
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

Universitat Autònoma de Barcelona
Departament d’Enginyeria de la Informació i de les

Comunicacions

���� �������	�
 ��
�������� �����

��
� �����
 ����

Submitted to Universitat Autònoma de Barcelona
in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Computer Science

by Carlos de Cea Domínguez
Bellaterra, Oct 2021

Supervised by:
Dr. Francesc Aulí Llìnas

Dr. Joan Bartrina Rapesta

© Copyright 2021 by Carlos de Cea Domínguez

I certify that I have read this thesis and that in my opi-
nion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Bellaterra, Oct 2021

Dr. Francesc Aulí Llìnas and Dr. Joan Bartrina
Rapesta

(Supervisors)

Committee:
Dr. Victor Sanchez
Dr. Miguel Hernandez
Dr. Daniel Hernandez
Dr. Javier Melenchón Maldonado (substitute)
Dr. Marc Vivet (substitute)
Dr. Ian Blanes (substitute)

“A mis padres y hermanos.
A los amigos que me han

acompañado en este viaje.”

ii

Abstract

The increasing number of image and video content, and the adoption of 8K resolution and high

dynamic range technologies, demand faster and more efficient digital coding solutions to store and

transfer these data. State-of-the-art solutions like HEVC or JPEG2000 are widely adopted but

their computational requirements pose a challenge even for current hardware. For environments

like digital cinema or medical image, specific FPGA boards are used to accelerate image processing

without affecting image quality. In the last years, a massive parallel hardware have started to gain

attraction: Graphical Processing Units (GPUs).

GPUs are massive parallel architectures originally suited for videogames or 3D simulations. In the

recent years, their adoption as general purpose devices have allowed to use them as accelerators for

a myriad of applications. Algorithms properly adapted to run on GPUs get significant throughput

improvements when compared to their CPU implementation. This research focuses on creating an

end-to-end codec based on the JPEG2000 standard tailored for GPUs.

This thesis proposes five main contributions, all of which have been published in relevant conferences

or journals. The first one focuses on the first end-to-end GPU codec version, which can code and

decode gray-scale images. The second version includes the implementation of the video engine within

the codec, which can process up to two frames simultaneously. The third contribution consists of an

in-depth analysis of the end-to-end codec with multiple throughput improvements and the addition

of a multi-frame processing approach, which allows to process multiple frames simultaneously when

coding video. The fourth contribution proposes the implementation of an improvement to the core

coding engine, tested on a CPU version of the end-to-end codec. The last contribution details an

in-depth analysis of the improvement presented in the previous paper but implemented in the end-

to-end GPU codec, including results with improvements of more than 10× the performance of the

best JPEG2000 commercial implementation when processing 4K RGB video.

iii

iv

Acknowledgements

Una tesis doctoral es un viaje en el que encuentras múltiples obstáculos y diferentes sendas hasta
conseguir el ansiado título. Como guías he tenido a mis supervisores, Francesc, Juan Carlos y Joan
que me han acompañado y aconsejado a cada paso que he dado. Sin vosotros es evidente que no
estaría donde estoy ni habría conseguido todo lo que hemos logrado en tan poco tiempo. Este logro
es de todos. Gracias por vuestra inmensa paciencia, vuestro conocimiento y apoyo.

En la facultad, además de a mis supervisores, tuve la fortuna de conocer a gente muy capaz que
me acompañó en el viaje. Sin ánimo de ser excluyente, debo dar las gracias a mis dos compañeras de
despacho por haber hecho más ameno este trayecto, a Pablo por haber contribuido a introducirme
en mi línea de investigación, a mi compañero de facultad, Iván, por todos esos almuerzos donde
intercambiábamos opiniones y a todos los profesores asociados con los que compartí docencia estos
años.

Saliendo ya del ámbito académico, quiero remarcar la importancia que ha tenido mi familia.
Gracias a mis padres y hermanos, que aun en la distancia, siempre se han preocupado e interesado
por cómo iba avanzando en este viaje. Os he sentido igual de cerca sin importar los kilómetros que
nos han separado. Habéis sido el refugio al que acudir siempre que lo he necesitado.

Acompañándome a cada paso que daba en mi estancia en Barcelona estabais vosotros, Aitor y
Daniel. Habéis sido los mejores amigos que podía pedir, consiguiendo que mi vida en Cataluña fuera
mucho más familiar, agradable y divertida. Sin nuestras tardes de viernes y nuestras escapadas, los
días habrían pesado muchísimo. Puedo decir sin temor a equivocarme que, de no ser por los dos, no
creo que hubiera sido capaz de llevar tan bien mi estancia allí. Gracias por conseguir que tres años
se sintieran como tres meses.

Tampoco me olvido de todos aquellos amigos que tengo lejos tanto en León como en muchas otras
partes de España. Cierto es que durante la tesis los momentos de reunión han escaseado, y aun así
habéis permanecido atentos y dispuestos a ayudar en lo que buenamente pudierais. Especialmente
gracias a vosotros, Sandra y Diego, por vuestro apoyo incondicional este año. Sois muchos, nombraros
a todos me es imposible. ¡Vosotros sabéis quienes sois!

Por último, y no menos importante, daros las gracias a vosotros, Javier, Agustín, Roger y
Miguel, que me acompañasteis virtualmente durante todos estos años, siempre poniendo esa guinda
de diversión y esparcimiento tan necesaria, sobre todo durante los últimos meses que estuve en
Barcelona mientras duró el confinamiento sanitario estricto.

v

vi

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Thesis contributions . 4
1.2 Organization . 6

2 High Throughput Image Codec for High-Resolution Satellite Images 9

3 GPU architecture for wavelet-based video coding acceleration 15

4 GPU Oriented Architecture for an End-to-End Image Video Codec
Based on JPEG2000 27

5 Complexity Scalable Bitplane Image Coding with Parallel Coeffi-
cient Processing 43

6 Real-time 16K Video Coding on a GPU with Complexity Scalable
BPC-PaCo 51

7 Conclusions 67
7.1 Summary . 67
7.2 Future research lines . 68

A List of Publications 71

vii

B Acronyms 73

viii

Chapter 1

Introduction

Digital image and video coding is used nowadays in a myriad of fields and disciplines.
The amount of images and videos grow day after day and its storage and processing
is getting more challenging as quality, resolutions and samples bit-depths increase. In
order to process all these data and store it appropriately, usage of image and video
coding techniques are a must. There are three main expert groups that define im-
age and video compression standards that conform the state-of-the-art in terms of
digital image encoding/decoding: the consultative committee for space data systems
(CCSDS), the moving pictures expert group (MPEG) and the joint photographic
expert group (JPEG). The CCSDS [1] coding standards, including CCSDS121 [2],
CCSDS122 [3] and CCSDS123 [4] are mainly employed on-board satellites to com-
press/decompress data obtained on embedded boards, hence its lower computational
complexity and feature set. For digital processing in environments with less compu-
tational restrictions, HEVC [5] and JPEG2000 [6] are the ones employed for most
professional and user-based tasks. Both standards include advanced features like
quality scalability, interactive transmission or error resilience. However, both of them,
specially JPEG2000, are very demanding computationally, and scenarios like digital
cinema or medical usage require specific hardware like Floating Point Gate Arrays
(FPGAs) [7, 8, 9, 10] to process data in real-time at high quality. With the increas-
ing demand on higher resolutions and the inclusion of High Dynamic Range (HDR)
technologies, the importance of getting faster compression tools to store and transfer

1

2 CHAPTER 1. INTRODUCTION

these data is growing more than ever.

The aforementioned standards, HEVC and JPEG2000, were designed based on
the mainstream hardware to process data available to the date: Central Process-
ing Units (CPUs). CPUs follow the multiple-instructions multiple-data paradigm
(MIMD), which in short means that they are designed to have few but very powerful
processing threads. Images, and videos, are data structures consisting of, commonly,
thousands of data points which may undergo a series of transformations while they
are processed. In the last decade, Graphical Processing Units (GPUs) have become
more popular to accelerate applications, specially due to their computational power,
with 10× more TFlops when compared to CPUs, and their affordable price. Fur-
thermore, many supercomputers are including Nvidia GPUs, hence becoming more
relevant in scientific researches and simulations [11].

GPUs are hardware devices which were initially designed to aid with graphical ap-
plications or videogames. Currently, they are used as well as general purpose devices
to accelerate certain parts of a workload. GPUs are based on the single-instruction
multiple-data (SIMD) paradigm, which, contrary to the MIMD one, means that the
device is designed to process, typically, thousands of data points simultaneously us-
ing thousands of threads in a synchronous fashion. GPUs are composed of, typically,
multiple streaming multiprocessors (SMs), each of one is responsible of running mul-
tiple 32-wide vector instructions in parallel. These groups of 32-threads are referred
to as warps, and warps are grouped in thread blocks, which are independent execu-
tion units running on an SM. Thread blocks within an SM can be running kernels
(i.e. functions) from the same or different applications. Nvidia GPUs make use of
the so-called streams to manage the execution of these independent kernels. Using
multiple streams can be beneficial to balance the resource usage and throughput of
the GPU.

Comparing each architecture, CPU threads pose a lower latency and higher com-
putational power than those of a GPU. However, having more threads to process
data simultaneously can be beneficial, specially for data loads that require simple
operations per data point. Algorithms which expose a huge amount of data points
with no dependencies among them are perfect scenarios for these kind of devices.

3

Nonetheless, inherently sequential algorithms conform a difficult task for GPUs. In
this situation, either the algorithm is slightly modified to run on GPUs without re-
moving the causality among data points, or the algorithm is re-engineered to decrease
(or remove) the dependencies. The drawback on the first approach is that throughput
increases are usually not that impressive, but compliance with the original implemen-
tation is maintained. The second option usually achieves high boosts in throughput,
although as a consequence the new application may lose compliance with the original
implementation. Applications which can take advantage of this type of parallelism
can get huge throughput improvements if the algorithms are properly adapted. Fields
like Bioinformatics can get boosts of up to 20× more performance when adapting its
algorithms to run over GPUs [12].

Of the aforementioned codecs, JPEG2000 is the one used in very high-quality
demanding environments due to its coding methodology and its excellent resilience
to image artifacts. In the last decade, there have been multiple attempts to port
JPEG2000 to GPUs without losing its compliance in an effort to increase throughput.
The core coding aspect within this standard is composed of four main parts: a color
transform (CT), a discrete wavelet transform (DWT), a bitplane coding engine (BPC)
and a codestream reorganizer (CR). Of those four, the third one is the heaviest in
terms of computational complexity, and it is the only one which exhibits strong depen-
dencies among samples. Thus, unless causality between data samples is broken, the
throughput improvements are minimal when porting the algorithm to a SIMD-based
architecture. The different attempts to port the algorithm to GPUs, either imple-
menting a full end-to-end codec or just the BPC stage [13, 14, 15, 16, 17, 18, 19, 20, 21],
did not achieve competitive throughput, getting lower results than current JPEG2000
CPU implementations like Kakadu [22] running on current hardware. There are
other approaches that follow a different line, using GPUs implementations like Com-
primato [23] to aid in the coding process, although their performance is limited by
the sample inter-dependencies. Finally, the last approach consists on redesigning
the algorithm, which achieves better results but the compliance with the traditional
implementation is lost [24, 25].

This thesis researches on how to create an efficiently end-to-end image and video

4 CHAPTER 1. INTRODUCTION

Title Year Description Conf. / Journal Core / Quartile Imp. Factor
High throughput image codec
for high-resolution satellite

images

2018 First end-to-end version which codes and
decodes images

IGARSS2018 C N/A

GPU architecture for
wavelet-based video coding

acceleration

2020 First end-to-end version with support to
code/decode video with up to two streams

ParCo2019 N/A N/A

GPU-oriented architecture for
an end-to-end image/video
codec based on JPEG2000

2020 Multi-stream image/video coding/decoding
software with in-depth analysis on the GPU
resources usage, different amount of streams

and a final comparison with other
state-of-the-art solutions

IEEE Access Q1 3.367

Complexity scalable bitplane
image coding with parallel

coefficient processing

2020 New feature to improve throughput of the
BPC-PaCo kernel on the CPU version of the

codec with slight coding performance
penalizations

IEEE Signal
Processing Letters

Q1 3.109

Real-time 16K Video Coding
on a GPU with Complexity

Scalable BPC-PaCo

2021 Complexity scalable implementation on the
GPU codec with in-depth analysis on the

throughput improvements and coding
performance

Signal Processing:
Image

Communication

Q2 3.256

Table 1.1: List of publications presented during the Ph.D. and included in the pro-
ceedings afterwards.

codec to maximize the throughput while keeping coding performance on par with
the original implementation. The proposed solution is based on JPEG2000, it runs
entirely on Nvidia GPUs without sacrificing any existing feature, and with increases
of over 10× the throughput over the best commercial JPEG2000 implementation.

1.1 Thesis contributions

This thesis continues the line of research started about ten years ago that aims to
develop new coding techniques for image/video compression tailored for the fine-grain
parallelism of GPUs. It started with the development of coding techniques meant to
break the causality of classical coding strategies [26, 27, 28]. Those results lead to the
development of a lightweight arithmetic coder that allowed fine-grain parallelism [29,
30]. After that, the research focused on designing and building the different stages of a
wavelet-based coding pipeline. The first stage was to develop the DWT [31, 32], which
achieved highly competitive performance thanks to a novel register-based strategy.
Secondly, an algorithm for the BPC with fine-grain parallelism was presented and
evaluated in terms of coding performance in [33, 34]. Then, the GPU implementation
of [33, 34] was introduced in [35]. The coding technique used in [33, 34, 35] is referred
to as BPC-PaCo. These contributions define the isolated parts of an end-to-end
GPU-based codec. This thesis starts when those contributions are published.

1.1. THESIS CONTRIBUTIONS 5

The first end-to-end version included the two GPU kernels, DWT and BPC-PaCo,
with further adaptations to communicate them, and a new GPU kernel called code-
stream reorganization, which reorganizes the data from BPC-PaCo into a compressed
data structure ready to be written to the disk. Apart from the new kernel, the chal-
lenge of this version was designing an infrastructure capable of taking care of memory
transfers between kernels efficiently. Managing memory allocations can be expensive,
so it is preallocated taking in consideration the amount of data needed per kernel,
which depends on the input data size. The codec makes use as well of Nvidia libraries
to implement some primitives within the CR kernel. It also included the first I/O
algorithms to read and write images with the minimal impact on the overall perfor-
mance. This version of the codec can code/decode gray-scale 8-bits images. It was
presented at IGARSS2018 [36] and published in the proceedings afterwards.

After the first end-to-end version, the codec was improved by adding video process-
ing, while also including color processing. For this version, the GPU can process two
frames simultaneously from a single video feed. It can handle multiple CPU threads
to manage two GPU streams simultaneously. Memory preallocation and assignation
is carefully handled per stream. The I/O processing is improved, with capability to
read information from the disk and send the data to the GPU asynchronously while
other frames are being processed. This version yields 4K real-time throughput per-
formance in a Nvidia GTX 1080 Ti GPU. It was presented at ParCo2019 [37] and
published in the proceedings afterwards.

The third implementation includes multi-stream capabilities and multiple through-
put improvements across the coding pipeline, including all the kernels and the I/O
functions. It details each kernel from a GPU perspective, including memory transfers
from the device memory to the individual registers, bandwidth values, device occu-
pancy, etc. It also compares the proposed codec against state-of-the-art solutions like
JPEG2000 Kakadu [22] or Nvidia HEVC NVENC [38]. It gets better throughput
results than existing JPEG2000 compliant GPU implementations, which run slower
than Kakadu. It is published in the IEEE Access on 2020 [24].

For the fourth publication, the BPC-PaCo algorithm receives a new feature called
Complexity Scalability, getting renamed to CS BPC-PaCo. Traditional BPC-PaCo

6 CHAPTER 1. INTRODUCTION

takes about 86% of the execution time of the entire coding pipeline. CS BPC-PaCo
is aimed to improve coding throughput by using a K factor that works as a trade-off
between coding performance and coding throughput. This version is implemented in
Java, running on an Intel CPU to test its viability and efficiency. The results showed
double digit throughput increments with a coding performance penalty of about 10%
with the highest factor. These results were sent to the journal IEEE Signal and
Processing Letters, getting published on 2020 [39].

The final publication details the implementation of CS BPC-PaCo in the GPU
end-to-end codec. It includes an exhaustive and detailed analysis from both kernel and
codec perspective, thoroughly analyzing the impact in memory transfers, instructions
per cycle, registers and bandwidth with different K factors, effectively explaining the
achieved improvements. Results show that the codec achieves 16K coding throughput
in real-time at 50 dB of PSNR when coding a 2 minute long 4K RGB 8 bps in the
Nvidia RTX 2080 Ti, faster than the new JPEG2000 standard part "High-Throughput
JPEG2000" codec running on a i9-9900K Intel CPU. It was sent to the journal Signal
Processing: Image Communication and published on 2021 [40].

1.2 Organization

Each of the following chapters correspond to each of the published papers unedited
and in order of publication:

Chapter 2: High Throughput Image Codec For High-Resolution Satellite Images
- Includes the research published in [36].

Chapter 3: GPU architecture for wavelet-based video coding acceleration - In-
cludes the research published in [37].

Chapter 4: GPU-Oriented Architecture for an End-to-End Image/Video Codec
Based on JPEG2000 - Includes the research published in [24].

Chapter 5: Complexity Scalable Bitplane Image Coding With Parallel Coefficient
Processing - Implementation of the new CS BPC-PaCo published in [39].

Chapter 6: Real-time 16K video coding on a GPU with Complexity Scalable
BPC-PaCo - Includes the GPU implementation of the new CS BPC-PaCo published

1.2. ORGANIZATION 7

in [40].
Chapter 7: Conclusions. It includes the final thoughts of the thesis and future

lines of research.

8 CHAPTER 1. INTRODUCTION

Chapter 2

High Throughput Image Codec for
High-Resolution Satellite Images

9

10
CHAPTER 2. HIGH THROUGHPUT IMAGE CODEC FOR

HIGH-RESOLUTION SATELLITE IMAGES

HIGH THROUGHPUT IMAGE CODEC FOR HIGH-RESOLUTION SATELLITE IMAGES

Carlos de Cea-Dominguez†, P. Enfedaque�, Juan C. Moure‡, Joan Bartrina-Rapesta†, Francesc Auli-Llinas†

† Department of Information and Communications Engineering
‡ Department of Computer Architecture and Operating Systems

† ‡ Universitat Autònoma de Barcelona, Spain
� Computational Research Division, Lawrence Berkeley National Laboratory

ABSTRACT

The growth in the use of satellite images has generated the

need for their fast compression, processing, and distribu-

tion. JPEG2000 is a widespread standard for the compres-

sion and transmission of such images once they are in the

ground. Despite its advanced features and excellent coding

performance, JPEG2000 demands significant computational

resources. This paper introduces a wavelet-based codec that

uses the JPEG2000 framework, but replaces its most com-

putationally demanding coding stage by a highly parallel

engine. When executed in Graphics Processing Units to code

high-resolution satellite images, the proposed codec achieves

speed-ups of up to 8× when compared to the fastest imple-

mentation of JPEG2000 executed in a multi-core platform.

Index Terms— High throughput image coding, bitplane

image coding, JPEG2000.

1. INTRODUCTION
Satellite images are nowadays employed in myriad fields such

as management of natural resources, study of climate change,

weather forecast, or map making, among others. These im-

ages are captured by missions formed by a (constellation of)

Earth Observation satellite(s) like the LandSat, GeoEye, Sen-

tinel, or SEOSat. The huge amount of data acquired by these

satellites pose several challenges. The first is to download the

images to the ground with minimum loss in quality. To do so,

compression standards such as those proposed by the Con-

sultative Committee for Space Data Systems are commonly

employed. Once the data are on the ground, other compres-

sion standards with more advanced features are used to store

and transmit these images. JPEG2000 (ISO/IEC 15444) is a

widespread choice to do so.

Despite its excellent capabilities, the bitplane coding en-

gine of JPEG2000, called tier-1 coding [1], is highly demand-

ing in terms of computational resources. Its algorithm scans

the wavelet-transformed coefficients of the image numerous

This work has been partially supported by the Spanish Government

(MINECO), by FEDER, and by the Catalan Government, under Grants

TIN2015-71126-R, TIN2014-53234-C2-1-R, and 2014SGR-691.

times, producing a stream of bits with interesting features

such as quality progression, possibility of partial transmis-

sion, or error resilience [1]. This comes at the expense of

long execution times and complex software/hardware imple-

mentations.

The image coding community have studied ways to in-

crease the throughput of JPEG2000 implementations for

almost ten years. A promising alternative is to use the highly

parallel architectures of Graphics Processing Units (GPUs).

Modern GPUs are mostly based on the Single Instruction

Multiple Data (SIMD) paradigm. Its main idea is to execute

a flow of instructions on multiple pieces of data in a lock-step

synchronous way. To effectively apply such vector instruc-

tions on an algorithm there must be as few dependencies

among the data as possible. The main difficulty to implement

JPEG2000 in GPUs is that the tier-1 coding stage employs an

inherently sequential algorithm. It scans the coefficients one-

by-one, producing a result for each that can not be obtained

without all the previous. This causality renders parallelism

at the bitplane coding engine a very challenging task. Even

though there are some works in the literature with this pur-

pose [2–4], some centered on satellite imagery only [5], none

of them is able to exploit the full potential of GPUs.

Aware of this issue, the Joint Photographics Experts

Group (JPEG) launched in June 2017 a call for proposals [6]

aimed to develop an alternate coding engine to increase the

throughput of the standard while sacrificing as few as possible

of its features. This initiative is currently under development.

In the same line of this call for proposals but well before it was

launched, we started a line of research whose purpose is to

devise a bitplane coding engine that can exploit the fine-grain

parallelism of GPUs while maintaining the same features as

those of JPEG2000. First, we studied stationary probability

models [7,8] for the coding of coefficients that did not require

previously coded data and/or adaptive algorithms like those

employed in the standard. Then, we proposed an arithmetic

coder that produces fixed-length codewords [9], allowing

their interleaving in a single stream instead of producing a

single codeword like the MQ coder of JPEG2000. These two

techniques were combined in [10] to devise a bitplane cod-

Fig. 1: Pipeline of the proposed codec.

ing strategy with parallel coefficient processing (BPC-PaCo),

the first coding engine that breaks the dependencies among

coefficients. Its implementation in a GPU [11] indicates that

it can effectively exploit the parallelism of SIMD architec-

tures, which results in high speed-up factors with respect to

the fastest implementations of JPEG2000, either executed in

multi-core Central Processing Units (CPUs) or in GPUs.

Our previous work is solely centered on the bitplane cod-

ing stage. As explained below, wavelet-based image codecs

(including JPEG2000) are commonly structured in three cod-

ing stages: wavelet transform, bitplane coding, and bitstream

re-organization. This paper introduces an end-to-end codec

based on BPC-PaCo. It employs the framework of JPEG2000

and provides the same features of the standard. When em-

ployed to code high-resolution satellite images in consumer-

grade GPUs from Nvidia, it achieves speed-ups of up 8× as

compared to the fastest implementations of JPEG2000.

The rest of the paper is structured as follows. Section 2 ex-

plains the basics of SIMD architectures and JPEG2000. Sec-

tion 3 describes the proposed end-to-end codec in detail. Sec-

tion 4 provides experimental results achieved when coding

high-resolution images captured by the GeoEye satellite. The

last section summarizes this work.

2. BACKGROUND
Nvidia GPUs are hardware devices with tens of individ-

ual compute units called streaming multiprocessors (SM).

Each SM can execute multiple 32-wide SIMD (or also called

vector) instructions simultaneously. GPUs from Nvidia em-

ploy the CUDA programming model, which defines a com-

putation structure composed by (potentially) thousands of

threads grouped into warps and thread blocks. While the

hardware device executes 32-wide SIMD instructions, a soft-

ware CUDA thread is the virtualization of one of the lanes of

the SIMD instruction. A warp is the group of 32 consecutive

CUDA threads executing vector instructions and advancing

their execution in a lock-step synchronous fashion. A CUDA

program should reduce control flow divergence (i.e., condi-

tional instructions) among warps since that results in the se-

quential execution of the divergent paths, which increases the

amount of instructions executed. A thread block is a group of

warps, each one assigned to run until completion in a specific

SM. Warps in a thread block are executed asynchronously

and can cooperate via on-chip fast memories, using explicit

synchronizing barrier instructions when required.

The CUDA memory model is hierarchically organized as

follows: there is a space of local memory private to each

thread, a shared memory private to each thread block, and a

global memory public to all threads in the device. From a mi-

croarchitecture point of view, the local memory reserved per

thread is located either in the registers or the off-chip memory,

depending on the available resources. GPUs have two levels

of cache as well.

As previously stated, the proposed image codec is struc-

tured in three coding stages. The discrete wavelet transform

(DWT) is employed in the first stage to decorrelate the spatial

redundancy of the image. After that, the image is concep-

tually partitioned in small sets of wavelet coefficients called

codeblocks. Bitplane coding is applied in each codeblock in-

dependently. The main idea behind this technique is to code

the wavelet-transformed coefficients bitplane by bitplane. A

bitplane is defined as the collection of bits in the same posi-

tion of the binary representation of the magnitude of all co-

efficients. The bits emitted by the coding engine are fed to

an arithmetic coder that employs a probability model to com-

press them. The last stage of the codec truncates and reorders

the bitstreams generated for each codeblock to produce the

final codestream.

3. PROPOSED CODEC

The proposed codec is implemented in CUDA. Its coding

pipeline is depicted in Fig. 1. The encoder (decoder) reads the

image (compressed file) from the hard disk to the CPU mem-

ory and then moves the data to the main memory of the GPU.

The three stages communicate using this main memory. The

final stage moves the compressed data (decompressed image)

from the GPU to the CPU memory and writes it back to disk.

Each coding stage is implemented to exploit the high amount

of fine-grain parallelism required for the effective utilization

of the GPU’s resources. The algorithm employed to apply

the DWT already exhibits fine-grain parallelism and its im-

plementation in GPUs has been widely studied in the litera-

ture [12–14]. Herein, we employ the work that we proposed

in [13] since, to the best of our knowledge, it is the fastest

implementation of the DWT for CUDA. BPC-PaCo has been

adapted from our previous work [11]. The third stage of the

coding pipeline is called bitstream tightening (BST) and is

introduced in this paper.

3.1. Discrete wavelet transform

The GPU-adapted DWT implementation employed herein

uses a register-based approach [13]. This allows data reuse

and data sharing, taking advantage of the fine-grain paral-

lelism and data access locality of the algorithm. The DWT is

applied via the lifting scheme, which processes, alternatively

in the vertical or horizontal axis, odd and even image sam-

ples by using its adjacent values. The image is divided into

tiles, which are processed by independent warps to provide

the coarse-grained parallelism needed to populate the SMs

of the GPU. With an appropriate tile size, the coefficients of

each tile can be completely stored in the local registers of

each thread and processed sequentially in both axes without

saving the intermediate information. This halves the memory

access operations, significantly increasing the throughput of

the algorithm.

3.2. Bitplane coding with parallel coefficient processing

The wavelet coefficients are conceptually partitioned in code-

blocks, typically containing 32×32 or 64×64 coefficients,

that do not have dependencies among them. The processing

of codeblocks in parallel typically requires coarse-grained,

control-divergent strategies that are employed in many im-

plementations of the original JPEG2000 standard. To solely

use this kind of parallelism does not suit well the architec-

ture of GPUs. As previously stated, BPC-PaCo is devised to

promote fine-grain parallelism within the codeblock. Briefly

described, BPC-PaCo further partitions the codeblock in 32

stripes of coefficients that can be coded by the threads in

a warp. The scanning order, context formation, probability

model, coding passes, and arithmetic coder are redevised to

permit such a parallel processing. In particular, each stripe

employs an arithmetic coder and the codewords produced in

each stripe are collaboratively interleaved in the bitstream by

all the threads in the warp. This permits the use of coarse-

and fine-grain parallelism, since both the codeblocks and the

coefficients within them are coded in parallel.

3.3. Bitstream tightening

The bitstreams produced by BPC-PaCo for each codeblock

have different sizes depending on the data coded. As a conse-

quence, they are scattered throughout the entire output buffer.

The BST stage must tighten the information generated by

BPC-PaCo reorganizing them into a compact codestream that

can then be written to a file. Also, it adds some auxiliary in-

formation (i.e., headers) to be able to identify the codeblock

data within the final file in addition to general image informa-

tion.

The first step of the proposed BST algorithm is the gen-

eration of a vector of integers that contains the size of the

bitstreams generated for consecutive codeblocks. This vec-

tor is then employed to generate a new vector that contains

aggregate bitstream sizes, which represent the offset of the

bitstream with respect to the start position. The vector of off-

sets is used as a memory map in the data reorganizing pro-

cess. The vector of offsets is generated via the parallel prefix

sum algorithm [15] using the state-of-the-art implementation

in the open-source CUB framework.

To perform efficient memory accesses, the workload is

distributed among threads promoting that adjacent threads ac-

cess adjacent data. To do so, the threads are assigned to con-

secutive positions in the output codestream. Each thread per-

forms a binary search in the vector of offsets to compute the

position of the input value corresponding to the assigned out-

put position. A lookup table is added to accelerate the bi-

nary search operation: a direct access to the LUT provides a

bounded search interval that reduces the average number of

search iterations. This auxiliary LUT accelerates the perfor-

mance of the BST algorithm by 2×.

The decoder reverses the operations that are carried out in

the encoder. With regard to the BST stage, the vector contain-

ing the sizes of the bitstreams is in the auxiliary information

of the compressed file, so only the vector offset needs to be

recomputed.

4. EXPERIMENTAL RESULTS
The proposed codec is compared with Kakadu v7.8. Kakadu

is the fastest implementation of JPEG2000. It is programmed

in C++ and is heavily optimized via assembly instructions. It

supports multithread parallelism when executed in multi-core

CPUs. Kakadu is executed in a platform that has a total of

32 Intel Xeon cores running at 2.2 GHz. Our implementation

is executed in the consumer-grade GPUs reported in Table 1.

The GTX 1080 Ti is a high-end desktop GPU whereas the

GTX 960M is a low-end GPU for laptops. The tests report

the execution time employed for each implementation without

considering the time needed to write the final file to the disk,

since that significantly varies depending on the hard disk. The

tests employ 3 images captured by the GeoEye satellite. The

images are 10240×10240, gray-scale, and have a bit-depth of

8 bits per sample.

The results achieved are depicted in Fig. 2. The vertical

axis is the performance achieved, reported in Msamples per

second. Each pair of columns is the encoding and decoding

of an image. The results indicate that the proposed codec is

approximately 8× faster than Kakadu when executed in the

GTX 1080 Ti and approximately 2× faster than Kakadu when

executed in the GTX 960M. As seen in Table 1, the GTX 1080

Ti has six times more cores and memory bandwidth than the

GTX 960M, though in the results of Fig. 2 the GTX 1080 is

only 4× faster than the GTX 960M. This is due to the pro-

cesses involved in the codec, though further analysis is re-

quired.

From a power efficiency point of view, the consumption

used by Kakadu with the Intel Xeon platform is up to 380W,

whereas the GTX 1080 Ti and GTX 960M consume up to

250W and 60W, respectively. This indicates that the pro-

posed codec achieves a much higher throughput than Kakadu

while consuming significantly less power, making it suitable

for mobile solutions.

device #SMs cores × SM #cores clock freq. mem. bandwidth
GTX 1080 Ti 28 128 3584 1582 MHz 484 GB/s

GTX 960M 5 128 640 1176 MHz 80 GB/s

Table 1: Features of the GPUs employed.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

J2K Kakadu (Xeon) proposed (1080Ti) proposed (960M)

encoder

decoder

M
sa

m
pl

es
/s

ec

Fig. 2: Results achieved when coding three high-resolution

images captured by the GeoEye satellite.

5. CONCLUSIONS
The current image compression standards employed for the

compression of satellite imagery are mainly devised to exploit

the large-degree of parallelism provided in CPUs. This paper

introduces an end-to-end codec that employs the framework

of JPEG2000 but that provides –in all stages of the coding

pipeline– a fine-degree of parallelism. This can be effectively

exploited when executed in architectures that highly rely on

SIMD parallelism such as those found in Nvidia GPUs. Ex-

perimental results coding large-resolution satellite images in-

dicates that the proposed codec is 8× faster than the most ef-

ficient implementations of JPEG2000 while significantly re-

ducing the power consumption. None of the advanced fea-

tures of JPEG2000 are sacrificed in the proposed codec, so it

is ideal for scenarios that deal with massive datasets, such as

in the compression an transmission of satellite imagery. Fu-

ture work will explore the adaptation of the proposed codec

for the coding of other types of images and video.

6. REFERENCES

[1] D. S. Taubman and M. W. Marcellin, JPEG2000 Image com-
pression fundamentals, standards and practice. Norwell,

Massachusetts 02061 USA: Kluwer Academic Publishers,

2002.

[2] J. Matela, V. Rusnak, and P. Holub, “Efficient JPEG2000

EBCOT context modeling for massively parallel architectures,”

in Proc. IEEE Data Compression Conference, Mar. 2011, pp.

423–432.
[3] M. Ciznicki, M. Kierzynka, P. Kopta, K. Kurowski, and P. Gep-

nerb, “Benchmarking JPEG 2000 implementations on modern

CPU and GPU architectures,” ELSEVIER Journal of Computa-
tional Science, vol. 5, no. 2, pp. 90–98, Mar. 2014.

[4] Comprimato. (2014, Apr.) Comprimato JPEG2000@GPU.

[Online]. Available: http://www.comprimato.com

[5] M. Ciznicki, K. Kurowski, and A. Plaza, “Graphics process-

ing unit implementation of JPEG2000 for hyperspectral image

compression,” SPIE Journal of Applied Remote Sensing, vol. 6,

pp. 1–14, Jan. 2012.

[6] High Throughput JPEG 2000 (HTJ2K): Call for Proposals,

ISO/IEC Std., 2017, document ISO/IEC JTC 1/SC29/WG1

N76037.

[7] F. Auli-Llinas, “Stationary probability model for bitplane im-

age coding through local average of wavelet coefficients,”

IEEE Trans. Image Process., vol. 20, no. 8, pp. 2153–2165,

Aug. 2011.

[8] F. Auli-Llinas and M. W. Marcellin, “Stationary probability

model for microscopic parallelism in JPEG2000,” IEEE Trans.
Multimedia, vol. 16, no. 4, pp. 960–970, Jun. 2014.

[9] F. Auli-Llinas, “Context-adaptive binary arithmetic cod-

ing with fixed-length codewords,” IEEE Trans. Multimedia,

vol. 17, no. 8, pp. 1385–1390, Aug. 2015.

[10] F. Auli-Llinas, P. Enfedaque, J. C. Moure, and V. Sanchez,

“Bitplane image coding with parallel coefficient processing,”

IEEE Trans. Image Process., vol. 25, no. 1, pp. 209–219, Jan.

2016.

[11] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “GPU imple-

mentation of bitplane coding with parallel coefficient process-

ing for high performance image compression,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 8, pp. 2272–2284, Aug.

2017.

[12] W. J. van der Laan, A. C. Jalba, and J. B. Roerdink, “Accelerat-

ing wavelet lifting on graphics hardware using CUDA,” IEEE
Trans. Parallel Distrib. Syst., vol. 22, no. 1, pp. 132–146, Jan.

2011.

[13] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “Implementa-

tion of the DWT in a GPU through a register-based strategy,”

IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 12, pp. 3394–

3406, Dec. 2015.

[14] T. M. Quan and W.-K. Jeong, “A fast discrete wavelet trans-

form using hybrid parallelism on GPUs,” IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 11, pp. 3088–3100, Nov. 2017.

[15] D. Merrill and M. Garland. (2016) Single-pass par-

allel prefix scan with decoupled look-back. [Online].

Available: http://research.nvidia.com/sites/default/files/pubs/

2016-03\ Single-pass-Parallel-Prefix/nvr-2016-002.pdf

Chapter 3

GPU architecture for
wavelet-based video coding
acceleration

15

16
CHAPTER 3. GPU ARCHITECTURE FOR WAVELET-BASED VIDEO

CODING ACCELERATION

GPU architecture for wavelet-based

video coding acceleration

Carlos DE CEA-DOMINGUEZ a,1, Juan C. MOURE b, Joan BARTRINA-RAPESTA a

and Francesc AULÍ-LLINÀS a

a Department of Information and Communications Engineering,
Universitat Autònoma de Barcelona, Spain

b Department of Computer Architecture and Operating Systems,
Universitat Autònoma de Barcelona, Spain

Abstract. The real time coding of high resolution JPEG2000 video requires spe-

cialized hardware architectures like Field-Programmable Gate Arrays (FPGAs).

Commonly, implementations of JPEG2000 in other architectures such as Graphics

Processing Units (GPUs) do not attain sufficient throughput because the algorithms

employed in the standard are inherently sequential, which prevents the use of fine-

grain parallelism needed to achieve the full GPU performance. This paper presents

an architecture for an end-to-end wavelet-based video codec that uses the frame-

work of JPEG2000 but introduces distinct modifications that enable the use of fine-

grain parallelism for its acceleration in GPUs. The proposed codec partly employs

our previous research on the parallelization of two stages of the JPEG2000 coding

process. The proposed solution achieves real-time processing of 4K video in com-

modity GPUs, with much better power-efficiency ratios compared to server-grade

Central Processing Unit (CPU) systems running the standard JPEG2000 codec.

Keywords. Wavelet-based video coding, high-throughput video coding, JPEG2000,

GPU, CUDA.

1. Introduction

High definition video with resolutions ranging from 2K to 4K is nowadays common

in devices such as TVs, digital cinema projectors, and mobiles. Among others, the

JPEG2000 standard (ISO/IEC 15444) is employed for such video content in fields like

TV production or digital cinema. This standard provides excellent coding performance

and advanced features, such as quality progression, partial transmission, or error re-

silience [1]. Nonetheless, the algorithms employed to achieve them are very demanding

computationally. They transform, code, and reorganize the data in three main stages that

require multiple scans and coding operations. This results in long execution times and

complex implementations. In the case of digital cinema, for instance, field-programmable

gate arrays are required to achieve real-time decoding of 2K and 4K video.

1This work has been partially supported by the Spanish Ministry of Economy and Competitiveness and

the European Regional Development Fund under Grants TIN2015-71126-R, TIN2017-84553-C2-1-R and

RTI2018-095287-B-I00 (MINECO/FEDER, UE), and by the Catalan Government under Grants 2017SGR-463

and 2017SGR-313.

The first stage of most wavelet-based image/video codecs (including JPEG2000) re-

duces the image redundancy through the discrete wavelet transform (DWT). The opera-

tions performed by the DWT can be parallelized, so DWT implementations for parallel

architectures have been widely studied in the literature [2–4]. The second stage employs

bitplane coding together with arithmetic coding to reduce the statistical redundancy of

wavelet coefficients. This stage scans the coefficients one-by-one, producing a result for

each that can not be obtained without all the previous. This causality renders parallelism

at the bitplane coding engine a very challenging task. Even though there are some works

in the literature with this purpose [5–12], none of them is able to exploit the full potential

of GPUs. The third stage of the pipeline reorganizes the data and forms the compressed

file.

Aware of the high complexity of JPEG2000, the Joint Photographics Experts Group

launched in June 2017 a call for proposals [13] aimed to develop an alternate algorithm

for the bitplane and arithmetic coding stage that increases the throughput of the codec.

This JPEG2000 part is described in [14,15]. It increases performance about 10× though

penalizes coding performance about 10%. Also, it sacrifices quality scalability, which

may become an issue in image/video transmission scenarios.

In the same line of work but well before this call for proposals, we started a line of re-

search whose final goal is to devise an end-to-end image/video codec that can exploit the

fine-grain parallelism of GPUs while maintaining the same features of JPEG2000. For

the bitplane and arithmetic coding engine, we introduced a bitplane coding strategy with

parallel coefficient processing (BPC-PaCo) that does not hold dependencies among coef-

ficients, allowing efficient implementations in GPUs [16–19]. This engine can effectively

exploit the parallelism of SIMD architectures, which results in high speedup factors and

lower power consumption with respect to the fastest implementations of JPEG2000, ei-

ther executed in multi-core CPUs or in GPUs. Evidently, BPC-PaCo is not compliant

with the standard, but it does not sacrifice quality scalability and it penalizes coding per-

formance only about 2%. For the DWT, we also proposed an efficient architecture in [2]

that achieves high performance in GPUs.

The first implementation of the end-to-end codec for GPUs was presented in [20].

Nonetheless, that implementation is only able to process individual high-resolution im-

ages. This paper presents a vastly improved implementation that processes video se-

quences in real-time thanks to the introduction of stream management with multiple CPU

threads, a double-buffer strategy, and event handling to synchronize GPU and CPU op-

erations. Experimental results achieved with consumer-grade GPUs suggest that the pro-

posed codec achieves a throughput that allows encoding and decoding 4K video in real-

time and yields highly better power consumption ratios than JPEG2000 codecs executed

in CPUs.

The rest of the paper is structured as follows. Section 2 explains the basics of the

Nvidia GPU architecture. Section 3 briefly describes the different parts of the JPEG2000

standard. Section 4 describes the proposed end-to-end codec in detail. Section 5 provides

experimental results achieved when coding high resolution video in two GPUs and com-

pares our results with Kakadu [21], one of the best multi-thread JPEG2000 implementa-

tions. The last section concludes summarizing this work.

2. Overview of Nvidia GPUs

Nvidia GPUs are hardware devices with tens of individual computing units called stream-

ing multiprocessor (SMs). These SMs can work independently, allowing the GPU to pro-

cess different sequences of operations, called streams, in parallel. This permits the exe-

cution of multiple algorithms in an interleaved fashion, which increases the opportunities

for parallelism and thereby the throughput achieved. The SMs execute multiple 32-wide

SIMD instructions (i.e., vector instructions) simultaneously.

GPUs from Nvidia employ the CUDA programming model, which defines a com-

putation structure composed by (potentially) hundreds of thousands of threads grouped

into warps (each with 32-threads), with each warp assigned to a thread block [22]. While

the hardware device executes 32-wide SIMD instructions, a software CUDA thread is

the virtualization of one of the lanes of the instruction. From the first CUDA-compatible

architecture (v1.0) up to Pascal (v6.2), warps execute instructions in a lock-step syn-

chronous fashion, featuring an implicit synchronization at the end of any divergence [23].

From Volta (v7.0) onward, the implicit synchronization is not included at the end of the

branching instructions, and must be coded explicitly if needed [24]. Warps in a thread

block are executed asynchronously and can cooperate via on-chip fast memories, using

explicit synchronizing barrier instructions when required.

The CUDA memory model is hierarchically organized as follows: there is a space of

local memory private to each thread, a shared memory private to each thread block, and

a global memory public to all threads in the kernel application. From a microarchitecture

point of view, the local memory reserved per thread is located either in the registers or the

off-chip memory, depending on the available resources. In the proposed implementation,

the host memory (CPU RAM) and the device memory (GPU VRAM) are accessed as

different, non-unified memory regions, explicitly managing the moment and the amount

of data which are copied between them.

3. Overview of JPEG2000

Our GPU codec carries out the same steps as JPEG2000, so they are briefly described be-

low. Depending on the encoding mode employed, either lossy or lossless, the operations

involved may be irreversible or reversible, respectively. Irreversible operations improve

the compression ratio though they sacrifice image quality slightly.

The first stage of the coding pipeline is the DWT. Our implementation uses a lifting

scheme approach [25] due to its low computational complexity. It applies a series of

arithmetic operations first row by row and then column by column. The DWT outputs

four different subbands, with three of them including smaller detail images and the fourth

including the original image at lower resolution and higher energy. These operations

are carried out (typically) 5 times within the fourth subband, with each iteration in a

lower resolution subband. For lossy compression, the operations employ floating-point

arithmetic, so the resulting data are converted to integers before the next stage. This

conversion is performed via deadzone quantization [1].

The second stage applies bitplane coding with arithmetic coding. The wavelet coeffi-

cients are conceptually partitioned in small sets of typically 64×64 wavelet coefficients,

called codeblocks. The strategy adopted to process each codeblock consists in coding

the most relevant information first. The data are divided in bitplanes, with each bitplane

containing the set of bits from the same binary position of the unsigned binary represen-

tation of each coefficient. Encoding begins from the most significant bitplane (i.e., the

one with the highest magnitude within the codeblock) to the lowest one. In JPEG2000,

each bitplane is scanned in three coding passes. The first pass is called Significance Prop-

agation Pass. This pass only processes the bits of those coefficients that have at least one

significant neighbor. A coefficient is called significant from that bitplane that holds the

first non-zero bit to the lowest. The second coding pass is called Magnitude Refinement

Pass. It visits the coefficients that are significant in higher bitplanes. The Cleanup Pass

processes the coefficients not visited in the previous passes. This coding strategy aims

to code the information which holds more information first, effectively reducing distor-

tion [26]. Each bit emitted by the bitplane coder is fed to the arithmetic coder along with

its contextual information. The context considers the number of neighbors that are sig-

nificant, employed to determine a probability for the processed bit. This probability is

employed by the arithmetic coder to generate the final bitstream.

The compressed data of codeblocks can be truncated to fit a target bitrate. The

method to carry out this optimization process is not defined in the standard, so each im-

plementation may adopt its own solution. The final stage reorganizes the data and adds

ancillary information needed by the decoder to decode the original image. The decoder

carries out the same steps of the encoder in reverse order.

4. Proposed Codec

The proposed codec is implemented in CUDA. CUDA is employed instead of OpenCL

because it provides the latest improvements in the newest architectures. JPEG2000

exposes fine-grain parallelism in all coding stages except for the bitplane coder. Ex-

cept from the bitplane and arithmetic coder, our proposal produces the same output as

JPEG2000 in each stage employing a parallel architecture that extracts most of the GPU

performance. BPC-PaCo is employed in the bitplane coding engine [18, 19]. As previ-

ously stated, this engine is not compliant with the standard though it preserves the same

features and allows parallelism at a fine-grain level.

Algorithm 1 describes the main steps of the proposed codec. Fig. 1 also illustrates

its main stages. First, the required memory to process the entire video is allocated in the

host CPU RAM (lines 1-2) and in the GPU DRAM, which are respectively referred to

as MH and MD. Next, two CPU threads are created, denoted by t1 and t2 in Algorithm 1,

to manage the input/output from/to the hard disk (lines 3-6 and 10-13, respectively). The

codec utilizes a double-buffer strategy per stream. This double-buffer is employed for

both reading the raw data and writing the compressed file, so four buffers are allocated

for each stream. These buffers are referred to as MH [i] and MD[i] for the input, and MH [o]
and MD[o] for the output, with {i,o} ∈ {1..2}. When reading, the data from one buffer

are processed while the other is filled. For writing, the compressed data are transferred

to the host from one GPU buffer while the other is already empty and can be filled with

compressed data from the frame that is being processed. This buffer structure enables

the parallelization of the processing task in two streams, removes the risk of a system

memory overflow and increases the utilization of the system resources. Both threads are

constantly checking the buffers to start data transfers as soon as possible.

Figure 1. Illustration of the steps performed by the proposed video codec using two streams of execution.

Algorithm 1. Main routine of the codec

1: CPUMemoryAllocation()

2: GPUGlobalMemoryAllocation()

3: for each empty MH [i] do
4: MH [i]← HDRead()

5: MD[i]← MH [i]
6: end for
7: D ← DWT Q(MD[i])
8: {Bl}← BPC AC(D)

9: MD[o]← CR({Bl})

10: for each filled MD[o] do
11: MH [o]← MD[o]
12: HDWrite(MH [o])
13: end for

t1

S1,2

t2

From lines 7 to 9 in Algo-

rithm 1 the GPU functions, or ker-

nels, to code a frame are called.

The compression of each frame is

carried out with three kernels. Two

GPU streams, denoted by S1,2, are

employed to process a maximum

of two frames simultaneously. Typi-

cally, each kernel transfers the data to

be processed from the global mem-

ory MD[i] to the local memory R
to accelerate memory accesses. The

kernel DWT Q(·) receives the orig-

inal frame data as input and gen-

erates quantized wavelet coefficients

that are the input of BPC AC(·).
BPC AC(·) generates a bitstream per codeblock, referred to as Bl , with l ∈ {1..L̂}, L̂ be-

ing the number of codeblocks in each frame. This set of bitstreams is reorganized in the

last kernel CR(·), which also adds ancillary information for decoding. This kernel does

not transfer the compressed data to local registers since it only needs to reorganize the

data in global memory.

As illustrated in Fig. 1, the use of two GPU streams allows the processing of two

frames in parallel, increasing the throughput of the codec. Evidently, the three stages of

the coding pipeline are carried out sequentially in each stream. Once a frame is coded,

the resulting data are sent asynchronously to the host memory and the stream begins

processing the next frame immediately. The three kernels are devised and implemented

to extract fine-grain parallelism in the GPU. The proposed GPU-oriented architecture is

able to process either high-resolution images or video in real time. Next, a brief descrip-

tion of each kernel is provided.

4.1. Discrete wavelet transform

The adopted DWT implementation [2] in our codec employs a register-based acceler-

ation strategy [27] that transfers data from the global memory MD[i] to local registers,

avoiding the use of shared memory. Threads communicate among them via shuffle in-

structions. This strategy allows data reuse and sharing, taking advantage of the fine-grain

parallelism and data access locality of the algorithm. First, the image is conceptually

divided in blocks that are independently processed by warps. This permits coarse-grain

parallelism, populating more SMs of the GPU. The blocks take into account data de-

pendencies of the transform, so they include some samples from adjacent blocks form-

ing a halo. The halo is needed to obtain the same result as if the DWT was applied to

the whole image at once. Within each block, the DWT is applied via the lifting scheme,

which alternatively processes in the vertical and horizontal axis odd and even samples.

If the compression mode is lossy, quantization is applied after the DWT since the next

kernel requires integers.

4.2. Bitplane coding with parallel coefficient processing

The coefficients resulting from the DWT Q(·) are conceptually partitioned in small

sets called codeblocks. Typically, each codeblock contains 64×64 coefficients. They are

transferred to the local memory to speed up the processing, like in the previous kernel.

Codeblocks do not hold dependencies among them, so they are processed independently.

The processing of codeblocks in parallel requires coarse-grain, control-divergent strate-

gies that are employed in many implementations of the original JPEG2000 standard. In

addition to this parallelism, the coding engine BPC-PaCo employed in this stage extracts

fine-grain parallelism in the coding of the codeblock.

BPC-PaCo is based on bitplane coding, like JPEG2000. A particular feature of BPC-

PaCo is that it conceptually divides the codeblock in 32 columns holding two coefficients

each. Each codeblock is processed by a warp, and each 2-coefficient column is processed

by a thread of the warp. Each thread carries out a modified version of significance coding

that does not require cleanup, and the magnitude refinement pass. To employ only 2

coding passes instead of 3 like in JPEG2000 significantly increases the throughput [19].

Each emitted bit is coded via context-based arithmetic coding. To form the context of

the coefficient, threads need to cooperate among them so that each coefficient can obtain

information of all its adjacent neighbors. Again, this cooperation is performed via shuffle

instructions. BPC-PaCo utilizes 32 arithmetic coders so that each thread in the warp

can code all bits that it emits. The codewords generated by the arithmetic coders are

interleaved in an optimal fashion in the final bitstream generated for the codeblock. The

result of kernel BPC AC(·) is the set {Bl} that contains a bitstream per codeblock, with

l ∈ {1..L̂} and L̂ being the number of codeblocks per component. The probability model

employed by the arithmetic coders is static, i.e., it employs pre-defined probabilities that

are computed via a training set of images. This coding strategy permits the use of coarse-

and fine-grain parallelism, since both the codeblocks and the coefficients within them are

coded in parallel.

cores clock memory peak FP32 memory

SMs × SM frequency bandwidth throughput TDP size

GTX 1080 Ti 28 128 1923 MHz 484 GB/s 13.78 TFlops 250 W 11 GB

GTX 960M 5 128 1176 MHz 80 GB/s 1.5 TFlops 60 W 2 GB

Table 1. Features of the GPUs employed.

4.3. Codestream reorganization (CR)

The bitstreams produced for each codeblock have different size depending on the data

coded, as depicted in Fig. 1. This results in data scattered in the output buffer of the

global memory. The final stage of the coding process reorganizes these data putting them

in a compact structure that can be transferred to the main memory of the host MH [o]
and then written to the disk. This stage also includes auxiliary information in the final

codestream for decoding.

When a warp compresses a codeblock, the lengths of the bitstreams are stored in

a vector of integers L = {L1,L2, · · · ,LL̂}. Then an aggregated list of lengths, i.e., L′ =
{0,L1,L1 + L2, · · · ,L1 + · · ·+ LL̂} is generated via the Device Scan primitive from the

Nvidia CUB framework [28]. To accelerate the access to this list, a fast lookup table,

denoted by LUTL′ is created. This LUT is generated applying a binary search over L′
in which each position represents some positions of the original map. Our experience

indicates that speedups about 2× are achieved by using such a strategy. Kernel CR(·)
then uses this LUT so that each thread transfers 2 bytes of the codeblock’s data to the

final output buffer.

5. Experimental Results

The throughput achieved by the proposed codec is compared with Kakadu v7.A.2 [21]

in the experiments below. Kakadu is among the fastest implementations of JPEG2000,

with multi-thread support for multi-core CPUs. It is programmed in C++ and is heavily

optimized via assembly instructions. In the tests below, Kakadu is executed in a platform

that has 4 AMD Opteron 6376 CPUs running at 2.3 GHz, employing a total of 32 threads

of execution. Results from other JPEG2000 implementations in GPUs [11, 12] are not

included herein because their throughput is similar or inferior to that of Kakadu, with

the exception of Comprimato [10], which does not offer any option to test its implemen-

tation. Our codec is executed in the consumer-grade GPUs reported in Table 1, namely,

the high-end GTX 1080 Ti for desktops, and the low-end GTX 960M for laptops. The

tests code a video sequence of 948 frames of size 2048×832, gray-scale, and bit-depth

of 8 bits per sample. The results shown below do not consider the I/O time needed to

read/write the files from/to the disk since that may affect execution times significantly

depending on the device employed. In all implementations, data are read from the host

memory, where they are preloaded before starting the execution.

The first test evaluates the throughput achieved by our codec when using 1 or 2

GPU streams. The results are depicted in Fig. 2. The vertical axis reports the throughput

achieved, in Mega samples per second (Msamples/sec.). The results for 1 and 2 streams

are depicted for each GPU and for the encoding and decoding process. Using 2 streams

provides a performance increase about 26% (7%) in the encoding process and 22% (9%)

Figure 2. Evaluation of the throughput achieved when using 1 and 2 execution streams.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

JPEG2000 proposed

Kakadu 1080 Ti 960M

encoder

decoder

2K res.

4K res.

M
sa

m
pl

es
 /

se
c.

Figure 3. Evaluation of the throughput achieved by the proposed codec and Kakadu.

in the decoding process for the 1080 Ti (960M) GPU. The performance gain depends on

the peak throughput of each GPU. The 1080 Ti has ample resources to process more than

one frame whereas the 960M almost saturates its resources when coding a single frame

(i.e., 1 stream).

The second test evaluates the throughput of the proposed codec running 2 streams

and Kakadu. Fig. 3 depicts the obtained results. The proposed codec executed in the

1080 Ti yields a throughput about 5× higher than that of Kakadu. For the 960M, the

throughput achieved is about 2× higher than that of Kakadu. Nonetheless, we recall that

Kakadu is executed in an expensive multi-CPU platform, whereas the proposed codec

employs commodity GPUs. Fig. 3 also depicts the throughput needed to process digital

cinema video at resolutions of 2K and 4K in real time (straight horizontal lines). The

results suggest that the proposed codec running in the 1080 Ti (960M) can process 4K

 0

 5000

 10000

 15000

 20000

 25000

JPEG2000 proposed

Kakadu 1080 Ti 960M

encoder

decoder

M
sa

m
pl

es
 /

W
at

ts

Figure 4. Evaluation of the power efficiency achieved by the proposed codec and Kakadu.

(2K) video in real time.

The third test evaluates power consumption. Fig. 4 depicts the results yield by

Kakadu and our codec. In this case, the vertical axis reports Msamples processed per

Watt consumed. Kakadu employs four high-end AMD Opteron processors, each with a

thermal design power (TDP) of 115W, whereas the 1080 Ti and 960M GPUs have a TDP

of 250W and 60W, respectively. The low power consumption of the 960M makes it the

most efficient, being approximately 12× more power efficient than Kakadu for encoding

and about 17× for decoding. The proposed codec executed in the 1080 Ti is less power-

hungry than Kakadu too, with increases in efficiency about 9× and 10× for the encoder

and decoder, respectively.

6. Conclusions

The JPEG2000 standard is mainly devised to exploit the coarse-grain parallelism pro-

vided in CPUs. When employed to code high-resolution video in scenarios such as TV

production or digital cinema, implementations need specialized hardware or expensive

computer platforms to meet real-time requirements. So far, implementations for cheaper

devices such as GPUs are not able to achieve high throughput because the innermost

algorithms of the coding system do not exhibit enough fine-grain parallelism. This paper

introduces a fully parallel end-to-end codec that employs the framework of JPEG2000

but that provides –in all stages of the coding pipeline– distinct modifications that permits

the use of fine-grain parallelism. This can be effectively exploited when executed in ar-

chitectures that highly rely on SIMD parallelism such as those found in Nvidia GPUs.

Experimental results coding high-resolution video indicates that the proposed codec is

5× faster than the most efficient implementations of JPEG2000 while reducing the power

consumption more than 10×. None of the advanced features of JPEG2000 are sacrificed

in the proposed codec, so it is ideal for scenarios that deal with massive data sets and/or

power constraints.

References

[1] D. S. Taubman and M. W. Marcellin, JPEG2000 Image compression fundamentals, standards and prac-
tice. Norwell, Massachusetts 02061 USA: Kluwer Academic Publishers, 2002.

[2] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “Implementation of the DWT in a GPU through a register-

based strategy,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 12, pp. 3394–3406, Dec. 2015.

[3] T. M. Quan and W.-K. Jeong, “A fast discrete wavelet transform using hybrid parallelism on GPUs,”

IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 11, pp. 3088–3100, Nov. 2017.

[4] W. J. van der Laan, A. C. Jalba, and J. B. Roerdink, “Accelerating wavelet lifting on graphics hardware

using CUDA,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 1, pp. 132–146, Jan. 2011.

[5] S. Datla and N. S. Gidijala, “Parallelizing motion JPEG 2000 with CUDA,” in Proc. IEEE International
Conference on Computer and Electrical Engineering, Dec. 2009, pp. 630–634.

[6] R. Le, I. R. Bahar, and J. L. Mundy, “A novel parallel tier-1 coder for JPEG2000 using GPUs,” in Proc.
IEEE Symposium on Application Specific Processors, Jun. 2011, pp. 129–136.

[7] J. Matela, V. Rusnak, and P. Holub, “Efficient JPEG2000 EBCOT context modeling for massively par-

allel architectures,” in Proc. IEEE Data Compression Conference, Mar. 2011, pp. 423–432.

[8] M. Ciznicki, K. Kurowski, and A. Plaza, “Graphics processing unit implementation of JPEG2000 for

hyperspectral image compression,” SPIE Journal of Applied Remote Sensing, vol. 6, pp. 1–14, Jan. 2012.

[9] M. Ciznicki, M. Kierzynka, P. Kopta, K. Kurowski, and P. Gepnerb, “Benchmarking JPEG 2000 im-

plementations on modern CPU and GPU architectures,” ELSEVIER Journal of Computational Science,

vol. 5, no. 2, pp. 90–98, Mar. 2014.

[10] Comprimato. (2014, Apr.) Comprimato. [Online]. Available: http://www.comprimato.com

[11] (2016, Jun.) CUDA JPEG2000 (CUJ2K). [Online]. Available: http://cuj2k.sourceforge.net

[12] (2016, Jun.) GPU JPEG2K. [Online]. Available: http://apps.man.poznan.pl/trac/jpeg2k/wiki

[13] High Throughput JPEG 2000 (HTJ2K): Call for Proposals, ISO/IEC Std., 2017, document ISO/IEC

JTC 1/SC29/WG1 N76037.

[14] D. Taubman, A. Naman, and R. Mathew, “FBCOT: a fast block coding option for JPEG 2000,” in Proc.
SPIE Applications of Digital Image Processing, vol. 10396, Sep. 2017, pp. 1–18.

[15] D. Taubman, A. Naman, R. Mathew, and M. D. Smith, “High throughput JPEG 2000 (HTJ2K): New

algorithms and opportunities,” SMPTE Motion Imaging Journal, vol. 127, no. 9, pp. 1–7, Oct. 2018.

[16] F. Auli-Llinas, “Stationary probability model for bitplane image coding through local average of wavelet

coefficients,” IEEE Trans. Image Process., vol. 20, no. 8, pp. 2153–2165, Aug. 2011.

[17] F. Auli-Llinas and M. W. Marcellin, “Stationary probability model for microscopic parallelism in

JPEG2000,” IEEE Trans. Multimedia, vol. 16, no. 4, pp. 960–970, Jun. 2014.

[18] F. Auli-Llinas, P. Enfedaque, J. C. Moure, and V. Sanchez, “Bitplane image coding with parallel coeffi-

cient processing,” IEEE Trans. Image Process., vol. 25, no. 1, pp. 209–219, Jan. 2016.

[19] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “GPU implementation of bitplane coding with parallel

coefficient processing for high performance image compression,” IEEE Trans. Parallel Distrib. Syst.,
vol. 28, no. 8, pp. 2272–2284, Aug. 2017.

[20] C. de Cea-Dominguez, P. Enfedaque, J. Moure, J. Bartrina-Rapesta, and F. Auli-Llinas, “High through-

put image codec for high-resolution satellite images,” in Proc. IEEE International Geoscience and Re-
mote Sensing Symposium, Jul. 2018, pp. 6524–6527.

[21] D. Taubman. (2018, Dec.) Kakadu software. [Online]. Available: http://www.kakadusoftware.com

[22] “CUDA, C Programming guide,” Tech. Rep., Jan. 2015. [Online]. Available: http://docs.nvidia.com/

cuda/cuda-c-programming-guide

[23] Nvidia. (2018, Jan.) Warp level primitives. [Online]. Available: https://devblogs.nvidia.com/

using-cuda-warp-level-primitives/

[24] ——. (2019, Jun.) Nvidia Tesla V100 GPU architecture. [Online]. Available: http://images.nvidia.com/

content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

[25] W. Sweldens, “The lifting scheme: A construction of second generation wavelets,” SIAM Journal on
Mathematical Analysis, vol. 29, no. 2, pp. 511–546, 1998.

[26] F. Auli-Llinas and M. W. Marcellin, “Scanning order strategies for bitplane image coding,” IEEE Trans.
Image Process., vol. 21, no. 4, pp. 1920–1933, Apr. 2012.

[27] A. Chacon, S. Marco-Sola, A. Espinosa, P. Ribeca, and J. C. Moure, “Boosting the FM-index on the

GPU: effective techniques to mitigate random memory access,” IEEE/ACM Trans. Comput. Biol. Bioin-
formatics, vol. 12, no. 5, pp. 1048–1059, Sep. 2015.

[28] Nvidia. (2018, Dec.) CUB framework. [Online]. Available: https://nvlabs.github.io/cub/

Chapter 4

GPU Oriented Architecture for an
End-to-End Image Video Codec
Based on JPEG2000

27

28
CHAPTER 4. GPU ORIENTED ARCHITECTURE FOR AN END-TO-END

IMAGE VIDEO CODEC BASED ON JPEG2000

Digital Object Identifier

GPU-oriented architecture for an
end-to-end image/video codec
based on JPEG2000
CARLOS DE CEA-DOMINGUEZ1, JUAN C. MOURE 2, JOAN BARTRINA-RAPESTA1, AND
FRANCESC AULÍ-LLINÀS, (Senior Member, IEEE)1
1Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, Spain (phone: +34 935811861; fax: +34 935813443; e-mail:

carlos.decea@uab.cat, joan.bartrina@uab.cat, francesc.auli@uab.cat)
2Department of Computer Architecture and Operating Systems, Universitat Autònoma de Barcelona, Spain (e-mail: juancarlos.moure@uab.es)

Corresponding author: Carlos de Cea-Dominguez (e-mail: carlos.decea@uab.cat).

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development

Fund under Grants TIN2017-84553-C2-1-R and RTI2018-095287-B-I00 (MINECO/FEDER, UE), and by the Catalan Government under

Grants 2017SGR-463 and 2017SGR-313. Copyright (c) 2020 IEEE. Personal use of this material is permitted. However, permission
to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

ABSTRACT Modern image and video compression standards employ computationally intensive algo-

rithms that provide advanced features to the coding system. Current standards often need to be implemented

in hardware or using expensive solutions to meet the real-time requirements of some environments.

Contrarily to this trend, this paper proposes an end-to-end codec architecture running on inexpensive

Graphics Processing Units (GPUs) that is based on, though not compatible with, the JPEG2000 international

standard for image and video compression. When executed in a commodity Nvidia GPU, it achieves real

time processing of 12K video. The proposed S/W architecture utilizes four CUDA kernels that minimize

memory transfers, use registers instead of shared memory, and employ a double-buffer strategy to optimize

the streaming of data. The analysis of throughput indicates that the proposed codec yields results at

least 10× superior on average to those achieved with JPEG2000 implementations devised for CPUs,

and approximately 4× superior to those achieved with hardwired solutions of the HEVC/H.265 video

compression standard.

INDEX TERMS Wavelet-based image coding, high-throughput image coding, JPEG2000, GPU, CUDA.

I. INTRODUCTION

OVER the past decades, the computational complex-

ity of image and video coding systems has increased

notably. In the early nineties, the JPEG standard (ISO/IEC

10918) [1] employed the low-complexity discrete cosine

transform [2] and Huffman [3] coding. Ten years after, the

JPEG2000 standard (ISO/IEC 15444) [4] introduced more

computationally demanding algorithms such as the discrete

wavelet transform (DWT) [5] and bitplane coding [6]. In

the last years, HEVC/H.265 (ISO/IEC 23008) [7] doubled

the compression efficiency of previous standards by using

complex techniques that exploit intra- and inter-redundancy

of frames. Nowadays, most codecs (including JPEG2000

and HEVC) provide advanced features such as scalability by

quality, interactive transmission, and error resilience, among

others. To do so, they use algorithms that scan, transform, and

code the samples1 of the image multiple times, consuming

significant processing time even when executed in the latest

processors.

JPEG2000 is a widespread standard in fields that deal with

large sets of images and/or videos. Its coding pipeline has

three main stages [8]. The first reduces the image redundancy

through a color transform (CT) and the DWT. The second

employs bitplane coding together with arithmetic coding to

reduce the statistical redundancy of wavelet coefficients. The

third reorganizes the data to produce the final codestream.

The high computational complexity of these stages poses

1A sample is the basic unit of a digital image, representing a level of
brightness in a grayscale or color component (each RGB pixel has three
samples).

VOLUME VOL, YEAR 1

Carlos de Cea et al.: GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

a challenge to meet the real-time requirements of some

scenarios. In Digital Cinema, for instance, JPEG2000 needs

to be implemented in Field-Programmable Gate Arrays to

process 2K (i.e., 2048×1024) and 4K (i.e., 4096×2048)

resolution [9]. In medical and remote sensing applications,

dedicated servers and workstations are employed to manage

and store the large quantity of images that are produced

daily [10], [11]. This has motivated many works in the

literature that propose hardware architectures to accelerate

particular stages of the JPEG2000 coding pipeline [12]–[22].

Highly parallel architectures may help to reduce process-

ing time and costs in some environments. Graphics Process-

ing Units (GPUs) may be ideal due to their high through-

put, low cost, and widespread availability. Their architecture

is mainly based on the Single Instruction Multiple Data

(SIMD) paradigm, which executes a flow of instructions

on multiple data in a lock-step synchronous way. When

the program allows data (in addition to task) parallelism,

thousands of threads can be executed in parallel, achieving

a throughput that is potentially an order of magnitude higher

than that achieved by conventional Central Processing Units

(CPUs) [23]. This is in part because the architecture of the

CPUs is more based on the Multiple Instruction Multiple

Data (MIMD) paradigm, which allows the asynchronous

execution of fewer threads over different sets of data.

Most of the workload in the first stage of the JPEG2000

pipeline lies in the DWT, which is well-suited to the

SIMD paradigm. The first implementations of the DWT for

GPUs appeared in the 2000s making use of the graphics

pipeline [24]–[26]. Later, the use of the Compute Unified

Device Architecture (CUDA) programming language intro-

duced by Nvidia increased the throughput of such imple-

mentations significantly [27]–[31]. Recently, we proposed a

register-based implementation of the DWT for GPUs [32]

that yields 40× speedups compared to CPU implementations.

Similar results are also achieved in [33].

In general, the DWT takes 15% of the total execution time

of the codec. The most expensive stage is the bitplane and

arithmetic coding, which spends about 80% of the time. This

stage poses the major challenge for GPUs because it is not

well-suited to the SIMD paradigm. In this stage, the wavelet-

transformed image is partitioned in small sets of typically

64×64 wavelet coefficients, called codeblocks, and codes

them independently. This provides coarse-grain parallelism.

The coding within each codeblock must be carried out by a

single thread, since there exist causal relationships among co-

efficients. This means that the coding of a coefficient depends

on the output of the previous, so they can not be processed in

parallel. Even so, there have been efforts to implement this

stage in GPUs [34]–[40], though these solutions do not to

fully occupy the resources of the GPU due to the lack of fine-

grain parallelism. In 2014, we started a line of research [41]–

[45] focused on providing fine-grain parallelism to this stage

without sacrificing any feature of the system. The goal was

not to implement the compliant JPEG2000 algorithm, but

to redevise it keeping in mind the SIMD architecture of

GPUs. The proposed algorithm is not compatible with the

standard, but it allows parallel coefficient processing within

the codeblock.

Following a similar line, in 2017 the Joint Photographics

Experts Group launched a call for proposals with the aim to

augment the parallelism in the second stage of the coding

pipeline. This new part of JPEG2000 (ISO/IEC 15444-15)

adopts the algorithm proposed in [46]. Such algorithm is

devised to mostly benefit from the modern instruction sets

like AVX2, NEON, and BMI2 included in new CPUs, though

it can also be implemented in GPUs [47]. It is about 10×
faster than the standard, but it penalizes coding performance

in approximately 10%. Also, it sacrifices quality scalability,

which is a valued feature of the system since it permits the

transmission of an image progressively by quality.

This paper introduces a highly-parallel, GPU-oriented

codec based on JPEG2000. The proposed codec is the final

piece of our research line that was aimed to explore new cod-

ing techniques for image/video compression tailored for the

fine-grain parallelism of GPUs. The JPEG2000 framework is

employed to show that the proposed techniques can virtually

obtain the same coding performance of this standard without

sacrificing any feature. Evidently, compliance with the stan-

dard is lost since the proposed techniques require significant

changes in the core coding system. A preliminary version

of the proposed codec was partially described in [48], [49].

This paper vastly improves our previous work by describing

the complete coding pipeline with the needed machinery

to avoid bottlenecks, providing the color transform and the

codestream reorganization stages with an in-depth analysis

of the kernel metrics and memory transfers, and reporting ex-

tensive experimental tests. The obtained results show that the

proposed S/W architecture can process real-time 12K (i.e.,

12288×6144) video, achieving a throughput 4× superior to

that achieved by the state-of-the-art Nvidia codec of HEVC

that is supported by in-chip dedicated hardware.

The rest of the paper is structured as follows. Section II

briefly overviews the architecture of Nvidia GPUs and

JPEG2000. Section III describes the proposed codec from

a top-down perspective and Section IV details each kernel

employed. Section V evaluates the throughput of our archi-

tecture and compares it to some of the fastest JPEG2000 and

HEVC implementations. The last section contains conclu-

sions.

II. BACKGROUND
A. NVIDIA GPU ARCHITECTURE
Nvidia GPUs are hardware devices that are mainly consti-

tuted by individual computing units called Streaming Mul-

tiprocessors (SMs). Depending on the model and the ar-

chitecture, a Nvidia GPU may contain from one to tens of

SMs. Each SM can work independently, allowing the GPU to

process sequences of instructions from different algorithms.

Typically, SMs execute multiple 32-wide vector instructions

in parallel.

CUDA refers vector instructions as warps. Each lane of

2 VOLUME VOL, YEAR

Carlos de Cea et al.: GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

FIGURE 1: JPEG2000 coding pipeline.

a vector is virtualized into a software thread. Aggregations

of 32 threads form a warp. A group of warps, called thread

block, is assigned to a SM for execution. From the first

CUDA-compatible architecture (v1.0) up to Pascal (v6.2),

warps are always executed synchronously and in a lock-step

fashion, featuring an implicit synchronization at the end of

any divergence [50]. Volta (v7.0) introduced a modification

in the warp scheduler that allows the execution of warp

threads asynchronously [51], so the synchronization among

threads must be explicitly programmed when needed. Our

codec is adapted to work with both implicit and explicit

synchronization.

The memory architecture of the GPU is organized in

three levels: global, shared, and local. The size of the global

memory is, in general, in the order of GBs and is accessible

by all SMs. When this memory is accessed in a coalesced

way (i.e., via consecutive positions) the available bandwidth

is used efficiently and the latency is minimized. The size of

the shared memory is in the order of MBs and its latency is

lower than that of the global, though it can only be shared

within the thread blocks. The local memory is the fastest

though it is also limited in size and is only accessible by the

threads within a warp. The data allocated in the local memory

are commonly stored in the registers, though they may be

temporarily moved to the device memory (i.e., DRAM of

the GPU) when the register space is saturated. Typically, the

global memory is employed to read and store the applica-

tion’s data, the shared memory is used for communication

among threads of different warps, and the local memory is

utilized for intermediate computation. The local memory can

be shared among threads within a warp via the low-level

shuffle operation. This kind of memory sharing technique

proved to be very efficient in some applications [32], [52]–

[54]. The GPU has two levels of cache, denoted by L1 and

L2. The registers and the L1 cache are in the SM. The data

transferred from the device memory to the registers passes

through the L1 and L2 caches, which are reservoirs of the

most recently accessed data to be (possibly) reused in future

petitions.

As previously mentioned, each SM runs thread blocks.

These blocks can execute code from one or more CUDA

functions, called kernels, independently. This allows the par-

allel execution of many different kernels from a single or

various applications. CUDA provides the so-called streams to

organize the execution of running kernels. Each stream may

process a sequence of kernels of an application in a set of

SMs asynchronously from the rest. An appropriate use of the

streams optimizes the use of the GPU resources, which can

help to increase the throughput.

B. JPEG2000
As previously stated, JPEG2000 is an image/video coding

standard employed in professional environments due to its

excellent features and performance. The proposed codec

carries out almost the same operations as JPEG2000, so

they are briefly described herein for completeness. Figure 1

depicts these operations. Depending on whether lossy or

lossless compression is needed, some of these operations are

irreversible or reversible. As stated before, the first stage of

JPEG2000 applies several transformations to the image. The

first is carried out for color images, converting the red, green,

and blue (RGB) components to the lesser redundant color

space YCbCr, which holds the luminance information in the

first component and the chrominance with respect to blue and

red in the second and third components, respectively. This

is a pixel-wise operation that holds no dependencies among

pixels. It is carried out applying floating-point or integer

operations for the irreversible or reversible path, respectively.

The second operation is the DWT. Most implementations

apply it via the lifting scheme [55] since it has low com-

putational complexity. The main idea behind this scheme is

to first apply a series of arithmetic operations to all rows of

the image and then to all columns. These operations can be

carried out in parallel to all rows and then to all columns

since there are no inter-row/column dependencies. Then, the

resulting coefficients are re-ordered taking the coefficients in

the even and odd positions in each direction. This produces

four different subbands of one quarter the size of the original

image. In general, the same procedure is applied again four

more times in the subband that contains the low-detail image.

The operations carried out in each step apply a low- and high-

pass filter. JPEG2000 uses the irreversible CDF 9/7 and the

reversible CDF 5/3.

The irreversible filter bank employs floating-point arith-

metic, so the resulting coefficients need to be converted

to integers before bitplane coding. This operation is called

deadzone quantization [8]. It multiplies the coefficients by

a step size and keeps the integer part. This operation is

VOLUME VOL, YEAR 3

Carlos de Cea et al.: GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

not necessary for the reversible transform since it already

produces integer coefficients.

The second main stage of the coding pipeline carries out

bitplane coding together with arithmetic coding. As stated

before, this stage is applied in each codeblock independently.

Through the binary representation of the integer coefficients

(without sign), a bitplane is defined as the set of bits from all

coefficients in the same binary position. Bitplanes are coded

from the most to the least significant. Just after the first non-

zero bit of a coefficient is coded (referred to as significance

bit), its sign is coded too so that the decoder can reconstruct

that coefficient. The bits coded for a coefficient after its

significance bit are called refinement bits. The coefficients

within a codeblock are scanned in a pre-defined order that

visits four rows of coefficients, called stripes, consecutively.

In each stripe, coefficients are scanned from the left- to right-

most column and, in each column, from the top to the bottom

row. JPEG2000 codes each bitplane in three coding passes.

The first is called significance propagation. It follows the

scanning order processing only those coefficients that have

at least one significant neighbor. The second is called mag-

nitude refinement. It processes coefficients that were found

significant in previous bitplanes. The third pass processes the

remaining coefficients. It is called cleanup. This multiple-

pass coding is aimed to code first the information that reduces

the most the distortion of the image [6].

Each processed bit is fed to the arithmetic coder together

with its contextual information. The context considers the

significance, or sign, of its eight neighbors. One of 18

different pre-defined contexts is chosen depending on this

information. The context of the coefficient is employed by the

arithmetic coder to establish a probability for the currently

processed bit, generating a compacted stream of bits.

The output produced in this stage for each codeblock is a

bitstream that can be truncated at the end of each coding pass.

Like most coding systems, JPEG2000 permits specifying a

size for the final codestream, so bitstreams may be truncated

to fit the target rate. This rate-distortion optimization proce-

dure is not defined in the standard, so each codec can choose

among a great variety of methods [56]. The final operation

re-organizes these bitstreams to put them in the compressed

file together with ancillary information for decoding. The

decoder carries out the same operations in reverse order

except the rate-distortion optimization stage, which is not

necessary.

III. OVERVIEW OF THE CODEC ARCHITECTURE
A. OVERVIEW
Except for bitplane and arithmetic coding, all operations of

the JPEG2000 coding pipeline offer fine-grain parallelism.

Our codec implements these operations following the stan-

dard, so their input/output is the same as that obtained

by a conventional JPEG2000 implementation. To use the

JPEG2000’s bitplane and arithmetic coder would signifi-

cantly hinder the throughput of the GPU, so this is the only

stage that is not compliant with the standard. This stage is

replaced by the coding engine proposed in [44], [45]. The aim

of our codec is to code large quantities of images. The input

data set may contain frames of a video sequence or images

of the same size. For convenience, frame is used to refer both

terms in the following.

When possible, the proposed architecture joins operations

in a single kernel instead of using a straightforward approach

that uses one kernel per operation. Within the same kernel,

the data are always accessed in the same fashion and the data

types do not change. This permits the kernels to maximize the

use of local memory in detriment of shared memory, using

a register-based strategy [52]–[54] that minimizes memory

latencies. When the data set needs to be re-organized or

the data type is changed, then the data are transferred to

the global memory preparing them for the next kernel. This

architecture minimizes the overall memory transfers and

significantly increases performance.

Algorithm 1 describes the main routine of the codec. Its

architecture is also illustrated in Figure 2. First, all memory

needed during the coding process is pre-allocated both in the

host RAM and the device DRAM, which are respectively

referred to as MH and MD. This allocation (lines 1 and 2 in

the algorithm) considers the space needed for a double buffer

strategy to load the frames (see below), auxiliary memory

structures, and number of GPU streams employed. The host

RAM allocation is performed in pinned memory2 to avoid

memory positions requests to the CPU when transferring

data. This allocation greatly improves the memory bandwidth

achieved in some GPUs. See, for instance, in Table 1 the

difference in the bandwidth achieved by our codec when

coding a 4K video (with the test environment described in

Section V) using pinned or paged memory. To use pinned

memory in the Nvidia GTX 1080 Ti (Pascal architecture)

almost doubles the bandwidth achieved as compared to paged

memory. For the RTX 2080 Ti (Turing architecture), the

differences are much smaller due to the use of DDR4 RAM

modules in the host, though there is a slight increase of 4% in

the bandwidth achieved. It is worth noting that the practical

maximum speed of the PCI-E 3.0 bus employed is 13.2 GB/s

(with 15.8 GB/s of theoretical maximum), so our codec yields

maximum bandwidth in practice.

Memory transfers are programmed to be asynchronous

so they can absorb variations in the time spent to process

each frame. The reading of frames is managed by a thread,

denoted by t1 in Algorithm 1, that is executed by the host.

Each stream, denoted by Sj , j ∈ {1..Ŝ} with Ŝ being the

number of streams, employs two input buffers in both MH

and MD so that when a buffer is being processed the other

can be filled. These buffers are referred to as MH [i], MD[i]
with i ∈ {1..2Ŝ}. This filling is carried out in lines 3-6. t1
continuously checks if there is any empty buffer in MH . If

so, it reads the data from disk and transfers them to MH .

Then, it issues an asynchronous copy to the device memory

2Pinned memory indicates that the allocated space has a fixed location in
the RAM module(s) during the whole execution.

4 VOLUME VOL, YEAR

Carlos de Cea et al.: GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

FIGURE 2: Illustration of the codec architecture when using 2 CUDA streams. The cycle of the data is as follows. First, frame

data (individually identified by color) are read from disk to a RAM buffer. Then the data are managed by a stream in the GPU.

Within the device the data are transferred from global memory MD to local memory R and inversely before and after running

each kernel. The kernel execution is illustrated by the matrix of 0s and 1s. Each stream processes the three components of the

frame before transferring the compressed data back to the host memory MH and disk.

GTX 1080 Ti RTX 2080 Ti
MH → MD MD → MH MH → MD MD → MH

paged 7.5 GB/s 6.226 GB/s 12.746 GB/s 12.502 GB/s

pinned 12.431 GB/s 12.725 GB/s 13.182 GB/s 13.175 GB/s

speedup 1.65 2.04 1.03 1.05

TABLE 1: Evaluation of the memory bandwidth achieved by our codec when transferring data from host to device (MH →
MD) and device to host (MD → MH) with pinned and paged memory, for two different GPUs.

in line 5. t1 is active until all frames have been buffered.

The data are read and stored considering their original bit-

depth to optimize transfers and memory space. In general,

8-bit integers are employed.

The writing of the compressed data to the disk is done

similarly by thread t2, which is executed by the host in

lines 13-16. A double-buffer strategy is also employed so

that when a stream finishes coding a frame, it can readily

start coding another without waiting for the compressed data

to be transferred to the host memory. These output buffers

are referred to as MH [o], MD[o] with o ∈ {1..2Ŝ}. Again,

the data transfer from device to host is carried out via an

asynchronous copy in line 14. Once the transfer is done,

t2 writes them to the disk. The data are copied in the disk

orderly, i.e., following the same frame order of the original

sequence.

Lines 7-12 in Algorithm 1 describe the calls to the ker-

nels and the auxiliary memory structures employed in the

GPU. Four kernels are used. The first carries out the color

transform. It transfers all frame data from MD[i] to local

memory converting them to 32-bits integers (floats) for the

(ir)reversible path and performs the arithmetic operations

on the registers. The result is left in the auxiliary structure

denoted by A1..3 using the same data type employed in the

Algorithm 1 Main routine of the codec

1: CPUMemoryAllocation()

2: GPUGlobalMemoryAllocation()

3: for each empty MH [i] do
4: MH [i] ← HDRead()

5: MD[i] ← MH [i]
6: end for
7: A1..3 ← CT(MD[i])
8: for k ∈ {1..3} do
9: Dk ← DWT_Q(Ak)

10: {Bl} ← BPC_AC(Dk)

11: MD[o] ← CR({Bl})

12: end for
13: for each filled MD[o] do
14: MH [o] ← MD[o]
15: HDWrite(MH [o])
16: end for

t1

Sj

t2

kernel. After this, each component is processed indepen-

dently. The next kernel carries out the DWT and, if using

lossy compression, quantization. Our codec employs a rate-

distortion optimization method that controls the rate through

VOLUME VOL, YEAR 5

Carlos de Cea et al.: GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

occupancy warp efficiency bandwidth (GB/s) time (μs) #inst. (×106) #inst. per sample
2K 4K 2K 4K 2K 4K 2K 4K 2K 4K 2K 4K

CT(·) 90% 87% 100% 100% 483 495 65 255 3.08 12.32 1.47 1.47
DWT_Q(·) 84% 90% 97.5% 97.5% 471 511 36 135 2.45 9.81 1.17 1.17

BPC_AC(·) 18% 61% 63% 63% 69 189 1150 2000 32.61 107.01 15.54 12.75
CR(·) 88% 88% 99% 99% 181 210 15 35 0.82 3.05 0.39 0.36

TABLE 2: Analysis of the codec’s kernels when coding a 2K and 4K frame with the Nvidia RTX 2080 Ti.

registers data reading (MB) data writing (MB)
per thread MD → R L2 → L1 L1 → L2 R → MD

2K 4K 2K 4K 2K 4K 2K 4K 2K 4K
CT(·) 18 18 6 24 6 24 24 96 24 96

DWT_Q(·) 63 63 8.22 33.89 14.93 61.05 9.95 40.18 8.21 32.39
BPC_AC(·) 60 60 48.59 251.79 67.01 293.38 37.26 129.58 26.95 108.97

CR(·) 24 24 1.04 3.24 1.11 3.46 0.64 2.01 0.87 2.75

TABLE 3: Analysis of the hierarchical memory transfers of the codec’s kernels when coding a 2K and 4K frame with the

Nvidia RTX 2080 Ti.

the quantization step employed in this operation [56]. It

transfers the data from Ak to the registers, applies the lifting

scheme, and leaves the result in Dk. The third kernel is the

most complex. It applies bitplane and arithmetic coding. Like

the other kernels, it reads the data from the global memory

and puts them in the local. These data are organized in

codeblocks holding 64×64 coefficients. Each codeblock is

processed by an individual warp of 32 threads. The result of

this kernel is stored in the set {Bl} that contains one bitstream

per codeblock, with l ∈ {1..L̂} and L̂ being the number of

codeblocks per component. The length of each bitstream is

not known before coding, so the space for bitstreams {Bl}
is pre-allocated amply. As a result, the bitstream data are

scattered throughout the whole structure. These data must be

compacted before transferring them to the host memory and

disk, which is the function of the last kernel. Contrarily to the

other kernels, it does not put the frame data to the registers but

only the lengths of the generated bitstreams (via pointers to

memory positions), so that it can compute the final position of

each compressed byte. Then, it re-organizes the compressed

frame data in the global memory leaving them in one of the

two output buffers.

The decoder employs a similar structure to that of the

encoder. It executes the kernels in inverse order, performing

the reverse operations.

B. ANALYSIS

Table 2 and 3 report the kernels’ metrics obtained via the

Nvidia Nsight Compute tool when coding a 2K and 4K frame

using the test environment described in Section V. The first

kernel (i.e, ICT(·)) achieves high occupancy, optimal warp

efficiency (since it does not have divergence), and very high

memory bandwidth (see Table 2). These results are due to

the pixel-wise operation that it carries out. The differences

between the 2K and 4K frame with respect to execution

time and total number of instructions executed are a 4 fold

increase, coinciding with the increase in number of processed

samples. We recall that this kernel processes the three image

components, whereas the following kernels process only

one. As seen in Table 3, the three image components are

transferred from MD to R requiring 6 and 24 MB for a 2K

and 4K frame, respectively. Once the data are in the SM, they

are converted from 8-bit integers to 32-bit integers or floats

depending on whether the reversible or irreversible transform

is selected. This conversion is seen in the memory transfers

when the data are transferred back from the registers to the

device memory via the L1 and L2 caches.

The DWT_Q(·) kernel can perform a variable number of

transformation levels, typically 5. The metrics reported in Ta-

ble 2 correspond to the first call to the kernel, which performs

the first level of transformation. The achieved occupancy

is about 84% for 2K and 90% for 4K. This indicates that

other computations can be done while this kernel is running.

Similar to the previous kernel, the warp efficiency is almost

100% since there are no divergent paths. The increase in

execution time and total number of instructions between 2K

and 4K is also proportional to the frame size. As seen in

Table 3, this kernel utilizes more registers per thread due to

a larger data tile processed by each warp. The data require 8

MB and 32 MB for the 2K and 4K frame, respectively, which

approximately correspond to the transfers between MD to

R and inversely. The extra data transferred correspond to

auxiliary information. The transfers between the L1 and

L2 cache are higher than those from the device memory

to the registers because this kernel processes the data tiles

employing a redundant halo.

As shown by the metrics, the BPC_AC(·) kernel is the

most complex. First, the occupancy is much lower than that

achieved by the other kernels, especially for 2K frames. This

is because 2K frames do not have enough data to fill the

resources of the GPU. 4K frames achieve higher occupancy,

though it is still below that achieved by the other kernels.

Second, the warp efficiency is 63% due to the multiple diver-

gent paths of the algorithm. Third, the memory bandwidth

6 VOLUME VOL, YEAR

Carlos de Cea et al.: GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

is much lower than that achieved by the other kernels since

BPC_AC(·) is bounded by the latency of the computing

instructions [45]. Fourth, the time spent for coding a 2K

and 4K frame is not proportional to the frame size. This is

due to the low occupancy that is achieved for 2K frames

and due to the image content. Let us explain further. The

codeblock size is 64×64 regardless of the frame size. This

causes that codeblocks of 2K frames have more details (i.e.,

more entropy) than codeblocks of 4K frames, requiring more

instructions to code their information. This is manifested in

the total number of instructions and instructions per sample

executed, since the 4K frame requires approximately 20%

fewer instructions to code each sample. The memory trans-

fers when reading the data are higher than in the other kernels

mainly due to the register pool size (see Table 3). Differently

from the previous kernels, BPC_AC(·) visits each coefficient

of the codeblock many times. The number of visits depends

on the codeblock’s data, but is approximately 8 or 9 times

per coefficient on average. Since the size of the register space

is limited, once a coefficient is visited it is transferred back

to the device memory so the register can be employed for

other coefficients. When the coefficient is needed again, it is

transferred from the device memory to the registers. Many

of these coefficients are kept in cache and are reused, so

the transfers between the L2 and L1 cache are high as well.

The data transfers when writing are not as high because the

kernel only stores the compressed data. Even so, the data in

the compressed bitstream are accessed many times, so the

transfers between registers and device memory are higher

than in the previous kernels.

The occupancy and efficiency of the CR(·) kernel is similar

to that achieved by ICT(·) and DWT_Q(·). The execution

time for 4K frames is twice as that needed for 2K. This

is because both frames require 5μs to generate preliminary

tables, and then the data to be reorganized are about 1 MB

and 3 MB respectively for the 2K and 4K frame,3 requiring

10μs and 30μs. The memory bandwidth is lower than that

obtained in the first two kernels since the transferred data are

already compressed(also seen in Table 3).

This analysis indicates that the BPC_AC(·) kernel con-

sumes most of the total execution time and it achieves the

lowest occupancy. This suggests that the codec may underuse

the resources of the GPU when coding large sets of images

or video unless more workload is feed to the device. The pro-

posed architecture alleviates this issue by employing multiple

streams of execution. Each stream processes a frame, so more

data are processed in parallel, employing more resources

and increasing the overall throughput. See in Figure 3 the

throughput achieved by our multiple-streamed codec when

encoding 2K and 4K video in the same conditions as before.

The results are reported as the number of Mega Samples

coded per second (MS/s). The figure depicts the throughput

needed to code 4K, 8K, and 12K video in real-time with

34K frames are compressed more efficiently than 2K frames, so they
generate fewer data per sample coded.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 5 10 15 20

4K

8K

12K

M
S

/s

#streams

Encoder 4K
Encoder 2K

FIGURE 3: Analysis of the throughput achieved by the pro-

posed codec when encoding 2K and 4K video using different

number of execution streams, for the RTX 2080 Ti.

Algorithm 2 Kernel routine CT(MD[i])

1: GPULocalMemoryAllocation()

2: R1..3 ← MD[i]
3: R′

1..3 ← φ(R1..3)
4: A1..3 ← R′

1..3

5: return(A1..3)

straight horizontal lines for the convenience of the reader.

As seen in the figure, the throughput increases notably when

multiple streams are employed. In the case of 2K (4K) video,

13∼14 (7∼8) streams obtain maximum efficiency. Again, the

coding of 4K video achieves higher throughput due to the

nature of the data.

As seen in Section V the throughput achieved by the de-

coder is only slightly lower than that of the encoder because

the decoder requires more local memory, which reduces the

occupancy. The rest of the decoding process is very similar

to that of the encoder, so it is not reported herein for brevity.

IV. DESCRIPTION OF THE KERNELS
Algorithm 2 details the routine of the CT(·) kernel. In this

and following kernels, the algorithm describes the main op-

erations that are performed at a thread level. Like in the other

kernels, the first instruction allocates the local memory. All

kernels only use registers since this increases the throughput.

After allocating the required space, the data of the three

frame components are transferred from the global memory

to the register space, referred to as R for the input data.

This is the only kernel that needs the three components of

the frame. It applies a transformation that involves several

arithmetic operations, denoted by φ(·) in line 3, and the result

is left in the output register space R′. Then the data are

returned to the global memory, ready to be fetched by the

next kernel. Both reading and writing in the global memory

in this and following kernels is carried out in a coalesced

way to maximize memory performance since the GPU stores

VOLUME VOL, YEAR 7

Carlos de Cea et al.: GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

Algorithm 3 Kernel routine DWT_Q(Ak)

1: GPULocalMemoryAllocation()

2: R ← Ak

3: for y ∈ {1..Ŷ } do
4: for x ∈ {0..1} do
5: R[y][x] ← ϕ(R[y][x])
6: end for
7: end for
8: for x ∈ {0..1} do
9: for y ∈ {1..Ŷ } do

10: R[y][x] ← ϕ(R[y][x])
11: end for
12: end for
13: for y ∈ {1..Ŷ } do
14: for x ∈ {0..1} do
15: if (y, x) /∈ halo then
16: R[y][x] ← R[y][x] ·Q
17: Dk ← R[y][x]
18: end if
19: end for
20: end for
21: return(Dk)

data blocks adjacent to that requested in the L2 cache for

(possible) future requests. Depending on whether lossy or

lossless compression is selected, the operations and the data

types employed in the registers are floating points or integers,

respectively.

The second kernel is detailed in Algorithm 3. The wavelet

transform is applied in blocks of 64×Ŷ samples that are

processed by a single warp.4 This allows communication

among threads without needing shared memory. The height

of the block is denoted by Ŷ . Each thread processes two

columns of a block. The kernel applies a 2D high-pass/low-

pass filter to all samples. First, the filter ϕ(·) is applied

horizontally (lines 3-7) and then vertically (lines 8-12). The

filter consists in a series of arithmetic operations that use the

adjacent samples to the processed coefficient, in which the

result is left. This type of operation does not require two

register spaces (for input and output) like in the previous

kernel, but only one that is referred to as R. When the thread

needs data from other threads, it uses shuffle instructions

(not shown in Algorithm 3) since they have lower latency

than using shared memory [32]. If more than one level of

wavelet transform is selected, the instructions from line 3

to 12 are repeated each time over a quarter of the last data

processed, which contains the results of the low-pass filter.

This is carried out calling the kernel again. It is not detailed

in Algorithm 3 for the sake of clarity. The final step in

this routine is to transfer the data from the local space to

4Note that these blocks are not the codeblocks utilized in BPC_AC(·), but
a tile of the original image. Although the partitioning is similar for paral-
lelism purposes, the block transformed by DWT_Q(·) contains overlapped
samples of adjacent blocks.

the global memory. It is only done for those samples that

do not belong to the halo.5 Before transferring the data, a

quantization step size, denoted by Q in line 16, may be

applied. Again, lossy and lossless compression respectively

requires the use of floating points and integers when applying

ϕ(·). Quantization is only applied for lossy compression.

The BPC_AC(·) kernel is detailed in Algorithm 4. It is

applied to all codeblocks of the component, though we recall

that the algorithm details the operations carried out at thread

level. The kernel receives a frame component that is parti-

tioned in codeblocks of 64×Ŷ ′ coefficients, with typically

Ŷ ′ = 64. The data for the codeblock are implicitly trans-

ferred to the local memory in line 2 of the algorithm. Then the

coefficients are coded from bitplane B̂, which is a sufficient

number of magnitude bits to code all coefficients within the

codeblock, to the lowest bitplane 0. This is performed in

the loop of line 3. Like in the previous kernel, each thread

processes two columns and each codeblock is processed by a

warp. Contrarily to JPEG2000, this kernel carries out 2 cod-

ing passes instead of 3 since virtually same compression effi-

ciency is achieved [6], [44], [45] while increasing throughput

about 40%. The loop in lines 4-17 performs significance

coding. It checks whether the coefficient was significant in

previous bitplanes via the γ(·) function, which returns the

significance bitplane of the coefficient. If not, significance

coding is performed. First, context C of the coefficient is

determined via Φ(·) and, through this context and the current

bitplane, probability P for the coded bit is extracted from

the lookup table LUTsig . This table contains pre-computed

probabilities determined with a training set of images. Then,

the bit is coded via arithmetic coding. The procedure for

AC(·) is not detailed in the algorithm for simplicity. It can

be found in [45]. If the coefficient is significant in the current

bitplane (i.e., γ(R[y][x]) = b), its sign is coded in lines 11-13

with a similar procedure to that of significance coding. Re-

finement coding is carried out in lines 18-25. In this case, no

context is employed. The return of the AC(·) function is the

bitstream Bl that contains the compressed information. Each

time that this function is called, some data may be added to

Bl. We note that Bl is in the global memory. Each thread

puts data in Bl asynchronously from the others ensuring

mutual exclusion. This exclusion is guaranteed considering

the threads that need a new chunk of memory to write their

information, assigning positions based on the thread index

within the warp. This kernel also stores the length of Bl in a

separate global memory region, denoted by L.

The last kernel (i.e., CR(·)) is detailed in Algorithm 5. It

receives the set of bitstreams {Bl}. As previously stated, its

purpose is to reorganize the bitstream data in a compact struc-

ture. To do so, blocks of 2 bytes are assigned to each thread in

the warp to be written in the final memory positions. The first

step is to generate a memory map to know these positions.

This map is denoted as L′ and contains an aggregated list of

5The halo is an area surrounding the processed samples that is employed
by the warp to obtain the correct result of the wavelet transform.

8 VOLUME VOL, YEAR

Carlos de Cea et al.: GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

Algorithm 4 Kernel routine BPC_AC(Dk)

1: GPULocalMemoryAllocation()

2: R ← Dk

3: for b ∈ {B̂..0} do
4: for y ∈ {1..Ŷ ′} do
5: for x ∈ {0..1} do
6: if γ(R[y][x]) ≤ b then
7: C ← Φ(R[y][x])
8: P ← LUTsig[C][b]
9: Bl ← AC(R[y][x], P)

10: if γ(R[y][x]) = b then
11: C ′ ← Φ′(R[y][x])
12: P ′ ← LUTsign[C

′][b]
13: Bl ← AC(R[y][x], P ′)
14: end if
15: end if
16: end for
17: end for
18: for y ∈ {1..Ŷ ′} do
19: for x ∈ {0..1} do
20: if γ(R[y][x]) > b then
21: P ′′ ← LUTref [b]
22: Bl ← AC(R [y][x], P ′′)
23: end if
24: end for
25: end for
26: end for
27: Ll ← length(Bl)
28: return(Bl)

Algorithm 5 Kernel routine CR({Bl})

1: S ← computePosition(T,LUTL′ ,L′)
2: if (S ∈ {L′}) then
3: MD[o][H] ← Bl[S]
4: else
5: MD[o][D] ← Bl[S]
6: end if
7: return(MD[o])

lengths, more precisely, L′ = {0,L1,L1 + L2, · · · ,L1 +
· · · + L

̂L}. L′ is generated via the Device Scan primitive

from the Nvidia CUB framework [57]. To accelerate the

access to this map, a fast lookup table, denoted by LUTL′ , is

created. This LUT is generated applying a binary search over

L′ in which each position represents some positions of the

original map. Our experience indicates that speedups about

2× are achieved by using such a strategy. These operations

are carried out before running the CR(·) kernel, so they are

not specified in Algorithm 5.

Once the LUTL′ is created, each warp thread T computes

the position S of the data to be written (line 1). Then, it

checks whether the information to be copied is auxiliary

information of the codeblock (i.e., most significant bitplane),

or compressed data. This is carried out in line 2 checking

if the thread is copying the first bytes of the codeblock’s

bitstream. The corresponding bytes are either copied to the

header or body section of the final structure, respectively

denoted by MD[o][H] and MD[o][D]. The data transfers are

also performed in a coalesced fashion to maximize through-

put.

Again, the kernels employed in the decoder are very simi-

lar to those of the encoder, so they are not detailed herein.

V. EXPERIMENTAL RESULTS
The proposed codec is evaluated with four Nvidia GPUs,

namely, the RTX 2080 Ti, the GTX 1080 Ti, the Xavier,

and the Tegra X2. These devices are commodity GPUs, with

prices ranging from 650C to 1350C. Their specifications are

reported in Table 4. Both the RTX 2080 Ti and the GTX

1080 Ti are commonly employed in workstations for design

applications and gaming. The RTX 2080 Ti has the highest

peak throughput. It is employed with an i9 9900K CPU

workstation with 16 GB of DDR4 RAM. The 1080 Ti is used

on an i7-3770 workstation with 8 GB of DDR3 RAM. Both

the Xavier and the Tegra X2 are GPUs devised for devices in

which efficiency and size are important aspects, for example

in the Nintendo Switch. In our tests, they run on a Jetson

SDK platform [58]. Both GPUs have low performance, but

consume very little power. Both allow different power modes

with varying performance and Thermal Design Power (TDP).

The results reported below correspond to the maximum per-

formance mode except when indicated.

JPEG2000 results are obtained with Kakadu (v8.0.2) [59].

Kakadu is among the fastest CPU implementations of the

standard. It is heavily optimized in assembler, achieving su-

perior throughput than other implementations for GPUs such

as CuJ2K [60] and GPU-J2K [61]. It is executed in a work-

station with an Intel i9-9900K CPU with 8 cores and 16 GB

of DDR4 RAM. Kakadu is compiled for this architecture and

it is run with 16 threads of execution to achieve maximum

throughput. The compression parameters for both Kakadu

and our codec are: lossy or lossless compression as indicated,

5 levels of DWT, and codeblocks of 64×64. Although there

are other competitive GPU implementations of JPEG2000

such as Comprimato [62] and CUDA-JPEG2000 [63], it was

not possible to compare them in our test environment. Some

results reported in their corresponding webpages suggest that

they obtain competitive throughput, though lower to that

achieved by the proposed codec.

For comparison purposes, the following experiments also

provide the throughput achieved with the HEVC implemen-

tation developed by Nvidia [64], which is executed with the

RTX 2080 Ti and the GTX 1080 Ti. This codec runs in

the GPU employing in-chip support and dedicated hardwired

components. The parameters for HEVC are: rate control

with constant quantization 1-51 (0) for lossy (lossless), inter-

frame coding with GOP=32, and high performance mode.

This configuration achieves maximum throughput in our

tests. We note that HEVC is not supported in Jetson GPUs.

VOLUME VOL, YEAR 9

Carlos de Cea et al.: GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

cores clock memory peak FP32 compute memory
SMs × SM frequency bandwidth throughput capability TDP size

RTX 2080 Ti 68 64 1601 MHz 616 GB/s 13.935 TFlops 7.5 (Turing) 260 W 11 GB

GTX 1080 Ti 28 128 1923 MHz 484 GB/s 13.78 TFlops 6.1 (Pascal) 250 W 11 GB

Xavier 8 64 854∼1377 MHz 137 GB/s 1.4 TFlops 7.2 (Volta) 10/15/30 W 16 GB�

Tegra X2 2 128 854∼1465 MHz 58.4 GB/s 0.75 TFlops 6.2 (Pascal) 7.5 - 15 W 8 GB�

TABLE 4: Features of the GPUs employed. �Both the Xavier and Tegra X2 do not have dedicated GPU memory. Memory is

shared by both the CPU and GPU.

FIGURE 4: Analysis of the throughput achieved by the proposed codec when coding 2K (left) and 4K (right) video using

different number of execution streams, for lossy compression at maximum quality.

The data set employed in the experiments is a 2-minute

segment of the movie “Star Wars: The Last Jedi,” at a

resolution of 2K and 4K. The video contains 2,880 color

frames with a bit-depth resolution of 24 bits per pixel (i.e.,

8 bits per pixel per component), resulting in 67,5 GB (16,875

GB) of uncompressed data for the 4K (2K) resolution. The

HEVC codec uses a subsampled 4:2:0 version of the video

for compatibility issues with the 4K resolution in the GTX

1080 Ti. This is taken in consideration when measuring the

performance achieved. In general, the size of this data set is

sufficiently large to fill the resources of the GPU. Larger data

sets achieve similar results as those reported below. In all

results, the execution time is measured without considering

the I/O time spent to read/write the files from/to the disk

since that would affect results significantly depending on

the hard drive employed. The results below evaluate only

the throughput achieved since coding performance of the

proposed codec is extensively analyzed in [44]. Herein, the

codecs are compared when their coding options yield equiv-

alent image quality.

The first test evaluates the throughput achieved by the

proposed codec with the four GPUs when using a different

number of execution streams. The test evaluates both the

encoder and decoder in lossy mode with a quantization step

size that achieves maximum quality (about 50 dB). Figure 4

reports the results achieved. Again, this figure depicts with

horizontal lines the throughput needed to yield 4K, 8K, and

12K video compression in real time, assuming a frame rate

of 24 frames per second. The results indicate that both the

RTX 2080 Ti and GTX 1080 Ti increase the throughput as

more streams are employed, yielding optimal performance

depending on the frame resolution and GPU employed. The

Xavier and Tegra X2 do not benefit as much of using multiple

streams because they have fewer SMs, so their resources are

mostly filled with a single execution stream. In all results,

the decoder yields slightly lower throughput than the encoder

because it requires more local memory. This behavior is not

common in software implementations of image and video

codecs since the encoder generally requires more compu-

tations. Highly optimized implementations such as the pre-

sented herein, however, may obtain different results due to

the need of different data structures in the decoder. In the

following tests, 20 and 9 streams are employed for the RTX

2080 Ti and GTX 1080 Ti, respectively, to achieve maximum

throughput. The Xavier and Tegra X2 employ 14 and 10

streams, respectively, though their throughput is almost the

same as when using only 2.

The next test evaluates the number of kernels that are

10 VOLUME VOL, YEAR

Carlos de Cea et al.: GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20

2K

4K

#k
er

ne
ls

 ru
nn

in
g

#streams

Encoder 2080 Ti
Decoder 2080 Ti

FIGURE 5: Evaluation of the average number kernels exe-

cuted per unit of time depending on the number of streams

employed.

executed in parallel depending on the number of streams

employed. This analysis complements the previous for the

RTX 2080 Ti. The GTX 1080 Ti, Xavier, and Tegra X2 are

not included in this analysis. Figure 5 depicts the results

achieved. For 4K video, the maximum number of running

kernels is 4, which is yield when employing 10 streams.

4 parallel kernels already fill the resources of the GPU.

This indicates that no more kernels can be executed despite

increasing the number of streams employed, although a slight

increase in throughput can be achieved as it seen in the pre-

vious figure. 2K video obtains a different behavior. Number

of streams and running kernels are almost directly related,

reaching a peak at 20 streams and 10 parallel kernels. This

is because 2K frames have only a quarter of the data of 4K

frames, so the GPU requires more kernels to fill its resources.

Figure 6 reports the throughput achieved by the proposed

codec with the four GPUs, Kakadu, and HEVC when coding

4K video in lossy and lossless mode. For lossy compression,

the average image quality yield for all codecs is about 50

dB. At this level of quality, distortion is not perceptible by

the human eye. Each codec has a pair of columns. The first

reports the results for the encoder whereas the second for

the decoder. The results for 2K video are similar but with

lower performance, so they are not included in this figure.

Results for the Xavier and Tegra X2 are reported when

using three power modes, namely, maximum (0), minimum

(1), and mid-tier (2) performance. The results show that the

proposed codec yields superior performance to that achieved

by Kakadu and HEVC for both the RTX 2080 Ti and GTX

1080 Ti regardless of using lossy or lossless compression. In

all codecs, the performance in lossless mode is slightly lower

than that achieved in lossy since more data are processed,

generating larger compressed files. Even so, real-time 12K

video can be managed by our codec for both compression

modes. The Xavier and Tegra X2 GPUs do not achieve such a

high performance, but the Xavier is able to process 4K video

in real time when employing the maximum performance

mode. This throughput is similar to that obtained by Kakadu,

though we recall that Kakadu employs a modern CPU and the

Xavier is an embedded mobile solution. Both for the Xavier

and the Tegra X2, the minimum power mode significantly

lowers performance and the mid-tier mode achieves an inter-

mediate performance. This is more pronounced in the Xavier.

HEVC yields higher performance than Kakadu, though it

is lower than that achieved by our codec. Surprisingly, the

HEVC encoder achieves higher throughput with the GTX

1080 Ti than with the RTX 2080 Ti. Even though it is

executed using the Nvidia SDK HEVC software (v9.0) [64]

in maximum performance mode in both, each GPU has its

own hardwired solution for this codec. More precisely, the

RTX 2080 Ti includes one NVEnc Turing engine whereas the

1080 Ti includes two Pascal engines. Note also that the GTX

1080 Ti obtains higher throughput for the encoder than for

the decoder, whereas the RTX 2080 Ti yields more balanced

results.

The previous test evaluates the performance achieved

when there is (almost) no quality loss. Scenarios such as

video streaming or TV broadcast may tolerate more distor-

tion. Reducing the image quality results in higher throughput

since fewer data are coded. Figure 7 depicts the throughput

achieved by Kakadu, HEVC, and the proposed codec when

coding 4K video at different levels of quality, namely, from

50 dB to 20 dB, which is the quality range employed in

most scenarios. The image quality is controlled via the quan-

tization parameter Q in our codec, and similarly in HEVC

and Kakadu. As seen in the figure, reducing the quality has

a direct impact on throughput for all codecs. The proposed

codec achieves real-time encoding of 16K video for qualities

below 46 dB. The decoder has a lower increase in perfor-

mance as the quality decreases because the aforementioned

need of more local memory. The Xavier and Tegra X2 also

increase their throughput, though more gradually due to their

inferior performance power. It is worth noting that, even

though the RTX 2080 Ti and GTX 1080 Ti have a similar

peak throughput (about 14 TFlops), the RTX 2080 Ti obtains

approximately 50% more throughput when encoding. This is

due to the distribution of performance power in the GPU. The

RTX 2080 Ti has fewer CUDA cores in each SM, but more

than twice SMs than the GTX 1080 Ti. This provides more

resources per thread, especially, more local memory. Our

codec greatly benefits from this architectural improvement

since it employs registers extensively. The highest speedups

reported in Figure 6 are achieved by the HEVC decoder,

which increases the throughput almost 6×.

Power consumption is nowadays an important aspect due

to the advent of mobile devices. Figure 8 evaluates the power

consumption of our codec, HEVC, and Kakadu when coding

4K video at 50 dB, like in Figure 6. The results are depicted

in MS processed per Watts consumed. A Nvidia tool that

measures consumption in real-time is employed to obtain

these results. Kakadu’s consumption is measured via the

utility PowerTOP. The results depicted in Figure 8 suggest

that the proposed codec is the most efficient in terms of power

VOLUME VOL, YEAR 11

Carlos de Cea et al.: GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

FIGURE 6: Throughput evaluation for lossy (with highest image quality) and lossless compression of 4K video, for all codecs

and GPUs. Each pair of columns reports the results for the encoder (back) and decoder (front).

FIGURE 7: Throughput evaluation for lossy compression of 4K video at different quality levels. Results are for the proposed

codec except when indicated.

consumption. Evidently, the Xavier and Tegra X2 yield the

best results due to its architecture. Our codec employed with

the three power modes of these GPUs is less power-hungry

than the remaining, with the minimum mode achieving the

highest efficiency. The proposed codec is more efficient than

HEVC even when executed in the RTX 2080 Ti and GTX

1080 Ti, though moderately so. In general, CPUs consume

more power than GPUs, so Kakadu seems to consume the

most. The low power consumption of our codec means that,

in practice, it can allow batteries of mobile devices last much

longer and/or code more minutes of video for the same

battery capacity.

VI. CONCLUSIONS

Faster and less power-hungry image and video codecs

are currently needed in multiple scenarios. Typically, high

throughput codecs are achieved by means of integrated hard-

ware architectures such as ASICs or FPGAs. GPUs are also

a widely pursued means to accelerate codecs, though these

architectures do not commonly obtain the high performance

of their counterparts. This is because the core algorithms

of conventional image and video coding systems do not

provide enough fine-grain parallelism to fully exploit the

SIMD architecture of GPUs. This paper introduces an im-

age/video codec based on the JPEG2000 standard. All stages

of the coding pipeline have been devised to extract fine-grain

parallelism. All stages are compliant with the standard except

for the core algorithm called bitplane and arithmetic coding.

12 VOLUME VOL, YEAR

Carlos de Cea et al.: GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

FIGURE 8: Power consumption evaluation when encoding

4K video at 50 dB. Each pair of columns reports the results

for the encoder (back) and decoder (front).

The proposed codec introduces a similar algorithm to that of

JPEG2000 that augments its parallel capabilities. Although

the resulting codestream is not compliant with JPEG2000,

the coding system has the same advanced features of the

standard. The throughput of the resulting architecture when

executed in consumer-grade GPUs is at least 10× higher than

that achieved with CPU implementations executed in high-

end workstations, and superior to that achieved by Nvidia’s

SDK implementation of the HEVC video standard. Exper-

imental results suggest that our codec can encode (decode)

real-time 12K (8K) video in a Nvidia RTX 2080 Ti and that

it consumes very little power, especially in mobile GPUs.

REFERENCES
[1] Digital compression and coding for continuous-tone still images, ISO/IEC

Std. 10 918-1, 1992.

[2] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE

Trans. Comput., vol. C-23, no. 1, pp. 90–93, Jan. 1974.

[3] D. Huffman, “A method for the construction of minimum redundancy

codes,” Proc. IRE, vol. 40, pp. 1098–1101, 1952.

[4] Information technology - JPEG 2000 image coding system - Part 1: Core

coding system, ISO/IEC Std. 15 444-1, Dec. 2000.

[5] I. Daubechies, Ten lectures on wavelets. Philadelphia, PA: SIAM, 1992.

[6] F. Auli-Llinas and M. W. Marcellin, “Scanning order strategies for bitplane

image coding,” IEEE Trans. Image Process., vol. 21, no. 4, pp. 1920–1933,

Apr. 2012.

[7] High Efficiency Video Coding Standard, International Telecommunication

Union Std. H.265, 2013.

[8] D. S. Taubman and M. W. Marcellin, JPEG2000 Image compression

fundamentals, standards and practice. Norwell, Massachusetts 02061

USA: Kluwer Academic Publishers, 2002.

[9] A. Descampe, F.-O. Devaux, G. Rouvroy, J.-D. Legat, J.-J. Quisquater, and

B. Macq, “A flexible hardware JPEG 2000 decoder for digital cinema,”

IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 11, pp. 1397–1410,

Nov. 2006.

[10] T. Bruylants, A. Munteanu, and P. Schelkens, “Wavelet based volumetric

medical image compression,” ELSEVIER Signal Processing: Image Com-

munication, vol. 31, no. C, pp. 112–133, Feb. 2015.

[11] B. Penna, T. Tillo, E. Magli, and G. Olmo, “Transform coding techniques

for lossy hyperspectral data compression,” IEEE Trans. Geosci. Remote

Sens., vol. 45, no. 5, pp. 1408–1421, May 2007.

[12] Q. Huang, R. Zhou, and Z. Hong, “Low memory and low complexity VLSI

implementation of JPEG2000 codec,” IEEE Trans. Consum. Electron.,

vol. 50, no. 2, pp. 638–646, May 2004.

[13] H.-C. Fang, Y.-W. Chang, T.-C. Wang, C.-J. Lian, and L.-G. Chen, “Par-

allel embedded block coding architecture for JPEG 2000,” IEEE Trans.

Circuits Syst. Video Technol., vol. 15, no. 9, pp. 1086–1097, Sep. 2005.

[14] G. Pastuszak, “A high-performance architecture for embedded block cod-

ing in JPEG 2000,” IEEE Trans. Circuits Syst. Video Technol., vol. 15,

no. 9, pp. 1182–1191, Sep. 2005.

[15] A. K. Gupta, S. Nooshabadi, D. Taubman, and M. Dyer, “Realizing low-

cost high-throughput general-purpose block encoder for JPEG2000,” IEEE

Trans. Circuits Syst. Video Technol., vol. 16, no. 7, pp. 843–858, Jul. 2006.

[16] Y. Li and M. Bayoumi, “A three-level parallel high-speed low-power

architecture for EBCOT of JPEG 2000,” IEEE Trans. Circuits Syst. Video

Technol., vol. 16, no. 9, pp. 1153–1163, Sep. 2006.

[17] Y.-W. Chang, C.-C. Cheng, C.-C. Chen, H.-C. Fang, and L.-G. Chen,

“124 MSamples/s pixel-pipelined Motion-JPEG 2000 codec without tile

memory,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 4, pp.

398–406, Apr. 2007.

[18] K. Mei, N. Zheng, C. Huang, Y. Liu, and Q. Zeng, “VLSI design of a

high-speed and area-efficient JPEG2000 encoder,” IEEE Trans. Circuits

Syst. Video Technol., vol. 17, no. 8, pp. 1065–1078, Aug. 2007.

[19] Y.-W. Chang, H.-C. Fang, C.-C. Chen, C.-J. Lian, and L.-G. Chen, “Word-

level parallel architecture of JPEG 2000 embedded block coding decoder,”

IEEE Trans. Multimedia, vol. 9, no. 6, pp. 1103–1112, Oct. 2007.

[20] M. Dyer, S. Nooshabadi, and D. Taubman, “Design and analysis of system

on a chip encoder for JPEG2000,” IEEE Trans. Circuits Syst. Video

Technol., vol. 19, no. 2, pp. 215–225, Feb. 2009.

[21] K. Sarawadekar and S. Banerjee, “An efficient pass-parallel architecture

for embedded block coder in JPEG 2000,” IEEE Trans. Circuits Syst.

Video Technol., vol. 21, no. 6, pp. 825–836, Jun. 2011.

[22] K. Liu, E. Belyaev, and Y. Li, “A high throughput JPEG2000 entropy

decoding unit architecture,” SPRINGER Journal of Digital Imaging, 2019,

in Press.

[23] Nvidia. (2018, Dec.) GPU vs CPU theoretical GFLOP/s. [Online]. Avail-

able: https://docs.nvidia.com/cuda/cuda-c-programming-guide/graphics/

floating-point-operations-per-second.png

[24] M. Hopf and T. Ertl, “Hardware accelerated wavelet transformations,” in

Proc. Eurographics and IEEE Symposium on Visualization, May 2000, pp.

93–103.

[25] T.-T. Wong, C.-S. Leung, P.-A. Heng, and J. Wang, “Discrete wavelet

transform on consumer-level graphics hardware,” IEEE Trans. Multime-

dia, vol. 9, no. 3, pp. 668–673, Apr. 2007.

[26] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, and F. Tirado, “Parallel

implementation of the 2D discrete wavelet transform on graphics process-

ing units: Filter bank versus lifting,” IEEE Trans. Parallel Distrib. Syst.,

vol. 19, no. 3, pp. 299–310, Mar. 2008.

[27] J. Matela, “GPU-Based DWT acceleration for JPEG2000,” in In Annual

Doctoral Workshop on Mathematical and Engineering Methods in Com-

puter Science, Nov. 2009, pp. 136–143.

[28] J. Franco, G. Bernabe, J. Fernandez, and M. E. Acacio, “A parallel

implementation of the 2D wavelet transform using CUDA,” in Proc.

IEEE International Conference on Parallel, Distributed and Network-based

Processing, Feb. 2009, pp. 111–118.

[29] W. J. van der Laan, A. C. Jalba, and J. B. Roerdink, “Accelerating wavelet

lifting on graphics hardware using CUDA,” IEEE Trans. Parallel Distrib.

Syst., vol. 22, no. 1, pp. 132–146, Jan. 2011.

[30] V. Galiano, O. Lopez, M. P. Malumbres, and H. Migallon, “Speeding-

up the discrete wavelet transform computation with multicore and GPU-

based algorithms,” in Proc. International Conference on Computational

and Mathematical Methods in Science and Engineering, Jan. 2012, pp.

151–158.

[31] ——, “Parallel strategies for 2D discrete wavelet transform in shared

memory systems and GPUs,” SPRINGER The Journal of Supercomputing,

vol. 64, no. 1, pp. 4–16, Mar. 2012.

[32] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “Implementation of the

DWT in a GPU through a register-based strategy,” IEEE Trans. Parallel

Distrib. Syst., vol. 26, no. 12, pp. 3394–3406, Dec. 2015.

[33] T. M. Quan and W.-K. Jeong, “A fast discrete wavelet transform using

hybrid parallelism on GPUs,” IEEE Trans. Parallel Distrib. Syst., vol. 27,

no. 11, pp. 3088–3100, Nov. 2016.

[34] S. Datla and N. S. Gidijala, “Parallelizing motion JPEG 2000 with CUDA,”

in Proc. IEEE International Conference on Computer and Electrical Engi-

neering, Dec. 2009, pp. 630–634.

VOLUME VOL, YEAR 13

Carlos de Cea et al.: GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

[35] R. Le, I. R. Bahar, and J. L. Mundy, “A novel parallel tier-1 coder

for JPEG2000 using GPUs,” in Proc. IEEE Symposium on Application

Specific Processors, Jun. 2011, pp. 129–136.

[36] J. Matela, V. Rusnak, and P. Holub, “Efficient JPEG2000 EBCOT context

modeling for massively parallel architectures,” in Proc. IEEE Data Com-

pression Conference, Mar. 2011, pp. 423–432.

[37] F. Wei, Q. Cui, and Y. Li, “Fine-granular parallel EBCOT and optimization

with CUDA for digital cinema image compression,” in Proc. IEEE Inter-

national Conference on Multimedia and Expo, Jul. 2012, pp. 1051–1054.

[38] M. Ciznicki, K. Kurowski, and A. Plaza, “Graphics processing unit im-

plementation of JPEG2000 for hyperspectral image compression,” SPIE

Journal of Applied Remote Sensing, vol. 6, pp. 1–14, Jan. 2012.

[39] J. Lee, B. Kim, and K. Yoon, “CUDA-based JPEG2000 encoding scheme,”

in Proc. IEEE International Conference on Advanced Communication

Technology, Feb. 2014, pp. 671–674.

[40] X. Wu, Y. Li, K. Liu, K. Wang, and L. Wang, “Massive parallel imple-

mentation of JPEG2000 decoding algorithm with multi-GPUs,” in Proc.

SPIE Satellite Data Compression, Communications, and Processing X,

vol. 9124, May 2014, pp. 1–6.

[41] F. Auli-Llinas and M. W. Marcellin, “Stationary probability model for

microscopic parallelism in JPEG2000,” IEEE Trans. Multimedia, vol. 16,

no. 4, pp. 960–970, Jun. 2014.

[42] F. Auli-Llinas, “Context-adaptive binary arithmetic coding with fixed-

length codewords,” IEEE Trans. Multimedia, vol. 17, no. 8, pp. 1385–

1390, Aug. 2015.

[43] F. Auli-Llinas, P. Enfedaque, J. C. Moure, I. Blanes, and V. Sanchez,

“Strategy of microscopic parallelism for bitplane image coding,” in Proc.

IEEE Data Compression Conference, Apr. 2015, pp. 163–172.

[44] F. Auli-Llinas, P. Enfedaque, J. C. Moure, and V. Sanchez, “Bitplane image

coding with parallel coefficient processing,” IEEE Trans. Image Process.,

vol. 25, no. 1, pp. 209–219, Jan. 2016.

[45] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “GPU implementation of

bitplane coding with parallel coefficient processing for high performance

image compression,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 8, pp.

2272–2284, Aug. 2017.

[46] D. Taubman, A. Naman, and R. Mathew, “High throughput block coding in

the HTJ2K compression standard,” in Proc. IEEE International Conference

on Image Processing, Sep. 2019, pp. 1079–1083.

[47] A. Naman and D. Taubman, “Decoding high-throughput JPEG2000

(HTJ2K) on a GPU,” in Proc. IEEE International Conference on Image

Processing, Sep. 2019, pp. 1084–1088.

[48] C. de Cea-Dominguez, P. Enfedaque, J. C. Moure, J. Bartrina-Rapesta, and

F. Auli-Llinas, “High throughput image codec for high-resolution satellite

images,” in Proc. IEEE International Geoscience and Remote Sensing

Symposium, Jul. 2018, pp. 6524–6527.

[49] C. de Cea-Dominguez, J. C. Moure, J. Bartrina-Rapesta, and F. Auli-

Llinas, “GPU architecture for wavelet-based video coding acceleration,”

in Parallel Computing: Technology Trends, vol. 36, Apr. 2020, pp. 83–92,

IOSPress Series in Advances in Parallel Computing.

[50] Nvidia, “Warp level primitives,” Tech. Rep., Jan. 2018. [Online].

Available: https://devblogs.nvidia.com/using-cuda-warp-level-primitives/

[51] ——, “Nvidia Tesla V100 GPU architecture,” Tech. Rep., Jun. 2019.

[Online]. Available: http://images.nvidia.com/content/volta-architecture/

pdf/volta-architecture-whitepaper.pdf

[52] F. N. Iandola, D. Sheffield, M. Anderson, P. M. Phothilimthana, and

K. Keutzer, “Communication-minimizing 2d convolution in gpu registers,”

in Proc. IEEE International Conference on Image Processing, Sep. 2013,

pp. 2116–2120.

[53] A. Chacon, S. Marco-Sola, A. Espinosa, P. Ribeca, and J. C. Moure,

“Thread-cooperative, bit-parallel computation of Levenshtein distance on

GPU,” in Proc. ACM International Conference on Supercomputing, Jun.

2014, pp. 103–112.

[54] ——, “FM-index on GPU: a cooperative scheme to reduce memory foot-

print,” in Proc. IEEE International Symposium on Parallel and Distributed

Processing with Applications, Aug. 2014, pp. 1–9.

[55] W. Sweldens, “The lifting scheme: A construction of second generation

wavelets,” SIAM Journal on Mathematical Analysis, vol. 29, no. 2, pp.

511–546, 1998.

[56] F. Auli-Llinas and J. Serra-Sagrista, “JPEG2000 quality scalability without

quality layers,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 7,

pp. 923–936, Jul. 2008.

[57] Nvidia. (2018, Dec.) CUB framework. [Online]. Available: https:

//nvlabs.github.io/cub/

[58] ——, “Jetson SDK,” Tech. Rep., May 2019. [Online]. Available:

https://developer.nvidia.com/embedded-computing

[59] D. Taubman. (2020, Feb.) Kakadu software. [Online]. Available:

http://www.kakadusoftware.com

[60] University of Stuttgart. (2020, Jan.) CuJ2K. [Online]. Available:

http://cuj2k.sourceforge.net/

[61] Poznan Supercomputing and Networking Center. (2020, Feb.) GPUJ2K.

[Online]. Available: http://apps.man.poznan.pl/trac/jpeg2k/wiki

[62] Comprimato. (2020, Feb.) Comprimato JPEG2000@GPU. [Online].

Available: http://www.comprimato.com

[63] Fastvideo LLC. (2020, Feb.) CUDA-JPEG2K. [Online]. Available:

https://www.fastcompression.com/products/gpu-jpeg2000.htm

[64] Nvidia. (2018, Dec.) HEVC SDK. [Online]. Available: https://developer.

nvidia.com/nvidia-video-codec-sdk

14 VOLUME VOL, YEAR

Chapter 5

Complexity Scalable Bitplane
Image Coding with Parallel
Coefficient Processing

43

44
CHAPTER 5. COMPLEXITY SCALABLE BITPLANE IMAGE CODING WITH

PARALLEL COEFFICIENT PROCESSING

1

Complexity Scalable Bitplane Image Coding
with Parallel Coefficient Processing

Carlos de Cea-Dominguez, Juan C. Moure, Joan Bartrina-Rapesta, and Francesc Aulı́-Llinàs

Abstract—Very fast image and video codecs are a pursued
goal both in the academia and the industry. This paper presents
a complexity scalable and parallel bitplane coding engine for
wavelet-based image codecs. The proposed method processes
the coefficients in parallel, suiting hardware architectures based
on vector instructions. Our previous work is extended with a
mechanism that provides complexity scalability to the system.
Such a feature allows the coder to regulate the throughput
achieved at the expense of slightly penalizing compression effi-
ciency. Experimental results suggests that, when using the fastest
speed, the method almost doubles the throughput of our previous
engine while penalizing compression efficiency by about 10%.

Index Terms—High-throughput image coding, JPEG2000.

I. INTRODUCTION

THE pursuit of faster image and video coding systems

began shortly after the development of the first codecs

and compression standards. Traditional image coding systems,

such as SPIHT [1] or EBCOT [2], have been revisited many

times introducing modifications that accelerate their coding

process and/or alleviate computational resources [3]–[8]. Also,

many hardware architectures of such systems are optimized to

reduce execution time and meet the real-time requirements

of some environments [9]–[12]. These works focus on the im-

provement, or efficient implementation, of the most demanding

tasks of the codec, without modifying the techniques of the

original system. In general, such techniques code the data via

a single-thread procedure. This strategy together with the soar-

ing of the processor’s clock speed for more than three decades,

enhanced the codecs’ throughput significantly. Since 2005 the

increase in the clock’s speed slowed and processors began

augmenting their processing power via parallel architectures.

The transition from single- to multi-thread algorithms in the

image coding field began with the advent of multi-core Central

Processing Units (CPUs) in the 2000s [13]–[16]. The first

multi-thread codecs partitioned the image in multiple pieces

(referred to as codeblocks onward) that can be processed

independently. In international standards such as JPEG2000

(ISO/IEC 15444) or HEVC (ISO/IEC 23008-2), for instance,

the coding system provides multiple opportunities for such

coarse-grain parallelism. However, the core algorithms do not

allow fine-grain parallelism since they are envisaged from

Carlos de Cea-Dominguez, Joan Bartrina-Rapesta and Francesc Aulı́-Llinàs
are with the Dep. of Information and Communications Engineering and Juan
C. Moure is with the Dep. of Computer Architecture and Operating Systems,
Universitat Autònoma de Barcelona, Spain (phone: +34 935811861; fax:
+34 935813443; e-mail: carlos.decea@uab.cat). This work has been partially
supported by the Spanish Ministry of Economy and Competitiveness and the
European Regional Development Fund under Grants TIN2017-84553-C2-1-
R and RTI2018-095287-B-I00 (MINECO/FEDER, UE), and by the Catalan
Government under Grants 2017SGR-463 and 2017SGR-313. Copyright (c)
2020 IEEE. Personal use of this material is permitted. However, permis-
sion to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

a single-thread perspective, resulting in a causal relationship

among samples that makes parallel processing difficult.

This drawback was inconsequential while highly parallel

computing was not widely available. This changed in the

last years, when CPUs began including vector instructions to

exploit fine-grain parallelism and, more importantly, when par-

allel architectures and platforms like CUDA were introduced

allowing massive parallelism in commodity Graphics Process-

ing Units (GPUs). Algorithms of other fields that were well

suited to fine-grain parallelism were rapidly adapted in GPUs,

achieving 20× speedups or more [17]. When implemented in

GPUs, image and video coding systems did not achieve such

speedups due to the sequential techniques employed.

Aware of this fact, the Joint Photographics Experts Group

launched a call for proposals in 2017 [18] to introduce a

new part to the JPEG2000 standard that defines a new tier-

2 coding variant that offers high throughput [19]. This part is

called HTJ2K (ISO/IEC 15444-15). It is devised to benefit

from the modern instruction sets like AVX2, NEON, and

BMI2 included in new CPUs, and also from the GPU’s highly

parallel architecture [20]. It is about 10× faster than the

standard when executed in a CPU, though it penalizes coding

performance in approximately 10%. Also, it sacrifices quality

scalability, which is a valued feature of the standard that allows

transmitting the image progressively by quality.

In a similar line, in 2014 we started a research whose goal

is a JPEG2000-like codec that provides opportunities for fine-

grain parallelism in all the stages of the coding process [21]–

[25]. The proposed codec was recently evaluated using a com-

modity GPU. Experimental results suggest that it achieves 10×
speedups compared to an implementation of JPEG2000 that is

executed in a workstation with 4 CPUs [26]. The adaptation

of the bitplane coding engine was the most demanding task

since it requires the modification of the original techniques of

JPEG2000, losing compliance. The proposed bitplane coding

engine with parallel coefficient processing (BPC-PaCo) uses

vector instructions of 32 lanes (or, equivalently, 32 CUDA

threads) to process 32 coefficients within a codeblock in

parallel. BPC-PaCo sacrifices coding efficiency as compared

to JPEG2000 by about 2% but maintains all its features.

This paper introduces a mechanism that provides a new

feature to BPC-PaCo: complexity scalability. The proposed

mechanism allows trading computational complexity for com-

pression efficiency. The underlying motivation is that some

environments may be willing to sacrifice coding performance

in exchange of throughput. Complexity scalable BPC-PaCo

(CS BPC-PaCo) allows tuning the codec to accelerate more or

less the coding process. Evidently, the higher the throughput

achieved, the more affected are the compression efficiency and

quality scalability of the system. Experimental results indicates

2

that speedups of almost 2× are achieved compared to BPC-

PaCo while penalizing performance by about 10%.
The rest of the paper is structured as follows. Section II

reviews BPC-PaCo and Section III describes the proposed

complexity scalable mechanism. Experimental results are pre-

sented in Section IV. The last section summarizes this work.

II. REVIEW OF BPC-PACO

BPC-PaCo utilizes a traditional bitplane coding strategy

that codes the wavelet coefficients from the most significant

bitplane M −1 to the least, with M being a sufficient number

of bits to represent all coefficients within a codeblock. A

bitplane is the collection of bits bj from all coefficients,

with [bM−1, bM−2, ..., b1, b0], bi ∈ {0, 1} denoting the binary

representation of an integer υ that represents the magnitude of

the index obtained by quantizing wavelet coefficient ω. The

first non-zero bit of the binary representation of υ is denoted

by bs and is referred to as the significant bit. The sign of the

coefficient is denoted by d ∈ {+,−} and is coded immediately

after bs, so that the decoder can begin approximating ω as

soon as possible. The bits br, r < s are referred to as

refinement bits. Although two or three coding passes may be

employed [24], [25], the two coding pass version is employed

herein as baseline since it achieves higher throughput. The

first is called significance coding. It processes the bits of non-

significant coefficients, i.e., those coefficients whose s ≤ j
or, more precisely, whose significance state Φ(υ, j) = 0. The

second pass is called refinement coding and processes the bits

of the remaining coefficients (i.e., those whose Φ(υ, j) = 1).
The main difference between BPC-PaCo and other bitplane

coding engines is that BPC-PaCo codes multiple coefficients

in parallel. The scanning order is organized in stripes of two

columns. The stripes are processed by threads that advance

their execution synchronously, all coding the coefficient in

the same position of their corresponding stripe. This is the

key to achieve fine-grain parallelism, since a single vector

instruction is executed to code T coefficients of the codeblock

at the same clock cycle. In general, the codeblock contains

64×64 coefficients, so T = 32. Evidently, this strategy must

be accompanied with parallel techniques for context formation,

probability estimation, and entropy coding.
For significance coding, the context of υ at bitplane j is

determined considering its eight adjacent neighbors, denoted

by υk, via φsig(υ, j) =
∑

k Φ(υ
k, j). The context for sign

coding, denoted by φsign(ω, j), employs a similar strategy,

whereas the refinement pass employs a single context since

little gain is achieved with more complex models [27], so

φref (υ, j) = 0. Through the context, the probability estimate

of the encoded bit is extracted from a lookup table (LUT)

known by encoder and decoder [21]. The LUT for significance

coding is accessed as Pu[j][φsig(·)], with u denoting the

wavelet subband. This LUT contains the probability that bj
is 0, which is determined according to

Psig(bj = 0 | φsig(υ, j)) =

2j−1∑
υ=0

Fu(υ | φsig(υ, j))

2j+1−1∑
υ=0

Fu(υ | φsig(υ, j))

, (1)

where Fu(v | φsig(υ, j)) is the probability mass function (pmf)

of the quantization indices at bitplane j given their context.

Its support is [0, ..., 2j+1 − 1] since it contains quantization

indices that were not significant in bitplanes greater than

j. Probabilities for sign and refinement coding are derived

similarly. Their respective LUTs are denoted by P ′
u and P ′′

u .

Entropy coding is carried out through multiple arithmetic

coders that produce fixed-length codewords [22] as data are

coded. Each thread employs one such a coder. The dispatching

of the codewords in the quality embedded bitstream generated

for the codeblock requires cooperation among threads. It is

optimally constructed so that the bitstream can be truncated

at the end of coding passes yielding minimum distortion (see

Section III.C and III.D in [24]).

III. COMPLEXITY SCALABLE BPC-PACO

A distinct feature of bitplane coding engines, including

BPC-PaCo, is that they code the coefficients in multiple passes

per bitplane. This strategy is aimed to code first those data

that mostly decrease the image distortion. At the decoder, the

wavelet coefficients are progressively reconstructed, allowing

a fine refinement of the estimates of the incoming data. These

estimates are key to achieve compression. They are commonly

embodied in the context formation and probability model.

Another advantage of using multiple passes per bitplane is

that the bitstream contains multiple truncation points, one at

the end of each coding pass. They are key to achieve quality

scalability since they are employed by the rate-distortion opti-

mization method to minimize the distortion at a target rate(s).

Unfortunately, more coding passes entail more computational

complexity. Each pass scans all coefficients of the codeblock

despite coding the bits for only some of them. This is repeated

in each coding pass, so a coefficient is accessed as many times

as coding passes are executed.

The main idea behind Complexity Scalable BPC-PaCo

(CS BPC-PaCo) is to reduce the computational complexity of

the coding engine by reducing the number of times that each

coefficient is visited. To do so while minimizing the impact

on compression efficiency and quality scalability, bitplanes

[M −1, N] are coded as defined in BPC-PaCo. From bitplane

N − 1 to the lowest, each coefficient is coded with a fast

mode that uses a single pass. Differently from conventional

bitplane coding strategies, this single pass carries out inter-

bitplane coding since it transmits the information of multiple

bitplanes at once. Through N , the granularity of the quality

scalability, the compression efficiency, and the computational

complexity of the algorithm are controlled. When N is low,

more bitplanes are coded with two coding passes, producing

many truncation points that can be employed by rate-distortion

optimization procedures. Also, coefficients are reconstructed

progressively, allowing fine estimates. Evidently, low Ns do

not reduce computational complexity significantly. When N
is high, more bitplanes are coded in fast mode, reducing

computational complexity though producing fewer truncation

points and penalizing compression efficiency due to rougher

estimates. This mechanism provides complexity scalability to

the codec, since it can be employed to favor the application’s

throughput or the compression efficiency/quality scalability.

3

The same coding techniques of [24], with the modifications

described below, are valid in the fast mode to remove the data

dependency when coding coefficients in parallel.

Algorithm 1 describes the proposed coding engine from a

thread (or a single lane of a vector instruction) perspective.

From line 1 to 14, it employs the same procedure as that of

BPC-PaCo (see Section III.D in [24]). The only difference is

that the loop in line 1 codes bitplanes [M − 1, N] instead of

[M−1, 0]. The position of the coefficient within the codeblock

is denoted by y and x for the row and column, respectively.

The fast mode is embodied in lines 15 to 29. It encodes bits

[N−1, 0] at once for each coefficient. The significance context

is computed in line 17 before start coding and it is employed

until bs is found. This context does not change from bitplane

N−1 to 0 since no more information of the adjacent neighbors

is available once the fast mode begins. This also needs to be

considered in the probability model, so the LUT employed

in the fast mode for significance coding in bitplanes j′ =
[N − 1, 0] is populated according to

Psig(bj′ = 0 | φsig(υ,N−1)) =

2j
′−1∑

υ=0

Fu(υ | φsig(υ,N − 1))

2j
′+1−1∑
υ=0

Fu(υ | φsig(υ,N − 1))

.

(2)

Probabilities for sign coding are determined accordingly. The

LUT for refinement is unchanged due to the use of a single

context.

The selection of N is key to control the computational

complexity of the engine. A straightforward approach is to

apply the same N to all codeblocks. Our experience indicates

that this may penalize quality scalability significantly because

at the lowest N bitplanes there is only one truncation point

available for each codeblock. When the bitstreams segments

of higher bitplanes are already selected, the rate-distortion

optimization method can only include the whole segment of

some codeblocks, completely discarding some others. At low

rates, this may cause that none information is transmitted for

some areas of the image, producing an image with blank

areas or with no color information. The quality scalability

of the system is less affected when N is chosen depending

on the codeblock’s data and the wavelet subband. Let us

explain further. As indicated in [28], the highest bitplanes of

a codeblock contain the information that mostly decreases the

distortion. In terms of rate-distortion optimization, this means

that is more valuable the data coded in bitplane j = 4 for

a codeblock with M = 5 than for another with M = 6, for

example. Therefore, our strategy selects N depending on M .

The wavelet subband is also considered. The first decompo-

sition levels (i.e., the largest wavelet subbands) contain most

codeblocks, whereas the latest contain much fewer, so the use

of the fast mode in the codeblocks of the smallest resolution

subbands barely affects the throughput achieved. However,

these codeblocks contain the rougher details of the image,

important for its reconstruction. Our strategy selects N in each

codeblock according to

Algorithm 1 Complexity Scalable BPC-PaCo (encoder)

Parameters: u subband, t stripe, M bitplanes to code, N
bitplanes in fast mode

1: for j ∈ [M − 1, N] do
2: for y ∈ [0, numRows − 1] do
3: for x ∈ [t · 2, t · 2 + 1] do
4: if Φ(υy,x, j + 1) = 0 then
5: ACencode(bj , Pu[j][φsig(υy,x, j)], t)
6: if bj = 1 then
7: ACencode(d, P ′

u[j][φsign(ωy,x, j)], t)
8: end if
9: else

10: ACencode(bj , P ′′
u [j][0], t)

11: end if
12: end for
13: end for
14: end for
15: for y ∈ [0, numRows − 1] do
16: for x ∈ [t · 2, t · 2 + 1] do
17: c ← φsig(υy,x, N − 1)
18: for j ∈ [N − 1, 0] do
19: if Φ(υy,x, j + 1) = 0 then
20: ACencode(bj , Pu[j][c], t)
21: if bj = 1 then
22: ACencode(d, P ′

u[j][φsign(ωy,x, N − 1)], t)
23: end if
24: else
25: ACencode(bj , P ′′

u [j][0], t)
26: end if
27: end for
28: end for
29: end for

N = min

(
M,

⌊
M · K

Lu

⌋)
. (3)

K is the input parameter of our implementation that controls

the computational complexity of the codec. Larger Ks achieve

larger Ns, so more bitplanes are coded in fast mode, rising the

codec’s throughput. Lu is the L2norm of the synthesis basis

vectors of the subband’s filter-bank (it is assumed equal energy

gain factor in all subbands). The higher the decomposition

level, the more decreases the K, resulting in lower Ns in

the smallest resolution levels. Through this strategy, the fast

mode is applied at different bitplanes depending on the data

and subband of the codeblock, providing more variability to

the rate-distortion optimization method.

IV. EXPERIMENTAL RESULTS

The ISO 12640-1 corpus is employed (8 color images,

2560×2048, and 8 bits per sample (bps)). The results report

the performance achieved by JPEG2000, BPC-PaCo, and the

proposed CS BPC-PaCo. The same Java framework BOI [29]

is used for all codecs, using the same rate-distortion optimiza-

tion method. Results for throughput are computed when the

coding engine is executed with a single thread. This gives

an approximation of the computational complexity of the al-

gorithm. 5 levels of wavelet decomposition and codeblocks of

64×64 are employed. These coding parameters are selected as

the most commonly used. A smaller codeblock size alleviates

the penalization in coding efficiency of the proposed method,

4

TABLE I: Evaluation of the proposed method for lossless and lossy compression. All results are reported in bps except for

the speedup, which is the percentage of CS BPC-PaCo with respect to BPC-PaCo (on average for the encoder and decoder).

LOSSLESS COMPRESSION LOSSY COMPRESSION
BPC- CS BPC-PaCo BPC- CS BPC-PaCo

JP2 PaCo K = 0.5 K = 1.5 K = ∞ JP2 PaCo K = 1 K = 2 K = ∞
Portrait 3.80 +0.21 +0.22 7% +0.39 56% +0.43 76% 2.60 +0.10 +0.16 21% +0.27 51% +0.31 68%

Cafe. 4.68 +0.13 +0.16 10% +0.47 59% +0.52 74% 3.61 +0.08 +0.23 40% +0.43 63% +0.50 81%
Fruit 3.96 +0.20 +0.22 5% +0.40 52% +0.43 70% 2.73 +0.11 +0.18 24% +0.28 48% +0.32 62%
Wine 3.94 +0.20 +0.21 8% +0.37 55% +0.41 72% 2.71 +0.08 +0.14 27% +0.22 50% +0.27 70%

Bicycle 3.90 +0.20 +0.22 7% +0.41 54% +0.46 69% 2.67 +0.11 +0.20 29% +0.32 55% +0.36 70%
Orchid 3.44 +0.26 +0.27 7% +0.39 48% +0.43 71% 2.15 +0.12 +0.17 20% +0.25 46% +0.28 62%
Music. 5.34 +0.20 +0.29 8% +0.78 56% +0.84 68% 4.40 +0.11 +0.36 42% +0.61 67% +0.66 79%
Candle 4.74 +0.15 +0.20 11% +0.53 56% +0.60 73% 3.69 +0.08 +0.26 40% +0.47 66% +0.52 76%

average 4.22 +0.20 +0.22 8% +0.47 54% +0.51 72% 3.07 +0.09 +0.21 30% +0.36 56% +0.40 71%

(a) (b)

Fig. 1: Evaluation of (a) lossy coding performance and (b) throughput achieved for the “Orchid” image when using different

Ks. In (a), the horizontal straight plot depicts the performance achieved by JPEG2000, whereas the other plots depict the

performance achieved by the proposed method with different Ks, or by BPC-PaCo.

whereas fewer wavelet levels degrades coding performance

significantly at low rates.

Table I (left) reports the results for lossless compression.

They use K = {0.5, 1.5,∞}. K = ∞ achieves the fastest

speed since all bitplanes are coded with the fast mode. The

results of this table suggest that CS BPC-PaCo can accelerate

the coding process of the original engine by 72% whereas

the penalization in coding performance is, with the fastest

speed, 13% and 10% as compared to JPEG2000 and BPC-

PaCo, respectively.

Table I (right) reports lossy compression results when

K = {1, 2,∞}. This test evaluates the rate and throughput

increase achieved when all bitplanes are coded, achieving a

quality above 50 dB. The results suggest that when K = 1 the

engine’s throughput is increased by 30% whereas the rate by

4% with respect to BPC-PaCo. For K = 2 (K = ∞), through-

put and rate are respectively increased by 56% (71%) and 9%

(10%). Note that, in terms of percentage, the throughput is

more increased than the decrease in compression efficiency.

Fig. 1(a) evaluates the quality scalability achieved by the

proposed method, for the “Orchid” image. Results hold for

the others. The figure reports the coding performance achieved

at 200 rates equivalently distributed between 0.01 and 2 bps,

in terms of Peak Signal to Noise Ratio (PSNR) difference

between JPEG2000 and BPC-PaCo or CS BPC-PaCo when

using different Ks. The results are obtained when all bitplanes

are coded and then the rate-distortion optimization method

constructs the final file, or quality layers, at the target rates.

For K ∈ (0, 1) the losses in coding performance are below 2

dB for the whole rate range. Larger Ks result in higher losses,

especially for low rates. This penalization in compression effi-

ciency is caused by both the lack of enough truncation points

and the poorer efficiency of the arithmetic coder due to rougher

estimates of the coefficients. Fig. 1(b) reports the throughput’s

increase when using the same Ks as before. When K = 1
the throughput is increased in 20% while slightly affecting

the coding efficiency (see Fig. 1(a)). Although larger Ks

penalize more the image quality, the throughput’s enhancement

is significant, achieving more than 40% when K = 2.

V. CONCLUSIONS

Many efforts have been done to increase the throughput

of image and video codecs. Common approaches are to

implement them in hardware or to simplify their algorithms,

which sometimes sacrifices some features. This paper presents

a fast bitplane coding engine that, in addition to the features

of the JPEG2000 standard, provides complexity scalability. To

do so, it uses a coding engine that processes the coefficients in

parallel and, when indicated, changes the conventional coding

of bitplanes to a fast mode that codes all bits of the coeffi-

cients at once. Experimental results indicate that the proposed

method can effectively regulate the codec’s throughput. When

using the minimum complexity, the throughput and rate are

increased by about 70% and 13%, respectively, whereas the

maximum complexity increases throughput and rate by about

10% and 2%, respectively, on average for the employed corpus

and for lossy and lossless compression.

5

REFERENCES

[1] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits
Syst. Video Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.

[2] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Trans. Image Process., vol. 9, no. 7, pp. 1158–1170,
Jul. 2000.

[3] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-
complexity image coding with a set-partitioning embedded block coder,”
IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 11, pp. 1219–
1235, Nov. 2004.

[4] G. Xie and H. Shen, “Highly scalable, low-complexity image coding
using zeroblocks of wavelet coefficients,” IEEE Trans. Image Process.,
vol. 15, no. 6, pp. 762–770, Jun. 2005.

[5] M. Dyer, D. Taubman, S. Nooshabadi, and A. K. Gupta, “Concurrency
techniques for arithmetic coding in JPEG2000,” IEEE Trans. Circuits
Syst. I, vol. 53, no. 6, pp. 1203–1212, Jun. 2006.

[6] M. Rhu and I.-C. Park, “Optimization of arithmetic coding for
JPEG2000,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 3,
pp. 446–451, Mar. 2010.

[7] F. Auli-Llinas and M. W. Marcellin, “Scanning order strategies for
bitplane image coding,” IEEE Trans. Image Process., vol. 21, no. 4,
pp. 1920–1933, Apr. 2012.

[8] X. Song, Q. Huang, S. Chang, J. He, and H. Wang, “Three-dimensional
separate descendant-based SPIHT algorithm for fast compression of
high-resolution medical image sequences,” vol. 11, no. 1, pp. 80–87,
Jan. 2017.

[9] A. K. Gupta, S. Nooshabadi, D. Taubman, and M. Dyer, “Realizing
low-cost high-throughput general-purpose block encoder for JPEG2000,”
IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 7, pp. 843–858,
Jul. 2006.

[10] K. Mei, N. Zheng, C. Huang, Y. Liu, and Q. Zeng, “VLSI design of a
high-speed and area-efficient JPEG2000 encoder,” IEEE Trans. Circuits
Syst. Video Technol., vol. 17, no. 8, pp. 1065–1078, Aug. 2007.

[11] M. Dyer, S. Nooshabadi, and D. Taubman, “Design and analysis of
system on a chip encoder for JPEG2000,” IEEE Trans. Circuits Syst.
Video Technol., vol. 19, no. 2, pp. 215–225, Feb. 2009.

[12] S. Kim, D. Lee, J.-S. Kim, , and H.-J. Lee, “A high-throughput
hardware design of a one-dimensional SPIHT algorithm,” IEEE Trans.
Multimedia, vol. 18, no. 3, pp. 392–404, Mar. 2016.

[13] H.-C. Fang, Y.-W. Chang, T.-C. Wang, C.-J. Lian, and L.-G. Chen,
“Parallel embedded block coding architecture for JPEG 2000,” IEEE
Trans. Circuits Syst. Video Technol., vol. 15, no. 9, pp. 1086–1097, Sep.
2005.

[14] Y. Li and M. Bayoumi, “A three-level parallel high-speed low-power
architecture for EBCOT of JPEG 2000,” IEEE Trans. Circuits Syst. Video
Technol., vol. 16, no. 9, pp. 1153–1163, Sep. 2006.

[15] K. Sarawadekar and S. Banerjee, “An efficient pass-parallel architecture
for embedded block coder in JPEG 2000,” IEEE Trans. Circuits Syst.
Video Technol., vol. 21, no. 6, pp. 825–836, Jun. 2011.

[16] Y. Jin and H.-J. Lee, “A block-based pass-parallel SPIHT algorithm,”
vol. 22, no. 7, pp. 1064–1075, Jul. 2012.

[17] M. S. Nobile, P. Cazzaniga, A. Tangherloni, and D. Besozzi, “Graphics
processing units in bioinformatics, computational biology and systems
biology,” Briefings in Bioinformatics, vol. 18, no. 5, pp. 870–885, Sep.
2017.

[18] High Throughput JPEG 2000 (HTJ2K): Call for Proposals, ISO/IEC
Std., 2017, document ISO/IEC JTC 1/SC29/WG1 N76037.

[19] D. Taubman, A. Naman, and R. Mathew, “High throughput block
coding in the HTJ2K compression standard,” in Proc. IEEE International
Conference on Image Processing, Sep. 2019, pp. 1079–1083.

[20] A. Naman and D. Taubman, “Decoding high-throughput JPEG2000
(HTJ2K) on a GPU,” in Proc. IEEE International Conference on Image
Processing, Sep. 2019, pp. 1084–1088.

[21] F. Auli-Llinas and M. W. Marcellin, “Stationary probability model for
microscopic parallelism in JPEG2000,” IEEE Trans. Multimedia, vol. 16,
no. 4, pp. 960–970, Jun. 2014.

[22] F. Auli-Llinas, “Context-adaptive binary arithmetic coding with fixed-
length codewords,” IEEE Trans. Multimedia, vol. 17, no. 8, pp. 1385–
1390, Aug. 2015.

[23] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “Implementation of the
DWT in a GPU through a register-based strategy,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 12, pp. 3394–3406, Dec. 2015.

[24] F. Auli-Llinas, P. Enfedaque, J. C. Moure, and V. Sanchez, “Bitplane
image coding with parallel coefficient processing,” IEEE Trans. Image
Process., vol. 25, no. 1, pp. 209–219, Jan. 2016.

[25] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “GPU implementation of
bitplane coding with parallel coefficient processing for high performance
image compression,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 8,
pp. 2272–2284, Aug. 2017.

[26] C. de Cea-Dominguez, J. C. Moure, J. Bartrina-Rapesta, and F. Auli-
Llinas, “GPU architecture for wavelet-based video coding acceleration,”
in Parallel Computing: Technology Trends, vol. 36, Apr. 2020, pp. 83–
92, IOSPress Series in Advances in Parallel Computing.

[27] F. Auli-Llinas, “Stationary probability model for bitplane image coding
through local average of wavelet coefficients,” IEEE Trans. Image
Process., vol. 20, no. 8, pp. 2153–2165, Aug. 2011.

[28] F. Auli-Llinas and J. Serra-Sagrista, “JPEG2000 quality scalability
without quality layers,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 18, no. 7, pp. 923–936, Jul. 2008.

[29] F. Auli-Llinas. (2019, Nov.) BOI codec. [Online]. Available: http:
//www.deic.uab.cat/∼francesc/software/boi

50
CHAPTER 5. COMPLEXITY SCALABLE BITPLANE IMAGE CODING WITH

PARALLEL COEFFICIENT PROCESSING

Chapter 6

Real-time 16K Video Coding on a
GPU with Complexity Scalable
BPC-PaCo

51

52
CHAPTER 6. REAL-TIME 16K VIDEO CODING ON A GPU WITH

COMPLEXITY SCALABLE BPC-PACO

Real-time 16K Video Coding on a GPU

with Complexity Scalable BPC-PaCo

Carlos de Cea-Domingueza,∗, Juan C. Moureb, Joan Bartrina-Rapestaa, Francesc Aulı́-Llinàsa

aDep. of Information and Communications Engineering, Universitat Autònoma de Barcelona - 08193 Bellaterra, Spain
bDep. of Computer Architecture and Operating Systems, Universitat Autònoma de Barcelona - 08193 Bellaterra, Spain

Abstract

The advent of new technologies such as high dynamic range or 8K screens has enhanced the quality of digital images

but it has also increased the codecs’ computational demands to process such data. This paper presents a video codec

that, while providing the same coding features and performance as those of JPEG2000, can process 16K video in

real time using a consumer-grade GPU. This high throughput is achieved with a technique that introduces complexity

scalability to a bitplane coding engine, which is the most computationally complex stage of the coding pipeline. The

resulting codec can trade throughput for coding performance depending on the user’s needs. Experimental results

suggest that our method can double the throughput achieved by CPU implementations of the recently approved High-

Throughput JPEG2000 and by hardwired implementations of HEVC in a GPU.

Keywords: High Throughput Image and Video Coding, GPU, CUDA, JPEG2000, HTJ2K

1. Introduction

Image and video coding are primary needs of indus-

tries such as digital cinema, content streaming or video

production, among others. Two main standards sat-

isfy the requirements of many such industries, namely,

JPEG2000 [1] and HEVC [2]. JPEG2000 is com-

monly employed in digital cinema and medical imag-

ing, whereas HEVC is often used for media streaming

and video production. Both standards have advanced

features like high compression efficiency, quality scala-

bility, interactive transmission, or error resilience. Both

standards also demand ample computational resources,

posing a challenge when high quality video (of 4K or

more resolution and/or with high dynamic range) need

to be coded in real time. In computational-constrained

devices, the image quality may need to be reduced to

achieve real-time processing. Other scenarios such as

digital cinema or medical imaging require the highest

quality possible, so expensive hardware solutions are of-

ten in use.

∗Corresponding author. Telephone: +34 935811861; Fax: +34

935813443; Postal address: Escola Enginyeria, UAB - 08193 Bel-

laterra, Spain.

Email addresses: carlos.decea@uab.cat (Carlos de

Cea-Dominguez), juancarlos.moure@uab.cat (Juan C.

Moure), joan.bartrina@uab.cat (Joan Bartrina-Rapesta),

francesc.auli@uab.cat (Francesc Aulı́-Llinàs)

The literature employs different approaches to in-

crease the codecs’ throughput. Some works focus on the

coding algorithms to reduce computational complex-

ity [3, 4, 5]. Others implement the codec in hardware

devices such as Field-Programmable Gate Arrays (FP-

GAs) [6, 7, 8, 9]. FPGAs are attractive despite their

high price due to their high performance, so they are

used in scenarios such as digital cinema [10] or medical

imaging [11, 12, 13]. The highly parallel architecture

of Graphics Processing Units (GPUs) has also been em-

ployed to parallelize the codec’s tasks [14, 15, 16]. The

lower cost and the capacity for general-purpose comput-

ing of GPUs have made these accelerators very popular

in recent years.

When the algorithms exhibit fine-grained parallelism,

implementations in GPUs can achieve high throughput

thanks to the inherent Single Instruction Multiple Data

(SIMD) architecture of these devices in combination

with a Multiple Instruction Multiple Data (MIMD) ar-

chitecture. Together, both characteristics allow process-

ing thousands of threads executing the same instruction

on different data. Some algorithms can be accelerated

up to 20× as compared to implementations on tradi-

tional Central Processing Units (CPUs) [17]. Unfor-

tunately, such speedups are not achieved when imple-

menting conventional image/video codecs because their

core algorithms exhibit poor fine-grained parallelism. In

Preprint submitted to JOURNAL September 2, 2021

 20

 25

 30

 35

 40

 45

 50

 55

 0 0.5 1 1.5 2 2.5 3

P
S

N
R

 (i
n

dB
)

rate (in bps)

JPEG2000
BPC−PaCo

CS−BPC−PaCo
HTJ2K

Figure 1: Evaluation of rate-distortion performance for JPEG2000,

HTJ2K, BPC-PaCo and CS BPC-PaCo (with K = 0.5) when trans-

mitting the color image “Portrait” at 100 different rates.

general, these algorithms are devised to exploit only the

MIMD-based architecture of CPUs (or GPUs), which

can process tenths of threads executing different instruc-

tions on different data.

The coding pipeline of a traditional JPEG2000 codec

has three main stages: discrete wavelet transform

(DWT), bitplane and entropy coding (BPC), and code-

stream re-organization (CR). The DWT and CR stages

can be easily mapped to a SIMD-based architecture

since their operations can be parallelized and do not

hold critical data dependencies. Contrarily, the BPC

stage has data dependencies that force the samples to

be coded sequentially in each tile of data. This stage ac-

counts for 85% of the total execution time, so it is key

in the codec’s overall throughput.

Aimed to provide more parallelism to the BPC en-

gine, the Joint Photographic Experts Group approved in

2019 Part 15 of the standard, named High-Throughput

JPEG2000 (HTJ2K). This new part adopts the algorithm

proposed in [18], which exploits vector (SIMD) instruc-

tions included in modern CPUs and GPUs. HTJ2K can

increase the throughput of a conventional JPEG2000

codec by about 10× at the expense of sacrificing: code-

stream compliance, compression efficiency (about 10%)

and, quality scalability. Codestream compliance and

compression efficiency are inevitably affected when

modifying the coding engine, but these features are not

essential in most scenarios. Quality scalability, on the

other hand, is a valuable feature that allows partial de-

coding of the codestream at different rates while min-

imizing the distortion of the recovered image. See,

for instance, in Fig. 1, the performance achieved by

JPEG2000 and HTJ2K when the “Portrait” image (of

corpus ISO/IEC 12640-1) is compressed and then trans-

mitted at 100 different rates distributed between 0.01

and 3 bits per sample (bps). The vertical axis of the fig-

ure reports the quality of the recovered image in Peak

Signal to Noise Ratio (PSNR), whereas the horizontal

axis is the transmission rate. The quality achieved by

HTJ2K is much lower than that achieved by the original

JPEG2000 due to the lack of quality scalability.

This paper continues our line of research focused on

providing fine-grained parallelism to all coding stages

of an image/video codec. Our work originates in cod-

ing techniques that break the causality of classical cod-

ing strategies [19, 20, 21]. These techniques led to

the development of a lightweight arithmetic coder that

allows fine-grained parallelism [22, 23]. After that,

the research focused on the stages of a JPEG2000-like

codec. First, we proposed a GPU implementation of

the DWT [14, 24] employing a highly-efficient register-

based strategy. Second, the BPC engine was reformu-

lated, resulting in a BPC with parallel coefficient pro-

cessing (BPC-PaCo) [25, 26] that can efficiently exploit

the resources of a GPU [15]. Third, we presented the

GPU architecture for the end-to-end codec [16]. This

codec can code up to 12K video in real time, achieves

a compression efficiency comparable to that of the orig-

inal JPEG2000 standard, and does not sacrifice quality

scalability. See in Fig. 1 that the coding performance

achieved by this codec is approximately only 2% infe-

rior to that of JPEG2000.

Our last step proposes a complexity scalable tech-

nique for the coding engine. Complexity scalability

allows trading computational complexity by compres-

sion efficiency so that the user can tune the codec to

run more or less rapidly while marginally increasing the

size of the compressed file. As it was studied in [27]

and seen in Fig. 1, the proposed Complexity Scalable

BPC-PaCo (CS BPC-PaCo) decreases only slightly the

coding performance with respect to BPC-PaCo. This

paper extends that work by first analyzing the computa-

tional bottleneck of the original BPC-PaCo in the GPU,

which guides the development of the complexity scal-

able technique. Second, the proposed technique is in-

troduced in our end-to-end codec evaluating its memory

footprint, occupancy and performance, as well as the

overall throughput achieved in different test conditions.

Finally, experimental results evaluate the coding perfor-

mance, throughput, and power consumption of the pro-

posed method compared to other state-of-the-art codecs.

The rest of the paper is organized as follows. Sec-

tion 2 reviews the architecture of the GPU, JPEG2000

and HTJ2K. Section 3 overviews the architecture of

our codec, examines the aspects of BPC-PaCo that

limit its throughput, and describes the implementa-

2

tion of CS BPC-PaCo. Experimental results are pre-

sented in Section 4 comparing the proposed method

with JPEG2000, HTJ2K, and HEVC. Section 5 con-

cludes with a brief summary.

2. Background

2.1. GPU architecture

Arguably, the most popular accelerators are currently

those manufactured by Nvidia due to their low price,

high performance, and capacity for general-purpose

computing through the CUDA programming language,

so they are employed in this work. Nvidia GPUs are

constituted by many individual computing units called

Streaming Multiprocessors (SM). Each SM is responsi-

ble of managing the execution of multiple 32-wide vec-

tor instructions in parallel. A GPU can have from one

to a hundred of SMs. CUDA virtualizes each lane of a

32-wide vector instruction into a software thread. The

group of 32 threads is referred to as a warp. Warps are

organized in thread blocks, which are assigned to a SM

for execution. Each thread block within a SM can ex-

ecute tasks independently from the others, so different

kernels (i.e., CUDA functions) from the same or differ-

ent applications can run concurrently on the same SM.

To organize the execution of kernels, CUDA provides

the so-called streams. Each stream executes one or var-

ious kernels of an application in a pre-determined order.

Since the GPU has abundant computational resources,

concurrent streams of the same application can be exe-

cuted in parallel to process different data.

Until CUDA v6.2, every thread in a warp executed in-

structions in a synchronous, lock-step fashion with the

other threads of the warp. Implicit synchronization was

featured at the end of every divergence in the execu-

tion flow. Since the release of CUDA v7.0, every thread

in a warp can be executed asynchronously, so synchro-

nization among threads must be explicitly programmed

when needed. Our codec considers this aspect, produc-

ing the same result regardless of the architecture em-

ployed. For simplicity, the following sections assume

that implicit synchronization is employed.

As Fig. 2 depicts, the memory architecture of a GPU

has three levels: global memory, shared memory, and

registers. The global memory is located in the device

RAM or DRAM, has a size in the order of GBs, and is

accessible by all SMs. This memory has high latency

but relatively high bandwidth, so data transfers are to

be carried out in a coalesced way (i.e., using consecu-

tive memory positions) to maximize performance. The

shared memory has a size in the order of MBs, has low

Figure 2: Memory hierarchy of a Nvidia GPU.

latency and higher bandwidth, and can be accessed by

all threads of a block. Each SM has an individual mem-

ory bank for this memory. The registers have very fast

access, very high bandwidth, and a size of typically 256

KB. When the registers can not hold all the data required

by the application, some data are temporarily moved to

a reserved space in the device memory, the so-called

local memory. This is called register spilling. It sig-

nificantly affects the application’s performance because

transfers from/to the device memory render threads in

an idle state due to the memory latency.

The memory architecture of the GPU is devised so

that each execution kernel transfers the data required

for computation from the global memory to the registers

and then transfers back the results to the global memory.

Communication among threads is commonly carried out

via the shared memory or register shuffling. Each GPU

has a Level 1 (L1) and Level 2 (L2) cache to minimize

the latency when moving data from/to the device mem-

ory to/from the shared memory and registers. The L1

cache is located in the memory bank within the SM that

also holds the shared memory, whereas the L2 cache is

in a separate memory bank between the SMs and the

device memory.

2.2. JPEG2000 architecture

As previously stated, the JPEG2000 coding pipeline

has three main stages. The first reduces the spatial re-

dundancy of the image through the DWT. The input to

the DWT is either a gray image or a color image that has

been converted to a color space that holds the luminance

in the first component and the blue and red chrominance

in the second and third component, respectively. The

color transform (CT) is a pixel-wise operation without

dependencies, so it is easily mapped to SIMD-based in-

3

structions. The DWT applies a series of arithmetic op-

erations to all rows and columns of the image employ-

ing the so-called lifting scheme [28]. There are no de-

pendencies between rows/columns, so these operations

can be performed in parallel, suiting well SIMD pro-

gramming too. The resulting wavelet coefficients are

then reordered in four different subbands of one quar-

ter the size of the original image. One of these sub-

bands holds the low-pass details of the image, whereas

the other three hold the high-pass details. In general,

the DWT is applied 5 times on the low-pass subband to

further compact the image energy. JPEG2000 provides

reversible and irreversible operations for both the CT

and DWT operations. The reversible path employs in-

teger operations, so the original image can be recovered

losslessly. The irreversible path employs floating-point

operations that provide higher compression efficiency

but produce losses in the reconstructed image. These

losses can be controlled via the dead-zone quantization

that is applied just after the DWT.

The second stage of the coding pipeline is the BPC.

It is applied independently on data tiles that typically

contain a set of 64×64 wavelet coefficients, called code-

blocks. The coefficients within each codeblock are pro-

cessed in a bitplane-by-bitplane fashion. A bitplane

is the collection of bits b j from all coefficients at bi-

nary position j, with [bM−1, bM−2, ..., b1, b0], bi ∈ {0, 1}
representing the binary representation of integer υ pro-

duced by the DWT (and quantization when using the

irreversible path). The first non-zero bit of each coeffi-

cient, denoted by bs, is referred to as significant bit. The

sign of υ is denoted by d ∈ {+,−} and is coded immedi-

ately after bs so that the decoder can start approximat-

ing υ as soon as possible. JPEG2000 codes all bits of

each bitplane in three coding passes. Each pass scans all

the coefficients within the codeblock but only codes the

bits of a group of selected coefficients. This three-pass

strategy codes first the information that mostly reduces

the distortion of the image. Each bit, with contextual

information about the coefficient’s neighbors, is fed to

an arithmetic coder. The arithmetic coder employs this

contextual information to adaptively adjust the proba-

bilities of the processed bits, which is key to achieve

compression. The output of the BPC stage is a bitstream

per codeblock that can be truncated and re-organized in

different layers of quality in the final codestream by the

CR stage, the last of the coding pipeline.

The coding of codeblocks by independent threads

provides the coarse-grained parallelism that suits CPUs,

but GPUs need a finer parallelism. The BPC stage has

many data dependencies. The most crucial is imposed

by the arithmetic coder, which requires the result of the

last processed bit to start coding the next. The contex-

tual information and the group of coefficients selected in

each coding pass also depend on the previously coded

data, though these dependencies might be avoided at

the expense of more computations. These aspects pre-

vent parallelism at a coefficient level, which is the kind

of fine-grained parallelism that GPUs may exploit more

efficiently.

Part 15 of JPEG2000 (ISO/IEC 15444-15) provides

more opportunities for fine-grained parallelism [18].

The logical partition in codeblocks is maintained but,

instead of using a bitplane coding strategy, the coeffi-

cients are coded with a single coding pass in sets of 4×4

coefficients called quads. Most of the operations to code

each quad do not hold critical dependencies with other

quads. Entropy coding is carried out via variable-to-

variable length codes, allowing parallel processing of

quads. This coding strategy allows the use of vector

instructions in modern CPUs and GPUs. Nonetheless,

the use of a single coding pass disables quality scalabil-

ity because the bitstream of each codeblock can not be

truncated and re-organized as in the original JPEG2000.

As seen in Fig. 1, this significantly reduces the quality

of a compressed image transmitted at progressive rates.

Also, the compression efficiency is penalized due to the

use of a less efficient entropy coder than that of the orig-

inal JPEG2000.

3. Proposed method

3.1. Codec architecture

The method proposed in this work extends our

previous GPU-based architecture for the end-to-end

codec [16] by introducing complexity scalability. The

goal is to accelerate the coding process at the expense

of decreasing compression efficiency in a way that can

be controlled by the user.

First, let us briefly describe the architecture of our

codec. Fig. 3 depicts the employed kernels. The ar-

chitecture is devised so that each kernel performs all

operations to a chunk of data before it needs to be

re-organized for the following operations. This min-

imizes the transfers from/to the global memory since

the data are fetched and returned to this memory only

once in each kernel. More precisely, the CT kernel

processes data tiles containing three color components

from an image region, the DWT kernel processes data

tiles containing samples of a single component, the

BPC-PaCo kernel codes codeblocks, and the CR ker-

nel re-organizes the bitstreams produced for each code-

block in the final codestream. This organization allows

4

data transfers from host to device (and reverse)

data transfers within device

original
data

disk

main memory

host

device

1..3

host

compressed
data

disk

R
G
B

Y
Cb

Cr

~4% ~9% ~85% ~2%

CT DWT BPC-PaCo CR

fra
m

es

main memory

frame 1 frame 2

frame bitstream

Figure 3: Illustration of the codec architecture when employing a single stream of execution in the GPU.

each kernel to compute many small data tiles in paral-

lel, maximizing the overall throughput. In addition, the

codec leverages the computational resources of the GPU

through asynchronous I/O and multi-stream processing,

and favors the use of register-based operations to com-

municate among threads in detriment of shared memory

to avoid the latency of this memory.

Fig. 3 depicts below each kernel its computational

load. BPC-PaCo approximately spends 85% of the to-

tal execution time, so its optimization may significantly

increase the overall throughput. The remaining kernels

represent less than 15% of the total load and their oper-

ations are indispensable and already highly optimized.

As it is formulated in [16], the BPC-PaCo kernel uses

two coding passes per bitplane. The significance pass

codes the bits of those coefficients that were not signif-

icant in previous bitplanes, more precisely, those with

s ≤ j, with j representing the current bitplane. The

refinement pass codes the bits of the remaining coeffi-

cients. The scanning order is devised so that each thread

of a warp visits two columns of coefficients from the

top to the bottom row. For significance coding, the

context of the current coefficient υ is determined via

the significance state of its eight adjacent neighbors as

φsig(υ, j) =
∑

k Φ(υk, j), with υk, 1 < k ≤ 8 denoting the

neighbors and Φ(υk, j) = 1 or 0 when υk is significant

or not, respectively. The context employed to code sign

d is denoted by φsign(υ, j) and employs a similar strat-

egy, whereas the refinement pass uses a single context

since little gain is achieved with more complex mod-

els [21], so φre f (υ, j) = 0. The probability estimate that

the encoded bit b j is 0 is extracted from a lookup table

(LUT) known by encoder and decoder that is accessed

as Pu[j][φsig(·)], with u denoting the wavelet subband.

This LUT is pre-computed offline with a training set of

images according to

Psig(b j = 0 | φsig(υ, j)) =

2 j−1∑
υ=0

Fu(υ | φsig(υ, j))

2 j+1−1∑
υ=0

Fu(υ | φsig(υ, j))

, (1)

where Fu(υ | φsig(υ, j)) is the probability mass function

of the quantized coefficients at bitplane j given their

context. Its support is [0, ..., 2 j+1 − 1] since it contains

coefficients that were not significant in bitplanes greater

than j. Probabilities for sign and refinement coding are

derived similarly. Their respective LUTs are denoted

by P′u and P′′u . Entropy coding of the emitted bits and

their probabilities are carried out by each thread with

an arithmetic coder that produces fixed-length code-

words [29]. Threads cooperate among them to dispatch

these codewords to the bitstream in a quality embedded

order.

In BPC-PaCo, coefficients υ and ancillary data to

process them are stored in the registers. Typically,

each thread processes 128 coefficients (belonging to 2

columns of 64 coefficients), ideally requiring 128 reg-

isters of 32 bits plus some more for ancillary data. In

current GPUs, this is too much information to hold in

the register space. Each SM in current GPUs (Turing

architecture) has 256 KB for registers and can run a

maximum of 1024 threads. If all threads run in parallel,

they can only access a maximum of 64 registers without

causing register spilling and rendering some threads in

an idle state.

As illustrated in the first row of Table 1, register

spilling is the main bottleneck of the BPC-PaCo ker-

nel. The table reports the transfers between memory

device MD and registers R that occur when the kernel

processes a 4K image (gray scale, 8 bps). The compo-

nent’s data approximately requires 32 MB but, as seen

in the table, 251 MB are read fromMD due to the ex-

5

data reading (MB) data writing (MB) cache hit rates
MD → R L2→ L1 L1→ L2 R →MD L1 L2

BPC-PaCo 251 283 129 108 69% 39%
C

S
B

P
C

-P
aC

o K=0.5 234 265 119 97 70% 39%

K=1 182 212 106 78 72% 43%

K=2 118 145 96 58 76% 51%

K=6 91 108 94 57 79% 55%

Table 1: Evaluation of memory and cache transfers when the kernels BPC-PaCo and CS BPC-PaCo code a 4K image in a RTX 2080 Ti GPU.

tensive use of local memory, as much as 8×. This in-

crease is approximately 4× for writing. Table 1 also

reports the data transfers between caches, which are

similar, and the cache hit rates, which are moderately

high because the data employed by the threads are fre-

quently accessed and easily foreseeable. Despite the ac-

celeration that the caches may provide, register spilling

severely handicaps this kernel.

3.2. Complexity Scalable BPC-PaCo

The register spilling that occurs in BPC-PaCo is

mainly caused by the multiple scanning of the coeffi-

cients during the coding process. The average number

of coded bitplanes is 8, resulting in 16 accesses per coef-

ficient. This generates multiple data transfers back and

forth from the local memory since registers can not hold

all the coefficients simultaneously.

The only way to reduce register spilling is minimiz-

ing the number of times that the coefficients are visited.

However, the two-pass strategy is necessary to provide

accurate estimates that achieve compression, and mul-

tiple truncation points that achieve quality scalability.

The adopted strategy must alleviate the impact on these

coding features, regulating the coding passes performed

in each codeblock but without affecting the most rele-

vant information in terms of distortion.

The technique employed herein was presented in [27]

from a theoretical perspective that evaluates the impact

on coding performance and quality scalability, but with-

out implementing it in our end-to-end GPU codec. Its

main insight is to code bitplanes [M − 1,N] with the

same two-pass strategy of BPC-PaCo, and then use a

fast mode that codes bitplanes [N−1, 0] in a single pass.

This codes the most relevant information in terms of dis-

tortion (contained in the highest bitplanes [M − 1,N])

more progressively than the lesser relevant information,

minimizing the impact on compression efficiency and

quality scalability.

Choosing a suitable N is key to balance throughput

and compression efficiency. A high N causes the coding

of many bitplanes in fast mode, increasing the through-

put but penalizing coding performance. A low N does

not affect coding performance significantly though it

does not provide significant throughput gains either. In-

stead of using the same N for all codeblocks, the strat-

egy proposed in [30] uses different Ns depending on the

codeblock’s wavelet subband u and magnitude bitplanes

M according to

N = min

(
M,
⌊
M · K
Lu

⌋)
. (2)

Lu is the L2 norm of the synthesis basis vectors of the

subband filter-bank (which is computed offline assum-

ing equal energy gain factor in all subbands). Large Ks

result in large Ns, so more bitplanes are coded with the

fast mode, increasing the codec’s throughput. Note that

K is the user parameter that controls the speedup or, in

other words, the mechanism through which complexity

scalability is managed.

The coding technique embodied in Eq. 2 sets lower

Ns to codeblocks within subbands in smaller resolution

levels. Although these subbands have fewer codeblocks

than in larger levels, these codeblocks have higher en-

tropy than the rest, so coding them with more coding

passes significantly enhances the quality scalability of

the system. This is illustrated in Fig. 4. It depicts

the images recovered when coding the “Portrait” image

with (a) the same N in all codeblocks, and (b) the pro-

posed strategy. Both codecs are set to achieve the same

throughput.1 The strategy that uses a fixed N (Fig. 4(a))

significantly degrades the image quality because the bit-

stream of some codeblocks within the lowest resolution

levels are not included in the final codestream. The pro-

posed strategy (Fig. 4(b)) provides an image with much

higher quality. This holds for other coding parameters

and images.

1Coding parameters for this test are: lossy compression, 2 DWT

levels, 64×64 codeblocks, target rate 0.25 bps, N = 15, and K = 6 for

the fixed and variable strategy, respectively.

6

(a) (b)

Figure 4: Visual evaluation of a (a) fixed and (b) variable strategy to set the bitplanes coded in fast mode with CS BPC-PaCo.

3.3. Implementation

Algorithm 1 details the proposed kernel from a thread

perspective. The bitplanes in the range [M − 1,N] are

coded with the original BPC-PaCo (lines 2 and 3) as de-

scribed in [15, 16]. A significance and refinement pass

are employed in each bitplane. The fast mode is used

from bitplane N − 1 to 0. Instead of visiting the coeffi-

cients twice per bitplane, the fast mode visits them only

once and codes all their bits. Lines 5 and 6 in Algo-

rithm 1 scan the coefficients. Since the context for sig-

nificance coding is the same from bitplane N−1 onward,

it is only computed once in line 7. Our implementation

avoids this operation when all the coefficients are al-

ready significant. The loop in line 8 codes all bits of the

coefficient considering its significance state. The arith-

metic coder employs the procedure described in [15],

which is not detailed herein for simplicity.

As previously stated, key to achieve high throughput

is to reduce the number of registers that each thread em-

ploys. To this end, the 32-bit registers of the GPU hold

all the information needed by the algorithm. In gen-

eral, 24 bits are enough to hold the value of the coef-

ficient (including the possible data expansion that the

lossy DWT may produce), so ancillary data are stored

in the remaining bits. Fig. 5 illustrates the binary repre-

sentation of a GPU register. The lowest 24 bits store

the magnitude and sign of υ, with the sign stored at

the lowest bit. The highest 8 bits are employed for

auxiliary information. The 3 upper bits are used in

the SignificancePass() and RefinementPass() of Algo-

Algorithm 1 CS BPC-PaCo
Parameters: u subband, t stripe, M total magnitude bitplanes, N bit-

planes coded in fast mode

1: for j ∈ [M − 1,N] do
2: SignificancePass()

3: RefinementPass()

4: end for
5: for y ∈ [0, numRows − 1] do
6: for x ∈ [t · 2, t · 2 + 1] do
7: c← φsig(υy,x,N − 1)

8: for j ∈ [N − 1, 0] do
9: if Φ(υy,x, j + 1) = 0 then

10: ACencode(bj, Pu[j][c], t)
11: if bj = 1 then
12: ACencode(d, P′u[j][φsign(υy,x,N − 1)], t)
13: end if
14: else
15: ACencode(bj, P′′u [j][0], t)
16: end if
17: end for
18: end for
19: end for

rithm 1 to signal information regarding the significance

state of the coefficient. The remaining 5 bits are em-

ployed to store the significance bitplane of the coeffi-

cient (i.e., s), which is employed in the fast mode to ac-

celerate the operations that compute the context (i.e., in

φsig(·)). In the example of Fig. 5, M = 8 and N = 4. The

bitplanes depicted in blue represent those that are coded

with two coding passes, whereas the bitplanes depicted

7

Figure 5: Illustration of a codeblock and the bit-allocation strategy in the 32-bit registers of the GPU employed by CS BPC-PaCo.

in red are coded with the fast mode.

This bit-allocation strategy in the registers minimizes

the amount of local memory employed during execu-

tion time. The previous analysis of memory transfers

for BPC-PaCo depicted in Table 1 also reports the re-

sults obtained for CS BPC-PaCo when different Ks are

used. Data reading fromMD to R is proportionally re-

duced to the value of K. High Ks employ more exten-

sively the fast mode of CS BPC-PaCo, reducing mem-

ory transfers. When K = 6, the proposed method only

requires 36% of the memory transfers employed by the

original BPC-PaCo. Memory transfers from L2 to L1

are reduced similarly. Data writing is reduced slightly

less, though for K = 6 the proposed method approxi-

mately halves the transfers of BPC-PaCo. Since fewer

data are employed by the algorithm, the cache hit rates

for both L1 and L2 are increased, which provides even

faster access to the data.

Table 2 illustrates the impact in the throughput

achieved by the CS BPC-PaCo kernel when using dif-

ferent Ks as a result of reducing memory transfers. This

evaluation employs the same 4K image of the test re-

ported in Table 1. The second column reports the aver-

age number of clock cycles that each executed instruc-

tion is blocked due to the latency of the local memory,

and the average cycles needed to execute each instruc-

tion (CPI). These metrics clearly illustrate the beneficial

effect of using less local memory. BPC-PaCo blocks al-

most 10 cycles per instruction, requiring 15 cycles to ex-

ecute each instruction. CS BPC-PaCo reduces the num-

ber of cycles in which instructions are blocked propor-

tionally to the use of the fast mode. For K = 6, instruc-

tions are blocked only 1.56 cycles, whereas instructions

only require 8 cycles to complete, on average. This im-

provement is also noted in the instructions executed per

cycle (IPC) reported in the third column, which is al-

most doubled as compared to BPC-PaCo. The memory

bandwidth (fourth column) employed by the kernel in-

dicates that less bandwidth is needed as fewer coding

passes are performed. The warp efficiency and GPU oc-

cupancy (fifth and sixth columns) is almost the same for

all kernels since the algorithms have similar divergence

(i.e., conditional paths in the execution flow). The to-

tal number of executed instructions (seventh column) is

slightly higher in CS BPC-PaCo due to more instruc-

tions are needed when switching to the fast mode. De-

spite executing more instructions, the execution time of

CS BPC-PaCo is reduced for all Ks because of the fewer

memory transfers, with a reduction of 31% when K = 6.

Nvidia allows developers to manually set the num-

ber of registers assigned to the threads of a kernel.

Evidently, to use too few registers per thread requires

more local memory, while too many may cause an un-

deruse of the GPU. Since the throughput achieved by

our method highly depends on the local memory em-

ployed, the register assignment is carefully studied to

yield maximum performance. Table 3 provides an eval-

uation of the throughput achieved when a different num-

ber of registers per thread is assigned to the proposed

kernel. Different Ks are employed to consider differ-

ent running conditions. The test is carried out for the

same conditions as in previous evaluations, though re-

sults hold for other images and parameters. The third

and fourth columns of the table depict the theoretical

maximum and real GPU occupancy achieved, respec-

tively. The maximum occupancy is calculated as the

8

#cycles per inst. bandwidth warp #inst.
blocked (total CPI) IPC (GB/s) efficiency occupancy (×106) time (ms)

BPC-PaCo 9.58 (15.29) 65 200 53% 46% 153 2.17

C
S

B
P

C
-P

aC
o K=0.5 6.49 (12.95) 77 156 56% 46% 159 1.93

K=1 3.73 (10.33) 94 107 55% 46% 157 1.81

K=2 1.86 (8.32) 114 74 53% 45% 153 1.61

K=6 1.56 (8.00) 122 73 53% 46% 152 1.39

Table 2: Evaluation of throughput metrics when the kernels BPC-PaCo and CS BPC-PaCo code a 4K image in a RTX 2080 Ti GPU.

registers occupancy time (in ms)
per thread maximum real kernel total total av.

K=0.5

96 62.5%

48% 1.86 11.77

10.17
K=1 49% 1.76 10.6

K=2 48% 1.6 9.65

K=6 48% 1.4 8.65

K=0.5

80 75%

56% 1.88 11.43

10.06
K=1 54% 1.81 10.53

K=2 55% 1.6 9.65

K=6 56% 1.38 8.65

K=0.5 62% 1.93 11.5

K=1 61% 1.81 10.21

K=2 62% 1.61 9.47

K=6

72 87.5%

64% 1.39 8.59

9.94

K=0.5

64 100%

63% 1.96 11.62

10.4
K=1 61% 1.86 10.73

K=2 64% 1.67 9.78

K=6 66% 1.44 9.47

Table 3: Evaluation of occupancy and execution time achieved by CS BPC-PaCo with different Ks when assigning a different number of registers

to the threads, for a 4K image in a RTX 2080 Ti GPU.

number of threads that can be run in parallel using the

assigned number of registers. It is only from a theo-

retical point of view since, in practice, threads are com-

monly blocked due to register spilling and other aspects.

As seen in Table 3, even though 64 registers per thread

achieves a theoretical maximum occupancy of 100%,

the real occupancy achieved is about 63%. To assign 72

registers per thread decreases the maximum occupancy

to 87,5%, though in practice is about 62% too. Also,

to use 72 registers instead of 64 improves the through-

put achieved since less register spilling occurs, decreas-

ing the execution time of the kernel and of the end-to-

end codec (5th and 6th columns in the table). To use

more registers per thread slightly improves the perfor-

mance of the CS BPC-PaCo kernel because less register

spilling occurs, though for the overall end-to-end codec

this is not beneficial because the other kernels running

in parallel do not have enough resources. In all tests re-

ported in this work, the CS BPC-PaCo kernel uses 72

registers per thread.

The speedup that the proposed kernel achieves with

respect to the original BPC-PaCo is evaluated in Fig. 6.

The figure reports in the vertical axis the speedup

achieved for the Ks depicted in the horizontal axis,

for both lossy and lossless compression when using a

video sequence (see below). The results indicate that

our method yields higher speedups for lossless com-

pression, reaching a speedup of 70% for the highest

K evaluated. Lossy compression achieves more mod-

erate speedups, approximately up to 30%. This is be-

cause the floating-point DWT produces wavelet coeffi-

cients with higher magnitudes, and so more bitplanes

are coded. We remark that the increase in throughput

is higher than the increase in rate in all cases. When

K = 6, for instance, CS BPC-PaCo achieves a speedup

of approximately 65% (23%) while the rate increase is

9

Figure 6: Evaluation of the throughput gain achieved by CS BPC-PaCo with respect to BPC-PaCo for different Ks.

14% (8%) for lossless (lossy) compression.

4. Experimental Results

The proposed CS BPC-PaCo is compared with BPC-

PaCo and state-of-the-art codecs widely employed in

the field, more precisely, the standard JPEG2000 and

its new part HTJ2K, and the standard HEVC. All re-

sults below report the coding performance or through-

put achieved by the end-to-end codec instead of only

focusing on the CS BPC-PaCo kernel as in the previous

section. Our method is run in two commodity GPUs

from Nvidia, namely, the RTX 2080 Ti (68 SMs with

4352 cores at 1.6 GHz with 11 GB of RAM) and the

GTX 1080 Ti (28 SMs with 3585 cores at 1.9 GHz with

11 GB of RAM). The former GPU uses the Nvidia mi-

croarchitecture called Turing (CUDA capability v7.5)

and runs in a workstation with an Intel i9-9900K CPU

with 16 GB of RAM. The latter uses the previous mi-

croarchitecture Pascal (CUDA capability v6.0) and runs

in a workstation with an Intel i7-3770 CPU with 8 GB

of RAM. Results for JPEG2000 and HTJ2K are ob-

tained with Kakadu (v8.0.3) [31], which is among the

fastest CPU implementations for JPEG2000 optimized

with assembly and vector instructions. It runs in the i9-

9900K workstation with 16 execution threads, yielding

higher throughput than implementations of JPEG2000

for GPUs such as CuJ2K [32] and GPU-J2K [33]. Al-

though HTJ2K can also be optimized for GPUs [34], to

the best of our knowledge, there is no implementation

that allows testing in the environment employed herein.

Results for HEVC are obtained with the Nvidia imple-

mentation of the standard [35] running in both GPUs,

which use a hardwired and specialized chip in the de-

vice. Coding parameters for our method and JPEG2000

are: lossy or lossless compression as indicated, 5 DWT

levels, and codeblocks of 64×64. For HTJ2K, param-

eter “Cplex={6,EST,0.25,0}” is also employed to al-

low the codec to attain the specified target rate. HEVC

uses a rate control method with constant quantization

(1-51) for lossy compression, GOP=32, and high per-

formance mode, which achieves maximum throughput

in our tests. Throughput and power consumption re-

sults use a 2-minute segment of the “Star Wars: The

Last Jedi” movie at 4K that has 2,880 color frames, re-

sulting in 67.8 GB of uncompressed data. Coding per-

formance results use the color image “Portrait” (with a

size of 2560×2048) and a segment of the previous video

sequence containing 948 gray-scale frames at 2K.

The first test evaluates lossy coding performance.

Fig. 7 extends the results of Fig. 1 by including different

Ks for the proposed method and the results for video.

We recall that this test depicts rate vs. quality when the

codestream is compressed and then transmitted at dif-

ferent rates. For both tests, the performance achieved

by CS BPC-PaCo decreases as more coding passes are

coded in fast mode (i.e., with higher values of K). The

results indicate that the quality scalability of the pro-

posed method is significantly better than that of HTJ2K

since even when K = 6 and most passes are coded in

a single pass, the drop in quality is approximately 5 dB

with respect to JPEG2000 and BPC-PaCo, as compared

to the losses of about 15 dB of HTJ2K.

The second test evaluates lossless compression. Ta-

ble 4 reports the rate achieved when coding the video

with all methods evaluated. BPC-PaCo yields almost

10

Figure 7: Evaluation of rate-distortion performance for JPEG2000, HTJ2K, BPC-PaCo and CS BPC-PaCo (with different Ks) when transmitting

an image at 100 different rates (left) and a video sequence at 30 different rates (right).

CS BPC-PaCo BPC-PaCo JPEG2000 HTJ2K HEVC

K = 0.25 3.82

3.82 3.79 4.06 4.03

K = 0.5 3.83

K = 0.75 3.89

K = 1 3.91

K = 1.5 4.00

K = 2 4.01

K = 6 4.05

Table 4: Evaluation of lossless compression performance for JPEG2000, HTJ2K, HEVC, BPC-PaCo, and CS BPC-PaCo (with different Ks).

Results are reported in bps.

same performance to that of JPEG2000, while CS BPC-

PaCo penalizes it slightly more with increments in rate

of about 7% when K = 6. This increment is lower than

that of HTJ2K, which almost obtains the same perfor-

mance to that of CS BPC-PaCo when K = 6.

The third test evaluates throughput for both lossy and

lossless video compression. In this test, the quality of

the recovered video for lossy compression yields 50 dB

in all codecs. Fig. 8 shows the results for all codecs and

GPUs (or CPU for JPEG2000 and HTJ2K), reported

in mega samples coded per second (MS/s). Two bars

are depicted for each codec. The left bar corresponds

to the encoder whereas the right to the decoder. BPC-

PaCo is depicted with wide blue bars. The proposed

CS BPC-PaCo is depicted with three thinner purple bars

within that of BPC-PaCo, corresponding to the through-

put achieved when K = {0.75, 2, 6}, with the thinnest

bar for the highest K. The figure also shows with hor-

izontal lines the throughput needed to code 4K, 8K,

12K, and 16K video at 24 frames per second in real

time. As seen in the figure, the proposed method signif-

icantly increases the throughput with respect to BPC-

PaCo, mostly in the encoder. In the decoder the gains

are not as significant because the decoding process in

our implementation needs more ancillary data, which

hinders the overall throughput achieved. HTJ2K yields

high throughput too, being slightly superior to that of

our method for the GTX 1080 Ti in the case of loss-

less compression, though being 50% inferior (or more,

depending on the K) when CS BPC-PaCo runs in the

RTX 2080 Ti. The throughput achieved by JPEG2000

is much lower than that of HTJ2K due to the lack of op-

portunities for fine-grained parallelism in the algorithm.

The throughput achieved by HEVC is modest as com-

pared to the other codecs despite using a hardwired chip

in the GPU. This is due to the techniques employed in

this coding system, which achieve high coding perfor-

mance at the expense of higher computational complex-

ity. Finally, we remark that the scalability by complex-

ity introduced in BPC-PaCo allows our codec to encode

11

Figure 8: Throughput evaluation of lossy and lossless video compression for all codecs and GPUs/CPUs.

16K (12K) lossy video in real time with the RTX 2080

Ti (GTX 1080 Ti) when K = 2, obtaining a good trade-

off between coding performance and throughput.

The previous test evaluates throughput for very high

video quality. Some scenarios may allow lower video

quality due to transmission or visualization aspects. The

next test evaluates the throughput achieved when dif-

ferent quality levels are employed. Fig. 9 depicts in

the horizontal axis the quality of the recovered video,

which is set from 50 to 38 dB in all codecs. Lower

quality yields similar results to those obtained for 38

dB. Again, results are reported in MS/s for the encoder

and decoder. Blue and purple plots respectively corre-

spond to BPC-PaCo and CS BPC-PaCo with the same

Ks as those employed before. As expected, the lower

the quality, the higher the throughput since fewer data

are coded. The highest gains are achieved by the en-

coder of the proposed method. At 38 dB, all codecs

except the proposed achieve similar throughput when

encoding, which is about 3 to 4× lower than that of

CS BPC-PaCo. The decoder presents more variations,

with HEVC gaining much throughput for low qualities.

It is worth noting that HTJ2K yields similar results re-

gardless of the quality, obtaining the same throughput to

that of JPEG2000 when encoding or decoding at 38 dB.

These results suggest that the proposed CS BPC-PaCo

achieves the highest throughput gains when using high

quality, while low qualities render the throughput of the

codec to almost the same as that of BPC-PaCo.

The last experimental test is aimed at energy con-

sumption. The power demand of codecs running in the

GPUs (CPUs) is obtained with the nvidia-smi (Power-

TOP) tool, which provides the real consumption of the

microprocessor depending on the workload. Fig. 10 re-

ports the results in MS coded per Joule consumed when

coding video at 50 dB. The figure illustrates the results

in the same form as that of Fig. 8. The proposed method

reduces energy consumption with respect to BPC-PaCo,

with less consumption for higher Ks. Even so, these

improvements are not as high as those obtained with

the throughput. This is seen as the larger bars corre-

sponding to CS BPC-PaCo in Fig. 8 vs. those depicted

in Fig. 10. These results indicate that more energy has

to be spent per coded sample to increment the codec’s

throughput. Even so, the results achieved with the RTX

2080 Ti suggest that our method consumes less energy

than the other codecs evaluated. HTJ2K also consumes

little energy compared to JPEG2000, which is the most

demanding. The hardwired chip of HEVC in the GPU

yields good results as well, except for decoding with the

GTX 1080 Ti, which consumes energy similarly to the

decoder of JPEG2000.

5. Conclusions

High-throughput and low-power consumption image

and video codecs are a current necessity for new appli-

cations, cameras, and displays to allow real-time pro-

cessing of very high resolution video and to extend the

battery life of power-constrained devices. International

organizations and researchers are proposing novel tech-

niques, systems, and standards to fulfill these require-

ments. Some works pursue this goal by exploiting the

high-performance computing of massively parallel ar-

chitectures such as those found in Graphics Processing

Units (GPUs). This is the line of research followed in

this paper, which began by adapting and implementing

all stages of a JPEG2000-based coding pipeline to the

12

Figure 9: Throughput evaluation for lossy compression of video at different quality levels. Results are for BPC-PaCo and CS BPC-PaCo except

when indicated.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

HEVC
2080 Ti 1080 Ti i9−9900K

JPEG2000 HTJ2K
2080 Ti 1080 Ti

Proposed

M
S

 /
Jo

ul
e

Figure 10: Evaluation of energy consumption for lossy video com-

pression for all codecs and GPUs/CPUs.

fine-grained parallelism that suits GPUs. The bottle-

neck of the resulting codec is the bitplane and arithmetic

coding stage, which spends most of the execution time.

This work has analyzed this bottleneck by carefully pro-

filing its execution on a GPU. Its main drawback is that

it needs to transfer too much data from the local mem-

ory of the GPU to the registers (and viceversa) due to

the coding of the image samples in many successive

passes. The complexity scalable technique employed

herein is tailored to increase the codec throughput in

GPUs by reducing the coding passes performed. The

proposed technique allows a user-handled control of

the speedup achieved while minimizing losses in cod-

ing performance and quality scalability. Experimental

results suggest that our codec attains higher through-

put than other state-of-the-art codecs without sacrificing

any feature of the coding system. Under some coding

conditions, our method achieves real-time 16K coding

of color video in a consumer-grade GPU (considering

also memory transfers from host-to-device and vicev-

ersa), which is well above the current needs of most

practical scenarios.

Acknowledgment

This work has been partially supported by the Span-

ish Ministry of Economy and Competitiveness and the

European Regional Development Fund under Grants

TIN2017-84553-C2-1-R and RTI2018-095287-B-I00

(MINECO/FEDER, UE), and by the Catalan Govern-

ment under Grants 2017SGR-463 and 2017SGR-313.

References

[1] ISO/IEC, Information technology - JPEG 2000 image coding

system - Part 1: Core coding system (Dec. 2000).

[2] International Telecommunication Union, High Efficiency Video

Coding Standard (2013).

[3] I. Marzuki, J. Ma, Y.-J. Ahn, D. Sim, A context-adaptive fast

intra coding algorithm of high-efficiency video coding (HEVC),

Journal of Real-Time Image Processing 16 (2019) 883–899.

[4] G. Correa, P. Assuncao, L. Agostini, L. A. da Silva Cruz, Com-

plexity scalability for real-time HEVC encoders, Journal of

Real-Time Image Processing 12 (2016) 107–122.

[5] Y. Wu, P. Liu, Y. Gao, K. Jia, Medical ultrasound video coding

with H.265/HEVC based on ROI extraction, PLoS One (Nov.

2016).

[6] K. H. Yanzhe Li, Luc Claesen, M. Zhao, A real-time high-

quality complete system for depth image-based rendering on

FPGA, IEEE Transactions on Circuits and Systems for Video

Technology 29 (4) (2019) 1179–1193.

13

[7] J. W. P. et al., A low-cost and high-throughput FPGA implemen-

tation of the retinex algorithm for real-time video enhancement,

IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems 28 (1) (2020) 101–114.

[8] X. W. Xin Guo, Y. Liu, An FPGA implementation of multi-

channel video processing and 4k real-time display system,

in: International Congress on Image and Signal Processing,

BioMedical Engineering and Informatics, 2018, pp. 1–6.

[9] Z. He, H. Huang, M. Jiang, Y. Bai, G. Luo, FPGA-Based real-

time super-resolution system for ultra high definition videos, in:

Annual International Symposium on Field-Programmable Cus-

tom Computing Machines (FCCM), 2018, pp. 181–188.

[10] A. Descampe, F.-O. Devaux, G. Rouvroy, J.-D. Legat, J.-J.

Quisquater, B. Macq, A flexible hardware JPEG 2000 decoder

for digital cinema, IEEE Trans. Circuits Syst. Video Technol.

16 (11) (2006) 1397–1410.

[11] I. Chiuchisan, A new FPGA-based real-time configurable sys-

tem for medical image processing, in: E-Health and Bioengi-

neering Conference (EHB), 2013, pp. 1–4.

[12] V. Kasik, Z. Chvostkova, FPGA in technical resources of med-

ical imaging, in: IEEE 11th International Symposium on Ap-

plied Machine Intelligence and Informatics (SAMI), 2013, pp.

193–196.

[13] Junying Chen, Shunfeng Zhou, Huaqing Min, Implemen-

tation of parallel medical ultrasound imaging algorithm on

CAPI-enabled FPGA, in: International Conference on Field-

Programmable Technology (FPT), 2016, pp. 311–314.

[14] P. Enfedaque, F. Auli-Llinas, J. C. Moure, Implementation of the

DWT in a GPU through a register-based strategy, IEEE Trans.

Parallel Distrib. Syst. 26 (12) (2015) 3394–3406.

[15] P. Enfedaque, F. Auli-Llinas, J. C. Moure, GPU implementation

of bitplane coding with parallel coefficient processing for high

performance image compression, IEEE Trans. Parallel Distrib.

Syst. 28 (8) (2017) 2272–2284.

[16] C. de Cea-Dominguez, J. C. Moure, J. Bartrina-Rapesta,

F. Auli-Llinas, GPU-oriented architecture for an end-to-end im-

age/video codec based on JPEG2000, IEEE Access 8 (1) (2020)

68474–68487.

[17] M. S. Nobile, P. Cazzaniga, A. Tangherloni, D. Besozzi, Graph-

ics processing units in bioinformatics, computational biology

and systems biology, Briefings in Bioinformatics 18 (5) (2017)

870–885.

[18] D. Taubman, A. Naman, R. Mathew, High throughput block

coding in the HTJ2K compression standard, in: Proc. IEEE In-

ternational Conference on Image Processing, 2019, pp. 1079–

1083.

[19] F. Auli-Llinas, Local average-based model of probabilities for

JPEG2000 bitplane coder, in: Proc. IEEE Data Compression

Conference, 2010, pp. 59–68.

[20] F. Auli-Llinas, I. Blanes, J. Bartrina-Rapesta, J. Serra-Sagrista,

Stationary model of probabilities for symbols emitted by bit-

plane image coders, in: Proc. IEEE International Conference on

Image Processing, 2010, pp. 497–500.

[21] F. Auli-Llinas, Stationary probability model for bitplane im-

age coding through local average of wavelet coefficients, IEEE

Trans. Image Process. 20 (8) (2011) 2153–2165.

[22] F. Auli-Llinas, Highly efficient, low complexity arithmetic coder

for JPEG2000, in: Proc. IEEE International Conference on Im-

age Processing, 2014, pp. 5601–5605.

[23] F. Auli-Llinas, Entropy-based evaluation of context models for

wavelet-transformed images, IEEE Trans. Image Process. 24 (1)

(2015) 57–67.

[24] P. Enfedaque, F. Auli-Llinas, J. C. Moure, Strategies of SIMD

computing for image coding in GPU, in: Proc. IEEE Interna-

tional Conference on High Performance Computing, 2015, pp.
345–354.

[25] F. Auli-Llinas, P. Enfedaque, J. C. Moure, I. Blanes, V. Sanchez,

Strategy of microscopic parallelism for bitplane image coding,

in: Proc. IEEE Data Compression Conference, 2015, pp. 163–

172.

[26] F. Auli-Llinas, P. Enfedaque, J. C. Moure, V. Sanchez, Bitplane

image coding with parallel coefficient processing, IEEE Trans.

Image Process. 25 (1) (2016) 209–219.

[27] C. de Cea-Dominguez, J. C. Moure, J. Bartrina-Rapesta, F. Auli-

Llinas, Complexity scalable bitplane image coding with paral-

lel coefficient processing, IEEE Signal Process. Lett. 27 (2020)

840–844.

[28] W. Sweldens, The lifting scheme: A construction of second

generation wavelets, SIAM Journal on Mathematical Analysis

29 (2) (1998) 511–546.

[29] F. Auli-Llinas, Context-adaptive binary arithmetic coding with

fixed-length codewords, IEEE Trans. Multimedia 17 (8) (2015)

1385–1390.

[30] F. Auli-Llinas, J. Serra-Sagrista, JPEG2000 quality scalability

without quality layers, IEEE Trans. Circuits Syst. Video Tech-

nol. 18 (7) (2008) 923–936.

[31] D. Taubman, Kakadu software,

http://www.kakadusoftware.com (Jul. 2020).

[32] University of Stuttgart, CuJ2K, http://cuj2k.sourceforge.net/

(Jul. 2020).

[33] Poznan Supercomputing, Networking Center, GPUJ2K,

http://apps.man.poznan.pl/trac/jpeg2k/wiki (Feb. 2020).

[34] A. Naman, D. Taubman, Decoding high-throughput JPEG2000

(HTJ2K) on a GPU, in: Proc. IEEE International Conference on

Image Processing, 2019, pp. 1084–1088.

[35] Nvidia, HEVC SDK, https://developer.nvidia.com/nvidia-

video-codec-sdk (Dec. 2018).

14

Chapter 7

Conclusions

7.1 Summary

This thesis has successfully created the first end-to-end GPU codec based on the
JPEG2000 framework. Its first two publications created the image and video coding
pipeline, presenting the first iterations of the infrastructure needed to run the kernels
on the GPU. Careful management of data transfers is critical to achieve the best
performance, as well as I/O management to avoid potential computation bottlenecks.
The first multi-stream approach granted speed-ups of at least 20% over the single
stream approach.

The third publication included flexible stream allocation, multiple CPU threads
in charge of managing the GPU kernel invocations and smart memory management.
Extensive analysis is included in a per-kernel basis to detail how data is processed
and moved throughout the different memory systems within the GPU. The multi-
stream system is further analyzed to evaluate the throughput gains depending on the
amount of streams used and the image resolution of the input data on the 2080 Ti.
As the different kernels included in the codec have different requirements in terms of
memory transfers vs. computational complexity, this multi-stream approach improves
the GPU resources allocation, granting more throughput. Results shows that more
streams means more kernels being processed simultaneously within the GPU up to a
limit, which depends on both, the size of the input data and the GPU used.

67

68 CHAPTER 7. CONCLUSIONS

The fourth publication includes the new CS BPC-PaCo engine, with further im-
provements to coding throughput with a slight penalization in coding performance.
The included results are based on a CPU implementation used to verify if the new
feature renders any throughput gains to the algorithm design. Results showed double-
digit throughput increases with slight coding performance penalizations of about 10%.

The fifth publication adapts CS BPC-PaCo implementation to the GPU codec
and evaluates the new kernel in terms of register usage, occupancy, warp efficiency,
memory bandwidth and memory transfers. This improvement focuses on reducing
the memory transfers between device memory and registers within the kernel, which
is the main limiting factor in BPC-PaCo. It is worth noting that it does not sacrifice
any existing JPEG2000 feature, and is faster than the new HTJ2K codec using con-
temporary hardware while preserving quality scalability and roughly achieving the
same coding performance results.

The digital image and video industry is demanding increased throughput and
quality alike, with the inclusion of advanced technologies like HDR or ultra high reso-
lutions like 8K. Nowadays, fields like digital cinema or medical imaging make use of ex-
pensive FPGAs to process data in real time. This thesis proves that there is a new and
cheaper way to tackle the throughput challenges: to include native support to SIMD-
based architectures such as GPUs, as their low cost compared with their high perfor-
mance make them ideal for image and video processing. The software project for this
work can be found at the following repository url: https://github.com/13Karl/CUDA-
Image-and-Video-codec

7.2 Future research lines

The development of this codec in such a short period of time like the one available to a
Ph.D. degree forced us to left behind some features that could have been implemented
and which would have added more value to our proposed implementation. There are
four main research lines that can be taken in consideration for further improving the
GPU codec:

1. Codec software improvements: The codec pipeline exhibit some limitations

7.2. FUTURE RESEARCH LINES 69

in certain algorithms or execution modes. First of all, the CS BPC-PaCo engine
is limited to only accept blocks with a size of 64×64, thus the subbands generated
by the DWT algorithm must be a multiple of that size. Removing this limitation
would allow to process any image or video regardless of their size. Secondly, image
coding is restricted to use one stream of execution. Multi-stream approach was only
included for video as it made sense to process several frames simultaneously while
not redesigning the pipeline execution flow to allow per-component processing in
different streams. However, for images with several components this design could
be improved so that each component is processed by a single stream. Currently,
multispectral images can be processed as video files to enhance coding throughput, but
at the expense of no additional transformations, achieving sub-optimal performance.
Another approach instead of using more streams in images would be to remove the
hard limitations between kernels and integrate every kernel within each other, allowing
to have some sections of the image or frame to be processed by the DWT, others by
the BPC and others by the CR. This would potentially reduce memory transactions
as the data would not have to be moved from the registers to the device memory and
viceversa several times per frame or component. It is worth noting that implementing
this last idea could benefit both, image and video coding.

2. Hardware improvements: At the moment, the codec supports only one GPU
at a time. Multi-GPU support would grant throughput improvements, although a
fast I/O system would be needed to feed data fast enough to avoid bottlenecks. CPU
could also be used to help the GPU process certain aspects of the pipeline, becoming
a hybrid approach instead of just a GPU approach.

3. Nvidia architectural improvements from Turing and Ampere: at the moment
this codec was designed, Turing and Ampere architectures were not released yet,
and most of their new features were unknown to the public. Turing brought to the
consumer public a new type of cores: tensor cores. These cores are commonly used
in AI implementations as they are finely tuned to process matrices multiplications.
Certain aspects of our codec could benefit from these cores, such as the CT kernel.
With Ampere, there are two main aspects that could be of interest: DirectStorage
functionality and cache improvements. The former one consists on transferring data

70 CHAPTER 7. CONCLUSIONS

directly from a fast SSD, preferably running over the PCI-E 4.0 bus, to the GPU
DRAM, without writing any data to the RAM, and with minimal CPU usage. This
strategy would decrease the I/O subsystem complexity and remove RAM read/write
timings from the pipeline, effectively freeing computational resources. The last one
refers to cache improvements consisting on more and faster cache per SM, while also
including a feature to bypass the L1 cache to directly copy data from the global
memory to the shared memory, rendering shared memory a more valuable resource.
All these features would render no benefits to older architectures.

4. Production improvements: the current codec version does not support HDR
input data, nor any input data with a bit-depth higher than 8 bps. Also, the codec
does not include support for audio.

Appendix A

List of Publications

[36] C. de Cea-Dominguez, P. Enfedaque, J. C. Moure, J. Bartrina-Rapesta, and
F. Auli-Llinas, “High throughput image codec for high-resolution satellite images,”
in Proc. IEEE International Geoscience and Remote Sensing Symposium, Jul. 2018,
pp. 6524–6527

[37] C. de Cea-Dominguez, J. C. Moure, J. Bartrina-Rapesta, and F. Auli-Llinas,
“GPU architecture for wavelet-based video coding acceleration,” in Parallel Comput-
ing: Technology Trends, vol. 36, Apr. 2020, pp. 83–92, IOSPress Series in Advances
in Parallel Computing

[24]C. de Cea-Dominguez, J. C. Moure, J. Bartrina-Rapesta, and F. Auli-Llinas,
“GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000,”
IEEE Access, vol. 8, no. 1, pp. 68 474–68 487, Apr. 2020

[39] C. de Cea-Dominguez, J. C. Moure, J. Bartrina-Rapesta, and F. Auli-Llinas,
“Complexity scalable bitplane image coding with parallel coefficient processing,”
IEEE Signal Processing Letters, vol. 27, pp. 840–844, Jun. 2020

[40] ——, “Real-time 16K video coding on a GPU with Complexity Scalable BPC-
PaCo,” Signal Processing: Image Communication, vol. 99, p. 116503, Sep. 2021

71

72 APPENDIX A. LIST OF PUBLICATIONS

Appendix B

Acronyms

AC Arithmetic Coder
BPC Bitplane Coding Engine
BPC-PaCo Bitplane Coding Engine with Parallel Coefficients
BPS Bits Per Sample
CPU Central Processing Unit
CR Codestream Reorganization
CS BPC-PaCo Complexity-Scalable Bitplane Coding Engine with Parallel Coeffi-
cients
CUDA Compute Unified Device Architecture
DRAM Device Random Access Memory
DWT Discrete Wavelet Transform
E2E End-to-end
FPGA Field Programmable Gate Array
GPU Graphics Processing Unit
HTJ2K High Throughput JPEG2000
(I)CT (Irreversible) Color transform
MIMD Multiple-Instructions Multiple-Data
PSNR Peak Signal to Noise Ratio
RAM Random Access Memory
RGB Red, Green and Blue color space

73

74 APPENDIX B. ACRONYMS

SIMD Single-Instruction Multiple-Data
SM Streaming Multiprocessor
TDP Thermal Design Power
VRAM Video Random Access Memory

Bibliography

[1] “Consultative Committee for Space Data Systems (CCSDS),”
http://www.ccsds.org, Jul. 2020.

[2] Lossless Data Compression, https://public.ccsds.org/Pubs/121x0b3.pdf, Con-
sultative Committee for Space Data Systems, Aug. 2020.

[3] Image Data Compression, https://public.ccsds.org/Pubs/122x0b2.pdf, Consul-
tative Committee for Space Data Systems, Sep. 2017.

[4] Lossless Multispectral & Hyperspectral Image Compression,
https://public.ccsds.org/Pubs/123x0b2c2.pdf, Consultative Committee for
Space Data Systems, Feb. 2019.

[5] High Efficiency Video Coding Standard, International Telecommunication Union,
2013.

[6] Information technology - JPEG 2000 image coding system - Part 1: Core coding
system, ISO/IEC, Dec. 2000.

[7] A. Descampe, F.-O. Devaux, G. Rouvroy, J.-D. Legat, J.-J. Quisquater, and
B. Macq, “A flexible hardware JPEG 2000 decoder for digital cinema,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 16, no. 11, pp.
1397–1410, Nov. 2006.

[8] I. Chiuchisan, “A new FPGA-based real-time configurable system for medical im-
age processing,” in E-Health and Bioengineering Conference (EHB), Nov. 2013,
pp. 1–4.

75

76 BIBLIOGRAPHY

[9] V. Kasik and Z. Chvostkova, “FPGA in technical resources of medical imaging,”
in IEEE 11th International Symposium on Applied Machine Intelligence and
Informatics (SAMI), Mar. 2013, pp. 193–196.

[10] Junying Chen, Shunfeng Zhou, and Huaqing Min, “Implementation of parallel
medical ultrasound imaging algorithm on CAPI-enabled FPGA,” in International
Conference on Field-Programmable Technology (FPT), Dec. 2016, pp. 311–314.

[11] Nvidia, “Top supercomputing centers make use of Nvidia technolo-
gies,” https://blogs.nvidia.com/blog/2020/06/22/top500-isc-supercomputing/,
Jun. 2020.

[12] M. S. Nobile, P. Cazzaniga, A. Tangherloni, and D. Besozzi, “Graphics processing
units in bioinformatics, computational biology and systems biology,” vol. 18,
no. 5, pp. 870–885, Sep. 2017.

[13] University of Stuttgart, “CuJ2K,” http://cuj2k.sourceforge.net/, Jul. 2020.

[14] Poznan Supercomputing and Networking Center, “GPUJ2K,”
http://apps.man.poznan.pl/trac/jpeg2k/wiki, Feb. 2020.

[15] S. Datla and N. S. Gidijala, “Parallelizing motion JPEG 2000 with CUDA,” in
Proc. IEEE International Conference on Computer and Electrical Engineering,
Dec. 2009, pp. 630–634.

[16] R. Le, I. R. Bahar, and J. L. Mundy, “A novel parallel tier-1 coder for JPEG2000
using GPUs,” in Proc. IEEE Symposium on Application Specific Processors, Jun.
2011, pp. 129–136.

[17] J. Matela, V. Rusnak, and P. Holub, “Efficient JPEG2000 EBCOT context mod-
eling for massively parallel architectures,” in Proc. IEEE Data Compression Con-
ference, Mar. 2011, pp. 423–432.

[18] F. Wei, Q. Cui, and Y. Li, “Fine-granular parallel EBCOT and optimization
with CUDA for digital cinema image compression,” in Proc. IEEE International
Conference on Multimedia and Expo, Jul. 2012, pp. 1051–1054.

BIBLIOGRAPHY 77

[19] M. Ciznicki, K. Kurowski, and A. Plaza, “Graphics processing unit implementa-
tion of JPEG2000 for hyperspectral image compression,” vol. 6, pp. 1–14, Jan.
2012.

[20] J. Lee, B. Kim, and K. Yoon, “CUDA-based JPEG2000 encoding scheme,” in
Proc. IEEE International Conference on Advanced Communication Technology,
Feb. 2014, pp. 671–674.

[21] X. Wu, Y. Li, K. Liu, K. Wang, and L. Wang, “Massive parallel implementation
of JPEG2000 decoding algorithm with multi-GPUs,” in Proc. SPIE Satellite
Data Compression, Communications, and Processing X, vol. 9124, May 2014,
pp. 1–6.

[22] D. Taubman, “Kakadu software,” http://www.kakadusoftware.com, Jul. 2020.

[23] Comprimato, “Comprimato JPEG2000@GPU,” http://www.comprimato.com,
Feb. 2020.

[24] C. de Cea-Dominguez, J. C. Moure, J. Bartrina-Rapesta, and F. Auli-Llinas,
“GPU-oriented architecture for an end-to-end image/video codec based on
JPEG2000,” IEEE Access, vol. 8, no. 1, pp. 68 474–68 487, Apr. 2020.

[25] D. Taubman, A. Naman, and R. Mathew, “High throughput block coding in
the HTJ2K compression standard,” in Proc. IEEE International Conference on
Image Processing, Sep. 2019, pp. 1079–1083.

[26] F. Auli-Llinas, “Local average-based model of probabilities for JPEG2000 bit-
plane coder,” in Proc. IEEE Data Compression Conference, Mar. 2010, pp. 59–
68.

[27] F. Auli-Llinas, I. Blanes, J. Bartrina-Rapesta, and J. Serra-Sagrista, “Stationary
model of probabilities for symbols emitted by bitplane image coders,” in Proc.
IEEE International Conference on Image Processing, Sep. 2010, pp. 497–500.

78 BIBLIOGRAPHY

[28] F. Auli-Llinas, “Stationary probability model for bitplane image coding through
local average of wavelet coefficients,” IEEE Transactions on Image Processing,
vol. 20, no. 8, pp. 2153–2165, Aug. 2011.

[29] ——, “Highly efficient, low complexity arithmetic coder for JPEG2000,” in Proc.
IEEE International Conference on Image Processing, Oct. 2014, pp. 5601–5605.

[30] ——, “Entropy-based evaluation of context models for wavelet-transformed im-
ages,” IEEE Transactions on Image Processing, vol. 24, no. 1, pp. 57–67, Jan.
2015.

[31] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “Implementation of the DWT in
a GPU through a register-based strategy,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 12, pp. 3394–3406, Dec. 2015.

[32] ——, “Strategies of SIMD computing for image coding in GPU,” in Proc. IEEE
International Conference on High Performance Computing, Dec. 2015, pp. 345–
354.

[33] F. Auli-Llinas, P. Enfedaque, J. C. Moure, I. Blanes, and V. Sanchez, “Strat-
egy of microscopic parallelism for bitplane image coding,” in Proc. IEEE Data
Compression Conference, Apr. 2015, pp. 163–172.

[34] F. Auli-Llinas, P. Enfedaque, J. C. Moure, and V. Sanchez, “Bitplane image cod-
ing with parallel coefficient processing,” IEEE Transactions on Image Processing,
vol. 25, no. 1, pp. 209–219, Jan. 2016.

[35] P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “GPU implementation of bitplane
coding with parallel coefficient processing for high performance image compres-
sion,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 8, pp.
2272–2284, Aug. 2017.

[36] C. de Cea-Dominguez, P. Enfedaque, J. C. Moure, J. Bartrina-Rapesta, and
F. Auli-Llinas, “High throughput image codec for high-resolution satellite im-
ages,” in Proc. IEEE International Geoscience and Remote Sensing Symposium,
Jul. 2018, pp. 6524–6527.

BIBLIOGRAPHY 79

[37] C. de Cea-Dominguez, J. C. Moure, J. Bartrina-Rapesta, and F. Auli-Llinas,
“GPU architecture for wavelet-based video coding acceleration,” in Parallel Com-
puting: Technology Trends, vol. 36, Apr. 2020, pp. 83–92, IOSPress Series in
Advances in Parallel Computing.

[38] Nvidia, “HEVC SDK,” https://developer.nvidia.com/nvidia-video-codec-sdk,
Dec. 2021.

[39] C. de Cea-Dominguez, J. C. Moure, J. Bartrina-Rapesta, and F. Auli-Llinas,
“Complexity scalable bitplane image coding with parallel coefficient processing,”
IEEE Signal Processing Letters, vol. 27, pp. 840–844, Jun. 2020.

[40] ——, “Real-time 16K video coding on a GPU with Complexity Scalable BPC-
PaCo,” Signal Processing: Image Communication, vol. 99, p. 116503, Sep. 2021.

	Títol de la tesi: High Throughput Image/Video Codec with Nvidia GPUs
	Nom autor/a: Carlos de Cea Domínguez

