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We all can recall a moment in which we felt alive and energized when we
immersed ourselves in a particular landscape. Likewise, it would not be
difficult to think about another moment when our surroundings made us
feel overwhelmed, insecure, or simply down. The connection between the
environment and humans has always existed. Prehistoric civilizations
adapted their food sources and activities to the natural tempo. Moreover,
in return, the environment met all their necessities: shelter, food, clean
air, and water, but also the incommensurable scenario for humans to
enjoy, grow, and interact with others. All these were exclusive attributes
of the environment. And they still are.

Today, in a post globalized world, many of these attributes may have
been taken for granted, and consequently, our connection with the
environment is not as easy to see. However, it is still there, like roots, that
help us remember who we are, where we belong, and what we need.




Abstract

In the context of Global Change, many researchers have endeavoured to evaluate the
consequences of environmental degradation on human health. On the other hand,
increasing evidence also points to the positive effects of healthy environments. However,
much of the research today simplifies the environment as that which is green, using a
metric gathering the “amount of green”. Although this greenness idea has unequivocally
been a doorway to new nuances about the importance of surroundings for human health,
the theory has been considered limited and inadequate to elucidate critical subjects of
debate in the research field.

The Land use and Land cover (LULC) dataset has proved to be a suitable tool to describe
the environment. Unlike other environmental datasets, the LULC dataset measures the
biophysical features (the biophysical material over the surface of the Earth, the land cover)
and the socioeconomic features (the human activities involved in that specific place, the
land use) of the environment, providing a holistic definition. In addition, it is a versatile
tool that can help notions of the complex systems theory to be put into practice.

To date, some researchers have used LULC data to describe the environment in health
studies. Furthermore, the interest in LULC data is expected to increase in the near future.
However, no study linking LULC data with human health data has yet considered that
LULC data is of a compositional nature since they are limited by the so-called sum up
constant constraint. Considering the room for improvement regarding the environment
description and analysis, in this thesis, we investigate to what extent Land use and

Land cover data is a useful tool to assess the effect of the environment on human health
outcomes in population-based studies. To reach our main goal, we have developed three
research chapters (RCH). Each RCH is centred around one specific research question and
one specific goal that stems from our main goal.
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First, in RCH1 we review previous literature relating LULC data to human health and
highlight that the relevance of LULC data lies in the use of the LULC categories. The
findings of this RCH1 help identify new research gaps on which researchers should focus.
We summarise them in 4 key points: 1) most studies still simplify the environment as the
“amount of green”; 2) many authors report challenges in dealing with LULC data; 3) there
are no apparent clues about how to measure the living environment; and 4) there is a lack
of longitudinal studies and thus, of causal inference.

In RCH2 we analyse the LULC data-related limitations and show that they are related

to not dealing with the compositional nature of LULC data. We propose the use of

the ilr-orthogonal transformation for LULC data. Furthermore, we demonstrate that

this transformation is a feasible and straightforward step that allows researchers to
conduct traditional environmental epidemiologic analysis while taking into account

the compositional nature of LULC data. We test the methodology in a cross-sectional
population-based study, examining the impact of LULC broad categories on three human
health outcomes. Our investigation shows a considerable improvement regarding the
environment description and analysis. Particularly, because the results discussion revolves
around the many biophysical and socioeconomic features gathered in the LULC categories.

Finally, in RCH3 we carry out a case study in which we conduct traditional environmental
epidemiologic analyses to explore the effect of air pollutant concentration levels and type
of agri-food industry on COVID-19 incidence and mortality in Catalonia. Complementing
the analyses, we use the methodology developed in RCH2 to screen the effect of the

overall LULC which provides extra insights. Thus, we emphasise that the assessment of
the effect of LULC data on human health outcomes is helpful and can be performed in
complementary analysis. Moreover, as shown in RCH2, the results discussion can leverage
the pathway framework to better understand the environment-human health relationship.

All the expertise gathered in the three RCHs can be summarised in what we call the
Complex environment procedure. This procedure is a practical and applicable tool for
traditional environmental epidemiologic analysis to easily assess the effect of LULC
categories on health data. Furthermore, this procedure leverages interdisciplinarity science
and allow researchers to conceive the environment through a complex lens, and thus, itis a
reliable tool to analyse Global Change’s challenges.

In a nutshell, the findings of this thesis highlight that LULC data is a reliable and suitable
environmental data source that holistically describes the environment, acknowledging its
complexity. By analysing the impact of LULC categories on health data, researchers can
maintain a parsimonious analysis while qualitatively investigating the impact of many
biophysical and socioeconomic features, doing a much complete and robust assessment.
This is particularly useful to draw or test hypotheses, complementing traditional analyses
and facilitating replicability and comparability among studies. To conclude, this thesis
provides valid information for researchers in several research fields, civil society and
policymakers.

11



Resum

Dins un context de Canvi Global, molts investigadors s’han centrat en avaluar les
consequencies de la degradacié ambiental per a la salut de les persones. Per altra banda,
existeix una evidéncia creixent que també assenyala els efectes positius dels ambients
saludables. Tot i aixi, molta de la investigacio feta fins el moment simplifica el medi
ambient considerant-lo “allo que és verd”, utilitzant métriques per mesurar la “quantitat
de verd”. Tot i que aquesta idea de verdor del medi ambient ha estat una font d’inspiracié
inequivoca facilitadora de noves comprensions sobre la importancia dels ambients per a la
salut humana, la teoria en si s’ha considerat limitada i inadequada per elucidar temes de
debat crucials per al camp d’investigacio.

La base de dades sobre Usos i Cobertes del sol (LULC, en les seves sigles en angles) ha
provat la seva eficacia com una eina per a descriure el medi ambient. A diferencia d’altres
bases de dades ambientals, les bases de dades LULC mesuren per igual les caracteristiques
biofisiques (el material biofisic que cobreix la superficie de la Terra, les cobertes del sol)

i les caracteristiques socioeconomiques (les activitats humanes desenvolupades en un
territori, els usos del sol) del medi ambient. A més, és una eina versatil que pot ajudar a
posar en practica varis conceptes de la teoria dels sistemes complexes.

Fins ara, varies investigacions han utilitzat les dades LULC per descriure el medi ambient
en estudis sobre salut. L’interés cap a aquestes dades ha anat creixent i s'espera que encara
creixi més en un futur proper. Tot i aixi, no existeix cap estudi que relacioni les dades
LULC amb dades sobre salut humana que hagi tingut en compte que les dades LULC sén
de naturalesa composicional, ja que estan limitades pel que es coneix com la limitacio de la
suma constant. Considerant I'’espai de millora pel que fa a la descripcio i I'analisi del medi
ambient, en aquesta tesi doctoral investiguem fins a quin punt les dades d’Usos i Cobertes
del sol son una eina 1til per analitzar Uefecte del medi ambient en la salut de les persones
en estudis poblacionals. Per aconseguir el nostre objectiu principal, desenvolupem tres
capitols de recerca (CR). Cada CR esta centrat en una pregunta de recerca especifica i un
objectiu especific que concreten el nostre objectiu principal.

En primer lloc, en el CR1 revisem la literatura previa que relaciona les dades LULC amb

la salut de les persones i subratllem que la rellevancia de les dades LULC recau en I'Gs de
les categories LULC. Els resultats d’aquest CR1 ajuden a identificar els buits de recerca,

on caldria que els investigadors prestessin atenci6. Els resumim en quatre punts: 1) la
majoria d’estudis encara simplifiquen el medi ambient a través de la “quantitat de verd”;
2) molts autors reporten dificultats a I'hora de lidiar amb les dades LULC; 3) no existeixen
pistes aparents sobre com mesurar els ambients vitals; i 4) existeix una manca d’estudis
longitudinals i, per tant, d’inferencia causal.
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En el CR2 analitzem les limitacions relacionades amb les dades LULC i mostrem que
aquestes estan relacionades amb el fet de no lidiar amb la seva naturalesa composicional.
Proposem la transformacid ilr-ortogonal per les dades LULC. | a més, demostrem que
aquesta transformacio és un pas directe i viable que permet als investigadors dur a terme
analisis tradicionals d’epidemiologia ambiental, a la vegada que es respecta la naturalesa
composicional de les dades LULC. Més endavant, testem aquesta metodologia en un estudi
poblacional transversal, examinant I'impacte de diferents categories generals de LULC en
tres malalties. La nostra investigacié mostra una considerable millora tant en la descripcio
com en I'analisi del medi ambient. Particularment, perqué la discussio dels resultats pot
girar al voltant de les diferents caracteristiques biofisiques i socioeconomiques que es
troben en les categories LULC.

Finalment, en el CR3 duem a terme un estudi on analitzem I'efecte dels nivells de pol-lucio
atmosférica i el tipus d’industries agroalimentaries en la incidencia i la mortalitat de

la COVID-19 a Catalunya, utilitzant analisis tradicionals d’epidemiologia ambiental.
Complementant aquest analisi, utilitzem la metodologia desenvolupada en el CR2 per
explorar I'efecte de les dades LULC de manera general, la qual cosa aporta coneixements
extra. Per tant, emfatitzem el fet que I'avaluacié de I'efecte de les dades LULC en la salut
humana és atil i es pot desenvolupar en analisis complementaris. A meés, tal i com mostrem
en el CR2, la discussi6 dels resultats pot aprofitar la teoria sobre les vies per a una major
comprensio de la relacié entre el medi ambient i la salut.

Tot el coneixement acumulat al llarg dels tres CR pot ser resumit en el que anomenem

el Procediment pel medi ambient complex. Aquest procediment és una eina practica i
aplicable pels analisis tradicionals en epidemiologia ambiental amb la fi d’analitzar 1'efecte
de les categories LULC en les dades de salut. Aixi mateix, aquest procediment posa en
valor la ciéncia interdisciplinaria i permet concebre el medi ambient a través d’'unes lents
complexes i, per tant, és una eina confiable per I’avaluacio6 dels desafiaments del Canvi
Global.

En resum, les troballes d’aquesta tesi accentuen que les dades LULC son una font
ambiental confiable i adequada que permet descriure el medi ambient de manera
holistica, respectant la seva complexitat. A través de I'analisi de I'impacte de les categories
LULC en les dades de salut, els investigadors poden mantenir un analisi parsimonios a
I’hora que investiguen qualitativament I'impacte de moltes caracteristiques biofisiques i
socioeconomiques, duent a terme un analisi robust i complet. Aquesta particularitat és
especialment Gtil per desenvolupar o testar hipotesis, complementar analisis tradicionals
i facilitar la réplica i la comparabilitat entre estudis. Concloent, aquesta tesi proveeix
d’informacio valida a investigadors en diferents camps d’investigacio, pero també a la
societat civil i als politics.

13



Resumen

En un contexto de Cambio Global, muchos investigadores se han centrado en evaluar las
consecuencias de la degradacién ambiental para la salud de las personas. Por otro lado,
existe una evidencia creciente que también sefiala los efectos positivos de los ambientes
saludables. Aun asi, mucha de la investigacion hecha hasta el momento simplifica el
medio ambiente considerandolo “aquello que es verde”, usando métricas para medir la
“cantidad de verde”. Aunque esta idea de verdor del medio ambiente ha sido una fuente
de inspiracion inequivoca facilitando nuevas comprensiones sobre la importancia de

los ambientes para la salud humana, la teoria por si sola se ha considerado limitada e
inadecuada para elucidar temas de debate cruciales para el campo de investigacion.

La base de datos sobre Usos y Cubiertas del suelo (LULC, en sus siglas en inglés) ha
probado su eficacia como herramienta para describir el medio ambiente. A diferencia de
otras bases de datos ambientales, la base de datos LULC mide por igual las caracteristicas
biofisicas (el material biofisico que cubre la superficie de la Tierra, las cubiertas del

suelo) y las caracteristicas socioecondémicas (las actividades humanas desarrolladas en un
territorio, los usos del suelo) del medio ambiente. Ademas, es una herramienta versatil que
puede ayudar a poner en practica varios conceptos de la teoria de los sistemas complejos.

Hasta la fecha, varios investigadores han usado los datos LULC para describir el medio
ambiente en estudios sobre salud. El interés hacia estos datos ha ido creciendo y se espera
gue aun crezca mas en un futuro cercano. Aun asi, no existe ningun estudio que relacione
los datos LULC con datos sobre salud humana que haya tenido en cuenta que los datos
LULC son de naturaleza composicional, ya que estan limitados por lo que se conoce como
la limitacion de la suma constante. Considerando el espacio para la mejora en lo que
respecta a la definicion y el analisis del medio ambiente, en esta tesis doctoral investigamos
hasta qué punto los datos de Usos y Cubiertas del suelo son una herramienta ttil

para analizar el efecto del medio ambiente en la salud de las personas en estudios
poblacionales. Para alcanzar este objetivo principal, desarrollamos tres capitulos de
investigacion (CI). Cada CI esta centrado en una pregunta de investigacion especifica y un
objetivo especifico que concretan nuestro objetivo principal.

En primer lugar, en el Cl1 revisamos la literatura previa que relaciona los datos LULC

con la salud de las personas y subrayamos que la relevancia de los datos LULC reside en

el uso de las categorias LULC. Los resultados de este CI1 ayudan a identificar las lagunas
de investigacion, en donde los investigadores deberian poner atencién. Los resumimos en
cuatro puntos: 1) la mayoria de los estudios atin simplifica el medio ambiente a través de la
“cantidad de verde”; 2) muchos autores reportan desafios para lidiar con los datos LULC;
3) no existen pistas aparentes sobre como medir los ambientes vitales; y 4) existe una falta
de estudios longitudinales y, por lo tanto, de inferencia causal.
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En el C12 analizamos las limitaciones relacionadas con los datos LULC y mostramos

gue estas estan relacionadas con el hecho de no lidiar con su naturaleza composicional.
Proponemos la transformacion ilr-ortogonal para los datos LULC. Y ademas, demostramos
gue esta transformacion es un paso directo y viable que permite a los investigadores

llevar a cabo analisis tradicionales de epidemiologia ambiental, a la vez que se respeta la
naturaleza composicional de los datos LULC. Mas adelante, testamos la metodologia en un
estudio poblacional transversal, examinando el impacto de distintas categorias generales
de LULC en tres enfermedades. Nuestra investigacion muestra una considerable mejora
tanto en la descripcién como en el anélisis del medio ambiente. Particularmente, porque la
discusion de los resultados puede girar en torno a las distintas caracteristicas biofisicas y
socioecondmicas que se encuentran en las categorias LULC.

Finalmente, en el CI3 llevamos a cabo un estudio en donde analizamos el efecto de los
niveles de polucién atmosféricay el tipo de industria agroalimentaria en la incidencia y
mortalidad de la COVID-19 en Catalufia, usando analisis tradicionales de epidemiologia
ambiental. Complementando estos analisis, usamos la metodologia desarrollada en el CI2
para explorar el efecto de los datos LULC de manera general, lo cual aporta conocimientos
extra. Por lo tanto, enfatizamos el hecho que la evaluacién del efecto de los datos LULC en
la salud humana es util y puede desarrollarse en analisis complementarios. Ademas, tal y
como mostramos en el CI2, la discusion de los resultados puede aprovechar la teoria sobre
las vias para una mayor comprension de la relacion entre el medio ambiente y la salud.

Todo el conocimiento acumulado a lo largo de los tres Cl puede ser resumido en lo que
Ilamamos el Procedimiento para el medio ambiente complejo. Este procedimiento es una
herramienta préactica y aplicable para los analisis tradicionales de epidemiologia ambiental
con el fin de analizar el efecto de las categorias LULC en los datos de salud. Asimismo,

este procedimiento pone en valor la ciencia interdisciplinaria y permite concebir el medio
ambiente a través de unas lentes complejas y, por lo tanto, es una herramienta confiable
para la evaluacion de los desafios del Cambio Global.

En resumen, los hallazgos de esta tesis acentian que los datos LULC son una fuente
ambiental confiable y adecuada que permite describir el medio ambiente de manera
holistica, respetando su complejidad. A través del analisis del impacto de las categorias
LULC en los datos de salud, los investigadores pueden mantener un analisis parsimonioso
mientras investigan cualitativamente el impacto de muchas caracteristicas biofisicas

y socioecondmicas, haciendo un andlisis robusto y completo. Esta particularidad

es especialmente util para desarrollar o testar hipotesis, complementando analisis
tradicionales y facilitando la replicabilidad y comparabilidad entre estudios. Para
concluir, esta tesis provee de informacion valida a investigadores en distintos campos de
investigacion, pero también a la sociedad civil y a los politicos.
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1. Introduction

We are living in times of change without precedent in recent history. The so-called Global
north has thrived over the last century, evidenced by longer life spans, better access to
education, healthcare, information and excellent material comfort (Sage, 2020). However,
this progress has come at the expense of the natural systems, expropriating biosphere
resources such as freshwater, raw materials, arable land, and living beings’ bodies
(Costanza et al., 2017; Krausmann et al., 2013), particularly from the so-called Global
South (Chichilnisky, 1994). Nowadays, human exploitation of Earth’s natural capital has
been estimated to be a quarter or more of the potential net primary production (NPP)
(Haberl et al., 2007; Krausmann et al., 2013; Smith et al., 2012), with 75% of the planet’s
ice-free land area being modified (Hooke et al., 2012) and half of the accessible freshwater
being expropriated (Gleick and Palaniappan, 2010).

This increasing appropriation of natural resources, the rising human population and
technological innovations have resulted in the present times of profound change (Sage,
2020), the so-called Global Change (Meyer and Turner, 1992). Many authors recognise
this era as a new geological epoch called the Anthropocene (Lewis and Maslin, 2020),
which is characterized by experiencing changes which historically have occurred over
millennia but now take mere decades (Sage, 2020).

At different scales (local/regional/global), the three principal manifestations of the Global
Change on the planet can be distinguished as follows:

1. Alteration of biogeochemical cycles.

Biogeochemical cycles represent the fluxes of chemical elements among different parts

of the Earth (from non-living to living, from the atmosphere to land to sea). The term
“cycles” highlights that matter is always conserved and that these elements move to and
from significant pools via various two-way fluxes (Galloway et al., 2014). Compared to
pre-industrial times, the human mobilization of carbon, nitrogen and phosphorus from
the Earth’s crust and atmosphere into the environment has increased 36, 9 and 13 times,
respectively (Schlesinger and Bernhardt, 2013). These shifts have resulted in raised
temperatures, ocean acidification and deoxygenation (Gruber, 2011) and alterations in
ecosystem-climate interactions (Pefiuelas et al., 2009; Piao et al., 2019; Richardson et al.,
2013).
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2. Loss of biodiversity.

The alarming rates and intensity of Global Change drivers overwhelm the abilities of
species and ecosystems to adapt, resulting in a widespread biodiversity loss (Vitousek et
al., 1986) which has been referred to as the looming sixth mass extinction (Ceballos et
al., 2015). The exponential pace of the accelerated biodiversity loss is now estimated to
be two or three orders of magnitude greater than natural extinction rates (Rockstrom et
al., 2009), and its consequences are related to an imminent ecological collapse (Salomon,
2008).

3. Land use and cover changes.

Recent estimations suggest that land use and cover change has affected almost a third
(gross change of 32%) of the planet’s land area in just six decades (1960-2019), and 17% of
the total Earth’s land surface has changed at least once, four times greater that previously
estimated (Winkler et al., 2021). With these estimations, the authors show the spatial
extent of land use and cover change from 1960-2019 for six broad land use and cover
categories (urban area, cropland, pasture/rangeland, forest, unmanaged grass/shrubland
and non-/sparsely vegetated land) (see Figure 1). Globally, a net loss in forest area of

0.8 million km? and an expansion in agriculture of 1.0 million km? have been identified
(Winkler et al., 2021). However, these change dynamics dramatically depend on regional
features (for instance, forest areas have declined severely in the tropic whereas they have
increased in subtropical, temperate and boreal climate zones (Song et al., 2018)). Likewise,
single change events are most evident in developing countries (e.g. deforestation), while
multiple change events (e.g. crop-grass rotation) dominate in the Global North (Winkler et
al., 2021). These human alterations of Earth’s land surface strongly affect carbon sources
and sinks (Arneth et al., 2014; Popp et al., 2014), causes habitat loss (Powers and Jetz,
2019) and undermine food production (Lambin and Meyfroidt, 2011).

In parallel, the global urban population has risen dramatically (Cox et al., 2018). Most

of this growth has been attributed to rural-to-urban migration (United Nations, 2014).
Furthermore, this phenomenon is expected to continue, since 60% of people are projected
to reside in cities by 2030 (United Nations, 2014), threatening biodiversity and affecting
ecosystem productivity through loss of habitat, biomass, and carbon storage (Seto et al.,
2012). Although some effects of moving from rural to urban environments are positive
(such as economic growth, development and many beneficial social outcomes (Dye,
2008)), cities are also crowded, polluted and stressful places with little space for nature.
These features combined with busy modern lifestyles lead to reduced exposure to natural
environments, which has been associated with worse human health (Cox et al., 2018).
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Figure 1. From (Winkler et al., 2021).
The spatial extent of global land use and cover change (1960-2019).

The Global Change’s manifestations affect not only all Earth’s species but also ecological
interactions, co-dependencies, functions, structural complexity, and mechanisms of
resilience that characterize living systems and their capacity to provide ecosystem services
(Hooper et al., 2005; Oliver et al., 2015; Salomon, 2008). And thus, they affect the overall
health of Earth’s environments. Likewise, the rapid environmental changes are linked to
the emergence and re-emergence of infectious and non-infectious diseases (Destoumieux-
Garzon et al., 2018), threatening human and animal health.

In this context of Global Change, this thesis explores the relationship between the
environment and human health through Land use and Land cover data. We are conscious
that many environmental factors influence human health. Thus, a comprehensive
approach is needed for an accurate environment-human health assessment. In this

sense, we use the One Health concept, which the United Nations define as an integrated
approach that recognizes the fundamental relationship between animals, people, plants
and the environment. This concept underlines the importance of healthy environments
and allows us to identify the many possible environmental factors affecting human
health. Moreover, by using the One Health approach, we align ourselves with today’s
major programmes, policies and legislation and research, which promote communication
between multiple sectors and interdisciplinary work to achieve public health outcomes (for
instance, the One Health European Joint Programme and the Centers for Disease Control
and Prevention’s One Health Office) (WHO, 2017).
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1.1 The connection between the environment and
human health

In the last decades, many researchers have endeavoured to evaluate the consequences of
environmental degradation for human populations. They have done so, for instance,
by exploring the harmful effects of air pollution (Eze et al., 2015, 2014), traffic noise (Shin
etal., 2020), light pollution (Falchi et al., 2011), the vulnerability of human health to
parasites (Sutherst, 2001) and vector-borne diseases (Sutherst, 2004), invasive species
(Donovan et al., 2013), loss of biodiversity (Pongsiri et al., 2009) and climate change
impacts (McMichael et al., 2006), among other things.
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On the other hand, increasing evidence is also pointing to the positive effects of
healthy environments, which are listed as follows: psychological (positive effect

on mental processes and behaviour); cognitive (positive effect on cognitive ability or
function); physiological (positive effect on physical function and/or physical health);
disease exposure and regulation (potential to reduce the incidence of infectious disease);
social (positive effect at community level); aesthetic, cultural, recreational and spiritual
(positive effect on individual well-being); provision of tangible materials (material goods);
and increased resiliency (personal and communal ability to withstand impacts and remain
healthy) (Sandifer et al., 2015).

Modern research assessing the benefits of the environment for human health derive

from the work of Roger Ulrich (1984). He compared two groups of hospitalized patients
with different views from their windows and concluded that the group who could see
green vegetation recovered better and faster than the group whose windows faced a brick
building. Inspired by this revealing study, much of the research today showing positive
associations between the environment and human health describe the environment as
that which is green, for instance, using percentages of greenspaces (Mitchell and Popham,
2007), average Normalized Difference Vegetation Index (NDVI) (Grigsby-Toussaint et

al., 2015), the nearest green space (Dadvand et al., 2014), or the presence of plants (Deng
and Deng, 2018). The common denominator of all these widely used practices is the core
assumption that the environment can be reduced to a metric gathering the “amount of
green” (see Figure 2a). Although this greenness idea has unequivocally been a doorway to
new nuances about the importance of surroundings for human health, the theory itself has
been considered limiting since it is not able to provide answers to the questions which lie
at the heart of the debate (Astell-Burt and Feng, 2019; de Vries, 2019a; White et al., 2013).
The scientific community have listed these questions as follows:

e What are the environment’s specific elements related to the health conditions?
(Bach et al., 2020; MacKerron and Mourato, 2013; Wheeler et al., 2015)

e Do they affect individually or as a combination? (Barnes et al., 2019; Kiley et al.,
2017)

*  Which are the mechanisms through which humans may benefit from the
environment? (Markevych et al., 2017)

e Which are the variables that modify this environment-human health relationship?
(Pruss-Ustiin et al., 2008)

This thesis examines the relationship between LULC data and human health. Thus, we
move away from the simplistic approach of the environment as “something green” to a
more holistic definition of the environment through LULC data. This approach will enable
us to move forward by discussing the above questions, providing new insights into these
subjects of debate.
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1.2 Land use and land cover data in health studies

Defining the environment is not a simple endeavour. Being a widely used term, the
definition of the environment usually changes depending on the context and the research
field. Nevertheless, as a broad definition, many researchers today would agree that

the environment is what surrounds us, and thus, it integrates all things, living beings,
processes, forces, and energy within its limits.

In order to understand the environment, the scientific community has traditionally
dissected this concept into different parts, which implies that researchers have specialized
in acquiring knowledge about specific and discrete parts of the environment. As a result,
holistic approaches have not been commonly performed, leading to incomplete analyses.
For example, in health-related sciences, the isolated vision that the mind was located

in the brain prevented researchers from focusing on the effect of gut biota on mood
disorders (Cryan and Dinan, 2012; Farmer et al., 2014). However, today there is a common
agreement that the environment needs to be defined through an interdisciplinary
perspective, moving away from the fragmented classical vision and considering the
many environmental elements and their mutual interactions. In this sense, the ecosystem
concept, defined as “the place/part of the world where and with which the biotic systems
interact” (Gignoux et al., 2011), represents a suitable definition of the environment that
integrates this interaction concept. So, here, the ecosystem is not seen as a simple
“container” but as an entity composed of biotic and abiotic elements (Salomon, 2008) and
their interactions.

Despite the merit of some authors in proposing thorough definitions of the ecosystem
concept (Gignoux et al., 2011; Keith et al., 2020), many ecosystem definitions are not
always coincident and compatible (Jax, 2006; Scheffer et al., 2001). One particularity

is that the social context and human intervention are not always accounted for in the
ecosystems’ definition (Jax, 2006; Salomon, 2008). Nowadays, there is arguably no place
on the planet which has not been affected by human intervention (Johnson et al., 1997)
(for instance, human industry effects (McKibben, 1990)). Moreover, climate change affects
every region globally, with human influence contributing to many observed changes in
weather and climate extremes. Thus, the vast majority of the environments worldwide are
a mixture of natural and human drivers.

In this context, a less conflictive and more suitable concept to describe the environment

is given by the Land use and Land cover (LULC) data. Unlike other environmental
datasets, the LULC dataset describes the environment measuring both the biophysical
features (the biophysical material over the surface of the Earth, the land cover)
(Grekousis et al., 2015; Meyer and Turner, 1994) and the socioeconomic features (the
human activities involved in that specific place, the land use) of the environment (Lambin
et al., 2001), creating an integrated and holistic vision which constitutes the very nature of
the dataset.
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The LULC data is characterized by GIS-defined units, as detailed as the fundamental
categories composing the LULC dataset and its resolution. Furthermore, the LULC dataset
is a versatile tool. It offers an unequivocal a priori definition of what is considered the
environment. Furthermore, through its hierarchical organisation, it allows researchers

to group certain categories defining a place (for instance, forested areas grouping all

types of forest LULC categories, or human-related environments grouping urban LULC
categories; see next section). Using this data, one can provide a precise characterization of
the environment taking into consideration the different types of environments, which are
defined in more or less detail through the LULC categories depending on the purpose of
the study (see Figure 2b).

As a periodically updated and reliable source, the LULC dataset is also replicable and
feasible in terms of efficiency and cost (Grekousis et al., 2015). In addition, it can capture
the driving forces behind a change (economic, demographic, political and environmental),
as well as the specific processes of conversion from one LULC category to another (Meyer
and Turner, 1994). Thus, the LULC data contains and integrates vital aspects of the Earth’s
system functioning, gathering biodiversity, soil degradation, ecosystem services and
climate change information (Lambin et al., 2001), and is a crucial tool for assessing Global
Change effects (Penuelas and Boada, 2003).

To date, some researchers have used LULC data to describe the environment in health
studies (Groenewegen et al., 2012; Maas et al., 2009; Mitchell and Popham, 2007; van
den Berg et al., 2010; Wheeler et al., 2012). Furthermore, the interest in LULC data

is expected to increase in the near future (Grekousis et al., 2015). However, no study
linking LULC data with human health data has yet considered that LULC data is of a
compositional nature since it is limited by the so-called sum up constant constraint
(Egozcue and Pawlowsky-Glahn, 2016). A century ago, Pearson (1896) already warned
that compositional data should not be used directly in traditional statistical methods since
the data exist in the so-called Aitchison geometry (Aitchison and Egozcue, 2005), not the
Euclidean one, which all the traditional statistical methods perform. Considering the room
for improvement, the pillars of this thesis are built around the idea of acknowledging the
compositional nature, and thus, enhancing current methodologies linking LULC data to
human health.

1.2.1 The environment as a complex system

The systems derived from human and nature interconnections have been defined as
complex systems (Preiser et al., 2018; Schluter et al., 2019). In this sense, LULC data can
help notions of the complex system theory to be put into practice since it has proven to
be a reliable source to describe complex human-natural systems.
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Any complex system is distinguished by being an ensemble of many elements which
interact (Newman, 2011). In parallel, each of the LULC categories contains a set of
environmental elements (the biophysical and socioeconomic features) that make up but do
not limit its definition. Some of these environmental elements have already been explored
in health studies and can be listed as follows, regarding:

a) Living beings: natural sounds (Coensel et al., 2011; White et al., 2010),
microbial diversity (Ege et al., 2011; Jatzlauk et al., 2017), soil biodiversity
(Wall et al., 2015) and overall biodiversity (Aerts et al., 2018; Methorst et al.,
2020).

b) Structural aspects: visual stimuli (Franco et al., 2017; Jacobs and Suess,
1975), presence of water (White et al., 2020), density (Han, 2007),
accessibility (Ekkel and de Vries, 2017) and walkability (Zandieh et al., 2017).

c) Biophysical aspects: soil properties (Steffan et al., 2018), temperature
(MacKerron and Mourato, 2013), humidity (Dalziel et al., 2018), heat events
(Soneja et al., 2016), negative ions (Perez et al., 2013), allergenic pollen
levels (Carifianos and Casares-Porcel, 2011), volatile organic compounds
(Bach et al., 2021), air pollution (Eze et al., 2015, 2014; Guarnieri and Balmes,
2014), pesticides (Starling et al., 2014), and noise (Shin et al., 2020).

When analysing the distribution of LULC categories, if an adequate level of detail for LULC
categories is used, it can be shown that some categories appear more frequently, and some
rarely appear. Thus, the use of LULC data can help assess emerging ordered patterns of
the complex system, such as scale invariance properties. In this way, some authors
provided evidence of this scale invariance property in natural and artificial map structures
related to biodiversity and pedodiversity (Ibafiez et al., 2021). In another publication, the
authors used lacunarity analysis as a scale-dependent measure of heterogeneity based on
the principles of fractals (Labib et al., 2020). They presented some evidence of scale-free
behaviour of complex systems by producing a “lacunarity curve” across multiple spatial
scales and finding a linear relation in loglog scale for all sizes except for larger ones, where
finite-size effect was found.

Another property of complex systems is that LULC data exhibits their hierarchical
organization. This property means that individual elements from higher structural
levels are themselves complex systems at lower structural levels (Kwapien and Drozdz,
2012). In this sense, the higher levels of the complex system integrate the lower structures,
their causal regularities, symmetry, order and periodic behaviour (Ladyman et al., 2013).
However, at the same time, at each stage, entirely new laws, concepts, and generalizations
are necessary (Andersen, 1972). Describing the environment using LULC data allows

the accuracy of the definition to be adapted to the purposes of the study. For example,

a particular area can specifically be called “vineyards”, whereas in a higher level of
organization, it can be referred to as “permanent crop”, and in an even higher level, it can
be named “agricultural area”.
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Figure 2a.
Representation of the usual environment description based on the “amount of green”.

Broad-leaved forest Industrial and commercial units Lake
Sclerophyll forest Road and rail networks River
Riparian forest Urban areas Snowdrifts

Urban greenspace

Figure 2b.

Representation of a more complex vision of the environment in which different types of
environments are distinguished through the LULC categories.
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1.3. Area of research

This thesis covers the Catalonia region (Spain) and leverages health data of the entire
Catalan population using a population-based approach. The Catalonia region is located
in the temperate northern hemisphere, in the northeast of Spain. It is geographically
confined by the Pyrenees mountains (in the north) and the Mediterranean Sea (in the
south), and is next to Mediterranean Europe (east) and the continental Spanish peninsula
(west). These location characteristics, along with the diverse topography, grants it a certain
uniqueness that results in three bioclimatic regions in the territory: the Mediterranean,
Euro-Siberian, and boreo-alpine (Boada and Gomez, 2012). Consequently, a wide variety
and richness of landscapes can be found throughout the Catalan region (see Figure 3), one
of the territories within the European continent with the most variety of landscapes (The
Landscape Observatory and the Cartographic and Geologic Institute of Catalonia, 2019).
This particularity makes Catalonia a suitable scenario for this research.

FranCe

Inland spaip,

Mediterranean Sea

Landscape variety

. High alpine landscapes (boreo-alpine region)
Fir forest, high mountain pine forest and alpine natural grassland.
Atlantic landscapes (humid Euro-Siberian region)
Humid montane oak forest and beech forest

- Sub-Mediterranean landscapes (arid Euro-Siberian region)
Arid montane oak forest and Pinus sylvestris and Pinus nigra forest

- Northern Mediterranean landscapes
Holm oak forest, Quercus ilex subsp. rotundifolia forest and Quercus

suber forest
Southern Mediterranean landscapes

Maquis shrubland

Figure 3.
Landscape variety in Catalonia (Spain). Elaborated by Joan M. Roure Nolla (2002) from Rivas

Martinez, S.’s cartography (1987).
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2. Goals, research guestions
and chapters

Throughout this thesis, we show our concern over the impacts of Global Change on human
health. Although the impacts on human health of all three Global Change manifestations
are tackled to some extent in this thesis, we are specifically focused on the third principal
manifestation, and thus, we examine the relationship between land use and land cover
data and human health. In particular, our main goal is to investigate to what
extent Land use and Land cover data is a useful tool to assess the effect of the
environment on human health outcomes in population-based studies.

2.1 Research questions and specific goals

To achieve our main goal, we divide it into three more minor research questions (RQ), each
of them leading to one specific goal (SG) (see Figure 4, below).

RQ1: How has LULC data commonly been employed in studies relating LULC data to
human health outcomes?

SGL1. To review existing methodologies and widely used practises in studies relating LULC
data with human health.

RQ2: How can LULC data be used to better assess its effect on human health?

SG2. To propose a methodology that takes into account the compositional nature of LULC
data for population-based health studies.

RQ3: Is LULC data useful to assess the territorial distribution of COVID-19 incidence and
mortality during the first pandemic wave in Catalonia (2020)?

SG3 To explore the effect of LULC data on COVID-19 incidence and mortality in Catalonia.
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2.2 Research chapters

To tackle both the main goal and the three specific goals of the present research, we have
developed three research chapters (RCH). Each research RCH is centred around one
specific goal and, thus, responds to one specific research question (see Figure 4).

RCHJ1: To answer the first research question (RQ1), we conducted a review of 41 articles
relating LULC data with human health outcomes. This research highlights the principal
methodologies along with the analysis methods. Furthermore, it summarizes the main
limitations in the field and concludes with four recommendations for future research. The
results of the RCH1 have been published in the Environmental Research Journal

(https://doi.org/10.1016/j.envres.2020.110578)

RCHZ2: Progressing from the findings of RHC1 and responding to the RQ2, in the RCH2,
we explore the compositional nature of LULC data and propose a methodology that takes
it into account. The proposed methodology is tested, assessing the independent effect of
each LULC category on the prevalence of type 2 diabetes mellitus, asthma, and anxiety in
Catalonia. Moreover, the results are discussed, providing a conceptual framework in which
many previously studied environmental elements are considered, and pathways connecting
the environment and human health are discussed. This research has been published in
Science of the Total Environment (https://doi.org/10.1016/].scitotenv.2021.150308)

RCHa3: Presented as a case study, the RCH3 shows the potential of the proposed
methodology in RCH2. This research uses traditional environmental epidemiology
analyses to explore the effect of air pollutant concentration levels and type of agri-

food industry on COVID-19 incidence and mortality in Catalonia at the area level while
controlling for relevant demographic, socioeconomic and comorbidity covariables. The
novelty is presented with the complementary analyses that screen the effect of the overall
LULC data using the proposed methodology in RCH2. The results of this research have
been published in the International Journal of Environmental Research and Public Health
(https://doi.org/10.3390/ijerph18073768)
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Main goal

Research Chapter 1 (RCHL1)

Research Question 1 (RQ1) ——> Specific goal 1 (SG1)

Figure 4.
Diagram of the main goal and its derived research questions (RQ). Each RQ is associated with
a specific goal (SG) and structured within each research chapter (RCH).
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3. Research Chapters
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3.1 Research Chapter 1: Reviewing the reliability of
Land Use and Land Cover data in studies relating
human health to the environment
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3.2 Research Chapter 2: Environmental heterogeneity

INn human health studies. A compositional
methodology for Land Use and Land cover data
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This compositional approach has yielded plausible results supported by the existing literature, highlighting the

Asthma relevance of environmental heterogeneity in health studies. In this sense, we argue that different types of envi-

Anxiety

ronment possess exclusive biotic and abiotic elements affecting distinctively on human health.

We believe our contribution might help researchers approach the environment in a more multidimensional man-
ner integrating environmental heterogeneity in the analysis.
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1. Introduction

In the last decades, the study of the relationship between the
environment and human health has increasingly captured the sci-
entific community's attention worldwide. As a result, growing evi-
dence is starting to highlight the potential benefits that the
environment might provide to human health (Barnes et al., 2019;
Sandifer et al., 2015; Stier-Jarmer et al., 2021; Taylor and Hochuli,
2015). Until now, different metrics assessing the environment
have been showcased (Bach et al., 2020); from measurements of
the landscape proportion, the Normalized Difference Vegetation
Index (NDVI), to the Simpson's patch diversity and percentages of
tree canopy and green spaces (Cushman et al., 2008; Donovan
et al., 2013; Frank et al., 2006; Hanski et al., 2012; Sarkar et al.,
2013). Among these metrics, Land use and Land cover (LULC)
data are gradually becoming more widely spread (Zaldo-Aubanell
et al., 2021b).

LULC data is usually a low-cost and high resolution resource, which is
regularly updated (Grekousis et al., 2015). Unlike other environmental
data, LULC data encompasses both biophysical (e.g., temperature, humid-
ity, biodiversity, and soil features) and socioeconomic (e.g., political, eco-
nomic, and cultural) environmental information (Boada and Gomez,
2012). Moreover, LULC data is versatile and can distinguish between dif-
ferent types of environments, which is particularly relevant since different
types of environments are suggested to have specific elements that might
promote distinct benefits to human health (Astell-Burt and Feng, 2019; de
Vries, 2019; Wheeler et al., 2015; White et al,, 2013; Zaldo-Aubanell et al.,,
2021b).

Many researchers have used LULC data to describe the environment
(Groenewegen et al., 2012; Maas et al., 2009a; Mitchell and Popham,
2007; van den Berg et al., 2010; Wheeler et al., 2012). However, little re-
search has acknowledged the compositional nature of such data
(Aitchison, 2009; Pearson, 1896).

The compositional nature of LULC data can be observed in the analysis
of proportions of specific LULC categories composing geographical regions
(Leininger et al., 2013). Each observation is a vector of proportions which
has the peculiarity of being constrained, so the sum of all its parts is a con-
stant (Aitchison and Egozcue, 2005). Thus, the vector of proportions is a
D-part composition, with D components, and the “sample space” is not
the real Euclidean space associated with unconstrained data (Aitchison,
2009). Therefore, D-part compositions only provide information about
the relative magnitudes of the compositional components (Aitchison
and Egozcue, 2005; Hron et al., 2012), and this information is completely
gathered in D-1 ratios between the components.

Some researchers have avoided the singularity constraint of LULC
data by classifying the percentages of LULC categories according to
quantile division (Bixby et al., 2015; Lachowycz and Jones, 2014;
Mitchell and Popham, 2008; Mytton et al., 2012; Wu et al., 2015).
These methods represent a step forward to the proper use of LULC
data. However, consideration of the compositional nature of LULC data
might be a critical factor as this has been demonstrated to respect
scale invariance and the relative scale issues that are completely ignored
when raw data (e.g., proportions or percentages) is used (Miiller et al.,
2018). To our knowledge, no other study relating LULC data to human
health has yet used a compositional approach for the analysis, except
for one study assessing the potential contribution of LULC categories

to explain the geographical distribution of both COVID-19 incidence
and mortality in Catalonia (Spain) (Zaldo-Aubanell et al.,, 2021a).

The aim of this study is to explore, for the first time, the inde-
pendent effect of eight LULC categories (agricultural areas, bare
land, coniferous forest, broad-leaved forest, sclerophyll forest,
grassland and shrubs, urban areas, and waterbodies) on three
selected common health conditions (type 2 diabetes mellitus
(T2DM), asthma and anxiety) using a compositional methodolog-
ical approach. This study leverages observational health data of
Catalonia (Spain) at area level (the Basic Health Areas; BHAs).

2. Materials and methods
2.1. Environmental heterogeneity: Land use and Land cover (LULC) dataset

We described the environmental heterogeneity of each Basic
Health Area (BHA) according to relevant literature (Astell-Burt
and Feng, 2019; Hanski et al., 2012; Wheeler et al., 2015). First,
we reclassified the prior 23 LULC categories of the Land Use and
Land Cover map of Catalonia (Spain) from 2012 into eight major
categories: agricultural areas, bare land, coniferous forest, broad-
leaved forest, sclerophyll forest, grassland and shrubs, urban
areas, and water bodies (see Table S1 and Fig. S2 in Supplementary
materials). Then, we calculated the vector of proportions of each
reclassified LULC category for each BHA.

The 2012 Land Use and Land Cover map of Catalonia is a tool
generated with automated image classification of a 30-m resolu-
tion (minimum area representing 30x30m). Images are obtained
thought Landsat satellite (Landsat-5, Landsat-7, Landsat-8, and
Sentinel-2) using both their sensors (Thematic Mapper (TM), En-
hanced Thematic Mapper Plus (ETM+), Operational Land Imager
(OLI) and Multispectral Imager (MSI)), and complementary infor-
mation such as the Urbanistic Map of Catalonia and the graph of
the Catalonia infrastructures network. The map also incorporates
the cartographic database of forest fires from the Ministry of
Agriculture, Livestock, Fisheries and Food of Catalonia, and
the LIDAR database from the Institut Cartografic i Geologic de
Catalunya (ICGC) (https://territori.gencat.cat/ca/01_departament/
12_cartografia_i_toponimia/bases_cartografiques/medi_ambient_
i_sostenibilitat/usos-del-sol/).

2.2. Health data

The prevalence rates of T2DM, asthma, and anxiety for each BHA
were obtained from the Catalan Health Department and the Catalan
Agency for Health Quality and Evaluation (AQuAS). The health data
corresponded to 2014, they were aggregated by age group and sex,
and were provided for each Basic Health Area (BHA), the fundamental
territorial unit through which the Catalan Healthcare System is articu-
lated (see Fig. S2 in Supplementary materials).

The data did not distinguish between type 1 diabetes and type 2 diabe-
tes. However, almost 95% of all diagnosed cases of diabetes are estimated
to be type 2 in adults (Centers for Disease Control and Prevention,
2011). Therefore, we assumed a well representation of individuals with
T2DM in our data as previously described (Astell-Burt et al., 2014a).
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2.3. Covariates

Three covariates (age group, seX, and socioeconomic status (SES))
were used for segmentation to fix the risk exposure scenario and assess
the independent effect of the eight LULC categories.

We considered six age groups: paediatric (named 1 in the figures
and the tables; <15 years), teenagers and young adults (2; 15-44
years), adult (3; 45-64 years), senior (4; 65-74 years), old (5; 75-84
years) and very old (6; >84 years). Besides, sex was categorised as
male or female.

Furthermore, SES information was obtained using the 2015 Com-
posed Socioeconomic Index (CSI) (Colls et al., 2020) from the Catalan
Health Observatory. The CSI is a deprivation index calculated for each
BHA and used in assessing resources for Primary Health. The CSl is a
continuous variable (0 to 100) that includes the following information:
economic income, level of education, professional occupation, life ex-
pectancy, premature death rate, and evitable hospitalizations rate
(Colls et al., 2020). We used a quintile division of this index, creating
five categories: very high (CSI < 34.75), high (34.75 > CSI < 42.60), me-
dium (42.60 > CSI < 48.99), low (48.99 > CSI < 56.37) and very low SES
(56.37 > CSI < 100).

2.4. Data analysis

2.4.1. Compositional ilr-transformation

The use of raw compositional data to directly conduct common sta-
tistical analyses raises the problem of singularity, which was already
warned as problematic over a century ago (Pearson, 1896). Instead,
we propose a proper transformation of compositional data, moving
the compositions isometrically from the simplex with the Aitchison ge-
ometry to the standard real space with the Euclidean geometry
(Egozcue and Pawlowsky-Glahn, 2016; Hron et al., 2012). The transfor-
mation creates new coordinates in the Euclidean geometry and thus
allow for popular statistical methods to be applied (Miiller et al.,
2018). In this case, regression modelling.

Since regression models are meaningful only when the composi-
tional covariates are expressed on an orthonormal basis, a feasible alter-
native to raw data (e.g., proportions and percentages) is to use the
isometric logratio (ilr) transformation (Hron et al., 2012). In particular,
this could be the set of pivot logratios (PLRs), which are a succession of
ilr-coordinates where the numerator in the ratio is always a single com-
ponent and the denominator all those other components “to the right”
in the ordered list of components (Greenacre and Grunsky, 2019).

For a better interpretation of the regression coefficients, Miiller et al.
(2018) suggest moving from the orthonormal to the orthogonal coordi-
nates (see Eq. (1)). So, in a regression with non-compositional response
and compositional regressors, an additive increment of one unit in the
ilr-orthogonal variable (z{"*) is equal to a two-fold multiplicative in-
crease in the relative dominance of the original composition variable
x, if the base-2 logarithm is used (Miiller et al., 2018) (see Eq. (2)).
This transformation follows:

X .
2= log,— i i=1,...,D—1 (1)
i 2
D—i l—lD ) X(I)
J=iH1%
(1) 1 XI(I‘J 1 1 XI([) 1 x!@
Az “=logy |2 x —=—=| = log,(2) + log, ———==1+log, ————
D y/l-[liiﬂx}l) D (/n?7i+1x}l) D z/l'l?,mX}’)

i=1,...,D-1

@)

In our study, we used the transformation suggested by Miiller et al.
(2018) (Eq. (1)) to transform the vector of proportions of the eight LULC
categories describing the environmental heterogeneity for each BHA.

We observed some zeroes derived from the lack of some LULC cate-
gories in specific BHAs. To simplify and given that the minimum
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resolution of our LULC data was 30 x 30 m, we opted for simple
imputation of these zeroes. Thus, we replaced the zeroes by the mini-
mum value of 900 m? to create a vector of positive components w €
SP that then was closured r = C (w). We assumed that it was plausible
to consider that each LULC category could be represented in at least one
area of 30 x 30 m within each BHA. For instance, agriculture areas might
take the form of urban agriculture in heavily urbanised BHA. Forested
areas might also be present, shaping street trees. Even waterbodies
might be represented in small pools of water.

2.4.2. Statistical analysis

Before the analyses, and to avoid potential interaction problems de-
rived from possible associations, we used a Chi-square testing for signif-
icant differences between socioeconomic levels and the presence of
LULC categories.

We fitted four different regressions to our data: Binomial, Poisson,
Negative Binomial, and Beta regression. Similar results were found for
all regressions, although Negative Binomial and Beta regression showed
higher confidence intervals. As expected, the best-fit model according to
AIC was for Negative Binomial regression. However, we noted no im-
portant differences in the estimates derived from the four regressions.
Thus, we finally modelled our data using the Binomial regression with
logit link, as it best represented the nature of the assessed health condi-
tions (see Eq. (4)). Furthermore, this model was the most feasible in
terms of simplicity and interpretability. The population size of each
BHA was used as weights when fitting the model.

Y~Bernoulli(p;) fori =1, ..., n.

Logit(y;) = log <] E’p) =By + é Bi x Xi* (4)

where Y; was the binary (Bernoulli) response variable; p; was the
probability of successes P(Y; = 1), in this case, 1 stands for a diagnosed
case; Wi was the expected value of each Y; which was equal to the
probability of successes p;; Bo was the intercept, and (3; denoted the
logistic regression coefficients for the design ilr-matrix X * of covariables i.

The role of the covariates ‘age group’, ‘sex’, and ‘socioeconomic sta-
tus’ has been extensively used to describe health status (Beyer et al.,
2018; Frank et al., 2004; Mobley et al., 2006; Richardson and Mitchell,
2010; Van den Berg et al., 2016). We used these covariates for segmen-
tation to fix the risk exposure scenario. In total, sixty segmentations
were performed. Then, we assessed the independent effect of the
eight ilr-transformed LULC categories on each health condition, as pre-
viously described in Miiller et al. (2018).

Additionally, we also show the estimated coefficients of all
explanatory variables (sex, age group, socioeconomic status, and ilr-
transformed LULC categories) for each selected health condition derived
from ordinary general models using non-segmented data (see Table S3
in Supplementary materials).

We conducted the statistical analyses using the R language environ-
ment for statistical computing, R version 3.6.2 (12 December 2019) (R
Core Team, 2019).

3. Results

Before conducting any regression analysis, and to avoid potential in-
teraction problems derived from possible associations, we used a Chi-
square to test for significant differences between socioeconomical levels
and LULC categories. The Chi-squared test showed no significant evi-
dence to reject the hypothesis that SES was not related with LULC cate-
gories: X*(28,N = 369) = 28.403, p = 0.443. Therefore, we assumed no
significant relationship between socioeconomic levels of BHAs and the
presence of any particular LULC category.

Hereunder, we show the independent effect of each ilr-transformed
LULC category on the segmented health conditions (see Figs. 2, 3, and 4;
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Fig. 2. Odds ratios (in colour) and 95% CI (grey bands). Associations between the prevalence of T2DM and ilr-LULC categories. (For interpretation of the references to colour in this figure Fig. 3. Odds ratios (in colour) and 95% CI (grey bands). Associations between the prevalence of asthma and ilr-LULC categories. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.) legend, the reader is referred to the web version of this article.)
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Fig. 4. Odds ratios (in colour) and 95% CI (grey bands). Associations between the prevalence of anxiety and ilr-LULC categories. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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coloured lines). Since we used data representing the entire population
of Catalonia, inference information gathered in the p-values has little
relevance. However, we also provide the 95% Wald confidence intervals
(95% CI), reporting the precision of the estimations (Figs. 2, 3, and 4;
grey bands).

3.1. 2DM

As shown in Fig. 2, most groups for ilr-agricultural areas showed an
increased risk of T2DM, with some exceptions on paediatric (1), some
young-adults (2), and very low SES groups.

For ilr-bare land areas, very high and very low SES groups were asso-
ciated with an increased risk of T2DM, while all the rest were mainly as-
sociated with a reduced risk.

For ilr-coniferous forest, younger groups showed a reduced risk, al-
though the majority of other groups showed an increased risk.

In the case of ilr-broad-leaved and ilr-sclerophyll forest, the majority
of the estimates showed a reduced risk while some age groups, espe-
cially paediatric (1), showed the opposite effect.

As to the effect of ilr-grassland and shrubs areas, higher average risk
was observed for medium SES groups, although low SES paediatric
(1) male group showed the highest risk.

For ilr-urban areas, we found an increasing risk for more
impoverished areas, especially for older groups.

Finally, results for ilr-waterbodies suggested a reduced risk for more
impoverished areas with some exceptions in high and very high SES
paediatric (1) and young adult (2) groups and low and very low SES
young-adult (2) male groups.

3.2. Asthma

For ilr-agricultural areas, our results show a reduced risk for lower
SES groups (see Fig. 3).

For ilr-bare land areas, most groups showed an increased risk, espe-
cially females. However, high SES groups and other age groups within
each SES group showed the opposite effect.

Results for ilr-coniferous forest differed between sex groups. In gen-
eral, males showed a predominant reduced risk (except for very high
SES groups). On the contrary, females showed a predominant increased
risk for very high, high, and low SES groups, while medium and very low
groups were associated with a reduced risk.

For ilr-broad-leaved forest, results suggest an increased risk for
lower SES groups. Furthermore, for ilr-sclerophyll forest, results show
a predominant increased risk for all groups, except for older groups of
very high and very low SES, and younger groups of low and very low
SES.

Results for ilr-grassland and shrubs and ilr-urban areas suggest a
progressively increased risk across SES variable.

Lastly, for ilr-waterbodies, most groups showed a predominant re-
duced risk of asthma, especially very low SES groups.

3.3. Anxiety

As shown in Fig. 4, we found a predominant decreased risk for most
groups for ilr-agricultural areas.

For ilr-bare land, very high and very low SES groups showed a pre-
dominant increased risk of anxiety, while medium and low SES showed
the opposite trend. In contrast, results for high SES groups differed be-
tween sexes. Males showed a predominant decreased risk and females
showed a predominant increased risk.

As to the effect of ilr-coniferous forest, we observed a predominant
reduced risk for most groups. However, some groups of high, medium
and low SES showed an increased risk in both sexes. Following the
same trend, we found a predominant reduced risk for ilr-broad-leaved
forest except for some very high and very low SES groups.
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Results for ilr-sclerophyll forest showed an increased risk for lower
SES groups, although the results for very low SES groups were some-
what inconclusive. For ilr-grassland and shrubs, inconclusive results
were observed for very high SES groups and an increased risk was ob-
served for lower SES groups. Likewise, ilr-urban areas showed an in-
creased risk for lower SES groups.

Finally, ilr-waterbodies showed a reduced risk for most of groups.
However, we found some exceptions for medium SES groups and
some age groups of low SES.

4. Discussion

Our study has stepped forward to detect the independent contribu-
tion of eight LULC categories to the prevalence of three assessed health
conditions (T2DM, asthma and anxiety). We propose a compositional
approach that shows the estimated odds ratio after segmenting the
data according to the SES status, age group, and sex. Moreover, this
methodology has allowed us to discuss the possible set of particular el-
ements of each LULC category related to the studied health conditions.

4.1. Human health conditions

For this study, we used the major pathways framework suggested by
Markevych et al. (2017), and hypothesised that each selected health
condition was related to the environment through specific pathways.

4.1.1. Type 2 diabetes mellitus

T2DM has been associated with obesity and sedentary behaviour
(low physical activity) (Colagiuri et al., 2010). Thus, the relationship be-
tween the environment and T2DM may partly occur through the
instoration pathway (Markevych et al., 2017). In particular, the capacity
of LULC categories to promote physical activity. In addition to this, re-
search is also associating long-term air pollution exposure (Eze et al.,
2015, 2014), as well as traffic noise (Shin et al., 2020) with increased
risk of T2DM. Thus, T2DM might arguably be related to the environment
through the mitigation pathway (Markevych et al., 2017).

Urban areas showed an increased risk of T2DM for medium to lower
SES groups. This effect could be explained due to the fact that higher SES
groups, which tend to be more physically active during leisure time
(Marielle et al., 2012), are also associated with a higher presence of
greenspaces in their neighbourhoods (Astell-Burt et al., 2014b). This
might lead to higher levels of physical activity in higher SES groups
(Frank et al., 2007; Richardson et al., 2013). Contrarily, lower SES
groups, which are less able to afford gym fees (Giles-Corti and Donovan,
2002) and have little access to open public spaces (Koohsari, 2011),
tend to walk in more unsupportive build environments (Adkins et al.,
2017), which lack certain land-use types such as green spaces and rec-
reation centres (Zandieh et al., 2017). These factors might arguably
lead to less opportunities for physical activity in deprived
neighbourhoods, increasing the risk of T2DM in lower SES groups. In
fact, higher risk of T2DM and many lifestyle-related risk factors have
been reported for people living in deprived neighbourhoods (Astell-
Burt et al., 2014a; Feng and Astell-Burt, 2013; Williams et al., 2012).
Moreover, deprived neighbourhoods are more associated with polluted
areas (Bolte et al., 2010), higher perceived noise and lower perceived
safety, cleanliness and aesthetic quality of their neighbourhoods
(Mouratidis, 2020). In this sense, the increased risk of T2DM for poorer
groups could also be explained through the mitigation pathway
(Markevych et al., 2017), since both air pollution exposure and traffic
noise have been related to increased risk of T2DM (Eze et al., 2015;
Shin et al., 2020).

Broad-leaved forest, which generally has low undergrowth, cool
temperatures, and smooth slopes, was predominantly associated with
lower levels of T2DM. Likewise, sclerophyll forest, which tend to be
close to urban settlements, showed a generally decreased risk of
T2DM. This suggests that, despite its undergrowth densely populated
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with shrubs and some lianas, people might be attracted to perform
physical activity on the sclerophyll forest principal routes and paths. Re-
garding the coniferous forest, it might not always be accessible to people
to perform physical activity (at least the high mountain forest, which is
established on higher altitudes of the mountains). This might explain
the predominant increased risk of T2DM observed for most groups.

Regarding waterbodies, we found a heterogeneous effect, suggesting
that effect measure modification of SES and age group appeared to be
especially important.

In agricultural areas, results showing increased risk of T2DM could
be explained through the pesticides exposure pathway (Lee et al.,
2011; Turyk et al., 2009). In a previous study, researchers found five pes-
ticide types positively associated with incident diabetes (Starling et al.,
2014). In this regard, epidemiological evidence suggests an association
between exposure to organochlorine pesticides and T2DM (Evangelou
et al, 2016).

4.1.2. Asthma

The relationship between the environment and asthma may occur
mainly through the mitigation and instoration pathways (Markevych
etal., 2017). Air quality is crucial (Toure et al,, 2019), not only regarding
the allergenic pollen levels that might aggravate this respiratory disease
(Carifianos and Casares-Porcel, 2011), but also concerning air pollution
(Guarnieri and Balmes, 2014). In addition, other studies have explored
the connection between air quality and heat events (Soneja et al.,
2016) and microbial diversity (Ege et al., 2011).

A higher prevalence of asthma is directly related to the higher pres-
ence of allergenic elements in the air (D'Amato et al., 2007). We found
that waterbodies show a generally reduced risk of asthma for all SES
groups. This could be because waterbodies might arguably be associated
with little presence of allergenic elements due to the lack of vegetation,
and because the allergenic elements might be trapped in the
waterbodies. In fact, Spanish researchers found that living next to the
coast may protect against sensitization to pollens and Alternaria
(Moral Gil et al., 2008).

Although a set of allergenic species might be distinguished for each
LULC category, the differences across SES groups for LULC categories as-
sociated with vegetation suggest that the presence of allergenic species
might not be the only relevant predictor. For broad-leaved forest and
grassland and shrubs, we found a higher risk in lower SES groups. On
the other hand, sclerophyll forest showed a predominant increased
risk, bare land showed higher predominant risk for females, and conif-
erous forest showed a reduced predominant risk for males.

For urban areas, we found increased levels of asthma for lower SES
groups. Some research has suggested that air polluted environments
are associated with a higher prevalence of respiratory illnesses such as
asthma (Annesi-Maesano et al., 2007; D'Amato et al., 2002). Further-
more, lower SES groups are known to be in worse health status and as-
sociated with more polluted areas (Bolte et al., 2010; de Vries et al.,
2003; Su et al., 2011). Contrarily, the increased levels of greenspaces
in richer SES neighbourhoods might lower air pollutant concentrations
(Kroeger et al., 2014).

In addition, the higher risk of asthma found in lower SES urban areas
would also be explained since lower SES groups have been linked with
increased susceptibility to heat-associated health effects (Gronlund,
2014). In addition, extreme heat events have been linked with increas-
ing risk of hospitalization for asthma (Soneja et al., 2016).

We found agricultural areas to be generally associated with a reduced
risk of asthma for all SES groups except for very high SES groups. Some au-
thors highlight microbial diversity and specific microbial exposure as pro-
tective factors against asthma and atopy (Bach, 2018; Jatzlauk et al.,
2017). In this regard, farm environments that promote higher microbial
exposure would be associated with decreased risk of asthma (Ege et al.,
2011). As previously highlighted (Farfel et al., 2010; Shankardass et al.,
2007), the results for very high SES groups are compatible with the so-
called “hygiene hypothesis”. However, other studies (Eum et al., 2019)

Science of the Total Environment 806 (2022) 150308

state that complexity in the prevalence of asthma symptoms calls for a
more comprehensive framework for its understanding.

4.1.3. Anxiety

Anxiety could be mainly linked to the environment through the res-
toration pathway (Markevych et al., 2017). The restorative role of natu-
ral environments has been associated to the visual (Franco et al., 2017;
Jacobs and Suess, 1975) and auditory stimuli (Coensel et al., 2011), to
the openness of natural spaces (Han, 2007) and to species richness
(Aerts et al., 2018). Many studies have highlighted the potential of the
natural environment to increase feelings of restoration (White et al.,
2013), and reduce stress levels (Morita et al., 2007) and heart rate
(Lee et al.,, 2014).

Our results suggest that agricultural areas seem foster mental resto-
ration, leading to a main decreased risk of anxiety. Agricultural areas
may represent more diverse landscape configuration, such as the
forest-agriculture mosaic, which can increase bird richness (Atauri
and De Lucio, 2001). Concerning this, recent research has highlighted
the positive association between bird diversity and people's wellbeing
(Methorst et al., 2020). Moreover, the openness of agricultural scenarios
might also promote restoration for individuals (Han, 2007).

Likewise, we found that environments with more waterbodies were
associated with decreased anxiety levels in the majority of groups. Some
authors have underscored the importance of water sounds for mental
health (White et al., 2010). Others have hypothesised the independent
beneficial effect on health for waterbodies (Nutsford et al., 2016),
even without a full exposure but with only observation of water ele-
ments photographs (White et al., 2010).

The beneficial effect of waterbodies might also be linked to evolu-
tionary and cultural theories such as the Biophilia effect (Browning
etal., 2014), which highlights the significance of water for the biological,
wellbeing and survival needs (Han, 2007; Orians and Heerwagen, 1992;
Ulrich, 2016, 2014). In addition, some research points out to the role of
negative ions that are present in water environments, especially by the
sea (Jiang et al., 2018), in lowering depression scores (Perez et al., 2013).

Regarding forested LULC categories, only broad-leaved forests, argu-
ably the most walkable of the forest types, showed decreased risk of
anxiety for most of the SES groups. On the other hand, we found in-
creased anxiety levels for lower SES groups in urban areas. As described
above, important differences between deprived and non-deprived
neighbourhoods seem to be essential elements modifying the effect of
urban areas on anxiety levels. These differences include the built envi-
ronment, presence of greenspaces (Astell-Burt et al., 2014b), accessibil-
ity to public open spaces (Koohsari, 2011), and other important factors
mentioned above such as noise, light and air pollution. Likewise, results
showing a higher risk for sclerophyll forest and grassland and shrubs
might be explained by differences in quality of spaces across SES groups.

4.2. The role of covariates: SES, age group, and sex

The three covariates studied (SES, age group, and sex) have widely
been described as important modifiers of nature effects (Markevych
etal., 2017). Considering this, we have segmented our data accordingly.
Thus, the three covariates did not play a role in the residuals of our
models. Nevertheless, we can compare the effects of the covariates
when comparing the estimated odds ratios across different groups
(Figs. 2, 3, and 4).

We found SES to be the most important covariate as to the effect of
the LULC categories on the selected health conditions. As previously re-
ported (Knobel et al., 2021a), we found a dissimilar risk between the
highest and lowest SES groups. This effect measure modification could
be explained because lower SES groups might be more likely to benefit
from a health promotion intervention (Bolte et al., 2010; de Vries et al.,
2003; Markevych et al., 2017; Su et al., 2011), such as being exposed to
particular LULC categories. Lower SES groups have been described to be
less mobile (Maas et al., 2006; Schwanen et al., 2002), to have less
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health status (Markevych et al.,2017), and to live in more polluted areas
(Bolte et al., 2010). In this sense, lower SES groups show stronger asso-
ciations with their environment (Dadvand et al., 2014; Maas et al.,
2009Db). On the contrary, higher SES groups might be more capable of
changing the environment they live in in order to be less exposed to
particular harmful conditions (Bell et al., 2010; Markevych et al.,
2017). In addition, other factors such as better social environments,
health care accessibility and use, residential environment preferences,
and even better general behaviour and lifestyle might also be key factors
linking higher SES groups with better general health (Adler and
Newman, 2002).

Regarding the age group, many of the estimates showed a more in-
tense effect on very old (6) age group than on young-adult (2), adult
(3), senior (4) and old (5). Likewise, we found a recurrent intensified ef-
fect for the paediatric (1) group compared to the rest of groups. This ef-
fect was found to go either in the same direction as the rest of the age
groups (e.g., prevalence of T2DM for high SES groups for ilr-broad-
leaved forest; Fig. 3), or in the opposite direction (e.g., prevalence of
anxiety for low SES groups for ilr-bare land; Fig. 4).

On the one hand, elderly people are undoubtedly the groups with
less moving capacity. This makes elders more strongly associated with
their surroundings (Maas et al., 2006). On the other hand, paediatric
people have unique characteristics that differ from adults (Ortega-
garcia et al., 2019). Additionally, the paediatric group might be under-
represented in at least two of the health conditions considered; T2DM
and anxiety. Type 1 diabetes, more associated with paediatric groups
(Soltész, 2003), is an autoimmune disorder genetically mediated,
while type 2 is more of a life style induced disorder (Joshi and
Shrestha, 2010). Regarding anxiety, the anxiety diagnostic criteria in
children might also differ from adults. Children have particular features
(for instance, difficulties in communication, cognition and emotions)
that create unique challenges when distinguishing between normal
and pathological anxiety (Beesdo et al., 2021).

Lastly, in line with other studies (Richardson and Mitchell, 2010), we
found sex to be an important variable modifying the effect of LULC cat-
egories on the three selected health conditions.

4.3. Future research

The compositional methodology used in this study has allowed us to
raise many hypotheses linking LULC categories to the three assessed
human health conditions. Although these hypotheses have been sup-
ported by previous studies, they should be tested further with specific
study designs in future studies.

4.3.1. Complex pathways linking the environment to human health

To simplify the results interpretations, we have assumed that anxi-
ety was related to the environment mainly through the restoration
pathway. In contrast, we assumed that T2DM and asthma were related
to the environment mainly through two pathways (instoration and mit-
igation pathways). However, it is possible that, in reality, many other
pathways intertwine (Hartig et al.,, 2014; Markevych et al.,2017). For in-
stance, some of the results found for T2DM needed a broad scope to be
interpreted, such as the pesticide exposure for T2DM.

Moreover, differences in preferences (Han, 2007; Kiley et al., 2017;
Lyons, 1983) between the different tested groups, the amount of knowl-
edge about the environment (Aerts et al., 2018), and even the environ-
mental quality of the LULC categories (Knobel et al., 2021b; Wheeler
et al., 2015) might be important factors modifying the LULC - human
health relationship. Therefore, more studies with accurate information
about the variables mentioned above should be conducted to relate spe-
cific health conditions with specific LULC categories.

4.3.2. Further exploration of LULC categories
We aimed to test the independent effect of broad LULC categories on
human health. However, we believe that important characteristics
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might have remained unstudied in these general classifications. One ex-
ample is the coniferous forest category, which gathered three forest
types: low land pine tree forest, the montane pine tree forest, and
high mountain forest. Each of them possessing individual and excep-
tional features. In this sense, we argue that using a combination of
other existing datasets and GIS techniques to construct a more exhaus-
tive classification of the different ecosystems or types of environment
would result in better analyses. In the same direction, authors could
make use of the present framework to conduct further research testing
for differences within agricultural areas (irrigated, non-irrigated), urban
(residential, sprawl, industrialized, urban greenspaces) or waterbodies
(inland, marine), among other examples.

44. Limitations

4.4.1. Unit of analysis

We have used the Basic Health Area (BHA) as our unit of analy-
sis to describe the living environment for individuals. However,
other research encompassing LULC data and human health has
used different unit of analysis, from census areas to different buffer
radii (Zaldo-Aubanell et al., 2021b). In this sense, further research
is needed to test our results and approach using different units of
analysis.

4.4.2. Cross-sectional design

We followed a cross-sectional design. Thus, limitations derived from
this methodology must be carefully considered. Although cross-
sectional designs leverage population-based data and are useful to de-
tect differences between areas, they do not allow for causal inference
to be established (Wu et al., 2020).

Furthermore, we did not consider possible spatial autocorrelations
derived from data. In this sense, robust spatio-temporal methodologies
should be needed allowing for the establishment of causal inference.

5. Conclusions

There is a recurrent call for new methodologies that detect the inde-
pendent effect of different types of environment on human health. We
have proposed an innovative methodology using a compositional ap-
proach. We have defined eight types of environment using a classifica-
tion of Land use and Land cover data and have tested their individual
contribution on explaining three selected health conditions using obser-
vational data. In this regard, the proposed methodology has shown to be
an acceptable and a feasible way to address the compositional nature of
LULC data, facilitating the interpretation of the estimates through the
Log2 ilr-transformation.

Our approach has led us to plausible results supported by the
existing literature while has enabled us to push forward the debate on
the relevance of environmental heterogeneity in health studies. We
have proposed a detailed conception of the environment that goes be-
yond green and natural. In addition, we have discussed how different
types of environment possess exclusive elements (humidity, tempera-
ture, type of flora and fauna, accessibility, walkability, openness, pres-
ence of water, sounds, air compounds and air quality, heat, and noise,
light contamination, and even chemical exposure) affecting distinc-
tively on human health. Furthermore, we have found the relationship
between the environment and human health to be clearly modified by
socioeconomic status, age group, and sex. Lastly, we have highlighted
that other important ideas such as the preferences (or agreeableness)
for specific types of the environment of certain groups and quality of
the environments might be important factors and should be considered
in future research.

We believe that our contribution might help researchers approach
the environment in a more multidimensional scope, allowing environ-
mental heterogeneity to be brought into the analysis.
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Abstract: The heterogenous distribution of both COVID-19 incidence and mortality in Catalonia
(Spain) during the firsts moths of the pandemic suggests that differences in baseline risk factors
across regions might play a relevant role in modulating the outcome of the pandemic. This paper
investigates the associations between both COVID-19 incidence and mortality and air pollutant
concentration levels, and screens the potential effect of the type of agri-food industry and the overall
land use and cover (LULC) at area level. We used a main model with demographic, socioeconomic
and comorbidity covariates highlighted in previous research as important predictors. This allowed
us to take a glimpse of the independent effect of the explanatory variables when controlled for the
main model covariates. Our findings are aligned with previous research showing that the baseline
features of the regions in terms of general health status, pollutant concentration levels (here NO,
and PMyg), type of agri-food industry, and type of land use and land cover have modulated the
impact of COVID-19 at a regional scale. This study is among the first to explore the associations
between COVID-19 and the type of agri-food industry and LULC data using a population-based
approach. The results of this paper might serve as the basis to develop new research hypotheses
using a more comprehensive approach, highlighting the inequalities of regions in terms of risk factors
and their response to COVID-19, as well as fostering public policies towards more resilient and
safer environments.

Keywords: COVID-19; air pollutants; cardiovascular diseases; psychological disorders; cancer;
agri-food industry; land use and land cover data
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1. Introduction

The COVID-19 pandemic, caused by the Severe Acute Respiratory Syndrome Coro-
navirus 2 (SARS-CoV-2), has become a leading health concern worldwide. As of 31 May
2020, there were 5,939,234 confirmed cases and 367,255 deaths globally [1]. The severity
and mortality have been related to aging and pre-existent health conditions, including
respiratory and cardiovascular diseases, as well as psychological disorders and cancer [2,3].
Nevertheless, the geographic COVID-19 distribution within countries or regions has been
uneven [4]. Socioeconomic status has also been pointed out as a community determining
factor, but inconsistently for both richer and poorer populations [5,6]. In the same direction,
inconclusive results have been found regarding population density [6-8]. Previous studies
have reported the association between population physical distancing and COVID-19
spreading dynamics [9-11], as well as other weather conditions such as humidity and
temperature [12]. These links might lie behind the local outbreaks of the pandemic in
certain agri-food sectors such as meat and leather and fur industries [13,14]. However,
other studies have recently pointed out that COVID-19 incidence correlates to ultraviolet
radiation, rather than temperature-humidity [15,16].

Air pollution remains one of the main threats for human health worldwide and can
also play a relevant role in the COVID-19 crisis mainly in two ways: increasing the severity
of the virus’ clinical effects in chronically exposed populations and, probably to a lesser
extent, promoting the virus’ airborne dispersion [17-19]. On one hand, according to the
World Health Organization (WHO), there are 4.2 million deaths every year mostly due
to cardiorespiratory diseases as a result of exposure to outdoor air pollution [20]. Recent
studies have shown that ambient air pollution may be linked to the lethality of COVID-19 in
Asia, Europe and America [21-26]. Thus, regions chronically exposed to nitrogen dioxide
(NOy) and particulate matter (PM; 5 and PMjg) seem to be more susceptible to the virus.
Still, many of those studies do not include well identified health covariates [27-29] and
are focused only on mortality. On the other hand, some authors have studied the role of
particulate matter in the spreading of SARS-CoV-2 [12,30-32], principally in industrialised
areas [33].

Air pollution and aerosol formation and distribution have been widely linked to Land
Use and Land Cover (LULC) [34-36], with an especial concern regarding particulate matter
(PMy 5 and PMyg) [37-39]. In this sense, urbanised and industrial areas are associated with
worse air quality than other LULC categories such as agricultural or forested areas [39].
LULC information is useful open source data which is associated with other factors like
population density, biodiversity and economic activities [40], and has been identified as
a suitable describer of the environment in studies relating the environment to human
health [41]. For the aforementioned, research encompassing the associations between
COVID-19 and LULC data appears to be relevant, since this spatial data (LULC) leverage
socioeconomic and biophysical information of the environment.

In Catalonia (Spain), there was a heterogenous distribution of both COVID-19 inci-
dence and mortality in the early stages of the pandemic. This suggests that differences in
baseline risk factors across regions might have modulated the outcome of the pandemic.
The purposes of this study are to:

1. Analyse the associations between both COVID-19 incidence and mortality and long-
term exposure to pollutant concentration (NO, and PM;g), while adjusting for demo-
graphic information, socioeconomic status and general health status (cardiovascular
diseases, psychological disorders and all-cause cancer);

2. Explore the potential links between agri-food industry and COVID-19 incidence and
mortality as observed from the outbreaks in these particular industries;

3. Screen, for the very first time, the potential use of the overall Land Use and Cover
data on describing the geographical COVID-19 incidence and mortality.
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2. Materials and Methods
2.1. COVID-19 Cases and Deaths

The number of patients infected with SARS-CoV-2 (cases) and deaths attributed to
COVID-19 in Catalonia were gathered until 18 May 2020, after the first peak decreased and
the incidence of new cases started to stabilise.

The number of cases was obtained from the RSAcovid19 records from the Catalan
Health Department. We collected both the positive cases (patients positively diagnosed by a
PCR—Polymerase Chain Reaction—or rapid diagnostic test) and suspicions cases (patients
who presented symptoms compatible with COVID-19 and were classified as a possible
case, even though they were diagnosed neither by a PCR nor by a rapid diagnostic test).
All of them were active cases under the control of Epidemiologic Surveillance Service in
Catalonia and were attributed to their residential Basic Health Area (BHA), the fundamental
territorial unit through which Catalan Healthcare System is articulated and the unit of
analysis of this paper. In total, 372 BHA compose the Catalan territory.

The number of registered deaths due to COVID-19 was obtained from the Catalan
Agency for Health Quality and Evaluation (AQuAS) and the Central Register of Insured
Persons of the Catalan Health Department. These data included not only people who
were positively diagnosed by a laboratory test but also people who presented symptoms
compatible with the illness. These open data are updated several times per day, so analyses
and figures might change depending on the date. Furthermore, death observations might
be modified by the Mortality Register of Catalonia once all death certificates have been
collected [42].

Both data sets were provided already segmented by sex (male and female). Inci-
dence and mortality rates were calculated using the number of cases and the number
of deaths divided by the total amount of population within each BHA. Figures S1 and
52 show the COVID-19 incidence and mortality rates, respectively (see Supplementary
Information Section).

2.2. Comorbidities

During the first wave of the pandemic in Catalonia, COVID-19 tests were not con-
ducted on every person showing symptoms. Rather, people with more severe symptoms
or having pre-existent health conditions were more likely to be tested and thus, finally
diagnosed. To control for the general health status of each BHA, we created three groups
of principal health conditions explored by previous literature: cardiovascular diseases;
psychological disorders and all-cause cancer. Pre-existent respiratory conditions could not
be considered as the health dataset was incomplete.

The percentages of people presenting cardiovascular diseases (congestive heart failure,
hypertension, ischemic cardiomyopathy and patients who suffered cerebrovascular acci-
dent), psychological disorders (depression, schizophrenia, intellectual disability, conduct
disorder, attention deficit disorder and psychosis), and all-cause cancer were obtained
from historical observational data from 2014 provided by the Catalan Health Department
and the Catalan Agency for Health Quality and Evaluation (AQuAS). We lacked more
recent data to control for the general health status of BHAs. However, the health outcomes
assessed were prevalent illnesses with generally slight changes from one year to another.
The data was aggregated by BHA and sex (male and female).

2.3. Demographic and Socioeconomic Data

Some authors have highlighted the prominent impacts of COVID-19 on elderly people,
especially in nursing homes [43]. Others have also focused their studies in the importance
of sex [44]. We controlled for sex and elderly people by calculating the percentage of
people over the age of sixty-five in each BHA and distinguishing the COVID-19 cases
and deaths between males and females. In addition, socioeconomic data were extracted
from the Catalan Health Observatory. We used the Composed Socioeconomic Index
(CSI) [45], that is calculated for each BHA. This index is used in the assessment of resources
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for Primary Health, which includes a set of socioeconomic variables: economic income,
education, professional occupation, life expectancy, premature death rate and preventable
hospitalizations rate. This is a continuous variable measured from 0 to 100 (0 being the
poorest and 100 the richest). Previous works have suggested dividing such data into
septiles [3]. However, after testing the model, we opted for using quintiles from a very low
(E; CSI > 0 and <20) to a very high (A; CSI > 80) socioeconomic status (SES).

2.4. Air Pollution

Long-term exposure to air pollutants was assessed using the modelling of the NO,
and PMj, annual average (1g/m?) in Catalonia, corresponding to the 2016 assessment
from the General Direction of Environmental Quality and Climate Change of the Catalan
Government.

We calculated the annual weighted average for each BHA through GRASS GIS
(GRASS Development Team, 2017. Geographic Resources Analysis Support System (GRASS)
Software, Version 7.2. Open Source Geospatial Foundation. Electronic document: http:
//grass.osgeo.org (accessed on 23 May 2020)) (see Figures S3 and 5S4 of Supplementary
Information Section showing the annual weighed average of NO, and PMy (ng/m?) for
each BHA (2016)).

Besides air pollution data from 2016, we created a dataset for the period 2018-2019
(the most up-to-date period with data available). We combined three data sources (pol-
lution data from the Catalan Government; Smart Citizen, a citizen science project from
the European Community’s H2020; and pollution data from the European Environment
Agency). Then, we calculated the annual average for each pollutant in each BHA containing
sensors, which yielded 63 BHAs with values for NO, and 91 with values for PMyg. After
controlling for possible differences between both periods (2016 and 2018/2019) and finding
no significant differences, we chose the modelling of the NO, and PM;y annual average
for 2016 because it provided information for all Catalonia. Results of the two independent
t-tests assessing significant differences between pollutant concentration levels (NO, and
PM;jy) in 2016 and in 2018/2019 are provided in the Results section.

Other air pollutants have been widely used to assess pollution levels. Previous
research hypothesised that long-term exposure to O3 and PM; 5 adversely affects the
respiratory and cardiovascular systems, increasing mortality risk and also exacerbating
the severity of COVID-19, worsening the prognosis of the disease [46,47]. In this sense,
O3 levels has been found to be associated with COVID-19 confirmed cases [48] and PM; 5
to be a highly significant predictor of the number of confirmed COVID-19 cases, deaths
and hospital admissions [48,49]. Although assessment of the independent effect of the
abovementioned pollutants would have been of interest, we only used NO, and PM; data,
as they were provided for all Catalan territory.

2.5. Agri-Food Industry

Agri-food industry geographic information was extracted from Catalan Agri-food
industry Records (http:/ /agricultura.gencat.cat/ca/serveis/registres-oficials /agroaliment
acio/registre-industries-agraries-alimentaries-catalunya/ (accessed on 1 June 2020)). The
industries are classified depending on their industrial sector: slaughter of livestock, conser-
vation and elaboration of meat products; preparation and conservation of fish, crustaceans
and molluscs; preparation and preservation of fruits and vegetables; manufacturing of
vegetables and animal oils and fats; manufacturing of milk products; manufacturing of
grain mill products, starches and starch products; manufacturing of bakery and pasta
products; manufacturing of other food products; manufacturing of products for animal
feeding; manufacturing of beverages; forest industries; and other agricultural industries.

We split the category “other agricultural industries” into two main subtypes: “Leather
and fur industry” (industries based on preparation, tanning and dyeing animal skins)
and “Garden industry” (industries based on seed conditioning and handling, substrate
production and ornamental plant conservation), as we considered that these two sectors
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were poorly represented in the above classification. The total number of industries of each
type was collected within each BHA.

2.6. Land Use and Land Cover Data

To describe the environment of each BHA we used the most updated and detailed
Land Use and Land Cover data of Catalonia, the Land Use and Cover map for 2017. Thisis a
tool generated with automated image classification of a 30-m resolution. The images are ob-
tained thought Landsat satellite (Landsat-5, Landsat-7, Landsat-8 and Sentinel-2) using both
their sensors Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Opera-
tional Land Imager (OLI) and Multispectral Imager (MSI), and complementary information
such as the Urban Map of Catalonia and the graph of the Catalonia infrastructures network.
It also incorporates the cartographic database of forest fires from the Ministry of Agriculture,
Livestock, Fisheries and Food of Catalonia, and the LIDAR database from the Institut Car-
tografic i Geologic de Catalunya (ICGC) (http:/ /territori.gencat.cat/ca/01_departament/1
2_cartografia_i_toponimia/bases_cartografiques/medi_ambient_i_sostenibilitat/bases_mi
ramon/ territori/mapa-dusos-i-cobertes-del-sol/index.html (accessed on 30 May 2020))

As Table 1 shows, we reclassified the 25 Land Use and Land Cover (LULC) categories
into four broader categories: urban areas; industrial, commercial and transport units;
agricultural areas; and forest and semi-natural areas. In this classification, categories
referring to water bodies (inland and marine waters) and bare land were not considered
due to their low significance.

Table 1. Reclassification of the 25 LULC categories of the Land Use and Cover Map of Catalonia (2017) into four broader

categories.

Urban Areas

Forest and Semi-NATURAL
Areas

Industrial, Commercial and

Transport Units Agricultural Areas

Discontinuous urban fabric

Continuous urban fabric

Industrial or commercial units Permanently irrigated land
Road and rail networks and
associated land

Lowland natural grasslands
Non-irrigated arable land Montane natural grasslands

Unirrigated Fruit tress
Irrigated Fruit trees

Alpine natural grasslands
Transitional woodland /shrub

Vineyards Wetland vegetation
Rice fields Coniferous forest
Citrus trees Broad-leaved forest

Sclerophyll forest

When proportions of land use and cover composing geographical regions are anal-
ysed, each observation is a vector of proportions of specific LULC categories [50]. This
characteristic raises the problem of singularity (a constant sum constraint) as the vectors
(also called compositions) describe the relative contribution of each part (the components)
on the whole. So the information is present in the ratios of the components rather than
in each component [51-53]. Following Miiller et al. (2018) [54], we avoided the singu-
larity constraint by applying an isometric logratio (ilr) transformation to the four LULC
variables. This transformation moves the compositions isometrically from the simplex
with the Aitchison geometry to the standard real space with the Euclidean one [53]. As
recommended [54], we used a Log?2 transformation, as it facilitated the understanding of
the estimates. With this transformation, a unit additive increment in the ilr-transformed
variable is equal to a two-fold multiplicative increase in the relative dominance of the
original composition variable x, as a base-2 logarithm is used. In other words, this means
that the relative dominance of a specific LULC category is doubled in comparison to the
geometric mean of all the rest LULC variables [54].
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2.7. Statistical Analysis

To assess the associations between COVID-19 incidence and mortality and the explana-
tory variables, we fitted a generalised linear model, in the binomial family, with a logit link.
This model fit was selected as the dependent variable followed a Binomial distribution.

Y; ~ Bernoulli(p;) fori=1, ..., n.

Logit(p;) = log(lfip,) =Bo+ ) Bi x Xi,
i i=1

where Y; was the binary (Bernoulli) response variable; p; was the probability of successes
P(Y; = 1), in this case, 1 stands for a confirmed COVID-19 case or death; y; is the expected
value of each Y; which is equal to the probability of successes p;; Bo is the intercept, and ;
denotes the logistic regression coefficients for the design matrix X of covariables i.

Logistic regression analyses with 95% Wald confidence intervals (95% CI) were per-
formed to assess the association between both incidence and mortality rate of COVID-19
(number of confirmed COVID-19 cases or deaths within a given BHA /total number of peo-
ple living within such BHA) and the rest of covariates, while adjusting for demographics,
socioeconomic and comorbidity covariates. The model was fitted using population size of
each BHA as weights. We built a main model using the demographics, socioeconomic and
comorbidity covariates and then, human activity covariates, as well as land use and cover
covariates, were included in the model separately (see Table 2).

Table 2. Covariates tested in the model. All the variables were calculated within each BHA, the unit of analysis.

Covariate (Units) Description

Demographics, socioeconomic status, and comorbidity (Main model)

Sex: Females

Percent > 65 (%)

Categorical variable comparing females to males, used as a reference level.

Percentage of people aged above 65 years.

SES A

SES B Socioeconomic status categorised with 5 levels, comparing very high, high, low and very low (A,
SES D B, D, E) socioeconomic status to normal (C), used as the reference level. Data from 2014.
SES E

Group variable. Percentage of people with congestive heart failure, hypertension, ischemic

Cardiovascular diseases (%) cardiomyopathy or who suffered cerebrovascular accident in 2014.

Group variable. Percentage of people with depression, schizophrenia, intellectual disability,

Psychological disorders (%) conduct disorder, attention deficit disorder or psychosis in 2014.

All-cause cancer (%) Group variable. Percentage of people with any type of cancer in 2014.

Human activity

NO, (ug/md) *
PMy (ug/m®) *

Nitrogen dioxide annual weighed average in 2016.

Particulate matter with diameter of 10 um annual weighed average in 2016.

Number of industries based on slaughtering of livestock, conservation and elaboration of meat

. *
Meat industry products in 2020.

Number of industries based on preparation and conservation of fish, crustaceans and molluscs

o %
Fish industry in 2020.

Vegetable industry * Number of industries based on preparation and preservation of fruits and vegetables in 2020.

Animal oils and fats * Number of industries based on manufacturing of vegetable and animal oils and fats in 2020.
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Table 2. Cont.

Covariate (Units)

Description

Bakery industry *

Number of industries based on manufacturing of bakery and pasta products in 2020.

Other food products *

Number of industries based on manufacturing of other food products in 2020.

Animal feeding *

Number of industries based on manufacturing of products for animal feeding in 2020.

Beverage industry *

Number of industries based on manufacturing of beverages in 2020.

Forest industry *

Number of forest industries in 2020.

Leather and fur industry *

Number of industries based on preparation, tanning and dyeing animal skins in 2020.

Garden industry *

Number of industries based on seed conditioning and handling, substrate production and
ornamental plant conservation in 2020.

Land use and Land cover

ilr-Urban areas *

Isometric logratio (ilr) transformation of the percentage of urban areas in a given BHA.
Numerical variable.

ilr-Industrial areas *

Isometric logratio (ilr) transformation of the percentage of industrial, commercial and transport
unit areas in a given BHA. Numerical variable.

ilr-Agricultural areas *

Isometric logratio (ilr) transformation of the percentage of agricultural areas in a given BHA.
Numerical variable.

ilr-Forested areas *

Isometric logratio (ilr) transformation of the percentage of forested and semi-natural areas in a
given BHA. Numerical variable.

* Variables were included in the model separately.

Statistical analysis were conducted using the R language environment for statistical
computing, R version 3.6.2 (12 December 2019) [55].

3. Results

Homogeneity of groups in terms of pollutant concentration levels was assessed using
two independent t-tests (Table 3) for the specific BHA which we had available information
(63 BHA, for NO»; and 91 BHA, for PM;g). Based on the t-tests outcomes, no significant
differences were noted between the annual average of pollutants in 2016 and in 2018/2019
for neither pollutant (NOy; = 0.792, p = 0.428, and PMy; f = —1.559, p = 0.119).

Table 3. Independent t-tests between mean pollutant concentration levels in 2016 and in 2018/2019.

Mean + SD Statistical Results
. 2016 2018/2019
Variables Concentration Levels  Concentration Levels df £ p-Value
NO, 20.23 + 12.163 21.37 + 10.700 246 0.792 0.428
PMyy 21.52 +4.397 20.72 + 5.241 351.37 —1.559 0.119

The adjusted odds ratio (OR) with 95% confidence intervals for the association between
COVID-19 incidence and mortality and the explored covariates are shown in Table 4 and
also represented in Figure S6 (see Supplementary Information section).

Milk products *

Number of industries based on manufacturing of milk products in 2020.

Grain mill industry *

Number of industries based on manufacturing of grain mill products, starches and starch
products in 2020.
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Table 4. Associations between COVID-19 incidence and mortality and the rest of covariates. The main model controlled for demographics, socioeconomics and comorbidity covariables.

Human activity covariates as well as land use and cover covariates were included in the model separately.

Mortality of COVID-19

Incidence of COVID-19

Adjusted Main Model

Odds Ratio (95% CI)

Unadjusted

Odds Ratio (95% CI)

Adjusted Main Model

Odds Ratio (95% CI)

Unadjusted

Odds Ratio (95% CI)

p-Value

p-Value

p-Value

p-Value

Covariates
Main Model

0.990 (0.9551-1.0257)

1.034 (0.9974-1.0724)
1.023 (1.0171-1.0281)
1.547 (1.4556-1.6434)
1.241 (1.1696-1.3166)
0.914 (0.8573-0.9754)
0.908 (0.8511-0.9677)

*%k

1.723 (1.7087-1.7366)
1.018 (1.0171-1.0189)
1.171 (1.1568-1.1848)
1.153 (1.1387-1.1674)
0.998 (0.9849-1.0114)

*kk

1.7577-1.7870)
1.0047-1.0072)
1.1832-1.2150)
1.1116-1.1402)
0.9542-0.9800)
0.9432-0.9688)

Xk

1.052 (1.0481-1.0562)
1.523 (1.4414-1.6093)

ke *%%

*kk

*%%

*%k

Hkk

*kk

*%E

1.346 (1.2702-1.4271)
1.015 (0.9517-1.0815)

*%k *%3k

H%k

%%

1.011 (0.9493-1.0778)
1.038 (1.0336-1.0423)
1.255 (1.2282-1.2827)
1.239 (1.2205-1.2584)

*%

0.994 (0.9806-1.0067)

*%k

*%%

1.007 (1.0006-1.0136)
1.312 (1.2809-1.3435)
1.102 (1.0774-1.1272)

%%

1.016 (1.0153-1.0173)
1.057 (1.0517-1.0627)
1.084 (1.0805-1.0883)

H%F

1.0020-1.0049)
1.1418-1.1545)
1.0153-1.0258)

*%%

*%k

*kk

*%k

*4%

*%%

*kk

*ksk

—_— T T e e —

1.772
1.006
1.199
1.126
0.967
0.956

Sex: Female
Percent > 65
SES A (very high)

SES B (high)
SES D (low)
SES E (very low)
Cardiovascular diseases

1.003
1.148
1.021

Psychological disorders

All-cause cancer

*%3E

1.017 (1.0154-1.0182)
1.050 (1.0451-1.0559)
0.992 (0.9900-0.9938)
0.929 (0.9177-0.9412)
0.923 (0.9154-0.9300)
0.888 (0.8781-0.8991)

*%3k

1.013 (1.0118-1.0151)
1.048 (1.0421-1.0541)

*%3k

1.002 (1.0014-1.0020)
1.009 (1.0077-1.0098)
1.001 (1.0006-1.0014)
0.982 (0.9799-0.9840)
0.985 (0.9839-0.9856)
0.980 (0.9789-0.9813)
1.001 (0.9995-1.0024)
0.944 (0.9397-0.9478)
0.977 (0.9740-0.9801)
0.977 (0.9752-0.9783)
0.999 (0.9975-1.0001)

Hkk

0.9989-0.9996)

*%%

%k

%k

*kk

1.0015-1.0038)
1.0012-1.0019)
0.9911-0.9951)
0.9867-0.9885)
0.9812-0.9836)
0.9982-1.0013)
0.9441-0.9523)
0.9809-0.9873)
0.9829-0.9861)
0.9967-0.9994)
0.9994-0.9996)
1.0011-1.0077)
1.0624-1.0779)
0.9122-0.9329)

*%3E

H%k

0.995 (0.9926-0.9965)
0.964 (0.9536-0.9755)
0.941 (0.9340-0.9478)
0.909 (0.8988-0.9189)

*%E

*%k

*X%

3%

%%

%%

*%3%

*%k

H%k

*%k

*%%

Ak

*kk

*kok

*%%

0.975 (0.9675-0.9822)
0.753 (0.7266-0.7811)

*%k

0.973 (0.9650-0.9806)
0.777 (0.7502-0.8047)
0.974 (0.9589-0.9891)

*%3k

*%3k

*kk

*kk

*%3%

0.938 (0.9236-0.9517)

*kk *%

*kk

*%3E

0.933 (0.9244-0.9412) e 0.910 (0.9019-0.9178)
0.970 (0.9630-0.9768)

0.998 (0.9970-0.9983)
0.945 (0.9278-0.9632)

*%k

*%k

*%%

0.967 (0.9605-0.9739)
0.997 (0.9963-0.9978)
0.907 (0.8911-0.9240)

*kk

*%

*%

*%k

*%

0.999 (0.9994-0.9996)
0.990 (0.9869-0.9931)
1.078 (1.0702-1.0856)
0.922 (0.9119-0.9321)

*%k

H%%

3%

%k

*

*%%

1.110 (1.0776-1.1441) o 1.115 (1.0823-1.1489)
0.709 (0.6649-0.7560)

0.717 (0.6715-0.7649)

*kk

*%k

*4%

*%%

*kk

*kk

T e e T T T T T T T T T

0.999

Human activity
NO,
PMyp
Meat industry

1.003
1.002
0.993

Fish industry
Vegetable industry

0.988

0.982

Animal oils and fats

1.000
0.948
0.984
0.984
0.998

Milk products
Grain mill industry

Bakery industry
Other food products

Animal feeding
Beverage industry

0.999
1.004
1.070
0.922

Forest industry
Leather and fur industry

Garden industry
Land use and cover

*%3k

1.062 (1.0566-1.0669)
1.036 (1.0281-1.0442)
0.925 (0.9200-0.9300)
0.987 (0.9816-0.9925)

H%3k

1.050 (1.0440-1.0569)
1.039 (1.0304-1.0477)
0.936 (0.9303-0.9422)
0.991 (0.9856-0.9971)

*kk

1.013 (1.0114-1.0136)
0.991 (0.9892-0.9926)
0.977 (0.9762-0.9786)
1.012 (1.0111-1.0136)

Hkk

1.006 (1.0048-1.0076)
0.990 (0.9884-0.9921)

ilr-Urban areas
ilr-Industrial areas

ilr-Agricultural areas

*%3%

*%k

6%

%%

*%3E

*%k *%k

*%k

0.982 (0.9806-0.9835)
1.014 (1.0131-1.0158)

*%%

%% *3%

X%

ilr-Forested areas

- non-statistically significant; * p-value < 0.05; ** p-value < 0.005; *** p-value < 0.0005.
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In the main model using demographic, socioeconomic and comorbidity covariables,
BHAs with more percentage of people aged above 65 years, of A (very high) and B (high)
socioeconomic status (SES) showed a positive association with both COVID-19 incidence
and mortality. In these cases, estimates for mortality were greater than for incidence.
Contrarily, BHAs of D (low) and E (very low) SES were associated with decreased levels of
COVID-19 incidence and mortality. However, when tested alone (without adjusting for the
rest of covariates), they showed a non-significant effect.

All three comorbidity variables were positively associated with both COVID-19 inci-
dence (OR 1.003 95% 1.0020-1.0049 for cardiovascular diseases; OR 1.148 95% 1.1418-1.1545
for psychological disorders; and OR 1.021 95% 1.0153-1.0258 for all-cause cancer) and mor-
tality (OR 1.007 95% 1.0006-1.0136 for cardiovascular diseases; OR 1.312 95% 1.2809-1.3435
for psychological disorders; and OR 1.102 95% 1.0774-1.1272 for all-cause cancer). Again,
the estimates for mortality were found higher than for incidence in all three comorbid-
ity variables.

Finally, sex (comparing females to males) showed a positive significant effect on
the incidence of COVID-19 (OR 1.772 95% 1.7577-1.7870) and a non-significant effect on
the mortality (OR 1.034 95% 0.9974-1.0724). It also showed a non-significant effect on
COVID-19 mortality when tested unadjusted.

We found a positive association between COVID-19 mortality and the annual average
of both pollutants (NO, and PMjp). Our model showed that, when the rest of covariates
held constant, an increase of 10 pug/ m3 in NO, and PM;g annual average multiplied the
odds of COVID-19 mortality by 1.138 (95% 1.1245-1.162) and by 1.598 (95% 1.5104-1.6936),
respectively. Regarding COVID-19 incidence, PMjg also showed a positive association
with COVID-19 incidence (OR 1.003 95% 1.0015-1.0038), while NO, showed a negative
association when tested adjusted for the rest of covariates (OR 0.999 95% 0.9989-0.9996).

As to the type of agri-food industries, we found several types that showed a reduced
risk of both COVID-19 incidence and mortality (fish industry, vegetable, animal oils and
fats, grain mill, bakery, other food products, animal feeding, beverage industry and garden
industry). Milk products showed a non-significant effect on COVID-19 incidence and a
negative effect on COVID-19 mortality. In addition, meat and forest industry showed
a positive effect on the incidence of COVID-19 (OR 1.002 95% 1.0012-1.0019 for meat
industry and OR 1.004 95% 1.0011-1.0077 for forest industry) but a negative effect on the
mortality (OR 0.995 95% 0.9926-0.9965 for meat industry and OR 0.945 95% 0.9278-0.9632
for forest industry. However, unlike forest industry, meat industry showed a positive
significant effect when tested unadjusted, as well. Finally, leather and fur industry were
the only type of agri-food industry that were associated with increased levels of both
COVID-19 incidence (OR 1.070 95% 1.0624-1.0779) and of COVID-19 mortality (OR 1.110
95% 1.0776-1.1441).

Regarding LULC data, we found a decreased risk of COVID-19 incidence for ilr-
Industrial areas and ilr-Agricultural areas. In other words, when the relative dominance
of industrial areas and agricultural areas were doubled in a given BHA with respect to
the rest of LULC categories, the odds for COVID-19 incidence was expected to be reduced
by a 0.010% (95% 0.0079-0.0116) and 0.018 % (95% 0.0165-0.0194), respectively. On the
other hand, for ilr-Urban areas and ilr-Forested areas the odds for COVID-19 incidence was
expected to be increased by 0.006% (95% 0.0048-0.0076) and 0.014% (95% 0.0131-0.0158),
respectively. As for the COVID-19 mortality, ilr-Urban and ilr-Industrial areas showed
positive significant effects (OR 1.050 95% 1.0440-1.0569, and OR 1.039 95% 1.0304-1.0477,
respectively), while ilr-Agricultural and ilr-Forested areas showed negative significant
effects (OR 0.936 95% 0.9303-0.9422 and OR 0.991 95% 0.9856-0.9971, respectively)

Main Model Adjustment

For illustrative purposes, the main model adjustment is shown for COVID-19 cases
and deaths instead of the incidence and mortality rate. We noted no important differences
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between the expected values for males and for females for the main model. Thus, we
assessed the model with the total number of cases and deaths (females + males).

Figure 1 shows a scatter plot were the observed number of COVID-19 cases (on the left)
and deaths (on the right) are plotted against the expected number of COVID-19 cases and
deaths predicted by the model. Those BHA which fulfilled the criterion that the difference
between the observed rate and the fitted rate was either >0.03 or <0.03 (for COVID-19
cases), and >0.004 or <0.004 (for COVID-19 deaths) were identified as outliers.

Figure 2. Number of observed COVID-19 cases (left) and the quartile distribution of the number of expected COVID-19
cases predicted by the main model (right).

Figure 1. Scatter plot of the observed number of COVID-19 cases (left) and deaths (right), and the expected value predicted
by the main model, logarithmic transformation has been performed.

The outliers coincide with either northern BHAs with high amounts of forest and
semi-natural areas, low population and high incidence and mortality cases, or with regions
from Central Catalonia where incidence and mortality were also high (“Barcelona 05D”,
“Girona-4”, “Alt Bergueda”, “la Pobla de Segur”, “Sant Quirze de Besora” and “Igualada-2”
for COVID-19 cases, Figure 1 left; and “Cardona”, “Alt Bergueda”, “Capellades”, “Vilanova
del Cami” and “Igualada-2” for COVID-19 deaths, Figure 1 right). As a matter of fact, two
of the observed outliers (“Vilanova del Cami” and “Igualada-2”) were BHAs in which the
early outbreaks of the pandemic occurred.

Additionally, Figures 2 and 3 show the observed number of COVID-19 cases and
deaths (on the left) and the expected number of cases and deaths (on the right) for each
BHA predicted by the main model. In purple, there are represented those BHAs where
the expected value was overestimated (difference between observed cases or deaths and
expected cases or deaths < Q1) by the main model. On the other hand, in orange there are

Figure 3. Number of observed COVID-19 deaths (left) and the quartile distribution of the number of expected COVID-19
deaths predicted by the main model (right).

4. Discussion

This cross-sectional study aimed to evaluate the associations between COVID-19

represented those BHAs where the expected value was underestimated (difference > Q3)
by the main model. In green, those BHAs where the difference between the observed value
and the expected fell within the Q1 and the Q3 are plotted.

incidence and mortality and long-term exposition to air pollution (NO, and PM;) while
adjusting for demographic (sex, percentage of people aged above 65 years), socioeconomic
(quintile division of the Composed Socioeconomic Index) and comorbidity data (percentage
of people presenting cardiovascular disease, psychological disorders and all-cause cancer).
Additionally, for the first time, the contribution of agri-food industry type and the overall
Land Use and Land Cover data was also explored to explain the geographical distribution
of COVID-19 incidence and mortality, leading to novel results.

4.1. Demographics

Registered cases of COVID-19 in Catalonia have a clear female predominance (165,597
cases in females compared to 95,317 cases in males). Compared to other nations, the
proportion of women in the incidence rate is only surpassed by Wales (63.46% vs. 64.18%),
while being still slightly higher than the Netherlands (62.45%), Scotland (62.01%), Northern
Ireland (61.94%), or Sweden (59.37%) [56]. Mortality was also higher among females
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(50.41%), but below what has occurred in Finland (52.00%) and the Republic of Ireland
(50.50%) [56]. Catalonia has a positive small prevalence of female population (50.9%). In
addition, this predominance positively increases for people older than 65 years (57.0%),
while being reversed in 0—24-year-old children (around 48.6%) [57]. With older people
being the most affected by COVID-19 and the younger the least (in the early stages of the
pandemic), women might be expected to carry most of the burden. In addition, research has
highlighted women as composing the majority of the healthcare workforce in the US, and
also with roles requiring more close and prolonged contact with patients [58]. Furthermore,
for employed women or single parents, gender disparities may even be accentuated, as
women are disproportionally responsible for the bulk of domestic tasks, including not only
childcare but also eldercare [59]. These factors might explain our results showing women
having 77.2% more risk of COVID-19 infection than males.

However, other countries with comparable age-gender pyramids (younger male
population and older female population), such as Italy or the United States [60], have not
experienced this phenomenon, following the global trend of male predominance [61,62].

However, we did not find greater risk of COVID-19 mortality for females, as the
number of deaths for females and males was not significantly different (6098 and 5998,
respectively).

Recent studies have pointed out that older age is as a major individual risk factor
for severity of the COVID-19 infection and mortality [58,63]. We detected this effect
in the adjusted and non-adjusted models for both COVID-19 infection and mortality.
Nevertheless, the effect of age was reduced when adjusted for the rest of covariates.

4.2. Socioeconomics

Previous studies have suggested that socioeconomically deprived groups were asso-
ciated with a higher risk of confirmed COVID-19 infection [64]. At the beginning of the
outbreak, some authors suggested that working class people might be more exposed to
the virus, as they were associated with the use of public transport [65]. However, other
reports encouraged its use as the incidence of COVID-19 attributed to public appeared to
be very low [66], even though safety countermeasures should be taken into account [67].
Regarding deprived people, some authors suggest that this group might face several disad-
vantages which make physical distancing a difficult issue [68]. That is, besides showing
greater mobility due to the impossibility of working from home, lower-income population
might tend to visit denser places (grocery stores, religious establishments, etc.), and spend
longer times than upper class populations [69]. In Catalonia, some studies observed higher
incidence of COVID-19 in poorer areas of Barcelona city [70].

Despite all the research showing a greater impact of COVID-19 on lower SES classes,
our results seem to point to the other way around. We found higher incidence and mortality
ratios for higher SES BHAs compared to medium SES. This effect was significant before
and after adjusting for the rest of the covariates. In addition, although a non-significant
effect was found for low (D) and very low (E) SES BHAs when tested unadjusted, when
adjusting them into the model, they showed a significant negative association with both
COVID-19 incidence and mortality. It is possible that differences between SES classes in
Catalonia were not as noticeable as they were in other regions (in the UK, for example [64]).
However, it is also possible that the Composed Socioeconomic Index used to measure the
SES at area level might be weak measurement to detect individual-based characteristics.
Nevertheless, as shown elsewhere [69], using a more detailed unit of analysis (e.g., census
area) or completing SES information with individual-based information [64] might result
in better estimations as to the impact of SES on COVID-19 incidence and mortality.

4.3. Comorbidities

Chronic medical conditions have been linked to disproportionate morbidity due to
SARS-CoV-2 virus [58]. Regarding previous literature on SARS-CoV, some authors have
reported that cardiovascular comorbidities might be the most important components for
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predicting adverse outcome, increasing the risk of death by twice as much as other risk
factors [71]. In a recent meta-analysis [72], the proportion of cardia-cerebrovascular disease
in patients with COVID-19 was found to be 16.4%. A proportion much higher than what
is found in the general population [72]. In this sense, many researchers acknowledge the
consistent association between cardiovascular disease and SARS-CoV-2 [2,73-75].

In another sense, some researchers have reported that people diagnosed with psycho-
logical disorders had significantly higher odds of COVID-19 infection than people without
a psychological disorder, with the strongest effect for depression and schizophrenia [76].
In the same way, these authors reported that the death rate for patients with both a recent
diagnosis of psychological disorder and COVID-19 infection was higher than patients with
COVID-19 infection but with no psychological disorder [76].

Other research also states the role of cancer in aggravating the prognostics of COVID-
19 [73]. In this regard, people with ongoing cancer treatments have shown higher risk
because their immune system is compromised [77].

Our results are aligned with previous literature showing increased risk for both
COVID-19 infection and mortality for those areas with more percent of people suffering
from cardiovascular disease, psychological disorders and all-cause cancer. Similar to
previous literature, we used these variables to control for the general health status of the
BHAs, building our main model. They all showed a positive significant association with
both COVID-19 infection and mortality before and after adjustment. This research adds
evidence that these comorbidity variables are significant predictors.

Additionally, other relevant comorbidities such as obesity [78] or respiratory illnesses
(e.g., COPD [79] and asthma [2]) have also been found to be positively associated with
both infection and mortality for COVID-19. Our study was not able to control for these
variables as we lacked the information. However, future studies might also use respiratory
illnesses to describe the general health statutes of the unit of analysis.

4.4. Air Pollution

The major route of transmission for COVID-19 is through small droplets and aerosols
of different sizes exhaled by an infected person when breathing, talking, coughing or sneez-
ing [29,80,81]. Additionally, some research suggests the rapid spread of the SARS-CoV-2 could
be explained by air pollution-to-human transmission (e.g., airborne transmission) [17-19].
Considering that the data used in this paper was historical (2016), we could not assess the
relationship between short-term exposition to high levels of air pollutants (e.g., PM;g) and
the COVID-19 incidence or mortality and hence, provide evidence neither supporting these
hypotheses nor against them.

In our opinion, the principal pathway linking air pollution to increased levels of
COVID-19 incidence and mortality is the worse health status of more exposed popula-
tions [29,82,83].

Long-term exposure to air pollution has been widely linked to cardiovascular diseases,
respiratory illnesses, psychological disorders and cancer [84-86]. We believe that this might
explain the association between more polluted areas and more severe and lethal forms of
COVID-19 [26,80]. In this sense, areas more chronically exposed to higher air pollution
levels would presumably be in worse health status and thus, showing increasing levels of
COVID-19 mortality. Regarding the incidence of the virus, the positive association between
increased pollutant levels and increased incidence levels of COVID-19 (at least for PM;)
would be explained as during the early stages of the pandemic, people with pre-existent
health conditions, or with more severe symptoms, were more likely to be tested, and thus,
to finally be diagnosed as a new case.

As shown elsewhere [87], NO, and PM; effects on COVID-19 mortality remained
significant after adjusting for socioeconomic, demographic and health-related variables.
When adjusted in the model, NO, showed a negative association with COVID-19 infection
levels. In this sense, other relevant research conducted in Catalonia [88] highlights an
association between NO, and COVID-19 incidence, but the association was only found in
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more polluted BHAs. Our approach of using this data for all Catalonia without stratifying
for more polluted areas might prevent us from detecting the aforementioned effect.

4.5. Forest, Meat, and Leather and Fur Industry

Our results show a significant positive effect of forested areas on COVID-19 incidence.
Although forest industries might apparently be more abundant in BHAs with more forested
areas, its positive effect was only found when it was adjusted, showing a significant
negative effect when tested alone. We hypothesise that, rather than a positive independent
effect for forest industry on COVID-19 incidence, possible associations with some main
model covariates might have contributed to changing the direction of the effect.

In Catalonia, there is a huge production of pork meat, with a degree of self-sufficiency
of 228.73%, that has been constantly growing in recent decades [89]. While swine breeding
is concentrated in Lleida region and Central Catalonia, most slaughterhouses and pork
meat industries are located in Central Catalonia and Girona region [89]. Working condi-
tions in slaughterhouses and meat industries such as low temperatures, high humidity,
overcrowding, physical effort and other things may contribute to amplifying virus viability
and transmission [90]. These conditions might also be found in other types of industries
with high working density, making them prone-to-infection industries. However, apart
from forest industries, we only found animal-related industries, namely the meat industry
and the leather and fur industry, to be related with COVID-19 incidence and mortality
(only the leather and fur industry).

In other coronavirus infections such as MERS, there was a high prevalence of infection
in slaughterhouse workers compared to the general population [91]. COVID-19 transmis-
sion has been reported in the meat and poultry industry [13] and slaughterhouses are now
considered a new front line in the COVID-19 pandemic [92]. In the same direction, local out-
breaks in the fur industry have also been reported, particularly in the mink furriery [93,94].
The fact that this particular economic activity is significantly increasing both the incidence
and the mortality rate in our model makes it plausible that this kind of industry poses a
unique and independent risk for COVID-19 transmission.

In a recent study from the Netherlands [94], the authors reported that minks are
susceptible for SARS-CoV-2. In addition, that infected animals are able to transmit the virus
among each other. The authors also claim that although mink farms are present in other
countries in Europe, China and the US, only the Netherlands has reported SARS-CoV-2
infections in these animals. In our study, we did not identify the animal species of the
leather and fur industries we assessed. However, and given the results shown, more
attention and research should be placed upon this specific industry.

In this sense, it is advised that COVID-19 pandemic should trigger a profound trans-
formation of industrial animal agriculture by improving living conditions and increasing
their space through extensive farming, diversify the protein source industry to increase far
more sustainable plant-based market shares, and empowering the ecological transition of
animal farmers [95].

4.6. Land Use and Cover

LULC data has been shown to be a suitable describer for the environment surrounding
individuals in studies linking the environment to human health [41]. Unlike other envi-
ronmental data sets, they combine both the biophysical (e.g., temperature, humidity, soil
features) and socioeconomic (e.g., political, economic, cultural) drivers of a territory [40,96].
Given the uneven geographical distribution of the virus in Catalonia, we wanted to screen
whether environmental composition of the BHAs (seen as urban, industrial, agricultural
and forested areas) might be related with the impact of COVID-19.

Urban areas and industrial, commercial and transport units are known to be more
associated with air pollution, aerosol emission, human mobility and higher population
density [97]. These factors might be the reasons behind the increased risk of COVID-
19 mortality shown by the two ilr-transformed LUC categories, and an increased risk of
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COVID-19 infection for urban areas. Industrial areas showed a negative association with the
incidence of COVID-19. This suggests that rather than the extension of the LULC category,
the type of industry might be more relevant (as appreciated for agri-food industries).

On the other hand, agricultural areas and forested areas are more related to better air
quality [34,38,98,99], which might lead to higher general health status. That, in turn, might
explain the negative association for both categories with COVID-19 mortality. However,
despite people remaining under lockdown during most of the period analysed in this paper,
agricultural tasks were considered essential services. These tasks mainly include individual
work and are frequently done outdoors. Additionally, agricultural areas tend to be less
populated which increases social distancing. We hypothesise that these aspects might have
prevented regions with higher agricultural areas to easily register COVID-19 cases.

Although forest and semi-natural areas showed a decreased risk of COVID-19 mortal-
ity, the increased risk for COVID-19 incidence was somewhat a surprising result. Forested
areas are widely known for their air purification role [38]. Furthermore, vegetation can also
lessen other determinant variables for aerosol dispersion such as wind speed. In the same
direction, areas with an increased amount of forest are associated with less population
density and hence, more physical distancing. In Catalonia, the BAHs with the highest
amount of forest and semi-natural areas tend to be sparsely populated. Moreover, many of
these BAHs held second residences, mainly belonging to people living in the Metropolitan
Area of Barcelona, who may have commuted to the countryside as soon as the emergency
state was declared [100]. In these regions, few cases can be translated into high incidence
rates, which might explain the increased risk of COVID-19 infection for higher levels of
forested areas.

During the first wave of the pandemic, people remained at home, decreasing human
interactions. In future studies, LULC data might be leveraged encompassing variables such
as population density, air quality, biodiversity and economic activities to further validate
LULC data in scenarios with mobile people.

4.7. Limitations

We implemented a cross-sectional design, so we could not escape from many of
the limitations of ecological regression analysis highlighted elsewhere [46]. One of the
major constraints is that, when using these designs, causal inference cannot be spotted.
Nevertheless, these studies do leverage data for an entire population (Catalonia in our
case) and are able to make conclusions at the area level (e.g., BHAs), which might be useful
for policy-making [46]. Furthermore, the associations detected in this paper can provide
justification for ongoing or future research.

We did not study the evolution of the epidemic taking place later than the 18 May 2020.
As for age groups, we only controlled for the percentage of elder people (>65 years). How-
ever, the advance of the epidemic has shown that many other age groups are vulnerable
and should be considered in further analyses.

Controlling for other pre-existent health conditions such as obesity or respiratory
illnesses and incorporating a greater variety of human mobility data (in scenarios with
mobile people) such as the public transport network may enhance future research.

Although we controlled for significant differences for the pollutant concentration
levels between 2016 and 2018/2019, accounting for the most recent modelling of the NO,
and PM annual average (ug/m?) in Catalonia may have improved the analysis as well.
Furthermore, controlling for other air pollutants such as O3 or PM; 5, which have been
described as relevant in previous research, might enhance future research.

In the same direction, the incapability for acquiring more updated data led us to
use different datasets from different years for all the assessed covariates. However, the
estimations found are consistent with previous research, which adds evidence as to the
independent effect of the covariates assessed.
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5. Conclusions

Recent literature has highlighted the importance of controlling for covariates in studies
linking air pollution to COVID-19. We used a main model with demographic, socioe-
conomic and comorbidity covariates highlighted from previous research as important
predictors. This allowed us to take a glimpse of the independent effect of each explanatory
variable when controlled for the main model covariates. Our findings are aligned with
previous research showing that the baseline features of the regions in terms of health
status, pollutant concentration levels (NO, and PMy), type of agri-food industry and type
of land use and land cover have modulated the impact of the COVID-19 at a regional
scale. A warning is made regarding future pandemics caused by respiratory infectious
diseases. Thus, actions that improve air quality, diversify economic activities and enhance
overall public health should be considered, not only to weaken the intensity of the current
coronavirus, but for other virus-related problems expected to come.

Supplementary Materials: The following are available online at https://www.mdpi.com/article
/10.3390/ijerph18073768 /51, Figure S1: COVID-19 incidence rate, data from the beginning of the
epidemic to the 18th of May 2020, Figure S2: COVID-19 mortality rate, data from the beginning of
the epidemic to the 18th of May 2020, Figure S3: NO, annual weighed average in pug/m? at BHA
level (2016), Figure S4: PM;o annual weighed average in pg/ m? at BHA level (2016), Figure S5:
Reclassification of the 25 categories of the Land Use and Land Cover map of Catalonia (2017) into
the 4 broader categories, Figure S6: Odds ratios and 95% CI. Associations between COVID-19
incidence (in blue) and mortality (in red) and the rest of covariates. The main model controlled for
demographics, socioeconomics, and comorbidity covariables. Human activity covariates as well as
land use and cover covariates were included in the model separately.
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4. Discussion

This section discusses how the results derived from this dissertation contribute to this
specific research field. The main contributions are structured according to the three
research questions (RQ). In addition, a Future Research subsection shows two pieces of
research that could stem from the findings of this thesis.

4.1 Main contributions

In general, all three research chapters conducted contribute to achieving our main goal.
First, we reviewed previous literature relating LULC data to human health. Then, we
performed an in-depth analysis of the LULC data-related limitations stated in the field and
proposed and tested a methodology to take into account the compositional nature of LULC
data. Finally, we showcased a case study screening the effect of LULC data on the incidence
and mortality of COVID-19 in Catalonia during the first wave of the pandemic (2020).

Furthermore, in all three chapters, we have defined a process in which LULC data

can be easily used and analysed to detect the independent effect of different types of
environments on the human health assessed data. We have called this process the Complex
environment procedure, and we present it as our main contribution 4.

4.1.1 Main contribution 1

RQ1: How has LULC data commonly been employed in studies relating LULC data to
human health outcomes?

In RCH1, we showed that the LULC dataset is increasingly used in health studies. However,
most of the reviewed studies linking LULC data to human health use a simplistic approach
regarding the description of the environment (using the dataset to detect percentages of
greenspaces (Bixby et al., 2015; Mitchell and Popham, 2008; Roe et al., 2013). We only
found one article (MacKerron and Mourato, 2013) focused on the effect of the percentages
of LULC categories.

In our review, we also showed that the relevance of the LULC dataset lies in the use of the
LULC categories, which are able to characterise the environment holistically, measuring
both the biophysical and the socioeconomic features. Different types of environment have
previously been suggested to affect human health distinctively (Astell-Burt and Feng, 2019;
de Vries, 2019b; Wheeler et al., 2015; White et al., 2013). Thus, for a more robust and
complete analysis of the effect of the environment on human health, we stress that LULC
categories should be considered in the analysis.

In a nutshell, the findings of this thesis have provided evidence of the principal drawbacks
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of the state-of-the-art methods and widely use practices. They can be summarised as
follows:

Most studies still describe the environment simplistically as the “amount of green”.
Many authors report challenges in dealing with LULC data.

There are no apparent clues about how to measure the living environment.

There is a lack of causal inference between LULC data and human data derived
from a lack of longitudinal studies.

Howne=

These four key points help identify new considerations on which researchers should focus
on.

4.1.2 Main contribution 2
RQ2: How can LULC data be used to better assess its effect on human health?

As we showed in RCH1, many authors reported challenges when dealing with LULC data.
In order to solve these challenges, some original practices were displayed. For instance,
using quantile divisions (Lachowycz and Jones, 2014; Mitchell and Popham, 2008; Mytton
etal., 2012; Wu et al., 2015), or creating equal interval groups (Richardson and Mitchell,
2010). However, in RCH2, we argued that the challenges arise because no research linking
LULC data to human health data considered the compositional nature of LULC data.

We showed that when a vector of proportions of specific LULC categories is calculated for
a geographical region, this vector will always have the sum up constant constraint since the
categories will sum up 1 (Aitchison and Egozcue, 2005; Leininger et al., 2013). To properly
use LULC data in the analysis, we proposed the isometric log-ratio (ilr)-orthogonal
transformation defined by (Miiller et al., 2018), moving the compositions (vector of
proportions of LULC data) from the Aitchison geometry to the Euclidean geometry.

In the RCH2, we demonstrate that the ilr-orthogonal transformation is a feasible and
straightforward step that allows researchers to conduct traditional environmental
epidemiologic analysis offering a considerable improvement regarding of the environment
description and analysis.

Since the ilr-orthogonal transformation was tested in both RCH2 and RCH3, we also
demonstrate that LULC categories can be brought into the analysis without giving rise to
challenges such as multicollinearity (Dumuid et al., 2020). Hence, the focus of the result
discussion is on the many biophysical and socioeconomic features gathered in LULC
category definitions and the pathways linking their effect on human health, offering a
much more complete analysis.

For instance, RCH2 identified a predominantly reduced risk of type 2 diabetes mellitus
(T2DM) for the broad-leaved forest. Among all the forest types used in the analyses, the
broad-leaved forest usually has smooth slopes, comfortable temperatures and is more
accessible. So, the reduced effect might be explained by the fact that environmental
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elements mentioned above can promote physical activity (Coombes et al., 2010; Ho et

al., 2021). Another example was given for urban areas, which showed an increased risk of
asthma for poorer areas. This effect could be explained by the built environment features
of poorer areas, such as increased pollution levels (Bolte et al., 2010; de Vries et al., 2003;
Su et al., 2011). Finally, for waterbodies, results showed a predominantly reduced risk

of anxiety which could align with the theories on the beneficial effect of water for mental
health (Han, 2007; Orians and Heerwagen, 1992; Ulrich, 2016, 2014) (due to, for example,
the negative ions in the atmosphere (Jiang et al., 2018; Perez et al., 2013), water sounds
(White et al., 2010) and even the blue colours (Wan et al., 2020)).

In line with this, in RCH2, we also showed that the pathway framework proposed by
(Markevych et al., 2017) could be leveraged since it comes in handy to discuss the effects
of the biophysical and socioeconomic features of the types of environments on the health
conditions. In this sense, we hypothesised that T2DM could be related to the environment
through the instoration pathway (or the capacity of different environments to promote
physical activity) and the mitigation pathway (regarding air pollution and traffic noise
exposure). Likewise, asthma could be related to the environment through the instoration
pathway (regarding microbial exposure) and the mitigation pathway (regarding air
quality). Finally, anxiety could be related to the environment through the restoration
pathway.

Although it can be argued that the selection of the pathway is not always easy, and in
many cases, many pathways intertwine (Hartig et al., 2014), we showed that the use of the
pathway framework is helpful to contextualize results derived from the analyses.

One significant note from our population-based approach is the following. As we analysed
data representing the entire population of Catalonia (both environmental and health data),
inference information gathered in the p-values has little relevance. This particularity,
highlighted in RCH2, emphasizes the fact that studies using an observational approach
over an entire population are running the model to describe a particular situation at a
given time. Thus, they should consider confident intervals just for the precision of the
estimations.

Finally, when using LULC data, we selected a level of accuracy in the LULC categories low
enough to allow representativity of all categories and high enough to allow the running of
regression modelling. Arguably, the higher the level of accuracy in LULC categories used in
the analysis, the better, but this might imply conducting other analytical techniques which
are highly nonlinear (for instance, black boxes techniques), which was out of the scope of
this research. Instead, we based our contributions on enhancing standard practices in the
field of environmental epidemiology, such as statistical regression analysis.
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4.1.3 Main contribution 3

RQ3: Is LULC data useful to assess the territorial distribution of COVID-19 incidence and
mortality during the first pandemic wave in Catalonia (2020)?

RCH3 provides a practical example to apply all the expertise derived from the first two
RCHs. Thus, RCH3 can be better understood as a case study. Here, we investigated the
effects of air pollutant concentration levels and type of agri-food industry on COVID-19
incidence and mortality in Catalonia at the area level. Completing the analysis, we screened
the effect of four broad LULC categories on COVID-19 incidence and mortality. This
complimentary analysis provided extra insights, which helped us to discuss the territorial
distribution of the COVID-19 impacts.

For instance, we showed that increased air pollution, aerosol emission, human mobility
and higher population density of urban areas and industrial, commercial and transport
units (Hidalgo et al., 2008) could explain the increased risk of COVID-19 mortality.
Likewise, the negative association between industrial, commercial and transport units
and COVID-19 incidence might suggest that rather than the extension of LULC category
per se (which was the variable measured in this complementary analysis), the type of
industry might be more relevant (as appreciated in the results for agri-food industry
types). In the same way, the reduced risk of COVID-19 incidence and mortality for
agricultural areas might be explained because those regions are arguably associated with
smaller populations, which increases social distancing. Finally, forested areas’ landscape
architecture and functionality, associated with a purified atmosphere (Liu et al., 2015),
might explain the reduced risk of COVID-19 mortality shown in forested areas.

In this RCH, we also showed that the results discussion could also leverage the pathway
framework mentioned in RCH2. In particular, the mitigation pathway, which highlights
nature’s capacity to reduce harm. In this sense, the presence of forest could be a protective
factor reducing the risk of COVID-19 lethality, as COVID-19 mortality has been related to
long-term exposure to air pollution (Domingo et al., 2020), and forested areas and green
spaces have been associated with lower levels of air pollutant concentration (Nowak et al.,
2014).

4.1.4 Main contribution 4

The findings and knowledge derived from the three RCHs can be summarized in the
main contribution number 4. Throughout our research, we wanted our contributions

to fit inside the standard structure of traditional environmental epidemiologic analysis
linking LULC data to human health. Thus, the outline procedure which was followed
consisted of three main phases: the environment description (LULC data), the analysis
of LULC data and health data (statistical regression) and the result discussion (from the
regression coefficients assessed in regression modelling). Following this same structure,
we summarized the knowledge acquired in this thesis in what we will call the Complex
environment procedure. This procedure is carried out for each of the aforementioned
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phases, proposing certain features that enhance the assessment of the relationship
between LULC data and human health in population-based studies (see Figure 5).

Phase 1. Phase 2. Phase 3.
Result discussion

Environment Description Analysis

llr-orthogonal
transformation of LULC
data. Assessment of the
independent effect of each
LULC category

LULC categories
defining the types of
environments

Figure 5.
Representation of the proposals of the Complex environment procedure for
each phase of the standard environmental epidemiologic analysis.

Through the Complex environment procedure, we move away from the simplistic
conception of the environment as something “green”. Instead, we conceive it as a complex
entity that integrates many biophysical and socioeconomic features that interact in a
certain way that define but do not limit each type of environment (LULC categories). From
this holistic notion of the environment as a central pillar, for the first phase (environment
description), we propose that the environment is defined using LULC categories with a
level of accuracy determined by the study’s research question. One option is using broader
types of environments, which can be accomplished by grouping the fundamental LULC
categories of the LULC dataset. For instance, in RCH2, we reclassified the prior 23 LULC
categories of the Land Use and Land Cover map of Catalonia (Spain) from 2012 into eight
major groups of categories: agricultural areas, bare land, coniferous forest, broad-leaved
forest, sclerophyll forest, grassland and shrubs, urban areas, and water bodies. In RCH3,
we reclassified the prior 25 categories of the LULC map of Catalonia (2017) into four
broader groups of categories: urban areas, industrial, commercial and transport units,
agricultural areas and forest and semi-natural areas. In both cases, we wanted to broadly
assess the effect of major LULC categories on health conditions as this was adequate for
our research questions.

Another option is using more detailed types of environments. The most specific types

of environments are inevitably restricted to the fundamental categories and the level of
resolution of the LULC map. However, if necessary, researchers could create their LULC
map beforehand by combining specific GIS information that better suits the purpose of
their study. As pointed out elsewhere (Winkler et al., 2021), although LULC data is of the
highest importance, sometimes LULC datasets are not available to fulfil specific research
purposes.
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In RCH1, we showed that a clear environment definition is not usually provided. Thus,
defining the environment through LULC categories ensures that the environment is easily
described beforehand. Hence, a set of biophysical and socioeconomic features is created
for each type of environment, which helps keep track of all the definitions through the
study and allows comparability and replicability.

For the second phase, the analysis of LULC and health data, we propose that the vector of
proportions of LULC categories is transformed using the ilr-orthogonal transformation
proposed by (Muller et al., 2018), which takes into account the compositional nature of
LULC data. Using the transformed data in the analysis, we show that the independent
effect of each LULC category on the health data can be assessed.

Finally, after the data modelling, the results discussion of traditional environmental
epidemiologic studies commonly revolves around the values of the estimated coefficients.
If a simple characterisation of the environment is used (for instance, the amount of green),
the debate only exists at the level of the magnitude of the effect, meaning if it was high

or low. Alternatively, the estimated coefficient can be compared with other studies that
have used the same methods. However, using the Complex environment procedure, we
demonstrate that a more complete result discussion is possible, allowing comparability
with previous literature relating specific biophysical or socioeconomic features to

human health and leveraging the pathway framework (Markevych et al., 2017) to better
contextualize the results.

Using the Complex environment procedure, we prove that LULC data can suitably and
reliably describe the environment since, unlike other environmental datasets, they can
provide a holistic definition, incorporating the nature-human interconnections. We
also show that this perspective aligns with the notion of the environment as a complex
system (e.g., the environmental elements, interactions, scale invariance properties and
hierarchical structure (Ladyman et al., 2013)). Thus, the findings of this thesis may
especially motivate researchers in the field of complex system theory.

Furthermore, through the Complex environment procedure, we demonstrate that a more
thorough analysis of the relationship between the environment and human health can be
carried out, which is especially useful to draw or test hypotheses. Moreover, researchers
can easily apply this procedure to complement their existing analysis, providing insightful
information about the possible effects of biophysical and socioeconomic features of the
types of environments on the analysed health data.

4.1.5 Additional notes

Some authors have stated that multidisciplinary science is required to understand and
predict Global Change’s challenges and that a unifying framework for complexity facilitates
this collective endeavour (Wiesner and Ladyman, 2019). In the same way, in socioecology,
some authors have pointed out that a complex systems approach for socio-ecological
systems is crucial to sustainability research and practice (Epstein et al., 2020; Lu et al.,
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2019; Reyers et al., 2018) and supports solution-oriented research for Anthropocene
problems (Verburg et al., 2016).

Through the procedure presented in this dissertation, we have proved that a thorough
exploration of the environment-human health relationship is possible. This procedure
leverages interdisciplinarity science and allows the conception of the environment through
a complex lens. Thus, it stands out as a reliable tool to analyse Global Change’s challenges
and Anthropocene problems.

Regarding the environment-human health relationship, some authors have highlighted
that this relationship is complex and deserves a distinctive assessment (Arora, 2021; Arora
etal., 2020). In order to acknowledge the complexity of the environment-human health
relationship in this research, we have put into practice the One health approach, which is
based on the principle that human health is not isolated from but is dependent on animals,
plants and the environment’s health.

The outcomes of this thesis are aligned with the seventeen Sustainable Development Goals
(SDGs) from the 2030 Agenda of the United Nations (A New Era in Global Health, 2017),
and tangentially, cover the majority of them. Specially, we cover the SDG number 3: Good
health and well-being, ensuring healthy lives and promoting well-being at all ages; SDG
number 13: Climate action, taking urgent action to combat climate change and its impacts;
and SDG number 15: Live on land, protecting, restoring and promoting sustainable use of
terrestrial ecosystems, sustainably managing forests, combating desertification, halting
and reversing land degradation and halting biodiversity loss.

Furthermore, we hope that the contributions outlined in this thesis serve as the basis
for policy-making, and they might help raise awareness of the importance of nature
conservation, fostering a new perspective based on sustainability in which nature is not
only a set of natural assets at human disposal but the home of all Earth’s living beings,
humans included.

4.2 Future research.

In carrying out this research, we have uncovered two relevant new pieces of research that
stem from the findings of this thesis.

4.2.1. Explore the impact of the living environment characterization

In this thesis, we considered the living environment of individuals to be the same
geographical units of analysis as health data were derived from (the Basic health areas).
However, some research advocates using circular or radial buffer around individuals’
neighbourhood centroids (i.e. ZIP code, census tract) or home addresses (Reid et al.,
2018). Moreover, others generate more complex shapes based on road-network distances
(Higgs et al., 2012). Both the use of administrative zones (as in our case with BHA) and
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the selection of buffer areas are related to two significant problems: the modifiable area
unit problem (MAUP) and the uncertain geographic context problem (UGCoP) (Reid et
al., 2018). The former states that the spatial units of analysis chosen (the spatial resolution
of the dataset and areal units of the spatially aggregated data) affect the analyses’ results
(Kwan, 2009). The latter states that the valid geographical unit affecting health may differ
from the unit of analysis used (Kwan, 2012).

Our research provides the grounds to further develop this subject by analysing the impact
of the buffer size (and thus, the impact of the living environment characterization) on
human health conditions. This analysis will leverage knowledge from the complex system
theory by investigating how LULC data information is distributed within buffer areas and
assessing the distribution pattern in terms of entropy, considering the information within
the buffer and the information between buffers. Following this approach, this research
might also characterize the scale invariance property of geographical systems and reveal
possible clusters of LULC distributions.

4.2.2. Longitudinal study designs

In the absence of longitudinal data for our studies, we conducted cross-sectional designs,
which have proven beneficial to leverage data from vast populations and make conclusions
at the area level. However, they do not allow inference about individual-level associations
and causal inference (Wu et al., 2020). Likewise, most of today’s research exploring the
relationship between the environment and human health follows the above-mentioned
cross-sectional designs.

Longitudinal analysis is considered to allow for causal inference between the studied
variables. Moreover, it allows repeated observations of the same individuals over time,
permitting comparability (Saez et al., 2019). Thus, moving to longitudinal designs would
be highly advisable.

In order to explore the connection between LULC data and human health using a much
robust analysis, we count on longitudinal health data (period 2011-2019) at the smallest
administrative area in Catalunya, the census area. This data come from the Catalan Health
Institute and represents almost 80% of the Catalan territory. In this future study, we will
use Bayesian modelling, accounting for both spatial and temporal autocorrelation, to
detect the causal relationship of LULC data on health outcomes over time. The analysis
will use available environmental data such as LULC data and complement the environment
description using quality-related environmental data such as biodiversity-related spatial
data.
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5. Conclusions

In this research, we have endeavoured to explore to what extent Land use and Land cover
data are a useful tool to assess the effect of the environment on human health outcomes in
population-based studies. Having finished the three research chapters, we can conclude
with the following statements:

e The LULC datais a reliable and suitable environmental data source to describe the
environment holistically, taking into account its complexity.

e Biophysical and socioeconomic features can be distinguished by describing the
environment through LULC data, defining but not limiting the LULC categories.

« Unlike other environmental datasets, the LULC data leverages the hierarchical
organization property of complex systems, adapting the level of accuracy in the
definition of LULC categories according to the study purposes.

e Using the LULC categories in the analysis results in a more complete and robust
assessment of the impact of the types of environments on human health, taking
advantage of both the previous literature and the pathway framework.

e By analysing the impact of LULC categories on health data, researchers can maintain
a parsimonious analysis while qualitatively investigating the impact of many
biophysical and socioeconomic features.

e The proposed ilr-orthogonal transformation is a feasible and straightforward way
to use LULC data information in the analysis by acknowledging its compositional
nature.

» Researchers can easily apply the Complex environment procedure developed
in this thesis to draw or test hypotheses and complement their studies by
analysing the effect of LULC categories on the assessed health data. Furthermore,
applying the Complex environment procedure can facilitate replicability and
comparability among studies relating LULC data to human health data.

 LULC data is steadily being used among researchers analysing the impact of the
environment on human health. Thus, the findings of this research are particularly
adequate for researchers aiming to perform a more comprehensive analysis. Likewise,
researchers in the field of complex system theory can benefit from the findings of
this research. In particular, LULC data’s advantages in analysing the environment as a
complex system.
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