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Resumen

En los sistemas actuales son necesarios nuevos enfoques para generar modelos de rendimiento

debido a la heterogeneidad. Una alternativa a los modelos anaĺıticos tradicionales podŕıa ser el

uso de algoritmos de aprendizaje automático, ayudando a la creación automática de modelos de

rendimiento para predecir la configuración correcta para diferentes parámetros de la aplicación.

Para poder crear modelos de rendimiento, las métricas se utilizan como entradas para cal-

cular o seleccionar los valores adecuados para uno o varios parámetros que pueden afectar al

rendimiento. La correcta selección de las métricas es importante debido a que la información

puede ser redundante o insuficiente. Además, se deben tener en cuenta múltiples escenarios

a la hora de generar modelos, como diferentes tamaños de problema, para obtener el compor-

tamiento en diferentes condiciones, lo que permite generalizar las relaciones entre métricas y

evitar relaciones adaptadas a un solo escenario.

En esta tesis abordamos los dos problemas previamente explicados para aplicaciones multihilo

utilizando OpenMP con el desarrollo de dos metodoloǵıas.

En primer lugar, se desarrolla una metodoloǵıa para encontrar el conjunto adecuado de

métricas con el fin de caracterizar el comportamiento de una región paralela. Mediante el uso

de esta metodoloǵıa se reduce el número de métricas necesarias para caracterizar correctamente

una aplicación o una región paralela, disminuyendo la sobrecarga al medir todas las métricas

necesarias. Hemos decidido utilizar contadores hardware de rendimiento como métricas para

caracterizar la ejecución de regiones paralelas OpenMP. Utilizando esta metodoloǵıa, el número

necesario de contadores hardware se redujo a menos de la mitad de la lista de uso general de

contadores disponibles, evitando al mismo tiempo la pérdida de información.

La segunda metodoloǵıa se desarrolla para construir un conjunto representativo y equilibrado

de patrones disponibles en aplicaciones paralelas. Dado un conjunto de regiones paralelas candi-

datas que se incluirán en un conjunto para el ajuste del rendimiento, cada candidato se compara

con los patrones ya incluidos en el conjunto para determinar si cubren, o no, una región diferente

del espacio de búsqueda. Esta comparación se basa en el análisis de correlación de las métricas

medidas para el candidato. Por ejemplo, en uno de los sistemas probados, se generó un conjunto

con solo 8 patrones de 33 candidatos extráıdos de los benchmarks STREAM y PolyBench.

El conjunto generado se desequilibra cuando se utiliza para ajustar el rendimiento porque en

un sistema los valores de algunos parámetros generalmente proporcionan un mejor rendimiento

que otros valores. En consecuencia, los algoritmos de aprendizaje automático pueden tener un

rendimiento inferior debido a casos subrepresentados. Por lo tanto, técnicas para contrarrestar

el desequilibrio natural son necesarias.

Se proporciona un estudio inicial para encontrar los algoritmos de aprendizaje automático

con una mejor precisión para ajustar el número de subprocesos. El estudio incluye: a) métodos

de datos para equilibrar el conjunto para el parámetro objetivo; b) métodos algoŕıtmicos para

modificar la forma en que se calcula el error; y c) métodos ensemble, combinación de múltiples

modelos en uno único, proporcionando una hipótesis general de cada modelo individual.

iv



Summary

New approaches are necessary to generate performance models in current systems due the het-

erogeneity found in new systems. An alternative to traditional analytical models could be the

use of machine learning algorithms, which may help to automatically create performance models

to predict the correct configuration for one or multiple application’s parameters.

To be able to build performance models, metrics are used as inputs to calculate or select the

proper values for one or multiple parameters which can impact performance. The selection of

the correct metrics is important as information can be redundant or insufficient. In addition,

multiple scenarios should be taken into consideration when generating models, such as different

problem sizes, to obtain the behaviour under different conditions, which allows to generalize the

relationships between metrics and avoid relationships tailored to only one scenario.

In this thesis we tackle the two previously explained problems for multi-thread applications

using OpenMP with the development of two methodologies.

First, a methodology to find the proper set of metrics for characterizing the behaviour

of a parallel code region is developed. Through the use of this methodology the number of

metrics necessary to correctly characterize an application or a code region is reduced, decreasing

the overhead when measuring all the necessary metrics. We have decided to use hardware

performance counters as metrics to characterize the execution of OpenMP parallel regions. Using

this methodology the number of hardware performance counters was reduced to less than half

the available general purpose list of available counters while avoiding loss of information.

The second methodology is developed to build a representative and balanced dataset of

patterns found in parallel applications. Given a set of candidate parallel regions to be included

in a dataset for performance tuning, each candidate is compared against the patterns already

included in the dataset to find whether they cover, or not, a different region of the search space.

This comparison is based in the correlation analysis of the metrics measured for the candidate.

For example, in one of the tested systems, a dataset was generated with only 8 patterns from

33 parallel kernels extracted from STREAM and PolyBench benchmarks.

The previously generated dataset becomes imbalanced when used for performance tuning

because in a system some parameters’ values generally provide better performance than other

values. Consequently, machine learning algorithms may under-perform due to underrepresented

cases and techniques to counter the natural imbalance are necessary.

An initial study is provided to find which machine learning algorithms provide better accu-

racy for tuning the number of threads. This study includes: a) data methods to balance the

dataset for the target parameter; b) algorithmic methods to modify how the error is calculated;

and c) ensemble methods, the combination of multiple models into a bigger one, providing a

general hypothesis from each individual model.
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Abstract

Nowadays, due to the increase of demand in computation power and the limitations in energy

consumption, systems used in high performance computing (HPC) are becoming more and

more complex. Newer computation nodes need more computational power, which is solved

with the use of additional resources, such as increasing the number of cores in a processor.

Additionally, accelerators such as GPUs are becoming popular, but their architecture is different

from traditional processors, increasing the system’s heterogeneity.

The efficient use of the available resources in a system is necessary to improve applications’

performance, making performance analysis and tuning an important topic in HPC. Due to the

increase in resources, and also heterogeneity found in systems, adequate analytical models for

performance improvement can be very difficult to generate. In addition, the difficulty is further

increased as multiple accelerators with different characteristics can be found in newer systems.

New approaches are necessary to generate performance models in current systems. An

alternative to traditional analytical models could be the use of machine learning algorithms,

which may help to automatically create performance models to predict the correct configuration

for one or multiple application’s parameters.

To be able to build performance models, metrics are used as inputs to calculate or select the

proper values for one or multiple parameters which can impact performance. The selection of the

correct metrics is important as information can be redundant or, in the worst case, insufficient

to correctly describe the relationship between metrics and performance parameters.

In addition, multiple scenarios should be taken into consideration when generating models,

such as different problem sizes, in order to obtain the behaviour of a system under different con-

ditions. With the use of multiple scenarios, the model should be able to generalize relationships

between metrics and avoid relationships tailored to only one scenario.

In this thesis we tackle the two previously explained problems for multi-thread applications

using OpenMP (de facto standard for multi-threaded applications), with the development of two

methodologies.

First, a methodology to find the proper set of metrics for characterizing the behaviour

of a parallel code region is developed. Through the use of this methodology the number of
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metrics necessary to correctly characterize an application or a code region is reduced, decreasing

the overhead when measuring all the necessary metrics. We have decided to use hardware

performance counters as metrics to characterize the execution of OpenMP parallel regions. Using

this methodology, the number of hardware performance counters was reduced to less than half

the available general purpose list of available counters while avoiding loss of information.

The second methodology is developed to build a representative and balanced dataset of

patterns found in parallel applications. Given a set of candidate parallel regions to be included

in a dataset for performance tuning, each candidate is compared against the patterns already

included in the dataset to find whether they cover, or not, a different region of the search space.

This comparison is based in the correlation analysis of the metrics measured for the candidate.

For example, in one of the tested systems, a dataset was generated with only 8 patterns from

33 parallel kernels extracted from STREAM and PolyBench benchmarks.

When the previously generated dataset is used for performance tuning, an imbalance problem

appears as the targets are now performance parameters instead of representative code regions.

This imbalance appears because in a system some parameters’ values generally provide better

performance than other values for most cases. Consequently, machine learning algorithms may

under-perform due to underrepresented cases, making the use of techniques to counter the

natural imbalance necessary.

An initial study is provided to find which machine learning algorithms provide better accu-

racy for tuning the number of threads. This study includes: a) data methods to balance the

dataset for the target parameter; b) algorithmic methods to modify how the error is calculated

when a prediction is incorrect, such as applying errors inversely proportional to the frequency

of each value of the tuning parameter; and c) ensemble methods, which are the combination of

multiple models into a bigger one, providing a general hypothesis from each individual model.

Summarizing, we have developed a method for deciding the minimum amount of hardware

performance counters necessary to characterize the execution of an OpenMP code region on a

given architecture, minimizing in this way the overhead for obtaining those metrics. Then, we

have also developed a methodology for creating balanced and representative dataset of code re-

gions executions, which is one of the basic requirements for successfully applying ML methods.

Finally, we have explored most of the available methods for automatically generating perfor-

mance models that are able to manage the natural imbalance appearing in performance tuning.

Keywords: performance analysis; performance analysis tool; performance tuning; perfor-

mance models; artificial intelligence; machine learning; performance dataset generation; gener-

ative adversarial networks; imbalanced dataset; random forest;
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Chapter 1

Introduction

This chapter introduces the problems we have tackled in this thesis focused on the field of per-

formance tuning of parallel applications. First, the motivation behind this work is discussed,

followed by the objectives we plan to accomplish in this thesis. Afterwards, the main con-

tributions brought about with the development of this thesis are explained and, finally, the

organization of this work is presented.

1.1 Motivation

Nowadays, due to the increase of demand in computational power because of the development

of more complex simulations or new problems to solve in different fields, more advanced systems

are developed in high performance computing (HPC) with more computational power to fill the

demand. Consequently, an endless cycle seems to be generated between the generation of more

complex applications and increases in computational power.

This increase in demand is satisfied with an increment on the resources in systems, such as

increasing the number of cores in a processor and the use of systems with multiple processors.

In this way, in 2005 Intel Xeon processors had 2 cores and 4 threads, and now, Intel Xeon

W-33754 has 38 cores with 76 threads. In the case of AMD’s EPYC 3, it offers some processors

with 64 cores and 128 threads. Additionally, due to energy consumption limitations, systems

are becoming heterogeneous with the use of technologies such as dynamic clock speed for each

core in a processor. Moreover, there are processors with hybrid architectures, as can be seen in

ARM processors, where there are cores for complex workloads with high clock speed and cores

for simpler tasks with lower clock speeds. Furthermore, there are new resources which can be

used alongside processors, they are known as accelerators, and have a different structure than

traditional processors, which further increases systems’ heterogeneity.

In order to help determine the sources of performance problems and their possible solutions,

modeling performance is important to find an abstract representation of the system [1]. This
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abstract representation takes different metrics available in the system as inputs, obtaining par-

allel code regions’ representations (signatures) characterizing the behaviour in different parts

constituting the system. Signatures are constituted by values, such as memory accesses at each

memory level, execution time, number of executed instructions, among others in a wide range

of possible events to measure.

Because of the additional hardware in new systems, there is also an increase in the metrics

available and the appropriate metrics should be selected. In modern systems, there is a high

number of metrics available, for example, with the use of PAPI [2], AMD’s EPYC 7551 reports

136 available metrics and multiple metrics mention more than 15 possible flags. This high

number of metrics generates a huge amount of relationships between the different metrics and

their potential impact in performance.

Additionally, multiple parallel programming paradigms are used in one application with the

objective of sharing work between multiple systems (multi-threading with memory sharing inside

the system and the use of messages to communicate between different nodes), generating new

performance problems to tackle. Consequently, metrics for each paradigm must be measured,

increasing the number of necessary metrics to accurately describe the behaviour of an applica-

tion. In the case of sharing work between multiple systems, the same metric may be measured in

each individual system and additional metrics which characterize communication and issues tied

to communication between all nodes must be collected. Therefore, finding the problems’ sources

is more difficult because there are now more elements which have to cooperate efficiently and

avoid wasting resources. Besides, there are more parameters which can be modified to improve

performance.

As a result of both the increase in resources and the use of multiple parallel programming

paradigms, performance tuning demands more complex models when analyzing performance,

which makes the creation of models by experts a very difficult task to accomplish. Therefore,

new approaches are necessary in order to facilitate the creation of performance models or for

their automatic generation [3][4][5][6].

Accordingly, an idea is to consider how currently the use of machine learning is growing.

Machine learning can be considered the state of the art for many problem where huge amounts

of data need to be analyzed. Therefore, the challenge of generating performance models may be

solved applying machine learning techniques.

The behaviour of a system could be modeled with machine learning algorithms. Then, the

generated model could be used to further help experts in the creation of future performance

models. Furthermore, the ML model could also automatically generate a performance model

which is able to provide predictions of the proper value, or an approximation, for tunable

parameters to improve performance in parallel applications.

However, there is a fundamental principle known as ”garbage in, garbage out” [7][8][9] when
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using datasets to build models with machine learning. This principle states that the generated

model can only be as good as the data used in its training. Therefore, the right data (a valid

dataset with the proper inputs) from which proper relations can be extracted and samples from

multiple scenarios must be correctly represented when building models with ML. As an example,

if a user wants to build a model to detect if there is a bottleneck in L3 cache: a) metrics related

to L3 should be included in the model; b) scenarios where bottleneck in L3 cache appear must

be included in conjunction to scenarios where they do not appear.

Therefore, in order to apply machine learning, first we need to define the inputs of the model

and secondly an adequate dataset is necessary when the model is trained. Consequently, there

are two main problems to address: 1) a big number of metrics can be measured in parallel

applications, how can the execution of an application be properly represented with

a limited number of metrics? 2) representative parallel regions (parallel patterns) executed

in different scenarios should be used to generate a dataset, how can a representative and

balanced dataset be built?

To simplify the problem, we have decided to limit the scope of our work to OpenMP multi-

threaded applications. For these applications, hardware performance counters can be used to

generate signatures and obtain a representation of the behaviour of parallel code regions, but

due to the high number of hardware performance counters available in a processor, a way to

either discriminate or simplify the number of metrics is needed to reduce the number of inputs a

model needs to analyze performance. Furthermore, when analyzing an application and applying

dynamic tuning, which makes changes in parameters at execution time, the list of metrics should

be as small as possible to reduce overhead but, at the same time, without losing important

information about the behaviour of the application, as both overhead or loss of information

could aggravate the difficulty of analyzing performance.

Additionally, multiple parallel regions should be considered in order to conveniently cover

the search space, but, at the same time, avoiding the over/under-representation of any region.

These regions are considered representative patterns. Furthermore, multiple scenarios should

be executed for the correct generation of a representative dataset with the selected inputs.

Otherwise, the model could infer relationships which may only appear under certain conditions.

In the case of OpenMP applications, the multiple scenarios could be constituted using multiple

combinations of parameters such as problem sizes, number of threads or thread affinities.

Finally, it can happen that even though the dataset is built correctly, it can become im-

balanced. In performance tuning, certain parameter values are predominant in a majority of

scenarios due to the system’s characteristic. As a consequence, the dataset can be naturally

imbalanced, so balancing techniques are necessary to generate appropriate models. Balancing

techniques can be applied directly into the dataset with either the removal or replication of

samples, or with techniques that generate synthetic samples. Some balancing techniques which

do not modify the dataset are algorithmic modifications in some machine learning algorithms
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and ensemble models.

Summarizing, machine learning seems to be a promising approach to automatically generate

performance models for complex systems without the intervention of performance experts. How-

ever, in order to generate accurate performance models with machine learning, it is necessary

to: 1) select the adequate set of features describing performance; 2) create representative and

balanced datasets; and 3) analyze which is the machine learning techniques that best adapt to

the problem characteristics.

1.2 Objectives

The main objective of this thesis is to research whether machine learning techniques can be used

to automatically generate performance models. The model generated without the intervention

of performance experts would be used for performance tuning of an application or code regions

inside an application.

First, we need to use metrics to characterize the behaviour of parallel code regions [10].

This characterization could be based on the signature of a parallel region, composed of different

hardware performance counters which describe the operations performed in a system. However,

there is the previously described ”garbage in, garbage out” problem; consequently, proper ap-

proaches to select input metrics and also for the selection of the different scenarios needed to

build datasets are necessary, so that relations between the inputs and the objective of the model

can be correctly identified. Then, a methodology to discriminate which signatures are necessary

to build a balanced and representative dataset of parallel regions is necessary. At the end, a

model with machine learning techniques such as artificial neural networks or decision trees, could

be built with the objective of either describing the behaviour of the code region’s signature or to

directly provide the parameters’ values which need modifications in an application to improve

performance.

To generate performance models with machine learning, there are some objectives which

need to be fulfilled.

First, it is necessary to select the metrics composing the signatures characterizing the be-

haviour of a code region. There is a wide range of available metrics in the system, each describing

the behaviour of a certain part of the system, but measuring all metrics generates overhead both

in time and memory which could be reduced if less metrics are accessed. The first objective is

to provide a methodology to reduce the number of metrics available in the system

while minimizing redundancy in the information provided by the metrics without

the loss of any useful information.

Secondly, machine learning methods need a proper set of data to be trained, as the generation

of a valid model is only possible if the data used for training is able to provide the necessary
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information. Thus, the second objective is to create a methodology to generate valid

datasets where code regions found in parallel applications are represented. Each code

region should cover a unique portion of the N-dimensional space represented by the measured

hardware performance counters. Moreover, the dataset should be balanced to avoid problems in

training due to over-represented classes, in this case, parallel code regions that are representative

of the behaviour of different code regions appearing in parallel applications.

Finally, the generated dataset should be used to train machine learning models which pro-

vides a configuration of tunable parameters, allowing to improve performance of parallel appli-

cations. Although the dataset has been generated in a balanced way, the dataset can appear

imbalanced when it is used for performance tuning. This problem appears because the best value

for a parameter that impacts performance cannot be known a priori, otherwise there wouldn’t be

the need to create performance models. In addition, a limited number of values for a parameter

are generally the best for most cases. Consequently, the third objective is the creation of

models with machine learning techniques for performance analysis and how to deal

with the natural imbalance which can appear in datasets for performance tuning.

A general overview of the objectives of this thesis to automatically generate performance

models can be seen in Figure 1.1:

• Design a methodology to generate signatures of parallel code regions which is able to detect

and discard metrics with redundant information.

• Generate a balanced and representative dataset of parallel code regions using signatures

generated by the previous methodology.

• Develop models with machine learning for performance analysis and tuning with a balanced

and representative dataset.
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Figure 1.1: General overview.
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1.3 Main contributions

The main contribution of this thesis is to achieve the objective presented in the previous section:

show that machine learning models can be used to automatically generate valid

performance models for performance tuning. Considering that the scope has been limited

to parallel applications using OpenMP to be able to advance our research in a reasonable time,

this thesis presents the following three main contributions:

• Signature reduction. The first contribution of this thesis is the creation of a method-

ology to find the proper set of metrics in a system. Redundant metrics are found using

a correlation analysis between pairs of metrics. High correlation values indicate the pos-

sibility of two metrics being redundant, suggesting a candidate to be discarded. This

methodology should be used with care as high correlation between two metrics does not

mean causation between them. Therefore, the relationship between both metrics should be

checked logically to verify whether the metrics are indeed redundant or not. For OpenMP

applications, hardware performance counters are used as metrics.

• How to build datasets for performance tuning. The second contribution is a

methodology to generate balanced and representative datasets for performance tuning.

This methodology generates a dataset, called pattern collection, where the signatures of

parallel code regions for multiple problem sizes are gathered to represent the behaviour

of a pattern in multiple memory levels of the hierarchy. Each pattern included in the

dataset should cover a unique portion of the space represented by the hardware perfor-

mance counters composing the signatures. A kernel is considered a pattern if its behaviour

is not found to be similar to any already included pattern in the collection. Similarity is

analyzed using correlation analysis with both Spearman and Kendall’s Tau.

• Dealing with naturally imbalanced datasets. After the selection of metrics and the

generation of the dataset, machine learning techniques must be applied to automatically

generate performance models. However, due to the natural distribution in the values of

performance parameters, the dataset may become imbalanced. Therefore, the third contri-

bution is to study which machine learning algorithms can generate adequate performance

models and which techniques can be applied to counter the imbalance found in the dataset.

1.4 Thesis Organization

This thesis is organized in the chapters described bellow.

Chapter 2: Related Work explains related works in the field of performance tuning and

additional approaches where machine learning is used to help in performance analysis and/or

tuning.

Afterwards, Chapter 3: Background presents methods and techniques used in this thesis
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to accomplish the objectives introduced previously.

Chapter 4: Signature Reduction deals with the problem of selecting the appropriate

metrics to obtain a representation of the behaviour of a parallel application or a parallel code

region. Because we limited the work to OpenMP, the characterization of the behaviour is done

with hardware performance counters. The developed methodology deals with the detection of

redundant metrics. Consequently, reducing the number of metrics needed when building the

signature of a parallel code region without information loss.

Next, Chapter 5: Building Datasets for Performance Tuning explains how to build a

balanced and representative dataset. This dataset is called pattern collection and is later used to

train machine learning models. The pattern collection contains the characterization of different

patterns executed under different conditions, such as number of threads and their affinity, and

problem size. The characterization is the signature of an execution built with the hardware

performance counters obtained after applying the methodology previously presented in Chapter

4.

Then, Chapter 6: Dealing with Naturally Imbalanced Datasets explains how to use

the pattern collection, which was created in Chapter 5, to generate performance models using

machine learning. In this chapter, the previously generated dataset became imbalanced due to

the nature of tuning parameters, which show a predilection towards some configuration values.

As a consequence, the dataset becomes imbalanced when it is used to find an ideal, or a possible

optimum, for the configuration of a parameter which needs to be modified in an application to

improve performance or to solve performance problems.

Finally, Chapter 7: Conclusions and Future Work summarizes the work done in this

thesis and the results obtained after the presented methodologies are applied. Moreover, some

open lines are explained with the objective of, in the future, improving both the methodologies

and performance models generated using the techniques explained in this thesis.
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Chapter 2

Related Work

This chapter explains the state of the art of performance modeling for parallel applications,

which we divided into three parts: analytical performance modeling, search based auto-tuning

and machine learning based approaches.

First, some approaches for analytical performance modeling are presented. Analytical models

are built with the help of experts to infer relationships between metrics and performance.

Then, the search based auto-tuning approach used in some frameworks is explained. Given an

application and a list of possible values for different parameters, modifications in the application

are performed applying a search algorithm to the n-dimensional space generated by combining all

the possible parameter values. The objective is to search an optimal configuration of parameters

which improve performance without exploring all the possible configurations.

Finally, some machine learning based approaches are presented. These approaches replace the

need of experts because the inference of relationships in heterogeneous systems is a very complex

task, generating the need of alternative methods to find performance issues. Machine learning

is used to aid in performance tuning or to build models which predict optimal parameters’

configurations.

Our work is similar to the machine learning based approaches. We want to use machine

learning to generate performance models to find ideal configurations for tunable parameters in

parallel code regions. However, the presented approaches skip important parts of the process,

such as the selection of metrics and dataset generation, which are critical when using machine

learning.

2.1 Analytical performance modeling

In this section different analytical performance models and analytical methodologies for perfor-

mance tuning are explained. Some of these models may be outdated as they do not take into
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account paradigms found in new systems which may generate heterogeneity.

2.1.1 Performance model for OpenMP memory bound multisocket

In [11] a performance model is presented to predict execution time and L3 cache misses. The

model is used for OpenMP memory bound applications in multisockets systems.

This model takes as metrics the total number of last level cache misses and execution time

in one processor. These metrics are obtained from 1 core to the maximum number of cores in a

single processor and are used to characterize memory concurrency.

Then, two factors describing concurrency as the number of cores in use increases are cal-

culated, one factor representing overheads in cache misses and another representing latency

overheads due to cache misses. These two factors are used to estimate L3 cache misses and

execution time for different thread affinities when more than one processor is used.

This model describes two cases depending on accesses to memory: a) an ideal case where

memory accesses are parallel; and b) a case where accesses are serialized.

In [12] the same authors presented a performance model for OpenMP memory bound appli-

cations based on memory footprint. The objective of this model is to estimate execution time

and performance degradation due to memory contention. This model has the assumption that

memory contention in the last cache level is the main cause of performance degradation and

that the system is homogeneous.

Trace generation is used with small workloads to extract the memory footprint for parallel

code regions. For each memory access the following metrics are extracted: the access type,

the virtual memory address, data size in bytes and number of non-memory instructions to the

previous memory access. Afterwards, the memory footprint for unknown workloads is estimated

using execution information such as hardware performance counters.

2.1.2 Dynamic workload balancing

In [13] a methodology for dynamic workload balancing of data-intensive applications for homo-

geneous clusters is presented. In some applications which explore the same data multiple times,

data can be partitioned so it can be accessed in parallel to increase performance.

The objective of this methodology is to determine a partition factor and dynamically establish

the order in which chunks of data are scheduled. Additionally, the number of processing nodes

can be dynamically adapted. This work uses efficiency, computational and communication time,

and memory usage as performance metrics.

The methodology is divided in three main steps:

• Data set partitioning. The characteristics of the nodes (such as RAM memory and cache

sizes) are used to establish different partitioning factors the data is divided with.
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• Load balancing scheduling policy. First, the application is executed with a high number

of workers and a big data set partition factor. Monitoring is used to find the execution

time associated to each data chunk and stored to have historical execution data. Then,

when historical data is available, data chunks are executed in descending order, from the

one with highest execution time to the one with the lowest.

• Adapting number of resources used. The efficient number of workers is calculated with an

index relating the estimated execution time and the efficient use of resources. Efficiency is

calculated as a relation between the mean computation time of each data chunk and the

availability time of a node.

2.1.3 Dynamic Pipeline Mapping

In [14], a methodology to dynamically improve performance in pipeline applications, called

Dynamic Pipeline Mapping (DPM), is presented. The objective of this method is to free com-

putational resources assigning consecutive fast stages to the same processor. Then, if possible,

slow stages are replicated to the freed resources with the objective of increasing throughput.

An algorithm is used to balance the load in pipeline applications and obtain a solution as

closest as possible to the optimal.

Additionally, two performance models are generated: a) a performance model to get an

approximated computational time for stages with high computational requirements, which, using

a Master/Worker scheme, are replicated into the freed processors to process data in parallel; b)

a performance model to measure execution time for stages with low computation requirements,

which are grouped and executed consecutively in the same processor.

In [15], DMP is extended to work in heterogeneous systems because the performance model

generated by DPM does not work well in heterogeneous systems. This new approach, called

Heterogeneous Dynamic Pipeline Mapping (HeDPM), includes the computational capacities in

different systems and communication costs.

HeDPM sorts pipeline stages by their computational load and communication requirements.

Then stages are matched to resources based on their capabilities.

2.1.4 Dynamic Tuning for the number of workers in Master/Worker appli-

cations

A methodology to tune the number of workers in Master/Worker applications is presented in

[16]. The objective of the model is finding an ideal number of threads to partition the workload

efficiently to avoid idle nodes or a saturation due to excessive communications. The methodology

only takes into consideration homogeneous Master/Worker applications, such applications are

composed of tasks which are similar in size and computational requirements.
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The performance model to calculate the number of workers uses MATE [17] to monitor the

application and apply the changes dynamically. A parameter defining the number of workers

is modified through MATE to tune the application. The metrics to monitor are the overhead

to send a message, communication time required per byte, task sizes, result sizes and execution

time per task. These metrics are then used to build different performance functions to find the

ideal number of workers.

2.1.5 Performance model for GPU architectures

An analytical model for GPU architectures is presented in [18] with the objective of predicting

execution time. The authors of this work consider that execution time in GPUs is dominated

by the cost of memory operations.

Execution time is calculated using two metrics defined by the authors: a) Memory Warp

Parallelism, representing an estimation of the maximum number of memory requests which can

be performed in parallel; and b) Computation Warp parallelism, representing the computation

which can be performed by warps while another is waiting to access memory. Then, both metrics

jointly with waiting cycles, computation cycles per warp, number of memory instructions, and

active number of SMs are used to model execution time.

In [19] a power and performance prediction model is built to select the number of streaming

multiprocessors to use in a GPU for both power and temperature reduction. The previous model

is used to predict execution times.

In this case the performance per watt is used to select the optimal number of streaming

multiprocessors. The ideal number maximizes the following ratio: work divided by execution

time for N multiprocessors, then divided by the power when using N multiprocessors.

2.1.6 Diogenes and Feed Forward Performance Model

Diogenes is a tool to identify synchronizations and memory transfers that are problematic [20],

for example unnecessary synchronizations or duplicated memory transfers.

Diogenes uses a new monitoring approach called Feed Forward Performance Model (FFM).

FFM allows multi-stage/multi-run instrumentation, adjusting instrumentation depending on the

behaviour of an application.

There are five stages in the FFM model:

• Stage 1 - Baseline Measurement. Execution time is measured for analysis in future stages.

Additionally, stack traces are recorded to identify synchronizations with the GPU.

• Stage 2 - Detailed Tracing. Stacktrace and times (synchronization and/or total) are col-

lected for all synchronizations and memory transfer operations.
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• Stage 3 - Memory Tracing and Data hashing. In this stage problematic operations are

detected, problematic operations are defined as those that can be removed or moved to

another location, obtaining an improvement in performance, while avoiding problems in the

application’s correctness. FFM determined whether synchronizations are really necessary

checking if the protected data is accessed afterwards or not, in the case the protection is not

necessary, the synchronization may be removed to reduce execution time and improving

performance. Problematic memory transfers (redundant memory copies) are detected with

the use of hashed, in the event a call to copy data between CPU and GPU is detected, a

hash is generated for the data to copy compared to previously copied data’s hash, if there

are no changes in the data, the copy may be redundant.

• Stage 4 - Sync-Use Analysis. Timing information between synchronization and data access

is collected to determine whether synchronizations are misplaced or not.

• Stage 5 - Analysis Stage. The execution of an application is modeled with the use of a

graph, which could be considered as two Gantt Charts joined by edges. In this graph

nodes are events, edges in the same processor are times and edges between CPU and

GPU are communications. Each node has four attributes, which identify their type, start

time, if a problem was detected in stages 3 and 4, and time between synchronization

and data usage. Edges are labeled with the duration of each event. Three types of

problems are modeled, which are unnecessary synchronization, misplaced synchronization

and unnecessary memory transfer.

In [21] an extension was performed to the Feed Forward Performance model, the main changes

are applied in stages 2 and 5.

In stage 2, memory allocations and free operations are included in the tracing to enable

the construction of dataflow graphs. In the case of stage 5, a list is generated with solutions

to problems discovered by the model. The memory graph generated in stage 2 and the list of

problematic operations help determine the possible solutions.

2.2 Auto-tuning with search in the tunable parameters’ space

There are some tools which instead of working with performance models, use a search algorithm

in the space generated by the possible values of the tunable parameters. These tools perform an

iterative search modifying the tunable parameters according to the search algorithm employed.

After the changes in parameters are applied, performance is measured. Then, this search is

repeated until the best configuration obtained is found, which may be the ideal or a sub-optimal

configuration if an exhaustive search is not performed [4].

In this category tools such as Active Harmony [22] which is able to dynamically modify which

libraries are in use, modify function calls to apply other algorithms or change an application’s
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parameters to improve performance. Active Harmony initially used a greedy algorithm. How-

erver, it is a bad approach to use brute force if there is a large number of possible parameters’

combinations, so an alternative search algorithm was used based on the simplex method to find

minimums. This search method is described in [23].

Another project in this category is AutoTune [24] which developed the Periscope Tuning

Framework (PTF) [25]. PTF is a tool that makes use of plugins to automatically perform a

search in multiple parameters to find an optimal configuration. This tool is explained with more

detail in the next chapter.

2.3 Performance analysis and/or tuning with machine learning

In this section we explain different projects which use machine learning for analyzing and tuning

parallel applications. Machine learning is used as an alternative to analytical models, with the

goals of analyzing performance and to improve an application’s performance applying modifica-

tions to parameters.

2.3.1 READEX

READEX (Runtime Exploitation of Application Dynamism for Energy-efficient eX-ascale com-

puting) [26][27] is an european project that had the objective of developing dynamic auto-tuning

tools to improve both performance and energy efficiency in exascale computing for heterogeneous

and embedded systems. An additional goal of this project was to apply machine learning to

adapt parameters according to the dynamic behaviour in HPC applications.

READEX performs a previous analysis of the application with Periscope Tuning Framework

(PTF) and a representative data set. This analysis is performed to automatically discover

important regions, characterize dynamism and obtain estimates about performance and energy

efficiency of the application to be executed later.

To obtain the optimal parameter configurations for a given system, multiple configurations

are executed with different search strategies using PTF. After the exploration is performed, the

results for various objective metrics are stored in a database. Then, a classifier model is used

to classify regions of the application into predefined scenarios. In addition to the classifier, a

configuration selector is used to map between scenarios and optimal parameter configurations.

A calibration mechanism is used in the case the behaviour of the application does not map to

any of the previously known scenarios.

READEX presented a study [28] where neural networks, support vector machines and de-

cision trees are used to predict (for better energy consumption) optimal hardware parameters

(number of threads, core and uncore frequency). Moreover, energy consumption is also predicted.

This study was performed for four sparse matrix algorithms. The best generated models were
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obtained with neural networks and one model was trained for each sparse matrix algorithm. A

summary of the results for neural networks, trained with 90% of the data in the training set,

are shown in Table 2.1.

Table 2.1: Accuracy in READEX’s study

Accuracy(%) SpMMadd SpMMmult SpMVmultCSR SpMVmultIJV

Number of threads 70 70 68 21

Core frequency 96 94 68 97

Uncore Frequency 69 63 59 59

Total energy 89 89 75 91

2.3.2 APARF

APARF (automatic, portable and adaptive runtime feedback-driven framework) is a framework

combining low-level tasking runtime APIs, profiling and machine learning to select the optimum

task scheduling for an application [29].

Multiple task-based applications from Barcelona OpenMP Tasks Suite [30] are used to train

the model, as they show different behaviour and different tasks characteristics, considering

them a balanced and representative set. Additionally, each application is executed for different

problem sizes, thread numbers, compiler flags and task scheduling configurations.

Two aspects are taken into account to manage task scheduling: data locality and load

balancing. In the case of load balancing, it is represented by timings in each application thread.

On the other hand, data locality is described using hardware performance events related to cache

accesses and misses, a ratio between cycles and instructions, and TLB misses.

The machine learning model was built using an Artificial Neural Network to classify the

program between three different classes (simple, public and default), each class being tied to a

different task pool configuration.

The results of the model are compared against the default task scheduling of different com-

pilers. Only 8 cases from 120 unseen instances were incorrectly classified, where the wrong

classifications belong to small problem sizes with inconsistent behaviour. Consequently, the

average accuracy achieved is 93%, which is translated into a performance enhancement of 25%

compared to the default compiler’s configuration.

2.3.3 BLISS

BLISS [4] is a project which employs machine learning in a way similar to auto-tuning with

search in the tunable parameters’ space, which was explained in Section 2.2.

Bayesian Optimization is used to build models while an application is in execution to avoid

offline training. Similar to auto-tuning tools based on parameters’ search, it modifies multiple
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tunable parameters in the application. However, instead of finding a good configuration with a

search algorithm, it uses the parameters for each configuration and an output metric (such as

execution time) to build a performance model with Bayesian Optimization.

Bayesian Optimization is a method to optimize objective functions (find a minimum). It

generates probabilistic models to guide the search of the minimum using input and output

values of the function to discover. This method is used when functions are difficult to evaluate

for all the possible values [31].

The parameter search in BLISS is guided by the probabilistic model, which is able to suggest

application’s parameters which help to optimize the objective function, improving the perfor-

mance of an application.

BLISS’ approach is able to find near-optimal parameter configurations, requiring less sam-

pling than approaches based on auto-tuning with search in the tunable parameters’ space.

2.3.4 Piecewise Holistic Autotuning with CERE

A project to automatically tune OpenMP applications with a tool named CERE is presented in

[32]. CERE decomposes applications into small code regions called codelets which are mapped

to OpenMP parallel regions.

In this project codelets are classified using clustering to find codelets with similar perfor-

mance signatures. CERE combines both static (code characteristics) and dynamic (hardware

performance counters and memory bandwidth) metrics to generate performance signatures.

The idea of this project is to apply performance tuning to one codelet in each cluster. Then,

the same tuning strategy is applied to codelets belonging to the same cluster. Next, codelets are

extracted into different code files and compiled separately with the proper tuning parameters. At

the end, a hybrid binary is generated with the application and the separately compiled codelets.

Results for CERE show a reduction of around 6.55× the time required to evaluate codelets,

in comparison to evaluating the whole application, and an accuracy around 93.66% for the NAS

benchmark.

2.3.5 Other approaches

Proctor [5] is a semi-supervised framework for anomaly detection in HPC. The framework tries

to detect nodes with anomalous behaviour and, in the case an anomaly is detected, it is classified

into one of the types known by the model.

Unsupervised learning with autoencoders is used for anomaly detection. A set of metrics are

used as the input and the autoencoder generates a reconstruction of the metrics. An anomaly is

detected if the error in the reconstruction is higher than a predetermined threshold. Contrarily,

supervised approaches are used to classify anomalies by type.
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In [33] [34], a framework to profile an application to discover potential parallelism and insert

OpenMP annotations in parallelizable loops using machine learning is presented. The framework

has two steps:

1. Profiling analysis. The compiler analysis is extended with dynamic information about the

application. Additional code is inserted for each variable and memory access with infor-

mation about memory address and symbol table references to discover data dependencies.

Additionally, the control flow of the application is analyzed. This additional information

is then used to build a control and data flow graph. This graph is then used to discover

potential parallel loops in the application. If a case where possible data dependencies are

detected but they do not appear in the profiled execution, the user is informed to select if

the parallelization for the loop should be discarded.

2. Annotate OpenMP loops. The generation of parallel code is limited to only OpenMP

and FOR loops. Read and write operation are analyzed to find data dependencies and

decide whether the accessed variables and arrays should be set to private or not. Addi-

tionally, necessary synchronizations and reduction operations are recognized. A model is

created with machine learning using a multi-class support vector machine to determine

if parallelism should be applied to a loop and also its OpenMP scheduling policy. The

features used in this model are related to instructions, data accesses, branches and number

of iterations in a loop.

The framework achieves on average a 96% of the performance from the original OpenMP

versions of the benchmarks extracted from NAS and SPEC.

In [35] an approach to predict the number of threads and the scheduling policy for an

application using machine learning is presented. In this work two different models are used,

one for each parameter to tune: a scalability model to detect the ideal number of threads built

using a feed-forward Artificial Neural Network; and a scheduling policy model generated with a

support vector machine.

To predict scalability and scheduling for an unseen program, features about the program

are necessary. The selected features are code features ( source code features such as operations,

control flow and memory accesses) and data features ( loop counts and performance counters

such as data cache and branch miss rate).

A total of 20 different programs are executed and models are trained using leave-one-out

cross-validation. Due to the use of leave-one-out cross-validation 20 different models are trained

for each parameter to tune, in each trained model a different program is excluded.

Results show that the models achieve more than 95% of the total performance compared to

the ideal configurations in Xeon processors and above 80% for Cell. However, some results are

surprising, for example a serial execution using cyclic scheduling is reported to be faster than a

serial execution with the default scheduler, with an speed up of around 1.3×.
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MaSiF [36], a machine learning approach for auto-tuning of parallel skeletons is presented.

This approach uses K nearest neighbors (KNN) and principal component analysis (PCA) to

reduce the tuning parameters’ search space.

In MaSiF there is a previous phase were the optimum parameters for multiple programs are

obtained using a random search in a subset of parameters. The search explores the 10% of the

parameters’ space according to the experimentation. The measured metrics are also stored and

will be used with K nearest neighbors with a value of K = 3 when a new program is executed

to find to which known programs it is closer to.

Then, the search of the configuration parameters is performed with dimensionality reduction

from 5 dimensions (five predefined tuning parameters) to two dimensions using principal com-

ponent analysis. In this new dimension, the optimal configuration parameters are represented

and a transformation is applied to the eigenvectors using the eigenvalues, where authors claim

that ”we start at the mean and search along 1.5x in the direction of the eigenvectors, which

corresponds to covering 99,7% of the variance”. This makes no sense as the 1.5 factor appears

out of nowhere and also moving the eigenvector provides nothing new as data points may or may

not fall in the line formed by the eigenvector. Additionally, no explanation is provided about

how to use the principal component analysis with the result from the KNN as in the paper the

PCA is a step performed previously.

Discussion of the presented approaches

The previously described analytical performance models are good approaches to solve the prob-

lems they tackle under certain conditions. However, with the evolution of systems, which are

becoming heterogeneous, their shortcomings are becoming obvious due to their limitations,

limitations generally described by their own authors. These models could be adapted for both

heterogeneous and dynamical loads, but analytical models require extensive knowledge and time

to be generated properly.

In the case of tools, such as auto-tuning with search, there is a lot of potential to solve

performance problems. Nonetheless, the overhead introduced into the application to find the

proper parameter configuration should be taken into account, as trying different configurations

may deteriorate performance and the process can be counterproductive, even if at some point

the proper configuration is found.

Therefore, due to the complexity to generate new analytical models such as machine learning,

are necessary. Multiple machine learning based approaches for performance tuning have been

presented, some of them were developed at the same time as this thesis.

These approaches show that using machine learning is an ongoing and important topic for the

automatic generation of performance models without the intervention of performance experts.

In performance modeling the selection of metrics which correctly describe the behaviour of
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an application is an important issue to take into consideration. In the case of analytical models

generated by experts, this selection is limited to the metrics which experts consider the most

representative according to their knowledge. This limited selection in analytical models is im-

portant in order to reduce the time required when researching relationships between metrics

and performance. In machine learning more metrics can be used as the relationships are au-

tomatically inferred, allowing the model to infer more knowledge about the behaviour of an

application. However, the presented works seem to decide the metrics used for training in the

same way as analytical models, using a limited number of metrics the authors consider good for

the model to generate, instead of evaluating which of the available metrics should be used.

The use of appropriate sets of parallel regions are necessary to generate a balanced and

representative dataset. We were unable to find this important step in any of the approaches

which apply auto-tuning with models generated by machine learning. The autotune project with

CERE uses clustering to find similar parallel regions in an application. Then, CERE extracts

from each cluster a representative member, obtaining for an application a set of balanced and

representative parallel regions. The representative parallel regions are used to select tuning

strategies to similar code regions.

In our work we want to tackle the problem of how to build balanced and representative

datasets for parallel code regions, which is a problem pointed by CERE. Additionally, imbalance

due to performance parameters’ values and how to mitigate it is important. However, these

critical points when applying machine learning are not discussed in most of the works which

use machine learning to build performance models. APARF is the only approach taking into

account balanced and representative datasets for task-based parallelism.
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Chapter 3

Background

In this chapter we present an overview of the framework in which this work has been developed

and of multiple techniques that are applied in this thesis. First, performance analysis and per-

formance tuning are described. Then, a global overview of machine learning and the algorithms

used in this thesis to automatically generate performance models are disclosed.

3.1 Performance Analysis and Performance Tuning

When executing parallel applications, the main objective is to reduce the execution time in

the same proportion as the resources increase. This objective in some cases is impossible to

accomplish due to limitations, such as synchronization between resources, memory bandwidth,

and other factors. Even though this goal may be impossible, developers expect to obtain the

maximum possible speed-up while minimizing the performance problems that may occur in

parallel applications. Therefore, performance analysis and tuning becomes an important task

to reduce execution time of parallel applications.

Improving performance can be divided into three main tasks [37]:

• Monitoring. A representation of the behaviour of an application when executed is neces-

sary before analysis can be performed. The behaviour is represented with metrics describ-

ing performance which can provide numerical values or graphical depictions, an example

of metrics being execution time and the values of hardware performance counters. Addi-

tionally, performance monitoring is achieved using profiling tools or with the addition of

code in an application (instrumentation) to collect the desired performance metrics.

• Analysis. The representation of the behaviour of an application obtained by means of

monitoring must be analyzed to find possible problems, this task is called performance

analysis. Performance analysis can be performed either manually or tools can be used to

help interpret the values of metrics or to apply automatic analysis. An additional objective
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of this task is to analyze the origin of performance issues and find solutions which enable

an improvement in performance.

• Tuning. After performance problems are analyzed and possible solutions are found, the

next step is applying solutions which may improve performance. For performance tuning

it is important to know where, what and when changes should be applied. Furthermore,

modifications should be applied without inducing abnormalities in the application’s be-

haviour, such as incorrect outputs or deadlocks.

There are two possible approaches when applying performance analysis and performance

tuning. Each approach with their own benefits and drawbacks [38]:

• Static. The application is executed and a post mortem analysis is performed. The main

benefits are that a wide range of modifications can be applied and more complex analysis

can be performed. The main drawback is that only future executions may have their

performance increased.

• Dynamic. Performance analysis is performed while the application is in execution and

changes may also be applied while in execution. The main benefit is that the current exe-

cution may have its performance increased. However, the drawbacks are that the analysis

is limited because it is performed while in execution, and the modifiable parameters are

limited to those which can be modified dinamically.

Taking into account the characteristics of both approaches, the best method in terms of

performance improvement is static tuning if the applications shows a deterministic behaviour

because more parameters can be modified. However, in terms of adaptability, dynamic tuning

is better as it can adjust parameters at execution time, which is essential if an application’s

behaviour can change during its execution or even between executions.

As this thesis is mainly focused in dynamic tuning, an extended explanation of the dynamic

approach is performed in the following subsection.

3.1.1 Dynamic performance tuning

In dynamic performance tuning, an application is executed with tools which allow to analyze

its performance at runtime. After the analysis, if necessary, changes are applied to improve

performance while the application is in execution.

Because both performance analysis and tuning must be applied on the fly, it is difficult or

impossible for a user to do this approach in real-time. Therefore, both automatic analysis and

tuning are necessary.

A general overview of dynamic performance tuning is shown in Figure 3.1. In this view a new

component is found: the performance model. A performance model is necessary to accomplish
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both automatic analysis and tuning, as performance models consist on the fundamental logic to

analyze performance and how to solve detected problems.
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Figure 3.1: General overview of dynamic performance tuning.

First of all, the tool for dynamic performance tuning should specify which instrumentation

and where it should be inserted in the application. Furthermore, a mechanism for the automatic

insertion of instrumentation should be available, such as Dyninst [39]. Additionally, results

provided by the instrumentation must be accessible by the tool.

During the application’s execution, when the metrics values are available, the performance

model is used to analyze the behaviour of the application and detect performance problems. If

there are performance problems, the model must contain a methodology to provide adequate

solutions to the tuning step. The performance model is built using previous knowledge about

performance problems, allowing the model to automatically achieve a proper analysis and pro-

pose proper tuning strategies.

The last step in the process is tuning. Tuning is where the necessary changes proposed by

the performance model are applied in the application to solve performance issues. Because in

this case dynamic tuning is applied, it it important to find which parameters can be correctly

modified in real-time and discard those which cannot be safely modified while the application

is in execution. To achieve dynamic performance tuning, the proper parameters should be

modified in a way that the execution consistency is preserved. The tuning step should include

which parameters should be modified, how they are modified and when can such parameters be

safely modified.

Performance model

The most critical points when applying dynamic performance tuning is using the proper per-

formance model. In this subsection performance models are explained using an example model.

This model is described in [11] which is built for OpenMP parallel applications.
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First of all, the dynamical modifiable parameters for the application have to be identified, in

the case of OpenMP parallel loops, these parameters are the number of threads and iteration’s

scheduling.

Then, the performance model which must correctly represent the behaviour of an application

must be built. The model should take as inputs performance metrics obtained through instru-

mentation. The output of the instrumentation is used by the model to tune the application. An

overview can be seen in Figure 3.2.

Performance
model

Performance data
L3 cache misses

Execution time

Tuning parameters
Thread configuration

Figure 3.2: Overview of performance model.

The model described in [11] predicts the execution time for different threads configurations.

This model is used to calculate the ideal number of threads with the minimum execution time,

maximum efficiency or other possible combinations between execution time and resource usage.

The prediction is performed using execution time and the third cache level as inputs in the

following way:

• Monitor L3 cache misses and execution time. L3 cache misses and a ratio between cache

misses and time are considered to identify execution time for a particular number of cores

in usage.

• Modify number of threads between 1 and the maximum number of cores in a processor.

The monitoring is performed in one processor, where L3 misses and execution time are

collected, starting from the serial execution and ending in the parallel execution with the

maximum number of cores.

• Model relationship between metrics and predicted execution time for multiple processors.

The collected metrics are used to build ratios between L3 cache and execution time. Then,

a prediction of execution time from 1 thread to the maximum number of cores available

in the system is performed.

• Extract ideal thread configuration from the model. This model predicts the execution time

for all thread configurations and the user is responsible of providing the objective function

to calculate the ideal number (such as maximum speed-up or efficiency).

Performance models can be built using the step performed by the example model: 1) selection

of metrics and monitoring; 2) generation of different scenarios to monitor the behaviour of

metrics in an application; 3) use mathematical expressions or algorithms to model the behaviour

between metrics and the parameters to tune; 4) generate outputs with the tuning strategy.
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3.1.2 Performance analysis and/or tuning tools

Multiple performance analysis tools, some including performance tuning capabilities, are ex-

plained in this subsection. A selection of some representative tools are presented as the work

performed in this thesis could be implemented into them to improve applications’ performance.

However, there are several other tools such as Paradyn [40], Paraver[41], Scalasca [42] and Vam-

pir [43], which are widely used in HPC environments. Although most of them do not offer

auto-tuning capabilities.

MATE

MATE (Monitoring, Analysis and Tuning Environment) [44] [45] is a tool to dynamically mon-

itor, analyzing and improve performance of parallel applications. The logic for performance

analysis and tuning of MATE is included in Tunlets ( which include performance models) to

modify the parameters which can improve performance.

Because MATE is a dynamic performance tuning tool, changes in the application are per-

formed while the application is in execution, which reduces the possible tunable parameters.

As an example, in OpenMP v4.0 [46] applications, the modifiable parameters at run-time are

limited to the number of threads and scheduling. Furthermore, the model must have an small

overhead as both performance analysis and changes to the application must be applied as soon

as possible to obtain the maximum possible performance improvement.

MATE has three main modules to analyze performance and apply modification in applica-

tions:

• The Application Controller, also called AC, is a program executed in each host the

application is executed with. The AC is responsible of executing the application, it also

modifies the application with the insertion of instrumentation to measure the appropriate

metrics and modifies the tunable parameters of the application.

• The Analyzer. The main task of the Analyzer is, as it name suggests, to analyze the

performance of an application using a predefined Tunlet. The instrumentation in the

application sends values of the measured metrics to the Analyzer, which then applies the

analysis step of the Tunlet. Then, if necessary, it provides to the AC instructions to

properly tune the application.

• The Dynamic Monitoring Library (DMLib) is a common shared library for the ACs.

DMLib is loaded into the application by the AC and it contains different snippets of code

which can be inserted into the application. This library contains code which needs to

be inserted in the application if required, such as instructions to monitor and modify

application’s parameters.

Performance models are described in the Tunlets. Each Tunlet is built to solve a performance
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problem and is composed by:

• Measure points. It describes what kind of instrumentation and where it should be

inserted into the application during run-time.

• Performance model. Provides a methodology to analyze performance in an application

with the objective of finding performance problems, which could be deteriorating the per-

formance of the application. Moreover, it provides information about possible approaches

or parameter’s values to improve performance with the help of the next part of the Tunlet

as described below.

• Tuning points, action and synchronization. In this part the modifications to the

parameters are described with information about which changes and in which part of the

application should be applied. Additionally, how the application should be synchronized

when changes are applied into the involved processes to guarantee the consistency of the

executed application.

A tool similar to MATE was developed to solve the inherent problems which may appear

in MATE due to its centralized analysis model. In MATE, there can be multiple Application

Controllers whereas there is only one Analyzer receiving and sending messages to all the ACs

in execution when using distributed computing paradigms such as MPI. Consequently, one pro-

cess (Analyzer) must receive performance data from multiple sources(ACs), apply performance

models to analyze all the incoming data. Then, discover if there are performance problems to

solve, and send to each Application Controller the appropriate tuning information. This task

can be impossible to do at execution time in a timely manner depending in the required number

of Application Controllers when executing an application.

This alternative tool is called ELASTIC [47] and defines a hierarchical way, in the shape of

a tree, to evaluate performance with multiple analysis processes. The objective of this tool is to

use multiple processes to balance the load of the single Analyzer between multiple nodes. This

approach solves scalabity issues which appear in MATE when a distributed application requires

the creation of a high number of Application Controllers.

DiscoPoP

DiscoPoP [48] is a tool for sequential applications conceived with the objective of finding regions

of code where parallelism could be applied. Then, advice is provided to user as to how regions

could be parallelized.

While the application is being executed, code regions which follow a pattern where memory

is read, a computation is performed and memory is written, are identified as computational units

(CU).

The different computational units identified in an application are used to build a dependency
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graph. This dependency graph is then used to detect data races and control operations. After

the detection is performed, an analysis is performed to find computational units which can be

executed concurrently with other CUs to be grouped as tasks. The dependency graph classifies

regions into four candidates:

• DOALL. Simple loops where there are no data dependencies between all the iterations of

the loop.

• Reduction. Loops where a computation is done to all the elements in one array and

stored into a single variable.

• Task parallelism. Independent code regions which can be executed concurrently because

there are no data dependencies between the different regions.

• Pipeline. Loops where only partial overlapping is possible in some consecutive iterations

due to data dependencies.

After the classification is performed, OpenMP constructs are recommended to the user as

the foundation for the OpenMP parallel implementation of each code region.

Periscope Tuning Framework

AutoTune’s [24] european project used Periscope [49] (a performance analysis environment to

help programmers analyze the performance of an application) to develop the Periscope Tuning

Framework (PTF) [25] [50]. PTF is a tool for automatic performance analysis and tuning for

both performance and efficiency.

PTF makes use of plugins to tune an application and each plugin is used to analyze different

performance parameters, such as load balancing, energy consumption, data locality and memory

accesses. The performance analysis can be applied with only one or multiple plugins to either

explore one or multiple aspects in one application.

In PTF, the different code regions to analyze are executed with different variants, where each

variant has different values for the parameters to tune. After the analysis, a report is generated

with the values of the objective metrics (such as time and efficiency) for each individual code

region and variant.

A plugin is divided into different steps which define the workflow to follow by PTF. The

steps are:

• Initialization. Initialize the plugin’s variables, tuning space and search algorithms for

the tuning space.

• Create scenarios. The plugin explores the tuning space with the selected search algo-

rithm and generates the different scenarios to be executed. This process may be repeated

in the case additional scenarios are needed.
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• Prepare scenarios. Executions for each scenario are prepared modifying the tunable

parameters, either with the modification of execution parameters or recompiling the ap-

plication if necessary.

• Define experiments. All the scenarios are assembled into one experiment and the dif-

ferent scenarios are executed. If different scenarios belong to individual code regions in

the same application, multiple scenarios may be executed in one process. However, if the

scenarios belong to the same code region, the application must be executed multiple times.

• Restart information. In this step the application is restarted and the necessary steps

to apply the tuning actions are executed.

• Process results. If there are no more scenarios to be executed, the objectives of the

plugin are analyzed, generating the performance report for the user.

PTF includes multiple plugins, such as plugins to tune compiler flags, energy, MPI parame-

ters and number of workers in master/worker applications. Also, users can generate new plugins

to meet their needs.

Kernel Tuning Toolkit

Kernel Tuning Toolkit (KTT) [6][51] is an autotuning tool for graphical processing units de-

veloped for both OpenCL and CUDA applications. KTT modifies kernel’s parameters with

preprocessor macros.

KTT’s tuning workflow can be divided in four steps:

• The code region (kernel) must be implemented using tuning macros, as a way to easily

adjust parameters which can improve performance for a kernel.

• Generate a space of tuning parameters. The space is generated with the parameters

to adjust and a range of values for each parameter must be defined. There is the possibility

to define constraint for the possible combinations of values.

• Inputs and outputs, which are assigned to kernels to test the correctness of the outputs

generated by kernels after the tuning parameters are adjusted.

• The tuning space is explored with the selected search strategy.

Similarly to Periscope Tuning Framework, KTT explores the multiple parameter configura-

tions. When tuning is finished, a report is generated with the combination of parameters which

better improve performance.

Furthermore, KTT does not only provide local optimizations, it can also be used for global

optimizations for multiple kernels with the same tuning parameters requirements.
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TAU

The TAU parallel performance system [52] is a framework for instrumentation, measurement and

analysis of parallel programs for HPC. Multiple performance tools and modules are integrated

into TAU using interfaces and data formats so they can work together.

TAU’s architecture is composed by three layers:

• Instrumentation. The first layer defines the metrics to be accessed in performance ex-

periments. Metrics are used as event information and groups of events are generated if

necessary when measurement is performed. Instrumentation can be inserted in multi-

ple ways, such as manual annotation, with pre-processor instrumentation, compiler-based

instrumentation, using wrappers, and additional approaches.

• Measurement. TAU supports parallel profiling and tracing to read the events declared

in the instrumentation layer. The measurements for each experiment can be customized

by users selecting the measuring modules to be used.

• Analysis. The results of profiling and tracing are reported. Users can analyze results

either as a text or with the use of one or multiple graphical tools to visualize results.

The main strength of TAU is its flexibility as each layer can be configured by the user.

Furthermore, there is a wide arrays of tools which have been integrated into it. This allows the

user to select the tools they are more used to and also to select between a broad number of

different metrics which may require the use of multiple frameworks.

Another advantage is that even though it was released almost two decades ago, TAU con-

tinues to be extended with new tools and capabilities as of today.

Additionally, TAU is able, with the help of SOSflow [53], to collect performance data dy-

namically [54] which opens the path for dynamic tuning in TAU.

3.2 Machine learning

Machine Learning (ML) is a branch of artificial intelligence. In this branch, models are built

with the usage of algorithms, statistical models and sets of data with the objective of inferring

patterns in data to generate predictions.

Machine learning approaches can be classified into two types according to the kind of data

used [55]:

• Supervised learning. Each sample in the data has one or multiple labels which can

be used as the output of the prediction. The label is used by the algorithm to infer

relationships from samples with the same label.
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• Unsupervised learning. In this case there are no labels in the data. The model should

discover pattern from the data.

In the following subsection both approaches and some of their implementations are explained.

3.2.1 Unsupervised Learning

Unsupervised machine learning performs the training without knowing which are the data

classes. The training step tries to find patterns and classify the inputs using patterns discovered

or inferred by the model [56].

Some of the best known unsupervised learning methods are the following.

K-means

K-means is an unsupervised clustering algorithm. Given a pre-specified number of clusters K,

the data is classified into one of the K clusters and each cluster has a point called centroid,

which is the mean value of all the data points belonging to that cluster [57].

The steps when performing K-means are:

1. Set the number of clusters to K.

2. Initialize K centroids randomly from the data.

3. Assign each data point to the closest centroid.

4. Calculate the new position of the centroid with the mean of all data points assigned to it.

5. Go back to step 3 until the position of all centroids doesn’t change or until a given number

of iterations.

An example of a classification done with K-means can be seen in Figure 3.3. In Figure 3.3(a),

the initial data is shown and two clear distributions of data can be seen as clouds of data points.

Then, Figure 3.3(b) shows the result of applying K-means with K = 2 and, as expected, the

two distributions of data are classified into the two clusters which could initially be seen.

Principal Component Analysis

Principal Component Analysis (PCA) is a method for dimensionality reduction. The objective of

PCA is to use a set of data with a high number of variables (dimensions) and find a representation

of this data reducing the number of dimensions. The new representation simplifies the number

of variables without losing relevant information [58].

Each variable in the new representation is called a Principal component (PC), which are

obtained though an orthogonal transformation of all the variables from the original data. Each

principal component is linearly uncorrelated to the others and explains a percentage of the
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(a) Initial data (b) Example of two clusters found with K-
means.

Figure 3.3: Example of K-means.

variability found in all the data. Each PC is assigned an ordinal number sorted from the one

describing the highest variability to the one with the lowest variability. Because the components

are sorted by variability, the dimensionality of the data can be reduced simply be removing the

components which describe very low amounts of the variability [59].

Table 3.1: Example of variances found in each Principal Components
PC1 PC2 PC3 PC4 PC5 PC6 PC7

Proportion 0,79 0,10 0,03 0,02 0,01 0,01 0,01

Cumulative 0,79 0,89 0,92 0,94 0,95 0,96 0,97

PC8 PC9 PC10 PC11 PC12 ... PC54

Proportion 0,01 0,007 0,004 0,002 0,001 ... 0,00

Cumulative 0,98 0,993 0,997 0,999 1 ... 1

Let’s use the example shown in Table 3.1. In this example we have as many principal

component as variables the initial dataset had. The initial dataset is composed by 54 variables

and principal component analysis is applied to obtain the new representation.

Along with the new representation, the principal components are generated and the first

component (PC1) represents 79% of the total variance. With the cumulative variance, the num-

ber of PCs needed to represent a significant amount of the variance (90%) is only 3 components,

although with only two a 89% can be represented. Furthermore, all the variance can be ex-

plained using 12 components. This is a big change compared to the initial dataset which had 54

variables and now with only 3 variables a high percentage of the dataset could be successfully

represented visually in a three dimensional graph.

3.2.2 Supervised Learning

Supervised machine learning methods are used for datasets with labeled data. A label is a field

on each entry of the dataset describing a property of the data which can be used as an identifier

to classify each sample in the dataset. A dataset can have one or more different fields defined

as labels (multi-label classification) [56].
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Some of the best known and used supervised machine learning methods are explained below.

K-nearest Neighbor Classifier

K-nearest Neighbor Classifier is one of the simplest supervised methods in machine learning. Its

simplicity is due to being non-parametric and only taking into account the raw input values it

is provided in the training to classify. The classification uses both density and proximity of the

training samples to the input data for prediction.

This methods is called K-nearest neighbor because the nearest K neighbors determine to

which class a data point belongs to. In order to find which are the nearest neighbors for a pre-

diction, distances (e.g. euclidean distance) are calculated between the data point to predict and

all the data points the method was trained with. Then, the predicted class is the predominant

label in the K nearest data points. Furthermore, there are variants of this algorithm where

weights proportional to distance, instead of only density, are used in the prediction [60].

In Figure 3.4, from [61], two different examples for this machine learning method are shown.

In the case of Figure 3.4(a), a green point is inserted into the space. Then, this point has to be

classified as a red triangle or a blue square. If the value of K is 3, the space to check is defined

by the space inside the inner circle, where two red triangles and one blue square can be seen.

According to the density of triangle and squares, the number of triangles is higher, so with K=3

the green point will classified as a red triangle. In the case of K=5, defined by the outer circle,

in the space of the circle there are two red triangles and three blue squares, so the new sample

is classified as a blue square instead of a red triangle in this case.

In Figure 3.4(b), different examples of how the space is classified is shown for different values

of K. According to the K parameter, the classification in some parts of the space changes due

to class density.

(a) Example of KNN (b) Example with different values of K

Figure 3.4: K-nearest Neighbor Classifier examples
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The most important factor when using this method is choosing a correct value of K because

the density inside the space of the chosen number of neighbors will decide the outcome. As the

value of K increases, noise in predictions decreases but precision can be lost for similar classes

with a low amount of samples in one region.

The main advantage of this method is its simplicity to implement. However, its accuracy

depends on similarity between the elements of one class and how different that class is from

others. Furthermore, this method is slow when performing predictions if a lot of samples are

used in the training, as distances have to be calculated for each sample to predict against all

the included samples.

Decision Tree

Decision Tree classifiers are directed acyclic graphs in the shape of a tree, where there is only

one root node. An edge in a Decision Tree is a path between two nodes called father(ancestor)

and son (descendant), nodes without descendants are called leafs. All nodes except the root and

leafs are internal nodes [62].

Each node in a tree is a variable and the edges of each node represent the different decisions

which can be taken. The output of each decision is another node and a leaf defines a predicted

class.

In Figure 3.2.2 a simple Decision Tree can be seen. There is a computer which can overheat

and there is an alarm to indicate whether the computer overheats or not. First, a check is

performed to find out if the computer is on or off. In the case it is on, the temperature is

monitored to see if there is overheating. The alarm only is enabled if a high temperature is

detected.

Figure 3.5: Example of decision tree classifier.

The main advantage of this method is the ease of reading and understanding how decisions

are taken, as the architecture of the tree with its decisions can be visualized. One of the main

drawbacks is the complexity to generate Decision Trees when there is a high number of variables
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and a high number of values for each variable.

Support Vector Machine

Support Vector Machine (SVM) classifies data using surfaces called hyperplanes which separate

different labels of a dataset in different spaces.

Support Vector Machine finds a surface (hyperplane) which maximizes the space (margin)

between the hyperplane and the nearest point of each class. This maximization has proven to

reduce the generalization error [63]. The lines formed by the margins are called support vectors.

In the case of linearly separable problems, the hyperplane can be written as: w ·d+b = 0, where

d is the data to classify, w a vector and b a constant.

Figure 3.6 (a) shows a two dimensional space with two different labels (squares and circles)

to classify. Likewise, there are some green lines drawn which define some of the infinite possible

hyperplanes which separate the labels in two different spaces. The optimum hyperplane for

SVM can be seen in Figure 3.6 (b), where the distance between the hyperplane and the nearest

element for each label is maximized.

(a) (b)

Figure 3.6: Support Vector Machine.

The main advantage of SVM is its computation speed once trained, which only requires

to find in which side of the hyperplane the predictions falls into. However, it has some big

disadvantages, such as not being suitable for big datasets due its training not being efficient in

terms of computational power.

Artificial Neural Networks

Artificial Neural Networks (ANN) is a method composed of a network topography. The to-

pography is composed of one or more components called processing units or neurons and the

connections between themselves (synapses). ANNs try to model the behaviour of the human

brain[64].

A neuron is the fundamental unit of neural networks. Figure 3.7(a) shows how a neuron is
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modeled in ANNs. Neurons are located in both hidden and output layers of the artificial neural

network.

A neuron has three basic elements:

• Synapses. A synapse is a connecting link which has a weight. This weight is multiplied

by the input of the synapse and the result is fed to the neuron. The weight is not limited

to positive values.

• Summation. The weighted inputs are used as signals and a summation is performed

using a linear combiner.

• Activation function. This function is used to limit the output’s amplitude and normalize

the output values of a neuron.

Some neural models include an additional parameter called bias. The bias is a constant real

value added to the summation of the inputs before applying the activation function, allowing to

shift the resulting values of an activation function.

(a) Model of a neuron (b) ANN with two hidden layers

Figure 3.7: Example of a neuron and an artificial neural network. Parts of a neuron are shown
in two colors in the artificial neural network.

The activation function can be linear or non-linear. In the case of using linear activation

functions, the learning is limited to linear relationships between the data. However, most neural

networks use non-linear activation functions [65][66] which allow the learning of polynomials

with more than one degree. The are multiple activation function which are used in ANNs, most

of them non-linear to ensure finding complex and non-linear relationships in the training data.

The architecture of artificial neural networks, as shown in Figure 3.7(b), is mainly composed

by three types of layers:

• Input layer. First layer where the network takes input values and there is an element for

each input.
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• Output layer. Last layer where the output is obtained. One or multiple outputs can be

defined by a model.

• Hidden layer. Middle layer, or layers, where both inputs and outputs are from and to

other layers in the network.

When developing ANNs, there are multiple parameters which need to be adjusted, such as:

learning rate, number of learning epochs, loss algorithm, optimizer, batch size, neurons in each

layer and number of layers. There is no clear guidelines of how these parameters should be

defined when building models.

Some advantages of Artificial Neural Networks are the ability to model non-linear relation-

ships with non-linear activation functions. Furthermore, results can be generated fast as neurons

in a layer can be executed in parallel. However, some of the disadvantages are the difficulty to

understand the generated models and their training times, which are proportional to the size of

the network.

3.3 Correlation analysis

Correlation analysis is a statistical method used to find the strength of association between two

variables. Variables in correlation analysis are defined as vectors.

The three main methods for correlation analysis are Pearson, Spearman and Kendall’s

Tau [67]. These methods are explained as they have different meanings and can be applied to

explain different scenarios.

Pearson is a parametric method to measure the strength and direction of linear relationships

between two variables. The main problem with this approach being the assumption that data is

both continuous and normally distributed. The correlation coefficient (r) is based on covariance

and standard deviation between the two vectors. Eq. 3.1 is used to calculate the coefficient r,

where xi are the values of one vector and yi values from the second vector, x is the mean of the

first vector and y the mean for the second vector.

r =

∑
(xi − x)(yi − y)

√∑
(xi − x)2

∑
(yi − y)2

(3.1)

Spearman is a non-parametric method to asses how an arbitrary monotonic function can

describe the correlation between two variables. In contrast to Pearson, this approach makes no

assumption about the distribution of the data and can describe non-linear relationships.

Spearman requires the execution of different steps to obtain the correlation coefficient. The

steps performed to apply Spearman’s correlation are:

1. Convert values to ranks. The list is converted to ordinals from the bigger value to the
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lower. In the case of a tie (the same value in multiple positions of the vector), the mean of

the ranks involved is calculated and assigned to them. As an example, given four values

[0, 1, 1, 2] were two tied values appear, the ranks would be [4, 2.5, 2.5, 1].

2. Calculate the difference between each pair of ranks to compare.

3. Apply correlation formula (Eq. 3.2). Where n is the size of the vector and d the distance

between each element in the same position of the two vectors.

r = 1− 6
∑

d2i
n(n2 − 1)

(3.2)

Kendall’s Tau is another non-parametric method to asses the correlation between two

variables. In this case, the correlation coefficient represents concordant and discordant pairs

between two ordinal variables. Even though this approach is for ordinal variables, variables can

be transformed to ordinals as explained previously for Spearman.

The steps for Kendall’s Tau are:

1. If not ordinal, convert values to ranks.

2. Sort vectors. The vector of the first variable is sorted from lower to higher. The second

vector is modified applying the same position changes. For example, given vectors [1,4,3,2,]

and [1,3,2,4], the first vector is sorted, obtaining [1,2,3,4]. Then, the same position changes

should be applied to second vector, obtaining the ”sorted” vector [1,4,2,3].

3. Find concordant and discordant pairs. After the first vector is sorted from lower to higher,

the second vector should be checked to find if it is also sorted. For each element from

the first element to the penultimate, a count is performed to find how many of the next

elements in the vector follow the sorted distribution (concordant) and how many do not

(discordant).

4. Apply correlation formula (Eq. 3.3).

r =
concordant pairs− discordant pairs

(
n
2

) =
concordant pairs− discordant pairs

(n(n− 1))/2
(3.3)

An example with already sorted values can be seen in Table 3.2 to clarify how Spearman and

Kendall Tau’s work. In Spearman the difference between each value in the vectors is calculated

and then Eq. 3.2 is applied, obtaining a correlation of 0.84. In the case of Kendall’s Tau, starting

from the first value of Vector B, which is 2, there are four values which are higher. Therefore,

they are considered concordant as they are correctly sorted. However, there is one value lower

than 2 so a discordant value is found. This process is repeated until the penultimate element,

and Eq. 3.3 is applied. The correlation for Kendall Tau is 0.73.
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Table 3.2: Example of Spearman and Kendall’s Tau correlation analysis between sorted vectors.
Spearman Kendall

Vector A Vector B Difference Concordant Discordant
1 2 1 4 1
2 1 1 4 0
3 3 0 3 0
4 4 0 2 0
5 6 1 0 1
6 5 1

r=0.84 r=0.73

The explained methods for correlation analysis have an output in the range [-1,1]. This range

has three well defined scenarios:

• Correlation = -1. The two variables show a perfect but negative relationship (anticorrela-

tion), when a variable increases the other decreases in the same proportion.

• Correlation = 0. There is no correlation between the two variables.

• Correlation = 1. The two variables show a perfect and positive relationship.
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Chapter 4

Signature Reduction

This chapter explains how parallel code regions in an OpenMP application can be characterized.

The behaviour is characterized using a signature composed by values of hardware performance

counters. Additionally, the approach is aimed towards dynamic tuning, where metrics must

be collected at execution time. Therefore, measuring values for all the hardware performance

counters can be costly due overhead.

We explain how an initial list using a large set of hardware performance counters can be

reduced systematically, so less performance counters are needed to be measured. This reduction

lessens the measurement overhead, while still obtaining a valid representation of the execution

of parallel code regions.

This chapter has two main hypothesis: (a) parallel regions can be characterized and iden-

tified at the processor level, using the values of the hardware performance counters available

in the system and measured at execution time; (b) an equivalent but reduced list of hardware

performance counters can be created to characterize and identify regions, while minimizing

redundancy in the information obtained by the hardware counters.

First, a tool with the ability to read hardware performance counters dynamically is needed.

Our research group developed MATE [44] [45], a tool for dynamic performance tuning. Because

it lacked the ability to read hardware performance counters, it was necessary to modify MATE

and integrate an API to extend its functionalities.

Performance Application Programming Interface [2] (PAPI) provides access to hardware

performance monitoring with the use of a high level interface with high abstraction and a low

level interface allowing more control to the user. PAPI with its low level interface was selected

as it is one of the mainstream APIs for both tool integration and also to directly measure

performance in applications. Additionally, PAPI allows the access of two different kinds of

metrics which are called events. Events in PAPI are divided into native and preset.

Native events are the hardware performance counters available in the system, while preset
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metrics are common metrics the developers of PAPI consider to be of general interest in perfor-

mance analysis. Among preset metrics we can find metrics such as different interactions in the

memory hierarchy, cycles, instructions and operations. Furthermore, some metrics may not be

present as hardware performance counters but may instead be able to be inferred from the avail-

able metrics, such metrics are also included in preset metrics as derived events. As an example,

a system may have the number of total and conditional branch instructions but unconditional

branches are not present in any hardware counter, in this case unconditional branches may be

inferred subtracting the conditional from the total.

PAPI was integrated in MATE [68] and the performance model developed in [11], which was

explained in Chapter 2.1.1, was used to verify its successful integration.

As explained previously, PAPI includes derived events, which are obtained applying different

operations to multiple hardware performance counters. Derived events calculated using subtrac-

tions are the perfect candidates to be removed because some processors have synchronization

problems when using PAPI with multi-threading. Therefore, it is possible to obtain events with

negative values, a behaviour to avoid as hardware performance counters with negative values

are meaningless.

In [69] we propose a methodology based on correlation analysis to determine the minimum set

of hardware performance counters necessary to generate signatures of OpenMP parallel regions.

The methodology is divided in the three steps shown in Figure 4.1. These steps are:

1. Hardware performance data collection. Execution data describing the values of

hardware performance counters is collected and stored in a database. The execution data

will be analyzed in a future step.

2. Data exploration. Principal component analysis is used to visualize the different kernels

and verify whether they can be classified visually.

3. Hardware performance counter reduction. The most important step is to apply

correlation analysis. Variables (hardware performance counters) are discarded if the cor-

relation value between two, or more variables, is very high. Very high correlation points

to the possibility of variables explaining similar information.

1. Hardware Performance
Data Collection 2. Data Exploration 3. Hardware Performance

Counter Reduction

Figure 4.1: Methodology for hardware performance counter reduction.

If the methodology successfully eliminates multiple variables, the redundancy in the dataset

can be highly reduced which at the same time can help to:

• Higher hardware counter measuring precision. There is a limitation in the num-
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ber of registers in processors to read hardware performance counters at the same time.

Additionally, there are incompatibilities when accessing hardware performance counters,

so some counters cannot be read at the same time as others. Because of this limitation,

groups are created and compatible events are measured simultaneously in time intervals

using multiplexing. If the number of events to measure is reduced, each group has more

measuring time, increasing their precision.

• Improved learning accuracy and reduced overfitting potential [70] [71]. In ma-

chine learning the number of features is important. If there is a low number of features

and/or the information is not relevant, a good model cannot be generated due to a lack

of information. However, if there are too many features, where some of them can have

redundant information, the model may overfit due to the irrelevant relationships in the

data.

• Lower computational cost. With less events to measure, the overhead of obtaining the

data is lower as less management is required. Additionally, with less metrics models with

lower complexity can be used, reducing the time required for performance analysis.

In the following sections, the methodology applied to reduce the necessary hardware perfor-

mance counters, without loss of performance information, is described in detail.

4.1 Hardware Performance Data Collection

The initial step of the methodology is the collection of hardware performance data in a particular

machine. This step should be done for each system with different architecture, because changes

in the architecture (memory sizes, bandwidth, clock speed and changes in other components)

modify the values and relationships between hardware performance counters, even if the same

counters are available.

To limit the performance events to measure, we decided to only use PAPI’s preset events,

as they are a collection of common events relevant in application performance. In this list there

are multiple events for branches, caches, cycles, instructions, TLB, loads and stores.

To obtain the list of available events, the command papi avail -a should be used, which

shows the results for only the available present events with the help of -a, which discards the

unavailable events. Figure 4.2 shows a summary of papi avail ’s output, where three elements

are highlighted:

• Number Hardware Counters. Determines the number of hardware performance coun-

ters which can be measured at the same time. This number is only for events that are

compatible.

• Max Multiplex Counters. The maximum number of hardware counters which can be

used with multiplexing.
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• Deriv. An indicator for each event which reports if a particular event is derived (the

combination of different hardware counters).

Figure 4.2: Example output of papi avail.

Once the list of available events is obtained, the next step is to check the compatibility

between the different hardware counters. This step is done with the command papi event chooser

PRESET [EVENT], that reports which events are compatible with an event or a list of events,

with the same output format as papi avail (Figure 4.2). In the case of selecting incompatible

events, the following error is printed: Event [EVENT] can’t be counted with others -1.

After the list with all the events to measure is generated, a set of code templates must be

executed to obtain execution information, allowing the analysis of the relationships between

the different events. The code templates represent different simple OpenMP parallel region

structures.

Each group of compatible hardware performance counters must be measured for each code

template in different cases to check their similarity. Because some counters are highly dependant

on the problem size, per example if the problem size is very small L2 and L3 caches may not

be used. Therefore, it is necessary to measure the events with multiple problem sizes to obtain

the realistic behaviour of the system. Furthermore, some code optimizations at the compilation

level can impact the behaviour of the code, so more than one flag optimization value should be

tested. For statistical significance and to discard possible outliers, multiple repetitions for each

case are executed. Consequently, the collected data captures the behaviour for different code

translations and memory patterns associated to the same OpenMP parallel region. The total

number of executions for each regions is described using expression (4.1).

n executions = created groups ∗ data sizes ∗ flag combinations ∗ repetitions (4.1)

After the execution of all the different configurations, the data for each hardware performance

group is joined in one dataset to be used in the following steps.
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4.2 Data Exploration

The second step is the exploration of the obtained data. Principal Component Analysis (PCA)

is used to visualize and validate the changes in the set of performance counters. This is possible

because step 2 and step 3 are iterative and the changes applied in step 3 are validated in the

next iteration of step 2.

First, PCA is applied to the data collected in step 1 and a new set of data is obtained.

This new set is a representation where the execution information is transformed into principal

components. This new representation allows us to check how much variance of the data is rep-

resented by each principal component. Furthermore, the variance described by each component

can be used to determine the minimum dimensions needed for a visual characterization of the

data with the minimum loss of information.

Thanks to the dimensionality reduction obtained applying PCA, the data can be plotted in

2D or 3D but incurring in some, but known, loss of information. With the 2D or 3D repre-

sentation of the data, it could be possible to check if the executed templates can be visually

distinguished from each other. Furthermore, if new executions were performed, we could identify

the similarity between new executions and former executions with the differences in the PCA.

Moreover, we could guess if methods such as clustering would be able to identify the data by

region, compilation flag, problem size, or other possible classifications.

PCA can also be used to discover relationships between hardware counters because of the

weights of each variable in each principal component. If two or more counters have the same

weight, this coincidence could be due to having the same or highly related values, highlighting

possible redundancies.

If the PCA resulting from removing a set of hardware performance counters and the previous

PCA continue to be similar, and there is not a high impact in the variance explained with few

dimensions, the reduction can be considered valid.

4.3 Signature Reduction

The main part of the methodology is the third step: Signature Reduction.

In this step correlation analysis is used to find pairs of hardware performance counters with

high correlation coefficients. A high correlation between two metrics can indicate redundancy

and one of the metrics involved may be removed, as a way to reduce over-fitting in machine

learning algorithms caused by redundant features [72].

Accordingly, correlation analysis is performed over the dataset created previously in step 1.

After the correlation analysis is performed, the obtained output is a grade of similarity between

each pair of hardware counters. Similarity is described with values between 1 and -1, where
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1 is highly correlated and likely redundant, 0 is no relationship between them and -1 a high

anticorrelation. We expect that no negative correlations appear as it is counter intuitive that

one hardware counter may decrease as another increases. Correlation values are obtained in

a square matrix, where each row and column is an event, and the values in each field are the

correlation between the different pairs of events.

However, looking only at the correlation analysis can be misleading. Since there are hardware

performance counters which can have high correlation while not being redundant. Therefore, we

should think if this correlation is because of redundancy or not. Given the following example code

found in Listing 4.1, a strong relationship exists between the number of iterations (branches)

and the number of memory accesses. This relationship is due to memory accesses being tied

to N, which controls the number of iterations. In this case, and also in codes with a similar

regular behaviour, the correlation between branches and memory accesses is probably near

perfect. However, the counters have completely different meaning, so they should be kept as no

redundancy is removed if one counter is discarded, but instead their removal generates loss of

information. Nonetheless, in the case of the number of conditional and taken branches showing

a perfect correlation, this relationship is logical and one of the events may be discarded.

1 i n t add ( i n t N, f l o a t A, f l o a t B, f l o a t C)

2 {
3 i n t i ;

4 f o r ( i =0; i<N; i++)

5 C[ i ] = A[ i ] + B[ i ]

6 }

Listing 4.1: Example code for correlation analysis.

The last part of this step, is to discard hardware performance counters. If two events are

found to be highly correlated looking at their correlation coefficient and the relationship is

logical, one of them is removed, generating a smaller signature. It is important to remove, if

possible, derived events as explained at the beginning of this chapter. After an event is removed,

step 2 (Data exploration) is performed again with the reduced dataset. In the event that there

are no more redundant events found in the data, the current list of events is considered to be

the smallest possible set without redundancy for the particular architecture.

4.4 Experimentation

In this section we explain the results obtained by applying the explained methodology. To

validate the methodology a set of templates and two different processors are used. Also, to

validate that the reduced list of hardware performance counters is able to create signatures of

OpenMP parallel regions, while providing a valid characterization, a neural network has been

trained to classify parallel code regions.

In this experimentation the templates used are different parallel code sections found in the
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STREAM benchmark [73]. This benchmark has been slightly modified to separate each section

in a code function for easier identification with performance tools. Furthermore, this benchmark

has been selected as it can give an approximation of the behaviour found in real memory bound

OpenMP applications.

This benchmark is divided into four different patterns, which are parallel regions of code,

defined as (see Listing 4.2):

• COPY. All the elements of one vector are copied into another iteratively. There is one

read and one store but no arithmetic operations are involved in the inner code.

• SCALE. Each element of a vector is multiplied by a fixed scalar value and the result is

stored in a second vector. There is one arithmetic operation (multiplication), one read

and one store.

• SUM. One element is extracted from the same position of two different vectors and the

results of their addition is stored in a third vector. There is one arithmetic operation

(addition), two reads and one store.

• TRIAD. This pattern combines the previous SUM and SCALE patterns into one. In this

case, an element from vector c is multiplied by an scalar. Then, the result is then added

to an element from another vector (vector b). At the end, the result is stored in vector a.

There are two arithmetic operations (one multiplication and one addition), two reads and

one store.

Two different systems have been used in the experimentation of this methodology, both with

Intel processors. AMD was discarded as the hardware performance counters, in the systems at

hand, do not allow the instrumentation of some memory cache levels.

On one hand, we have a DELL T7500 with two Xeon E5645 processors, with six cores per

processor. Its memory hierarchy is composed by a 32KB L1 and 256KB L2 for each core, a

shared 12MB l3 cache in each processor. The total amount of main memory is 96GB. On the

other hand, there is a bigger machine, a DELL PowerEdge R820. In this system there are 4

processors, each processor with 8 available cores. The memory hierarchy is the same at L1 and

L2 levels ( a 32KB L1 and 256KB L2 for each hardware core), and a shared 16MB l3 cache

in each processor. The total amount of main memory is 128GB. The summary for the two

architectures is shown in Table 4.1.

4.4.1 Hardware performance data collection

The first step of our methodology dictates that the command papi avail -a must be executed to

obtain the present events available in the target processor. Then, determine the valid compatible

groups for the available events. In the case of the Xeon E5645, PAPI reports 58 preset events

available in the processor. The measurable events for this processor and the Xeon E5-4620
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1 void Copy ( )
2 {
3 s i z e t j ;
4 #pragma omp p a r a l l e l f o r
5 f o r ( j =0; j<STREAM ARRAY SIZE; j++)
6 c [ j ] = a [ j ] ;
7 }
8

9 void Sca l e (STREAMTYPE s c a l a r )
10 {
11 s i z e t j ;
12 #pragma omp p a r a l l e l f o r
13 f o r ( j =0; j<STREAM ARRAY SIZE; j++)
14 b [ j ] = s c a l a r ∗c [ j ] ;
15 }
16

17 void Add( )
18 {
19 s i z e t j ;
20 #pragma omp p a r a l l e l f o r
21 f o r ( j =0; j<STREAM ARRAY SIZE; j++)
22 c [ j ] = a [ j ]+b [ j ] ;
23 }
24

25 void Triad (STREAMTYPE s c a l a r )
26 {
27 s i z e t j ;
28 #pragma omp p a r a l l e l f o r
29 f o r ( j =0; j<STREAM ARRAY SIZE; j++)
30 a [ j ] = b [ j ]+ s c a l a r ∗c [ j ] ;
31 }

Listing 4.2: Parallel sections available in STREAM benchmark.
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Table 4.1: Hardware used in the experimentation
Dell T7500 Dell PowerEdge R820

Processor Xeon E5645 Xeon E5-4620

# sockets 2 4

# cores per socket 6 8

Threads per core 2 2

L1 cache 32 KB 32 KB

L2 cache 256 KB 256 KB

L3 cache size 12 MB 16 MB

Main Memory 96 GB 128 GB

processor have been classified in the types as shown in Table 4.2.

Table 4.2: Events by type in the two experimented processors,
Type XEON E5645 Xeon E5-4620

Branches 7 7

L1 cache 8 5

L2 cache 16 15

L3 cache 10 9

TLB 3 2

Cycles 3 3

Operations 3 3

Instructions 8 7

Total 58 51

Now, the four templates must be executed for the different configurations defined by: groups

of compatible events, problem sizes and compilation flags. Additionally, for statistical signif-

icance and to take into consideration possible outliers, each configuration should be executed

multiple times (repetitions).

Table 4.3 shows an overview of the number of configurations used in each system. The

configurations are the same, with the exception of the groups of events necessary in each system

to obtain all events. In this way, there are four templates which are executed for: 56 different

problem sizes (ranging from an initial size of 3KB to 4.5GB); two compilation flags for code

optimization (-O0 and -O2); the number of groups necessary to obtain all events (12 for Dell

T7500 and 11 for Dell PowerEdge R820); and a thousand repetitions for each configuration. In

total, there are a 448,000 entries with 58 columns (one column for each hardware counter) for

Dell T7500. Consequently, according to expression 4.1: in Dell T750 for each template 1,344,00

executions are necessary, which is a total of 5,376,000 executions; in the case of Dell PowerEdge,

this number is a bit less because there are 11 groups of events instead of 12, for each template

1,232,00 executions are necessary, which is a total of 4,928,000 executions.

After all the necessary executions’ data is obtained and we can proceed to to step 2 (Data

exploration) and apply PCA to the dataset with the values for all the different hardware per-
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Table 4.3: Configurations to execute in each system
Dell T7500 Dell PowerEdge R820

Processor Xeon E5645 Xeon E5-4620

Templates 4 4

Groups of events 12 11

Problem sizes 56 56

Compilation flags 2 2

Repetitions 1000 1000

Total executions 5,376,000 4,928,000

Total entries 448,000 448,000

formance counters.

4.4.2 Iterative data exploration and signature reduction

Figure 4.4 shows the plotted PCA for the full set of events. This PCA shows that using only

two dimensions, the data is appropriately explained, as around 89% of the data’s variability can

be visualized. Furthermore, the different previously explained templates from STREAM can

be distinguished visually, even when only two dimensions are used. Additionally, using three

dimensions further increases the differences between templates, so they can easily be classified.

This initial result confirms the first hypothesis of this chapter: parallel code regions can be

classified using hardware performance events.

An important information obtained from the PCA is the variance explained by each principal

component. Table 4.4 shows the proportion of variance in each principal component, from the

first principal component (PC1) until the accumulated variance is more than 99%, obtained

with 11 dimensions. The total variance which can be obtained in plots, in the case of three

dimensions, is 91.7% which we considered a good result as more than 90% of the variance can

be shown visually.

Table 4.4: Percentage of variance explained by each principal component until 99% accumulated
variance.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

Variance 79.17 9.968 2.588 2.002 1.209 1.072 0.861 0.757 0.576 0.516 0.499

Total 79.17 89.14 91.73 93.73 94.94 96.01 96.87 97.63 98.20 98.72 99.22

Table 4.5: Percentage of variance in each principal component after removing instruction cache
events.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

Variance 80.68 8.6 3.455 2.865 1.598 1.002 0.771 0.544 0.359 0,08 0.026

Total 80.68 89.28 92.74 95.60 97.20 98.20 98.97 99.52 99.87 99.95 99.98

Another important information which can be extracted is the contribution (eigenvector)

each variable has in each new dimension (principal component). One hint in finding redundant
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Figure 4.3: Initial results of applying and plotting PCA in two dimensions with RStudio.

variables is to find variables with the same contribution. This may mean that the two variables

are equivalent, however it should be checked in the correlation analysis. An example, in the case

of the XEON E5645, are the events L3 TCW (L3 total cache writes) and L3 DCW (L3 data

cache writes) which are mapped to the same hardware counter (L2 RQSTS:RFO MISS which

is described by PAPI as “L2 requests, read for ownership misses”).

The next step, Step 3: Signature Reduction, is to apply correlation analysis to the dataset

to obtain the correlation value for each pair of events. The correlation matrix seen in Figure 4.4

is the result of applying linear correlation analysis to the initial dataset with all the hardware

performance counters. In this figure, the darker the colour, the stronger the correlation between

the values of one pair of events.

The absence of red (negative correlation) pairwise events is important. This absence is logical

as all hardware events have increasing relationships between themselves, because the values of

hardware performance counters remain the same or increase but cannot decrease. Using the

correlation values we can analyze the strongest correlations in the matrix and decide which

counters can be discarded.

Using the results obtained with PCA to get hints about hardware counter’s significance,

we realized that events related to the instructions cache, a total of 18, have low significance.
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Figure 4.4: Initial correlation matrix with all the hardware performance counters.

This makes sense as they depend more on the code generated instead of the behaviour of the

parallel regions. Additionally, when searching for performance models, we were unable to find

any which made use of hardware counters related to the instruction cache. This allows to make

a first reduction in the variables of the dataset from 58 columns to 40.

The new PCA after this simple reduction is shown in Figure 4.5. An easy to see change is the

disappearance of some outliers in the new projection of the data. Now, in two dimensions the

variance is around 89.3%, compared to the former 89% the difference is meager. The important

change is, as can be seen in Table 4.5, that the values of variance for each principal component

were updated. Before, with three principal components the accumulated variance was 91.7%,

and now it has increased by 1%, reaching 92.7%. But the most important change is that the

99% of the variance can now be explained with only 8 components instead of 11, with higher

variance explained in less components (99.52% compared to 99.22%).

As explained previously, a high correlation is not enough to discard a hardware event. There

should be a logical reason by which the events are related, hence if it cannot be found, it is

better not to use the correlation of the two events to remove either of them. As an example of

logical correlation, there are two events which are very closely related with a correlation value

of 100%, these are TOT CYC and REF CYC. As nowadays processors have technologies which
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Figure 4.5: PCA in two dimensions after removing instruction cache related events.

allow them to change its frequency under certain circumstances, such as the resources in use,

the temperature or the performance profile of the system, there is a dynamic frequency in the

system. Due to the dynamic clock found in new systems, REF CYC uses a reference clock as

a way to obtain a fixed cycle representation which can be easily translated into execution time.

Therefore, we decided to discard TOT CYC and keep the reference cycles.

Moreover, we have discarded events which have access to the same resource, in this case

we can find that for this particular machine the single point vectorization and double point

vectorization operations read the same SIMD instruction’s register.

Furthermore, with the correlation analysis we found some highly correlated events which are

derived from the combination (addition or subtraction) of multiple events.

One clear case is related to branch instructions, as shown in Figure 4.6. Figure 4.6 (a) is the

initial scheme of branch instructions available in the processor. In the figure, branch events can

be shown as a tree because there is a clear hierarchy. Some branch events are a subdivision of

another, so a missing branch event can be calculated if the other branch events are available.

For example, if total and conditional branches are available, the unconditional branches can be

obtained as the difference between the total and conditional branches.
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Figure 4.6: Initial and final scheme of branch instructions.

In this figure, the derived events calculated with subtraction are highlighted in red to indicate

that they are the most appropriate candidates to be removed, because they are a combination

of their father and one of their siblings.

Although the other events are not derived, they are theoretically the combination of the

others branch events. The branch instructions are the addition of conditional and unconditional

branches. In the case of conditional branches, there is a subdivision in two groups as indicated

in the figure: correctly predicted and mispredicted, their addition being conditional branches;

and the second group containing the taken and not taken branches, their addition also being

the conditional.

In the correlation analysis these events are among the highest correlated, with values close to

100%. Therefore, because of this high correlation and their logical relationships, some of them

are removed. The final branch scheme can be seen in Figure 4.6 (b), the initial 7 branch events

are reduced to 4, while no information is lost as the discarded events can be inferred from the

remaining ones.

After iterating between steps 2 and 3 multiple times to analyze all the relationships while

verifying the results, the list was reduced to 20 hardware performance counters. At the end,

PCA is executed to verify the final list.

In the resulting PCA with the reduced list, which is shown in Figure 4.7 (a), the variance

explained using only two dimensions is 91.8%. Compared to the initial 89.14 and the former

89.28 (removing instruction related events), there is a clear increase in the information explained

with fewer dimensions. Table 4.6 shows the updated values for both variance per principal

component and the accumulated variance. Now, with the reduced list of events, up to 96,12%

of the information can be explained with only three dimensions, whereas in the initial and the

former cases this value was lower than 93%. Moreover, with 4 principal components the total

variance is more than 99%. This new result is important as in the previous cases, the 99%

variance was only achieved with 11 and 8 components, respectively.
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(a) (b)

Figure 4.7: PCA and correlation matrix for the reduced list of events.

Table 4.6: Percentage of variance in each principal component for the reduced list of events.
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Variance 82,58 9,207 4,336 2,988 0,661 0,138 0,067 0,013 0,007

Total 82,58 91,79 96,12 99,11 99,77 99,91 99,98 99,99 100

Figure 4.7 (b) shows the correlation matrix for the remaining 20 events. Although there are

still some dark points indicating strong relationship between some pairs of events, no logical

relationship can be established among them, as a consequence, they cannot be discarded as

information could be lost. As an example, L2 storage misses (L2 STM) shows high correlation

to multiple branch events. However, there is no logical relationship between both, so they are

kept. This high correlation could be related to the simplicity of the codes used which make use

of the same simple loops and make the number of memory accesses directly proportional to the

number of iterations.

Therefore, the reduced list cannot be further reduced and the minimum number of events,

which characterize the behaviour of a particular node, is considered to be 20 hardware perfor-

mance counters. In the case of the Xeon E5-4620, the list of events is similar, with 21 events.

The result for both processors can be seen in Table 4.7, where events are classified in different

types.

In the case of the second processor, multiple events were found to have negative values due

to synchronization problems but they were derived events with subtraction. One example is L3

data cache accessed being the difference between L3 cache references and L2 instruction misses,

which confirms that the perfect candidates for removal are redundant derived events based on

subtraction.
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Table 4.7: Events by type in the reduced list for the two experimented processors,
Type XEON E5645 Xeon E5-4620

Branches 4 3

L1 cache 3 2

L2 cache 2 2

L3 cache 2 3

TLB 1 1

Cycles 1 2

Operations 3 3

Instructions 4 5

Total 20 21

4.4.3 Validation

The motivation behind the proposal of this methodology is the high number of available perfor-

mance counters in current processors. This high number of counters makes their measurement

at execution time costly and in some cases impractical. As as example to illustrate this claim, we

use the templates explained previously and measure the initial list of events using multiplexing.

In cases were the problem size is small, for some templates the full list generates invalid

values for the events. Sometimes the events have negative values, this is because the execution

time is short and many groups of events are generated due to the incompatibilities. Therefore,

some groups were not able to be correctly measured.

In contrast, when the reduced list of events was used, this problem did not appear in the

tested templates. With the reduced list, we were able to asses the precision of multiplexing all

the events and the introduced overhead. The overhead in the case of regions with execution

time in the order of seconds, is up to 10 milliseconds and in the case of regions with lower

time, the overhead is in up to 4 milliseconds. This overhead includes the time for both PAPI’s

initialization and instrumentation. As for the precision of multiplexing, in cases where execution

time is less than a second, the general accuracy is between 90% and 99%, although unconditional

branches are not properly estimated. For longer execution times (execution time higher than

one second) the accuracy increases to more than 99%.

Finally we want to check if the two hypotheses stated at the beginning of the chapter are

correct: (a) parallel regions can be characterized and identified using hardware performance

counters; and (b) a reduced list of hardware performance counters, which reduces redundancy,

can be obtained while fulfilling the previous hypothesis. The results obtained with the use of

PCA seem to validate the hypothesis but we propose an experiment to add more evidence to

this validation.

In this new experiment, a simple artificial neural network with only one hidden layer was

trained using the dataset with the final list of hardware performance counter obtained by ap-

plying our methodology. The dataset is divided into two parts: a training set with the full
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dataset except two data sizes (432,000 entries); and a testing set with the two extracted data

sizes (16,000 entries).

After the artificial neural network is trained for ten epochs, the resulting model is able

to predict the two removed data sizes with an accuracy up to 99.98%. The results of this

validation are relevant for two reasons: a) the reduced list of events can correctly represent

parallel regions; and b) they hint that the signatures of parallel regions can be used in machine

learning techniques.

4.5 Conclusions

In this chapter two hypothesis were taken into account: (a) identification and characterization of

parallel regions can be performed using the hardware performance counters available in a system;

and (b) the list of hardware performance counters can be reduced to minimize redundancy, while

still able to characterize and identify parallel regions.

To prove both hypotheses, the monitoring of hardware performance counters is necessary

and PAPI was integrated into MATE.

A methodology was created for the reduction of the list with three main steps:

• Collect hardware performance data. The values of hardware performance counters

are collected with different kernels for multiple problem sizes and compilation flags.

• Data exploration. Principal component analysis is used to visualize the collected data

from each kernel and obtain a visual representation. Additionally, PCA can help to find

redundant hardware performance counters if they have the same weight in each principal

component.

• Signature reduction. Correlation analysis is performed between pairs of hardware

performance counters. If high correlation appears in a pair, the pair should be analyzed

logically to check if the redundancy is real, so one counter can be discarded.

In the experimentation, PAPI preset events were used to generate a list of hardware perfor-

mance counters for each processor, 58 events in Xeon E5645 and 51 in the case of Xeon E5-4620.

A parallel OpenMP implementation for STREAM benchmark was used in the two systems to

find redundant counters with 56 problem sizes and two compiler configurations.

After applying the proposed methodology, the list was reduced to 20 hardware performance

counters for Xeon E5645 and 21 for Xeon E5-4620.

An artificial neural network was trained to check if the reduced list was able to correctly

characterize the kernels. The generated model provided an accuracy of almost 100%, validating

both the reduction and the two initial hypotheses successfully.
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The methodology to generate an equivalent and reduced set of hardware performance coun-

ters was published in [74].
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Chapter 5

Building Datasets for Performance

Tuning

This chapter explains our proposal for building a representative and balanced dataset for per-

formance tuning.

Results obtained in the previous chapter showed that a signature built with the values of the

proper subset of hardware performance counters can be used to characterize the execution of an

OpenMP parallel region for a given number of threads, binding and problem size. This means

that it is possible to use these signatures for building a dataset of OpenMP parallel regions’

executions with the objective of using it for performance tuning.

In the previous chapter we developed a methodology to significantly reduce the number of

metrics due to redundancy. However, there is another challenge when creating datasets with

signatures: how to determine if a given parallel region pattern shall be included in a dataset for

training purposes?

Determining if a set of data should be integrated into a dataset or not is considered to be

a crucial problem in machine learning and data mining. The accuracy of training a machine

learning model with an imbalanced dataset is not representative of its global accuracy. When

training a model, the imbalance generated by classes with a big skew in the number of samples

provide more information for some classes compared to others, which may generate models

unable to provide appropriate results when the target class is underrepresented [75] [76] [77].

Therefore, determining which parallel regions can be considered patterns representative of the

behaviour found in other parallel regions, to generate representative and balanced datasets, is

one of the most important challenges when building datasets for performance tuning.

The main objective of this chapter is presenting a methodology to generate a balanced and

representative dataset of OpenMP parallel regions, which we call pattern collection. Each

pattern included in the pattern collection should cover a unique portion of the N-dimensional
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space represented by the values of the hardware performance counters. Unique means here that

each pattern should not fully overlap with other patterns in the search space represented by the

dataset.

The methodology explained in this chapter makes the following assumption: the hardware

performance counters used to generate code signatures have been already determined and re-

duced, using either the approach from the previous chapter (Chapter 4: Signature Reduction)

or an alternative approach. Moreover, this methodology can be used either to expand properly

built training sets or to create new datasets.

Figure 5.1 shows the general overview of the methodology proposed in this chapter. The

current, potentially empty, pattern collection is assumed to be balanced and representative. We

consider that a candidate covers a new part of the search space, and should be included in the

collection as a new pattern, if it is not highly correlated with any pattern already included in

the pattern collection.

In the case of finding an OpenMP parallel region, which may be an attractive candidate for

inclusion in the collection, the following steps are performed by the proposed methodology to

check if it covers a new part of the input space:

• Characterization of a candidate kernel. The candidate parallel region is executed to

obtain its signatures. The execution is performed for different threads configuration in the

system, in order to characterize all the possible combinations of threads and affinities in

multiprocessor systems.

• Building candidate kernel representation. Once the signatures characterizing the

candidate are obtained, the signatures are joined in a particular order creating a represen-

tation of the candidate kernel as a vector. This shape is necessary for further use in the

correlation analysis.

• Correlation analysis. The last step is to perform a correlation analysis between the

vector of the candidate and the vectors of each pattern considered to be representative,

which are in the pattern collection, to determine the extent of their similarity.

Figure 5.1: Methodology to determine if a pattern covers a new part of the search space and
should be included in the dataset.

After all the candidates are analyzed and the new patterns are included in the pattern
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collection, the collection is validated: a classifier model is trained with the pattern collection

obtained after applying the proposed methodology; and the generated model is validated by

classifying the discarded candidates, which should be classified as the pattern they showed more

similarities to and lead to them being discarded.

5.1 Description of the pattern collection

The dataset built in this chapter is called pattern collection. But there is one main question:

What does this dataset contain? We answer this question in this subsection.

First, from an outer perspective, there are all the executions for each pattern in the collection

for a specific configuration. It is important to note that each dataset only works for a certain

hardware configuration, so to characterize two machines with different hardware, a new dataset

must be built, as the dataset probably will not work for the machine it was not created for.

However, if there are multiples machines with the same characteristics, the dataset can be used

for all of them. This limitation exists because for different hardware configurations we may

collect different hardware counters values even if the same hardware counters are collected due

to distinctive clocks in the systems, different memory sizes and other hardware characteristics

of the processor and/or memory hierarchy.

Then, for each pattern in the collection the signatures for each combination of execution

parameters are included, the execution parameters being: number of threads and their affinity,

compilation flags, repetition number, problem size and/or other additional parameters if neces-

sary. Furthermore, as this collection is used with the goal of, at a later time, build performance

models, additional metrics and performance parameters can also be included as desired (ideal

number of execution threads, execution time, scheduling policy, etc).

Furthermore, each pattern is executed for multiple problem sizes to have a representation of

the behaviour in each memory level of the system’s hierarchy.

5.2 Determining problem sizes for the pattern collection

This subsection introduces how we systematically determined problem sizes when building a

pattern collection with the objective of stressing each particular memory level and generate a

dataset that is also balanced with respect to the memory hierarchy.

When determining problem sizes, they must be directly proportional to the memory size in

each level of the memory hierarchy. One the one hand, in the case of memory levels inside the

processor (caches such as L1, L2 and L3), problem sizes must also be proportional to the number

of physical cores in one processor. On the other hand, for memories outside the processor,

problem sizes must be proportional to the number of processors in the system, instead of the

number of cores.
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Let’s use Figure 5.2 as an example to explain the methodology to determine problem sizes

for a particular system. The system in the figure is composed by two processors, as seen in

Figure 5.2 (a), with three cache levels: private L1 per core, private L2 per core and a L3 which

is shared between all cores inside the processor. In Figure 5.2 (b), the total memory by processor

in each cache level is shown. In addition, there is the system’s main memory which is shared

between both processors.

Taking into account the characteristics of the system, the problem sizes are defined in the

following way:

• Private cache levels. Each core in the processor has private memory to be used by the

threads allocated in that particular core, in this case L1 and L2. To stress the multiple

private cache levels, multiples problem sizes are defined which are directly proportional to

the resources and defined by the multiplication of the number of private cache levels and

the number of cores in one processor. Furthermore, for each cache level, problem sizes

are defined starting with the size of one private cache and multiplied by the different core

configurations, ending with the accumulated size of the private caches in the same level.

In this way, in the machine presented in the figure, each L1 private cache has size 32KB

and there are a total of six private caches, with a total of 192KB in L1. The resulting

problem sizes in KB are: 32, 64 (Figure 5.2 (c) to (e)), 96, 128, 160, 192 (Figure 5.2 (f) to

(h)). In the case of L2, each private cache is 256KB and the total is 1536KB, resulting in

problem sizes (in KB) of: 256, 512, 768, 1024, 1280, 1536 (Figure 5.2 (i) to (k)).

• Shared cache levels. Each processor has some shared memory between all the cores

and threads allocated in the processor, in the case of this system there is a shared L3

cache. In this case, the problem sizes to stress shared cache levels are bigger than the

accumulated size of the lower level cache and slightly lower than the maximum shared

memory in the current cache level. This range is used to ensure that the lower level caches

cannot accommodate all the memory needed and, at the same time, the current cache level

is not filled so the higher memory level in the hierarchy is avoided. With the characteristics

of the example processor, six problem sizes are defined, one size per core in the processor.

The first problem size with 2MB, which is slightly bigger than the accumulated 1.5MB of

L2, and the last problem size of 11.5MB (slightly smaller than L3 cache of 12MB).

• Main memory. The biggest problem sizes are defined for the usage of the main memory.

In this case the number of problem sizes is proportional to the number of processors in

the system plus one. The initial problem size is bigger than the last level cache of the

processor and the other sizes are obtained gradually increasing the necessary memory.

The last problem size is 1.5 times the aggregated size of the last level cache of all the

processors in the system. Using the machine from the example, where 12MB is the last

level cache size in one processor, the problem sizes would be 12.5MB or slightly bigger

for only one processor, for two processors 25MB and the latest problem size will be 1.5 of
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Figure 5.2: (a) Cache hierarchy and size in a system with two processors
(b) Total memory per cache level
(c-e) Cache usage with 64KB for one, two and 6 threads
(f-h) Cache usage with 192KB for one, two and 6 threads
(i-k) Cache usage with 1536KB for one, two and 6 threads
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their aggregated capacity, which is around 37.5MB.

With this approach for defining problem sizes, two significant objectives are accomplished:

1. The problem sizes and their number is tailored to the memory hierarchy of the system the

dataset it was created for, obtaining a dataset also balanced with respect to the memory

hierarchy because the number of cases will be adequate to reflect its characteristics.

2. As the problem sizes are clearly defined, there is a better knowledge of the executions

which stress each particular memory level. Enabling future refinements in the design of

the dataset and for its use to train machine learning models.

5.3 Characterization of a candidate

The first step of the methodology is the generation of the candidate’s signature to be assessed.

In order to obtain the signature of an OpenMP parallel region in a given system, the region

should be executed multiple times (for statistical significance) and also under certain conditions.

The conditions for the executions are combinations of the following parameters:

• Number of threads. The parallel region is executed using different threads configuration

available in the system, from the minimum number of cores (serial execution) to the

maximum number of cores available in the system. As an example, if we have a machine

with 12 physical cores, twelve configurations of this parameter are used from 1 thread to

12 threads, both included.

• Thread affinity. OpenMP offers two methods of assigning threads to cores, these are:

close affinity, where threads are bound to contiguous cores; and spread affinity, where

threads are bound in a round-robin fashion when there are multiple processors in the

system. Given the impact of thread assignment in the memory footprint, specially in

NUMA systems, the parallel region is executed using both options for every declared

thread configuration.

Moreover, the problem size the candidate is executed with when obtaining the signatures for

the correlation analysis is important. The overhead generated by OpenMP should be negligible,

so a problem size which makes use of either L3 or main memory should be used.

Finally, with the objective of increasing the accuracy of the candidate’s signature, hardware

counter multiplexing is not used, so multiple executions are required to obtain all the counters’

values, where each execution measures only one set of counters. Consequently, the total number

of executions when executing a candidate kernels can be computed using expression (5.1)

n executions = repetitions ∗ affinities ∗ n cores ∗ counter sets (5.1)
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Figure 5.3: Methodology to build the candidate kernel representation.

5.4 Building candidate kernel representation

The second step of the methodology can be seen in Figure 5.3. In this step, the representation

of the candidate kernel is generated with the performance data previously collected.

The candidate kernel representation is built as follows:

1. The execution data for each set of hardware performance counters is joined and

sorted by the number of threads used in the execution, their affinity and the repetition

number. Additionally, as outliers can appear due to warming up cache, the one or two

first repetitions for each case are removed.

2. Remove non-hardware performance information. The information used in the cor-

relation analysis is related only to the signatures for each execution. However, as there

is extra information such as the execution’s configuration (threads, affinity and repeti-

tion number), hence this information should be removed from the dataset. This small

step leaves only the information related to hardware performance counters describing the

behaviour of the candidate.

3. Normalization of the hardware performance values. All the executions are normal-

ized to avoid the values of the counters being directly proportional to the total execution

time, obtaining a better behaviour representation of a candidate. This normalization is

done with the counter related to cycles and each counter is divided by it, obtaining in each

case a ratio of events per cycle. Another benefit of this normalization is that the values

of the counters are between 0 and 1, except in cases where one event may be bigger than

the number of cycles, which may happen in cases such as the total number of executed

instructions.

4. Flattening. The dataset should be converted into a vector of signatures because correla-

63



tion is applied between vectors.

At the end, a sorted vector of signatures for all the executions, in the formerly specified

conditions, representing the candidate is obtained and hence correlation analysis can be applied.

5.5 Correlation analysis

The last and most important step of the methodology consists of performing a correlation

analysis between the patterns in the collection and the candidate. The correlation analysis is

performed to determine whether the candidate covers a new part of the search space or not.

As it was mentioned in Section 3.3, Pearson’s correlation is used in cases where data follows

a normal distribution. As this assumption may not hold with signatures composed of hardware

performance counters, this method has been discarded.

In this case the correlation analysis uses two different methods: Spearman and Kendall’s

Tau. Spearman’s rank correlation is based on deviation between two series of data, and it is also

more sensitive to data errors and discrepancies. On the other hand, Kendall’s Tau is based on

concordance and discordance between data pairs, which makes it effective for detecting trends.

In general, result provided by both methods lead to the same inferences in the data, so the use

of both methods serves to increase the robustness of our methodology.

The result from applying both correlation methods is used to decide whether a candidate

should be included in the pattern collection or not, as its behaviour could already be represented

in the space described by current pattern collection. If both methods indicate that the candidate

kernel is not highly correlated to any pattern in the current pattern collection, this candidate

should be included in the collection as a new pattern, because it can be considered to cover a

new part of the search space.

The most important point when applying correlation analysis is determining a correlation

coefficient threshold between the candidate kernel and the patterns in the collection. A threshold

which can be regarded as high enough to ensure the exclusion of the candidate as a pattern.

Threshold values for both methods may vary depending on the problem at hand, but a correlation

coefficient higher than 0.7 is in general regarded as very high [78] [79].

Patterns that are not highly correlated would likely require different performance tuning

strategies. Therefore, we adopt a stricter criterion and consider that the two patterns are highly

correlated if their Spearman’s rank correlation coefficient exceeds 0.9 (90%); and in the case of

Kendall’s tau, the correlation coefficient must exceed 0.8 (80%). Empirically, this combination

also worked well for our problem as similar patterns reported correlation values which exceeded

the defined thresholds.

Figure 5.4 shows an overview of the workflow performed in the correlation analysis. First, a

correlation matrix is built and initialized to 0. This matrix will have one row for each pattern
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Figure 5.4: Correlation analysis workflow.

in the collection and four columns to store the Spearman’s rank, the Kendall’s tau, and the P

value of Spearman’s rank with the statistical significance and the problem size.

Next, Kendall’s and Spearman’s correlation analysis are applied between the candidate kernel

representation and all the problem sizes for each pattern in the pattern collection. The analysis

provides both correlation coefficients and the Spearman’s rank statistical significance. Then,

for each pattern, the information associated with the maximum Spearman’s rank (coefficient

values, P value and the corresponding problem size) is stored in the correlation matrix.

Finally, the candidate kernel is discarded if it is highly correlated with at least one pattern

in the collection. The criteria for discarding a pattern being at least one row in the correlation

matrix with a Spearman’s r>0.9, Kendall’s tau>0.8 and a P value<0.05. If the criteria is

fulfilled, the pattern is discarded because we consider that it does not cover a new portion of

the search space. Otherwise, the candidate kernel is considered to cover a new portion of the

search space and it is included into the collection as a new pattern.

To include a candidate as a new pattern in the collection, the candidate must be executed

for all the problem sizes included in the pattern collection, in order to obtain the corresponding

signatures.

5.6 Experimentation

In this section the proposed methodology is applied to incrementally construct a dataset of

OpenMP parallel patterns. Additionally, the ANN described bellow is leveraged to validate the

collection and demonstrate the importance of using a balanced dataset. Figure 5.5 summarizes

the workflow followed in this experimentation:

• Phase 1: Building the pattern collection. The pattern collection is built applying

the steps described in this chapter (characterization of a candidate, building candidate

kernel representation and correlation analysis).

• Phase 2: Validating the collection. The pattern collection is validated and the im-

portance of using a balanced dataset is illustrated using an ANN.
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Figure 5.5: Experimentation’s workflow.

The candidate kernels for building the pattern collection are extracted from two different

and well-known benchmarks:

• textbfSTREAM (Sustainable Memory Bandwidth in High Performance Computers) [80] is

a synthetic benchmark composed of simple vector kernels to measure sustainable memory

bandwidth. This benchmark was also used in the previous chapter.

• textbfPolyBench [81] [82] is a collection of benchmarks with multiple kernels. Version 4 was

used which includes 23 different benchmarks divided in different categories (datamining,

linear algebra, medley and stencils).

The experimentation for this methodology is performed in the same machines described in

Chapter 4 (see Table 4.3 in Section 4.4.1). The main differences between the two machine is the

number of cores of the system, as Dell T7500 has 12 cores between both processors while the

PowerEdge has 32 cores between its four processors.

The explanation of the experimentation is performed using the Dell T7500. The results for

the PowerEdge will be shown at the end of this section.

Both benchmarks were executed using float elements, so the number of counters used is

less than the ones described in the former hardware counter reduction. This is because events

regarding vectorization and doubles report values of 0, therefore these were also discarded to

reduce the groups of events needed to measure, and to avoid having events with 0’s in the

dataset. Therefore, only 18 hardware counters are used as the features to create the executions’

signatures.

To obtain the characterization of a kernel on Dell T7500, Equation 5.1 is used. According to

the equation, 9000 executions are needed to generate 1800 signatures for each candidate. The

following combinations of parameters must be executed:

• Number of threads. The machine has twelve cores, so executions from 1 core to the maxi-

mum of 12 are necessary.

• Thread affinities. The affinities available in OpenMP are close and spread as explained

previously.

• Number of repetitions. 75 repetitions were executed to attain statistical significance.
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• Number of event sets. To obtain all the values of the hardware performance counters five

groups of events were necessary to cover the 18 counters.

Furthermore, when a candidate is regarded as a pattern, this number of executions (9000)

is multiplied by the number of problem sizes needed to obtain the behaviour at the different

memory levels. In the case of this system, 21 problem sizes are needed, so in total (9000*21)

189000 executions are necessary to fully characterize each pattern. If this number is divided

by 5 (number of event sets), 37800 signatures are necessary to characterize a pattern in the

collection.

Initially, the first group considered as possible candidates are the four kernels extracted from

STREAM. These kernels were introduced in section 4.4 and their code shown in Listing 4.2

As the pattern collection is originally empty, the collection is initialized using the Copy

pattern. Then, the methodology is applied for the remaining candidates. Therefore, as Copy

must be included in the collection, the representation for each problem size must be obtained, and

it is executed a total of 189000 times. In contrast, the remaining three kernels are candidates and

must be executed only for one problem size, which should be big enough to minimize OpenMP’s

overheads for 9000 executions. MATE [44] [45] is used to acquire the hardware performance

counters values for each of execution and compute the signatures for each kernel.

Once the pattern collection has been initialized with all Copy’s signatures, and one sig-

nificant signature has been computed for Add, Scale and Triad, we perform the correlation

analysis. Table 5.1 shows that the values of Spearman’s rank and Kendall’s tau, between the

three candidate kernels (Add, Scale and Triad) and the pattern in the collection (Copy), are

below the conditions (r>0.9 and tau>0.8) established in the methodology for considering them

to be covering the same region of the input space.

However, Table 5.1 also shows that there is a very strong correlation between the three

candidates, which is clearly above the threshold. This relationship is observed in Figure 5.6,

which shows that none of the candidate kernels are highly correlated with the Copy pattern,

but also shows that they are strongly correlated to each other.

Table 5.1: Table with maximum correlation coefficients for STREAM kernels.
Copy Triad Add Scale

S K S K S K S K

Copy 0.82 0.78 0.86 0.82 0.85 0.83

Triad 0.82 0.78 0.99 0.95 0.99 0.93

As a result, only one of the candidates shall be included in the pattern collection. The

chosen pattern is Triad because it is the result of the composition between Add and Scale, so it

is logically the most general one between the candidates.

Consequently, after applying the methodology to the kernels extracted from STREAM, the
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Figure 5.6: Figure with maximum correlation for STREAM kernels.

pattern collection will contain the following patters:

• Copy. Pattern abstracting memory accesses (read and/or writes) in consecutive memory

positions.

• One dimensional group. The Triad’s name is altered and renamed as a pattern which

abstracts operations involving one-dimensional vectors.

Next, we extend the pattern collection using PolyBench from which we have extracted 29

new candidate kernels. PolyBench did not provide a parallel version, but we realized that it was

simple to implement and OpenMP parallel version of several of the benchmarks stored in the

directories blas, kernels and stencils.

After executing all the parallel kernels of PolyBench and generating their candidate kernel

representations (signatures), we incrementally detected new patterns and included them into

the pattern collection. These new detected patterns are described as follows:

• Reduction. Abstraction of reduction operations. Such as the addition of all the elements

in a vector (red =
∑

c[i]).

• Stride. Abstraction of non-contiguous memory access, memory accesses are performed

with a certain stride (c[stride · i] = a[stride · i]).

• Rows Stride. Abstraction of memory accesses involving column-wise traversal of a matrix

(c[i ·N ][j] = a[i ·N ][j]).

• Matrix x Vector. Abstraction of different matrix-vector operations, such as the matrix-

vector product (A = B × v).

• Matrix x Matrix. Abstraction of different matrix per matrix operations, such as the

matrix-matrix multiplication (C = A×B).

• Stencil. Abstraction of multi-dimensional stencil operations, such as: A[i][j] = A[i −
1][j] +A[i+ 1][j] +A[i][j − 1] +A[i][j + 1].

Figure 5.7 shows the correlation analysis between the patterns included in the collection and

PolyBench’s discarded kernels. It can be clearly seen that all these kernels are highly correlated

to at least one of the patterns in the collection.
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Figure 5.7: Spearman rank and Kendall’s Tau correlation between PolyBench discarded kernels
and the pattern collection.

Summarizing, the resulting dataset obtained from the STREAM and PolyBench benchmarks

is composed of the following patterns: Copy, One dimensional group, Stride, Rows stride,

Reduction, Matrix x Vector, Matrix x Matrix and Stencil.

The patterns obtained in the case of Dell Poweredge R820 with the same candidates are:

Copy, Scale, Triad, Stride, Reduction, Matrix x Matrix.

The signatures of the discarded kernels were kept and will be used in the next section to

validate the methodology.

5.7 Validation with pattern detection model

In order to validate both the methodology and the collection obtained in the previous section, we

have used the pattern collection to train an Artificial Neural Network for generating a pattern

classification model.

The ANN model is a Fully-connected and Feed-forward Neural Network with the architecture

described in Table 5.2.

The first layer is the input layer where there are as many inputs as hardware performance

counters in the kernels’ signatures.

The SELU activation function was selected for the hidden layers of the network, which

provide several benefits: self-normalizing, cannot die as Rectified Linear Units do, and do not
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produce vanishing or exploding gradients [83].

The output layer utilizes the Softmax function paired with Categorical Cross-Entropy, al-

lowing the model to perform classification for multiple classes. Therefore, the network outputs

a vector of probabilities of a given instance in the dataset belonging to each pattern.

The potential for the network to overfit is counteracted with a probabilistic dropout and

constraining the networks’ weights [84]. During iterations of training, each neuron in the hidden

layers of the network is temporarily removed with a 10% probability. Due to the low number

of neurons in each network layer, increasing the dropout probability past 10% could prevent

the model from converging. A constraint was applied to the weights incident to the hidden and

output layers by clipping them to the range [-10, 10]. This helps to regularize the weights and

prevents only a small number of them from dominating the network.

The Adam optimizer [85] was selected for training by stochastic gradient descent with learn-

ing rate α = 0.001 and exponential decay rates β1 = 0.9 amd β2 = 0.999. The selection of these

hyperparameters is less significant as the regularization provided by the SELUs allow for much

higher learning rates and decays while maintaining a relatively smooth convergence rate [86].

As explained previously, each pattern in the collection was executed for 21 sizes, twelve

thread combinations, two different affinities and 75 repetitions, so for each pattern there are of

37,800 signatures. Given that there are 8 pattern in the collection, the total number of signatures

is 302,400.

The signatures have been divided in a 80% (241,920 signatures) for the training and a 20%

(60,480 signatures) for the test. The artificial neural network has been trained for only 24 epochs

using batches of 100 signatures. The model obtains a final loss of 0.0301 and an accuracy of

98.93%.

Next, a validation set has been built using the signatures of the discarded kernels from both

STREAM and PolyBench. Additionally, multiple kernels have been extracted from the NAS

parallel benchmarks (NPB) [87]. NPB is composed of 8 different benchmarks which are widely

known and used in parallel supercomputers to study the performance of parallel systems [87].

Specifically, we used the following ten OpenMP parallel kernels extracted from the NPB:

Table 5.2: Artificial Neural Network Architecture

Layer Neurons Inputs Activation Weight Constraint Dropout

Input N/A 18 N/A N/A 0%

Hidden 1 18 18*18 SELU Clip [-10.0, 10.0] 10%

Hidden 2 16 18*16 SELU Clip [-10.0, 10.0] 10%

Output 8 16*8 Softmax Clip [-10.0, 10.0] 0%
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Table 5.3: Accuracy of the ANN for the discarded kernels.

Number of kernels Accuracy

Copy 3 0.93

1D group 3 0.9

Stride 3 0.91

Rows stride 0 -

Reduction 0 -

Matrix x Vector 5 0.9

Matrix x Matrix 5 0.87

Stencil 12 0.99

• Add BT and rhs norm BT. These kernels correspond to the add and rhs norm BT’s func-

tions, respectively.

• normztox CG, norm temps CG, rhorr CG, z alpha p CG, pr beta p CG, and qAp CG. Which

are regions that have been extracted from different CG’s functions.

• l2norm LU. Which corresponds to the l2norm Lu’s function.

• ssor LU. Which is an OpenMP parallel region extracted from the LU’s ssor function.

Table 5.3 shows the very high accuracy of the trained classification model on the signatures

of the kernels extracted from the STREAM and PolyBench benchmarks that do not have been

chosen for building any of the pattern representations (discarded kernels).

The results show that the discarded kernels in the classification model are generally classified

correctly, obtaining an accuracy that ranges between 0.87 and 0.99. Although this is a result

which verifies that the methodology works correctly, there are some cases where a more detailed

explanation is needed.

For some of the discarded kernels, although the code looks similar to another pattern and the

correlation analysis also defined it as the pattern the code is similar to, the accuracy is lower.

One clear example is the parallel region doitgen 1 extracted from the PolyBench benchmark

doitgen. The code of this kernel can be seen in Listing 5.1 and it is clearly a Copy, but the

model only detected 70% of the cases as Copy. Looking for the reason of this low accuracy, we

saw that this particular region is one where due to restrictions in the code of PolyBench, the size

of sum is small ( defyned by PB NP as 160 ) and therefore the overhead caused by OpenMP is

high.
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Figure 5.8: Accuracy for the ANN from lowest (left) problem size to the highest (right).

1 #pragma omp p a r a l l e l f o r

2 f o r (p = 0 ; p < PB NP ; p++)

3 A[ r ] [ q ] [ p ] = sum [ p ] ;

Listing 5.1: Code of the doitgen 1 kernel extracted from PolyBench.

Moreover, this issue is also discovered when looking at the accuracy of the ANN model for

each problem size. Figure 5.8 shows the accuracy from the smallest problem size (first from

left hand side) to the biggest problem size (first from right hand side). It is clear that as the

problem size increases the accuracy of the model increases too as the kernels have less overhead.

Furthermore, the biggest problem sizes make use of memories in higher levels of the hierarchy,

obtaining more information from hardware performance counters.

In addition, there is a second special case observed in the gemm kernel, its code can be

seen in Listing 5.2. Initially, several models were trained to check for differences in the training

because of the randomness of both selecting the data for the training set and the shuffling of

the data while training. Due to different signatures being used in the training and also different

order when training, the obtained model can have different weights and biases, resulting in

differences in the classification. In the majority of the created models, the gemm kernel was

correctly classified as the pattern it has higher correlation with, the Matrix x Vector pattern.

Nonetheless, in the case of a small number of models, this pattern was erroneously classified

as a Stencil pattern. This problem appeared even with the current configuration of the ANN,

which was obtained applying additional regularization techniques and an increase in the number

of neurons to overcome overfitting problems and to diminish the lack of expressive ability with

a limited number of trainable parameters.

The source of this problem was discovered looking at the correlation analysis between the

patterns involved, where gemm’s kernel is highly correlated to both patterns instead of only to

one of them. This relationship can be observed in the previous correlation analysis in Figure

5.7, where some other kernels are also highly correlated to more than one pattern.
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Figure 5.9: Correlation coefficients between NPB extracted kernels and the pattern collection.

1 #pragma omp p a r a l l e l f o r p r i va t e ( i , j , k )

2 f o r ( i = 0 ; i < PB NI ; i++) {
3 f o r ( j = 0 ; j < PB NJ ; j++)

4 C[ i ] [ j ]∗=beta ;

5 f o r ( k = 0 ; k < PB NK ; k++)

6 f o r ( j = 0 ; j < PB NJ ; j++)

7 C[ i ] [ j ]+=alpha ∗A[ i ] [ k ]∗B[ k ] [ j ] ;

8 }

Listing 5.2: Code of the gemm kernel extracted from PolyBench.

Table 5.4: Classification of the kernels extracted from the NPB using the trained ANN

NAS kernel Predicted Pattern

Add BT One dimensional group (97%)

l2norm LU Reduction (88%)

norm temps CG Reduction (100%)

normztox CG One dimensional group (100%)

pr beta p CG One dimensional group (99%)

qAp CG Reduction (94%)

rhorr CG Reduction (100%)

rhs norm BT Reduction (88%)

ssor LU One dimensional group (98%)

z alpha p CG One dimensional group (84%)

The last part of the validation is performed with the kernels extracted from the NPB bench-

marks. Table 5.4 shows the results produced by the pattern classification model for the 10
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extracted kernels. In this case, we are proceeding the other way around because there is no

previous correlation analysis that tells us to which pattern each of the kernels is highly corre-

lated to. Consequently, to validate the classification done by the model, we have computed the

correlation coefficients of each kernel signature to the patterns in the dataset. Figure 5.9 shows

both correlation coefficients (Spearman’s rank and Kendall’s tau) between the NPB candidate

kernels and the patterns in the dataset. It is clearly seen that the plotted results align with the

classification given by the model. This results demonstrates that the ANN can also be used to

detect candidate patterns no included yet in the dataset.

Finally, we have devised an experiment to show the importance of using a balanced training

dataset. It consists of training an ANN model multiple times using an imbalanced dataset

(discarded kernels are included in the pattern collection), validating the resulting model using

some of the kernels extracted from NPB, and comparing the results to the previous results for

the NPB benchmarks with the balanced dataset (see Table 5.4).

To simplify the experiment, the imbalanced dataset includes several dsicarded kernels of the

One Dimesional group, Stride and Stencil patterns as independent classes and does not include

kernels for the Matrix x Vector and Matrix x Matrix ones. We use the following kernels:

• Copy

• Add, Scale, Triad (form the One Dimensional group).

• Reduction.

• Stride2, Stride4, Stride 16 and Stride 64 (from Stride).

• 2PStencil and 2D4PStencil (from Stencil).

Table 5.5 shows the most frequent results produced by the ANN models trained using the

unbalanced dataset. It can be seen that for the considered kernels that, in contrast with the pre-

vious results, the results using the imbalanced dataset are flipping between different possibilities,

which for some cases belong to completely different patterns.

Table 5.5: Prediction given by the ANN model trained with the unbalanced set.

Kernel Prediction

Unbalanced Set

Add BT Add (65%), Scale (35%)

norm temps CG Reduction (36%), 2D4PStencil (64%)

pr beta p CG 2PStencil (31%), Triad (68%)

rhorr CG Reduction (46%), 2D4PStencil (54%)

rhs norm BT Reduction (77%), 2D4PStencil (15%)

ssor LU Triad (32%), 2PStencil (62%)
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5.8 Unsupervised learning results

In the previous subsection it was possible to see that a classification method based on supervised

learning (an Artificial Neural Network) could successfully create models with hardware perfor-

mance counters. Hence, a question arises, what happens when unsupervised learning methods

are used?

Figure 5.10: PCA for Copy and Triad from STREAM.

Figure 5.10 shows the PCA of Copy and Triad from the STREAM benchmark, which are

included in the pattern collection. Each pattern is shown in a different color and point at the

left of the PCA are small problem sizes, as we move to the right in the dimension defined by

PC1, the problem size increases.

Looking at the PCA, it is easy to see that unsupervised method will likely perform classifi-

cations by problem size rather than by pattern.

One of the most well known unsupervised methods is K-means. This approach classifies

data in different groups (called clusters) using centroids, which position is randomly generated

and updated to minimize distances to the nearest elements to each centroid, at the end, each

element is classified to the nearest centroid.

Figure 5.11 shows the result of applying K-means with two, three and four centroids. In

the case of using only two centroids, the classification is performed in two clusters, one with

small problem sizes and another with bigger problem sizes. The only difference of using a higher

number of centroids is that more clusters of sizes are generated, as can be seen when using three

and four clusters.

Consequently, the models generated with unsupervised learning were unable to classify by

pattern. Instead, as unsupervised learning looks for similarity in the data, a classification can
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(a) Two clusters (b) Three clusters (c) Four clusters

Figure 5.11: PCA and correlation matrix for the reduced list of events.

be achieved per problem size, which may be useful to detect different workloads.

5.9 Conclusions

In this chapter a methodology to build datasets which can be used to generate models for

performance tuning using machine learning has been developed.

The dataset is called pattern collection and should be both balanced and representative

of patterns in OpenMP parallel regions. Each pattern in the collection should cover a unique

portion of N-dimensional space represented by hardware performance counters.

The methodology assumes that the hardware performance counters used are non-redundant

(the methodology from the former chapter has been applied to select them).

When a kernels wants to be integrated into the collection, the methodology is applied to

check whether the candidate is a new pattern or it is already included in the collection. The

methodology’s step are:

• Characterization of a candidate pattern. The candidate is executed to obtain its

signatures for two thread affinities (close and round robin) and from 1 thread (serial

execution) to the maximum number of cores in the system.

• Building candidate kernel representation. A representation of the candidate where

outliers are removed is generated. This representation only signatures normalized to the

number of cycles and all the executions are included in a flattened vector.

• Correlation analysis. A correlation analysis is performed between the candidate and

the pattern included in the dataset. If the candidate obtains correlation values higher

than the predefined thresholds, the candidate is considered to be already covered by the

patterns in the collection. Otherwise, the candidate is considered a new pattern to be

included in the collection.
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STREAM and PolyBench benchmarks were used to obtain kernels and provide candidates

for the collection in two different systems. A total of 33 kernels were considered candidates

and after applying the methodology, 8 patterns are found for Dell T7500 and 6 patterns in Dell

PowerEdge R820.

The pattern collection was validated using an Artificial Neural Network which was trained

using the patterns in the collection and the generated model was tested using the kernels dis-

carded during the pattern collection’s generation.

The validation is considered successful as the discarded candidates were classified correctly

with an accuracy which ranges from 87% to 99%. Most of the cases incorrectly classified belong

to the smallest problem sizes, where L1 and L2 are used, so there is less information because

higher memories in the hierarchy are used. An additional reason is that OpenMP operations

have higher impact in hardware performance counters in smaller problem sizes because execution

times are short.

Furthermore, we tried to use unsupervised learning to classify the pattern collection. How-

ever, in the results we detected that the classification with unlabeled data generated a model

which provided classifications closely related to problem sizes instead of OpenMP patterns.

The methodology to build balanced and representative datasets was published in [88].

77



78



Chapter 6

Dealing with Naturally Imbalanced

Datasets

This chapter explains how some datasets are imbalanced by nature. In addition, some methods

are presented to deal with imbalanced datasets when they are used to learn models in machine

learning.

There are real problems where the obtained data is naturally imbalanced, such as fraud

detection or medical data. In the case of fraud detection, a database is analyzed in [89], this

dataset contains records with cases for automobile insurance with a data distribution of 6%

fraudulent cases and 94% legit transactions. Other datasets for credit card fraud also show that

fraudulent charges are a minority ([90] shows 2420 fraudulent cases in 31 million cases of the

same operation type). This imbalance also appears in medical data, in [91] multiple datasets

are described (see Table 6.1) which are naturally imbalanced as the incidence in each pathology

is a minority, in the case of the WD dataset(breast cancer), less than 100 detected cases per

each 100,000 patients.

Table 6.1: Characteristics of multiple medical datasets

Dataset Name Total Instances Minority Class Majority Class

SP 267 55 212

MA 962 446 516

WD 569 212 357

CO 368 136 232

OST 313 85 228

In the same way, datasets for performance tuning can be naturally imbalanced due to charac-

teristics of the hardware and/or the parallel programming paradigm, which may have a predilec-

tion towards a limited set of configuration values. Accordingly, because of this predilection

towards some parameter configurations, the previous dataset may become imbalanced, because
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the dataset was designed to generate a balanced and representative collection of patterns. This

imbalance can be clearly seen in Figure 6.4, where out of 12 thread configurations, one thread

configuration is the ideal for approximately an 35% of the cases in the dataset.

As a consequence of the imbalance found in the dataset, machine learning techniques may

underfit and not generate appropriate models because of incorrect inferences from the less repre-

sented configurations in the dataset [92]. Therefore, techniques to counter or reduce the effects of

imbalance, when generating models using the dataset, are necessary for the automatic generation

of performance models with machine learning.

There are three main types of methodologies that are applied to deal which imbalance

datasets when using machine learning. These methodologies are classified in: data, algo-

rithmic and ensemble [93]. All three methodologies are explained in the following sections.

Additionally, a study is presented to validate the accuracy of different models generated by

these approaches for performance tuning against base models. The base models are the result

of applying machine learning algorithms without balancing techniques.

6.1 Data methods

Data methods are based in re-sampling, the objective of re-sampling being to either increase or

reduce the number of samples in a dataset.

The simplest methods are randomized under-sampling and over-sampling [94], that randomly

select cases from the dataset. In the case of under-sampling, the chosen samples from the

majority classes are removed from the dataset, while over-sampling duplicates the randomly

chosen samples from the minority classes.

The main problem with random under-sampling is the loss of information because random

cases are removed. Therefore, samples from which important inferences can be extracted are

lost if unique (samples without duplicates) and representative cases are selected for removal,

which can happen due to the random selection of samples.

In the case of random over-sampling, no new information is introduced, so the model tends

to overfit. The overfitting is caused because of exact duplicates being used in the training, which

diminishes the ability to generalize of the model.

To counteract the problems with random methods and achieve a balanced dataset, methods

which generate synthetic data were developed. One of the initially proposed methods is called

SMOTE [95] (Synthetic Minority Over-sampling Technique). This method over-samples the

minority class using each minority class sample, generating synthethic samples along the lines

joining the sample to each of its k closest neighbors from the same class. Its authors claim

that this approach makes the minority class to become more general. SMOTE is a well-known

over-sampling technique and other researchers have modified it to create multiple variants. For
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example, the python package called smote-variants includes 85 SMOTE variants [96], some of

the variants change how samples are selected and/or how new samples are generated.

An example of SMOTE can be seen in Figure 6.1: (a) the initial dataset is shown where

the minority class is represented with black dots and the majority class with red dots; in (b)

the links between the different minority samples are shown. In this case, some parts of a few

links are nearer to the majority class rather than the class they should represent, which makes

it possible to create samples which could instead belong to the majority class; finally, in (c)

synthetic data (gray dots) is randomly generated along the links and in some cases we have

dubious data, which is clearly closest to the majority class, instead of the class they should

belong to.

Text

Draw links between minority
class samples

Create synthetic data randomly
along linksInitial dataset

(a) (b) (c)

Figure 6.1: Example of SMOTE algorithm.

Another method to create synthetic data is Generative Adversarial Networks (GANs). This

method is composed of two machine learning models called generator and discriminator [97] (an

example can be seen in Figure 6.2). The discriminator is trained to detect whether the input

data is real or synthetic, with an output of probability, and the result of the discriminator helps

to improve the generator’s synthetic data quality. The generator takes samples as input which

is used to generate synthetic data, its objective is to generate samples with enough quality, in

order to fool the discriminator and make it unable to identify it as synthetic. After the GANs

is trained, the generator should be able to generate synthetic data which can help in training

models with imbalanced datasets. This method is still in research and different architectures and

modifications for this model can be found in different new works. These new works attempt to

find an optimal configuration to provide valid data [98] [99]. The main challenge of this approach

is finding the optimal architecture and parameters for both generator and discriminator, which

may be different for different types of datasets.

6.2 Algorithmic methods

Algorithmic methods are modifications of already existing machine learning methods, that apply

different approaches to counter the imbalance in the training data. Some of the approaches in this

methodology are one class learning (or recognition based), threshold moving and cost sensitive
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Figure 6.2: Example of Generative Adversarial Networks.

learning [93].

Cost sensitive learning is applied in some machine learning methods to change their error

function. The new error function is based on the average cost of misclassification between the

real class and the predicted class [100] [101]. The error function is represented as a cost matrix

where each case has a different value and four cases are defined: true positive, false positive,

false negative and true negative. Table 6.2 shows a simple example for a two class classification

problem where predicting a sample correctly has no cost, whereas incorrect predictions have a

predefined cost of 10.

Table 6.2: Simple cost matrix for binary problem
Real

Positive
Real

Negative
Real

Positive
Real

Negative
Predicted
Positive

True
positive

False
positive

Predicted
Positive

0 10

Predicted
Negative

False
negative

True
Negative

Predicted
Negative

10 0

A simple way to assign costs for each class is to use the method compute class weight from

sklearn [102], which defines the matrix where weights are inversely proportional to the frequency

of the data. The weight function can be seen in Eq. 6.1.

weight(class y) =
total samples

(n classes ∗ samples(class y))
(6.1)

In more complex cases, such as fraud detection, the cost matrix would be different as the

costs of canceling credit cards, issuing new cards, reactivating cards and, most importantly, the

fraudulent amount are involved.

6.3 Ensemble learning methods

Ensemble learning methods are the combination (ensemble) of multiple models, which can be

generated by the same or by different machine learning algorithms. Ensemble models formulate

a general hypothesis based on the combination of all the models’ hypotheses [103].
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A way to asses that each model formulates a different hypothesis, is to provide different data

when training each individual model. A methodology called Bootstrap Aggregation is used to

generate subsets of data (called bags) from a dataset to train ensemble models. This method

randomly select different data points, which can be duplicated, from the original dataset. In

this way, some models will be trained with different sets of data generating different hypotheses.

Another approach is an ensemble based on binary classification. Binary classification creates

models where the prediction is between only two possibilities. Multi-class problems can be solved

decomposing the problem into an ensemble of multiple binary classification problems with lower

complexity [104]. An example of ensemble binary classification is one-against-rest, where each

individual classifier predicts whether the input belongs to a class or not. In this way, there are

as many classifiers as classes appear in the problem to predict, and each model is an expert

detecting one class.

A well known ensemble method in machine learning is Random Forest. An ensemble of De-

cision Trees is called Random Forest as this method is composed of multiple individual Decision

Trees. Each tree obtains a bag from Bootstrap Aggregation and for each tree at each node a

random subset of features (metrics) are selected to perform the splitting of each node [105].

6.4 Analysis of machine learning techniques to automatically

generate performance tuning models

Chapter 5 introduced a methodology to generate a balanced and representative dataset, which

was used to generate a dataset of OpenMP parallel regions. In this dataset we added performance

information about the best thread configuration for each combination of: problem size, pattern

and thread affinity. The dataset with this additional information can be used to generate a model

for tuning the number of threads in OpenMP parallel regions. However, there is a problem when

the dataset is used for performance tuning.

The dataset was generated with the goal of generating a balanced and representative dataset

of patterns. Therefore, when the dataset is used for a different purpose, such as performance

tuning, this dataset may become imbalanced. This is because some parameter configurations,

such as number of threads, are in general better than others. Consequently, if their frequency

is checked to find which values are ideal, a few configurations are predominant while other

configurations may not appear, or appear only in a low number of cases, compared to the most

frequent configurations. This difference in the frequency explains why the dataset becomes

imbalanced and generating a balanced dataset for such purpose can be impossible, as the ideal

configuration cannot be known a priori, otherwise performance models would not be necessary

at all.
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6.4.1 Predicting the ideal number of threads using basic ML techniques

We want to use the dataset to create a model using machine learning techniques with the

objective of predicting the ideal number of threads. First, we need to define how the ideal number

of threads is determined for a particular kernel in a certain configuration, each configuration

described by both problem size and thread affinity.

The ideal number of threads is defined using a performance index described in [106]. This

performance index is computed using Eq. 6.2, the performance index’s value for a certain number

of threads X is obtained dividing the execution time for X (Tt(X)) by its efficiency (E(X)). The

ideal number of threads, using the performance index, is obtained with the number of threads (X)

that minimizes the value (Pi(X)). The minimum value determines the optimum ratio between

performance (execution time) in relation to resources (threads) the kernel is executed with.

Pi(X) =
Tt(X)

E(X)
=

X · Tt(X)2

Tt(1)
(6.2)

Why this performance index is used instead of speedup to select the ideal number of threads

is shown in Figure 6.3. In this example a computer with 8 threads is used and three metrics are

shown: time, speedup and the the performance index’s value. In this case it is clear that the

maximum speedup is obtained with the maximum number of threads, however the decrease in

time when using more than 4 threads does not compensate for the increase in resources. This is

where the importance of using the performance index is highlighted, as the low decrease in time

does not justify the use of more resources. Therefore, the performance index helps us determine

the ideal number of threads to be used taking efficiency into account.

Figure 6.3: Relationship between execution time, speedup and the performance index

The performance index is applied for each execution configuration (pattern, problem size and

thread affinity) in the dataset generated previously in the DELL T7500 and results are shown in

Figure 6.4, where a clear imbalance in the ideal number of threads can be observed. If the dataset
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was balanced, each number of threads would appear with around 8.3% of occurrences. However,

the most frequent thread configuration (12 threads) has a very high number of instances, with

a percentage close to 36%, which is clearly several times bigger than the expected frequency

for a balanced dataset. Additionally, the value with the lowest frequency is 7 threads, with a

frequency of around 1.8%. Because of this clear imbalance, models will tend to have problems

to learn the more under-represented configurations compared to the over-represented ones.

Figure 6.4: Ideal number of threads, according to Pi(X), for all the executions stored in the
dataset.

Because in this case the dataset is imbalanced and there is no way to generate a similar but

balanced dataset, because the best value for a parameter that impacts performance cannot be

known a priori, we consider that this dataset is naturally imbalanced. Therefore, the techniques

previously explained in this chapter should be applied to generate appropriate models.

The first step when building models with ML is to find which machine learning algorithms

are adequate for a dataset. In order to discriminate between different algorithms, we applied

the following methodology with the pattern collection, which contains the ideal thread values,

as the training set:

1. Select inputs. First, we need to decide which fields are selected as the inputs for the model

to train. In this case the inputs are the hardware performance counters and the thread

affinity the parallel region was executed with.

2. Select output. Once the inputs fields are selected, it is time to decide what the model

should predict. In our case, to simplify the model, the ideal number of threads is the only

parameter to predict.

3. Select machine learning algorithms to test. A ‘list of machine learning algorithms is se-

lected, in this list the methods to call each of them are included. Additionally, parameters

can be included to test some specific configurations. We have selected models such as

Gaussian Naive Bayes, K nearest neighbours, Artificial Neural Network, Decision Trees

and Random Forests and Logistic Regression.

4. Apply Stratified K-Folds cross-validator to each model. The algorithms are executed mul-
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tiple times to account for fluctuations in the training due random factors, such as data

shuffling or the random split of the data for training and test, which can generate discrep-

ancies when training models. The Stratified K-Folds cross-validator splits the dataset into

K sets (folds), while trying to preserve the percentage of cases for each thread configura-

tion in the output. We have selected five sets of K-Folds as this number allowed to find

which algorithms show high variance in their models.

5. Plot and verify the results. Plot the results and select which algorithms generate better

models for the dataset in use. The time spent when training the model may also be checked

to compare. However, as once a model is trained this time does not matter, the training

time is not as important as the accuracy of the model.

After applying the explained methodology, we obtained the results shown in the two box-plots

of Figure 6.5. The training dataset is the pattern collection and the test dataset is composed of

the pattern collection and, additionally, some of the discarded kernels that have been executed

for all the problem sizes described in the previous chapter (Section 5.2).

Figure 6.5(a) shows the accuracy of the training set for each trained model. A first relevant

observation in the training is that the accuracy in each algorithm does not suffer big fluctua-

tions. The second significant result is that most models provide an accuracy close to 1 (which

means 100% correct predictions), except for Gaussian Naive Bayes, Linear Discriminant Anal-

ysis (LinDisc) and Logistic Regression which are not even able to correctly predict 60% of the

data used in the training.

(a) Accuracy of the training set (b) Accuracy of the test set

Figure 6.5: Results after training different machine learning models.
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The accuracy for the test dataset is shown in Figure 6.5(b). In this case, the best models in

terms of accuracy reach almost 75% accuracy and with low fluctuations between the different

trained folds. Making a simple calculation and taking into account that half of the kernels belong

to the training set, we can obtain the accuracy for the unknown kernels (2×test set accuracy)−
train set accuracy = 2× 0.75− 1 = 0.5, which is an accuracy of 50% for the unknown kernels.

Although the result for Artificial Neural Networks may look underwhelming, a simple archi-

tecture was tested as scikit-learn uses by default only one hidden layer, so ANNs may provide

better results with more complex architectures. Additionally, regression models provided results

which are less accurate in the test and with high variability.

The good accuracy of K Nearest Neighbours (KNN) is surprising because although KNN is

a simple algorithm, it is able to generate predictions with an accuracy close to that of Decision

Trees with our dataset. However, one downside of this algorithm is the lack of parameters to

tune for imbalanced datasets.

The best models for performance tuning are obtained with classification for Decision Trees,

Random Forests (which is the ensemble of Decision Tree), Artificial Neural Networks and K

nearest neighbours, according to the accuracy seen in Figure 6.5(b).

Now, we want to check how the models we found as the best for performance tuning behave

if their parameters are modified. Balancing strategies will be applied in the next subsection.

The predictions for the models are shown in the following figures, where each sample may

be classified in one of the following three categories:

• First. In blue the ideal thread configuration is correctly predicted.

• Second. In orange the second ideal thread configuration using the performance index is

predicted instead of the ideal.

• Higher. In green when, instead of predicting the first or second best configurations, the

predicted configuration underestimates the number of threads. While predictions falling

in this category are not the best, resource wise are good as, at least, resources are not

wasted.

The machine learning algorithms to test, as they showed higher accuracy, are KNN, Decision

Tress and Artificial Neural Networks.

First, the simplest algorithm KNN is used and its results are verified for each kernel in the

test set. The default configuration where K=5 is used as modifying this value did not provide

more accurate predictions. The results are seen in Figure 6.6(a) where the default configuration

with uniform weights for each K=5 closest neighbours. In contrast, Figure 6.6(b) has weights

which are inversely proportional to distance, therefore closer points are more important.

In both cases the accuracy for the training sets are close to 1 for the ideal thread. However,
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the kernels not included in the training have for the ideal configuration, in general, an accuracy

which ranges from 0.4 to 0.03 in the smaller Strides. Stride predictions are clearly using less

resources than the ideal configuration in a 90% of the predictions.

Results in this case are not outstanding but better than expected considering that KNN is

a scheme similar to clustering and relationships between features are not analyzed.

(a) KNN uniform weights (b) KNN with weights inverse to distance

Figure 6.6: Results for models trained with K neares neighbours.

Now, Decision Trees and ANNs are used to generate models and compared to analyze how

well they classify kernels with regards to the simpler KNN algorithm.

(a) Decision Tree (b) Artificial Neural Network

Figure 6.7: Results for base models.

A model based on Decision Trees is shown in Figure 6.7(a). The parameters for the DT are

the default parameters from scikit-learn, such as gini impurity for the splitting criterion, choose

the best split between different splits and a minimum of two samples are required per split. The

results obtained for this model provide more accurate results than KNNs, where 4 of the test

kernels for the First and Second categories are correctly predicted for more than 60% of the

samples. Additionally, the kernel called Add almost reaches 60% accuracy. However, there is

one downside with Strides which, even with a better algorithm, remain a problem because the

accuracy is extremely low for the First and Second categories.
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Figure 6.7(b) shows the results obtained with a model trained with a multi-layer ANN. The

architecture for which we found the best results is shown in Table 6.3 and was generated using

AutoKeras [107], a framework to automatically generate and test artificial network architectures.

The ANN has three hidden layer, where SELU is used as activation function with a dropout

of 10%. In this case, although some test cases show better accuracy than Decision Trees, the

obtained accuracy is generally worse for both the elements of the training set and the test set.

Table 6.3: Artificial Neural Network Architecture
Layer Neurons Inputs Activation Dropout

Input N/A 19 N/A 0%

Hidden 1 19 19*19 SELU 10%

Hidden 2 200 19*200 SELU 10%

Hidden 3 200 200*200 SELU 10%

Output 12 200*12 Softmax 0%

6.4.2 Applying balancing techniques to basic ML techniques

The logical step now is to apply balancing techniques to the machine learning algorithms to

counter the imbalance in the dataset. In this way, we assess the effect of using these techniques

in the accuracy for both the training and the test sets.

First, data methods based on re-sampling are applied to our dataset and their results are

analyzed. In re-sampling there are two categories: under-sampling and over-sampling.

We abandoned the idea of using under-sampling as a lot of samples will be discarded accord-

ing to the percentages seen in Figure 6.4, as the less represented case has around 1.6% sample,

this will mean that only 1.6% of the data will be in each thread configuration after applying

under-sampling. Therefore, the removal of samples results in a great loss of information as less

than 20% of the samples remain.

Consequently, as under-sampling is discarded, when re-sampling the dataset there is only the

possibility of applying over-sampling. With over-sampling, all labels will have the same number

of samples as the most frequent thread configuration (12 threads). When applying over-sampling

there are two main approaches: data replication and generation of synthetic data.

For data replication, a simple method is random over-sampling, however using this method

in this case is a bad idea because there is a big difference between the highest percentage, so

the less represented configurations will be replicated several times. This approach potentially

entails that the model will not be able to generalize the relationships between features for the

more under-represented configurations. Therefore, it is better to try to generate synthetic data

instead of data replication.

In the case of synthetic data generation, there are two well-know methods: SMOTE and

Generative Adversarial Networks.
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Figure 6.8 shows the results for models trained after SMOTE has been applied to the dataset.

In this case, models have been trained for both ANN and Decision Trees. Looking at the previous

results shown in Figure 6.7, we were unable to find improvements after applying over-sampling to

generate synthetic samples. In SMOTE samples are generated drawing lines between samples of

the same class and selecting a random point in the line. Therefore, relations between metrics for

a class are not taking into account, which potentially generates cases where incorrect inferences

in the data are performed, because the synthetic samples may never naturally occur in reality.

So SMOTE was discarded as further use of its synthetic data is detrimental.

(a) Decision Tree (b) Artificial Neural Network

Figure 6.8: Predicting the number of threads balancing using SMOTE.

The second tested approach for over-sampling is Generative Adversarial Networks. An imple-

mentation from the python library called CTGAN [108], which is still under development, was

initially tested. However, it provided inadequate results as some hardware performance counters

appeared with negative values. Then, a second implementation called CopulaGAN was later

found in the documentation, this implementation avoids the problem of negative values in hard-

ware counters as data distributions can be applied when training the generator, therefore values

for each field are generated inside the ranges provided by the data distributions. Because this

approach can be considered more intelligent than SMOTE, we expect to obtain better results.

One downside of this approach is the library being in the beta stage, so the use of big datasets,

such as our case, should not be used because the training time for only one model in a 32 core

machine needs more than a week.

The models trained with additional synthetic samples using CopulaGAN for both ANN and

Decision Trees are shown in Figure 6.9 and provide results with higher accuracy than SMOTE,

as can be seen in the Strides kernels. Both models outperform KNN cases, additionaly, when

compared to the base models, the generated Decision Trees are similar with an accuracy’s

increase in Strides. In the case of ANNs, accuracy highly increases compared to the base ANN

model. The problem with Strides still remain as the highest accuracy does not reach 30%.

This approach looks promising and should be further researched once CTGAN is not in beta
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or there are more libraries available to train GANs. Because the dataset has been modified and

now it is balanced, additional balancing techniques cannot be applied.

(a) Decision Tree (b) Artificial Neural Network

Figure 6.9: Predicting the number of threads using GANs.

After the data approach has been explored, the second step is to test how adequate cost-

sensitive algorithms are to counter imbalance in our dataset. Both Artificial Neural Networks

and Decision Trees have parameters to apply cost as weights, which are inversely proportional

to configuration frequency in the dataset. In the case of ANNs it can be done in Keras [109]

with the parameter class weight to which a dictionary with the weights needs to be provided.

On the other hand, Decision Trees automatically apply weights in scikit learn if the parameter

class weight = balanced.

Figure 6.10 shows the results for both ANN and Decision Tree where only cost sensitive

learning has been applied to the configuration of the base models of Figure 6.7. Both models

show results which are better than the base model. More improvement can be seen in the

ANN model, however Decision Trees in our case seem to generate more accurate models without

synthetic data.

(a) Decision Tree (b) Artificial Neural Network

Figure 6.10: Predicting the number of threads with cost-sensitive learning.
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Results look promising because the models’ accuracy improve when balancing techniques are

applied. Therefore, the models may further improve if the adequate approaches are explored.

The last step is to apply ensemble learning methods, in the case of Decision Trees their

evolution into ensemble are Random Forests, which are a combination of different trees where

each tree explores a set of metrics. In the case of ANNs, the BaggingClassifier from scikit

learn is applied and one network is trained for each input metric, for a total of 19 networks (18

hardware performance counters and one additional for thread affinity). Bootstrap Aggregation

is applied and each individual tree and network makes use of a different subset of the training

dataset, called bag. This introduces some randomness in the generation of the models as the

subsets are generated selecting data randomly. Therefore, each time a model is trained it may

provide different results.

In Figure 6.11, where ensemble learning is applied, results for the ANN (Figure 6.11(b)) do

not improve and are significantly worse than the ensemble Random Forest, although the training

time needed is around 20 times higher than training a single ANN (approximately 10 hours for

the ensemble). In the case of Random Forest (Figure 6.11(a)) the accuracy is improved, the best

improvement can be seen in the Strides, which are the most problematic kernels, and in some

cases the accuracy triplicates compared to the cost-sensitive approach with Decision Trees. The

configuration parameters for the Random Forest are the same for the common parameters with

the previous Decision Trees, the additional parameter is the number of estimators, which is set

to a hundred trees.

(a) Random Forest (b) Artificial Neural Network

Figure 6.11: Predicting the number of threads with ensemble models.

The final tests were made using Random Forest with binary classification, with and without

applying cost-sensitive learning. With binary classification the problem is divided into 12 dif-

ferent sub-problems where each trained model detects whether samples belong to one particular

thread configuration or not. The models for this test with ANNs are not considered as the

accuracy remains lower than Decision Trees.

Binary classification has improved accuracy, as seen in Figure 6.12(a), compared to the

92



previous Random Forest with default values. The best achievement with binary classification is

that two Stride cases have accuracy higher than 40% using the best two possible configurations

for the performance index. Additionally, a test case where matrix multiplications are represented

reaches an accuracy of 96%, while other cases, without taking into account Strides, have an

accuracy higher than 70%. Figure 6.12 shows that applying cost sensitive learning to binary

classification does not improve the obtained results.

(a) Binary Random Forest (b) Binary Random Forest with cost

Figure 6.12: Predicting the number of threads with Random Forest binary classification.

If the results for Stride are not taken into account, the accuracy of the generated models seem

appropriate, but Strides remain to be a thorn in our side since the beginning. The explanation

for these kernels is found after the Stride kernels and the Stride pattern are analyzed.

If we take a look at Figure 6.4 with the ideal thread configurations, the most over-represented

thread configuration is 12, so the case of the different Strides, which in most cases show that the

prediction select a lower number of threads than the ideal, can be counter-intuitive. Because

this issue appears in all tested models, be it KNN, Decision Trees or Neural Networks, and also

even when balancing techniques are used, a thing to look at is the pattern they are closer to in

the correlation analysis. The problematic cases are similar to the Stride pattern which is a loop

region with jumps (strides) in memory accesses of 64 positions, while the problematic kernels

have strides in the order of: 2, 4 and 16. If we take a look at the thread configurations of the

Stride pattern (Figure 6.13(a)), it is clear that this pattern must be executed with only one or

two threads, so parallelism in this pattern is not a good approach. Consequently, the question

here is: Does the same apply to the problematic Stride kernels?

In the case of the kernels the same does not apply, because the serial or two thread config-

uration does only appear as an ideal configuration for Stride16 in a low percentage of the cases

(less than 10%). In the cases of Stride2 and Stride4 kernels, the best approaches are to use 11

and 12 threads. So the main problem here is that lower strides make better use of cache than the

pattern, therefore the ideal thread configurations can be used efficiently with more resources.

However, the pattern they are more similar to is not as efficient, consequently the predictions of
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the models tend to choose thread configuration with a lower number of threads. An experiment

to confirm this hypothesis is to include Stride4 in training dataset and then train a new model

to see if the predictions for Stride2, which shows a similar thread distribution, improve.

(a) Stride pattern thread configurations (b) Stride2 thread configurations

(c) Stride4 thread configurations (d) Stride16 thread configurations

Figure 6.13: Percentage of samples in each thread configuration for Stride pattern and kernels.

In Figure 6.14 the hypothesis is tested comparing the former binary classification with Ran-

dom Forest and comparing it to the same configuration but now the Stride4 is also in the training

set. Looking at Figure 6.14(b) it is clear that the accuracy for Stride2 has increased for more

than 20%, and now it reaches an accuracy of 65% for the ideal thread configuration. Addition-

ally, in the case of including the second possible configuration, accuracy is around 83.4% correct

predictions. However, the accuracy for Stride16 has not been affected as the ideal thread con-

figurations for this kernel are not similar to Stride4 configurations, 3 or 5 threads is in general

the best configurations for Stride16 whereas 11 or 12 threads are ideal for Stride4.

Additionally, the importance of each input feature used in the training dataset has been

researched. There are two ways to obtain the importance of a feature for Decision Trees [110]:

• Impurity-based importance, also called as mean decrease in impurity, should be avoided as

it suffers of biases when numerical features with high cardinality are used. Additionally,

this approach cannot be used in data not used in the training.

• Permutation feature importance. Permutations are performed in the features and miss-

classifications when a metric is permuted are used to compute importance. Permutations

in the most important metrics induce to worse classifications in the model.
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(a) Binary Random Forest (b) Binary Random Forest with Stride4

Figure 6.14: Predicting the number of threads to confirm Stride hypothesis.

Both approaches are employed to calculate the importance of each feature and their impor-

tance can be seen in Figure 6.15 for a Random Forest model. First, Figure 6.15(a) shows the

impurity-based, but it should not be trusted because of the biases when numerical features with

high cardinality are used, so this case is only used to check how similar it is to the permutation

approach. Figure 6.15(b) shows the importance for each feature when using permutations.

The most important features according to the importance analysis with permutations are

affinity and unconditional branches, the importance of affinity defining the number of threads

cannot be denied. However, the importance given to each hardware performance counter is

unexpected as cache, load and stores show low importance in the model to decide the ideal

number of threads.

(a) Impurity importance (b) Permutation importance

Figure 6.15: Features importance for Random Forest.

As shown in the experimentation, balancing techniques are very important when creat-

ing models to predict the ideal tuning parameters values because balanced and representative

datasets may become imbalanced for the target parameter to tune.

The most encouraging results were found with two approaches:
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• Synthetic data. The use of CopulaGAN has provided promising results. This approach

should be researched in the future if more implementations are included in machine learning

libraries.

• Ensemble binary classification with Random Forest. The use of binary classification has

greatly increased accuracy in the most troublesome cases (Strides) as the generated models

are more specialized, because each model is trained to only detect a particular thread

configuration.

Results in Dell PowerEdge R820

A summary of the results obtained in Dell PowerEdge R820 are described hereunder.

First of all, in this system there are 32 cores, as opposed to the Dell T7500 with 12 cores.

In the same way, 29 problem sizes are necessary instead of 21 due to the increase of cores and

processors in the system. Therefore, the number of samples necessary to obtain all the signatures

composing each pattern is approximately 4 times bigger, generating a bigger dataset.

The thread distribution using the performance index is calculated and shown in Figure 6.16.

Although the difference in the percentage in the two thread configurations with more samples

is not as high as in the previous system, there is a clear imbalance in the dataset. The case

with more ocurrences (32 threads) contains around 18% of all the samples, which is 56 times

higher than the case with 21 threads with only 0.32% of the samples, a bigger imbalance than

the previous system.

Figure 6.16: Ideal number of threads according to Pi(X) for R820.

For this system the same methodology using the K-Folds cross-validator to discriminate

between different machine learning algorithms is applied. The training set is composed of the

pattern collection and the test includes both the pattern collection and some of the discarded

kernels for all the problem sizes in the collection.

We obtained the results seen in the two box-plots of Figure 6.17, where we see that using

regression based models for Random Forests and Decision Trees provide similar results to clas-
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(a) Accuracy training (b) Accuracy all dataset

Figure 6.17: Results after training different machine learning models in R820.

sification models. Additionally, in some cases of Random Forests their accuracy is higher, but

have more variability in the results. Therefore, as balancing techniques cannot be applied to

regression based models and the difference between classification and regression for this system

is negligible, the study is performed for classification models.

We can also see that KNN performs a bit worse than tree based approaches. We wanted to

check the results by kernel for this model but it not feasible. The predictions for all the KNN

classification models took 150 hours, this is 6 days and 6 hours. Making predictions with the

model with all samples will take similar times. As better models with better prediction time are

available, we discarded this model.

Figure 6.18 shows the time necessary to predict a sample. It can be seen that the time to

predict a sample is negligible. In the case of KNN, it is important to take into account that

prediction time is directly proportional to the number of samples the model is generated with,

which makes it a bad approach when big datasets are used.

Now, Decision Trees and Artificial Neural Networks are used to generate models without

applying balanced techniques and obtain two cases which are used as base models. Figure 6.19

shows the base models built using the dataset for R820. In this case there are 6 patterns in the

collection and in the case of the Decision Tree their accuracy is 100%. However, the same cannot

be said for the Artificial Neural Network, where the accuracy for the training cases ranges from

60% to 97%. Furthermore, in the test cases, the accuracy of both models for two best thread

configurations does not reach 50% in most cases.
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Figure 6.18: Prediction time per sample.

(a) Decision Tree (b) Artificial Neural Network

Figure 6.19: Results for base models without balancing in R820.

In the case of balancing techniques, data techniques were discarded as SMOTE provided

even worse results. Additionally, we were not able to train GANs because the libraries are still

under development and generated errors in memory due to the size of the dataset.

Then, the next step is to test cost-sensitive algorithms and ensemble learning methods.

Better models were generated using an ensemble of binary Random Forest with and without

cost-sensitive learning. Figure 6.20 shows the results for the best models generated, which

show, in general, bad results compared to the previous system. Additional steps or alternative

approaches are necessary in this case as there number of classes to predict almost triplicate and

the imbalance in the dataset is also greater, which causes the model to fail in providing accurate

predictions.
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(a) Binary Random Forest (b) Binary Random Forest with cost

Figure 6.20: Results for the best generated models in R820.

6.5 Conclusions

In this chapter a study on how to build machine learning models with imbalanced data was

performed. This study is very important because due to system characteristics some param-

eter configurations are, in general, better than other configurations. Therefore, datasets for

performance tuning are naturally imbalanced as some configurations will naturally have more

samples than others. This imbalance in the data can have a negative impact on the generated

model as the most represented classes (each configuration is considered a class in ML) have more

information to infer relationships from, so the underrepresented classes have a clear weakness.

Techniques to counter the imbalance the less represented cases are under should be used.

Some techniques are explained in this chapter, divided in:

• Data methods. The dataset is modified with the use of techniques to reduce the samples

in the more represented class, replicate data in the less represented classes or the use of

algorithms to generate synthetic data.

• Algorithmic methods. Modifications to machine learning methods are applied to counter

imbalance, such as applying weights inversely proportional to the frequency of each class

under consideration.

• Ensemble learning methods. Multiple machine learning models are combined into a single

model to generate more hypotheses.

Different supervised machine learning techniques were trained to find the ideal number of

threads for multiple kernels executed for multiple different problem sizes. The ideal number

of thread is calculated using the performance index described in [106] which finds an optimum

between performance and resources.

In initial results without applying balancing techniques, the accuracy of the models was

perfect or almost perfect for Decision Tress and Artificial Neural Networks. But in the case
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of the test data, the percentage of correct predictions for the ideal number of threads was, in

general, bellow 50%.

Then, data methods to generate synthetic data were applied, such as SMOTE and Generative

Adversarial Networks. Results improved from the initial models with the use of GANs while

SMOTE did not provide any improvement. GANs looks like a promising methodology to improve

accuracy but architectures for this approach are still in research, so data generated with future

architectures may further help to increase accuracy.

Afterwards, algorithm modifications and ensemble techniques were applied to the dataset

without synthetic data. Newer models with these techniques generated models with higher

accuracy. One of the best cases, ensemble binary classification with Random Forest, provided a

general accuracy higher than 70% when stride kernels were not taken into account.

Stride kernels are treated as problematic kernels and an analysis to find why their accuracy

was lower than other kernels was performed. The cause of this problem was that the kernel

they are more similar to did not follow the same ideal thread distribution, consequently models

underestimate their ideal thread configuration. A solution to this problem is including additional

strides in the training set with similar thread distributions.

Results in Dell PowerEdge R820 are underwhelming because of more possible thread con-

figurations, which generate bigger differences in the number of samples for each configuration.

As a consequence, great imbalances in the dataset are found when used for performance tuning.

Solving this problem is one of the open future lines of work as it could be solved with newer

machine learning models or with modifications in the way the dataset is generated.
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Chapter 7

Conclusions and Future Work

This chapter is divided in two parts, first the conclusions and main results of the work presented

in this thesis are summarized, and, secondly, the future work where some open lines of this work

are discussed.

7.1 Conclusions

This work has researched the possibility of using machine learning to generate models that

can be applied to automatically tune the performance of parallel applications. The machine

learning approach is used in other works, but, to the best of our knowledge, this is the first

time a systematical set of methodologies are defined to determine the appropriate set of features

for characterizing shared memory parallel regions and generating representative and balanced

datasets.

When using machine learning to generate models the principle called ”garbage in, garbage

out” is fundamental. According to this principle, the model will only be as good as the data

used in its training, so the proper data (a valid dataset obtained from different scenarios with

the correct inputs) is necessary to build useful models. In the case of performance tuning the

following two questions need to be answered: 1) there is a big number of measurable metrics

(inputs) in parallel applications, how can the execution of an application be properly repre-

sented with a limited number of metrics?; 2) representative parallel regions executed in different

scenarios should be used to generate a dataset, how can a representative and balanced dataset

be built? Two methodologies, each answering one question, are defined in this thesis.

Out initial hypothesis was that the execution of shared memory parallel regions could be

characterized by the values of a set of hardware performance counters. Consequently, as an

initial step before building these methodologies, it was necessary to be able to collect the value

of hardware performance counters for the parallel regions of an application. This was achieved

by integrating PAPI[2] into MATE[44]. The integration was validated using a performance
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model described in [11], and the integration was published in: Dynamic Tuning of OpenMP

Memory Bound Applications in Multisocket Systems using MATE. ICPP Work-

shops 2018, 37:1-37:10. Jordi Alcaraz, Anna Sikora, Eduardo Cesar

The first methodology defined in this thesis (Chapter 4) allows for determining the minimum

set of hardware performance counters necessary to generate signatures of OpenMP parallel

regions. This is achieved by performing a redundancy analysis based on correlation and PCA of

the performance counters’ values collected for a set of parallel code regions. This analysis can

be extended to include additional metrics if their values are numerical or they can be converted

into numerical values.

The summary of this methodology is that a correlation analysis is performed between the

performance counters and in the case the correlation value between two metrics is above a

threshold, the metric is considered as a candidate to be discarded. Because high correlation in

hardware performance counters can appear due to code characteristics instead of redundancy

in the metrics, logic should also be used to avoid discarding metrics which in reality are non-

redundant. With this methodology the list of all-purpose events extracted from PAPI for the

nodes used in this thesis has been reduced by more than half. An Artificial Neural Network was

trained to check if the reduced list of events is able to characterize OpenMP parallel regions and

the trained model obtained an accuracy close to 100%, which confirms that the reduction was

successful. Published in: Hardware Counters’ Space Reduction for Code Region Char-

acterization. Euro-Par 2019, pages 74-86. Jordi Alcaraz, Anna Sikora, Eduardo

Cesar

A second methodology was proposed in this thesis (Chapter 5) for generating balanced and

representative pattern collections that can be used as a dataset to train performance models.

Similarly to the previous methodology, correlation analysis is also employed. In this case two

different correlation methods are applied to make the process more robust.

Given a pattern collection and a set of candidate kernels, a problem size minimizing the

parallelization overhead is selected for each kernel and each candidate is executed for different

thread configurations with close and spread affinity to obtain their signatures. Once the sig-

natures of the candidates are collected, the correlation analysis is performed and candidates

which have a correlation value higher than the threshold for both methods, are discarded as

they are considered similar to a pattern already included in the collection. On the other hand,

if both threshold are not surpassed, the candidate is considered to cover a new part of the

search space and should to be included in the collection. Consequently, it must be executed

for different problem sizes which characterize the multiple memory levels of the node. The

rationale to select the problem sizes to be used is also explained in the same chapter. This

methodology was used in two different nodes with a set of kernels extracted from STREAM and

Polybench to create an example pattern collection. The kernels not included in the collection

and a new set of kernels extracted from NPB were successfully classified by an Artificial Neural
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Network trained using the example generated collection. Published in: Building representa-

tive and balanced datasets of OpenMP parallel regions. PDP 2021, pages 67-74.

Jordi Alcaraz, Steven Sleder, Ali Tehrani Jamsaz, Anna Sikora, Ali Jannesari, Joan

Sorribes, Eduardo César

Finally, a study to analyze how a pattern collection generated using the previous methodology

can be used to automatically generate models for performance tuning is described in Chapter 6.

One problem that may appear even for a balanced and representative pattern collection is that

it can be naturally imbalanced for performance tuning due to characteristics of the hardware

and/or the parallel programming paradigm, which may have a predilection towards a limited set

of configuration values. In this study, base models are built using K nearest neighbours, Decision

Trees and Artificial Neural Networks because they provided better accuracy than other machine

learning algorithms analyzed. However, the accuracy obtained with these methods could be

improved if the appropriate techniques for tackling the imbalance are applied.

Thus, balancing techniques are then applied to the machine learning approaches in order to

see if the imbalance problem can be overcome and accuracy can be increased. In the case of

data methods, good results were only obtained with Generative Adversarial Networks, which

provided a small increase in accuracy but it looks promising as a proper architecture was not

tested because this method is still in research. Then, algorithmic methods (cost-sensitive learn-

ing) were used to generate models with a general accuracy around 60%. However, there are

three problematic kernels were one has an accuracy around 20% and the two with only 10%.

Finally, ensemble methods were implemented, the use of multiple Random Forest (an ensemble

of Decision Trees) as a binary classifier (ensemble of N Random Forests, N being the number of

threads) provided the best results with a general accuracy higher than 70%. Furthermore, the

three problematic cases also improved, two cases with accuracy higher than 40% and another

around 20%. Paper in second revision: Predicting Number of Threads using Balanced

Datasets for OpenMP regions. PDP Special Issue 2021 in Computing, Springer.

Jordi Alcaraz, Ali Tehrani Jamsaz, Akash Dutta, Anna Sikora, Ali Jannesari, Joan

Sorribes, Eduardo César

The results obtained in this thesis demonstrate that the proposed methodologies are a promis-

ing way for generating representative and balanced datasets which can be used for tuning the

performance of parallel applications.

7.2 Future Work

There are several open lines which can be explored in the future to increase the robustness of

the methodologies proposed in this thesis. In addition, a thorough exploration of the parameter

of some of the machine learning algorithms used in this work would be necessary for improving

the accuracy of the generated models.
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The main future lines of work are:

• Include additional metrics. In our work only hardware performance metrics and thread

affinity has been used as metrics for our models. Additional metrics, such as code charac-

teristics or data dependencies could also be used to provide more information about the

performance of a parallel region, as additional data is included explaining the behaviour

of either another part of the system or characteristics of parallel region.

• Improve the pattern collection generation methodology. When applying corre-

lation analysis between the candidate and the pattern collection, the candidate is not

evaluated to find whether the kernel can be considered compute or memory bound. In

this way the correlation analysis could also take into account which metrics are related to

computation and which to memory to give them more or less weights depending on the

behaviour of the kernel.

• Implement better models. Nowadays, the selection of the parameters when training

machine learning models is not clearly defined and most approaches to find more accurate

models consist in modifying the configuration parameters and test them instead of applying

a methodology to select the correct parameters. If guidelines appear in machine learning

to select the appropriate configurations parameters, proper model configurations could be

found more easily and less time would be spent trying possible configurations.

• Explore Generative Adversarial Networks. Neural networks to generate synthetic

data are still under research as they are state of the art approaches, so the adequate

architecture for both the generator and the discriminator, the number of training steps

and additional parameters to create good synthetic data are not known. In the future,

either a method to select good parameter configurations may be developed and results may

improve as the parameters are tailored to the characteristics of the dataset or a general

combination of parameters for GANs may be found to generate synthetic data for different

datasets.

• Remove architecture’s dependency. The proposed approach is architecture depen-

dent, therefore a model generated for a system will not work in another system with

different hardware characteristics. There are some works, such as [111] [112], explain-

ing initial approaches to generate portable performance metrics, which could be used to

remove the architecture dependency when generating performance models with machine

learning.

• Extend methodologies to other paradigms. The proposed methodologies were de-

veloped for OpenMP parallel applications, therefore to use the methodologies for other

parallel paradigms, such as multi-node (MPI) systems or accelerators (CUDA, OpenCL),

modifications may be necessary to properly generate balanced and representative datasets

for performance tuning.
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• Apply tuning to additional parameters. In the study only the number of threads

was predicted, however there are additional tunable parameters in OpenMP such as the

scheduling type and its chunk size. Additional models could be generated to cover the

different tuning parameters or multi-output learning [113] could be implemented to tackle

multiple parameters with a single model.

• Implement models into dynamic performance tools. The machine learning models

generated in this thesis could be implemented into tools to apply dynamic performance

tuning. First, as most performance tools are implemented using either C or C++, the

models should be exported from Python and the proper libraries should be found to

correctly implement them into performance tools.
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