044) 0.6830 (0.064) 1.3208 (0.043)

6 0.006 (0.004) 0.3397 (0.064) 0.3162 (0.201) 0.5257 (0.230) 1.2491 (0.036)

7 0.008 (0.004) 0.4516 (0.097) 0.3117 (0.048) 0.7218 (0.076) 1.4329 (0.046)

8 0.008 (0.003) 0.5107 (0.091) 0.3777 (0.059) 0.7814 (0.055) 1.2875 (0.040)

9 0.010 (0.004) 0.3500 (0.059) 0.3502 (0.073) 0.6141 (0.081) 1.2447 (0.038)

10 0.073 (0.029) 0.2995 (0.054) 0.4430 (0.074) 0.6479 (0.078) 1.3232 (0.042)

11 0.093 (0.037) 0.2667 (0.047) 0.2526 (0.088) 0.4872 (0.107) 1.2933 (0.042)

12 0.109 (0.038) 0.2969 (0.041) 0.0890 (0.102) 0.3572 (0.121) 1.3208 (0.043)

13 0.168 (0.068) 0.2195 (0.053) 0.3349 (0.132) 0.4454 (0.143) 1.0859 (0.030)

14 0.014 (0.005) 0.4450 (0.061) 0.3306 (0.049) 0.7038 (0.052) 1.1621 (0.036)

15 0.012 (0.005) 0.4201 (0.075) 0.5049 (0.067) 0.7496 (0.058) 1.2203 (0.037)

16 0.059 (0.024) 0.3120 (0.059) 0.2914 (0.073) 0.5378 (0.091) 1.4823 (0.051)

17 0.019 (0.008) 0.3114 (0.057) 0.4368 (0.068) 0.6642 (0.074) 1.2265 (0.039)

18 0.019 (0.009) 0.2483 (0.056) 0.2589 (0.152) 0.4151 (0.172) 1.1125 (0.035)

19 0.032 (0.014) 0.3596 (0.066) 0.3992 (0.057) 0.6665 (0.067) 1.4220 (0.048)

20 0.053 (0.022) 0.2869 (0.054) 0.3552 (0.095) 0.5306 (0.108) 1.2737 (0.041)

21 0.024 (0.011) 0.3337 (0.058) 0.4536 (0.086) 0.6930 (0.087) 1.2262 (0.039)

22 0.043 (0.035) 0.2654 (0.081) 0.5782 (0.140) 0.6951 (0.175) 1.2790 (0.040)

23 0.035 (0.012) 0.3559 (0.061) 0.3238 (0.068) 0.6114 (0.072) 1.1412 (0.032)

24 0.035 (0.014) 0.3841 (0.075) 0.3446 (0.070) 0.6299 (0.089) 1.3111 (0.039)

25 0.021 (0.008) 0.3681 (0.059) 0.3393 (0.070) 0.6208 (0.079) 1.2433 (0.039)

26 0.027 (0.012) 0.3724 (0.064) 0.3343 (0.081) 0.6073 (0.100) 1.4196 (0.048)

27 0.014 (0.005) 0.3632 (0.062) 0.2259 (0.096) 0.4742 (0.111) 1.1768 (0.036)

28 0.018 (0.008) 0.3470 (0.078) 0.0949 (0.171) 0.3352 (0.214) 1.1059 (0.031)

29 0.014 (0.005) 0.5367 (0.082) 0.2808 (0.088) 0.5896 (0.102) 1.1530 (0.035)

30 0.025 (0.010) 0.3843 (0.064) 0.2277 (0.072) 0.5365 (0.093) 1.2434 (0.041)

31 0.008 (0.006) 0.3063 (0.075) 0.4472 (0.210) 0.5800 (0.226) 1.2166 (0.039)

32 0.071 (0.029) 0.2973 (0.053) 0.2321 (0.136) 0.4241 (0.148) 1.1073 (0.033)

33 0.047 (0.018) 0.5073 (0.079) 0.2188 (0.043) 0.6952 (0.064) 1.4409 (0.048)

34 0.054 (0.021) 0.3005 (0.053) 0.2949 (0.086) 0.5181 (0.106) 1.3605 (0.043)

35 0.035 (0.014) 0.3769 (0.061) 0.2442 (0.066) 0.5611 (0.085) 1.2999 (0.043)

36 0.010 (0.004) 0.4979 (0.073) 0.3017 (0.050) 0.7194 (0.051) 1.3252 (0.043)

37 0.040 (0.015) 0.4428 (0.064) 0.1576 (0.056) 0.5391 (0.081) 1.4354 (0.049)

38 0.032 (0.015) 0.3056 (0.065) 0.4069 (0.101) 0.6105 (0.113) 1.1438 (0.034)

39 0.131 (0.057) 0.2381 (0.045) 0.2483 (0.155) 0.4204 (0.170) 1.2229 (0.037)

40 0.033 (0.014) 0.3384 (0.057) 0.2471 (0.078) 0.5354 (0.100) 1.2197 (0.039)

41 0.017 (0.007) 0.3893 (0.067) 0.4212 (0.060) 0.7154 (0.063) 1.2781 (0.043)

42 0.109 (0.051) 0.2456 (0.043) 0.1647 (0.196) 0.3550 (0.214) 1.1073 (0.034)

43 0.031 (0.012) 0.3811 (0.074) 0.3788 (0.051) 0.6861 (0.061) 1.2241 (0.037)

44 0.016 (0.006) 0.4052 (0.073) 0.1724 (0.078) 0.5147 (0.106) 1.0998 (0.033)

45 0.026 (0.011) 0.2820 (0.052) 0.3733 (0.092) 0.5949 (0.101) 1.1997 (0.037)

46 0.077 (0.034) 0.2891 (0.053) 0.3227 (0.134) 0.4931 (0.145) 1.1935 (0.042)

47 0.173 (0.000) 0.1524 (0.032) 0.0000 (0.000) 0.0386 (0.000) 1.0122 (0.029)

48 0.057 (0.031) 0.2684 (0.052) 0.5772 (0.125) 0.7291 (0.121) 1.2862 (0.039)

49 0.170 (0.072) 0.2618 (0.050) 0.4423 (0.091) 0.6353 (0.093) 1.3398 (0.045)

50 0.015 (0.005) 0.4568 (0.085) 0.2489 (0.062) 0.6016 (0.081) 1.2861 (0.041)

51 0.021 (0.008) 0.3654 (0.060) 0.3757 (0.069) 0.6444 (0.074) 1.2779 (0.042)

52 0.030 (0.013) 0.3441 (0.061) 0.3685 (0.070) 0.6240 (0.085) 1.4638 (0.050)
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Chapter 2 

Modeling and Forecasting Firm-specific Volatility: the Role of 

Asymmetry and Long-memory  

 

1. Introduction 

Estimation and forecasting of the time-varying volatility has been widely 

analyzed in the literature. A general conclusion is that volatility possesses important 

stylized features such as volatility clustering, asymmetric effect of positive and negative 

shocks, mean-reversion and long-memory, among others. In order to account for these 

features many different GARCH-type models have been developed, essentially by 

modifying the conditional variance equation. As a result, a crucial question to answer 

became which of these models provides the best fit to data and provides the best 

forecast of volatility over some future time horizon. A number of papers have 

previously addressed this question for equities and equity indices, commodities and 

currencies (Vilasuso, 2002; Andersen et al. 2003; Pong et al. 2004; Martens and Zein, 

2004; Hansen and Lunde, 2005; among others). However, the previous literature is 

silent about the performance of different models for the firm’s asset volatility process. 

In their seminal paper, Choi and Richardson (2016) directly apply an EGARCH model 

to firm-level returns but do not analyze which volatility model is best suited to equity 

and asset returns. In this paper, we fill this gap and perform a horse race among 

different GARCH-type model specifications (GARCH, EGARCH, IGARCH, 

FIGARCH, HYGARCH, FIEGARCH, and FIAPARCH) in terms of modeling and 

forecasting firm’s asset and equity volatility. 
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 We especially focus on two important volatility characteristics: the asymmetry 

and the long-range persistence. Asymmetry in this context denotes a different response 

of conditional volatility to positive and negative shocks of the same magnitude, whereas 

long-memory denotes a slow hyperbolic rate of decay of the lagged squared innovations 

in the conditional variance. In general, previous literature on performance of the 

GARCH-type models reveals that asymmetric GARCH models provide better out-of-

sample forecasts when compared to symmetric GARCH model (Awartani and Corradi, 

2005), and that long-memory properties have important implications for volatility 

forecasting (Poon and Granger, 2003; Dionisio et al. 2007; Kang and Yoon, 2007). 

However, literature on performance of the GARCH-type models has largely focused on 

stock indexes rather than individual firms and to the best of our knowledge no previous 

study has analyzed forecasting performance of different models for the firm's asset 

volatility. In this paper we contribute to the current literature by analyzing to what 

extent the two important properties of volatility, the asymmetry and long-memory, 

improve modeling and forecasting accuracy of the firm's asset and equity volatility. We 

also study eventual differences in asymmetry and long-memory between the two firm-

level volatilities and its relation to financial leverage. 

 We employ a variety of GARCH-type models for a sample of 52 non-financial 

iTraxx Europe companies that we track during the 2004-2016 period. Even though the 

underlying data set is the same, different conditional volatility models are expected to 

produce different volatility forecasts due to their different underlying assumptions. We 

apply out-of-sample forecasting at monthly horizon using iterated forecasts based on 

daily data and a rolling window scheme.
14

 Our main findings could be summarized as 

follows.   

                                                             
14

 It has been shown in the literature that iterated forecasts dominate direct forecasts (Marcellino et al. 

2006; Ghysels et al. 2019).  
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 First, all estimated models are in general able to properly capture the dynamics 

in the conditional variance of equity and firm's asset returns. In the case of asymmetric 

GARCH models, the asymmetry coefficient is negative and statistically significant for 

most of the considered return series suggesting that negative shocks affect more 

conditional volatility than positive shocks of the same magnitude. However, the 

importance of asymmetry seems to be more pronounced for equity than for firm's asset 

volatility: the magnitude of the sign coefficient is higher in absolute terms and is 

statistically significant for a higher percentage of companies when compared to firm's 

asset volatility. In the case of long-memory GARCH models, fractional integrating 

parameter is statistically significant for all the series considered, suggesting the presence 

of long-memory in firm-level volatility.  

Second, we analyze the impact of financial leverage on asymmetry and long-

range persistence. We find that asymmetry is more pronounced in equity than in firm's 

asset volatility. This difference in the level of asymmetry is statistically significant and 

increases with leverage being higher for high leverage firms and lower for low leverage 

firms. As regards long-range persistence we confirm the evidence of the long-run 

dependence in firm level equity and asset volatility (González-Pla and Lovreta, 2019). 

In general, the persistence is slightly higher for equity than for firm's asset volatility, 

however, the difference in equity - firm's asset volatility persistence is decreasing with 

leverage. Once the asymmetry is allowed in the model in addition to long-memory, the 

difference in equity - firm's asset volatility persistence notably decreases. Actually, in 

the FIEGARCH and FIAPARCH models firm's asset volatility turns out to be more 

persistent than equity volatility for higher leverage groups.   

 Third, we evaluate the relative predictive power of monthly forecasts from 

different GARCH models using several methods. We apply statistical tests for equal and 
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superior predictive accuracy, and additionally test the economic importance of the 

volatility forecasts by estimating CDS spread forecasts, as a measure of the credit risk 

of a company. The results that we obtain are unambiguous. We find that more 

sophisticated models that simultaneously capture asymmetric and long-memory effects 

provide more accurate out-of-sample one month ahead volatility forecasts for both firm-

specific equity and firm's asset volatility. Out of all considered models FIEGARCH 

model performs the best, followed by the FIAPARCH model. Models that capture only 

asymmetry (EGARCH) or only long-memory in volatility (FIGARCH and HYGARCH) 

show higher forecasting accuracy when compared to the symmetric and short-memory 

GARCH model. Our results also show relatively higher relevance of asymmetry vs. 

long-memory in equity and firm's asset volatility forecasting: EGARCH seems to 

perform better than FIGARCH or HYGARCH.  

 In summary, our out-of-sample forecasting results reveal superiority of long-

memory over short-memory models, superiority of asymmetric over symmetric models, 

and suggest a higher relative importance of asymmetry over long-memory. The best 

performance could be clearly attributed to more sophisticated models that 

simultaneously capture asymmetry and long-memory. On the opposite pole are clearly 

GARCH and IGARCH models that are outperformed by alternative models in most of 

the cases. In terms of model ranking we do not find any substantial difference between 

equity and firm's asset volatility. The main implication of these findings is that long-

memory features should be accounted for in models for pricing financial instruments 

that require an estimate of the future volatility as an input. For forecasting purposes it is 

important to account for the two features at the same time.    

The rests of the paper is organized as follows. Section 2 provides the literature 

review on volatility estimation and forecasting using different GARCH-type models. 
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Section 3 provides a summary of the seven GARCH-type volatility models used in this 

paper. Section 4 provides a summary of the methods used to estimate the underlying 

firm’s asset value process. Section 5 explains the data set used. Section 6 presents the 

in-sample fit of the seven models. Section 7 explores the effect of leverage on 

asymmetry and long-memory properties. Section 8 presents the results of the out-of-

sample forecasting performance. Section 9 concludes. 

2. Literature Review 

Financial volatility modelling has been extensively studied in the literature. It 

has become a prime importance topic of research because of its broad applications in 

portfolio management, asset allocation, asset pricing and risk management, among 

others. The main features that a good volatility model has to exhibit are the flexibility to 

appropriately fit the data and the capability to forecast volatility. Engle and Patton 

(2001) pointed out some stylized facts that seem to be important in modelling and 

forecasting volatility of financial returns, like asymmetry, mean reversion, long-range 

persistence and the influence of exogenous variables. In terms of forecasting, the 

superiority in forecasting volatility of GARCH models over classical models (equally 

and exponentially moving average models) has been widely evidenced in the literature. 

For example, Brailsford and Faff (1996) evaluated the forecasting accuracy of volatility 

of the Australian stock market monthly returns with classical and GARCH volatility 

models. They observed that GARCH models are clearly better in forecasting terms than 

classical models, and that the choice of the preferred model is sensitive to the error 

measure employed. Literature on financial volatility and its characteristics is extensive 

and here we review only those papers that are closely related to our work. A detailed 

literature review on forecasting volatility in financial markets is provided in Poon and 

Granger (2003).   
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As noted in the introduction, we are primarily interested in two important 

volatility characteristics in terms of both estimation and forecasting of firm-level 

volatility: the long-memory (i.e. long-range persistence) and asymmetric response of 

volatility to negative and positive shocks of the same magnitude. It is important to note 

that persistence is more general term than long-memory and can be generally defined as 

slowly decaying auto-correlations in the volatility of financial time series. Ding and 

Meade (2010), for example, defined different scenarios based on persistence and 

observed that as persistence increased, forecasting accuracy improved for the three 

models they used: stochastic volatility, GARCH and EWMA (i.e. exponentially 

weighted moving average). Long-memory or long-range persistence refers to a slow 

hyperbolical decay of the autocorrelation function at long lags. This volatility feature, 

however, cannot be properly modelled with short-memory GARCH or EGARCH 

models.  

The finance literature has well established that volatility of stock market returns 

exhibit long-memory (Ding et al. 1993; Granger and Ding, 1996; Baillie et al. 1996; 

Bollerslev and Mikkelsen, 1996; Lobato and Savin, 1998; Breidt et al. 1998, among 

others). The studies on stock market volatility, however, do not agree about the order of 

fractional integration (i.e. the degree of long-memory). Christensen and Nielsen (2006), 

for example, find that the fractional order of stock market volatility is in the stationary 

region, whereas Bandi et al. (2006) find the order of integration to be in the non-

stationary region. Lux and Kaizoji (2007) estimated with FIGARCH approximately 

1,200 stocks traded in the Tokyo Stock Exchange from 1975 to 2001. They observed 

that the fractional differencing (i.e. long-memory) parameter has a mean value of 0.340 

for 100 companies with largest trading volume, and 0.367 for a random sample of 100 

companies. Kang and Yoon (2007) have examined stock index returns for the Korean 
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stock market within the ARFIMA-FIGARCH framework. For the best model 

specification, these authors report the long-memory parameter of 0.471 and 0.231 for 

KOSPI and KOSDAQ index return volatility. They have also compared the 

performance of FIGARCH to the GARCH, IGARCH models, reporting superiority of 

the FIGARCH estimates. Dionisio et al. (2007) have examined several international 

stock market indexes. They found that the long-memory parameter is always 

statistically significant, ranging between 0.3 and 0.6, and report the preference of the 

FIGARCH model over the GARCH and IGARCH models, as well.  Lopes and Prass 

(2014) observed when estimating the Brazilian stock market index in an empirical 

application, that FIEGARCH is able to capture same information as ARCH, GARCH or 

EGARCH models, in addition to long memory in volatility. However, these authors find 

that the performance of fractionally integrated and non-integrated models is very similar 

if the time series is very persistent.  

Previous literature has shown that asymmetry is another important feature of 

stock market volatility (Pagan and Schwert, 1990; Engle and Ng, 1993; Bekaert and 

Wu, 2000; Awartani and Corradi, 2005, among others). For example, Awartani and 

Corradi (2005) examine the role of asymmetries in the GRACH-type modes in 

predicting volatility of S&P-500 stock index returns. They find that asymmetric 

GARCH models provide better out-of-sample forecasts when compared to symmetric 

GARCH model. They find that predictive improvement of asymmetric models is lower 

for longer-horizons and higher for one-step ahead forecasts. Hansen and Lunde (2005) 

compared 330 GARCH-type models and showed that GARCH(1,1) outperformed all 

other tested models when forecasting one-day ahead exchange rate volatility. However, 

when they modelled the volatility of the IBM equity returns, they found that the 
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GARCH(1,1) model is inferior to other, more sophisticated models that take into 

account an asymmetric response in volatility.  

As regards the firm’s asset volatility and its properties the evidence is rather 

scarce. In their seminal paper, Choi and Richardson (2016) observed noticeable 

differences between the time-series properties of equity and asset volatility at the 

individual firm level. First, they performed an estimation for both equity and asset 

returns using an EGARCH model proposed by Nelson (1991). In that context, they 

observed that equity volatility is significantly more persistent and asymmetric than asset 

volatility for levered firms, and the differences between equity volatility and asset 

volatility generally increase with leverage. Second, they observed that the asymmetry 

between equity returns and volatility can be explained in combinations of three 

components: financial leverage, volatility feedback and operating leverage. Third, they 

analysed the nature structure of equity volatility and its relation to asset volatility and 

financial leverage, where financial leverage and asset volatility should have different 

dynamic properties over time, and long/short time properties may depend differently on 

asset volatility and financial leverage. In order to go in depth in this behaviour, they 

used an autocorrelogram of volatility and leverage, where implied equity volatility is 

taken from one-month implied volatility from equity options and firm asset volatility 

was estimated using and EGARCH(1,1) model. In this respect, they concluded that asset 

volatility is more tied to the short term equity volatility, and leverage to the long term 

equity volatility. Their conclusions nevertheless are based on the short-memory model, 

which, as indicated before cannot capture eventual long-memory properties. In contrast, 

González-Pla and Lovreta (2019) show that firm’s asset volatility possesses long-

memory features and that fractionally integrated models should be used to fit firm-level 

returns. Actually, Choi and Richardson (2016) indicate in their paper that they didn't 
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address the question which volatility model best fits equity and asset returns. This 

research question we analyse in depth in the following sections.  

3. Model Framework 

In this section, we present the Generalized Auto-Regressive Conditional 

Heteroscedasticity (GARCH) models used to estimate and forecast firm’s asset and 

equity volatility. These models are based on Bollerslev (1986) who generalized the 

ARCH model formulated initially by Engle (1982). The GARCH-type models are 

defined by two equations: a conditional mean and a conditional variance equation. The 

conditional mean equation defines the behaviour of the returns in order to isolate 

unexpected returns or market shocks, which are further assumed to follow some 

conditional distribution (i.e. a Gaussian, Student’s t or Generalized Error Distribution). 

The GARCH-type models that we examine in this paper are GARCH, EGARCH, 

IGARCH, FIGARCH, HYGARCH, FIEGARCH, and FIAPARCH. For tractability 

purposes in this paper we assume the same conditional mean equation (first order 

autoregressive process) for all the models and time series, and the same conditional 

error distribution (Generalized Error Distribution). Detailed description of the 

conditional variance equation for each of the models considered is provided below.  

3.1 Short-memory models 

3.1.1 GARCH 

The conditional variance equation of the GARCH model, proposed by Bollerslev 

(1986), is defined as a function of   past values of the conditional variance and   past 

values of the squared shocks. The GARCH(p,q) model is defined as follows: 

  
    ∑       

  
    ∑       

  
            

        
    (1) 
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where        ,                and,      denotes the lag operator. Defining      
  

  
 , the equation (1) can be rewritten as follows: 

[           ]  
    [      ]      (2) 

 If the roots of               lie outside the unit circle, then the 

parameters accomplish the following restriction ∑   
 
    ∑   

 
     , and the 

GARCH(p,q) process for   
  is covariance stationary (also called weakly stationary).

15
 

The unconditional volatility of the process can be easily obtained from equation (1), 

assuming that     
     

  and      
      

  , and is given by: 

         
   

 

  ∑   
 
    ∑   

 
   

         (3) 

 Due to its simplicity and forecasting performance, GARCH model has been 

commonly used to estimate and forecast volatility for different asset classes. However, 

it is important to point out that GARCH model has a symmetric behaviour, as it 

assumes that the response of conditional variance to negative market shocks is the same 

as to positive shocks of the same magnitude. In that sense, the symmetric GARCH 

model doesn’t consider the asymmetric effect (i.e. the leverage effect) commonly 

observed in equity returns, where volatility increases more following a negative shock 

than following a positive one (of the same magnitude). The leverage effect is considered 

a stylized fact, particularly noticeable in equity markets, where there is usually a strong 

negative correlation between the equity returns and the change in volatility. Namely, 

this means that volatility is usually higher in response to “bad news”, and lower in 

response to “good news”.
16

  

  

                                                             
15

 A real-valued stochastic process    is considered covariance stationary if the mean  [  ]  and the 

covariance between    and      do not depend on   and are finite. 
16

 The opposite effect commonly occurs in commodity markets, as price increases in commodity markets 

are “bad news”. 
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3.1.2 EGARCH 

The Exponential GARCH (EGARCH) is originally introduced by Nelson (1991). 

The main feature of this model is that it allows for asymmetric response of conditional 

volatility to positive and negative shocks, a feature that is commonly observed in 

financial markets. The conditional variance equation in the EGARCH model is 

formulated in terms of the log of the variance. Such a transformation ensures that 

conditional variance is always positive, without imposing any constraints on the 

coefficients (as in the case of the symmetric GARCH model).
17

 Following Bollerslev 

and Mikkelsen (1996) and Bollerslev and Mikkelsen (1999) the EGARCH model could 

be formulated as follows: 

          
     [      ]  [      ]                              (4) 

where,        
  . The function       captures the asymmetric behaviour between 

financial returns and volatility by taking into account not only the size, but also the sign 

of lagged residuals. Nelson (1991) suggested       function as a linear combination of 

   and |  |: 

             [|  |   |  |]    (5) 

where,  |  | depends on the assumption made on the error distribution. For the GED 

distribution  |  | is given by: 

            |  |  √
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                                  (6) 

The constant    in equation (5) represents the sign effect, while    captures the 

magnitude effect similarly as in the GARCH model.
18

 Therefore, an asymmetric 

behaviour is observed when the estimated    coefficient of the model is statistically 

                                                             
17

 Despite the fact that log function may be negative, the variance will always be positive. 
18

 The conditional variance in the GARCH model is a function only of the magnitude of the lagged 

residuals.  
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significant. If coefficient      than conditional variances increase proportionally 

more following a negative than following a positive shock of the same magnitude. This 

effect is sometimes referred to as the "leverage effect". Note that when  |  |   , the 

function       is proportional to       in case of positive returns (    ), whereas 

for negative returns (    ) is proportional to       .  As the conditional variance is 

positive regardless of the value of estimated parameters, it is not necessary to impose 

additional constraints. The only sufficient condition for the covariance stationarity of 

the model is ∑   
 
     .  

 To align with the most popular formulation of the EGARCH model used in 

practical applications and to ensure comparability, a specific formulation of the 

EGARCH model used in this paper is given by:
19

  

     
                   [|    |   |    |]          

      (7) 

3.2 Integrated models 

3.2.1 IGARCH 

The Integrated GARCH (IGARCH) was introduced by Engle and Bollerslev 

(1986) in order to capture the apparent persistence of the estimated conditional variance 

processes. Namely, in most empirical applications of the GARCH model     is found 

to be close to unity. The IGARCH can be deducted from the autoregressive polynomial 

in equation 2 which has one unit root:
20

 

           
    [      ]  ,      (8) 

where      [           ]       . 

The model equation of an IGARCH(1,1) which satisfies that       for 

        reduces to: 

                                                             
19

 In OxMetrics this reduces to the estimation of EGARCH(p,0) model, that is, with ARCH order set to 0. 
20 IGARCH(p,q) model can be generalized satisfying the unit root condition: ∑    

 
    ∑    

 
     . 
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                (9) 

In the IGARCH model shocks to conditional variance affect future forecasts at 

all horizons. By definition, unconditional variance (  ) does not exist and converges to 

an infinite limit        
     as    , but conditional variance (  

 ) exists and is 

well defined (Bollerslev et al. 1994).  

3.3 Fractionally integrated models 

It has been evidenced in the literature that stock market volatility could be 

characterized as a long memory and mean reverting process (Ding et al. 1993; Granger 

and Ding, 1996; Lobato and Savin, 1998, among others). This behavior can be 

understood through the order of integration of a time series. Integrated processes of a 

time series refers to the minimum number of differences needed to obtain a covariance 

stationary process, usually denoted as      where   is the order of integration. A time-

series    is fractional of order  , if      is fractional of order zero and a covariance 

stationary process. Thus, a non-stationary process may be made covariance stationary 

by differencing the original time series. For instance,     is an integrated process of 

order one      if the first difference of the time series is covariance stationary; this is 

commonly denoted in terms of the difference operator  ;                  . On the 

contrary,    is an integrated process of order zero      if    does not to be differenced to 

result in a covariance stationary process. As a result, an I    time series shows short 

memory as its autocorrelation function decays at an exponential rate implying that 

distant observations in time are independent; an      time series, with      , dies 

out at a slow hyperbolic rate which implies that far distant observations in time show a 

weak correlation; and, finally an      series declines at a linear rate and doesn’t not 

exhibit a mean reversion. A time-series is said to follow an ergodic and stationary 

process with long memory if d is in the interval        ; if d is higher than 0.5, the time-
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series is said to follow a long-memory non-stationary process. The GARCH and 

EGARCH models described above are      time series, as shocks to conditional 

volatility converge with a fast exponential decay rate.
21

 Generally, a time-series of stock 

market volatility is shown to be neither      nor     , but fractionally integrated of 

order d, denoted as     . For this reason, we consider several fractionally integrated 

GARCH-type models which allow for long memory in conditional volatility. 

3.3.1 FIGARCH 

The Fractionally Integrated GARCH (FIGARCH) model, proposed by Baillie et 

al. (1996), allows persistence in the conditional volatility by introducing a fractional 

differencing parameter d. This contrast with GARCH or EGARCH models that only 

consider short-term memory or IGARCH model that assumes infinite memory. In the 

FIGARCH processes lagged squared innovations in the conditional variance decay at a 

slow hyperbolic rate and are modelled through the fractional differencing parameter (d). 

In short, FIGARCH introduces a new parameter to model the long memory behaviour, 

while the short-run dynamics are modelled with the usual GARCH parameters. 

FIGARCH model is obtained by replacing the first difference operator in equation (8) 

by the fractional differencing operator: 

            
    [      ]     (10) 

where       and all the roots of      and [      ] lie outside the unit circle. 

The FIGARCH process is strictly stationary and ergodic for      . The FIGARCH 

behaves as a GARCH process when     and as an IGARCH process when    , 

whereas for       is a long memory process. Furthermore, only if      , the 

FIGARCH model is covariance stationary. Rearranging the terms of the equation (10) 

we obtain the conditional variance for the FIGARCH model: 

                                                             
21

 GARCH(1,1) model shows a decay rate of       and EGARCH(1,1) model a decay rate of    . 
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   [      ]   {  [      ]            }  

     (11) 

The fractional differencing operator        is a sum of infinite terms defined by 

its Maclaurin series expansion, and it has been truncated in this paper at 1,000 lags, 

according to the usual procedure adopted in the literature (Bollerslev and Mikkelsen, 

1996).  

3.3.2 HYGARCH 

 Davidson (2004) observed that the FIGARCH model does not really perform as 

an intermediate      process because of discontinuities in the amplitude (variations in 

the conditional volatility) or in the length of the memory as   approaches to 0 or 1. As a 

result, Davidson (2004) proposes a Hyperbolic GARCH (HYGARCH) model, which 

removes the unitary amplitude restriction inherent in the FIGARCH and introduces a 

new parameter   to model this phenomenon. In the HYGARCH model the fractional 

differencing operator        is replaced by [             ] . Thus, the 

HYGARCH is a more flexible approach than the FIGARCH that behaves as FIGARCH 

or GARCH models when     and    , respectively.
22

 The specification of the 

conditional variance in the HYGARCH model is as follows: 

  
   [      ]   {  [      ]      [             ]}  

     (12) 

3.3.3 FIEGARCH 

 The Fractionally Integrated EGARCH (FIEGARCH) model, proposed by 

Bollerslev and Mikkelsen (1996), introduces a fractional integrating parameter into an 

asymmetric EGARCH model. The FIEGARCH model extends the asymmetric 

EGARCH model by introducing a fractional differencing parameter   to model the 

long-memory behaviour. Bollerslev and Mikkelsen (1996) point out that evidence 

suggests the presence of long-run dependence in stock market volatility in such a way 

                                                             
22

 It also nests the IGARCH model for      . 
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that behaves as a mean-reverting fractionally integrated process and shocks to 

conditional variance fade at hyperbolic rate. The procedure to obtain a fractionally 

integrated EGARCH model is very similar to the factorization previously explained in 

the case of the FIGARCH model. Namely, the polynomial in equation (4) is factorized 

[      ]             to allow the fractionally integrated behaviour, where all 

the roots of        lie outside the unit circle.
23

 Under these conditions, the resultant 

conditional variance equation is given by: 

      
                  [      ]          (13) 

 Consequently, the FIEGARCH model is reduced to a short-memory EGARCH 

model proposed by Nelson (1991), when    . Similarly to the EGARCH model, 

different formulations of the FIEGARCH model exist in the literature. For consistency,  

we estimate the FIEGARCH model in its simplest form, as in Ruiz and Veiga (2008). 

3.3.4 FIAPARCH 

 The Fractionally Integrated Asymmetric Power ARCH (FIAPARCH) model was 

introduced by Tse (1998). He proposed a Fractionally Integrated extension of the 

Asymmetric Power ARCH model (APARCH) by Ding et al. (1993). The APARCH 

model is given as follows: 

  
         |  |      

        
                (14) 

The APARCH model introduces a Box-Cox transformation of the conditional standard 

deviation as a function of the parameter  , while the parameter   reflects the 

asymmetric effect of shocks. In this case, given the negative sign of the asymmetric 

parameter  , a positive value for this coefficient implies that lagged negative shocks 

have a higher impact on conditional volatility than lagged positive shocks, and vice 

versa. Probably, the most interesting feature of this model, is that includes seven 

                                                             
23

 Lopes and Prass (2014) performed a deep analysis of the FIEGARCH processes and its main properties 

such as stationarity, ergodicity or invertibility conditions. 
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ARCH-type models as special cases (see Appendix A of Ding et al. 1993). For example, 

the APARCH model reduces to an ARCH model proposed by Engle (1982) when 

        , and     or to a GARCH model proposed by Bollerslev (1986) when 

   ,     and    . Rearranging the terms of the equation (14), we obtain the 

following expression: 

              |  |      
    [      ]  |  |      

    
       (15) 

Then, the polynomial is factorized to be fractionally integrated,               

          , where all the roots of        are outside the unit circle and     

 . Details about existence and sufficient conditions of the model can be found in Tse 

(1998). The resultant conditional variance equation of the FIAPARCH model 

considering the long memory behaviour with the fractional integrating parameter   is 

given by: 

  
    {  [      ]            } |  |      

    (16) 

The FIAPARCH model could be also considered as a generalization of the FIGARCH 

model. Namely, for     and     the FIAPARCH model reduces to a FIGARCH 

model.  

4. Firm’s asset value estimation 

There are several approaches to estimate the latent firm’s asset value. In this 

paper, we consider as a baseline case a method suggested by Forte (2011) who applies a 

structural model of default to infer the underlying firm’s asset value. This model 

represents the debt structure as the sum of an arbitrary number of coupon bonds, each 

with its own principal, coupon, and maturity. Therefore, the model is flexible enough to 

accommodate any possible debt profile. The market value of firm’s assets using the 

structural model framework will be denoted as,    .  
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The second possibility that we consider is the approach of Charitou et al. (2013), 

in which the firm's asset value,  , is treated as observable and is proxied with the sum 

of the market value of equity and the face value of debt ( ). That is,      . The 

face value of debt (i.e. the face value of total liabilities) is treated in Charitou et al. 

(2013) as the "original default boundary". In other words, the default boundary is set to: 

         , where     stands for short-term liabilities and     for long-term 

liabilities, respectively. The market value of firm’s assets using this approach will be 

denoted as,       .  

The third approach that we consider is the procedure of Bharath and Shumway 

(2008), in which the firm's asset value is simply the sum of the market value of equity 

and the default threshold which is set as in     to the value            . The 

market value of firm’s assets resulting from this approach will be denoted as,     . 

For each approach, the equity and firm’s asset daily returns are calculated as 

follows: 

       (
    

      
)      (17) 

where      is the return at time   for the firm   and       is the firm’s valuation at time   

for the firm  .  

It is important to mention that we do not use the approach of Choi and Richardson 

(2016) due to data limitations. Although we could obtain the information on the market 

value of bonds, this would result in a significant reduction in the number of companies 

considered, and even more important, we would not be able to capture the full market 

value of debt given that only a small portion of company’s debt is publically traded. In 

other words, we would still miss the significant portion of the firm’s debt which is 

represented by bank loans.   
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5. Data and descriptive statistics 

In this paper we consider a sample of 52 non-financial companies that belong to 

the iTraxx Europe index during the 2004-2016 period. The iTraxx Europe index 

comprises the most liquid 125 CDS referencing European investment-grade companies. 

The data frequency is daily which results in a sample size per company of 3,391 

observations. Daily data on market capitalization, CDS spreads, and 1-10 year swap 

rates, as well as yearly data on current liabilities, total liabilities, interest expenses and 

cash dividends are downloaded from Datastream. We consider only 5-year Euro-

denominated CDS contracts on senior unsecured debt. We exclude companies in the 

banking and financial sector due their different capital structure, private companies, and 

companies for which we lack data on either market capitalization or CDS spreads for 

the overall sample period. Additionally, we exclude all companies involved in corporate 

operations that resulted in significant jumps in the market capitalization time-series but 

not in the time-series of adjusted prices. The complete list of companies considered is 

provided in Appendix A (see Table A.1).  

Table 1. Main characteristics of the companies in the sample 

 

Mean Median Minimum Maximum Std. dev. 

MC in m €    25,431.38    17,400.33    4,243.23    125,691.30    22,519.31  

Leverage              0.52              0.52           0.28                0.85              0.13  

Equity volatility  0.30   0.29   0.21   0.48   0.06  

This table reports the main descriptive statistics on a cross‐sectional basis for the set of 52 non-financial 

companies. MC refers to market capitalization. Equity volatility refers to the unconditional historical 

equity volatility, calculated as the annualized standard deviation of the continuously compounded returns 

on equity. Leverage is defined as the ratio of the book value of total liabilities to the proxy for the market 

value of the firm (i.e., the sum of the market value of equity and the book value of total liabilities).  

The main descriptive statistics of 52 companies under analysis are shown in 

Table 1. The companies have an average market capitalization of €25.43 billion, a 

leverage of 0.52 and a historical equity volatility of 30%. Leverage is defined as the 
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ratio of the book value of total liabilities to the proxy for the market value of the firm, 

historical equity volatility is the annualized standard deviation of the continuously 

compounded returns on equity. 

Table 2. Descriptive statistics of equity and firm’s asset returns 

 r(E) r(VSM) r(VKMV) r(VProxy) 

Panel A     

Mean 0.00015 0.00016 0.00015 0.00014 

Standard deviation 0.01890 0.00860 0.00860 0.00860 

Skewness 0.08304 -0.03682 -0.04363 -0.06960 

Kurtosis 15.43038 11.77791 11.69407 11.36487 

Panel B     

Q(10) 25.6132 

(78.85%) 

22.9192 

(63.46%) 

22.7408 

(65.38%) 

22.4136 

(63.46%) 

Q
2
(10)    788.2130 

(98.08%) 

  524.7031 

(96.15%) 

  520.5706 

(96.15%) 

   513.1666 

(98.08%) 

ARCH      92.2538 

(100%) 

    77.5149 

(100%) 

77.0270 

(100%) 

73.8417 

(100%) 

J-B 131,614.80 

(100%) 

   25,039.54 

(100%) 

24,040.52 

(100%) 

21,520.91 

(100%) 

ADF    -58.0923 

(100%) 

   -58.1000 

(100%) 

-58.0179 

(100%) 

-58.1711 

(100%) 

Panel A of Table 2 reports the cross-sectional average of the main descriptive statistics (mean, standard 

deviation, skewness and kurtosis) of equity     , and firm's asset returns       ,        , and 

 (      ), for the set of 52 non-financial companies. Panel B of Table 2 reports the results of the five key 

diagnostic tests: Q(10) and Q
2
(10) refer to the Ljung-Box statistics for tenth-order serial correlation in 

returns and squared returns, respectively; ARCH is the Engle’s ARCH test; J-B refers to the Jarque-Bera 

normality test; ADF is the Augmented Dickey-Fuller unit root test. For each test, the cross-sectional 

average of the test statistics as well as the percentage of companies for which the null hypothesis is 

rejected at least at the 5% significance level (in parenthesis), are reported. 

The cross-sectional average of the main descriptive statistics for daily equity and 

firm’s asset returns are depicted in Panel A of Table 2. Equity and firm’s asset returns 

have on average similar mean, however, equity returns evidence a larger unconditional 

volatility (standard deviation) compared to firm’s asset returns, which is consistent with 

the literature (Choi and Richardson, 2016). Equity returns are on average positively 
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skewed (0.083) while firm’s asset returns show a negative-skewed behaviour (from -

0.0368 to -0.0696). Both return series show a leptokurtic behaviour (excess of kurtosis), 

and kurtosis is generally higher for equity returns than for its corresponding firm’s asset 

returns, indicating that equity returns are more fat-tailed. The main descriptive statistics 

of firm’s asset returns obtained through three different estimation methods (   ,      

and       ) show similar magnitudes in terms of the mean, standard deviation, 

skewness and kurtosis.  

 We perform several diagnostic statistical tests on the time-series of equity and 

firm’s asset returns. The main cross-sectional results are reported in Panel B of Table 2. 

First, we check for the presence of serial correlation in returns and squared returns using 

the Ljung-Box test with 10 lags. The Ljung-Box test rejects the null hypothesis of no 

serial correlation at the 5% level for 78.85% of the companies in the case of equity 

returns and for 63.46% of the companies in the case of     firm’s asset returns. Similar 

results are obtained for      and        firm’s asset returns with rejection rates of 

65.38% and 63.46%, respectively. In the case of squared returns, the Ljung-Box test 

rejects the null hypothesis of no serial correlation at the 5% level for practically all of 

the companies considered. On this matter, we additionally perform the Engle’s ARCH 

test for heteroscedasticity. The null hypothesis of no conditional heteroscedasticity (no 

ARCH effects) is rejected for all considered time-series, which confirms strong 

evidence of conditional heteroscedasticity in our dataset. The Jarque-Bera test for 

normality rejects the null hypothesis of Gaussianity at the 1% significance level in all of 

the equity and firm’s asset returns. Finally, the Augmented Dickey-Fuller test (ADF) 

rejects the unit root null hypothesis for both firm’s asset and equity returns, indicating 

stationarity of return series for all companies in the sample. Overall, the preliminary 

analysis shows that data employed in this study presents common features of financial 
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returns data, and supports the use of GARCH methodology. Detailed descriptive 

statistics at the firm level are provided in the Appendix B, Table B.1. - Table B.4.  

6. Model Estimation 

 The sample consists of daily equity and firm’s asset returns from January 1
st
, 

2004 to December 31
st
, 2016, which results in a sample size of 3,391 observations per 

company. The initial empirical analysis shows that for the absolute majority of the 

companies the null hypothesis of no autocorrelation in returns is rejected, and we 

further model the conditional mean equation as a first-order autoregressive process. For 

tractability purposes, we use a common framework for all the time-series of equity and 

firm asset returns, and impose the       model to all the companies in the sample. 

Specifically, for all the GARCH-type models that we consider the conditional mean 

equation is specified as follows:                 . The conditional distribution 

of the error term is estimated with a Generalized Error Distribution (GED). Nelson 

(1991) proposed the use of GED as error distribution to be able to adjust the deviation 

of the tail, especially important in stock returns, which are usually fat-tailed. Gao et al. 

(2012) observed that GED outperforms Normal and Student-t distributions when 

modelling financial series that evidence fat-tails and leptokurtic behaviour. To estimate 

and forecast equity and firm’s asset volatility we use G@RCH 6.1 developed by 

Laurent and Peters (2002), which is an OxMetrics module used for estimation of 

univariate or multivariate ARCH-type models.
24

 For estimation purposes returns are 

expressed in percentage terms (i.e.         ). To facilitate comparison between the 

models, all the GARCH models are estimated with one lag of the variance term and one 

lag of the innovation term. Next, we summarize the estimation results for the 

                                                             
24

 Although it is possible to estimate some of the models using different software packages, for 

consistency, in all of the estimations we use OxMetrics. This is to avoid eventual comparison problems as 

different software packages may use different parameterization of the same model, different optimization 

algorithms, etc. 
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conditional variance equation for each model that we consider. Detailed estimation 

results at the firm level are provided in the Appendix C, Table C.1. - Table C.28. 

The summary of the estimation results for the GARCH model are presented in 

Table 3. All the α and β parameters in equity and firm’s asset conditional volatility are 

statistically significant at least at the 5% level. Considering that GARCH is a short 

memory model with an exponential decay rate of (    ), the sum of α and β 

parameters is close to 1 which indicates that the volatility of the returns is very 

persistent, but mean-reverting. In that context of estimation and taking (   ) as a 

measure of estimated persistence, we observe that equity volatility is on average more 

persistent (0.9856) than firm’s asset volatility (0.9844 for    , 0.9839 for     , and 

0.9852 for       ). However, the difference in mean is not statistically significant.
25

 

Interestingly, this slightly higher equity persistence is mainly due to the higher   

coefficient for equity, whereas the coefficient   is on average lower for equity. In the 

cross-sectional analysis, we observe that the effect of past squared returns on the current 

conditional volatility is higher for equity (0.0623) than for firm’s asset volatility (from 

0.0525 to 0.0535), whereas the effect of past values of volatility on the current 

conditional volatility is higher in firm’s asset (from 0.9307 to 0.9319) than in equity 

(0.9233) volatility modelling. Moreover, the difference in mean is statistically 

significant in the case of   coefficient, and not statistically significant in the case of the 

  coefficient.  

The GARCH estimation results show a very persistent behaviour of equity and 

firm’s asset volatility as the sum of estimated parameters        , suggesting that 

shocks to conditional volatility have a long-lasting effect. To assess this phenomenon, 

                                                             
25

 We fail to reject the null hypothesis of equality of means. For our base case,    , the Welch t-test 

statistics for equality of means is equal to 0.1830 (p-value 0.6699). For      and        the Welch t-test 

statistics equals 0.3868 (p-value 0.5356) and 0.0230 (p-value 0.8798), respectively. 
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we have performed a Wald test at the firm level defining the null hypothesis as       

    . In the case of equity we fail to reject the null hypothesis for 15 companies 

(28.85% of the sample), whereas in the case of firm's assets we fail to reject the null 

hypothesis for 10 companies (19.23% of the sample), for all specifications of the firm's 

asset value,    ,      and       . Therefore, the results of the Wald test undoubtedly 

show that for absolute majority of the companies there is a mean reversion in volatility.  

Table 3. Estimated coefficients for the GARCH model with GED errors 

 E VSM VKMV VProxy  

   0.0469 0.0119 0.0122 0.0118 

 (100.00%) (96.15%) (96.15%) (96.15%) 

α 0.0623 0.0525 0.0533 0.0535 

 (100.00%) (100.00%) (100.00%) (100.00%) 

β 0.9233 0.9319 0.9307 0.9317 

 (100.00%) (100.00%) (100.00%) (100.00%) 

GED 1.2300 1.2630 1.2641 1.2618 

 (100.00%) (100.00%) (100.00%) (100.00%) 

Q(10) 10.2048 10.7137 10.6966 10.5977 

 (98.08%) (96.15%) (96.15%) (96.15%) 

Q2(10) 6.7009 7.3019 7.1897 7.0139 

 (98.08%) (96.15%) (96.15%) (96.15%) 

LL -6,376.1144 -3,731.2526 -3,714.0342 -3,730.4620 

Akaike 3.7630 2.2030 2.1929 2.2026 

Shibata 3.7630 2.2030 2.1929 2.2026 

Schwarz 3.7702 2.2103 2.2001 2.2098 

Hannan-Quinn 3.7656 2.2056 2.1955 2.2052 

This table reports the cross-sectional average of the estimated GARCH(1,1) coefficients. The figures in 

parenthesis correspond to the percentage of companies for which the estimated coefficients of the model 

are statistically significant at least at the 5% level. The Q(10) and Q
2
(10) refer to the Ljung-Box statistics 

for tenth-order serial correlation in standardized residuals and squared standardized residuals, 

respectively. 

The EGARCH estimation results are depicted in Table 4. We can observe that 

the   parameter is statistically significant in all of the cases at the 5% level for both 

equity and firm's asset conditional volatility. In the EGARCH model the value of   

quantifies the persistence of shocks to conditional volatility. In our case the estimated 

values are very close to 1, however, the Wald test rejects the null hypothesis        

in all of the cases considered. In the case of equity, the mean   coefficient is 0.9850. In 
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the case of firm's assets, it is equal to 0.9828 (for    ) and 0.9824 (for      and 

      ). This would suggest, in line with GARCH estimates that shocks to firms’ asset 

conditional volatility show slightly lower persistence than shocks to equity volatility. 

However, as before, the difference in mean is not statistically significant. 

Table 4. Estimated coefficients for the EGARCH model with GED errors 

 E VSM VKMV VProxy  

  0.9691 -0.6027 -0.6125 -0.6013 

 (100.00%) (75.00%) (73.08%) (73.08%) 

β 0.9850 0.9828 0.9824 0.9824 

 (100.00%) (100.00%) (100.00%) (100.00%) 

γ1 -0.0548 -0.0369 -0.0378 -0.0383 

 (100.00%) (86.54%) (88.46%) (86.54%) 

γ 2 0.1140 0.1151 0.1151 0.1175 

 (100.00%) (100.00%) (100.00%) (100.00%) 

GED 1.2459 1.2691 1.2705 1.2682 

 (100.00%) (100.00%) (100.00%) (100.00%) 

Q(10) 10.7924 10.9143 10.9174 10.8387 

 (94.23%) (94.23%) (94.23%) (94.23%) 

Q2(10) 11.1359 10.4388 10.4680 9.9055 

 (86.54%) (86.54%) (86.54%) (90.38%) 

LL -6,358.6125 -3,721.3829 -3,703.9319 -3,719.9348 

Akaike 3.7532 2.1978 2.1875 2.1970 

Shibata 3.7532 2.1978 2.1875 2.1969 

Schwarz 3.7623 2.2068 2.1966 2.2060 

Hannan-Quinn 3.7565 2.2010 2.1907 2.2002 

This table reports the cross-sectional average of the estimated EGARCH(1,1) coefficients. The figures in 

parenthesis correspond to the percentage of companies for which the estimated coefficients of the model 

are statistically significant at least at the 5% level. The Q(10) and Q
2
(10) refer to the Ljung-Box statistics 

for tenth-order serial correlation in standardized residuals and squared standardized residuals, 

respectively. 

The sign effect in the EGARCH model is measured with the parameter γ1, which 

is negative for both firm’s asset and equity, suggesting that negative shocks affect more 

volatility than positive shocks of equal magnitude. However, the importance of 

asymmetry seems to be more pronounced for equity than for firm's asset volatility. In 

the case of equity, the asymmetry coefficient is negative and statistically significant at 

the 5% level for all the companies. In turn, in the case of     firm's assets the γ1 

coefficient is significant for 86.54% of the companies. Similar results are obtained for 
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     and        firm's assets with 88.46% and 86.54% significant cases, respectively. 

On average the γ1 coefficient for equity is -0.0548, whereas for     firm's assets is 

noticeably lower and equals -0.0369 (-0.0378 for      and -0.0383 for       ). The 

difference in mean for the asymmetry coefficient is statistically significant. At the firm 

level, practically for all the companies (51 for    ,      and 50 for       ) estimated 

γ1 coefficient is more negative for equity than for all the other firm’s asset estimations.  

Table 5 reports the estimation results for the IGARCH model, which assumes 

that the sum of   and   parameters of the GARCH model equals 1 (i.e.      ). In a 

similar way to what happens in GARCH estimation, all of the autoregressive parameters 

(  ) estimated in conditional volatility (equity and firm’s asset) are statistically 

significant at 5%.
26

  

Table 5. Estimated coefficients for the IGARCH model with GED errors 

 E VSM VKMV VProxy  

   0.0233 0.0039 0.0039 0.0040 

 (100.00%) (96.15%) (98.08%) (98.08%) 

1-β 0.0671 0.0536 0.0538 0.0546 

 (100.00%) (100.00%) (100.00%) (100.00%) 

β 0.9329 0.9464 0.9462 0.9454 

GED 1.2080 1.2423 1.2437 1.2419 

 (100.00%) (100.00%) (100.00%) (100.00%) 

Q(10) 10.2404 10.7276 10.7470 10.5548 

 (98.08%) (98.08%) (98.08%) (98.08%) 

Q2(10) 6.5867 7.5449 7.5029 7.2451 

 (96.15%) (94.23%) (94.23%) (92.31%) 

LL -6,380.1827 -3,735.8557 -3,718.6663 -3,734.8143 

Akaike 3.7648 2.2052 2.1950 2.2046 

Shibata 3.7648 2.2052 2.1950 2.2045 

Schwarz 3.7702 2.2106 2.2004 2.2100 

Hannan-Quinn 3.7667 2.2071 2.1970 2.2065 

This table reports the cross-sectional average of the estimated IGARCH(1,1) coefficients. The figures in 

parenthesis correspond to the percentage of companies for which the estimated coefficients of the model 

are statistically significant at least at the 5% level. The Q(10) and Q
2
(10) refer to the Ljung-Box statistics 

for tenth-order serial correlation in standardized residuals and squared standardized residuals, 

respectively. 

                                                             
26

 Note that      . 
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To explore long memory properties of equity and firm's asset volatility we 

estimate several fractionally integrated models. Table 6 depicts the estimation results of 

the FIGARCH model. The cross-sectional mean of the estimated long-memory 

coefficient for equity volatility is 0.3765, which is in line with the common findings in 

the literature on the volatility of stock returns (Lux and Kaizoji, 2007) and stock index 

returns (Dionisio et al. 2007; Kang and Yoon, 2007). On the other side, the estimated 

long-memory coefficient for firm's asset volatility is slightly lower, with the cross-

sectional mean of 0.3501 in our base case (VSM). This result is also in line with the 

higher persistence observed in equity vs. firm's asset volatility estimation with GARCH 

and EGARCH models. In addition, we find no substantial difference in the estimate of 

the long-memory parameter among the three procedures used to assess the underlying 

firm’s asset value. Next, using a Wald test we test the null hypothesis that     

(GARCH model) or alternatively, that     (IGARCH model). In all of the cases we 

reject both null hypotheses. This result supports the use of the flexible FIGARCH 

model, which allows for intermediate ranges of persistence. 

The standard deviation of the persistence parameter for equity volatility is higher 

than the standard deviation of the persistence parameter for firm’s asset volatility, which 

suggests a larger variability in the estimated equity volatility persistence. The equity 

volatility persistence ranges between 0.1996 and 0.7236, whereas firm’s asset volatility 

persistence ranges between 0.1524 and 0.5508 (in our baseline     case). In general, for 

the absolute majority of the companies considered, the parameter d is lower than 0.5 

(94.23% in the case of equity, and 92.31% in the case of firms assets). A comprehensive 
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analysis of persistence of firm’s asset and equity volatility with FIGARCH model is 

available in González-Pla and Lovreta (2019).
27

 

Table 6. Estimated coefficients for the FIGARCH model with GED errors 

 E VSM VKMV VProxy  

   0.1555 0.0471 0.0462 0.0474 

 (100.00%) (100.00%) (100.00%) (100.00%) 

α 0.2653 0.2977 0.2965 0.2857 

 (84.62%) (86.54%) (86.54%) (88.46%) 

β 0.5464 0.5572 0.5563 0.5567 

 (98.08%) (96.15%) (96.15%) (98.08%) 

d 0.3765 0.3501 0.3502 0.3579 

 (100.00%) (100.00%) (100.00%) (100.00%) 

GED 1.2315 1.2643 1.2657 1.2640 

 (100.00%) (100.00%) (100.00%) (100.00%) 

Q(10) 10.0653 10.5071 10.5053 10.3880 

 (98.08%) (96.15%) (96.15%) (96.15%) 

Q2(10) 5.4868 6.0710 5.9912 6.0021 

 (100.00%) (96.15%) (96.15%) (96.15%) 

LL -6,372.1837 -3,728.8586 -3,711.6717 -3,728.0199 

Akaike 3.7612 2.2022 2.1921 2.2017 

Shibata 3.7612 2.2022 2.1921 2.2017 

Schwarz 3.7703 2.2113 2.2011 2.2108 

Hannan-Quinn 3.7645 2.2054 2.1953 2.2050 

This table reports the cross-sectional average of the estimated FIGARCH(1,1) coefficients. The figures in 

parenthesis correspond to the percentage of companies for which the estimated coefficients of the model 

are statistically significant at least at the 5% level. The Q(10) and Q
2
(10) refer to the Ljung-Box statistics 

for tenth-order serial correlation in standardized residuals and squared standardized residuals, 

respectively. 

 Estimation results for the HYGARCH model are provided in Table 7. The 

estimated persistence for equity volatility measured by the fractional differencing 

parameter (d) is 0.4176, which is higher than the estimated persistence in firms’ asset 

volatility estimations: 0.3774 for    , 0.3785 for     , and 0.3847 for       . One of 

the advantages of HYGARCH is its flexibility in two dimensions capturing both the 

amplitude and memory. This implies that the HYGARCH model is able to behave as 

                                                             
27

 It should be noted here that although the data set is the same as in González-Pla and Lovreta (2019) the 

reported results for the FIGARCH model in this paper slightly differ. The reason for the small difference 

is that we consider here a common framework for all the estimations. Specifically, the conditional mean 

equation in this paper is always modelled as a first-order autoregressive process, whereas in González-Pla 

and Lovreta (2019) it is modelled as a k-order autoregressive process with the exact specification defined 

on a case by case basis. 
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FIGARCH when     (i.e.         ) or GARCH when    . As observed, the 

estimation of   approximates 1 for both equity and firm’s asset volatility. In the case of 

equity as well as our base case firm's assets, we cannot reject the FIGARCH in favour 

of the HYGARCH in 86.54% of the cases. For the remaining, 13.46% of the companies 

  is significantly lower than 1, or equivalently,         .   

Table 7. Estimated coefficients for the HYGARCH model with GED errors 

 E VSM VKMV VProxy  

   0.1491 0.0502 0.0495 0.0453 

 (63.46%) (53.85%) (51.92%) (53.85%) 

α 0.2719 0.2650 0.2630 0.2821 

 (84.62%) (84.62%) (84.62%) (90.38%) 

β 0.5849 0.5471 0.5462 0.5757 

 (96.15%) (92.31%) (92.31%) (96.15%) 

d 0.4176 0.3774 0.3785 0.3847 

 (96.15%) (90.38%) (90.38%) (92.31%) 

log(κ) -0.0103 0.0122 0.0137 0.0108 

κ 0.9935 1.0232 1.0251 1.0203 

 (13.46%) (13.46%) (17.31%) (11.54%) 

GED 1.2338 1.2658 1.2672 1.2650 

 (100.00%) (100.00%) (100.00%) (100.00%) 

Q(10) 10.0805 10.4654 10.4556 10.3630 

 (98.08%) (96.15%) (96.15%) (96.15%) 

Q2(10) 5.3905 5.8152 5.7412 5.6953 

 (100.00%) (100.00%) (100.00%) (100.00%) 

LL -6,371.5817 -3,728.1426 -3,710.9496 -3,727.2737 

Akaike 3.7615 2.2024 2.1922 2.2019 

Shibata 3.7615 2.2024 2.1922 2.2019 

Schwarz 3.7723 2.2132 2.2031 2.2127 

Hannan-Quinn 3.7654 2.2063 2.1961 2.2057 

This table reports the cross-sectional average of the estimated HYGARCH(1,1) coefficients. The figures 

in parenthesis correspond to the percentage of companies for which the estimated coefficients of the 

model are statistically significant at least at the 5% level. The Q(10) and Q
2
(10) refer to the Ljung-Box 

statistics for tenth-order serial correlation in standardized residuals and squared standardized residuals, 

respectively. 

In context of fractionally integrated models, FIEGARCH is an interesting 

alternative as generalizes EGARCH model by incorporating a fractionally integrated 

behavior, an additional feature to its inherent ability to capture asymmetry. Estimation 

results for the FIEGARCH model are shown in Table 8. At the cross sectional level, the 

sign effect (γ1) and the amplitude effect (γ2) have an influence on volatility comparable 
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to that observed in the EGARCH estimations. Similarly to the EGARCH model, 

asymmetry coefficient is negative and statistically significant at the 5% level for all the 

companies in the case of equity, and for 86.54% of the     firm’s asset volatility 

estimations (84.62% and 86.54% for      and        firm's assets). On average the γ1 

coefficient is more negative for equity (-0.0729) than for firm's assets (-0.0489 for    , 

-0.0497 for      and -0.0479 for       ). The difference in mean for the asymmetry 

coefficient is statistically significant. The fractional differencing parameter (d) is 

statistically significant in all of the equity and asset estimations, and its mean value for 

equity is 0.5866, and ranges between 0.5796 and 0.5870 for firms’ asset estimations 

(0.5861 in our base case using the structural model).  

Table 8. Estimated coefficients for the FIEGARCH model with GED errors 

 E VSM VKMV VProxy  

  0.8764 -0.6748 -0.6941 -0.6847 

 (94.23%) (63.46%) (63.46%) (61.54%) 

β 0.4753 0.4164 0.4167 0.4513 

 (71.15%) (61.54%) (59.62%) (63.46%) 

d 0.5866 0.5861 0.5870 0.5796 

 (100.00%) (100.00%) (100.00%) (100.00%) 

γ1 -0.0729 -0.0489 -0.0497 -0.0479 

 (100.00%) (86.54%) (84.62%) (86.54%) 

γ2 0.1478 0.1613 0.1604 0.1552 

 (100.00%) (100.00%) (100.00%) (100.00%) 

GED 1.2500 1.2740 1.2752 1.2729 

 (100.00%) (100.00%) (100.00%) (100.00%) 

Q(10) 10.7612 10.9008 10.9065 10.8305 

 (94.23%) (94.23%) (94.23%) (94.23%) 

Q2(10) 8.5383 8.2958 8.3071 8.1309 

 (92.31%) (94.23%) (94.23%) (94.23%) 

LL -6,352.8421 -3,716.3930 -3,699.0042 -3,715.2074 

Akaike 3.7504 2.1955 2.1852 2.1948 

Shibata 3.7504 2.1954 2.1852 2.1947 

Schwarz 3.7613 2.2063 2.1960 2.2056 

Hannan-Quinn 3.7543 2.1993 2.1891 2.1986 

This table reports the cross-sectional average of the estimated FIEGARCH(1,1) coefficients. The figures 

in parenthesis correspond to the percentage of companies for which the estimated coefficients of the 

model are statistically significant at least at the 5% level. The Q(10) and Q
2
(10) refer to the Ljung-Box 

statistics for tenth-order serial correlation in standardized residuals and squared standardized residuals, 

respectively. 
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Table 9 depicts the estimations with the FIAPARCH model. The Box-Cox 

transformation parameter (δ) is about 1.4 and is statistically significant in all of the 

cases. The fractional differencing parameter (d) is 0.3905 for equity and from 0.3978 to 

0.4080 in firms’ asset estimates (0.4022 in our base case). At firm level, the asymmetry 

coefficient (γ) is positive, which means that negative shocks have greater impact on 

volatility than positive shocks. The asymmetry coefficient is higher for equity (0.5283 

on average), than for the     firm's assets (0.3414 on average). 

Table 9. Estimated coefficients for the FIAPARCH model with GED errors 

 E VSM VKMV VProxy  

   0.1641 0.0643 0.0664 0.0660 

 (98.08%) (90.38%) (90.38%) (90.38%) 

α 0.2823 0.2923 0.2905 0.2867 

 (96.15%) (94.23%) (92.31%) (98.08%) 

β 0.5931 0.6062 0.6019 0.6111 

 (98.08%) (98.08%) (96.15%) (98.08%) 

d 0.3905 0.4022 0.3978 0.4080 

 (100.00%) (98.08%) (96.15%) (96.15%) 

γ 0.5283 0.3414 0.3638 0.3625 

 (98.08%) (88.46%) (84.62%) (86.54%) 

δ 1.3914 1.4257 1.4330 1.4197 

 (100.00%) (100.00%) (100.00%) (100.00%) 

GED 1.2580 1.2790 1.2803 1.2784 

 (100.00%) (100.00%) (100.00%) (100.00%) 

Q(10) 10.3794 10.5959 10.6053 10.5601 

 (96.15%) (96.15%) (96.15%) (96.15%) 

Q2(10) 6.7497 6.9709 6.9348 6.9953 

 (98.08%) (96.15%) (96.15%) 96.15% 

LL -6,350.9694 -3,716.1823 -3,698.8482 -3,715.1377 

Akaike 3.7499 2.1959 2.1857 2.1953 

Shibata 3.7499 2.1959 2.1857 2.1953 

Schwarz 3.7626 2.2086 2.1983 2.2080 

Hannan-Quinn 3.7544 2.2004 2.1902 2.1998 

This table reports the cross-sectional average of the estimated FIAPARCH(1,1) coefficients. The figures 

in parenthesis correspond to the percentage of companies for which the estimated coefficients of the 

model are statistically significant at least at the 5% level. The Q(10) and Q
2
(10) refer to the Ljung-Box 

statistics for tenth-order serial correlation in standardized residuals and squared standardized residuals, 

respectively. 
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 Finally, it is important to note that the estimated GED parameter is statistically 

significant and lower than 2 in all estimations suggesting a fat-tailed distribution of 

return series (see Table 3 to Table 9). The results of the Ljung–Box diagnostic tests for 

tenth-order serial correlation in standardized residuals and standardized squared 

residuals indicate that estimated models are in general able to properly capture the 

dynamics in the conditional variance of equity and firm's asset returns (see Table 3 to 

Table 9). 

6.1 Model fit 

To asses model fit we use several information criteria which are a function of the 

log-likelihood (i.e. a measure of goodness of fit of the estimated model), and a penalty 

component that changes depending on the criteria. The analytical formulation of 

considered information criteria is as follows:  
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where      is the log-likelihood function,   is the number of estimated parameters and 

   is the number of observations.  

Table 10 reports the cross sectional results of the information criteria and Table 

11 the number of firms for which each of the considered models is selected as the best 

model. In consequence, according to the log-likelihood statistics and information 

criteria described above, models that simultaneously account for asymmetry and long-

range persistence (i.e. FIEGARCH and FIAPARCH models) provide the best fit in the 

cross-section. In equity volatility estimations, FIAPARCH model provides the best fit 
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according to the Akaike and Schibata information criteria, and FIEGARCH model 

according to the Schwarz and Hannan-Quinn criteria. At the firm level, the two most 

complete models seem to be the best choice in 94.23% (Akaike and Schibata), 61.54% 

(Schwarz) and 86.54% (Hannan-Quinn) of the cases. These results are not significantly 

different in firm's asset volatility estimations. That is, in the cross-section all four 

information criteria (i.e. Akaike, Schibata, Schwarz and Hannan-Quinn criteria) suggest 

the FIEGARCH model, followed in the second place by the FIAPARCH model. The 

two models seem to be the best choice in 82.69% (Akaike), 84.62% (Schibata), 40.38% 

(Schwarz) and 71.15% (Hannan-Quinn) of the cases in our base case firm asset 

estimations. The model selection using the Information Criteria or goodness of fit is 

consistent along the different firms’ asset estimation approaches considered in this 

paper. Finally, it should be noted that according to the Schwarz information criteria the 

EGARCH model seems to provide the best goodness of fit for a significant number of 

companies (28.85% in the case of equity and 34.62% in the case of firm's asset 

volatility).  

When analyzing the information criteria obtained in the model fit, it is important 

to contextualize them with a certain degree of prudence, and according to the 

characteristics of the model. Javed and Mantalos (2013) analyzed several information 

criteria (Akaike, Schwarz and Hannan-Quinn) in selecting GARCH-type models 

compared to their forecasting results, and observed that Schwarz and Hannan-Quinn 

performed better with low order GARCH effects. Mitchell and Mckenzie (2003) point 

out that a Hannan-Quinn criterion behaves particularly well choosing the ARCH model 

when the modelled process is linear. However, in presence of leverage or power effects 

(which are usually observed in stock returns) none of the criteria provide accurate 

results. Brooks and Burk (2003) observed a poor performance in information criteria 
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when selecting a GARCH model, probably due to the characteristics of financial data 

(e.g. fat tails, structural breaks, etc). Therefore, the results about model selection 

according to the information criteria obtained should be interpreted with caution.  

Table 10. Cross-sectional values of information criteria by estimated model 

 
E VSM VKMV VProxy  

Log-Likelihood         

GARCH -6,376.1144 -3,731.2526 -3,714.0342 -3,730.4620 

EGARCH -6,358.6125 -3,721.3829 -3,703.9319 -3,719.9348 

IGARCH -6,380.1827 -3,735.8557 -3,718.6663 -3,734.8143 

FIGARCH -6,372.1837 -3,728.8586 -3,711.6717 -3,728.0199 

HYGARCH -6,371.5817 -3,728.1426 -3,710.9496 -3,727.2737 

FIEGARCH -6,352.8421 -3,716.3930 -3,699.0042 -3,715.2074 

FIAPARCH -6,350.9694 -3,716.1823 -3,698.8482 -3,715.1377 

Akaike         
GARCH 3.7630 2.2030 2.1929 2.2026 
EGARCH 3.7532 2.1978 2.1875 2.1970 

IGARCH 3.7648 2.2052 2.1950 2.2046 

FIGARCH 3.7612 2.2022 2.1921 2.2017 

HYGARCH 3.7615 2.2024 2.1922 2.2019 
FIEGARCH 3.7504 2.1955 2.1852 2.1948 

FIAPARCH 3.7499 2.1959 2.1857 2.1953 

Shibata         
GARCH 3.7630 2.2030 2.1929 2.2026 
EGARCH 3.7532 2.1978 2.1875 2.1969 

IGARCH 3.7648 2.2052 2.1950 2.2045 

FIGARCH 3.7612 2.2022 2.1921 2.2017 

HYGARCH 3.7615 2.2024 2.1922 2.2019 
FIEGARCH 3.7504 2.1954 2.1852 2.1947 

FIAPARCH 3.7499 2.1959 2.1857 2.1953 

Schwarz 
    

GARCH 3.7702 2.2103 2.2001 2.2098 

EGARCH 3.7623 2.2068 2.1966 2.2060 

IGARCH 3.7702 2.2106 2.2004 2.2100 

FIGARCH 3.7703 2.2113 2.2011 2.2108 

HYGARCH 3.7723 2.2132 2.2031 2.2127 

FIEGARCH 3.7613 2.2063 2.1960 2.2056 

FIAPARCH 3.7626 2.2086 2.1983 2.2080 

Hannan-Quinn 
    

GARCH 3.7656 2.2056 2.1955 2.2052 

EGARCH 3.7565 2.2010 2.1907 2.2002 

IGARCH 3.7667 2.2071 2.1970 2.2065 

FIGARCH 3.7645 2.2054 2.1953 2.2050 

HYGARCH 3.7654 2.2063 2.1961 2.2057 

FIEGARCH 3.7543 2.1993 2.1891 2.1986 

FIAPARCH 3.7544 2.2004 2.1902 2.1998 

This table reports the cross-sectional average of the information criteria (Akaike, Shibata, Schwartz, 

Hannan-Quinn) and log-likelihood obtained in the estimation of volatility models. The best selected 

model according to the criteria is shown in bold.  
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Table 11. Information Criteria at firm level 

 

E VSM VKMV VProxy  

 

Num. % Num. % Num. % Num. % 

Log-Likelihood                 
GARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

EGARCH 1 1.92% 3 5.77% 3 5.77% 3 5.77% 

IGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

FIGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

HYGARCH 0 0.00% 1 1.92% 1 1.92% 1 1.92% 

FIEGARCH 15 28.85% 21 40.38% 19 36.54% 20 38.46% 

FIAPARCH 36 69.23% 27 51.92% 29 55.77% 28 53.85% 

Akaike                 
GARCH 0 0.00% 2 3.85% 2 3.85% 2 3.85% 

EGARCH 3 5.77% 6 11.54% 6 11.54% 7 13.46% 

IGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

FIGARCH 0 0.00% 1 1.92% 0 0.00% 0 0.00% 

HYGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

FIEGARCH 20 38.46% 24 46.15% 25 48.08% 23 44.23% 

FIAPARCH 29 55.77% 19 36.54% 19 36.54% 20 38.46% 

Shibata                 

GARCH 0 0.00% 2 3.85% 2 3.85% 2 3.85% 

EGARCH 3 5.77% 5 9.62% 6 11.54% 7 13.46% 

IGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

FIGARCH 0 0.00% 1 1.92% 0 0.00% 0 0.00% 

HYGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

FIEGARCH 20 38.46% 24 46.15% 25 48.08% 23 44.23% 

FIAPARCH 29 55.77% 20 38.46% 19 36.54% 20 38.46% 

Schwarz 
       

 GARCH 1 1.92% 5 9.62% 6 11.54% 5 9.62% 

EGARCH 15 28.85% 18 34.62% 18 34.62% 20 38.46% 

IGARCH 3 5.77% 7 13.46% 6 11.54% 8 15.38% 

FIGARCH 1 1.92% 1 1.92% 0 0.00% 2 3.85% 

HYGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

FIEGARCH 22 42.31% 19 36.54% 20 38.46% 14 26.92% 

FIAPARCH 10 19.23% 2 3.85% 2 3.85% 3 5.77% 

Hannan-Quinn 
       

 GARCH 0 0.00% 2 3.85% 2 3.85% 2 3.85% 

EGARCH 7 13.46% 10 19.23% 9 17.31% 10 19.23% 

IGARCH 0 0.00% 2 3.85% 2 3.85% 2 3.85% 

FIGARCH 0 0.00% 1 1.92% 1 1.92% 1 1.92% 

HYGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

FIEGARCH 22 42.31% 24 46.15% 26 50.00% 24 46.15% 

FIAPARCH 23 44.23% 13 25.00% 12 23.08% 13 25.00% 

This table reports the number and percentage of firms with the best performance for each GARCH-type 

model according to the log-likelihood and information criteria (Akaike, Shibata, Schwartz, Hannan-

Quinn) considered. The model with the highest proportion of firms is highlighted in bold.   

Brooks and Burk (2003) argue that the traditional information criteria previously 

discussed cannot be used in the context of conditionally heteroscedastic models. The 

traditional Akaike and Schwartz information criteria have been extensively used in 

autoregressive models to determine the optimal number of lags. However, these criteria 
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are not appropriate for assessing (heteroscedastic) variance models since model 

selection leads to inevitable biases. Therefore, Brooks and Burk (2003) propose a 

modified version of Akaike (HAIC) and Schwarz (HSIC) information criteria which are 

defined as follows: 

     ∑      ̂ 
      

             (22) 

     ∑      ̂ 
           

                 (23) 

Where  ̂ 
  is the estimated conditional variance in the time t, q refers to the 

number of estimated parameters and T is the number of observations. Table 12 and 

Table 13 report the cross-sectional and firm level analysis of the modified information 

criteria by estimated model. 

The obtained results of HAIC and HSIC show some differences to traditional 

information criteria. In equity volatility estimations EGARCH is the best choice in 

50.00% (HAIC) and 53.85% (HSIC) of the cases, followed by FIAPARCH that is 

selected by 48.08% (HAIC) and 42.31% (HSIC) of firms. FIEGARCH, which is one of 

the best models according to traditional information criteria, seems to perform well 

overall as its cross-sectional average is very close to the values of EGARCH and 

FIAPARCH although it is not selected by any firm as the best model according to HAIC 

or HSIC criterion. On the other hand, when assessing firm’s asset volatility estimations 

with modified information criteria we observe that FIEGARCH is the best model, 

selected from 59.62% to 61.54% of firms with HAIC criterion and from 61.54% to 

63.46% of firms with HSIC criterion (depending on the firm’s asset value estimation). 

The FIEGARCH is followed by the FIAPARCH which is selected from 30.77% to 

32.69% of firms with HAIC criterion and from 19.23% to 25.00% with HSIC criterion. 

According to cross-sectional mean criteria FIEGARCH is the best overall model in 

firm’s asset volatility estimation. In this way, according these criteria the majority of 
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firm’s asset estimations choose fractionally integrated models as the best choice as 

opposed to equity volatility estimations where less than 48.08% of firms select a 

fractionally integrated model. 

Table 12. Cross-sectional values of information criteria by estimated model 

 
E VSM VKMV VProxy  

HAIC         

GARCH -12.095,4108 -14.404,9037 -14.419,9703 -14.404,8196 

EGARCH -12.133,5106 -14.412,8141 -14.428,2872 -14.413,4921 

IGARCH -12.030,4301 -14.342,1337 -14.357,1351 -14.344,5967 

FIGARCH -12.093,0756 -14.403,7018 -14.418,8425 -14.405,7395 

HYGARCH -12.097,9076 -14.405,4842 -14.420,8394 -14.405,7710 

FIEGARCH -12.131,5106 -14.431,5179 -14.448,9052 -14.434,1284 

FIAPARCH -12.132,6125 -14.427,0547 -14.442,3967 -14.428,7122 

HSIC 
    

GARCH -12.089,2895 -14.398,7824 -14.413,8490 -14.398,6982 

EGARCH -12.125,8589 -14.405,1624 -14.420,6355 -14.405,8404 

IGARCH -12.025,8391 -14.337,5427 -14.352,5441 -14.340,0057 

FIGARCH -12.085,4240 -14.396,0502 -14.411,1909 -14.398,0879 

HYGARCH -12.088,7256 -14.396,3023 -14.411,6574 -14.396,5890 

FIEGARCH -12.122,3286 -14.422,3359 -14.439,7233 -14.424,9464 

FIAPARCH -12.121,9002 -14.416,3424 -14.431,6844 -14.417,9999 

This table repots the cross-sectional average of the modified heteroscedastic information criteria HAIC and HSIC 

obtained in the estimation volatility model. The best selected model according to the criteria is shown in bold. 

Table 13. Modified information criteria at firm level  

 

E VSM VKMV VProxy  

 

Num. % Num. % Num. % Num. % 

HAIC                 
GARCH 1 1.92% 1 1.92% 1 1.92% 1 1.92% 

EGARCH 26 50.00% 2 3.85% 2 3.85% 3 5.77% 

IGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

FIGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

HYGARCH 0 0.00% 1 1.92% 1 1.92% 1 1.92% 

FIEGARCH 0 0.00% 31 59.62% 32 61.54% 31 59.62% 

FIAPARCH 25 48.08% 17 32.69% 16 30.77% 16 30.77% 

HSIC 
 

  
 

  
 

  
 

  
GARCH 2 3,85% 5 9.62% 4 7.69% 3 5.77% 

EGARCH 28 53.85% 4 7.69% 4 7.69% 3 5.77% 

IGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

FIGARCH 0 0.00% 1 1.92% 0 0.00% 1 1.92% 

HYGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

FIEGARCH 0 0.00% 32 61.54% 33 63.46% 32 61.54% 

FIAPARCH 22 42.31% 10 19.23% 11 21.15% 13 25.00% 

This table reports the number and percentage of firms with the best performance for each GARCH-type model 

according to the modified heteroscedastic information criteria HAIC and HSIC obtained in the estimation volatility 

model. The best selected with the highest proportion of firms according to the criteria is shown in bold. 
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7. The effect of leverage on asymmetry and long-memory 

In this section we analyze the impact of financial leverage on asymmetry and 

long-range persistence. We particularly focus on the eventual differences between 

equity and firm asset volatility modeling. To analyze the effect of leverage on the two 

model features we divide the overall sample into low, medium and high leverage 

groups. Leverage is defined as before, as the ratio of the book value of total liabilities to 

the proxy for the market value of the firm (i.e. the sum of the market capitalization and 

the nominal value of debt). We rank firms in ascending order according to their leverage 

and divide further firms into quartiles. The low leverage group consists of firms within 

the first quartile (Q1), whereas the high leverage group consists of firms within the last 

quartile (Q4). The medium leverage group includes second (Q2) and third (Q3) quartile. 

Such a division implies a mean leverage of 0.3576, 0.5187 and 0.7007 for the low, 

medium and high leverage group, respectively.  

7.1 The effect of leverage on asymmetry 

 The effect of asymmetry could be analyzed in the context of the short-memory 

EGARCH model, and long-memory FIEGARCH and FIAPARCH models. The results 

are reported in Table 14. In the case of the short-memory EGARCH model the 

asymmetry is analyzed on the basis of the coefficient   . It can be observed that 

asymmetry is more pronounced in the case of equity than in the case of firm asset 

volatility. Although, the asymmetry coefficient in the case of firm asset volatility is 

statistically significant at 5% level for most of the firms (i.e. 86.54% in our base case), 

it is almost always (i.e. 98.08% in our base     case) lower than the corresponding 

coefficient for equity volatility of the same firm. Moreover, the difference in asymmetry 

increases with leverage being higher for high leverage firms and lower for low leverage 

firms. The difference in asymmetry increases despite the fact that asymmetry in low 
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leverage firms is more pronounced than asymmetry in high leverage firms (for both, 

equity and firm asset volatility). This tendency is also confirmed in the case of 

FIEGARCH and FIAPARCH models. Namely, once the EGARCH model is extended 

to allow for the long-memory parameter d, the difference in asymmetry between equity 

and firm asset volatility becomes even more pronounced. That is, in the case of the 

FIEGARCH model, the average    coefficient for the overall sample amounts to -

0.0729 for equity and -0.0477 for firm's asset returns in our base case. The difference in 

mean is statistically significant. At the firm level, in this case the asymmetry in equity 

volatility is higher than asymmetry in firm's asset volatility in all of the cases 

considered. As before, once we account for the three leverage groups, we can observe 

that the difference in the level of asymmetry increases with leverage.   

Table 14. The effect of leverage on asymmetry 

  EGARCH (γ1)  
FIEGARCH (γ1)  

FIAPARCH (γ) 

lev E VSM diff   E VSM diff   E VSM diff 

Low -0.0542 -0.0422 -0.0120   -0.0712 -0.0531 -0.0182   0.5552 0.4363 0.1189 

Medium -0.0584 -0.0408 -0.0177   -0.0796 -0.0531 -0.0265   0.5479 0.3576 0.1903 

High -0.0483 -0.0241 -0.0242   -0.0613 -0.0318 -0.0295   0.4622 0.2139 0.2483 

all -0.0548 -0.0369 -0.0179   -0.0729 -0.0477 -0.0252   0.5283 0.3414 0.1870 

                        

lev E VKMV diff   E VKMV diff   E VKMV diff 

Low -0.0542 -0.0422 -0.0120   -0.0712 -0.0530 -0.0182   0.5552 0.4895 0.0657 

Medium -0.0584 -0.0417 -0.0167   -0.0796 -0.0541 -0.0255   0.5479 0.3702 0.1778 

High -0.0483 -0.0256 -0.0227   -0.0613 -0.0333 -0.0280   0.4622 0.2256 0.2366 

all -0.0548 -0.0378 -0.0170   -0.0729 -0.0486 -0.0243   0.5283 0.3638 0.1645 

                        

lev E VProxy diff   E VProxy diff   E VProxy diff 

Low -0.0542 -0.0431 -0.0111   -0.0712 -0.0532 -0.0180   0.5552 0.4907 0.0645 

Medium -0.0584 -0.0430 -0.0155   -0.0796 -0.0537 -0.0260   0.5479 0.3771 0.1709 

High -0.0483 -0.0240 -0.0243   -0.0613 -0.0312 -0.0302   0.4622 0.2051 0.2570 

all -0.0548 -0.0383 -0.0166   -0.0729 -0.0479 -0.0250   0.5283 0.3625 0.1658 

This table reports the cross-sectional average of the estimated asymmetry coefficient in EGARCH, 

FIEGARCH and FIAPRACH model for low (Q1), medium (Q2 and Q3) and high (Q4) leverage group. 

Column diff refers to the average difference between equity and firm's asset asymmetry coefficient.  
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7.2 The effect of leverage on long-range persistence 

 The effect of long-range persistence could be analyzed in the context of long-

memory models. In our case, we consider FIGARCH, HYGARCH, FIEGARCH and 

FIAPARCH models. We should also reiterate here that persistence and long-memory 

are not identical concepts. Persistence is a more general term and refers to a slow decay 

of the autocorrelation function, whereas long-memory implies persistence over long 

horizons. The comparison of the persistence parameter over different models and 

different leverage groups is provided in Table 15. In the case of the FIGARCH model 

we can see that persistence in both equity and firm assets increases with leverage, 

however, the difference in persistence is decreasing with leverage. At the firm level, in 

most of the cases equity is more persistent than firm asset volatility. In our base case for 

71.15% of firms equity is more persistent than firm asset volatility (69.23% for      

and 67.31% for       ). For HYGARCH model, on average, equity is more persistent 

than firm asset volatility (0.4176 vs 0.3774 for our base case). For the highest leverage 

group, however, we find that asset volatility is more persistent than equity volatility. 

Once the asymmetry is allowed in a model, the difference in equity - asset volatility is 

on average lower. In the case of the FIEGARCH model, at the firm level, the number of 

companies for which we find that equity is higher than asset volatility reduces to 

48.08% in our base case (50% for      and 48.08% for       ). Moreover, for higher 

leverage groups firm asset volatility turns out to be more persistent than equity. 

Findings are very similar for the FIAPARCH model. At the firm level, the number of 

companies for which we find that equity is higher than asset volatility reduces to 

46.15% in our base case (44.20% for      and 28.85% for       ). As before, it is 

precisely that for higher leverage groups firm asset volatility turns out to be more 

persistent than equity. 
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Table 15. The effect of leverage on long-range persistence 

  FIGARCH (d)   HYGARCH (d)   FIEGARCH (d)   FIAPARCH (d) 

lev E VSM diff   E VSM diff   E VSM diff   E VSM diff 

Low 0.3649 0.3290 0.0359   0.4556 0.3628 0.0928   0.5821 0.5546 0.0275   0.3790 0.3677 0.0113 

Medium 0.3715 0.3491 0.0224   0.4066 0.3685 0.0381   0.5873 0.5890 -0.0017   0.4034 0.4133 -0.0099 

High 0.3980 0.3732 0.0248   0.4016 0.4100 -0.0084   0.5899 0.6118 -0.0219   0.3763 0.4144 -0.0381 

all 0.3765 0.3501 0.0264   0.4176 0.3774 0.0402   0.5866 0.5861 0.0005   0.3905 0.4022 -0.0116 

                                

lev E VKMV diff   E VKMV diff   E VKMV diff   E VKMV diff 

Low 0.3649 0.3341 0.0308   0.4556 0.3660 0.0897   0.5821 0.5626 0.0195   0.3790 0.3586 0.0204 

Medium 0.3715 0.3476 0.0239   0.4066 0.3670 0.0396   0.5873 0.5883 -0.0010   0.4034 0.4115 -0.0081 

High 0.3980 0.3715 0.0265   0.4016 0.4142 -0.0126   0.5899 0.6087 -0.0188   0.3763 0.4097 -0.0335 

all 0.3765 0.3502 0.0263   0.4176 0.3785 0.0391   0.5866 0.5870 -0.0003   0.3905 0.3978 -0.0073 
                                

lev E VProxy diff   E VProxy diff   E VProxy diff   E VProxy diff 

Low 0.3649 0.3336 0.0313   0.4556 0.3637 0.0920   0.5821 0.5568 0.0253   0.3790 0.3579 0.0211 

Medium 0.3715 0.3525 0.0190   0.4066 0.3796 0.0269   0.5873 0.5819 0.0054   0.4034 0.4191 -0.0157 

High 0.3980 0.3931 0.0049   0.4016 0.4158 -0.0142   0.5899 0.5977 -0.0078   0.3763 0.4357 -0.0594 

all 0.3765 0.3579 0.0185   0.4176 0.3847 0.0329   0.5866 0.5796 0.0071   0.3905 0.4080 -0.0174 

This table reports the cross-sectional average of the estimated long-memory coefficient in FIGARCH, HYGARCH, FIEGARCH and FIAPRACH model for low (Q1), 

medium (Q2 and Q3) and high (Q4) leverage group. Column diff refers to the average difference between equity and firm's asset long-memory coefficient.    
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8. Out-of-sample forecasting 

In order to explore in more detail the properties of firm’s asset and equity 

volatility, we evaluate which volatility model provides the best out-of-sample monthly 

forecasts. Monthly frequency forecast horizon is chosen for several reasons. First, the 

analysis of firm-level equity and asset volatility is typically conducted using monthly 

estimates (Choi and Richardson, 2016). Second, the firm-level intraday data, necessary 

for ex-post daily volatility measurement (Andersen and Bollerslev, 1998) is not 

generally available. Consequently, in contrast to equity indices, firm-level equity and 

asset volatility is typically estimated from daily data. Another possibility used in the 

literature (Poon and Granger, 2003; Zivot, 2008) is to consider squared returns as a 

proxy measure of the daily realized volatility, and compare it with a one-day ahead 

forecasts from a conditional volatility model. Andersen and Bollerslev (1998), however 

argue that daily squared returns are a poor estimator of the daily realized volatility and 

GARCH-type models could spuriously provide better results when comparing forecasts 

to squared returns. Given that we work with daily data on estimated firm's asset values, 

and in order to avoid problems associated with estimating daily volatility from daily 

data we therefore opt for monthly frequency which will by definition reduce the 

standard error of the volatility estimate. Moreover, Poon and Granger (2003) show that 

the benefit of using intraday returns to estimate realized volatility is less important for 

long prediction horizons. Third, one of the central issues of this paper is to analyze the 

importance of long-memory features in firm-level volatility forecasting. The effect of 

long-memory features on the performance of the one-day-ahead volatility forecasts 

could be questioned by the very nature of the model.  

We apply forecasting at monthly horizons based on daily data. That is, we use 

iterated forecasts of the daily variance 21 days forward, and aggregate these forecasts to 
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the monthly horizon. Such an approach is motivated by the results of Ghysels et al. 

(2019) who show that in the case of GARCH models, iterated forecasts (based on daily 

data) dominate the direct forecasts (based on monthly data). Specifically, they report the 

highest accuracy of the monthly horizon iterated GARCH for as much as 83% of the 

assets they consider. Along the same lines, Marcellino et al. (2006) show that iterated 

forecasts typically outperform direct forecasts and that the relative performance of 

iterated forecasts improves as the forecast horizon increases. 

To perform the out-of-sample forecast analysis we divide the overall sample into 

estimation period and evaluation period, and subsequently apply the rolling widow 

scheme. An initial subsample covers a period of ten years, from January 1
st
, 2004 to 

December 31
st
, 2013 and includes 2,610 daily observations. We estimate all selected 

conditional volatility models over this initial period and generate forecasts 1 to 21 days 

ahead applying the conditional variance equation. In the subsequent step, the estimation 

period is rolled forward by adding 21 return observations and dropping the first 21 

return observations, so that the size of the estimation window remains fixed (2,610 daily 

observations). All the considered GARCH models are then re-estimated to produce a 

new set of volatility forecasts. This process is repeated until the end of the out-of-

sample period is reached (December 31
st
, 2016). Sampling at monthly frequency (i.e. 

using a time step of one month) allows us to finally obtain 37 non-overlapping out-of-

sample monthly observations for each company (        ), return series (      , 

   ,     ,       ) and the GARCH-type model (       ).  

One of the important features of the procedure that we apply is that we generate a 

non-overlapping sample of forecasted and realized volatility. If the estimation were 

rolled over 1 observation instead of 21 observations we would have a substantial 

overlap between two adjacent forecasts and realizations which would artificially 
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produce autocorrelation in the forecasts and forecast errors (Poon and Granger, 2003). 

Finally, a time step of one month makes our analysis feasible, given the significant 

computational time needed especially for the long-memory models. 

As previously stated, we use daily data to estimate GARCH-type models. For 

each window we construct 1 to 21-step ahead forecasts of the daily variance, and 

aggregate iterated daily forecasts to obtain the monthly forecast. That is, we use the sum 

of the iterated forecasts:  

   √
   

 
∑     

  
        (24) 

where   is the length of the forecasting period (21 days),     
  refers to the  -days ahead 

variance forecast in the period   for        . For comparison purposes, monthly 

volatility forecasts are annualized assuming 252 trading days per year. 

To evaluate the accuracy of forecasted volatility and determine which model 

provides better forecasts, it is necessary to compare the generated forecasts with 

subsequently realized volatility. We calculate the subsequently realized monthly 

volatility as the annualized standard deviation of the continuously compounded returns 

over the same, 21 days period. The proxy used for the subsequently realized volatility.   

   √
   

 
∑     

  
        (25) 

where   is the length of the forecasting period (21 days), and     
  is the squared return 

in the period   for        . 

 In this way, for each GARCH-type model,  , we obtain a sequence of non-

overlapping one-month ahead volatility forecasts (             ) that are compared to 

subsequently realized volatility (         ). To evaluate performance of different 

models we proceed in several steps. First, as a preliminary analysis, for every firm in 

the sample (and time series) we rank models using different loss functions as criteria. 
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These functions are usually a measure of the error between the predicted volatility and 

subsequently realized volatility. The lower the value of the loss function the more 

precise is the forecast. Second, we use formal tests to determine the significance of 

relative performance of considered models: the Diebold and Mariano (1995) test for 

equal predictive ability and the Hansen (2005) test for superior predictive ability. Third, 

we evaluate the performance of different forecasts by comparing the implied credit 

spreads (ICS), calculated using structural credit risk model and forecasted volatility, to a 

market observable subsequently realized CDS spreads.   

 There are several loss functions to assess which model provides the most 

accurate prediction performance of volatility. However, as Lopez (2001) there is no the 

best loss function to use to assess the predictive accuracy of the model. For that reason, 

we consider several, commonly applied loss functions. A detailed bibliography about 

forecasting performance can be found in Poon and Granger (2003), and Poon (2005). In 

particular, we use the Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), and Theil’s Inequality Coefficient (TIC), which are 

defined as follows:   
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where   is the number of forecasts and     ,      are the forecasted and realized 

volatility respectively in the evaluation period   (       ). When analyzing the 

statistics it is important to consider that MSE is a mean of the squared error whereas 
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MAPE provides a mean of a relative measure of the error, so MSE is more likely to be 

affected by outliers. MSE, MAE and MAPE are mean error measures of the forecasts, 

whereas TIC is a coefficient bounded to the interval [   ] , where a value of 0 

corresponds to a perfect forecast whereas a value of 1 indicates an imperfect prediction. 

The main results of the out-of-sample forecasting are presented in Table 16, and 

Table 17. In Table 16, the cross-sectional summary of the results are presented, while 

Table 17, presents firm level results. The selected loss functions point out in the 

direction that the asymmetric fractionally integrated models provide better forecasts 

than the short-memory and integrated models. This holds for both firm’s asset and 

equity volatility. The firm level results go in the same direction. 

Table 16. Forecasting results 

  E VSM VKMV VProxy  

MSE         

GARCH 0.0113 0.0024 0.0025 0.0026 

EGARCH  0.0094 0.0022 0.0023 0.0024 

IGARCH 0.0130 0.0028 0.0029 0.0030 

FIGARCH 0.0107 0.0023 0.0024 0.0025 

HYGARCH 0.0104 0.0023 0.0024 0.0025 

FIEGARCH 0.0089 0.0020 0.0021 0.0022 

FIAPARCH 0.0093 0.0022 0.0022 0.0023 

MAE         

GARCH 0.0744 0.0337 0.0337 0.0344 

EGARCH  0.0679 0.0318 0.0319 0.0324 

IGARCH 0.0816 0.0366 0.0367 0.0374 

FIGARCH 0.0723 0.0326 0.0327 0.0333 

HYGARCH 0.0715 0.0325 0.0326 0.0332 

FIEGARCH 0.0661 0.0308 0.0309 0.0315 

FIAPARCH 0.0663 0.0314 0.0315 0.0320 

MAPE         

GARCH 0.3024 0.2815 0.2796 0.2831 

EGARCH  0.2718 0.2597 0.2584 0.2609 

IGARCH 0.3403 0.3128 0.3120 0.3145 

FIGARCH 0.2910 0.2671 0.2662 0.2690 

HYGARCH 0.2867 0.2670 0.2660 0.2692 

FIEGARCH 0.2585 0.2481 0.2471 0.2498 

FIAPARCH 0.2632 0.2563 0.2547 0.2580 
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Table 16 (cont.). Forecasting results 

TIC         

GARCH 0.1709 0.1620 0.1627 0.1646 

EGARCH  0.1604 0.1570 0.1577 0.1591 

IGARCH 0.1804 0.1698 0.1704 0.1720 

FIGARCH 0.1670 0.1589 0.1596 0.1610 

HYGARCH 0.1660 0.1582 0.1590 0.1608 

FIEGARCH 0.1578 0.1528 0.1536 0.1547 

FIAPARCH 0.1595 0.1556 0.1564 0.1575 

This table reports the cross-sectional average of several error measures between the forecasted and 

realized volatility (MSE, MAE, MAPE, and TIC). The model with the lowest forecast errors is 

highlighted in bold. 

In the evaluation of the forecasts of equity volatility at the cross-sectional level, 

we observe that the FIEGARCH model is the best model according to all of the criteria 

considered, followed by the FIAPARCH model. In contrast, GARCH and IGARCH 

models show the poorest results. The use of asymmetric and fractionally integrated 

models does improve equity volatility forecasts. However, the performance showed by 

EGARCH is better than performance of FIGARCH or HYGARCH, suggesting a 

relatively higher relevance of asymmetry vs. long-memory property in equity volatility 

modeling. This pattern is also observed at the firm level: for the majority of firms 

FIEGARCH or FIAPARCH model have the lowest value of the loss function (from 

65.38% to 76.92% of firms depending on the error measure criteria). It is noticeable that 

in a significant number of firms EGARCH is the best model (from 17.31% to 21.15% of 

firms, depending on the error measure criteria) outreaching the individual importance of 

only fractionally integrated models. 
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Table 17. Forecasting results at firm level 

  E VSM VKMV VProxy  

  Num % Num % Num % Num % 

MSE                 

GARCH 1 1.92% 1 1.92% 1 1.92% 0 0.00% 

EGARCH  9 17.31% 9 17.31% 7 13.46% 8 15.38% 

IGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

FIGARCH 0 0.00% 3 5.77% 3 5.77% 4 7.69% 

HYGARCH 2 3.85% 3 5.77% 4 7.69% 2 3.85% 

FIEGARCH 25 48.08% 26 50.00% 27 51.92% 26 50.00% 

FIAPARCH 15 28.85% 10 19.23% 10 19.23% 12 23.08% 

MAE                 

GARCH 0 0.00% 3 5.77% 3 5.77% 3 5.77% 

EGARCH  11 21.15% 10 19.23% 10 19.23% 10 19.23% 

IGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

FIGARCH 4 7.69% 3 5.77% 3 5.77% 4 7.69% 

HYGARCH 3 5.77% 4 7.69% 3 5.77% 2 3.85% 

FIEGARCH 19 36.54% 23 44.23% 25 48.08% 24 46.15% 

FIAPARCH 15 28.85% 9 17.31% 8 15.38% 9 17.31% 

MAPE                 

GARCH 0 0.00% 2 3.85% 2 3.85% 2 3.85% 

EGARCH  9 17.31% 12 23.08% 11 21.15% 13 25.00% 

IGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00% 

FIGARCH 1 1.92% 3 5.77% 3 5.77% 3 5.77% 

HYGARCH 4 7.69% 3 5.77% 3 5.77% 2 3.85% 

FIEGARCH 23 44.23% 22 42.31% 23 44.23% 23 44.23% 

FIAPARCH 15 28.85% 10 19.23% 10 19.23% 9 17.31% 

TIC                 

GARCH 0 0.00% 2 3.85% 2 3.85% 2 3.85% 

EGARCH  11 21.15% 8 15.38% 9 17.31% 9 17.31% 

IGARCH 1 1.92% 2 3.85% 2 3.85% 2 3.85% 

FIGARCH 2 3.85% 2 3.85% 2 3.85% 3 5.77% 

HYGARCH 1 1.92% 3 5.77% 5 9.62% 3 5.77% 

FIEGARCH 23 44.23% 22 42.31% 19 36.54% 21 40.38% 

FIAPARCH 14 26.92% 13 25.00% 13 25.00% 12 23.08% 

This table reports the number and percentage of firm’s with best forecasting results compared along the 

GARCH-type models estimated and according to the selected loss function to evaluate (MSE, MAE, 

MAPE and TIC). The model with the highest proportion of firms is highlighted in bold. 

 Next we evaluate the forecasting error of firm’s asset volatility. Firstly, we can 

observe that forecasting performance of different models is consistent among the three 

methodologies employed to estimate firm’s asset returns. Secondly, at first glance, no 

substantial difference in model performance with respect to equity volatility could be 
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observed. By way of example, focusing on     as our baseline case, according to all of 

the criteria considered asymmetric and long-memory models outperform simpler 

models. At firm-level FIEGARCH and FIAPARCH models yield the lowest loss 

function value for more than 60% of the companies. As in the case of equity volatility, 

the importance of the EGARCH model vs. only long-memory models (FIGARCH and 

HYGARCH) is noticeable. 

As a robustness check we use variances instead of volatilities (i.e. standard 

deviations), and consider the Mean Squared Error (MSE2), Mean Absolute Error 

(MSE2) and following Patton (2011, the maximum likelihood based QLIKE function: 
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These additional results are provided in the Appendix D (see Table D.1 and Table D.2). 

The results obtained with variances instead of volatilities are virtually the same as those 

previously reported.  

 In conclusion, preliminary analysis on the basis of the loss function comparison 

points out in the direction that FIEGARCH and FIAPARCH models provide the best 

forecasts for both equity and firm asset volatility. To assess if the observed difference in 

forecasts produced from different models is also statistically significant we further 

apply tests for equal and superior predictive ability.  
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8.1 The equal predictive ability test 

 We first consider a widely used test for equal predictive ability of Diebold and 

Mariano (1995) which is designed to compare predictive accuracy of two competing 

forecasts. The predictive accuracy of each model is measured on the basis of a particular 

loss function. Therefore, for each model we define a sequence of losses as:    

 (       )        . In empirical applications, either the mean squared error 

(MSE) or the mean absolute error (MAE), are commonly used as a benchmark loss 

function to evaluate the performance of volatility models. In our main analysis we use 

the MSE as a benchmark loss function,  (       )      
 , where    represents a set 

of forecast errors defined as the difference between realized and forecasted volatility 

(       )    

 The Diebold and Mariano (1995) test is based on the loss differential between 

two competing forecasts. Accordingly, for each pair of competing forecasts we define 

the loss differential as: 

                      (33) 

The      is the sequence of losses for the benchmark model, and      is the sequence of 

losses for the alternative model. If forecasts from the two competing models have equal 

predictive accuracy the loss differential will have zero expectation. Therefore, the null 

hypothesis to test is specified as follows:           . If we reject null hypothesis the 

two models differ in their predictive accuracy. The DM test statistics is given by: 
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where  ̅     ∑   
 
    and    ̂( ̅)  is an estimate of the asymptotic variance of  ̅ . 

Specifically,    ̂( ̅)     [    ∑   
   
   ], where    is the kth autocovariance of    

estimated by  ̂     ∑ (    ̅) 
     (      ̅). 
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The results of the Diebold and Mariano (1995) test are reported in Table 18. The 

table reports the percentage of companies for which the null hypothesis is rejected at the 

5% level and the resulted test statistics is negative (i.e. the alternative model 

outperforms the benchmark model).
28

 We report a modification of the Diebold and 

Mariano (1995) test suggested by Harvey, Leybourne, and Newbold (1997) that leads to 

better small-sample properties.  

Table 18. Diebold and Mariano (1995) test 

Equity GARCH EGARCH IGARCH FIGARCH HYGARCH FIEGARCH 

EGARCH 84.62%           

IGARCH 0.00% 0.00%         

FIGARCH 73.08% 23.08% 94.23%       

HYGARCH 86.54% 26.92% 100.00% 55.77%     

FIEGARCH 94.23% 71.15% 98.08% 88.46% 86.54%   

FIAPARCH 94.23% 57.69% 98.08% 73.08% 75.00% 32.69% 

              

VSM GARCH EGARCH IGARCH FIGARCH HYGARCH FIEGARCH 

EGARCH 80.77%           

IGARCH 0.00% 5.77%         

FIGARCH 73.08% 26.92% 92.31%       

HYGARCH 78.85% 23.08% 92.31% 40.38%     

FIEGARCH 88.46% 59.62% 96.15% 78.85% 76.92%   

FIAPARCH 78.85% 51.92% 88.46% 61.54% 63.46% 19.23% 

              

VKMV GARCH EGARCH IGARCH FIGARCH HYGARCH FIEGARCH 

EGARCH 78.85%           

IGARCH 0.00% 7.69%         

FIGARCH 71.15% 25.00% 94.23%       

HYGARCH 76.92% 23.08% 94.23% 44.23%     

FIEGARCH 88.46% 59.62% 94.23% 78.85% 78.85%   

FIAPARCH 78.85% 53.85% 86.54% 59.62% 59.62% 23.08% 

       
VProxy GARCH EGARCH IGARCH FIGARCH HYGARCH FIEGARCH 

EGARCH 80.77%           

IGARCH 1.92% 1.92%         

FIGARCH 71.15% 26.92% 98.08%       

HYGARCH 78.85% 23.08% 96.15% 42.31%     

FIEGARCH 88.46% 61.54% 98.08% 78.85% 78.85%   

FIAPARCH 80.77% 51.92% 96.15% 59.62% 65.38% 23.08% 

                                                             
28

 The conclusions are not materially different from those reported in the paper if the 10% significance 

level is used instead. 
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This table reports the results for the Diebold and Mariano (1995) test with Harvey et al. (2017) 

modification. The table reports the percentage of companies for which the row model outperforms the 

column model under a MSE loss function at the 5% significance level. 

The Diebold and Mariano (1995) test show the superioriority of models that 

allow for long-memory over models that allow only for short-memory in the return 

volatility process. In the case of equity, FIGARCH and HYGARCH outperform 

GARCH in 73.08% and 86.54% of the cases, respectively. When asymmetric long-

memory models, are compared with the asymmetric short-memory EGARCH model, 

we can observe that FIEGARCH and FIAPARCH outperform EGARCH in 71.15% and 

57.69% of the cases, respectively. In the case of firm assets (   ), FIGARCH and 

HYGARCH outperform GARCH in 73.08% and 78.85% of the cases, respectively, 

whereas FIEGARCH and FIAPARCH outperform EGARCH in 59.62% and 51.92% of 

the cases, respectively. The results are very similar for      and       .  

The results of the Diebold and Mariano (1995) test also reveal the superiority of 

asymmetric over symmetric models. Namely, for equity, EGARCH outperforms 

GARCH in 84.62% of the cases, whereas FIEGARCH and FIAPARCH outperform 

FIGARCH in 88.46% and 73.08% of the cases, respectively. For our base case firm 

asset volatility EGARCH outperforms GARCH in 80.77% of the cases, whereas 

FIEGARCH and FIAPARCH outperform FIGARCH in 78.85% and 61.54%, 

respectively.  The      and        volatility confirm this result.  

Another interesting result that we can derive from Table 18 is that models that 

account only for long-memory in forecasting volatility (i.e. FIGARCH and 

HYGARCH) outperform the EGARCH model in only 25% of the cases on average. 

This finding holds for both equity and firm's asset volatility suggesting a higher relative 

importance of asymmetry over long-memory. Such a conclusion could also be reached 

by comparing FIEGARCH to EGARCH and FIGARCH, respectively.  Namely, when 
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EGARCH is extended to allow for long-memory, the performance of the model 

significantly improves in 71.15% (equity volatility) and 59.62% (firm's asset volatility) 

of the cases. In contrast, when FIGARCH is extended to account for asymmetry, the 

performance of the model improves even more, in 88.46% (equity volatility) and 

78.85% (firm's asset volatility) of the cases.  

Finally, we can also observe a very poor performance of the IGARCH model 

with regards to all other models. In the case of equity, the IGARCH model is 

outperformed by all other models in almost 100% the cases. For firm's asset volatility, 

the IGARCH model is outperformed by other models in more than 90% of the cases, on 

average (except for the FIAPARCH model which outperforms IGARCH in 88.46% of 

the cases). We shouldn't be surprised with the poor performance of the IGARCH model. 

As noted by Baillie et al. (1996), when a short-memory model is applied to a process 

that exhibits long-memory, the estimated parameters of the short-memory model quite 

often tend to point to infinite persistence, spuriously suggesting IGARCH model. The 

infinite memory assumption, however, may be quite unrealistic when applied to 

financial data. 

It could be argued, that Diebold and Mariano (1995) test might not be suitable 

for comparing nested models (Clark and McCracken, 2001). Although Giacomini and 

White (2006) justify the validity of the Diebold and Mariano (1995) critical values 

when rolling window approach is used to estimate parameters of the forecasting models, 

for robustness purposes we have also considered the Clark and West (2007) test for 

equal predictive ability in the case of nested models. Such a strategy has been pursued 

by Awartani and Corradi (2005). Even if we use two different testing approaches for 

nested (Clark and West, 2007) and non-nested (Diebold and Mariano, 1995) models our 

previously reported conclusions remain the same. For robustness purposes we have also 
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considered a Giacomini and White (2006) test that can handle both nested and non-

nested models under the same testing framework. Moreover, the Giacomini and White 

(2006) test is suitable for our forecasting methodology in which we use a rolling 

window of fixed size. The results of the Giacomini and White (2006) shown in Table 19 

are not materially different from those previously reported and are thus completely 

consistent with previous analysis.  

Table 19. Giacomini and White (2006) test 

Equity GARCH EGARCH IGARCH FIGARCH HYGARCH FIEGARCH 

EGARCH 82.69%           

IGARCH 0.00% 0.00%         

FIGARCH 71.15% 21.15% 94.23%       

HYGARCH 84.62% 23.08% 100.00% 51.92%     

FIEGARCH 94.23% 71.15% 98.08% 86.54% 86.54%   

FIAPARCH 94.23% 57.69% 98.08% 73.08% 73.08% 26.92% 

              

VSM GARCH EGARCH IGARCH FIGARCH HYGARCH FIEGARCH 

EGARCH 80.77%           

IGARCH 0.00% 3.85%         

FIGARCH 69.23% 26.92% 90.38%       

HYGARCH 78.85% 19.23% 92.31% 40.38%     

FIEGARCH 86.54% 59.62% 94.23% 76.92% 75.00%   

FIAPARCH 75.00% 48.08% 86.54% 59.62% 61.54% 15.38% 

              

VKMV GARCH EGARCH IGARCH FIGARCH HYGARCH FIEGARCH 

EGARCH 78.85%           

IGARCH 0.00% 5.77%         

FIGARCH 69.23% 25.00% 92.31%       

HYGARCH 73.08% 21.15% 92.31% 44.23%     

FIEGARCH 86.54% 59.62% 94.23% 76.92% 76.92%   

FIAPARCH 76.92% 48.08% 86.54% 57.69% 57.69% 21.15% 

             

VProxy GARCH EGARCH IGARCH FIGARCH HYGARCH FIEGARCH 

EGARCH 80.77%           

IGARCH 1.92% 1.92%         

FIGARCH 69.23% 26.92% 96.15%       

HYGARCH 78.85% 23.08% 96.15% 40.38%     

FIEGARCH 88.46% 59.62% 98.08% 76.92% 76.92%   

FIAPARCH 80.77% 50.00% 92.31% 55.77% 59.62% 23.08% 

The table reports the percentage of companies for which the row model outperforms the column model at 

the 5% significance level using the Giacomini and White (2006) test, under a MSE loss function. 
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8.2 The superior predictive ability (SPA) test 

 To establish the ranking of volatility models in terms of their forecasting power 

we apply the Hansen (2005) test for superior predictive ability (SPA). The SPA test is 

also used in Hansen and Lunde (2005), Lux et al. (2016), among others. The Hansen 

(2005) approach evaluates forecasts of volatility models on the basis of their expected 

loss, without necessity of making an assumption that any of the volatility models is 

correctly specified. In comparison to Diebold and Mariano (1995) approach, the SPA 

test, allows taking into consideration multiple forecasting models at once.  

 Formally, the Hansen (2005) test compares m alternative forecasts (       ) 

with a benchmark forecast (   ), in terms of its predictive ability, defined by 

expected loss. For each model,  , we use a sequence of obtained volatility forecasts 

(             ) that are compared to subsequently realized volatility (         ) 

using a loss function L. In our main analysis we use a mean squared error (MSE) as a 

benchmark loss function,  (       )  (       )
 
. Accordingly, for each model 

we define a sequence of losses as:       (       )        . Each set of 

competing model forecasts           is compared to those of the benchmark model 

     . The performance of competing models relative to the benchmark, for   

(      ) is defined as: 

                       (35) 

The null hypothesis is that the benchmark model is not inferior to any alternative 

forecast. Formally, the null hypothesis is specified as follows:     

                         
       

 (    )    (36) 

If we reject the null hypothesis there is at least one alternative forecasting model that 

outperforms the benchmark. The SPA test statistics is defined as follows: 
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   ⁄  ̅ 

 ̂ 
 

(37) 

Where,  ̅  is the average relative performance of model  ,  ̅     ∑     
 
   , and  ̂ 

  

is a consistent estimator of   
           (   ⁄  ̅ ). The p-values are obtained using 

stationary bootstrap procedure. Following Hansen and Lunde (2005), the number of 

bootstrap resamples is set to 10,000. 

 Low p-values indicate rejection of the null hypothesis, i.e. the benchmark model 

is outperformed by at least one of the other competing models. In contrast, the higher 

the p-value the better the forecasting performance of the benchmark model relative to 

all other models. We sequentially set each of the models as the benchmark model and 

test it against the remaining six models. The main results from the model comparisons 

are provided in Table 20. We report the mean p-value of the SPA test for a set of 52 

companies, the number of companies for which p-value (for the benchmark model) is 

higher than 5%, and the number of companies for which the model has the highest p-

value among all the models when set as a benchmark. Several conclusions could be 

made.   

 First, when GARCH model is set as a benchmark, p-values are very low for both 

equity and firm assets and are similar between the firms. More specifically, p-value is 

lower than the 5% cut-off for as much as 47 companies (90.38%) in the case of equity 

(i.e. we reject the null hypothesis), and 45 (86.54%) in the case of     (86.54% for 

    , 90.38% for       ). That is, the test indicates that for almost all the companies 

there is at least one alternative forecasting model with superior predictive ability relative 

to the GARCH. Similar results are obtained for IGARCH forecasts. In the case of equity 

IGARCH model is significantly outperformed by other models in all of the cases. In the 

case of firm assets the null hypothesis cannot be rejected at 5% only for 2 companies in 
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the case of     and      and for one company in the case of       . Importantly, 

neither GARCH nor IGARCH result in a highest p-value for any of the companies. This 

holds for both equity and firm assets.   

Table 20. SPA test 

Benchmark 
mean 

p-val 

N° comp N° comp 

p-val > 0.05 max p-val 

Equity 
     GARCH  0.0191 5 9.62% 0 0.00% 

EGARCH 0.1166 19 36.54% 3 5.77% 

IGARCH 0.0005 0 0.00% 0 0.00% 

FIGARCH 0.1223 14 26.92% 3 5.77% 

HYGARCH 0.0805 13 25.00% 0 0.00% 

FIEGARCH 0.6555 44 84.62% 30 57.69% 

FIAPARCH 0.3979 28 53.85% 16 30.77% 

VSM 
     GARCH  0.0311 7 13.46% 0 0.00% 

EGARCH 0.3007 29 55.77% 12 23.08% 

IGARCH 0.0033 2 3.85% 0 0.00% 

FIGARCH 0.1559 19 36.54% 5 9.62% 

HYGARCH 0.1538 20 38.46% 4 7.69% 

FIEGARCH 0.5908 41 78.85% 23 44.23% 
FIAPARCH 0.3121 28 53.85% 8 15.38% 

VKMV 
     GARCH  0.0322 7 13.46% 0 0.00% 

EGARCH 0.2992 29 55.77% 12 23.08% 

IGARCH 0.0037 2 3.85% 0 0.00% 

FIGARCH 0.1436 18 34.62% 4 7.69% 

HYGARCH 0.1364 19 36.54% 3 5.77% 

FIEGARCH 0.6031 42 80.77% 24 46.15% 

FIAPARCH 0.3127 30 57.69% 9 17.31% 

VProxy 
     GARCH  0.0246 5 9.62% 0 0.00% 

EGARCH 0.3076 30 57.69% 12 23.08% 

IGARCH 0.0027 1 1.92% 0 0.00% 

FIGARCH 0.1501 18 34.62% 3 5.77% 

HYGARCH 0.1142 17 32.69% 1 1.92% 

FIEGARCH 0.6132 42 80.77% 26 50.00% 

FIAPARCH 0.3175 27 51.92% 10 19.23% 

This table reports results for the Superior Predictive Ability (SPA) test under a MSE loss function where: 

mean (p-value) refers to the mean p-value of the SPA test for a set of 52 companies; N° comp (p-val > 

0.05) reports the number and percentage of companies for which p-values (for the benchmark column 

model) are greater than 5% level; N° comp (max p-val) reports the number and percentage of companies 

for which the model (in the first column) has the highest p-value among all the models when set as a 

benchmark. 
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 In contrast, when FIEGARCH model is set as a benchmark, for most of the 

companies in the sample there is no statistical evidence that any of the remaining 

forecasts are better than the FIEGARCH forecasts. Specifically, in the case of equity we 

fail to reject the null hypothesis in 84.62% of the cases. In the case of firm asset 

volatility, we fail to reject the null hypothesis in 78.85% (   ) and 80.77% (     and 

      ) of the cases. The alternative, FIAPARCH model, which also accounts for 

asymmetry and long-range persistence, cannot be outperformed by other models in 

more than 50% of the cases. Although the performance of the FIAPARCH model is also 

quite high, it is still lower when compared to the FIEGARCH model. This is consistent 

with previously reported results of the Diebold and Mariano (1995) test. 

 For a number of companies, we also fail to reject the null hypothesis in the case 

of only asymmetric (EGARCH) or only long-memory models (FIGARCH and 

HYGARCH). These models, on average, perform better than GARCH and IGARCH 

and worse than FIEGARCH. In the case of equity, p-values are higher than the 5% cut-

off for 36.54%, 26.92%, and 25.00% of the companies for the EGARCH, FIGARCH 

and HYGARCH, respectively. In the case of firm assets, these models seem to perform 

even slightly better. For the    , we are able to reject the null hypothesis for 55.77%, 

36.54%, 38.46% of the companies, for the EGARCH, FIGARCH and HYGARCH, 

respectively. Similar results could also be observed for      and       . 

 In line with previous findings, if we treat the model with the highest p-value as 

the best model for a company, we can clearly observe the underperformance of GARCH 

and IGARCH models and outperformance of the asymmetry and long-memory models 

(FIEGARCH and FIAPARCH). This difference in the forecasting power is particularly 

pronounced in the case of equity. While the symmetric GARCH and IGARCH were 

never selected as the best model, the asymmetry and long-memory models were 
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selected as the best models in 88.46% of the cases (FIEGARCH in 57.69% and 

FIAPARCH in 30.77%), that is, for the total of 46 companies. For the remaining 6 

companies, EGARCH (in 5.77% of the cases) and FIGARCH (in 5.77% of the cases), 

were selected as being the best. This leads to a conclusion that for forecasting purposes, 

in the case of equity it is important to account for the two features at the same time. In 

the case of firm assets, the ranking of the models seems to be slightly different. The best 

model is still the FIEGARCH model (44.23% for    , 46.15% for     , and 50.00% 

for       ), while together FIEGARCH and FIAPARCH models were selected for 

59.62% (   ), 63.46% (    ), and 69.23% (      ) of the companies. For the firm 

assets, EGARCH was selected as the best model in 23.08% of the cases (for    ,     , 

and       ) whereas only long-memory models (FIGARCH and HYGARCH) were 

selected for a smaller proportion of companies, 17.31% for    , 13.46% for     , and 

7.69% for       . 

 We perform several robustness checks. First, we use a mean absolute error 

(MAE) as a loss function,  (       )  |       |. The choice of the loss function, 

doesn't affect the forecast evaluation results. Second, we measure the out-of-sample 

performance of volatility models in terms of variances, rather than standard deviations, 

by MSE, MAE and QLIKE loss functions. Third, we also perform the robustness check 

by setting the cut-off level to 10%. In all the cases, the results remain virtually the same. 

These additional results are provided in the Appendix E, Table E.1 to Table E.4.  
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8.3 The credit spread forecasts 

 In this section we analyze economic implications of forecasted conditional 

volatilities from different models. We have shown that asymmetry and long-memory 

significantly enhance the performance of volatility forecasts. To illustrate the economic 

implications and ensure the robustness of our empirical findings, we utilize the firm's 

asset volatility forecasts to determine the theoretical credit spread forecasts. The 

theoretical credit spread is determined as the premium from issuing at par value a 

hypothetical 5-year maturity coupon bond. A detailed procedure on credit spread 

estimation from a structural model is given in Forte (2011).  

 We compare the forecasted credit spreads (    ) with the ex-post, market 

observable CDS spreads over the following month (    ) using absolute basis as a 

standard measure of pricing discrepancy. Absolute basis is defined as:         

|         | . In other words, we are using a mean absolute error as criteria to 

differentiate among models. The results, presented in Table 21, are completely in line 

with our previous findings. The lowest pricing discrepancy could be observed for the 

FIEGARCH model, followed by the FIAPARCH model. This holds independently on 

the way in which firm asset values are estimated. The two more sophisticated models 

outperform simpler models for 57.69% (   ), 65.38% (    ), and 67.31% (      ) of 

the companies.  

 We can also observe that pricing errors are lower for the Forte (2011) default 

barrier, than for the KMV or nominal value of debt. This is completely in line with the 

previous literature (Forte and Lovreta, 2012). It is important to note that for the purpose 

of comparison among GARCH-type models the default barrier is assumed to be 

constant. If default barrier is adjusted to the forecasted volatility level (and this is 

possible only in our base     case) the mean absolute basis would significantly 
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improve. It could be also argued, that while the level of theoretical credit spreads is 

substantially influenced by the level of default barrier (Forte and Lovreta, 2012) its 

pattern over time will not be materially affected. For that reason, to evaluate economic 

implications it becomes even more important to compare models on the basis of their 

ability to predict the direction of change in the CDS spread level. We calculate mean 

correct prediction (MCP) as a proportion of observations for which the change in the 

CDS level over the following month (i.e. increase or decrease) is correctly predicted. 

The MCP results show the highest percentage of correct sign predictions precisely for 

the FIEGARCH model (again followed by the FIAPARCH model). As expected, in this 

case we do not observe substantial differences in the percentage of correct sign 

predictions among    ,      and        firm asset values.  

Table 21. CDS forecasts 

  VSM VKMV  VProxy  

   
Num %   Num %   Num % 

abasis 
   

            

GARCH 68.37 6 11.54% 78.13 3 5.77% 145.05 6 11.54% 

EGARCH  67.57 11 21.15% 77.37 9 17.31% 138.72 5 9.62% 

IGARCH 79.33 1 1.92% 77.93 3 5.77% 161.78 0 0.00% 

FIGARCH 65.48 2 3.85% 76.87 1 1.92% 137.34 5 9.62% 

HYGARCH 64.04 2 3.85% 76.91 2 3.85% 137.05 1 1.92% 

FIEGARCH 61.74 17 32.69% 74.47 20 38.46% 130.28 18 34.62% 

FIAPARCH 62.75 13 25.00% 76.15 14 26.92% 133.68 17 32.69% 

MCP  
   

            

GARCH 59.2% 6 11.54% 58.3% 8 15.38% 59.6% 7 13.46% 

EGARCH  60.7% 5 9.62% 60.1% 6 11.54% 61.9% 8 15.38% 

IGARCH 58.0% 1 1.92% 57.5% 1 1.92% 58.4% 0 0.00% 

FIGARCH 59.6% 9 17.31% 58.8% 6 11.54% 59.3% 7 13.46% 

HYGARCH 59.7% 1 1.92% 58.8% 2 3.85% 59.9% 3 5.77% 

FIEGARCH 62.8% 18 34.62% 61.6% 18 34.62% 62.0% 15 28.85% 

FIAPARCH 61.7% 12 23.08% 61.2% 11 21.15% 61.9% 12 23.08% 

This table reports the cross-sectional average of abasis and MCP error measures between the forecasted 

and realized CDS spreads, as well as the number and percentage of firm’s with best forecasting results 

according to the selected criteria. The model with the highest proportion of firms is highlighted in bold. 
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9. Conclusions 

In this paper we analyze the relevance of asymmetry and long memory in 

modeling and forecasting equity and firm's asset volatility. The degree of asymmetry 

seems to be more pronounced for equity than for firm's asset volatility, whereas the 

degree of long-memory is in general slightly higher for equity than for firm's asset 

volatility. However, we find that this difference changes with financial leverage of the 

company. The difference in asymmetry is increasing with leverage. The difference in 

long-memory is decreasing with leverage, and once the asymmetry is allowed in the 

model in addition to long-memory, firm's asset volatility turns out to be more persistent 

than equity volatility for higher leverage groups. 

We provide a comparative ranking of different volatility models in terms of their 

ability to produce accurate forecasts of firm-level volatility. The results of the paper 

undoubtedly show that asymmetric models perform better than symmetric models, that 

long-range dependence models perform better than short-range dependence models and 

that more sophisticated models that simultaneously account for asymmetry and long-

memory work the best: they produce the best in-sample fit and the best out-of-sample 

forecasts. The main implication of these findings is that the two features should be 

accounted for in models for pricing financial instruments that require an estimate of the 

future volatility as an input.  

Finally, we answer the question of which volatility model is best suited to equity 

and asset returns. To compare different models we use a number of tests (both, 

statistical and economical) and loss functions. Different tests always lead to the same 

conclusion, the FIEGARCH model (followed by the FIAPARCH model) outperforms 

other models, and GARCH and IGARCH underperform and should not be used for 

volatility forecasting. 
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Further possible extensions of the conducted research might be directed to 

comparison of the out-of sample forecasts over different forecasting horizons. The main 

reason for such a comparison is that over the short-term forecasting horizons the 

difference between the different models should not be significant. However, as the 

forecasting horizon increases we should observe important differences.  
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Appendix A: Table A.1. List of companies 

No. Company MC in m € Sector Subsector 

1 AB Volvo 13,628.76 Industrial Engineering Commercial Vehicles & Trucks 

2 BMW AG  33,359.36 Automobiles & Parts Automobiles 

3 Michelin SCA 10,639.76 Automobiles & Parts Tires 

4 Continental AG 17,302.49 Automobiles & Parts Tires 

5 Daimler AG 51,141.31 Automobiles & Parts Automobiles 

6 Peugeot SA 8,266.57 Automobiles & Parts Automobiles 

7 Renault SA 17,540.90 Automobiles & Parts Automobiles 

8 Valeo SA 4,243.23 Automobiles & Parts Auto Parts 

9 Deutsche Lufthansa AG 6,176.73 Travel & Leisure Airlines 

10 Kingfisher PLC 8,147.19 General Retailers Home Improvement Retailers 

11 Koninklijke Philips NV 23,991.42 Health Care Equipment & Services Medical Equipment 

12 LVMH SE 50,950.98 Personal Goods Clothing & Accessories 

13 Marks & Spencer Group PLC 9,150.33 General Retailers Broadline Retailers 

14 Kering SA 14,755.60 General Retailers Apparel Retailers 

15 Sodexo SA 8,543.53 Travel & Leisure Restaurants & Bars 

16 BAT PLC 59,806.73 Tobacco Tobacco 

17 Carrefour SA 23,186.11 Food & Drug Retailers Food Retailers & Wholesalers 

18 Casino Guichard SA 6,979.49 Food & Drug Retailers Food Retailers & Wholesalers 

19 Diageo PLC 43,243.94 Beverages Distillers & Vintners 

20 Danone SA 29,692.63 Food Producers Food Products 

21 Henkel & Co KGaA AG 11,725.60 Household Goods & Home Construction Nondurable Household Products 

22 Imperial Tobacco Group PLC 25,595.60 Tobacco Tobacco 

23 J Sainsbury PLC 7,775.60 Food & Drug Retailers Food Retailers & Wholesalers 

24 Tesco PLC 33,715.80 Food & Drug Retailers Food Retailers & Wholesalers 

25 Unilever NV 42,970.03 Food Producers Food Products 

26 BP PLC 125,691.29 Oil & Gas Producers  Integrated Oil & Gas 

27 E.ON SE 44,600.90 Gas, Water & Multiutilities Multiutilities 

28 EDP Energias de Portugal SA 9,757.37 Electricity Alternative Electricity 

29 Iberdrola SA 30,735.58 Electricity Conventional Electricity 

30 Repsol SA 23,708.21 Oil & Gas Producers Integrated Oil & Gas 

31 RWE AG 24,318.96 Gas, Water & Multiutilities Multiutilities 

32 Akzo Nobel NV 11,723.31 Chemicals Specialty Chemicals 

33 Anglo American PLC 33,491.23 Mining General Mining 

34 BAE Systems PLC 16,096.54 Aerospace & Defense Defense 

35 Bayer AG 49,976.78 Pharmaceuticals & Biotechnology Pharmaceuticals 

36 Saint Gobain SA 19,022.46 Construction & Materials Building Materials & Fixtures 

37 Investor AB 8,367.33 Financial Services Specialty Finance 

38 Linde AG 17,498.17 Chemicals Commodity Chemicals 

39 Rolls-Royce Holdings PLC 14,296.92 Aerospace & Defense Aerospace 

40 Siemens AG 69,649.35 General Industrials Diversified Industrials 

41 Stora Enso OYJ 5,040.96 Forestry & Paper Paper 

42 UPM Kymmene OYJ 7,002.66 Forestry & Paper Paper 

43 BT Group PLC 28,121.99 Fixed Line Telecommunications Fixed Line Telecommunications 

44 Deutsche Telekom AG 53,768.38 Mobile Telecommunications Mobile Telecommunications 

45 Orange SA 42,617.39 Fixed Line Telecommunications Fixed Line Telecommunications 

46 Hellenic Telecom. Org. SA 5,530.32 Fixed Line Telecommunications Fixed Line Telecommunications 

47 Koninklijke KPN NV 15,613.93 Fixed Line Telecommunications Fixed Line Telecommunications 

48 Pearson PLC 9,484.90 Media Publishing 

49 STMicroelectronics NV 7,999.00 Technology Hardware & Equipment Semiconductors 

50 Telefonica SA 65,947.77 Fixed Line Telecommunications Fixed Line Telecommunications 

51 Wolters Kluwer NV 5,740.91 Media Publishing 

52 WPP PLC 14,099.36 Media Media Agencies 
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Appendix B: Table B.1. Descriptive statistics of equity returns 

 

  

Company Mean St. Dev. Skew Kurt Q(10) Q
2
(10) ARCH JB ADF

1 2.67E-04 0.0231 -0.0999 7.9285 21.7568 ** 1,141.30 *** 140.0618 *** 3,437.59 *** -56.5347 ***

2 2.49E-04 0.0192 0.0356 8.1139 21.7525 ** 955.03 *** 134.6904 *** 3,695.82 *** -55.4699 ***

3 3.81E-04 0.0211 -0.0357 7.1421 25.7646 *** 1,003.53 *** 63.7277 *** 2,424.82 *** -56.9293 ***

4 6.49E-04 0.0262 -0.2864 19.8161 13.7850 320.98 *** 80.0692 *** 40,000.77 *** -56.2564 ***

5 2.05E-04 0.0207 0.2014 10.2145 37.2552 *** 1,448.24 *** 117.9724 *** 7,377.09 *** -55.1424 ***

6 7.22E-05 0.0272 0.9121 17.0218 23.8412 *** 200.89 *** 8.9281 *** 28,249.71 *** -54.8904 ***

7 1.39E-04 0.0252 -0.2197 7.8284 28.8246 *** 1,812.68 *** 204.1410 *** 3,321.26 *** -53.9043 ***

8 4.75E-04 0.0232 0.0488 6.3437 30.5485 *** 1,095.46 *** 102.6709 *** 1,581.07 *** -53.8902 ***

9 3.92E-05 0.0190 -0.1239 7.0539 15.3126 169.79 *** 24.4356 *** 2,330.71 *** -56.8125 ***

10 -1.58E-07 0.0199 -0.1585 7.1193 19.8099 ** 1,284.41 *** 223.2909 *** 2,411.75 *** -58.3415 ***

11 -3.61E-05 0.0182 -0.1326 7.1875 10.1763 687.85 *** 23.5719 *** 2,487.55 *** -58.5731 ***

12 3.48E-04 0.0175 0.1120 8.5080 22.2611 ** 694.30 *** 23.9564 *** 4,293.65 *** -59.8993 ***

13 -9.86E-05 0.0208 -2.2619 39.8967 17.9156 * 22.81 ** 9.5736 *** 195,241.48 *** -55.6755 ***

14 3.11E-04 0.0193 0.2825 9.8791 18.6801 ** 1,701.84 *** 178.7026 *** 6,731.27 *** -56.4021 ***

15 4.38E-04 0.0153 -0.1886 8.6893 36.6429 *** 579.89 *** 74.3105 *** 4,593.43 *** -44.4088 ***

16 4.40E-04 0.0141 0.0197 10.4272 36.7546 *** 2,169.94 *** 382.2024 *** 7,794.31 *** -37.6918 ***

17 -1.73E-04 0.0181 -0.1665 7.0357 14.9490 752.32 *** 91.9448 *** 2,316.92 *** -58.3634 ***

18 -1.04E-04 0.0168 -0.1698 9.4027 23.7566 *** 908.75 *** 140.0565 *** 5,808.49 *** -57.4228 ***

19 1.88E-04 0.0131 0.1146 7.7586 40.1896 *** 1,376.10 *** 172.1253 *** 3,206.87 *** -37.5658 ***

20 2.37E-04 0.0144 0.3734 11.7857 44.6968 *** 389.30 *** 35.6244 *** 10,984.78 *** -38.0366 ***

21 4.84E-04 0.0146 0.0875 6.5351 33.4059 *** 288.10 *** 30.7069 *** 1,770.08 *** -43.6620 ***

22 3.69E-04 0.0155 1.6677 36.8778 27.6291 *** 48.42 *** 24.4711 *** 163,732.72 *** -61.4261 ***

23 -8.85E-05 0.0184 -0.9003 20.3363 18.3845 ** 111.10 *** 8.2754 *** 42,922.67 *** -59.3233 ***

24 -8.90E-05 0.0172 -0.2479 12.3608 26.7433 *** 238.76 *** 40.3564 *** 12,415.28 *** -58.1712 ***

25 2.41E-04 0.0133 -0.0732 7.4975 50.2421 *** 1,486.68 *** 256.0541 *** 2,860.95 *** -45.4301 ***

26 -5.95E-05 0.0171 -0.1441 9.1492 24.3201 *** 2,458.37 *** 236.5360 *** 5,354.29 *** -58.7491 ***

27 -2.91E-04 0.0184 -0.3468 11.2583 28.5130 *** 1,559.36 *** 190.1788 *** 9,704.00 *** -56.1239 ***

28 1.54E-04 0.0167 -0.0122 21.6745 18.7325 ** 169.32 *** 15.9992 *** 49,273.47 *** -57.3643 ***

29 3.04E-04 0.0179 0.9053 22.7100 34.2484 *** 449.61 *** 81.8100 *** 55,352.83 *** -43.7141 ***

30 1.83E-05 0.0190 -0.2632 9.0419 29.9110 *** 1,111.81 *** 67.3489 *** 5,196.89 *** -55.3603 ***

31 -2.62E-04 0.0192 -0.0585 9.7482 23.3419 *** 781.14 *** 125.7870 *** 6,436.09 *** -56.1681 ***

32 1.58E-04 0.0180 0.2223 11.8739 19.7737 ** 249.53 *** 14.8357 *** 11,154.10 *** -57.0330 ***

33 -8.35E-05 0.0305 -0.0845 9.5995 20.1308 ** 1,927.92 *** 90.4418 *** 6,157.84 *** -57.7958 ***

34 3.25E-04 0.0171 -0.2160 7.0152 30.1984 *** 1,009.44 *** 153.4073 *** 2,304.23 *** -62.7461 ***

35 4.61E-04 0.0170 -0.1225 6.5859 31.1704 *** 1,077.31 *** 136.9416 *** 1,825.28 *** -61.0928 ***

36 1.77E-04 0.0228 0.5436 16.1843 40.4260 *** 589.84 *** 40.9887 *** 24,727.11 *** -59.0023 ***

37 4.53E-04 0.0176 -0.0009 7.3777 21.6927 ** 1,179.87 *** 85.3833 *** 2,707.81 *** -58.8038 ***

38 5.14E-04 0.0162 0.5552 18.4341 24.2463 *** 200.41 *** 19.9214 *** 33,831.46 *** -60.5036 ***

39 3.64E-04 0.0203 -0.2599 12.4862 29.6176 *** 186.07 *** 19.9056 *** 12,752.73 *** -58.4528 ***

40 1.63E-04 0.0179 -0.3318 15.1151 15.0158 1,351.64 *** 55.9007 *** 20,800.48 *** -57.7575 ***

41 -4.56E-05 0.0220 0.0914 6.4046 10.0465 864.42 *** 69.1670 *** 1,642.45 *** -56.8011 ***

42 1.34E-04 0.0207 -0.0698 7.0351 15.7693 427.27 *** 34.2239 *** 2,303.26 *** -56.7906 ***

43 1.82E-04 0.0193 -0.3994 19.0305 30.3704 *** 174.26 *** 14.3927 *** 36,398.76 *** -44.6101 ***

44 6.54E-05 0.0150 -0.0416 11.7451 31.5405 *** 824.78 *** 226.9040 *** 10,806.60 *** -58.3653 ***

45 -1.03E-04 0.0161 0.0610 6.6070 28.6642 *** 176.75 *** 43.6189 *** 1,840.38 *** -58.2615 ***

46 -5.54E-05 0.0269 -0.1071 8.4613 41.1009 *** 501.25 *** 145.4225 *** 4,220.64 *** -55.8631 ***

47 -7.02E-05 0.0201 6.7542 207.6993 13.9297 1.62 1.0638 5,946,159.09 *** -59.4973 ***

48 3.16E-05 0.0162 -0.1279 13.0011 17.9007 * 77.34 *** 22.5536 *** 14,141.60 *** -59.2890 ***

49 -2.00E-04 0.0228 -0.1174 5.9280 28.6792 *** 173.95 *** 19.0097 *** 1,219.14 *** -56.2777 ***

50 -7.70E-05 0.0155 -0.4810 12.0240 26.1673 *** 405.30 *** 61.0037 *** 11,636.61 *** -57.9940 ***

51 3.20E-04 0.0146 -0.1894 6.1798 7.1731 520.59 *** 54.4908 *** 1,448.90 *** -58.8560 ***

52 3.19E-04 0.0176 -0.2314 7.2501 28.1285 *** 1,649.39 *** 178.0404 *** 2,582.49 *** -59.8793 ***
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Appendix B: Table B.2. Descriptive statistics of firm asset returns (   ) 

 

  

Company Mean St. Dev. Skew Kurt Q(10) Q
2
(10) ARCH JB ADF

1 2.31E-04 0.0091 -0.1009 5.4486 20.7476 ** 340.83 *** 34.9443 *** 852.87 *** -57.7573 ***

2 3.12E-04 0.0049 -0.0959 5.0848 18.4420 ** 293.70 *** 58.7884 *** 619.31 *** -55.3974 ***

3 2.14E-04 0.0095 -0.0474 5.7311 23.5349 *** 533.45 *** 31.3014 *** 1,055.12 *** -56.9773 ***

4 5.11E-04 0.0102 -0.1289 6.8254 14.6032 177.62 *** 98.2716 *** 2,076.99 *** -56.9611 ***

5 1.21E-04 0.0058 -0.1560 6.0806 33.2649 *** 770.81 *** 42.6170 *** 1,354.61 *** -54.8927 ***

6 -6.39E-05 0.0036 -0.4784 18.0463 18.2499 * 233.60 *** 94.2973 *** 32,116.37 *** -56.3422 ***

7 1.58E-04 0.0057 -0.2069 5.7639 22.0824 ** 442.43 *** 37.0026 *** 1,103.51 *** -54.6518 ***

8 3.32E-04 0.0081 0.1458 6.5441 30.7043 *** 402.81 *** 88.5482 *** 1,786.75 *** -55.0327 ***

9 1.79E-04 0.0048 -0.1488 8.4998 10.6000 163.35 *** 27.7669 *** 4,286.19 *** -57.0672 ***

10 2.19E-06 0.0117 -0.3409 7.4579 15.6771 316.89 *** 198.5092 *** 2,873.53 *** -57.6312 ***

11 -2.84E-06 0.0104 -0.1035 5.5988 9.9385 326.15 *** 9.7694 *** 960.31 *** -59.1101 ***

12 3.41E-04 0.0118 0.0600 6.3940 20.5344 ** 441.88 *** 16.4215 *** 1,629.60 *** -59.8445 ***

13 -5.30E-05 0.0125 -2.1710 36.8125 14.3365 14.79 8.6165 *** 164,200.25 *** -55.9696 ***

14 1.43E-04 0.0089 0.1802 7.0389 7.0543 251.27 *** 28.9061 *** 2,323.25 *** -57.8933 ***

15 3.26E-04 0.0074 -0.2120 8.4641 29.7282 *** 371.82 *** 52.1617 *** 4,243.82 *** -43.8844 ***

16 3.72E-04 0.0104 -0.0360 7.9656 27.3968 *** 1,881.15 *** 334.6426 *** 3,484.58 *** -37.0628 ***

17 -3.26E-05 0.0064 -0.1976 6.7118 17.8865 * 517.58 *** 98.4841 *** 1,968.76 *** -58.4055 ***

18 1.71E-04 0.0043 -0.0203 9.3124 10.8449 575.99 *** 89.1504 *** 5,630.23 *** -56.9025 ***

19 1.80E-04 0.0097 0.0598 6.6623 31.9993 *** 1,069.58 *** 133.7823 *** 1,897.10 *** -37.1897 ***

20 3.10E-04 0.0091 0.2748 9.0950 32.1381 *** 383.20 *** 49.5387 *** 5,291.62 *** -37.3958 ***

21 3.34E-04 0.0077 0.0308 6.2616 26.5078 *** 112.30 *** 15.1676 *** 1,503.58 *** -60.6896 ***

22 3.84E-04 0.0096 1.6925 33.0407 22.5345 ** 26.10 *** 14.0175 *** 129,126.68 *** -60.3304 ***

23 1.15E-05 0.0100 -1.3322 24.0065 23.5463 *** 107.48 *** 6.2569 ** 63,351.41 ** -59.2921 ***

24 1.26E-04 0.0101 -0.2070 9.8299 35.1732 *** 645.95 *** 96.7965 *** 6,615.15 *** -37.2686 ***

25 1.95E-04 0.0078 -0.0857 7.2028 40.9730 *** 1,382.38 *** 231.7154 *** 2,499.81 *** -44.9189 ***

26 6.33E-05 0.0096 -0.1322 7.7563 21.7755 ** 2,217.13 *** 200.4697 *** 3,206.26 *** -59.3102 ***

27 -9.21E-05 0.0060 -0.1732 15.6639 60.6463 *** 1,977.89 *** 263.3975 *** 22,676.68 *** -42.6683 ***

28 2.44E-04 0.0046 0.9066 23.5244 11.8638 111.11 *** 21.6396 *** 59,983.79 *** -57.3637 ***

29 3.76E-04 0.0075 2.7454 58.7545 16.6066 * 76.57 *** 15.4649 *** 443,473.19 *** -58.0506 ***

30 9.87E-05 0.0081 -0.4491 9.7999 17.1259 * 1,055.77 *** 45.2829 *** 6,647.12 *** -55.7758 ***

31 -5.62E-05 0.0043 -0.0131 13.9617 39.9630 *** 1,122.74 *** 260.0163 *** 16,977.67 *** -54.8555 ***

32 1.00E-04 0.0097 0.1199 11.9238 17.0386 * 101.62 *** 5.7947 ** 11,259.68 ** -57.0588 ***

33 1.73E-05 0.0175 -0.1277 8.1650 20.6106 ** 1,198.24 *** 57.1769 *** 3,778.53 *** -58.1500 ***

34 2.19E-04 0.0090 -0.3346 7.5083 21.0522 ** 652.98 *** 107.7564 *** 2,935.03 *** -61.4143 ***

35 3.46E-04 0.0094 -0.1694 5.7941 26.3956 *** 695.18 *** 82.3402 *** 1,119.31 *** -61.0972 ***

36 1.32E-04 0.0086 0.1530 7.5110 27.8347 *** 426.01 *** 50.9130 *** 2,888.44 *** -59.2591 ***

37 3.73E-04 0.0121 0.0107 7.3889 23.2101 *** 1,327.98 *** 97.9087 *** 2,721.70 *** -58.7868 ***

38 4.13E-04 0.0077 0.0654 14.7817 14.0078 108.53 *** 12.2360 *** 19,614.92 *** -59.5293 ***

39 3.90E-04 0.0105 -0.2974 8.4141 25.4423 *** 60.74 *** 8.5533 *** 4,191.66 *** -58.6051 ***

40 1.82E-04 0.0088 -0.3762 12.2581 9.5896 574.03 *** 44.5423 *** 12,190.52 *** -57.8876 ***

41 -5.00E-05 0.0081 -0.0351 6.1268 5.7124 624.86 *** 52.0968 *** 1,382.07 *** -57.3420 ***

42 4.68E-05 0.0094 -0.2016 8.0070 12.2993 98.02 *** 7.7960 *** 3,565.16 *** -57.0168 ***

43 1.20E-04 0.0096 -0.1775 26.6939 23.9645 *** 81.70 *** 10.6933 *** 79,339.09 *** -58.4099 ***

44 1.15E-04 0.0058 -0.0086 11.5180 35.1564 *** 910.52 *** 235.4506 *** 10,251.75 *** -57.4915 ***

45 -3.22E-05 0.0064 0.0413 8.0381 33.2394 *** 300.69 *** 87.9558 *** 3,587.34 *** -58.1401 ***

46 -4.48E-05 0.0100 0.0458 8.0584 51.8096 *** 281.95 *** 147.1819 *** 3,616.45 *** -33.0634 ***

47 -5.29E-05 0.0079 1.3461 32.7388 16.7282 * 8.51 5.1267 ** 125,981.79 *** -59.3136 ***

48 7.44E-05 0.0106 -0.2921 9.6932 21.3141 ** 66.03 *** 17.8643 *** 6,378.01 *** -58.8660 ***

49 -1.67E-04 0.0152 -0.1462 5.3701 24.3403 *** 67.31 *** 9.0284 *** 805.80 *** -56.5864 ***

50 1.27E-04 0.0067 -0.2430 9.9573 29.8554 *** 809.11 *** 141.4675 *** 6,872.51 *** -57.9843 ***

51 2.52E-04 0.0075 -0.2447 6.1663 5.2759 292.68 *** 36.3215 *** 1,450.38 *** -58.0543 ***

52 3.24E-04 0.0081 -0.3016 6.9980 20.4408 ** 253.56 *** 108.8279 *** 2,309.83 *** -59.0562 ***
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Appendix B: Table B.3. Descriptive statistics of firm asset returns (    ) 

  

Company Mean St. Dev. Skew Kurt Q(10) Q
2
(10) ARCH JB ADF

1 2.20E-04 0.0092 -0.0976 5.4857 22.3033 ** 390.08 *** 36.2367 *** 878.39 *** -57.3714 ***

2 3.23E-04 0.0049 -0.0922 5.1331 18.5744 ** 300.04 *** 60.6941 *** 647.71 *** -55.4171 ***

3 2.09E-04 0.0093 -0.0442 5.6812 23.5974 *** 513.49 *** 29.6886 *** 1,016.85 *** -56.9591 ***

4 5.14E-04 0.0101 -0.1272 6.9206 15.2777 181.91 *** 103.8106 *** 2,180.97 *** -57.0253 ***

5 1.23E-04 0.0058 -0.1549 6.1023 33.5329 *** 772.34 *** 43.5005 *** 1,373.38 *** -54.8610 ***

6 -5.31E-05 0.0035 -0.3837 17.2694 18.5307 ** 224.06 *** 83.9292 *** 28,852.38 *** -56.2381 ***

7 1.63E-04 0.0056 -0.2079 5.7484 22.3415 ** 442.66 *** 37.5812 *** 1,091.69 *** -54.6309 ***

8 3.42E-04 0.0080 0.1354 6.5166 30.9775 *** 407.66 *** 90.3162 *** 1,757.65 *** -55.0049 ***

9 1.63E-04 0.0047 -0.1558 8.4397 10.5306 158.37 *** 27.1987 *** 4,194.52 *** -57.0362 ***

10 -5.42E-05 0.0117 -0.3435 7.6253 15.6840 354.02 *** 203.9494 *** 3,089.41 *** -57.5134 ***

11 -6.42E-06 0.0103 -0.1055 5.6818 9.8507 348.83 *** 10.4730 *** 1,022.44 *** -59.0648 ***

12 3.30E-04 0.0120 0.0693 6.6859 20.7310 ** 477.22 *** 17.4793 *** 1,922.32 *** -59.8654 ***

13 -2.71E-05 0.0127 -2.1922 37.7348 15.5058 16.58 * 10.0900 *** 173,185.34 *** -55.8144 ***

14 1.21E-04 0.0089 0.1892 7.0893 7.1443 279.88 *** 32.0452 *** 2,382.96 *** -57.8137 ***

15 3.01E-04 0.0073 -0.2088 8.4620 29.8297 *** 388.59 *** 54.1561 *** 4,239.90 *** -43.8822 ***

16 3.54E-04 0.0104 -0.0363 8.1093 27.6396 *** 1,863.81 *** 341.5934 *** 3,689.15 *** -37.0587 ***

17 -3.72E-05 0.0063 -0.1941 6.6929 17.7717 * 517.25 *** 97.8947 *** 1,948.11 *** -58.3809 ***

18 1.67E-04 0.0042 -0.0044 9.3396 10.7427 525.86 *** 83.4567 *** 5,678.62 *** -56.8718 ***

19 1.58E-04 0.0098 0.0635 6.7577 30.1653 *** 1,099.70 *** 138.3587 *** 1,997.39 *** -37.1078 ***

20 2.90E-04 0.0092 0.2895 9.3930 33.4894 *** 389.91 *** 48.0007 *** 5,822.09 *** -37.4842 ***

21 3.68E-04 0.0076 0.0154 6.3343 26.6506 *** 107.87 *** 14.2356 *** 1,570.92 *** -60.8014 ***

22 3.61E-04 0.0096 1.5210 29.8772 20.7427 ** 29.70 *** 14.4337 *** 103,373.98 *** -59.9658 ***

23 1.17E-05 0.0100 -1.3040 23.1670 21.0964 ** 104.02 *** 6.7442 *** 58,425.50 *** -58.9980 ***

24 1.21E-04 0.0100 -0.2338 9.7766 34.0671 *** 627.44 *** 98.2449 *** 6,519.41 *** -37.0804 ***

25 1.63E-04 0.0077 -0.0728 7.1791 40.4247 *** 1,384.87 *** 232.5857 *** 2,470.65 *** -44.9043 ***

26 6.67E-05 0.0097 -0.1576 7.7215 21.1626 ** 2,097.56 *** 192.7845 *** 3,163.78 *** -59.0156 ***

27 -9.82E-05 0.0059 -0.1863 15.3460 57.4347 *** 1,906.70 *** 257.9067 *** 21,555.92 *** -42.5631 ***

28 2.55E-04 0.0046 0.8262 22.7060 12.9592 128.44 *** 24.4344 *** 55,253.24 *** -57.4568 ***

29 3.65E-04 0.0074 2.6280 55.9673 16.6868 * 79.53 *** 16.2018 *** 400,302.26 *** -57.9751 ***

30 8.49E-05 0.0081 -0.4416 9.8853 17.5269 * 1,073.88 *** 46.0623 *** 6,808.53 *** -55.7870 ***

31 -8.55E-05 0.0043 -0.0212 13.6464 39.4335 *** 1,121.21 *** 257.7906 *** 16,015.16 *** -54.8713 ***

32 1.01E-04 0.0095 0.1244 11.6863 16.6844 * 96.26 *** 5.7742 ** 10,669.44 ** -57.0827 ***

33 1.91E-05 0.0174 -0.1370 8.0876 20.9281 ** 1,198.55 *** 55.5771 *** 3,667.72 *** -58.0449 ***

34 2.13E-04 0.0090 -0.3650 7.7984 19.5550 ** 594.77 *** 107.0135 *** 3,328.44 *** -61.1306 ***

35 3.36E-04 0.0093 -0.1664 5.7639 25.9324 *** 678.23 *** 80.3729 *** 1,094.97 *** -61.0453 ***

36 1.31E-04 0.0085 0.1570 7.6493 28.1996 *** 426.75 *** 51.0007 *** 3,068.05 *** -59.2375 ***

37 3.56E-04 0.0121 0.0095 7.3595 23.4869 *** 1,317.77 *** 91.7631 *** 2,685.39 *** -58.5263 ***

38 3.95E-04 0.0076 0.0865 15.3695 13.8976 93.51 *** 10.9136 *** 21,622.34 *** -59.5309 ***

39 3.77E-04 0.0105 -0.3062 8.4925 25.7690 *** 69.00 *** 9.3876 *** 4,315.44 *** -58.5395 ***

40 1.79E-04 0.0087 -0.3647 12.0401 9.7648 589.36 *** 43.6330 *** 11,621.89 *** -57.8573 ***

41 -6.84E-05 0.0081 -0.0249 6.0736 5.9057 634.54 *** 52.3141 *** 1,335.15 *** -57.2612 ***

42 4.96E-05 0.0096 -0.1841 7.7964 12.2135 112.37 *** 9.0709 *** 3,269.67 *** -56.9972 ***

43 7.62E-05 0.0096 -0.2776 27.7778 23.1202 ** 88.92 *** 12.1077 *** 86,788.17 *** -58.1332 ***

44 7.10E-05 0.0057 -0.0105 11.3800 35.5880 *** 887.90 *** 231.9444 *** 9,922.09 *** -57.4636 ***

45 -6.68E-05 0.0062 0.0422 7.8552 31.7357 *** 279.29 *** 82.4921 *** 3,331.64 *** -58.0908 ***

46 -3.15E-05 0.0101 0.0226 7.5210 49.4593 *** 247.06 *** 136.2098 *** 2,888.18 *** -32.8693 ***

47 -7.15E-05 0.0078 1.4181 34.2983 17.2225 * 8.39 5.0859 ** 139,543.81 *** -59.3730 ***

48 5.83E-05 0.0107 -0.2860 10.0785 21.8021 ** 68.03 *** 18.4187 *** 7,125.73 *** -58.7699 ***

49 -1.75E-04 0.0151 -0.1455 5.3795 24.2532 *** 66.05 *** 9.1988 *** 811.97 *** -56.5493 ***

50 1.17E-04 0.0066 -0.2503 9.7310 27.6544 *** 726.45 *** 133.7246 *** 6,436.80 *** -57.9011 ***

51 2.36E-04 0.0074 -0.2375 6.1440 5.3607 294.01 *** 35.9923 *** 1,428.54 *** -57.9970 ***

52 3.26E-04 0.0081 -0.3452 7.3339 21.5852 ** 279.01 *** 111.5304 *** 2,721.20 *** -58.7879 ***
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Appendix B: Table B.4. Descriptive statistics of firm asset returns (      ) 

 

  

Company Mean St. Dev. Skew Kurt Q(10) Q
2
(10) ARCH JB ADF

1 2.04E-04 0.0090 -0.1232 5.3925 21.3879 ** 367.76 *** 34.1085 *** 817.35 *** -57.5248 ***

2 3.06E-04 0.0048 -0.1335 5.4963 15.8633 376.29 *** 67.4178 *** 890.52 *** -56.0615 ***

3 1.91E-04 0.0094 -0.0561 5.6700 22.7169 ** 510.95 *** 28.7926 *** 1,009.02 *** -57.1321 ***

4 5.08E-04 0.0101 -0.1614 6.4365 14.2717 190.35 *** 98.4152 *** 1,683.34 *** -57.0667 ***

5 1.04E-04 0.0057 -0.2119 6.0125 29.3300 *** 745.22 *** 32.5262 *** 1,307.62 *** -55.2173 ***

6 -7.50E-05 0.0035 -0.6618 19.5024 17.5720 * 255.59 *** 112.8063 *** 38,725.47 *** -56.4250 ***

7 1.44E-04 0.0056 -0.2203 5.8128 20.4432 ** 426.04 *** 34.7576 *** 1,145.28 *** -54.7559 ***

8 3.26E-04 0.0080 0.1188 6.8439 30.8864 *** 456.76 *** 99.2874 *** 2,095.67 *** -55.1530 ***

9 1.54E-04 0.0047 -0.2081 8.1381 11.3425 163.61 *** 24.3562 *** 3,754.65 *** -57.3093 ***

10 -5.56E-05 0.0117 -0.3539 7.6751 15.7059 343.44 *** 206.1349 *** 3,158.86 *** -57.5774 ***

11 -1.44E-05 0.0104 -0.1084 5.5146 9.6635 300.74 *** 9.0169 *** 900.08 *** -59.1157 ***

12 3.30E-04 0.0119 0.0593 6.5999 20.3703 ** 457.39 *** 18.3770 *** 1,833.04 *** -59.8128 ***

13 -4.41E-05 0.0127 -2.0437 34.3865 14.7682 20.03 ** 12.7215 *** 141,548.63 *** -55.9954 ***

14 1.20E-04 0.0090 0.1682 7.1453 7.2816 271.44 *** 30.1140 *** 2,443.85 *** -57.9369 ***

15 3.05E-04 0.0074 -0.2126 8.2666 29.1362 *** 360.03 *** 49.8130 *** 3,944.51 *** -43.8493 ***

16 3.43E-04 0.0105 -0.0465 7.9072 27.5193 *** 1,806.25 *** 318.8494 *** 3,403.62 *** -37.0362 ***

17 -4.55E-05 0.0064 -0.1979 6.5022 18.0854 * 476.13 *** 88.6619 *** 1,755.10 *** -58.6161 ***

18 1.57E-04 0.0043 -0.0329 8.8387 12.6293 589.43 *** 81.6980 *** 4,817.23 *** -57.0295 ***

19 1.62E-04 0.0100 0.0591 6.7291 30.6135 *** 1,094.72 *** 133.7934 *** 1,966.77 *** -37.1200 ***

20 2.84E-04 0.0092 0.2893 9.3998 35.3534 *** 357.59 *** 45.1444 *** 5,834.27 *** -37.5761 ***

21 3.70E-04 0.0077 0.0052 6.3003 26.9627 *** 119.25 *** 14.8450 *** 1,538.96 *** -60.8107 ***

22 3.56E-04 0.0096 1.4785 29.1867 21.7198 ** 29.97 *** 14.1795 *** 98,125.65 *** -60.1850 ***

23 4.98E-06 0.0099 -1.2744 22.3878 21.8764 ** 111.56 *** 7.0829 *** 54,027.74 *** -59.1567 ***

24 1.18E-04 0.0100 -0.2497 9.8308 34.5870 *** 607.40 *** 94.9117 *** 6,627.93 *** -37.1278 ***

25 1.66E-04 0.0078 -0.0727 7.0130 42.9699 *** 1,299.52 *** 212.0329 *** 2,278.37 *** -45.0492 ***

26 5.75E-05 0.0095 -0.1842 7.5631 19.7349 ** 2,017.97 *** 178.9664 *** 2,961.09 *** -59.1289 ***

27 -1.20E-04 0.0058 -0.2071 15.1613 50.6806 *** 1,941.17 *** 237.3822 *** 20,921.02 *** -56.4562 ***

28 2.44E-04 0.0047 0.8089 23.7736 12.4231 128.37 *** 18.1018 *** 61,343.44 *** -57.1830 ***

29 3.60E-04 0.0074 2.5555 54.1350 15.4379 78.34 *** 14.9036 *** 373,138.14 *** -58.0909 ***

30 7.97E-05 0.0082 -0.4277 9.3572 16.2825 * 965.58 *** 41.2740 *** 5,813.54 *** -55.8095 ***

31 -1.02E-04 0.0042 -0.0719 13.9116 34.7414 *** 1,178.66 *** 231.8597 *** 16,825.63 *** -55.2151 ***

32 8.59E-05 0.0097 0.1000 11.2146 16.4059 * 109.61 *** 6.8118 *** 9,539.93 *** -57.2257 ***

33 1.05E-05 0.0169 -0.1389 8.2765 21.6586 ** 1,164.09 *** 56.4054 *** 3,944.69 *** -58.1298 ***

34 2.14E-04 0.0090 -0.3773 7.9616 20.9049 ** 575.99 *** 108.3400 *** 3,558.68 *** -61.2318 ***

35 3.32E-04 0.0095 -0.1777 5.6573 25.9496 *** 660.17 *** 78.0830 *** 1,015.56 *** -61.2305 ***

36 1.17E-04 0.0086 0.1043 7.2984 27.4110 *** 424.53 *** 53.2725 *** 2,616.70 *** -59.1693 ***

37 3.45E-04 0.0123 0.0042 7.3206 23.2333 *** 1,298.68 *** 88.1498 *** 2,637.63 *** -58.6124 ***

38 3.87E-04 0.0078 -0.0263 14.6284 14.5907 104.84 *** 12.9757 *** 19,105.83 *** -59.4629 ***

39 3.75E-04 0.0104 -0.3184 8.4267 25.0370 *** 66.92 *** 9.7349 *** 4,218.22 *** -58.5993 ***

40 1.67E-04 0.0087 -0.3857 11.6409 9.1523 566.16 *** 43.4084 *** 10,633.57 *** -57.9643 ***

41 -9.22E-05 0.0081 -0.0560 6.0156 6.5734 615.88 *** 45.6441 *** 1,286.63 *** -57.4506 ***

42 3.83E-05 0.0097 -0.1908 8.0615 13.3886 99.35 *** 7.2894 *** 3,640.26 *** -57.0091 ***

43 8.49E-05 0.0097 -0.2383 28.8493 24.9122 *** 88.19 *** 12.4627 *** 94,441.18 *** -58.2901 ***

44 6.82E-05 0.0059 0.0019 10.4245 26.1721 *** 845.68 *** 197.1559 *** 7,788.44 *** -58.1035 ***

45 -6.32E-05 0.0065 0.0608 7.6549 37.2655 *** 292.67 *** 74.9162 *** 3,063.64 *** -36.6329 ***

46 -5.98E-05 0.0103 0.0563 8.2841 49.0189 *** 284.09 *** 147.2025 *** 3,946.96 *** -32.9187 ***

47 -7.80E-05 0.0080 0.9405 24.0215 19.2760 ** 13.60 7.1832 *** 62,937.21 *** -59.3800 ***

48 5.42E-05 0.0108 -0.3003 10.0907 22.4366 ** 67.70 *** 18.2718 *** 7,154.74 *** -58.8860 ***

49 -1.81E-04 0.0151 -0.1473 5.3908 24.0349 *** 65.28 *** 8.6986 *** 819.86 *** -56.5879 ***

50 1.14E-04 0.0069 -0.2364 9.5122 27.5962 *** 731.99 *** 119.9441 *** 6,023.61 *** -58.1613 ***

51 2.33E-04 0.0076 -0.2266 5.9240 5.7776 290.06 *** 36.1431 *** 1,237.06 *** -58.0478 ***

52 3.18E-04 0.0082 -0.3505 7.4287 22.3571 ** 271.62 *** 115.3453 *** 2,840.65 *** -58.9914 ***
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Appendix C: Table C.1. Estimated coefficients for the GARCH model - Equity 

 

  

comp LogL  s.e. α s.e. β s.e. GED s.e.

1 -7,106.55 0.065 (0.019) 0.069 (0.010) 0.919 (0.012) 1.270 (0.031)

2 -6,516.35 0.017 (0.007) 0.045 (0.006) 0.950 (0.007) 1.350 (0.042)

3 -6,853.99 0.037 (0.012) 0.058 (0.008) 0.933 (0.009) 1.390 (0.039)

4 -7,181.29 0.106 (0.024) 0.125 (0.014) 0.862 (0.014) 1.222 (0.037)

5 -6,713.51 0.059 (0.015) 0.078 (0.011) 0.908 (0.012) 1.288 (0.037)

6 -7,603.66 0.030 (0.011) 0.058 (0.008) 0.941 (0.008) 1.197 (0.022)

7 -7,376.03 0.028 (0.011) 0.049 (0.006) 0.947 (0.007) 1.436 (0.038)

8 -7,160.51 0.022 (0.009) 0.043 (0.007) 0.953 (0.007) 1.261 (0.034)

9 -6,723.27 0.032 (0.012) 0.037 (0.007) 0.954 (0.008) 1.227 (0.029)

10 -6,579.68 0.029 (0.010) 0.045 (0.007) 0.947 (0.008) 1.258 (0.034)

11 -6,466.05 0.040 (0.012) 0.045 (0.007) 0.942 (0.010) 1.266 (0.035)

12 -6,256.51 0.027 (0.007) 0.050 (0.007) 0.941 (0.008) 1.312 (0.036)

13 -6,600.47 0.192 (0.036) 0.112 (0.016) 0.842 (0.021) 1.049 (0.015)

14 -6,310.56 0.025 (0.008) 0.053 (0.008) 0.940 (0.009) 1.143 (0.034)

15 -5,770.76 0.016 (0.005) 0.045 (0.007) 0.948 (0.007) 1.214 (0.028)

16 -5,549.71 0.038 (0.010) 0.056 (0.008) 0.922 (0.012) 1.447 (0.044)

17 -6,348.13 0.020 (0.007) 0.046 (0.007) 0.948 (0.008) 1.210 (0.033)

18 -5,999.11 0.064 (0.016) 0.083 (0.013) 0.896 (0.015) 1.056 (0.028)

19 -5,371.94 0.025 (0.008) 0.054 (0.008) 0.931 (0.011) 1.354 (0.045)

20 -5,626.91 0.059 (0.013) 0.078 (0.010) 0.892 (0.014) 1.272 (0.033)

21 -5,782.19 0.025 (0.008) 0.038 (0.007) 0.950 (0.009) 1.214 (0.034)

22 -5,796.73 0.050 (0.013) 0.054 (0.008) 0.922 (0.012) 1.205 (0.025)

23 -6,190.71 0.025 (0.007) 0.037 (0.006) 0.954 (0.007) 1.026 (0.018)

24 -6,093.83 0.036 (0.009) 0.062 (0.010) 0.926 (0.011) 1.211 (0.020)

25 -5,325.37 0.017 (0.005) 0.043 (0.007) 0.946 (0.008) 1.241 (0.035)

26 -6,031.17 0.033 (0.008) 0.067 (0.009) 0.920 (0.010) 1.352 (0.040)

27 -6,224.17 0.071 (0.015) 0.084 (0.011) 0.894 (0.012) 1.159 (0.026)

28 -5,952.89 0.078 (0.019) 0.090 (0.014) 0.886 (0.016) 1.044 (0.018)

29 -5,737.84 0.054 (0.012) 0.157 (0.016) 0.835 (0.015) 1.129 (0.029)

30 -6,356.90 0.035 (0.010) 0.076 (0.009) 0.916 (0.010) 1.212 (0.034)

31 -6,399.60 0.051 (0.013) 0.068 (0.009) 0.917 (0.011) 1.189 (0.034)

32 -6,255.09 0.093 (0.021) 0.082 (0.013) 0.888 (0.016) 1.104 (0.026)

33 -7,838.70 0.042 (0.015) 0.056 (0.008) 0.939 (0.008) 1.422 (0.037)

34 -6,302.30 0.125 (0.029) 0.081 (0.013) 0.874 (0.020) 1.303 (0.033)

35 -6,273.10 0.082 (0.020) 0.071 (0.011) 0.899 (0.015) 1.295 (0.040)

36 -6,825.66 0.032 (0.010) 0.078 (0.010) 0.917 (0.009) 1.278 (0.037)

37 -6,279.71 0.066 (0.016) 0.087 (0.011) 0.890 (0.013) 1.416 (0.048)

38 -5,868.66 0.040 (0.010) 0.050 (0.009) 0.933 (0.011) 1.128 (0.021)

39 -6,724.76 0.049 (0.013) 0.041 (0.007) 0.946 (0.009) 1.150 (0.022)

40 -6,128.58 0.025 (0.007) 0.050 (0.007) 0.941 (0.008) 1.211 (0.033)

41 -7,014.00 0.015 (0.007) 0.036 (0.006) 0.961 (0.006) 1.263 (0.038)

42 -6,779.43 0.014 (0.007) 0.030 (0.005) 0.967 (0.005) 1.079 (0.028)

43 -6,428.87 0.056 (0.014) 0.056 (0.008) 0.926 (0.010) 1.154 (0.027)

44 -5,676.81 0.061 (0.014) 0.081 (0.011) 0.891 (0.014) 1.095 (0.027)

45 -6,158.61 0.019 (0.007) 0.027 (0.005) 0.965 (0.006) 1.215 (0.032)

46 -7,628.21 0.046 (0.015) 0.062 (0.008) 0.934 (0.007) 1.151 (0.035)

47 -6,194.84 0.113 (0.021) 0.081 (0.010) 0.882 (0.013) 0.988 (0.020)

48 -6,050.35 0.015 (0.005) 0.025 (0.005) 0.969 (0.006) 1.212 (0.027)

49 -7,320.82 0.015 (0.007) 0.026 (0.004) 0.972 (0.005) 1.322 (0.037)

50 -5,779.39 0.051 (0.011) 0.096 (0.013) 0.884 (0.014) 1.271 (0.029)

51 -5,723.93 0.029 (0.008) 0.054 (0.009) 0.932 (0.011) 1.274 (0.039)

52 -6,299.74 0.046 (0.012) 0.067 (0.009) 0.917 (0.011) 1.423 (0.044)
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Appendix C: Table C.2. Estimated coefficients for the GARCH model -     

 

  

comp LogL  s.e. α s.e. β s.e. GED s.e.

1 -4,179.62 0.006 (0.002) 0.040 (0.006) 0.952 (0.008) 1.399 (0.037)

2 -2,158.69 0.002 (0.001) 0.035 (0.006) 0.958 (0.007) 1.379 (0.044)

3 -4,269.54 0.005 (0.002) 0.052 (0.007) 0.943 (0.008) 1.374 (0.037)

4 -4,616.74 0.054 (0.012) 0.107 (0.014) 0.845 (0.020) 1.268 (0.038)

5 -2,497.42 0.001 (0.000) 0.060 (0.008) 0.939 (0.007) 1.311 (0.037)

6 -735.98 0.001 (0.000) 0.043 (0.006) 0.953 (0.007) 1.240 (0.021)

7 -2,592.39 0.003 (0.001) 0.041 (0.006) 0.950 (0.008) 1.448 (0.037)

8 -3,659.60 0.001 (0.001) 0.036 (0.006) 0.963 (0.006) 1.278 (0.029)

9 -1,992.20 0.001 (0.001) 0.032 (0.006) 0.962 (0.007) 1.253 (0.028)

10 -5,079.88 0.016 (0.005) 0.037 (0.006) 0.951 (0.009) 1.323 (0.033)

11 -4,709.29 0.016 (0.005) 0.038 (0.007) 0.946 (0.010) 1.285 (0.037)

12 -5,047.17 0.012 (0.004) 0.044 (0.007) 0.947 (0.008) 1.319 (0.036)

13 -5,021.74 0.079 (0.017) 0.093 (0.015) 0.853 (0.023) 1.095 (0.016)

14 -3,942.57 0.001 (0.001) 0.032 (0.005) 0.967 (0.005) 1.154 (0.033)

15 -3,381.97 0.004 (0.001) 0.041 (0.006) 0.951 (0.007) 1.222 (0.028)

16 -4,603.30 0.018 (0.005) 0.053 (0.008) 0.929 (0.011) 1.488 (0.049)

17 -2,998.08 0.005 (0.002) 0.037 (0.007) 0.949 (0.009) 1.226 (0.034)

18 -1,564.05 0.007 (0.002) 0.070 (0.012) 0.890 (0.019) 1.117 (0.028)

19 -4,397.87 0.013 (0.004) 0.048 (0.007) 0.937 (0.010) 1.424 (0.047)

20 -4,148.49 0.033 (0.007) 0.077 (0.010) 0.882 (0.016) 1.273 (0.034)

21 -3,640.28 0.003 (0.001) 0.030 (0.005) 0.966 (0.006) 1.229 (0.033)

22 -4,229.83 0.007 (0.002) 0.028 (0.005) 0.962 (0.007) 1.251 (0.023)

23 -4,181.98 0.004 (0.001) 0.024 (0.004) 0.971 (0.005) 1.132 (0.018)

24 -4,366.11 0.014 (0.004) 0.052 (0.009) 0.933 (0.012) 1.315 (0.023)

25 -3,514.82 0.003 (0.001) 0.037 (0.006) 0.957 (0.006) 1.239 (0.035)

26 -4,215.26 0.008 (0.002) 0.055 (0.007) 0.936 (0.008) 1.418 (0.044)

27 -2,319.58 0.005 (0.001) 0.078 (0.010) 0.905 (0.010) 1.176 (0.029)

28 -1,655.69 0.007 (0.002) 0.095 (0.014) 0.872 (0.019) 1.106 (0.018)

29 -2,692.40 0.011 (0.002) 0.154 (0.015) 0.829 (0.015) 1.151 (0.028)

30 -3,640.31 0.011 (0.003) 0.067 (0.009) 0.915 (0.011) 1.245 (0.034)

31 -1,423.78 0.003 (0.001) 0.058 (0.008) 0.922 (0.011) 1.208 (0.034)

32 -4,247.58 0.021 (0.005) 0.063 (0.010) 0.914 (0.013) 1.104 (0.024)

33 -6,165.98 0.013 (0.005) 0.046 (0.007) 0.950 (0.007) 1.445 (0.036)

34 -4,144.82 0.015 (0.004) 0.054 (0.008) 0.926 (0.011) 1.360 (0.032)

35 -4,270.69 0.010 (0.003) 0.059 (0.009) 0.931 (0.010) 1.293 (0.039)

36 -3,875.14 0.004 (0.001) 0.062 (0.008) 0.934 (0.008) 1.314 (0.037)

37 -4,968.18 0.017 (0.005) 0.073 (0.009) 0.915 (0.010) 1.438 (0.049)

38 -3,482.24 0.009 (0.003) 0.044 (0.008) 0.939 (0.010) 1.151 (0.021)

39 -4,711.27 0.013 (0.004) 0.031 (0.006) 0.957 (0.008) 1.226 (0.026)

40 -3,871.80 0.005 (0.002) 0.041 (0.006) 0.952 (0.007) 1.219 (0.033)

41 -3,748.31 0.003 (0.001) 0.031 (0.005) 0.965 (0.006) 1.286 (0.039)

42 -4,260.08 0.004 (0.002) 0.023 (0.004) 0.972 (0.005) 1.108 (0.028)

43 -4,197.25 0.013 (0.004) 0.047 (0.007) 0.938 (0.010) 1.218 (0.029)

44 -2,447.97 0.007 (0.002) 0.064 (0.009) 0.915 (0.011) 1.107 (0.029)

45 -2,945.77 0.003 (0.001) 0.025 (0.005) 0.968 (0.006) 1.211 (0.031)

46 -4,471.97 0.018 (0.005) 0.057 (0.008) 0.925 (0.009) 1.184 (0.037)

47 -3,534.66 0.061 (0.013) 0.090 (0.016) 0.805 (0.033) 1.012 (0.019)

48 -4,729.70 0.005 (0.002) 0.020 (0.004) 0.975 (0.005) 1.296 (0.029)

49 -6,079.49 0.014 (0.006) 0.020 (0.004) 0.974 (0.006) 1.335 (0.037)

50 -3,025.14 0.011 (0.003) 0.087 (0.012) 0.888 (0.014) 1.289 (0.030)

51 -3,513.67 0.006 (0.002) 0.045 (0.007) 0.945 (0.009) 1.280 (0.039)

52 -3,856.79 0.009 (0.003) 0.052 (0.008) 0.935 (0.010) 1.457 (0.040)
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Appendix C: Table C.3. Estimated coefficients for the GARCH model -      

 

  

comp LogL  s.e. α s.e. β s.e. GED s.e.

1 -4,218.12 0.006 (0.002) 0.041 (0.006) 0.951 (0.008) 1.402 (0.037)

2 -2,173.65 0.002 (0.001) 0.036 (0.006) 0.958 (0.007) 1.376 (0.043)

3 -4,225.27 0.005 (0.002) 0.052 (0.007) 0.943 (0.008) 1.374 (0.037)

4 -4,562.80 0.050 (0.011) 0.106 (0.014) 0.847 (0.020) 1.265 (0.038)

5 -2,488.66 0.001 (0.000) 0.060 (0.008) 0.939 (0.007) 1.314 (0.037)

6 -721.03 0.001 (0.000) 0.043 (0.006) 0.952 (0.007) 1.242 (0.021)

7 -2,564.16 0.003 (0.001) 0.041 (0.006) 0.950 (0.008) 1.449 (0.037)

8 -3,608.66 0.001 (0.001) 0.036 (0.006) 0.963 (0.006) 1.279 (0.029)

9 -1,934.86 0.001 (0.000) 0.031 (0.006) 0.963 (0.007) 1.254 (0.028)

10 -5,070.36 0.014 (0.005) 0.037 (0.006) 0.952 (0.008) 1.325 (0.033)

11 -4,659.66 0.015 (0.005) 0.038 (0.007) 0.947 (0.010) 1.285 (0.037)

12 -5,077.79 0.012 (0.004) 0.045 (0.007) 0.946 (0.008) 1.316 (0.036)

13 -5,063.50 0.076 (0.016) 0.092 (0.014) 0.858 (0.022) 1.092 (0.016)

14 -3,930.31 0.001 (0.001) 0.034 (0.005) 0.966 (0.005) 1.153 (0.033)

15 -3,327.89 0.004 (0.001) 0.041 (0.006) 0.951 (0.007) 1.222 (0.028)

16 -4,587.85 0.018 (0.005) 0.053 (0.008) 0.929 (0.011) 1.491 (0.049)

17 -2,931.62 0.005 (0.002) 0.037 (0.007) 0.949 (0.009) 1.227 (0.034)

18 -1,463.32 0.007 (0.002) 0.069 (0.012) 0.889 (0.019) 1.120 (0.028)

19 -4,436.95 0.013 (0.004) 0.049 (0.007) 0.937 (0.010) 1.423 (0.047)

20 -4,172.83 0.033 (0.007) 0.078 (0.010) 0.881 (0.016) 1.271 (0.034)

21 -3,596.80 0.003 (0.001) 0.028 (0.005) 0.967 (0.006) 1.234 (0.034)

22 -4,239.25 0.008 (0.002) 0.030 (0.005) 0.959 (0.007) 1.258 (0.023)

23 -4,177.99 0.004 (0.001) 0.025 (0.004) 0.969 (0.005) 1.142 (0.018)

24 -4,356.72 0.013 (0.004) 0.052 (0.009) 0.934 (0.012) 1.318 (0.023)

25 -3,467.14 0.003 (0.001) 0.038 (0.006) 0.957 (0.006) 1.236 (0.035)

26 -4,243.48 0.008 (0.003) 0.056 (0.007) 0.934 (0.009) 1.426 (0.044)

27 -2,308.71 0.006 (0.001) 0.078 (0.010) 0.903 (0.011) 1.178 (0.029)

28 -1,656.75 0.008 (0.002) 0.097 (0.015) 0.865 (0.020) 1.111 (0.018)

29 -2,671.05 0.011 (0.002) 0.155 (0.015) 0.828 (0.015) 1.151 (0.028)

30 -3,608.55 0.010 (0.003) 0.068 (0.009) 0.916 (0.010) 1.240 (0.034)

31 -1,440.28 0.004 (0.001) 0.061 (0.009) 0.917 (0.012) 1.206 (0.034)

32 -4,200.32 0.024 (0.006) 0.068 (0.011) 0.905 (0.014) 1.106 (0.024)

33 -6,142.20 0.012 (0.005) 0.046 (0.007) 0.950 (0.007) 1.448 (0.036)

34 -4,147.47 0.016 (0.004) 0.054 (0.008) 0.925 (0.012) 1.364 (0.032)

35 -4,214.97 0.008 (0.003) 0.058 (0.008) 0.933 (0.009) 1.292 (0.039)

36 -3,828.08 0.004 (0.001) 0.062 (0.008) 0.933 (0.008) 1.313 (0.037)

37 -4,963.84 0.017 (0.005) 0.072 (0.009) 0.916 (0.010) 1.434 (0.049)

38 -3,434.30 0.009 (0.003) 0.044 (0.008) 0.940 (0.010) 1.150 (0.021)

39 -4,705.15 0.012 (0.004) 0.031 (0.006) 0.958 (0.007) 1.241 (0.026)

40 -3,852.44 0.005 (0.002) 0.041 (0.006) 0.952 (0.007) 1.219 (0.033)

41 -3,730.10 0.002 (0.001) 0.031 (0.005) 0.965 (0.006) 1.290 (0.039)

42 -4,333.65 0.004 (0.002) 0.023 (0.004) 0.972 (0.005) 1.107 (0.028)

43 -4,189.88 0.011 (0.003) 0.046 (0.007) 0.941 (0.009) 1.223 (0.029)

44 -2,387.58 0.007 (0.002) 0.063 (0.009) 0.915 (0.011) 1.107 (0.029)

45 -2,849.15 0.003 (0.001) 0.025 (0.004) 0.968 (0.006) 1.211 (0.031)

46 -4,578.85 0.058 (0.013) 0.087 (0.014) 0.858 (0.022) 1.178 (0.034)

47 -3,477.91 0.051 (0.011) 0.087 (0.015) 0.824 (0.029) 1.008 (0.019)

48 -4,731.47 0.005 (0.002) 0.021 (0.004) 0.975 (0.005) 1.301 (0.029)

49 -6,064.75 0.013 (0.006) 0.020 (0.004) 0.974 (0.006) 1.336 (0.037)

50 -2,975.28 0.011 (0.003) 0.087 (0.012) 0.886 (0.015) 1.287 (0.030)

51 -3,467.29 0.006 (0.002) 0.045 (0.007) 0.945 (0.009) 1.278 (0.039)

52 -3,869.09 0.009 (0.003) 0.052 (0.007) 0.936 (0.010) 1.459 (0.040)
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Appendix C: Table C.4. Estimated coefficients for the GARCH model -        

 

  

comp LogL  s.e. α s.e. β s.e. GED s.e.

1 -4,138.59 0.006 (0.002) 0.042 (0.007) 0.951 (0.008) 1.405 (0.037)

2 -2,080.43 0.002 (0.001) 0.039 (0.006) 0.954 (0.007) 1.364 (0.043)

3 -4,248.62 0.005 (0.002) 0.053 (0.007) 0.942 (0.008) 1.381 (0.038)

4 -4,589.52 0.049 (0.011) 0.107 (0.014) 0.849 (0.020) 1.263 (0.038)

5 -2,379.83 0.001 (0.000) 0.065 (0.008) 0.934 (0.007) 1.307 (0.037)

6 -551.32 0.000 (0.000) 0.050 (0.007) 0.951 (0.006) 1.204 (0.021)

7 -2,534.80 0.003 (0.001) 0.044 (0.007) 0.946 (0.009) 1.445 (0.036)

8 -3,578.07 0.001 (0.001) 0.038 (0.006) 0.962 (0.006) 1.276 (0.029)

9 -1,911.08 0.001 (0.001) 0.035 (0.006) 0.959 (0.007) 1.237 (0.029)

10 -5,070.37 0.014 (0.005) 0.037 (0.006) 0.952 (0.008) 1.319 (0.033)

11 -4,725.89 0.018 (0.006) 0.039 (0.007) 0.944 (0.011) 1.283 (0.037)

12 -5,057.64 0.012 (0.004) 0.045 (0.007) 0.946 (0.008) 1.323 (0.036)

13 -5,078.88 0.075 (0.016) 0.089 (0.014) 0.862 (0.022) 1.094 (0.016)

14 -3,963.31 0.001 (0.001) 0.035 (0.005) 0.964 (0.005) 1.151 (0.033)

15 -3,389.40 0.005 (0.001) 0.043 (0.007) 0.949 (0.007) 1.224 (0.028)

16 -4,631.63 0.018 (0.005) 0.053 (0.008) 0.928 (0.011) 1.493 (0.050)

17 -2,976.42 0.005 (0.002) 0.039 (0.007) 0.948 (0.010) 1.235 (0.034)

18 -1,556.45 0.007 (0.002) 0.071 (0.012) 0.892 (0.019) 1.108 (0.028)

19 -4,501.39 0.013 (0.004) 0.049 (0.007) 0.937 (0.010) 1.411 (0.047)

20 -4,197.33 0.032 (0.007) 0.076 (0.010) 0.885 (0.016) 1.277 (0.034)

21 -3,631.71 0.003 (0.001) 0.030 (0.005) 0.966 (0.006) 1.227 (0.034)

22 -4,265.55 0.009 (0.002) 0.032 (0.006) 0.957 (0.007) 1.252 (0.023)

23 -4,164.69 0.004 (0.001) 0.025 (0.004) 0.970 (0.005) 1.140 (0.018)

24 -4,352.53 0.014 (0.004) 0.054 (0.010) 0.930 (0.012) 1.313 (0.023)

25 -3,528.28 0.004 (0.001) 0.039 (0.006) 0.955 (0.007) 1.242 (0.035)

26 -4,174.96 0.008 (0.002) 0.058 (0.008) 0.933 (0.009) 1.440 (0.045)

27 -2,212.69 0.004 (0.001) 0.073 (0.009) 0.911 (0.010) 1.202 (0.029)

28 -1,627.63 0.005 (0.001) 0.080 (0.011) 0.901 (0.014) 1.080 (0.017)

29 -2,722.35 0.011 (0.002) 0.147 (0.014) 0.838 (0.015) 1.137 (0.028)

30 -3,702.05 0.011 (0.003) 0.067 (0.009) 0.916 (0.011) 1.244 (0.035)

31 -1,257.78 0.002 (0.001) 0.052 (0.008) 0.934 (0.009) 1.213 (0.034)

32 -4,280.56 0.022 (0.005) 0.066 (0.010) 0.911 (0.013) 1.105 (0.025)

33 -6,049.11 0.012 (0.005) 0.046 (0.007) 0.950 (0.007) 1.445 (0.036)

34 -4,139.49 0.017 (0.005) 0.057 (0.008) 0.920 (0.012) 1.364 (0.032)

35 -4,289.85 0.008 (0.003) 0.060 (0.008) 0.932 (0.009) 1.288 (0.039)

36 -3,874.08 0.004 (0.001) 0.063 (0.008) 0.934 (0.008) 1.299 (0.036)

37 -5,023.91 0.018 (0.005) 0.075 (0.009) 0.913 (0.011) 1.436 (0.049)

38 -3,530.03 0.009 (0.003) 0.046 (0.008) 0.939 (0.010) 1.149 (0.022)

39 -4,661.16 0.012 (0.004) 0.032 (0.006) 0.956 (0.008) 1.241 (0.027)

40 -3,858.80 0.005 (0.002) 0.043 (0.007) 0.950 (0.007) 1.223 (0.033)

41 -3,751.61 0.002 (0.001) 0.032 (0.006) 0.964 (0.006) 1.283 (0.039)

42 -4,339.31 0.004 (0.002) 0.023 (0.004) 0.973 (0.005) 1.091 (0.028)

43 -4,223.91 0.014 (0.004) 0.050 (0.007) 0.934 (0.010) 1.226 (0.030)

44 -2,550.10 0.009 (0.002) 0.076 (0.011) 0.897 (0.014) 1.110 (0.029)

45 -3,025.46 0.003 (0.001) 0.028 (0.005) 0.964 (0.006) 1.220 (0.031)

46 -4,583.80 0.025 (0.006) 0.063 (0.009) 0.913 (0.010) 1.164 (0.036)

47 -3,592.17 0.058 (0.013) 0.083 (0.016) 0.820 (0.032) 1.020 (0.019)

48 -4,758.88 0.005 (0.002) 0.021 (0.004) 0.974 (0.005) 1.296 (0.029)

49 -6,047.16 0.013 (0.006) 0.020 (0.004) 0.974 (0.006) 1.339 (0.037)

50 -3,146.18 0.011 (0.003) 0.087 (0.012) 0.890 (0.014) 1.295 (0.030)

51 -3,574.19 0.006 (0.002) 0.047 (0.008) 0.942 (0.009) 1.286 (0.039)

52 -3,883.08 0.009 (0.003) 0.052 (0.007) 0.935 (0.010) 1.444 (0.040)



120 
 

Appendix C: Table C.5. Estimated coefficients for the EGARCH model - Equity 

 

  

comp LogL  s.e. β s.e. γ1 s.e. γ2 s.e. GED s.e.

1 -7,098.09 1.391 (0.150) 0.988 (0.003) -0.036 (0.010) 0.123 (0.015) 1.263 (0.030)

2 -6,509.20 1.032 (0.150) 0.989 (0.003) -0.044 (0.010) 0.115 (0.014) 1.358 (0.043)

3 -6,844.83 1.228 (0.164) 0.991 (0.003) -0.034 (0.009) 0.105 (0.014) 1.388 (0.037)

4 -7,159.39 1.451 (0.161) 0.981 (0.004) -0.081 (0.012) 0.212 (0.019) 1.217 (0.034)

5 -6,711.69 1.174 (0.119) 0.981 (0.004) -0.051 (0.011) 0.145 (0.018) 1.276 (0.034)

6 -7,581.40 1.757 (0.250) 0.995 (0.002) -0.025 (0.008) 0.091 (0.011) 1.215 (0.023)

7 -7,363.12 1.552 (0.157) 0.991 (0.002) -0.047 (0.009) 0.098 (0.012) 1.453 (0.038)

8 -7,141.94 1.416 (0.165) 0.990 (0.003) -0.053 (0.009) 0.112 (0.015) 1.291 (0.034)

9 -6,708.44 1.186 (0.086) 0.980 (0.005) -0.044 (0.010) 0.095 (0.016) 1.235 (0.029)

10 -6,576.99 1.071 (0.198) 0.993 (0.002) -0.033 (0.009) 0.094 (0.013) 1.265 (0.034)

11 -6,450.11 1.002 (0.097) 0.984 (0.004) -0.058 (0.010) 0.091 (0.013) 1.277 (0.035)

12 -6,220.46 0.775 (0.130) 0.990 (0.002) -0.082 (0.010) 0.090 (0.013) 1.354 (0.036)

13 -6,578.43 1.211 (0.121) 0.994 (0.002) -0.025 (0.007) 0.042 (0.006) 1.056 (0.017)

14 -6,284.39 0.917 (0.175) 0.992 (0.002) -0.062 (0.010) 0.103 (0.014) 1.174 (0.035)

15 -5,753.84 0.585 (0.138) 0.988 (0.003) -0.053 (0.012) 0.116 (0.014) 1.234 (0.029)

16 -5,543.96 0.445 (0.101) 0.983 (0.004) -0.049 (0.011) 0.113 (0.015) 1.451 (0.045)

17 -6,329.41 0.912 (0.146) 0.992 (0.002) -0.062 (0.010) 0.082 (0.013) 1.232 (0.035)

18 -5,968.21 0.779 (0.116) 0.985 (0.004) -0.078 (0.011) 0.106 (0.015) 1.073 (0.029)

19 -5,359.88 0.347 (0.105) 0.984 (0.004) -0.047 (0.011) 0.110 (0.016) 1.369 (0.045)

20 -5,622.82 0.531 (0.100) 0.974 (0.006) -0.045 (0.012) 0.158 (0.016) 1.260 (0.032)

21 -5,756.47 0.617 (0.081) 0.981 (0.005) -0.068 (0.011) 0.086 (0.016) 1.245 (0.034)

22 -5,776.98 0.616 (0.109) 0.983 (0.005) -0.061 (0.012) 0.113 (0.015) 1.223 (0.025)

23 -6,169.22 0.949 (0.144) 0.991 (0.002) -0.039 (0.008) 0.080 (0.012) 1.046 (0.018)

24 -6,077.01 0.810 (0.152) 0.993 (0.002) -0.048 (0.010) 0.076 (0.013) 1.228 (0.020)

25 -5,310.11 0.338 (0.126) 0.988 (0.003) -0.041 (0.011) 0.103 (0.015) 1.257 (0.036)

26 -6,009.18 0.719 (0.131) 0.987 (0.003) -0.066 (0.010) 0.114 (0.014) 1.385 (0.040)

27 -6,211.88 0.908 (0.108) 0.979 (0.004) -0.056 (0.011) 0.137 (0.016) 1.176 (0.028)

28 -5,931.86 0.796 (0.108) 0.980 (0.005) -0.043 (0.013) 0.125 (0.016) 1.068 (0.019)

29 -5,710.31 0.623 (0.152) 0.977 (0.005) -0.076 (0.012) 0.227 (0.019) 1.133 (0.027)

30 -6,331.84 0.949 (0.143) 0.986 (0.003) -0.065 (0.010) 0.136 (0.015) 1.243 (0.036)

31 -6,388.10 1.005 (0.126) 0.984 (0.004) -0.050 (0.011) 0.135 (0.017) 1.204 (0.036)

32 -6,219.76 0.918 (0.098) 0.977 (0.004) -0.078 (0.012) 0.128 (0.018) 1.129 (0.025)

33 -7,833.30 1.849 (0.207) 0.993 (0.002) -0.043 (0.009) 0.113 (0.014) 1.445 (0.040)

34 -6,301.99 0.929 (0.076) 0.959 (0.009) -0.040 (0.013) 0.168 (0.020) 1.295 (0.032)

35 -6,242.31 0.863 (0.075) 0.973 (0.005) -0.099 (0.012) 0.108 (0.017) 1.343 (0.043)

36 -6,795.15 1.181 (0.159) 0.989 (0.002) -0.086 (0.012) 0.131 (0.015) 1.306 (0.035)

37 -6,241.79 0.830 (0.076) 0.970 (0.005) -0.116 (0.012) 0.132 (0.018) 1.463 (0.048)

38 -5,837.89 0.689 (0.110) 0.987 (0.003) -0.068 (0.011) 0.089 (0.014) 1.163 (0.023)

39 -6,705.37 1.207 (0.109) 0.983 (0.004) -0.053 (0.012) 0.116 (0.017) 1.170 (0.023)

40 -6,109.85 0.811 (0.125) 0.986 (0.003) -0.065 (0.011) 0.114 (0.015) 1.220 (0.033)

41 -7,007.12 1.350 (0.187) 0.994 (0.002) -0.038 (0.009) 0.083 (0.012) 1.272 (0.037)

42 -6,764.58 1.231 (0.173) 0.993 (0.002) -0.042 (0.009) 0.079 (0.012) 1.095 (0.028)

43 -6,408.22 1.038 (0.126) 0.986 (0.003) -0.057 (0.011) 0.111 (0.015) 1.185 (0.027)

44 -5,674.52 0.601 (0.095) 0.969 (0.007) -0.040 (0.013) 0.163 (0.019) 1.089 (0.027)

45 -6,151.03 0.835 (0.096) 0.984 (0.005) -0.035 (0.010) 0.093 (0.014) 1.223 (0.032)

46 -7,622.29 1.726 (0.182) 0.991 (0.002) -0.052 (0.010) 0.110 (0.010) 1.145 (0.033)

47 -6,155.27 0.887 (0.134) 0.990 (0.003) -0.051 (0.009) 0.088 (0.013) 1.021 (0.020)

48 -6,034.55 0.793 (0.125) 0.993 (0.002) -0.038 (0.008) 0.059 (0.011) 1.227 (0.027)

49 -7,308.75 1.524 (0.159) 0.993 (0.002) -0.029 (0.007) 0.077 (0.012) 1.336 (0.038)

50 -5,760.62 0.592 (0.103) 0.974 (0.005) -0.071 (0.012) 0.167 (0.020) 1.288 (0.028)

51 -5,705.72 0.556 (0.102) 0.982 (0.004) -0.065 (0.011) 0.114 (0.017) 1.291 (0.040)

52 -6,288.21 0.895 (0.107) 0.979 (0.004) -0.063 (0.012) 0.149 (0.017) 1.429 (0.043)
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Appendix C: Table C.6. Estimated coefficients for the EGARCH model -     

 

  

comp LogL  s.e. β s.e. γ1 s.e. γ2 s.e. GED s.e.

1 -4,172.79 -0.384 (0.144) 0.990 (0.003) -0.020 (0.009) 0.103 (0.014) 1.403 (0.037)

2 -2,161.91 -1.545 (0.092) 0.979 (0.006) -0.026 (0.011) 0.119 (0.017) 1.377 (0.045)

3 -4,265.68 -0.293 (0.166) 0.991 (0.003) -0.019 (0.010) 0.114 (0.014) 1.370 (0.037)

4 -4,596.81 -0.071 (0.068) 0.939 (0.012) -0.078 (0.015) 0.205 (0.024) 1.264 (0.036)

5 -2,501.56 -1.327 (0.180) 0.988 (0.003) -0.026 (0.010) 0.151 (0.017) 1.300 (0.036)

6 -738.97 -2.348 (0.167) 0.988 (0.003) -0.009 (0.010) 0.140 (0.015) 1.233 (0.022)

7 -2,602.89 -1.288 (0.112) 0.984 (0.004) -0.023 (0.011) 0.114 (0.015) 1.431 (0.037)

8 -3,653.29 -0.670 (0.218) 0.993 (0.002) -0.024 (0.009) 0.113 (0.015) 1.292 (0.031)

9 -1,986.87 -1.659 (0.141) 0.990 (0.003) -0.011 (0.008) 0.090 (0.014) 1.252 (0.029)

10 -5,079.56 0.188 (0.116) 0.989 (0.004) -0.021 (0.009) 0.086 (0.013) 1.324 (0.032)

11 -4,693.42 -0.035 (0.070) 0.977 (0.006) -0.056 (0.011) 0.083 (0.014) 1.297 (0.037)

12 -5,016.53 0.105 (0.110) 0.987 (0.003) -0.073 (0.010) 0.089 (0.013) 1.352 (0.036)

13 -4,996.26 0.230 (0.135) 0.995 (0.002) -0.014 (0.007) 0.040 (0.007) 1.103 (0.018)

14 -3,923.00 -0.463 (0.181) 0.992 (0.003) -0.043 (0.010) 0.106 (0.014) 1.177 (0.034)

15 -3,370.20 -0.813 (0.127) 0.986 (0.004) -0.041 (0.012) 0.114 (0.014) 1.235 (0.029)

16 -4,602.81 -0.114 (0.105) 0.984 (0.004) -0.037 (0.011) 0.110 (0.015) 1.483 (0.048)

17 -2,983.70 -1.055 (0.094) 0.985 (0.004) -0.047 (0.010) 0.084 (0.014) 1.243 (0.037)

18 -1,551.12 -1.842 (0.081) 0.969 (0.007) -0.057 (0.012) 0.133 (0.019) 1.122 (0.029)

19 -4,392.12 -0.237 (0.108) 0.985 (0.004) -0.035 (0.011) 0.107 (0.016) 1.432 (0.047)

20 -4,148.57 -0.341 (0.081) 0.963 (0.008) -0.033 (0.012) 0.166 (0.017) 1.258 (0.032)

21 -3,627.56 -0.646 (0.103) 0.984 (0.004) -0.053 (0.011) 0.099 (0.016) 1.232 (0.033)

22 -4,221.36 -0.331 (0.149) 0.990 (0.003) -0.026 (0.010) 0.099 (0.014) 1.257 (0.022)

23 -4,168.16 -0.273 (0.163) 0.993 (0.002) -0.028 (0.008) 0.072 (0.011) 1.149 (0.019)

24 -4,355.07 -0.303 (0.189) 0.995 (0.002) -0.026 (0.008) 0.066 (0.011) 1.319 (0.023)

25 -3,505.32 -0.739 (0.157) 0.990 (0.003) -0.030 (0.011) 0.107 (0.015) 1.250 (0.036)

26 -4,211.11 -0.353 (0.149) 0.989 (0.003) -0.035 (0.010) 0.120 (0.015) 1.424 (0.043)

27 -2,318.57 -1.432 (0.145) 0.983 (0.004) -0.011 (0.010) 0.162 (0.016) 1.172 (0.029)

28 -1,646.77 -1.777 (0.117) 0.981 (0.006) -0.014 (0.011) 0.134 (0.017) 1.119 (0.018)

29 -2,684.27 -1.206 (0.150) 0.974 (0.006) -0.044 (0.012) 0.260 (0.020) 1.140 (0.028)

30 -3,628.56 -0.654 (0.116) 0.981 (0.004) -0.045 (0.010) 0.142 (0.016) 1.257 (0.036)

31 -1,421.96 -1.964 (0.109) 0.978 (0.006) -0.024 (0.011) 0.153 (0.018) 1.202 (0.034)

32 -4,214.71 -0.268 (0.092) 0.976 (0.005) -0.066 (0.012) 0.126 (0.018) 1.128 (0.024)

33 -6,164.02 0.845 (0.216) 0.994 (0.002) -0.023 (0.009) 0.104 (0.014) 1.458 (0.037)

34 -4,147.98 -0.355 (0.101) 0.982 (0.005) -0.022 (0.010) 0.114 (0.014) 1.351 (0.030)

35 -4,244.46 -0.300 (0.096) 0.980 (0.004) -0.083 (0.012) 0.115 (0.017) 1.325 (0.041)

36 -3,848.09 -0.533 (0.116) 0.985 (0.003) -0.076 (0.012) 0.116 (0.015) 1.342 (0.035)

37 -4,940.26 0.068 (0.095) 0.979 (0.004) -0.093 (0.011) 0.129 (0.016) 1.471 (0.049)

38 -3,465.00 -0.700 (0.104) 0.983 (0.005) -0.042 (0.010) 0.107 (0.017) 1.163 (0.022)

39 -4,700.70 -0.007 (0.094) 0.986 (0.004) -0.029 (0.010) 0.078 (0.014) 1.240 (0.026)

40 -3,859.26 -0.521 (0.128) 0.987 (0.003) -0.049 (0.011) 0.113 (0.015) 1.221 (0.033)

41 -3,744.55 -0.595 (0.151) 0.993 (0.002) -0.022 (0.009) 0.079 (0.012) 1.293 (0.039)

42 -4,252.90 -0.247 (0.113) 0.988 (0.004) -0.027 (0.010) 0.082 (0.014) 1.113 (0.027)

43 -4,189.59 -0.298 (0.130) 0.988 (0.004) -0.030 (0.010) 0.100 (0.014) 1.226 (0.027)

44 -2,445.73 -1.321 (0.102) 0.976 (0.005) -0.020 (0.012) 0.143 (0.017) 1.098 (0.028)

45 -2,941.52 -1.094 (0.134) 0.991 (0.003) -0.015 (0.009) 0.080 (0.012) 1.213 (0.031)

46 -4,471.86 -0.126 (0.075) 0.954 (0.010) -0.059 (0.015) 0.159 (0.015) 1.145 (0.031)

47 -3,505.90 -0.657 (0.074) 0.966 (0.009) -0.048 (0.013) 0.118 (0.019) 1.030 (0.019)

48 -4,719.21 -0.020 (0.146) 0.995 (0.002) -0.024 (0.007) 0.050 (0.010) 1.307 (0.030)

49 -6,071.22 0.785 (0.075) 0.977 (0.007) -0.027 (0.009) 0.094 (0.017) 1.348 (0.038)

50 -3,007.99 -1.044 (0.091) 0.969 (0.006) -0.058 (0.012) 0.170 (0.020) 1.305 (0.030)

51 -3,500.51 -0.754 (0.113) 0.987 (0.003) -0.046 (0.010) 0.099 (0.016) 1.289 (0.039)

52 -3,849.68 -0.557 (0.090) 0.977 (0.006) -0.037 (0.012) 0.128 (0.017) 1.458 (0.038)
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Appendix C: Table C.7. Estimated coefficients for the EGARCH model -      

 

  

comp LogL  s.e. β s.e. γ1 s.e. γ2 s.e. GED s.e.

1 -4,211.57 -0.365 (0.151) 0.990 (0.003) -0.021 (0.009) 0.103 (0.014) 1.407 (0.037)

2 -2,175.87 -1.537 (0.093) 0.979 (0.006) -0.028 (0.011) 0.119 (0.017) 1.376 (0.045)

3 -4,221.46 -0.318 (0.161) 0.990 (0.003) -0.019 (0.010) 0.115 (0.014) 1.369 (0.037)

4 -4,542.17 -0.102 (0.069) 0.940 (0.012) -0.080 (0.015) 0.205 (0.023) 1.261 (0.036)

5 -2,492.11 -1.330 (0.175) 0.988 (0.003) -0.028 (0.010) 0.150 (0.017) 1.303 (0.037)

6 -723.71 -2.357 (0.154) 0.986 (0.004) -0.010 (0.010) 0.138 (0.015) 1.234 (0.022)

7 -2,574.50 -1.304 (0.110) 0.984 (0.005) -0.025 (0.011) 0.114 (0.015) 1.431 (0.037)

8 -3,601.73 -0.698 (0.211) 0.993 (0.002) -0.025 (0.009) 0.112 (0.015) 1.293 (0.030)

9 -1,929.79 -1.686 (0.135) 0.990 (0.003) -0.012 (0.008) 0.090 (0.015) 1.252 (0.029)

10 -5,069.66 0.180 (0.135) 0.991 (0.003) -0.021 (0.009) 0.083 (0.012) 1.326 (0.032)

11 -4,643.96 -0.064 (0.072) 0.978 (0.005) -0.055 (0.010) 0.083 (0.014) 1.296 (0.036)

12 -5,046.66 0.119 (0.115) 0.988 (0.003) -0.074 (0.010) 0.089 (0.013) 1.349 (0.036)

13 -5,038.03 0.254 (0.134) 0.995 (0.002) -0.016 (0.006) 0.040 (0.007) 1.100 (0.018)

14 -3,910.68 -0.473 (0.190) 0.992 (0.002) -0.043 (0.010) 0.108 (0.014) 1.176 (0.034)

15 -3,316.45 -0.844 (0.127) 0.986 (0.004) -0.041 (0.012) 0.116 (0.015) 1.235 (0.029)

16 -4,587.15 -0.123 (0.108) 0.985 (0.004) -0.036 (0.011) 0.110 (0.014) 1.485 (0.048)

17 -2,917.51 -1.095 (0.094) 0.985 (0.004) -0.047 (0.010) 0.085 (0.015) 1.243 (0.037)

18 -1,450.62 -1.902 (0.079) 0.968 (0.008) -0.057 (0.013) 0.135 (0.019) 1.124 (0.029)

19 -4,430.47 -0.217 (0.112) 0.986 (0.004) -0.035 (0.011) 0.110 (0.016) 1.431 (0.047)

20 -4,172.95 -0.326 (0.083) 0.964 (0.008) -0.033 (0.012) 0.167 (0.017) 1.256 (0.032)

21 -3,581.90 -0.674 (0.092) 0.983 (0.004) -0.057 (0.011) 0.091 (0.016) 1.238 (0.033)

22 -4,230.62 -0.321 (0.147) 0.990 (0.003) -0.025 (0.010) 0.099 (0.014) 1.265 (0.022)

23 -4,164.03 -0.281 (0.163) 0.993 (0.002) -0.029 (0.008) 0.071 (0.011) 1.157 (0.019)

24 -4,345.68 -0.304 (0.185) 0.995 (0.002) -0.027 (0.008) 0.066 (0.011) 1.323 (0.023)

25 -3,458.43 -0.764 (0.161) 0.990 (0.003) -0.028 (0.011) 0.111 (0.016) 1.246 (0.036)

26 -4,239.28 -0.337 (0.145) 0.989 (0.003) -0.036 (0.009) 0.120 (0.014) 1.431 (0.043)

27 -2,307.52 -1.436 (0.137) 0.982 (0.004) -0.013 (0.010) 0.163 (0.017) 1.175 (0.029)

28 -1,648.08 -1.780 (0.113) 0.980 (0.006) -0.016 (0.011) 0.133 (0.017) 1.124 (0.019)

29 -2,662.52 -1.216 (0.147) 0.973 (0.006) -0.045 (0.012) 0.261 (0.020) 1.140 (0.028)

30 -3,596.37 -0.674 (0.122) 0.982 (0.004) -0.046 (0.010) 0.143 (0.015) 1.254 (0.036)

31 -1,438.10 -1.947 (0.101) 0.974 (0.006) -0.028 (0.012) 0.159 (0.019) 1.201 (0.035)

32 -4,167.68 -0.296 (0.088) 0.974 (0.006) -0.067 (0.012) 0.126 (0.018) 1.129 (0.024)

33 -6,139.54 0.830 (0.213) 0.994 (0.002) -0.024 (0.009) 0.103 (0.014) 1.462 (0.037)

34 -4,150.77 -0.353 (0.097) 0.981 (0.005) -0.024 (0.010) 0.112 (0.014) 1.353 (0.030)

35 -4,189.53 -0.331 (0.100) 0.981 (0.004) -0.081 (0.012) 0.117 (0.017) 1.323 (0.041)

36 -3,801.18 -0.562 (0.115) 0.985 (0.003) -0.076 (0.012) 0.116 (0.015) 1.341 (0.035)

37 -4,935.58 0.063 (0.095) 0.979 (0.004) -0.094 (0.011) 0.128 (0.016) 1.468 (0.049)

38 -3,417.34 -0.728 (0.105) 0.983 (0.005) -0.042 (0.010) 0.108 (0.017) 1.162 (0.022)

39 -4,694.63 -0.015 (0.101) 0.988 (0.004) -0.028 (0.010) 0.075 (0.013) 1.255 (0.027)

40 -3,839.81 -0.531 (0.125) 0.986 (0.003) -0.049 (0.011) 0.114 (0.015) 1.221 (0.033)

41 -3,725.93 -0.597 (0.149) 0.992 (0.002) -0.023 (0.009) 0.078 (0.012) 1.296 (0.039)

42 -4,325.39 -0.206 (0.117) 0.989 (0.004) -0.029 (0.010) 0.080 (0.014) 1.113 (0.027)

43 -4,182.56 -0.302 (0.143) 0.990 (0.003) -0.026 (0.010) 0.098 (0.014) 1.230 (0.028)

44 -2,386.62 -1.352 (0.101) 0.975 (0.005) -0.019 (0.012) 0.145 (0.018) 1.097 (0.028)

45 -2,845.91 -1.142 (0.129) 0.990 (0.003) -0.014 (0.009) 0.081 (0.012) 1.212 (0.031)

46 -4,574.30 -0.068 (0.059) 0.925 (0.015) -0.077 (0.017) 0.170 (0.021) 1.162 (0.031)

47 -3,447.89 -0.694 (0.082) 0.974 (0.008) -0.045 (0.012) 0.109 (0.018) 1.028 (0.019)

48 -4,720.11 -0.016 (0.153) 0.995 (0.002) -0.025 (0.007) 0.050 (0.010) 1.313 (0.030)

49 -6,056.36 0.776 (0.075) 0.977 (0.007) -0.027 (0.009) 0.093 (0.017) 1.349 (0.038)

50 -2,958.08 -1.071 (0.087) 0.967 (0.007) -0.060 (0.012) 0.169 (0.020) 1.303 (0.030)

51 -3,453.87 -0.781 (0.113) 0.986 (0.003) -0.046 (0.010) 0.099 (0.016) 1.288 (0.039)

52 -3,861.80 -0.552 (0.096) 0.979 (0.005) -0.036 (0.012) 0.126 (0.016) 1.460 (0.038)
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Appendix C: Table C.8. Estimated coefficients for the EGARCH model -        

 

  

comp LogL  s.e. β s.e. γ1 s.e. γ2 s.e. GED s.e.

1 -4,131.64 -0.405 (0.144) 0.989 (0.003) -0.022 (0.009) 0.107 (0.014) 1.410 (0.038)

2 -2,081.46 -1.590 (0.096) 0.979 (0.006) -0.032 (0.011) 0.126 (0.017) 1.360 (0.044)

3 -4,244.41 -0.305 (0.166) 0.990 (0.003) -0.018 (0.010) 0.116 (0.014) 1.377 (0.038)

4 -4,570.46 -0.086 (0.071) 0.942 (0.012) -0.075 (0.015) 0.206 (0.024) 1.260 (0.037)

5 -2,387.05 -1.391 (0.184) 0.988 (0.003) -0.027 (0.010) 0.156 (0.017) 1.292 (0.036)

6 -551.01 -2.464 (0.213) 0.990 (0.003) -0.003 (0.010) 0.150 (0.015) 1.205 (0.022)

7 -2,544.97 -1.322 (0.108) 0.983 (0.005) -0.023 (0.011) 0.118 (0.016) 1.428 (0.037)

8 -3,571.66 -0.719 (0.230) 0.993 (0.002) -0.023 (0.009) 0.117 (0.015) 1.290 (0.031)

9 -1,904.57 -1.694 (0.135) 0.988 (0.004) -0.012 (0.009) 0.104 (0.016) 1.235 (0.029)

10 -5,069.02 0.184 (0.130) 0.990 (0.003) -0.022 (0.009) 0.084 (0.012) 1.320 (0.032)

11 -4,709.29 -0.024 (0.068) 0.975 (0.006) -0.058 (0.011) 0.083 (0.015) 1.298 (0.037)

12 -5,025.87 0.108 (0.112) 0.988 (0.003) -0.075 (0.010) 0.090 (0.013) 1.359 (0.036)

13 -5,053.70 0.262 (0.133) 0.995 (0.002) -0.015 (0.007) 0.042 (0.007) 1.101 (0.018)

14 -3,943.41 -0.449 (0.187) 0.992 (0.003) -0.045 (0.010) 0.110 (0.014) 1.175 (0.034)

15 -3,376.28 -0.808 (0.119) 0.985 (0.004) -0.045 (0.012) 0.119 (0.015) 1.238 (0.029)

16 -4,630.97 -0.097 (0.106) 0.984 (0.004) -0.038 (0.011) 0.111 (0.015) 1.487 (0.049)

17 -2,962.75 -1.065 (0.090) 0.984 (0.004) -0.049 (0.010) 0.086 (0.015) 1.250 (0.037)

18 -1,541.32 -1.847 (0.083) 0.970 (0.007) -0.060 (0.013) 0.134 (0.019) 1.115 (0.030)

19 -4,493.93 -0.176 (0.111) 0.985 (0.004) -0.038 (0.011) 0.109 (0.016) 1.421 (0.047)

20 -4,196.96 -0.312 (0.082) 0.964 (0.008) -0.036 (0.012) 0.166 (0.017) 1.260 (0.032)

21 -3,614.89 -0.651 (0.097) 0.984 (0.004) -0.059 (0.011) 0.095 (0.016) 1.235 (0.033)

22 -4,256.51 -0.305 (0.143) 0.989 (0.003) -0.028 (0.011) 0.101 (0.014) 1.259 (0.023)

23 -4,150.84 -0.282 (0.160) 0.993 (0.002) -0.029 (0.008) 0.072 (0.011) 1.156 (0.019)

24 -4,341.66 -0.303 (0.179) 0.995 (0.002) -0.028 (0.008) 0.068 (0.012) 1.316 (0.023)

25 -3,518.98 -0.727 (0.155) 0.990 (0.003) -0.030 (0.011) 0.111 (0.016) 1.253 (0.036)

26 -4,171.19 -0.376 (0.147) 0.988 (0.003) -0.034 (0.009) 0.124 (0.015) 1.444 (0.044)

27 -2,212.12 -1.507 (0.155) 0.985 (0.004) -0.007 (0.009) 0.159 (0.016) 1.198 (0.030)

28 -1,609.97 -1.793 (0.131) 0.984 (0.005) -0.014 (0.011) 0.128 (0.015) 1.096 (0.018)

29 -2,712.33 -1.184 (0.153) 0.975 (0.006) -0.045 (0.012) 0.253 (0.020) 1.129 (0.028)

30 -3,688.31 -0.617 (0.115) 0.981 (0.005) -0.047 (0.010) 0.144 (0.016) 1.259 (0.037)

31 -1,258.27 -2.061 (0.118) 0.979 (0.005) -0.019 (0.011) 0.159 (0.019) 1.205 (0.035)

32 -4,247.00 -0.249 (0.093) 0.976 (0.005) -0.067 (0.012) 0.128 (0.018) 1.130 (0.025)

33 -6,047.60 0.774 (0.218) 0.994 (0.002) -0.019 (0.009) 0.104 (0.014) 1.456 (0.037)

34 -4,142.32 -0.357 (0.097) 0.980 (0.005) -0.025 (0.010) 0.117 (0.014) 1.353 (0.030)

35 -4,264.03 -0.283 (0.100) 0.981 (0.004) -0.083 (0.012) 0.117 (0.017) 1.319 (0.041)

36 -3,847.16 -0.520 (0.112) 0.984 (0.003) -0.078 (0.012) 0.117 (0.015) 1.326 (0.035)

37 -4,995.39 0.100 (0.096) 0.979 (0.004) -0.094 (0.011) 0.130 (0.016) 1.470 (0.050)

38 -3,512.17 -0.667 (0.107) 0.983 (0.005) -0.042 (0.010) 0.109 (0.017) 1.160 (0.022)

39 -4,650.03 -0.041 (0.098) 0.987 (0.004) -0.030 (0.010) 0.078 (0.013) 1.256 (0.027)

40 -3,845.99 -0.525 (0.121) 0.985 (0.003) -0.051 (0.011) 0.115 (0.015) 1.226 (0.033)

41 -3,748.59 -0.582 (0.150) 0.992 (0.002) -0.022 (0.009) 0.082 (0.013) 1.286 (0.039)

42 -4,330.90 -0.195 (0.120) 0.989 (0.004) -0.029 (0.010) 0.083 (0.014) 1.098 (0.027)

43 -4,216.02 -0.283 (0.134) 0.989 (0.004) -0.030 (0.010) 0.101 (0.014) 1.233 (0.028)

44 -2,547.84 -1.255 (0.095) 0.970 (0.006) -0.026 (0.013) 0.160 (0.019) 1.101 (0.029)

45 -3,020.82 -1.038 (0.122) 0.989 (0.004) -0.018 (0.009) 0.087 (0.013) 1.222 (0.031)

46 -4,581.75 -0.053 (0.071) 0.947 (0.011) -0.068 (0.016) 0.165 (0.016) 1.125 (0.030)

47 -3,564.73 -0.621 (0.068) 0.960 (0.011) -0.052 (0.013) 0.124 (0.020) 1.037 (0.020)

48 -4,747.30 0.001 (0.150) 0.995 (0.002) -0.025 (0.007) 0.052 (0.010) 1.308 (0.030)

49 -6,038.61 0.766 (0.075) 0.977 (0.007) -0.026 (0.009) 0.094 (0.017) 1.352 (0.038)

50 -3,127.46 -0.973 (0.091) 0.969 (0.006) -0.061 (0.012) 0.168 (0.021) 1.315 (0.030)

51 -3,559.67 -0.717 (0.105) 0.985 (0.004) -0.050 (0.010) 0.104 (0.016) 1.298 (0.040)

52 -3,875.43 -0.541 (0.094) 0.978 (0.005) -0.039 (0.012) 0.127 (0.017) 1.446 (0.038)
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Appendix C: Table C.9. Estimated coefficients for the IGARCH model - Equity 

 

  

comp LogL  s.e. 1β s.e. β GED s.e.

1 -7,109.72 0.033 (0.009) 0.071 (0.010) 0.929 1.245 (0.030)

2 -6,517.65 0.010 (0.004) 0.047 (0.006) 0.953 1.337 (0.042)

3 -6,856.32 0.018 (0.006) 0.061 (0.008) 0.939 1.371 (0.038)

4 -7,182.72 0.086 (0.019) 0.140 (0.014) 0.860 1.207 (0.037)

5 -6,716.72 0.035 (0.009) 0.087 (0.011) 0.913 1.261 (0.034)

6 -7,603.75 0.027 (0.008) 0.059 (0.008) 0.941 1.194 (0.022)

7 -7,377.15 0.017 (0.006) 0.051 (0.006) 0.949 1.425 (0.038)

8 -7,161.37 0.013 (0.005) 0.043 (0.006) 0.957 1.247 (0.031)

9 -6,725.87 0.009 (0.004) 0.034 (0.006) 0.966 1.210 (0.030)

10 -6,582.38 0.011 (0.004) 0.045 (0.007) 0.955 1.233 (0.033)

11 -6,471.34 0.012 (0.004) 0.045 (0.007) 0.955 1.237 (0.033)

12 -6,260.00 0.013 (0.004) 0.055 (0.007) 0.945 1.289 (0.034)

13 -6,608.87 0.119 (0.022) 0.148 (0.018) 0.852 1.016 (0.015)

14 -6,312.46 0.013 (0.004) 0.054 (0.008) 0.946 1.124 (0.033)

15 -5,773.04 0.009 (0.003) 0.050 (0.006) 0.950 1.199 (0.028)

16 -5,558.56 0.010 (0.003) 0.059 (0.008) 0.941 1.417 (0.044)

17 -6,349.86 0.010 (0.004) 0.048 (0.007) 0.952 1.194 (0.033)

18 -6,003.31 0.037 (0.009) 0.096 (0.013) 0.904 1.025 (0.028)

19 -5,377.09 0.008 (0.003) 0.056 (0.007) 0.944 1.328 (0.045)

20 -5,635.65 0.021 (0.005) 0.085 (0.010) 0.915 1.239 (0.034)

21 -5,786.47 0.006 (0.003) 0.036 (0.006) 0.964 1.193 (0.033)

22 -5,803.71 0.005 (0.002) 0.030 (0.005) 0.970 1.174 (0.022)

23 -6,194.70 0.014 (0.004) 0.046 (0.006) 0.954 1.006 (0.018)

24 -6,097.68 0.021 (0.005) 0.071 (0.010) 0.929 1.194 (0.021)

25 -5,329.27 0.005 (0.002) 0.042 (0.006) 0.958 1.223 (0.036)

26 -6,034.92 0.017 (0.004) 0.073 (0.009) 0.927 1.327 (0.038)

27 -6,229.66 0.038 (0.008) 0.095 (0.010) 0.905 1.131 (0.026)

28 -5,956.76 0.044 (0.010) 0.101 (0.012) 0.899 1.021 (0.018)

29 -5,738.19 0.049 (0.009) 0.165 (0.015) 0.835 1.123 (0.029)

30 -6,358.37 0.024 (0.006) 0.081 (0.009) 0.919 1.197 (0.034)

31 -6,404.00 0.024 (0.007) 0.071 (0.009) 0.929 1.164 (0.034)

32 -6,262.81 0.037 (0.009) 0.085 (0.011) 0.915 1.072 (0.025)

33 -7,839.68 0.028 (0.009) 0.059 (0.008) 0.941 1.410 (0.038)

34 -6,316.25 0.038 (0.009) 0.090 (0.011) 0.910 1.250 (0.031)

35 -6,282.10 0.026 (0.007) 0.077 (0.010) 0.923 1.258 (0.039)

36 -6,826.22 0.026 (0.007) 0.082 (0.009) 0.918 1.269 (0.037)

37 -6,286.09 0.029 (0.008) 0.094 (0.011) 0.906 1.387 (0.048)

38 -5,875.00 0.017 (0.005) 0.059 (0.009) 0.941 1.104 (0.022)

39 -6,730.79 0.017 (0.005) 0.045 (0.006) 0.955 1.126 (0.023)

40 -6,131.39 0.012 (0.004) 0.054 (0.007) 0.946 1.191 (0.033)

41 -7,014.73 0.008 (0.004) 0.037 (0.006) 0.963 1.252 (0.037)

42 -6,780.47 0.007 (0.003) 0.031 (0.004) 0.969 1.067 (0.028)

43 -6,435.03 0.024 (0.006) 0.065 (0.008) 0.935 1.129 (0.028)

44 -5,683.26 0.028 (0.006) 0.089 (0.010) 0.911 1.058 (0.025)

45 -6,162.73 0.005 (0.002) 0.028 (0.004) 0.972 1.194 (0.031)

46 -7,628.74 0.033 (0.011) 0.063 (0.007) 0.937 1.142 (0.035)

47 -6,203.55 0.045 (0.010) 0.090 (0.009) 0.910 0.964 (0.020)

48 -6,054.13 0.004 (0.002) 0.027 (0.005) 0.973 1.196 (0.027)

49 -7,321.81 0.007 (0.003) 0.027 (0.004) 0.973 1.311 (0.037)

50 -5,783.66 0.032 (0.007) 0.111 (0.013) 0.889 1.249 (0.031)

51 -5,728.70 0.011 (0.003) 0.056 (0.008) 0.944 1.248 (0.038)

52 -6,304.80 0.020 (0.005) 0.073 (0.009) 0.927 1.396 (0.044)
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Appendix C: Table C.10. Estimated coefficients for the IGARCH model -     

 

  

comp LogL  s.e. 1β s.e. β GED s.e.

1 -4,182.52 0.002 (0.001) 0.039 (0.006) 0.961 1.376 (0.035)

2 -2,161.37 0.001 (0.000) 0.037 (0.005) 0.963 1.358 (0.043)

3 -4,270.63 0.003 (0.001) 0.053 (0.007) 0.947 1.361 (0.037)

4 -4,626.74 0.023 (0.005) 0.133 (0.015) 0.867 1.228 (0.038)

5 -2,497.48 0.001 (0.000) 0.061 (0.007) 0.939 1.308 (0.035)

6 -736.78 0.000 (0.000) 0.044 (0.006) 0.956 1.230 (0.021)

7 -2,595.88 0.001 (0.000) 0.043 (0.006) 0.957 1.432 (0.037)

8 -3,659.65 0.001 (0.000) 0.036 (0.006) 0.964 1.275 (0.029)

9 -1,994.77 0.000 (0.000) 0.034 (0.005) 0.966 1.237 (0.029)

10 -5,085.00 0.004 (0.001) 0.036 (0.006) 0.964 1.298 (0.033)

11 -4,715.95 0.003 (0.001) 0.036 (0.006) 0.964 1.255 (0.034)

12 -5,050.65 0.005 (0.002) 0.048 (0.007) 0.952 1.295 (0.034)

13 -5,034.37 0.033 (0.007) 0.114 (0.015) 0.886 1.055 (0.016)

14 -3,942.65 0.001 (0.000) 0.033 (0.005) 0.967 1.151 (0.033)

15 -3,384.88 0.002 (0.001) 0.045 (0.006) 0.955 1.204 (0.028)

16 -4,610.56 0.005 (0.002) 0.054 (0.007) 0.946 1.460 (0.048)

17 -3,003.50 0.001 (0.000) 0.037 (0.006) 0.963 1.200 (0.033)

18 -1,575.89 0.002 (0.000) 0.070 (0.009) 0.930 1.074 (0.028)

19 -4,403.48 0.004 (0.001) 0.050 (0.007) 0.950 1.401 (0.048)

20 -4,160.52 0.009 (0.002) 0.082 (0.009) 0.918 1.232 (0.034)

21 -3,641.65 0.001 (0.001) 0.030 (0.005) 0.970 1.218 (0.033)

22 -4,235.56 0.002 (0.001) 0.030 (0.005) 0.970 1.234 (0.022)

23 -4,185.71 0.002 (0.001) 0.028 (0.004) 0.972 1.116 (0.018)

24 -4,372.21 0.005 (0.002) 0.054 (0.009) 0.946 1.286 (0.021)

25 -3,516.95 0.001 (0.001) 0.038 (0.006) 0.962 1.225 (0.035)

26 -4,217.98 0.004 (0.001) 0.059 (0.008) 0.941 1.400 (0.044)

27 -2,323.85 0.003 (0.001) 0.087 (0.009) 0.913 1.151 (0.029)

28 -1,661.65 0.003 (0.001) 0.101 (0.013) 0.899 1.083 (0.018)

29 -2,693.87 0.009 (0.002) 0.168 (0.015) 0.832 1.141 (0.028)

30 -3,645.51 0.005 (0.001) 0.075 (0.009) 0.925 1.219 (0.035)

31 -1,430.18 0.001 (0.000) 0.057 (0.008) 0.943 1.181 (0.034)

32 -4,252.50 0.002 (0.001) 0.035 (0.005) 0.965 1.081 (0.024)

33 -6,167.04 0.008 (0.003) 0.049 (0.007) 0.951 1.435 (0.037)

34 -4,151.93 0.004 (0.001) 0.052 (0.006) 0.948 1.331 (0.032)

35 -4,273.17 0.005 (0.002) 0.062 (0.008) 0.938 1.276 (0.039)

36 -3,875.81 0.003 (0.001) 0.065 (0.008) 0.935 1.305 (0.037)

37 -4,971.43 0.008 (0.003) 0.077 (0.009) 0.923 1.419 (0.049)

38 -3,489.00 0.003 (0.001) 0.051 (0.008) 0.949 1.125 (0.022)

39 -4,717.79 0.003 (0.001) 0.031 (0.005) 0.969 1.204 (0.027)

40 -3,874.33 0.002 (0.001) 0.044 (0.006) 0.956 1.201 (0.033)

41 -3,749.88 0.001 (0.001) 0.033 (0.005) 0.967 1.270 (0.037)

42 -4,262.65 0.001 (0.001) 0.023 (0.004) 0.977 1.092 (0.028)

43 -4,203.02 0.004 (0.001) 0.046 (0.006) 0.954 1.196 (0.029)

44 -2,454.28 0.002 (0.001) 0.062 (0.007) 0.938 1.073 (0.026)

45 -2,950.28 0.001 (0.000) 0.028 (0.004) 0.972 1.191 (0.031)

46 -4,476.53 0.004 (0.002) 0.044 (0.007) 0.956 1.175 (0.037)

47 -3,551.36 0.002 (0.001) 0.029 (0.004) 0.971 0.983 (0.019)

48 -4,733.14 0.001 (0.001) 0.021 (0.004) 0.979 1.283 (0.030)

49 -6,082.26 0.002 (0.001) 0.020 (0.004) 0.980 1.319 (0.037)

50 -3,031.15 0.006 (0.001) 0.103 (0.012) 0.897 1.263 (0.031)

51 -3,517.32 0.002 (0.001) 0.045 (0.007) 0.955 1.259 (0.038)

52 -3,861.24 0.003 (0.001) 0.054 (0.007) 0.946 1.436 (0.041)
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Appendix C: Table C.11. Estimated coefficients for the IGARCH model -      

 

  

comp LogL  s.e. 1β s.e. β GED s.e.

1 -4,221.00 0.002 (0.001) 0.040 (0.006) 0.960 1.380 (0.036)

2 -2,176.22 0.001 (0.000) 0.037 (0.005) 0.963 1.356 (0.043)

3 -4,226.41 0.003 (0.001) 0.053 (0.007) 0.947 1.360 (0.037)

4 -4,572.47 0.022 (0.005) 0.133 (0.015) 0.867 1.227 (0.038)

5 -2,488.74 0.001 (0.000) 0.061 (0.007) 0.939 1.310 (0.035)

6 -722.25 0.000 (0.000) 0.045 (0.006) 0.955 1.230 (0.021)

7 -2,567.63 0.001 (0.000) 0.043 (0.006) 0.957 1.432 (0.038)

8 -3,608.71 0.001 (0.000) 0.036 (0.005) 0.964 1.276 (0.029)

9 -1,937.48 0.000 (0.000) 0.034 (0.005) 0.966 1.238 (0.029)

10 -5,074.87 0.004 (0.001) 0.037 (0.006) 0.963 1.302 (0.033)

11 -4,666.10 0.003 (0.001) 0.036 (0.006) 0.964 1.255 (0.034)

12 -5,081.19 0.005 (0.002) 0.049 (0.007) 0.951 1.293 (0.034)

13 -5,075.37 0.034 (0.007) 0.115 (0.015) 0.885 1.055 (0.016)

14 -3,930.39 0.001 (0.001) 0.034 (0.005) 0.966 1.150 (0.033)

15 -3,330.77 0.002 (0.001) 0.045 (0.006) 0.955 1.204 (0.028)

16 -4,594.76 0.005 (0.002) 0.054 (0.007) 0.946 1.464 (0.049)

17 -2,937.09 0.001 (0.000) 0.036 (0.006) 0.964 1.200 (0.033)

18 -1,475.37 0.002 (0.000) 0.069 (0.009) 0.931 1.077 (0.028)

19 -4,442.12 0.004 (0.001) 0.051 (0.007) 0.949 1.400 (0.048)

20 -4,184.66 0.009 (0.002) 0.084 (0.010) 0.916 1.232 (0.034)

21 -3,598.57 0.001 (0.000) 0.028 (0.005) 0.972 1.222 (0.033)

22 -4,244.94 0.002 (0.001) 0.031 (0.005) 0.969 1.241 (0.023)

23 -4,181.59 0.002 (0.001) 0.030 (0.004) 0.970 1.126 (0.018)

24 -4,362.80 0.005 (0.002) 0.054 (0.009) 0.946 1.290 (0.022)

25 -3,469.14 0.001 (0.001) 0.038 (0.006) 0.962 1.223 (0.035)

26 -4,246.59 0.004 (0.001) 0.060 (0.008) 0.940 1.407 (0.044)

27 -2,313.47 0.003 (0.001) 0.088 (0.010) 0.912 1.152 (0.029)

28 -1,663.80 0.003 (0.001) 0.103 (0.013) 0.897 1.086 (0.018)

29 -2,672.52 0.009 (0.002) 0.168 (0.015) 0.832 1.142 (0.028)

30 -3,613.00 0.005 (0.001) 0.075 (0.009) 0.925 1.217 (0.034)

31 -1,447.14 0.001 (0.000) 0.059 (0.008) 0.941 1.177 (0.034)

32 -4,206.08 0.002 (0.001) 0.035 (0.005) 0.965 1.081 (0.024)

33 -6,143.18 0.007 (0.003) 0.049 (0.007) 0.951 1.439 (0.037)

34 -4,155.11 0.004 (0.001) 0.051 (0.006) 0.949 1.333 (0.032)

35 -4,216.99 0.004 (0.001) 0.061 (0.008) 0.939 1.277 (0.039)

36 -3,828.81 0.003 (0.001) 0.066 (0.008) 0.934 1.304 (0.037)

37 -4,967.02 0.008 (0.003) 0.076 (0.009) 0.924 1.415 (0.049)

38 -3,440.79 0.003 (0.001) 0.051 (0.008) 0.949 1.125 (0.022)

39 -4,710.96 0.003 (0.001) 0.032 (0.005) 0.968 1.221 (0.027)

40 -3,855.06 0.002 (0.001) 0.044 (0.006) 0.956 1.201 (0.033)

41 -3,731.48 0.001 (0.000) 0.032 (0.005) 0.968 1.275 (0.037)

42 -4,336.08 0.001 (0.001) 0.024 (0.004) 0.976 1.092 (0.028)

43 -4,194.90 0.003 (0.001) 0.046 (0.006) 0.954 1.204 (0.029)

44 -2,394.17 0.002 (0.001) 0.060 (0.007) 0.940 1.073 (0.026)

45 -2,853.81 0.001 (0.000) 0.027 (0.004) 0.973 1.190 (0.031)

46 -4,588.20 0.005 (0.002) 0.047 (0.007) 0.953 1.175 (0.038)

47 -3,492.45 0.002 (0.001) 0.029 (0.004) 0.971 0.983 (0.019)

48 -4,734.72 0.001 (0.001) 0.022 (0.004) 0.978 1.290 (0.030)

49 -6,067.52 0.002 (0.001) 0.020 (0.004) 0.980 1.319 (0.037)

50 -2,981.91 0.006 (0.001) 0.103 (0.012) 0.897 1.260 (0.031)

51 -3,470.96 0.002 (0.001) 0.045 (0.007) 0.955 1.257 (0.038)

52 -3,873.29 0.003 (0.001) 0.054 (0.007) 0.946 1.439 (0.041)
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Appendix C: Table C.12. Estimated coefficients for the IGARCH model -        

 

  

comp LogL  s.e. 1β s.e. β GED s.e.

1 -4,141.26 0.002 (0.001) 0.040 (0.006) 0.960 1.383 (0.036)

2 -2,082.87 0.001 (0.000) 0.040 (0.006) 0.960 1.345 (0.042)

3 -4,249.59 0.003 (0.001) 0.055 (0.007) 0.945 1.368 (0.038)

4 -4,598.25 0.023 (0.005) 0.134 (0.015) 0.866 1.225 (0.038)

5 -2,379.83 0.001 (0.000) 0.066 (0.007) 0.934 1.306 (0.035)

6 -551.35 0.000 (0.000) 0.049 (0.006) 0.951 1.206 (0.020)

7 -2,538.72 0.001 (0.000) 0.046 (0.006) 0.954 1.428 (0.037)

8 -3,578.10 0.001 (0.000) 0.038 (0.006) 0.962 1.274 (0.029)

9 -1,913.35 0.001 (0.000) 0.037 (0.006) 0.963 1.222 (0.030)

10 -5,074.90 0.004 (0.001) 0.037 (0.006) 0.963 1.295 (0.033)

11 -4,732.92 0.003 (0.001) 0.037 (0.006) 0.963 1.252 (0.034)

12 -5,061.00 0.005 (0.002) 0.049 (0.007) 0.951 1.301 (0.034)

13 -5,090.83 0.033 (0.007) 0.112 (0.015) 0.888 1.056 (0.016)

14 -3,963.36 0.001 (0.001) 0.035 (0.005) 0.965 1.149 (0.033)

15 -3,392.59 0.002 (0.001) 0.047 (0.006) 0.953 1.205 (0.029)

16 -4,638.59 0.005 (0.002) 0.055 (0.007) 0.945 1.466 (0.049)

17 -2,981.78 0.001 (0.000) 0.038 (0.006) 0.962 1.208 (0.033)

18 -1,566.65 0.002 (0.001) 0.073 (0.009) 0.927 1.065 (0.028)

19 -4,506.30 0.004 (0.001) 0.051 (0.007) 0.949 1.387 (0.047)

20 -4,208.60 0.009 (0.002) 0.081 (0.009) 0.919 1.238 (0.035)

21 -3,632.99 0.001 (0.001) 0.031 (0.005) 0.969 1.216 (0.033)

22 -4,271.35 0.002 (0.001) 0.032 (0.005) 0.968 1.234 (0.023)

23 -4,168.20 0.002 (0.001) 0.029 (0.004) 0.971 1.124 (0.018)

24 -4,358.84 0.005 (0.002) 0.057 (0.009) 0.943 1.284 (0.022)

25 -3,530.38 0.002 (0.001) 0.040 (0.006) 0.960 1.228 (0.036)

26 -4,178.03 0.004 (0.001) 0.062 (0.008) 0.938 1.422 (0.045)

27 -2,216.68 0.002 (0.001) 0.081 (0.009) 0.919 1.179 (0.029)

28 -1,630.69 0.002 (0.001) 0.086 (0.011) 0.914 1.062 (0.018)

29 -2,723.65 0.009 (0.002) 0.160 (0.014) 0.840 1.128 (0.028)

30 -3,706.76 0.005 (0.001) 0.075 (0.009) 0.925 1.219 (0.035)

31 -1,262.27 0.001 (0.000) 0.053 (0.007) 0.947 1.191 (0.035)

32 -4,285.56 0.003 (0.001) 0.038 (0.005) 0.962 1.081 (0.024)

33 -6,050.25 0.007 (0.003) 0.048 (0.007) 0.952 1.435 (0.037)

34 -4,147.46 0.004 (0.001) 0.055 (0.007) 0.945 1.332 (0.032)

35 -4,291.70 0.005 (0.002) 0.063 (0.008) 0.937 1.273 (0.039)

36 -3,874.61 0.003 (0.001) 0.065 (0.008) 0.935 1.290 (0.036)

37 -5,027.14 0.009 (0.003) 0.079 (0.009) 0.921 1.416 (0.049)

38 -3,536.15 0.003 (0.001) 0.053 (0.008) 0.947 1.125 (0.023)

39 -4,667.25 0.003 (0.001) 0.033 (0.005) 0.967 1.221 (0.028)

40 -3,861.45 0.002 (0.001) 0.046 (0.007) 0.954 1.204 (0.033)

41 -3,752.85 0.001 (0.001) 0.034 (0.005) 0.966 1.268 (0.037)

42 -4,341.16 0.001 (0.001) 0.024 (0.004) 0.976 1.077 (0.028)

43 -4,229.72 0.004 (0.001) 0.050 (0.007) 0.950 1.204 (0.029)

44 -2,556.96 0.004 (0.001) 0.079 (0.009) 0.921 1.075 (0.026)

45 -3,030.35 0.001 (0.000) 0.030 (0.005) 0.970 1.198 (0.031)

46 -4,589.06 0.004 (0.002) 0.046 (0.007) 0.954 1.156 (0.037)

47 -3,609.01 0.001 (0.001) 0.025 (0.004) 0.975 0.990 (0.020)

48 -4,762.16 0.001 (0.001) 0.022 (0.004) 0.978 1.284 (0.030)

49 -6,049.81 0.002 (0.001) 0.020 (0.004) 0.980 1.323 (0.037)

50 -3,151.86 0.006 (0.001) 0.103 (0.013) 0.897 1.271 (0.032)

51 -3,578.06 0.002 (0.001) 0.047 (0.007) 0.953 1.264 (0.039)

52 -3,887.10 0.003 (0.001) 0.054 (0.007) 0.946 1.424 (0.041)
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Appendix C: Table C.13. Estimated coefficients for the FIGARCH model - Equity 

 

  

comp LogL  s.e. α s.e. β s.e. d s.e. GED s.e.

1 -7,099.67 0.180 (0.063) 0.197 (0.072) 0.516 (0.091) 0.386 (0.061) 1.277 (0.029)

2 -6,518.65 0.084 (0.031) 0.281 (0.053) 0.627 (0.067) 0.419 (0.067) 1.347 (0.042)

3 -6,850.43 0.148 (0.051) 0.195 (0.054) 0.515 (0.077) 0.367 (0.057) 1.396 (0.040)

4 -7,174.53 0.204 (0.074) 0.188 (0.093) 0.441 (0.114) 0.399 (0.062) 1.228 (0.037)

5 -6,708.37 0.125 (0.038) 0.144 (0.051) 0.553 (0.081) 0.447 (0.068) 1.290 (0.035)

6 -7,599.35 0.164 (0.057) 0.308 (0.063) 0.606 (0.074) 0.421 (0.068) 1.211 (0.022)

7 -7,379.29 0.103 (0.037) 0.259 (0.042) 0.676 (0.058) 0.463 (0.070) 1.429 (0.038)

8 -7,157.01 0.115 (0.042) 0.375 (0.059) 0.669 (0.064) 0.394 (0.068) 1.276 (0.034)

9 -6,717.71 0.228 (0.084) 0.315 (0.087) 0.546 (0.091) 0.315 (0.056) 1.222 (0.029)

10 -6,578.05 0.123 (0.047) 0.358 (0.067) 0.618 (0.081) 0.363 (0.062) 1.254 (0.033)

11 -6,462.79 0.204 (0.076) 0.221 (0.082) 0.486 (0.101) 0.302 (0.050) 1.274 (0.036)

12 -6,251.06 0.199 (0.062) 0.077 (0.088) 0.353 (0.106) 0.308 (0.042) 1.311 (0.034)

13 -6,600.62 0.298 (0.109) 0.293 (0.114) 0.478 (0.136) 0.315 (0.056) 1.043 (0.015)

14 -6,305.39 0.067 (0.025) 0.303 (0.054) 0.670 (0.062) 0.453 (0.073) 1.142 (0.033)

15 -5,762.78 0.047 (0.018) 0.481 (0.066) 0.729 (0.057) 0.418 (0.073) 1.216 (0.027)

16 -5,549.83 0.117 (0.047) 0.293 (0.092) 0.510 (0.105) 0.294 (0.051) 1.436 (0.046)

17 -6,347.24 0.071 (0.026) 0.378 (0.054) 0.688 (0.057) 0.404 (0.066) 1.215 (0.033)

18 -5,996.91 0.122 (0.044) 0.269 (0.080) 0.563 (0.104) 0.411 (0.078) 1.051 (0.028)

19 -5,368.68 0.053 (0.021) 0.387 (0.056) 0.663 (0.063) 0.373 (0.061) 1.356 (0.045)

20 -5,623.83 0.095 (0.036) 0.340 (0.082) 0.560 (0.094) 0.341 (0.053) 1.269 (0.034)

21 -5,779.60 0.155 (0.064) 0.372 (0.101) 0.556 (0.108) 0.265 (0.052) 1.215 (0.034)

22 -5,779.88 0.086 (0.029) 0.685 (0.083) 0.770 (0.062) 0.247 (0.047) 1.234 (0.032)

23 -6,184.13 0.121 (0.044) 0.329 (0.073) 0.606 (0.085) 0.385 (0.067) 1.030 (0.019)

24 -6,090.70 0.070 (0.024) 0.367 (0.067) 0.705 (0.062) 0.464 (0.081) 1.210 (0.021)

25 -5,321.78 0.080 (0.031) 0.338 (0.076) 0.581 (0.087) 0.331 (0.059) 1.246 (0.035)

26 -6,028.51 0.093 (0.030) 0.267 (0.071) 0.538 (0.091) 0.383 (0.060) 1.352 (0.041)

27 -6,216.57 0.158 (0.057) 0.185 (0.101) 0.445 (0.126) 0.367 (0.065) 1.165 (0.027)

28 -5,950.42 0.190 (0.056) 0.134 (0.096) 0.432 (0.124) 0.391 (0.070) 1.044 (0.019)

29 -5,726.28 0.067 (0.020) 0.240 (0.069) 0.579 (0.084) 0.542 (0.076) 1.132 (0.029)

30 -6,353.63 0.082 (0.029) 0.199 (0.057) 0.590 (0.084) 0.470 (0.074) 1.216 (0.033)

31 -6,392.09 0.166 (0.065) 0.311 (0.115) 0.499 (0.130) 0.343 (0.061) 1.197 (0.035)

32 -6,244.80 0.225 (0.091) 0.179 (0.148) 0.378 (0.160) 0.302 (0.049) 1.111 (0.025)

33 -7,838.51 0.091 (0.031) 0.108 (0.060) 0.808 (0.056) 0.724 (0.107) 1.411 (0.037)

34 -6,301.38 0.219 (0.091) 0.310 (0.118) 0.488 (0.137) 0.284 (0.051) 1.296 (0.032)

35 -6,272.40 0.186 (0.069) 0.194 (0.086) 0.452 (0.107) 0.320 (0.053) 1.295 (0.041)

36 -6,819.55 0.049 (0.020) 0.262 (0.052) 0.720 (0.055) 0.550 (0.081) 1.283 (0.037)

37 -6,274.99 0.114 (0.040) 0.112 (0.064) 0.480 (0.090) 0.427 (0.061) 1.415 (0.048)

38 -5,869.92 0.115 (0.045) 0.376 (0.081) 0.604 (0.085) 0.330 (0.059) 1.115 (0.021)

39 -6,719.75 0.437 (0.147) 0.011 (0.140) 0.227 (0.163) 0.286 (0.049) 1.149 (0.025)

40 -6,124.80 0.115 (0.043) 0.211 (0.071) 0.522 (0.093) 0.368 (0.060) 1.210 (0.033)

41 -7,016.96 0.096 (0.040) 0.374 (0.054) 0.694 (0.059) 0.413 (0.070) 1.262 (0.038)

42 -6,776.52 0.250 (0.088) 0.200 (0.095) 0.452 (0.107) 0.314 (0.050) 1.086 (0.028)

43 -6,423.76 0.099 (0.035) 0.381 (0.051) 0.682 (0.056) 0.392 (0.061) 1.157 (0.028)

44 -5,670.71 0.129 (0.042) 0.128 (0.088) 0.430 (0.111) 0.365 (0.060) 1.096 (0.027)

45 -6,160.01 0.212 (0.078) 0.332 (0.083) 0.543 (0.092) 0.264 (0.049) 1.213 (0.032)

46 -7,614.96 0.244 (0.089) 0.302 (0.082) 0.550 (0.091) 0.370 (0.060) 1.166 (0.035)

47 -6,184.84 0.975 (0.193) -0.727 (0.140) -0.677 (0.159) 0.200 (0.026) 0.991 (0.021)

48 -6,046.01 0.077 (0.023) 0.697 (0.062) 0.820 (0.042) 0.294 (0.044) 1.209 (0.024)

49 -7,321.66 0.181 (0.069) 0.393 (0.060) 0.671 (0.061) 0.353 (0.057) 1.330 (0.037)

50 -5,775.38 0.072 (0.022) 0.212 (0.062) 0.603 (0.077) 0.490 (0.075) 1.272 (0.031)

51 -5,722.66 0.069 (0.025) 0.362 (0.065) 0.643 (0.068) 0.383 (0.064) 1.267 (0.038)

52 -6,298.20 0.118 (0.043) 0.292 (0.074) 0.551 (0.091) 0.365 (0.058) 1.423 (0.044)
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Appendix C: Table C.14. Estimated coefficients for the FIGARCH model -     

 

  

comp LogL  s.e. α s.e. β s.e. d s.e. GED s.e.

1 -4,176.63 0.034 (0.012) 0.258 (0.064) 0.560 (0.079) 0.353 (0.055) 1.411 (0.037)

2 -2,162.01 0.010 (0.004) 0.371 (0.056) 0.645 (0.064) 0.348 (0.061) 1.375 (0.043)

3 -4,267.75 0.029 (0.010) 0.225 (0.048) 0.558 (0.071) 0.385 (0.063) 1.384 (0.039)

4 -4,616.38 0.131 (0.057) 0.110 (0.196) 0.247 (0.217) 0.268 (0.047) 1.269 (0.039)

5 -2,494.95 0.004 (0.001) 0.194 (0.044) 0.683 (0.061) 0.536 (0.079) 1.321 (0.036)

6 -731.57 0.006 (0.002) 0.329 (0.082) 0.541 (0.096) 0.343 (0.058) 1.249 (0.021)

7 -2,597.82 0.008 (0.003) 0.312 (0.043) 0.722 (0.049) 0.452 (0.070) 1.433 (0.037)

8 -3,662.80 0.008 (0.003) 0.378 (0.060) 0.781 (0.047) 0.511 (0.090) 1.288 (0.028)

9 -1,993.16 0.009 (0.003) 0.353 (0.068) 0.619 (0.067) 0.354 (0.060) 1.237 (0.028)

10 -5,077.15 0.073 (0.028) 0.443 (0.062) 0.647 (0.074) 0.299 (0.055) 1.324 (0.034)

11 -4,707.01 0.092 (0.035) 0.257 (0.086) 0.492 (0.104) 0.267 (0.048) 1.292 (0.037)

12 -5,042.46 0.109 (0.034) 0.089 (0.089) 0.357 (0.108) 0.297 (0.042) 1.321 (0.035)

13 -5,019.48 0.165 (0.073) 0.334 (0.160) 0.448 (0.177) 0.222 (0.041) 1.095 (0.015)

14 -3,940.39 0.014 (0.005) 0.331 (0.049) 0.701 (0.052) 0.442 (0.071) 1.170 (0.034)

15 -3,375.57 0.012 (0.004) 0.505 (0.065) 0.750 (0.052) 0.420 (0.072) 1.220 (0.028)

16 -4,602.47 0.059 (0.024) 0.291 (0.078) 0.538 (0.094) 0.312 (0.053) 1.482 (0.050)

17 -2,997.39 0.019 (0.007) 0.437 (0.063) 0.664 (0.064) 0.311 (0.056) 1.225 (0.034)

18 -1,564.15 0.019 (0.009) 0.247 (0.156) 0.409 (0.173) 0.253 (0.052) 1.113 (0.028)

19 -4,396.46 0.032 (0.013) 0.399 (0.054) 0.667 (0.061) 0.360 (0.059) 1.422 (0.047)

20 -4,144.42 0.053 (0.021) 0.355 (0.098) 0.531 (0.109) 0.287 (0.046) 1.274 (0.034)

21 -3,642.14 0.024 (0.009) 0.454 (0.067) 0.693 (0.059) 0.334 (0.059) 1.226 (0.033)

22 -4,217.98 0.032 (0.010) 0.656 (0.072) 0.769 (0.048) 0.276 (0.051) 1.279 (0.032)

23 -4,177.76 0.035 (0.013) 0.324 (0.060) 0.611 (0.076) 0.356 (0.059) 1.141 (0.020)

24 -4,364.82 0.035 (0.012) 0.345 (0.065) 0.630 (0.077) 0.384 (0.064) 1.311 (0.023)

25 -3,512.48 0.021 (0.008) 0.339 (0.064) 0.621 (0.072) 0.368 (0.062) 1.243 (0.035)

26 -4,214.65 0.027 (0.010) 0.334 (0.061) 0.607 (0.073) 0.372 (0.060) 1.420 (0.044)

27 -2,309.96 0.014 (0.005) 0.226 (0.102) 0.474 (0.120) 0.363 (0.061) 1.177 (0.028)

28 -1,654.05 0.020 (0.006) 0.058 (0.124) 0.281 (0.156) 0.334 (0.059) 1.102 (0.020)

29 -2,680.84 0.014 (0.004) 0.283 (0.070) 0.598 (0.082) 0.551 (0.079) 1.151 (0.029)

30 -3,638.80 0.025 (0.009) 0.223 (0.068) 0.539 (0.091) 0.389 (0.063) 1.243 (0.034)

31 -1,415.61 0.008 (0.004) 0.447 (0.124) 0.580 (0.128) 0.306 (0.057) 1.217 (0.035)

32 -4,237.88 0.072 (0.030) 0.224 (0.146) 0.414 (0.158) 0.297 (0.049) 1.112 (0.024)

33 -6,165.75 0.047 (0.017) 0.219 (0.046) 0.695 (0.054) 0.507 (0.074) 1.441 (0.035)

34 -4,142.43 0.054 (0.020) 0.295 (0.084) 0.518 (0.103) 0.301 (0.047) 1.361 (0.033)

35 -4,267.41 0.035 (0.013) 0.244 (0.059) 0.561 (0.079) 0.377 (0.062) 1.300 (0.040)

36 -3,869.38 0.010 (0.004) 0.302 (0.051) 0.719 (0.053) 0.498 (0.078) 1.325 (0.037)

37 -4,964.63 0.040 (0.015) 0.158 (0.055) 0.539 (0.078) 0.443 (0.064) 1.435 (0.048)

38 -3,482.25 0.033 (0.013) 0.405 (0.090) 0.601 (0.096) 0.302 (0.057) 1.145 (0.021)

39 -4,710.43 0.131 (0.052) 0.248 (0.136) 0.420 (0.148) 0.238 (0.046) 1.223 (0.026)

40 -3,868.91 0.033 (0.012) 0.243 (0.071) 0.534 (0.090) 0.342 (0.055) 1.219 (0.032)

41 -3,753.02 0.017 (0.007) 0.418 (0.055) 0.712 (0.054) 0.387 (0.066) 1.277 (0.038)

42 -4,257.74 0.108 (0.040) 0.169 (0.134) 0.360 (0.147) 0.246 (0.042) 1.109 (0.027)

43 -4,193.30 0.031 (0.011) 0.379 (0.045) 0.686 (0.055) 0.381 (0.061) 1.224 (0.031)

44 -2,446.47 0.016 (0.005) 0.172 (0.071) 0.515 (0.089) 0.405 (0.065) 1.100 (0.028)

45 -2,952.05 0.026 (0.009) 0.373 (0.074) 0.595 (0.076) 0.282 (0.050) 1.200 (0.030)

46 -4,462.80 0.077 (0.032) 0.323 (0.122) 0.493 (0.130) 0.289 (0.053) 1.193 (0.036)

47 -3,528.59 0.299 (0.064) -0.705 (0.173) -0.660 (0.192) 0.152 (0.025) 1.016 (0.020)

48 -4,729.40 0.043 (0.012) 0.661 (0.061) 0.798 (0.042) 0.277 (0.042) 1.287 (0.027)

49 -6,079.40 0.170 (0.070) 0.442 (0.079) 0.635 (0.082) 0.262 (0.052) 1.340 (0.038)

50 -3,023.38 0.015 (0.005) 0.249 (0.065) 0.602 (0.078) 0.457 (0.072) 1.286 (0.031)

51 -3,511.92 0.021 (0.007) 0.384 (0.064) 0.649 (0.065) 0.366 (0.060) 1.275 (0.038)

52 -3,854.40 0.030 (0.012) 0.369 (0.055) 0.624 (0.074) 0.344 (0.059) 1.464 (0.041)
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Appendix C: Table C.15. Estimated coefficients for the FIGARCH model -      

 

  

comp LogL  s.e. α s.e. β s.e. d s.e. GED s.e.

1 -4,215.30 0.035 (0.013) 0.247 (0.064) 0.556 (0.079) 0.356 (0.055) 1.414 (0.037)

2 -2,177.18 0.009 (0.004) 0.370 (0.055) 0.651 (0.063) 0.355 (0.062) 1.372 (0.043)

3 -4,223.32 0.029 (0.010) 0.224 (0.048) 0.554 (0.072) 0.382 (0.063) 1.384 (0.039)

4 -4,562.00 0.109 (0.047) 0.178 (0.169) 0.325 (0.189) 0.280 (0.050) 1.268 (0.039)

5 -2,486.24 0.004 (0.001) 0.195 (0.044) 0.682 (0.061) 0.534 (0.079) 1.323 (0.036)

6 -716.27 0.006 (0.002) 0.316 (0.093) 0.513 (0.108) 0.327 (0.056) 1.250 (0.021)

7 -2,569.55 0.007 (0.003) 0.313 (0.043) 0.722 (0.049) 0.451 (0.070) 1.433 (0.037)

8 -3,611.76 0.008 (0.003) 0.380 (0.059) 0.781 (0.047) 0.508 (0.089) 1.288 (0.028)

9 -1,936.04 0.009 (0.003) 0.354 (0.069) 0.616 (0.068) 0.350 (0.059) 1.236 (0.027)

10 -5,068.29 0.066 (0.025) 0.427 (0.059) 0.648 (0.071) 0.315 (0.056) 1.325 (0.034)

11 -4,657.31 0.088 (0.034) 0.256 (0.085) 0.493 (0.104) 0.269 (0.048) 1.291 (0.037)

12 -5,073.02 0.108 (0.034) 0.090 (0.088) 0.361 (0.107) 0.300 (0.042) 1.318 (0.035)

13 -5,061.70 0.155 (0.066) 0.332 (0.144) 0.459 (0.162) 0.236 (0.043) 1.092 (0.015)

14 -3,927.93 0.013 (0.005) 0.328 (0.049) 0.702 (0.053) 0.447 (0.071) 1.169 (0.034)

15 -3,321.35 0.012 (0.004) 0.505 (0.065) 0.749 (0.052) 0.420 (0.072) 1.220 (0.028)

16 -4,586.59 0.056 (0.023) 0.292 (0.075) 0.545 (0.091) 0.318 (0.054) 1.486 (0.050)

17 -2,930.98 0.018 (0.007) 0.437 (0.063) 0.664 (0.064) 0.310 (0.056) 1.226 (0.034)

18 -1,463.40 0.018 (0.008) 0.244 (0.159) 0.403 (0.175) 0.250 (0.051) 1.117 (0.028)

19 -4,434.65 0.033 (0.013) 0.398 (0.054) 0.663 (0.061) 0.359 (0.058) 1.422 (0.047)

20 -4,169.02 0.052 (0.021) 0.354 (0.098) 0.532 (0.109) 0.292 (0.047) 1.271 (0.034)

21 -3,598.28 0.027 (0.009) 0.469 (0.070) 0.690 (0.061) 0.314 (0.056) 1.230 (0.033)

22 -4,226.95 0.033 (0.010) 0.646 (0.071) 0.763 (0.048) 0.277 (0.051) 1.286 (0.033)

23 -4,174.08 0.034 (0.013) 0.326 (0.056) 0.620 (0.074) 0.360 (0.060) 1.151 (0.020)

24 -4,355.83 0.035 (0.012) 0.337 (0.063) 0.628 (0.076) 0.384 (0.063) 1.315 (0.023)

25 -3,464.67 0.020 (0.007) 0.335 (0.065) 0.620 (0.072) 0.371 (0.062) 1.241 (0.035)

26 -4,242.67 0.030 (0.011) 0.322 (0.063) 0.590 (0.077) 0.364 (0.058) 1.428 (0.044)

27 -2,299.80 0.014 (0.005) 0.225 (0.103) 0.473 (0.120) 0.363 (0.061) 1.178 (0.028)

28 -1,655.89 0.021 (0.007) 0.048 (0.135) 0.261 (0.166) 0.325 (0.058) 1.106 (0.020)

29 -2,659.42 0.014 (0.004) 0.286 (0.071) 0.596 (0.082) 0.547 (0.079) 1.152 (0.029)

30 -3,606.92 0.022 (0.008) 0.223 (0.064) 0.553 (0.088) 0.404 (0.065) 1.239 (0.034)

31 -1,432.97 0.009 (0.004) 0.436 (0.128) 0.570 (0.133) 0.308 (0.058) 1.213 (0.035)

32 -4,190.87 0.074 (0.031) 0.219 (0.153) 0.403 (0.165) 0.289 (0.048) 1.113 (0.024)

33 -6,142.08 0.045 (0.016) 0.219 (0.046) 0.704 (0.054) 0.516 (0.075) 1.444 (0.035)

34 -4,145.02 0.058 (0.021) 0.295 (0.088) 0.509 (0.108) 0.291 (0.046) 1.365 (0.033)

35 -4,211.49 0.032 (0.012) 0.245 (0.058) 0.568 (0.078) 0.383 (0.063) 1.300 (0.040)

36 -3,822.30 0.010 (0.004) 0.303 (0.051) 0.718 (0.053) 0.496 (0.078) 1.324 (0.037)

37 -4,960.42 0.041 (0.014) 0.160 (0.055) 0.539 (0.078) 0.442 (0.064) 1.432 (0.048)

38 -3,434.15 0.032 (0.013) 0.407 (0.089) 0.605 (0.094) 0.305 (0.057) 1.144 (0.020)

39 -4,704.17 0.116 (0.045) 0.268 (0.122) 0.449 (0.133) 0.250 (0.046) 1.239 (0.026)

40 -3,849.44 0.033 (0.013) 0.241 (0.072) 0.529 (0.091) 0.338 (0.055) 1.220 (0.033)

41 -3,734.78 0.016 (0.006) 0.420 (0.054) 0.718 (0.053) 0.392 (0.066) 1.283 (0.039)

42 -4,331.35 0.110 (0.041) 0.165 (0.133) 0.359 (0.146) 0.249 (0.043) 1.108 (0.028)

43 -4,185.72 0.028 (0.010) 0.365 (0.043) 0.694 (0.053) 0.398 (0.063) 1.230 (0.031)

44 -2,386.05 0.016 (0.005) 0.173 (0.073) 0.504 (0.091) 0.393 (0.063) 1.100 (0.028)

45 -2,855.17 0.026 (0.009) 0.373 (0.076) 0.588 (0.078) 0.274 (0.049) 1.200 (0.031)

46 -4,571.24 0.114 (0.051) 0.286 (0.168) 0.420 (0.177) 0.248 (0.047) 1.203 (0.036)

47 -3,471.09 0.278 (0.058) -0.707 (0.161) -0.659 (0.180) 0.159 (0.025) 1.013 (0.020)

48 -4,731.40 0.042 (0.012) 0.649 (0.061) 0.793 (0.042) 0.285 (0.042) 1.293 (0.027)

49 -6,064.56 0.173 (0.071) 0.444 (0.081) 0.634 (0.083) 0.258 (0.051) 1.341 (0.038)

50 -2,974.13 0.015 (0.005) 0.252 (0.066) 0.598 (0.079) 0.451 (0.072) 1.284 (0.031)

51 -3,465.58 0.020 (0.007) 0.382 (0.064) 0.649 (0.065) 0.367 (0.061) 1.274 (0.038)

52 -3,866.54 0.029 (0.011) 0.364 (0.054) 0.625 (0.073) 0.349 (0.059) 1.466 (0.041)
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Appendix C: Table C.16. Estimated coefficients for the FIGARCH model -        

 

  

comp LogL  s.e. α s.e. β s.e. d s.e. GED s.e.

1 -4,135.88 0.030 (0.011) 0.266 (0.061) 0.579 (0.076) 0.366 (0.057) 1.417 (0.038)

2 -2,083.33 0.009 (0.003) 0.331 (0.055) 0.634 (0.065) 0.370 (0.063) 1.362 (0.043)

3 -4,247.12 0.027 (0.009) 0.222 (0.046) 0.569 (0.070) 0.396 (0.065) 1.390 (0.039)

4 -4,590.18 0.180 (0.067) -0.124 (0.229) 0.004 (0.250) 0.255 (0.041) 1.264 (0.039)

5 -2,376.13 0.004 (0.001) 0.164 (0.043) 0.673 (0.062) 0.547 (0.079) 1.322 (0.036)

6 -550.85 0.002 (0.001) 0.350 (0.054) 0.684 (0.056) 0.458 (0.075) 1.220 (0.021)

7 -2,540.15 0.008 (0.003) 0.299 (0.042) 0.700 (0.052) 0.439 (0.069) 1.432 (0.037)

8 -3,581.81 0.007 (0.003) 0.364 (0.060) 0.783 (0.047) 0.525 (0.093) 1.286 (0.028)

9 -1,910.12 0.009 (0.003) 0.327 (0.069) 0.599 (0.072) 0.359 (0.061) 1.222 (0.028)

10 -5,068.04 0.065 (0.025) 0.436 (0.058) 0.657 (0.069) 0.316 (0.056) 1.319 (0.034)

11 -4,723.68 0.094 (0.036) 0.253 (0.086) 0.489 (0.105) 0.268 (0.048) 1.290 (0.037)

12 -5,052.84 0.105 (0.033) 0.087 (0.086) 0.361 (0.105) 0.302 (0.042) 1.326 (0.035)

13 -5,077.14 0.157 (0.067) 0.342 (0.143) 0.467 (0.160) 0.234 (0.043) 1.093 (0.016)

14 -3,961.15 0.014 (0.005) 0.316 (0.049) 0.697 (0.053) 0.451 (0.072) 1.167 (0.034)

15 -3,382.89 0.013 (0.005) 0.503 (0.066) 0.740 (0.055) 0.410 (0.071) 1.223 (0.028)

16 -4,630.21 0.058 (0.023) 0.288 (0.075) 0.541 (0.092) 0.318 (0.053) 1.488 (0.051)

17 -2,976.01 0.018 (0.007) 0.430 (0.062) 0.664 (0.064) 0.316 (0.057) 1.234 (0.035)

18 -1,555.68 0.016 (0.007) 0.246 (0.135) 0.431 (0.155) 0.277 (0.056) 1.105 (0.028)

19 -4,498.87 0.032 (0.012) 0.398 (0.053) 0.671 (0.060) 0.368 (0.060) 1.411 (0.047)

20 -4,193.45 0.052 (0.021) 0.354 (0.096) 0.536 (0.107) 0.295 (0.047) 1.278 (0.034)

21 -3,633.80 0.024 (0.009) 0.439 (0.067) 0.685 (0.059) 0.337 (0.059) 1.224 (0.033)

22 -4,254.41 0.033 (0.011) 0.635 (0.069) 0.759 (0.048) 0.280 (0.051) 1.277 (0.032)

23 -4,161.34 0.032 (0.012) 0.336 (0.054) 0.633 (0.071) 0.364 (0.062) 1.147 (0.020)

24 -4,351.08 0.036 (0.013) 0.341 (0.066) 0.619 (0.079) 0.377 (0.063) 1.309 (0.023)

25 -3,525.72 0.021 (0.008) 0.332 (0.064) 0.616 (0.072) 0.368 (0.062) 1.247 (0.036)

26 -4,173.62 0.028 (0.010) 0.320 (0.062) 0.596 (0.077) 0.372 (0.059) 1.442 (0.045)

27 -2,203.20 0.012 (0.004) 0.219 (0.093) 0.478 (0.111) 0.359 (0.058) 1.204 (0.029)

28 -1,625.08 0.011 (0.004) 0.189 (0.084) 0.497 (0.112) 0.406 (0.071) 1.075 (0.018)

29 -2,711.58 0.014 (0.004) 0.260 (0.069) 0.581 (0.082) 0.534 (0.076) 1.137 (0.029)

30 -3,699.87 0.026 (0.010) 0.215 (0.068) 0.534 (0.092) 0.390 (0.062) 1.245 (0.034)

31 -1,249.14 0.009 (0.004) 0.334 (0.144) 0.475 (0.155) 0.286 (0.050) 1.225 (0.036)

32 -4,270.68 0.069 (0.028) 0.223 (0.136) 0.425 (0.148) 0.306 (0.051) 1.114 (0.024)

33 -6,047.73 0.049 (0.018) 0.226 (0.046) 0.671 (0.056) 0.476 (0.069) 1.444 (0.035)

34 -4,137.00 0.056 (0.020) 0.295 (0.086) 0.513 (0.106) 0.297 (0.046) 1.365 (0.033)

35 -4,286.38 0.032 (0.012) 0.241 (0.056) 0.574 (0.076) 0.392 (0.064) 1.297 (0.040)

36 -3,868.29 0.010 (0.004) 0.288 (0.050) 0.718 (0.054) 0.503 (0.079) 1.312 (0.036)

37 -5,020.25 0.041 (0.014) 0.151 (0.053) 0.546 (0.077) 0.455 (0.065) 1.433 (0.049)

38 -3,529.99 0.031 (0.012) 0.403 (0.084) 0.612 (0.089) 0.316 (0.058) 1.143 (0.021)

39 -4,659.83 0.113 (0.045) 0.274 (0.124) 0.452 (0.135) 0.248 (0.046) 1.240 (0.027)

40 -3,855.35 0.033 (0.012) 0.239 (0.071) 0.532 (0.090) 0.344 (0.056) 1.225 (0.033)

41 -3,756.58 0.016 (0.006) 0.405 (0.054) 0.718 (0.053) 0.402 (0.068) 1.276 (0.039)

42 -4,337.90 0.095 (0.035) 0.201 (0.114) 0.414 (0.127) 0.265 (0.045) 1.093 (0.027)

43 -4,219.44 0.029 (0.010) 0.361 (0.044) 0.692 (0.054) 0.401 (0.064) 1.232 (0.032)

44 -2,547.56 0.018 (0.006) 0.142 (0.075) 0.482 (0.099) 0.402 (0.065) 1.104 (0.028)

45 -3,030.76 0.027 (0.009) 0.351 (0.073) 0.585 (0.076) 0.288 (0.050) 1.210 (0.031)

46 -4,575.02 0.092 (0.037) 0.283 (0.129) 0.456 (0.139) 0.283 (0.052) 1.177 (0.036)

47 -3,586.73 0.327 (0.066) -0.735 (0.163) -0.693 (0.181) 0.148 (0.024) 1.023 (0.020)

48 -4,758.63 0.044 (0.012) 0.639 (0.063) 0.785 (0.044) 0.284 (0.042) 1.288 (0.027)

49 -6,046.90 0.171 (0.069) 0.434 (0.080) 0.628 (0.083) 0.260 (0.051) 1.345 (0.038)

50 -3,144.13 0.015 (0.005) 0.220 (0.061) 0.599 (0.077) 0.469 (0.073) 1.293 (0.031)

51 -3,572.86 0.021 (0.007) 0.383 (0.063) 0.655 (0.064) 0.373 (0.062) 1.281 (0.039)

52 -3,880.66 0.029 (0.011) 0.360 (0.053) 0.626 (0.072) 0.353 (0.059) 1.451 (0.041)
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Appendix C: Table C.17. Estimated coefficients for the HYGARCH model - Equity 

 

  

comp LogL  s.e. α s.e. β s.e. d s.e. log  κ s.e. GED s.e.

1 -7,099.67 0.181 (0.102) 0.197 (0.073) 0.517 (0.100) 0.387 (0.095) -0.001 (0.062) 1.277 (0.030)

2 -6,518.64 0.082 (0.053) 0.283 (0.059) 0.626 (0.070) 0.416 (0.089) 0.003 (0.045) 1.346 (0.042)

3 -6,850.43 0.142 (0.086) 0.196 (0.058) 0.511 (0.082) 0.361 (0.087) 0.006 (0.063) 1.396 (0.040)

4 -7,174.45 0.228 (0.100) 0.194 (0.086) 0.459 (0.111) 0.416 (0.078) -0.019 (0.045) 1.231 (0.037)

5 -6,707.85 0.173 (0.059) 0.134 (0.048) 0.593 (0.083) 0.513 (0.095) -0.037 (0.032) 1.297 (0.037)

6 -7,598.33 0.095 (0.087) 0.297 (0.086) 0.533 (0.109) 0.342 (0.081) 0.070 (0.062) 1.206 (0.023)

7 -7,379.23 0.118 (0.056) 0.252 (0.047) 0.688 (0.061) 0.487 (0.092) -0.010 (0.027) 1.431 (0.038)

8 -7,156.42 0.062 (0.066) 0.398 (0.073) 0.639 (0.078) 0.321 (0.090) 0.065 (0.078) 1.270 (0.035)

9 -6,717.59 0.175 (0.140) 0.325 (0.100) 0.527 (0.118) 0.267 (0.129) 0.073 (0.196) 1.220 (0.029)

10 -6,577.92 0.145 (0.068) 0.348 (0.070) 0.631 (0.082) 0.397 (0.110) -0.029 (0.063) 1.258 (0.035)

11 -6,462.78 0.212 (0.094) 0.221 (0.079) 0.493 (0.116) 0.313 (0.100) -0.014 (0.095) 1.274 (0.036)

12 -6,250.81 0.155 (0.091) 0.060 (0.108) 0.308 (0.141) 0.263 (0.082) 0.069 (0.125) 1.308 (0.035)

13 -6,596.49 0.389 (0.112) 0.206 (0.072) 0.621 (0.122) 0.612 (0.166) -0.128 (0.048) 1.054 (0.015)

14 -6,305.23 0.083 (0.039) 0.292 (0.057) 0.681 (0.064) 0.481 (0.094) -0.019 (0.033) 1.146 (0.034)

15 -5,762.68 0.037 (0.027) 0.499 (0.076) 0.726 (0.061) 0.392 (0.097) 0.022 (0.055) 1.214 (0.027)

16 -5,547.40 0.166 (0.049) 0.265 (0.064) 0.605 (0.096) 0.478 (0.133) -0.132 (0.048) 1.446 (0.046)

17 -6,347.10 0.054 (0.041) 0.394 (0.066) 0.680 (0.063) 0.371 (0.097) 0.026 (0.060) 1.212 (0.033)

18 -5,996.61 0.155 (0.061) 0.257 (0.073) 0.602 (0.106) 0.483 (0.137) -0.046 (0.054) 1.056 (0.028)

19 -5,368.13 0.077 (0.030) 0.349 (0.068) 0.692 (0.066) 0.466 (0.121) -0.057 (0.044) 1.361 (0.045)

20 -5,622.33 0.150 (0.047) 0.289 (0.068) 0.621 (0.081) 0.498 (0.118) -0.103 (0.043) 1.277 (0.034)

21 -5,779.06 0.115 (0.093) 0.346 (0.160) 0.475 (0.173) 0.161 (0.101) 0.251 (0.353) 1.213 (0.034)

22 -5,779.51 0.113 (0.045) 0.617 (0.101) 0.747 (0.054) 0.321 (0.105) -0.089 (0.087) 1.234 (0.032)

23 -6,183.94 0.142 (0.056) 0.318 (0.069) 0.623 (0.086) 0.425 (0.102) -0.032 (0.048) 1.033 (0.019)

24 -6,090.06 0.089 (0.029) 0.323 (0.087) 0.749 (0.069) 0.569 (0.145) -0.035 (0.025) 1.215 (0.021)

25 -5,321.55 0.097 (0.040) 0.326 (0.071) 0.600 (0.087) 0.379 (0.105) -0.047 (0.065) 1.248 (0.035)

26 -6,028.09 0.118 (0.040) 0.266 (0.061) 0.576 (0.090) 0.438 (0.095) -0.042 (0.040) 1.357 (0.041)

27 -6,216.09 0.209 (0.076) 0.184 (0.082) 0.485 (0.125) 0.428 (0.103) -0.058 (0.054) 1.170 (0.027)

28 -5,949.73 0.250 (0.076) 0.136 (0.075) 0.498 (0.128) 0.486 (0.122) -0.075 (0.054) 1.049 (0.019)

29 -5,726.18 0.075 (0.030) 0.237 (0.068) 0.582 (0.082) 0.551 (0.081) -0.014 (0.030) 1.135 (0.029)

30 -6,353.60 0.091 (0.047) 0.197 (0.056) 0.597 (0.091) 0.483 (0.098) -0.009 (0.037) 1.218 (0.034)

31 -6,392.02 0.183 (0.079) 0.311 (0.103) 0.518 (0.131) 0.371 (0.112) -0.027 (0.074) 1.199 (0.035)

32 -6,244.80 0.229 (0.110) 0.180 (0.148) 0.382 (0.175) 0.306 (0.088) -0.006 (0.103) 1.111 (0.025)

33 -7,836.62 0.041 (0.017) -0.068 (0.048) 0.944 (0.017) 1.038 (0.059) -0.004 (0.003) 1.425 (0.038)

34 -6,299.24 0.299 (0.087) 0.260 (0.077) 0.619 (0.116) 0.543 (0.180) -0.148 (0.053) 1.305 (0.034)

35 -6,271.36 0.272 (0.085) 0.178 (0.063) 0.536 (0.110) 0.466 (0.134) -0.108 (0.054) 1.299 (0.041)

36 -6,819.55 0.051 (0.031) 0.260 (0.056) 0.721 (0.058) 0.553 (0.093) -0.002 (0.022) 1.284 (0.037)

37 -6,273.83 0.187 (0.062) 0.102 (0.053) 0.539 (0.097) 0.524 (0.107) -0.064 (0.038) 1.424 (0.048)

38 -5,868.86 0.154 (0.052) 0.335 (0.079) 0.661 (0.079) 0.465 (0.136) -0.085 (0.047) 1.121 (0.021)

39 -6,719.75 0.447 (0.179) 0.018 (0.142) 0.238 (0.182) 0.294 (0.096) -0.013 (0.119) 1.150 (0.025)

40 -6,124.44 0.147 (0.056) 0.207 (0.063) 0.550 (0.098) 0.415 (0.101) -0.043 (0.048) 1.215 (0.033)

41 -7,016.45 0.046 (0.066) 0.404 (0.068) 0.678 (0.065) 0.350 (0.094) 0.053 (0.071) 1.255 (0.039)

42 -6,774.95 0.113 (0.148) 0.086 (0.170) 0.267 (0.188) 0.187 (0.072) 0.248 (0.200) 1.081 (0.028)

43 -6,422.34 0.147 (0.046) 0.321 (0.064) 0.728 (0.059) 0.526 (0.110) -0.062 (0.029) 1.165 (0.028)

44 -5,670.40 0.166 (0.062) 0.133 (0.073) 0.479 (0.114) 0.431 (0.108) -0.056 (0.062) 1.101 (0.027)

45 -6,159.79 0.158 (0.117) 0.343 (0.102) 0.519 (0.123) 0.196 (0.138) 0.151 (0.360) 1.212 (0.033)

46 -7,613.75 0.127 (0.117) 0.293 (0.122) 0.479 (0.141) 0.278 (0.081) 0.115 (0.102) 1.159 (0.035)

47 -6,184.93 0.364 (0.124) 0.374 (0.128) 0.521 (0.147) 0.376 (0.112) -0.195 (0.062) 0.997 (0.022)

48 -6,045.89 0.063 (0.033) 0.724 (0.081) 0.830 (0.045) 0.260 (0.098) 0.052 (0.138) 1.212 (0.025)

49 -7,320.40 0.061 (0.099) 0.438 (0.084) 0.634 (0.086) 0.229 (0.099) 0.172 (0.183) 1.326 (0.038)

50 -5,774.46 0.103 (0.031) 0.187 (0.059) 0.646 (0.085) 0.579 (0.114) -0.044 (0.027) 1.278 (0.030)

51 -5,722.65 0.074 (0.044) 0.357 (0.075) 0.647 (0.074) 0.396 (0.119) -0.010 (0.071) 1.268 (0.039)

52 -6,297.87 0.147 (0.058) 0.290 (0.063) 0.594 (0.094) 0.429 (0.111) -0.046 (0.052) 1.427 (0.045)
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Appendix C: Table C.18. Estimated coefficients for the HYGARCH model -     

 

  

comp LogL  s.e. α s.e. β s.e. d s.e. log  κ s.e. GED s.e.

1 -4,176.44 0.025 (0.020) 0.263 (0.075) 0.530 (0.099) 0.301 (0.099) 0.055 (0.111) 1.408 (0.038)

2 -2,161.63 0.005 (0.007) 0.405 (0.075) 0.631 (0.073) 0.273 (0.110) 0.098 (0.159) 1.372 (0.044)

3 -4,267.11 0.014 (0.018) 0.236 (0.062) 0.516 (0.083) 0.310 (0.086) 0.076 (0.087) 1.378 (0.039)

4 -4,615.84 0.132 (0.045) 0.217 (0.088) 0.473 (0.140) 0.445 (0.163) -0.137 (0.080) 1.271 (0.039)

5 -2,494.39 0.002 (0.002) 0.208 (0.047) 0.656 (0.066) 0.483 (0.083) 0.027 (0.028) 1.313 (0.038)

6 -729.20 0.004 (0.005) -0.138 (0.272) -0.039 (0.287) 0.155 (0.065) 0.379 (0.256) 1.241 (0.023)

7 -2,592.27 0.003 (0.001) -0.004 (0.048) 0.946 (0.019) 0.992 (0.059) -0.009 (0.005) 1.448 (0.037)

8 -3,661.10 0.000 (0.005) 0.456 (0.069) 0.742 (0.052) 0.364 (0.103) 0.081 (0.069) 1.278 (0.029)

9 -1,993.16 0.009 (0.006) 0.353 (0.074) 0.618 (0.079) 0.353 (0.120) 0.001 (0.093) 1.236 (0.028)

10 -5,077.15 0.072 (0.040) 0.445 (0.082) 0.647 (0.079) 0.295 (0.141) 0.005 (0.159) 1.323 (0.034)

11 -4,706.99 0.087 (0.047) 0.258 (0.091) 0.482 (0.128) 0.249 (0.120) 0.030 (0.196) 1.292 (0.037)

12 -5,041.58 0.060 (0.055) 0.054 (0.129) 0.269 (0.160) 0.204 (0.083) 0.182 (0.206) 1.317 (0.035)

13 -5,016.50 0.180 (0.052) 0.252 (0.077) 0.596 (0.122) 0.540 (0.179) -0.180 (0.063) 1.100 (0.015)

14 -3,938.81 0.002 (0.009) 0.370 (0.058) 0.657 (0.066) 0.330 (0.090) 0.092 (0.078) 1.161 (0.034)

15 -3,375.56 0.011 (0.007) 0.510 (0.076) 0.750 (0.053) 0.413 (0.101) 0.006 (0.053) 1.220 (0.028)

16 -4,600.99 0.083 (0.027) 0.263 (0.062) 0.608 (0.094) 0.457 (0.130) -0.106 (0.048) 1.490 (0.050)

17 -2,997.36 0.020 (0.011) 0.426 (0.080) 0.667 (0.066) 0.332 (0.128) -0.023 (0.109) 1.226 (0.034)

18 -1,562.81 0.023 (0.008) 0.246 (0.083) 0.543 (0.122) 0.463 (0.154) -0.169 (0.071) 1.118 (0.028)

19 -4,395.85 0.046 (0.017) 0.354 (0.072) 0.699 (0.067) 0.467 (0.132) -0.063 (0.045) 1.427 (0.047)

20 -4,143.68 0.074 (0.025) 0.315 (0.077) 0.590 (0.087) 0.438 (0.131) -0.124 (0.063) 1.278 (0.034)

21 -3,640.61 0.006 (0.012) 0.530 (0.089) 0.683 (0.080) 0.191 (0.104) 0.260 (0.275) 1.225 (0.033)

22 -4,220.44 0.232 (0.726) -0.192 (3.717) -0.200 (3.693) 0.149 (0.084) 0.094 (0.355) 1.283 (0.034)

23 -4,177.53 0.042 (0.017) 0.310 (0.059) 0.628 (0.079) 0.399 (0.097) -0.036 (0.050) 1.144 (0.020)

24 -4,363.27 0.050 (0.015) 0.300 (0.071) 0.689 (0.079) 0.523 (0.135) -0.070 (0.034) 1.321 (0.023)

25 -3,512.47 0.022 (0.011) 0.337 (0.067) 0.624 (0.078) 0.376 (0.097) -0.007 (0.062) 1.244 (0.035)

26 -4,214.63 0.029 (0.013) 0.333 (0.062) 0.615 (0.079) 0.386 (0.096) -0.011 (0.050) 1.420 (0.045)

27 -2,309.35 0.018 (0.006) 0.225 (0.085) 0.509 (0.113) 0.416 (0.090) -0.056 (0.047) 1.184 (0.028)

28 -1,652.90 0.026 (0.008) 0.112 (0.082) 0.411 (0.139) 0.458 (0.125) -0.115 (0.063) 1.108 (0.020)

29 -2,679.65 0.019 (0.006) 0.268 (0.066) 0.589 (0.081) 0.566 (0.083) -0.051 (0.033) 1.161 (0.029)

30 -3,638.12 0.038 (0.014) 0.207 (0.058) 0.585 (0.102) 0.477 (0.126) -0.062 (0.046) 1.249 (0.035)

31 -1,414.58 0.012 (0.004) 0.423 (0.092) 0.623 (0.089) 0.409 (0.111) -0.100 (0.059) 1.222 (0.035)

32 -4,237.88 0.071 (0.036) 0.224 (0.149) 0.413 (0.177) 0.295 (0.102) 0.003 (0.128) 1.112 (0.024)

33 -6,165.53 0.061 (0.026) 0.206 (0.053) 0.708 (0.061) 0.540 (0.100) -0.016 (0.022) 1.444 (0.035)

34 -4,141.78 0.069 (0.022) 0.278 (0.065) 0.567 (0.104) 0.401 (0.128) -0.094 (0.069) 1.365 (0.034)

35 -4,267.25 0.027 (0.021) 0.248 (0.067) 0.534 (0.098) 0.332 (0.098) 0.042 (0.088) 1.299 (0.040)

36 -3,869.06 0.005 (0.007) 0.323 (0.057) 0.704 (0.059) 0.451 (0.096) 0.025 (0.037) 1.321 (0.037)

37 -4,964.24 0.057 (0.024) 0.151 (0.052) 0.563 (0.084) 0.488 (0.096) -0.034 (0.038) 1.441 (0.048)

38 -3,481.80 0.041 (0.016) 0.372 (0.090) 0.638 (0.089) 0.406 (0.158) -0.084 (0.076) 1.148 (0.021)

39 -4,710.41 0.126 (0.063) 0.242 (0.149) 0.404 (0.181) 0.218 (0.131) 0.043 (0.283) 1.223 (0.026)

40 -3,868.91 0.034 (0.016) 0.243 (0.071) 0.537 (0.103) 0.346 (0.103) -0.005 (0.074) 1.220 (0.033)

41 -3,752.74 0.011 (0.011) 0.449 (0.072) 0.704 (0.059) 0.332 (0.108) 0.051 (0.094) 1.274 (0.039)

42 -4,256.63 0.060 (0.061) 0.037 (0.248) 0.164 (0.269) 0.103 (0.091) 0.553 (0.647) 1.107 (0.028)

43 -4,191.60 0.045 (0.014) 0.295 (0.081) 0.740 (0.069) 0.558 (0.146) -0.073 (0.030) 1.231 (0.030)

44 -2,445.04 0.025 (0.007) 0.155 (0.060) 0.588 (0.099) 0.536 (0.130) -0.085 (0.041) 1.110 (0.029)

45 -2,951.97 0.029 (0.012) 0.363 (0.075) 0.604 (0.083) 0.316 (0.130) -0.046 (0.123) 1.201 (0.031)

46 -4,462.80 0.077 (0.035) 0.323 (0.123) 0.493 (0.147) 0.289 (0.114) 0.000 (0.130) 1.193 (0.037)

47 -3,528.25 0.353 (0.082) -0.676 (0.172) -0.619 (0.199) 0.221 (0.092) -0.265 (0.262) 1.017 (0.020)

48 -4,728.84 0.025 (0.016) 0.733 (0.080) 0.830 (0.047) 0.200 (0.101) 0.159 (0.240) 1.288 (0.028)

49 -6,078.77 0.081 (0.101) 0.499 (0.119) 0.624 (0.117) 0.130 (0.141) 0.398 (0.702) 1.338 (0.038)

50 -3,021.73 0.024 (0.007) 0.201 (0.066) 0.664 (0.087) 0.598 (0.131) -0.065 (0.030) 1.294 (0.031)

51 -3,511.85 0.017 (0.012) 0.396 (0.076) 0.641 (0.074) 0.337 (0.111) 0.029 (0.094) 1.274 (0.038)

52 -3,854.37 0.027 (0.018) 0.375 (0.070) 0.613 (0.091) 0.318 (0.139) 0.027 (0.137) 1.463 (0.041)
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Appendix C: Table C.19. Estimated coefficients for the HYGARCH model -      

 

  

comp LogL  s.e. α s.e. β s.e. d s.e. log  κ s.e. GED s.e.

1 -4,215.18 0.028 (0.020) 0.251 (0.072) 0.531 (0.098) 0.315 (0.099) 0.041 (0.100) 1.412 (0.038)

2 -2,176.81 0.005 (0.007) 0.403 (0.074) 0.637 (0.071) 0.283 (0.109) 0.089 (0.146) 1.369 (0.043)

3 -4,222.65 0.014 (0.018) 0.234 (0.063) 0.509 (0.084) 0.303 (0.086) 0.081 (0.091) 1.378 (0.039)

4 -4,561.49 0.123 (0.043) 0.225 (0.090) 0.475 (0.138) 0.434 (0.158) -0.127 (0.081) 1.269 (0.038)

5 -2,485.72 0.002 (0.002) 0.210 (0.047) 0.656 (0.065) 0.483 (0.083) 0.026 (0.028) 1.315 (0.039)

6 -714.28 0.005 (0.005) -0.137 (0.285) -0.043 (0.300) 0.152 (0.068) 0.375 (0.278) 1.243 (0.023)

7 -2,564.05 0.003 (0.001) -0.004 (0.048) 0.947 (0.018) 0.993 (0.059) -0.009 (0.005) 1.449 (0.037)

8 -3,610.04 0.000 (0.005) 0.458 (0.069) 0.741 (0.052) 0.361 (0.103) 0.083 (0.071) 1.279 (0.029)

9 -1,936.04 0.009 (0.006) 0.353 (0.075) 0.616 (0.080) 0.352 (0.123) -0.002 (0.095) 1.237 (0.028)

10 -5,068.29 0.067 (0.036) 0.426 (0.076) 0.649 (0.077) 0.319 (0.134) -0.004 (0.126) 1.325 (0.034)

11 -4,657.30 0.083 (0.044) 0.257 (0.091) 0.482 (0.127) 0.249 (0.118) 0.033 (0.191) 1.291 (0.037)

12 -5,072.22 0.062 (0.053) 0.056 (0.126) 0.277 (0.157) 0.213 (0.082) 0.163 (0.189) 1.314 (0.035)

13 -5,058.39 0.175 (0.051) 0.246 (0.076) 0.608 (0.120) 0.556 (0.176) -0.166 (0.060) 1.098 (0.015)

14 -3,926.48 0.002 (0.008) 0.364 (0.057) 0.660 (0.065) 0.343 (0.090) 0.082 (0.070) 1.160 (0.034)

15 -3,321.35 0.011 (0.007) 0.510 (0.076) 0.749 (0.054) 0.414 (0.101) 0.005 (0.053) 1.220 (0.028)

16 -4,585.20 0.079 (0.026) 0.264 (0.061) 0.610 (0.092) 0.456 (0.127) -0.100 (0.047) 1.493 (0.050)

17 -2,930.95 0.020 (0.011) 0.426 (0.080) 0.667 (0.066) 0.333 (0.128) -0.025 (0.108) 1.226 (0.034)

18 -1,462.08 0.022 (0.007) 0.245 (0.083) 0.538 (0.123) 0.458 (0.153) -0.172 (0.072) 1.121 (0.028)

19 -4,434.24 0.044 (0.018) 0.363 (0.068) 0.690 (0.065) 0.443 (0.124) -0.054 (0.049) 1.426 (0.047)

20 -4,168.05 0.075 (0.024) 0.308 (0.076) 0.597 (0.087) 0.458 (0.131) -0.126 (0.057) 1.276 (0.034)

21 -3,596.79 0.007 (0.013) 0.552 (0.096) 0.687 (0.085) 0.166 (0.110) 0.321 (0.370) 1.229 (0.034)

22 -4,229.46 0.224 (0.415) -0.207 (2.203) -0.220 (2.179) 0.133 (0.082) 0.173 (0.404) 1.289 (0.034)

23 -4,173.88 0.040 (0.016) 0.312 (0.057) 0.635 (0.077) 0.400 (0.098) -0.033 (0.049) 1.153 (0.020)

24 -4,354.28 0.050 (0.015) 0.293 (0.071) 0.688 (0.080) 0.524 (0.137) -0.069 (0.033) 1.324 (0.023)

25 -3,464.66 0.021 (0.011) 0.334 (0.067) 0.622 (0.078) 0.375 (0.096) -0.004 (0.061) 1.241 (0.035)

26 -4,242.63 0.033 (0.014) 0.321 (0.063) 0.602 (0.083) 0.384 (0.096) -0.015 (0.051) 1.429 (0.044)

27 -2,299.06 0.019 (0.007) 0.224 (0.083) 0.511 (0.113) 0.423 (0.094) -0.063 (0.048) 1.186 (0.028)

28 -1,654.24 0.028 (0.008) 0.112 (0.081) 0.421 (0.142) 0.480 (0.134) -0.137 (0.062) 1.113 (0.020)

29 -2,658.32 0.019 (0.006) 0.270 (0.067) 0.589 (0.081) 0.564 (0.084) -0.050 (0.033) 1.161 (0.029)

30 -3,606.38 0.033 (0.013) 0.210 (0.058) 0.593 (0.099) 0.479 (0.122) -0.052 (0.045) 1.244 (0.034)

31 -1,431.73 0.013 (0.005) 0.408 (0.093) 0.616 (0.092) 0.422 (0.117) -0.110 (0.060) 1.219 (0.035)

32 -4,190.87 0.075 (0.037) 0.220 (0.152) 0.406 (0.182) 0.294 (0.105) -0.006 (0.133) 1.113 (0.024)

33 -6,141.89 0.057 (0.025) 0.206 (0.053) 0.716 (0.061) 0.548 (0.102) -0.014 (0.022) 1.447 (0.035)

34 -4,144.31 0.074 (0.024) 0.277 (0.066) 0.561 (0.107) 0.400 (0.132) -0.104 (0.071) 1.370 (0.034)

35 -4,211.22 0.022 (0.019) 0.249 (0.068) 0.533 (0.098) 0.325 (0.095) 0.054 (0.088) 1.299 (0.040)

36 -3,822.03 0.005 (0.007) 0.324 (0.058) 0.704 (0.059) 0.453 (0.096) 0.024 (0.037) 1.320 (0.037)

37 -4,960.04 0.057 (0.024) 0.154 (0.052) 0.564 (0.084) 0.486 (0.096) -0.033 (0.038) 1.437 (0.048)

38 -3,433.77 0.039 (0.015) 0.376 (0.091) 0.639 (0.089) 0.400 (0.157) -0.079 (0.078) 1.146 (0.020)

39 -4,704.13 0.109 (0.056) 0.261 (0.137) 0.427 (0.167) 0.222 (0.124) 0.058 (0.258) 1.238 (0.026)

40 -3,849.44 0.034 (0.016) 0.241 (0.072) 0.532 (0.105) 0.343 (0.104) -0.005 (0.077) 1.220 (0.033)

41 -3,734.41 0.009 (0.011) 0.456 (0.072) 0.708 (0.058) 0.330 (0.106) 0.057 (0.094) 1.279 (0.039)

42 -4,330.18 0.061 (0.063) 0.029 (0.244) 0.158 (0.265) 0.107 (0.088) 0.529 (0.596) 1.106 (0.028)

43 -4,184.17 0.041 (0.013) 0.288 (0.079) 0.743 (0.068) 0.559 (0.143) -0.065 (0.028) 1.237 (0.031)

44 -2,384.60 0.025 (0.007) 0.157 (0.061) 0.581 (0.100) 0.528 (0.131) -0.089 (0.043) 1.110 (0.029)

45 -2,855.09 0.029 (0.012) 0.363 (0.077) 0.597 (0.086) 0.308 (0.134) -0.047 (0.135) 1.201 (0.031)

46 -4,571.17 0.122 (0.051) 0.289 (0.142) 0.445 (0.176) 0.288 (0.129) -0.064 (0.150) 1.202 (0.037)

47 -3,470.84 0.322 (0.078) -0.685 (0.162) -0.627 (0.188) 0.214 (0.088) -0.213 (0.258) 1.014 (0.021)

48 -4,730.83 0.025 (0.016) 0.722 (0.080) 0.824 (0.047) 0.207 (0.101) 0.151 (0.226) 1.294 (0.028)

49 -6,063.90 0.082 (0.101) 0.502 (0.122) 0.622 (0.121) 0.122 (0.142) 0.436 (0.773) 1.339 (0.038)

50 -2,972.21 0.025 (0.007) 0.197 (0.069) 0.670 (0.090) 0.612 (0.139) -0.070 (0.030) 1.293 (0.030)

51 -3,465.52 0.017 (0.011) 0.394 (0.076) 0.641 (0.074) 0.339 (0.112) 0.028 (0.095) 1.273 (0.038)

52 -3,866.52 0.027 (0.017) 0.368 (0.067) 0.618 (0.089) 0.332 (0.137) 0.016 (0.119) 1.466 (0.041)
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Appendix C: Table C.20. Estimated coefficients for the HYGARCH model -        

 

  

comp LogL  s.e. α s.e. β s.e. d s.e. log  κ s.e. GED s.e.

1 -4,135.72 0.023 (0.018) 0.273 (0.071) 0.554 (0.092) 0.319 (0.098) 0.045 (0.095) 1.415 (0.039)

2 -2,083.05 0.005 (0.006) 0.354 (0.069) 0.616 (0.074) 0.309 (0.106) 0.066 (0.117) 1.360 (0.043)

3 -4,246.51 0.013 (0.017) 0.233 (0.058) 0.528 (0.081) 0.323 (0.086) 0.068 (0.079) 1.384 (0.040)

4 -4,589.63 0.127 (0.041) 0.196 (0.080) 0.488 (0.137) 0.480 (0.168) -0.132 (0.069) 1.266 (0.039)

5 -2,375.43 0.002 (0.002) 0.176 (0.044) 0.645 (0.066) 0.494 (0.080) 0.027 (0.025) 1.312 (0.038)

6 -547.69 0.000 (0.001) 0.401 (0.076) 0.612 (0.083) 0.294 (0.092) 0.155 (0.109) 1.205 (0.021)

7 -2,534.51 0.004 (0.002) -0.001 (0.050) 0.938 (0.023) 0.981 (0.065) -0.012 (0.006) 1.445 (0.037)

8 -3,580.16 0.000 (0.005) 0.440 (0.067) 0.739 (0.053) 0.378 (0.102) 0.074 (0.063) 1.277 (0.029)

9 -1,910.06 0.007 (0.006) 0.336 (0.077) 0.589 (0.088) 0.331 (0.120) 0.031 (0.112) 1.221 (0.028)

10 -5,068.04 0.064 (0.036) 0.437 (0.077) 0.656 (0.075) 0.313 (0.135) 0.003 (0.132) 1.319 (0.034)

11 -4,723.68 0.094 (0.048) 0.253 (0.087) 0.488 (0.125) 0.266 (0.125) 0.003 (0.181) 1.290 (0.037)

12 -5,052.00 0.059 (0.052) 0.052 (0.124) 0.275 (0.154) 0.213 (0.081) 0.165 (0.186) 1.322 (0.035)

13 -5,073.97 0.176 (0.052) 0.251 (0.080) 0.614 (0.120) 0.558 (0.182) -0.168 (0.061) 1.099 (0.016)

14 -3,959.57 0.002 (0.009) 0.353 (0.058) 0.654 (0.066) 0.344 (0.089) 0.085 (0.070) 1.158 (0.034)

15 -3,382.88 0.012 (0.008) 0.507 (0.079) 0.740 (0.056) 0.404 (0.103) 0.005 (0.059) 1.223 (0.028)

16 -4,628.91 0.081 (0.026) 0.262 (0.061) 0.606 (0.093) 0.452 (0.126) -0.098 (0.048) 1.495 (0.051)

17 -2,975.99 0.019 (0.011) 0.423 (0.080) 0.666 (0.066) 0.332 (0.129) -0.018 (0.111) 1.235 (0.035)

18 -1,554.86 0.020 (0.007) 0.246 (0.084) 0.529 (0.124) 0.430 (0.145) -0.134 (0.077) 1.109 (0.028)

19 -4,498.50 0.043 (0.018) 0.364 (0.068) 0.696 (0.064) 0.447 (0.122) -0.049 (0.048) 1.415 (0.047)

20 -4,192.62 0.074 (0.025) 0.313 (0.076) 0.595 (0.087) 0.445 (0.128) -0.119 (0.060) 1.282 (0.034)

21 -3,632.15 0.005 (0.013) 0.512 (0.091) 0.669 (0.084) 0.189 (0.103) 0.269 (0.280) 1.223 (0.033)

22 -4,253.58 0.046 (0.016) 0.557 (0.091) 0.752 (0.040) 0.392 (0.118) -0.096 (0.061) 1.283 (0.033)

23 -4,161.14 0.038 (0.015) 0.322 (0.057) 0.647 (0.075) 0.404 (0.099) -0.031 (0.048) 1.150 (0.020)

24 -4,349.53 0.052 (0.016) 0.298 (0.071) 0.681 (0.082) 0.518 (0.137) -0.073 (0.035) 1.319 (0.023)

25 -3,525.72 0.022 (0.011) 0.331 (0.067) 0.616 (0.079) 0.369 (0.096) -0.001 (0.064) 1.247 (0.036)

26 -4,173.58 0.030 (0.013) 0.318 (0.061) 0.608 (0.082) 0.392 (0.096) -0.015 (0.049) 1.443 (0.045)

27 -2,202.69 0.016 (0.006) 0.217 (0.079) 0.509 (0.106) 0.407 (0.086) -0.050 (0.047) 1.210 (0.029)

28 -1,624.75 0.015 (0.005) 0.187 (0.074) 0.532 (0.113) 0.464 (0.115) -0.049 (0.051) 1.079 (0.018)

29 -2,710.64 0.019 (0.006) 0.249 (0.065) 0.579 (0.080) 0.552 (0.082) -0.046 (0.032) 1.146 (0.029)

30 -3,699.49 0.036 (0.015) 0.205 (0.060) 0.570 (0.104) 0.455 (0.122) -0.049 (0.052) 1.249 (0.035)

31 -1,248.96 0.011 (0.005) 0.342 (0.117) 0.508 (0.135) 0.328 (0.098) -0.054 (0.084) 1.227 (0.035)

32 -4,270.66 0.065 (0.036) 0.221 (0.146) 0.414 (0.174) 0.291 (0.101) 0.022 (0.131) 1.113 (0.024)

33 -6,047.59 0.060 (0.027) 0.216 (0.051) 0.682 (0.063) 0.502 (0.096) -0.014 (0.026) 1.446 (0.035)

34 -4,136.18 0.072 (0.023) 0.275 (0.064) 0.570 (0.105) 0.414 (0.133) -0.105 (0.064) 1.370 (0.034)

35 -4,286.07 0.021 (0.019) 0.247 (0.066) 0.537 (0.097) 0.330 (0.094) 0.056 (0.085) 1.295 (0.040)

36 -3,867.90 0.004 (0.007) 0.312 (0.056) 0.701 (0.060) 0.452 (0.095) 0.028 (0.036) 1.307 (0.037)

37 -5,019.83 0.058 (0.024) 0.144 (0.051) 0.571 (0.084) 0.501 (0.098) -0.033 (0.036) 1.438 (0.049)

38 -3,529.72 0.038 (0.015) 0.376 (0.088) 0.639 (0.087) 0.395 (0.151) -0.064 (0.079) 1.146 (0.021)

39 -4,659.78 0.106 (0.055) 0.267 (0.141) 0.429 (0.169) 0.218 (0.126) 0.064 (0.270) 1.240 (0.027)

40 -3,855.35 0.034 (0.016) 0.238 (0.070) 0.536 (0.104) 0.351 (0.105) -0.007 (0.074) 1.225 (0.033)

41 -3,756.21 0.008 (0.011) 0.440 (0.071) 0.707 (0.058) 0.338 (0.108) 0.056 (0.090) 1.271 (0.039)

42 -4,336.45 0.042 (0.057) 0.063 (0.229) 0.198 (0.249) 0.105 (0.087) 0.569 (0.601) 1.091 (0.027)

43 -4,217.42 0.044 (0.014) 0.274 (0.085) 0.747 (0.073) 0.582 (0.153) -0.069 (0.029) 1.240 (0.031)

44 -2,546.33 0.028 (0.008) 0.133 (0.059) 0.562 (0.107) 0.533 (0.131) -0.083 (0.044) 1.114 (0.029)

45 -3,030.69 0.030 (0.013) 0.343 (0.074) 0.595 (0.085) 0.319 (0.130) -0.040 (0.122) 1.211 (0.031)

46 -4,575.01 0.095 (0.040) 0.283 (0.123) 0.463 (0.154) 0.295 (0.115) -0.017 (0.125) 1.177 (0.036)

47 -3,586.61 0.361 (0.091) -0.712 (0.171) -0.664 (0.195) 0.189 (0.092) -0.180 (0.327) 1.024 (0.021)

48 -4,758.13 0.026 (0.017) 0.713 (0.084) 0.816 (0.049) 0.209 (0.103) 0.145 (0.227) 1.289 (0.028)

49 -6,046.20 0.079 (0.100) 0.488 (0.121) 0.612 (0.123) 0.122 (0.139) 0.440 (0.759) 1.343 (0.038)

50 -3,142.65 0.025 (0.008) 0.178 (0.063) 0.661 (0.088) 0.600 (0.130) -0.059 (0.028) 1.300 (0.031)

51 -3,572.81 0.018 (0.012) 0.394 (0.076) 0.648 (0.073) 0.346 (0.116) 0.025 (0.095) 1.280 (0.039)

52 -3,880.63 0.026 (0.017) 0.366 (0.067) 0.615 (0.089) 0.328 (0.135) 0.025 (0.124) 1.451 (0.041)
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Appendix C: Table C.21. Estimated coefficients for the FIEGARCH model - Equity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

comp LogL  s.e. β s.e. d s.e. γ1 s.e. γ2 s.e. GED s.e.

1 -7,088.72 1.255 (0.209) 0.528 (0.150) 0.595 (0.057) -0.055 (0.017) 0.146 (0.031) 1.272 (0.029)

2 -6,503.58 0.851 (0.221) 0.593 (0.122) 0.600 (0.054) -0.060 (0.014) 0.122 (0.026) 1.359 (0.043)

3 -6,839.58 0.998 (0.228) 0.714 (0.095) 0.587 (0.068) -0.036 (0.010) 0.092 (0.018) 1.392 (0.037)

4 -7,145.20 1.301 (0.318) 0.309 (0.132) 0.638 (0.043) -0.112 (0.020) 0.230 (0.034) 1.238 (0.036)

5 -6,706.93 1.048 (0.211) 0.776 (0.079) 0.509 (0.075) -0.039 (0.010) 0.112 (0.021) 1.279 (0.033)

6 -7,571.39 1.253 (0.289) 0.212 (0.174) 0.669 (0.050) -0.053 (0.016) 0.200 (0.043) 1.226 (0.023)

7 -7,361.29 1.231 (0.223) 0.670 (0.106) 0.616 (0.054) -0.051 (0.013) 0.090 (0.020) 1.449 (0.036)

8 -7,130.97 1.197 (0.230) 0.349 (0.188) 0.680 (0.053) -0.079 (0.019) 0.131 (0.030) 1.303 (0.032)

9 -6,702.65 1.187 (0.140) 0.605 (0.127) 0.502 (0.063) -0.056 (0.016) 0.127 (0.029) 1.231 (0.029)

10 -6,570.94 0.901 (0.274) 0.242 (0.183) 0.696 (0.051) -0.064 (0.017) 0.157 (0.032) 1.265 (0.032)

11 -6,443.30 0.953 (0.136) 0.730 (0.086) 0.503 (0.055) -0.063 (0.014) 0.080 (0.020) 1.291 (0.035)

12 -6,210.64 0.581 (0.214) 0.509 (0.120) 0.626 (0.046) -0.115 (0.022) 0.107 (0.021) 1.350 (0.034)

13 -6,577.46 1.178 (0.174) -0.235 (0.213) 0.636 (0.046) -0.056 (0.023) 0.211 (0.033) 1.054 (0.017)

14 -6,279.74 0.855 (0.241) 0.714 (0.087) 0.603 (0.056) -0.060 (0.014) 0.090 (0.020) 1.174 (0.035)

15 -5,750.01 0.739 (0.254) 0.110 (0.198) 0.647 (0.051) -0.078 (0.024) 0.247 (0.049) 1.233 (0.029)

16 -5,542.59 0.454 (0.171) 0.674 (0.101) 0.548 (0.065) -0.049 (0.012) 0.111 (0.023) 1.449 (0.046)

17 -6,333.06 0.838 (0.193) 0.595 (0.124) 0.590 (0.057) -0.074 (0.017) 0.113 (0.025) 1.227 (0.034)

18 -5,967.30 0.725 (0.244) 0.643 (0.112) 0.590 (0.060) -0.077 (0.017) 0.113 (0.025) 1.075 (0.029)

19 -5,359.13 0.279 (0.212) 0.317 (0.189) 0.631 (0.055) -0.070 (0.021) 0.166 (0.038) 1.370 (0.044)

20 -5,622.76 0.440 (0.169) 0.791 (0.065) 0.425 (0.079) -0.035 (0.010) 0.135 (0.019) 1.258 (0.032)

21 -5,743.69 0.489 (0.124) 0.467 (0.152) 0.540 (0.053) -0.115 (0.025) 0.109 (0.028) 1.258 (0.036)

22 -5,763.35 0.559 (0.242) -0.185 (0.146) 0.641 (0.046) -0.132 (0.021) 0.288 (0.028) 1.256 (0.033)

23 -6,166.72 0.893 (0.221) 0.653 (0.105) 0.559 (0.056) -0.044 (0.014) 0.122 (0.026) 1.048 (0.019)

24 -6,069.70 0.808 (0.232) -0.093 (0.222) 0.697 (0.040) -0.105 (0.025) 0.206 (0.039) 1.238 (0.022)

25 -5,307.09 0.225 (0.216) 0.389 (0.187) 0.650 (0.057) -0.055 (0.018) 0.144 (0.035) 1.263 (0.036)

26 -6,005.16 0.719 (0.234) 0.581 (0.113) 0.595 (0.051) -0.082 (0.016) 0.134 (0.025) 1.388 (0.039)

27 -6,207.16 0.840 (0.255) 0.476 (0.138) 0.606 (0.052) -0.064 (0.017) 0.175 (0.033) 1.179 (0.027)

28 -5,932.66 0.770 (0.172) 0.721 (0.103) 0.451 (0.082) -0.038 (0.014) 0.146 (0.029) 1.066 (0.019)

29 -5,707.50 0.146 (0.387) 0.355 (0.126) 0.614 (0.050) -0.086 (0.019) 0.297 (0.033) 1.128 (0.026)

30 -6,331.08 0.762 (0.271) 0.641 (0.106) 0.601 (0.060) -0.061 (0.013) 0.137 (0.025) 1.241 (0.035)

31 -6,375.07 1.087 (0.250) 0.220 (0.152) 0.605 (0.045) -0.104 (0.021) 0.262 (0.040) 1.221 (0.036)

32 -6,212.25 0.862 (0.205) 0.619 (0.094) 0.535 (0.053) -0.085 (0.018) 0.141 (0.027) 1.133 (0.024)

33 -7,832.38 1.530 (0.306) 0.782 (0.072) 0.626 (0.064) -0.031 (0.008) 0.079 (0.016) 1.431 (0.037)

34 -6,301.83 0.951 (0.135) 0.689 (0.102) 0.404 (0.078) -0.040 (0.014) 0.177 (0.029) 1.297 (0.032)

35 -6,242.09 0.870 (0.072) 0.578 (0.137) 0.550 (0.070) -0.113 (0.022) 0.122 (0.026) 1.343 (0.043)

36 -6,790.60 0.969 (0.226) 0.740 (0.061) 0.556 (0.044) -0.074 (0.012) 0.102 (0.017) 1.304 (0.034)

37 -6,234.83 0.775 (0.118) 0.810 (0.047) 0.380 (0.059) -0.101 (0.014) 0.112 (0.018) 1.465 (0.047)

38 -5,832.07 0.613 (0.223) 0.279 (0.178) 0.643 (0.046) -0.124 (0.027) 0.150 (0.031) 1.163 (0.022)

39 -6,696.17 1.361 (0.184) 0.506 (0.166) 0.620 (0.058) -0.064 (0.018) 0.127 (0.035) 1.183 (0.025)

40 -6,100.42 0.691 (0.208) 0.618 (0.111) 0.589 (0.052) -0.074 (0.017) 0.116 (0.025) 1.225 (0.032)

41 -7,006.11 1.230 (0.216) 0.607 (0.133) 0.658 (0.057) -0.047 (0.014) 0.084 (0.024) 1.270 (0.039)

42 -6,757.56 1.108 (0.211) 0.502 (0.171) 0.623 (0.058) -0.068 (0.019) 0.111 (0.032) 1.094 (0.028)

43 -6,404.74 0.937 (0.188) 0.770 (0.077) 0.512 (0.065) -0.050 (0.011) 0.092 (0.019) 1.189 (0.028)

44 -5,668.88 0.586 (0.235) 0.658 (0.108) 0.528 (0.066) -0.041 (0.013) 0.153 (0.029) 1.091 (0.027)

45 -6,147.07 0.819 (0.194) 0.533 (0.176) 0.603 (0.071) -0.049 (0.016) 0.112 (0.031) 1.227 (0.031)

46 -7,595.10 1.569 (0.215) 0.105 (0.175) 0.622 (0.046) -0.120 (0.025) 0.208 (0.035) 1.169 (0.034)

47 -6,146.26 0.733 (0.224) 0.123 (0.169) 0.659 (0.042) -0.114 (0.022) 0.175 (0.032) 1.027 (0.022)

48 -6,024.10 0.734 (0.167) -0.086 (0.207) 0.628 (0.047) -0.110 (0.025) 0.192 (0.041) 1.239 (0.026)

49 -7,300.79 1.360 (0.222) 0.265 (0.247) 0.668 (0.061) -0.064 (0.019) 0.148 (0.039) 1.346 (0.038)

50 -5,757.63 0.564 (0.191) 0.766 (0.077) 0.449 (0.078) -0.064 (0.012) 0.147 (0.023) 1.291 (0.028)

51 -5,702.90 0.756 (0.220) 0.223 (0.192) 0.640 (0.050) -0.104 (0.024) 0.191 (0.043) 1.292 (0.039)

52 -6,277.59 0.986 (0.195) 0.554 (0.101) 0.563 (0.051) -0.088 (0.014) 0.148 (0.023) 1.443 (0.040)
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Appendix C: Table C.22. Estimated coefficients for the FIEGARCH model -     

  comp LogL  s.e. β s.e. d s.e. γ1 s.e. γ2 s.e. GED s.e.

1 -4,169.44 -0.564 (0.192) 0.675 (0.121) 0.555 (0.075) -0.025 (0.011) 0.113 (0.025) 1.402 (0.036)

2 -2,161.64 -1.608 (0.156) 0.745 (0.096) 0.469 (0.088) -0.030 (0.010) 0.114 (0.023) 1.373 (0.044)

3 -4,258.10 -0.845 (0.274) 0.567 (0.148) 0.644 (0.066) -0.021 (0.010) 0.116 (0.024) 1.373 (0.035)

4 -4,595.82 -0.071 (0.062) 0.215 (0.196) 0.559 (0.077) -0.084 (0.020) 0.253 (0.036) 1.268 (0.037)

5 -2,493.10 -1.729 (0.265) 0.648 (0.127) 0.626 (0.066) -0.021 (0.009) 0.123 (0.027) 1.302 (0.034)

6 -716.23 -2.450 (0.265) 0.197 (0.138) 0.622 (0.051) -0.013 (0.016) 0.247 (0.045) 1.251 (0.021)

7 -2,598.77 -1.610 (0.247) 0.617 (0.152) 0.650 (0.068) -0.018 (0.010) 0.097 (0.027) 1.432 (0.035)

8 -3,647.25 -0.884 (0.256) 0.089 (0.227) 0.691 (0.057) -0.054 (0.017) 0.198 (0.040) 1.298 (0.029)

9 -1,986.39 -1.463 (0.219) 0.079 (0.265) 0.714 (0.050) -0.021 (0.015) 0.187 (0.046) 1.248 (0.028)

10 -5,074.79 0.145 (0.216) 0.123 (0.240) 0.666 (0.061) -0.048 (0.017) 0.164 (0.034) 1.326 (0.031)

11 -4,690.97 -0.045 (0.096) 0.837 (0.065) 0.372 (0.079) -0.051 (0.012) 0.072 (0.017) 1.306 (0.037)

12 -5,009.50 -0.009 (0.179) 0.555 (0.118) 0.576 (0.051) -0.104 (0.020) 0.110 (0.022) 1.345 (0.035)

13 -4,993.68 0.196 (0.183) -0.462 (0.188) 0.671 (0.049) -0.032 (0.022) 0.217 (0.034) 1.104 (0.017)

14 -3,918.63 -0.671 (0.234) 0.714 (0.100) 0.588 (0.066) -0.041 (0.012) 0.092 (0.022) 1.179 (0.033)

15 -3,365.14 -0.806 (0.247) 0.007 (0.199) 0.647 (0.053) -0.056 (0.024) 0.263 (0.049) 1.233 (0.028)

16 -4,600.03 -0.193 (0.173) 0.676 (0.106) 0.552 (0.067) -0.035 (0.012) 0.109 (0.024) 1.479 (0.048)

17 -2,981.18 -1.065 (0.089) 0.752 (0.247) 0.765 (0.074) -0.020 (0.018) 0.133 (0.030) 1.246 (0.037)

18 -1,548.38 -1.811 (0.148) 0.712 (0.101) 0.434 (0.081) -0.057 (0.016) 0.139 (0.028) 1.131 (0.029)

19 -4,391.49 -0.340 (0.235) 0.272 (0.211) 0.662 (0.057) -0.051 (0.018) 0.162 (0.039) 1.428 (0.046)

20 -4,148.18 -0.396 (0.131) 0.801 (0.069) 0.357 (0.092) -0.024 (0.011) 0.146 (0.020) 1.257 (0.032)

21 -3,611.71 -0.901 (0.165) 0.389 (0.179) 0.581 (0.053) -0.096 (0.023) 0.135 (0.032) 1.251 (0.033)

22 -4,207.82 -0.362 (0.253) -0.201 (0.155) 0.647 (0.054) -0.087 (0.021) 0.300 (0.031) 1.299 (0.034)

23 -4,166.70 -0.367 (0.222) 0.688 (0.113) 0.574 (0.063) -0.032 (0.011) 0.101 (0.022) 1.154 (0.020)

24 -4,348.79 -0.142 (0.223) -0.644 (0.083) 0.735 (0.041) -0.076 (0.024) 0.253 (0.040) 1.334 (0.026)

25 -3,498.03 -0.950 (0.242) 0.261 (0.219) 0.681 (0.055) -0.045 (0.018) 0.163 (0.039) 1.260 (0.036)

26 -4,206.00 -0.256 (0.241) 0.472 (0.162) 0.625 (0.057) -0.054 (0.014) 0.151 (0.033) 1.440 (0.044)

27 -2,304.93 -1.520 (0.265) 0.311 (0.171) 0.621 (0.055) -0.029 (0.015) 0.221 (0.041) 1.188 (0.028)

28 -1,641.12 -1.745 (0.218) 0.459 (0.179) 0.550 (0.077) -0.020 (0.016) 0.202 (0.039) 1.123 (0.019)

29 -2,672.94 -1.612 (0.388) 0.271 (0.112) 0.616 (0.047) -0.051 (0.018) 0.335 (0.037) 1.147 (0.027)

30 -3,626.98 -0.780 (0.241) 0.652 (0.114) 0.569 (0.070) -0.042 (0.012) 0.141 (0.027) 1.261 (0.036)

31 -1,402.63 -2.051 (0.235) 0.138 (0.158) 0.585 (0.051) -0.062 (0.020) 0.291 (0.043) 1.233 (0.035)

32 -4,210.48 -0.358 (0.214) 0.556 (0.123) 0.548 (0.059) -0.073 (0.019) 0.158 (0.031) 1.129 (0.023)

33 -6,162.74 0.591 (0.262) 0.787 (0.080) 0.597 (0.071) -0.019 (0.007) 0.080 (0.017) 1.449 (0.035)

34 -4,145.18 -0.377 (0.203) 0.246 (0.194) 0.614 (0.055) -0.023 (0.015) 0.197 (0.037) 1.348 (0.030)

35 -4,245.49 -0.384 (0.142) 0.852 (0.052) 0.393 (0.079) -0.060 (0.011) 0.095 (0.016) 1.323 (0.041)

36 -3,845.20 -0.637 (0.170) 0.763 (0.064) 0.491 (0.050) -0.065 (0.013) 0.101 (0.018) 1.341 (0.035)

37 -4,931.51 -0.061 (0.144) 0.748 (0.059) 0.464 (0.051) -0.090 (0.014) 0.109 (0.018) 1.465 (0.047)

38 -3,460.64 -0.827 (0.226) 0.206 (0.205) 0.611 (0.057) -0.081 (0.021) 0.202 (0.040) 1.162 (0.020)

39 -4,698.37 -0.007 (0.169) 0.404 (0.246) 0.630 (0.064) -0.037 (0.017) 0.122 (0.042) 1.242 (0.027)

40 -3,851.59 -0.594 (0.201) 0.624 (0.120) 0.568 (0.059) -0.060 (0.017) 0.123 (0.027) 1.227 (0.032)

41 -3,747.93 -0.549 (0.211) 0.238 (0.253) 0.671 (0.060) -0.043 (0.019) 0.153 (0.043) 1.279 (0.038)

42 -4,249.50 -0.298 (0.173) 0.560 (0.168) 0.550 (0.075) -0.043 (0.016) 0.123 (0.035) 1.110 (0.027)

43 -4,187.64 -0.398 (0.202) 0.744 (0.108) 0.558 (0.081) -0.024 (0.009) 0.087 (0.021) 1.231 (0.028)

44 -2,442.96 -1.249 (0.234) 0.724 (0.095) 0.515 (0.071) -0.017 (0.010) 0.135 (0.026) 1.104 (0.028)

45 -2,942.37 -0.974 (0.225) 0.481 (0.202) 0.649 (0.066) -0.027 (0.014) 0.116 (0.035) 1.215 (0.030)

46 -4,459.65 -0.140 (0.202) 0.190 (0.187) 0.578 (0.055) -0.056 (0.022) 0.233 (0.041) 1.187 (0.036)

47 -3,501.49 -0.697 (0.182) 0.391 (0.177) 0.578 (0.068) -0.064 (0.017) 0.152 (0.033) 1.030 (0.020)

48 -4,712.49 -0.072 (0.169) -0.185 (0.225) 0.656 (0.050) -0.080 (0.023) 0.184 (0.040) 1.314 (0.028)

49 -6,066.54 0.763 (0.150) 0.377 (0.245) 0.562 (0.081) -0.051 (0.019) 0.148 (0.040) 1.350 (0.038)

50 -3,007.63 -1.006 (0.156) 0.821 (0.068) 0.373 (0.096) -0.049 (0.011) 0.148 (0.022) 1.309 (0.030)

51 -3,499.21 -0.569 (0.221) 0.211 (0.203) 0.637 (0.053) -0.076 (0.021) 0.197 (0.045) 1.291 (0.038)

52 -3,847.47 -0.337 (0.216) 0.298 (0.189) 0.628 (0.057) -0.045 (0.016) 0.177 (0.035) 1.472 (0.038)
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Appendix C: Table C.23. Estimated coefficients for the FIEGARCH model -      

  comp LogL  s.e. β s.e. d s.e. γ1 s.e. γ2 s.e. GED s.e.

1 -4,207.96 -0.573 (0.199) 0.663 (0.124) 0.570 (0.074) -0.026 (0.011) 0.112 (0.025) 1.405 (0.036)

2 -2,175.62 -1.590 (0.157) 0.742 (0.095) 0.473 (0.085) -0.032 (0.011) 0.114 (0.023) 1.373 (0.044)

3 -4,213.77 -0.859 (0.271) 0.568 (0.148) 0.641 (0.066) -0.021 (0.010) 0.117 (0.024) 1.373 (0.036)

4 -4,540.84 -0.108 (0.065) 0.205 (0.191) 0.566 (0.074) -0.087 (0.021) 0.258 (0.036) 1.266 (0.037)

5 -2,484.10 -1.699 (0.260) 0.655 (0.124) 0.620 (0.066) -0.023 (0.009) 0.123 (0.027) 1.304 (0.034)

6 -701.66 -2.442 (0.255) 0.202 (0.139) 0.613 (0.052) -0.015 (0.016) 0.247 (0.045) 1.252 (0.021)

7 -2,570.44 -1.604 (0.243) 0.617 (0.151) 0.645 (0.068) -0.020 (0.010) 0.097 (0.027) 1.432 (0.035)

8 -3,595.70 -0.868 (0.250) 0.091 (0.227) 0.689 (0.056) -0.057 (0.017) 0.197 (0.040) 1.299 (0.029)

9 -1,929.25 -1.509 (0.216) 0.078 (0.265) 0.710 (0.050) -0.023 (0.016) 0.187 (0.046) 1.248 (0.028)

10 -5,064.97 0.039 (0.235) 0.138 (0.233) 0.677 (0.060) -0.046 (0.016) 0.161 (0.033) 1.327 (0.031)

11 -4,641.23 -0.076 (0.099) 0.830 (0.067) 0.382 (0.077) -0.051 (0.012) 0.072 (0.018) 1.305 (0.037)

12 -5,039.51 -0.021 (0.188) 0.546 (0.119) 0.586 (0.050) -0.104 (0.021) 0.110 (0.022) 1.343 (0.034)

13 -5,036.32 0.266 (0.184) -0.428 (0.201) 0.670 (0.050) -0.036 (0.022) 0.213 (0.034) 1.100 (0.017)

14 -3,906.23 -0.720 (0.249) 0.702 (0.103) 0.601 (0.065) -0.041 (0.012) 0.094 (0.022) 1.178 (0.033)

15 -3,310.92 -0.875 (0.248) 0.008 (0.199) 0.647 (0.053) -0.056 (0.024) 0.262 (0.049) 1.233 (0.028)

16 -4,583.81 -0.211 (0.175) 0.675 (0.107) 0.558 (0.066) -0.035 (0.011) 0.108 (0.024) 1.483 (0.048)

17 -2,915.10 -1.103 (0.089) 0.752 (0.251) 0.765 (0.075) -0.020 (0.009) 0.133 (0.030) 1.246 (0.037)

18 -1,447.94 -1.866 (0.144) 0.720 (0.100) 0.424 (0.082) -0.056 (0.016) 0.139 (0.027) 1.133 (0.029)

19 -4,428.72 -0.363 (0.240) 0.270 (0.210) 0.665 (0.057) -0.052 (0.018) 0.162 (0.038) 1.428 (0.045)

20 -4,172.52 -0.391 (0.138) 0.788 (0.069) 0.375 (0.087) -0.023 (0.011) 0.148 (0.020) 1.255 (0.032)

21 -3,566.83 -0.797 (0.134) 0.433 (0.164) 0.546 (0.052) -0.103 (0.024) 0.124 (0.030) 1.258 (0.034)

22 -4,217.57 -0.392 (0.253) -0.220 (0.154) 0.653 (0.054) -0.082 (0.021) 0.296 (0.031) 1.305 (0.034)

23 -4,163.12 -0.376 (0.223) 0.684 (0.115) 0.582 (0.063) -0.032 (0.011) 0.098 (0.022) 1.163 (0.020)

24 -4,340.25 -0.152 (0.221) -0.645 (0.084) 0.742 (0.041) -0.077 (0.023) 0.246 (0.040) 1.337 (0.025)

25 -3,449.92 -1.062 (0.250) 0.261 (0.220) 0.686 (0.055) -0.041 (0.017) 0.163 (0.039) 1.256 (0.036)

26 -4,234.27 -0.247 (0.242) 0.490 (0.158) 0.625 (0.057) -0.053 (0.014) 0.147 (0.032) 1.447 (0.044)

27 -2,294.78 -1.506 (0.262) 0.326 (0.168) 0.616 (0.055) -0.030 (0.014) 0.220 (0.040) 1.190 (0.028)

28 -1,643.39 -1.738 (0.215) 0.460 (0.179) 0.545 (0.077) -0.022 (0.016) 0.204 (0.040) 1.127 (0.019)

29 -2,651.49 -1.616 (0.388) 0.268 (0.112) 0.615 (0.047) -0.051 (0.018) 0.337 (0.038) 1.147 (0.027)

30 -3,594.26 -0.846 (0.253) 0.637 (0.117) 0.583 (0.068) -0.043 (0.012) 0.142 (0.028) 1.257 (0.036)

31 -1,419.41 -2.062 (0.233) 0.152 (0.157) 0.580 (0.051) -0.065 (0.020) 0.291 (0.044) 1.231 (0.035)

32 -4,164.11 -0.371 (0.204) 0.573 (0.119) 0.534 (0.060) -0.073 (0.019) 0.157 (0.031) 1.130 (0.023)

33 -6,138.57 0.576 (0.261) 0.789 (0.079) 0.595 (0.071) -0.020 (0.007) 0.079 (0.017) 1.453 (0.035)

34 -4,148.36 -0.371 (0.197) 0.234 (0.198) 0.612 (0.056) -0.025 (0.016) 0.195 (0.037) 1.349 (0.030)

35 -4,190.06 -0.436 (0.153) 0.832 (0.057) 0.421 (0.075) -0.059 (0.011) 0.097 (0.017) 1.321 (0.041)

36 -3,798.70 -0.658 (0.169) 0.767 (0.063) 0.486 (0.051) -0.065 (0.013) 0.102 (0.018) 1.340 (0.035)

37 -4,926.96 -0.070 (0.143) 0.747 (0.060) 0.463 (0.051) -0.091 (0.014) 0.110 (0.018) 1.461 (0.047)

38 -3,412.37 -0.887 (0.234) 0.186 (0.206) 0.619 (0.056) -0.081 (0.021) 0.203 (0.040) 1.162 (0.020)

39 -4,691.66 -0.016 (0.171) 0.379 (0.251) 0.643 (0.062) -0.038 (0.017) 0.123 (0.042) 1.257 (0.027)

40 -3,832.35 -0.614 (0.201) 0.627 (0.119) 0.566 (0.060) -0.060 (0.016) 0.124 (0.027) 1.227 (0.032)

41 -3,728.86 -0.596 (0.208) 0.251 (0.252) 0.665 (0.059) -0.044 (0.018) 0.151 (0.042) 1.282 (0.038)

42 -4,321.65 -0.260 (0.177) 0.548 (0.172) 0.562 (0.073) -0.047 (0.016) 0.120 (0.035) 1.110 (0.027)

43 -4,179.69 -0.448 (0.214) 0.736 (0.113) 0.580 (0.081) -0.021 (0.009) 0.084 (0.021) 1.236 (0.029)

44 -2,382.95 -1.320 (0.236) 0.713 (0.099) 0.523 (0.070) -0.016 (0.010) 0.134 (0.026) 1.103 (0.027)

45 -2,846.06 -1.067 (0.222) 0.473 (0.207) 0.648 (0.067) -0.025 (0.013) 0.116 (0.035) 1.214 (0.029)

46 -4,566.48 -0.092 (0.154) 0.320 (0.169) 0.505 (0.060) -0.070 (0.022) 0.220 (0.039) 1.196 (0.036)

47 -3,442.35 -0.772 (0.197) 0.334 (0.183) 0.608 (0.064) -0.068 (0.018) 0.153 (0.034) 1.030 (0.020)

48 -4,713.36 -0.088 (0.173) -0.212 (0.224) 0.669 (0.050) -0.081 (0.023) 0.181 (0.039) 1.320 (0.028)

49 -6,051.58 0.745 (0.150) 0.365 (0.249) 0.565 (0.081) -0.050 (0.019) 0.148 (0.041) 1.351 (0.038)

50 -2,958.44 -1.042 (0.141) 0.842 (0.063) 0.334 (0.101) -0.050 (0.011) 0.148 (0.022) 1.306 (0.030)

51 -3,452.55 -0.615 (0.221) 0.212 (0.203) 0.636 (0.053) -0.077 (0.021) 0.197 (0.045) 1.289 (0.038)

52 -3,859.21 -0.322 (0.225) 0.285 (0.193) 0.640 (0.056) -0.045 (0.016) 0.175 (0.035) 1.475 (0.037)
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Appendix C: Table C.24. Estimated coefficients for the FIEGARCH model -        

 

  

comp LogL  s.e. β s.e. d s.e. γ1 s.e. γ2 s.e. GED s.e.

1 -4,128.29 -0.615 (0.198) 0.684 (0.117) 0.556 (0.076) -0.026 (0.010) 0.112 (0.024) 1.408 (0.037)

2 -2,080.51 -1.634 (0.153) 0.811 (0.074) 0.429 (0.093) -0.031 (0.010) 0.106 (0.020) 1.362 (0.044)

3 -4,237.51 -0.853 (0.272) 0.622 (0.130) 0.635 (0.067) -0.018 (0.009) 0.107 (0.022) 1.377 (0.036)

4 -4,569.81 -0.088 (0.064) 0.253 (0.194) 0.556 (0.080) -0.084 (0.019) 0.246 (0.035) 1.262 (0.037)

5 -2,377.76 -1.765 (0.274) 0.714 (0.098) 0.596 (0.067) -0.021 (0.008) 0.115 (0.024) 1.296 (0.033)

6 -533.12 -2.581 (0.320) 0.188 (0.145) 0.665 (0.050) -0.003 (0.015) 0.241 (0.045) 1.218 (0.021)

7 -2,541.30 -1.513 (0.212) 0.840 (0.070) 0.543 (0.092) -0.010 (0.006) 0.065 (0.015) 1.432 (0.035)

8 -3,566.58 -0.906 (0.265) 0.131 (0.220) 0.690 (0.057) -0.051 (0.017) 0.198 (0.040) 1.297 (0.029)

9 -1,902.04 -1.576 (0.228) 0.293 (0.221) 0.676 (0.054) -0.018 (0.014) 0.171 (0.042) 1.234 (0.029)

10 -5,064.36 0.048 (0.234) 0.124 (0.236) 0.677 (0.060) -0.048 (0.017) 0.162 (0.034) 1.322 (0.031)

11 -4,707.19 -0.038 (0.093) 0.850 (0.061) 0.355 (0.084) -0.051 (0.012) 0.070 (0.017) 1.305 (0.037)

12 -5,018.90 -0.025 (0.186) 0.552 (0.116) 0.582 (0.050) -0.104 (0.020) 0.110 (0.022) 1.352 (0.034)

13 -5,051.39 0.257 (0.186) -0.445 (0.193) 0.672 (0.049) -0.032 (0.022) 0.217 (0.034) 1.102 (0.017)

14 -3,938.74 -0.707 (0.248) 0.712 (0.099) 0.594 (0.066) -0.041 (0.011) 0.095 (0.022) 1.178 (0.033)

15 -3,372.02 -0.830 (0.248) 0.056 (0.196) 0.639 (0.053) -0.060 (0.023) 0.258 (0.048) 1.237 (0.029)

16 -4,627.77 -0.191 (0.175) 0.678 (0.105) 0.554 (0.067) -0.036 (0.011) 0.109 (0.024) 1.484 (0.049)

17 -2,960.55 -1.072 (0.084) 0.774 (0.174) 0.757 (0.062) -0.072 (0.018) 0.130 (0.029) 1.253 (0.037)

18 -1,539.19 -1.823 (0.146) 0.770 (0.086) 0.413 (0.086) -0.056 (0.014) 0.125 (0.024) 1.123 (0.030)

19 -4,492.56 -0.296 (0.235) 0.270 (0.208) 0.660 (0.056) -0.056 (0.019) 0.163 (0.039) 1.418 (0.045)

20 -4,196.64 -0.376 (0.136) 0.795 (0.068) 0.368 (0.088) -0.026 (0.011) 0.146 (0.020) 1.260 (0.032)

21 -3,598.77 -0.777 (0.135) 0.432 (0.161) 0.553 (0.050) -0.107 (0.024) 0.122 (0.029) 1.255 (0.034)

22 -4,244.73 -0.369 (0.259) -0.216 (0.155) 0.659 (0.054) -0.085 (0.021) 0.289 (0.031) 1.295 (0.034)

23 -4,150.20 -0.373 (0.223) 0.689 (0.113) 0.580 (0.063) -0.032 (0.011) 0.097 (0.022) 1.160 (0.020)

24 -4,335.29 -0.156 (0.222) -0.593 (0.099) 0.732 (0.041) -0.083 (0.024) 0.249 (0.040) 1.330 (0.026)

25 -3,510.79 -1.015 (0.242) 0.285 (0.215) 0.682 (0.056) -0.042 (0.017) 0.158 (0.039) 1.262 (0.036)

26 -4,165.94 -0.278 (0.245) 0.507 (0.156) 0.627 (0.058) -0.050 (0.013) 0.143 (0.031) 1.460 (0.044)

27 -2,199.58 -1.635 (0.274) 0.359 (0.178) 0.643 (0.057) -0.019 (0.012) 0.196 (0.039) 1.212 (0.028)

28 -1,607.34 -1.728 (0.217) 0.615 (0.144) 0.530 (0.086) -0.014 (0.012) 0.164 (0.034) 1.097 (0.019)

29 -2,702.91 -1.616 (0.395) 0.309 (0.120) 0.621 (0.049) -0.049 (0.018) 0.316 (0.037) 1.134 (0.027)

30 -3,686.55 -0.753 (0.238) 0.648 (0.114) 0.566 (0.068) -0.044 (0.012) 0.143 (0.028) 1.262 (0.036)

31 -1,237.28 -2.264 (0.249) 0.139 (0.168) 0.610 (0.053) -0.046 (0.019) 0.272 (0.042) 1.236 (0.035)

32 -4,242.95 -0.342 (0.214) 0.591 (0.111) 0.538 (0.060) -0.071 (0.018) 0.154 (0.029) 1.131 (0.023)

33 -6,045.44 0.531 (0.255) 0.791 (0.079) 0.586 (0.073) -0.018 (0.007) 0.080 (0.017) 1.449 (0.035)

34 -4,139.72 -0.362 (0.200) 0.227 (0.197) 0.613 (0.055) -0.027 (0.016) 0.200 (0.037) 1.351 (0.030)

35 -4,264.69 -0.379 (0.150) 0.844 (0.053) 0.407 (0.075) -0.060 (0.011) 0.096 (0.017) 1.317 (0.041)

36 -3,844.47 -0.613 (0.162) 0.800 (0.057) 0.461 (0.053) -0.063 (0.012) 0.098 (0.017) 1.325 (0.035)

37 -4,986.48 -0.062 (0.147) 0.754 (0.059) 0.466 (0.052) -0.089 (0.014) 0.109 (0.018) 1.463 (0.047)

38 -3,507.97 -0.838 (0.238) 0.208 (0.206) 0.619 (0.057) -0.077 (0.019) 0.202 (0.041) 1.160 (0.021)

39 -4,647.50 -0.043 (0.173) 0.400 (0.242) 0.638 (0.062) -0.037 (0.017) 0.122 (0.041) 1.259 (0.027)

40 -3,838.87 -0.614 (0.199) 0.648 (0.113) 0.559 (0.060) -0.058 (0.016) 0.121 (0.026) 1.230 (0.032)

41 -3,752.43 -0.597 (0.215) 0.359 (0.237) 0.663 (0.062) -0.038 (0.017) 0.134 (0.040) 1.272 (0.038)

42 -4,327.76 -0.250 (0.176) 0.592 (0.159) 0.552 (0.075) -0.044 (0.015) 0.115 (0.033) 1.095 (0.027)

43 -4,213.33 -0.403 (0.208) 0.760 (0.104) 0.559 (0.085) -0.023 (0.009) 0.084 (0.020) 1.239 (0.029)

44 -2,545.05 -1.230 (0.223) 0.725 (0.095) 0.492 (0.075) -0.023 (0.011) 0.146 (0.027) 1.105 (0.028)

45 -3,021.55 -0.966 (0.226) 0.533 (0.186) 0.634 (0.069) -0.026 (0.013) 0.113 (0.033) 1.224 (0.030)

46 -4,571.09 -0.080 (0.192) 0.282 (0.174) 0.553 (0.057) -0.059 (0.021) 0.223 (0.040) 1.167 (0.035)

47 -3,561.17 -0.649 (0.160) 0.505 (0.166) 0.533 (0.078) -0.058 (0.016) 0.138 (0.032) 1.037 (0.019)

48 -4,740.40 -0.063 (0.175) -0.200 (0.223) 0.667 (0.050) -0.081 (0.023) 0.183 (0.039) 1.316 (0.028)

49 -6,033.97 0.734 (0.150) 0.395 (0.242) 0.560 (0.082) -0.049 (0.018) 0.144 (0.040) 1.354 (0.038)

50 -3,127.45 -0.934 (0.152) 0.836 (0.064) 0.358 (0.098) -0.050 (0.011) 0.146 (0.022) 1.318 (0.031)

51 -3,559.51 -0.565 (0.222) 0.226 (0.201) 0.633 (0.053) -0.080 (0.021) 0.197 (0.044) 1.297 (0.039)

52 -3,873.38 -0.327 (0.220) 0.347 (0.181) 0.626 (0.057) -0.046 (0.015) 0.169 (0.034) 1.459 (0.038)
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Appendix C: Table C.25. Estimated coefficients for the FIAPARCH model - Equity 

  comp LogL  s.e. d s.e. α s.e. β s.e. γ s.e. δ s.e. GED s.e.

1 -7,088.34 0.234 (0.051) 0.436 (0.077) 0.214 (0.054) 0.583 (0.072) 0.325 (0.094) 1.429 (0.188) 1.294 (0.030)

2 -6,501.80 0.123 (0.045) 0.375 (0.067) 0.257 (0.055) 0.568 (0.070) 0.382 (0.087) 1.722 (0.165) 1.369 (0.044)

3 -6,839.26 0.215 (0.052) 0.353 (0.067) 0.188 (0.053) 0.512 (0.070) 0.376 (0.104) 1.604 (0.163) 1.404 (0.039)

4 -7,143.20 0.175 (0.048) 0.386 (0.066) 0.293 (0.063) 0.560 (0.081) 0.492 (0.080) 1.600 (0.097) 1.249 (0.035)

5 -6,699.14 0.183 (0.046) 0.431 (0.071) 0.158 (0.052) 0.546 (0.080) 0.261 (0.074) 1.677 (0.174) 1.300 (0.036)

6 -7,588.63 0.255 (0.082) 0.370 (0.069) 0.227 (0.067) 0.508 (0.090) 0.281 (0.053) 1.821 (0.136) 1.224 (0.023)

7 -7,362.08 0.223 (0.053) 0.347 (0.065) 0.223 (0.049) 0.533 (0.070) 0.480 (0.113) 1.604 (0.146) 1.460 (0.037)

8 -7,132.83 0.118 (0.046) 0.319 (0.072) 0.371 (0.052) 0.622 (0.058) 0.596 (0.153) 1.690 (0.149) 1.310 (0.034)

9 -6,699.33 0.267 (0.064) 0.331 (0.069) 0.321 (0.064) 0.578 (0.074) 0.531 (0.147) 1.192 (0.226) 1.238 (0.030)

10 -6,573.91 0.159 (0.045) 0.407 (0.086) 0.310 (0.059) 0.626 (0.081) 0.212 (0.082) 1.668 (0.226) 1.270 (0.034)

11 -6,438.75 0.224 (0.062) 0.213 (0.082) 0.304 (0.066) 0.482 (0.089) 1.000 (0.507) 1.396 (0.233) 1.300 (0.036)

12 -6,207.12 0.078 (0.088) 0.168 (0.070) 0.093 (0.108) 0.231 (0.140) 1.000 (0.466) 1.686 (0.206) 1.357 (0.036)

13 -6,565.02 0.134 (0.029) 0.473 (0.085) 0.362 (0.052) 0.730 (0.053) 0.465 (0.129) 0.710 (0.176) 1.061 (0.015)

14 -6,275.68 0.105 (0.035) 0.290 (0.073) 0.315 (0.048) 0.570 (0.064) 1.000 (0.389) 1.417 (0.232) 1.179 (0.035)

15 -5,749.93 0.080 (0.021) 0.529 (0.103) 0.357 (0.060) 0.757 (0.057) 0.397 (0.100) 1.336 (0.191) 1.236 (0.029)

16 -5,535.35 0.124 (0.035) 0.320 (0.072) 0.346 (0.061) 0.585 (0.079) 0.402 (0.118) 1.562 (0.204) 1.462 (0.047)

17 -6,330.60 0.125 (0.031) 0.351 (0.080) 0.349 (0.052) 0.633 (0.059) 0.609 (0.175) 1.512 (0.176) 1.237 (0.036)

18 -5,967.13 0.124 (0.049) 0.271 (0.099) 0.308 (0.054) 0.539 (0.085) 1.000 (0.448) 1.428 (0.208) 1.077 (0.029)

19 -5,355.68 0.103 (0.025) 0.424 (0.079) 0.350 (0.055) 0.676 (0.060) 0.406 (0.114) 1.250 (0.247) 1.378 (0.045)

20 -5,613.89 0.104 (0.030) 0.427 (0.089) 0.332 (0.055) 0.643 (0.075) 0.233 (0.055) 1.649 (0.187) 1.276 (0.034)

21 -5,745.59 0.295 (0.087) 0.180 (0.090) 0.168 (0.117) 0.299 (0.149) 1.000 (0.627) 1.400 (0.253) 1.256 (0.036)

22 -5,758.25 0.072 (0.018) 0.398 (0.085) 0.517 (0.054) 0.770 (0.036) 0.506 (0.108) 1.512 (0.154) 1.263 (0.034)

23 -6,165.90 0.158 (0.038) 0.522 (0.092) 0.241 (0.054) 0.678 (0.068) 0.425 (0.105) 1.056 (0.169) 1.055 (0.019)

24 -6,070.70 0.095 (0.025) 0.546 (0.118) 0.323 (0.066) 0.763 (0.058) 0.503 (0.127) 1.183 (0.166) 1.243 (0.023)

25 -5,308.16 0.106 (0.026) 0.458 (0.087) 0.324 (0.053) 0.685 (0.062) 0.401 (0.113) 1.152 (0.229) 1.262 (0.035)

26 -6,002.43 0.157 (0.039) 0.311 (0.063) 0.167 (0.059) 0.424 (0.086) 0.612 (0.146) 1.519 (0.141) 1.399 (0.042)

27 -6,201.55 0.214 (0.050) 0.438 (0.078) 0.199 (0.061) 0.540 (0.094) 0.394 (0.093) 1.215 (0.165) 1.188 (0.028)

28 -5,929.68 0.186 (0.042) 0.465 (0.080) 0.214 (0.057) 0.590 (0.083) 0.316 (0.110) 0.874 (0.200) 1.068 (0.019)

29 -5,704.48 0.083 (0.023) 0.686 (0.123) 0.255 (0.063) 0.749 (0.072) 0.370 (0.053) 1.292 (0.144) 1.150 (0.028)

30 -6,331.92 0.153 (0.031) 0.509 (0.079) 0.165 (0.045) 0.617 (0.071) 0.465 (0.077) 1.291 (0.154) 1.256 (0.037)

31 -6,375.45 0.230 (0.054) 0.418 (0.072) 0.253 (0.068) 0.531 (0.094) 0.403 (0.089) 1.182 (0.174) 1.227 (0.037)

32 -6,208.75 0.207 (0.041) 0.412 (0.070) 0.230 (0.050) 0.575 (0.068) 0.682 (0.137) 1.114 (0.153) 1.143 (0.025)

33 -7,826.06 0.150 (0.033) 0.586 (0.094) 0.163 (0.050) 0.727 (0.059) 0.319 (0.086) 1.579 (0.153) 1.455 (0.041)

34 -6,295.03 0.201 (0.056) 0.392 (0.081) 0.317 (0.067) 0.592 (0.093) 0.189 (0.070) 1.434 (0.256) 1.299 (0.032)

35 -6,240.18 0.217 (0.046) 0.314 (0.075) 0.254 (0.052) 0.517 (0.076) 0.834 (0.203) 1.229 (0.158) 1.344 (0.044)

36 -6,788.47 0.109 (0.024) 0.461 (0.075) 0.271 (0.043) 0.666 (0.054) 0.684 (0.128) 1.395 (0.120) 1.319 (0.036)

37 -6,227.66 0.187 (0.030) 0.374 (0.080) 0.254 (0.045) 0.565 (0.059) 1.000 (0.245) 1.063 (0.107) 1.476 (0.047)

38 -5,834.08 0.173 (0.040) 0.308 (0.080) 0.321 (0.057) 0.558 (0.075) 0.859 (0.202) 1.295 (0.148) 1.157 (0.021)

39 -6,696.13 0.313 (0.078) 0.286 (0.075) 0.196 (0.072) 0.435 (0.098) 0.580 (0.162) 1.538 (0.193) 1.180 (0.024)

40 -6,100.05 0.169 (0.033) 0.411 (0.073) 0.232 (0.046) 0.583 (0.067) 0.628 (0.136) 1.235 (0.150) 1.236 (0.033)

41 -7,003.77 0.109 (0.052) 0.340 (0.078) 0.351 (0.055) 0.634 (0.063) 0.432 (0.120) 1.800 (0.194) 1.280 (0.039)

42 -6,759.94 0.236 (0.068) 0.288 (0.069) 0.260 (0.073) 0.500 (0.096) 0.518 (0.130) 1.666 (0.196) 1.099 (0.028)

43 -6,400.77 0.131 (0.029) 0.446 (0.077) 0.351 (0.050) 0.707 (0.051) 0.524 (0.119) 1.378 (0.149) 1.197 (0.028)

44 -5,663.73 0.175 (0.043) 0.430 (0.084) 0.151 (0.066) 0.515 (0.100) 0.236 (0.081) 1.533 (0.216) 1.106 (0.027)

45 -6,148.49 0.224 (0.058) 0.359 (0.068) 0.269 (0.063) 0.564 (0.083) 0.428 (0.130) 1.054 (0.252) 1.227 (0.032)

46 -7,596.79 0.204 (0.074) 0.292 (0.064) 0.378 (0.080) 0.561 (0.089) 0.489 (0.126) 1.797 (0.136) 1.190 (0.036)

47 -6,142.99 0.148 (0.033) 0.490 (0.077) 0.331 (0.050) 0.703 (0.052) 0.615 (0.117) 0.871 (0.159) 1.031 (0.022)

48 -6,026.17 0.106 (0.022) 0.361 (0.068) 0.582 (0.057) 0.786 (0.035) 0.575 (0.119) 1.140 (0.193) 1.236 (0.026)

49 -7,308.97 0.212 (0.058) 0.404 (0.091) 0.350 (0.058) 0.674 (0.066) 0.371 (0.103) 1.425 (0.238) 1.349 (0.038)

50 -5,751.31 0.117 (0.024) 0.543 (0.087) 0.216 (0.050) 0.664 (0.063) 0.473 (0.091) 1.186 (0.164) 1.300 (0.029)

51 -5,701.60 0.108 (0.027) 0.381 (0.088) 0.382 (0.058) 0.663 (0.063) 0.551 (0.135) 1.392 (0.199) 1.288 (0.039)

52 -6,267.69 0.132 (0.040) 0.281 (0.062) 0.317 (0.060) 0.524 (0.075) 0.645 (0.173) 1.600 (0.151) 1.456 (0.042)
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Appendix C: Table C.26. Estimated coefficients for the FIAPARCH model -     

  comp LogL  s.e. d s.e. α s.e. β s.e. γ s.e. δ s.e. GED s.e.

1 -4,171.79 0.066 (0.019) 0.463 (0.085) 0.239 (0.052) 0.640 (0.072) 0.198 (0.085) 1.335 (0.228) 1.420 (0.038)

2 -2,157.96 0.016 (0.010) 0.336 (0.083) 0.326 (0.067) 0.586 (0.082) 0.195 (0.072) 1.850 (0.303) 1.379 (0.045)

3 -4,264.16 0.058 (0.019) 0.428 (0.080) 0.195 (0.050) 0.578 (0.071) 0.189 (0.076) 1.617 (0.202) 1.388 (0.039)

4 -4,594.97 0.114 (0.031) 0.406 (0.080) 0.301 (0.065) 0.577 (0.089) 0.383 (0.081) 1.239 (0.213) 1.271 (0.037)

5 -2,492.44 0.005 (0.003) 0.506 (0.078) 0.204 (0.046) 0.661 (0.063) 0.113 (0.053) 1.990 (0.122) 1.318 (0.038)

6 -726.93 0.013 (0.005) 0.317 (0.071) 0.155 (0.119) 0.355 (0.157) 0.164 (0.049) 1.865 (0.177) 1.255 (0.023)

7 -2,595.39 0.020 (0.008) 0.484 (0.098) 0.260 (0.050) 0.701 (0.066) 0.145 (0.072) 1.627 (0.246) 1.438 (0.036)

8 -3,655.48 0.012 (0.006) 0.499 (0.116) 0.357 (0.068) 0.759 (0.060) 0.242 (0.068) 1.868 (0.183) 1.298 (0.028)

9 -1,986.02 0.028 (0.011) 0.403 (0.088) 0.337 (0.061) 0.645 (0.072) 0.217 (0.087) 1.440 (0.239) 1.242 (0.027)

10 -5,076.10 0.091 (0.029) 0.358 (0.090) 0.399 (0.063) 0.659 (0.079) 0.106 (0.082) 1.660 (0.286) 1.328 (0.033)

11 -4,689.67 0.162 (0.042) 0.253 (0.058) 0.276 (0.075) 0.487 (0.090) 0.693 (0.186) 1.271 (0.213) 1.307 (0.037)

12 -5,003.52 0.047 (0.056) 0.139 (0.071) 0.061 (0.131) 0.175 (0.165) 1.000 (0.536) 1.793 (0.223) 1.362 (0.037)

13 -4,988.35 0.091 (0.022) 0.457 (0.086) 0.389 (0.055) 0.743 (0.052) 0.383 (0.127) 0.757 (0.186) 1.107 (0.016)

14 -3,922.72 0.021 (0.012) 0.323 (0.071) 0.325 (0.049) 0.604 (0.066) 0.533 (0.126) 1.815 (0.170) 1.182 (0.034)

15 -3,365.55 0.034 (0.011) 0.581 (0.116) 0.352 (0.069) 0.786 (0.058) 0.292 (0.090) 1.203 (0.217) 1.240 (0.030)

16 -4,593.24 0.073 (0.024) 0.329 (0.073) 0.333 (0.061) 0.588 (0.081) 0.306 (0.104) 1.663 (0.224) 1.499 (0.050)

17 -2,986.91 0.055 (0.017) 0.379 (0.080) 0.354 (0.057) 0.648 (0.069) 0.432 (0.130) 1.230 (0.230) 1.240 (0.036)

18 -1,544.07 0.050 (0.019) 0.378 (0.075) 0.260 (0.072) 0.549 (0.093) 0.423 (0.105) 1.135 (0.214) 1.134 (0.030)

19 -4,389.02 0.063 (0.018) 0.429 (0.088) 0.360 (0.057) 0.691 (0.062) 0.289 (0.099) 1.360 (0.267) 1.436 (0.047)

20 -4,138.95 0.058 (0.020) 0.365 (0.089) 0.355 (0.065) 0.605 (0.090) 0.174 (0.055) 1.723 (0.224) 1.274 (0.034)

21 -3,619.15 0.103 (0.031) 0.222 (0.066) 0.194 (0.104) 0.358 (0.128) 0.750 (0.223) 1.486 (0.179) 1.247 (0.034)

22 -4,204.76 0.033 (0.009) 0.428 (0.095) 0.529 (0.063) 0.791 (0.036) 0.321 (0.083) 1.585 (0.178) 1.307 (0.035)

23 -4,165.91 0.076 (0.018) 0.466 (0.092) 0.238 (0.052) 0.653 (0.072) 0.372 (0.096) 1.262 (0.177) 1.167 (0.022)

24 -4,352.56 0.057 (0.015) 0.505 (0.097) 0.340 (0.056) 0.736 (0.059) 0.301 (0.104) 1.224 (0.209) 1.336 (0.024)

25 -3,503.15 0.049 (0.014) 0.507 (0.096) 0.305 (0.057) 0.712 (0.062) 0.300 (0.102) 1.177 (0.239) 1.257 (0.036)

26 -4,206.12 0.057 (0.021) 0.306 (0.061) 0.181 (0.079) 0.425 (0.105) 0.309 (0.083) 1.807 (0.177) 1.434 (0.045)

27 -2,305.83 0.029 (0.010) 0.435 (0.081) 0.246 (0.071) 0.559 (0.102) 0.071 (0.057) 1.571 (0.161) 1.193 (0.029)

28 -1,642.23 0.047 (0.018) 0.450 (0.082) 0.222 (0.065) 0.556 (0.096) 0.100 (0.078) 1.163 (0.251) 1.120 (0.020)

29 -2,670.82 0.022 (0.007) 0.600 (0.101) 0.321 (0.064) 0.692 (0.075) 0.169 (0.043) 1.575 (0.126) 1.162 (0.028)

30 -3,625.08 0.068 (0.017) 0.482 (0.081) 0.165 (0.051) 0.588 (0.083) 0.316 (0.069) 1.263 (0.191) 1.269 (0.037)

31 -1,406.29 0.038 (0.014) 0.383 (0.074) 0.342 (0.087) 0.554 (0.107) 0.203 (0.076) 1.242 (0.191) 1.231 (0.036)

32 -4,207.90 0.108 (0.024) 0.453 (0.071) 0.238 (0.050) 0.608 (0.068) 0.537 (0.118) 0.982 (0.188) 1.137 (0.025)

33 -6,160.60 0.074 (0.023) 0.491 (0.083) 0.214 (0.047) 0.675 (0.062) 0.202 (0.076) 1.757 (0.165) 1.459 (0.036)

34 -4,140.47 0.066 (0.022) 0.353 (0.078) 0.304 (0.066) 0.574 (0.093) 0.116 (0.060) 1.711 (0.251) 1.358 (0.034)

35 -4,245.10 0.070 (0.020) 0.392 (0.081) 0.262 (0.047) 0.596 (0.070) 0.576 (0.132) 1.386 (0.186) 1.325 (0.042)

36 -3,845.64 0.047 (0.012) 0.454 (0.082) 0.293 (0.045) 0.677 (0.057) 0.675 (0.127) 1.271 (0.152) 1.351 (0.036)

37 -4,929.32 0.105 (0.023) 0.366 (0.070) 0.251 (0.046) 0.556 (0.059) 0.860 (0.181) 1.191 (0.121) 1.480 (0.048)

38 -3,459.44 0.078 (0.024) 0.343 (0.086) 0.342 (0.073) 0.578 (0.092) 0.466 (0.104) 1.314 (0.243) 1.164 (0.021)

39 -4,698.27 0.135 (0.036) 0.287 (0.075) 0.304 (0.072) 0.540 (0.091) 0.440 (0.149) 1.442 (0.273) 1.239 (0.027)

40 -3,853.36 0.083 (0.020) 0.427 (0.074) 0.214 (0.049) 0.580 (0.073) 0.484 (0.114) 1.200 (0.187) 1.234 (0.033)

41 -3,746.64 0.028 (0.012) 0.354 (0.090) 0.390 (0.062) 0.670 (0.065) 0.276 (0.094) 1.816 (0.250) 1.291 (0.039)

42 -4,249.68 0.131 (0.040) 0.281 (0.072) 0.205 (0.103) 0.431 (0.135) 0.323 (0.102) 1.579 (0.263) 1.114 (0.027)

43 -4,183.22 0.047 (0.014) 0.529 (0.104) 0.314 (0.059) 0.758 (0.059) 0.259 (0.092) 1.376 (0.220) 1.241 (0.029)

44 -2,441.23 0.037 (0.012) 0.490 (0.093) 0.178 (0.059) 0.598 (0.086) 0.114 (0.074) 1.487 (0.216) 1.112 (0.028)

45 -2,946.49 0.071 (0.023) 0.391 (0.075) 0.274 (0.063) 0.594 (0.083) 0.234 (0.116) 1.111 (0.256) 1.209 (0.030)

46 -4,456.53 0.106 (0.039) 0.284 (0.065) 0.298 (0.131) 0.460 (0.149) 0.252 (0.091) 1.775 (0.181) 1.197 (0.037)

47 -3,497.05 0.102 (0.028) 0.404 (0.078) 0.336 (0.054) 0.636 (0.073) 0.450 (0.121) 0.693 (0.172) 1.034 (0.021)

48 -4,717.25 0.076 (0.017) 0.359 (0.065) 0.547 (0.059) 0.767 (0.038) 0.470 (0.116) 1.084 (0.234) 1.305 (0.028)

49 -6,066.86 0.187 (0.055) 0.336 (0.069) 0.358 (0.068) 0.606 (0.084) 0.314 (0.116) 0.839 (0.255) 1.355 (0.039)

50 -3,005.99 0.047 (0.013) 0.533 (0.090) 0.216 (0.053) 0.649 (0.071) 0.338 (0.079) 1.221 (0.175) 1.308 (0.031)

51 -3,499.97 0.040 (0.013) 0.396 (0.088) 0.385 (0.062) 0.673 (0.064) 0.368 (0.103) 1.509 (0.219) 1.284 (0.038)

52 -3,845.33 0.047 (0.016) 0.371 (0.084) 0.354 (0.053) 0.636 (0.076) 0.305 (0.091) 1.599 (0.247) 1.468 (0.040)
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Appendix C: Table C.27. Estimated coefficients for the FIAPARCH model -      

  comp LogL  s.e. d s.e. α s.e. β s.e. γ s.e. δ s.e. GED s.e.

1 -4,210.51 0.065 (0.018) 0.456 (0.086) 0.232 (0.052) 0.630 (0.074) 0.198 (0.083) 1.398 (0.229) 1.424 (0.038)

2 -2,172.48 0.016 (0.010) 0.339 (0.082) 0.324 (0.066) 0.586 (0.081) 0.211 (0.073) 1.839 (0.297) 1.378 (0.045)

3 -4,219.65 0.059 (0.020) 0.426 (0.080) 0.193 (0.050) 0.575 (0.071) 0.194 (0.078) 1.600 (0.205) 1.388 (0.039)

4 -4,539.93 0.110 (0.030) 0.409 (0.079) 0.303 (0.063) 0.582 (0.087) 0.394 (0.081) 1.240 (0.209) 1.270 (0.037)

5 -2,483.34 0.005 (0.003) 0.503 (0.077) 0.207 (0.046) 0.660 (0.063) 0.124 (0.054) 1.976 (0.124) 1.321 (0.038)

6 -711.19 0.015 (0.006) 0.311 (0.069) 0.144 (0.126) 0.338 (0.163) 0.169 (0.051) 1.825 (0.183) 1.256 (0.023)

7 -2,566.92 0.020 (0.008) 0.468 (0.094) 0.262 (0.049) 0.687 (0.067) 0.159 (0.073) 1.631 (0.246) 1.439 (0.036)

8 -3,603.66 0.012 (0.006) 0.488 (0.114) 0.362 (0.067) 0.753 (0.059) 0.259 (0.070) 1.864 (0.182) 1.300 (0.028)

9 -1,928.42 0.028 (0.011) 0.395 (0.087) 0.340 (0.061) 0.640 (0.073) 0.231 (0.090) 1.430 (0.241) 1.242 (0.027)

10 -5,067.10 0.084 (0.026) 0.379 (0.093) 0.384 (0.061) 0.666 (0.077) 0.106 (0.079) 1.661 (0.272) 1.330 (0.033)

11 -4,639.91 0.157 (0.041) 0.253 (0.059) 0.275 (0.075) 0.486 (0.090) 0.694 (0.188) 1.282 (0.212) 1.307 (0.037)

12 -5,033.58 0.045 (0.055) 0.142 (0.070) 0.064 (0.129) 0.180 (0.162) 1.000 (0.524) 1.784 (0.220) 1.359 (0.036)

13 -5,030.14 0.088 (0.021) 0.467 (0.087) 0.386 (0.057) 0.750 (0.051) 0.388 (0.124) 0.734 (0.184) 1.103 (0.015)

14 -3,910.51 0.020 (0.011) 0.337 (0.072) 0.320 (0.049) 0.612 (0.065) 0.509 (0.118) 1.818 (0.165) 1.181 (0.034)

15 -3,311.21 0.033 (0.011) 0.585 (0.117) 0.349 (0.069) 0.787 (0.058) 0.295 (0.089) 1.196 (0.217) 1.241 (0.031)

16 -4,577.32 0.071 (0.023) 0.332 (0.072) 0.332 (0.060) 0.590 (0.079) 0.308 (0.104) 1.664 (0.218) 1.502 (0.051)

17 -2,920.51 0.053 (0.016) 0.381 (0.080) 0.354 (0.057) 0.649 (0.069) 0.429 (0.130) 1.224 (0.230) 1.240 (0.036)

18 -1,443.63 0.049 (0.019) 0.375 (0.075) 0.257 (0.073) 0.544 (0.094) 0.417 (0.104) 1.148 (0.217) 1.135 (0.029)

19 -4,426.96 0.063 (0.018) 0.435 (0.088) 0.356 (0.056) 0.692 (0.061) 0.292 (0.098) 1.357 (0.260) 1.437 (0.047)

20 -4,163.12 0.059 (0.020) 0.379 (0.090) 0.353 (0.063) 0.615 (0.087) 0.175 (0.055) 1.695 (0.218) 1.272 (0.034)

21 -3,571.79 0.112 (0.033) 0.171 (0.099) 0.179 (0.120) 0.303 (0.159) 1.000 (0.691) 1.467 (0.249) 1.254 (0.035)

22 -4,214.63 0.033 (0.009) 0.425 (0.095) 0.527 (0.063) 0.788 (0.037) 0.311 (0.083) 1.593 (0.181) 1.312 (0.035)

23 -4,162.87 0.073 (0.018) 0.468 (0.093) 0.241 (0.052) 0.659 (0.071) 0.368 (0.095) 1.268 (0.180) 1.174 (0.022)

24 -4,344.04 0.057 (0.015) 0.505 (0.096) 0.336 (0.055) 0.736 (0.059) 0.307 (0.104) 1.225 (0.209) 1.339 (0.024)

25 -3,455.89 0.047 (0.014) 0.517 (0.098) 0.299 (0.058) 0.716 (0.062) 0.280 (0.099) 1.188 (0.239) 1.254 (0.036)

26 -4,233.67 0.061 (0.022) 0.305 (0.060) 0.177 (0.079) 0.424 (0.104) 0.318 (0.082) 1.790 (0.177) 1.442 (0.044)

27 -2,295.01 0.032 (0.010) 0.440 (0.082) 0.246 (0.069) 0.562 (0.102) 0.087 (0.058) 1.526 (0.167) 1.195 (0.029)

28 -1,643.36 0.049 (0.018) 0.441 (0.080) 0.226 (0.067) 0.548 (0.098) 0.111 (0.078) 1.159 (0.249) 1.125 (0.020)

29 -2,649.13 0.022 (0.007) 0.603 (0.103) 0.322 (0.064) 0.696 (0.074) 0.174 (0.043) 1.566 (0.128) 1.162 (0.028)

30 -3,593.20 0.064 (0.016) 0.492 (0.083) 0.166 (0.050) 0.599 (0.082) 0.316 (0.068) 1.281 (0.188) 1.266 (0.037)

31 -1,422.12 0.045 (0.016) 0.379 (0.070) 0.314 (0.091) 0.525 (0.114) 0.229 (0.080) 1.169 (0.190) 1.230 (0.036)

32 -4,160.79 0.109 (0.025) 0.447 (0.070) 0.240 (0.050) 0.603 (0.069) 0.537 (0.119) 0.975 (0.190) 1.138 (0.025)

33 -6,136.53 0.073 (0.022) 0.495 (0.084) 0.214 (0.047) 0.679 (0.062) 0.214 (0.077) 1.740 (0.165) 1.463 (0.036)

34 -4,142.95 0.069 (0.023) 0.340 (0.077) 0.305 (0.069) 0.563 (0.098) 0.124 (0.061) 1.716 (0.254) 1.362 (0.034)

35 -4,189.87 0.064 (0.019) 0.394 (0.081) 0.261 (0.047) 0.597 (0.071) 0.556 (0.128) 1.424 (0.185) 1.323 (0.042)

36 -3,798.28 0.047 (0.012) 0.456 (0.082) 0.292 (0.045) 0.678 (0.057) 0.675 (0.127) 1.265 (0.153) 1.350 (0.036)

37 -4,924.39 0.105 (0.023) 0.360 (0.071) 0.253 (0.046) 0.553 (0.059) 0.880 (0.190) 1.190 (0.119) 1.477 (0.048)

38 -3,411.62 0.075 (0.023) 0.350 (0.087) 0.346 (0.072) 0.587 (0.090) 0.462 (0.104) 1.313 (0.242) 1.163 (0.021)

39 -4,692.24 0.126 (0.034) 0.290 (0.074) 0.307 (0.070) 0.546 (0.087) 0.432 (0.143) 1.479 (0.264) 1.254 (0.027)

40 -3,833.67 0.084 (0.020) 0.428 (0.073) 0.212 (0.049) 0.579 (0.073) 0.487 (0.114) 1.179 (0.189) 1.234 (0.033)

41 -3,727.37 0.027 (0.012) 0.351 (0.089) 0.391 (0.061) 0.672 (0.063) 0.308 (0.101) 1.795 (0.249) 1.296 (0.039)

42 -4,322.35 0.132 (0.040) 0.282 (0.072) 0.210 (0.100) 0.437 (0.131) 0.347 (0.105) 1.576 (0.259) 1.114 (0.027)

43 -4,176.46 0.045 (0.013) 0.537 (0.109) 0.302 (0.061) 0.761 (0.060) 0.236 (0.089) 1.409 (0.216) 1.245 (0.030)

44 -2,380.96 0.036 (0.012) 0.481 (0.092) 0.182 (0.060) 0.592 (0.087) 0.112 (0.074) 1.494 (0.220) 1.111 (0.028)

45 -2,849.83 0.070 (0.023) 0.386 (0.075) 0.277 (0.064) 0.591 (0.084) 0.224 (0.115) 1.117 (0.260) 1.209 (0.031)

46 -4,562.38 0.155 (0.060) 0.244 (0.058) 0.264 (0.169) 0.394 (0.187) 0.325 (0.107) 1.675 (0.199) 1.209 (0.037)

47 -3,438.48 0.097 (0.026) 0.418 (0.080) 0.334 (0.053) 0.646 (0.070) 0.456 (0.120) 0.672 (0.167) 1.033 (0.021)

48 -4,719.04 0.073 (0.016) 0.362 (0.066) 0.546 (0.059) 0.770 (0.036) 0.471 (0.116) 1.131 (0.228) 1.310 (0.028)

49 -6,059.91 0.286 (0.093) 0.146 (0.139) 0.385 (0.086) 0.501 (0.131) 1.000 (1.105) 1.481 (0.297) 1.347 (0.039)

50 -2,956.35 0.047 (0.013) 0.533 (0.090) 0.219 (0.053) 0.650 (0.070) 0.343 (0.080) 1.209 (0.176) 1.306 (0.031)

51 -3,453.27 0.039 (0.013) 0.397 (0.088) 0.384 (0.062) 0.673 (0.064) 0.375 (0.104) 1.501 (0.218) 1.283 (0.038)

52 -3,857.57 0.046 (0.015) 0.386 (0.085) 0.353 (0.051) 0.649 (0.072) 0.305 (0.092) 1.576 (0.240) 1.471 (0.040)
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Appendix C: Table C.28. Estimated coefficients for the FIAPARCH model -        

 

 

 

 

  

comp LogL  s.e. d s.e. α s.e. β s.e. γ s.e. δ s.e. GED s.e.

1 -4,130.63 0.061 (0.018) 0.475 (0.089) 0.242 (0.052) 0.653 (0.071) 0.209 (0.084) 1.339 (0.230) 1.427 (0.039)

2 -2,077.99 0.017 (0.009) 0.373 (0.080) 0.288 (0.060) 0.592 (0.077) 0.222 (0.074) 1.767 (0.260) 1.366 (0.044)

3 -4,243.40 0.056 (0.019) 0.439 (0.081) 0.191 (0.048) 0.587 (0.071) 0.189 (0.076) 1.613 (0.199) 1.393 (0.040)

4 -4,569.38 0.112 (0.030) 0.427 (0.083) 0.282 (0.061) 0.580 (0.088) 0.362 (0.079) 1.220 (0.213) 1.266 (0.037)

5 -2,373.93 0.003 (0.002) 0.510 (0.075) 0.175 (0.045) 0.643 (0.065) 0.098 (0.052) 2.031 (0.115) 1.317 (0.038)

6 -549.17 0.004 (0.002) 0.448 (0.093) 0.324 (0.060) 0.651 (0.067) 0.098 (0.050) 1.886 (0.147) 1.224 (0.022)

7 -2,537.56 0.021 (0.009) 0.472 (0.095) 0.246 (0.048) 0.678 (0.069) 0.146 (0.072) 1.617 (0.248) 1.437 (0.036)

8 -3,574.74 0.010 (0.005) 0.504 (0.113) 0.351 (0.066) 0.758 (0.058) 0.238 (0.067) 1.890 (0.168) 1.295 (0.028)

9 -1,903.08 0.034 (0.013) 0.436 (0.088) 0.297 (0.059) 0.637 (0.073) 0.196 (0.087) 1.285 (0.244) 1.227 (0.028)

10 -5,066.66 0.085 (0.026) 0.384 (0.093) 0.387 (0.060) 0.674 (0.075) 0.120 (0.082) 1.622 (0.273) 1.325 (0.033)

11 -4,705.84 0.163 (0.042) 0.254 (0.059) 0.281 (0.073) 0.494 (0.087) 0.709 (0.191) 1.251 (0.213) 1.307 (0.037)

12 -5,013.02 0.047 (0.053) 0.143 (0.070) 0.062 (0.127) 0.179 (0.160) 1.000 (0.516) 1.773 (0.219) 1.368 (0.037)

13 -5,045.48 0.084 (0.020) 0.476 (0.090) 0.387 (0.059) 0.759 (0.051) 0.371 (0.124) 0.726 (0.181) 1.106 (0.016)

14 -3,943.56 0.021 (0.011) 0.337 (0.071) 0.312 (0.049) 0.605 (0.065) 0.511 (0.118) 1.817 (0.163) 1.180 (0.034)

15 -3,371.77 0.037 (0.012) 0.569 (0.108) 0.345 (0.064) 0.772 (0.058) 0.316 (0.092) 1.167 (0.218) 1.244 (0.031)

16 -4,620.77 0.072 (0.023) 0.331 (0.072) 0.329 (0.060) 0.587 (0.079) 0.311 (0.104) 1.669 (0.219) 1.505 (0.051)

17 -2,966.20 0.053 (0.017) 0.361 (0.080) 0.351 (0.059) 0.632 (0.072) 0.422 (0.131) 1.305 (0.246) 1.247 (0.036)

18 -1,534.43 0.049 (0.018) 0.395 (0.076) 0.253 (0.064) 0.564 (0.087) 0.456 (0.109) 1.110 (0.211) 1.127 (0.031)

19 -4,490.39 0.065 (0.018) 0.432 (0.086) 0.357 (0.056) 0.691 (0.060) 0.316 (0.102) 1.353 (0.257) 1.427 (0.047)

20 -4,187.25 0.058 (0.020) 0.368 (0.088) 0.353 (0.064) 0.606 (0.089) 0.185 (0.053) 1.727 (0.220) 1.278 (0.034)

21 -3,605.78 0.098 (0.029) 0.184 (0.095) 0.209 (0.106) 0.344 (0.142) 1.000 (0.616) 1.459 (0.238) 1.250 (0.035)

22 -4,241.13 0.034 (0.009) 0.441 (0.099) 0.510 (0.064) 0.790 (0.038) 0.327 (0.085) 1.566 (0.180) 1.304 (0.035)

23 -4,149.63 0.073 (0.017) 0.468 (0.092) 0.245 (0.052) 0.664 (0.070) 0.388 (0.098) 1.255 (0.177) 1.172 (0.022)

24 -4,338.75 0.058 (0.015) 0.500 (0.095) 0.338 (0.054) 0.730 (0.059) 0.311 (0.104) 1.215 (0.210) 1.334 (0.024)

25 -3,516.42 0.050 (0.014) 0.516 (0.097) 0.296 (0.056) 0.714 (0.062) 0.296 (0.103) 1.157 (0.240) 1.260 (0.036)

26 -4,165.36 0.053 (0.020) 0.319 (0.062) 0.194 (0.075) 0.452 (0.099) 0.296 (0.077) 1.797 (0.174) 1.455 (0.045)

27 -2,200.20 0.024 (0.008) 0.430 (0.078) 0.230 (0.067) 0.558 (0.097) 0.030 (0.054) 1.644 (0.157) 1.217 (0.029)

28 -1,607.86 0.049 (0.017) 0.528 (0.100) 0.240 (0.054) 0.664 (0.082) 0.091 (0.086) 0.801 (0.187) 1.096 (0.019)

29 -2,701.93 0.024 (0.008) 0.600 (0.101) 0.294 (0.063) 0.684 (0.076) 0.172 (0.044) 1.562 (0.129) 1.148 (0.028)

30 -3,684.96 0.076 (0.018) 0.495 (0.079) 0.157 (0.050) 0.594 (0.080) 0.341 (0.071) 1.153 (0.186) 1.272 (0.037)

31 -1,242.78 0.039 (0.014) 0.379 (0.070) 0.260 (0.090) 0.490 (0.118) 0.175 (0.076) 1.268 (0.193) 1.237 (0.036)

32 -4,240.30 0.107 (0.024) 0.472 (0.073) 0.233 (0.047) 0.623 (0.066) 0.534 (0.117) 0.925 (0.191) 1.139 (0.025)

33 -6,043.33 0.074 (0.023) 0.473 (0.080) 0.218 (0.046) 0.661 (0.064) 0.187 (0.073) 1.770 (0.167) 1.458 (0.036)

34 -4,134.53 0.068 (0.022) 0.354 (0.077) 0.305 (0.066) 0.574 (0.093) 0.131 (0.061) 1.684 (0.246) 1.362 (0.034)

35 -4,264.34 0.064 (0.019) 0.388 (0.080) 0.257 (0.048) 0.588 (0.072) 0.555 (0.129) 1.453 (0.183) 1.320 (0.042)

36 -3,845.01 0.051 (0.013) 0.463 (0.082) 0.279 (0.044) 0.678 (0.057) 0.691 (0.128) 1.230 (0.151) 1.336 (0.036)

37 -4,984.34 0.104 (0.022) 0.374 (0.071) 0.250 (0.045) 0.563 (0.058) 0.859 (0.181) 1.191 (0.121) 1.479 (0.048)

38 -3,506.67 0.078 (0.023) 0.346 (0.086) 0.330 (0.073) 0.572 (0.093) 0.465 (0.100) 1.337 (0.233) 1.162 (0.021)

39 -4,647.77 0.126 (0.033) 0.291 (0.075) 0.306 (0.069) 0.546 (0.087) 0.441 (0.145) 1.459 (0.266) 1.256 (0.027)

40 -3,839.41 0.080 (0.019) 0.429 (0.074) 0.216 (0.049) 0.585 (0.072) 0.484 (0.114) 1.208 (0.189) 1.239 (0.033)

41 -3,749.95 0.026 (0.013) 0.353 (0.089) 0.378 (0.061) 0.662 (0.066) 0.285 (0.095) 1.837 (0.250) 1.287 (0.039)

42 -4,328.55 0.123 (0.037) 0.294 (0.074) 0.222 (0.090) 0.463 (0.121) 0.356 (0.107) 1.573 (0.255) 1.099 (0.027)

43 -4,208.89 0.046 (0.013) 0.544 (0.111) 0.298 (0.062) 0.762 (0.061) 0.257 (0.090) 1.382 (0.215) 1.250 (0.030)

44 -2,541.68 0.042 (0.014) 0.496 (0.093) 0.149 (0.058) 0.577 (0.092) 0.147 (0.073) 1.458 (0.225) 1.115 (0.028)

45 -3,024.26 0.073 (0.023) 0.403 (0.076) 0.258 (0.061) 0.595 (0.081) 0.258 (0.116) 1.081 (0.262) 1.220 (0.031)

46 -4,567.57 0.125 (0.044) 0.283 (0.063) 0.269 (0.130) 0.439 (0.149) 0.285 (0.097) 1.716 (0.176) 1.181 (0.036)

47 -3,556.04 0.104 (0.029) 0.398 (0.077) 0.335 (0.055) 0.632 (0.076) 0.462 (0.120) 0.723 (0.176) 1.042 (0.022)

48 -4,745.86 0.076 (0.016) 0.370 (0.066) 0.532 (0.058) 0.764 (0.037) 0.470 (0.117) 1.100 (0.226) 1.304 (0.027)

49 -6,042.35 0.298 (0.096) 0.143 (0.140) 0.374 (0.090) 0.487 (0.137) 1.000 (1.139) 1.478 (0.298) 1.350 (0.039)

50 -3,125.77 0.051 (0.013) 0.554 (0.092) 0.192 (0.051) 0.656 (0.070) 0.361 (0.081) 1.145 (0.172) 1.318 (0.031)

51 -3,559.28 0.043 (0.014) 0.410 (0.092) 0.379 (0.061) 0.680 (0.063) 0.403 (0.108) 1.439 (0.225) 1.292 (0.039)

52 -3,871.21 0.047 (0.015) 0.382 (0.083) 0.346 (0.051) 0.641 (0.073) 0.317 (0.092) 1.583 (0.238) 1.456 (0.039)
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Appendix D: Table D.1. Forecasting results 

 

  

E VSM VKMV VProxy 

MSE2

GARCH 0.0086 0.0005 0.0005 0.0005

EGARCH 0.0075 0.0005 0.0005 0.0005

IGARCH 0.0098 0.0005 0.0006 0.0006

FIGARCH 0.0083 0.0005 0.0005 0.0005

HYGARCH 0.0081 0.0005 0.0005 0.0005

FIEGARCH 0.0075 0.0004 0.0004 0.0004

FIAPARCH 0.0076 0.0005 0.0005 0.0005

MAE2

GARCH 0.0485 0.0109 0.0110 0.0113

EGARCH 0.0435 0.0102 0.0103 0.0106

IGARCH 0.0540 0.0121 0.0122 0.0126

FIGARCH 0.0472 0.0105 0.0107 0.0110

HYGARCH 0.0466 0.0105 0.0107 0.0110

FIEGARCH 0.0423 0.0098 0.0099 0.0101

FIAPARCH 0.0427 0.0101 0.0102 0.0105

QLIKE

GARCH -1.5764 -3.0985 -3.0925 -3.0722

EGARCH -1.5944 -3.1029 -3.0968 -3.0770

IGARCH -1.5656 -3.0927 -3.0880 -3.0675

FIGARCH -1.5860 -3.1074 -3.1022 -3.0820

HYGARCH -1.5871 -3.1076 -3.1021 -3.0819

FIEGARCH -1.6004 -3.1141 -3.1080 -3.0879

FIAPARCH -1.6001 -3.1107 -3.1049 -3.0855



145 
 

Appendix D: Table D.2. Forecasting results at firm-level 

 

 

  

Num % Num % Num % Num %

MSE

GARCH 0 0.00% 1 1.92% 1 1.92% 0 0.00%

EGARCH 10 19.23% 8 15.38% 8 15.38% 9 17.31%

IGARCH 0 0.00% 0 0.00% 1 1.92% 0 0.00%

FIGARCH 1 1.92% 3 5.77% 3 5.77% 3 5.77%

HYGARCH 2 3.85% 2 3.85% 2 3.85% 2 3.85%

FIEGARCH 26 50.00% 28 53.85% 27 51.92% 27 51.92%

FIAPARCH 13 25.00% 10 19.23% 10 19.23% 11 21.15%

MAE

GARCH 0 0.00% 3 5.77% 3 5.77% 2 3.85%

EGARCH 10 19.23% 8 15.38% 8 15.38% 9 17.31%

IGARCH 0 0.00% 0 0.00% 0 0.00% 0 0.00%

FIGARCH 4 7.69% 3 5.77% 3 5.77% 3 5.77%

HYGARCH 4 7.69% 4 7.69% 3 5.77% 4 7.69%

FIEGARCH 20 38.46% 25 48.08% 26 50.00% 24 46.15%

FIAPARCH 14 26.92% 9 17.31% 9 17.31% 10 19.23%

QLIKE

GARCH 0 0.00% 1 1.92% 1 1.92% 1 1.92%

EGARCH 12 23.08% 7 13.46% 8 15.38% 7 13.46%

IGARCH 2 3.85% 5 9.62% 5 9.62% 4 7.69%

FIGARCH 2 3.85% 3 5.77% 3 5.77% 4 7.69%

HYGARCH 1 1.92% 7 13.46% 7 13.46% 6 11.54%

FIEGARCH 13 25.00% 17 32.69% 15 28.85% 18 34.62%

FIAPARCH 22 42.31% 12 23.08% 13 25.00% 12 23.08%

VProxy E VSM VKMV
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Appendix E: Table E.1. SPA test - MAE 

 

  

GARCH 0.0191 5 9.62% 0 0.00%

EGARCH 0.1163 19 36.54% 3 5.77%

IGARCH 0.0005 0 0.00% 0 0.00%

FIGARCH 0.1222 14 26.92% 3 5.77%

HYGARCH 0.0810 13 25.00% 0 0.00%

FIEGARCH 0.6553 44 84.62% 30 57.69%

FIAPARCH 0.3981 28 53.85% 16 30.77%

GARCH 0.0310 7 13.46% 0 0.00%

EGARCH 0.3004 29 55.77% 12 23.08%

IGARCH 0.0033 2 3.85% 0 0.00%

FIGARCH 0.1562 19 36.54% 5 9.62%

HYGARCH 0.1545 20 38.46% 4 7.69%

FIEGARCH 0.5905 42 80.77% 23 44.23%

FIAPARCH 0.3117 28 53.85% 8 15.38%

GARCH 0.0321 7 13.46% 0 0.00%

EGARCH 0.2985 29 55.77% 12 23.08%

IGARCH 0.0035 2 3.85% 0 0.00%

FIGARCH 0.1438 18 34.62% 4 7.69%

HYGARCH 0.1365 18 34.62% 3 5.77%

FIEGARCH 0.6026 41 78.85% 24 46.15%

FIAPARCH 0.3130 30 57.69% 9 17.31%

GARCH 0.0241 5 9.62% 0 0.00%

EGARCH 0.3074 29 55.77% 12 23.08%

IGARCH 0.0027 1 1.92% 0 0.00%

FIGARCH 0.1504 18 34.62% 3 5.77%

HYGARCH 0.1145 17 32.69% 1 1.92%

FIEGARCH 0.6134 42 80.77% 26 50.00%

FIAPARCH 0.3181 27 51.92% 10 19.23%

Benchmark

MAE -Vproxy

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val

Benchmark

MAE -VKMV

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val

Benchmark

MAE - VSM

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val

Benchmark

MAE - Equity

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val
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Appendix E: Table E.2. SPA test - MSE2 

 

  

GARCH 0.0177 5 9.62% 0 0.00%

EGARCH 0.0974 16 30.77% 2 3.85%

IGARCH 0.0017 0 0.00% 0 0.00%

FIGARCH 0.1070 13 25.00% 2 3.85%

HYGARCH 0.0844 14 26.92% 1 1.92%

FIEGARCH 0.6508 44 84.62% 30 57.69%

FIAPARCH 0.4101 29 55.77% 17 32.69%

GARCH 0.0294 8 15.38% 0 0.00%

EGARCH 0.2731 27 51.92% 11 21.15%

IGARCH 0.0029 0 0.00% 0 0.00%

FIGARCH 0.1418 18 34.62% 4 7.69%

HYGARCH 0.1573 19 36.54% 4 7.69%

FIEGARCH 0.5961 43 82.69% 25 48.08%

FIAPARCH 0.3074 29 55.77% 8 15.38%

GARCH 0.0288 8 15.38% 0 0.00%

EGARCH 0.2631 25 48.08% 10 19.23%

IGARCH 0.0031 1 1.92% 0 0.00%

FIGARCH 0.1421 18 34.62% 4 7.69%

HYGARCH 0.1463 19 36.54% 3 5.77%

FIEGARCH 0.6095 44 84.62% 26 50.00%

FIAPARCH 0.3074 30 57.69% 9 17.31%

GARCH 0.0243 6 11.54% 0 0.00%

EGARCH 0.2811 25 48.08% 11 21.15%

IGARCH 0.0023 0 0.00% 0 0.00%

FIGARCH 0.1529 21 40.38% 3 5.77%

HYGARCH 0.1288 19 36.54% 2 3.85%

FIEGARCH 0.6240 43 82.69% 27 51.92%

FIAPARCH 0.3053 28 53.85% 9 17.31%

Benchmark

MSE
2
 -Vproxy

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val

Benchmark

MSE
2
 -VKMV

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val

Benchmark

MSE
2
 - VSM

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val

Benchmark

MSE
2
 - Equity

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val
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Appendix E: Table E.3. SPA test - MAE2 

 

  

GARCH 0.0172 5 9.62% 0 0.00%

EGARCH 0.0978 17 32.69% 2 3.85%

IGARCH 0.0018 0 0.00% 0 0.00%

FIGARCH 0.1066 14 26.92% 2 3.85%

HYGARCH 0.0847 14 26.92% 1 1.92%

FIEGARCH 0.6502 44 84.62% 30 57.69%

FIAPARCH 0.4098 30 57.69% 17 32.69%

GARCH 0.0292 8 15.38% 0 0.00%

EGARCH 0.2734 27 51.92% 11 21.15%

IGARCH 0.0030 1 1.92% 0 0.00%

FIGARCH 0.1415 18 34.62% 4 7.69%

HYGARCH 0.1576 19 36.54% 4 7.69%

FIEGARCH 0.5960 43 82.69% 25 48.08%

FIAPARCH 0.3074 28 53.85% 8 15.38%

GARCH 0.0287 8 15.38% 0 0.00%

EGARCH 0.2631 25 48.08% 10 19.23%

IGARCH 0.0034 1 1.92% 0 0.00%

FIGARCH 0.1414 17 32.69% 4 7.69%

HYGARCH 0.1452 18 34.62% 3 5.77%

FIEGARCH 0.6090 44 84.62% 26 50.00%

FIAPARCH 0.3067 30 57.69% 9 17.31%

GARCH 0.0242 5 9.62% 0 0.00%

EGARCH 0.2812 25 48.08% 11 21.15%

IGARCH 0.0024 0 0.00% 0 0.00%

FIGARCH 0.1526 20 38.46% 3 5.77%

HYGARCH 0.1281 18 34.62% 2 3.85%

FIEGARCH 0.6234 43 82.69% 27 51.92%

FIAPARCH 0.3056 28 53.85% 9 17.31%

Benchmark

MAE
2
 -Vproxy

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val

Benchmark

MAE
2
 -VKMV

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val

Benchmark

MAE
2
 - VSM

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val

Benchmark

MAE
2
 - Equity

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val
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Appendix E: Table E.4. SPA test - QLIKE 

 

 

GARCH 0.0172 6 11.54% 0 0.00%

EGARCH 0.1181 18 34.62% 2 3.85%

IGARCH 0.0001 0 0.00% 0 0.00%

FIGARCH 0.1127 15 28.85% 3 5.77%

HYGARCH 0.0687 11 21.15% 0 0.00%

FIEGARCH 0.6619 43 82.69% 30 57.69%

FIAPARCH 0.3819 30 57.69% 17 32.69%

GARCH 0.0274 6 11.54% 0 0.00%

EGARCH 0.3207 27 51.92% 13 25.00%

IGARCH 0.0024 1 1.92% 0 0.00%

FIGARCH 0.1218 16 30.77% 2 3.85%

HYGARCH 0.1152 17 32.69% 2 3.85%

FIEGARCH 0.6001 43 82.69% 25 48.08%

FIAPARCH 0.3182 30 57.69% 10 19.23%

GARCH 0.0275 5 9.62% 0 0.00%

EGARCH 0.3044 27 51.92% 12 23.08%

IGARCH 0.0026 1 1.92% 0 0.00%

FIGARCH 0.1165 16 30.77% 2 3.85%

HYGARCH 0.1077 14 26.92% 2 3.85%

FIEGARCH 0.5950 41 78.85% 25 48.08%

FIAPARCH 0.3169 30 57.69% 11 21.15%

GARCH 0.0211 5 9.62% 0 0.00%

EGARCH 0.3179 27 51.92% 14 26.92%

IGARCH 0.0019 1 1.92% 0 0.00%

FIGARCH 0.1280 17 32.69% 2 3.85%

HYGARCH 0.0953 14 26.92% 2 3.85%

FIEGARCH 0.5699 43 82.69% 23 44.23%

FIAPARCH 0.3089 28 53.85% 11 21.15%

Benchmark

QLIKE -Vproxy

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val

Benchmark

QLIKE -VKMV

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val

Benchmark

QLIKE - VSM

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val

Benchmark

QLIKE - Equity

mean

p-val

N° comp N° comp

p-val > 0.05 max p-val
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Chapter 3 

Forecasting CDS Implied Asset Volatility   

 

1. Introduction  

 Asset volatility is one of the most relevant features in credit risk modelling and 

refers to a degree of fluctuation of the firm's asset returns. Although the volatility of 

firm’s assets is one of the fundamental theoretical determinants of credit spreads and 

plays a key role in determining capital structure valuation, surprisingly, little is known 

about the behaviour of this key parameter. In particular, Choi and Richardson (2016) 

argue that very little is known about its cross-sectional and time-series properties. They 

provide the first examination of the time-series properties of firm's asset volatility using 

an Exponential GARCH model proposed by Nelson (1991). In that context, they 

observed that equity volatility is significantly more persistent and asymmetric than asset 

volatility for levered firms, and that the differences between equity volatility and asset 

volatility generally increase with leverage.  

In their recent studies González-Pla and Lovreta (2019), and González-Pla and 

Lovreta (2020) provide two important findings on the firm’s asset value process. On the 

one hand, these authors have examined the long-memory properties in the volatility of 

the firm’s asset and equity returns. They have shown that firm’s asset volatility 

undoubtedly possesses the long-memory features very similar to the process followed 

by equity volatility. On the other hand, they examined the in-sample fit and the out-of-

sample forecasting performance of different GARCH-type volatility models. Their 

results point out to the outperformance of models that simultaneously account for 

asymmetry and fractional integration over the classical short-memory GARCH models 
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or infinite memory IGARCH models. The main implication of these results is that not 

only that the long-memory is a stylized fact of the firm’s volatility process but also that 

forecasting firm’s asset volatility should be based on a model that incorporates this 

volatility feature.    

In empirical applications, such as estimating default probabilities (and credit 

spreads) from a structural credit risk model, unobserved firm’s asset volatility is usually 

treated as a constant. This assumption has consequences on the applications of structural 

credit risk models for CDS estimation and CDS predictions, especially when longer 

time periods are considered. This is because an input needed to provide an estimate of 

the credit spread is the expected volatility of the firm’s assets over some future horizon. 

By way of example, pricing a CDS with 5-year maturity (the most liquid maturity of the 

CDS contract) in a structural model setting requires an estimate of the 5-year firm’s 

asset volatility over the following 5-year period. This is precisely the reason why recent 

literature intends to jointly model the process for the firm asset value and the process for 

the volatility of firm’s assets. Engle and Siriwardane (2018), for example provide a joint 

estimation of the firm’s asset value process and a GARCH volatility model.  However, 

as previous evidence undoubtedly shows, volatility of asset returns is better modeled 

with a long-memory GARCH-type process. 

In this paper we consider an inverted analysis in which we back out the 

unobserved volatility of asset returns from market observable CDS spreads (i.e. CDS 

implied firm's asset volatility), and then use its time-series properties to forecast future 

firm's asset volatility for the purpose of CDS pricing. As previous findings on asset 

volatility already indicate, classical GARCH-type models which only incorporate short 

memory features may not be appropriate to model asset volatility. Therefore, the main 

focus of this paper is to improve the performance of structural credit risk models for the 
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credit risk prediction by modeling the time-varying volatility of the unobserved firm 

asset value process as a long-memory process. From the practical point of view, the 

possibility to predict CDS implied volatility inherently implies the prediction of the 

future development of CDS spreads. Our results support this hypothesis.  

The literature on implied volatility prediction has focused exclusively on equity 

volatility implied in equity options (see for example, Konstantinidi et al. 2008). Up to 

our knowledge no previous study has examined the predictability of firm's asset 

volatility implied in the CDS premia. To analyze the time-series properties and 

predictability of the CDS implied firm's asset volatility we use ARFIMA and ARIMA 

models.  We find that the firm's asset volatility implied in the most liquid, 5-year CDS 

spreads has a very high degree of persistence. However, for most of the companies in 

the sample the degree of fractional integration is lower than 1, which implies that the 

process eventually mean-reverts in the very long-run. The in-sample-fit and out-of-

sample forecasting performance of ARFIMA and ARIMA models shows that for most 

of the companies in the sample (roughly 75%) ARFIMA models perform better, 

independently of the selection criteria or error measure used. These results are 

supported for both the forecasts of firm's asset volatility, and the forecasts of credit 

spreads.  

The rest of the paper is structured as follows. Section 2 describes the methodology 

applied to obtain firm's asset volatility implied in the CDS premia. Section 3 describes 

the data set and provides the preliminary analysis of the long-memory properties of 

firm's asset volatility implied in the CDS premia. Section 4 analyses in-sample fit of 

ARFIMA models and an ARIMA model. Section 5 provides results on the performance 

of out-of-sample prediction of CDS implied asset volatilities and CDS spreads implied 

by the structural model. Section 6 concludes.  
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2. Methodology 

To estimate firm's asset volatility implied in the CDS premia we follow a two step 

approach of Forte and Lovreta (2019), Forte and Lovreta (2020) and Lovreta and 

Silaghi (2020). In the first step we estimate the firm's asset value using the structural 

model framework, and in the second we estimate implied volatility from market 

observable CDS spreads. In the last step, we fit ARFIMA models to the obtained time-

series of CDS implied firm asset volatilities.  

2.1 Structural credit risk models 

This paper starts from the underlying assumptions of the models proposed 

initially by Black and Scholes (1973) and Merton (1974). Under the structural model 

setting firm’s asset returns follow a geometric Brownian motion, interest rates are 

constant, there are no impediments to arbitrage, and a firm’s capital structure can be 

collapsed into equity plus one issue of zero-coupon debt (with a maturity that matches 

the duration of the actual data). The market value of total assets (V) 
 
is assumed to 

evolve according to the continuous diffusion process of the following form: 

   VdzVdtdV   ,                                            (1) 

where   is the expected rate of return on asset value,   is the fraction of the asset value 

paid out to investors,   is the asset return volatility, and z is a standard Brownian 

motion. 

The Black– Scholes–Merton assumptions imply that the probability of default in 

essence depends on two factors: the size of the firm’s asset value relative to the default 

point and the volatility of the firm’s asset value. The closer the firm’s asset value is to 

the default point, the more likely default is. On the other hand, the higher the volatility 

of the firm’s assets, the higher the risk of a sudden deterioration in the firm’s asset 

value. Given that debt has features similar to a short position in the put option, an 
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increase in the volatility of the firm value process increases the value of the put option 

and reduces the value of the corporate risky debt. Therefore, increase in asset volatility 

increases the probability of default and, consequently, leads to higher credit spreads. 

This converts volatility of the underlying firm’s assets in one of the key determinants of 

the price of credit sensitive instruments.  

2.2 Implied asset volatility in CDS spreads 

 Following a structural model framework, a theoretical credit spread can be 

derived as the spread from issuing, at par value, a hypothetical bond with the same 

maturity as the CDS spread that serves as a benchmark (five years in this case). 
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]            (2) 

where        is the recovery rate and   is the risk-free rate. In terms of CDS spread 

valuation, the market practice is to consider a fixed recovery rate of 40%. That is, to set 

        . 

 Following Ericsson et al. (2015), Forte and Lovreta (2019), and Forte and 

Lovreta (2020) we use the closed-form solution for the theoretical CDS spread, derived 

by equating the premium leg and the protection leg of the CDS contract:  
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where,   is the exogenous recovery rate. To obtain the CDS implied firm's asset 

volatility we set the recovery rate to 40%. This choice for the recovery rate is consistent 

with the market practice and is consistent with the Moody's historical recovery rates for 

the senior unsecured bonds for our period under consideration. The expressions for 

       and        are as follows: 
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The expression for the theoretical credit spread can be inverted to derive the implied 

volatility in the observed CDS spread: 

               |      (4) 

2.3 The Leland and Toft model 

In this paper we consider the Leland and Toft (1996) structural credit risk model 

to derive the underlying, unobservable, firm's asset values. The choice of the model is 

predominantly based on the feasibility for out-of-sample forecasting. Namely, this 

model assumes endogenous default barrier, which considerably facilitates the estimation 

of model parameters. Moreover, Lovreta and Silaghi (2020) have shown that the time 

development of the CDS implied volatility is largely not affected by choice of the 

structural model used to derive the unobservable firm's asset values. These authors show 

that the way in which the firm's asset value is derived will predominantly affect the 

level of CDS implied volatility, but not the way in which it changes over time. In fact, 

the expression (3) implies that the CDS implied firm's asset volatility depends on the 

structural model at hand only through the ratio of the firm's asset value ( ) over the 

specific critical default point (  ). Finally, an important advantage of using the smooth-

pasting (SP) condition value of Leland and Toft (1996) is that these are shown to 
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provide sensible credit spread estimates in line with those observed in the CDS market 

(Forte and Lovreta, 2012). 

The Leland and Toft (1996) model specifies the value of debt as follows: 
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where,   is the risk-free rate and the expressions      and      are given by: 
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For convenience, following Forte (2011), we express the specific critical point    as a 

fraction   of the nominal value of total debt  . That is,      . Finally, under the 

Leland and Toft (1996) model the value of equity is given by: 
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The default barrier,    is defined using the smooth-pasting condition value. 

          

  
|
    

                                                       (7) 

3. Data 

In this paper, we use a sample of 52 non-financial companies that belong to the 

iTraxx Europe index, which we track during the period that spans from January 2004 to 

December 2016. Data on CDS spreads, as well as the data on the accounting items and 

market value of equity are downloaded from Datastream. For the purposes of this study, 

we consider only the most liquid Euro-denominated 5-year CDS contracts on senior 

unsecured debt. 

The average company in the sample has a market capitalization of €25.43 

billion, a leverage of 0.52 and a historical equity volatility of 30%. Leverage is defined 

as the ratio of the book value of total liabilities to the proxy for the market value of the 
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firm, historical equity volatility is the annualized standard deviation of the continuously 

compounded returns on equity. This main descriptive statistics for CDS spreads on a 

cross-sectional basis are reported in Table 1. The mean CDS spread is 104 bp, and 

ranges between the 30.67 bp and 389.97 bp. Time development of the cross-sectional 

mean of CDS spreads for our sample of companies is depicted in Figure 1. 

Table 1. Descriptive statistics - CDS spreads 

  Mean Median Max Min SD Skew Kurt 

CDS 104.15 83.09 389.97 30.67 64.73 2.09 8.79 
                

This table reports the main descriptive statistics for CDS spreads on a cross-sectional basis: the mean, 

median, standard deviation, minimum, maximum, skewness and kurtosis for a sample of 52 companies. 

Figure 1. Time development of the cross-sectional mean of CDS spreads 

 

3.1 Model estimation 

For practical application of the Leland and Toft (1996) model, we set the 

maturity of the firm’s aggregate debt,  , to the usual value of 6.76. Following Ericsson 

et al. (2015) we set the tax rate,  , to 20%, realized costs of financial distress,   to 15%, 

The nominal amount of debt,  , is determined on the basis of accounting data on firm's 

short-term and long-term liabilities available in firm's balance sheets. The coupon paid 

to all the firm’s debt holders is determined on the basis of interest expenses available in 
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the firm's balance sheets. The payout rate   computed as the average annualized 

payment of interest expenses and cash dividends divided by the value of the firm 

proxied by the sum of the market value of equity and the book value of total liabilities. 

The average payout ratio,  , for our sample of companies (2.68%) is approximately 

equal to the average payout ratio of 2.65% reported in Ericsson et al. (2015).  

The main descriptive statistics for the parameter estimates of the Leland and 

Toft (1996) model for our sample of 52 companies under analysis are shown in Table 2. 

The endogenous default barrier is lower than the nominal value of debt in all of the 

cases. Specifically, the parameter   is on average equal to 0.84, but ranges between 0.68 

and 0.93. The long-term firm asset volatility that drives the estimates of the firm's asset 

values is equal to 13%, and ranges between the minimum of 6% and maximum of 26%. 

All estimated parameters are consistent with previous empirical evidence.  

Table 2. Descriptive statistics - parameter values  

  Mean Median Max Min SD Skew Kurt 

βCDS 0.84 0.83 0.93 0.68 0.05 -0.59 4.11 

SPC 0.13 0.12 0.26 0.06 0.04 0.99 5.35 

δ 0.03 0.03 0.05 0.01 0.01 0.18 2.46 

lev 0.52 0.51 0.86 0.27 0.14 0.26 2.60 
                

This table reports the main descriptive statistics of the estimated parameter values on a cross-sectional 

basis: the mean, median, standard deviation, minimum, maximum, skewness and kurtosis for a sample of 

52 companies. 

3.2 CDS implied asset volatility  

 The time-development of the CDS implied asset volatility is depicted in Figure 

2. The main descriptive statistics for CDS implied asset volatility on a cross-sectional 

basis for a sample of 52 companies are shown in Table 3. The mean CDS implied 

volatility is found to be 18%, ranging between the 6.7% and 32%. These results are in 

line with those reported in Lovreta and Silaghi (2020) who find the mean level of 

implied volatility in CDS spreads of 17.8%. As well, and in line with the previous 
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literature on implied vs. realized equity volatility comparison, implied asset volatility is 

higher but less volatile than realized volatility.     

Table 3. Descriptive statistics - CDS implied asset volatility  

  Mean Median Max Min SD Skew Kurt 

IV
CDS

 0.18 0.18 0.32 0.07 0.06 0.21 2.53 
                

This table reports the main descriptive statistics of CDS implied asset volatility on a cross-sectional basis: 

the mean, median, standard deviation, minimum, maximum, skewness, kurtosis the mean, median, 

standard deviation, minimum, maximum, skewness and kurtosis for a sample of 52 companies. 

Figure 2. Time development of CDS implied firm's asset volatility 

 

 In our preliminary analysis of the CDS implied asset volatility we first conduct 

Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests for the presence of unit 

roots and Kwiatowski-Phllips-Schmidt-Shin (KPSS) test for stationarity. Test statistics 

for ADF, PP and KPSS test are reported in Table 4. The ADF and PP tests are designed 

to test the null hypothesis of unit roots against the I(0) alternative. The main summary 

results for the ADF test for the presence of unit roots in the CDS implied asset 

volatilities are presented in Table 4. The lag-length for the ADF test is selected on the 

basis of a downward t-test, i.e. starting from the maximum number of lags (    ) the 

number of lags is reduced until the last lag of the first difference included is significant 
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at the 5% level. The maximum number of lags is determined according to Schwert 

(1989) as      [            ] , where [ ]  denotes the integer part and T is the 

sample size. ADF unit root tests are performed for the three possible alternatives: 

without constant and trend in the series, with constant and without trend, and with 

constant and trend. Reported ADF test statistics correspond to the model with the lowest 

Schwarz Information Criterion. The results on the ADF test show that for the vast 

majority of the companies we fail to reject the null hypothesis of unit-roots. To be 

precise, for 3 companies the ADF test rejects the null hypothesis of unit roots at 10% 

level, for 2 companies the null is rejected at 5% level, whereas for 47 companies (90% 

of the sample) we fail to reject the unit-root hypothesis.   

Number of lags for the PP test is set to   [            ]. PP unit root tests 

are performed as well for the three possible alternatives: without constant and trend in 

the series, with constant and without trend, and with constant and trend. Reported PP 

test statistics correspond to the model with the lowest Schwarz Information Criterion. In 

the case of the PP test the null hypothesis of unit-roots is rejected for 15 companies 

(28.8% of the sample): for 4 companies at 10% level, for 7 companies at 5% level and 

for 4 companies at 1% level. In contrast we fail to reject the null unit-root hypothesis for 

37 companies (71.2% of the sample). However, Diebold and Rudebusch (1991) claim 

that ADF and PP tests are consistent against      alternatives, although perform 

relatively poorly in distinguishing between the      null hypothesis and the 

     alternative. 

The KPSS test, on the contrary, is designed to test the null hypothesis of 

stationarity against the alternative of non-stationarity. For all of the firm-specific CDS 

implied asset volatility series the KPSS test rejects the null hypothesis of stationarity.  
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Table 4. ADF, PP and KPSS test 

comp 
ADF test   PP test   KPSS test 

model ADF_stat   p_val lags   model PP_stat   p_val   KPSS_stat pval 

1 ct -2.6228   0.2843 21   c -2.8034 * 0.0580   2.1642 *** <0.01 

2 ct -3.1919 * 0.0864 22   c -3.0517 ** 0.0307   2.4676 *** <0.01 

3 c -2.3741   0.1493 13   n 0.2036   0.7265   4.7340 *** <0.01 

4 ct -3.6124 ** 0.0293 23   c -3.8160 *** 0.0035   3.3165 *** <0.01 

5 n -0.0494   0.6339 26   n -0.4376   0.4917   1.6139 *** <0.01 

6 n -0.5191   0.4618 13   n 0.2135   0.7301   1.3665 *** <0.01 

7 n 0.0262   0.6615 10   n -0.4582   0.4841   2.9725 *** <0.01 

8 n -0.7549   0.3754 4   n 0.3509   0.7805   7.1915 *** <0.01 

9 n 0.4839   0.8194 17   n -0.6898   0.3993   5.6091 *** <0.01 

10 c -2.8305 * 0.0543 27   c -3.2360 ** 0.0184   1.4957 *** <0.01 

11 n 0.3838   0.7925 17   n -0.6947   0.3975   6.8168 *** <0.01 

12 c -2.3208   0.1658 23   c -2.4507   0.1282   1.5821 *** <0.01 

13 n -0.2942   0.5442 19   c -3.6006 *** 0.0062   3.5441 *** <0.01 

14 c -1.1763   0.6613 24   n 0.5299   0.8301   8.7474 *** <0.01 

15 n -0.6210   0.4245 26   n 0.3976   0.7976   1.1137 *** <0.01 

16 n -0.9227   0.3140 15   c -2.8481 * 0.0520   2.1775 *** <0.01 

17 n 0.8269   0.8893 9   n -1.1724   0.2225   7.8198 *** <0.01 

18 n 1.1214   0.9325 22   n -1.1902   0.2160   8.2669 *** <0.01 

19 n -0.5162   0.4629 13   c -2.7079 * 0.0729   0.9711 *** <0.01 

20 n 0.6698   0.8601 26   n -0.6780   0.4036   2.1338 *** <0.01 

21 n -1.0586   0.2642 25   n 0.7485   0.8757   9.6311 *** <0.01 

22 n 0.0840   0.6827 24   n -0.3544   0.5221   4.9752 *** <0.01 

23 n -0.0603   0.6299 1   n -0.6378   0.4183   2.9623 *** <0.01 

24 c -0.7426   0.8334 2   n -1.0123   0.2812   9.8782 *** <0.01 

25 n -0.3323   0.5302 26   n 0.1423   0.7041   4.1582 *** <0.01 

26 n 0.3924   0.7957 27   ct -3.9842 *** 0.0096   9.0133 *** <0.01 

27 ct -2.3236   0.4324 2   n -0.7093   0.3921   6.8546 *** <0.01 

28 n -0.1037   0.6140 23   n -0.4731   0.4786   1.9952 *** <0.01 

29 n 0.0178   0.6585 5   n -0.4604   0.4833   5.1593 *** <0.01 

30 n -0.0021   0.6512 0   n -0.5568   0.4480   2.5464 *** <0.01 

31 n 0.9559   0.9104 21   n -0.6227   0.4239   4.9235 *** <0.01 

32 c -1.7687   0.3989 24   n 0.1995   0.7250   1.0952 *** <0.01 

33 n -0.1043   0.6137 19   n -0.3782   0.5134   2.9021 *** <0.01 

34 c -2.8311 * 0.0542 23   n 0.0628   0.6750   1.1949 *** <0.01 

35 n -0.9526   0.3030 24   n 0.5504   0.8346   9.1048 *** <0.01 

36 n -0.3153   0.5364 20   c -3.0464 ** 0.0311   1.3238 *** <0.01 

37 n -0.8976   0.3232 9   n 0.2595   0.7470   1.3926 *** <0.01 

38 n -0.5829   0.4385 19   c -2.7636 * 0.0639   5.2380 *** <0.01 

39 n 0.1402   0.7033 22   n -0.3436   0.5261   1.9338 *** <0.01 

40 n 0.1611   0.7109 16   n -0.4916   0.4719   2.8078 *** <0.01 

41 n -0.3134   0.5372 19   n -0.1930   0.5812   2.0721 *** <0.01 

42 n -0.7434   0.3796 25   c -2.8845 ** 0.0475   2.6612 *** <0.01 

43 c -1.2997   0.6066 14   n 0.2790   0.7541   3.2713 *** <0.01 

44 n 0.2874   0.7572 7   n -0.6785   0.4034   6.4524 *** <0.01 

45 n 0.3714   0.7880 5   n -0.7242   0.3867   4.9031 *** <0.01 

46 n -0.4748   0.4780 26   c -3.4778 *** 0.0090   3.3100 *** <0.01 

47 n -0.0857   0.6205 24   n -0.3395   0.5276   5.1265 *** <0.01 

48 n -0.1081   0.6123 26   c -3.2321 ** 0.0186   0.6541 ** 0.02 

49 c -3.2793 ** 0.0162 23   c -3.2046 ** 0.0200   4.2780 *** <0.01 

50 n 1.2322   0.9448 25   n -1.1085   0.2459   7.6719 *** <0.01 

51 c -1.9927   0.2997 1   n 0.0833   0.6825   1.7507 *** <0.01 

52 n 0.3934   0.7960 24   c -3.1988 ** 0.0203   4.1443 *** <0.01 

                              

This table reports the ADF, PP and KPSS unit root tests on a firm-specific basis. 
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Preliminary evidence based on the ADF, PP and KPSS tests suggests that the 

choice between      and      might be too restrictive. In line with recent literature on 

stock market volatility, we examine a more flexible model that allows the series of 

implied volatility to be integrated of order d. We first estimate the memory parameter d 

utilizing the commonly applied semi-parametric approach of Geweke and Porter-Hudak 

(1983) and Robinson (1995), denoted here as GPH. The GPH approach estimates the 

parameter d using the following least-squares regression: 

                                         (  )         {     (   ⁄ )}      (8) 

where   (  ) denotes the sample periodogram for the series   evaluated at frequencies 

       ⁄ ,  with            . We estimate GPH statistics using differenced data 

following Velasco (1999) who shows that when data are differenced the estimator is 

consistent for        . Table 5 reports GPH estimates of the degree of fractional 

integration (    ) for the common choice of the truncation parameter,      . The 

tests for          are rejected for all companies in the sample. The standard error of 

the      estimates is 0.095 and is calculated using the asymptotic variance     ⁄  . The 

mean      value is equal to 0.92, and ranges between the minimum of 0.56 to the 

maximum value of 1.14. That is, the degree of fractional integration is higher than 0.5 in 

all of the cases. For the most of companies in the sample (75% of the sample) the 

estimated degree of fractional integration is lower than 1 and for 13 companies (25% of 

the sample) is higher than 1. However, a formal test for the hypothesis that     (a test 

if the estimated  ̂    is statistically different from 1,      ̂     ) could not be 

rejected for 39 companies (75% of the sample), suggesting that the implied volatility 

series for this sub-set of companies are in the non-stationary region. In the context of 

our analysis a degree of persistence     would imply non-stationarity and no mean 

reversion (Gil-Alana, 2008; Gil-Alana and Hualde, 2009), i.e. that the shock to the 
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process would have a permanent effect. This would further suggest that ARIMA models 

would better fit this sub-sample of companies.  

 We also consider another common semi-parametric approach for estimating the 

memory parameter d: the exact local Whittle estimator (ELW) proposed by Shimotsu 

and Phillips (2005). The asymptotic standard error of the ELW estimate is        ⁄  

and equals 0.066. The bandwidth parameter m is set in both cases to     . The results 

obtained for the ELW estimator      are shown in Table 5. The tests for          

are as well rejected for all companies in the sample. The mean      value is slightly 

lower and equal to 0.89. The      estimates range between the minimum of 0.53 to the 

maximum value of 1.12, in line with the results previously obtained with the GPH 

estimator. In all of the cases the degree of fractional integration is higher than 0.5 as 

well. We fail to reject the null hypothesis      ̂      for 26 companies. Therefore, 

the ELW estimates are not statistically significantly different from 1 for 50% of the 

sample. For the remaining 26 companies the ELW estimates show that the process has a 

high degree of persistence but is still mean reverting, implying that a shock in the 

process eventually dies in the very long-run (Gil-Alana and Robinson, 1997). 

 As a conclusion, the GPH and ELW estimates indicate that all CDS implied 

volatility series have a high degree of fractional integration. The order of integration is 

in general lower than 1. However, statistically, a formal hypothesis test fails to reject an 

integrated process for many companies. The GPH and ELW semi-parametric 

approaches undoubtedly show that   falls in the area      . Therefore, further 

analysis will consider the estimation of non-stationary ARFIMA process. Following 

Konstantinidi et al. (2008), we estimate ARFIMA models using the first-difference of 

the original CDS implied volatility series. 
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Table 5. GPH and ELW estimates 

comp dGPH 
H0: d=1 

p-val 
dELW 

H0: d=1 

p-val 

1 0.863 0.146 0.802 0.003 

2 0.807 0.042 0.804 0.003 

3 0.973 0.773 0.892 0.100 

4 0.560 0.000 0.672 0.000 

5 0.961 0.678 0.915 0.195 

6 1.008 0.931 1.015 0.818 

7 1.124 0.191 1.094 0.150 

8 0.967 0.727 0.941 0.370 

9 1.011 0.905 0.972 0.669 

10 0.847 0.105 0.783 0.001 

11 0.919 0.389 0.898 0.118 

12 0.925 0.430 0.836 0.013 

13 0.810 0.044 0.689 0.000 

14 0.815 0.050 0.782 0.001 

15 0.880 0.203 0.911 0.173 

16 0.937 0.507 0.875 0.056 

17 0.877 0.192 0.906 0.152 

18 0.943 0.547 0.886 0.081 

19 0.918 0.387 0.902 0.136 

20 0.933 0.480 0.914 0.189 

21 0.896 0.271 0.928 0.270 

22 0.972 0.768 0.988 0.858 

23 0.867 0.158 0.833 0.011 

24 1.027 0.776 1.014 0.836 

25 0.974 0.785 0.528 0.517 

26 0.797 0.032 0.756 0.000 

27 1.067 0.480 1.038 0.567 

28 1.001 0.995 0.955 0.490 

29 0.860 0.140 0.880 0.068 

30 0.948 0.583 0.862 0.035 

31 1.090 0.343 1.030 0.652 

32 1.000 0.996 0.928 0.274 

33 0.840 0.090 0.852 0.024 

34 0.944 0.555 0.888 0.088 

35 1.096 0.308 1.022 0.732 

36 0.899 0.287 0.787 0.001 

37 1.140 0.140 1.125 0.057 

38 0.765 0.013 0.831 0.010 

39 0.818 0.055 0.858 0.031 

40 0.864 0.149 0.846 0.019 

41 0.907 0.323 0.877 0.060 

42 0.781 0.021 0.832 0.010 

43 1.059 0.530 1.029 0.658 

44 0.911 0.346 0.894 0.107 

45 1.021 0.823 1.005 0.938 

46 0.831 0.073 0.860 0.032 

47 1.012 0.901 1.022 0.732 

48 0.786 0.024 0.813 0.004 

49 0.799 0.034 0.778 0.001 

50 0.851 0.116 0.898 0.121 

51 1.046 0.626 1.007 0.915 

52 0.758 0.010 0.737 0.000 

This table reports the fractional degree of persistence estimated using the Geweke and Porter- 

Hudak (1983), dGPH, and the exact local Whittle estimator of Shimotsu and Phillips (2005), dELW. 
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4. In-sample fit 

 The first step in the CDS implied volatility prediction is to analyze in-sample fit 

of the long-memory models. We estimate the ARFIMA (i.e. Autoregressive Fractionally 

Integrated Moving Average) models originally introduced by Granger and Joyeux 

(1980) and Hosking (1981). The ARFIMA model allows a fractionally integrated 

process      for the volatility, as it allows that the autocorrelation function decays at a 

slow hyperbolic rate. The ARFIMA models extend the traditional ARIMA models by 

allowing intermediate values of  . These models have been extensively applied in the 

literature on daily stock returns (see for example, Lo, 1991; Jacobsen, 1996; Gil-Alana, 

2006; among others).  

 To date, the literature has not examined the predictability of the CDS implied 

asset volatility. In contrast, there are several studies on predictability of implied equity 

volatility. These studies are primarily based on the use of a set of economic variables as 

predictors (Harvey and Whaley, 1992; Dumas et al., 1998; Guo, 2000; Gonçalves and 

Guidolin, 2006). A notable distinction is the study of Konstantinidi et al. (2008), who 

consider economic and statistical models for implied volatility in equity options, 

including the ARFIMA models. They show that implied volatility in equity options is 

highly persistent, which implies that patterns in implied volatility are predictable. 

Konstantinidi et al. (2008) consider               models, to account for both short 

and long memory characteristics in implied volatility dynamics.  

 The ARFIMA models, replace the difference operator       of the ARIMA 

model with the fractional difference operator       . The parameter  , is the 

parameter reflecting the degree of fractional integration. The               model is 

defined as follows: 

                                                                (9) 
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                                                                       (10) 

where,    is the time-series of observations,    is the i.i.d. error term,   is the 

unconditional mean,        is the fractional difference operator,            

     
  is the autoregressive polynomial and                 

  is the 

moving average polynomial. The fractional difference operator        can be 

obtained through a Maclaurin series expansion; considering that this operator behaves 

as an infinite lagged decreasing series its coefficients contribute as a “long memory” 

effect in the ARFIMA model. ARFIMA model is stationary and invertible if      and 

     have no common roots and that their roots lie outside the unit circle, and   

          . When setting the fractional integration parameter   to integer values, 

ARFIMA model is reduced to an ARIMA model when     and to an ARMA model 

when    . Olbermann et al. (2006) analyzed the invariance of the fractional 

integration parameter when the process is an               model where   

[         and        with its first difference, and observed that this property holds 

when  [       ] . In our case, given the preliminary evidence we estimate the model in 

first differences of the original time-series of CDS implied asset volatilities and estimate 

the degree of fractional integration from the       , where    is the parameter 

estimated from the model in first-differences. That is, in our case,    in Equation 9 is 

equal to     
    and   denotes the expected value of     

   . We have examined 

different               models following the approach usually considered in the 

literature (Cheung, 1993; Konstantinidi et al. 2008;  Kasman et al. 2009). In particular, 

we follow the approach of Konstantinidi et al. (2008) which is based on the value that 

minimizes BIC criterion with the aim to avoid over-fitting. In that context, we estimated 

ARFIMA models with       obtaining that              ,              , 

              and               are the models that meet these criteria. These 
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additional results are provided in the Appendix B, Table B.1 and Table B.2. Information 

criteria are used to choose the ARFIMA model that provides the best fit to the data. In 

addition to that, we also use error measures to evaluate prediction error with ARFIMA 

models. 

 Table 6 shows the main descriptive statistics for the fractional integration 

parameter    estimated with ARFIMA model in first differences. For most of the firms 

the parameter    is statistically different from 0 with a significance of 10% in a range 

that varies from 57.65% to 80.77% of companies considered depending on the 

ARFIMA model. We observe that as we increase the number of parameters in the model 

the number of companies for which the parameter    is statistically significant decays. 

It is important to point that in general,    remains in the range           for most of the 

companies, as 88.46 % to 94.23% of companies have a negative value of   , which is 

consistent with the estimates of the degree of persistence previously calculated by GPH 

and ELW semi-parametric methods. In cross sectional terms, the value of fractional 

integration parameter is negative but very close to 0, which confirms that CDS implied 

volatility is a highly persistent time series; when correcting this value with the first 

difference, the mean of the parameter d observed varies from 0.93068 to 0.95904. Table 

7 details the estimated values of the fractional integration parameter    at the firm level 

with its corresponding t-stat.   

Table 6. Main descriptive statistics for the fractional integration parameter 

 
ARFIMA(0,d,0) ARFIMA(1,d,0) ARFIMA(0,d,1) ARFIMA(1,d,1) 

mean (d*) -0.04343 -0.04428 -0.04096 -0.06932 

max 0.07422 0.05743 0.06114 0.02213 

min -0.10193 -0.09666 -0.09596 -0.39272 

std 0.03637 0.03159 0.03123 0.07744 

mean (d) 0.95657 0.95572 0.95904 0.93068 

significant at 10% 42 (80.77%) 32 (61.54%) 31 (59.62%) 30 (57.69%) 

significant at 5% 42 (80.77%) 29 (55.77%) 25 (48.08%) 25 (48.08%) 

significant at 1% 37 (71.15%) 20 (38.46%) 19 (36.54%) 19 (36.54%) 

d<0 47 49 49 46 

d>0 5 3 3 6 
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This table reports the main descriptive statistics of the fractional integration parameter (estimated with 

ARFIMA models in first differences) on a cross-sectional basis: the mean (of   and   ), maximum, 

minimum and standard deviation, for a sample of 52 companies, as well as the number of companies for 

which the parameter   is statistically significant at 10%, 5% and 1%, and for which is positive and 

negative. 

Table 7. Fractional integration parameter at the firm level 

comp 
ARFIMA(0,d,0) ARFIMA(1,d,0) ARFIMA(0,d,1) ARFIMA(1,d,1) 

d t-stat d t-stat d t-stat d t-stat 

1 -0.0544 -3.9877 -0.0387 -1.6678 -0.0401 -1.7344 -0.0401 -2.0354 

2 -0.0814 -6.1085 -0.0465 -2.0743 -0.0502 -2.1859 -0.0553 -3.4237 
3 -0.0550 -4.0503 -0.0568 -2.5538 -0.0567 -2.5997 -0.0573 -1.7398 

4 -0.0018 -0.1382 0.0574 2.5962 0.0611 2.3562 -0.2741 -4.8807 

5 -0.0302 -2.2395 -0.0127 -0.5597 -0.0153 -0.6894 -0.0092 -0.5827 

6 -0.0562 -4.3299 -0.0415 -2.0641 -0.0389 -1.7738 -0.0137 -0.3885 

7 -0.0635 -4.7830 -0.0594 -2.8156 -0.0595 -2.8102 -0.0594 -2.7471 

8 -0.0345 -2.4771 -0.0652 -2.8394 -0.0620 -2.9394 -0.0823 -2.4406 

9 -0.0309 -2.3480 -0.0091 -0.4248 -0.0097 -0.4434 -0.0191 -1.3348 

10 -0.0632 -4.6699 -0.0611 -2.7580 -0.0611 -2.7970 -0.0642 -1.7361 
11 -0.0575 -4.4004 -0.0291 -1.3952 -0.0235 -0.9965 -0.0123 -0.3986 

12 -0.0821 -5.9791 -0.0967 -4.3149 -0.0960 -4.4691 -0.1012 -1.9452 

13 0.0742 4.8204 -0.0767 -2.5193 -0.0257 -1.2063 -0.1567 -3.5999 

14 -0.0496 -3.4868 -0.0858 -3.4846 -0.0833 -3.7198 -0.1815 -3.4147 

15 -0.0859 -6.5572 -0.0725 -3.5144 -0.0715 -3.2982 -0.0748 -3.5103 

16 -0.0585 -4.2734 -0.0895 -4.1976 -0.0895 -4.4530 -0.0819 -3.9662 

17 -0.0466 -3.4191 -0.0581 -2.6441 -0.0588 -2.6920 -0.0570 -2.1510 
18 -0.0436 -3.0852 -0.0879 -3.8024 -0.0846 -4.0479 -0.0903 -2.9937 

19 -0.0696 -5.2229 -0.0447 -2.0393 -0.0435 -1.8569 -0.0622 -4.4688 

20 -0.0866 -6.5877 -0.0847 -4.2061 -0.0842 -3.8975 0.0019 0.0397 

21 -0.0631 -4.7643 -0.0444 -2.0777 -0.0428 -1.8816 -0.0407 -1.5897 

22 -0.0464 -3.5359 -0.0233 -1.0977 -0.0241 -1.1000 -0.0300 -1.6668 

23 0.0347 2.4362 -0.0137 -0.5700 -0.0065 -0.3103 -0.0220 -0.7249 

24 -0.0820 -6.1156 -0.0907 -4.2823 -0.0901 -4.4089 -0.0873 -2.5290 

25 -0.0896 -6.9743 -0.0691 -3.5094 -0.0629 -2.7875 -0.0018 -0.0452 
26 -0.1019 -7.8615 -0.0681 -3.3753 -0.0544 -2.1643 0.0206 0.4870 

27 -0.0183 -1.4101 -0.0116 -0.5806 -0.0106 -0.4993 0.0170 0.4776 

28 0.0520 3.5418 -0.0320 -1.2680 -0.0102 -0.5006 -0.0573 -1.7365 

29 -0.0451 -3.3606 -0.0454 -2.1047 -0.0454 -2.1389 -0.0459 -1.4317 

30 0.0117 0.8450 -0.0062 -0.2669 -0.0053 -0.2391 -0.0188 -0.4094 

31 -0.0323 -2.4697 -0.0429 -2.2013 -0.0437 -2.2460 -0.0397 -1.3904 

32 -0.0267 -1.9757 0.0126 0.5363 0.0074 0.3092 0.0023 0.1120 

33 -0.0172 -1.2214 -0.0303 -1.2227 -0.0277 -1.2251 -0.1464 -3.1976 
34 -0.0355 -2.7382 0.0192 0.8998 0.0232 0.9488 0.0164 0.6612 

35 -0.0906 -6.9570 -0.0552 -2.6035 -0.0540 -2.3505 -0.0639 -2.7060 

36 -0.0577 -4.2053 -0.0363 -1.5305 -0.0392 -1.6675 -0.2000 -3.9540 

37 -0.0785 -6.3307 -0.0360 -1.8476 -0.0321 -1.4693 -0.0368 -1.4715 

38 -0.0586 -4.4158 -0.0172 -0.7744 -0.0186 -0.7847 -0.1794 -3.6213 

39 -0.0613 -4.4362 -0.0704 -3.0147 -0.0686 -3.1859 -0.0471 -3.1049 

40 -0.0490 -3.6605 -0.0285 -1.3074 -0.0255 -1.0677 -0.0188 -0.6611 

41 -0.0398 -2.8332 -0.0628 -2.6060 -0.0590 -2.6932 -0.1341 -2.9595 
42 -0.0707 -5.1739 -0.0903 -4.1415 -0.0913 -4.3027 -0.0874 -4.5270 

43 -0.0652 -5.1038 -0.0578 -3.0107 -0.0564 -2.7509 0.0221 0.4809 

44 -0.0567 -4.1442 -0.0654 -2.9145 -0.0654 -2.9668 -0.1039 -2.2523 

45 -0.0464 -3.3747 -0.0817 -3.8389 -0.0797 -4.0375 -0.0789 -3.2136 

46 0.0424 2.7754 -0.0442 -1.1556 -0.0004 -0.0174 -0.3927 -8.6056 

47 -0.0366 -2.7549 -0.0262 -1.2265 -0.0267 -1.2418 -0.0301 -0.8982 

48 -0.0106 -0.7789 -0.0106 -0.4775 -0.0106 -0.4597 -0.0105 -0.1712 

49 -0.0359 -2.5822 -0.0509 -2.1806 -0.0496 -2.2494 -0.1124 -2.1264 

50 -0.0405 -3.0329 -0.0096 -0.4311 -0.0126 -0.5517 -0.0187 -1.0923 

51 -0.0156 -1.1495 -0.0147 -0.6583 -0.0147 -0.6656 -0.0146 -0.4554 
52 -0.0502 -3.6788 -0.0395 -1.7413 -0.0390 -1.6512 -0.1731 -3.0233 

This table reports the the estimated values of the fractional integration parameter    at the firm level with 

its corresponding t-stat. 
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 To evaluate which model provides the best in-sample fit to the data we use 

several information criteria: Akaike (AIC), Bayesian (BIC), and Hannan-Quinn (HQ) 

criteria. These information criterion methods are commonly used in model selection 

when evaluating models with different number of parameters, as they consider the 

contribution of goodness of fit (log-likelihood) and the complexity of the model as a 

penalty term. It should be highlighted that in the model selection problem models with 

different numbers of parameters are being compared, and in general, log-likelihood 

increases as the number of parameters are added into the model; thus, cross-sectional 

mean of ARFIMA(0,d,0) log-likelihood is smaller than the other models which have 1 

or 2 additional parameters. For this reason, the penalty term which compensates the 

inclusion of an additional parameter has a critical effect in model selection. In addition 

to information criteria, Root Mean Square Error (RMSE) and Mean Absolute Error 

(MAE) of the standard residuals have also been considered. The analytical formulation 

is as follows:  

        
    

 
  

 

 
      (11) 

      
    

 
  

    

 
     (12) 

     
    

 
  

          

 
    (13) 

    
 

 
∑ |  |

 
         (14) 

     √
 

 
∑     

  
        (15) 

where      is the log-likelihood function,   is the number of estimated parameters,   is 

the number of observations and    contains the residuals of the estimated model in 

differences.  

 Table 8 reports the cross sectional results of the information criteria and error 

measures and the number of firms for which the model is selected as the best one. 
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Looking at the cross-sectional level (Panel A of Table 8), the               seem to 

provide the best fit according to the AIC, BIC and HQ criteria as well as the RMSE 

measure. In contrast, according to the MAE measure            seems to provide the 

best fit to the data. At the firm level, Panel B of Table 8, reports the number of firms for 

which the model is preferred by each of the measures. The AIC and BIC criteria provide 

similar results where               is selected by 19 (36.54%) and 21 (40.38%) of 

52 firms respectively, followed by           . For the HQ criteria we observe that the 

best selection is mainly distributed between            chosen by 15 (28.85%) firms, 

              chosen by 14 (26.92%) firms and               that is selected by 

13 (25%) firms. Regarding error measures, RMSE measure clearly points to 

              as the model that fits best the data in 41 of 52 firms (78.85%). Finally, 

model selection by MAE measure is almost equally distributed along the estimated 

models (similar to HQ).  

 Overall, the results of the in-sample-fit of ARFIMA models vs. ARIMA model 

show that inclusion of the fractional differencing parameter in modeling CDS implied 

volatility improves the model fit on average, independently of the selection criteria or 

error measure used. To be specific, ARFIMA models provide a better in-sample-fit 

compared to ARIMA model in 67.31% (Akaike), 73.08% (Schwarz), 71.15% (HQ), 

76.92% (RMSE), and 88.46% (MAE) of the cases. These results are consistent with the 

presence of long-memory in the CDS implied asset volatility for most of the companies 

in the sample.  

  



171 
 

Table 8. Information criteria and error measures  

 ARFIMA(0,d,0) ARFIMA(1,d,0) ARFIMA(0,d,1) ARFIMA(1,d,1) ARIMA(1,1) 

Panel A: Cross-section 

Log-L 16,293.70 16,295.33 16,295.18 16,297.53 16,295.52 

Akaike -9.6053648 -9.6057352 -9.6056498 -9.6064473 -9.6058467 

Schwarz -9.6040143 -9.6039350 -9.6038499 -9.6041970 -9.6040461 

HQ -9.6061651 -9.6068028 -9.6067177 -9.6077817 -9.6069139 

MAE 0.0014533 0.0014767 0.0012594 0.0014408 0.0011395 

RMSE 0.0021096 0.0021084 0.0021086 0.0021061 0.0021083 

Panel B: Firm level 

Akaike 19 6 1 9 17 

Schwarz 21 5 4 8 14 

HQ 13 6 4 14 15 

MAE 6 13 13 8 12 

RMSE 0 3 2 41 6 

This table reports the cross sectional results of the information criteria (Akaike, Schwarz, HQ) and error 

measures (RMSE, MAE) and the number of firms for which the model is selected as the best one.  

5. Out-of-sample prediction  

To conduct out-of-sample prediction of CDS implied volatilities, we select an 

initial subsample with a period of ten years, from January 1
st
, 2004 to December 31

st
, 

2013. This time period includes 2,610 daily observations of CDS implied asset 

volatilities per company. We estimate the ARFIMA and ARIMA models over this 

period of time and generate firm's asset volatility forecasts 1 day ahead. Once we 

perform the initial forecasting, we generate a rolling window over the remaining out-of-

sample period which spans from January 1
st
, 2014 to December 31

st
, 2016. To do that, 

we shift forward 1 observation (1 day) the fixed-length estimation window of 2,610 

observations and re-estimate again the model parameters. This process has been 

repeated over the out-of-sample period, obtaining a total of 782 forecasts per model and 

company. We perform the estimation of ARFIMA models in first differences following 

the same procedure explained in the previous section. The one-step ahead forecasts are 

formed following Konstantinidi et al. (2008): 
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where    ∑                   
   ,    

       

           
 and      denotes the gamma 

function. 

To evaluate the accuracy of forecasted volatility we proceed in two steps. First, 

we analyze which model provides better volatility forecasts by comparing the forecasted 

firm's asset volatility to CDS implied volatility on the following day. Secondly, we use 

the forecasted firm's asset volatility to generate model CDS forecasts (i.e. using the 

structural credit risk model) and compare it with subsequently realized market 

observable CDS spreads. It is important to note that in this case, to avoid any look-

ahead bias, we generate CDS forecasts on the basis of the Leland and Toft (1996) 

structural credit risk model using only past information on market capitalization, and 

accounting items (i.e. information available up to t).  

5.1 Out-of-sample firm's asset volatility prediction  

In this section we evaluate the performance of 1-day-ahead firm’s asset volatility 

forecasts. To ease the exposition, we consider        as the CDS implied volatility 

(     ) at time    , and      as the one-day forecast of firm's asset volatility made a 

time  . To evaluate forecasting performance we use several prediction error statistics: 

Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Correct 

Prediction (MCP), which are defined as follows: 
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 Table 9 summarizes the out-of-sample forecasting performance for each model 

and shows the number of firms for which a specified model performs the best according 
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to the MAE, RMSE and MCP criteria. On average (see Panel A of Table 9), the cross-

sectional mean of prediction error shows that for the RMSE criteria               is 

the best model closely followed by               and              . For the 

MAE and MCP,               is the model which produces the lowest forecast 

error on average. In cross-section,               and            are generally the 

models with higher prediction error according to the three forecasting error measures 

(RMSE, MAE and MCP).  

Table 9. Out-of-sample performance 

 ARFIMA(0,d,0) ARFIMA(1,d,0) ARFIMA(0,d,1) ARFIMA(1,d,1) ARIMA(1,1) 

Panel A: Cross-section 

RMSE 0.16307 0.16306 0.16307 0.16313 0.16319 

MAE 0.11643 0.11648 0.11648 0.11660 0.11655 

MCP 0.72057 0.71912 0.71926 0.71705 0.71636 

Panel B: Firm level 

RMSE 20 6 6 9 11 

MAE 22 3 6 8 13 

MCP 13 8 12 10 13 

This table reports the cross sectional results of the out-of-sample prediction error measures (RMSE, MAE 

and MCP) and the number of firms for which the model is selected as the best one.  

When taking into account the firm-level forecasting performance (see Panel B of 

Table 9) we observe that according to the RMSE and MAE,               is the 

preferred model for the majority of firms. To be specific, the               model 

provides the lowest RMSE prediction error for 20 (38.46%) companies and the lowest 

MAE prediction error for 22 (42.37%) companies. Overall, ARFIMA models 

outperform ARIMA model in 78.85% (RMSE) and 75% (MAE) of the cases. The 

integrated            model outperforms ARFIMA models in 21.15% (RMSE) and 

25% (MAE) of the cases.  

The MCP measure at the firm-level goes in the same direction, ARFIMA models 

outperform in 76.79% and ARIMA model in 23.21% of the cases. However, the best 
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prediction is almost uniformly distributed through the specific ARFIMA models: 

model                is the best model for 13 companies, followed by 

              for 12 companies,               for 10 companies, and finally 

              for 8 companies.
29

 Therefore, in terms of the MCP measure at the 

firm-level all the ARFIMA models seem to behave similarly. It is important to reiterate 

the difference among prediction error measures: RMSE and MAE provide an analytical 

measure of prediction error whereas MCP indicates the ability of the models to predict 

the correct direction of change of volatility (positive when volatility increases and 

negative when volatility decreases).   

These results are completely in line with our previous findings that for the 

majority of the companies considered CDS implied firm's asset volatility is a highly 

persistent time-series but with the degree of fractional integration lower than 1. As a 

result, we observe that generally the models which minimize the forecasting error are 

precisely the ARFIMA models, in contrast to the integrated ARIMA model. In addition, 

we observe that the specific ARFIMA model which provides the best forecasting 

performance when modeling implied firm’s asset volatility is              . Table 

10, Table 11 and Table 12 show the forecasting prediction error (RMSE, MAE and 

MCP) of firm’s asset volatility implied from CDS data for each firm and model.  

  

                                                             
29

 Note that the number of companies for which the respective model outperforms other models according 

to the MCP adds up to 56 instead of 52. This is because for some companies two competing models are 

selected with the same MCP prediction error. For more details see Table 12. 
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Table 10. Forecasting performance - RMSE  

comp ARFIMA(0,d,0) ARFIMA(1,d,0) ARFIMA(0,d,1) ARFIMA(1,d,1) ARIMA(1,1) 

1 0.12918 0.12919 0.12918 0.12911 0.12928 
2 0.10618 0.10601 0.10605 0.10616 0.10585 

3 0.14639 0.14639 0.14639 0.14642 0.14630 

4 0.21081 0.21158 0.21156 0.21224 0.21063 

5 0.10599 0.10598 0.10598 0.10594 0.10596 

6 0.11296 0.11296 0.11296 0.11297 0.11283 

7 0.12519 0.12525 0.12525 0.12530 0.12520 

8 0.19877 0.19860 0.19859 0.19865 0.19908 

9 0.09052 0.09051 0.09051 0.09062 0.09059 
10 0.18506 0.18509 0.18509 0.18504 0.18503 

11 0.14955 0.14978 0.14981 0.14979 0.14984 

12 0.19377 0.19413 0.19410 0.19423 0.19466 

13 0.20850 0.20697 0.20729 0.20672 0.20784 
14 0.19370 0.19417 0.19412 0.19419 0.19457 

15 0.11522 0.11524 0.11524 0.11531 0.11527 

16 0.17819 0.17829 0.17829 0.17835 0.17847 

17 0.10608 0.10606 0.10606 0.10608 0.10613 
18 0.09461 0.09444 0.09444 0.09445 0.09437 

19 0.17508 0.17502 0.17503 0.17544 0.17498 

20 0.14494 0.14500 0.14502 0.14478 0.14481 

21 0.15543 0.15541 0.15541 0.15550 0.15546 
22 0.15174 0.15185 0.15184 0.15200 0.15205 

23 0.15690 0.15700 0.15698 0.15701 0.15701 

24 0.17171 0.17179 0.17179 0.17180 0.17205 

25 0.12641 0.12649 0.12652 0.12674 0.12676 
26 0.13772 0.13745 0.13740 0.13831 0.13801 

27 0.08228 0.08226 0.08226 0.08230 0.08228 

28 0.10962 0.10947 0.10947 0.10943 0.10956 

29 0.08888 0.08886 0.08886 0.08886 0.08886 
30 0.18930 0.18911 0.18913 0.18903 0.18912 

31 0.07991 0.07992 0.07987 0.07995 0.07988 

32 0.16412 0.16440 0.16431 0.16457 0.16445 

33 0.44150 0.44196 0.44182 0.44253 0.44285 
34 0.11925 0.11990 0.11988 0.11990 0.11982 

35 0.18238 0.18222 0.18223 0.18222 0.18221 

36 0.14519 0.14531 0.14529 0.14552 0.14589 

37 0.18313 0.18303 0.18304 0.18309 0.18319 
38 0.14181 0.14197 0.14196 0.14216 0.14199 

39 0.19943 0.19946 0.19946 0.19994 0.19924 

40 0.11954 0.11951 0.11952 0.11957 0.11957 

41 0.17064 0.17066 0.17066 0.17071 0.17096 
42 0.21304 0.21303 0.21301 0.21302 0.21312 

43 0.17838 0.17844 0.17845 0.17852 0.17851 

44 0.10362 0.10367 0.10369 0.10364 0.10381 

45 0.12150 0.12160 0.12159 0.12164 0.12148 
46 0.56730 0.56549 0.56616 0.56493 0.56717 

47 0.14748 0.14759 0.14757 0.14760 0.14782 

48 0.20896 0.20901 0.20901 0.20910 0.20903 

49 0.28355 0.28345 0.28347 0.28352 0.28351 

50 0.11812 0.11810 0.11809 0.11811 0.11825 

51 0.13055 0.13055 0.13055 0.13043 0.13068 

52 0.11940 0.11943 0.11942 0.11924 0.11953 
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Table 11. Forecasting performance - MAE  

comp ARFIMA(0,d,0) ARFIMA(1,d,0) ARFIMA(0,d,1) ARFIMA(1,d,1) ARIMA(1,1) 

1 0.08948 0.08953 0.08952 0.08946 0.08963 

2 0.07577 0.07564 0.07567 0.07570 0.07543 

3 0.11001 0.11002 0.11002 0.11007 0.10985 

4 0.15936 0.16014 0.16007 0.16084 0.15922 

5 0.07571 0.07580 0.07579 0.07600 0.07604 

6 0.07982 0.07979 0.07979 0.07982 0.07978 

7 0.09237 0.09242 0.09242 0.09243 0.09228 

8 0.14961 0.14961 0.14958 0.14961 0.14986 

9 0.06577 0.06577 0.06576 0.06599 0.06584 
10 0.13208 0.13214 0.13214 0.13215 0.13225 

11 0.11120 0.11144 0.11145 0.11148 0.11150 

12 0.13882 0.13930 0.13926 0.13946 0.13933 

13 0.14620 0.14534 0.14566 0.14494 0.14623 
14 0.14036 0.14073 0.14066 0.14085 0.14107 

15 0.08465 0.08468 0.08469 0.08475 0.08472 

16 0.13281 0.13300 0.13301 0.13308 0.13310 

17 0.07758 0.07758 0.07759 0.07758 0.07763 
18 0.06919 0.06912 0.06911 0.06912 0.06909 

19 0.12479 0.12478 0.12478 0.12540 0.12486 

20 0.10805 0.10815 0.10818 0.10782 0.10766 

21 0.11430 0.11426 0.11426 0.11439 0.11407 
22 0.11469 0.11472 0.11471 0.11476 0.11490 

23 0.11264 0.11272 0.11270 0.11277 0.11273 

24 0.12111 0.12125 0.12125 0.12129 0.12134 

25 0.09039 0.09042 0.09044 0.09065 0.09066 
26 0.10017 0.09989 0.09983 0.10040 0.10027 

27 0.05972 0.05972 0.05972 0.05975 0.05972 

28 0.07678 0.07677 0.07679 0.07671 0.07686 

29 0.06609 0.06610 0.06610 0.06609 0.06616 
30 0.13215 0.13203 0.13204 0.13202 0.13207 

31 0.05912 0.05909 0.05905 0.05912 0.05908 

32 0.12349 0.12357 0.12352 0.12366 0.12355 

33 0.29034 0.29056 0.29050 0.29149 0.29103 
34 0.08710 0.08775 0.08773 0.08776 0.08765 

35 0.13872 0.13847 0.13846 0.13845 0.13839 

36 0.10688 0.10688 0.10687 0.10712 0.10747 

37 0.13170 0.13186 0.13187 0.13189 0.13203 
38 0.09810 0.09831 0.09829 0.09841 0.09849 

39 0.13788 0.13785 0.13786 0.13826 0.13738 

40 0.09102 0.09096 0.09096 0.09094 0.09101 

41 0.12712 0.12716 0.12717 0.12741 0.12732 
42 0.15002 0.14996 0.14993 0.14984 0.14977 

43 0.11784 0.11788 0.11789 0.11825 0.11825 

44 0.07834 0.07838 0.07838 0.07835 0.07847 

45 0.09219 0.09238 0.09235 0.09242 0.09210 
46 0.33720 0.33707 0.33703 0.33849 0.33793 

47 0.11142 0.11152 0.11150 0.11157 0.11173 

48 0.14106 0.14108 0.14107 0.14110 0.14113 

49 0.20917 0.20910 0.20914 0.20929 0.20901 

50 0.08809 0.08813 0.08811 0.08816 0.08827 

51 0.09689 0.09687 0.09687 0.09675 0.09697 

52 0.08926 0.08930 0.08929 0.08920 0.08942 
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Table 12. Forecasting performance - MCP  

comp ARFIMA(0,d,0) ARFIMA(1,d,0) ARFIMA(0,d,1) ARFIMA(1,d,1) ARIMA(1,1) 

1 0.71609 0.71161 0.71071 0.71609 0.69249 
2 0.71161 0.71341 0.70711 0.71520 0.72143 

3 0.72408 0.72408 0.72497 0.72143 0.73111 

4 0.69341 0.69525 0.69064 0.70711 0.71965 

5 0.72497 0.71251 0.71788 0.69892 0.69892 

6 0.73373 0.73199 0.73547 0.72320 0.72143 

7 0.72673 0.72408 0.72497 0.72673 0.72761 

8 0.72849 0.72936 0.72849 0.72585 0.72054 

9 0.72673 0.72054 0.71877 0.70348 0.71430 
10 0.74240 0.74067 0.74067 0.73634 0.73111 

11 0.71520 0.70981 0.70801 0.71430 0.71698 

12 0.72143 0.71161 0.71430 0.69984 0.71520 

13 0.71520 0.73373 0.72673 0.72936 0.70257 
14 0.74326 0.73373 0.73286 0.73460 0.71251 

15 0.70620 0.70348 0.70257 0.70711 0.70530 

16 0.73547 0.72849 0.72585 0.72232 0.72761 

17 0.74497 0.73981 0.73894 0.74412 0.73547 
18 0.72143 0.71430 0.71698 0.72232 0.72320 

19 0.72936 0.73721 0.73460 0.72497 0.73111 

20 0.73199 0.72849 0.72673 0.73721 0.73286 

21 0.72585 0.73111 0.73111 0.72408 0.75096 
22 0.71877 0.70711 0.70257 0.71965 0.70166 

23 0.71071 0.69156 0.69341 0.69892 0.69892 

24 0.70439 0.70166 0.70166 0.69801 0.70891 

25 0.69709 0.69064 0.69064 0.68599 0.68971 
26 0.72673 0.73981 0.74067 0.71609 0.72408 

27 0.70801 0.70891 0.70891 0.69984 0.71430 

28 0.70530 0.72232 0.72497 0.71609 0.71520 

29 0.72054 0.72761 0.72761 0.72497 0.71520 
30 0.68599 0.69525 0.69433 0.71251 0.69433 

31 0.72143 0.71161 0.71341 0.70257 0.72408 

32 0.73721 0.73894 0.73981 0.73894 0.73111 

33 0.68693 0.68971 0.68413 0.68693 0.68693 
34 0.71161 0.67944 0.68319 0.67944 0.68506 

35 0.71071 0.72054 0.71877 0.72232 0.71698 

36 0.73981 0.74583 0.74755 0.74583 0.73111 

37 0.72320 0.71965 0.72143 0.71788 0.72673 
38 0.74497 0.73981 0.74669 0.72497 0.72673 

39 0.72232 0.72054 0.72320 0.71877 0.72054 

40 0.72408 0.72408 0.72585 0.72673 0.71877 

41 0.70891 0.71071 0.70981 0.70257 0.71698 
42 0.72936 0.72761 0.72673 0.72673 0.72054 

43 0.71609 0.72143 0.72232 0.71609 0.71161 

44 0.71520 0.71609 0.71609 0.71698 0.71161 

45 0.75011 0.71965 0.71965 0.71430 0.72585 
46 0.70981 0.71430 0.71430 0.71609 0.71609 

47 0.70348 0.69709 0.69892 0.70801 0.70620 

48 0.71430 0.72497 0.72320 0.71965 0.70530 

49 0.71788 0.72849 0.72849 0.72054 0.71965 

50 0.72673 0.71698 0.72761 0.72232 0.71341 

51 0.72232 0.72761 0.72936 0.71965 0.70620 

52 0.73721 0.73894 0.73808 0.73286 0.73460 
 

      

 

  



178 
 

We compare all the firm's asset volatility forecasts to the benchmark random 

walk model using the Diebold and Mariano (1995) test modified by Harvey et al. 

(1997). The Diebold and Mariano (1995) test is a widely used test designed to compare 

predictive accuracy of two competing forecasts, with the null hypothesis that the two 

competing forecasts perform equally well. The predictive accuracy of each model is 

measured on the basis of a particular loss function. In our case, and following the 

literature, we use the widely used mean squared error. The results of the Diebold and 

Mariano (1995) test show that the               outperforms the benchmark random 

walk model for 31 company (60%); the               for 30 companies (58%); the 

              for 27 companies (52%); the               for 28 companies 

(54%); and the ARIMA model for 23 companies (44%). This confirms the usefulness of 

forecasting the firm's asset volatility, at least in a statistical sense. 

In addition, we further examine the time-varying behavior of the fractional 

integrating parameter from rolling-window estimations. For each estimation window of 

2,610 observations, we calculate the cross-sectional mean of the fractional integrating 

parameter for each model and for our sample of 52 companies. The values observed in 

the time-development of the fractional integrated parameter are fully consistent with the 

cross-sectional mean reported in the in-sample estimation (Table 7). Figure 3 shows the 

evolution of the cross-sectional mean of the estimated fractional integrating parameter 

with the              ,              ,              , and             ) 

models which correspond to the blue, green, red and purple lines, respectively. We can 

observe that               provides a stable estimation of the parameter    along 

the forecasting period with the mean of about -0.04. The               and 

              models provide starting values of -0.035 and -0.04, respectively at the 

beginning of the period. However, their time development slowly decreases resulting in 
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the values of approximately -0.04 and -0.045 at the end of the forecasting period. 

Although the evolution of the parameter    along the forecasting period is very similar 

for both models, the estimate of    with               is constantly below the 

              by a margin of approximately -0.005. Finally, the time development 

of the cross-sectional mean of fractional integrating parameter with               is 

more unstable and volatile along the forecasting period compared to other models. The 

estimated value ranges from -0.055 to -0.09 and small movements in the rolling window 

result in large variability in the estimated order of integration. In general, as additional 

autoregressive parameters are added to the model, the cross-sectional mean of the 

fractional integrating parameters turns out to be more fluctuating and unpredictable. As 

we have observed in the in-sample estimation (see Table 7), as we add complexity to the 

model, fractional integrating parameter becomes significant for a less number of 

companies. 

Figure 3. Time deveolopment of the fractional integrated parameter 
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5.2 Out-of-sample CDS prediction  

In this section we empirically test the performance of ARFIMA and ARIMA 

models by comparing the credit spreads obtained using the out-of-sample forecasts of 

firm's asset volatility with the market observable CDS spreads. We calculate the 1-day-

ahead forecasts of the credit spread using the forecasts of firm's asset volatility, 

Equation 4 and the structural model of Leland and Toft (1996). To avoid the look-ahead 

bias we rely only on the past information on market capitalization and accounting items. 

The main objective and implication of the paper is to achieve an improvement of the 

empirical performance of structural credit risk models by providing more precise 

estimates of credit spreads which are based on time-varying volatility with long-

memory features.  

As in the previous section, we calculate RMSE, MAE and MCP as the standard 

forecast error measures. In Equations 17 to 18, we consider          as the market 

observable CDS at time    , and       as the one-day forecast of credit spread 

calculated using the forecast of firm's asset volatility made a time   and using historical 

information on market capitalization and accounting items. The summary of the main 

results, in the cross-section and at the firm-level are provided in Table 13.  

Table 13. Out-of-sample performance 

 ARFIMA(0,d,0) ARFIMA(1,d,0) ARFIMA(0,d,1) ARFIMA(1,d,1) ARIMA(1,1) 

Panel A: Cross-section 

RMSE 3.06225 3.06348 3.06361 3.06343 3.06594 

MAE 1.62369 1.63115 1.62961 1.63989 1.63106 

MCP 0.62673 0.62455 0.62471 0.62449 0.62321 

Panel B: Firm level  

RMSE 24 5 3 10 10 

MAE 31 4 3 0 14 

MCP 22 7 5 15 3 

This table reports the cross sectional results of the out-of-sample prediction error measures (RMSE, MAE 

and MCP) and the number of firms for which the model is selected as the best one.  



181 
 

 As it could be observed, in terms of the out-sample performance, all the main 

indicators of the difference between the model and market CDS spreads indicate the 

outperformance of models in which the degree of persistence is estimated rather than 

imposed to 1. Specifically, ARFIMA models outperform ARIMA model in 80.77% 

(RMSE), 73.08% (MAE) and 94.23% (MCP) of the cases. Therefore, the economic 

performance of ARFIMA vs. ARIMA model provides even stronger support to 

modeling firm's asset volatility as a long-memory process. Out of all the considered 

ARFIMA models, the               seems to provide the best out-of-sample 

forecasts of CDS spreads. Not only that in the cross-section the forecast errors are 

lowest for the               according to the three considered measures, but also, at 

the firm level this model is supported for the highest number of companies. These 

results support even more our previous findings on the degree of fractional integration 

of the firm's asset volatilities. Table 14, Table 15 and Table 16 show the forecasting 

prediction error (RMSE, MAE and MCP) of credit spreads calculated on the basis of 

forecasted firm’s asset volatility for each firm and model. 

We also compare the credit spread forecasts to the benchmark random walk 

model. For that purpose, as in the previous section we employ the Diebold and Mariano 

(1995) test modified by Harvey et al. (1997) using the mean squared error as a loss 

function. The results of the Diebold and Mariano (1995) test show that the 

              outperforms the benchmark random walk model for 25 companies 

(48.08%); the               for 20 companies (38.46%); the               for 

18 companies (34.61%); the               for 22 companies (42.31%); and the 

ARIMA model for 12 companies (23.08%).
30

 This confirms the usefulness of 

                                                             
30

 For some companies with lower liquidity of the CDS spreads, the daily change is equal to 0. This goes 

in favor of the random walk model. When these days are not taken into account the performance of 

ARFIMA models improves as expected. 



182 
 

forecasting firm's asset volatility on the basis of the long-memory process, in an 

economical sense. 

Table 14. Credit spread forecasting performance - RMSE  

comp ARFIMA(0,d,0) ARFIMA(1,d,0) ARFIMA(0,d,1) ARFIMA(1,d,1) ARIMA(1,1) 

1 2.67098 2.67247 2.67231 2.67068 2.67958 
2 3.06478 3.05020 3.05349 3.05116 3.03384 

3 1.60945 1.60964 1.60962 1.60924 1.61071 

4 1.82597 1.84128 1.83906 1.85475 1.82660 

5 2.31896 2.32223 2.32138 2.32536 2.32906 
6 7.59135 7.59770 7.59985 7.61104 7.61104 

7 3.84808 3.84867 3.84867 3.84967 3.84746 

8 2.07972 2.07818 2.07797 2.07773 2.08596 

9 3.09832 3.11443 3.11390 3.11642 3.12597 
10 1.10297 1.10327 1.10323 1.10300 1.10336 

11 0.90136 0.90241 0.90244 0.90113 0.90117 

12 0.86779 0.87085 0.87054 0.87094 0.87430 

13 2.81876 2.83933 2.83464 2.82736 2.83624 
14 1.35908 1.37095 1.36961 1.36152 1.36101 

15 0.65788 0.65805 0.65810 0.65924 0.65872 

16 1.19042 1.19130 1.19042 1.19125 1.19083 

17 1.52314 1.52319 1.52342 1.52322 1.52278 
18 7.38517 7.38106 7.38119 7.38275 7.37887 

19 1.18409 1.18177 1.18181 1.18093 1.18156 

20 0.97693 0.97644 0.97627 0.97712 0.97990 

21 0.47372 0.47436 0.47436 0.47501 0.47407 
22 1.34540 1.34909 1.34864 1.35310 1.35011 

23 3.32507 3.31579 3.31522 3.31580 3.32124 

24 5.14660 5.14314 5.14304 5.15041 5.15890 

25 1.25974 1.25868 1.25849 1.25592 1.25535 
26 2.75430 2.75161 2.75181 2.77381 2.76825 

27 1.82002 1.81973 1.81968 1.82130 1.81900 

28 6.05520 6.07130 6.06152 6.08077 6.07716 

29 2.28280 2.28225 2.28225 2.28248 2.28209 
30 7.05736 7.05114 7.05152 7.05716 7.05637 

31 2.40532 2.40614 2.40661 2.40852 2.40525 

32 1.18737 1.18964 1.18878 1.18879 1.18717 

33 20.85182 20.87436 20.86701 20.85178 20.89047 
34 1.38140 1.39769 1.39726 1.39777 1.39455 

35 1.01641 1.02247 1.02224 1.02253 1.02272 

36 1.63208 1.63422 1.63357 1.63898 1.64775 

37 1.03253 1.03643 1.03650 1.03672 1.03988 
38 0.77521 0.78237 0.78111 0.78227 0.78385 

39 2.61077 2.61047 2.61054 2.61086 2.62247 

40 0.72875 0.72734 0.72713 0.72640 0.72670 

41 5.02454 5.03154 5.02946 5.02732 5.02765 
42 3.98482 3.99477 3.99594 3.99758 3.98574 

43 1.38018 1.38187 1.38234 1.39239 1.39156 

44 1.00815 1.00900 1.00929 1.00832 1.01096 

45 1.23363 1.25051 1.25054 1.25014 1.23770 
46 21.78267 21.69388 21.72722 21.64600 21.73288 

47 1.73870 1.73825 1.73831 1.73851 1.73765 

48 1.56647 1.56532 1.56512 1.55822 1.56734 

49 3.01709 3.02543 3.02408 3.01537 3.02458 
50 3.47634 3.47164 3.47259 3.47415 3.47579 

51 0.84462 0.84384 0.84413 0.84567 0.84763 

52 0.96254 0.96348 0.96348 0.96978 0.96711 
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Table 15. Credit spread forecasting performance - MAE  

comp ARFIMA(0,d,0) ARFIMA(1,d,0) ARFIMA(0,d,1) ARFIMA(1,d,1) ARIMA(1,1) 

1 1.48466 1.48297 1.48307 1.48605 1.47951 
2 1.44215 1.43479 1.43589 1.44364 1.43327 

3 0.88363 0.88383 0.88379 0.88487 0.87464 

4 1.02345 1.04189 1.03939 1.07451 1.03456 

5 1.09744 1.09507 1.09518 1.10148 1.10204 

6 4.72146 4.72283 4.72327 4.72746 4.72982 

7 1.99437 1.99375 1.99385 1.99382 1.99717 

8 1.10301 1.11106 1.10975 1.11117 1.09727 

9 1.70173 1.72212 1.72089 1.73419 1.73185 
10 0.63536 0.63503 0.63497 0.63542 0.63532 

11 0.49316 0.50015 0.50139 0.50092 0.50064 

12 0.49258 0.50110 0.50044 0.50251 0.49818 

13 1.61853 1.67981 1.65836 1.66891 1.66931 
14 0.76502 0.78082 0.77812 0.80936 0.78912 

15 0.36375 0.36376 0.36380 0.36427 0.36410 

16 0.60127 0.60599 0.60674 0.60794 0.61017 

17 0.88880 0.88900 0.88899 0.88952 0.88981 
18 3.15203 3.15595 3.15742 3.15863 3.15317 

19 0.65951 0.65923 0.65914 0.66357 0.65851 

20 0.54943 0.54993 0.55003 0.55019 0.54910 

21 0.24916 0.24974 0.24977 0.25132 0.24504 
22 0.76734 0.76715 0.76661 0.77494 0.76823 

23 1.96803 1.97157 1.96990 1.97053 1.97489 

24 2.90934 2.91067 2.91141 2.91509 2.93224 

25 0.52027 0.52167 0.52226 0.52573 0.52494 
26 1.44879 1.45205 1.45435 1.47809 1.46670 

27 1.03139 1.03109 1.03095 1.03180 1.03121 

28 3.58532 3.62134 3.60899 3.62262 3.62420 

29 1.31678 1.31693 1.31693 1.31702 1.31751 
30 3.60792 3.60383 3.60391 3.61157 3.60501 

31 1.40794 1.41418 1.41818 1.42113 1.42746 

32 0.65065 0.66443 0.66022 0.66699 0.66402 

33 10.29346 10.31671 10.30884 10.34524 10.31668 
34 0.76114 0.79293 0.79256 0.79262 0.78684 

35 0.61463 0.61752 0.61739 0.61761 0.61237 

36 0.97030 0.97192 0.97104 0.99186 0.98579 

37 0.41186 0.44029 0.44002 0.44026 0.44356 
38 0.41079 0.41930 0.41636 0.42729 0.42197 

39 1.29601 1.29383 1.29422 1.30437 1.26970 

40 0.42117 0.42158 0.42153 0.42291 0.42112 

41 3.09908 3.11410 3.11083 3.12224 3.09825 
42 2.40046 2.40958 2.41058 2.41089 2.39906 

43 0.82310 0.82409 0.82450 0.83463 0.83430 

44 0.62414 0.62372 0.62376 0.62385 0.62364 

45 0.76928 0.78627 0.78705 0.78610 0.77199 
46 10.29910 10.33721 10.30766 10.48021 10.33229 

47 1.06917 1.07000 1.06973 1.07294 1.07070 

48 0.81405 0.81593 0.81618 0.81867 0.81643 

49 1.15963 1.17205 1.16981 1.20534 1.15777 

50 2.02102 2.01751 2.01773 2.02483 2.02733 

51 0.49659 0.49693 0.49708 0.49993 0.49899 

52 0.54249 0.54488 0.54496 0.55721 0.54749 
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Table 16. Credit spread forecasting performance - MCP  

comp ARFIMA(0,d,0) ARFIMA(1,d,0) ARFIMA(0,d,1) ARFIMA(1,d,1) ARIMA(1,1) 

1 0.61588 0.60755 0.60922 0.61088 0.61255 
2 0.64085 0.64251 0.64251 0.63419 0.63585 

3 0.60256 0.59923 0.59923 0.60589 0.60423 

4 0.62087 0.63752 0.63252 0.64085 0.63585 

5 0.66248 0.67081 0.66748 0.67580 0.67081 

6 0.75570 0.75237 0.75403 0.75570 0.75237 

7 0.63419 0.63252 0.63252 0.63585 0.62919 

8 0.63585 0.62753 0.62586 0.65416 0.63752 

9 0.64750 0.65083 0.65583 0.62919 0.63419 
10 0.58425 0.57926 0.57926 0.58592 0.57926 

11 0.51601 0.50435 0.49770 0.48937 0.49104 

12 0.61088 0.60090 0.60256 0.60589 0.60423 

13 0.68745 0.64917 0.66581 0.65583 0.65583 
14 0.63419 0.61754 0.63252 0.60922 0.62087 

15 0.50102 0.50102 0.50269 0.50435 0.50435 

16 0.45941 0.48771 0.48438 0.48604 0.47273 

17 0.64750 0.64584 0.64417 0.64750 0.64417 
18 0.73572 0.72407 0.72407 0.72241 0.73406 

19 0.59590 0.60090 0.59923 0.59091 0.59257 

20 0.61088 0.61088 0.60755 0.60589 0.60755 

21 0.50602 0.50768 0.50768 0.51434 0.50435 
22 0.52433 0.51601 0.51933 0.49770 0.49936 

23 0.67247 0.67414 0.67414 0.67746 0.67247 

24 0.71076 0.70410 0.70410 0.70576 0.69744 

25 0.56927 0.56927 0.56927 0.57093 0.57260 
26 0.65749 0.65749 0.64917 0.64251 0.64417 

27 0.62753 0.61588 0.61088 0.62586 0.63252 

28 0.74238 0.74738 0.75070 0.74405 0.74238 

29 0.64085 0.64085 0.64085 0.63252 0.64085 
30 0.70909 0.70576 0.70243 0.70410 0.70243 

31 0.65250 0.65749 0.64750 0.65250 0.65083 

32 0.57426 0.57759 0.57093 0.59590 0.59091 

33 0.71575 0.71242 0.71741 0.71908 0.71242 
34 0.63252 0.63252 0.63585 0.62919 0.63086 

35 0.54097 0.53431 0.53764 0.53764 0.54097 

36 0.59257 0.59091 0.59257 0.57093 0.57260 

37 0.42945 0.44110 0.43944 0.44776 0.43777 
38 0.55262 0.55762 0.55429 0.56428 0.55928 

39 0.60755 0.60922 0.60755 0.60090 0.60922 

40 0.56927 0.58425 0.58425 0.57926 0.58592 

41 0.74571 0.74738 0.74405 0.75736 0.75070 
42 0.75403 0.76236 0.76402 0.76069 0.75403 

43 0.67081 0.66581 0.66581 0.66581 0.66581 

44 0.68745 0.68912 0.68912 0.68912 0.68079 

45 0.66748 0.66248 0.65915 0.65915 0.66748 
46 0.73239 0.72574 0.73239 0.72574 0.73239 

47 0.68412 0.66415 0.66415 0.67247 0.66581 

48 0.54930 0.54597 0.54597 0.53764 0.53598 

49 0.52766 0.52766 0.53265 0.52100 0.52766 
50 0.71242 0.71408 0.71408 0.69744 0.69577 

51 0.64417 0.61255 0.61421 0.63419 0.62087 

52 0.58758 0.58092 0.58425 0.59424 0.59091 
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6. Conclusions 

In this paper we have analyzed the predictability of CDS implied firm's asset 

volatility using a sample of 52 non-financial firms using ARFIMA and ARIMA models. 

We find evidence of long-memory in the CDS implied asset volatility for most of the 

companies in the sample. The results of the in-sample-fit of ARFIMA models vs. 

ARIMA model show that inclusion of the fractional differencing parameter in modeling 

CDS implied volatility improves the model fit on average, independently of the 

selection criteria or error measure used. We have tested the statistical and economical 

implications of our findings in an out-of-sample prediction. First, we conduct an out-of-

sample prediction of firm's asset volatilities and contrast it with the CDS implied asset 

volatilities. In line with our in-sample findings, ARFIMA models on average 

outperform ARIMA model. Second, we conduct out-of-sample prediction of credit 

spreads on the basis of the Leland and Toft (1996) structural credit risk model using 

only historical data. We find that CDS spreads are predictable, and for an important 

number of companies including the fractional integrating parameter substantially 

improves the forecasting performance. A practical implication of results provided in this 

paper is that a possibility to predict the CDS spread development would allow adopting 

appropriate trading positions to achieve abnormal returns. 

 

  



186 
 

References 

Baillie, R. T., Bollerslev, T., Mikkelsen, H. O., 1996. Fractionally integrated generalized 

autoregressive conditional heteroskedasticity, Journal of Econometrics, vol. 74(1), 3–30 

Baillie, R. T.,  1996. Long memory process and fractional integration in econometrics, Journal 

of Econometrics, vol. 73(1), 5–59 

Black, F., and Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of 

Political Economy, vol. 81(3), 637-654 

Cheung, Y.W. 1993. Tests for fractional integration: a Monte Carlo investigation. Journal of 

Time Series Analysis, vol. 14, 331–345. 

Choi, J. and Richardson, M. 2016. The volatility of a firm’s assets and the leverage effect, 

Journal of Financial Economics, vol. 121(2), 254–277 

Diebold, F. and G. Rudebusch. 1991. On the power of Dickey-Fuller tests against fractional 

alternatives. Economics Letters, vol. 35, 155-160; 

Diebold, F.X., and Mariano, R.S. 1995. Comparing predictive accuracy, Journal of Business 

and Economic Statistics, vol. 13, 253-263 

Dumas, B., Fleming, J., and Whaley, R.E. 1998. Implied volatility functions: empirical tests. 

Journal of Finance, vol. 53, 2059-2016 

Engle, R.F., and Siriwardane, E.N., 2018, Structural GARCH: The volatility-leverage 

connection, The Review of Financial Studies, vol. 31(2), 449–492 

Forte, S. 2011. Calibrating structural models: a new methodology based on stock and credit 

default swap data, Quantitative Finance, vol. 11, no. 12, 1745–59 

Forte, S., and Lovreta, L., 2012. Endogenizing exogenous default barrier models: the MM 

algorithm. Journal of Banking and Finance, vol. 36, 1639-1652 

Forte, S., and Lovreta, L., 2019. Volatility discovery: can the CDS market beat the equity 

options market? Finance Research Letters, vol. 28, 107-111. 

Forte, S., and Lovreta, L., 2020. Credit Default Swaps, leverage effect, and the cross-sectional 

predictability of equity and firm asset volatility, Working paper 

Geweke, J. and Porter-Hudak, S. 1983. The estimation and application of long memory time 

series models. Journal of Time Series Analysis, vol. 4, 221–238 

Gil-Alana, L.A., Robinson, P.M., 1997. Testing of unit roots and other nonstationary hypotheses 

in macroeconomic time series. Journal of Econometrics, vol. 80, 241–268. 

Gil-Alana, L.A. 2006. Fractional integration in daily stock market indexes. Review of Financial 

Economics, vol. 15, 28–48 



187 
 

Gil-Alana, L.A. 2008. Fractional integration and structural breaks at unknown periods of time. 

Journal of Time Series Analysis, vol. 29(1), 163-185. 

Gil-Alana, L.A., and Hualde, J. 2009. Fractional integration and cointegration: an overview and 

an empirical application. Palgrave Handbook of Applied Econometrics, Part III 2, 1190–

1219. 

Glover, B. 2016. The expected cost of default. Journal of Financial Economics, vol. 119, 284-  

  299 

Granger, C., Joyeux, R. 1980. An introduction to long memory time series models and 

fractional differencing. Journal of Time Series Analysis, vol. 1, 15–39 

Gonçalves, S., and Guidolin, M. 2006. Predictable dynamics in the S&P 500 index options 

implied volatility surface. Journal of Business, vol. 79, 1591-1635 

González-Pla, F. and Lovreta, L. 2019. Persistence in firm’s asset and equity volatility, Physica 

A: Statistical Mechanics and its Applications, vol. 535, 122265 

González-Pla, F. and Lovreta, L. 2020. Modeling and forecasting firm-specific volatility: the 

role of asymmetry and long-memory, Working Paper 

Guo, D., 2000. Dynamic volatility trading strategies in the currency option market. Review of 

Derivatives Research, vol. 4, 133-154. 

Harvey, C.R., and Whaley, R.E. 1992. Market volatility prediction and the efficiency of the 

S&P 100 Index option market. Journal of Financial Economics, vol. 31, 43-73 

Harvey, D., Leybourne, S., and Newbold, P. 1997. Testing the equality of prediction mean 

squared error, International Journal of Forecasting, vol. 13, 281–291 

Hosking, J.R.M., 1981. Fractional differencing. Biometrika, vol. 68, 165–176 

Jacobsen, B., 1996. Long-term dependence in stock returns. Journal of Empirical Finance, vol. 

3, 393–417 

Kasman, A., Kasman, S., and Torun, E. 2009. Dual long memory property in returns and 

volatility: Evidence from the CEE countries' stock markets. Emerging Markets Review, 

vol, 10(2), 122–139 

Konstantinidi, E., Skiadopoulos, G., and Tzagkaraki, E., 2008. Can the evolution of implied 

volatility be forecasted? Evidence from European and US implied volatility indices. 

Journal of Banking and Finance, vol. 32(11), 2401-2411 

Leland, H.E. and Toft, K.B. 1996. Optimal capital structure, endogenous bankruptcy, and the 

term structure of credit spreads. The Journal of Finance, vol. 51(3), 987-1019 

Lo, A.W. 1991. Long-term memory in stock market prices. Econometrica, vol. 59, 1279–1313 



188 
 

Lovreta, L., and Silaghi, L., 2020. The surface of implied firm’s asset volatility. Journal of 

Banking and Finance, vol. 112, 105253 

Merton R.C. 1974. On the pricing of corporate debt: the risk structure of interest rates. Journal 

of Finance, vol. 29(2), 449-470 

Nelson, D. B. 1991. Conditional heteroskedasticity in asset returns: a new approach, 

Econometrica, vol. 59(2): 347–70 

Olbermann, B.P., Lopes, S.R.C. and Reisen, V.A. 2006. Invariance of the first difference in 

ARFIMA models. Computational Statistics, vol. 21, 445–461  

Robinson, P. 1995. Log periodogram regression of time series with long range dependence. 

Annals of Statistics, vol. 23, 1048–1072 

Schwert, G.W. 1989. Tests for unit roots: a Monte Carlo investigation. Journal of Business and 

Economic Statistics, vol. 7 (2), 147–159 

Shimotsu, K. and Phillips, P.C.B. 2005. Exact local Whittle estimation of fractional integration. 

Annals of Statistics, vol. 33, 1890–1933  



189 
 

Appendix  

Appendix A. Table A1. Firm's specific CDS spreads and LT parameter estimates 

 

 

 

 

 

  

No Company CDS
Asset 

Value
 β

Long-term 

volatility

CDS Implied 

volatility
delta leverage

1 AB Volvo 123.82 345,701.49    0.8379 0.1076 0.1370 0.0234 0.6479

2 BMW AG 75.16 115,658.31    0.8915 0.0739 0.0974 0.0101 0.7187

3 Michelin SCA 98.88 21,164.04       0.8175 0.1458 0.1862 0.0209 0.5121

4 Continental AG 216.52 31,475.52       0.8128 0.1568 0.2254 0.0203 0.4646

5 Daimler AG 90.64 172,653.77    0.8744 0.0873 0.1092 0.0139 0.7126

6 Peugeot SA 246.79 54,609.82       0.9115 0.0577 0.0671 0.0110 0.8571

7 Renault SA 173.95 65,144.18       0.8780 0.0875 0.1096 0.0129 0.7396

8 Valeo SA 138.97 9,934.51         0.8419 0.1218 0.1543 0.0179 0.5854

9 Deutsche Lufthansa AG 132.21 24,543.63       0.8967 0.0748 0.0952 0.0186 0.7551

10 Kingfisher PLC 110.19 9,864.03         0.7655 0.1621 0.2613 0.0250 0.3829

11 Koninklijke Philips NV 57.17 37,799.57       0.7984 0.1644 0.2306 0.0185 0.3847

12 LVMH SE 53.39 70,604.28       0.7539 0.1890 0.2929 0.0170 0.2876

13 Marks & Spencer Group PLC 139.31 11,274.80       0.7680 0.1737 0.2571 0.0352 0.4034

14 Kering SA 127.20 27,022.31       0.8226 0.1383 0.2125 0.0236 0.4725

15 Sodexo SA 55.47 16,122.72       0.8490 0.1175 0.1717 0.0201 0.4859

16 BAT PLC 54.85 62,881.64       0.8037 0.1472 0.2742 0.0373 0.2702

17 Carrefour SA 71.56 57,373.42       0.8685 0.0998 0.1300 0.0160 0.6125

18 Casino Guichard SA 133.76 26,232.03       0.9304 0.0675 0.0888 0.0296 0.7338

19 Diageo PLC 50.46 44,810.47       0.8290 0.1375 0.2668 0.0323 0.2744

20 Danone SA 48.69 44,085.86       0.8125 0.1472 0.2448 0.0196 0.3434

21 Henkel & Co KGaA AG 43.90 19,715.08       0.8429 0.1199 0.1807 0.0241 0.4225

22 Imperial Tobacco Group PLC 95.40 36,358.35       0.8252 0.1290 0.2068 0.0334 0.4621

23 J Sainsbury PLC 114.61 12,808.58       0.8132 0.1293 0.1806 0.0293 0.5497

24 Tesco PLC 87.91 49,327.05       0.8140 0.1319 0.1991 0.0219 0.4873

25 Unilever NV 30.67 70,653.33       0.8219 0.1218 0.1817 0.0433 0.4005

26 BP PLC 60.12 183,065.75    0.7975 0.1284 0.1780 0.0243 0.4909

27 E.ON SE 59.81 129,436.75    0.8796 0.0920 0.1016 0.0260 0.6658

28 EDP Energias de Portugal SA 185.17 35,264.97       0.9319 0.0711 0.0905 0.0385 0.7205

29 Iberdrola SA 105.00 74,123.48       0.8657 0.1173 0.1482 0.0270 0.5925

30 Repsol SA 144.22 50,133.90       0.8498 0.1248 0.1782 0.0333 0.5360

31 RWE AG 64.04 95,785.10       0.9116 0.0684 0.0670 0.0296 0.7535

32 Akzo Nobel NV 65.08 19,999.85       0.8135 0.1506 0.2049 0.0301 0.4286

33 Anglo American PLC 172.28 41,439.86       0.6787 0.2637 0.2973 0.0251 0.3908

34 BAE Systems PLC 79.77 26,968.93       0.8230 0.1144 0.1569 0.0271 0.5563

35 Bayer AG 50.17 81,393.15       0.8237 0.1469 0.1991 0.0268 0.4031

36 Saint Gobain SA 105.23 43,246.14       0.8394 0.1300 0.1592 0.0256 0.5727

37 Investor AB 64.09 117,686.77    0.7945 0.1631 0.2337 0.0475 0.3501

38 Linde AG 47.57 31,999.70       0.8592 0.1195 0.1632 0.0246 0.4719

39 Rolls-Royce Holdings PLC 67.14 21,870.66       0.7987 0.1407 0.1915 0.0055 0.5042

40 Siemens AG 50.40 131,670.35    0.8145 0.1378 0.1831 0.0181 0.4829

41 Stora Enso OYJ 219.25 12,376.26       0.8464 0.1222 0.1675 0.0367 0.5999

42 UPM Kymmene OYJ 192.74 13,555.55       0.8126 0.1467 0.2164 0.0377 0.4937

43 BT Group PLC 82.68 43,841.32       0.8449 0.1193 0.1523 0.0368 0.5276

44 Deutsche Telekom AG 66.98 131,629.95    0.9147 0.0872 0.1124 0.0409 0.5948

45 Orange SA 69.10 102,741.09    0.9020 0.0951 0.1147 0.0445 0.5895

46 Hellenic Telecommunications Organization SA389.97 11,747.57       0.8301 0.1574 0.2188 0.0285 0.5435

47 Koninklijke KPN NV 83.50 31,677.04       0.8752 0.1207 0.1556 0.0427 0.5148

48 Pearson PLC 61.20 11,396.80       0.7892 0.1463 0.2334 0.0347 0.3685

49 STMicroelectronics NV 80.77 10,930.29       0.6949 0.2377 0.3193 0.0218 0.2795

50 Telefonica SA 125.09 140,855.90    0.8901 0.1022 0.1589 0.0435 0.5356

51 Wolters Kluwer NV 59.38 10,132.34       0.8567 0.1195 0.1835 0.0242 0.4528

52 WPP PLC 93.48 25,022.13       0.8509 0.0943 0.1438 0.0179 0.5852
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Appendix B. Table B.1. BIC in ARFIMA(p,d,q) estimates with       

comp (0,d,0) (0,d,1) (1,d,0) (1,d,1) (0,d,2) (2,d,0) (0,d,3) (3,d,0) (1,d,2) (2,d,1) 

1 -9,84347 -9,84126 -9,84128 -9,83908 -9,83985 -9,83981 -9,83808 -9,83799 -9,83778 -9,83775 

2 -10,50850 -10,50700 -10,50720 -10,50790 -10,50650 -10,50680 -10,50520 -10,50540 -10,50620 -10,50610 

3 -9,42827 -9,42588 -9,42588 -9,42348 -9,42363 -9,42363 -9,42130 -9,42130 -9,42121 -9,42454 

4 -8,51625 -8,51681 -8,51706 -8,52309 -8,51479 -8,51504 -8,51357 -8,51410 -8,52157 -8,52180 

5 -10,17270 -10,17050 -10,17060 -10,17130 -10,17010 -10,17050 -10,16860 -10,16880 -10,17030 -10,17020 

6 -10,87460 -10,87250 -10,87250 -10,87050 -10,87100 -10,87120 -10,86880 -10,86880 -10,86870 -10,86880 

7 -10,13670 -10,13430 -10,13430 -10,13190 -10,13200 -10,13200 -10,13050 -10,13060 -10,13230 -10,12950 

8 -9,66642 -9,66480 -9,66484 -9,66263 -9,66259 -9,66262 -9,66048 -9,66034 -9,66007 -9,66024 

9 -10,40890 -10,40700 -10,40700 -10,40640 -10,40500 -10,40500 -10,40260 -10,40260 -10,40400 -10,40400 

10 -9,01522 -9,01283 -9,01283 -9,01042 -9,01066 -9,01065 -9,00876 -9,00876 -9,00803 -9,00803 

11 -9,39956 -9,39818 -9,39808 -9,39598 -9,39625 -9,39647 -9,39451 -9,39439 -9,39408 -9,39419 

12 -9,27483 -9,27263 -9,27263 -9,27026 -9,27015 -9,27026 -9,26788 -9,26787 -9,26799 -9,26799 

13 -8,55720 -8,56364 -8,56556 -8,56553 -8,56284 -8,56492 -8,56508 -8,56407 -8,56322 -8,56319 

14 -9,37013 -9,36871 -9,36871 -9,36732 -9,36632 -9,36631 -9,36514 -9,36559 -9,36676 -9,36659 

15 -10,02110 -10,01890 -10,01890 -10,01650 -10,01660 -10,01660 -10,01470 -10,01490 -10,01430 -10,01430 

16 -9,38687 -9,38557 -9,38550 -9,38333 -9,38342 -9,38345 -9,38128 -9,38131 -9,38146 -9,38151 

17 -10,18430 -10,18200 -10,18200 -10,17950 -10,18000 -10,18000 -10,17850 -10,17860 -10,17790 -10,17790 

18 -10,55580 -10,55510 -10,55510 -10,55270 -10,55280 -10,55270 -10,55040 -10,55260 -10,55050 -10,55050 

19 -9,52448 -9,52268 -9,52269 -9,52352 -9,52030 -9,52030 -9,51795 -9,51791 -9,51859 -9,51913 

20 -9,47565 -9,47326 -9,47326 -9,47223 -9,47372 -9,47362 -9,47136 -9,47141 -9,47136 -9,47141 

21 -9,96387 -9,96186 -9,96185 -9,95948 -9,95951 -9,95956 -9,95826 -9,95826 -9,95734 -9,95734 

22 -9,40014 -9,39828 -9,39833 -9,39636 -9,39634 -9,39635 -9,39435 -9,39428 -9,39409 -9,39407 

23 -8,58431 -8,58363 -8,58376 -8,58144 -8,58175 -8,58153 -8,57888 -8,58016 -8,58027 -8,57934 

24 -9,60574 -9,60342 -9,60342 -9,60098 -9,60124 -9,60122 -9,59942 -9,59938 -9,59960 -9,60009 

25 -10,05300 -10,05130 -10,05120 -10,05040 -10,05130 -10,05120 -10,04900 -10,04950 -10,04890 -10,04910 

26 -9,28821 -9,28759 -9,28723 -9,28737 -9,28822 -9,28750 -9,28605 -9,28861 -9,29139 -9,29082 

27 -10,25820 -10,25580 -10,25580 -10,25380 -10,25430 -10,25440 -10,25220 -10,25280 -10,25190 -10,25210 

28 -10,06950 -10,07120 -10,07200 -10,07020 -10,07140 -10,07060 -10,06990 -10,06980 -10,07010 -10,06970 

29 -9,70918 -9,70679 -9,70679 -9,70439 -9,70456 -9,70456 -9,70349 -9,70358 -9,70466 -9,70450 

30 -9,11638 -9,11425 -9,11426 -9,11190 -9,11187 -9,11187 -9,10947 -9,10947 -9,10947 -9,10947 

31 -10,83040 -10,82810 -10,82810 -10,82560 -10,82640 -10,82640 -10,82590 -10,82580 -10,82460 -10,82500 

32 -9,53379 -9,53239 -9,53263 -9,53105 -9,52999 -9,53266 -9,53148 -9,53196 -9,53236 -9,53221 

33 -8,07332 -8,07103 -8,07105 -8,07110 -8,07070 -8,07111 -8,06938 -8,06935 -8,06928 -8,06924 

34 -9,86209 -9,86269 -9,86284 -9,86046 -9,86061 -9,86047 -9,85956 -9,85933 -9,85928 -9,85902 

35 -9,61142 -9,61033 -9,61039 -9,60811 -9,60808 -9,60808 -9,60586 -9,60575 -9,60837 -9,60612 

36 -9,40401 -9,40191 -9,40197 -9,40161 -9,40128 -9,40152 -9,39934 -9,39948 -9,39976 -9,39977 

37 -9,14453 -9,14467 -9,14470 -9,14230 -9,14230 -9,14230 -9,14002 -9,13993 -9,13990 -9,14073 

38 -9,89619 -9,89522 -9,89541 -9,89348 -9,89373 -9,89379 -9,89133 -9,89140 -9,89174 -9,89179 

39 -9,32846 -9,32611 -9,32613 -9,32610 -9,32627 -9,32609 -9,32408 -9,32427 -9,32559 -9,32568 

40 -9,64923 -9,64729 -9,64725 -9,64496 -9,64518 -9,64542 -9,64483 -9,64500 -9,64318 -9,64344 

41 -9,22707 -9,22503 -9,22508 -9,22381 -9,22380 -9,22380 -9,22140 -9,22141 -9,22139 -9,22141 

42 -8,90976 -8,90779 -8,90775 -8,90555 -8,90588 -8,90592 -8,90378 -8,90390 -8,90359 -8,90366 

43 -9,88446 -9,88215 -9,88214 -9,88101 -9,88122 -9,88127 -9,87893 -9,87894 -9,87893 -9,87894 

44 -10,34810 -10,34580 -10,34580 -10,34370 -10,34340 -10,34340 -10,34170 -10,34170 -10,34100 -10,34130 

45 -10,31190 -10,31080 -10,31080 -10,30840 -10,30840 -10,30840 -10,30600 -10,30600 -10,30600 -10,30760 

46 -7,31183 -7,31061 -7,31153 -7,33074 -7,31654 -7,32934 -7,30591 -7,32982 -7,32922 -7,32904 

47 -9,67613 -9,67384 -9,67385 -9,67136 -9,67171 -9,67173 -9,66953 -9,66956 -9,66987 -9,66987 

48 -9,50674 -9,50435 -9,50435 -9,50195 -9,50271 -9,50280 -9,50072 -9,50071 -9,50143 -9,50058 

49 -8,65526 -8,65305 -8,65306 -8,65111 -8,65086 -8,65084 -8,64844 -8,64875 -8,64933 -8,64922 

50 -9,73561 -9,73396 -9,73409 -9,73298 -9,73315 -9,73320 -9,73078 -9,73086 -9,73163 -9,73091 

51 -9,85530 -9,85290 -9,85290 -9,85050 -9,85059 -9,85060 -9,84814 -9,84875 -9,84888 -9,84887 

52 -10,07220 -10,06990 -10,06990 -10,06930 -10,06750 -10,06760 -10,06540 -10,06540 -10,06780 -10,06790 

 

This table reports the Schwarz or Bayesian Information Criterion (BIC) for different ARFIMA(p,d,q) models with 

      by firm level.
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Appendix B. Table B.2. BIC in ARFIMA(p,d,q) estimates with       and       

comp (0,d,4) (3,d,1) (1,d,3) (2,d,2) (4,d,0) (0,d,5) (5,d,0) (4,d,1) (3,d,2) (2,d,3) (1,d,4) 

1 -9,83567 -9,83576 -9,83584 -9,83804 -9,83586 -9,83355 -9,83346 -9,83346 -9,83565 -9,83565 -9,83355 

2 -10,50560 -10,50390 -10,50400 -10,50410 -10,50530 -10,50350 -10,50300 -10,50290 -10,50310 -10,50140 -10,50150 

3 -9,41891 -9,41890 -9,41885 -9,42209 -9,41890 -9,41668 -9,41672 -9,41651 -9,42535 -9,42535 -9,41651 

4 -8,51271 -8,51999 -8,52120 -8,51839 -8,51994 -8,51030 -8,52136 -8,51754 -8,51885 -8,51978 -8,52177 

5 -10,16620 -10,16790 -10,16810 -10,16770 -10,17040 -10,16920 -10,16810 -10,16800 -10,16550 -10,16550 -10,16910 

6 -10,86700 -10,86660 -10,86650 -10,86670 -10,86700 -10,86480 -10,86470 -10,86620 -10,86600 -10,86590 -10,86610 

7 -10,12930 -10,13100 -10,13110 -10,13010 -10,12950 -10,12760 -10,12800 -10,12880 -10,13020 -10,12790 -10,12900 

8 -9,65897 -9,65859 -9,65871 -9,65810 -9,65890 -9,65668 -9,65667 -9,65666 -9,65818 -9,65744 -9,65667 

9 -10,40050 -10,40020 -10,40050 -10,40170 -10,40050 -10,39980 -10,40010 -10,40000 -10,39940 -10,39940 -10,40010 

10 -9,00637 -9,00639 -9,00565 -9,00593 -9,00638 -9,00410 -9,00409 -9,00705 -9,00705 -9,00701 -9,00556 

11 -9,39272 -9,39279 -9,39141 -9,39441 -9,39276 -9,39046 -9,39046 -9,39054 -9,39095 -9,39096 -9,39061 

12 -9,26548 -9,26553 -9,26553 -9,26555 -9,26608 -9,26452 -9,26420 -9,26372 -9,26308 -9,26561 -9,26316 

13 -8,56278 -8,56267 -8,56093 -8,56251 -8,56250 -8,56045 -8,56036 -8,56025 -8,56626 -8,56304 -8,56030 

14 -9,36355 -9,36439 -9,36445 -9,36449 -9,36395 -9,36119 -9,36156 -9,36149 -9,36251 -9,36205 -9,36222 

15 -10,01420 -10,01410 -10,01400 -10,01350 -10,01430 -10,01250 -10,01270 -10,01230 -10,01520 -10,01510 -10,01220 

16 -9,37963 -9,37923 -9,37909 -9,37860 -9,37984 -9,37719 -9,37745 -9,37745 -9,37821 -9,37627 -9,37724 

17 -10,17680 -10,17660 -10,17660 -10,17980 -10,17680 -10,17440 -10,17440 -10,17440 -10,17710 -10,17630 -10,17440 

18 -10,55060 -10,55020 -10,55040 -10,55760 -10,55030 -10,54990 -10,55030 -10,55180 -10,54900 -10,54980 -10,55340 

19 -9,51979 -9,51901 -9,51895 -9,51550 -9,51977 -9,51755 -9,51738 -9,51738 -9,51555 -9,51751 -9,51772 

20 -9,46902 -9,46902 -9,46895 -9,46987 -9,46903 -9,46674 -9,46665 -9,46664 -9,46662 -9,46750 -9,46722 

21 -9,95586 -9,95603 -9,95606 -9,95563 -9,95609 -9,95373 -9,95372 -9,95412 -9,95369 -9,95370 -9,95373 

22 -9,39215 -9,39195 -9,39201 -9,39249 -9,39217 -9,39032 -9,39026 -9,38989 -9,39664 -9,39642 -9,38989 

23 -8,57800 -8,57779 -8,57778 -8,57942 -8,57793 -8,57839 -8,57909 -8,57688 -8,57704 -8,57704 -8,57684 

24 -9,59723 -9,59716 -9,59718 -9,59867 -9,59720 -9,59486 -9,59485 -9,59482 -9,59488 -9,59479 -9,59484 

25 -10,04800 -10,04830 -10,04790 -10,04760 -10,04780 -10,04560 -10,04550 -10,04550 -10,04600 -10,04510 -10,04610 

26 -9,28798 -9,28622 -9,28745 -9,29743 -9,28622 -9,28806 -9,29130 -9,29155 -9,30424 -9,30535 -9,29064 

27 -10,25670 -10,25270 -10,25200 -10,26140 -10,25690 -10,25440 -10,25470 -10,25460 -10,25620 -10,25550 -10,25440 

28 -10,06770 -10,06770 -10,06780 -10,06780 -10,06780 -10,06530 -10,06540 -10,06530 -10,06680 -10,06640 -10,06530 

29 -9,70307 -9,70327 -9,70347 -9,70405 -9,70301 -9,70221 -9,70221 -9,70148 -9,70176 -9,70176 -9,70159 

30 -9,10704 -9,10708 -9,10708 -9,10834 -9,10759 -9,10588 -9,10601 -9,10581 -9,10572 -9,10571 -9,10577 

31 -10,82400 -10,82560 -10,82560 -10,82270 -10,82380 -10,82260 -10,82310 -10,82340 -10,82350 -10,82350 -10,82350 

32 -9,53044 -9,52997 -9,53015 -9,53048 -9,53020 -9,52831 -9,52781 -9,52781 -9,52813 -9,52813 -9,52817 

33 -8,06716 -8,06696 -8,06706 -8,06700 -8,06696 -8,06536 -8,06529 -8,06947 -8,06511 -8,06480 -8,07023 

34 -9,85791 -9,85740 -9,85754 -9,85762 -9,85798 -9,85593 -9,85635 -9,85997 -9,85523 -9,85903 -9,86006 

35 -9,60718 -9,60393 -9,60598 -9,60569 -9,60671 -9,60505 -9,60500 -9,60468 -9,60717 -9,60563 -9,60493 

36 -9,39852 -9,39781 -9,39756 -9,39782 -9,39807 -9,39750 -9,39694 -9,39628 -9,39544 -9,39544 -9,39536 

37 -9,13870 -9,13771 -9,13750 -9,13867 -9,13924 -9,13694 -9,13729 -9,13699 -9,13754 -9,13691 -9,13611 

38 -9,88972 -9,88954 -9,88910 -9,88996 -9,88976 -9,88785 -9,88772 -9,88762 -9,88762 -9,88762 -9,88769 

39 -9,32171 -9,32335 -9,32331 -9,32336 -9,32192 -9,32049 -9,32059 -9,32101 -9,32089 -9,32092 -9,32119 

40 -9,64332 -9,64321 -9,64294 -9,64309 -9,64354 -9,64168 -9,64182 -9,64307 -9,64097 -9,64051 -9,64278 

41 -9,21901 -9,21928 -9,21937 -9,21908 -9,21907 -9,21660 -9,21853 -9,21711 -9,22449 -9,21818 -9,21711 

42 -8,90161 -8,90157 -8,90146 -8,90547 -8,90170 -8,89973 -8,89995 -8,90009 -8,90363 -8,90085 -8,89943 

43 -9,87656 -9,87654 -9,87646 -9,87650 -9,87656 -9,87415 -9,87434 -9,87416 -9,87415 -9,87413 -9,87543 

44 -10,34050 -10,33970 -10,33980 -10,34440 -10,34020 -10,33660 -10,33780 -10,33780 -10,33640 -10,33630 -10,33810 

45 -10,30370 -10,30360 -10,30520 -10,30520 -10,30360 -10,30490 -10,30460 -10,30320 -10,30420 -10,30280 -10,30290 

46 -7,32309 -7,33125 -7,32752 -7,32595 -7,32846 -7,32551 -7,32657 -7,32895 -7,32896 -7,32875 -7,32570 

47 -9,66767 -9,66753 -9,66754 -9,66745 -9,66766 -9,66534 -9,66535 -9,66531 -9,66509 -9,66509 -9,66537 

48 -9,49848 -9,50074 -9,50080 -9,50083 -9,49849 -9,49581 -9,49667 -9,49846 -9,49845 -9,49845 -9,49846 

49 -8,64777 -8,64718 -8,64734 -8,65068 -8,64778 -8,64543 -8,64539 -8,64549 -8,64828 -8,64828 -8,64502 

50 -9,72850 -9,72854 -9,72837 -9,72855 -9,72850 -9,72713 -9,72687 -9,72621 -9,72616 -9,72616 -9,72628 

51 -9,84705 -9,84684 -9,84572 -9,85363 -9,84706 -9,84533 -9,84487 -9,84474 -9,85124 -9,85124 -9,84501 

52 -10,06400 -10,06560 -10,06550 -10,06580 -10,06420 -10,06330 -10,06320 -10,06240 -10,06310 -10,06310 -10,06260 

 
This table reports the Schwarz or Bayesian Information Criterion (BIC) for different ARFIMA(p,d,q) models with 

      and       by firm level.  
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Future Work 

This thesis provides a better understanding of firm’s asset volatility with relevant 

contributions in long memory properties, asymmetry and its modeling and forecasting. 

However, it is important to mention that in our analysis we use a sample of non-

financial companies which belong to iTraxx Europe Index that includes the most liquid 

CDS referencing European investment-grade companies. Further research could analyze 

firm’s asset volatility considering high-yield companies, or mid or small capitalization 

companies. Another possible line of research could be the analysis of financial 

institutions as a high leveraged companies and its temporary response in presence of 

structural breaks. In our results we observed that the differences in persistence between 

firm’s asset and equity volatility are negatively correlated with idiosyncratic volatility, 

and would be interesting to perform similar analysis in other markets and geographical 

areas. In addition to that, another future line of research is to incorporate fractionally 

integrated models of asset volatility directly in a structural credit risk model setting. 

Finally, from the practical point of view, as our results are showing, the possibility to 

predict CDS implied volatility inherently implies the prediction of the future 

development of CDS spreads. Consequently, a possibility to predict the CDS spread 

development would allow adopting appropriate trading positions to achieve abnormal 

returns. The future line of research could analyze different trading strategies over 

different time horizons. 
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