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CHAPTER 1

Preface

The arguably most rich and often less understood phenomena in physics arise from the
interplay and the competition of interactions between many separate constituents. From
high-temperature superconductivity to the phase diagram of quantum chromodynamics
(QCD) at high density of fermions, the understanding of a great deal of phenomena in
both condensed matter and high-energy physics relies on solving the so-called many-
body problem. However, the numerical simulation of many-body systems is faced with
a major difficulty: the configuration space of a many-body quantum system increases
exponentially with the number of constituents. Even the simplest of the toy models,
such as the spin-1

2 Heisenberg model, can not be solved by brute-force diagonalization
by any realistic supercomputer when the size of the system increases just above few
tens of particles. This fundamental issue has been long acknowledged, and, as early as
1982, Richard Feynman famously envisioned an alternative route to address the many-
body problem [1]: could the quantum systems of interest be efficiently simulated by
other quantum systems? This is the basic idea behind quantum simulation, where the
relevant degrees of freedom of the system under scrutiny are encoded into those of a
well-controlled and accessible system, the quantum simulator. The degrees of freedom
in the simulator are also to evolve quantum mechanically, and thus expected to exhibit
features such as superposition and entanglement of their quantum states. In 1996, Seth
Lloyd proved in a seminal work [2] that the time evolution from any arbitrary Hamilto-
nian with local interactions could be efficiently simulated by repeatedly acting a series of
local time-evolution operators in a so-called universal quantum simulator. The error of
the simulation could in principle be made arbitrarily small by increasing the number of
local operations, with the resulting total time scaling polynomially with the size of the
simulated system, and not exponentially as is expected for a classical simulation, thus
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making the problem computationally tractable. Since then, great efforts have been made
in order to realize reliable experimental platforms upon which to perform quantum sim-
ulation. While to date a general-purpose quantum simulator, i.e. a quantum computer,
is still far out of technical reach, great advances have been made in the simulation of spe-
cific models, where only the access to restricted families of local operations are required
[3]. Conventionally, simulators are classified into digital and analog. The former execute
algorithms composed of elementary steps or quantum gates in the so-called Trotter de-
composition of the time-evolution operators. In the latter class, the system is evolved
with a global Hamiltonian that mimics that of the model of interest, rather than with
a sequence of local operations. Analog simulators sacrifice versatility for an enhanced
robustness and scalability, and are immune to errors associated with the Trotter expan-
sion of the Hamiltonian. They have been the object of a huge body of research over the
past two decades and a variety of classically hard problems have already been explored
in analog simulators. These include the equilibration and thermalization of quantum
systems [4–7], the dynamics and the correlations in quantum phase transitions [8, 9] and
dynamical phase transitions [10, 11], or the magnetic order in strongly-correlated Hub-
bard models [12–14], to mention a few. In practice, though, the digital-analog dichotomy
is rather loose, with hybrids of the two categories being commonly built [15]. Due to
the rapid development of quantum simulation techniques, wider classes of problems are
progressively becoming in reach of quantum simulators [16].

To be operative, a quantum simulator demands that at least three fundamental
features are fulfilled [17]. To start, the system needs to be able to accurately load the
initial state required for the simulation. During the time-evolution, be it digital or analog,
the system must preserve to a large extent the quantum coherence of the evolved states,
and follow the targeted equations of motion which, ideally, should not admit efficient
simulations with classical computations. And finally, at the end of the time-evolution,
the prepared state needs to allow a precise interrogation with projective measurements
that suitably characterize the observables of interest. Typically, measurements that are
robust against the appearance of many errors, such as the magnetization in a set of spins,
are targeted, rather than a full tomography of the prepared quantum state. The resources
required for the latter task would scale exponentially with the size of the system size,
even when the preparation time does it polynomially. To date, quantum simulations have
been proposed and tested in many different experimental platforms. Most prominently,
with large tunability and precise readout, these include superconducting circuits [18–
21], trapped ions [22–25], cold atoms trapped in arrays of optical tweezers [26–28] and
ultracold atoms [29–31], each exhibiting a competitive edge on different tasks and facing
their own experimental challenges.

Regardless of the platform of choice for its implementation, there remains an open
question regarding the use of quantum simulators. How are we to know that the simu-
lations work properly when the simulated systems are out of reach of the analytical and
numerical methods available? There is no definitive answer to this question yet, with the
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falsifiability of quantum simulators being an active field of research. Naturally, the most
basic step in the calibration of a simulator is to benchmark the apparatus against sim-
ulations for which theoretical predictions can be made. Besides the direct reproduction
of results obtained with analytical and numerical computations, faulty simulations could
be inferred from the violation of fundamental bounds and properties that the system
is known to obey, even when it is not possible to simulate it classically [32]. Beyond
that, the next simplest approach is to test the simulations by comparing the outputs
from different platforms. The fact that similar sources of error may be shared across
platforms strongly encourages the development of as many technologies as possible [33].

At its current proof-of-concept stage, quantum simulation is filled with technical
challenges to be overcome, and its exploration alone has been motivating a huge body
of theoretical research. The aim of such theoretical efforts is multifold: to make more
refined predictions to be tested in the ever-improving simulators that are being built, to
design novel protocols that widen the set of tools available to implement in the different
experimental platforms, or to give insights on the results that are obtained along the
way. Of course, in the theoretical side of the benchmark process, one needs to predict
the behavior of quantum many-body systems. Luckily, in most situations the full con-
figuration space of a many-body system needs not be considered, and several families of
many-body problems can be addressed in approximate ways with conventional compu-
tation methods. Very often, the dynamics of a low-lying family of energy eigenstates is
enough to account for the description of the observed many-body phenomena. Further-
more, the Hilbert space can be significantly reduced by independently addressing the
different symmetry sectors of the Hamiltonian [34]. In other situations, safe assumptions
can be made by which the relevant states of the system are restricted to a small sub-
set of states. For instance, numerical methods based on tensor networks [35], such as
the density-matrix renormalization group [36] approach, assume that the lowest energy
eigenstates lie within a low-entanglement corner of the Hilbert space –a property that
rigorously holds for 1D gapped systems [37]. Many weakly-correlated systems admit
a mean-field treatment. For instance, under the right conditions, ultracold atoms can
form a condensate, where a large fraction of the atoms macroscopically occupy one or few
single-particle state. In several applications, the condensate can be well treated within
the classical field formalism of the Gross-Pitaevskii equation [38], where the many-body
behavior is captured by the appearance of nonlinearities in the differential equations that
govern the fields. Other popular methods include density functional theory [39], best
used in the absence of strong correlations, and the more powerful stochastic quantum
Monte Carlo algorithms [40].

Over the last two decades, the blossoming of quantum simulation has pushed the
boundaries of our understanding in many scientific disciplines, ranging from the atomic,
molecular and optical physics to information theory, computer science and device engi-
neering. With the holy-grailesque quest for an operating universal quantum computer
[41] as the ultimate goal in the long run, the developing of efficient techniques for the
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harnessing of quantum systems has become a prominent field of research. This multidis-
ciplinary effort hopes to deliver game-changing technologies in the future [42]. Moreover,
quantum technologies are not restricted to the fields of simulation and computation. En-
hancements beyond the limits of classical systems are also fervently pursued in fields such
as quantum sensing [43] and quantum metrology [44, 45], where the properties of quan-
tum states, such as squeezing and entanglement, are exploited to overcome conventional
bounds to the precision of the measurements [46], and also in quantum communication,
where entangled pairs of photons are used in information-theoretically secure key distri-
bution protocols [47, 48]. Amid this simultaneously fascinating and intimidating scope,
the modest results presented in this thesis deal with a rather specific, yet related, subject.
This dissertation explores theoretically phenomena that arise from the interplay between
light-dressing and interatomic interactions in ultracold atomic systems, with potential
applications to both the simulation of exotic physics and quantum metrology.

Quantum gases of ultracold atoms are found amongst the most developed and stud-
ied platforms in quantum science and technology. They are characterized by naturally
accommodating a large number of particles in the experiments, from hundreds to mil-
lions of interacting atoms of both bosonic and fermionic species. Ultracold atoms are
cooled down to temperatures close to the absolute zero, which is possible thanks to
impressive advances in the cooling and trapping of neutral atoms [49, 50]. While the
small resulting energy scales can be a drawback for tasks that require computational
speed, ultracold gases can be very well isolated, and large coherence times be attained.
In turn, their slow dynamics allows for the time-resolved control of the parameters of
the system in shorter times than their characteristic timescales, which is very attractive
for the simulation of complex processes. This enables, for instance, the direct probing
of nonequilibrium dynamics [4, 51, 52]. Crucially, ultracold gases can be manipulated
and probed with electromagnetic fields in myriad ways [53]. A wide range of their prop-
erties can be tuned with high precision, including the effective dimensionality of the
gas [54, 55] and the geometry of the simulated models [56–59], the strength and sign
of the interatomic interactions via Feshbach resonances [60–63], and the effective spin
size of the atoms, which can be controlled independently from their bosonic or fermionic
nature. Owing to such a versatility, experiments with ultracold atoms can simulate a
broad diversity of models [64]. When loaded into optical lattices [30, 31, 65, 66], they
can emulate Hamiltonians of relevance in solid state physics in a natural way, such as
the paradigmatic Hubbard model. In the continuum, bulk-gas experiments can real-
ize a variety of phenomena of interest [67], with the crossover between weak coupling
Bardeen-Cooper-Schrieffer pairing to a Bose-Einstein condensate of tightly bound pairs
in Fermi gases with attractive interactions [68, 69] as a paradigmatic example, and also
study transport properties [70]. With atom numbers as large as few millions, these sys-
tems allow for a precise exploration of thermodynamic behavior [71, 72]. And beyond
quantum simulation, the coherent manipulation of gases of ultracold atoms is actively
investigated in the field of quantum metrology. By exploiting interatomic interactions,
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entangled states with a very large number of particles can be generated in Bose-Einstein
condensates, to be exploited for phase estimation in interferometry protocols [73].

Because ultracold atoms are charge-neutral, they only couple to gauge fields via their
dipole moments. An immediate challenge posed by the quantum gas as a platform for
simulation is, thus, to find ways to emulate the effects of gauge fields on charged mat-
ter. To fully simulate gauge theories, which could address very challenging problems in
particle physics such as quark confinement, chiral symmetry breaking, and the phase
diagram of QCD, dynamical gauge fields are required. Their realization has proven
very hard since gauge theories must satisfy local gauge invariance, i.e. the Gauss law.
Still, their implementation is actively researched theoretically [74–76], with some recent
experimental efforts [77–79] starting to pave the way in this promising direction. In
the meantime, nonetheless, a wealth of interesting phenomena related to the behavior
of nonrelativistic particles in the presence of static gauge fields has been successfully
translated into ultracold atomic systems following various approaches. In these, the en-
gineered fields themselves are not dynamical variables, describing instead the action of
effective classical external fields. The earliest examples of synthetic gauge fields in ultra-
cold gases are the effective magnetic fields induced in bulk atomic gases that are set into
rotation [80], as demonstrated by the observation of quantized vortices in Bose-Einstein
condensates [81, 82] and in a condensate of Fermi pairs [83]. Alternatively, employing
light-dressing schemes [84, 85] can partly avoid the substantial heating generated by the
rotation-based implementations. For instance, artificial magnetic fields can be generated
in a Raman-dressed gas in the presence of a bias magnetic field gradient [86]. In the
lattice, Peierls phases leading to Aharonov-Bohm fluxes have been achieved in diverse
ways: Floquet-engineered in periodically driven lattices [87], via Raman-assisted tunnel-
ing in magnetically tilted lattices [88, 89] and in super lattices [90, 91], an also in quasi
2D ladder-like systems using Raman-coupled synthetic dimensions [92, 93] in 1D lattices
[94–96]. Relevantly, the engineering of Peierls phases in 2D square lattices realizes the
Harper–Hofstadter model [97] in a way that allows strong magnetic field regimes to be
easily accessed. This enables the experimental exploration of its topological properties
and the quantum Hall response [94–96, 98–100]. Further topologically non-trivial models
have been realized [101] by exploiting different ladder geometries. A prominent example
is the experimental realization [102] of the Haldane model [103], where Chern bands
occur in the absence of net Aharonov-Bohm fluxes. At the same time, synthetic forms
of spin-orbit-coupling interaction have been realized in ultracold gases by exploiting Ra-
man coupling, both in the continuum by directly coupling two internal states [104–106],
or in a superlattice by using Raman-assisted tunneling [107, 108]. In condensed matter
systems, spin-orbit coupling is strongly connected to a variety of phenomena, such as the
spin-Hall effect [109] or topological insulators [110, 111] and superconductors [111, 112].
In degenerate quantum gases, spin-orbit coupling gives rise to novel and intriguing phases
that can go beyond those found in conventional condensed matter systems [113, 114].

In many of the current experimental implementations of gauge physics in ultracold



6 Preface

atomic systems, Raman dressing stands as a key ingredient to provide spatially-varying
phase terms and level couplings in the required spatial and temporal scales. Interestingly,
Raman coupling has been shown to modify the properties of the scattering processes that
take place in the gas. These effects have been studied mostly in the context of the sta-
bilization of the magnetic-like ground state phases of the weakly coupled gas [104, 115],
and also as a collision-induced decay mechanism in stronger coupling regimes [116, 117].
In this thesis, we will explore further this rich interplay, and focus on two regimes of the
Raman-coupled gas where the many-body behavior can be tackled with different numer-
ical approaches. In both scenarios, we will derive effective models where the dressed gas
is described at low energies in terms of the interactions of single-particle dressed states.
Through these effective models, we will be able to spot regimes of parameters of the
Raman-coupled gas where phenomena of interest can take place, to be later numerically
explored via exact diagonalization, Runge-Kutta methods, the Gross-Pitaevskii equation
or density-matrix renormalization group methods. In bulk weakly-dressed and weakly-
interacting spin-1 Bose gases [118], we will see that the interplay between superfluidity,
interatomic interactions and the induced spin-orbit coupling gives access to the coherent
exploration of phenomena of relevance such as supersolidity [119], macroscopic entan-
glement [73] and dynamical [120] and excited [121] quantum phase transitions. These
aspects will be treated in a simple unified framework where the spin-1 Raman-dressed gas
is thought of as an undressed spinor gas with tunable spin-changing collisions [122–124].
In the lattice, Raman dressing is one of the most popular routes for the realization of
Aharonov-Bohm fluxes, both in laser-assisted tunneling proposals and in schemes that
exploit synthetic dimensions. In this regard, we will investigate the one-dimensional
synthetic flux ladder in a regime of strong Raman coupling and strong synthetic flux.
There, we will show that the system effectively realizes a frustrated triangular ladder
model [125]. In presence of strong interatomic interactions, we will see that the Hamil-
tonian is able to hold phases that are characteristic of frustrated spin models built on
triangular geometries.

Outline of the thesis

The thesis is organized as follows:

Chapter 2 briefly introduces the theoretical models that are employed in the remainder
of the thesis. We start by covering relevant aspects of light-atom interaction, with
emphasis on the scalar and vector light shifts resulting from off-resonant dipole coupling.
These are used, respectively, to generate the optical trapping potentials and the Raman
dressing exploited in the experimental implementations of the investigated systems. We
next review the theoretical treatment of an interacting spinor Bose gas, and discuss
some of its properties in the presence of Raman dressing. Finally, the basics of ultracold
atoms in optical lattices are reviewed, and the synthetic dimension approach to simulate
quantum magnetism therein is introduced.
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Chapter 3 explores the interplay between Raman dressing and two-body elastic col-
lisions in a weakly-coupled spin-1 Bose gas. In particular, we study the emergence
of coherent spin-mixing dynamics in a SU(3)-symmetric gas [122] in a regime where
near-resonant spin-changing collisions are mediated by two-photon Raman processes.
Remarkably, the strength of the spin-mixing collisions can be tuned with the intensity
of the Raman beams. The effects of such a dynamics are identified by following an
unconventional tight-binding approximation in quasi-momentum space, in which only
three low-energy dressed states are taken into account. We discuss the properties of
the resulting Hamiltonian, which shares many similarities to the one describing a spinor
condensate with nonsymmetric collisions.

Chapter 4 expands the description of the Raman-dressed gas as an effective spinor gas
with tunable spin-changing collisions away from the previously considered tight-binding
regime. Following a perturbative treatment of the weakly-dressed field Hamiltonian, we
find an analytical equivalence at the quantum level between the two systems across the
low-energy landscape. Through this equivalence, we then introduce the description of
the dressed condensate as a collective pseudospin degree of freedom, which provides a
simple framework to understand the quantum phases of the gas and its dynamics. Such
a collective spin picture allows us to design a novel protocol to dynamically prepare
the ferromagnetic stripe phase of the spin-orbit coupled gas [123]. In the protocol, the
supersolid-like stripe states are prepared by driving initially spin-polarized states across
a quantum phase transition in the most excited state manifold of the effective model.
There, the characteristic parameters that stabilize the phase are scaled up, enhancing
both its robustness and its accessibility.

Chapter 5 proposes the Raman-dressed spin-1 Bose gase as a novel platform to ex-
plore dynamical and excited-state quantum phase transitions. By using the collective
spin model derived in the previous chapter, we identify excited-state quantum phases of
the Raman-dressed gas that are in direct correspondence to those recently found in un-
dressed spinor gases [124]. Due to spin-orbit coupling, the phases of the dressed system
are further characterized by the spatial properties of the many-body wavefunction. We
show that a detection protocol based on these properties could facilitate the experimen-
tal observation of the excited phases. At the same time, we describe a robust quench
preparation of stripe states with large density modulations that exploits the dynamical
properties of the excited phases.

Chapter 6 considers the exploration of frustrated magnetic phases with a Raman-
dressed spin-1

2 Bose gas loaded into a one-dimensional optical lattice. We show that, for
strong Raman coupling, the Hamiltonian written in terms of the lowest-band dressed
states describes an effective triangular Bose ladder with staggered flux and on-site inter-
actions. There, both the strength of the flux and the ratio of the arm and rung currents
can be easily tuned with the parameters of the Raman dressing [125]. Through the ef-
fective model, we identify regimes of parameters where the original Hamiltonian realizes
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different phases that are characteristic of frustrated XX spin models. We discuss the
experimental signatures of the phases and their potential realization and detection in
experiments with ultracold atoms.

Chapter 7 concludes the thesis by summarizing the results presented and briefly dis-
cusses further perspectives.



CHAPTER 2

Theoretical frameworks

In this introductory chapter, we provide an overview of the theoretical frameworks
in which the research presented in this thesis is embedded, and briefly present the main
concepts and tools that will be employed. Accordingly, the chapter is organized in three
different sections, each covering a fundamental building block of the systems investigated
in the thesis. In Sec. 2.1, we review the basic mechanisms of light-matter interaction
that are exploited for the manipulation of ultracold atoms, with special emphasis on
the most commonly employed alkali-metal family. In Sec. 2.2 we discuss the theoretical
treatment of the many-body problem in ultracold Bose gases, and review the properties
of the system in the presence of Raman dressing. Finally, in Sec. 2.3 we introduce the
powerful framework of ultracold atoms in optical lattices, and present a simple approach
to simulate quantum magnetism with such systems. As a general remark, it should be
stressed that the motivation behind this introductory chapter is not to provide a detailed
textbook course on the various subjects covered. Rather, the chapter is set to establish a
minimum background for the non-expert reader to aid the understanding of the following
chapters, in which the original results compiled in the thesis are presented.

This chapter is written with a special emphasis on conveying a sense of scale for the
intricate interactions between the different ingredients that come to play in the light-
dressed ultracold atomic systems that will be investigated. Eventually, we will model the
coherent dynamics of atomic clouds that have been cooled down to quantum degeneracy,
with characteristic energy scales in the order of 102 Hz to 103 Hz. Considering optical
atomic transitions in alkali species as our starting point, with characteristic frequencies in
the order of 1014 Hz, that is a remarkable journey to make. Such a fascinating journey
has mandatory stops at the fine structure splitting scale, a few orders below, at the
hyperfine structure splitting scale, around ∼ 109 Hz for the ground state, at the natural

9
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line width of the first-excited electronic state and at the Zeeman shifts, both in the order
of 106 to 107 Hz, and the single-photon recoil energy ∼ 103 to 104 Hz. And beyond that,
this thesis will explore many-body processes that act perturbatively over metastable
solutions that are well defined in the condensate energy scales, at frequencies as low as
few to few tens of Hz! Such a disparity in the characteristic time scales is what allows
the use of specific techniques that address independently the different energy sectors in
these systems, a key feature for the efficient simulation of quantum systems.

2.1 Light-matter interaction in alkali atoms

We start this chapter by briefly reviewing the aspects of the interaction between
atoms and electromagnetic fields that will be of relevance to the results presented in
following chapters. We will focus, in particular, on the coupling between optical light
fields and the ground state atomic levels of alkali-metal species. The harnessing of such
a rich interaction has been crucial to the development of atom cooling and trapping
techniques [126–128], which eventually lead to the experimental realization of the Bose-
Einstein condensate (BEC) in 1995 [129–131]. Furthermore, it has been proven a prolific
tool to further control ultracold atomic systems and engineer a myriad of phenomena in
such a versatile platform [30].

2.1.1 The dipole interaction

While the nonionized atoms that we consider are charge neutral, they still interact
with external electric fields via dipole interaction. Most of the features of this interac-
tion that are relevant to the trapping and manipulation of ultracold atoms can be well
described in a semiclassical picture. There, the atom is treated quantum-mechanically,
but the light is described by a classical field theory. The semi-classical light-matter in-
teraction framework is remarkably accurate for high intensity light fields, and has been
very successful in explaining phenomena that extend beyond the predictions of classical
physics, including Rabi oscillations, multi-photon transitions or light shifts [132].

We consider the simplest scenario, where an atom is dressed by a monochromatic light
field E(r, t) = E0 cos(k · r−ωLt), oscillating at angular frequency ωL. Consider now two
electronic orbitals |i〉 and |j〉 of the outer shell, that are separated by an energy split
~ω0. In the presence of the field, the levels are coupled through the dipole interaction,
given by the Hamiltonian

Ĥdip = −d̂ ·E, (2.1)

with d̂ = −e
∑

k r̂k, being the electric dipole moment operator. Here, e the charge of the
electron and r̂j are the position operators of the electrons relative to the center of mass of
the atom. For illustrative purposes, we neglect the effects of higher order multipolar and
magnetic interaction terms. Since the atom radius is much smaller than the wavelength
of light in the regimes that we will consider, we neglect, for now, the spatial dependence
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of the electric field, in the so-called electric dipole approximation. In the bare basis, the
dipole potential can be written as

V̂dip(t) =
∑
ij

Ωij cos(ωLt)|i〉〈j|+ H.c., (2.2)

where Ωij = −dij ·E0/~ is the Rabi frequency of the transition, with dij = −e
∑

k〈i|r̂k|j〉.
The dipole elements dij will depend on the characteristics of the electronic orbitals
that are involved in the transition. Observe that for orbitals with the same parity,
such an interaction is null. This includes, of course, the self-coupling interaction for
symmetric or antisymmetric states. While simplistic, this picture underlines the basic
mechanism behind atom-light interaction. As we will see, such a model is able to capture
the mechanism behind optical trapping. The picture can be extended to account for
the simultaneous coupling of several atomic levels, where various fields with different
polarizations may be involved, and used to describe the two-photon processes that are
essential to a central ingredient of this thesis: the Raman dressing. Not surprisingly,
though, the precise way by which the different electronic levels are actually coupled in
real atom species is rather complex, and it strongly depends on the structure of the
atomic species. Henceforth, we will restrict ourselves to the alkali metal family. We next
review some fundamental aspects of their structure.

2.1.2 Atomic structure of alkali metals

Generally speaking, the low-energy spectroscopic properties of atoms stem from the
electrons in the outer open shell. Here, we will use the conventional notation n2S+1LJ to
refer to orbitals of the outer electrons with principal quantum number n, orbital angular
momentum L and total angular momentum J = L + S, where S is the spin of the total
spin in the outer shell. Typically, the letters S,P,D, ... are used to denote the orbitals
with L = 0, 1, 2, .... The alkali metal family includes the atomic species in the first group
to the left of the periodic table. With only one valence electron in an s-orbital n2S1/2 as
ground state, alkali atoms exhibit a relatively simple internal state structure and they all
share a host of similar atomic and chemical properties. Most relevantly to the content
of this thesis, the electronic ground state and the lowest lying family of excited states
across the alkali family are resonantly coupled via dipole interaction in the optical range
of the electromagnetic field spectrum. This feature is experimentally very convenient,
since it allows the manipulation of the atoms in their ground state with laser light, which
can be used to cool and spatially trap them, and to tune their properties.

In Fig. 2.1, we show the level diagram of 87Rb, which includes the two lowest-lying
families of energy eigenstates, with n = 5 and L = 0 in the ground state, and n = 5 and
L = 1 in the first excited family. In the latter, the spin-orbit interaction AfsL̂ · Ŝ between
the electronic spin and the the orbital momentum lifts the degeneracy between different
states with angular momentum L = 1, resulting in the fine structure splitting of the P

level. The vertical red arrows highlight the electronic transitions n2S1/2 → n2P1/2 and
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Figure 2.1: Level diagram of the lowest electronic levels of a 87Rb atom (energies not
to scale), including the outer shell orbitals n2S and n2P. The red arrows highlight the
transitions n2S1/2 → n2P1/2 and n2S1/2 → n2P3/2 that correspond to the D1 and D2

spectral lines.

n2S1/2 → n2P3/2, which are commonly referred to as the D1 and D2 lines, respectively.
The designation letter D in these Fraunhofer lines stems from them being first identified
as the sodium doublet, with the notation having been extended to all the transitions
between the ground state and the fine-structure-split first excited manifold of alkali
atoms. For 87Rb, the corresponding equivalent wavelengths for such transitions are
794.98nm and 790.24nm [133], which, as anticipated, are found within the optical range
of the spectrum and can be targeted with diode lasers in the laboratory. Similarly, the
coupling between the total angular momentum of the electron and the spin of the nucleus
AhfsĴ · Î further splits the fine structure into hyperfine levels of total angular momentum
F = J + I [134]. In 87Rb, the nuclear spin is given by I = 3/2, and the lowest hyperfine
manifold includes 3 degenerate eigenstates with total angular momentum F = 1 and 5
eigenstates with F = 2.

Notice in Fig. 2.1 the energy separation between the different scales associated with
each of these angular momentum coupling processes. While the states with different
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orbital angular momentum L have a separation of several hundreds of THz, the fine
structure splitting in 87Rb is found in the order of few THz (and it is amongst the
largest across the alkali family). Finally, the hyperfine splitting is roughly 3 orders of
magnitude smaller than the fine structure splitting of the 52P orbital. Such a large
scale separation is fundamental to a clean addressing and manipulation of the atomic
levels with electromagnetic beams. The same level structure is shared amongst all alkali
species, albeit the transition frequencies vary significantly due to the large differences
they exhibit in the nuclear mass. For instance, the D lines of sodium have characteristic
transition wavelenghts around 589 nm [135]. On the other hand, even among different
isotopes of the same species, the nuclear spin I takes different values, which determines
the total angular momentum of the hyperfine states and the width of the energy splitting.
As an example, the truly stable isotope of Rubidium, 85Rb, has a nuclear spin I = 5/2

[136], which results into a F = 2 ground state with a smaller hyperfine splitting (in
experiments with ultracold alkali atoms, however, the choice of isotope is motivated
largely by the s-wave scattering properties of the different isotopes [137]).

In the presence of an external static magnetic field, which sets a privileged axis that
we arbitrarily set along the ẑ direction, the degeneracy between eigenstates with the
same total angular momentum is lifted due to the magnetic dipole interaction

ĤB = µ ·B =
µB

~

(
gLL̂z + gSŜz + gI Îz

)
Bz '

µB

~

(
gJ Ĵz + gI Îz

)
Bz, (2.3)

where µ is the total magnetic dipole of the atom, µB = e~
2me

is the Borh magneton (me

denotes the mass of the electron). The coefficients gL, gS and gI are the electron orbital,
electron spin, and nuclear gyromagnetic factors that weigh in the corresponding contri-
butions to the total magnetic dipole moment. Typically, the fine structure splitting in
alkali atoms is much larger than the characteristic energies associated with the magnetic
shifts, and J remains a good quantum number for the total angular momentum of the
electron. Hence the approximate equality in (2.3), where

gJ ' 1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(F + 1)
(2.4)

is the effective Landé factor associated with the total electronic angular momentum,
which depends on the different electronic angular momentum quantum numbers.

In general, therefore, the atomic eigenstates will be given by superpositions of the
bare basis states |J,mJ , I,mI〉, where mJ and mI are the Ĵz and Îz projection quantum
numbers. This picture is simplified further in the weak bias magnetic field regime,
where the magnetic dipole Hamiltonian can be treated as a perturbation to the bare
Hamiltonian. There, the total angular momentum basis states |F,mF 〉 can be kept as a
good approximation of the eigenbasis. We then can write

ĤB '
µB

~
gF F̂zBz, (2.5)

with

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
. (2.6)
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This regime, where the perturbative action of the bias field lifts the degeneracy with
a linear shift ∆EmF = µB

~ gFmF , is the so-called linear Zeeman regime of the atom-
magnetic field interaction. Along this thesis, we will keep ourselves within this regime
(with the exclusion of the experimental proposal discussed at the end of chapter 6) and
consider the states |F,mF 〉 in a hyperfine manifold as the relevant internal states of the
atoms in an ultracold cloud. They will serve as effective spin degrees of freedom, to be
further manipulated with laser light via electric dipole interaction. It is worth noting,
though, that shifts beyond the linear regime of the magnetic interaction (essentially the
quadratic Zeeman shift) will nonetheless play a major role in the manipulation of the
spin states, despite its characteristic energies being several orders of magnitude smaller
than the shifts at the linear order.

2.1.3 Off-resonant dipole coupling: the scalar and vector light shifts

As sketched in Sec. 2.1.1, a neutral atom interacts with an external electric field
mainly via the dipole interaction. Alkali atoms can be approximately described by a
simple dipole formed by the single outer shell electron, with charge e, and the rest of the
atom, which can be approximated to a point-like particle of charge −e located at the
center of mass of the atom. In this situation, the dipole Hamiltonian for a monochromatic
field simply reads

Ĥdip = −e
∑
j

r̂jEj cos(φj − ωLt). (2.7)

Here, we have introduced the phases of the field φj along each spatial direction j = x, y, z,
which allows us to account for nonlinear polarizations of the dressing field.

We will tackle off-resonant electric dipole transitions involving the n2S ground state
and the first excited n2P orbital, separated by an energy that we label with ~ω0. It
will be sufficient to include the FS of the atom, since we will consider that the detuning
from resonance, while small relative to the transition frequency ω0, is much larger than
the hyperfine structure splitting. Therefore, the undressed atom can be described the
truncated Hamiltonian

Ĥat = ~ω0P̂P +
Afs

~2
L̂ · Ŝ. (2.8)

Here, P̂P = L̂2

2~2 is the projector onto the n2P subspace (we neglect the occupation of
higher excited orbitals). Likewise, we conveniently define the projector to the n2S state,
P̂S=1− L̂2

2~2 .

It is often the case that ω0+ωL � |ω0−ωL|. In this conditions, the Hamiltonian Ĥ =

Ĥat+Ĥdip can be written in a time-independent form following a time-dependent unitary
transformation Ĥ ′ = ÛĤÛ † − i~Û ∂

∂t Û
†, with Û = P̂S + P̂Pe

iωLt, and simultaneously
neglecting the resulting fast-oscillating contributions to the Hamiltonian, which oscillate
at ωL and 2ωL. This is the so-called rotating wave approximation (RWA). Doing so, the
dressed Hamiltonian is given by Ĥ ′ = Ĥ ′at + Ĥ ′dip, where the rotated dipole and atomic
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terms read
Ĥ ′at = ∆P̂P +

Afs

~2
L̂ · Ŝ, (2.9)

and
Ĥ ′dip '

e

2

∑
j

(
ẼjP̂Pr̂jP̂S + H.c.

)
, (2.10)

respectively. The latter is written in terms of the positive and negative frequency Fourier
components of E(r, t), given by Ẽ∗j = Eje

−iφj and Ẽj = Eje
iφj , respectively. These are

complex quantities that incorporate the time-independent contributions to the oscillating
phase terms ∝ e±i(φj−ωLt). Notice that the transformed atomic Hamiltonian remains
time-independent, but in the rotated basis the n2S amd n2P subspaces are separated
instead by the detuning from resonance ∆ = ~(ω0 − ωL). The RWA is very accurate
when both ωL ∼ ω0, so that ∆ � ~ω0, and the coupling energies 〈i|Ĥ ′dip|j〉 are much
smaller than ω0. In experiments with light-dressed alkali atoms the latter is guaranteed,
since ω0/2π is in the order of hundreds of THz.

Since we will restrict ourselves to the off-resonant coupling between n2S and n2P

states, we will also require that ∆� 〈i|Ĥ ′dip|j〉. In this situation, the perturbative effect
of the dipole Hamiltonian over the ground state manifold can be described following the
adiabatic elimination [138–140] of the excited states

Ĥeff = −P̂SĤ
′
dipĤ

′−1
at Ĥ ′dipP̂S = −1

4

∑
jk

Ẽ∗j D̂jkẼk. (2.11)

In this way, the effect of the off-resonant dipole coupling is captured by the rank-2 tensor

D̂jk = e2P̂Sr̂jP̂PĤ
′−1
at P̂Pr̂kP̂S (2.12)

that acts on the ground state subspace, which can be decomposed into a scalar (rank-
0 tensor), vector (rank-1 tensor) and a rank-2 tensor contributions. While a general
expression of such an operator for an arbitrary atomic transition is rather complex,
when restricted to the n2S and n2P fine structure states of alkali atoms, a simpler form
can be obtained (see [85] for a detailed derivation), which reads

D̂jk =
|d01|2

9

(
2

∆2
+

1

∆1

)[
δjk + iεjkl

2∆FS

~(2∆1 + ∆2)
Ĵl

]
P̂S, (2.13)

and which includes only a scalar and a vector components. Here ∆FS = 3Afs/2 is the
fine structure splitting and ∆1 = ~ω0 −Afs − ~ωL and ∆1 = ~ω0 +Afs/2− ~ωL are the
detunings from the n2S1/2 → n2P1/2 and n2S1/2 → n2P3/2 transitions, respectively (the
D1 and D2 lines shown in Fig. 2.1). The prefactor

|d01|2 = e2
∑
m′l

|〈l = 0|r̂|l′ = 1,m′l〉|2 (2.14)

includes the dipole matrix elements e〈l,ml| ˆr|l′,m′l〉 that couple the eigenstates |l,ml〉
of L2 and L̂z within the n2S and n2P manifolds, with eigenvalues l(l + 1)~2 and ~ml,
respectively.
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By inserting (2.13) into (2.11), we obtain the expression of the light shift Hamiltonian

Ĥeff = α(0)
(
Ẽ∗ · Ẽ

)
+ i

α(1)

~

(
Ẽ∗ × Ẽ

)
· Ĵ, (2.15)

where

α(0) = −|d01|2

36

(
2

∆2
+

1

∆1

)
, (2.16)

α(1) = α(0) 2∆FS

2∆1 + ∆2
. (2.17)

are the scalar and vector polarizabilities, respectively. Since we restrict ourselves to
the effects of the dressing onto the ground state manifold of the atom, in (2.15) we have
omitted the explicit inclusion of the projector to the ground state, which will be assumed
for the rest of the section.

Finally, we now recover the presence of an external static magnetic field. As argued
in Sec. 2.1.2, fo a weak bias field, F can be maintained as a good quantum number and
the states |F,mF 〉 as a good approximation to the actual eigenbasis elements. In these
conditions, the magnetic dipole interaction translates into a correction ∼ µBgF

h F·B to the
hyperfine levels. Moreover, realize that the vector light shits in (2.15) can be regarded
as an additional magnetic field

Beff = i
α(1)

µBgJ

(
Ẽ∗ × Ẽ

)
, (2.18)

acting on the gas. Notice that, with the amplitudes E being complex quantities, the cross
product E∗×E can take nonzero values. As long as the level shifts that result from Beff

are much smaller than the hyperfine structure splitting, we can treat this effective field
the same exact way as we did for B, and write

Ĥeff ' α(0)
(
Ẽ∗ · Ẽ

)
+
µBgF
~

(B + Beff) · F̂ +
Ahfs

~2
Ĵ · Î, (2.19)

Where we have introduced back the fine structure interaction ∝ J · I. In the results
presented in this thesis, we will restrict ourselves to a single hyperfine manifold with
fixed total angular momentum (typically F = 1, in the case of 87Rb), and such a term
can be disregarded as a global energy shift within the dressed manifold.

Equation (2.19) summarizes the way a near-resonant oscillating electric field interacts
with an alkali atom. Most relevant to this thesis, we will see some immediate applications
of the light shift Hamiltonian. These include the realization of effective light-induced
spatial trapping potentials, which exploits the scalar part of the light shift. At the same
time, a variety of spin-dependent potentials can originate from the vector contribution.
Next we briefly review the fundamental mechanism behind the optical trapping of atoms.
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2.1.4 Optical dipole trapping of neutral atoms

Let us consider now a dressed atom described by the Hamiltonian (2.15) in which
the dressing field is linearly polarized. Then, the vector contribution to is null, and the
perturbative action of the dipole Hamiltonian yields the ac-Stark shift of the ground state
energy levels. Let us further consider that |∆| � ∆FS, so that we have ∆2 ∼ ∆1 ∼ ∆,
and the fine structure can be ignored. The resulting dressed Hamiltonian reads

Ĥeff = −|d01|2

6ε0c

I

∆
, (2.20)

where ε0 is the vacuum permittivity, c is the speed of light and I = ε0c
2 |Ẽ|

2 is the light
intensity.

While we have ignored the spatial dependence of the dressing fields (the dipole ap-
proximation) in the derivation of (2.15), the same results can be used to treat nonhomo-
geneous intensity distributions as long as they are spatially modulated with wavelengths
that are much larger than the atomic dipole characteristic lengths. If we consider a spa-
tially dependent intensity profile I(r), the light shift (2.20) describes a scalar potential

Vs(r) ∝ −I(r)/∆. (2.21)

The dressed atoms are then subject to the dipole force Fdip = −∇Vs(r), and are at-
tracted to the local maxima of the spatial intensity profile for red-detuned beams, that
is ∆ > 0, and to the local minima in the case of blue-detuned beams, with ∆ < 0.
Therefore, via the dipole interaction, neutral atoms can be manipulated and trapped
with light beams. In the simplest realization of an optical dipole trap [141], the intensity
profiles to create three-dimensional confinement potentials can be obtained from shin-
ing focused Gaussian red detuned laser beams. Likewise, periodic trapping potentials,
known as optical lattices, can be created from the spatial interference patterns created
by the superposition of coherent light beams. Ultracold atoms loaded in optical lattices
offer a rich and versatile platform to simulate a rich variety of quantum models. Their
fundamental aspects will be briefly discussed in Sec. 2.3.

It should be noted that the dressed eigenstates are actually a mixture of the bare
atomic states, and the trapped atoms have a small but nonzero occupation of the bare
excited nP orbitals. At the same time, even in the absence of a dressing field, the two
states are coupled through the dipole interaction with the electric field vacuum. This
unavoidably result in spontaneous emission processes from the excited to the ground
state. It is worth noting that such processes go beyond the semi-classical description
of light, with the quantization of the electromagnetic modes being required to properly
describe them [132]. Phenomenologically, though, they can be often treated by including
decay rates in the semiclassical equations. In each spontaneous emission process a photon
is emitted in a random direction, and, due to momentum conservation, the emitting
atom experiences a recoil momentum kick in the opposite direction. Over time, this is
translated into an increase in the mean kinetic energy of the atoms in the dressed sample,
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at a rate Γheat = 2ErΓsp, where Er = ~2k2r
2ma

is the single-photon recoil energy, with kr
being the wavevector of the emitted photon and ma the mass of the atom, and where
Γsp is the rate of the spontaneous emission processes.

Luckily, in optical trapping such a heating mechanism can be largely suppressed.
The rate Γsp is given by the natural linewidth Γ10 of the nS→ nP transition times the
projection squared of the dressed eigenstates into the bare nP manifold, the latter being
proportional to I/∆2. This is quite remarkable, since it follows that Γheat/Vs ∝ 1/∆.
Thus, the heating rate can in principle be made arbitrarily small while leaving the light
shift unchanged by simultaneously increasing I and ∆. Naturally, there exist practical
limitations to the extent of the suppression. Yet in the dressed alkali systems we will
consider, recoil heating from trapping potentials can be kept very low, and much more
significant sources of heating and noise will stem from other mechanisms.

That being said, optical traps for neutral atoms can only operate at very low tem-
peratures, due to their weak characteristic potential depths –typically below the mK. As
we will elaborate further in Sec. 2.1.6 the atoms can be loaded into optical traps only
after being cooled with the aid of magnetic confinement techniques [142]. The latter
exploit the magnetic dipole interaction (see eq. (2.5)), and use magnetic field gradients
to create state-dependent potentials. As a comparison, magnetic traps can reach poten-
tial depths as large as several hundreds of mK [143]. Optical traps, though, offer some
major advantages with respect to magnetic traps. The advances in the techniques for
the manipulation of coherent light, such as spatial light modulators, allow for the flexi-
ble creation of a variety of trapping geometries [144, 145]. Most relevant to the content
presented in this thesis, optical traps are not sensitive to the Zeeman sublevels struc-
ture, which facilitates the experimental realization of multicomponent spinor condensates
[146, 147].

2.1.5 Raman dressing

We now focus on the opposite scenario, where the vector light shift is the domi-
nant contribution to the atom-light interaction. From (2.13), we see that by setting
∆2 = −2∆1, the scalar light shift is suppressed, while the vector light shift, which is
proportional to (∆1∆2)−1, is maintained. The wavelength that fulfills such a condition,
which we label as ωto, is commonly referred to as the tune-out or magic wavelength [148].
In 87Rb, for instance, the tune-out wavelength is found around 790 nm (see Fig. 2.1).
In these conditions, the effect of the light dressing is the mere addition of the effective
magnetic field Beff described in equation (2.18). It should be pointed out that vector
light-shift potentials can also be effectively realized away from the tune-out frequency.
However, unlike the scalar contribution to the light-shift, the vector contribution far from
resonance scales as ∆−2. The ratio Beff/Γheat, thus, can not be suppressed by increasing
both the detuning and the intensity of the dressing beams. By targeting frequencies
above the D2 or below the D1 lines the heating from photon scattering is only modestly
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reduced at the expenses of a non-vanishing scalar light-shift potential.

By choosing different configurations for the dressing beams, that is, their polarization
and direction of propagation, the orientation of the effective field Beff can be tuned. It
is easy to show that, by aligning the effective magnetic field to the magnetic bias field
B, one can obtain spin-dependent spatial potentials. In this thesis, however, we will
focus on the Raman coupling configuration, where Beff is set perpendicular to B. In
any case, we will always consider Beff to act perturbatively with respect to the bias field
B = B0ez, so that the quantization axis of the angular momentum is maintained along
the unit vector ez set by the bias field. This is typically a good approximation even in
the linear Zeeman regime, where the magnetic level shifts are found at the MHz scale.
By contrast, the frequencies associated with the vector light shift lie in the range of few
to few tens of kHz.

In the Raman configuration, the effective magnetic field is achieved with two counter-
propagating beams with mutually orthogonal polarizations. To illustrate it, consider an
atom that is dressed by a monochromatic field propagating along ex. The field is linearly
polarized along ey and oscillates with frequency ω1 = ωL ∼ ωto and amplitude E1. At the
same time, the atom is illuminated by an additional counter-propagating monochromatic
field polarized along ez, with frequency ω2 = ωL + δωL ∼ ωto and amplitude E2. Both
frequencies are chosen very close to the tune-out wavelength, to be able to neglect the
effects of scalar light shift. At the same time, we require that both are separated by a
frequency difference δωL ∼ ωZ that is close to the linear Zeeman shift ωZ =

∣∣∣µBgFB0

~

∣∣∣
lifted by the bias field. In these conditions the electric field illuminating the atom reads

E(r, t) =
(
E1eye

ik1xe−iωLt + E2eze
−i(k2x+δωLt)e−iωLt + c.c.

)
, (2.22)

where kj = ωj/c. We reintroduce here the spatial dependence of the electric field,
which was omitted in the atomic dipole approximation taken in Sec. 2.1. Since we
will eventually consider an atomic cloud where the atoms are sparsely distributed over
distances much larger than the wavelengths of the fields 2π/kj , such a dependency needs
to be taken into account. It will indeed play a major role.

Previously, we had assumed monochromatic light, with just a negative and a positive
complex component of E. However, with two slightly mutually detuned electric beams,
the electric field (2.22) has now four nonzero Fourier components at ±ω1 and ±ω2, which
will results in a time-dependent light-shift potential. We can incorporate the frequency
difference into the complex amplitude Ẽ to write

Ẽ = E1eye
ik1x + E2eze

−i(k2x+δωLt). (2.23)

From (2.23) and (2.18), it follows that

Beff = ex
2α(1)E1E2

µBgJ
sin ((k1 + k2)x+ δωLt) . (2.24)
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In this way, the light-shift Hamiltonian within a given Zeeman manifold with total spin
F can be written as

Ĥeff '
√

2Ω

~
sin (2krx+ δωLt) F̂x − ωZF̂z +

ε

~2
F̂ 2
z , (2.25)

where we have introduced the Raman coupling strength

Ω =

√
2α(1)E1E2gF

gJ
, (2.26)

and where we define kr = (k1 + k2)/2 ' k1 ' k2. The last term in Hamiltonian (2.25)
was not included in the expression (2.19) given for the general case. It accounts for the
quadratic contribution to the Zeeman shifts which will be very relevant henceforth.

Similarly as considered in Sec. 2.1.3, we can eliminate the time dependency of Hamil-
tonian (2.25) by applying another time-dependent transformation Ĥ ′eff = Û2Ĥeff Û

†
2 −

i~Û2
∂
∂t Û

†
2 , with Û2 = exp(−iδωLtF̂z), and taking again the RWA to eliminate the terms

oscillating at δωL and 2δωL. This results into the time-independent dressing Hamiltonian

Ĥ ′eff '
Ω√
2~

(
sin(2krx)F̂x − cos(2krx)F̂y

)
+
δ

~
F̂z +

ε

~2
F̂ 2
z , (2.27)

where δ = ~δωL − ~ωZ is the detuning energy from Raman resonance. Notice that the
first RWA could be taken on the basis that the field frequency was much larger than
the detuning from resonance, which set the relevant energy scale, that is ωL � |∆| =

|ω0−ωL|. Similarly, the second RWA is justified as long as ~δωL ∼ ~ωZ is large compared
to the characteristic kinetic energy scales. This is indeed the case in ultracold gases, with
typical temperatures below the µK, and so thermal energies in the order of few to few
tens of kHz (see Sec. 2.1.6). As we will discuss in Sec. 2.2, the kinetic energies in bosonic
gases can even be much smaller when a condensate is formed. The Raman Hamiltonian
in equation (2.27) describes a position-dependent Zeeman field that precesses helically
in the x-y plane with a subwavelength period of π/kr. At any position, the precessing
field is transverse to the quantization axis ez. Hence, when close to resonance, Raman
coupling is able to drive transitions betweenmF andmF±1 Zeeman sublevels. A Raman
transition is a two-photon process, where the initial state is off-resonantly coupled to an
intermediate state in the excited n2P manifold, which is in turn off-resonantly coupled to
the final state. Since the excited-state transition is far off-resonant, the actual occupation
of the excited manifold in the Raman dressed atom is kept negligible. Such a process is
schematically represented in Fig. 2.2. Notice that, while we consider the linear regime
of the magnetic dipole interaction, with ωZ/2π ∼ 107 Hz, the quadratic contributions to
the magnetic shifts, with ε/h ∼ 104 � ωZ Hz, can still be large compared to the coupling
strength Ω, and thus render the Raman transitions off-resonant even at δ = 0. In fact,
the quadratic Zeeman shift will play a major role in the following chapters, where we
will consider that two pairs of Zeeman sublevels are coupled with independent Raman
transitions. This can be efficiently achieved using three laser beams when the magnetic
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(a)

(b)

Figure 2.2: (a) Sketch of the experimental realization of Raman dressing in alkali atoms.
Two counter-propagating linearly polarized beams, with mutually orthogonal polariza-
tions, illuminate an ultracold atomic cloud. Their frequencies are adjusted near the
tune-out frequency ωto of the scalar light shift, where the detunings from the D1 and
the D2 lines fulfill 2∆1 ' −∆2. The frequencies of the beams are shifted by an amount
δωL, which is set close to the energy separation between the Zeeman sublevels, whose
degeneracy is lifted by a bias magnetic field B0ez. As a result, the Zeeman sublevels
in the ground state manifold become coupled via dipole interaction mediated by far-off-
resonant transitions to an excited state. (b) Corresponding level diagram for an atom
with a F = 1 ground state, such as 87Rb or 41K (energies are not to scale). The dashed
lines indicate the energies involved in the off-resonant couplings from each beam, which
are represented by colored solid lines. The energy shift δ = ~δωL − ~ωL indicates the
detuning from resonance of the two-photon Raman transitions. Due to a small quadratic
Zeeman shift, the mF = 0 level is effectively shifted by an amount −ε.

field is sufficiently strong to separate well the resonant frequencies of each transition
[118].

As we will see in Sec. 2.2, due to the spatial dependence of Raman transitions, the
effect of Raman dressing in an ultracold atomic gas can be interpreted as a synthetic
form of spin-orbit coupling interaction in otherwise neutral atoms. Before discussing
the spin-orbit-coupled Raman-dressed ultracold gas, next we briefly review the basics
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of another fundamental application that exploits the dipole light-atom interaction: the
cooling of neutral atoms.

2.1.6 Note on laser cooling

Contrarily to the off-resonant, weakly dissipative light-shifts employed to create op-
tical potentials, the dissipative regime of the dipole interaction is exploited in the laser
cooling of neutral atoms. The main idea behind laser cooling is to modify the momentum
distribution in the atomic sample via controlling the momentum exchanged between the
electromagnetic field and the atoms. The simplest, and perhaps most fundamental of
the cooling mechanisms is the so-called Doppler cooling [149]. In a nutshell, Doppler
cooling exploits the spatially uniform distribution of the emitted photons in the spon-
taneous emission processes. The momentum transferred to the atom after a sufficiently
large number of these processes is zero. After many cycles of absorption and sponta-
neous emission, the net momentum transferred from the electromagnetic field to the
atoms in the gas comes from the absorption processes. Remarkably, the absorption rate
depends on the detuning from resonance, and the latter depends in turn on the veloc-
ity v of the atoms relative to the light source due to the Doppler effect. With this in
mind, a net velocity-dependent scattering force Fscatt ∝ −v can be created by using
pairs of counter-propagating beams, in a configuration known as optical molasses [150].
The working principle of optical molasses is rather simple: the gas is illuminated with
slightly red-detuned laser fields. Hence, an atom that moves towards one of the lasers
experiences an incoming beam from such a laser that is Doppler shifted closer to reso-
nance, while the beam coming from the opposite side is shifted further from resonance.
Needless to say, the situation is reversed when the atom moves in the opposite direction.
Therefore, the illuminated atoms undergo on average more absorption processes that
oppose their motion, which results in an effective damping force. With three pairs of
counter-propagating beams, the scattering force can act over the three spatial dimen-
sions. Overtime, its presence leads to a decrease of the mean kinetic energy of the atoms,
i.e. the cooling of the atomic cloud.

At the same time, laser cooling typically incorporates techniques that exploit the
magnetic dipole interaction. Through the Zeeman effect, a spatially dependent bias
magnetic field produces a mF -dependent scalar potential (see Sec. 2.1.2), and thus a
detuning from resonance that depends on the position of the atoms. In a first cooling
stage, a Zeeman slower configuration is commonly employed [151]. There, a magnetic
field gradient provides the required spatially varying level shifts so that the atoms are
continuously kept in resonance with the absorption processes as they move forward and
their velocity decreases. In this way, throughout the process a large dipole force is
maintained on the atoms, where otherwise the atomic transitions would quickly go off-
resonant. The sample is then simultaneously cooled further and spatially confined in a
magneto-optical trap (MOT) [152]. In a MOT, optical molasses are used in combination
with a quadrupole magnetic field gradient that provides a static detuning gradient. The
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gradient is adjusted so that the atoms that move away from the center of the trap have
a larger probability to undergo absorption processes from the laser beam that opposes
their motion. On average, this adds a restoring contribution ∝ −r to the scattering
force, trapping the atoms in a damped harmonic oscillator.

However, the same mechanism that enables Doppler cooling in the first place, the
spontaneous emission, also establishes a minimum temperature that the atoms can reach.
The momentum transferred from spontaneous emission averages to zero, but the emitted
photons increase on average the kinetic energy of the atoms. Therefore, while the laser
fields create the restoring force Fscatt, they are also a source of heating. The cooling force
removes energy at a rate Fscatt·v that is proportional to the velocity of the atoms squared.
Contrarily, for low velocities the heating rate from spontaneous emission is independent
of the velocity, with Γheat ∼ 4ErΓ, where Γ is the natural line width, or decay rate, of the
targeted excited state. Eventually, the atom-light system reaches a steady state where
heating and the cooling rates are balanced around a certain kinetic energy. There exist
an optimal value for the detuning ∆ at which the equilibrium is reached at the lowest
possible temperature, given by kBTD = ~Γ/2, where kB = 1.380649 × 10−23 J·K−1 is
the Boltzmann constant. This is the so-called Doppler cooling limit [153]. For instance,
with the natural line widths of the D1 and D2 lines found roughly at 6 MHz [133],
the corresponding Doppler temperature is found around 140µK. A temperature in the
order of 10−4K could appear to be a rather low one. However, the results presented in
this thesis deal with light-dressed ultracold atomic systems in the BEC phase [38]. In
a bosonic gas, achieving condensation requires simultaneously a low temperature and
a large density. This condition is often expressed in terms of the phase space density
ρ = nλ3

dB, where λdB = h/
√

2πmakBT is the thermal de Broglie wavelength, and n and T
are the atom density and the temperature of the gas, respectively. Condensation occurs
for values of ρ above a certain critial value around ρc ∼ 1, roughly where the thermal
wavelength equals the average distance between particles, so that the individual atomic
wavefunctions start to overlap significantly. To give a sense of scale, for the atoms in the
atomic beam ρ is in the order of 10−10 [143], ten orders of magnitude below the critical
condition. In laser cooling, which uses resonant light, an increase in atomic density is
strongly constrained by the reabsorption of the scattered light, which causes interatomic
repulsion, and by an enhanced atom-atom collision rate, both leading to heating and
atom loss. Eventually, to achieve such a dramatic increase in phase space density, one
needs to cool atomic vapors down to temperatures typically below the µK. The Doppler
cooling limit, therefore, misses that mark by several orders of magnitude.

All the same, the extreme conditions required for condensation can be experimentally
achieved by using a combination of various techniques, besides Doppler cooling. First
and foremost, a scheme known as Sisyphus cooling [154, 155] permits laser cooling way
below the Doppler temperature. The mechanism, also known as polarization gradient
cooling, was discovered after W. Phillips et al. found out they were achieving lower-than-
expected temperatures in the laboratory [156]. As it soon became clear, the multilevel
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structure of the atomic level manifolds, which was ignored in the previously considered
two-level model of the atoms, had a major part to play. Its role was signalled by the
critical sensitivity of the achieved temperatures to the applied magnetic bias field and to
the polarization of the laser beams. In essence, Sisyphus cooling relies on the creation of
polarization gradients using orthogonal polarizations for the counter-propagating beams
in the optical molasses. Doing so produces light shifts that oscillate at subwavelength
scale and that affect the mJ sublevels differently. Selection rules for the transitions
involving the different sublevels of the ground and excited manifolds ensure that, at
a given position, the optical pumping from the highest energy states to the lowest is
statistically favored. On average, thus, the atoms are found themselves climbing up a
potential barrier as they travel along the polarization gradient, losing kinetic energy on
the way. This mechanism allows the atoms to be cooled to much lower temperatures
than those predicted by the two-level model of the Doppler cooling [126]. The theoretical
limit in the Sisyphus cooling scheme is set by the recoil temperature Trecoil = 2Er/kB.
With 87Rb, and using the D2 transition, this yields a temperature of Trecoil ∼ 360nK.
However, such a limit is technically never achieved in the laboratory, with the samples
only effectively cooled down to the order of the µK, while preserving the atomic density.
To go sub-µK and achieve the right conditions for condensation, that is, a sufficiently
large phase space density, even further efforts are required. The final step involves
switching off the MOT and loading the cooled atomic cloud into a confining potential.
Once loaded, the trap depth is ramp down so that the trapped atoms with higher kinetic
energy have a larger probability to leave the trap. This approach is commonly referred
to as evaporative cooling [50]. A fraction of the atoms is lost in the process, but the
remainder can reach temperatures in the order of tens to hundreds of nK. If the ramp is
properly tuned, the resulting phase space density is increased by the end of the process,
reaching the suitable conditions for the realization of experiments with ultracold atoms.

Needless to say, all the mechanisms sketched above are far more intricate in an actual
experimental setup. A full sequence to achieve condensation includes many additional
stages and considerations. For instance, the inclusion of additional fields is required to
correct for the off-resonant population transfer to non-targeted ground state sublevels,
or to remove atoms that populate non-trappable states in a magnetic trap. At the same
time, no source of light is truly monochromatic, and the availability of high intensity co-
herent light sources with a narrow bandwidth around the required wavelengths is there-
fore crucial, as is their accurate calibration. Most importantly, to reach the ultracold
regime, the samples need to be extremely well isolated from the surrounding environ-
ment. Eventually, an almost perfect vacuum needs to be created to keep the background
pressure as low as 10−9 to 10−10 Pa, and great efforts have to be put into minimizing
the different sources of electromagnetic noise and the calibration uncertainties. A de-
tailed exploration of the various techniques used to cool and trap ultracold atoms is,
however, beyond the scope of this thesis. A comprehensive review on such a fascinating
topic can be found, for instance in [143]. The purpose behind this brief venture into
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the field of laser cooling is –aside to provide the non-expert reader with a basic notion
of the fundamental mechanisms at play– to convey a sense of scale and to emphasize
the landmark that the achievement of degenerate quantum gases with laser-cooled alkali
atoms has supposed in the road to achieve coherent control over quantum matter. Laser
cooling, initially set out to improve atomic clocks, proved an essential ingredient to the
eventual controlled preparation of a BEC, which, impressive as it is, is nowadays rou-
tinely achieved in laboratories across the world –and even in an Earth-orbiting research
lab [157]. Not surprisingly, these remarkable achievements were awarded with two Nobel
prizes in 1997 and in 2001. The first one was awarded to Steven Chu, Claude Cohen-
Tannoudji and William D. Phillips for development of methods to cool and trap atoms
with laser light [126–128], and the second one to Eric A. Cornell, Wolfgang Ketterle
and Carl E. Wieman for the achievement of Bose-Einstein condensation in dilute gases
of alkali atoms, and for early fundamental studies of the properties of the condensates
[158, 159]. Henceforth, in this thesis we will take the trapped ultracold atomic cloud as
our starting point, and focus on the exploitation of the dipole interaction described in
this section to engineer synthetic spin-orbit coupling and magnetic fields.

2.2 Ultracold Bose gases with synthetic spin-orbit coupling

The previous section reviewed the most fundamental ingredient behind the manipu-
lation of ultracold atoms: the dipole light-atom interaction. With the electromagnetic
fields treated as position- and time-dependent corrections to the bare atomic Hamiltonian
in a semiclassical description, the problem so far has been presented at the single-atom
level. Yet this thesis explores the dynamics that results from the interplay between
Raman dressing and cold collisions in an ultracold atomic cloud. Accordingly, in this
section we introduce the basic frameworks that will be employed along the thesis to de-
scribe these phenomena. First, we will establish the fundamental framework to treat the
many-body problem of an ultracold gas of N interacting atoms in Sec. 2.2.1, with especial
emphasis on the case of alkali species with F = 1 in the lowest hyperfine state. Next, we
will briefly sketch the basic notions of the phenomenon of Bose-Einstein condensation in
Sec. 2.2.2, where we will also review the mean-field treatment of an ultracold gas in the
condensate phase. Finally, in Sec. 2.2.3 we will apply the discussed frameworks to the
case of a Raman-dressed spinor gas, where we will see that the dressing can effectively
induce a synthetic form of spin-orbit coupling in the gas.

2.2.1 Many-body treatment of ultracold Bose gases

We consider a dilute ultracold gas formed by N identical atoms held in a confining
potential. The atoms in the gas interact with each other via low-energy scattering
processes. As briefly elaborated in the previous section, the ultracold regimes that are
experimentally accessible with neutral atoms are achieved at temperatures in the nK
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regime. The critical phase space density necessary for condensation is reached in this
temperature range with typical atomic densities between n ∼ 1013 and n ∼ 1014 cm−3.
While such densities are large when compared to the ones required to optimize the
cooling processes in the MOT, ultracold atomic clouds are still impressively dilute –as a
reference, dry air at room temperature (20◦C) and 1 atm has a number density close to
1019 cm−3. For alkali atoms in their electronic ground state and at such low densities,
the mean distance between the atoms, d = n−1/3, is much larger than the the range of
the atom-atom interactions, r0, i.e.

r0 � d, (2.28)

Inequality (2.28) is the so-called diluteness condition. When (2.28) is fulfilled, the am-
plitude of the scattering processes that involve simultaneously more than two atoms is
negligible. Hence, the interactions in the gas are well described by two-body interaction
potentials.

Remarkably, the expression for such two-body potentials in the ultracold regime can
be written in a very simple form. To achieve condensation, the gas needs to be cooled
down to quantum degeneracy (more details in Sec. 2.2.2), which is roughly achieved when
thermal de Broglie wavelength λdB = h/

√
2πmakBT is of the order of the interatomic

separation d, or, equivalently, when the phase space density fulfills

ρ = nλ3
dB ∼ 1. (2.29)

Combining condition (2.29) with the diluteness criterion (2.28), and using the relation
pth = h/λdB between the thermal momentum and the de Broglie wavelength, one finds
that the characteristic values of the momentum in the gas must satisfy

p r0

~
� 1. (2.30)

At such small momenta and densities, it is safe to assume that all atom-atom interactions
taking place in the gas are well described by asymptotic s-wave scattering processes
[160]. In such processes, the scattering amplitude is independent of the momentum of
the particles involved in the collision and of the specific shape of the two-body potential.
The potential can then be characterized simply by a scalar parameter, the scattering
length. In general, its value is sensitive to the Zeeman sublevel structure of the involved
atoms [161], and is also dependent on external magnetic [60, 61] and electric fields [62, 63]
through Feshbach resonances. Along this thesis we will consider alkali atoms in the lower
hyperfine manifold of the electronic ground state, with total angular momentum F .
The hyperfine energy split to the highest manifold is several orders of magnitude larger
than the characteristic energies of ultracold collisions (see Fig. 2.1). Hence, the internal
structure of the atoms described in Sec. 2.1 is not altered in the presence of interactions,
and atoms in the lowest hyperfine manifold can not be excited the higher manifold
via collisions. Taking all these considerations into account, and fruther assuming that
collisions are invariant under rotations in the hyperfine spin space, we can approximate
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the expression for the two-body potential for each pair ij of atoms at positions r and r′

to [162]

U (i,j)(|r− r′|) ' δ(r− r′)
4π~2

ma

2F∑
F=0

aFP̂F, (2.31)

where aF is the scattering length of atoms colliding in the total spin F (the composition
of the spins of the two colliding atoms) channel, and P̂F =

∑F
MF=−F |F,MF〉〈F,MF| is

the projector of the states of the incoming and outcoming spin pairs into the subspace
of total spin F.

With all these considerations, we can now construct the many-body Hamiltonian for
the gas. Quantum particles are fundamentally indistinguishable and, as a consequence,
only two types of physically meaningful many-body product states can be constructed:
those that are symmetric with respect to the interchange of any two particles and those
that are antisymmetric. The particles described by the symmetric states are called
bosons, and the ones described by anti-symmetric states are called fermions. According
to the spin-statistics theorem [163], particles are classified into these two categories
depending on their spin. Such a relation, of relativistic origin, states that integer-spin
particles are bosons and half-integer–spin particles are fermions. This result also applies
to composite systems, such as atoms, which behave as bosons or fermions according to
their total angular momentum. In this thesis we restrict ourselves to the study of bosonic
atomic species, which, as we will cover in Sec. 2.2.2, can form a BEC. The Hilbert space of
a bosonic many-body system is, therefore, the symmetric subspace of the product space
of N single-particle Hilbert spaces. Accordingly, the operators acting on the states of
the system are restricted to the symmetric subset of all operators acting on the product
Hilbert space.

We will treat the many-body problem within the conventional second quantization or
number representation formalism, in which all operators are written in terms of products
of creation and annihilation operators. These operators are best defined through their ac-
tion upon the occupation number or Fock basis states. Let us consider an arbitrary set of
states {|j〉}, with j = 1, 2, 3, ..., that form an orthonormal basis of a given single-particle
Hilbert space H(1). We can define a bosonic Fock state |n1, n2, n3, . . .〉 ≡

∏
⊗j=1 |nj〉

as the (N =
∑

j=1 nj)-particle state given by the normalized superposition of all per-
mutations of product states with nj particles in each single-particle state |j〉. The set
of all Fock states form an orthonormal basis of the bosonic Fock space HF

S , which is
the extended Hilbert space that spans over all bosonic states of arbitrary numbers of
particles. It can be written as the direct sum of the Hilbert spaces for all the different
number of particles

HF
S = H(0) ⊕H(1) ⊕H

(2)
S ⊕H

(3)
S · · · , (2.32)

where H
(j)
S is the subspace of symmetrized j-particle states. Naturally, the subspaces

of 0 and 1 particles can not be symmetrized or antisymmetrized. The subspace H(0)

contains only one vector state, the so-called vacuum state, commonly labelled by |0〉. It
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should be stressed that, while the vacuum state contains no particles, it is not a zero
vector, and it has the standard normalization 〈0|0〉 = 1.

We label the annihilation operator for the state |k〉 by â†k. Its action couples the
m-particle to the (m− 1)-particle subspaces of the Fock space in the following way

âk|n1, n2, . . . , nk, . . . , ns〉 =
√
nk|n1, n2, . . . , (nk − 1), . . . , ns〉. (2.33)

By taking the Hermitian conjugate of (2.33), and acting the resulting operator at each
side on |n′1, n′2, . . . , n′k, . . . , n′s〉 it is immediate seen that

â†k|n1, n2, . . . , nk, . . . , ns〉 =
√
nk + 1|n1, n2, . . . , (nk + 1), . . . , ns〉. (2.34)

In this way, the corresponding creation operator for the state |k〉 is given by the Her-
mitic conjugate â†k of the annihilation operator. As expected, â†k couples the m-particle
to the (m + 1)-particle subspaces. These definitions can be directly extended to the
corresponding operators for any single-particle state. Notice that the application of a
creation operator to the vacuum state yields the corresponding single-particle state, so
we can equal |j〉 = â†j |0〉. Likewise, âj |j〉 = |0〉. Relevantly, the annihilation operator
acting upon the vacuum state returns the zero vector, i.e., âj |0〉 = 0. It is also worth
mentioning that we can construct the Hermitian number operators n̂j = â†j âj from the
creation and annihilation operators. All Fock states are eigenvectors of the number op-
erators n̂j , with their eigenvalues given by the occupation of the corresponding states |j〉

n̂k|n1, n2, . . . , nk, . . . , ns〉 = nk|n1, n2, . . . , nk, . . . , ns〉. (2.35)

Finally, using expressions (2.33) and (2.34), is easy to show that â†k operators fulfill the
so-called bosonic commutation relations, given by

[â†j , âk] = δjk and [â†j , â
†
k] = [âj , âk] = 0, (2.36)

for any j, k.

Let us now review the way the operators acting in the physical subspace can be
written in terms of bosonic operators. Any arbitrary m-particle operator Ûm acting on
the space of N identical bosonic particles must be symmetric under the permutation of
all particle pairs. Hence, we can generally write them as

Ûm =
1

m!

∑
P

N∑
⊕1≤i1<···<im

Û (P (i1),...,P (im)), (2.37)

withm < N and where Û (i1,...,im) represents am-particle operator acting on the subset of
the product space of the i1, . . . , im particles. The sum over P runs over the permutations
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of the indices of Û (i1,...,im). Expanding expression (2.37) in the {|s〉} eigenbasis yields

Ûm =
1

m!

∑
j1,...,jm

∑
k1,...,km

[
〈j1| · · · 〈jm|Û (1,...,m)|k1〉 · · · |km〉

∑
P

N∑
⊕1≤i1<···<im

|j(i1)
P (1)〉 · · · |j

(im)
P (m)〉〈k

(i1)
P (1)| · · · 〈k

(im)
P (m)|

]
, (2.38)

where the projectors |j(il)〉〈k(il)| act on the Hilbert space of the il particle. Observe that,
due to their indistinguishability, particle interactions are the same for all groups of m
particles, and hence the components of Û (i1,...,im) factor out and the operator is written
in terms of the m-particle operator Û (1,...,m). From (2.38) we can write the m-particle
operator in terms of bosonic operators by using the following identity∑

P

N∑
⊕1≤i1<···<im

|j(i1)
P (1)〉 · · · |j

(im)
P (m)〉〈k

(i1)
P (1)| · · · 〈k

(im)
P (m)| = â†j1 · · · â

†
jm
âk1 · · · âkm , (2.39)

which holds only when the operator in the left-hand side is restricted to act within the
subspace of the symmetric states of the N-particle product space (see [164] for a detailed
proof). In this way, we can write the second-quantized expression for any arbitrary
m-particle operator as

Ûm =
1

m!

∑
j1,...,jm

∑
k1,...,km

〈j1| · · · 〈jm|Û (1,...,m)|k1〉 · · · |km〉â†j1 · · · â
†
jm
âk1 · · · âkm . (2.40)

Having the symmetry considerations built-in, the second quantization formalism is a
powerful tool that allows to write the many-body operators in a compact way that does
not depend on the total number of particles, and which greatly simplifies the manipu-
lations of multi-particle states. Fundamentally, such a simplification originates from the
vast reduction in the size of the many-body Hilbert space due to the indistinguishability
of the particles. For our purposes, we will consider the set of states {|rm〉} that form
an orthogonal basis of the single-atom subspace. We choose the basis elements |rm〉 to
describe an atom located at r with internal state |F,m〉, with 〈rm|r′m′〉 = δ(r− r′)δmm′ .
By using the result in equation (2.40), we can straightforwardly write any arbitrary
one-body operator V̂1 as

V̂1 =
∑
mm′

∫ ∫
dr dr′ 〈rm|V̂ (1)|r′m′〉Ψ̂†m(r)Ψ̂m′(r

′), (2.41)

where 〈rm|V̂ (1)|r′m′〉 is the matrix element of the corresponding single-particle operator.
Here, Ψ̂†m(r) and Ψ̂m′(r

′) are corresponding bosonic creation and annihilation operators
for the states |rm〉 and |r′m′〉. The bosonic commutation relations in this particular case,
where the indexes r are not discrete and the sum is replaced by an integration, are
expressed as[

Ψ̂m(r), Ψ̂†m′(r
′)
]

= δ(r− r′)δmm′ and
[
Ψ̂m(r), Ψ̂m′(r

′)
]

=
[
Ψ̂†m(r), Ψ̂†m′(r

′)
]

= 0,

(2.42)
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where the Kroennecker operator δrr′ is replaced by a Dirac delta function δ(r− r′).

Let us apply these results to the Hamiltonian of a gas of bosonic atoms of mass ma in
an arbitrary potential Vmm′(r). The single-particle Hamiltonian can be written in terms
of the first-quantized position and momentum operators r̂ and p̂ as

Ĥ(1) =
p̂2

2ma
+ V̂ , (2.43)

with V̂ =
∑

mm′ Vmm′(r̂)|F,m〉〈F,m′|. By using expression (2.41), we can construct the
many-body noninteracting Hamiltonian from the single-particle operator Ĥ(1), which
yields

Ĥn.i. =
∑
mm′

∫
drΨ̂†m(r)

[
−~2∇2

2ma
δmm′ + Vmm′(r)

]
Ψ̂m′(r). (2.44)

It is left to write the contribution to the many-body Hamiltonian that accounts for
the interatomic interactions. As argued above, for an ultracold atomic cloud we just
need to consider isotropic binary interaction operators Û (1,2) that fulfill

〈rm|〈r′m′ |Û (1,2)|r′′m′′〉|r′′′m′′′〉 ' δ(r− r′)δ(r− r′′)δ(r′ − r′′′)Cm,m
′

m′′,m′′′ , (2.45)

with

Cm,m
′

m′′,m′′′ =
4π~2

ma

2F∑
F=0

aF〈F,m|〈F,m′|P̂F|F,m′′〉|F,m′′′〉. (2.46)

From (2.40) and (2.45), it follows that

Ĥint '
∑

mm′m′′m′′′

∫
drCm,m

′

m′′,m′′′Ψ̂
†
m(r)Ψ̂†m′(r)Ψ̂m′′(r)Ψ̂m′′′(r), (2.47)

Henceforth, we will stick to atomic species with total angular momentum F = 1 in the
lowest hyperfine state, such as 87Rb or 41K, where the composite spin of an atomic pair
can only take the values F = 0, 2. In this situation, by explicitly computing the Clebsch-
Gordan coefficients 〈F,MF|(|F = 1,m〉 ⊗ |F = 1,m′〉) and grouping the resulting terms,
the expression (2.47) for the interaction Hamiltonian can be compactly written as

Ĥ
(F=1)
int '

∫
dr

gs
2

(Ψ̂
†
Ψ̂)2 +

ga
2~
∑
j

(Ψ̂
†
F̂jΨ̂)2

 , (2.48)

where we introduce spinor field operator Ψ̂ = (Ψ̂−1, Ψ̂0, Ψ̂1)T . Here F̂j ∈ {F̂x, F̂y, F̂z}
are the spin-1 matrices. The interaction coefficients gs and ga read

gs = 4π~2(a0 + 2a2)/3m , and ga = 4π~2(a2 − a0)/3m, (2.49)

and group the different four-operator contributions into a spin-symmetric and a non-
symmetric term, respectively [165].
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In this way, a weakly-interacting ultracold atomic gas of bosonic species in a F = 1

ground state can be described by the following many-body Hamiltonian

Ĥ(F=1) =

∫
dr

Ψ̂
†
(
−~2∇2

2ma
+ V̂

)
Ψ̂ +

gs
2

(Ψ̂
†
Ψ̂)2 +

ga
2~
∑
j

(Ψ̂
†
F̂jΨ̂)2

 . (2.50)

Such a second-quantized expression for the Hamiltonian of a spin-1 spinor gas is the start-
ing point of the research presented in this thesis. However, while the second-quantization
formalism allows for deceptively simple looking expressions, in most situations it is not
possible to perform full numerical simulations of such a model. As discussed in chap-
ter 1, many-body Hilbert spaces increase in size exponentially with the total number of
particles, and the problems quickly become untreatable as the number is increased. In
order to numerically investigate ultracold atomic systems, further assumptions about the
solutions need to be made. In this thesis, three main approaches will be taken to reduce
the size many-body problem to treatable regimes. In the simplest approach, we will as-
sume that the energy densities are kept below a certain threshold during the dynamics of
the many-body system. The occupation of the high-energy single-particle states is then
neglected, and the second-quantized many-body Hamiltonian is constructed upon the
truncated basis instead. Such a procedure, for instance, is fundamental for an efficient
simulation of ultracold atoms in deep optical lattices (see Sec. 2.3), where the truncation
of the single-particle space is straightforward. In chapters 3 to 5, few-mode trunca-
tions will be employed to investigate numerically the pseudospin dynamics induced by
ultracold collisions in the Raman dressed atomic cloud. Yet these truncations are still
insufficient when the number of atoms and/or modes considered is further increased. Far
more sophisticated numerical methods are then required. In chapter 6, we will use the
density-matrix renormalization group approach [166], which is valid when the solutions
are found in a low-entanglement sector of the Hilbert space. Finally, in chapter 4 and
chapter 5 we will investigate the same pseudospin dynamics in the condensate. Due
to the nature of bosonic statistics, a condensate can be described by a mean-field the-
ory, which we review next, and where almost the entirety of the many-body degrees of
freedom are neglected.

2.2.2 Mean-field treatment of a Bose-Einstein condensate

Bose-Einstein condensation is the collapse of a macroscopic fraction of the particles
in an ensemble into their ground state, which can occur for many-body systems of bosons
at thermal equilibrium for sufficiently low temperatures. In many bosonic systems, the
onset of the macroscopic occupation takes place at a finite critical temperature, defining
a phase transition into a condensate phase. Having a single state macroscopically occu-
pied, the Bose-Einstein condensate constitutes a state of matter that exhibits distinctive
properties. Most notably, the fraction of particles in the condensate is described by a
wavefunction that exhibits long-range phase coherence, giving rise to superfluidity [167].
Its occurrence is understood from the statistics of bosonic particles at low temperature.
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The thermal distributions of indistinguishable quantum particles can be easily derived
from a maximum entropy principle [168], which, by construction, minimizes the amount
of a priori information assumed in the distribution. For an ensemble of noninteracting
bosons at thermal equilibrium with a bath, one finds that the following distribution for
the average occupation ns of the single-particle states of energy Es

ns =
1

exp(βEs)− 1
. (2.51)

Equation (2.51) is commonly referred to as the Planck distribution, since it was originally
developed to describe the spectral density of electromagnetic radiation emitted by a
black body in thermal equilibrium. Here, β is the coldness or thermodynamic beta at
the equilibrium, which fixes the ratio between the increase in the entropy and in the
total energy of the ensemble-bath compound system. Very often, it is expressed rather
in terms of the thermodynamic temperature T as β = (kBT )−1.

For massive particles at low energies, we can further assume that the total number
of particles is conserved in the statistical ensemble. Then, the distribution ns has to
satisfy the additional constraint

∑
s ns = N , and the Bose-Einstein distribution is found

instead
ns =

1

exp[β(Es − µ)]− 1
. (2.52)

Here, µ is the chemical potential, that is, the energy cost of adding a particle to the total
number N . Observe that, at large temperatures (small β), the mean occupation of the
states is much smaller than 1, and so exp[β(Es − µ)] � 1. In this situation, the distri-
bution is well approximated by the Boltzmann distribution n(Ej) = exp[−β(Es − µ)],
which describes an ensemble of identical yet distinguishable particles at thermal equilib-
rium. At sufficiently low temperatures, however, distinguishable and indistinguishable
particles behave in markedly different ways, and the −1 term in the denominator in the
right-hand side of (2.52) has major consequences. Due to such a term, µ necessarily
has to fulfill that µ ≤ Es ≤ E0, where E0 is the energy of the ground state, in order
to have n(Es) ≥ 0 for any state s. This condition is fundamental to the phenomeon
of Bose-Einstein condensation, since it implies that, as µ → E0, the occupation of the
lowest energy state becomes unbounded (see Fig. 2.3(a)), while the maximum occupation
for all other states is bounded to nmax

s 6=0 = 1
expβ(Es−E0)−1 . Therefore, at a finite β, the

maximum number of particles that can be in the excited states is given by

Nc =
∑
s>0

nmax
s =

∑
s>0

1

expβ(Es − E0)− 1
. (2.53)

If N is increased beyond the critical value Nc, all the extra atoms N − Nc must
necessarily populate the ground state, where the occupation is not bounded. At the same
time, the critical population Nc is an increasing function of the temperature. Hence, by
equaling the total number of particles N to Nc

N = Nc =
∑
s>0

1

exp Es−E0
kBTc

− 1
, (2.54)
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Figure 2.3: (a) Average occupation of the states with energy Es predicted by the Bose-
Einstein distribution as a function of βEs and for several values of the chemical potential
µ. Without loss of generality, the ground state energy is set to E0 = 0, for which µ ≤ 0.
(b) Fraction of atoms occupying the ground state as a function of the temperature for an
ensemble of noninteracting bosons in a 3D harmonic potential at thermal equilibrium.
The temperature is scaled to the critical temperature Tc = ~(ωxωyωzN)−1/3.

we can implicitly define a critical temperature Tc below which the atoms start to occupy
macroscopically the ground state. This macroscopically occupied state is what consti-
tutes the BEC. However, notice that in order to have Tc > 0, the sum in the right-hand
side of (2.54) needs to be bounded. This is not generally granted for any arbitrary
Hamiltonian. The explicit expression for Tc will depend on the specific characteristics of
the single-particle spectrum {Ej}. Of relevance to the research presented in this thesis,
for a gas of noninteracting bosons held in a three-dimensional harmonic potential, the
critical temperature is found to be

kBTc = 0.94~ωN1/3, (2.55)

where ω = (ωxωyωz)
1/3 is the geometric mean of the harmonic trap frequencies along the

x, y, z-direction. The critical temperature defines a second-order phase transition in the
thermodynamic limit. The thermodynamic limit in such a system can be properly defined
by simultaneously taking N → ∞ and ω → 0 while keeping Nω constant [169]. There,
the condensate fraction, or relative occupation of the ground state, can be expressed in
terms of Tc as

N0

N
= 1− Nc

N
=

1−
(
T
Tc

)3
, for T < Tc,

0, for T > Tc,
(2.56)

where N0 is the occupation of the ground state. The condensate fraction of the harmon-
ically trapped gas is shown in Fig. 2.3(b) as a function of the temperature. The ratio
N0/N vanishes for temperatures above Tc, and increases continuously as T is decreased
below Tc. Its derivative with respect to the temperature changes nonanalytically at Tc,
signaling the second-order phase transition into the BEC phase.

In a typical condensate of N ∼ 105 atoms in an isotropic potential with ω ∼ 2π×150

Hz, the critical temperature in the absence of interatomic interactions is found around
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Tc ∼ 300 nK. While the critical temperature in this example is way below the µK, it needs
to be stressed that it is still much higher than the temperature associated with the single-
particle energy gap, Tsp = ~ω/kB ∼ 7 nK. Together with the critical behavior in the
thermodynamic limit, this huge difference illustrates how Bose-Einstein condensation is
a completely different phenomenon than the macroscopic occupation of the ground state
that is expected for distinguishable particles as the temperature is brought to T < Tsp.
The intrinsic indistinguishability of the particles lies, therefore, at its core. As a side note,
it is worth noting that particles with half-integer spin obey fermionic statistics, which
forbid the multiple occupation of the same single-particle quantum state, and therefore
can not directly form a condensate. However, interacting fermions may form bosonic
pairs or molecules that can condensate given the right conditions. Not long after the
first realization of a degenerate Fermi gas [170], Bose-Einstein condensation of paired
fermions was achieved [171, 172]. And soon after, the crossover between a Bardeen-
Cooper-Schrieffer state of Cooper momentum pairs, with long pairing distances, to a BEC
formed by bosonic molecular pairs was observed [68, 69]. In condensed matter systems,
bosonic pair formation plays a fundamental role in the phenomenon of superconductivity
[173].

The theory of Bose-Einstein condensation can be extended to describe weakly inter-
acting Bose gases. In fact, in real systems, the survival of the long-range phase coherence
of the macroscopic wavefunction against external perturbations relies on the interatomic
interactions. As discussed in Sec. 2.2.1, ultracold atoms interact with each other mainly
via s-wave scattering processes. Yet, even at low densities, weak interactions can suppose
a marked departure from the ideal gas scenario. One immediate consequence of inter-
actions is that the real gas does not have infinite compressibility. In order to achieve
the critical condition for condensation, it is not enough in general to simply increase N
above the value of Nc predicted by the noninteracting theory. As densities are increased,
higher-energy scattering processes become increasingly more relevant, which result in a
larger atom loss rate from the trap. That being said, at typical condensate densities
∼ 1014 cm−3, the critical temperatures in real alkali gases are found very close to the
value predicted for the ideal gas [174, 175]. To properly treat the problem in the pres-
ence of interactions, however, a more sophisticated analysis is required. For an detailed
discussion of the weakly interacting Bose gas, see for instance [38].

For our purposes, it will suffice to assume that a critical temperature Tc still exists
in the presence of weak interactions, and that a condensate is formed for temperatures
below Tc. We consider that the temperature is sufficiently low so that a large fraction of
the atoms is found at the condensate state. By using the second-quantization formalism
introduced in Sec. 2.2.1, we can express the state of the condensate part of the gas in an
arbitrary orthonormal basis {|j〉} as

|φ0〉 = |N0,α〉 =
1√
N0!

∑
j

αj â
†
j

N0

|0〉 , (2.57)
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with
∑

j |αj |2 = 1. The many-body state (2.57) describes the macroscopic occupation
of an arbitrary single-particle state |α〉 =

∑
j αj |j〉 with 1 � N0 < N atoms. It is a

projective coherent states, which fulfills

1√
N0

âj |N0,α〉
N0→∞−→ αj |N0 − 1,α〉 , (2.58)

for any j. Since we assume that the Hamiltonian preserves the total number of particles,
it can only include particle-preserving operators of the form (â†i )

ki · · · (â†j)kj â
qs
s · · · âqrr ,

with
∑

l kl =
∑

l ql = M . Thus, considering the result (2.58), the expected value for
these operators when acting on the ansatz state (2.57) fulfills

1

NM
0

〈φ0|(â†i )
ki · · · (â†j)

kj âqss · · · âqrr |φ0〉
No→∞−→ N0!

NM
0 (N0 −M)!

(α∗i )
ki · · · (α∗j )kjαqss · · ·αqrr ,

(2.59)
while the higher moments vanish. The prefactor in the right-hand-side of (2.59) converges
to 1 as the ratioM/N0 goes to zero. In our many-body problem, we consider up to 2-body
operators, and so M ≤ 4. Hence, for large N0 we can then safely make the substitutions

âj
N0→∞−→

√
N0αj , â†j

N0→∞−→
√
N0α

∗
j , (2.60)

and replace the bosonic operators in the quantum theory by the scalar quantities. The
condensate is well described by a mean-field complex-valued wavefunction φ0(j) =√
N0αj . The condensate wavefunction φ0(j) is normalized to the number of particles

in the condensate,
∑

j |φ(j)|2 = N0. It is commonly referred to as the order parameter
of the condensate phase, in connection to the term used in the theory of superfluidity.

Naturally, the set of complex numbers {φ(j)} describes only the fraction of atoms
within the condensate, and, strictly speaking, even there it only does so properly in the
thermodynamic limit. A more accurate mean-field treatment for the weakly-interacting
gas involves the replacement âj → αj + δâj , where the expansion includes a non-
condensed component δâj of the operators, which can account for the fluctuations in
the condensed fraction of the gas that arise due to atomic interactions. Typically, δâj
is treated as a perturbation to compute elementary excitations of a gas. In chapter 4
and chapter 5, we will employ the mean-field treatment of a BEC to describe macro-
scopic variations of the condensate wavefunction over time, φ0(j, t), after quenches in
the Hamiltonian. We will assume that the temperature is sufficiently low so that the
depletion of the condensate is comparatively small, and disregard the role of the non-
condensed excitations. Hence, for our purposes the zeroth order of the approximation
will suffice.

With these considerations in mind, we can write the zeroth order theory for the BEC
of an ultracold spin-1 gas by directly substituting the field operators Ψ̂(r) in the many-
body Hamiltonian (2.50) with a condensate wavefunctionψ(r) = (ψ−1(r), ψ0(r), ψ1(r))T .
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This yields the following energy functional

E[ψ] '
∫
dr

 ~2

2ma
|∇ψ|2 +ψ∗V̂ψ +

gs
2
|ψ|4 +

ga
2~
∑
j

(ψ∗F̂jψ)2

 , (2.61)

Such a substitution is safe only when there are no nonlocal terms in the effective in-
teraction Hamiltonian, which would make quantum correlations relevant. In ultracold
atomic gases, this is actually granted by the conditions for diluteness (2.28) and quan-
tum degeneracy (2.29) discussed at the beginning of Sec. 2.2.1, which led to the s-wave
scattering potential (2.31). It should be remarked that, despite ultracold gases being
weakly-interacting, the interaction energy in the condensate is by no means negligible.
In fact, it can easily be the case that the interaction energy is much larger than the kinetic
energy, while at the same time the atomic density still fulfills the diluteness condition.

With the commutation relations having been trivialized, the energy functional in
(2.61) describes a classical theory for the fields ψj . The canonical momentum associated
with each ψj(r) is simply Πj(r) = i~ψ∗j (r), from which we can construct the classical
action

S =

∫
dt

∫
dr

(
Πj
dψj
dt

)
−
∫
dtE. (2.62)

By imposing the stationary condition δS = 0 on the action (2.62), we obtain the corre-
sponding Hamilton’s equations for the fields

i~
dψj
dt

=
δE

δψ∗j
, (2.63)

where δ
δψj

indicates the variational derivative with respect to ψj . Equation (2.63) is
the Gross-Pitaevskii equation (GPE) [176, 177], a nonlinear Schrödinger field equation
commonly employed to describe a BEC at temperatures close to the absolute zero [38].
By explicitly developing the right-hand side terms in (2.63), we obtain the following
system of coupled equations

i~
∂ψ1

∂t
=
∑
j

H
(1)
1j ψj + gs|ψ|2ψ1 + ga

[(
|ψ|2 − 2|ψ−1|2

)
ψ1 + ψ∗−1ψ0ψ0

]
,

i~
∂ψ0

∂t
=
∑
j

H
(1)
0j ψj + gs|ψ|2ψ0 + ga

[(
|ψ|2 − |ψ0|2

)
ψ0 + ψ∗0ψ1ψ−1

]
,

i~
∂ψ−1

∂t
=
∑
j

H
(1)
−1jψj + gs|ψ|2ψ−1 + ga

[(
|ψ|2 − 2|ψ1|2

)
ψ−1 + ψ∗1ψ0ψ0

]
, (2.64)

which describe the zero-temperature mean-field dynamics of a spin-1 spinor condensate.
Here, H(1)

ij = −~2∇2

2ma
δij +Vij(r). Alternatively, the GPE can be derived from the expres-

sion for the time dependence of the field operators in the Heisenberg picture. Indeed, by
writing the Heisenberg equation i~ d

dtΨ̂j = [Ψ̂j , Ĥ
(F=1)] for the evolution of the fields Ψ̂j

and using the commutation relations for the bosonic operators, one immediately arrives
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at equations (2.64) after making the substituion Ψ̂(r, t) → ψ(r, t) into the resulting
Heisenber equations. In this thesis, we will numerically solve the GPE to compute the
dynamics of a Raman-dressed spin-1 spinor gas. In the presence of the dressing, the
single-particle terms H(1)

ij in equations (2.64) will include the Raman light-shift poten-
tials described in Sec. 2.1.5. We next review the effects of such an inclusion.

Before doing so, an important aspect should be clarified. So far, we have relied
on the assumption that ansatz (2.57) is the correct description of the ground state of
the condensate, that is, that only one single-particle state is macroscopically occupied.
For multicomponent or spinor condensates, however, this may not be the case, and the
condensate can be fragmented [147]. Depending on the interaction between the different
components, the system may favor the occupation of more than one single-particle state,
so that the true many-body state reads

|φ〉 =
∏
m

1√
Nm!

b̂†m
Nm |0〉 , (2.65)

with
∑

mNm ≤ N and where b̂†m creates a particle in some single-particle state |φm〉 =∑
j α

(m)
j â†j . The fragmentation of the ground state is often expressed as the number of

nonzero eigenvalues λi of the one-body density matrix ρ1
jk = 〈â†j âk〉. Clearly, for ansatz

(2.57), there is only one nonzero eigenvalue of ρ1, with λ0 = N0. Its corresponding
eigenvector is the order parameter φ0(j). In general, though, many eigenmodes φm(j)

can have nonzero eigenvalues. Only when λm � 1 for all nonzero eigenvalues, we can
safely recover the mean-field description and use the GPE to describe the dynamics of
the system. This issue regarding fragmentation will be of relevance in chapter 4 and
chapter 5, where in certain circumstances the mean-field solutions will need to be cross-
checked by the predictions of truncated few-mode quantum models.

2.2.3 The Raman-dressed gas: synthetic spin-orbit coupling

Let us consider now an ultracold F = 1 spinor gas dressed by counter-propagating
laser beams in a Raman configuration as described in Sec. 2.1.5. At the regimes consid-
ered, where the magnetic bias field fulfills B� Beff , both the kinetic and the interaction
energy in the ultracold gas are orders of magnitude smaller than the magnetic shifts of
the Zeeman levels. Therefore, the light-shift potentials described in Sec. 2.1 are not mod-
ified significantly by the presence of weak interatomic interactions, and we can introduce
them straightforwardly to the many-body Hamiltonian (2.50). With this in mimd, let us
leave aside, for now, the interacting and the trapping contributions to the Hamiltonian,
and focus solely on the dressed single-particle Hamiltonian Ĥ(1) = ~2k2

2ma
+ Ĥ ′eff . Here,

Ĥ ′eff is the vector light-shift potential from equation (2.27) that describes an effective
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periodic transverse Zeeman field. Expressed in matrix form, Ĥ(1) reads

Ĥ(1) =


~2k̂2

2ma
+ δ + ε Ω

2 e
i(2krx̂+θ) 0

Ω
2 e
−i(2krx̂+θ) ~2k̂2

2ma
Ω
2 e

i(2krx̂+θ)

0 Ω
2 e
−i(2krx̂+θ) ~2k̂2

2ma
− δ + ε

 , (2.66)

where θ is an arbitrary constant phase shift. Remind that δ is the detuning from Raman
resonance and ε the shift due to the quadratic contribution of the Zeeman effect (see
Sec. 2.1.5). Unlike δ, ε can only take positive values.

Hamiltonian (2.66) can be written in a position-independent form in a frame that
rotates with the effective magnetic field Ĥ ′eff , related to the unrotated frame by the
unitary transformation

Û3 = exp(−i(2krx̂+ θ)F̂z/~). (2.67)

Naturally, such a transformation is position-dependent, and the terms exp(2krx̂) do not
commute with the momentum operators in the diagonal entries of (2.66). In fact, Û3 acts
as an internal-state- or spin-dependent momentum shift, and we can express the rotated
Hamiltonian in terms of the shifted quasimomentum q̂, which fulfills (q̂−2krexF̂z/~)2 =

exp(−i2krx̂F̂z/~)k̂2 exp(i2krx̂F̂z/~). The resulting rotated Hamiltonian reads

Ĥ(1)
q = Û3Ĥeff Û

†
3 =


~2(q̂−2krex)2

2ma
+ δ + ε Ω

2 0
Ω
2

~2q̂2

2ma
Ω
2

0 Ω
2

~2(q̂+2krex)2

2ma
− δ + ε

 . (2.68)

In the rotated frame, the kinetic terms in the diagonal entries are shifted in a spin-
dependent manner. Observe also that the dressed kinetic Hamiltonian breaks Galilean
invariance. Indeed, the terms that result from applying a boost x → x − v0t , qx →
qx − mav0/~ to Hamiltonian (2.68) can not be eliminated by a gauge transformation
exp(imav0~ x). Instead, an additional Zeeman term proportional to the velocity of the
moving frame appears, which reminds the spin-orbit coupling (SOC) interaction that
electrons experience in solid-state systems.

At its core, the interaction between internal (spin) and external (orbital) degrees
of freedom has a relativistic origin. By taking the non-relativistic limit of the Dirac
equation that describes a free electron in an electromagnetic field, the Zeeman interaction
µ·B = − gse

2me
S·B between the spin of the electron S and a magnetic field B arises, where

e and me are the charge and the mass of the electron. In the atom, such an interaction
originates the fine-structure splitting discussed in Sec. 2.1.2. There, due to the way
electromagnetic fields transform under Lorentz transformations, the electric field created
by the nucleus is translated into a velocity-dependent magnetic field in the rest frame of
the electrons. This results in a correction to their energy that is proportional to S · L.
Similarly, in a solid, nonzero net static electric fields can originate from inhomogeneities
in its structure. When moving, the charged particles experience a magnetic field Brest

in their rest frame that is proportional to its momentum. At the linear order of the
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resulting Zeeman interaction µ · Brest, the general expression for the two-dimensional
SOC interaction in a solid reads

ĤSOC = α(kxσy − kyσx) + β(kxσy + kyσx), (2.69)

where σj are the Pauli matrices. The coefficients α and β are the strengths of the
Rashba- [178] and Dresselhaus-type [178] of SOC, respectively. Fundamentally, both
kinds of SOC emerge from the breaking of spatial symmetries in the structure of the
solid.

SOC plays a fundamental role in many condensed matter phenomena, including the
spin-Hall effect [109], topological insulators [110, 111] and topological superconductors
[111, 112], and applications such as spintronics [179]. Yet being characteristic of charged
matter, SOC does not naturally emerge in experiments with ultracold atoms, which are
charge-neutral. However, notice that the dressed Hamiltonian (2.68) does include terms
linearly proportional to qj that describe momentum-dependent Zeeman shifts, similar
those appearing in the SOC Hamiltonian (2.69). The direct analogy to the SOC in
condensed matter systems is made the most evident if we take δ ∼ ε � Ω in (2.68).
In these conditions, the Zeeman state |F = 1,m = 0〉 is far off-resonantly coupled to
highest-energy Zeeman state |F = 1,m = 1〉, as long as the characteristic kinetic energy
in the atomic cloud is also much smaller than ε. In the regimes considered, where ε is in
the order of tens of kHz, such condition is granted in ultracold atomic systems. We can
then assume that the state |F = 1,m = 1〉 will not be significantly populated during
the dynamics of the system. With only two relevant internal states, |F = 1,m = 0〉 and
|F = 1,m = −1〉, the single-particle Hamiltonian effectively reduces to

Ĥ(1)
q '

(
~2(q̂−krex)2

2ma
+ δ′/2 Ω

2
Ω
2

~2(q̂+krex)2

2ma
− δ′/2

)

=
~2q̂2

2ma
− ~2kr

ma
q̂xσz +

Ω

2
σx +

δ̃

2
σz + Er. (2.70)

Here δ̃ = δ− ε and Er = ~2k2r
2ma

is the single-photon recoil energy from the Raman beams.
Without loss of generality, we have shifted the origin of the quasimomentum by −krex
and the energies by δ̃/2. The Pauli matrices σj act on the Zeeman subspace spanned
by |F = 1,m = 0〉 and |F = 1,m = −1〉. Indeed, Hamiltonian (2.70) is equivalent
to the one describing a spin-1

2 particle with equal contributions from the Rashba and
Dresselhaus SOC interactions (α = β = −~2kr

2ma
) along the x − z plane. The particle is

further subject to an effective transverse magnetic field ∝ Ω that couples the two spin
states. Such a coupling is detuned from resonance by a constant Zeeman shift δ′ and a
momentum-dependent one from the SOC interaction.

The mechanism behind such a synthetic form of spin-orbit coupling in ultracold
atoms lies at the nonzero exchange of momentum between the electric field and the
atom during the two-photon transitions that couple the Zeeman states. In conventional
materials, the single-photon recoil momentums and energies exchanged are negligible,
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Figure 2.4: Eigenvalues of Hamiltonian (2.68), which describes a free particle in the
presence of Raman dressing, as a function of qx and for different values of the dressing
parameters. In all cases we set qy = qz = 0. The color texture of the bands indicates the
mean axial polarization 〈F̂z〉 in the corresponding eigenstate.

and so are the derived SOC-like effects. However, in ultracold atoms, with characteristic
kinetic energies way below Er, comparatively strong regimes of SOC can be realized
in this way. Remarkably, in the implementation of SOC in ultracold atomic systems,
the strengths of both the effective SOC and magnetic interactions in Hamiltonian can
be easily tuned to a wide range of parameters. The former can be adjusting with the
angle of incidence of the Raman beams, reaching its maximum |α| = Er/kr when they
are counter-propagating, and the latter can be controlled with the intensity and the
detunings of the laser beams. This enhaced tunability offers the possibility to engineer
a variety of phenomena in the dressed gas. To illustrate it, we show in Fig. 2.4 the
energy bands of the dressed system for various regimes of parameters. The three energy
bands are obtained as a funtion of the quasimomentum q simply by diagonalizing the
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translation-invariant Hamiltonian Ĥq in equation (2.68). The dressed bands exhibits
interesting properties, such as spin texture, anisotropy or the formation of local minima.
The number and position of the minima and the strength of the spin gradients can
be adjusted with the dressing parameters Ω, δ and ε. Fig. 2.4(a) shows the band in
the parameter regime that realizes effective spin-1

2 SOC, with δ = ε � Ω, where the
lower energy states only populate significantly two spin states m = 0 and m = −1.
For Ω < 4Er, the lowest band has a characteristic double well shape, with two almost
orthogonal dressed spin states | ↑′, ↓′〉 sitting at each minima. In Fig. 2.4(b), Ω, δ and
ε are all set smaller than the recoil energy. The band has a triple-well shape and the
system describes a spin-1 particle with a generalized spin-1 SOC interaction. Finally,
when Ω > 4Er, the lowest band exhibits only a single minimum. The position of the
minimum depends on the values of the dressing parameters, as exemplified by Fig. 2.4(c)
and Fig. 2.4(d).

These three scenarios illustrate simple ways by which the same dressed system can
realize different physics. For instance, the latter configuration can realize an effective
interaction with an electromagnetic field in ultracold atoms. Indeed, with the lowest
band minimum shifted to qmin(Ω, δ, ε)ex, the dispersion band around the minimum can
be approximated to

E(q) ≈ ~2(q−A)2

2m∗a
, (2.71)

which has the same from of the Hamiltonian describing a charged particle moving in an
electromagnetic field, with A = Axe

e
x = ~qminex acting as a vector potential and m∗a be-

ing the effective mass of the atoms. Due to the modified shape of the dispersion relation
[180], m∗a deviates from the actual atomic mass. By making the detuning spatially vary-
ing, a synthethic magnetic field Bsynth = ∇×A(r) 6= 0 can be realized in this way [181].
In [86], the formation of vortices due to the action of such a synthetic field was observed.
Likewise, synthetic electric fields have been achieved by introducing a time dependence
to δ so that Esynth = ∂A/∂t 6= 0 [182]. Remarkably, the Raman-dressed gas not only
exemplifies that phenomena characteristic of charged matter can be simulated with ul-
tracold atoms (for a comprehensive review on the realization of synthetic gauge fields
in light-dressed ultracold atoms see [85], and also [183]), but it also provides a platform
to engineer effective physics beyond any analog in real condensed matter physics. For
example, the realization of SOC in a BEC [104] opened the possibility to study spin-orbit-
coupled superfluids with ultracold atoms. Spin-orbit-coupled Bose gases have attracted a
significant theoretical [115, 184–198] and experimental attention [107, 108, 116, 118, 199–
207] over the last decade. BECs with SOC exhibit many interesting properties that arise
from their nontrivial dispersion bands, such as anisotropy in the excitation spectrum
and in the sound velocity and roton modes [189, 192, 202, 208, 209]. In a rich interplay
with interactomic interactions, synthetic SOC has been shown, for instance, to lead to
effective ranged interactions, signalled by the appearance of higher-order partial wave
contributions to the scattering distribution [116], and to the stabilization of a stripe
phase [115, 185, 186, 192, 198], a ferromagnetic-like spin-miscible regime with super-
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solid-like properties that have been recently probed [108, 207]. The lack of Galilean
invariance was probed in [203], by measuring the response of the SOC gas loaded into a
translating optical lattice. The SOC scheme has also been realized in degenerate Fermi
gases [105, 106, 117, 210]. where SOC has been shown to modify the pairing properties
of strongly-interacting fermions [211]. Moreover, several schemes have been proposed for
the realization of two- [187, 188, 191, 194] and three-dimensional SOC [190] in ultracold
gases, with the former eventually achieved with both bosonic [204, 206] and fermionic
[212] species.

At the same time, this framework generalizes the notion of SOC to spins larger than
1/2 [195, 196]. In chapters 3 to 5, we will focus on the spin-1 spin-orbit-coupled Bose
gas in the weakly-coupled regime, where the Hamiltonian exhibits a triple minima in
the lowest band (see Fig. 2.4(b)). We will interpret the dressed states located at the
vicinity of the minima as spin degrees of freedom, and study the emergence of dressing-
enabled two-body spin-mixing collisions [122–124] that couple the three effective spin
states | ↑′〉| ↓′〉 ←→ | ↔′〉| ↔′〉. However, these processes become relevant only very near
to resonance, which will require that the three band minima become nearly degenerate.
Yet it is clear that, due to the presence of the quadratic Zeeman shift ε, a single Raman
transition can not resonantly couple both pairs of spin states. Triple degeneracy requires,
thus, bringing the quadratic Zeeman shift ε to zero, which is incompatible with the
requirement of a nonzero magnetic bias field. Alternatively, such a condition can be met if
two Raman frequencies δω−1,0 and δω0,1 (from two different pairs of counter-propagating
beams) are employed instead [118]. To avoid a large cross-coupling between the two
transitions, a relatively large bias field is employed, so that the resonant conditions for
the |F,m = −1〉 ↔ |F,m = 0〉 transition, at δω−1,0 ∼ ~ωz + ε, and the |F,m = 0〉 ↔
|F,m = 1〉 transition, at δω0,1 ∼ ~ωz − ε, are energetically well separated. Keep in
mind, though, that by doing so the two characteristic frequencies show up in the time-
dependent vector light-shift. By setting both Raman coupling strengths equal, we now
have (compare to (2.25))

Ĥeff '
√

2Ω

~
(sin (2krx+ δω−1,0t) + sin (2krx+ δω0,1t)) F̂x − ωZF̂z +

ε

~2
F̂ 2
z . (2.72)

As was done in Sec. 2.1.5, following a time-dependent transformation, the fast oscillat-
ing terms with frequencies ±2δω−1,0, ±2δω0,1 and ±(δω−1,0 + δω0,1) can be eliminated
with the RWA. Likewise, by applying the unitary transformation (2.67), the resulting
Hamiltonian takes a translationally invariant form

Ĥ(1)
q =

~2

2ma

(
q̂− 2krF̂zex

)2
+

Ω√
2
F̂x + δ′F̂z + ε′F̂ 2

z + V̂ (t), (2.73)

where
δ′ =

~δω−1,0 + ~δω0,1

2
− ~ωZ, and ε′ =

~δω−1,0 − ~δω0,1

2
− ε, (2.74)

Observe, however, that the time dependency of the resulting Hamiltonian is not elim-
inated entirely, as a cross-coupling contribution V̂ (t) remains, which includes slow-
oscillating terms with frequencies ±∆ω = ±1

2(δω−1,0 − δω0,1). It should be noted that,
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near resonance, ~∆ω is of the order of ε, which can easily be much larger than the recoil
energy in the gas. Thus, we expect the effects of such cross-coupling to be small. Its
precise effect can be computed from Floquet theory (see [118]), which gives an intensity-
dependent shift to the effective quadratic Zeeman strength ε′. The cross-coupling could
in principle be arbitrarily minimed by increasing the strength of the bias field, and so ε.
In practice, there is a trade-off between a reduced cross-coupling and an increase in the
magnetic fluctuations at larger fields.

In this discussion of the Raman dressed gas, we have intentionally omitted the inclu-
sion of the trapping potential in H(1), and restricted the analysis to the noninteracting
regime, so that the Hamiltonian admits a translation-invariant form H(1), where the
characteristic free-particle dressed bands illustrate the rich phenomenology of the SOC
gas. Following the recipe from Sec. 2.2.1, the dressed and trapped many-body Hamilto-
nian is straightforwardly obtained in the rotated frame

Ĥ =

∫
drΨ̂

†
(
−~2(∇− 2krF̂zex)2

2ma
+

1

2
maω

2
t r2 +

Ω√
2
F̂x + δ′F̂z + ε′F̂ 2

z + V̂ (t)

)
Ψ̂

+

∫
dr

gs
2

(Ψ̂
†
Ψ̂)2 +

ga
2~
∑
j

(Ψ̂
†
F̂jΨ̂)2

 ,

(2.75)

where the phase terms from the rotation (2.67) cancel out in all the quartic contributions
Ψ̂†i Ψ̂

†
jΨ̂kΨ̂l that show up in the interaction Hamiltonian. In chapters 3 to 5, we will

use the two-Raman-dressed and trapped Hamiltonian (2.75) to describe the resonant
regimes discussed above. To avoid confusion, several notation choices taken there should
be clarified. The parameters ε′ and δ′ in the Hamiltonian will be labelled by ε and δ, and
often referred to as the detuning and the quadratic Zeeman strength, but they will still
refer to the parameters in equation (2.74) appearing in the two-Raman-dressing scheme.
Moreover, we will omit the explicit time dependency by just including the corresponding
Floquet shifts in the values of ε. Similarly, the quasimomentum q will be labeled as a
conventional momentum k. And finally, we will conveniently use the adimentional scaled
spin-1 matrices F̂ ′j = F̂j/~, which will nonetheless be labelled by unprimed characters.

2.3 Quantum magnetism with ultracold atoms in optical
lattices

Ultracold atomic gases loaded in optical lattices, provide an extraordinary platform
for simulation of complex condensed matter phenomena in a clean environment [30, 31].
In a nutshell, optical lattices are generated by superimposing pairs of counter-propagating
laser beams, which create tunable periodic distributions of intensity out of their interfer-
ence pattern. As reviewed in Sec. 2.1, atoms in contact with off-resonant light fields can
be trapped around maxima or minima of the intensity pattern via the dipole interaction.
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In this way, a large variety of periodic potentials may be generated from the spatially
modulated light fields , where trapped atoms can bound to the potential minima and
behave in a similar fashion to that of electrons in a crystal. There is, however, an imme-
diately apparent caveat to the realization of such synthetic crystals. The lattice spacing
attainable with laser-generated lattices are in the order of 102 nm, with potential depths
below the µK. The characteristic scales are, therefore, many orders of magnitude away
from those found in electronic systems. Still, thanks to the astonishing advances in cool-
ing techniques (see the brief discussion in Sec. 2.1.6), temperatures low enough for the
dressed atoms to fall trapped to optical potentials became experimentally attainable.
Crucially, the synthetic crystal potential from the optical lattice downplays the relative
weight of the effective kinetic energy in the ultracold gas, which opens the door to the
realization of strongly correlated regimes even with very dilute, weakly-interacting gases.
Finally, the high vacuum created in experiments with ultracold atoms, together with the
low heating associated with the nondissipative optical dipole trapping interaction, allows
for very long coherence times, which can compensate for the drastically reduced energy
scales in the simulated models.

Ultracold atoms in optical lattices constitute, therefore, a direct analog simulator of
solid-state models, which benefits from an unparalleled scalability and a large degree
of tunabilty and addressability, even down to site-resolved manipulations. The depth
of the trapping potential and the lattice geometry can both be adjusted with the laser
beams. Moreover, different atomic species can be trapped, both bosonic and fermionic,
and additional electromagnetic fields can be employed to modify the properties of the
trapped atoms. Such unprecedented degree of control has opened new possibilities to
realize synthetic systems that can even go beyond mere analogies to those found in
conventional condensed matter. In this section we review some basic aspects of ultracold
atoms in optical lattices. In Sec. 2.3.1 we start with a brief summary of the fundamental
ideas behind the treatment of particles in periodic potentials, and sketch the notion of
band structure. In Sec. 2.3.2 we describe the framework employed to treat the many-body
problem in the so-called tight-binding regime, where the Hilbert space of the system is
truncated to one or few single-particle states per lattice site. Interatomic interactions can
then be added perturbatively. In this regime, the system is well described by the Hubbard
Hamiltonian, a paradigmatic framework that describes strongly correlated phenomena
in solid-state systems. Finally, we introduce the notion of synthetic dimensions in the
lattice in Sec. 2.3.3, and how they provide a useful tool to simulate quantum magnetism
phenomena with ultracold atoms. We can take as definition of quantum magnetism
any quantum spin models. Quantum spin models emerge naturally in the low energy
description of strongly-correlated Hubbard model, for instance in the hard-core-boson
limit of the Bose Hubbard model. These fundamental notions are later employed in
chapter 6.
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2.3.1 Ultracold atoms in periodic optical potentials

Let us consider the electric field generated by a pair of counter-propagating light
beams. In the simplest scenario, let the two fields be monochromatic, with the
same modulus, frequency and polarization, and write E1 = E0 cos(klx − ωlt) and
E2 = E0 cos(klx + ωlt). Their superposition forms a stationary wave El = E1 + E2 =

2E0 cos(klx) cos(ωlt). Due to the electric dipole interaction, an atom subject to the field
El experiences a light-shift potential V (x) proportional to the intensity and inversely
proportional to the detuning from resonance (see Sec. 2.1.4). Dropping a constant term,
we can write

V (x) =
V0

2
cos(2klx), (2.76)

where V0 ∝ − |d|
2|E0|2
∆ . Here, |d| and ∆ are, respectively, the dipole coupling strenght

and the detuning from resonance of the targeted atomic transition.

The potential V (x) is periodic, with periodicity d = π/kl. From Bloch’s theorem,
we know periodicity constraints the form of the eigenfunctions ψ(x) of the atom in the
potential, which fulfill

Ĥψ(x) =

(
− ~2

2ma

∂2

∂x2
+ V (x)

)
ψ(x) = Eψ(x). (2.77)

To treat the problem, let us consider a system of finite size Ld, with L minima in the
potential. There we can fix the boundary condition ψ(−Ld/2) = ψ(Ld/2) = 0 and
expand the solutions in the discrete Fourier basis

ψ(x) =
∑
k

ψ̃k exp(ikx), (2.78)

with k = j 2π
Ld , j ∈ Z. Spatially truncating the potential modifies the expression (2.76)

of the potential. However, since we will consider L � 1, we can neglect the additional
Fourier components of V (x) that stem from the truncation and write

V (x) ' V0

4

(
ei

2π
d
x + e−i

2π
d
x
)
. (2.79)

By introducing (2.78) and (2.79) into (2.77), multiplying each side by e−ik′x and inte-
grating over x, we obtain the following relation between the components ψ̃′k

~2k′2

2ma
ψ̃k′ +

V0

4

(
ψ̃k′− 2π

d
+ ψ̃k′+ 2π

d

)
= Eψ̃k′ , (2.80)

for all k′. Equation (2.80) couples the components ψ̃k with momenutm k to the set of
components ψ̃k+∆k that are shifted in momentum by an amount ∆ = l 2πd , l ∈ Z. This
allows to identify independent the sets of coupled components by a quasimomentum
−π/d ≤ q < π/d, an write ψ̃(l)

q = ψ̃q+l 2π
d
. This has important consequences. The set of
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suitable values q = −π
d + j 2π

Ld , j = 0, 1..., L − 1 within the range [−π/d, π/d), is known
as the first Brillouin zone. The energy eigenstates for each set q will be of the form

Ψ̃n,q(x) = eiqxun,q(x), (2.81)

with
un,q(x) =

∑
l

ψ̃(l)
n,qe

il 2π
d
x. (2.82)

Including only Fourier components with momentum l 2πd , the functions un,q fulfill un,q(x+

d)un,q(x). Thus, the solutions of the particle in a periodic potential are given by plane
waves with wavevector k = q, modulated by a function with the same period as the
potential. This is Bloch’s theorem, central to the theory of band structure. In principle,
l is not bounded, and hence solving the eigenproblem problem requires to solve at each
q an infinite set of coupled equations

~2(q + l 2πd )2

2ma
ψ̃(l)
q +

V0

4
(ψ̃(l−1)

q + ψ̃(l+1)
q ) = Eψ̃(l)

q . (2.83)

The kinetic term ~2(q+l 2π
d

)2

2ma
, though, diverges as |l| → ∞, and so it is safe to assume that

the low energy solutions of (2.83) do not significantly populate components with |l| larger
than a certain threshold value lmax. In this way, we can obtain the lowest eigenenergies
an eigenvectors from a truncated Hamiltonian Ĥ lmax that includes the 2lmax + 1 lowest
momentum states from each set q. The Hamiltonian is block-diagonal, so we can write
Ĥ lmax =

∏
⊗q Ĥ

lmax
q , with

Ĥ lmax
q =

lmax∑
l=−lmax

~2(q + l 2πd )2

2ma
|q, l〉〈q, l|+

lmax−1∑
l=−lmax

V0

4
(|q, l〉〈q, l + 1|+ |q, l + 1〉〈q, l|) .

(2.84)
Here |q, l〉 is the ket representation of the state with momentum q + l 2πd .

By diagonalizing (2.84), we obtain the truncated expressions for the 2lmax + 1 lowest
energy eigenvalues and eigenstates for each quasimomentum q. One can easily check
that the M -lowest eigenstates converge quickly as lmax is increased past M . We label
the eigenvalues at each q by En(q), with n = 0, 1, 2, ..., lmax+1 and En > Em for n > m.
The sets of energies En(q) at a given n constitute the nth energy band of the system.
In Fig. 2.5, we plot the five lowest energy bands for L = 50 and for different values of
V0. We scale the energies to the single-photon recoil energy El =

~2k2l
2ma

from the lattice
beams. For V0 = 0, the system reduces to a free-particle in a box of size Ld, and the
solutions are simply given by the kinetic energies. As V0 is increased, the free solutions
start to hybridize, and an energy gap between the different bands is formed. Notice that,
in the limit L → ∞, the discretization size 2π

Ld of the allowed momenta vanishes, and
the bands En(q) become continuous functions of the quasimomenutm q. Still, the band
gaps are preserved, which means that continuous families of eigenenergies are separated
by energy ranges with no solutions.
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Figure 2.5: Eigenvalues of the lattice Hamitonian (2.84) for L = 50 and for different
values of the potential depth Vl.

2.3.2 Tight-binding regime: the Bose-Hubbard model

To treat the many-body problem, we use the second-quantization formalism (see
Sec. 2.2.1). The noninteracting Hamiltonian can be written as

Ĥn.i. =
∑
q∈BZ

En(q)˜̂a†n,q
˜̂an,q, (2.85)

where BZ denotes the first-Brillouin zone, and ˜̂an,q are the bosonic operators of the Bloch
modes. The Bloch functions Ψ̃n,q(x) = 〈x|˜̂a†n,q|0〉 describe states that are delocalized in
position space. To treat the interactomic interactions, which are of local nature in
ultracold gases, it is convenient to perform the following rotation into the Wannier basis

â†n,j =
1√
L

∑
q∈BZ

˜̂a†n,qe
−iqxj , (2.86)

where xj = jd is the position of the jth minima of the optical potential, or lattice site.
We then can write

Ĥn.i. =
∑
n

∑
q∈BZ

En(q)˜̂a†n,q
˜̂an,q = −

∑
n,i,j

Jn(i− j)â†n,iân,j , (2.87)

where
Jn(i− j) = − 1

L

∑
q∈BZ

e−iq(xi−xj)En(q). (2.88)

Observe that coefficients Jn(i−j) are given by the discrete Fourier component (j− i)d of
the nth energy band. The zeroth component Jn(0) gives minus the band average energy
En = 1

L

∑
q∈BZEn(q). The remainder give the tunneling rate between the ith and jth

Wannier modes in the nth band, which can be written explicitly in terms of the Wannier
wavefunctions wn,j(x) = 〈x|â†n,j |0〉 = 1√

L

∑
q∈BZ Ψ̃n,q(x)e−iqxj as

Jn(i− j) = −
∫
dxw∗n,j(x)

(
− ~2

2ma

∂2

∂x2
+ V (x)

)
wn,i(x). (2.89)
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Figure 2.6: (a) Ratio between the bandwidth δE0 and the mean interband energy ∆E0

of the lowest band as a function of V0. (b) Tunneling coefficients J0(l) with l = 1 (green
solid line), l = 2 (orange dashed line) and l = 3 (red dash-dotted line). The black dotted
line shows the values of the approximated expression for J0(1) from equation (2.95).

If the potential V (x) is symmetric, we have Jn(i− j) = Jn(j − i), for any i, j.
As V0 is increased, the Wannier functions wn,j(x) become increasingly more localized

around the minima at xj , and the coupling coefficients |Jn(i−j)| decay exponentially with
the intersite distance |i−j|. Hence, we can simplify further the problem by neglecting the
longer distance couplings, which is equivalent to neglect the higher Fourier components of
the bands. When V0 � Er, we can take the so-called tight-binding approximation, where
all Fourier contributions to the band except for the lowest ones, Jn(0) and Jn(±1), are
neglected. The modes are then tightly located at their central lattice site, only coupled
to the modes centered at the nearest neighbor (NN) sites. In these conditions, the
bands are approximated to En(q) ∼ −Jn(0) − Jn(1)(eiqd + e−iqd) = En − δEn cos(qd),
where δEn = 4Jn(1) is the bandwidth of the band. For a given V0, the accuracy of the
tight-binding approximation depends on the band index n, being less accurate as n is
increased. It can be considered when the interband energies ∆En = |En+1 − En| are
very large compared to the intraband energies |δEn|.

In this thesis, we will focus on the regime where ∆E0 is very large compared to both
δE0 and the characteristic energies of trapped ultracold atoms, typically below 1µK. The
low energy landscape is then well described by a truncated Hamiltonian that includes
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only the lowest band states w0,j in the the tight-binding approximation

Ĥn.i. ' −
∑
j

[
J0(1)(â†0,j â0,j+1 + H.c) + E0n̂0,j

]
, (2.90)

where n̂i = â†i âi. Roughly, this regime is realized when V0 & 5El, where the band gap is
at least one order of magnitude larger than the bandwidth, as shown in Fig. 2.6(a). The
largest tunneling coefficients J0(l) are shown in Fig. 2.6(b). With these considerations,
we introduce now the many-body interactions. In order to preserve the lowest-band
truncation, we require the interaction energy per particle to be much smaller than ∆E0.
Henceforth, we will drop the band index n = 0 from the labelling of lowest band modes.
Likewise we will relabel J0(1) ≡ J and E0 ≡ µ. Considering s-wave interactions with
scattering length a, the interacting Hamiltonian truncated to the lowest band reads

Ĥint '
2π~2a

ma

∑
ijkl

∫
drω∗i (r)ω∗j (r

′)δ(r− r′)ω∗k(r)ω∗l (r
′)â†i â

†
j âkâl. (2.91)

Despite considering a lowest-band truncation and contact s-wave interactions, the general
expression for the interactions is fairly complex and describes a variety of processes. The
largest contributions are given by on-site interaction process ∝ n̂i(n̂i − 1), followed by
NN and Next-NN couplings. The latter include density-dependent NN- and Next-NN-
tunneling processes ∝ â†i âiâ

†
i âj , density-density NN-interactions ∝ n̂in̂j and atom-pair

NN-tunnelings ∝ â†i â
†
i âj âj . However, the relative strengths of these contributions can

not be tuned independently from one another. In fact, in the tight-binding regime
V0 & 5El, all the NN contributions are much smaller than the on-site ones and can be
safely neglected. Then

Ĥint ∼
U

2

∑
i

n̂i(n̂i − 1), with U =
4π~2a

ma

∫
dr|ωi(r)|4. (2.92)

So far we have considered the simplest scenario of a one-dimensional (1D) periodic
potential resulting from the standing wave generated by two counter-propagating beams.
By superimposing independent standing waves in different spatial directions, the general-
ization to two- (2D) and three-dimensional (3D) lattices is straightforward. By adjusting
the pairs of beams to have very close frequencies and intensities, square and cubic lat-
tices can be created. Typically, the beams from different standing waves are chosen
with mutually orthogonal polarization in order to minimize their interference. At the
same time, the beams are also slightly detuned with acousto-optical modulators. In this
way, any residual interference oscillates very fast with respect to the time scales of the
trapped atoms, and is effectively averaged to zero, while the wavevectors kx,y,z ' kl are
not significantly modified [213]. The number of NN in these configurations is given by
2D, where D is the number of spatial dimensions. To unify the treatment, the summa-
tion

∑
j runs over all the sites in the lattice, and the summation over nearest neightbors

is indicated with
∑
〈ij〉, independently of the dimensionality of the lattice. In this way,
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ultracold atoms trapped in an optical lattice potential can be described in a compact
way by the tight-binding, lowest-band Hamiltonian

ĤBH = −J
∑
〈ij〉

â†i âj +
U

2

∑
j

â†j â
†
j âj âj + µ

∑
j

n̂j . (2.93)

A simple analytical expression for the on-site interaction strength U can be obtained
by considering the Taylor expansion of the lattice potential V (r) around site at rj .
In the deep lattice regime (V0 � El), we can truncate the expansion to second order
V (r−rj) = −V0

2 + 1
2maω

2
t.b.(r−rj)

2+O(r−rj)
4, with ~ωt.b. = 2

√
V0El, and approximate

the tight-binding modes to harmonic oscillator modes. For the ground state, one finds

U

E l
∝ (V0/El)

D/4. (2.94)

On the other hand, for large V0 � El the tunneling coefficients can be approximated to
[64]

J

E l
' 4√

π
(V0/Er)

3/4 exp(−2
√
V0/El), (2.95)

as shown in Fig. 2.6(b). Thus, the ratio U/J ∝ (V0/El)
D−3
4 exp(2

√
V0El) can be easily

tuned by adjusting the depth of the potential, or, equivalently, the intensity of the lattice
beams. Essentially, this highlights a fundamental feature of ultracold atoms in optical
lattices: the kinetic contribution to the effective Hamiltonian can be almost arbitrarily
suppressed, which allows the realization of strongly correlated regimes, granted that the
temperatures can be kept sufficiently small.

Hamiltonian (2.93) is the celebrated Hubbard model [214], applied in this case to
bosonic species. In solid-state physics, the Hubbard Hamiltonian has been extensively
employed to model electron dynamics and magnetic phenomena in strongly correlated
electronic systems [215]. The model is able to account, e.g., for the transition between
conducting and insulating systems or the superexchange antiferromagnetic coupling. De-
spite its apparent simplicity, many of its ramifications remain to date an open area
of research. In particular, it is believed to be able to give crucial insights on high-
temperature superconductivity [216–219]. In bosonic systems, already in its simplest
form, the Bose-Hubbard Hamiltonian predicts a quantum phase transition from a su-
perfluid phase (SF) to a Mott insulator (MI) phase [220]. Quantum phase transitions
[221] are inherently different from their classical counterparts in that they are not driven
by thermal fluctuations. In quantum systems, due to Heisenberg uncertainty relations,
fluctuations persist even at zero temperature, and may become relevant enough to induce
macroscopic changes in the state of a system when the parameters of the Hamiltonian
are modified. As in their classical counterparts, the transitions are signaled by non-
analytical changes of some macroscopic quantities in the thermodynamic limit. In the
Bose-Hubbard model, the SF-MI transition is driven by the interplay between the kinetic
∝ J and the interacting ∝ U terms of the Hamiltonian. The former favors the delocal-
ization of the wavefunctions of the atoms across the lattice sites and the formation of
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a condensate ground state |ϕ〉J = 1√
N !

( 1√
L

∑
i â
†
i )
N |0〉 that exhibits long-range phase

coherence. Contrarily, the latter favors the uniform occupation of each lattice site with a
well defined number of atoms |ϕ〉U =

∏
i

1
(N/L)!(â

†
i )
N/L|0〉. The suppression of the atom

number fluctuations implies an increase in the phase fluctuations, and coherence across
sites is lost. At the same time, in this regime a nonzero excitation energy gap persists to
the thermodynamic limit. The competition between these two contributions defines the
transition from a SF regime dominated by atom-number fluctuations to the gapped MI
regime dominated by phase fluctuation, which is predicted to occur at a critical value

1
2D (U/J) = 5.8.

As shown above, the realization of model (2.93) in optical lattices, allows to control
the ratio U/J with the laser intensity. Soon after the experimental achievement of Bose-
Einstein condensation, the exploration of the SF to MI quantum phase transition with
ultracold atoms loaded into optical lattices was proposed [222], and its experimental de-
tection was first achieved a few years later [213]. This landmark achievement exemplified
the potential of the platform for the study of strongly correlated phenomena in a con-
trolled environment [29]. Since then, optical lattices have become an staple in ultracold
atom experiments with both bosonic and fermionic [66] species, owing their enormous
success in great part to the large degree of tunability of the system. For instance, by
choosing properly the number of laser beams and their direction of propagation, model
(2.93) can be extended to lattices with different geometries [223], including dimerized
[224], triangular [56], hexagonal [57], Kagome [58] or Lieb [59] lattices. Moreover, lat-
tice shaking techniques allow to engineer complex tunneling coefficients in the lattice
[87, 225, 226], which can lead to topologically non-trivial energy bands [102, 227]. A
similar effect can be achieved via laser assisted tunneling in a superlattice [90, 91] or in
a tilted lattice [88, 89], where the tilt is achieved with a magnetic gradient. The Peierls
phases around a the unit cell of the lattices may add up to a nonzero Aharonov-Bohm
phase, which is equivalent to having a synthetic magnetic flux piercing the cells, thus
realizing the Harper–Hofstadter model [97]. In combination with triangular geometries,
flux lattices offer a potential playground to explore geometric frustration effects in quan-
tum magnetism [228]. The model can be made even richer by accounting for the internal
structure of the atomic species, or by loading more than one atomic species. For instance,
antiferromagnetic correlations in the Hubbard model were observed in a two-component
Fermi gas [229]. Recently, a tunable anisotropic realization of the Heisenberg model was
achieved in a two-component bosonic lattice [230]. Also, internal-state-dependent [231]
lattice potentials can be generated exploiting the vector light shift instead, as sketched
in Sec. 2.1.5. At the same time, the states prepared in optical lattice systems can be
accessed with multiple detection techniques. Currently, quantum-gas microscope tech-
niques allows site-resolved measurements of particle densities [232–234] and even spins
[235], making the direct measurements of spin-spin correlations possible [12, 14, 236]. We
next focus on a particular extension of the Bose-Hubbard model, which is the basis of the
results presented in chapter 6, and which exploits the interplay between one-dimensional
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(a)

(b)

Figure 2.7: Semi-synthetic flux ladders from Raman dressing. (a) Schematic represen-
tation of the setup: a confined spinor gas is loaded into an optical lattice, generated
by a pair of far-detuned laser beams with wavelength λl that intersect with an opening
angle θl, which results in a lattice spacing d = λl/(2 cos θl). The gas is further dressed
by additional laser beams with wavelength λr at an angle θr, which couple the internal
states of the spinor gas via near-resonant Raman transitions, with an associated recoil
momentum kr = 2π cos θr/λr. The Zeeman levels are energetically separated by means
of a perpendicular bias field Bez. (b) In the tight-binding regime of the gas in the lat-
tice, the Hamiltonian describes a semi-synthetic ladder with an effective magnetic flux
γ = 2krd = λl

λr
cos θr
cos θl

piercing each plaquette.

lattice potential and Raman dressing in a spinor gas.

2.3.3 Atomic degrees of freedom as synthetic lattice dimensions: arti-
ficial magnetic fields

Let us now consider an ultracold spinor gas loaded in a 1D spin-independent optical
lattice, generated with a pair of far-detuned counter-propagating laser beams that inter-
sect with an opening angle θl. The lattice is characterized by the laser wavelength λl,
which defines the lattice spacing d = π/kl, with kl = 2π cos θl/λl. We consider a potential
depth V0 sufficiently deep so as to realize the lowest-band tight-binding regime discussed
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in Sec. 2.3.2. Furthermore, we will consider that the gas is dressed by an additional
pair of Raman beams, as described in Sec. 2.1.5. We label the wavelength and opening
angle of the Raman beams by λr and θr, respectively, giving an associated Raman recoil
momentum kr = 2π cos θr/λr. Raman dressing generates a helically precessing trans-
verse magnetic field that couples the internal states with a position-dependent phase.
The experimental layout is schematically represented in Fig. 2.7(a). If the strength of
the couplings between internal states is small compared to the interband separation,
the truncation to the lowest-band Wannier basis can be maintained, and the resulting
noninteracting Hamiltonian reads

Hn.i. =
∑
j,m

(
− Jâ†j+1,m + Ωm+1e

−iγj â†j,m+1 +
1

2
∆mâ

†
j,m

)
âj,m + H.c.. (2.96)

Here â†j,m and âj,m are, respectively, the bosonic creation and annihilation operators for
the tight-binding modes at the lattice site j with internal state m. Raman dressing
introduces three additional sets of parameters: Ωm is the Raman coupling strength
between the internal states m and m + 1, ∆m is an onsite energy shift that accounts
for the Raman detuning from resonance, and γ = 2krd = 2πkr/kl is the phase that
the Raman coupling acquires after a distance of a lattice period d. The strength of the
Raman dressing is constrained by the tight-binding consideration.

As first noted in [93], Hamiltonian (2.96) is equivalent to a 2D (quasi 1D) flux ladder.
In this interpretation, the internal spin states are regarded as sites along an additional
synthetic dimension [92, 237] perpendicular to the physical direction. Due to the spin
states being coupled via Raman transitions, the atoms pick up a position-dependent
phase jγ when hopping along the synthetic dimension. The presence of these phase
terms is equivalent to having an effective magnetic field with an Aharonov-Bohm flux
of γ that pierces the plaquette of a ladder system, as illustrated in Fig. 2.7(b). The
strength of the engineered magnetic flux is adjusted with the ratio between the Raman
and the lattice wavevectors kr/kl = λl

λr
cos θr
cos θl

. Flux ladders are the minimal systems
capable of exhibiting orbital quantum magnetism phenomena [238, 239], and such an
implementation in 1D Raman-dressed lattices, often referred to as semi-synthetic flux
ladders, is perhaps the simplest available. Both strong-field and strongly-interacting
regimes can be easily achieved in this way, facilitating the exploration of the Hall response
in strongly correlated quantum phases [240–242]. Key features of quantum Hall physics
have been measured in experimental realizations of the model, both with bosons [94, 96]
and fermions [95].

Aside from its simplicity, the main strength of this implementation is that it substan-
tially reduces the heating produced, when compared to the most popular alternatives to
realize Aharonov-Bohm phases in optical lattices. In position-space laser assisted tun-
neling, for instance, the amplitude of the Raman-induced complex tunneling processes
is weighted down with the reduced overlap from the neighboring, instead of on-site,
Wannier functions. Hence, much larger Raman coupling strengths are required there to
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realize the same regimes, which increases the losses from photon scattering. There are,
however, some shortcomings in the use of synthetic dimensions. The most evident limi-
tation of the approach is that the extent of the synthetic dimension is restricted by the
number of internal states that can be efficiently employed. Engineering periodic bound-
ary conditions along the synthetic dimension is possible [243], for instance, by combining
radio-frequency and Raman dressing [188], but is technically more demanding and may
result in larger atom loss [244]. Not only the extent of the synthetic dimension, but also
the geometry of the ladder realized is constrained by the use of synthetic dimensions. Tri-
angular geometries, for instance, can not be directly implemented. Finally, interatomic
interactions are nonlocal along the synthetic dimension, since atoms in different spin
states interact locally in the same lattice site. In chapter 6, we will explore an alterna-
tive route to partially overcome these limitations. We will show that the semi-synthetic
flux ladder model (2.96) in a strong coupling regime can be mapped into a flux ladder
with a triangular geometry and on-site interactions [125], where the system is able to
host frustrated magnetic phases.

2.4 Note on numerical simulations

All the numerical results shown in this thesis have been obtained by J. Cabedo using
free software packages released under a public licence. The exact diagonalization compu-
tations shown in chapter 3 to chapter 5 have been obtained using the GSL-GNU Scientific
Library [245] package, distributed under the GNU General Public License (GPL). The
simulations of the GPE shown in chapter 4 and chapter 5 have used the XMDS2 package
[246], also distributed under the GNU GPL. Finally, the density-matrix normalization
group calculations shown in chapter 6 have used the ITensor C++ library [247].



CHAPTER 3

Coherent spin mixing via spin-orbit coupling in Bose gases

In quantum simulation, light dressing, which is the off-resonant coupling of a target
set of states to other energetically separated levels by means of electromagnetic fields, can
provide a powerful means to manipulate the properties of the resulting dressed states.
Light dressing is ubiquitous in quantum simulation across the various experimental plat-
forms employed. The interplay between the modified properties of the dressed states
and many-body interactions is of particular interest, and can offer attractive possibili-
ties. In this direction, this chapter explores the interplay between Raman dressing and
two-body collisions in a spin-1 Bose gas. Raman processes involve a relatively large
momentum exchange between the electromagnetic field and the atom. Such exchange
results in a momentum dependence of the scattering processes between dressed states
which in turn can give rise to nontrivial correlated behavior in momentum space. To gain
insights on the properties of these dressed collisions, we study the system at weak Ra-
man coupling, and consider the effect of perturbatively adding interatomic interactions
to the noninteracting solutions. To this aim, following a tight-binding approximation in
quasi-momentum space, we derive a many-body Hamiltonian in which only three low-
energy dressed states are considered. These dressed states act as pseudospin degrees of
freedom, and are perturbatively coupled via s-wave scattering processes. The resulting
effective spin-spin interacting Hamiltonian shares many properties with the one describ-
ing a spinor condensate with spin-changing collisions. Remarkably, in contrast to the
intrinsic phenomena, the induced spin-mixing rate can be modified by adjusting the
parameters of the Raman dressing. We discuss the properties of the spectrum of the
derived Hamiltonian and its experimental signatures. Despite the simplicity of the ap-
proach taken, the presented three-state model exemplifies the potential of dressed-state
physics as a tool for quantum simulation. Its predictions point out to beyond-mean-field
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dynamics that could be observed in existing experimental setups, and be exploited for
potential metrological applications.

The chapter is organized as follows. In Sec. 3.1, we briefly review the theoretical and
experimental context that embeds the work presented in this chapter. In Sec. 3.2, we
describe the Hamiltonian for a spin-1 Bose gas with Raman-induced Rashba-Dresselhaus
SOC and introduce a second-quantized form for the weakly-interacting scenario following
a lowest-band truncation. In Sec. 3.3, we investigate the system in the weak coupling
regime, where the lowest single-particle dispersion band exhibits a triple-well shape.
The spin texture in the band gives rise to effective spin-changing collision processes.
Within a tight-binding approximation in the lowest band, we show that such processes
act as correlated tunneling terms between the bound states. In Sec. 3.4, we explore
the properties of the momentum-space tight-binding Hamiltonian. We show that the
resulting dynamics of the bound states can be made analogous to that of spin-1 BEC with
spin-dependent collisions. In these conditions, the dressed states can undergo coherent
mixing induced by nonlinear processes that could be experimentally probed. Finally, we
sumarize the conclusions of this chapter in Sec. 3.5, and outline future directions of the
work.

3.1 Introduction

Over the last decade, synthetic gauge fields have been experimentally realized in
neutral atom systems [84, 85], which provide a highly controllable and tunable platform
for quantum many-body simulations [30]. The achievement of BECs with spin-orbit
coupling (SOC) by the NIST group [104] gave rise to a huge body of theoretical and
experimental research. Such spin-orbit-coupled gases are characterized by parameter-
dependent nontrivial single-particle dispersion relations. In an interplay with the inter-
atomic interactions, these yield a rich phase diagram, including a zero-momentum phase,
a spin-polarized phase and a spatially modulated phase with supersolid-like properties
[108, 186, 192, 248] (for supersolid phases from magnetic interactions see [249–251]).
Likewise, the presence of SOC notably affects the dynamics of the gas, with an excitation
spectrum exhibiting peculiar features such as anisotropy, suppression of the sound veloc-
ity or the emergence of a roton minimum in the plane-wave phase [199, 202, 205, 252].
In the simplest scenario, the engineered SOC consists of equal Rashba [178] and Dressel-
haus [253] contributions. This restricted one-dimensional kind of SOC can be achieved by
employing an external magnetic field and pairs of counter-propagating laser beams that
couple different atomic states in a Raman configuration (see Sec. 2.2.3). More recently,
Rashba SOC in 2D BECs [204, 206] and in ultracold Fermi gases [212] was achieved.
While most of the research focuses on spin-1

2 gases, spin-orbit-coupled BECs with spin
larger than 1/2 have been theoretically studied [195, 196] and spin-1 BECs with SOC
were attained [118].

While most of the research on SOC gases involve very dilute gases, where the interac-
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tions are weak and a mean-field treatment is accurate, many intriguing phenomena ap-
pear in the presence of SOC beyond the mean-field regime. This is the case, for instance,
in optical lattices where, by downplaying the kinetic terms and enhancing the gas density
without further losses, many-body physics at strong coupling may become experimen-
tally accessible [64]. The experimental observation of integer quantum Hall (Hofstadter
model on 2D square lattice [88, 89], and on narrow strips [94, 95, 238, 254, 255] in real or
synthetic lattices [92, 93, 237]) and spin-Hall (Haldane model in honeycomb-like lattices
[102, 227]) effect for noninteracting gases with synthetic gauge fields, the lattice equiva-
lent of SOC, paves the way for the experimental realization of fractional quantum Hall
effect and quantum magnetism with interacting gases. Remarkably, beyond-mean-field
effects can dominate the dynamics in weakly-interacting dilute gases when mean-field
effects largely cancel and lead to the stabilization of quantum droplets [256], as experi-
mentally demonstrated for contact [257–259] and dipolar interactions [260–262].

In this chapter, we will explore a particular regime where beyond-mean-field effects
become relevant to the dynamics of a weakly-interacting spin-1 Bose gas with Raman-
induced artificial Rashba-Dresselhaus SOC. At weak couplings, the single-particle dis-
persion relation exhibits a triple-well shaped lowest band. Similarly as done in [263]
for the spin-1

2 gas, we can consider the well-shaped band to act as a 3-site “lattice” in
momentum space by performing a tight-binding approximation. Even in the case of
SU(N)-symmetric interactions, we show that, for spin 1 and larger, the SOC-mediated
spin dependence of the interactions gives rise to the appearance of correlated tunneling
processes involving the tightly-bound lowest-band states, leading to a richer scenario
than in the spin-1

2 case. It is worth mentioning that synthetic momentum-space lattices
can also be obtained via Bragg transitions in a BEC, as proposed in [264] and exper-
imentally realized [265–267] to simulate topological models. As shown in [268], Bose
statistics can induce localized interactions in momentum space at the mean-field level.
Here, we notice that nontrivial many-body physics in SOC-induced momentum space
lattices emerges due to the interplay of contact binary collisions with the spin texture
present in the dispersion band of a SOC Bose gas. As we will discuss in Sec. 3.4, the
realization of the tight-binding condition in the “momentum-space lattice” can be chal-
lenging in an actual experiment with ultracold atoms. Still, we will show that the few
particle regime of the model is accessible in state-of-the-art experiments with ultracold
atoms, where key experimental signatures of the predicted dynamics, such as a coherent
nonlinear spin mixing not captured by the mean-field equations, could in principle be
observed in quench dynamics protocols. The model developed in this chapter provides
a simple framework to understand such interplay between collisons and synthetic SOC.
As we will develop further in chapter 4 and chapter 5, the results presented in this chap-
ter can, under certain conditions, be extrapolated away from the tight-binding regime,
with potential applications in metrology and in the study of many-body quantum phase
transitions.
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3.2 Physical system

3.2.1 Synthetic SOC

We consider a dilute spinor Bose gas subject to an external uniform bias magnetic
field that we arbitrarily set along ez. The gas is further dressed by two pairs of counter-
propagating laser beams in a Raman scheme, as realized in [118], that couple the Zeeman
sublevels {|F,mF 〉} of a given hyperfine manifold F ≥ 1 in the electronic ground state.
Here we label the targeted bare or uncoupled hyperfine states, which work as the spin
basis, as |s〉, with s ∈ {−1, 0, 1}. We arbitrarily choose the direction of propagation of
the dressing beams along ex. Each two-photon process involves a momentum exchange
between the Raman fields and the atoms given by 2~krex, where kr is the single-photon
recoil momentum. As it is usual, we will often compare the energy scales in the system
to the single-photon Raman recoil energy, which we label as Er = ~2k2

r/2m. Here, m is
the mass of the atoms in the gas.

As covered in chapter 2.2.3, the presence of Raman coupling breaks the Galilean
invariance of the dressed Hamiltonian by establishing a preferred frame. Still, the kinetic
Hamiltonian adopts a translationally invariant and time-independent form in a frame co-
rotating and co-moving with the laser fields [195], where it reads

Ĥk =
~2

2m

(
k− 2krF̂zex

)2
+

Ω√
2
F̂x + δF̂z + εF̂ 2

z . (3.1)

with {~F̂x, ~F̂y, ~F̂z} being the spin-1 matrices. In Hamiltonian (3.1), the rotating wave
approximation is assumed, and the two-photon Rabi frequency of both Raman processes
is considered equal and labelled by Ω. Here, δ and ε parameterize the relative bare states
energy shifts, which can be independently adjusted by controlling the detunings of the
Raman lasers, as discussed in detail in Methods from [118]. Hamiltonian (3.1) effectively
describes a free spin-1 Bose gas with equal contributions of Rashba and Dresselhaus type
of SOC. Notice, though, that in this case the SOC canonical and mechanical momentum
of each state |s〉 differ by s2~kr. The SOC term appearing in (3.1) is given by

ĤRD = −γ~kxF̂z, (3.2)

with a SOC strength γ = 2~kr
m . This term gives a linear contribution in kx to the disper-

sion relation, in a way that depends on the effective spin of the particle. By construction,
the 1D SOC Hamiltonian (3.2) breaks parity symmetry. Instead, it possesses invariance
under the simultaneous action of parity and spin-flip operation, which we will refer to
as s-parity symmetry. It is worth mentioning that this is not generally the case in ar-
tificial SOC, where the coupling between each pair of spin components can be tuned
independently to the momentum degree of freedom. For simplicity, we have restricted
Hamiltonian (3.1) to the scenario in which Raman momentum transfers and Rabi fre-
quencies are set equal. In this setting, s-parity symmetry is maintained in the whole
system by further fixing δ = 0.



3.2 Physical system 59

-4 -2 0 2 4

0

4

 1

 0

-1

Figure 3.1: Energy bands of the Raman-dressed free gas. Dispersion bands of Hamil-
tonian (3.1) along the longitudinal direction ex for Ω = 0.8Er, with δ = ε = 0. The
color texture represents the expected value of the spin of the dressed states. Dashed
lines show the undressed dispersion bands (at Ω = 0).

3.2.2 Momentum-space triple-well band

Along the direction of propagation of the Raman fields, the energy spectrum of
Hamiltonian (3.1) is characterized by three dispersion bands, that we denote by h0(kx),
h1(kx) and h2(kx). In the weak-coupling regime, where Ω < 4Er, and near to the
two-photon resonance, δ, ε � Er, the bare bands for the different spins hybridize most
significantly at the vicinity of the crossings, which are turned into avoided crossings with
a gap that increases with Ω. This results in a characteristic triple-well shape of the
lowest band of the free Raman-dressed gas, as illustrated in Fig. 3.1.

Furthermore, we consider the spin-orbit-coupled gas to be spatially confined by means
of an internal-state-independent potential V̂t = V̂x(z) + V̂⊥(r⊥), with r⊥ = yey + zez.
We will consider the longitudinal potential to be quadratic in x, that is V̂x = 1

2mω
2
xx̂

2.
In momentum space, the harmonic potential acts as an effective kinetic-like term in the
single-particle Hamiltonian, being proportional to the second derivative of the momen-
tum, which prevents the solutions of the system from being well-localized. It will be
useful to write the Hamiltonian of the trapped single-particle system, Ĥs.p. = Ĥk + V̂t,
in the eigenbasis of the homogeneous Hamiltonian (3.1), the so-called dressed basis.
Labelling the dressed states as {|ϕ0(k)〉 , |ϕ1(k)〉 , |ϕ2(k)〉}, we can write

Ĥs.p.(k) =
∑
i

(
hi(kx) +

k2
⊥

2m

)
|ϕi(k)〉 〈ϕi(k)| − 1

2
m~2ω2

xÛ
†
(kx)

∂2

∂k2
x

Û(kx) + V̂⊥, (3.3)

where Û(kx) =
∑

i,j Ui−1,j(kx) |ϕi(k)〉 〈ϕj(k)| is the unitary transformation that relates
the dressed basis with the uncoupled hyperfine state basis {|s,k〉}, with Us,j(kx) =
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〈s,k|ϕj(k)〉.
In this chapter, we want to explore the regime where the longitudinal part of the

spatial potential acts as a perturbation to the free Hamiltonian, in order to preserve the
triple-well structure of the effective lowest dispersion band along ex. Thus, we require
that the longitudinal trapping strength is significantly small compared to the energy
split between the two lowest bands. In this conditions, a lowest-band approximation
can be safely applied: we truncate the single-particle basis to the lowest energy band
states {|ϕ0(k)〉}, neglecting the occupation of higher band states during the dynamics of
the system. The lowest band states have at each quasi-momentum k a bare spin state
composition

−→s0(kx) =
∑
s

Us,0(kx) |s〉 (3.4)

that depends on the strength of the Raman couplings and the detunings. For a state in
the lowest band

−→
φ (k) = (φ(k), 0, 0)T , the energy due to the trapping in the ex direction

is given by 〈
V̂x

〉
−→
φ

= −1

2
m~2ω2

x

−→
φ †Û

†
(kx)

∂2

∂k2
x

(
Û(kx)

−→
φ
)

= −1

2
m~2ω2

xφ
∗

[
∂2

∂k2
x

−
∥∥∥∥∂−→s0

∂kx
(kx)

∥∥∥∥2
]
φ. (3.5)

Up to second order in ωx, the action of the trapping potential on the rotated basis is
simply modified by the addition of a correction to the energy of the band states. From
equations (3.3) and (3.5) it follows that, in the lowest-band approximation, the single-
particle Hamiltonian is reduced to Ĥs.p. = Ĥx + Ĥ⊥, with

Ĥ⊥ =
k2
⊥

2m
+ V̂⊥, (3.6)

and

Ĥx ' h(kx)− 1

2
m~2ω2

x

∂2

∂k2
x

. (3.7)

Here, h = h0 + 1
2m~2ω2

x

∥∥∥ ∂−→s0∂kx

∥∥∥2
is the effective energy band in the dressed and trapped

system. Even for relatively strong trapping, as long as the confinement is weak com-
pared to the recoil energy, the deviation from the free-particle band near the minima is
negligible, as shown in Fig. 3.2.

3.2.3 Many-body Hamiltonian

So far, we have established the noninteracting framework of the problem. Essentially,
the SOC gas at weak Raman coupling strengths presents a many-wells shaped lowest
dispersion band with a spin texture that can be adjusted by tuning the parameters of
the Raman dressing. Given this momentum-dependence of the spin composition of the
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Figure 3.2: Effective lowest energy band. The addition of an external trapping potential
modifies the energy of the dressed states. The effective lowest band h(kx) is plotted for
~ωx = 0 (blue solid line), ~ωx = 0.2Er (green dashed line) and ~ωx = 0.5Er (red dash-
dotted line). In all cases, Ω = Er, δ = ε = 0. Even for relatively large ωx, the states in
the vicinity of the three minima are only slightly modified.

dressed states, we expect the scattering processes involving these states to have different
properties than those of the undressed collisions. To gain insights on such interplay, we
now consider the perturbative addition of interatomic interactions on top of the Raman-
dressed framework presented.

To this aim, we construct the many-body Hamiltonian following a second quantiza-
tion approach (see Sec. 2.2.1 for more details). We introduce the corresponding field
operators for the band modes ϕ̂j(k) obeying standard bosonic commutation relations:[
ϕ̂j(k), ϕ̂†k(k

′)
]

= δ(k− k′)δj,k, and write

Ĥ = Ĥn.i. + Ĥint, (3.8)

where Ĥn.i. and Ĥint stand for its noninteracting and interacting contributions, respec-
tively. In the lowest-band approximation, the former is simply given by

Ĥn.i. '
∫
dkϕ̂†0(k)Ĥs.p.ϕ̂0(k). (3.9)

At low energies, the interacting Hamiltonian is obtained from the two-body inter-
action model [269]. Within the F = 1 manifold, such a Hamiltonian can be generally
split into a SU(3)-symmetric and a non-symmetric contribution. For simplicity, in this
chapter we will consider only the former. Qualitatively, this allows us to focus on the
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phenomena that emerges directly from the interplay between two-body collisions and
SOC in isolation. Quantitatively, the truncation can be justified in many situations.
Very often, the symmetric contribution is much stronger than the non-symmetric one, as
is the case, for instance, of 87Rb [270], and the latter can be treated as a perturbation.
Consistently to perturbation theory, the total spin-dependent collisions are then given by
the sum of the intrinsic ones and the SOC-induced ones. As we will discuss in Sec. 3.4.3,
the latter can be much larger than the former in the regimes we will consider.

Therefore, we characterize collisions simply by a single spin-independent parameter
g = 4π~2(a0 + 2a2)/3m, where a0 and a2 are the scattering lengths in the F = 0

and F = 2 channels, respectively, and derive the the effective spin-dependent collisions
that emerge from SOC. In this way, expressed in the bare-state basis, the interaction
Hamiltonian is given by〈

s1,k; s2,k
′∣∣ Ĥint

∣∣s3,k
′′; s4,k

′′′〉 =
g

2(2π~)3
δs1,s4δs2,s3δ(k + k′ − k′′ − k′′′), (3.10)

resulting in the following second-quantized form

Ĥint =
g

2(2π~)3

∑
s1,s2

∫
dkdk′dq

(
â†s1(k− q)â†s2(k′ + q)âs2(k′)âs1(k)

)
, (3.11)

where âs(k)†, âs(k) are the creation and annihilation operators for the mode |s,k〉,
respectively. As long as the interaction energy per particle in the many-body system is
small compared to the gap to the excited band states, the lowest-band approximation
can be maintained. For the states located in the vicinity of the band minima, we require
that

gn� 4Er, (3.12)

which is easily fulfilled in dilute ultracold Bose gases.

In this situation, we can truncate the expression of âs(k) to the lowest band

âs(k) =
∑
j

Us,j(kx)ϕ̂j(k) ' Us,0(kx)ϕ̂0(k). (3.13)

Finally, after inserting this approximation into (3.11) we obtain

Ĥint '
g

2(2π~)3

∫
dkdk′dq

(
ϕ̂†0(k− q)ϕ̂†0(k′ + q)ϕ̂0(k′)ϕ̂0(k)f(kx, qx)f(k′x,−qx)

)
, (3.14)

with

f(kx, qx) =
∑
s

U∗s,0(kx − qx)Us,0(kx) = −→s0(kx − qx) · −→s0(kx). (3.15)

Hamiltonian (3.14) describes the scattering processes that take place between the
dressed states of the lowest single-particle band. The role of SOC is immediately appar-
ent in the expression. Despite assuming spin-symmetric interactions, notice that each
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Figure 3.3: Emergence of spin-changing collisions in presence of SOC. (a) Schematic
representation of a resonant collision process that couples different spin states mediated
by Raman transitions (represented in wavy lines). (b) Schematic representation of the
spin-changing collision processes that couple the many-body states in the Fock space
spanned by the tight-binding well-states basis |L〉, |M〉 and |R〉 (see Sec. 3.3). These
processes act as effective correlated tunneling processes between the bound states of the
band wells.

scattering process (k,k′) → (k − q,k′ + q) in the lowest band is now weighted by the
overlaps of the spin states −→s0 of the initial and final states involved. Near the band min-
ima, the spin overlaps decrease fast with its quasimomentum separation, which yields a
certain degree of localization of the interactions in quasimomentum space. This feature
is remarkable, as it directly allows to drive correlated behavior in momentum space,
while otherwise totally delocalized interactions could not [265]. A similar phenomenon
was exploited in [116] to create effective interactions with higher-order partial waves at
low energies.

We now focus our attention in the collision processes that involve the dressed states
located at the vicinity of the three band minima. While smaller, the spin overlap between
states located around the different minima is nonzero. This enables resonant two-body
collisions that exchange large momentum at low energies. At the same time, the particles
exchange spin in the process, which is mediated by Raman photon pairs. A schematic
representation of such effective spin-changing collisions is shown in Fig. 3.3(a).

Since we consider weak Raman coupling, these spin-changing scattering processes
have a small amplitude that is proportional to Ω2. Nonetheless, in the remainder of the
chapter we will show that these processes can dominate the dynamics in a regime where
we can apply a momentum space tight-binding approximation. In analogy to the usual
treatment in position-space many-wells configurations, we will take into account only the
lowest energy states of each well of the band, and interpret the collision processes depicted
in Fig. 3.3(b) as a form of atom-pair tunneling processes [271] in a 3-site Hubbard model.
We will see that these well states can be interpreted as an effective spin degree of freedom
with tunable spin-mixing interactions. Relevantly, spin-mixing processes in ultracold
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spinor gases have been extensively studied, with special attention to its potential for
generating many-body entanglement [272–285]. The tight-binding model we develop in
the next section provides a simple framework to explore further the connection between
spin-orbit-coupled gases and spinor gases with spin-changing collisions [286–290].

3.3 Tight-binding approximation

The many-well lowest dispersion band of weakly-coupled Raman-dressed gases easily
invites the interpretation of the low-energy physics of the system as a peculiar kind of
momentum-space optical lattice system. To go a step further in this picture, we now
account for the interatomic interactions following a tight-binding approximation, in the
same fashion as done for regular Hubbard models. Essentially, we will assume that
the single-particle contributions to Hamiltonian (3.8) dominate. We can then treat the
interaction Hamiltonian as a perturbation to the noninteracting system, and describe
the low-energy scenario within the Fock space spanned by the lowest single-particle
energy states, as long as the energy per particle is significantly smaller than the energy
separation between such states and the next lowest family of energy eigenstates.

This simple approach will allow us to work with a drastically reduced Hilbert space
without requiring the usual mean-field treatment of the system. However, such trunca-
tion comes at a price. Keep in mind that in momentum space the role of the trapping
potential is reversed: to have a set of eigenstates that are well localized at the vicinity of
each band minimum and that are well separated from the remainder of the single-particle
eigenstates, the trapping strength is required to be small. Yet the energy separation be-
tween this lowest set of eigenstates and the next is still linearly proportional to the
trapping frequency ωx, which can make an actual realization of a momentum space
tight-binding regime challenging. We will discuss its potential realization further in the
next section, and assume for now the validity of the approach.

In the weak longitudinal-trapping regime, the wavefunctions of the lowest three eigen-
states of Hamiltonian (3.7) can be written as superpositions of three states localized at
the vicinity of a minimum of the wells in the band. In the tight-binding approximation,
we truncate the Hilbert space to just one single-particle state per site, the so-called well
states, with wavefunction ψi(p). Here, i ∈ {−1, 0, 1}, which correspond to the left-,
middle- and right-well states respectively. The transverse part of the wavefunction is
spin independent, so it is useful to write ψi(p) = φi(px)φ⊥(p⊥). The function φi(px) is
centered around the corresponding minima at px = pi, with p±1 ∼ ±2~kr and p0 = 0.
Under these considerations, we can treat many-body problem by truncating the lowest
band field operator to

ϕ̂0(p) ∼ ψ−1(p)b̂−1 + ψ0(p)b̂0 + ψ1(p)b̂1, (3.16)

where b̂i is the bosonic annihilation operator for the ith well-state, and substituting the
expression into equations (3.9) and (3.14) for the second-quantized form of the lowest



3.3 Tight-binding approximation 65

band Hamiltonian.

Naturally, the tight-binding truncation assumes that the energy splitting between
the lowest and next-lowest on-site eigenstates is sufficiently large compared to the energy
per particle. This imposes a much stricter upper limit on the density of the gas in the
trap. At low energies and small Ω, such splitting can be approximated to ~ωx, since
the dispersion is close to being quadratic at the vicinity of the minima at each well.
Therefore we require

gn� ~ωx � Er. (3.17)

In section 3.4.2 we discuss its experimental viability. Henceforth, we will assume that
condition (3.17) holds.

With this simplification, the noninteracting contribution to the truncated Hamilto-
nian in this low-energy description from (3.9) reduces to

Ĥn.i. '
∑
i

εiN̂i −
1

2

∑
〈i,j〉

Jij b̂
†
i b̂j , (3.18)

with

Jij = −2

∫
dkxφ

∗
j (kx)Ĥxφi(kx), (3.19)

εi =

∫
dkψ∗i (k)Ĥs.p.ψi(k), (3.20)

N̂i = b̂†i b̂i, (3.21)

and where 〈i, j〉 stands for the summation on nearest neighbors.

Likewise, by substituting the truncated field operator (3.16) into (3.14), we obtain

Ĥint '
∑
i,j,k,l

Uijklb̂
†
i b̂
†
j b̂k b̂l, (3.22)

where the interacting coefficients Uijkl are given by

Uijkl =
g

2(2π~)

∫
dr⊥

∣∣∣φ̃⊥(r⊥)
∣∣∣4 ∫ dqxGil(qx)Gjk(−qx), (3.23)

with
Gab(q) =

∫
dkxφ

∗
a(kx − qx)φb(kx)f(kx, qx). (3.24)

Here, φ̃⊥ is the inverse Fourier transform of the transverse mode φ⊥. It is easy to show
that Gab(q) = Gba(−q) for every index a, b, and hence

Uijkl = Ujilk = Uklij = Ulkji, for all i, j, k, l. (3.25)

Furthermore from s-parity symmetry it follows

Uijkl = U(−l)jk(−i) = Ui(−k)(−j)l = U(−j)(−i)(−l)(−k). (3.26)
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Condition (3.17) implies that we can treat the interactions as a perturbation to the
truncated noninteracting Hamiltonian and so the wave packets φi(kx) will not not deviate
significantly from the single-particle solutions. For weak longitudinal confinement, we
can regard the momentum potential as harmonic and approximate such single-particle
solutions with Gaussians of width σx '

√
mωx
2~ . With this approximation, from (3.23)

and (3.24) it follows that, for σx/kr � 1

Uijkl ≈ Cijkl(Ω)U0e
−
(
ki+kj−kk−kl

4σx

)2

, (3.27)

with
Cijkl(Ω) = (−→s0(ki) · −→s0(kl)) (−→s0(kj) · −→s0(kk)) , (3.28)

and
U0 =

g 〈n〉
2N

. (3.29)

Here, the coefficient 〈n〉 is the average density in the gas. Hence, as the longitudinal
trapping frequency ωx is made smaller, most coupling coefficients Uijkl decrease expo-
nentially, while those relating modes {φi, φj} with {φi−k, φj+k}, being |k| ∈ {0, 1, 2},
decrease linearly. This is a direct consequence of the momentum conservation of the
contact s-wave scattering processes we consider (3.10). Therefore, there always exist a
certain regime for ωx for which Hamiltonian (3.22) can be safely truncated to the much
simpler form

Ĥint ' Ĥ(0)
int +

1∑
i=0

0∑
j=−1

2U
(1)
ij b̂

†
i−1b̂

†
j+1b̂ib̂j + 2U

(2)
1,−1b̂

†
1b̂
†
−1b̂1b̂−1 (3.30)

with

Ĥ
(0)
int :=

∑
i,j

U
(0)
ij b̂

†
i b̂
†
j b̂ib̂j , (3.31)

U
(k)
ij := U(i−k)(j+k)ji. (3.32)

Fig. 3.4(a) illustrates the dependence of the truncation leading to expression (3.30) ωx. It
shows the ratio between the largest neglected coefficients U(i±1)jji and U

(1)
kl . The contri-

butions proportional to the former can be interpreted as density-dependent tunneling-like
processes. We can roughly say that the truncation is safe when ωx � Er.

The factors Cijkl(Ω) depend on the spin mixture of the band states around the
minima. Specifically, on the spin projection of each pair of initial and final well states
(see eq. (3.28)), which decreases fast with their inter-well distances |i− l| and |j − k|.
Notice that the process involving next-nearest neighbors, weighted by U (2)

1,−1, is of fourth-
order (corresponding to a four-photon process), and therefore scale as Ω4. By contrast
the two-photon nearest-neighbors processes scale quadratically, with U (1)

i,j ∝ Ω2. Finally,
the main contribution to the on-site interaction is not mediated by Raman processes
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Figure 3.4: Parameters of the tight-binding interaction Hamiltonian. (a) Maximum
value of the ratio between the coefficients U(i+1)jji and U

(1)
kl , for any i, j, k, l, as a function

of the longitudinal trapping strength ωx, and for Ω = 0.4 (blue solid line), Ω = 0.4

(red dashed line) and Ω = 0.4 (green dash-dotted line). (b) Maximum value of the
ratio between U (2)

1,−1 and the second order interaction coefficients U (1)
ij , for any i, j. (c)

Maximum value of the ratio between the difference U (0)
i,j and U

(1)
ij , for any i, j. In all

cases, the coefficients are computed using (3.27), which considers gaussian modes φi(kx)

with standard deviation σx =
√
mωx/2~.

and hence is of zero-order with respect to Ω. With the three kind of processes scaling
differently, we can easily tune the ratio between the different coefficients. In particular,
by lowering Ω, the ratio U (2)

1,−1/U
(1)
i,j can be made arbitrarily small, while maintaining the

energy gap between the two lowest dispersion bands, which scales linearly. It is worth
mentioning that such ratio depends weakly on the trapping frequency (see Fig. 3.4(b)).

Finally, the Hamiltonian can be further simplified by dropping the contributions
O(Ω) to the zeroth order processes. These contributions decrease fast with ωx and the
ratio U (0)

ij /U
(0)
kl approaches 1 as ~ωx/Er approaches 0, for all indices i, j, k, l. All such

terms can then be added up to a single contribution that depends only on the total
number of particles, N

Ĥ
(0)
int

ωx→0−→ U0N̂(N̂ − 1), (3.33)

which does not affect the dynamics of the isolated system. This substitution can be
safely done when the next-leading terms proportional to U (1)

i,j are large in comparison to
the corrections O(Ω), which is the case ωx � Er, as shown in Fig. 3.4(c).

Dropping the term in (3.33) from (3.30) and taking into account equalities (3.25) and
(3.26), the total Hamiltonian in the tight-binding approximation can be approximated
to

Ĥt.b. = Ĥn.i. + Ĥint ' Ĥ1 + Ĥ2 + Ĵ , (3.34)
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with

Ĥ1 := U1

[
b̂†Lb̂
†
Rb̂M b̂M + b̂Lb̂Rb̂

†
M b̂
†
M

+ N̂RN̂M + N̂M N̂L

]
− ε̃N̂M (3.35)

Ĥ2 := U2N̂LN̂R, (3.36)

Ĵ := −J
2

(
b̂†Rb̂M + b̂†Lb̂M + b̂Rb̂

†
M + b̂Lb̂

†
M

)
. (3.37)

Here, to simplify the notation we have conveniently relabelled the left, middle and right
well modes by identifiying

{
b̂−1, b̂0, b̂1

}
with

{
b̂L, b̂M , b̂R

}
. Furthermore, at δ = 0, due

to s-parity symmetry we have U (1)
RM = U

(1)
LM = U

(1)
MM = U

(1)
RL := U1/2 (see (3.32)),

JRM = JLM := J and εL = εR (see (3.19) and (3.20)). Then, the linear term in
N in (3.9) reduces to an energy offset for the central well that we parameterize with
ε̃ = (εR + εM )/2 − εM . We conveniently incorporate such term into Ĥ1, despite being
of noninteracting origin. For convenience, the coefficient 2U

(2)
RL is relabelled as U2. The

operator Ĵ can be interpreted as a trapping-mediated tunneling, while Ĥ1 and Ĥ2 are the
effective nearest neighbors and next-nearest neighbors interaction operators, respectively.

In this way, Hamiltonian (3.34) is a good description as long as condition (3.17) is
fulfilled. Observe that the operator Ĥ1 naturally includes correlated tunneling terms
proportional to b̂†Lb̂

†
Rb̂M b̂M + H.c. that couple the central well mode with the left and

right modes. Remarkably, these are the leading order interaction terms in the tight-
binding Hamiltonian (3.34). Their presence, therefore, yield an extended Hubbard model
in quasimomentum space that is richer than its position-space counterpart. Note that
these terms involves more than two modes simultaneously, and thus cannot occur in the
most explored spin-1

2 scenario [263]. This fundamental difference motivates the study
here of the properties of the spin-1 system.

3.4 Properties of the tight-binding Hamiltonian

We now explore the properties of the tight-binding Hamiltonian (3.34) derived in the
previous section, which is characterized by the presence of correlated tunneling terms
that involve the bound states of the triple-well momentum-space potential.

3.4.1 Spectral properties of Ĥt.b.

We consider first the case J/U1 � 1. Such condition occurs at sufficiently small ωx,
since U1 and U2 are linear in the standard deviation σx (see eqs. (3.27)-(3.29) ) and thus
proportional to ω1/2

x for ωx → 0, while J decreases exponentially with ωx. In this regime
the interactions dominates and the dynamics is solely determined by the Raman-induced
interactions. We first consider the situation where the next-nearest neighbor interactions



3.4 Properties of the tight-binding Hamiltonian 69

(a) (b) (c)

Figure 3.5: Spectrum of the tight-binding Hamiltonian I. eigenvalues λi of (3.34) with
ε̃ = 0 and U2 = 0, in the even parity subspace for (a) N = 2 and (b) N = 4, as a
function of χ = 2

π arctan
(
U1
J

)
. The gaps at the avoided crossings are small but nonzero,

as illustrated in the inset. The energy gap between the two lowest energy eigenstates is
plotted in (c), for N = 4 (blue solid line), N = 10 (red dashed line) and N = 14 (black
dotted line).

can also be neglected, that is, when U2 � U1, which applies for small Ω. Under these
considerations

Ĥt.b. ∼ Ĥ1, (3.38)

which simply includes the possible collision processes between adjacent well states that
exchange momentum, as shown in Fig. 3.3(b). We can interpret such processes as effective
spin-changing collisions, if we regard the dressed well states as effective spin degrees of
freedom. The picture is especially appropriate, if we take into account that each well-
state correlates strongly with the bare spin states when the Raman coupling is weak.

To make this interpretation concrete, we introduce the effective spin operators

L̂x,y,z =
∑
µν

b̂†µ(F̂x,y,z)µν b̂ν . (3.39)

It is also convenient to introduce the quadrupole tensor element

L̂zz =
∑
µν

b̂†µ(F̂ 2
z )µν b̂ν . (3.40)

Substituting (3.39) and (3.40) into (3.35) we can reexpress Ĥ1 as

Ĥ1 =
U1

2

[
L̂2 − L̂2

z +

(
2ε̃

U1
+ 1

)
L̂zz − N̂

]
. (3.41)

Naturally, Hamiltonian (3.41) possesses a global U(1) symmetry associated with the
conservation of parity and the total number of particles N . Moreover, the effective
magnetization is preserved in the collision processes, with

[
Ĥ1, L̂z

]
= 0, yielding an

additional U(1) symmetry associated with the conservation of the left- and right-well
population imbalance, which we label as mz.
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(a) (b) (c)

Figure 3.6: Spectrum of the tight-binding Hamiltonian II. Eigenvalues λi of (3.34) with
ε̃ = −U1/2 and U2 = 0, in the even parity subspace for (a) N = 2 and (b) N = 4, as
a function of χ = 2

π arctan
(
U1
J

)
. The gaps at the crossings vanish at this value of the

parameter ε̃. The energy gap between the two lowest energy eigenstates is plotted in (c),
for N = 4 (blue solid line), N = 10 (red dashed line) and N = 14 (black dotted line).

Furthermore, Hamiltonian Ĥ1 acquires yet another U(1) symmetry and becomes
integrable when ε̃ = −U1/2. The choice ε̃ = −U1/2 eliminates the quadrupolar-like
contribution proportional to L̂zz and leaves the expression of the Hamiltonian only in
terms of the spin operators L̂j and the total number of particles. The Hilbert space H

can then be split into the orthogonal subspaces H N
l , corresponding to all the irreducible

representations of so(3) that are spanned in the subspace given by a total number of
particles N , H N . These subspaces have dimension 2l + 1 and are labelled by the
total number of particles N and the possible values of the total angular momentum
numbers l. Since the wave function must be symmetric, each subspace H N realizes the
l = 0, 2, . . . , N representations when N is even, and l = 1, 3, . . . , N representations when
N is odd. In this most symmetric configuration, the spectrum of Ĥ1 at ε̃ = −U1/2 is
fully characterized by the additional quantum number mz ∈ {−l,−l + 1, . . . , l}. The
corresponding eigenvalues are given by

λ(N,l,mz) =
U1

2

[
l(l + 1)−m2

z −N
]
. (3.42)

The so(3) spin structure of Ĥ1 at ε̃ = −U1/2 is preserved if we add a nonzero
tunneling contribution to the Hamiltonian (recall (3.34) and (3.37)). Effectively, the
tunneling operator acts as transverse magnetic field with Ĵ = − J√

2
L̂x. However, in

this case the U(1) symmetry associated with the conservation of magnetization breaks
down to a Z2 symmetry associated with parity conservation, and the integrability of the
Hamiltonian is lost. Still, it leaves the subspaces with different total effective spin and
particle number H N

l uncoupled. In Fig. 3.5 we show the energy spectrum of Hamiltonian
(3.34) for N = 2 and N = 4 in the symmetric subspace with ε̃ = 0 and U2 = 0, plotted
against χ = 2

π arctan
(
U1
J

)
. The parameter χ ranges from the noninteracting scenario at

χ = 0 to the case with suppressed tunneling at χ = 1. The spectrum exhibits avoided
crossings with nonvanishing level repulsion across all the H N subspaces. The level
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II)

IV)

VI)

Figure 3.7: Two coupled two-mode-Bose-Hubbard models. Representation of all
the collision processes in the transformed mode basis {|x〉 , |y〉 , |M〉} that are included
in the operator Ĥ1, where |j〉 = b̂†j |0〉. In this basis, the problem is analogous to two
identical double-well configurations with atom-pair tunnelings that share one site.

repulsion vanishes in all the crossings for ε̃ = −U1/2, as shown in Fig. 3.6. The values of
χ at which the crossings are found within a given subspace H N are preserved along the
subspaces H N ′ with a higher number of particles N ′ > N of the same number-parity,
as illustrated for the two lowest eigenstates in Fig. 3.6(c). Naturally, this results from
the block diagonalization of the Hamiltonian into the different spin representations H N

l

at ε̃ = −U1/2.

A remarkably similar behavior is observed in the two-mode Bose Hubbard model
with atom-pair tunneling along the boundary between phase-locking and self-trapping
phases [291, 292]. This connection can be made more evident by introducing the unitary
transformation

b̂x = cos θ
b̂L + b̂R√

2
− i sin θ

b̂L − b̂R√
2

, (3.43)

b̂y = sin θ
b̂L + b̂R√

2
+ i cos θ

b̂L − b̂R√
2

, (3.44)

and reexpressing Hamiltonian (3.34) in terms of the modes b̂x, b̂
†
y, and setting U2 = 0,

yields

Ĥt.b. =U1N̂xN̂M +
U1

2

(
(b̂†x)2b̂2M + b̂2x(b̂†M )2

)
− J cos θ

2

(
b̂†xb̂M + b̂xb̂

†
M

)
− ε̃N̂M

U1N̂yN̂M +
U1

2

(
(b̂†y)

2b̂2M + b̂2y(b̂
†
M )2

)
− J sin θ

2

(
b̂†y b̂M + b̂y b̂

†
M

)
. (3.45)

Clearly, the tight-binding Hamiltonian (3.34) can be interpreted as the composition of
two-mode Bose Hubbard systems sharing one mode, where nonlinear atom-pair tunneling
processes are included, as depicted in Figure 3.7. Like in such systems, fragmentation
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Figure 3.8: Condensed fraction of the ground state. (a) Largest eigenvalue of the one-
body density matrix ρ1, which quantifies the fragmentation of the ground state of Hamil-
tonian (3.34), as a function of the parameters χ = 2

π arctan
(
U1
J

)
and ε̃. (b) Largest

eigenvalue of ρ1 as function of ε̃ while fixing χ = 1, which corresponds to setting the
effective transverse magnetic J√

2
L̂x field to zero. (c) Largest eigenvalue of ρ1 as func-

tion of χ while fixing ε̃ = −U1/2, which corresponds to setting the effective tensor field
2ε+U1

2 L̂zz field to zero. In all cases we set U2 = 0.

can occur in the ground state when the interactions dominate and it corresponds to the
degeneracy of mean-field solution. The fragmentation can be evaluated using Penrose-
Onsager criterion [293]. It is quantified by the eigenvalues λk of one-body density matrix,
which for our system is given by ρ1

ij =
〈
b̂†i b̂j

〉
. The largest eigenvalue of ρ1

ij is plotted
in Fig. 3.8 as a function of χ and ε̃/U1. Observe that at ε̃ = −U1/2 and large χ, the
ground state becomes triply fragmented with all λk = N/3, as occurs in spinor gases
with spin-dependent collisions [294] in the absence of an external magnetic field. Here,
despite having assumed symmetric bare interactions, spin-spin interactions are effectively
induced by Raman dressing. As expected, the addition of both an effective magnetic bias
field through the tunneling term proportional to JL̂x or the quadrupolar tensor element
proportional to L̂zz breaks the triple degeneracy.

Finally, unlike with the tunneling operator Ĵ , the addition of a nonzero term Ĥ2 (3.36)
breaks the U(1) symmetry associated with the charge l in the three-mode Hamiltonian
(3.34). We can write

Ĥ2 =
U2

4

(
L̂2
zz − L̂2

z

)
. (3.46)

The term proportional to L̂2
zz in (3.46) cannot be compensated by adjusting the single-

particle parameters. As
[
L̂2
zz, L̂

2
]
6= 0, Ĥ2 couples the different subspaces H N

l across
all parameter space. Even so, its effect remains small at weak Raman coupling (see
Fig. 3.4). Moreover, it is worth mentioning that while the total spin l is not preserved
by Ĥ2, the magnetization mz is.
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Figure 3.9: Spin mixing induced by effective spin-dependent collisions. Mean population
in the middle well mode 〈N̂M 〉 as a function of time for a state initially at (b̂†M )N |0〉 (blue
solid line), (b̂†Lb̂

†
R)N/2|0〉 (red dashed line) and (b̂†Lb̂

†
M b̂
†
R)N/3|0〉 (green dash-dotted line),

with N = 60. The initial state is evolved under Hamiltonian (3.48) with λ2 = 0 and
q = 0 in (a) and q = −λ/2 in (b).

3.4.2 Dynamical properties of Ĥt.b.

So far, we have seen that the interplay between Raman dressing and s-wave scattering
in the atom cloud gives rise to effective spin-changing collisions that couple the dressed
states at the vicinity of the lowest dispersion band minima. By truncating the Hilbert
space to just the three lowest bound states of the band, these processes are captured
by Hamiltonian (3.35), and the low-energy landscape can be described by the collective
spin Hamiltonian

Ĥt.b. '
U1

2

[
L̂2 − L̂2

z +

(
2ε̃

U1
+ 1

)
L̂zz

]
− J√

2
L̂x +

U2

4

(
L̂2
zz − L̂2

z

)
, (3.47)

where we have dropped the terms that depend only on the total number of particles.
Since J increases exponentially with ωx and U does it linearly, we can always find a
regime where J � U1, regardless of the value of Ω. We will now focus on this regime,
where the effective transverse field contribution to (3.47) vanishes, and the Hamiltonian is
block-diagonalized in subspaces with preserved effective magnetization,mz. Remarkably,
in the subspace of zero magnetization we have

Ĥt.b.
mz=0−→ λ

L̂2

2N
+ qL̂zz +

λ2

4N
L̂2
zz, (3.48)

where we define λ1 = U1N , λ2 = U2N and q = ε̃+ λ
2N . In this form, Hamiltonian (3.48)

is analogous to the Hamiltonian describing the spin dynamics of a spinor BEC with spin-
dependent collisions [165, 295, 296], where coherent spin-mixing is induced by nonlinear
processes [295, 296], with a small correction proportional to λ2 (remind that, since we
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Figure 3.10: Signature of the spin-mixing dynamics. (a) Time-averaged relative oc-
cupation of the middle well mode 〈N̂M 〉τ , as a function of q for a state initially at
(|ϕ(t = 0)〉 = b̂M )N |0〉. The state is evolved under Hamiltonian (3.48) and the values
are averaged over a time τ=10τc for different numbers of particles: N = 10 (blue solid
line), N = 100 (orange dashed line), N = 1000 (green dash-dotted line). (b) Corre-
sponding values of 〈N̂M 〉τ for N = 100 and λ2 = 0 (blue solid line), λ2 = 0.2λ (orange
dashed line) and λ2 = 0.4λ (green dash-dotted line).

assume weak Raman coupling, we have λ2 � λ1 (see Fig. 3.4)). Indeed, at resonance,
with q = λ2 = 0, a generic state initially prepared in the mz = 0 manifold undergoes
nonlinear coherent spin mixing, as illustrated in Fig. 3.9(a), over times characterized by

τc =
~
λ
N1/2. (3.49)

In the figure, the expected value of the population in the middle well, 〈N̂M 〉, is plotted
as a function of time for different initial states |ϕ(t = 0)〉. The macroscopic spin mixing
time τc is a potential signature to measure the SOC-induced nonlinear spin dynamics.
However, the induced spin-mixing is very sensitive to the resonance of the two-body
spin-exchanging processes, as shown in Fig. 3.9(b), where the same initial states as in
Fig. 3.9(a) are let evolve while setting q = − < λ/2.

Such sensitivity is illustrated in Fig. 3.10(a), where we plot the time-averaged value
of the population in the middle well state, 〈N̂M 〉τ , as a function of q, and for several
values of N . The values are averaged over a time τ = 10τc, with the initial state prepared
with all atoms in the middle well state. The profile of the drop in 〈N̂M 〉τ converges fast
as N is increased, to a width in q that is roughly given by ∆q ∼ λ. As we will discuss in
the next chapters, the onset of spin oscillations following a quench at ε̃ = −2 is related to
a quantum phase transition in the most excited state of the collective spin Hamiltonian
[297, 298]. In Fig. 3.10(b), we show the corresponding values of 〈Nm〉τ obtained by
setting λ2 6= 0. At first order, the addition of the term proportional to λ2L̂

2
zz to the
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Hamiltonian results in a shift in the resonance of the spin-mixing by ∼ −λ2
4 .

In an experimental implementation, the state (b̂M )N |0〉 can be easily prepared by
initially setting q < −2λ. The dynamics depicted in Fig. 3.10 can then be induced by a
quench in the central well energy ∆0 (as defined in section 3.2.1) to reach the targeted
value of q. The quench can be performed without considerably populating the higher
bands due to the scale separation between the gap, which, to first order, is given by Ω

at the avoided crossings, and λ � Ω. With this preparation, the mean population in
the middle well, 〈N̂M 〉, is a suitable observable to probe experimentally the correlated
spin dynamics induced by the tight-binding Hamiltonian (3.34). Notice that in the
weakly-coupled regime, the populations in the left, middle and right well modes are
highly correlated to the populations s = −1, s = 0 and s = 1 bare spins, respectively.
Moreover, the Rabi frequency could be adiabatically turned off in order to better the
correlation between the occupation of well states and the spin states, improving the
resolution in the eventual Stern-Gerlach measurement of the populations.

3.4.3 Experimental considerations

To experimentally probe the described SOC-induced spin-mixing dynamics in a
quench protocol as described, we require that the region of resonance ∆q ∼ λ is suf-
ficiently large compared to the noise associated with q, and that τc ∝ 1/λ is short
compared to the characteristic times associated with the atom loss due to spontaneous
emission from the Raman beams and the heating mechanisms that take place in the
dressed and trapped gas. As a first approach, the optimization of both quantities relies
then in having the effective spin-spin interaction strength λ as large as possible while
simultaneously fulfilling the constraints that led to the derivation of the tight-binding
Hamiltonian. Mainly, recall from (3.17) that the validity of the tight-binding Hamilto-
nian relied on an upper bound on the atom density. From (3.27), (3.28) and (3.29), it
follows that λ = C−1,1,0,0g 〈n〉. At weak couplings, we can compute C−1,1,0,0 from the
perturbative expressions of the spin compositions of the dressed states at the lowest band
minima −→s0(kj), which yields C−1,1,0,0 = Ω2/16E2

r +O((Ω/Er)
3), and so

λ ' g 〈n〉 Ω2

16E2
r

. (3.50)

For simplicity, let us consider harmonic trapping along the perpendicular directions,
with V̂⊥ = 1

2m(ω2
yy

2 + ω2
zz

2), and define the aspect ratios ry = ωy/ωx and rz = ωz/ωx.
Notice that the tight-binding condition also puts a lower bound on the transverse trap-
ping frequencies, and so we require ry, rz ≥ 1. Considering Gaussian profiles for the well
modes, we obtain

g 〈n〉 = gN
(mωx

2π~

)3/2
(ryrz)

1/2. (3.51)

By parameterizing

α =
g 〈n〉
~ωx

, (3.52)



76 Coherent spin mixing via spin-orbit coupling in Bose gases

 0

 5

 10

 15

 20

 5  10  15  20  25  30  35  40  45  50

... ...

... ...

(a) (b)

Figure 3.11: Realization of the tight-binding Hamiltonian in the few-particle regime.
(a) Schematic representation of the Raman-dressed gas loaded in a deep optical lattice.
(b) Number of particles per lattice site N and relative strength of the inter-site tunneling
strength Jy/λ, as a function of the lattice depth Vl/El. The quantities are computed
using equations (3.54) to (3.57), where we set Ω = 2Er and α = β = 0.1. The recoil
energies of lattice beams are computed by considering λl = 1064 nm and by using the
mass of the 41K and 87Rb atomic species. The respective recoil energies are computed
using λr = 769 nm and λr = 790 nm, and the scattering parameter g for both species is
taken from [147].

with 0 < α� 1, and

β =
~ωx
Er

, (3.53)

with 0 < β � 1, and using equations (3.50) and (3.51) we can write λ and N as a
function of the recoil energy

λ = αβ
Ω2

16Er
, (3.54)

N =
α~3

g
√
βryrzEr

(m
2π

)−3/2
. (3.55)

We can use expressions (3.54) and (3.55) to gain insights on the experimental vi-
ability of the tight-binding Hamiltonian presented in this chapter. As a reference, we
consider 41K and 87Rb atoms, which have a rather large fine structure splitting and al-
most symmetric interaction, and use the corresponding values of a0, a2 given in [147].
Their large fine structure splitting results in a relatively low photon scattering rate from
Raman beams (see Sec. 2.1), and thus allows for long-lived Raman-dressed gases. By
setting, e.g., α = 0.1 and β = 0.1, we see from eqs. (3.52) to (3.54) that, for both
species, we can obtain λ in the order of several tens of Hz while keeping Ω < 4Er. Like-
wise, 〈n〉 can be kept in the order of 1013cm−3, which is compatible with typical dilute
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ultracold gases. However, notice from (3.55) that the constraint on the density (α� 1)
drastically limits the number of particles in the gas. Even in the most favorable scenario
of 41K atoms in an isotropic trap (ry = rz = 1), the gas would be limited to maximal
sizes of ∼ 102 particles. While such small condensates can be technically challenging to
implement, the few-particle regime could be explored by loading the condensate into a
deep 1D optical lattice, displayed perpendicularly with respect to the Raman beams, as
represented schematically in Fig. 3.11(a). There, we consider a 1D optical lattice along
the ey direction, generated by means of two counter-propagating laser beams with wave
vector kl.

In the deep lattice regime (see Sec. 2.3), where the lattice potential Vl is much larger
than the recoil energy of the lattice beams El =

~2k2l
2m , we have

~ωy = 2
√
VlEl, (3.56)

which yields an inter-site tunneling strength for the trapped atoms of

Jy ' El
4√
π

(Vl/Er)
3/4 exp(−2

√
VlEl). (3.57)

This configuration is equivalent to set e.g. ry � 1 in equation (3.55) (notice that λ is
unaffected by the choice of ry and rz). Since N ∝ r

−1/2
y , by setting ry � 1 few atoms

could still be placed per lattice site in the Mott insulator regime, where each site could
be treated as an independent realization of the tight-binding Hamiltonian. This could
be achieved while keeping a relatively large value for λ.

By considering 41K and typical lattice wavelengths ∼ 10−6 m, we can easily set
Jy � λ, with lattice depths of few tens of the recoil energy and many atoms per site. By
way of example, in Fig. 3.11(b) we plot the number of atoms per site and the strength of
the inter-site tunneling relative to λ as a function of the lattice depth. For both 41K and
87Rb atoms, we set the Raman wavelength to λr = 790 nm and the lattice wavelength
to λl = 1064 nm, and fix Ω = 2Er and α = β = 0.1. With these numbers, we obtain
a spin-mixing parameter of λ/h ∼ 20 Hz in the case of 41K, and λ/h ∼ 10 Hz in the
case of 87Rb. The corresponding characteristic spin-mixing times obtained using (3.49)
in these conditions are around τc ∼ 20ms for both species, which is compatible with the
lifetime of ultracold Raman-dressed gases [244]. Note that the mixing times for the two
species are similar since the optimal number of particles per site differs. The fact that
the mixing times scale with N1/2 further motivates its exploration in the few-particle
regime.

It is left to compare the characteristic energy scale of the spin-mixing dynamics, λ,
to the main sources of noise and uncertainty in the Raman-dressed gas. As shown in
Fig. 3.10, macroscopic spin oscillations are only induced by Hamiltonian (3.48) near the
resonant condition at q = 0, and the resonance width for the proposed observable, 〈N̂M 〉,
is in the order of λ. Aside from the atom loss due to spontaneous emission from the
Raman beams, a major source of noise in typical experiments with Raman-dressed spinor
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gases stems from the instability of the external magnetic bias field. This is particularly
true in the spin-1 scheme proposed in this chapter, where a large bias field B is required
in order to tune ε < 0 in the dressed Hamiltonian (3.1), or equivalently, q < 0 in the spin
Hamiltonian (3.48). To achieve ε < 0, each pair of hyperfine states needs to be coupled
by independent Raman transitions. In turn, this requires having a quadratic Zeeman
split sufficiently large to avoid cross coupling. This effect was achieved in the experiment
from [118] by employing a static bias field as large as B ∼ 35G.

With such strong fields, magnetic fluctuations can get significantly large even in the
controlled set-ups of ultracold atom experiments [118]. For both 41K and 87Rb in the
F = 1 manifold, a magnetic fluctuation of ∆B ∼ 10−3 G induces a fluctuation of the lin-
ear Zeeman split in the order of several hundreds of Hz. Such modulation of the Zeeman
energy levels translates into the addition of a fluctuating term δ(t)L̂z to the spin Hamil-
tonian (3.47), with an amplitude that is at least an order of magnitude larger than λ.
Luckily, the protocol proposed is designed to be robust against such fluctuations at linear
Zeeman level. This is clear since we prepare the initial state in the zero magnetization
manifold, where 〈L̂z〉 = 0. As long as δ is kept small compared to Er, the parameters
of the tight-binding Hamiltonian are not modified significantly. However, magnetic fluc-
tuations can not be overlooked since we still need to account for the fluctuations in the
quadratic contribution to the Zeeman split, albeit it is typically much smaller. Taking
as a reference the values provided in [118], with B ∼ 35G and ∆B ∼ 10−3 G, the fluctu-
ation in the quadratic Zeeman shift is in the order of few Hz, which is already below the
values of λ that are obtained in the conditions described in Fig. 3.11. Actually, in [118],
the largest contribution to the uncertainty of ε stems not from magnetic field fluctuations
but from calibration error in Ω. The mechanism behind such contribution stems from
the residual cross coupling between the two Raman transitions, which is proportional to
Ω2. Nonetheless, since Ω remains very stable during the lifetime of the Raman-dressed
condensate, its associated error can be therefore considered a shot-to-shot calibration
error rather than a source of noise and heating.

Therefore, the spin-mixing dynamics described in this chapter can in principle be
resolvable in realistic experiments. We note that magnetic noise could be optimized
further. For instance, recently, in [299], the root mean square value of the magnetic
field noise was kept as low as a few tens of µG. There is yet another consideration that
is worth mentioning. In the derivation of Hamiltonian (3.48), we have neglected the
contribution from the momentum-space tunneling term proportional to JL̂x, which acts
as a transverse magnetic field. In order to confine the many-body state within themz = 0

subspace during the dynamics, we therefore require that |J | � λ. This is guaranteed as
ωx approaches 0, yet since we want to maximize λ ∝ β, it may be convenient to relax
the constraint on J . In any case, this can be addressed by setting a comparatively large
detuning |δ|, which separates energetically the subspaces with different magnetization
mz, and sets the tunneling processes out of resonance.

To conclude, we note that in (3.54) we have not taken into account the intrinsic spin-
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changing collisions that in the spinor gas arise from the non-symmetric contribution to
the two-body interacting Hamiltonian, as discussed in Sec. 3.2.3. Such processes have a
scattering parameter given by ga = 4π~2(a2−a0)/3m [147]. When |ga| � g, as is the case
for 41K and 87Rb, its effect can be safely reintroduced simply by adding the intrinsic and
SOC-induced parameters into a single parameter ga + λ, and neglecting the corrections
of order gaΩ2. Both 41K and 87Rb are ferromagnetic species, which yields a negative
correction to the effective spin-mixing rate. Luckily, in both cases we can easily have
|ga| � λ by setting Er < Ω < 4Er, and hence such a correction does not significantly
alter the analysis made above regarding the energy and time scales. Moreover, we note
that the parameters used in Fig. 3.11(b) are chosen merely to give a sense of scale, and
that the implementation could in principle be further optimized in an actual experiment.

3.5 Conclusion

In this chapter, we have explored the many-body properties of Raman-dressed spinor
condensates at low energies. As we have covered, spin-orbit coupling can be tailored in
charge-neutral ultracold atoms by means of Raman dressing. In a Raman transition, the
atomic levels are indirectly coupled via resonant two-photon processes that involve a large
momentum exchange between the electromagnetic field and the atoms. With Raman
beams typically in the near infrared regime, the recoil kinetic energy associated with
such processes is large compared to the energies that characterize the many phenomena
in the ultracold Bose gas, and it effectively induces a coupling between the momentum of
the atoms and their internal state, which can be interpreted as a synthetic form of SOC.
The aim of this chapter has been the study of the interplay between s-wave scattering
processes and this form of SOC.

In particular, we have focused on the low-energy landscape of the weakly coupled
spin-1 gas, where the lowest single-particle dispersion band exhibits a triple-well shape.
Inspired by recent works on momentum-space lattices [265–267], we have regarded the
weakly dressed gas as a momentum space Hubbard-like system. We have shown that, in
this tight-binding regime, the SOC-mediated modulation of the scattering processes in
the gas gives rise to effective correlated tunneling processes between the site modes in
the momentum space lattice. Their presence supposes a marked departure from conven-
tional position space analogies. Interestingly, these virtual processes act as spin-changing
collision processes that can be tuned with the Raman intensity.

We have discussed the spectral properties of the resulting Hamiltonian, and showed
that it becomes integrable in a certain region of the parameter space. In such conditions,
the system can be mapped into a collective spin Hamiltonian, and the dynamics becomes
analogous to the one taking place in undressed spinor BECs with spin-dependent scat-
tering parameters [165, 295, 296]. Remarkably, we have shown that the SOC-induced
spin-changing collisions can dominate the dynamics of the system in the few-particle
regime. Exploiting the difference between the noninteracting and the interacting energy
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scales, we have proposed a quench protocol through which all the noninteracting dynam-
ics is frozen, effectively isolating the low-energy phenomena of interest. The visibility
of the induced collective spin dynamics heavily relies on the choice of the experimental
signature and the initial state, which allows the protocol to be robust against relatively
large fluctuations in the bias magnetic field. Finally, we have shown that the predicted
spin dynamics can be measured in state-of-the-art experiments with ultracold atoms.
It is worth stressing that, in the experimental setup sketched in Sec. 3.4.3, atom-pair
tunneling-like processes are expected to be the leading order contributions to the resulting
effective perturbative dynamics. By contrast, in conventional Hubbard models, atom-
pair hopping processes are typically much smaller than one-body tunnelings, and the
latter can not be suppressed independently of the former. Already at the two-particle
level, these atom-pair processes coherently couple the two-body states |020〉 ↔ |101〉.
Thus, one could exploit them to generate maximally entangled pairs in each site of the
lattice. The presence of SOC would translate these quantum correlations to the external
degrees of freedom of the atoms, making the problem richer.

To conclude, we note that the analogy explored in this chapter between the dressed
condensate and its bare counterpart paves the way for the next two chapters in this
thesis, where this connection is explored further. Despite its apparent simplicity, the
collective spin dynamics in spinor condensates have been the framework of a large body
of research over the last two decades involving many-body phenomena [300–310]. Its
success is in part due to the large tunability of ultracold atomic gases as an experimental
platform. From a practical point of view, the spin-mixing mechanism in such systems
have been proposed and exploited, e.g., for the generation of macroscopic entanglement
[272, 274–285, 311], to be used in metrological applications [73]. In the dressed dynamics
that we have described, the induced spin-spin interactions can be tuned independently of
the density of the gas by adjusting the intensity of the Raman beams. This extra degree
of tunability allows for further harnessing of the spin-mixing dynamics, which opens a
new avenue for its exploitation in quantum protocols. Finally, we note that the spin-1
scenario we have discussed in this chapter is the minimal spin size where the described
Raman-induced spin-changing collisions manifest and can be experimentally detected.
Similar and more complex processes appear at higher spins. Such terms can take place
in spin-orbit-coupled Bose gases of alkali atoms such as Caesium (F = 3) or Lanthanide
atoms such as Dysprosium [210].



CHAPTER 4

Dynamical preparation of stripe states in spin-orbit-coupled gases

In spinor Bose-Einstein condensates, nonsymmetric spin interactions are a remark-
able proxy to coherently realize macroscopic many-body quantum states. In particular,
spin-changing scattering processes have been exploited to generate entanglement, to
study dynamical quantum phase transitions, and proposed for realizing nematic phases
in atomic condensates. In the previous chapter, we showed that in a spinor gas dressed
by Raman beams, the coupling between spin and momentum induces a spin dependence
in the scattering processes. We explored a regime that involved the lowest-energy single-
particle solutions of the dressed and trapped gas and showed that there the modulation of
the collisions lead to a collective spin Hamiltonian. The derived Hamiltonian effectively
described an undressed spinor gas in which the nonsymmetric spin interactions could be
adjusted with the intensity of the Raman beams. This chapter explores further this de-
scription of spin-orbit-coupled gases, and show that the same collective spin physics can
be generalized by considering instead the dynamics of self-consistent modes located at
the vicinity of the band minima, which are perturbatively coupled by the SOC-induced
nonsymmetric interactions.

The approach taken in the previous chapter to treat the Raman-induced spin-mixing
dynamics stemmed from an intuitive momentum-space lattice picture in the weakly-
coupled regime. While such an approach provided a simple tool to understand the
processes taking place and their relative energy and time scales, it also imposed an
upper bound on the density of the gas that limited the experimental accessibility of the
model to the few-particle regime. In this chapter, we show that the equivalence at the
quantum level of the weakly-coupled Raman-dressed gas to an artificial spinor gas with
tunable spin-changing collisions holds away from the tight-binding regime previously
considered. The understanding of the low-energy landscape of the dressed system in

81



82 Dynamical preparation of stripe states in spin-orbit-coupled gases

these terms allow us to design a robust protocol to coherently drive a spin-orbit-coupled
condensate into the experimentally elusive ferromagnetic stripe phase of the spin-1 gas.
Stripe phases in spin-orbit-coupled gases have drawn significant attention due to their
supersolid-like properties. Here we propose a novel preparation via crossing a quantum
phase transition of the resulting effective low-energy spin model in an excited-state.

The chapter is organized as follows. We start by motivating the exploration of the
stripe phase of spin-orbit-coupled gases in Sec. 4.1, where we also summarize the results
presented in the chapter. In Sec. 4.2, we analytically show that the weakly-coupled
regime of the Raman-dressed spinor condensate effectively describes an undressed spinor
gas with tunable spin-changing collisions. We exemplify the strengths of this dressed-
base description in Sec. 4.3, where we show that the dynamics of the collective pseudospin
degree of freedom can be exploited to access the striped regime of the spin-orbit-coupled
gas. In Sec. 4.4 we numerically assess the experimental feasibility of the protocol de-
scribed in the previous section. Finally, in Sec. 4.5, we conclude the chapter by briefly
reviewing the results presented and address future research directions.

4.1 Introduction

Artificial spin-orbit coupling (SOC) in ultracold atomic gases offers an excellent plat-
form for studying quantum many-body physics [30, 84, 85]. The interplay between
light dressing induced by Raman coupling [86] and atom-atom interactions can lead,
for instance, to high-order synthetic partial waves [116, 117], to chiral interactions and
density-dependent gauge fields [312] or to the formation of stripe phases [104]. The latter
have gained significant attention over the past decade [115, 185, 189, 192, 195, 313], in
great part due to its supersolid-like properties [119, 314, 315], that is, its simultaneous
spontaneous breaking of translational invariance and of U(1) (global) phase symmetry,
resulting in a crystalline structure that maintains off-diagonal long-range order.

Accessing the stripe regime of ultracold gases with SOC remains experimentally
challenging, since its stability relies on the asymmetry between intra- and inter-spin
interactions, typically small in a common spinor BECs. The predicted spatial density
modulations have only been unambiguously observed in [108], using orbital states in a
superlattice as pseudo-spin states, and very recently also in metastable states of a 87Rb
spinor gas [207] (for its realization in dipolar gases, see [316–318]). While sharing many
properties with conventional supersolids, the nature of the stripe phases in gases with
SOC is still debated [319], with current proposals focusing on probing its excitation spec-
trum. So far, most protocols to enhance the accessibility of the phase and the contrast
of the stripes pursue an effective decrease of the intraspin interactions [107, 198]. Alter-
natively, here we propose a novel approach to access the stripe regime of a spin-1 gas
with largely symmetric spin interactions, based on the coherent spin-mixing dynamics
induced by Raman dressing.

The results presented in chapter 3 described a direct connection between SOC BECs
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and spinor gases with spin-changing collisions. This connection is further explored in this
chapter, where we show analytically that the Raman-dressed spin-1 SOC gas at low ener-
gies is equivalent, for weak Raman coupling and interactions, and zero total magnetiza-
tion, to an artificial spin-1 gas with tunable spin-changing collisions. Such a relationship
between the two systems has been previously hinted by many authors [195, 263, 286–290],
but not explicitly formulated. By considering the pseudospinor gas formulation of the
low-energy problem, we then follow the single-spatial-mode [165, 320] recipe commonly
employed to treat the collective spin dynamics in undressed spinor gases, and adapt it
to describe the psedospin dynamics in the dressed scenario. Under these conditions, the
system is well described by a one-axis-twisting Hamiltonian [321]. This same Hamilto-
nian explains several quantum many-body phenomena in spinor condensates [147, 161],
including the generation of macroscopic entanglement [272, 274–285, 311], with potential
metrological applications [73], and the observation of nonequilibrium phenomena such
as the formation of spin domains and topological defects [300–310]. Recently, dynamical
[120] and excited-state [121] quantum phase transitions have been theoretically [322, 323]
and experimentally [297, 298] studied in spin-1 BECs with spin-changing collisions. Here
we exploit this map to provide a many-body protocol to access the ferromagnetic stripe
phase of the SOC gas via crossing a quantum phase transition of the low-energy Hamilto-
nian in an excited state. This preparation enhances the accessibility of the phase, which
has as the ground-state phase a very narrow region of stability [196] and has not been
experimentally demonstrated so far.

4.2 The Raman-dressed gas as an artificial spinor gas

We consider a spin-1 spin-orbit-coupled Bose gas held in an isotropic harmonic poten-
tial Vt = 1

2mω
2
t r2, in which the atoms interact via two-body s-wave scattering processes.

The synthetic spin-1 SOC is realized by two pairs of counter-propagating laser beams in
a Raman configuration as detailed in chapter 2. In a frame co-rotating and co-moving
with the laser beams, the system is described by the Hamiltonian

Ĥ =

∫
dr

Ψ̂
† (

Ĥk + Vt

)
Ψ̂ +

gs
2

(Ψ̂
†
Ψ̂)2 +

ga
2

∑
j

(Ψ̂
†
F̂jΨ̂)2

 , (4.1)

with Ψ̂ = (Ψ̂−1, Ψ̂0, Ψ̂1)T being the spinor field operator and {~F̂x, ~F̂y, ~F̂z} being the
spin-1 matrices. Here gs = 4π~2(a0 + 2a2)/3m and ga = 4π~2(a2 − a0)/3m, with a0

and a2 being the scattering lengths in the F = 0 and F = 2 channels, respectively. The
dressed kinetic Hamiltonian reads

Ĥk =
~2

2m

(
k− 2krF̂zex

)2
+

Ω√
2
F̂x + δF̂z + εF̂ 2

z , (4.2)

where Ω is the Raman coupling strength, δ is the Raman detuning and ε is the effective
quadrupole tensor field strength. The latter term can be controlled independently of δ by
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Figure 4.1: Raman-induced spin-changing collisions. (a) Dispersion bands of the dressed
Hamiltonian Ĥk with Ω = 0.65Er, δ = 0 and ε = Ω2/16Er. The color texture indicates
the expected value of the spin of the dressed states, and the dashed lines show the
undressed dispersion bands. (b) Schematic representation of a virtual process that acts
as an effective spin-changing collision. These involve a two-body scattering process
in which the two incoming particles exchange a relatively large momentum, and thus
would be out of resonance in the absence of Raman dressing, but become resonant by
simultaneously involving two-photon Raman photons (represented in wavy lines) that
take up the momentum gained by the particles while in turn change their internal state.

.

employing two different Raman couplings between the two Zeeman pairs {|1, 1〉 , |1, 0〉}
and {|1, 0〉 , |1,−1〉}, and simultaneously adjusting the Raman frequency differences [118].
We label the Raman single-photon recoil energy and momentum as Er = ~2k2r

2m and
~kr, respectively. As discussed in chapter 3, in the weakly-coupled regime, the lowest
dispersion band of Ĥk presents a triple-well shape along the direction of the momentum
transfer, which we arbitrarily set along the ex axis. Spin texture is present in the band,
with the spin mixture being the largest at the vicinity of the avoided crossings (see
Fig. 4.1(a)). While much smaller, the spin overlap between states located at the vicinity
of adjacent minima is nonzero, and increases linearly with Ω. This overlap allows collision
processes that exchange large momentum at low energies. In the previous chapter we saw
how these Raman-mediated processes can act as spin-changing collisions. In Fig. 4.1(b),
we schematically represent one of such virtual processes, which involve simultaneously a
two-body collision process (represented with a solid line in the figure) and two-photon
Raman transitions (represented with a wavy line).

In order to draw an analogy between these effective spin-changing processes and the
intrinsic ones present in the gas, the Hilbert space needs to be restricted to the states
in the vicinity of the band minima, so that we can identify those to the spin states in
a spinor gas. To do so, in chapter 3 we considered the direct truncation of the Hilbert
space to the lowest single-particle eigenstates of the dressed and trapped system, that
directly lead to an effective spin Hamiltonian. Instead, in this section we will see that,
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actually, the perturbative description of weakly-dressed gas, up to second order in Ω/4Er,
incorporates the equivalent spin-mixing processes in a natural way.

4.2.1 Low-energy effective field theory

Let us now consider the regime where δ, ε, ~ωt and the interaction energy per particle
are all much smaller than the recoil energy Er. In these conditions, it is safe to assume
that the low-energy landscape is well-described by an effective theory in which all the
dynamics involves only the lowest free single-particle band modes around each band
minima kj ∼ 2jkrex, with j ∈ {−1, 0, 1}. Thus, we set a cut-off Λ � ~kr to the
momentum spread p around each kj , so that |p| < Λ, and use second order perturbation
theory to express the bare fields Ψ̂i in terms of the lowest-band dressed-state fields
around the band minima, which we label as ϕ̂j . With this notation, we can identify the
operators acting in the separated regions as a pseudospinor field ϕ̂ = (ϕ̂−1, ϕ̂0, ϕ̂1)T ,
with

[
ϕ̂i(p), ϕ̂†j(p

′)
]

= δ(p− p′)δij .

For the sake of clarity, in the remainder of this section we will write all the energies
and momenta scaled to the recoil energy Er and momentum ~kr, respectively, unless these
quantities appear explicitly on the expressions. Doing so, the perturbative expression
for Ψ̂i in terms of ϕ̂j around the center band minimum are obtained from the dressed
kinetic Hamiltonian (4.2), which yield

Ψ̂0(p) =

(
1− Ω2

64

(
1− ε

2
+O((Λ +

ε+ δ

4
)2)

))
ϕ̂0(p) +O

(
(

Ω

8(1− Λ)
)3

)
,

Ψ̂±1(p) = −Ω

8

(
1− ε± δ ∓ 4p

4
+O((Λ +

ε+ δ

4
)2)

)
ϕ̂0(p) +O

(
(

Ω

8(1− Λ)
)3

)
.

(4.3)

Likewise, in right/left band minima we have

Ψ̂±1(±2 + p) =

(
1− 1

2

(
Ω

8

)2(
1 +

ε± δ ∓ 4p

2
+O((Λ +

ε+ δ

4
)2)

))
ϕ̂±1(p)

+O

(
(

Ω

8(1− Λ)
)3

)
,

Ψ̂0(±2 + p) = −Ω

8

(
1 +

ε± δ ∓ 4p

4
+O((Λ +

ε+ δ

4
)2)

)
ϕ̂±1(p) +O

(
(

Ω

8(1− Λ)
)3

)
,

Ψ̂∓1(±2 + p) =
Ω2/16

((16 + p2 ± δ ± 8p)
(

1− ε∓δ±4p
4

) ϕ̂±1(p) +O

(
(

Ω

8(1− Λ)
)3

)
.

(4.4)

For simplicity, in equations (4.3) and (4.4) we have made explicit only the dependence
on momentum along the direction of the recoil momentum transfer. At the same time,
notice that in the lowest dressed band, the positions of the edge minima are actually
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shifted from ±2 by a small amount proportional to Ω2. Still, up to the second order in
Ω that we are considering, these shifts do not contribute to the expressions of (4.4), and
hence are not included in the redefinition of momenta. Notice also that the last term of
the above expressions can be neglected since it contributes to the interactions at fourth
order in Ω

8(1−Λ) . As we will see below, due to momentum conservation, the nontrivial
contributions to the interacting Hamiltonian involve only the first order terms in the
above expressions, while the second order just renormalize the symmetric interactions.

We can now substitute the expressions for the bare fields into Hamiltonian (4.1) to
obtain a lowest-band-truncated pseudospinor Hamiltonian. The noninteracting contri-
butions can be straightforwardly grouped into

Ĥn.i. =

∫
dr ϕ̂†

(
p2

2m
+ Vt + δF̂z + ε̃F̂ 2

z

)
ϕ̂. (4.5)

In (4.5), we have introduced the coefficient ε̃, which includes the correction to ε, with

ε̃ = ε+
Ω2

16Er
+O((

Ω2

Er
)3). (4.6)

The interacting terms are somewhat trickier, since they will involve combinations of
many four-wave operators ϕ̂iϕ̂jϕ̂kϕ̂l. To address them, we now conveniently adopt the
notation shortcuts

∫ ∫
Ψ̂†aΨ̂

†
bΨ̂aΨ̂b ≡

∫
dr

∫ 4∏
j=1

d3kj
(2π)3

eir·(k1+k2−k3−k4)Ψ̂†a(k1)Ψ̂†b(k2)Ψ̂a(k3)Ψ̂b(k4),

(4.7)
and

∫ ∫
ϕ̂†aϕ̂

†
bϕ̂aϕ̂b ≡

∫
dr

∫ Λ

−Λ

4∏
j=1

d3pj
(2π)3

eir·(p1+p2−p3−p4)ϕ̂†a(p1)ϕ̂†b(p2)ϕ̂a(p3)ϕ̂b(p4).

(4.8)

Typically, in the alkali gases we consider, the spin-symmetric part of the interacting
Hamiltonian is much larger than the nonsymmetric one, that is, gs � |ga| [147]. Hence,
we start by considering the perturbative contributions that stem from the symmetric
interaction Hamiltonian.

V̂s =
∑

a=−1,0,+1

gs
2

∫ ∫ (
Ψ̂†aΨ̂

†
aΨ̂aΨ̂a + 2

∑
b>a

Ψ̂†aΨ̂
†
bΨ̂aΨ̂b

)
. (4.9)
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When the terms in (4.9) are evaluated on the low-energy states, it follows that∫ ∫
Ψ̂†±Ψ̂†±Ψ̂±Ψ̂± =

=

∫ ∫ (
1− Ω2

32

(
1 +

ε± δ
2
∓ p1 + p2 + p3 + p4

2
+O((Λ +

ε+ δ

4
)2)

))
ϕ̂†±ϕ̂

†
±ϕ̂±ϕ̂±

+
Ω2

16

∫ ∫ (
1− ε± δ

2
± (p2 + p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†±ϕ̂

†
0ϕ̂±ϕ̂0,

(4.10)

∫ ∫
Ψ̂†±Ψ̂†∓Ψ̂±Ψ̂∓ =

=

∫ ∫ (
1− Ω2

32

(
1 +

ε

2
∓ p1 − p2 + p3 − p4

2
+O((Λ +

ε+ δ

4
)2)

))
ϕ̂†±ϕ̂

†
∓ϕ̂±ϕ̂∓

+
Ω2

64

∫ ∫ (
1− ε± δ

2
± (p1 + p3) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†0ϕ̂

†
∓ϕ̂0ϕ̂∓

+
Ω2

64

∫ ∫ (
1− ε∓ δ

2
∓ (p2 + p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†±ϕ̂

†
0ϕ̂±ϕ̂0

+
Ω2

64

∫ ∫ (
1− ε

2
± (p1 − p2) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†0ϕ̂

†
0ϕ̂±ϕ̂∓

+
Ω2

64

∫ ∫ (
1− ε

2
± (p3 − p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†±ϕ̂

†
∓ϕ̂0ϕ̂0, (4.11)

∫ ∫
Ψ̂†±Ψ̂†0Ψ̂±Ψ̂0 =

=

∫ ∫ (
1− Ω2

64

(
3− ε∓ δ

2
∓ (p1 + p3) +O((Λ +

ε+ δ

4
)2)

))
ϕ̂†±ϕ̂

†
0ϕ̂±ϕ̂0

+
Ω2

64

∫ ∫ (
1− ε± δ

2
± (p1 + p3) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†0ϕ̂

†
0ϕ̂0ϕ̂0

+
Ω2

64

∫ ∫ (
1± (p1 − p2) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†0ϕ̂

†
±ϕ̂±ϕ̂0

+
Ω2

64

∫ ∫ (
1± (p3 − p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†0ϕ̂

†
±ϕ̂0ϕ̂±

+
Ω2

64

∫ ∫ (
1 +

ε± δ
2
∓ (p2 + p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†±ϕ̂

†
±ϕ̂±ϕ̂±

+
Ω2

64

∫ ∫ (
1 +

ε∓+δ

2
± (p2 + p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†±ϕ̂

†
∓ϕ̂±ϕ̂∓

+
Ω2

64

∫ ∫ (
1∓ δ/2± (p2 + p3) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†±ϕ̂

†
∓ϕ̂0ϕ̂0

+
Ω2

64

∫ ∫ (
1∓ δ/2± (p1 + p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†0ϕ̂

†
0ϕ̂±ϕ̂∓, (4.12)



88 Dynamical preparation of stripe states in spin-orbit-coupled gases

∫ ∫
Ψ̂†0Ψ̂†0Ψ̂0Ψ̂0 =

∫ ∫ (
1− Ω2

16

(
1− ε

2
+O((Λ +

ε+ δ

4
)2)

))
ϕ̂†0ϕ̂

†
0ϕ̂0ϕ̂0

+
Ω2

16

∫ ∫ (
1 +

ε+ δ

2
− (p1 + p3) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†+ϕ̂

†
0ϕ̂+ϕ̂0

+
Ω2

16

∫ ∫ (
1 +

ε− δ
2

+ (p1 + p3) +O((Λ +
ε+ δ

4
)2)

)
ϕ̂†−ϕ̂

†
0ϕ̂−ϕ̂0

+
Ω2

32

∫ ∫ (
1 +

ε

2
− (p1 − p2) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†+ϕ̂

†
−ϕ̂0ϕ̂0

+
Ω2

32

∫ ∫ (
1 +

ε

2
− (p3 − p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†0ϕ̂

†
0ϕ̂+ϕ̂−, (4.13)

Finally, inserting (4.10)-(4.13) into the symmetric contribution to the interacting
Hamiltonian (4.9), we get

V̂s =
gs
2

∫ ∫  ∑
a=−1,0,+1

(
ϕ̂†aϕ̂

†
aϕ̂aϕ̂a + 2

∑
b>a

ϕ̂†aϕ̂
†
bϕ̂aϕ̂b

)
+gs

Ω2

16

∫ ∫ ((
ϕ̂†+1ϕ̂+1 + ϕ̂†−1ϕ̂−1

)
ϕ̂†0ϕ̂0 +

(
ϕ̂†+1ϕ̂

†
−1ϕ̂0ϕ̂0 + H.c.

)
+O((Λ+

ε+δ

4
)2)

)
+gs

Ω2

32

∫ ∫ (
(p2−p1+p4−p3)

(
ϕ̂†+1ϕ̂

†
0ϕ̂+1ϕ̂0 − ϕ̂†−1ϕ̂

†
0ϕ̂−1ϕ̂0 + (ϕ̂†+1ϕ̂

†
−1ϕ̂0ϕ̂0 + H.c.)

)

+O((Λ +
ε+ δ

4
)2)

)
. (4.14)

Observe that, as expected, due to momentum conservation no first order corrections
appear in the expansion. The second order corrections, however, include the expected
spin-changing collisions processes that preserve the total momentum, as the one de-
picted in Fig. 4.1(b). Note that these processes are analogous to those described for the
tight-binding states in the previous chapter, with the same relative strength given by
gsΩ

2/16E2
r . The last term in (4.14) contains corrections to the spin-mixing contribution

that depend linearly on the momentum. Nonetheless, their value is bounded by the cut-
off in the momentum spread around the wells. Since, by assumption, |pi−pj | < 2Λ� 1,
for simplicity we will neglect such momentum-dependent corrections to the interacting
Hamiltonian, which will allow us to write the Hamiltonian in a simple form. Indeed,
considering that, for |p| > Λ, the fields ϕ̂j(p) vanish when acting on the low-energy
subspace, we can formally remove the cut-off in the integration and perform the Fourier
transform. By doing so, we obtain the following expression for the symmetric interacting
Hamiltonian in the dressed basis

V̂s =

∫
dr

[
gs
2

∑
ij

ϕ̂†i ϕ̂
†
jϕ̂jϕ̂i + g̃a

(
ϕ̂†1ϕ̂1 + ϕ̂†−1ϕ̂−1

)
ϕ̂†0ϕ̂0

+g̃a

(
ϕ̂†1ϕ̂

†
−1ϕ̂0ϕ̂0 + ϕ̂1ϕ̂−1ϕ̂

†
0ϕ̂
†
0

)]
, (4.15)
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where we have defined the synthetic scattering parameter

g̃a = gs
Ω2

16

(
1 +O((Λ +

ε+ δ

4
)2)

)
. (4.16)

Remarkably, the contributions proportional to g̃a can be group into the term
g̃a
2

∑
i=x,y(ϕ̂

†F̂iϕ̂)2, where the structure of the resulting effective spin interaction in the
dressed Hamiltonian is most evident.

Proceeding analogously with the nonsymmetric part of the interaction potential,
V̂a = ga

2

∫
dr
∑

j(Ψ̂
†
F̂jΨ̂)2, yields

V̂a =
ga
2

∫
dr
∑
j

(ϕ̂†F̂jϕ̂)2 +O(gaΩ
2), (4.17)

which includes the zero order term plus second (and higher) order corrections propor-
tional to gaΩ2. Since we assume |ga| � gs, we will safely neglect such corrections in the
total Hamiltonian.

Finally, we can group all the contributions (4.5), (4.15) and (4.17) to the low-energy
dressed field Hamiltonian

Ĥ = Ĥn.i. + V̂s + V̂a

=

∫
dr

[
ϕ̂†
(

p2

2m
+ Vt + δF̂z + ε̃F̂ 2

z

)
ϕ̂+

gs
2

∑
ij

ϕ̂†i ϕ̂
†
jϕ̂jϕ̂i

]

+

∫
dr

[
ga
2

∑
j=x,y,z

(ϕ̂†F̂jϕ̂)2 +
g̃a
2

∑
i=x,y

(ϕ̂†F̂iϕ̂)2

]
, (4.18)

In this way, when written in terms of the pseudospinor field ϕ̂, the perturbative
expansion of the weakly-coupled Raman-dressed spinor Hamiltonian around the single-
particle band minima describes an effective undressed spinor gas. With this description,
we can treat the dressed system as an undressed one, where all the relevant effects from
the dressing, within the order of approximation considered, are simply incorporated into
the modified nonsymmetric interactions. Notice that the presence of SOC induces an
anisotropy in the spin-dependent collisions, by giving rise to an effective spin interaction
that acts only in the direction transversal to the Zeeman quantization axis, ez. This
anysotropy breaks the SO(3) symmetry of the intrinsic spin-spin interactions in the gas
into a SO(2) symmetry. The degree of anisotropy will depend on the ratio between the
intrinsic and SOC-induced spin parameters ∝ g̃a/ga.

4.2.2 Collective spin model

In Sec. 4.2.1 we have seen that the weakly-coupled Raman-dresed spin-1 Bose gas
can actually be described in terms of an artificial undressed spinor gas. Often, spinor
gases are treated following the commonly considered single-spatial-mode approximation
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[320]. When this consideration holds, the system realizes a collective spin Hamiltonian,
which allows the description within a simple framework of a large variety of quantum
many-body phenomena in spinor condensates [147]. For our artificial spinor gas, we
will now consider the regime where we can take a similar approximation. To do so, we
essentially require that the symmetric and the nonsymmetric contributions to dressed
spinor Hamiltonian (4.18) are energetically well-separated. The former can be grouped
into

ĤS =

∫
dr

[∑
i

ϕ̂†i

(
p2

2m
+ Vt

)
ϕ̂i +

gs
2

∑
ij

ϕ̂†i ϕ̂
†
jϕ̂jϕ̂i

]
, (4.19)

while the latter are collected into

ĤA =

∫
dr

[
ga
2

∑
j=x,y,z

(ϕ̂†F̂jϕ̂)2 +
g̃a
2

∑
i=x,y

(ϕ̂†F̂iϕ̂)2 + ϕ̂†
(
δF̂z + ε̃F̂ 2

z

)
ϕ̂

]
, (4.20)

so that Ĥ ' ĤS + ĤA. By requiring that 〈ĤA〉 � 〈ĤS〉, we can treat the low-energy
landscape by simply considering the perturbative action of ĤA over the ground state
solutions of ĤS. The lowest energy solutions of the symmetric part of the dressed spinor
Hamiltonian can then be written as superpositions of three pseudospin modes that share
the same spatial wavefunction, regardless of the many-body occupation of each mode.
Therefore, we will henceforth truncate the Hilbert space of the system to these three self-
consistent many-body modes of ĤS and assume that the dynamics is then well described
by a three-mode model. We label the three eigenmodes of ĤS as |φ−1〉, |φ0〉 and |φ1〉,
and introduce the associated bosonic operators b̂−1, b̂0 and b̂1, respectively. With this
definitions, we now truncate the dressed field operators to ϕ̂†i (r) ∼ φ∗i (r)b̂†i . We call the
three modes, |φj〉, pseudospin states.

Note that in the dressed basis, which corotates with the dressing beams, this trun-
cation can be regarded as the single-spatial-mode approximation of the pseudospinor
gas, where the spatial wavefunctions of the solutions are independent of the pseudospin
state. Yet, here, each solution is located at the vicinity of each band minimum kj , and
the wavefunctions are modulated in the laboratory frame by a pseudospin-dependent
spatial phase exp(ikj · r) that stems from SOC. Such modulations will have a major role
in the next section, where the internal properties of the collective spin Hamiltonian will
be connected to the external spatial properties of the Raman-dressed gas. Therefore, to
emphasize the actual distinction of the three wave-functions, we refer to the truncation
we have taken as a three-mode approximation.

By construction, introducing the truncated field operators into (4.19) results in a
contribution that depends only on the total number of particles, N , which we will hence-
forth drop. All the dynamics in the gas is therefore captured by the perturbative action
of the nonsymmetric contribution to the total Hamiltonian, which we account by sub-
stituting the truncated field operators into (4.20). Doing so, we obtain the following
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one-axis-twisting Hamiltonian

Ĥeff =
λ

2N
L̂2 − λ− gan

2N
L̂2
z + δL̂z +

(
ε̃+

λ

2N

)
L̂zz, (4.21)

where we have introduced the collective pseudospin operators L̂x,y,z =
∑

µν b̂
†
µ(F̂x,y,z)µν b̂ν

and L̂zz =
∑

µν b̂
†
µ(F̂ 2

z )µν b̂ν , and where we define the spin interaction parameter

λ = (g̃a + ga)n =

(
gs

Ω2

16E2
r

+ ga

)
n, (4.22)

with n being the mean density of the gas 1.

Since [Ĥeff , L̂z] = 0, the total magnetization is preserved by Ĥeff . Therefore, if we
prepare an initial state of the system in an eigenstate of L̂z, with eigenvalue mz, the
dynamics will be restricted to the subspace with magnetization 〈L̂z〉 = mz. In this
situation, the second and third terms in (4.21) amount to just a global energy shift, that
we can drop, and the effective Hamiltonian (4.21) reduces to

Ĥ0 = λ
L̂2

2N
+ ε̃L̂zz, (4.23)

where for clarity we have also neglected the small correction to the last term in equation
(4.21) given by λ

2N L̂zz, given that in this chapter we consider N � 1. Henceforth, we
will restrict ourselves to the subspace with mz = 0, where the dropped constant terms
are, in fact, null. This restriction is reasonable from an experimental point of view, since
the mz = 0 subspace is the simplest to realize.

Hamiltonian (4.23) is completely analogous to the Hamiltonian that describes the
nonlinear collective spin dynamics in a spin-1 BEC [165]. In the SOC-based realization
of (4.23) that we propose, though, the spin-spin interaction strength λ can be adjusted
by adjusting the Raman coupling strength Ω. As anticipated, the collective spin Hamil-
tonian derived in this section is equivalent to Hamiltonian (3.48) in chapter 3, excluding
the term proportional to λ2. Such a term corresponds here to the dressed collision pro-
cesses that couple the ϕ̂1 and ϕ̂−1 pseudospins, which are of fourth order in Ω/Er in
the perturbative expansion of the interacting Hamiltonian, and hence have been directly
neglected. However, with the approach taken in this chapter, we do not require the
scale separation between the noninteracting and the interacting energy scales that was
assumed in the derivation of the tight-binding model of chapter 3, which roughly de-
manded gsn � ~ω. Here, the three self-consistent modes play the role of the bound
well states, and the scale separation is required instead between the symmetric and the
nonsymmetric interaction energies in the effective spinor Hamiltonian. In this manner,
we can achieve the desired scale separation without severely constraining the density of

1Since the spinor modes |φj〉 are determined through the symmetric Hamiltonian (4.19), we have
that |φi(r)| = |φj(r)| for all i, j = −1, 0, 1. Thus, within the subspace spanned by these three modes,
the mean density of the gas is simply given by n = N

∫
dr|φ0(r)|4.
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the gas. This allows the realization of the same collective spin model with thousands of
particles in the cloud, as we will see in the next sections.

So far, we have established the analytical equivalence, within the order of approx-
imation considered, of the Raman-dressed gas to an undressed Bose gas with tunable
spin interactions. On the one hand, this treatment of the dressed gas suggests that
spin-orbit-coupled BECs can provide an alternative platform for designing entanglement
protocols and studying dynamical phase transitions and nonequilibrium dynamics, where
the coupling between spin and momentum and the enhanced tunability of the spin-spin
interactions may offer many possibilities that go beyond those of undressed spinor gases.
On the other hand, this formulation provides a simple framework to understand the
quantum phases of the Raman-dressed gas and their dynamics. In the next section, we
will exemplify the use of such insights by designing a protocol based on this map to
prepare a supersolid-like stripe phase of the spin-1 spin-orbit-coupled gas.

4.3 Dynamical preparation of stripe states

In this section we will show that the properties of the Raman-dressed gas can be
easily understood in terms of the pseudospin model. Most importantly, we will see that
under suitable conditions, the map needs not be limited to describe the properties of
the ground state, but can be extended to a low-lying family of energy eigenstates of
the dressed condensate that comprises the whole spectrum of the collective spin model.
Finally, we will see how this understanding of the low-energy landscape can be exploited
to design a protocol to prepare the ferromagnetic stripe phase of the system.

4.3.1 Phase diagram of the collective spin model

The phases of the collective pseudospin Hamiltonian (4.23) derived in the previous
section depend on the relative strength of the two noncommuting competing terms: one
proportional to the total spin squared L̂2, and one proportional to the quadrupolar
term L̂zz. Accordingly, these can be characterized by a single parameter, that is, the
ratio ε̃/λ. Hamiltonian (4.23) has two characteristic regimes depending on the sign
of the spin interactions. When the interactions are of antiferromagnetic nature, i.e.
λ > 0, the ground state is then either in a polar (P) phase for ε̃/λ > 0, where all the
atoms occupy the |φ0〉 state, or in a twin-Fock (TF) phase for ε̃/λ < 0, in which the
ground state approximates the spin-1

2 balanced Dicke state 1
(N/2)!(b̂

†
−1)N/2(b̂†1)N/2 |0〉. In

this regime, the two phases are simply favored and characterized by the noninteracting
magnetic term L̂zz, with a first-order phase transition between them ocurring at ε̃ = 0,
as shown in Fig. 4.2(a). The ferromagnetic regime of (4.23), with λ < 0, is richer,
since the interacting term will tend to maximize the total spin. When |λ| is sufficiently
large, this spin-spin interactions favors a ground state with a non-vanishing transverse
magnetization. This spontaneous breaking of the SO(2) symmetry of the system [301]
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Figure 4.2: Phases of the collective spin model. (a) Upper panel: energy gap ∆E be-
tween the two lowest eigenstates of Hamiltonian (4.23) for N = 1000 and for λ > 0

(antiferromagnetic spin interactions) as a function of ε̃/|λ|. Lower panel: correspond-
ing expected value of the total collective pseudospin squared L̂2 (red dashed line) and
tensor magnetization L̂zz (blue solid line) of the ground state. Figure (b) shows the
corresponding quantities for the ferromagnetic regime, with λ < 0. In both figures, the
color filling is used as guide to the eye to highlight the regions that correspond to the
polar (P), twin-fock (TF) and broken-axisymmetry (BA) phases.

gives rise to the so-called broken-axisymmetry (BA) phase [324] in between the TF and
P phases. The phase is signaled by a nonzero total spin, with the tensor magnetization
decreasing uniformingly with ε̃ across the phase. In the thermodynamic limit, the two
second-order transitions take place, respectively, at ε̃ = ±2|λ|, as depicted in Fig. 4.2(b).

The different phases are well captured by a mean-field description of model (4.23).
In this limit, we assume that the solutions of the system are given by projective coherent

states |N,N,θ〉 = 1√
N !

(∑
j

√
Nj/Neiθjb†j

)N
|0〉, that is, a macroscopic occupation of a

single single-particle state |φ〉 =
∑

j

√
Nj/Neiθjb†j |0〉. In the thermodynamic limit, the

quantum fluctuations of these solutions vanish, and the dynamics of coherent states is
well described by the classical trajectories of the complex quantities bj =

√
Nje

iθj (see
Sec. 2.2.2). Here, Nj and θj are, respectively, the mean occupation and phase of the
mode b̂j |0〉 in the coherent state |N,N,θ〉. The mean-field energy is retrieved then by
substituting the mode operators b̂j in Hamiltonian (4.23) with their expected values bj ,
which yields

Emf =
λ

N

[
(b†−1b

†
1b0b0 + H.c.) +N0(N1 +N−1)

]
+ ε̃(N −N0). (4.24)
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Fixing mz = 0, we have N1 = N−1 = N−N0
2 , and the mean-field energy can be written

as
Emf =

2λ

N
(N −N0)N0 cos2 θ + ε̃(N −N0), (4.25)

where we have defined the spinor phase θ = θ0 − θ1+θ−1

2 . The tensor magnetization and
the total spin read

〈L̂zz〉 = N −N0, 〈L̂2〉 = 4(N −N0)N0 cos2 θ. (4.26)

Clearly, for λ > 0, the mean-field energy (4.25) is minimized when ε̃ > 0 at N0 = N ,
and so L2 = 〈L̂2〉 = 0 and Lzz = 〈L̂zz〉 = 0 (P phase). Likewise, when ε̃ < 0 the
energy is minimized at N0 = 0, and so L2 = 0 and Lzz = N (TF phase). Therefore,
the spin-spin interacting energy in the antiferromagnetic regime is null across the whole
diagram. Contrarily, the ferromagnetic regime is characterized by a nonzero interacting
energy in the BA phase. When λ < 0, the energy is minimal at θ = πk for 0 < N0 < N .
Then, the solutions fulfill ∂Emf

∂N0
= −2|λ|

N (N − 2N0)− ε̃ = 0 and so we have

N0 =
N

2

(
ε̃

2|λ|
+ 1

)
, θ = πk, k ∈ Z, (4.27)

for −2|λ| ≤ ε̃ ≤ 2|λ|. Therefore, in the BA phase

Lzz =
N

2

(
1− ε̃

2|λ|

)
, L2 = N2

(
1− ε̃2

4|λ|2

)
. (4.28)

For |ε̃| > 2|λ|, the spin energy vanishes, and the system realizes the P and TF phases as
in the antiferromagnetic case (see Fig. 4.2).

Despite its simplicity, model (4.23) displays thus a rich phase diagram. The interplay
between the two competing contributions in the Hamiltonian has been employed in spinor
gases to, e.g., generate spin-squeezed macroscopic states [73], with both the BA and
the TF phases being macroscopically entangled. The platform has also been proposed
recently for the exploration of dynamical and excited-state quantum phase transitions
[297, 298, 322, 323].

4.3.2 Phases of the dressed gas as a pseudospin model

Let us now assume the validity of model (4.23) as a description for the Raman-dressed
gas. With this assumption in mind, to be checked later on in this section, we can map
the paramters of the pseudospin model, λ and ε̃, to the parameters of the original dressed
Hamiltonian, Ω and ε, to describe the phase diagram of the dressed system in these terms.
This is illustrated in Fig. 4.3(a), where we show phase diagram of Hamiltonian (4.23) in
the Ω−ε plane. In the figure, we use expressions (4.6) and (4.22) for ε̃(Ω, ε) and λ(Ω), and
consider 87Rb, with ga/gs = −0.0047 [147], and a mean atom density of n = 7.5× 1013

cm−3. For Ω > Ωc = 4Er
√
|ga|/gs, we have λ > 0, and the diagram is equivalent
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to that of an antiferromagnetic spinor gas, which includes the P and TF phases. At
Ω = Ωc, the effective and the intrinsic spin-mixing dynamics mutually compensate, by
having g̃a = −ga, which yields λ = 0. Finally, for Ω < Ωc, the effective spin dynamics is
ferromagnetic, λ < 0, and the BA phase is favored in the region −2|λ| < ε̃(Ω, ε) < 2|λ|.
The three phases meet at the tricritical point CF , at Ω = Ωc and ε = ga/gs. We
emphasize that these phases are obtained in the zero-magnetization subspace. Without
enforcing such constraint, the BA and the P phase are expected to persist, but the
ground state in the two-minima regime where the macroscopically entangled TF phase
is predicted would instead realize the magnetized plane-wave (PW) phase of the spin-1
spin-orbit-coupled gas. There, a global Z2 symmetry of the Hamiltonian is spontaneously
broken favoring the formation of a condensate in either of the band minimums. The PW
phase is characterized by a nonzero magnetization ∼ k±1/kr, and the transition from
the BA phase to the PW phase is of first-order nature. For a comprehensive discussion
of the ground state phases of the dressed gas in the different regimes, see [196]. Still,
as we will discuss below, the zero-magnetization manifold can be robustly prepared and
explored exploiting the induced spin-mixing dynamics, which will justify the use here of
the truncated pseudospin model.

Remarkably, in the Raman-dressed BEC, the collective spin phases described exhibit
richer features. With the induced spin-orbit coupling, the structures appearing in the
internal (spin) degrees of freedom are transferred to the external (motional) degrees of
freedom. Most notably, the BA phase of the effective model corresponds to the super-
solid-like ferromagnetic stripe (FS) phase of the spin-1 SOC gas diagram, described in
detail in [196]. The FS phase is characterized by the presence of spatial density modu-
lations that are proportional to Ω. The emergence of these density modulations is well
understood from the mean-field limit of the pseudo-spin model. The mean-field wave-
function of the gas in the three-mode approximation reads ψ(r) =

∑
j

√
N jφj(r)eiθj .

Here Nj and θj are, respectively, the mean occupation and phase of the mode b̂j |0〉 in
the coherent state |N,N,θ〉, and φj is the corresponding spinor spatial wavefunction.
Since we consider that the three modes are tightly located at the vicinity of the respec-
tive band minima kj , we can approximate them by plane waves times an slowly varying
envelope function, which for simplicity will omit in the following argument. Then, up to
second order in Ω/8Er, and neglecting the corrections proportional to (ε+ δ)Ω2/E3

r , we
can write

φ1(r) ∝ eik1·r

(
1− 1

2

(
Ω

8Er

)2

,
Ω

8Er
, 0

)T
,

φ0(r) ∝ eik0·r

(
Ω

8Er
, 1−

(
Ω

8Er

)2

,
Ω

8Er

)T
,

φ−1(r) ∝ eik−1·r

(
0,

Ω

8Er
, 1− 1

2

(
Ω

8Er

)2
)T

. (4.29)
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Figure 4.3: Collective pseudospin dynamics in SOC BECs. For weak Raman coupling and
interactions, the dressed-state dynamics can be captured by the pseudospin Hamiltonian
(4.23). (a) Phase diagram of (4.23), as a function of the Raman Rabi frequency Ω and
effective quadratic Zeeman shift ε, for 87Rb at n = 7.5×1013 cm−3. The polar (P), twin-
Fock (TF) and broken-axisymmetry (BA) phases meet at the tricritical point CF (black
dot). The blue dashed vertical line at Ωc = 4Er

√
|ga|/gs separates the ferromagnetic

(λ < 0) and the antiferromagnetic (λ > 0) regimes of the effective Hamiltonian. (b)
Corresponding phase diagram for the highest-excited eigenstate. The upper panel in the
inset shows the energy gap ∆E between the two most excited eigenstates along the red
dashed segment for N = 1000. The lower panel shows the expected value of the collective
pseudospin L̂2 (red dashed line) and tensor magnetization L̂zz (blue solid line).

At mz = 0, the mode occupations fulfill N1 = N−1 = (N − N0)/2. Moreover, since
we consider δ � Er, we have k0 ' 0 and k1 ' −k−1. In these conditions, the spatial
density of the gas n(r) = ψ∗(r) ·ψ(r) reads

n(r) ' n

(
1 + cos(k1 · r− θ1 + θ−1)

Ω

Er

√
N0(N −N0)

2N2
cos θ +O((Ω/8Er)

2)

)
, (4.30)

where n is the average density.

Expression (4.30), describes a density distribution that is periodically modulated
along the direction of the Raman momentum, with wavelength ∼ π/kr. The amplitude
of the modulation is linearly proportional to Ω/Er, times a factor that depends on the
occupation of the central mode N0 and on the spinor phase θ. As discussed above, in
the ferromagnetic regime, the spin interactions favor the simultaneous occupation of the
three modes when |ε̃| > 2|λ|, with 0 < N0 < N , while at the same time locking the
phase at θ = πk. Inserting the values fro N0 and θ from equation (4.27) into (4.30), we
see that the amplitude of the modulations become nonzero when the ground state enters
the BA phase, increasing as |ε̃| diminishes and reaching its maximum value at ε̃ = 0.
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4.3.3 The FS phase as an excited state

We have seen that the BA phase of the pseudospin model (4.23) describes the FS
phase of the dressed gas. However, in condensates of both 41K and 87Rb atomic species,
commonly employed to realize Raman-dressed gases due to their relatively large fine
structre splitting, the nonsymmetric interactions are small. This implies that the FS
phase is only favored in a very narrow region in parameter space, as shown in Fig. 4.3(a),
which makes its experimental realization challenging. Alternatively, the pseudospin map
suggests that the ferromagnetic landscape can be probed instead in a low-lying excited
state of the Raman-dressed gas that corresponds to the most-excited manifold of Ĥ0 in
the antiferromagnetic regime. The ground and most excited manifolds of the ferromag-
netic and antiferromagnetic regimes are directly related, as Ĥ0(λ, ε̃) = −Ĥ0(−λ,−ε̃). In
Fig. 4.3(b), we show the phase diagram for the most excited state of Ĥ0. It displays the
same phases as the ground state, but with the phase boundaries redefined. The inset in
Fig. 4.3(b) illustrates the equivalence between the structure of the excited antiferromag-
netic states and that of the ferromagnetic ground states shown in Fig. 4.2(b). Notably,
in the excited-state diagram, the predicted BA phase occurs for a much broader range
of parameters, which could be exploited to facilitate the preparation of the FS phase.
Besides that, in the excited diagram, the BA phase –and therefore the predicted stripe
phase– occurs at larger Ω. Hence, the dressed gas should exhibit there a larger contrast
of the density modulations, when compared to its ground-state counterpart.

While often preparing a specific excited state can be laborious, here we propose to
access the BA state in the highest excited state of the effective model by driving a fully
polarized state across the P-BA quantum phase transition in the excited manifold. To
do so, we can exploit the fact that, at the P-BA and BA-TF transitions, the energy
gap ∆E between the two highest excited states closes slowly for increasing total number
of particles (see inset in Fig. 4.3(b)), with ∆E being proportional to λN−1/3. This
facilitates the quasi-adiabatic driving through both phase transitions in workable time
scales even when the number of particles is large. This feature was used in [282] and [283]
to generate macroscopic TF and BA states, respectively, in 87Rb spinor condensates.

In this way, following the dressed-spinor description, we propose to probe the fer-
romagnetic phase diagram in the most excited phase diagram of the effective model by
driving an initially polarized state. The loading of such a state could be easily achieved
from an undressed condensate in the mf = 0 bare spin state by adiabatically turning up
Ω, while setting ε̃ < −2λ. The excited phase diagram can then be probed by varying ε
and Ω, which allows to access the FS phase of the spin-orbit-coupled gas, in correspon-
dence to the BA phase of the pseudospin model. Naturally, this preparation assumes the
validity of the three-mode truncation that leads to Hamiltonian (4.23), and it is expected
to rely on the existence of the energy gap predicted therein. Qualitatively, the truncation
is expected to be the accurate for small condensates when |λ|, |ε̃| � gsn, ~ωt. Nonethe-
less, it is difficult to quantitatively estimate its accuracy. To this end, below we will
assess the extent of the truncation by simulating the protocol using the Gross–Pitaevskii
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equation for the full dressed gas.

4.3.4 Dynamical preparation of FS states: Gross-Pitaevskii results

By replacing the field operator Ψ̂ with a scalar spinor wavefunction ψ =

(ψ−1, ψ0, ψ1)T in (4.1) we obtain the energy functional

E[ψ] =

∫
dr

ψ∗(Ĥk+Vt

)
ψ +

gs
2
|ψ|4+

ga
2

∑
j

(ψ∗F̂jψ)2

 (4.31)

that describes the mean-field regime of the Raman-dressed BEC (see Sec. 2.2.2 for more
details on the mean-field treatment of a Bose gas). The time evolution is described by
the time-dependent Gross-Pitaevskii equation (GPE)

i~ψ̇j = δE[ψ]/δψ∗j . (4.32)

To evaluate the feasibility of the preparation of the FS phase in an excited state as
described in Sec. 4.3.3, we will now compute the GPE.We incorporate a time-dependent
parameter ε̃(t), in order to simulate a quasi-adiabatic drive across the quantum phases
predicted by the effective model. To retrieve the quantities relevant to the three-mode
model, we calculate the three self-consistent modes φj via imaginary time evolution of
the GPE. The modes can be easily obtained by projecting the ground state at δ =

ε̃ = 0, which populates the three well states, into the well separated regions around
each minimum of the lowest band. Given the small range of values that we consider
for both ε and δ, we can neglect the perturbative deviations of the expressions for such
modes from the ones obtained at δ = ε̃ = 0. We can then compute N0 = b∗0b0 and
θ = arg(b0)− (arg(b1) + arg(b−1))/2, using bj =

∫
drφ∗j (r) ·ψ(r). As a reference, we will

consider similar conditions to those described in [283], with small 87Rb condensates in
the F = 1 hyperfine manifold at n ∼ 7.5 × 1013 cm−3, and take Er/~ = 2π × 3680Hz,
kr = 7.95× 106 m−1 and gsk3

r = 1.066Er.

Before discussing the results from GPE simulations, however, there is one important
remark to make. In the P and TF phases of the spin Hamiltonian, the state approaches
the Fock states 1√

N !
(b̂†0)N |0〉 and 1

(N/2)!(b̂
†
−1)N/2(b̂†1)N/2 |0〉, respectively. As long as the

three modes are not significantly populated, as it is the case for the states above, the
mean-field dynamics is expected to be inaccurate, with the actual dynamics being domi-
nated by quantum fluctuations [273, 325]. This can be immediately seen from expression
(4.24) for the mean-field energy. The corresponding three-mode mean-field equations
read

i~ḃ0 = δEmf/δb
∗
0 =

λ

N

[
2b1b−1b

∗
0 + b∗1b1b0 + b∗−1b−1b0

]
− ε̃b0,

i~ḃ±1 = δEmf/δb
∗
± =

λ

N

[
b∗∓1b0b0 + b∗0b0b±1

]
. (4.33)
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Figure 4.4: Comparison between full quantum and mean-field simulations. A state
initially prepared at the coherent state with b±1(0) = α and b0(0) =

√
N − 2|α|2 is

driven from ε̃ = −3λ to ε̃ = 3λ by linearly increasing ε̃ over a time τd = 8h/λ. The
relative occupation of the state |φ0〉, N0/N , along the drive is plotted in (a1) and (b1)
for α = 0 and α =

√
20, respectively. In both cases N = 1000. The corresponding

values for the spinor phase θ is plotted in (a2) and (b2). Solid blue lines show the results
from full quantum simulations of Hamiltonian (4.23). Red dashed lines show the results
obtained with the mean-field equations (4.33).

Clearly, initially setting b±1 = 0 or b0 = 0 into eqs. (4.33) results in a stationary
state, independently of ε̃, in contradiction with the dynamics predicted by the quantum
Hamiltonian (4.23). There, the presence of the effective spin-changing collision processes
b̂†1b̂
†
−1b̂0b̂0 and b̂1b̂−1b̂

†
0b̂
†
0 prevents any Fock state from truly being an eigenstate of the

Hamiltonian for finite N . Even at very large N , such small deviation from the actual
eigenstate break the stationarity of the mean-field solutions at the b±1 = 0 and b0 =

0 points. Near resonance, spin-mixing collisions exponentially amplify the quantum
fluctuations, in a process that is equivalent to the photon pair creation in an optical
parametric amplifier [326].

Consequently, to be able to evaluate the proposed protocol with the GPE of the
dressed gas, we instead simulate an analogous drive across the P-TF-BA excited diagram
in a slightly lower lying family of excited states, in which we set the initial state to a
coherent state with 0 < N±1 � N . In these conditions, mean-field computations quickly
converge to full quantum simulations as N±1(t = 0) is increased, while the properties
like the energy gap and the location of the phase boundaries do not vary significantly as
long as N±1(t = 0) is kept much smaller than N . This is exemplified in Fig. 4.4, where
we compare the results for a drive through both P-BA and BA-TF phases obtained from
mean-field and full quantum simulations of the three-mode model. By setting a small
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Figure 4.5: Crossing quantum phase transitions in an excited state. (a) Lzz (blue solid
line) and L2 (red dashed line) as a function of ε̃ for a state initially prepared at b±1 =

√
50

and b0 =
√
N − 100, with N(0) = 104 and ~ωt = 2π× 140Hz.The state is evolved under

the GPE while driving ε̃ from −3λ to 3λ, keeping Ω = 0.65Er, following the red dashed
path in Fig. 4.3(b). The total drive time is set to τd = 8h/λ. The corresponding results
obtained with simulations of the three-mode model (4.23) are shown in light colors. (b)
Quasi-momentum density |ψ̃(kx)|2 of the driven state at ε̃ = 0 (dark green solid line)
and ε̃ = 3λ (light green dashed line). (c) Corresponding density profiles at ε̃ = 0 (purple
solid line) and ε̃ = 3λ (pink dashed line).

but nonzero initial occupation of the edge modes, both the mode occupation and the
relative phase between the modes along the drive obtained with mean-field simulations
match well the expected values predicted by Hamiltonian (4.23). At the same time,
figure Fig. 4.4(a2) shows that the driven state experiences the phase-locking predicted
by the mean-field solutions (see (4.27)) when crossing the BA phase, even when we
set N±1(t = 0) = 0, where the spin-mixing dynamics is started solely by quantum
fluctuations. This reinforces the assumption that stripe state also results from the full
quantum dynamics, and not only from the dynamics of coherent states.

With these considerations in mind, we simulate a drive along the red dashed vertical
path drawn in the excited state diagram from Fig. 4.3(b) using the GPE (4.32). In Fig. 4.5
we show the results for such a drive obtained by setting δ = 0, ωt = 2π×140Hz, N = 104

and Ω = 0.65Er into the GPE, and setting the initial state to b±1 =
√

50 and b0 =√
N − 100. In Fig. 4.5(a) we plot the corresponding values of the collective pseudospin
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L2 =
∑

j [
∑

µν b
∗
µ(F̂j)µνbν ]2 and the tensor magnetization Lzz =

∑
µν b
∗
µ(F̂ 2

z )µνbν along
the drive, as a function of ε̃/λ. The state is time evolved following the linear ramp
ε̃(t) = 3λ(2t/τd − 1), with τd = 8h/λ, which should cross both P-BA and BA-TF
phase transitions at ε̃ ∼ ±2λ. As predicted by the collective spin model, in the region
−2λ < ε̃ < 2λ, which would correspond to the most excited BA phase for a perfectly
adiabatic drive, the tensor magnetization L̂zz increases homogeneously with ε̃. Likewise,
the total spin squared L̂2 peaks at ε̃ = 0 and then decreases again, as was expected
(see Fig.4.3(c)). For comparison, the results obtained from the direct simulation of the
three-mode Hamiltonian (4.23) are shown in light colors, which highlights the very good
agreement between the full dressed and trapped gas and the effective model in this regime
of parameters.

As we argued in Sec. 4.3.2, in the Raman-based realization of the collective spin
model, the spin and the orbital degrees of freedom are coupled. The different pseudospin
modes correlate with quasimomentum-shifted band states, roughly in correspondence to
the states located at the minima of the single-particle lowest band. In Fig. 4.5(b) we
plot the momentum-space density at the middle and at the end of the drive, where such
localization of the condensate around the band minima at kj ∼ 2jkrex is illustrated.
Together with the nonothogonal bare spin compositions of the pseudopspin states, these
quasimomentum shifts result into periodic density modulations of the condensate, or
stripes, as described in Sec. 4.3.2. Indeed, the corresponding density profiles are shown
in Fig. 4.5(c). In the excited BA phase, the prepared state exhibits large density mod-
ulations along the direction of the Raman beams. There, the relative peak-to-valley
contrast of the stripes is approximately given Vptv ∼ 0.21, close to the theoretical value
Vth

ptv = max(n(r))−min(n(r))
max(n(r))+min(n(r)) = Ω/Er

√
N0(N −N0)/2N2 predicted by the density distribu-

tion (4.30), which was obtained considering plane-wave-like spatial modes.

Naturally, the level of agreement between the collective spin model and the GPE of
the full dressed gas depends strongly on the choice of parameters. In general, with the
SOC-induced spin mixing dynamics being proportional to Ω2 (see equation (4.16)), the
energy scale of the effective model is enhanced at larger Ω. On the one hand, therefore,
increasing the Raman coupling strength has a clear advantage: a larger λ reduces the
preparation time, proportional to ~/|λ|, and therefore the relative impact of the heating
mechanisms and of photon scattering loss, which we will cover in the next section. On the
other hand, however, the validity of the three-mode truncation that leads to Hamiltonian
(4.23) is progressively more challenged as λ is increased. This is in great part due to the
increased range of values for ε̃ that is required with a larger λ, which implies that higher-
excited modes become closer to being resonantly coupled along the drive. To quantify the
accuracy of the approximation, we compute the projection of the time-evolved states on
to the subspace spanned by the three self-consistent mode, f3M = 1

N2

∑
j

∣∣∫ drφ∗j ·ψ∣∣2,
previously obtained via imaginary time evolution. In Fig. 4.6(a1) we plot the f3M as
a function of ε̃ for analogous linear drives along ε, for different values of Ω. In each
case, we set the drive time to τd = 8~/λ. As expected, increasing Ω while leaving
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Figure 4.6: Validity of the three-mode approximation. (a1) Relative occupation of the
three self-consistent modes φ−1, φ0 and φ1, f3M = 1

N2

∑
j

∣∣∫ drφ∗j ·ψ∣∣2, as a function
of ε̃, for a state initially prepared at ψ = α(φ−1 + φ1) +

√
N − 2|α|2φ0, with N = 104,

α =
√

25 and ~ωt = 2π × 140Hz. The state is evolved under the GPE while driving ε̃
from −3λ to 3λ, and keeping Ω = 0.65Er (red dashed line), Ω = 0.75Er (green dash-
dotted line) and Ω = 0.85Er (solid blue). The total drive time is set to τd = 8h/λ.
Figures (a2) and (a3) show, respectively, the mean tensor magnetization L̂zz and the
relative peak-to-valley contrast Vptv along the drive depicted in (a1). (b1) f3M as a
function of ε̃ for a state initially prepared at ψ = α(φ−1 + φ1) +

√
N − 2|α|2φ0, with

α =
√

10−3N and N = 2× 104 (dashed-red), N = 5× 104 (green dash-dotted line) and
N = 8 × 104 (solid blue). The state is evolved under the GPE, driving ε̃ from −3λ to
3λ, while keeping Ω = 0.5Er and adjusting ωt so that n = 10−14 cm−3. The total drive
time is set to τd = 8h/λ. Below, (b2) and (b3) show the corresponding values for L̂zz
and Vptv, respectively, along the drive depicted in (b1).

the rest of parameters unchanged leads to a rapid increase in the excitation out of the
three-mode subspace. The corresponding values of Lzz and the relative peak-to-valley
contrast of the stripes, Vptv, are plotted in Fig. 4.6(a2) and Fig. 4.6(a3), respectively.
The latter is averaged from the obtained longitudinal density profiles. At the same time,
at any given density, the robustness of the protocol strongly depends on the number of
particles, as exemplified in Fig. 4.6(b1). There, we simulate several drives where we fix
the density but vary the total number of particles. Below, Fig. 4.6(b2) and Fig. 4.6(b3)
show, repectively, the values Lzz and Vptv along the drive.
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It is worth pointing out that, while f3M quantifies the accuracy of the few-mode
truncation, the different physical quantities are affected differently by the value of f3M.
For instance, macroscopic entanglement preparation is expected to be very sensitive to
the full quantum structure of the prepared state. Thus, even a tiny reduction of f3M

could result in a considerable reduction of the generated entanglement. On the contrary,
the macroscopic spin transfer and the contrast of the stripes are less sensitive to the
leakage of probability amplitude out of the three-mode description, as exemplified in
Fig. 4.6. At larger Ω, the loss of contrast in the stripes due to the degradation of
the three-mode approximation and the reduced stability of the spinor phase is partly
compensated through the linear dependency of the contrast on Ω. While less stable in
time, the stripes can retain to some extent a large contrast as we move away from the
three-mode approximation. As a consequence, the optimal experimental parameters will
be strongly dependent on the physical observables of interest.

In this way, the GPE supports the collective pseudospin description (4.23) of the low-
energy landscape of Hamiltonian (4.1) for a wide range of parameters, and the idea that
the stripe phase can be accessed by coherently driving the dressed condensate through a
quantum phase transition in an excited state. It should be stressed that such an approach
to prepare the stripe phase can not be extrapolated to the spin-1

2 gas, where spin-
changing collision processes do not naturally occur and can not be induced by Raman
dressing. In dressed spin-1 gases, this dynamical preparation of stripe states could in
principle permit to access the phase in regimes where it would be experimentally more
feasible. At the same time, doing so would greatly enhance the contrast of the spatial
modulations in the gas. Yet, so far, we have simulated the GPE for an ideal spin-orbit-
coupled BEC. In the next section we will evaluate further the feasibility of the protocol
described in this section by accounting for the major sources of noise that would be
present in its actual experimental realization.

4.4 Experimental considerations

In Sec. 4.3 we introduced a protocol to access the ferromagnetic stripe phase of
the spin-1 spin-orbit-coupled gas that exploited the map of dressed gas to a collective
spin model derived in Sec. 4.2. However, the feasibility of the scheme in an experiment
with ultracold atoms will be subject to several sources of noise that are detrimental
to the stability and contrast of the stripes prepared, most notably the fluctuations in
the Zeeman levels due to the instability of the bias magnetic-field and the calibration
uncertainty in the intensity of the Raman beams. To gain insights on the extent of such
constraints, we now incorporate atom loss and heating mechanisms into the simulations
of the GPE. As a starting point, we naively model the noise in δ and ε with sinusoidal
signals of frequency 50Hz and amplitude 300 Hz and 2.5 Hz, respectively. We consider
Ω to be stable during the drive, but to have a calibration uncertainty of 125 Hz in each
realization. These amplitudes are compatible with a magnetic bias field instability of
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∼ 0.5 mG and a relative uncertainty of ±5% in Ω, within the stabilities reached in
experiments with 87Rb [104, 118, 299]. At the same time, we consider a 10% uncertainty
in the number of atoms initially in the condensate, and the population to decay as
N(t) = N(0) exp(−γt), with γ = 3.33 s−1, which is compatible with the lifetime of
spin-1 Raman-dressed BECs for Ω < Er [118, 244].

In these conditions, we simulate the protocol by introducing the time-dependence
and randomized parameter in the GPE (4.32). This time, instead of varying the effective
quadratic Zeeman shift ε, we drive the state along the Ω direction in the excited phase
diagram, as exemplified with the blue dash-dotted path in Fig. 4.7. The left panel in
the inset show the ideal energy gap along the path, for N = 1000 and n = 7.5 × 1013

cm−3, in which ε is kept fixed while Ω is linearly ramped up. On the right, we plot
the instantaneous values of the characteristic observables of the collective spin phases.
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Figure 4.7: Phase diagram of the highest-excited eigenstate of (4.23), as a function
of the Raman Rabi frequency Ω and effective quadratic Zeeman shift ε, for 87Rb at
n = 7.5 × 1013 cm−3. The polar (P), twin-Fock (TF) and broken-axisymmetry (BA)
phases are colored, respectively, in light green, light yellow and light purple as a guide to
the eye. The three phases meet at the tricritical point CF (black dot). The left panel in
the inset below shows the energy gap ∆E between the two most excited eigenstates along
the blue dash-dotted segment for N = 1000. The right panel shows the corresponding
mean values of the collective pseudospin L̂2 (red dashed line) and tensor magnetization
L̂zz (blue solid line) of the highest-excited eigenstate

.
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Figure 4.8: Robust preparation of FS states. (a1) Lzz (blue solid line), L2 (red dashed
line) and f3M (green dahs-dotted line) a function of time for a state initially prepared
at b±1 =

√
10 and b0 =

√
N − 20, with N(0) = 104 and ~ωt = 2π × 140Hz. The

state is evolved under the GPE while driving ε̃ from −3λ to 0 by linearly increasing
Ω from 0.65Er to 0.767Er, following the blue dash-dotted path drawn in the diagram
from Fig. 4.7. The parameters of the GPE are subject to random fluctuations that
simulate experimental noise, as described in the main text, and the values depicted are
averaged over 20 realizations. The shadowed regions indicate the associated standard
deviations. (a2) Longitudinal density |ψ|2 (blue solid line), spin density Fx (red dashed
line) and nematic density Nxx (green dash-dotted line) at t = 150 ms from a single
realization of the drive, where it is expected that ε̃ = 0.5λ. In (b) and (c) we show the
corresponding results for analogous drives from −3λ to 0, where the state is initially
prepared at Ω(t = 0) = Er and Ω(t = 0) = 1.25Er, respectively. The larger values of λ
along the drive allow a faster preparation at the cost of a reduced robustness, which is
signaled by a decrease in f3M by the end of the drive.

Such a path illustrates the tunability of the SOC-mediated spin dynamics, which we can
exploit to improve the preparation. Driving along Ω has two major advantages. Mainly,
the spin-mixing parameter λ is increased as ε̃ approaches to 0, which allows to reduce the
preparation time while retaining a high robustness. At the same time, the drive ends at
larger Ω, where the contrast of the stripes is further enhanced as long as the few-mode
picture is preserved.
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There is a general trade-off between the detrimental effects of the different noise
sources, which all become more relevant when the energy scale of the spin dynamics is
made smaller, and the amount of excitations created out of the the three-mode subspace,
which has the opposite behavior. As argued in Sec. 4.3.4, the experiment should be
optimized differently depending on the observables that are targeted. To be on the safe
side, we first simulate the drive along the blue dash-dotted path from Fig. 4.7, considering
N = 104 and n = 7.5× 1013 cm−3. There Ω is initially set to 0.65Er, which results in a
very small fraction of the population excited out of the three-mode subspace. The results
for such a drive are shown in Fig. 4.8(a). In Fig. 4.8(a1), we plot Lzz, L2 and f3M =

1
N2

∑
j |bj |

2, averaged over 20 realizations of the drive, where the GPE incorporated the
randomized parameters as described above. The P-BA transition is well captured, with
f3M ∼ 0.99 by the end of the drives. In Fig. 4.8(a2) below we plot the longitudinal
density |ψ|2, the spin density Fx = ψ∗F̂xψ and the nematic density Nxx = ψ∗(2

3 − F̂
2
x )ψ

at ε̃ = 0 for a single realization of the drive, randomly chosen from the sample. Note
that in the latter figure the profiles are not averaged over all the realizations, since the
randomness of the relative spinor phase between different realizations would unavoidably
flatten the contrast in the averaged profile. Fig. 4.8(a2) shows that, indeed, as predicted
by the effective model, the prepared state exhibits the characteristic properties of FS
states, with large spatial modulations along the direction of the Raman beams. The
FS phase can be distinguished from antiferromagnetic stripe phases from the periodicity
of the modulations, with the particle density and the spin densities having periodicity
2π/|k1|, and the nematic densities containing harmonic components both with period
2π/|k1| and π/|k1| [196].

Similarly, in Fig. 4.8(b) we show the corresponding results for an analogous drive
along Ω, where the state is prepared at a larger Ω, with Ω(t = 0) = Er. As discussed in
the previous paragraph, in these conditions the system experiences a reduced impact from
parameter fluctuations, yet we observe a larger decrease in f3M, as shown Fig. 4.8(b1).
By comparing Fig. 4.8(b2) to Fig. 4.8(a2), we notice that the prepared states appear
to retain to a large degree the spatial properties of the FS states. However, the spatial
structures of the FS phase degrade quickly as Ω is further increased, as illustrated in
Fig. 4.8(c), where we set Ω(t = 0) = 1.25Er. In this conditions, the robustness of the
three-mode truncation is largely reduced and, consequently, the collective spin structure
is lost. In any case, the freedom in the choice of parameters highlights the enhanced
tunability of the realization of the spin model in Raman-dresed spinor gases. Our results
indicate that the preparation of the FS phase in an excited state is compatible with
the degree of control attained in state-of-the-art experiments with ultracold gases. As
a final remark, we note that the preparation could be optimized further by employing
reinforcement learning techniques, as recently demonstrated in the experiment from [327]
for the same collective spin model realized in undressed spinor gases.
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4.5 Conclusions

In this chapter we have presented the Raman-dressed spin-1 Bose-Einstein conden-
sate as a versatile platform to study nonequilibrium phenomena. We have analytically
demonstrated that in the weak Raman coupling regime, the dressed system is equivalent
at quantum level to an artificial spinor gas with tunable spin-changing collisions. On
the one hand, such formulation allows a simple description of the quantum phases of the
Raman-dressed gas and of their dynamics in terms of the artificial spinor gas. On the
other hand, the coupling between spin and momentum that arises from the synthtetic
SOC and the degree of tunability of the nonsymmetric spin-spin interaction offer many
possibilities that go beyond those of undressed spinor gases.

By way of example, we have proposed a protocol to prepare the supersolid-like FS
phase of the spin-1 spin-orbit-coupled gas that is based on this map. The preparation is
achieved via driving an initially polarized state across a quantum phase transition in an
excited-state of the effective low-energy Hamiltonian. Remarkably, we have shown that
this approach enhances the accessibility of the phase, which, to date, has not been yet
experimentally demonstrated in spin-1 gases. In the excited-state phase diagram, the FS
phase is broader, and both the energy gap and the contrast of the density modulations
are larger. These features could enable a robust preparation of the state and ease the
detection of its supersolid properties, e.g. by probing its spectrum of excitations [192,
198]. We emphasize that only through the explicit mapping, which identifies the excited-
state stripe phase with the broken-axisymmetry phase of the collective spin physics of
the effective spinor model, such a simple approach is made evident.

Through simulations of the GPE of the full dressed gas, we have shown the imple-
mentation of the protocol to be feasible in state-of-the-art experiments with ultracold
atoms. We have benchmarked the protocol in accordance to the results reported from ex-
periments with 87Rb condensates at the National Institute of Standards and Technology.
Unlike most proposals to realize striped phases in spinor gases, we show that the phase
can be robustly accessed without relying on an effective decrease of the intraspin interac-
tions. Instead, by preparing the phase in an excited-state, the characteristic parameters
that stabilize the phase are scaled up, making it more robust against experimental noise.
While we find the protocol compatible with 87Rb experiments, this approach does not
rely critically on the specific properties of interatomic interactions and could in princi-
ple be generalized across the alkali atomic species and to non-alkali atoms like 162Dy.
However, we note that such an approach, which is based on the SOC-induced dynamical
spin-mixing processes, can not be employed to prepare the stripe phase in spin-1

2 gases.

The dressed-base description of Raman-coupled spinor gases suggests new directions
for probing nonequilibrium phenomena, as in [306, 310], with light-dressed spinor gases of
alkali-metal and non-alkali-metal [328] atoms. Furthermore, the FS phase corresponds
to the BA entangled phase of the artificial spinor gas: its preparation may thus lead
to the generation of macroscopic entanglement in momentum space (cf. [329]), with
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potential applications in quantum metrology. Finally, the map also introduces gases
with SOC as an alternative platform to study dynamical and excited-state quantum
phase transitions. It suggests that the connection between the FS and BA phases can be
extended throughout the spectrum of the effective spin model. This precise connection
will be explored in the next chapter.



CHAPTER 5

Excited state quantum phase transitions in spin-orbit-coupled Bose gases

In chapter 3 we saw that spin-changing collisions emerge in Bose gases in the pres-
ence of spin-orbit coupling. In the Raman-dressing-based realization of such systems,
we showed that the strength of the SOC-induced spin interactions can be conveniently
adjusted with the intensity of the Raman beams. Next, in chapter 4 we went a step
further in this direction, and showed that for a relatively large regime of parameters, the
weakly-dressed gas can be made completely analogous to an undressed gas with tunable
spin interactions. Relevantly to this chapter, we showed there that such an analogy not
only provided a simple framework to understand the phases of the dressed gas, but it
could actually be extended for a broad family of energy states of the Hamiltonian. In
this chapter, we will make use of this equivalence throughout the energy spectrum to
explore excited-state quantum phase transitions in spin-1 Raman-dressed condensates,
inspired by a recent proposal that exploits spin-changing collisions in an undressed gas.

Excited-state quantum phase transitions depend on and reveal the structure of the
spectrum of many-body systems. In analogy to ground-state quantum phase transitions,
excited-state quantum phase transitions involve the existence of criticalities in the en-
ergy spectrum, typically involving an additional control parameter, that occur across a
large set of excited energy levels. In some systems they can even extend to the whole
the excitation spectra. While they are theoretically well understood, and predicted to
occur in a large variety of models, finding suitable signatures and detecting them in ac-
tual experiments remains challenging. For instance, excited-state phases in spinor gases
has been identified only very recently, and characterized through a topological order pa-
rameter that is challenging to measure in experiments. In this chapter, we propose the
Raman-dressed spin-orbit-coupled gas as a novel platform to explore excited-state quan-
tum phase transitions. By making use of the equivalence between the dressed system

109
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and an undressed spinor gas developed in the previous chapter, we are able to iden-
tify excited-state phases in the former system that are in correspondence with those of
the latter. In the dressed system, the excited phases are further characterized by the
behavior of the spatial density modulations, or stripes, induced by spin-orbit coupling.
One the one hand, a novel order parameter for the phases can be defined in these terms,
which can in principle be measured in current state-of-the-art experiments with ultracold
atoms and facilitate the detection of the excited phases. One the other hand, we show
that the properties of the excited phases can be exploited to prepare stripe states with
large and stable density modulations.

The paper is organized as follows. We start by establishing in Sec. 5.1 a theoretical
and experimental background to the results presented in this chapter, where we also
briefly remind the Raman-dressed spin-1 gas and its description as a collective pseudo-
spin Hamiltonian with tunable spin interactions. The main result of the chapter is
presented in Sec. 5.2, where we introduce the novel excited stripe phase of the Raman-
dressed condensate. In turn, we show that its experimental signature can provide a new
means to detect the ESQP transitions of the collective spin model, and can also provide
an alternative signature of a dynamical quantum phase transition therein. In Sec. 5.3 we
propose a robust protocol to prepare excited stripe states, which we benchmark numeri-
cally with simulations of the GPE. Finally, we briefly recap and draw our conclusions in
Sec. 5.4.

5.1 Introduction

Harnessing quantum matter with light is at the heart of quantum technology [330,
331]. The engineering of artificial spin-orbit coupling (SOC) in charge-neutral ultracold
atomic gases via Raman dressing is a prominent example [30, 84, 85] (see Sec. 2.2.3).
Spinor gases dressed by Raman coupling [86, 104] interact differently [116, 117], host
stripe phases [108, 207] with supersolid-like properties (see also [313], for dipolar gases
realization see [316–318]), or even realize a topological gauge theory [332]. In this chapter,
we propose to use Raman-dresed spin-orbit-coupled gases for studying dynamical [120]
and excited [121] quantum phase transitions in spinor BECs.

5.1.1 Background and motivation

In recent years, the notion of quantum phase transition [221, 333] has been extended
beyond the ground states of quantum systems. In broad terms, quantum phase transi-
tions are characterized by a nonanalytical changes in the properties of the ground state
(or a given eigenstate) of a system when a specific control parameter is varied across a
critical value. Drawing an analogy to such processes, dynamical quantum phase transi-
tion refer to the existence of non-analyticities in the properties of a state as a function
of time following a quench of a parameter. They have been described in many sys-
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tems, and demonstrated in quench experiments with cold atoms in optical lattices [334–
336] and cavities [337], trapped ions [338, 339], and with superconducting qubits [340].
At the same time, in an even closer parallelism to regular quantum phase transitions,
the so-called excited-state quantum phase (ESQP) transitions describe the criticalities
that occur across the spectrum of certain many-body Hamiltonians, and involve a large
amount of excited states. Typically, across an excited-state quantum phase transition,
both the energy and the properties of the excited states vary nonanalytically at some
critical value of the energy, which in turn depends smoothly on an additional control pa-
rameter. Thus, critical boundaries are formed in the plane defined by the energy and the
control parameter. These boundaries separate extended sets of eigenstates into different
ESQPs. Typically, the energy gap closes at the boundary, resulting in a divergence of
the density of states. ESQP transitions have been shown to occur in a variety of models
[341–349], and have been observed in superconducting microwave Dirac billiards [350].
Recently, both dynamical and ESQP transitions have been theoretically [323, 351] and
experimentally [297, 298] studied in spin-1 BECs with spin-changing collisions.

In chapter 4, we saw that the weakly-coupled Raman-dressed spin-1 SOC gas at
low energies can be understood as an artificial spin-1 gas with tunable spin-changing
collisions that can be adjusted with the intensity of the Raman beams. We further
showed that, in certain conditions, the dressed system is well described by a one-axis-
twisting collective spin Hamiltonian [165, 272, 321]. The realization of the same model in
undressed spinor condensates has led to the observation of various quantum many-body
phenomena [147], including the formation of spin domains and topological defects [300–
310], and the generation of macroscopic entanglement [274–285, 311], with prospects for
metrological applications [73]. The map to pseudospin degrees of freedom (see Fig. 5.1)
highlights the potential advantage of SOC dressed gases for engineering quantum many-
body physics: the enhanced tunability of the system and the built-in entanglement
between the emerging collective spin structures and the orbital degrees of freedom. In
this chapter we employ these unique features to identify a novel Excited-Stripe (ES)
phase of the spin-1 SOC gas. The phase is in correspondence to the Broken-Axisymmetry
(BA’) excited phase of the effective collective spin model, discussed in [323], which is
characterized by a topological order parameter, and can extend over the whole spectrum
of the Hamiltonian. In the SOC gas, ES phase comprises the classical phase-space
trajectories with nonzero time average of the spatial modulations of the density of the
gas.

We exploit the relationship between the topological order parameter and the stability
of the density modulations in the SOC gas to design a novel detection protocol for
the ESQPs of the spinor gas. In the dressed gas, having an interferometer built-in
generated by SOC makes a measurement of the contrast of the stripe equivalent to a
simultaneous measurement of the amplitude and phase of the dressed spin components.
Remarkably, this approach benefits from an intrinsic robustness to magnetic fluctuations,
which constraint the current proposals for detecting the excited phases of the model
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in spinor gases with intrinsic spin changing collisions [323]. Moreover, we also show
that a type of dynamical quantum phase transition in the dressed system can also be
characterized by an observable that is based on the contrast of the density modulations.
Finally, through the effective model, we are able to provide a robust protocol to prepare
striped states. The ES phase of the gas can be accessed from an initially unpolarized gas
via crossing an ESQP transition in a two-step quench scheme. With such an approach, we
show that the ES phase can be realized in current state-of-the-art experiments with spin-
1 SOC gases, with the prepared states exhibiting large and stable density modulations.
At the same time, the proposal introduces a novel procedure to access the striped regime
of the spin-1 with SOC, which as ground-state phase has a very narrow region of stability
[196] and it has yet to be experimentally demonstrated.

5.1.2 The Raman-dressed gas as an artificial spinor gas

In this chapter we consider again a spin-1 BEC of N atoms of mas m subject to syn-
thetic SOC with equal Rashba and Dresselhaus contributions, as experimentally realized
via Raman-coupling two Zeeman pairs {|1, 1〉 , |1, 0〉} and {|1, 0〉 , |1,−1〉} independently
[118]. In the presence of dressing, the kinetic Hamiltonian can be written as

Ĥk =
~2

2m

(
k− 2krF̂zex

)2
+

Ω√
2
F̂x + δF̂z + εF̂ 2

z , (5.1)

where ~F̂j are the spin-1 matrices. Here, Ω quantifies the Raman coupling strength. By
simultaneously adjusting the detuning from resonance of each Raman pair, the strengths
of an effective quadrupole tensor field and a magnetic field term, ε and δ, respectively,
can be independently tuned in the laboratory (see methods from [118]).

The many-body scenario for the Raman-dressed gas in the mean-field regime is cap-
tured by the energy functional

E[ψ] =

∫
dr

ψ∗(Ĥk+Vt

)
ψ +

gs
2
|ψ|4+

ga
2

∑
j

(ψ∗F̂jψ)2

 , (5.2)

where ψ = (ψ1, ψ0, ψ−1)T is the spinor condensate wavefunction, normalized to the total
number of particles as

∫
drψ∗ψ = N . The spin-symmetric and nonsymmetric interaction

couplings are given by gs = 4π~2(a0 + 2a2)/3m and ga = 4π~2(a2 − a0)/3m, where a0

and a2 are the scattering lengths in the F = 0 and F = 2 channels, respectively. For
simplicity, we will consider that the gas is confined with an isotropic harmonic potential
Vt = 1

2mω
2
t r2.

In this chapter we consider again the weak Raman coupling regime, where Ω is
smaller than the Raman single-photon recoil energy Er. We label the recoil momentum
as ~kr, so that Er = ~2k2r

2m . Furthermore, we will consider Er � δ, ε. In this regime,
the lowest dispersion band of Ĥk has three different minima kj ∼ 2jkrez, with j ∈
{−1, 0, 1}, as illustrated in Fig. 5.1(a). As demonstrated in the previous chapter, in
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Figure 5.1: Pseudospin dynamics in SOC BECs. (a) Dispersion bands of Hamiltonian
(5.1), setting Ω = 0.75Er, δ = 0 and ε = Ω2/16Er. The corresponding mean value of F̂z
for the band states is indicated with the color texture. The undressed bands are shown
in gray dashed lines. (b) Schematic representation of an effective spin-changing collision
process enabled by Raman transitions (represented in wavy lines). (c) Phase diagram of
the dressed spin Hamiltonian (5.3), as a function of the Raman Rabi frequency Ω and
effective quadratic Zeeman shift ε, for 87Rb at n = 7.5×1013 cm−3. The polar (P), twin-
Fock (TF) and broken-axisymmetry (BA) phases meet at the tricritical point CF (black
dot). The red dashed vertical line at Ωc = 4Er

√
|ga|/gs separates the ferromagnetic

(λ < 0) and the antiferromagnetic (λ > 0) regimes of the effective Hamiltonian. The
blue dotted lines enclose the region of parameters around the P-TF transition where the
BA’ excited-state quantum phase takes place (see Sec. 5.2), with its boundaries located
at ε̃ = ±2λ in the thermodynamic limit.

these conditions the dynamics of the dressed gas is equivalent to the one of an effective
spinor gas with Raman-mediated spin-changing collisions (see Fig. 5.1(b)). For small
condensates, the low-energy landscape of the weakly-coupled gas can be restricted to
just three self-consistent modes, and the system is then well described by a collective
pseudo-spin Hamiltonian. We label the collective pseudo-spin operators as L̂x,y,z =∑

µν b̂
†
µ(F̂x,y,z)µν b̂ν and L̂zz =

∑
µν b̂
†
µ(F̂ 2

z )µν b̂ν , where the bosonic operators b̂†−1, b̂
†
0 and
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b̂†1 create a particle in the left, middle and right well mode, respectively. With this
notation, we restrict ourselves to the zero “magnetization” subspace, where L̂z = 0, and
where the effective Hamiltonian reads (see Sec. 4.2 in chapter 4 for a detailed derivation)

Ĥ = λ
L̂2

2N
+ ε̃L̂zz. (5.3)

Here, λ = (ga + gs
Ω2

16E2
r
)n, where n is the mean density of the gas. The coefficient ε̃

includes a perturbative correction to ε, with ε̃ = ε+ Ω2

16Er
.

Hamiltonian (5.3) is completely equivalent to the one describing the nonlinear co-
herent spin dynamics of spin-1 BECs where ga � gs [165]. Note that such equivalence
does not generally extend throughout the Hilbert space, where an additional term pro-
portional to L̂2

z breaks the SO(3) symmetry of the interacting Hamiltonian (see equation
(4.21) in chapter 4). This fact motivates our restriction to the subspace with zero magne-
tization. Nonetheless, it should be noted that, as long as the spread in L̂z is much smaller
than N , the analogy can be straightforwardly extended to subspaces of any magnetiza-
tion. In Fig. 5.1(c) we plot the phase diagram of Hamiltonian (5.3) in the Ω − ε plane
using the expression for ε̃(Ω, ε) and λ(Ω), and considering a mean density n = 7.5× 1013

cm−3 and the values for ga and gs for 87Rb as given in [147]. The dashed vertical line at
Ω = 4Er

√
|ga|/gs separates the ferromagnetic (λ < 0) and the antiferromagnetic (λ > 0)

regimes of the dressed-spin dynamics. The antiferromagnetic regime includes the polar
(P) phase at ε̃(Ω) > 0, in which all the atoms occupy the middle well mode, and the
twin-Fock (TF) phase for ε̃(Ω) < 0, where the atoms evenly occupy both edge-well states.
The scenario is richer in the ferromagnetic regime, where the effective spin interactions
favor the formation of a non-vanishing transverse magnetization. When the effective
interaction dominates, this results in the spontaneous breaking of the SO(2) symmetry
of the system [301], giving rise to the so-called broken-axisymmetry (BA) phase [324] in
between the P and TF phases.

5.2 ESQPs in SOC gases

Recently, ferromagnetic spin-1 BECs, which are described by the collective spin
Hamiltonian (5.3) with λ < 0, have been shown to exhibit ESQP transitions [323].
The Hamiltonian hosts three separate ESQPs that extend from the ground state phases
and span across the whole energy spectrum. The ESQP diagram of (5.3) in the ε̃ − E

plane is shown in Fig. 5.2(a) for λ < 0, where E = 〈H〉 /(|λ|N) is the scaled energy per
particle of the eigenstates of Ĥ and Eg is the one of the ground state. The phases P’,
BA’ and TF’ are labelled according to the corresponding ground state phase of (5.3),
which were discussed in detail in Sec. 4.3. At the boundaries between the phases, the
mean-field limit of the density of states diverges, as it is expected for an ESQP transi-
tion [121]. The boundaries are found at the critical energies E∗, which in turn depend
on the additional control parameter ε̃ and are given by E∗ = ε̃/|λ| for −2 < ε̃/|λ| < 0,



5.2 ESQPs in SOC gases 115

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

-3 -2 -1  0  1  2  3

BA'

BA'

TF'

TF' P'

P'

(a)

(b)

Figure 5.2: Excited-state quantum phases (ESQPs) in SOC BECs. ESQP diagram of
Hamiltonian (5.3), which describes the low-energy landscape of spin-1 gases with spin-
orbit coupling, for both effective ferromagnetic (a) and antiferromagnetic (b) dressed-spin
interactions. The horizontal axis shows the scaled value of the effective quadratic Zeeman
shift ε̃ and the vertical axis indicates the energy of the eigenstates relative to the ground
state energy. The thin gray lines show every twenty-fifth eigenvalue of the Hamiltonian
for N = 500. The thick black line indicates the phase boundary at the critical energies
E∗(ε̃).

and at E∗ = 0 for 0 < ε̃/|λ| < 2. Notice that, since Ĥ(λ, ε̃) = −Ĥ(−λ,−ε̃), the same
three phases also occur for antiferromagnetic gases, but with their boundaries redefined,
as shown in Fig. 5.2(b). In this regime, the critical energies are found at E∗ = 0 for
−2 < ε̃/|λ| < 0, and E∗ = ε̃/|λ| for 0 < ε̃/|λ| < 2.

As discussed thoroughly in [323], within these ESQPs the classical phase-space tra-
jectories of coherent states can be classified with respect to a topological order parameter
(for a similar behavior in the Rabi model, see [352]). In this section, we will show that
this order parameter is directly related to the stability of the density modulations in
the spin-orbit-coupled gas. We will exploit this relationship to provide a novel detection
protocol for the ESQPs of the spinor gas.



116 Excited state quantum phase transitions in spin-orbit-coupled Bose gases

As in [323], we consider now the set of coherent states |N,n,θ〉 =

1√
N !

(∑
j
√
nje

iθjb†j

)N
|0〉 in the zero magnetization subspace, with

∑
j nj = 1 and

n1 = n−1. In the mean-field limit of (5.3), the scaled energy per particle is given
by

E(n,θ) = 〈N,n,θ| Ĥ |N,n,θ〉 /|λ|N = sgn(λ)2(1− n0)n0 cos2 θ +
ε̃

|λ|
(1− n0), (5.4)

where we define the spinor phase θ = θ0− θ1+θ−1

2 . From (5.4), we obtain the correspond-
ing mean-field equations of motion

ṅ0 =
|λ|
~
∂E

∂θ
, θ̇ = −|λ|

~
∂E

∂n0
. (5.5)

The solutions of equations (5.5) are periodic, and the relationship between the periodicity
of n0(t) and θ(t) varies between the different ESQPs. In the BA’ phase, for each point in
the ε̃−E plane there exist two solutions with disconnected trajectories. In these solutions
both n(t) and θ(t) have the same periodicity. Furthermore, the values that θ(t) can take
are bounded, with −π/2 < θ(t) < π/2 in one solution and π/2 < θ(t) < 3π/2 in the
other. Conversely, in the P’ and TF’ phases the solution is unique at each point and the
spinor phase θ is unbounded. By labelling the periodicity in n(t) by τ , in the P’ and
TF’ phases of the ferromagnetic diagram one has θ(t+ τ) = θ(t)±π (see [295], [162] and
[323] for more details). In [323], they introduce the winding number

w =
1

π
[θ(τ)− θ(0)] , (5.6)

which can be interpreted as a topological order parameter that distinguishes between
the three excited phases. It takes the value w = −1, 0, 1 for any mean-field trajectory
within the P’, BA’ and TF’ phases, respectively. In the antiferromagnetic diagram, the
sign of w is flipped with respect to the ferromagnetic case.

5.2.1 The Excited-Stripe phase

So far, we have described the excited phases that occur in the collective spin model
(5.3). In the spinor gases, these can be identified by their effect on the properties of
the phase space trajectories in the classical limit, in particular, on the behavior of the
spin population n0 and the spinor phase θ. Remarkably, we saw in chapter 4 that in
the Raman-based realization of Hamiltonian (5.3), the presence of spin-orbit coupling
correlates these two quantities to the motional degrees of freedom in the gas. Specifically,
in Sec. 4.3.2 we described the spatial properties of the ground state phases of the spin-
orbit-coupled condensate in terms of n0 and θ. We will now extend this relationship to the
whole phase space diagram of the effective model and relate properties of the trajectories
(n0(t), θ(t)) that coherent pseudospin states follow to the those of the Raman-dressed
atomic cloud.
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To do so, we write the mean-field wavefunction of the gas as ψ(r) =√
N
∑

j

√
njφj(r)eiθj , where we label the three self-consistent modes around kj as φj .

As argued in Sec. 4.3.2, since we consider that ~ωt � Er, the three modes are well
located at the vicinity of the lowest dispersion band minima, and can be described by
plane waves (see equation (4.29)) times a slowly varying envelope function. In these
conditions, the spatial density of the gas can be approximated to

n(r, t) = ψ∗(r, t) ·ψ(r, t) ∼ n
(

1 +
∆n(x, t)

n

)
, (5.7)

where

∆n(x, t) = n cos(k1x−∆)
Ω

Er

√
n0(t)(1− n0(t))

2
cos θ(t) +O((Ω/8Er)

2). (5.8)

Here, ∆ = θ1 − θ−1 is the phase difference between the modes located at the edge band
minima, which is a constant of motion if we set δ = 0. In this way, the mean-field
solutions of (5.3) exhibit spatial density modulations that depend both on n0 and θ,
with a relative amplitude given by

A(t) =
Ω

Er

√
n0(t)(1− n0(t))

2
cos θ(t). (5.9)

Let us now evaluate the behavior of these density modulations in the different excited
phases introduced above. In both the P’ and TF’ excited phases, the trajectories fulfill
that n0(t+ τ) = n(t) and cos θ(t+ τ) = − cos θ(t). Hence, it follows from (5.9) that

1

2τ

∫ 2τ

0
dtA(t) = 0, (5.10)

and so

lim
T→∞

1

T

∫ T

0
dtA(t) = 0, (5.11)

for all solutions in the P’ and TF’ phases. Thus, while an arbitrary excited state in such
phases can exhibit spatial density modulations at a given time, such modulations vanish
in the time-averaged density profile.

The situation is different for the trajectories that belong to the BA’ excited phase.
There, for each ε̃ and E, there are two classical solutions that fulfill cos θ(t) > 0 and
cos θ(t) < 0, respectively, for all t. Therefore

lim
T→∞

∣∣∣∣ 1

T

∫ T

0
dtA(t)

∣∣∣∣ > 0. (5.12)

Thus, we can define a new observable that distinguishes a novel ESQP of the SOC spin-
1 gas, which we label as Excited-Stripe phase (ES). The classical solutions exhibit a
nonzero time-averaged amplitude of the spatial density modulations, or stripes, in the
region of parameters that corresponds to the BA’ ESQP of the effective dressed spin
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model of (5.3). The topological order parameter w therein is then associated with the
stability of the stripes in the Raman-dressed spin-1 gas. This stability is well understood
from the locking of the relative spinor phase θ in the classical mean-field trajectories when
w = 0, which arises from the effective dressed spin-changing collisions in the gas.

Notice that in presence of a nonzero detuning δ, the phase of the modulations, ∆,
(see equation (5.8)), becomes time dependent, with ∆̇ = θ̇1 − θ̇−1 = 2δ/~. While
the amplitude of the stripes remains unchanged at leading order, this time dependence
of the phase results in vanishing modulations in the time-averaged density profile in
the laboratory frame, regardless of the behavior of A(t). Yet even in this situation,
there always exists a frame co-moving with the modulation where time-averaging of
modulations yields the same nonzero value as at δ = 0. Such a frame can not be
defined for the dressed states that correspond to excited TF’ and P’ states, and thus the
definition of the ES phase can be conceptually generalized. In practice, though, the ES
phase can be more conveniently distinguished in the presence of nonzero detuning, or
even time-dependent, from the behavior of the contrast of the modulations over time.
This will be discussed in detail in Sec. 5.2.3.

In the ES phase, the contrast of the stripes increases with Ω, and, thus, is larger in
the antiferromagnetic regime of (5.3), where Ω > Ωc. At the same time, for nearly-spin-
symmetric gases such as 87Rb, the region of parameters where the ES can exist is much
broader there, as indicated with blue-dotted lines in Fig. 5.1(c). Yet in this regime the
stripe phase does not occur in the ground state of the Raman-dressed gas, and one may
suspect the gas to undergo a phase separation between the different spin components
over time. Still, within the validity of three-mode truncation that leads to (5.3), phase
separation does not occur, and thus the effective model predicts that the ES phase will
persists as excited states even at Ω > Ωc, in the same way as we showed for states in
the most-excited manifold of the effective Hamiltonian in chapter 4. However, with the
ES phase being defined and understood in terms of the stability of the spinor phase
over time, its characterizing observable, that is, the time-averaged density profile (or the
time-dependent behavior of the contrast, as we will show below), is predictably more
sensitive to the validity of the three-mode truncation.

Such a three-mode truncation is equivalent to the single-spatial mode approximation
in undressed antiferromagnetic spinor condensates. As the latter, it holds better the
smaller the condensate and for zero total magnetization [320]. As for the latter, it is
notoriously difficult to determine analytically its precise range of validity. Naturally, the
physical requirement on the Hamiltonian of the gas for the single-spatial mode approxi-
mation to hold is that its nonsymmetric part has to be a perturbation of the symmetric
part, so that λ � gsn and λ � ~ωt. To assess the validity of the truncation in the
Raman-dressed gas and the extent to which the ES phase can be realized there, we will
next compare the predictions of the model with the mean-field evolution of the whole
gas.
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5.2.2 The ES phase: Gross-Pitaevskii results

To verify the predictions of model (5.3) for Raman-dressed SOC gases, we simulate
the GPE of the whole system

i~ψ̇j = δE[ψ]/δψ∗j , (5.13)

where E[ψ] is the energy functional in (5.2). We calculate the self-consistent modes
φj via imaginary time evolution of the GPE and define n0 = b∗0b0 and θ = arg(b0) −
(arg(b1) + arg(b−1))/2, with

bj =
1

N

∫
drφ∗j (r) ·ψ(r). (5.14)

We consider small 87Rb condensates in the F = 1 hyperfine manifold, with Er/~ =

2π × 3678Hz, kr = 7.95× 106 m−1. We use the corresponding values a0 = 101.8aB and
a2 = 100.4aB for the scattering lengths in the different channels, taken from [147], where
aB is the Bohr radius.

In Fig. 5.3(a), we plot the relative amplitude A(t) as a function of time for two
different states prepared at Ω = 0.75Er, ωt = 2π × 140 Hz, and δ = 0 with N = 104.
In both cases, we adjust ε so that ε̃ = −0.5|λ| and set n0(0) = 0.5. We then evolve
the initial state with the GPE (5.13). In one trajectory (red solid line), the state is
initialized at θ = 0.1π, with a corresponding E > E∗ = 0, and thus expected to be in the
ES phase. Indeed, in agreement with the effective model, A(t) is periodic and remains
positive (or negative) at any time t, due to the spinor phase being bounded along the
mean-field trajectory. Conversely, the blue dashed line corresponds to a trajectory with
θ(0) = 0.3π, and so E < E∗, thus out of the ES phase (see Fig. 5.2(b)). In this case the
amplitude oscillates between positive and negative values, averaging to 0 over a period.
In Fig. 5.3(b) we show the corresponding time-averaged density profile of the condensate,
given by

〈n(x)〉T =
1

T

∫ t0+T

t0

dt

∫
dydz|ψ(r)|2, (5.15)

and averaged over a time T = 500ms. As expected, 〈n〉T exhibits large modulations when
E > E∗ = 0, while these vanish for E < E∗ = 0. In Fig. 5.3(c) we plot the fraction of atoms
that remain within the three-mode subspace, or fidelity, f3M = 1

N2

∑
j

∣∣∫ drφ∗j ·ψ∣∣2, as
a function of time, which highlights the accuracy of the approximation in this regime of
parameters.

As exemplified by the results shown in Fig. 5.3, the GPE analysis of the Raman-
dressed gas supports the predictions of the dressed spin model in a broad, and experi-
mentally accessible, range of parameters. We stress that the stripe phase as an ESQP is
only well defined and understood within the three-mode subspace, where the robustness
of the spatial density modulations is enabled by the collective spin structure of the ef-
fective Hamiltonian. The contrast of the modulations in 〈n(x)〉T is very sensitive on the
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Figure 5.3: Signature of the excited-state stripe phase. (a) Relative amplitude A(t) of
the spatial modulations for a dressed condensate of N = 104 particles prepared with
Ω = 0.75Er, ωt = 2π × 140 Hz, δ = 0 and ε̃ = −0.5|λ|, computed using the GPE (5.13).
Red solid line: A(t) for a state initially at n0(0) = 0.5 and θ = 0.1π, with E > E∗ (ES
phase). Blue dashed line: A(t) for an initial state at n0(0) = 0.5 and θ = 0.3π, with
E < E∗ (T’ phase). (b) Corresponding time-averaged density profile of the condensate,
〈n(x)〉T , averaged over T = 0.5s. When E > E∗, the spatial modulation in 〈n(x)〉T does
not vanish with increasing T . (c) Fraction of the condensate that remains within the
subspace spanned by the self-consistent modes φj .

degree of accuracy of the truncation, which in turn depends both on the strength of the
effective spin interaction coefficient |λ| and on the total number of particles.
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Figure 5.4: Robustness of the ES phase. (a) Time-averaged relative amplitude, 〈A〉T
(red circles), and fidelity of the three-mode truncation, 〈f3M〉T (green squares), as a
function of Ω for a dressed condensate of N = 104 particles. The state is prepared
with n0(0) = 0.5 and θ = 0.1π, and evolved using (5.13) with ε̃ = −0.5|λ|. (b) 〈A〉T
and 〈f3M〉T as a function of N for a state prepared at n0(0) = 0.5 and θ = 0.1π, with
Ω = 0.75Er and ε̃ = −0.5|λ|. (c) Time-averaged density profile for the corresponding
trajectories with N = 2 × 104 (blue solid line) and N = 4 × 104 (purple dashed line)
from (b). In all cases, the state is evolved for T = 500ms and ωt is adjusted to have
n = 7.5× 1013 cm−3.

This sensitivity is illustrated in Fig. 5.4, where we show the values of the time-
averaged amplitude 〈A〉T = 1

T

∫ T
0 dtA(t) and fidelity 〈f3M〉T = 1

T

∫ T
0 dtf3M(t) for a state
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initialized at n0 = 0.5 and θ = 0.1π and evolved under eq. (5.13), for several values of
Ω in Fig. 5.4(a), and for a varying total number of particles in Fig. 5.4(b). In all cases,
ωt is adjusted so that n = 7.5× 1013 cm−3, and the quantities are averaged over a total
time T = 500ms. In Fig. 5.4(a) we set N = 104, and in Fig. 5.4(b) Ω = 0.75Er. While,
according to the effective model (5.3), the state is prepared within the BA’ phase, with
E > E∗, the contrast of the time-averaged density modulations rapidly vanishes as soon
as the fidelity of the three-mode truncation degrades. This is exemplified in Fig. 5.4(c),
where we plot the time-averaged density profile for the corresponding trajectories with
N = 2 × 104 and N = 4 × 104 from Fig. 5.4(b). In the latter case, the stripes are
absent in the time-averaged density profile, despite having considered the same Raman
dressing parameters and atom density than in the former, and the same initial relative
spin populations.

It is clear, then, that the collective spin structure is fundamental to the nature of the
ES phase. Still, we are able to identify a wide range of parameters for which the few-
mode description is accurate, and the behavior of the dressed gas understood in these
terms. Furthermore, the direct connection between the ES phase of the Raman-dressed
gas and the BA’ phase of the effective spin model can provide a powerful tool for the
detection of the ESQPs of the spinor gas.

5.2.3 Signature of the BA’ ESQP

In [323], the authors propose an experimental scheme to detect the BA’ ESQP of a
spinor gas. The protocol relies on an interferometric scheme to measure the absolute
value of the winding number of (5.6), |w|, where the spins are coupled via an internal-
state beam splitter after the state is evolved for a period T . Such a scheme faces a major
difficulty: the visibility of the projected measurement is very sensitive to the accumulated
phase difference between the ±1 modes, and hence, to the magnetic field fluctuations in
the experiment.

We now show that the realization of the same effective Hamiltonian in the Raman-
dressed spinor gas can in principle avoid such a drawback. As discussed in Sec. 5.2.1,
the amplitude of the spatial density modulations in the dressed gas does not depend at
first order in Ω/Er on the relative phase ∆, and so neither does the contrast or visibility
of the modulations. Using expressions (5.7) to (5.9) for the density of the gas, we can
define a theoretical value for the peak-to-valley contrast of the stripes

Vth
ptv(t) =

max(n)−min(n)

max(n) + min(n)
= |A(t)| = Ω

Er

√
n0(t)(1− n0(t))

2
| cos θ(t)|. (5.16)

We conveniently define the scaled contrast Ṽ as

Ṽ(t) = Vth
ptvEr/Ω =

√
n0(t)(1− n0(t))

2
|cos θ(t)|. (5.17)

The measurement of the contrast of the stripes involves, therefore, a simultaneous mea-
surement of the population n0 and the phase θ. From the behavior of the contrast alone,
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Figure 5.5: Stripe contrast as signature of the BA’ ESQP. (a) Minimum value Ṽmin of
the scaled contrast Ṽ =

√
2n0(1− n0)|cos θ| along the classical trajectories given by

equations (5.5), as a function of ε̃ and E, computed using eq. (5.18). The inset shows
Ṽ for constant E − Eg = 0.25 (blued dashed line) and ε̃/|λ| = 0.5 (black dash-dotted
line). (b) Ṽ as a function of time for two classical trajectories at ε̃/|λ| = 0.5, in and out
of the BA’(ES) phase, indicated in (a) by the red and green square dots, respectively.
The red solid line corresponds to n0(0) = 0.6 and φ(0) = 0.174, with E > E∗. The
green dashed line corresponds to n0(0) = 0.6 and φ(0) = 0.243, with E < E∗. The
corresponding values for the peak-to-valley scaled contrast of the solutions of the GPE
(5.13) are shown in dotted lines. The values are obtained for a condensate of N = 104

and n = 7.5× 1013 cm−3, setting Ω = 0.75Er.

we can infer the absolute value of the winding number of (5.6), |w|, and, thus, detect
the BA’ phase of the pseudospin gas –the ES phase of the dressed gas– regardless of the
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values taken by ∆(t).

The contrast Ṽ is a positive semidefinite quantity and for generic n0 can reach zero
only when θ reaches (2k + 1)π/2, with k ∈ Z. This obviously occurs in the P’ and TF’
phases, where θ is unbounded, but never occurs in the BA’ phase where |θ| ≤ θmax < π/2.
Thus, the minimum value Ṽmin of the scaled contrast (5.17) is a proxy of |w| as it
is nonzero only in the BA’ phase, as illustrated in Fig. 5.5(a), where we plot Ṽmin

along the classical trajectories as a function of ε̃ and E. The onset of nonzero Ṽmin

is found at the critical energy E∗. The behavior of Ṽmin along the direction of both
the energy and the control parameter ε̃ is illustrated in the inset of Fig. 5.5(a), which
undergoes nonanalytical changes at the boundary of the ESQP transition. We exemplify
the behavior of the contrast in the different excited phases in Fig. 5.5(b), where we plot
Ṽ as a function of time along two trajectories at ε̃/|λ| = 0.5. We choose the parameters
to have one trajectory within the BA’ phase, with E slightly above E∗, and the other in
the TF’ phase, with E < E∗. For comparison, in the figure we show in dotted lines the
corresponding results from the GPE equation of the dressed and trapped gas (5.13). In
this case, the contrast is computed from the averaged relative peak-to-valley difference in
the condensate density profile along the direction of the Raman dressing. As predicted,
in the trajectory slightly above the critical energy, the contrast of the stripes oscillates
periodically but does not vanish at any time.

We note that values of the minimal contrast shown Fig. 5.5(a) are obtained analyti-
cally using (5.17). By taking the time derivative of expression (5.17) and using (5.5), it
is clear that, in the BA’ phase, Ṽ can only be minimal (or maximal) at θ = 0. We then
use (5.4) and (5.17) with θ = 0 to retrieve the analytical expression for Ṽmin in terms of
the mean-field energy density and the control parameter ε̃, which reads

Ṽmin =

√√√√
E−

ε̃
λ( ε̃λ+2) + |ε̃|λ

√
( ε̃λ−2)2−8(E− ε̃

λ)

4
. (5.18)

Such a derivation, however, assumes that the condensates are perfectly located at the
three minima of the dispersion band. The presence of trapping leads to a momentum
spread of the wavepackets, decreasing the actual contrast of the stripes in the cloud.
This can be observed in Fig. 5.5(b), where the peak-to-valley contrast evaluated in
the condensate wavefunction is slightly lower than the value predicted by eq. (5.17).
Nonetheless, for relatively small trapping frequencies the behavior of the gas in the
distinct ESQPs is qualitatively well described by eq. (5.17).

In this way, we have shown that the realization of the collective spin Hamiltonian
(5.3) with a Raman-dressed artificial spinor gas can provide an alternative approach
to the detection of the ESQP transition therein. In the dressed system, we propose
to exploit the built-in interferometer that arises from Raman-dressing, where the three
quasimomentum-shifted dressed states can spatially interfere due to their nonzero spin
overlap. The behavior of the density modulations arising from such interference signals
the value of the topological order parameter that characterizes the BA’ phase of the
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effective spin system introduced in [323]. Our proposal, thus, does not rely on any ex-
ternal interferometric measurement, which results in an intrinsic robustness to magnetic
fluctuations. In such a scheme, the precision to delimit the boundary of the BA’ phase is
subject to the experimental sensitivity associated with the measurements of the density
modulations. Remarkably, Ṽmin increases abruptly at the boundary, and the modula-
tions of the ES states remain large at any time of the trajectory even for states close to
the transition, as exemplified with the trajectory shown in solid red in Fig. 5.5(b). This
behavior can be understood from the fact that, in the classical limit, Ṽmin plays the role
of the order parameter of a second order phase transition. From (5.18) we can see that
its susceptibility diverges as

∂Ṽ

∂E
'
√
C

2
(E− E∗)−1/2, (5.19)

where C = 1 + |ε/λ|
2−|ε/λ| .

5.2.4 Quench excitation of stripe states as a dynamical quantum phase
transition

We conclude this section by studying the behavior of the spatial modulations in the
gas in the quench response of the system. In quantum many-body systems, a type of
dynamical quantum phase transition has been defined, in which the time-average of the
dynamical response of system following a quantum quench in a control parameter is
regarded as the order parameter [120, 353]. In this class of critical phenomena, such
an order parameter vanishes or undergoes a nonanalytical change at a critical value of
the control parameter. These behaviors have been shown to occur in spin chains with
long range interactions [354, 355]. Notice that the collective spin model (5.3) can be
interpreted as a N -spin-1 chain with an effective infinite-range interaction, and, indeed,
this type of dynamical phase transitions have been described [356] and experimentally
identified with spinor gases [297, 298].

Naturally, when described by Hamiltonian (5.3), the dressed gas is expected to exhibit
the same dynamical behavior (see Sec. 3.4.2 from chapter 3). Yet, again, in the dressed
gas we can rethink these critical phenomena of the model in terms of the spatial degrees
of freedom. We consider now the time evolution of the fully polarized state (b̂†0)N |0〉,
which is the ground state for ε̃→∞, after an instantaneous quench to a finite value of ε̃.
In these conditions, in Fig. 5.6 we plot the time-averaged scaled contrast of the stripes,
〈V̂〉τ , together with the time-averaged relative occupation of the central well, 〈n̂0〉τ , as a
function of ε̃ and for several total number of particles. The quantities are averaged over
a time τ = 10τc, where τc =

√
N~/λ is the characteristic spin-mixing time defined for

the same model in Sec. 3.4.2. Here, we have defined the quantum operators n̂0 = 1
N b̂
†
0b̂0,

θ̂ = 1
2 arg

(
b̂†1b̂
†
−1b̂0b̂0

)
and ˆ̃V =

√
n̂0(1− n̂0)/2| cos θ̂|.

Observe that for both the time-averaged fringe contrast and pseudospin population,
a nonanalytical change in their values as a function of ε̃ can be inferred in the thermo-
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Figure 5.6: Signature of a dynamical quantum phase transition. Time-averaged relative
scaled contrast of the stripes 〈 ˆ̃V〉τ and time-averaged relative occupation of the middle
well mode 〈n̂0〉τ as a function of ε̃ , for a state initially at |ϕ(t = 0)〉 = (b̂†M )N |0〉. The
state is evolved under Hamiltonian (5.3) for N = 100 and N = 1000, and the values are
averaged over a time τ = 10τc.

dynamic limit at ε̃ = −2λ and ε̃ = 0. Given the shortened lifetime of a Raman-dressed
BEC, the described long-time-averaged behavior of the gas is challenging to observe in
an experiment. However, as experimentally demonstrated in [298], the dynamical phase
transition can be alternatively probed by a finite-time observable. There, the authors
characterize the transition with the behavior of the time averages taken over a time
span that includes only the first peak (or valley) in the evolution of the observables,
which appears in a short time. It should be noted though, that, unlike in the study of
ESQP transitions, here the order parameter related to the spatial degrees of freedom (the
contrast of the stripes) does not appear to provide any experimental advantage when
compared to the one related to the internal degrees of freedom, i.e., the spin populations.
Indeed, the latter can be easily detected in an experiment following a Stern-Gerlach-like
measurement. Still, it is worth noting that, in some sense, the dynamical response for
both order parameters appears to be qualitatively different, and therefore worth looking
into it. At ε̃ = 0, the dynamical phase transition in the spin population is of first order,
showing a discontinuity in the order parameter, and can be connected to the ground
state quantum phase transition that takes place at this value of the control parameter.
Contrarily, the change in the amplitude of the stripes decreases smoothly to zero as ε̃
approaches ε̃ = 0 from ε̃ < 0, and the ground-state transition there does not involve the
appearance of stripes. This difference further highlights the role of the spinor phase θ in
the spatial structures of the excited stripe states.

In this way, in this section we have shown that, through its map to bare spin dynamics,
the Raman-dressed Bose gas can provide an alternative platform to study dynamical
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and ESQP transitions. This is of special relevance for the latter, where we have argued
that the SOC-induced spatial properties of Raman gases could in principle provide an
advantage when it comes to the detection of such excited phases. At the same time, the
properties of both the quench dynamics described by the spin model and the mean-field
phase space trajectories in the excited-state phase diagram can be exploited to facilitate
the accessibility of stripe states in experiments with spin-orbit-coupled gases. With these
insights, in the next section, we describe a quench protocol to prepare ES states in a
spin-1 spinor gas.

5.3 Quench excitation of ES states via coherent spin-mixing

The pseudospin Hamiltonian (5.3) gives a simple framework to understand the col-
lective behavior of SOC condensates. So far, in this chapter we have used this framework
to identify excited-state phases in Raman-dressed Bose-Einstein condensate. Through
this description, we have shown that Raman dressing can improve the accessibility of
the excited-state phases of spinor gases, which in the dressed gas are characterized by
the behavior of the density modulations they display. Conversely, in this section we
will use the predictions of the spin model to propose a protocol that allows a robust
and fast preparation of supersolid-like ES states. We will benchmark the proposal with
simulations of the GPE and discuss its feasibility in state-of-the-art experiments.

5.3.1 Two-step quench scheme: few-mode predictions

By comparing the rescaled contrast (5.17) and classical energy (5.5), we notice that
we can write the squared scaled contrast in terms of the mean-field energy as

Ṽ 2 = sgn(λ)(E− ε̃/|λ|(1− n0)). (5.20)

From (5.20), it immediately follows that, at ε̃ = 0, Ṽ becomes a constant of motion of
the classical trajectories as it is proportional to the square root of the classical energy.
With this in mind, we propose a two-step quench scheme to access ES states that exhibit
large and stable density modulations.

We consider that the system is initially in the fully polarized state with n0 = 1,
where all the atoms occupy the middle-well mode. Experimentally, this scenario is very
convenient: such a state can be prepared from an undressed polarized condensate in the
mf = 0 spin state simply by adiabatically turning up Ω while keeping ε̃ > 2|λ|. The
preparation is followed by a first quench in ε̃ into the range −2 < ε̃/λ < 0. According
to the classical equations of motion (5.5), such a polarized initial state is a stationary
point of the Hamiltonian at all values of ε̃. However, as we discussed in Sec. 4.3.4 in the
previous chapter, at finiteN quantum fluctuations start a coherent spin-mixing dynamics
that breaks the stationarity of the state [273, 325, 351]. Most importantly, as shown in
5.2.4, such a quench will lead to the excitation of stripe states, with a nonzero time
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Figure 5.7: Excitation of ES states via coherent spin mixing: few-mode predictions. (a)
Expected value of n̂0 (blue dashed line), θ̂ (dashed-dotted green) and Â (solid red) as a
function of time for a state prepared at t = 0 in |ψ〉 (t = 0) = (b̂†0)N |0〉, with N = 104

and evolved under Hamiltonian (5.3), setting ε̃/λ = −1 and λ > 0. (b) The same initial
state is evolved with ε̃/λ = −1 for a time t1 = 5.5~/λ (indicated with the vertical dotted
gray line), where ε̃ is quenched to 0. Following the quench, 〈Â〉 stabilizes near to its
maximum value. (c) Classical trajectories for the state n0(0) = 0.9998 and θ(0) = 0

evolved under equations (5.5), setting ε̃/λ = −1 for t ≤ t1 = 5.5~/λ, and ε̃ = 0 for
t > t1.

average of the contrast. If the quantum evolution that the system follows some time
after the quench resembles the predictions of the classical phase space trajectories, the
density modulations could be stabilized with a subsequent quench to ε̃ = 0, as suggested
by equation (5.20).
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This is exemplified in Fig. 5.7. In Fig. 5.7(a), where we plot a quantum trajectory for
an initial state (b̂†0)N |0〉, with N = 104, evolved under Hamiltonian (5.3) with ε̃/λ = −1

and λ > 0. We show the expected values of the relative occupation of the middle-well
mode n̂0 = 1

N b̂
†
0b̂0, the spinor phase θ̂ = 1

2 arg
(
b̂†1b̂
†
−1b̂0b̂0

)
and the relative amplitude

Â = (Ω/Er)
√
n̂0(1− n̂0)/2 cos(θ̂) as a function of time. After some time, the expected

amplitude 〈Â〉 reaches a local maximum. For a coherent state, performing a second
quench to ε̃ = 0 when the maximum is reached would leave 〈Â〉 locked at this value, as it
is clear from equation (5.20). Naturally, the quantum trajectories of (5.3) for noncoherent
states and away from the thermodynamic limit may depart from the classical predictions.
Nonetheless, we numerically find a qualitative agreement between classical and quantum
trajectories, as shown in Fig. 5.7(b). In the figure, the initial state (b̂†0)N |0〉 is evolved
under Hamiltonian (5.3) with ε̃ = −λ for a time t1 = 5.5~/λ, where the Hamiltonian is
quenched to ε̃ = 0. Following the second quench, the relative amplitude 〈A(t)〉 is rapidly
stabilized very near its maximum value 1

2
√

2
Ω/Er. For comparison, in Fig. 5.7(c) we

show the analogous results for a mean-field trajectory obtained using equations (5.5).
To avoid the classical stationary point at n0 = 1, the state is initially in a coherent state
with a very small fraction of atoms in the edge well states, with n0(0) = 0.9998 in this
example.

5.3.2 Excitation of ES states: Gross-Pitaevskii results

Again, we assess further the validity of the two-step scheme with the GPE of the
Raman-dressed gas. In order to obtain wide and stable density modulations, we take
relatively large values of Ω, and consider small condensates to be safely in the three-mode
approximation. Fig. 5.8 shows a simulation of the protocol with a condensate of N = 104

particles, n = 7.5 × 1013 cm−3 and Ω = 0.75Er. In Fig. 5.8(a) we plot n0, θ, and A(t)

as a function of time for a state initially prepared at n0 = 0.9998 and time-evolved with
the GPE (5.13). The state is evolved with ε̃/λ = −1 for a time t1 = 5.5~/λ, where ε̃
is quenched to 0. As expected, A(t) is stabilized after the quench, despite that n0 and
θ keep oscillating with time. With the contrast stabilized, the time-averaged density
profile exhibits very large density modulations, with over 20% contrast of the stripes, as
shown in Fig. 5.8(b). In Fig. 5.8(c) we plot the values of f3M during the evolution, which
remains very close to 1 for the chosen parameters.

With the two-step quench scheme described, a state with near-maximal density mod-
ulations (at a given value of Ω) can be reached in a robust and fast manner. In the
example shown in Fig. 5.8, we have λ/~ ' 2π × 17.9Hz, many times larger than the
intrinsic spin-mixing rate in an undressed 87Rb F = 1 spinor gas. The peak in A(t)

is reached in about 50ms. The mean-field treatment of the dressed spinor gas, thus,
appears to support the protocol we present. However, the feasibility of the scheme in
an actual experiment is subject to the stability of the parameters of the GPE. Several
sources of noise can be detrimental to the stability and contrast of the stripes prepared,
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Figure 5.8: Excitation of ES states via coherent spin mixing: GPE results. (a) n0 (blue
dashed line), θ (dotted-dashed orange) and A(t) (solid red) as a function of time for a
state initially prepared at n0 = 0.9998 and θ = 0. The state is evolved with the GPE
(5.13), for N = 104, Ω = 0.75Er and ωt adjusted to have n = 7.5 × 1013 cm−3. For
t ≤ t1 = 5.5~/λ, we set ε̃/λ = −1. At t = t1 (dotted vertical line) ε̃ is quenched to 0.
(b) Corresponding density profile 〈n(x)〉T , time-averaged from t = t1 to t = 0.25 s. (c)
Relative occupation of the three-mode subspace, f3M, along the preparation.

most notably the fluctuations in the Zeeman levels due to magnetic-field fluctuations
and the calibration uncertainty in the intensity of the Raman beams.

To conclude this section we now briefly address the robustness of the protocol by
incorporating fluctuating and randomized parameters to the simulations of the GPE, in
order to mimic the effects of the main sources of noise. To account for atom loss, we
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continuously renormalize the condensate wavefunction to N(t) = N(0) exp(−γt), with
γ = 3.33 s−1, which is compatible with the lifetime of spin-1 Raman-dressed BECs in
the considered regimes [244]. Furthermore, we consider a 10% Gaussian uncertainty in
N(0). The background magnetic noise is accounted via sinusoidal modulations of δ and
ε at a frequency of 50Hz. We set their amplitudes, respectively, to 700 Hz and 5 Hz,
which roughly correspond to a magnetic bias field of B ∼ 35G with ∼ 1 mG instability
in experiments with F = 1 87Rb atoms. We consider a Gaussian uncertainty of ±5%

in Ω, to match the systematic uncertainty reported in [118]. Finally, a finite bias field
unavoidably results in a residual cross coupling between the two Raman-dressed Zeeman
state pairs. This cross coupling is translated into an effective shift in the value of ε that
depends on Ω, which can be computed from Floquet theory. We use the polynomial
expression for the shift as given in Methods from [118].

With all these considerations, we reproduce the protocol described in this section
while incorporating now the uncertainties in the parameters. In Fig. 5.9(a1) we plot
the corresponding mean value and standard deviation of A(t), n0 and f3M as a function
of time, evaluated from a sample of 20 realizations. Despite the addition of noise, the
preparation still yields large and stable modulations in the density profile for the parame-
ters chosen. As discussed in the previous section, the tunability of the Raman-mediated
spin-mixing allows the realization of the protocol in larger condensates. This can be
achieved by setting a lower Ω (see Fig. 5.4), but at the expense of a smaller contrast of
the stripes, as well as of detrimental effects from noise and atom loss. This is exemplified
in Fig. 5.9(a2), where we plot the results for an analogous preparation with N(0) = 105

and Ω = 0.5Er. The trap frequency is adjusted to initially have n = 7.5 × 1013 cm−3.
While smaller, the amplitude A(t) is stabilized in less than 200ms, with over half the
atoms remaining in the condensate.

In Fig. 5.9(b) we plot the longitudinal density |ψ|2, the spin density Fx = ψ∗F̂xψ

and the nematic density Nxx = ψ∗(2/3 − F̂ 2
x )ψ at t = t1, right after the quench to

ε̃ = 0. The quantities are computed for a randomly chosen realization from the samples
used in Fig. 5.9(a). The values shown are not time-averaged since the instability in δ

induces a back-and-forth displacement of the stripes. However, as discussed in Sec. 5.2,
the width of the stripes remains stable over time, according to (5.9). In the prepared
ES states, the periodicity of the spatial modulations match those of the ground-state
ferromagnetic stripe phase [196], with the particle density and the spin densities having
periodicity 2π/|k1|, and the nematic densities containing harmonic components both
with period 2π/|k1| and π/|k1|. Remarkably, this preparation of stripe states via crossing
an ESQP transition of the effective model compares favorably, both in its robustness and
in the contrast achieved, to the quasiadiabatic preparation through a quantum phase
transition we described in the previous chapter. As it was also the case for the latter,
the preparation proposed in this chapter can not be implemented in the spin-1

2 gas: the
protocol highlights once again the structural differences between spin-1

2 and spin-1 gases.

We conclude by stressing that, as we discussed in Sec. 5.2, due to the instability in the
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Figure 5.9: Robust excitation of ES states. (a) Mean value of A(t) (red solid line), n0

(blue dashed line) and f3M (green dash-dotted line) as a function of time, for a state
with n0(0) = 0.9998 and θ(0) = 0. The state is evolved under the GPE (5.13), with
N(t) = N(0) exp(−γt) and including randomized parameters to account for atom loss
and experimental noise (see main text). In (a1), we set N(0) = 104 and Ω = 0.75Er.
In (a2), we set N(0) = 105 and Ω = 0.5Er. In both cases γ = 3.33, and ε̃/λ = −1

for t ≤ t1 = 5.5~/λ and ε̃ = 0 for t > t1. The trap frequency ωt is adjusted to have
n(0) = 7.5 × 1013 cm−3. The averages are computed from a sample of 20 realizations
in each case, with the light-colored shadowed regions indicating the associated standard
deviation. (b) Longitudinal density |ψ|2 (blue solid line), spin density Fx (red dashed
line) and nematic density Nxx (green dash-dotted line) at t = t1, evaluated for a single
realization from the samples used in (a).

relative phase ∆ between the modes b±1, it is not possible to distinguish experimentally
positive and negative values of A(t). However, in the states prepared, the contrast of the
stripes V ∼ |A| remains stable over time and does not vanish at any given time, which
is the distinct feature of the ES phase. At the same time, this stability provides a direct
measurement of the winding number w that characterizes the BA’ ESQP of the effective
spin Hamiltonian. In an experimental implementation, the periodic density modulations
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in the gas could be measured using optical Bragg scattering [357], as described in [207].

5.4 Conclusions

In this chapter we have studied the emergence of excited-state quantum phases in
Raman-dressed SOC spin-1 condensates. To do so, we have relied on the description of
the weakly-coupled Raman-dressed BEC as an artificial spinor gas with tunable spin-
changing collisions, which was introduced in chapter 4. Through this simple yet insightful
description, we have identified the existence of ESQPs in the dressed gas by direct
correspondence to those recently described in the bare spinor condensates. Moreover,
due to the coupling between internal (spin) and external (motional) degrees of freedom
in the presence of SOC, the excited phases in the dressed scenario exhibit richer features,
and are characterized by the behavior of the spatial density modulations, or stripes. Most
relevantly, we have defined a novel ESQP in the dressed system, the ES phase, where
the atomic cloud exhibits stable density modulations that do not vanish over time. The
nature of the phase is understood from the topological order parameter that characterizes
the ESQPs of the spinor gas in the regime where the system is described by a collective
spin Hamiltonian.

We have numerically assessed the predictions of the effective model with simulations
of the GPE of the dressed condensate. We have found that, indeed, the collective spin
structure plays a fundamental role to the existence of the ES phase, with its signature
quickly vanishing when the few-mode truncation that leads to the effective Hamiltonian
is significantly challenged. While such a sensitivity supposes a restriction to its experi-
mental realization, we have shown that the large tunability of the system allows a wide
regime of parameters for which the phase is supported. At the same time, we have shown
that the realization of the spin Hamiltonian in the dressed condensate can be advanta-
geous when it comes to the detection of the ESQP transitions of the system. So far, the
proposal to measure the topological order parameter in undressed quantum gases [323]
relies on an interferometric protocol that is very sensitive to magnetic field fluctuations.
In contrast, in the Raman-dressed gas, the same information can be obtained from direct
measurements of the density profile of the atomic cloud, with an order parameter, the
minimum contrast of the spatial modulations, that is insensitive to fluctuations of the
bias field at leading order. In turn, we have also shown that the time-averaged contrast
of the stripes can signal a type of dynamical phase transition in the dressed system.

Notably, in the chapter we have used the map to pseudospin degrees of freedom
bidirectionally. On the one hand, we provide an alternative and potentially advantageous
framework to explore dynamical and ESQP transitions. On the other hand, the work
also exemplifies the use of ESQP transitions as a tool to engineer quantum states of
interest. The analytical understanding of the excited-state phase diagram has allowed
us to propose a feasible protocol for preparing the excited-state ferromagnetic stripe
phase of the spin-1 spin-orbit-coupled gas. By crossing an excited-state quantum phase
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transition of the effective low-energy Hamiltonian in a two-step quench scheme, we can
access any supersolid-like excited state with stable stripes belonging to the phase, which
we identify with the broken-axisymmetry phase of the artificial-spinor-gas description.
We have numerically supported the viability of such a preparation using as a reference
the results reported from experiments with 87Rb condensates at the National Institute of
Standards and Technology. Our results indicate that the proposal can be implemented
directly in state-of-the-art experiments with ultracold atoms.

As it was also the case for the protocol described in chapter 4, the characteristic
parameters that stabilize the phase are scaled up in the excited state diagram, compared
to ground state stripe phase, even in the case of symmetric spin interactions. At the
same time, the contrast of the supersolid fringes is increased. Unlike for the scheme in
chapter 4, though, the preparation proposed in this chapter is not restricted to the most-
excited state manifold of the effective model, and does not rely on its quasi-adiabatic
following. This results in a comparatively reduced preparation time, which can be of
especial relevance given the shortened lifetime of the Raman-dressed condensate.

The pseudospin description of the Raman-dressed gas across the whole spectrum of
the collective spin Hamiltonian suggests alternative directions for achieving macroscopic
entanglement in momentum space [329]. The squeezing and quantum correlations gen-
erated by our two-step quench scheme can be calculated for a mesoscopic number of
particles by including the effect of atoms’ losses in the single-mode quantum description
by wave-function Monte Carlo [358], as recently done in [285]. Beyond the single-mode
approximation, the properties of the quantum correlations in the system could be ex-
plored for few particles, for instance in connection to the two-particle solutions of the
model, as done in [359] for the spin-1

2 scenario.

With this chapter, we conclude the part of this thesis devoted to the study of the
interplay between Raman dressing and weak interatomic interactions in spin-1 Bose
gases, in particular of the emergence and the harnessing of the SOC-induced spin-mixing
dynamics. So far, we have exploited a simple but powerful idea: the Raman-dressed
spinor gas as an artificial spinor gas with tunable spin-changing collision. Simple because
accessible to any physicist, and powerful because it has a significant impact on the
understanding of the system. Through this understanding, we have proposed the Raman-
dressed gas as an alternative platform for the exploration of nonequilibrium dynamics in
experiments with ultracold atoms. In the next chapter, we will shift our focus from the
spin-1 to the spin-1

2 gas. While the many-body spin-changing processes that we have
discussed so far can not be tailored in the latter system, we will see that, there, the
interplay between two-body collisions and Raman dressing can give rise to interesting
many-body phenomena in a strongly correlated regime. To do so, we will follow a similar
approach, which will involve a lowest-band description of the dressed gas loaded in an
optical lattice.



CHAPTER 6

Effective frustrated quantum magnetism in a synthetic ladder

In line with the research presented in the previous three chapters of the thesis, this
chapter will explore further the emergence of nontrivial behavior in interacting many-
body systems when dressed by Raman beams. We will now consider a dressed spin-1

2

gas loaded into a one dimensional optical lattice. In the lattice, the strength of the
interatomic interactions and the Rabi couplings can be made larger relative to the sup-
pressed kinetic energy, while retaining a large degree of robustness. At the same time,
the presence of the lattice involves an additional characteristic length scale, related to the
wavelength of the lattice beams. As we will see, the interplay between such a scale and
the one established by the Raman recoil momentum can give rise to frustration effects
in the system. In this chapter, we will propose to employ Raman dressing as a flexible
tool to study frustrated quantum magnetism with ultracold atoms.

The interplay between geometric frustration and interactions plays a key role in the
emergence of quantum phases in quantum magnetism. Here, we will show that the
Raman-based realization of a semi-synthetic flux ladder can hold frustrated quantum
phases in strongly-correlated regimes that are in reach of state-of-the-art experiments.
Following a lowest-band truncation of the Hamiltonian in the strong Raman coupling
regime, equivalent to the large inter-leg hopping regime of the flux ladder, the system
can be mapped into an effective two-leg triangular Bose ladder with staggered flux. The
effective flux and the ratio of the tunneling strengths can be independently tuned over
a wide range of values by adjusting the properties of the Raman beams. Guided by this
map, we numerically show that the Hamiltonian is able to explore three different phases,
a superfluid, a bond-ordered-wave and a chiral superfluid, which are characteristic of a
large class of Heisenberg models in presence of geometric frustration. Remarkably, these
regimes remain stable in a large region of parameters and are accessible in currently
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available experiments with Raman-dressed ultracold 41K and 87Rb atoms. The results
presented in this chapter offer an alternative approach to simulate frustrated quantum
magnetism.

The chapter is organized as follows. In Sec. 6.1, we review the theoretical and ex-
perimental context of the work presented in this chapter, and motivate the exploration
of frustrated quantum magnetism with Raman-dressed spinor gases. Next, in Sec. 6.2
we introduce the Raman-dressed lattice system and its natural interpretation as a semi-
synthetic flux ladder. We then show that the low-energy landscape of the flux ladder
can be described in terms of an effective 1D lattice model for a quasi particle with com-
plex tunneling terms of various ranges. In Sec. 6.3, we specialize in the simplest spin-1

2

scenario, where the system realizes a two-leg flux ladder. There, only first- and second-
neighbor tunnelings become relevant for a wide regime of parameters, and the system
can be mapped into an interacting triangular ladder with staggered flux. Through this
map, we are able to identify in Sec. 6.4 the existence of frustrated many-body phases in
the strongly interacting regime of the effective triangular system, which are analogous to
magnetic phases predicted in frustrated quantum spin models. In Sec. 6.5, we show that
these phases can be in principle accessed in state-of-the-art experiments with ultracold
atoms, and present a detection protocol that exploits the tunability of the dressed-based
realization of the model that we propose in this chapter. Finally, we summarize our
results and comment about future developments in Sec. 6.6.

6.1 Introduction

Raman-induced spin-orbit coupling (SOC) in Bose and Fermi gases, both in the
bulk or loaded in optical lattices, provides a flexible playground for studying many-body
physics and quantum phase transitions in a controlled manner. By entangling internal
and external degrees of freedom, the SOC produced by Raman beams [86, 104] leads
already at the single-particle or at the mean-field levels to spatially-dependent dressed
states with modified dispersion relation and spatially dependent interactions [208]. Such
behavior can be interpreted in terms of a synthetic gauge field [84, 85] that can be
also density dependent [360]. The successful experimental demonstrations of the last
decade of synthetic one-dimensional and two-dimensional SOC [199, 202, 204, 206] have
opened interesting perspectives. In the bulk, SOC can stabilize exotic phases like the
stripe phase [108, 186, 207], where translation invariance is spontaneously broken [361],
in analogy with supersolids very recently realized in dipolar gases [249–251] (see also
[362] for the realization of supersolid-like state in a cavity). Also in the bulk, SOC
may lead to modified scattering properties in the gas [116], which may lead to a variety
of collective phenomena in the mean-field regime, as has been extensively discussed in
the previous chapters in this thesis for F = 1 BECs. Interestingly, SOC combined
with radio-frequency dressing offers a novel mechanism to achieve subwavelength optical
lattices [244]. When loaded into an optical lattice, the Raman-dressed gas effectively
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realizes a quasi-1D flux ladder, a paradigmatic model to study quantum magnetism.
In this chapter we will explore the interplay between interactions and Raman-induced
SOC in 1D optical lattices, and show that such an interplay can give rise to frustrated
quantum magnetism phenomena.

6.1.1 Quantum magnetism in semi-synthetic flux ladders

Combining SOC and optical lattices makes it easier to access the strongly coupled
regimes, where the connection to quantum magnetism appears. On the one hand, the
lattice quenches the kinetic term and allows for relatively large interactions and Rabi
couplings with negligible losses [30]. On the other hand, the lattice introduces another
length scale 1/kl, where kl is the lattice beam wavevector, in addition to the inverse of
the Raman momentum kick 1/kr, and thus may favor frustration. Such an effect becomes
evident when the atomic spin states are interpreted as different sites of the lattice along a
synthetic dimension [92, 237]. Raman-coupled spin states in 1D spin independent optical
lattices experience a synthetic magnetic flux proportional to kr/kl that leads to the ap-
pearance of edge states in narrow Hofstadter slabs [93], as experimentally demonstrated
in [94, 95, 254, 255] (also with atomic momentum states [266] and with photons [363]).
Remarkably, the correspondence between the Hofstadter model [97] in 2D lattices and
quasi-1D systems extends also to its topological properties and quantum Hall response
[364] as experimentally demonstrated in [96]. Even more strikingly, this correspondence
extends under proper conditions also when interactions are included [365, 366].

Bosonic flux ladders are the simplest quasi-1D systems that realize such a corre-
spondence, since they allow orbital motions around the planar loops. Two-dimensional
effects such as phase frustration can therefore emerge in these systems. The presence
of magnetic fields in this scenario can give rise to interesting effects. Already at the
single-particle level, they provide a toy model of type-II superconductors [367–369] and
display Meissner and vortex phases –the latter being related to the stripe phase in the
bulk– as first experimentally demonstrated in real-space ladders in [238]. The interplay
between the magnetic flux, the rung vs leg tunnelings, and interactions in real and syn-
thetic ladders leads to a variety of interesting phases and have been extensively studied,
especially for strong interactions [240, 370–379]. For similar studies in fermionic ladders
see for instance [380–384].

In this chapter we will look at the synthetic flux ladders formed by Raman-dressed
spin-1/2 atoms in 1D optical lattices from a different perspective. Following a similar
approach to the one taken in the previous chapters to study spin-orbit-coupled gases
in the bulk, our starting point here is a lowest-band truncation of the single-particle
Hamiltonian. Remarkably, in the lattice, compared to the bulk, we can further manipu-
late the properties of the single-particle bands by tuning the magnetic flux, that is, the
ratio kr/kl. Exploiting this enhanced flexibility, we can establish a hierarchy of energy
scales. The interband band gap, the interacting energy and the intraband bandwidth



138 Effective frustrated quantum magnetism in a synthetic ladder

can be adjusted independently and set them well-separated from each other. This energy
separation allows, for instance, to preserve the many-wells structure of the lowest band
for arbitrarily strong Raman couplings, and realize a strongly-correlated regime therein.
With these considerations, a map of the dressed system into a two-leg triangular lad-
der with staggered flux and on-site interactions is made evident. Through such a map,
this low-energy treatment of the semi-synthetic flux ladder suggests that Raman-dressed
gases can be employed to study frustrated quantum magnetism [228]. For alternative
theoretical proposals of synthetic triangular and zigzag lattices see [385, 386]. Likewise,
for an experimental realization in synthetic lattices in momentum space with constant
fluxes see [387].

6.1.2 Frustrated quantum magnetism in bosonic ladders

The interplay between geometrical frustration and quantum fluctuations connects
some of the most intriguing concepts in many-body quantum systems [388]. In this
context, frustrated quantum magnets, where a macroscopic number of quasi-degenerate
states compete with each other, provide an ideal playground to capture exotic phenom-
ena like resonating valence bonds [389] and quantum spin liquid [390]. The most common
building block where frustrated magnetism reveals its complexity is usually represented
by Heisenberg models on a square lattice with nearest-neighbors (NN) and next-nearest-
neighbors (NNN) antiferromagnetic couplings that can be alternatively modeled as NN
Heisenberg model on triangular geometries [391]. There, for instance, a part from intrigu-
ing properties related to deconfined quantum critical points [392, 393] and anyonic liquid
[394], the appearance of spontaneous dimerization [395–397], and chiral order [398, 399]
has been predicted.

Lattices and ladders with triangular geometries have been widely studied in ultracold
atoms [400] especially in connection to supersolidity [401, 402] and frustrated quantum
magnetism. In triangular translational-invariant configurations, the presence of complex
tunnelings naturally gives rise to staggered fluxes, for instance equal to π. In optical
lattices, they can be generated, e.g., by accelerating the lattice potential along a closed
orbit, and employed to study classical magnetism in experiments with ultracold bosons
[403]. In the presence of strong interactions, such systems offer a promising route towards
the realization of quantum spin liquid phases [404], both in homogeneous gases [405] and
in the presence of an harmonic trapping [406]. Fully frustrated, i.e., π-flux, triangular
ladders have been theoretically studied in the strongly-interacting regime in [407–409].

Although in solid state physics several materials are well modeled by spin models on
triangular geometries [410–415], the typical temperature in such systems has prevented
efficient investigations of the chiral order. Only very recently one experiment achieved an
important step in this direction [416]. The temperature poses a crucial issue also in the
context of quantum simulations of frustrated quantum systems with ultracold atoms.
The Floquet procedures proposed to achieve the π flux needed [225, 403, 404] result
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in an undesirably large heating, which renders such modulation schemes unrealistic.
To address this issue, different strategies that do not involve fast driving modulations,
like laser assisted tunneling [417] or Raman couplings [92, 93], have been proved to be
powerful tools to generate synthetic gauge fields. The latter method has been revealed
particularly remarkable when applied on ladder geometries, allowing for the experimental
study of aspects of quantum Hall physics [94, 95, 418, 419]. This flexibility in generating
gauge fields combined with the impressive level of parameters control and detection
techniques typical of ultracold atomic setups [64] has further motivated theoretical effort
to establish ladder geometries as fundamental tools to explore intriguing problems in
many-body quantum physics. Relevantly in this context, Meissner [367, 370, 372, 420,
421] and vortex phases [422–425], Laughlin-like states [365, 366, 373, 375, 376, 426], Hall
physics [240, 427–429] and Z2 lattice gauge theories [430] have been proposed.

In this chapter we present a further contribution in this direction, and propose the
Raman-dressed ultracold gas in a 1D lattice as an alternative platform for the simula-
tion of frustrated quantum magnetism. In our Raman-based realization of the frustrated
triangular ladder, the parameters of the effective model, namely, the rung and longi-
tudinal tunnelings and the strength of the flux, can be widely adjusted by tuning the
laser dressing parameters. Irrespective of the interactions between the spin states, the
interactions in the effective ladder can be made local. Notably, in the experimentally
accessible regime of large separation between the bandwidth and the bandgap, we can
access both the weakly and the strongly interacting regimes of the triangular ladder
within the validity of the mapping. Despite its simplicity, the triangular map allows to
identify specific regimes of the flux ladder where quantum frustration may play an im-
portant role. We will demonstrate numerically the agreement between the ladder model
and the effective Hamiltonian across a wide range of parameters. We will show that the
system is indeed able to realize analogous phases to those appearing in the frustrated
quantum XX model [431], that is, a gapless superfluid, a bond order wave and a chiral
superfluid phase. Notably, we find that the predicted frustrated phases persist even in
regimes where the mapping is less accurate.

In the previous chapters, we showed that the collective pseudospin physics realized in
Raman-dressed gases exhibited richer features through its relationship between internal
(spin) and external (motional) degrees of freedom. These were made evident in the bare
basis description of the system, in the form of, e.g., the appearance of spatial density
modulations. Remarkably, they were even proposed as a proxy to experimentally detect
structures of the embedded spin model. Similarly, the frustrated magnetic structures that
arise in the effective model introduced in this chapter, that is, the dimerized and chiral
orders of the dressed states, present further interesting properties when considered back
in terms of the bare, or undressed, basis. We will see that the structures in the currents
and densities of undressed bosons in the original square ladder geometry correlate well
with the magnetic phases of interest. Exploiting this correspondence, the phase diagram
of the frustrated model could in principle be realized and detected in state-of-the-art



140 Effective frustrated quantum magnetism in a synthetic ladder

experiments with ultracold atoms.

6.2 Tunable ladder physics in 1D lattices with SOC

We consider a spin-F spinor gas loaded in a 1D spin-independent optical lattice, in the
configuration described in Sec. 2.3.3: the lattice is generated with a pair of far-detuned
counter-propagating laser beams of wavelength λl that intersect with an opening angle
θl, with the trapped atoms being further dressed by an additional pair of laser beams
in a Raman configuration of wavelength λr and an opening angle θr. A bias magnetic
field lifts the degeneracy between the different spin states (see Fig. 2.7(a) for a sketch of
the experimental layout). In general, effective spin-S sizes can be achieved by coupling
2S + 1 of the 2F + 1 states |F,mF 〉 within the given hyperfine manifold of total angular
momentum F , rendering the non-coupled states off-resonant via the quadratic Zeeman
shift. The wavelength of the lattice beams defines the lattice spacing a = π/kl, with
kl = 2π cos(θl)/λl being the single-photon recoil momentum. The Raman wavelength
gives an associated Raman recoil momentum kr = 2π cos(θr)/λr. We consider a potential
depth Vl sufficiently deep so as to consider the tight-binding approximation, yet shallow
enough to avoid the suppression of nearest-neighbor tunneling. This condition can be
achieved roughly when 5El < Vl < 10El, where El = ~2k2

l /2m is the recoil energy, with
m being the atomic mass. In the absence of interatomic interactions, the system can be
described by the Hamiltonian [93]

Hn.i. =
∑
n,m

(
− ta†n+1,m + Ωm+1e

−iγna†n,m+1 +
1

2
∆ma

†
n,m

)
an,m + H.c., (6.1)

where a†n,m and an,m are the bosonic creation and annihilation operators, respectively, for
the Wannier modes at the lattice site n with spin state m. Here, t is the tunneling rate
between the nearest-neighbor modes, Ωm is the Raman coupling strength between levels
m and m+ 1, ∆m is an onsite energy shift that depends on the detuning of the Raman
lasers from resonance, and γ = 2kra = 2πkr/kl. The strength of the Raman dressing is
constrained by the tight-binding approximation. To be consistent, the coupling strengths
Ωm are required to be much smaller than the energy splitting between the tightly-bound
states and the rest of single-particle states, roughly given by εt.b. ∼ 2

√
VlEl. As noted

in [93], and elaborated in Sec. 2.3.3, such a system is equivalent to a 2D (quasi 1D) flux
ladder, where the internal spin states act as sites along a synthetic transverse dimension.
Moreover, the atoms pick up a position dependent phase nγ when hopping along the
synthetic dimension, due to the spatial dependence of the Raman coupling, which mimics
the effect of a magnetic flux γ piercing each plaquette of the ladder (see Fig. 2.7(b)).

Hamiltonian (6.1) realizes the Hofstadter model on a slab and reproduces the main
features of magnetic lattice systems, such as the fractal Hofstadter-butterfly spectrum
and the chiral edge states of the associated Chern insulating phases. However, inter-
atomic interactions in synthetic dimensions have naturally a long-range character as
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particles with different spins interact locally when they occupy the same site in the
actual 1D lattice. To some extent, such a long-range behavior can be altered or even
suppressed, e.g., displacing spatially the spin states as originally proposed in [92], or
considering non-SU(F ) interactions for the spin states as obtained from Feshbach reso-
nance (see for instance [257]) or by properly modulating the scattering length as recently
proposed in [432]. By contrast, here we show that, following a truncation of the single-
particle Hilbert space, interesting quasi 1D ladder structures can be obtained where the
interactions and tunnelings can be controlled simply by adjusting the dressing parame-
ters.

6.2.1 Effective quasi-particle from Raman dressing

As typically done to treat the spin-orbit-coupled bulk-gas problem, the Hamiltonian
can be made simpler by rewriting it in a position-independent form. This is achieved by
applying the gauge transformation a′n,m = an,me

iγnm that relates the laboratory frame
to the frame co-rotating with the laser fields. Doing so, the phase terms that appeared
in (6.1) are transferred to the hopping amplitudes along the physical direction, yielding:

Hn.i. =
∑
n,m

(
− te−iγma′n+1,m

† + Ωma
′
n,m+1

† +
1

2
∆ma

′
n,m
†
)
a′n,m + H.c.. (6.2)

From now on, we will stick to this gauge choice, and omit for the sake of clarity the
primed labelling of the bosonic operators. In the rotated basis, Hamiltonian (6.2) is now
block diagonal in orthogonal quasimomentum subspaces, and can be written as

Hn.i. =
∑
q

Hq, (6.3)

with

Hq =
∑
m

(
− 2t cos (q + γm) + ∆m

)
ã†q,mãq,m +

∑
m

(
Ωm+1ã

†
q,m+1ãq,m + H.c.

)
, (6.4)

where we have introduced the Fourier transformed modes ã†q,m = 1√
L

∑
n e

iqna†n,m, with
L being the total number of sites in the lattice. Hamiltonian (6.3) has 2S + 1 energy
bands, which we label as εq,m′ , with m′ ∈ {0, 1, ..., 2S} (εi ≤ εj for i < j), and with
associated band modes

b̃†q,m′ =
∑
m

Um′,m(q)ã†q,m (6.5)

that diagonalize the corresponding orthogonal block Hq. Here,

U(q) =
∑
m1,m2

Um1+F,m2(q)
(
ã†q,m2

|0〉
)(
〈0| ãq,m1

)
(6.6)

is the unitary transformation that relates the dressed eigenbasis {b̃†q,m′ |0〉}m′ with the un-
coupled hyperfine state basis {ã†q,m |0〉}m, and where Um′,m(q) = 〈0| ãq,mb̃†q,m′ |0〉. With-
out loss of generality, we can assume the coefficients Uij(q) to be real.
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We now restrict ourselves to the regime where the lowest band can be well separated
from the higher energy bands. This occurs for sufficiently large coupling coefficients
Ωm, with a band gap that depends also on the value of the phase γ. Under these
circumstances, the low-energy landscape of the system is well described by the truncated
Hamiltonian

Hn.i. '
∑
q

εq,0b̃
†
q,0b̃q,0, (6.7)

where only the lowest band mode operators are included.

This simple truncation in momentum space can have interesting effects that are made
clearer by rotating back the dressed basis into position space. We introduce the inverse-
Fourier-transformed dressed mode operators

b†n :=
1√
L

∑
q

e−iqnb̃†q,0 =
1

L

∑
m,q,n′

eiq(n
′−n)U0,m(q)a†n′,m, (6.8)

and substitute their expressions into the truncated Hamiltonian (6.7), which yields

Hn.i. '
∑
n

∑
l

tlb
†
n+lbn, (6.9)

where
tl =

1

L

∑
q

e−iqlεq,0. (6.10)

The lowest dispersion band εq,0 has a shape that depends on the total spin size S and
that can be tailored by adjusting Ωm, γ and ∆m. Therefore, the strength and relative
phase of the different tunneling coefficients in the dressed picture, tl, can be tuned with
the parameters of the Raman dressing.

With these considerations in mind, we now account for interatomic interactions by
writing them in terms of the dressed states. As long as the energy per particle is much
smaller than the gap between the two bands, we can neglect the terms in the interaction
Hamiltonian that involve higher band states, and restrict to its action onto the truncated
dressed basis

{
b†n |0〉

}
n
. For simplicity we will assume SU(F ) symmetric interactions,

which is a good approximation, for instance, for F = 1 87Rb and F = 1 41K, although
a generalization of this is straightforward. In the lattice, the tight-binding interaction
Hamiltonian reads

Hint =
U

2

∑
n

Nn(Nn − 1), (6.11)

with
Nn =

∑
m

a†n,man,m, (6.12)

where U is the onsite interaction energy per particle pair and N is the total number of
particles. From (6.5) and (6.8), we obtain the truncated expression of the bare basis
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operators

a†n,m =
1√
L

∑
q

e−iqnã†q,m '
1√
L

∑
q

e−iqnU0,m(q)b̃†q,0

=
1

L

∑
l

(∑
q

eiq(l−n)U0,m(q)

)
b†l =

∑
l

λ(l)
m b
†
n+l. (6.13)

In the last equality, we have defined the coefficients

λ(l)
m :=

1

L

∑
q

eiqlU0,m(q), (6.14)

which correspond to the amplitudes of the modes b†n |0〉 at sites n+l. With the truncated
expressions (6.13) for the lattice operators, we can now rewrite Nn as

Nn =
∑
l,l′

Cl,l′b
†
n+lbn+l′ , (6.15)

where Cl,l′ =
∑

m λ
(l)
m (λ

(l′)
m )∗.

For weakly coupled gases, the spread of the truncated modes can be significant, while
they become tightly localized in the strong coupling limit. Thus, at weak couplings the
density-density terms in the interaction Hamiltonian (6.11) may include significant higher
order terms in the truncated basis. In practice, though, the lowest-band truncation
demands relatively large Ωm, and in many situations we will be able to safely neglect
such contributions and write

H '
∑
n

∑
l

(
tlb
†
n+lbn +

U

2

∑
l′

C0,0Cl,l′b
†
nbnb

†
n+lbn+l′

)
. (6.16)

In this way, when written in terms of dressed bosons, the Raman-dressed lattice
Hamiltonian can be thought of as a Hubbard-like model for a quasiparticle with modi-
fied properties, which may include long-range complex tunneling terms and non-trivial
interactions. For the remainder of this chapter, we will focus on the simplest of these
scenarios, namely the spin-1/2 Hamiltonian. In the next section, we will see that in
the case of S = 1

2 , the effective Hamiltonian (6.16) describes a triangular ladder model
with tunable staggered flux. As elaborated in Sec. 6.1.2, triangular configurations have
attracted a great deal of attention as a natural route to geometrical frustration, which
plays a major role in the emergence of frustrated quantum magnetic phases. Therefore,
it is worth studying their implementation with Raman-dressed Bose gases.

6.3 The spin-1/2 case: an effective triangular ladder with
staggered flux

The spin-1
2 can be realized by having only two states of a hyperfine manifold coupled

by Raman transitions, with the rest being set off resonance via the quadratic Zeeman
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shift [104]. In this case, the Hamiltonian can be interpreted as a semi-synthetic two-leg
flux ladder charged with N bosons in 2L lattice sites, as schematically represented in
Fig. 6.2, which reads

H1/2 =
L∑
j=1

∑
σ=± 1

2

(
−te−ıγσa†j+1,σ +

Ω

2
a†j,σ̄ + σδa†j,σ

)
aj,σ + H.c.

+
L∑
j=1

∑
σ=± 1

2

(
Uσσ

2
njσ(njσ − 1) +

Uσσ̄
2
nj,σnjσ̄

)
. (6.17)

Here, Ω is the Raman coupling strength between the two levels involved, which we set
to Ω > 0, and δ is the detuning from Raman resonance which yields a uniform potential
between the upper and lower leg of the ladder. The second line in eq. (6.17) describes the
general form for the inter- and intra-leg onsite interactions, with σ̄ labelling the site of
the opposite leg from σ. For simplicity, we will restrict ourselves to the SU(2) symmetric
scenario, and set Uσ,σ = Uσ,σ̄ = U . As argued in Sec. 6.2, the resulting nonlocal behavior
of the interactions along the synthetic dimension is often not desired, since it breaks the
immediate analogies to systems in solid state physics. Yet, as we will see later on in this
chapter, such a behavior will actually be favorable for our purposes, which contributes
to further support the realization of the model in Raman dressed systems.

We will now consider for this S = 1
2 case the lowest band recipe presented in the

previous section. From (6.4), we have

Hq =

(
2t sin

(γ
2

)
sin(q) +

δ

2

)
σz − 2t cos

(γ
2

)
cos(q) + Ωσx, (6.18)

where σi are the Pauli matrices. The two energy bands are given by

εq,± = ±Ω

√
1 + (q̃ + δ̃/2)2 − 2t cos

(γ
2

)
cos(q), (6.19)

and the unitary transformation that relates the bare and the dressed basis reads U =

eiσyθq/2, with cos(θq) = q̃+δ̃/2√
1+(q̃+δ̃/2)2

, 0 ≤ θq ≤ π. Here, we have relabelled the upper and

lower band indices, respectively, by m = ±, and have conveniently defined the scaled
quantities q̃ := 2t sin(γ/2) sin(q)

Ω and δ̃ := δ/Ω.

Rewriting U explicitly in terms of q̃ and δ̃, we have

U−,± = ± 1√
2

√√√√1± q̃ + δ̃/2√
1 + (q̃ + δ̃/2)2

. (6.20)

The two bands and are represented in Fig. 6.1(a) for Ω = 2t, γ = 0.9π and δ = 0. We
label the energy gap separating the two bands as ∆ε, and the bandwidth of the lowest
band as δε. The latter is directly related to the strength of the effective tunnelings tl
in the lowest band model. Together with the tight-binding energy εt.b., these quantities
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Figure 6.1: Noninteracting energy scales: (a) Energy bands (6.19) of Hamiltonian (6.17)
for Ω = 2t, γ = 0.9π. The arrows indicate the bandwidth δε, which is related to the
tunneling strength of the effective dressed particle, and the band-gap ∆ε that separates
the two bands. The color texture represents the expected value of the spin of the band
states. (b) ∆ε and δε as a function of γ for Ω = 2t and Ω = 5t. (c) ∆ε and ∆ε/δε as a
function of Ω at γ = π. In all figures, we set δ = 0.

set the three different energy scales of the effective system at the single-particle level.
In Fig. 6.1(b) and Fig. 6.1(c) we plot ∆ε as a function of γ and Ω, respectively. The
bandgap ∆ε increases with both Ω and the flux γ, and is maximal at γ = π. Contrarily,
the bandwidth δε, is a decreasing function of Ω, and it is minimized at γ = π, as shown
in Fig. 6.1(b). In this way, the ratio between ∆ε and δε increases fast as Ω is made
larger, as shown in Fig. 6.1(c).

By using expressions (6.19) and (6.20), we can retrieve the analytical expressions for
the quantities relevant to the lowest-band model in the spin-1

2 case. Since we want the
three energy scales well separated, we will assume moderate-to-large values for Ω and
truncate the expansion of the parameters to first order in t/Ω. By introducing (6.20)
into (6.8), we obtain the following expression for the dressed mode operators b†n in the
bare basis a†n,m

b†n =

√
1

2
+

δ̃

2
√

4 + δ̃2
a†n,+ −

√
1

2
− δ̃

2
√

4 + δ̃2
a†n,− (6.21)

+i
4t sin(γ/2)√
2(4 + δ̃2)3/2Ω

a†n+1,+ + a†n+1,−√
1 + δ̃√

4+δ̃2

−
a†n−1,+ + a†n−1,−√

1− δ̃√
4+δ̃2

+O
(
(t/Ω)2

)
.

Similarly, we can expand the expression for the effective tunneling coefficients tl.
From

εq,− = −Ω

(√
1 + δ̃2/4 +

δ̃q̃√
4 + δ̃2

+
4q̃2

(4 + δ̃2)3/2
+O(q̃3)

)
−2t cos (γ/2) cos(q), (6.22)
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and by taking the limit L→∞, it follows that

tk = −

(
Ω

√
1 +

δ2

4Ω2
+

8t2 sin2(γ/2)

Ω(4 + δ2/Ω2)3/2

)
δk,0 −

(
t cos(γ/2)∓ i tδ sin(γ/2)

Ω
√

4 + (δ/Ω)2

)
δk,±1

+
4t2 sin2(γ/2)

Ω(4 + δ2/Ω2)3/2
δk,±2 +O((t/Ω)3). (6.23)

Up to second order in t/Ω, the noninteracting dressed Hamiltonian (6.9) can therefore
be written as

Hn.i. =
∑
i

(t1b
†
ibi+1 + t2b

†
ibi+2 + H.c.) +O((t/Ω)3), (6.24)

where we drop the constant term t0N . Notice that only the NN and NNN coupling
coefficients are nonzero at this order of approximation. Hamiltonian (6.24) is equivalent
to a triangular ladder with gauge-invariant staggered flux

Φ = 2φ1 − φ2, (6.25)

with φ1 = arg(−t1) and φ2 = arg(−t2). Remarkably, see from (6.23) that, in the chosen
gauge, the NN tunneling coefficient t1 has a nonzero imaginary contribution that is
linearly proportional to the Raman detuning δ. To first order in δ/Ω, and to second
order in t/Ω, we then have

φ1 = −δ tan(γ/2)

2Ω
, φ2 = π. (6.26)

Hence, at linear order in δ/Ω around δ = 0, we can tune the staggered flux Φ while
leaving |t1| and t2 unchanged. Near fully frustration, the sensitivity of the effective
staggered flux Φ to δ is given by∣∣∣∣ ∂Φ

∂(δ/t)

∣∣∣∣ ' 2

∣∣∣∣ ∂φ1

∂(δ/t)

∣∣∣∣ ' 2

∣∣∣∣ t tan(γ/2)

2Ω

∣∣∣∣ γ∼π,δ∼0
' 2|t2/t1|. (6.27)

Setting now δ = 0, the ladder is fully frustrated, with |Φ| = π, and the tunneling
coefficients read

t1 = −t cos(γ/2) +O
(
(t/Ω)3

)
, (6.28)

t2 =
t2 sin2(γ/2)

2Ω
+O

(
(t/Ω)3

)
. (6.29)

Notice that the ratio |t2/t1| can be tuned with both γ and Ω. This means that, even when
Ω � t, the system can in principle realize all the regimes of the frustrated triangular
ladder. As we will see in the next section, this key feature will allow us to access
strongly-correlated frustrated magnetic phases.

Finally, if the interacting energy per particle is much smaller than the band gap,
that is U � ∆ε = 2Ω

(
1− 2 cos(γ/2) tΩ +O

(
(t/Ω)2

))
, interatomic interactions can be
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truncated to the lowest band, and we can use (6.15) to write the interacting Hamiltonian
in the dressed basis. Notice that the dependency on Ω only appears in the expression of
Nn through the coefficients Cl,l′ , which can be expanded to

Cl,l′ =
1

L2

∑
q,q′

ei(ql−q
′l′)
∑
m

U−,m(q)U∗−,m(q′) =
1

L2

∑
q,q′

ei(ql−q
′l′) 1

2

(
1 +

q̃q̃′

2

)
. (6.30)

Hence, by introducing the truncated expression (6.30) for the density operators in the
dressed basis into (6.15) and (6.11), it follows that

Hint '
U

2

∑
n

b†nbn(b†nbn − 1) +O((t/Ω)2. (6.31)

This is remarkable, since it implies that, to first order in t/Ω, the system is described by
the effective Hamiltonian

H4 =
∑
l=1,2

tl
∑
i

(b†ibi+l + H.c.) +
U

2

∑
i

ñi(ñi − 1). (6.32)

The Hamiltonian written in the dressed basis is therefore analogous to a triangular
ladder configuration with tunable onsite interactions, tunnelings and staggered flux, as
schematically represented in Fig. 6.2.

Hamiltonian (6.32) has been extensively studied, since it is the simplest model where
frustrated physics can naturally emerge. Bosons in triangular configurations have been
explored mainly at unit filling [433, 434] and at low densities [409]. Other possible
implementations of the model have been proposed [385, 386], and an experimental re-
alization in a different gauge sector has been achieved [400]. It is worth stressing that,
in comparison to the various proposals that use synthetic dimensions to achieve frustra-
tion, in our realization of the model the interactions are directly of local nature, and no
state-dependent lattice potential of any sorts is required. As discussed in Sec. 2.1, state-
dependent potentials in alkali atoms can be realized by exploiting the vector contribution
of the dipole light shifts. As it is the case for Raman dressing, in this situation both
the spontaneous emission rate and the dipole coupling strength scale with the inverse
squared of the detuning from resonance. Thus, the heating rate from photon scattering
can not be arbitrarily suppressed in spin-dependent dipole potentials. This limits their
practical application [84, 85], even more so when considering the deep lattice regime.

Special attention has been devoted to Hamiltonian (6.32) in the hard-core-boson
limit, i.e. for U →∞, and at half-filling ñ = N/L = 1/2 [407, 408, 431]. There, double
occupancies in the triangular ladder are suppressed, and one can identify (b†i , bj) →
(S+
i , S

−
j ), which leads to

H4
tl/U→0−→

∑
j

(
t1S
−
j S

+
j+1 + t2S

−
j S

+
j+2 + H.c.

)
. (6.33)
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Figure 6.2: Effective triangular ladder from Raman-dressed bosons in a lattice. (a)
Schematic representation of the semi-synthetic flux ladder model (6.17). (b) Lowest
single-particle dispersion band for Ω = 10t and γ = 0.97π. The color texture indicates
the expected value of the spin of the band states. Observe that, despite having Ω � t,
the double-well structure can be preserved at large γ. (c) Schematic representation of
the truncated lowest-band Hamiltonian (6.32), which describes an effective triangular
ladder with staggered flux and onsite interactions.

If we set δ = 0, or equivalently Φ = π, such a hard-core-boson Hamiltonian describes a
t1-t2 spin-1

2 XX-chain

H4(Φ = π)
tl/U→0−→

∑
j

(
t1S

x
j S

x
j+1 + t1S

y
j S

y
j+1

)
+
∑
j

(
t2S

x
j S

x
j+2 + t2S

y
j S

y
j+2

)
, (6.34)

which is a particular case of long-range interacting spin chains. The above Hamiltonian
has been studied in detail in [392] as a 1D analogue of the deconfined quantum criticality
[393] (for an extension to power-law decay couplings see [435]). From equation (6.29),
we see that t2 > 0. In model (6.34), frustration effects take place when t2 > 0, and
an interesting phase diagram, where a gapless Superfluid (SF) phase, a gapped bond-
ordered-wave (BOW) and a gapless chiral superfluid (CSF), can be found at different
values of the ratio between the NN and NNN couplings, |t2/t1|. For small values of |t2|,
the system realizes the gapless SF phase, which can be straightforwardly detected, for
instance, by the long range behavior of the one-body density matrix g1(|i− j|) = 〈b†ibj〉,
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or by the vanishing of the single-particle excitation gap in the thermodynamic limit

GL = E(L,N + 1) + E(L,N − 1)− 2E(L,N), (6.35)

where E(L,N) is the energy of the ground state for a ladder of L sites and N particles.
For intermediate values of |t2|, the system favors a dimer order, the BOW phase, charac-
terized by the spontaneous breaking of the inversion symmetry. It is signaled, therefore,
by nonzero values of the following two points operator

OBO =
1

L

∑
i

(−1)i〈(b†ibi+1 + bib
†
i+1)〉, (6.36)

Additionally, the BOW phase is an insulating phase phase, and exhibits a finite gap
GL→∞ and thus an exponential decay of g1(|i − j|). Finally, for larger |t2/t1| values a
chiral phase has been predicted. Indeed, on the contrary to the usual SF characterized by
a single minimum in the dispersion relation, the CSF phase presents two non-equivalent
minima. There, the interplay between geometric frustration and interatomic interactions
favors the occupation of either of the two minima, yielding two degenerate solutions that
spontaneously break a Z2 symmetry and exhibit a finite chirality ki = 2ı(bib

†
i+1−b

†
ibi+1).

The phase is well captured by the long-range behavior of the chiral correlation function

k2(|i− j|) = 〈kikj〉. (6.37)

In the remainder of the chapter, we will focus on these strongly-correlated regimes
of Hamiltonian (6.32), which have a direct analogy to the physics in Heisenberg models.
We should stress, though, that in the realization of the model that we propose, that is,
as the low-energy theory embedded within the frustrated flux ladder model, the hard-
core-boson condition is hard to meet in realistic experimental conditions. The triangular
structure of the effective Hamiltonian emerges from the properties of the lowest-band,
and the validity of the lowest-band truncation requires by construction a finite U . Yet,
as we have argued in this section, the three characteristic energy scales of the Raman-
dressed lattice gas can in principle be arbitrarily separated. It is worth wondering,
therefore, if there actually exists a suitable regime of parameters that realizes frustrated
magnetic phases that characterize model (6.34), such as the BOW. In the next section
we will numerically tackle this question by performing density-matrix-renormalization-
group (DMRG) calculations [36, 166, 436] of the whole semi-synthetic flux ladder model
(6.17).

6.4 Frustrated quantum magnetism with dressed ultracold
atoms

In the previous section, we have proposed an alternative realization of the triangular
flux ladder (6.32), based on the low-energy description of the spin-1

2 semi-synthetic flux
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Figure 6.3: Effective triangular ladder from Raman-dressed bosons in a lattice: numerical
results. Expected values of the long range chiral correlator k2(|i−j| → ∞) (a), the single-
particle excitation gap GL→∞ (b) and the bond-order operator OBO (c) as a function
of t2/|t1|. In all cases, the triangle refer to the results obtained for the ground state of
the effective model (6.32) at half filling, with U = 10|t1| and Φ = π, and the squares
refer to those obtained for the ground state of Hamiltonian (6.17) at quarter filling and
δ = 0. For the latter, we have fixed Ω = 10t, and γ and U have been adjusted by using
(6.23) in order to match the corresponding values of t2/t1 and U/t1. All the quantities
are extracted to the thermodynamic limit by doing a finite size extrapolation to L→∞
with systems lengths up to L = 80, and setting N = L/2.

ladder (6.17). We have seen that strongly-interacting bosons loaded in such a triangular
geometry can realize physics that is analogous to that of frustrated quantum Heisenberg
models. In the hard-core-boson limit, the Hamiltonian is expected to hold the three
phases that take place in a frustrated t1-t2 spin-1

2 XX chain, namely, the SF, the BOW
and the CSF phases described in the previous section. In order to analyze whether these
three phases still occur for finite U , we will now explore the range of validity of the
effective model by means of DMRG calculations.

We start by exploring the strong Raman coupling regime of the square ladder model,
and set Ω = 10t. In Fig. 6.3, we show the expected values of GL→∞, OBO and k2(|i−j| →
∞) (see equations (6.35) to (6.37)) as a function of |t1/t2|, for the ground states of both
the effective triangular Hamiltonian (6.32) at half-filling and the original square ladder
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Hamiltonian (6.17) at quarter-filling. For the latter, the value of γ is adjusted while
keeping Ω = 10t, so as to obtain the theoretical value of |t1/t2| = |t sin(γ/2) tan(γ/2)|

2Ω

predicted by equations (6.28) and (6.29). The expected values in the original ladder
are computed using the expression for the dressed modes (6.21) in the bare basis. In
both cases, the interaction strength is set to U = 10|t1|, to realize a strongly-interacting
regime of the effective triangular ladder. Indeed, Fig. 6.3 shows a very good agreement
between the two models in this regime of parameters. The phase diagram predicted in
the hard-core boson limit (6.34) of the effective model (6.32) appears to be preserved for
large, but finite, values of U . A SF phase, uniquely captured by a vanishing gap appears
at small |t2|. There, the bosons quasi-condense in the unique minimum present in the
dispersion relation and a finite interaction is able to give rise to superfluidity. For higher
ratios between the NN and the NNN hopping, the one-body density matrix g1 loses
the long range order and G∞ takes nonzero values, which highlights the appearance
of the gapped BOW phase. The predicted dimer nature of such an insulating phase
is captured by the finite value of the bond-order operator OBO. Finally, when t2/|t1|
is further increased, the system eventually favors an additional CSF phase, recovering
again a finite value of g1 and a vanishing G∞, and with chiral order as detected by the
long-range ordered chirality-chirality correlation k2.

The BOW phase is characterized by the spontaneous dimerization of the ground
state. In the thermodynamic limit, two degenerate ground states correspond to the
even-to-odd and the odd-to-even pairing of the triangular lattice sites, with one atom
per dimer and a vanishing current between them, and the system spontaneously breaks
the inversion symmetry of the Hamiltonian. Similarly, in the CSF phase, the ground
state of the system consists of an equal superposition between superfluid states with two
possible relative phases given by an effective Z2 symmetry. This leads to a spontaneous
Z2 symmetry breaking in the thermodynamic limit. Within the triangular map, the
degenerate states are characterized by staggered current patterns. The loop currents
around each effective plaquette behave as vortices and form a vortex-antivortex crystal
with effective antiferromagnetic order (for a schematic representation of the two phases
see Fig. 6.6 in the next section). These structures of the effective model and the way by
which they are related to structures in the original square ladder will be covered in more
detail in the next section, with special attention to their experimental signatures. As we
will see, the BOW phase of the effective model is related to a vortex lattice insulator in
the square flux ladder at quarter filling. In turn, the SF and CSF phases correspond,
respectively, to the Meissner and biased-ladder superfluid phases therein. The former
persist for a similar range of fluxes as interactions are increased, while the latter is
suppressed to a large extent in favor of the dimer insulating phase. Still, according to
the map to a frustrated spin chain, the chiral regime should survive up to the hard-core-
boson limit, albeit the transition there is found at t2/|t1| ∼ 1.25 [431]. At Ω = 10t, e.g.,
this value for the boundary corresponds to γ ∼ 0.975π. Note that this prediction is valid
for U large with respect to the band width ∝ t2/Ω, but small with respect to Ω. For UΩ



152 Effective frustrated quantum magnetism in a synthetic ladder

Figure 6.4: Frustrated quantum phases in semi-synthetic flux ladders. Phase diagram of
Hamiltonian (6.17) at quarter filling and for Ω = 10t and δ = 0. The black circles refer to
the transition points detected via DMRG simulations. The blue triangles denote, from
left to the right, the set of points where U = 10t cos(γ/2) and the ratio of the tunnelings
that appear in the effective model (6.32), |t2/t1|, takes values from 0.9 to 0.1 (with an
increase of 0.1 at each step), according to expressions (6.28)) and (6.29).

the predictions of the lowest band model are expected to fail because the lowest-band
truncation does not apply.

The phase diagram of Hamiltonian (6.17) in the U − γ plane is shown in Fig. 6.4
for Ω = 10t and at quarter filling. In the figure, the blue triangles cover the trajectory
that fixes U/t1 = −10, in correspondence to Fig. 6.3. Notably, the nontrivial BOW and
CSF phases persist in large regions in parameter space. Generally speaking, both the
CSF and the BOW phase appear for γ is close to π. In agreement with the triangular
ladder picture, for a fixed strength of the gauge field, the system undergoes a CSF to
BOW KT phase transition when U is increased. Likewise, the insulating BOW phase
appears to persist for large values of U . As expected, smaller values of γ, and so of
|t2/t1|, supporting the presence of a gapless SF state. In particular we observe a CSF-
SF transition through a Lifshitz point when U is small and a KT transition between a
BOW and a superfluid when U is larger. For stronger interactions, where a lowest-band
truncation is no longer accurate, we eventually expect the charge density wave phase
discussed in [372, 374] to be favored in place of both the BOW and the CSF phases, with
the Meissner superfluid surviving to the HCB limit of the flux ladder.

The derivation of the effective model Eq. (6.32) was based on a series of approxima-
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Figure 6.5: Extent of the frustrated phases. In red squares, expected value of OBO as
a function of Ω, for the ground state of Hamiltonian (6.17) at quarter filling. We fix
δ = 0 and adjust γ and U so that t2/|t1| = 0.5 and U = 10|t1|. In green triangles,
expected value of k2(L→∞) as a function of Ω, adjusting γ and U so that t2/|t1| = 0.8

and U = 10|t1|. All the quantities are extrapolated to the thermodynamic limit by
considering system sizes up L = 80.

tions applied to Hamiltonian (6.17). It is crucial, therefore, to assess the extent to which
the ladder model in presence of a gauge field is able to support the presence of the phases
appearing in the frustrated XX model. Not only from a theoretical understanding, but
rather for the experimental implications that such an extent may have. As we will dis-
cuss in the next section, to be able to relax such constraints on the Raman parameters
will be fundamental to the realization and detection of magnetic phases. So far in this
section, and as a first approach in this direction, we have fixed the inter-leg hopping
amplitude to the fairly large value of Ω/t = 10, where truncation of the perturbative
expressions from (6.32), (6.28) and (6.29) are expected to be accurate. It seems natural,
then, to wonder whether the BOW and CSF are still able to occur when Ω is smaller
and the lowest-band truncation of (6.17) is challenged. Again, we numerically address
this question via DMRG simulations of the ladder for smaller Raman couplings (rung
couplings). In Fig. 6.5 we plot OBO as a function of Ω, and adjust γ to keep |t2/t2| = 0.5,
where the BOW phase is expected to take place. Likewise, we plot the values of k2 while
fixing |t2/t1| = 0.8, where the CSF phase is predicted by the effective model (6.32). In
both cases, we set U = 10|t1| and t1 < 0. As expected, both quantities start to decrease
fast when Ω < 4t, where the single-particle bandgap is roughly ∼ 3U , and no longer
separates well the lowest band states, yet both phases appear to be robust for larger
values of Ω. Interestingly, the BOW phase appears to persist to some extent down to
values of Ω ∼ t, where the lowest-band truncation is not expected to be accurate.

The results presented in this section confirm that a semi-synthetic flux ladder is able
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to capture all the possible regimes of the frustrated XX model by realizing the phases
therein in the strongly-interacting regime of the effective triangular boson ladder, and
that it does so for a wide range of parameters. These results suggest, therefore, that
intriguing phases induced by the combination of geometrical frustration and quantum
fluctuations, such as the BOW and CSF, could be realized in a Raman-dressed bose
gas loaded in a 1D optical lattice. In the next section, we will develop further the
understanding of the described phases in terms of the original square flux ladder. In
particular, we will be interested in the response of the system to the explicit symmetry
breaking of the symmetries that are spontaneously broken at each phase. We will see
that Raman-dressed bosons in an optical lattice allow for a flexible realization of the
model, where such a response can be exploited for the detection of the different phases.

6.5 Experimental implementation and detection of the frus-
trated phases

In this section we will argue that a Raman-based implementation of Hamiltonian
(6.32) can facilitate the experimental accessibility and detection of the distinct phases
that the model realizes. As we introduced in the previous section, these phases can be
characterized by the three observables from equations (6.35), (6.36) and (6.37). Keep
in mind, though, that such observables were defined in terms of the truncated dressed
basis. While we have shown so far that the dressed system can in principle realize the
frustrated physics of interest, it is crucial, then, to relate these quantities to experimental
signatures that can be experimentally accessed in the original semi-synthetic flux ladder.
To this end, we will now show that, in the original basis of Hamiltonian (6.17), the
phases can be understood in simple terms by the current and density structures of the
undressed bosons. We will see that the chirality and dimerization in the triangular
ladder are directly related to the square ladder magnetization and to the dimerization
of the currents, respectively. With such an understanding, we will next introduce a
simple protocol to detect the different phases that exploits the tunability of the dressed
system. Finally, we will briefly discuss the experimental viability of the model in an
actual experiment with Raman-dressed ultracold 41K atoms in an optical lattice.

6.5.1 Current structures of the frustrated phases

The BOW as a vortex crystal

To gain insights on the nature of the BOW insulating phase in the original square
ladder, we now look at the properties of the ground state in the parameter regime
that corresponds to the Majumdar-Ghosh point of the XX spin model (6.33), that is,
at t2 = −t1/2 > 0 and t1/U → 0, where the system is solvable [437]. There, the
ground state of the Hamiltonian is twofold degenerate in the thermodynamic limit, each
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breaking the inversion symmetry of the Hamiltonian. The two ground states are given
by dimerized product states of triplet spin states defined on pairs of consecutive sites

|ψe,o〉 =
⊗

j∈even/odd

|↑j↓j+1〉+ |↓j↑j+1〉√
2

=
∏

j∈even/odd

b†j + b†j+1√
2

|0〉 . (6.38)

Without loss of generality, we use |ψe〉 for the computations. The ground state |ψe〉 can
be written as

|ψe〉 =

L−1∏
j=0

D†j |0〉 , (6.39)

where we have defined the operators

D†j =
b†2j + b†2j+1√

2
, (6.40)

which fulfill
[
Dj , D

†
k

]
= δj,k. At δ = 0, we conveniently reexpress the dressed mode

operators (6.21), truncated to first order in t/Ω, as

b†n ' cosαc†n,− + i sinα
c†n+1,+ − c

†
n−1,+√

2
, (6.41)

where we have defined c†n,± =
a†n,+±a

†
n,−√

2
and α = arctan

(
t sin(γ/2)√

2Ω

)
. By substituting the

approximate expression (6.41) for the modes bj into (6.40), we can write Dj in the bare
basis

{
c†j,m |0〉

}
as

D†j ' cosα
c†2j,− + c†2j+1,−√

2
+ i sinα

c†2j+2,+ + c†2j+1,+ − c
†
2j,+ − c

†
2j−1,+

2
. (6.42)

We now compute the circular currents in the paired sites. We start by computing
the expected value of the total rung current in the 2k plaquette, j(r)

2k , defined as

j
(r)
2k = iΩ

(
a2k,+a

†
2k,− − a

†
2k,+a2k,−

)
− iΩ

(
a2k+1,+a

†
2k+1,− − a

†
2k+1,+a2k+1,−

)
= −iΩ

(
c2k,+c

†
2k,− − c

†
2k,+c2k,−

)
+ iΩ

(
c2k+1,+c

†
2k+1,− − c

†
2k+1,+c2k+1,−

)
.

By using expression (6.39) and the commutation relations of operators Dj , it is easy to
show that

〈ψe| j(r)
2k |ψe〉 = 〈0|Dk−1DkDk+1j

(r)
2k D

†
k−1D

†
kD
†
k+1 |0〉

= 〈0|Dk−1DkDk+1

[
j

(r)
2k , D

†
k−1

]
D†kD

†
k+1 |0〉

+ 〈0|Dk−1DkDk+1D
†
k−1

[
j

(r)
2k , D

†
k

]
D†k+1 |0〉

+ 〈0|Dk−1DkDk+1D
†
k−1D

†
k

[
j

(r)
2k , D

†
k+1

]
|0〉 . (6.43)
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Finally, inserting (6.42) into eq. (6.43) and (6.47) yields

〈ψe| j(r)
2k |ψe〉 = −

√
2Ω sinα cosα = −t sin(γ/2) +O((t/Ω)3). (6.44)

Similarly, we now compute the leg currents

j±k = it
(
e∓iγ/2ak,±a

†
k+1,± − e±iγ/2a†k,±ak+1,±

)
. (6.45)

In the c†j,m basis, the total leg current in the 2k plaquette reads

j
(a)
k := j−k − j

+
k = −t

(
ck,+c

†
k+1,+ + ck,−c

†
k+1,−

)
sin(γ/2)

−it
(
ck,+c

†
k+1,− + ck,−c

†
k+1,+

)
cos(γ/2) + H.c. (6.46)

Again, we can write

〈ψe| j(a)
2k |ψe〉 = 〈0|Dk−1DkDk+1j

(a)
2k D

†
k−1D

†
kD
†
k+1 |0〉

= 〈0|Dk−1DkDk+1

[
j

(a)
2k , D

†
k−1

]
D†kD

†
k+1 |0〉

+ 〈0|Dk−1DkDk+1D
†
k−1

[
j

(a)
2k , D

†
k

]
D†k+1 |0〉

+ 〈0|Dk−1DkDk+1D
†
k−1D

†
k

[
j

(a)
2k , D

†
k+1

]
|0〉 . (6.47)

which after inserting (6.42) results in

〈ψe| j(a)
2k |ψe〉 = −t cos(γ/2)

√
2 sinα cosα− t sin(γ/2)

(
cos2 α− 1

2
sin2 α

)
= −t sin(γ/2)

(
1 +

t cos(γ/2)

Ω
+O((t/Ω)2)

)
. (6.48)

Observe that, to zero order in (t/Ω), we have j(a)
2k = j

(r)
2k . This result can be extended

to the |ψo〉 solution by just shifting each lattice site from j to j + 1. Therefore, the
ground state solutions at the solvable Majumdar-Ghosh point consist, in the original
square ladder, on two vortex crystals with one particle per vortex plaquette, with a
circular current j(c)

j = j
(a)
j + j

(r)
j on the dimerized plaquettes given by

〈ψe| j(c)
2k |ψe〉 = 〈ψo| j(c)

2k+1 |ψo〉 = −2t sin(γ/2) +O(t/Ω). (6.49)

The first order correction to these solutions includes a small current ∝ t cos(γ/2)/Ω

between the dimerized plaquettes that vanishes both for t/Ω → 0 and γ → π. Notice
that both solutions have a nonzero chiral current

jc = ıt
2

L

∑
i

∑
σ=±1/2

σ(e−ıγσa†i+1,σai,σ − e
ıγσai+1,σa

†
i,σ). (6.50)

In particular, we have

〈ψe,o| jc |ψe,o〉 = t sin(γ/2)/2 +O(t/Ω). (6.51)
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This net edge current is induced by the static gauge field that breaks the time-reversal
symmetry in the Hamiltonian (6.17). We emphasize that these results have been derived
assuming a hard-core-boson limit within the effective model, which can not be realized
in the actual flux ladder Hamiltonian (6.17) (due to either the band separation being
finite or the intraband scale vanishing). Thus, deviations should be expected for finite U .
Still, we numerically find a very good agreement in the considered range of parameters,
with U & 10t1 , and a good qualitative agreement for even smaller Ω. The current
distribution in the BOW state is schematically represented in Fig. 6.6(a), both in the
effective model and in the semi-synthetic flux ladder model. For the latter, the arrows
representing the currents are scaled according to the values found numerically. In this
case, we have set Ω = 5t, δ = 0 and γ = 0.877π, for which t2/|t1| ∼ 0.5. The leg
currents on the dimer sites are found to be j(a)

2k ' −0.93t, while equation (6.42) predicts
j

(a)
2k ' −1.02t. The BOW phase predicted on the effective model, therefore, is identified
with a vortex lattice insulator phase of the flux ladder at quarter filling and with maximal
vortex density. An interesting property of the phase is that, finding its origin in the
interplay between frustration and filling factor of the effective triangular model, the
onset of the insulating phase can be found at notably low interaction strengths as the
rung tunneling Ω is increased. Remarkably, such a vortex lattice is found in a regime that
has been overlooked in many other works that have explored the flux ladder (see [374]
for a detailed classification of various superfluid and insulating vortex lattice phases).
This is probably due to the particular requirement of both large inter-leg hoppings and
comparatively smaller interactions for its stabilization. Note that, while the exploration
of such a regime is inviting in the semi-synthetic implementation of the flux ladder, where
large inter-leg tunnelings are straightforwardly achieved, its realization along two spatial
dimensions would be challenging. To achieve very large rung tunnelings there, the depth
of the potential barrier along the rung direction would need to be reduced, eventually
leaving the tight-binding regime. By contrast, very strong rung couplings can be achieved
in the synthetic dimension before challenging the tight-binding approximation.

The CSF as a biased ladder superfluid

Similarly, the CSF phase has two degenerate solutions that spontaneously break the
Z2 symmetry of the Hamiltonian. In each solution, local interatomic interactions favor
the occupation of quasimomentum states around either the left or the right minimum of
the band. In fact, the weakly-interacting regime of the CSF in the flux ladder is related
to the plane-wave phase of the spin-orbit-coupled bulk-gas. There, non-zero SU(2) spin
interactions favor the formation of a condensate with non-zero quasimomentum when
the single-particle band is in the two-minima regime. In the semi-synthetic flux ladder,
a similar behavior is thus expected, and the current structure of the phase is straightfor-
wardly understood by taking the noninteracting limit of the two solutions |ψL,R〉, which
are then simply given by the collective occupation of the band states located the left and
right band minima, respectively.



158 Effective frustrated quantum magnetism in a synthetic ladder

(a)

(b)

Figure 6.6: Current and density structures of the frustrated phases. Schematic repre-
sentations of the current and density structures of the degenerate ground states in (a)
the dimer BOW phase and in (b) the CSF phase. In the BOW state, the red shadowed
sites represent the dimers. In both cases, the left panel represents the state in the tri-
angular ladder and the right panel the corresponding state in the original square flux
ladder. Within the triangular model, the densities and currents in the two phases are
uniform. In the original ladder howver, the BOW translates into a vortex crystal with
staggered arm currents and dimerized leg currents. In turn, the CSF translated into a
biased ladder superfluid with a density imbalance between the two arms. The area of the
dots and arrows representing the densities and currents of the square flux ladder (right)
are scaled according to their numerical values determined at Ω = 5 and δ = 0, with γ
and U adjusted so that t2/|t1| = 0.5 and U = 10|t1|.

In the single-particle band modes all have a vanishing rung current. For a bandstate
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at q, it follows

〈0| b̃q,− j(r)
k b̃†q,− |0〉 =

iΩ

L

∑
nn′mm′

〈0| e−iqn′eiqnU∗−,m′(q)U−,m(q)an′,m′ak,−a
†
k,+a

†
n,m |0〉+ H.c.

= −2Ω

L
Im
(
U∗−,−(q)U−,+(q)

)
= 0.

(6.52)

At the same time, the arm current is given by

〈0| b̃q,− j±k b̃
†
q,− |0〉 =

it

L

∑
nn′mm′

〈0| e∓iγ/2e−iqn
′
eiqnU∗−,m′(q)U−,m(q)an′,m′ak,±a

†
k+1,±a

†
n,m |0〉

+ H.c.

= − 2

L
Im
(
te−i(q±γ/2)U∗−,±(q)U−,±(q)

)
=

2t

L
sin(q ± γ/2)|U−,±(q)|2,

(6.53)

which yields a nonzero edge current

〈0| b̃q,− jc b̃†q,− |0〉 =
2t

L
sin(q + γ/2)|U−,+(q)|2 − 2t

L
sin(q − γ/2)|U−,−(q)|2. (6.54)

We now set δ = 0, where U−,±(q) = 1√
2

(1± t sin(γ/2) sin(q)/Ω)+O(q̃2) (see eq. (6.20)),
and thus

〈0| b̃q,− jc b̃†q,− |0〉 =
2t

L

(
sin(γ/2) cos(q) +

t

Ω
sin(γ) sin(q)2 +O((t/Ω)2)

)
. (6.55)

For |γ| < |γc| =

∣∣∣∣∣4 tan−1

(√√
(Ω/t)2+16−4

Ω/t

)∣∣∣∣∣, the lowest dispersion band exhibits a

single minimum at qm = 0, and the solutions correspond to the noninteracting limit
of the Meissner phase: indeed, in this regime the chiral current increases with γ as
〈jc〉 ∝ sin(γ/2), effectively screening the applied flux. For |γ| > γc, the band splits

into two degenerate minima at qR,L = ± cos−1

(
Ω
√

1+(2t sin(γ/2)/Ω)2

2t tan(γ/2)

)
, and the chiral

current for the corresponding states |ψR,L〉 starts to decrease with an increasing flux γ.
In the absence of interactions, the change is nonanalytical in the thermodynamic limit,
signalling a second order phase transition. This response in the flux screening is shared
by the vortex superfluid phase of the flux ladder. However, in the CSF phase predicted by
the effective model, the spontaneous breaking of the Z2 symmetry prevents the formation
of vortices and instead gives rise to a population imbalance between the two legs. The
CSF phase, thus, corresponds to a biased-ladder superfluid phase [374, 424, 438]. The
current distribution in the CSF regime is schematically represented in Fig. 6.6(b).

The presence of interatomic interactions smooth out the single-minima to two-minima
transition by favoring a spread momentum distribution in the ground state that carries
on into the two minima regime of the single-particle energy band. As interactions are
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Figure 6.7: Expected value of the chiral current jc (blue circles), the bond-order operator
OBO (green triangles) and the triangular ladder chiral correlation function k2(L) (red
squares) as a function of γ for the ground state of Hamiltonian (6.17) at quarter filling
and δ = 0. We set Ω = 5t and U = t in (a), Ω = 10t and U = t in (b), Ω = 10t and
U = 0.5t in (c), and Ω = 10t and U = 2t in (d). Light-colored thin solid lines show the
corresponding values at the noninteracting limit. In all cases, the values are obtained
from a finite size extrapolation considering sizes up to L = 80.

increased, the Meissner to biased-ladder superfluid transition is eventually lost in favor
of the additional vortex lattice insulator phase in-between, that corresponds to the BOW
dimer phase in the effective model (see Fig. 6.4). In figure Fig. 6.7 we plot the expected
values of the chiral current 〈jc〉, OBO and k2(L) for the ground state at quarter filling
as a function of γ for different values of U and Ω. In light-colored solid thin lines we
show the corresponding values obtained for the noninteracting flux ladder. Notice how
the presence of interactions the changes the nonanalytical behavior of the chiral current
that characterizes the noninteracting transition. Still, even for strong interactions, the
system is able to screen the external magnetic field at weak fluxes. At large γ, nonzero
values of OBO(L) and k2(L) for L → ∞ signal the onset of the BOW and CSF phases,
respectively. We note that, since the values are extrapolated from finite-size samples,
the degeneracy in the BOW phase is lifted by finite size effects and the extrapolated
values correspond to one of the two actual ground states. Observe that the BOW phase
is favored at larger Ω and U . As we have shown above, at large U and Ω, the BOW
phase exhibits a vortex crystal structure with circular currents that depends weakly on
these parameters (see (6.49)). This can facilitate its experimentally accessibility, since
the phase is expected to exhibit a dimerized leg current of ∼ t sin(γ/2) between the sites
of the dimers, even when U and Ω are made large. Contrarily, in the CSF phase, k2

is largely suppressed by atom-atom interactions and decreases with the rung tunneling
strength. Still, the phase persists at fluxes γ ∼ π even for U � |t1|, |t2|, as is predicted
by the hard-core-boson limit of the lowest-band triangular model. In Fig. 6.7(d), k2
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takes nonzero values roughly when γ & 0.97π. This is consistent with the predictions of
the spin-chain model (6.34), since, at this regime of parameters we have U > 40t1, 40t2,
and the hard-core-boson approximation is expected to be accurate.

6.5.2 Measuring the observables of the effective model

Through the understanding of how the frustrated phases of the triangular model
translate into the original square ladder model, we can connect the characterizing signa-
tures of the phases in the former model to experimentally suitable observables defined
in the latter. We now show that, indeed, the SF, the BOW and the CSF phases can be
detected by measuring the response of the system to the explicit breaking of the Z2 spin
and inversion symmetries of the Hamiltonian.

We start by relating the effective current density of the triangular model to the
magnetization in the square ladder. The zig-zag current between nearest neighbors in
the triangular ladder is given by

j1 =
∂H

∂φ1 ||t1|,t2

= −
∑
i

2 Im(t1bib
†
i+1). (6.56)

We can directly retrieve the corresponding expression for j1 in the original ladder by
using expression (6.27), which relates the staggered flux φ1 to the detuning δ. From
(6.27) and (6.56), it follows that

〈j1〉 =
∂(δ/t)

∂φ1
||t1|,t2

∂ 〈H〉
∂(δ/t)

||t1|,t2 = − 2Ω

t tan(γ/2)

∂E

∂(δ/t)
||t1|,t2 (6.57)

Note that since |t1| and t2 are independent of δ at linear order (see Eqs. (6.23)), around
δ = 0 we have

∂δ/tE||t1|,t2 = ∂δ/tE|Ω,γ (6.58)

and thus j1 can be calculated over the original model simply from 〈j1〉 =

− 2Ω
t tan(γ/2)

∂E
∂(δ/t) |Ω,γ . Furthermore, from (6.17), it follows that

∂δ/tE|Ω,γ =
∂ 〈H〉
∂(δ/t)

|Ω,γ = t
∑
i,σ

〈σa†i,σai,σ〉. (6.59)

Hence, near δ = 0, the current in the effective triangular ladder directly maps into the
mean magnetization in the original square ladder, with

〈j1〉 ' −
2Ω

tan(γ/2)
Nmz, (6.60)

where we have defined the mean magnetization as

mz =
1

N

∑
i,σ

〈σa†i,σai,σ〉. (6.61)
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With this expression we can relate the effective current density within the triangular
model, 1

L 〈j1〉 /|t1|, to the magnetization of the ground state in the original ladder. By
using (6.60) and (6.23), and considering the system at quarter filling, with N = L/2, we
obtain:

1

L
〈j1〉 /|t1| = −

Ω

t sin(γ/2)
mz

γ∼π
' −Ω

t
mz. (6.62)

In this way, the effective current density in the triangular ladder model is proportional
to the magnetization of the whole lattice. The CSF has as ground state two degenerate
solutions each with nonzero and opposite current j1, as schematically represented in
Fig. 6.6, that spontaneously break the Z2 symmetry of the Hamiltonian. In the square
ladder, this is translated into a different value of mz for each solution, and the phase can
be probed by the behavior of the magnetization against the explicit symmetry breaking
of such a symmetry. In the semi-synthetic flux ladder, this can be achieved simply
by varying the Raman detuning δ around δ = 0. In these conditions, we expect the
magnetization to exhibit a nonanalytic behavior at δ = 0 when the system is in the CSF
phase. Contrarily, in the SF and BOW phases, we expect mz to smoothly decrease to
zero as we take δ to zero. In Fig. 6.8(a) we plot the mean relative polarization mz of
the ground state as a function of δ for Ω = 10t. We adjust γ to different values of t2/t1
and keep U = 10t1. As expected, for the CSF state at |t2/t1| = 0.8 (see Fig. 6.3), the
spontaneous breaking of the Z2 symmetry of the ground state in the CSF phase is indeed
signaled by a discontinuity in mz around δ = 0, which is not observed in the case of the
SF or BOW states at |t2/t1| = 0.3 and |t2/t1| = 0.5, respectively. This would translate
into a hysteresis behavior for the CSF states when adiabatically driven across δ = 0.

We can use a similar approach to distinguish the BOW phase. As discussed in
Sec. 6.5.1, the two degenerate ground states in the BOW phase exhibit a spontaneous
dimerization. We can, therefore, characterize the phase by the behavior of the system
against the explicit breaking of the inversion symmetry. The symmetry breaking could
be implemented in the square ladder by modulating the 1D optical lattice to generate
a superlattice, where the nearest-neighbors tunnelings are dimerized. We parameterize
such modulation by introducing a position dependent tunneling strength tj = t(1 +
∆(−1)j) between sites j and j + 1 in Hamiltonian (6.17). The rung tunnelings are
unaffected by such an explicit dimerization, and for ∆ � 1, we can neglect the second
order corrections ∆2 to the flux at each plaquette. Doing so, we obtain the following
dimerized Hamiltonian

H(∆) =
∑
j,σ

(
−t(1 + ∆(−1)j)e−ıγσa†j+1,σ +

Ω

2
a†j,σ̄ + σδa†j,σ

)
aj,σ + H.c.

+
∑
j,σ

(
Uσσ

2
njσ(njσ − 1) +

Uσσ̄
2
nj,σnjσ̄

)
. (6.63)

To first order, the addition of an infinitesimal ∆ results in the dimerization of the effective
triangular ladder

H4(∆) '
∑
j

(t1(1 + ∆(−1)j)b†jbj+1 + t2b
†
jbj+2 + H.c.) +

U

2

∑
i

ñi(ñi − 1), (6.64)
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Figure 6.8: Signature of the frustrated phases. (a) Expected value of the magnetization
mz as a function of δ, for the ground state of Hamiltonian (6.17) at quarter filling, with
Ω = 10t and adjusting γ and U so that U = 10|t1| and t2/|t1| = 0.2 (red squares), 0.5

(yellow circles), 0.8 (green triangles), with t1 < 0. (b) Expected value of the staggered
leg current jdl (see main text) as a function of ∆ and fixing δ = 0. All quantities are
extrapolated to the thermodynamic limit by considering system sizes up to L = 80.

that allows us to write the OBO observable in the original basis as

OBO =
1

Lt1

∂H4
∂∆

' 1

Lt1

∂H

∂∆
= − t

Lt1

∑
j,σ

(−1)j2 Re
(
e−ıγσa†j+1,σaj,σ +H.c.

)
. (6.65)

Analogously as discussed before for the current j1, in the BOW phase we expect
the OBO operator to behave nonanalytically around ∆ = 0, and not to do so for states
that belong to the SF and CSF phases. Furthermore, as we have shown in Sec. 6.5.1,
the dimers in the BOW phase of the effective triangular ladder correspond to vortices
in the square ladder. With this in mind, it can be experimentally more convenient to
probe the dimerization of the system simply by measuring the dimerized leg currents.
By measuring the response of the following current

jdl =
1

L

∑
j,σ

(−1)j4σ Im
(
te−ıγσa†j+1,σaj,σ +H.c.

)
(6.66)

against the variation of ∆ around ∆ = 0, the BOW phase can be distinguished from
the SF and CSF phases. In Fig. 6.8(b) we show the expected value of the staggered leg
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current jdl as a function of ∆. Again, we set Ω = 10t and adjust γ to achieve different
values of the ratio t2/t1, while setting U = 10t1. For the ground state at |t2/t1| = 0.5,
where the system is expected to be in the BOW phase, the spontaneous dimerization
of the ground state results in the discontinuity of jdl around ∆ = 0. As predicted, this
behavior differentiates the BOW phase from the SF and CSF phases.

In this way, we have shown that the whole phase diagram of a strongly-interacting
frustrated triangular ladder model could in principle be probed in the Raman-based re-
alization of a semi-synthetic flux ladder. Our results suggest that the SF, BOW and
CSF phases of the frustrated model could be efficiently detected by the response of the
system to controlled perturbations that explicitly break the Z2 symmetries that are spon-
taneously broken in the frustrated phases. The approach that we propose exploits the
degree of tunability that the experimental platform offers, which could be advantageous
to the detection of the phases. Naturally, in an actual experimental implementation of
Hamiltonian (6.17), the system is subject to heating mechanisms and atom loss, which
are detrimental to the realization and detection of the frustrated phases described in this
chapter. To conclude this section, we will now discuss the energy scales that character-
ize the proposed implementation of the triangular model (6.32), and the viability of its
realization with Raman-dressed ultracold atoms.

6.5.3 Comment on experimental scales

As discussed above, the SF and the CSF phases of the effective model correspond, in
the weakly-interacting regime, to the Meissner and biased-ladder superfluid of the flux
ladder, and are continuously connected to their corresponding strong interacting limits.
The BOW phase, however, emerges via the interplay between geometric frustration and
strong interactions, and is essentially a strongly-correlated phase without a noninteract-
ing limit (see the phase diagram from Fig. 6.4). While this condition makes the phase
inherently interesting, to realize strong interactions within the effective model requires
both a large band gap and a small bandwidth, and thus larger values of Ω, as illustrated
in Fig. 6.1. This results, in turn, in smaller energy scales of the effective model and in an
increase of the heating and the atom loss rate from the Raman beams. The realization
and detection of the BOW phase in the semi-synthetic flux ladder, therefore, is expected
to be more challenging, and will be the focus of this discussion.

Given these constraints, in order to observe the dimer order it is convenient to choose
the smallest suitable values of Ω for which the insulating phase persist. Taking as a
reference the results shown in Fig. 6.5, let us fix t2/|t1| = 0.5 and U = 10|t1|, where we
notice that OBO remains large for Ω & 4t. To gain further insights, in Fig. 6.9(a) we plot
the corresponding values of the gap GL→∞ of the ground state as a function of Ω. The
insulating character of the phase, as signalled by the size of the gap G∞, is maximized
somewhere in between Ω = 6t and Ω = 7t, but is maintained at near-maximal values for
Ω as low as Ω ∼ 5t. Let us consider, therefore, Ω = 5t to find a loose approximation
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Figure 6.9: Experimental scales. (a) Expected value of single-particle excitation gap
GL→∞ as a function of Ω for the ground state of Hamiltonian (6.17), fixing δ = 0

and adjusting γ and U so that U = 10|t1| and t2/|t1| = 0.5. (b) Expected value of
staggered leg current jdl as a function of δ, fixing Ω = 5t and adjusting γ and U so that
U = 10|t1| and t2/|t1| = 0.5. All quantities are extrapolated to the thermodynamic limit
by considering system sizes up to L = 80.

of the optimal energy scales of the effective model. At Ω = 5t, we find t2/|t1| = 0.5 at
γ ' 0.877π, and so an effective tunneling strength |t1| = t cos(γ/2) ∼ 0.192t. Hence, a
rough approximation of the optimal energy scale of the effective model in the BOW phase
is about one fifth of the tunneling energy t, with a G∞ ∼ 0.04t. Besides the effective
energy scales, another important consideration is to be made. Along the chapter, we have
been concerned about the phases that appear at δ = 0, where the effective staggered
flux Φ (6.25) in the triangular model (6.32) is set to π, and the effects of geometric
frustration are maximized. In an actual experiment, however, the degree to which δ can
be stabilized around zero is technically limited. Hence, the robustness of the dimer order
against fluctuations of δ needs to be considered. To this aim, we computed the expected
values of the staggered leg current jdl as a function of δ, which are shown in Fig. 6.9(b).
As expected, jdl decreases fast as δ departs from zero, or equivalently when Φ departs
from π. It is therefore, important that the tunneling t is made large enough, while at
the same time keeping the lattice sufficiently deep so that Hamiltonian (6.17) holds. To
this end, the choice of atomic species and the lattice configuration are of relevance.

In the remainder of the discussion, we will consider 41K atoms. This bosonic isotope of
potassium is indeed a natural choice for the implementation of the model. Its relatively
low mass ensures a large recoil energy El and thus large values of t, while its fairly
wide fine-structure splitting limits to some extent the detrimental effects of spontaneous
emission photon scattering from the Raman beams. Remarkably, the ground state of
41K has two internal states connected to |F = 1,mF = −1〉 and |F = 1,mF = 0〉
at zero magnetic field that can be rendered immune to magnetic field fluctuations at
the linear order by setting a strong bias field to an optimal value found in the order
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of few hundreds of G. Doing so, δ can be stabilized with an uncertainty below 102

Hz [439]. Regarding the lattice configuration, in order to enhance the effective scale
it could be convenient to use blue-detuned beams to generate the lattice, instead of
the more usual red-detuned configuration, so that the recoil energy scale is increased.
By considering the lattice generated by retro-reflected beams (θl = 0) of wavelength of
λl = 532 nm at a depth of V = 5El, a tunneling strength of t/~ ' 0.0658El/~ ' 2π×1126

Hz is obtained for 41K atoms. According to the discussion above, this translates, at
Ω = 5t, to an effective tunneling strength of |t1/~| ∼ 2π × 216 Hz. As done in the
previous chapters, we will consider Raman beams at the tune-out wavelength, where
their contribution to the trapping potential is negligible. For 41K it is found at λr = 769

nm. To generate the required flux γ ' 0.877π, the Raman beams need to be angled
at θr = cos−1( γ

2π
λr
λl

) ' 0.281π, roughly at 50.7◦ (see the schematic representation of
the implementation of synthetic flux ladders in Fig. 2.7 from Sec. 2.3.3). With this
choice of parameters, the resulting characteristic scales are comparable to the typical
ones in ultracold atoms in optical lattices, and the stability in the δ would be compatible
with the full width half maximum of the curve jdl(δ) shown in Fig. 6.9(b). Finally, the
considered Raman coupling strength Ω/~ = 5t ' 2π × 5.6 kHz is roughly 0.68 times
the single-photon recoil frequency of the Raman transition ωr = 4π~

2mλ2r
' 2π × 8.2 kHz.

At such a weak coupling regimes, one could expect a lifetime of about 275 ms with
41K atoms in the configuration described [439], which is a about a hundred times larger
than the characteristic tunneling times of the effective model. With these prospects, the
realization of the effective model appears to be in reach of experiments with ultracold
41K atoms.

To realize the BOW we have also to control with precision the filling factor. Its
dimer structure is expected to be critically sensitive to the value of the filling factor at
N/L = 1/2 (quarter filling of the flux ladder), with particles or holes in excess destroying
the gapped phase. Prior to the turning-on of the Raman beams, the system can be
efficiently initialized at half-filling by preparing first a Mott insulator at unit filling in a
deep lattice of wavelength 1064 nm, with has a lattice spacing of 2a, to be adiabatically
loaded next into the lattice at 532, yielding N/L = 0.5. This process can be done
robustly with minimal atom losses. In the last step, the intensity of Raman beams
would be adiabatically ramped from 0 to the targeted value of Ω. In contrast to the
loading of the lattice, significant atom loss can occur along this last preparation step,
despite considering relatively long-lived 41K gases. Such atom loss could be overcome by
post-selection of the images with the correct filling.

It should be stressed that, a proper optimization of the experimental signature would
demand a deeper analysis of the different regimes available. In general, there is a trade off
between having larger effective scales and lower losses from photon scattering at smaller
Ω, and the robustness of the BOW phase and strength of its signature at larger Ω, and
the optimal choice would depend on the specifics of the experiment. Time-dependent
simulations of the adiabatic ramp in Ω can be helpful to gain insights on the optimal
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ramp times. At the same time, while the ground state for fillings different than one half
lose their insulating nature, it would be worth investigating the response of the dimer
state following quenches in the filling factor, to determine whether relevant information
can be extracted from samples where atoms are lost. Similarly, the probing of the
dynamics after a quench ramp in the intra-leg tunnelings Ω, instead of an adiabatic one,
could be explored for indirect signatures of the phases, as discussed in [440] for different
regimes of parameters of the flux ladder. These aspects could be relevant in order to
determine the limiting factors and optimal parameters of the experiment. Beyond these
numerical studies, several options could be investigated to overcome the main limitations.
One could consider the realization of the model in 87Rb instead, which has a significantly
larger fine structure splitting, and the lifetime of the Raman-dressed gas can be extended
several times longer than with 41K. However, the extended lifetime would come at the
expenses of a reduced recoil energy scale. Also, the regime where the Zeeman split
becomes insensitive to the magnetic field variations at first order is not accessible with
87Rb, and harder efforts should be made to mitigate the fluctuations in δ. In this regard,
a possibility would be to use dynamical decoupling [441]. Another direction that could
be worth exploring is the possibility of using a blue Raman scheme with 41K [442], where
the targeted excited states in the next electronic level manifold have a linewidth that is
approximately five times smaller [442].

6.6 Conclusions

In this chapter we have investigated the emergence of frustrated quantum phases in a
Raman-dressed Bose gas loaded into a one-dimensional optical lattice, which describes a
two-leg flux ladder with a synthetic dimension. Being among the simplest systems where
magnetic phenomena can be described, flux ladders have been extensively studied. Here
we have followed an alternative direction to investigate the system. In the spirit of the
previous chapters, we have derived an effective model following a lowest-band truncation
of the single-particle Hamiltonian, and later reintroducing the interactions in terms of
the lowest-band dressed states. For strong Raman coupling, the resulting effective model
describes a two-leg triangular ladder with staggered flux and onsite interactions, which
can be tuned over a wide range of parameters by adjusting the intensity, the angle of
incidence and the detuning of the Raman beams. Through this identification, we have
been able to predict regimes of the flux ladder where the interplay between inter-atomic
interactions, the filling factor and geometric frustration may play an important role.

In particular, the HCB limit of the triangular ladder at half filling (quarter filling
of the original ladder) describes a frustrated XX Heisenberg spin-1

2 chain with NN and
NNN interactions, for which a SF, an insulating BOW, and a CSF phase have been de-
scribed. While this regime is hard to achieve in the original square ladder, we expected
the phases to persist in regimes of large enough separation between the bandwidth and
the bandgap. We have numerically investigated their realization in the square flux ladder
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at quarter filling for both finite interactions and a finite band gap. We have found that,
indeed, the three phases persist for a wide range of parameters, and the nature of the
phases in the original ladder and their extent has been discussed. The SF and CSF of the
triangular model correspond, respectively, to a Meissner and a biased-ladder superfluid
phase in the original ladder. In turn, the BOW phase has been shown to correspond to
an insulating vortex lattice phase. Remarkably, these phases are identified with current
and density structures that could be probed in the Raman-based implementation of the
semi-synthetic flux ladder, which offer an alternative way to explore strongly-correlated
frustrated magnetic phases in experiments with ultracold atoms. Finally, we have dis-
cussed relevant experimental considerations. We have shown that the wide tunability of
the semi-synthetic flux ladder allows us to find suitable regimes of parameters where the
phases of the effective model can be realized. Possible ways to mitigate the experimen-
tal limitation have been suggested, including studying the potential realization of the
model in blue Raman schemes with 41K atoms or the use of synthetic clock transitions
in longer-lived 87Rb gases.

To conclude, we emphasize that, despite that interacting two-leg bosonic flux ladders
have been extensively studied over the last years, the regimes we have addressed here are
different than those covered in most of these studies [240, 370–379, 440], typically focusing
in regimes with stronger interactions and/or weaker values of the inter-leg tunneling rates.
Here, by contrast, we have explored the regime where the inter-leg hopping term is much
stronger than both the interactions and the intra-leg hopping energies, and at quarter
filling. The appeal of such a regime becomes evident only after the map to a frustrated
triangular geometry is made. It is worth noting that the Raman-based implementation
of the flux ladder with synthetic dimensions is very convenient, and it naturally invites
the exploration of this regime of strong inter-leg couplings. There, these couplings can be
easily realized simply by increasing the intensity of the Raman beams without challenging
the tight-binding approximation of the optical lattice, while at the same time keeping
the scales of the low-energy model sufficiently large. The success of the effective model
in predicting many-body phases of the Raman-dressed lattice suggests extending the
approach to other, more complex, configurations of semi-synthetic ladders.



CHAPTER 7

Conclusions and outlook

By way of a summary, in this concluding chapter we discuss the main results presented
in the dissertation, and outline possible future related research perspectives.

This thesis has been concerned with the study of the interplay between Raman cou-
pling and interatomic interactions in ultracold Bose gases. Over the last decades, Ra-
man dressing has been proven a powerful tool to manipulate the properties of ultracold
atomic systems. Most notably, it has been extensively employed to emulate the action
of electrostatic and magnetostatic fields on the otherwise neutral atoms, and to engineer
spin-orbit-like interactions, two prominent additions to the versatile toolbox available for
quantum simulation in this popular platform. Already at the noninteracting level, the
engineering of gauge-like phase terms in the gas allows the simulation of phenomena such
as the Hall, anomalous Hall and spin-Hall effects. Not surprisingly, then, the interplay
between these synthetic forms of static gauge fields and interatomic interactions can give
rise to a wealth of interesting phenomena. For instance, the emergence of a novel super-
solid-like stripe phase in the gas, that arises from the interplay between synthetic SOC,
interatomic interactions and the quantum statistics of bosonic particles, has drawn a sig-
nificant amount of theoretical and experimental attention. Most notably, the possibility
to access strong magnetic field regimes in 2D or quasi-2D strongly interacting systems
paves the way, for instance, for the exploration of the topological order of the fractional
quantum Hall effect and quantum magnetism with ultracold atoms. Amid the huge body
of research devoted to such Raman-dressed atomic gases, this thesis has taken an alter-
native route and has explored theoretically two regimes where these systems are well
described in terms of the interactions of low-energy dressed states. On the one hand,
in chapters 3 to 5 we have investigated the emergence and the harnessing of Raman-
induced coherent spin-mixing dynamics in weakly-dressed and weakly-interacting spin-1
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bulk Bose gases. On the other hand, in chapter 6 we have focused instead on a strongly
correlated regime of a Raman-dressed gas. In particular, we have studied the emergence
of phenomena in connection to frustrated quantum magnetism in a spin-1

2 gas loaded in a
one-dimensional optical lattice. In both scenarios we have proceeded in analogous ways.
Essentially, we have pursued the derivation of effective truncated models that describe
the low-energy physics in which many-body physics of interest is easily identified – the
collective spin dynamics in the former and frustrated magnetic regimes in the latter.
Through such identifications we have been able to locate the suitable regimes of param-
eters where the original systems exhibit these phenomena, and explore their potential
observability in realistic experimental implementations.

In the block of chapters covering the first of these two regimes, we have shown that
spin-symmetric two-body elastic collisions can resonantly couple the low energy dressed
states of the Raman-dressed gas in a way that mimics the behavior of non-symmetric
spin collisions in spinor gases. These coherent couplings are understood in simple terms
as virtual processes where collisions that exchange large momentum are brought into
resonance by spin-flipping two-photon Raman processes. Their amplitude, therefore, can
be tuned with the intensity of the Raman beams. We have taken two different approaches
in order to isolate the nonsymmetric couplings that result from these processes. In
chapter 3, we have considered the whole interacting Hamiltonian as a perturbation,
and truncated the dynamics to the three lowest single-particle states following a tight-
binding-like approximation in momentum space. There, we have discussed a regime
where the effective spin-changing processes can dominate the dynamics, acting like atom-
pair tunneling processes in a momentum-space three-site Hubbard-like model. With
such an approach, however, the experimentally accessible regimes are reduced to the
few-particle problem. By contrast, chapter 4 extends the analogy of the dressed gas to
an undressed spinor gas with tunable spin interactions to the low energy landscape of the
many-body field Hamiltonian. There, we have restricted the system to the low energy
solutions of the symmetric part of the many-body Hamiltonian, and considered their
perturbative coupling by the nonsymmetric terms that include the spin-mixing processes.
Doing so, the system is effectively described by a macroscopic spin degree of freedom,
through which the many-body phases of the Raman dressed gas are understood in simple
terms. We have used these insights to design two robust protocols to coherently drive
the dressed condensate into the elusive ferromagnetic stripe (FS) phase. In chapter 4, we
have proposed the preparation of the FS phase in a low-lying excited state following a
quasi-adiabatic ramp of the Raman parameters, where the state is prepared via crossing a
quantum phase transition of the effective model. In chapter 5, instead, we have proposed
a faster and more robust two-step quench scheme that exploits the understanding of the
excited-state quantum phases throughout the spectrum of the effective model. Finally,
in chapter 5 we have further shown that the spatial properties of the spin-orbit-coupled
gas could be exploited to detect an excited-state quantum phase transition that has
been recently identified in undressed spinor gas. It is worth mentioning that, while less
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practical from an experimental point of view, the approach discussed in chapter 3 could
be advantageous when it comes to the observation of the discussed spin-mixing dynamics.
In the scheme proposed there, the transverse lattice breaks down the condensate into
pockets of few-particles each. Since the characteristic spin-mixing times after a quench
scale with the square root of the number of particles, the dynamics is expected to be faster
in the fragmented gas than in the bulk gas of chapters 4 and 5. Even higher values of Ω

can be chosen without challenging the few-mode picture, which could enhance the spatial
correlations in a few-particle striped state. On the other hand, the realization of the spin
model in the bulk condensate allows the exploration of quantum phase transitions close to
the thermodynamic limit, and to probe the supersolid-like properties of the striped states
prepared. In turn, the macroscopic entanglement achieved there could find metrological
applications.

Moving away from the weakly-correlated regimes of the Raman-dressed gas, in chap-
ter 6 we have applied the lowest-band recipe to strongly-correlated regimes of the system
loaded in a deep optical lattice. In the lattice, the Raman-dressed gas realizes an effective
two-leg flux ladder where the spin degree of freedom is interpreted as a synthetic dimen-
sion. Similarly as done in the previous chapters, we have considered the many-body
Hamiltonian that results from a single-particle lowest-band truncation. We have shown
that, for strong Raman coupling, the truncated Hamiltonian effectively describes spin-
less bosons in a triangular ladder with staggered flux and local interactions. This simple
map has facilitated the identification of a regime of parameters of the original square flux
ladder where geometric frustration plays an important role. Indeed, in a regime of large
separation between the bandwidth and the bandgap scales and intermediate interactions,
we have shown that the system at quarter-filling is able to reproduce the phase diagram
of a frustrated quantum XX spin model with nearest and next-nearest neighbors inter-
actions, which includes a gapless superfluid (SF), a bond order wave (BOW) insulator
and a chiral superfluid (CSF) phase. We have numerically studied the extent of these
phases, and found them to persist for a significantly wide range of parameters. The frus-
trated phases of the triangular model are identified with density and current structures
in the flux ladder, thus providing an alternative way to explore such strongly-correlated
frustrated magnetic phases in experiments with ultracold atoms. Specifically, the SF
and the CSF phases have been identified with a Meissner and a biased-ladder superfluid
phases of the flux ladder, and the BOW phase with an insulating vortex crystal that is
stabilized at quarter-filling due to the interplay of geometric frustration and interatomic
interactions that are strong relative to the single-particle bandwidth. Finally, we have
discussed the experimental feasibility of the frustrated model. We have noticed that the
use of synthetic dimensions in the flux ladder is crucial for the realization of the phases
in regimes that are experimentally accessible, where the rung currents are to be tuned
to very large values with the intensity of the Raman beams. That being said, the dimer
order is critically dependent on the filling factor. Its detection is thus found to be sensi-
tive to atom losses due to spontaneous photon scattering, albeit that could be overcome
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on post-selection.

Outlook and future directions

In broad terms, the thesis has exemplified, with examples in both bulk and lattice
Raman-dressed systems, how the use of low-energy effective theories can provide a new
understanding of the models in simple terms, and successfully point out phenomena of
interest that can be easily overlooked otherwise. Such a recipe is rather generic, and can
be useful to investigate a large variety of models with quantum gases of both bosonic
and fermionic species, as well as across the different platforms for quantum simulations.

More specific follow-up directions to the results presented in the first block of chapters
include a deeper exploration of the dynamical phase transitions in the bulk spin-orbit-
coupled gas, and to study thermalization processes therein, such as the appearance of
quantum scars. Likewise, it would be worth quantifying the usefulness of the macroscopic
entanglement that can be prepared in the quenched protocols described. The properties
of the quantum correlations in the system could also be addressed in the few-particle
regime discussed in chapter 3. Finally, it would be of interest to explore configurations
with nonsymmetric spin interactions and spin sizes, and different regimes of the dressing
parameters. For instance, in the spin-1

2 strongly coupled gas, an emergent topological
gauge theory has been recently identified in terms of the lowest-band dressed states [443].

In regards to the frustrated regimes of the semi-synthetic flux ladder, an immediate
follow-up direction could be the design of both realization and detection schemes that
may lead to a reduction of the detrimental impact of photon scattering. For instance,
the realization of the model in a blue Raman scheme with 41K atoms is expected to
reduce the photon scattering relative to the coupling strength. Alternatively, the use
of synthetic clock transitions in longer-lived 87Rb gases could be investigated. Like-
wise, performing time-dependent simulations could shed light on the optimal regimes
for preparing the phases of interest, and perhaps help finding indirect, more convenient
quench signatures. Beyond addressing these immediate questions, we have seen that the
addition of a periodic potential not only grants access to strongly-correlated regimes in
the Raman-dressed gas, but the competition of two different scales allows to explore new
situations, such as having simultaneously a multi-minima structure of the lowest band
and strong Raman coupling. Many direct extensions of the model here investigated
could be explored, where more complex configurations of semi-synthetic ladders could
be treated in a similar fashion. One obvious direction would be to consider the inclu-
sion of additional spin sites. Likewise, ladders with nonuniform fluxes could be realized
by employing two different Raman pairs. The derivation of effective models of dressed
particles could be useful to understand these systems, as well as to engineer novel ones.
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