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Abstract

Forest fire spread simulators have been proven to be handy tools when
fighting against wildfire disasters. Due to the necessity of achieving re-
alistic predictions of the fire behaviour in near-real-time, the time spent
performing one fire spread simulation must be limited. When providing
forest fire spread predictions, there are two main considerations: the ac-
curacy of the prediction and the computational time. In the context of
forest fires, part of the forecast error comes from the uncertainty in the
input data. To reduce the impact of this input-data uncertainty, dif-
ferent strategies have been developed. One of these strategies consists
of introducing a new stage where the input parameters are adjusted
according to the actual evolution of the fire. In order to optimize this
adjusting stage, a Genetic Algorithm (GA) is used. This calibration
strategy is computationally intensive and time-consuming. Consider-
ing the urgency in the forest fire spread prediction, it is necessary to
maintain a balance between accuracy and time needed to calibrate the
input parameters. During this thesis, we follow three different strate-
gies to improve the forest fire spread prediction quality and reduce the
execution time.

The first strategy consists of implementing the mixed-precision method-
ology into the forest fire spread simulator. Most scientific codes have
over-engineered the numerical precision required to obtain reliable re-
sults. Therefore, there exists the possibility to get substantial speed-
ups from using a more appropriate choice of precision. We propose
to use a mixed-precision approach to accelerate the simulation of each
individual without sacrificing the accuracy of the prediction. Because
the GA is an iterative methodology, the more iterations we can do, the
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better the solution we find. However, the time spent performing the
forecasted fire behaviour must be served before the real fire evolution;
this implies that the number of individuals per generation of the GA
is determined by time response. If the time execution to simulate an
individual is reduced, we can increase the number of generations and
the number of individuals per generation, so the fire behaviour pre-
diction quality will improve. Our work has concluded that using the
mixed-precision approach can speed up the whole evolutionary predic-
tion system.

The second strategy consists of applying a fine-grained parallelization
to increase the accuracy of the Forest Fires Spread simulator without
excessive increase the execution time. In order to effectively implement
this fine grain parallelization, we exploit the computational capabili-
ties of the GPUs (Graphics Processing Units). Most studies done up to
now with GPUs use forest fire spread simulators based on cellular au-
tomata (CA) because they are easier to parallelize, but these kinds of
simulators suffer from precision lack. An alternative approach to the
CA propagation strategy is the Elliptical Wave Propagation (EWP)
scheme. The EWP approach has been proven to provide more accurate
results than CA, but it incurs higher execution times. Furthermore,
the complexity of the EWP approach results in a challenging problem
to parallelize. Our proposal consists of implementing parallelization on
GPUs to reduce the execution time required to simulate the evolution
of a forest fire, also allowing to improve the accuracy of the results.
In order to properly analyze the speed up obtained when using the
proposed parallel EWP scheme, we compare our GPU implementation
against and OpenMP parallelization using real fire. The obtained re-
sults highlighted that the proposed parallel EWP scheme reduces the
execution time spent in running a forest fire spread simulation and al-
lows to deliver the results in higher resolution what would come of more
accurate results when applying this parallel scheme in real scenarios.
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The last strategy encourages the use of new platforms to help collect
real-time data in the same area where the fire is taking place, which
can profoundly reduce the input data uncertainty. However, if the site
where the fire is taking place has low connectivity, the data cannot be
shipped, so it is the paramount importance to dispose of a platform
to perform the forest spread simulation in situ. The embedded system
resulting would be more efficient to predict the near future behaviour
of the fire near Real-time, close to where the fire is burning. The main
objective consists of applying our EWP GPU implementation with
a low consumption GPU to achieve the execution time requirements
without losing accuracy in the simulations of the fire spread for being
used in real scenarios. To accomplish this objective, we presented a
quantitative analysis of the execution of a forest fire spread simulator
in a embedded system with a low consumption GPU and compared
its performance against a desktop GPU. Moreover, because embedded
systems have different power configurations, the different energy modes
are tested using a real wildfire. Results highlighted that the utilization
of the embedded system allows performing the fire forecast in situ, with
a high resolution in near-real-time. Thus, the results of this study can
be extrapolated to another kind of computational model, taking into
account their specific particularities.

Keywords
Forest Fire, Elliptical Wave Propagation, High Performance Comput-
ing, Mixed-Precision, Graphics Processing Units, Optimization, Em-
bedded Systems
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Resum

Els simuladors de propagació d’incendis forestals han demostrat ser
unes eines realment útils en la lluita contra els incendis forestals. A
causa de la necessitat d’aconseguir prediccions realistes de la propa-
gació del foc en temps gairebé real, el temps per a simular la seva
evolució és limitat. A l’hora de realitzar la predicció de la futura evolu-
ció de l’incendi forestal, hi ha dues consideracions principals: la precisió
de la predicció i el temps de còmput. En el camp dels incendis fore-
stals, gran part de l’error en la predicció és degut a la incertesa de les
dades d’entrada. Per a reduir l’impacte d’aquesta incertesa, s’han de-
senvolupat diferents estratègies. Una d’aquestes estratègies consisteix a
introduir una nova etapa intermèdia en la qual els paràmetres d’entrada
del simulador s’ajusten en funció de l’evolució real de l’incendi. Per a
optimitzar aquesta etapa d’ajust s’utilitza un Algorisme Genètic (AG).
Aquesta estratègia de calibratge és molt intensiva des del punt de vista
computacional i requereix molt temps. Tenint en compte la urgència
en la predicció de la propagació d’incendis forestals, és necessari man-
tenir un equilibri entre la precisió i el temps necessari per a calibrar els
paràmetres d’entrada. En aquesta tesi, seguim tres estratègies diferents
per a millorar la qualitat de la predicció de la propagació d’incendis
forestals i reduir el temps d’execució.

La primera estratègia consisteix a implementar la metodologia de pre-
cisió mixta al simulador de propagació d’incendis forestals. La majoria
dels codis científics han exagerat la precisió numèrica necessària per a
obtenir resultats fiables. Per tant, existeix la possibilitat d’obtenir aug-
ments de velocitat substancials si s’empra una elecció més adequada
de la precisió d’algunes variables. Proposem usar un enfocament de
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precisió mixta per a accelerar la simulació de cada individu sense sac-
rificar precisió en la predicció. Atès que el AG és una metodologia
iterativa, quantes més iteracions puguem fer, millor serà la solució que
trobem. No obstant això, la predicció de la propagació de l’incendi ha
de ser obtinguda abans de l’evolució del foc real; això implica que el
nombre d’individus per generació del AG està determinat pel temps de
resposta. Si es redueix el temps d’execució per a simular un individu,
podrem augmentar el nombre de generacions i el nombre d’individus
per generació, per la qual cosa la qualitat de la predicció obtinguda
millorarà. El nostre treball ha demostrat que l’ús de l’enfocament de
precisió mixta pot accelerar tot el sistema de predicció evolutiva.

La segona estratègia consisteix a aplicar una paral·lelització de gra
fi (fine-grain parallelization) per a incrementar la precisió del Sim-
ulador d’incendis forestals sense incrementar de forma excessiva el
temps d’execució. Per a aplicar eficaçment aquesta paral·lelització
de gra fi, s’aprofiten les capacitats computacionals de les GPU (Uni-
tats de Processament Gràfic). La majoria dels estudis realitzats amb
GPUs fins al moment utilitzen simuladors de propagació d’incendis
forestals basats en Autòmats Cel·lulars (AC) perquè són més senzills
de paralelizar, però aquest tipus de simuladors tenen una baixa pre-
cisió. Un enfocament alternatiu a l’estratègia de propagació CA és
l’esquema basat en la Propagació d’Ona El·líptica (EWP). S’ha de-
mostrat que l’enfocament EWP proporciona resultats més precisos
que CA, però requereix temps d’execució majors. A més, la com-
plexitat de l’enfocament EWP fa que la seva paral·lelització sigui un
problema complex. La nostra proposta consisteix a implementar una
paral·lelització en GPUs per a reduir el temps d’execució necessari
per a simular l’evolució d’un incendi forestal que, al seu torn, permeti
millorar la precisió dels resultats. Per a poder analitzar adequada-
ment la millora del rendiment obtingut en utilitzar l’esquema EWP
paral·lel proposat, comparem la nostra implementació en GPU amb
una paral·lelització en OpenMP utilitzant un incendi real. Els resul-
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tats obtinguts posen de manifest que l’esquema EWP paral·lel proposat
redueix el temps d’execució emprat en l’execució de la simulació de la
propagació d’un incendi forestal i permet obtenir els resultats amb
major resolució, la qual cosa es tradueix en resultats més precisos en
aplicar aquest esquema paral·lel en escenaris reals.

L’última estratègia fomenta l’ús de noves plataformes per a ajudar a
mesurar els paràmetres de l’incendi en temps real en la mateixa zona on
s’està produint, la qual cosa pot reduir considerablement la incertesa de
les dades d’entrada. No obstant això, si el lloc on es produeix l’incendi
té una baixa connectivitat, aquestes dades no poden ser enviades, per
la qual cosa és de summa importància disposar d’una plataforma per
a realitzar la simulació de propagació forestal in situ. El sistema inte-
grat resultant seria més eficient per a predir el comportament futur del
foc en temps real, prop d’on el foc està cremant. L’objectiu principal
consisteix a aplicar la nostra implementació de la GPU EWP amb una
GPU de baix consum per a aconseguir els requisits de temps d’execució
sense perdre precisió en les simulacions de la propagació del foc per a
ser utilitzades en escenaris reals. Per a aconseguir aquest objectiu, pre-
sentem una anàlisi quantitativa de l’execució d’un simulador de propa-
gació d’incendis forestals en un sistema integrat amb una GPU de baix
consum i comparem el seu rendiment amb el d’una GPU d’escriptori.
A més, atès que els sistemes embeguts tenen diferents configuracions
de potència, es proven les diferents maneres d’energia usant un incendi
forestal real. Els resultats posen de manifest que la utilització del sis-
tema embegut permet realitzar la previsió d’incendis in situ, amb una
alta resolució en temps gairebé real. Els resultats obtinguts d’aquest
estudi poden extrapolar-se a una altra mena de models computacionals,
tenint en compte les seves particularitats específiques.

xi



Paraules Clau
Incendi forestal, Propagació d’Onda El·líptica, Computació d’Altes
Prestacions, Precisió Mixta, GPU, Optimització, Sistemes Integrats

xii



Resumen

Los simuladores de propagación de incendios forestales han demostrado
ser unas herramientas realmente útiles en la lucha contra los incendios
forestales. Debido a la necesidad de conseguir predicciones realistas de
la propagación del fuego en tiempo casi real, el tiempo para simular su
evolución es limitado. A la hora de realizar la predicción de la futura
evolución del incendio forestal, hay dos consideraciones principales: la
precisión de la predicción y el tiempo de cómputo. En el campo de los
incendios forestales, gran parte del error en la predicción es debido a
la incertidumbre de los datos de entrada. Para reducir el impacto de
esta incertidumbre, se han desarrollado diferentes estrategias. Una de
estas estrategias consiste en introducir una nueva etapa intermedia en
la que los parámetros de entrada del simulador se ajustan en función
de la evolución real del incendio. Para optimizar esta etapa de ajuste
se utiliza un Algoritmo Genético (AG). Esta estrategia de calibración
es muy intensiva desde el punto de vista computacional y requiere
mucho tiempo. Teniendo en cuenta la urgencia en la predicción de la
propagación de incendios forestales, es necesario mantener un equilibrio
entre la precisión y el tiempo necesario para calibrar los parámetros de
entrada. En esta tesis, seguimos tres estrategias diferentes para mejorar
la calidad de la predicción de la propagación de incendios forestales y
reducir el tiempo de ejecución.

La primera estrategia consiste en implementar la metodología de pre-
cisión mixta al simulador de propagación de incendios forestales. La
mayoría de los códigos científicos han exagerado la precisión numérica
necesaria para obtener resultados fiables. Por lo tanto, existe la posi-
bilidad de obtener aumentos de velocidad sustanciales si se emplea
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una elección más adecuada de la precisión de algunas variables. Pro-
ponemos usar un enfoque de precisión mixta para acelerar la simulación
de cada individuo sin sacrificar precisión en la predicción. Dado que
el AG es una metodología iterativa, cuantas más iteraciones podamos
hacer, mejor será la solución que encontremos. Sin embargo, la predic-
ción de la propagación del incendio tiene que ser obtenida antes de la
evolución del fuego real; esto implica que el número de individuos por
generación del AG está determinado por el tiempo de respuesta. Si
se reduce el tiempo de ejecución para simular un individuo, podremos
aumentar el número de generaciones y el número de individuos por
generación, por lo que la calidad de la predicción obtenida mejorará.
Nuestro trabajo ha concluido que el uso del enfoque de precisión mixta
puede acelerar todo el sistema de predicción evolutiva.

La segunda estrategia consiste en aplicar una paralelización de grano
fino (fine-grain parallelization) para aumentar la precisión del sim-
ulador de propagación de incendios forestales sin aumentar excesi-
vamente el tiempo de ejecución. Para aplicar eficazmente esta par-
alelización de grano fino, se aprovechan las capacidades computacionales
de las GPU (Unidades de Procesamiento Gráfico). La mayoría de los
estudios realizados hasta el momento con GPUs utilizan simuladores
de propagación de incendios forestales basados en Autómatas Celulares
(AC) porque son más sencillos de paralelizar, pero este tipo de simu-
ladores adolecen de una baja precisión. Un enfoque alternativo a la
estrategia de propagación CA es el esquema basado en la Propagación
de Onda Elíptica (EWP). Se ha demostrado que el enfoque EWP pro-
porciona resultados más precisos que CA, pero requiere tiempos de
ejecución mayores. Además, la complejidad del enfoque EWP hace
que su paralelización sea un problema complejo. Nuestra propuesta
consiste en implementar una paralelización en GPUs para reducir el
tiempo de ejecución necesario para simular la evolución de un incendio
forestal que, a su vez, permita mejorar la precisión de los resultados.
Para poder analizar adecuadamente la mejora del rendimiento obtenido
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al utilizar el esquema EWP paralelo propuesto, comparamos nuestra
implementación en la GPU con una paralelización en OpenMP uti-
lizando un incendio real. Los resultados obtenidos ponen de manifiesto
que el esquema EWP paralelo propuesto reduce el tiempo de ejecución
empleado en la ejecución de la simulación de la propagación de un in-
cendio forestal y permite obtener los resultados con mayor resolución,
lo que se traduce en resultados más precisos al aplicar este esquema
paralelo en escenarios reales.

La última estrategia fomenta el uso de nuevas plataformas para ayu-
dar a recoger parámetros del incendio en tiempo real en la misma zona
donde se está produciendo, lo que puede reducir considerablemente
la incertidumbre de los datos de entrada. Sin embargo, si el lugar
donde se produce el incendio tiene una baja conectividad, estos datos
no pueden ser enviados, por lo que es de suma importancia disponer de
una plataforma para realizar la simulación de propagación forestal in
situ. El sistema integrado resultante sería más eficiente para predecir
el comportamiento futuro del fuego en tiempo real, cerca de donde el
fuego está ardiendo. El objetivo principal consiste en aplicar nuestra
implementación de la GPU EWP con una GPU de bajo consumo para
conseguir los requisitos de tiempo de ejecución sin perder precisión
en las simulaciones de la propagación del fuego para ser utilizadas en
escenarios reales. Para lograr este objetivo, presentamos un análisis
cuantitativo de la ejecución de un simulador de propagación de incen-
dios forestales en un sistema integrado con una GPU de bajo consumo y
comparamos su rendimiento con el de una GPU de escritorio. Además,
dado que los sistemas embebidos tienen diferentes configuraciones de
potencia, se prueban los distintos modos de energía usando un incen-
dio forestal real. Los resultados ponen de manifiesto que la utilización
del sistema embebido permite realizar la previsión de incendios in situ,
con una alta resolución en tiempo casi real. Los resultados obtenidos
de este estudio pueden extrapolarse a otro tipo de modelos computa-
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cionales, teniendo en cuenta sus particularidades específicas.

Palabras Clave
Incendio forestal, Propagación de Onda Elíptica, Computación de Al-
tas Prestaciones, Precisión Mixta, GPU, Optimización, Sistemas Inte-
grados
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Chapter 1

Introduction

1.1 Forest Fires

Climate change is arguably the most significant challenge for modern society and
one of the utmost international concerns emerging as a critical problem to human-
ity. The rise in average global temperatures has led to higher spring and summer
temperatures and, significantly, an earlier onset of forest fire season. These warmer
climatic conditions result in a substantial increase in the frequency and intensity
of forest fires around the world. Across continents, uncontrollable and destruc-
tive forest fires are becoming an expected part of the annual calendar. The 2020

wildfire season was a record-setting one for the United States of America, where
52, 113 forest fires burned 8.8 million of acres or 3.6 millions of hectares, [44]. In
Australia, in 2019-2020, forest fire season scorched 18.21 million hectares, and 27

people lost their lives to the wildfires.

Figure 1.1 shows the number of fires between the 1st of June and the 1st of
July of 2021. As we can observe, forest fires are a global problem that affects all
the countries of the globe. Besides, forest fires are responsible for far greater air
pollution than industrial emissions and produce a combination of particles, carbon
monoxide, and other pollutants that can be hazardous to the health of all life on
the planet. Approximately 6, 735 megatons of CO2 have been released into the
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1. INTRODUCTION

Figure 1.1: Number of Forest Fires around the world between 1st of June and 1st
of July of 2021, [31]

atmosphere from wildfires between 1 January and 30 November 2019. Many of
them have made headlines across the globe, including the Amazon fires, Indonesian
fires, the Arctic wildfires, and the Australian bushfires [15].

The need to anticipate potential fire behaviour and its resultant impacts has
led to the development of the field of fire modelling. In the last decades, sev-
eral physical and mathematical models have been developed to provide reliable
forecasting of fire behaviour, trying to optimize firefighting resource management
during outbreaks. Simulators implementing forest fire spread models require sev-
eral input parameters to describe the characteristics of the environment where the
fire is taking place in order to evaluate its future propagation. Furthermore, there
are severe difficulties in gathering precise values of certain parameters at the right
places where the fire is taking place, often because the hazard itself distorts the
measurements.

Currently, exists several fire propagation simulators, based on some physical
or mathematical models, whose main objective is to predict the fire evolution,
[48], [55]. In order to evaluate future fire evolution, these simulators need specific
input data to define the characteristics of the environment where the fire is taking
place. Describing the forest fire scenario is a complex task because it involves data
coming from very different sources such as satellites, weather stations, databases,
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1. INTRODUCTION

and it also requires data computed by complementary models. The information
required to define a forest fire scenario accurately is the following:

• Topographic data: Topographic data provides information about the eleva-
tion, slope, and aspect of the terrain. The elevation map is a regularly
spaced grid of elevation points that discretizes a continuous surface, taking
into account measurements at specific terrain points. The slope is the angle
of incline on a hillside. Finally, the aspect corresponds to the direction in
which a slope faces and relates to the degree of solar exposure.

• Vegetation: The vegetation map, or fuel map, displays the vegetation het-
erogeneity of the area. Each vegetation or fuel type has its own parameters,
such as moisture content, flammability, fuel-bed load and density, and heat
content. These kinds of maps consider a limited group of standard fuels rep-
resenting the great diversity of possible fuels and parameters, [4]. Another
type of map regarding vegetation is called canopy cover map. This map
shows the percentage of tree crowns present in a terrain division.

• Meteorological data: The meteorological variables are a primary factor in
real-time forest fire spread forecast. These parameters have a direct impact
on the fire spread direction and intensity of the wildfire. Only those variables,
which have more relevance in fire propagation, are considered. Temperature
and humidity influence fire intensity, but the most critical variable factor to
consider is wind.

• Fire perimeter : The perimeter of the fire can be obtained from aeronautical
or satellite images; however, in most cases is provided by firefighters working
in the field.

1.2 Forest Fire Spread Simulators

In the last decades, several fire spread models have been implemented in different
computing simulators with the purpose of helping the management and decision-
making procedures. The forest fire spread simulators may be split into three big

3
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categories according to the method used to propagate the front of the fire [50],
[55].

• Cellular Automata: These systems approach fire propagation through
some set of rules across a uniform grid. While fast and straightforward to
implement, they lack precision compared to other approaches. One of these
fire spread simulators are Behave-Plus [5].

• Elliptical wave propagation: This kind of approach follows the idea of
elliptical wave propagation more strictly; that is, after some time step, the
fire shape can be updated by generating ellipses along with the previous fire
shape and determining the new outline. Simulation is done in a continuous
space. FARSITE is one of the simulators that use this approach, [29].

• Level Set Method: In this method, the burned region is defined as a level
set function ψ = ψ(−→x , t) whose values are:

ψ(−→x , t) =

⎧⎪⎨
⎪⎩
ψ(−→x , t) ≤ 0 Burnedn Area
ψ(−→x , t) = 0 Firen Front
ψ(−→x , t) ≥ 0 Unburnedn Area

(1.1)

and it evolves through the partial differential

∂ψ

∂t
= R · ∇ψ(−→x , t) (1.2)

where R is the rate of spread [28]. Equation 1.2 can be solved numerically
given initial and boundary values for ψ, as well as a model, to compute the
rate of speed. An advantage of this method is that the behaviour of fire fronts
arises naturally from the underlying mathematics and thus does not require
the special handling that is needed when an Elliptical wave propagation
method is used. WRF-SFIRE [42] and Spark [53] use this approach.
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1.3 Two-stage methodology

The traditional way of predicting forest fire behaviour takes a particular state of
the fire front as input, as well as the input parameters that are given for this time
instant, as seen in Figure 1.2(a). The simulator then returns the fire evolution
prediction for a succeeding time instant. This classic prediction scheme produces
forecasts that differ to a greater or lesser extent from the real fire evolution.

(a) Classical Prediction Strategy. (b) Two-Stage Dynamic Data Driven Forest
Fire Prediction Strategy.

Figure 1.2: Prediction Methods

The quality results of these simulators depends not only on the propagation
equations describing the behaviour of the fire but also on the input data required
to initialize the model. Unfortunately, it is impossible to obtain the data that
populates these models without error. This data uncertainty is due to the difficulty
in gathering precise values at the right places where the catastrophe is taking
place or because the hazard itself distorts the measurements. So, in many cases,
the unique alternative consists of working with interpolated, outdated, or even
absolutely unknown values. Obviously, this fact results in a lack of accuracy and
quality on the provided predictions. In order to minimize the uncertainty in all
this input data and improve the accuracy of the delivered predictions, a Two-
Stage Dynamic Data Driven Forest Fire Prediction Methodology was developed
[26]. The dynamic data driven approaches for forest fire spread prediction seek to
drive the model forecast using control variables. That is, to enhance basic forest
fire spread simulations with the knowledge obtained from a calibration/adjustment
stage [11] [21]. In this Calibration stage, the obtained simulations are evaluated
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in order to weigh them according to some fitness/error function, which determines
the similitude of a given simulation to the observed real fire propagation. Once
the best scored simulation is selected, the configuration of the control variables
associated with that winner is applied for prediction purposes in the near future,
see Figure 1.2(b). In order to optimize the adjusting stage, a Genetic Algorithm
(GA) is used.

1.3.1 Calibration Stage: Genetic Algorithm (GA)

The most important phase within the Two-stage prediction strategy is the cali-
bration process. For the particular case of forest fire spread prediction, Genetic
Algorithms have been demonstrated to provide good adjustment results [22]. Ge-
netic Algorithms (GA) are a heuristic optimisation method that can be used to
find exact or near-optimal solutions to certain search problems. This algorithm
reflects the process of natural selection where the fittest individuals are selected
for reproduction in order to produce offspring of the next generation.

The GA begins with a set of p individuals x = [x1, x2, ..., xp] which is called a
Population. Each individual of the population is characterized by a fire simulator
input parameter set (scenario) made up of d parameter values, for example, hu-
midity, temperature, cloud cover, wind speed, and wind direction, [57]. GA will
evolve through several iterations to find better input parameters that best repro-
duce the real fire propagation. Each scenario is used to simulate the behaviour of
the fire during one time interval, ti − ti+1, see Figure 1.3(a). Each individual is
simulated, and the resulting forest fire spread is compared to the real observed fire
spread to compute each individual’s error. Then, according to the quality of the
simulations evaluated in the Calibration stage, the individuals are ranked, and the
next generation is obtained applying the genetic operations over the individuals of
the population, see Figure 1.3(b). These operations are:

• Elitism: With this operation, the best j individuals are used directly in the
next generation.

• Crossover : The crossover consists of the exchange of the characteristics of
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two individuals by swapping parts. The crossover operation is in charge of
mixing good blocks that are into different parents and who potentially can
give the children a good score.

(a) Genetic Algorithm applied to forest fire simulations.

(b) Functionality of the Genetic Algorithm to calibrate the input
variables.

Figure 1.3: Genetic Algoritm scheme.

• Mutation: The mutation involves varying a characteristic of the child in
order to obtain individuals with different properties to their parents. The
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mutation is carried out by each of the parts of the new individuals: Some
genes are selected at random, and their value is changed randomly. This
makes it possible to evaluate individuals with very different characteristics.

The Genetic Algorithm is repeated over n generations obtaining an improved
population. The individual that provides the best adjustment among the simu-
lated and real propagation after all iterations is introduced in the simulator with
the real front at time ti+1 to provide a prediction at time ti+2. The adjustment
quality depends on the number of individuals that constitute the population and
the number of iterations. The results highlight that the utilisation of the Two-
Stage Dynamic Data Driven Forest Fire Prediction Strategy with a GA improve
significantly the reliability of the prediction of the Forest Fires behaviour, see Fig-
ure 1.4. Nevertheless, there is a penalty in computing time as more iterations are
needed to find a good individual. Nevertheless, simulation results are helpful in a
prediction context. However, any evolution prediction of an ongoing hazard must
be delivered as fast as possible, not to be outdated.

(a) Forest Fire Spread prediction when the
Classical Prediction Strategy is used.

(b) Forest Fire Spread prediction when the
Two-Stage Dynamic Data Driven Forest Fire
Prediction Strategy is used.

Figure 1.4: Forest Fire Spread Prediction obtained with the Classic and the Two-
Stage Strategies. The black point is the Ignition point of the Wildfire. The blue
color represents the perimeter used in the Calibration stage, and the green perime-
ter represents the final burned area that we want to predict.

This dynamic data-driven forest fire spread prediction system has been designed
to be simulator independent, so any forest fire simulator could easily be included
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in a plug&play fashion. In particular, the forest fire spread simulator used in this
work has been FARSITE ([29]), which is introduced in section 2.

1.3.2 Error Simulation Calculation

The evaluation of the quality of the simulations is a crucial point in the Genetic
Algorithm because the measured error drives the ranking of the individuals. In
previous studies, we have demonstrated that the prediction of the forest fire be-
haviour depends directly on the error function utilized to rang the individuals of
the GA, [16], [17] and [18]. To compute the error of each individual, the landscape
where the fires are taking place is represented as a grid of cells, and each cell will
have assigned a state according to its belonging to either a real burnt area or to
a simulated burnt area. There are four possible states for a given cell: cells that
were burnt in both fires, the real and the simulated fire, (Hits), cells burnt in the
simulated fire but not in the reality (False Alarms), cells burnt in reality but not
in the simulated fire (Misses) and cells that were not burnt in any case (Correct
negatives) [27] [32]. These four possibilities are used to construct a 2 × 2 contin-
gency table, as shown in Figure 1.5. A perfect simulation system would have data
only on the main diagonal.

Figure 1.5: Standard structure of a contingency table.

In the particular problem of forest fire spread simulation, the correct negatives
are ignored since the area of the map to be simulated may vary independently of
the fire perimeter, so they may distort the measurement of the error. To facilitate
data processing, the elements of the contingency table are expressed in the context
of the difference between sets. The description of the conversion of these metrics
is shown in Table 1.1.
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Table 1.1: Elements of the contingency table expressed in the context of difference
between sets.

RealCell Hits+Misses Cells burnt in the real fire
SimCell Hits+ FA Cells burnt in the simulated fire
UCell Hits+Misses+ FA Union of cells burnt in both fires
ICell Hits Cells burnt in real and simulated fires

There are several metrics that compare real and simulated values, and each one
weights the events involved differently, depending on the nature of the problem
[10]. During this research, the difference between the real and the simulated fire
is computed using Equation 1.3.

∈= Misses+ FA

Hits+Misses
(1.3)

The same error function can be expressed in terms of the difference between
sets where the initial fire is considered a point and, therefore, it can be removed
from the equation. The obtained formula is also shown in Equation 1.4.

∈= UCell − ICell

RealCell
(1.4)

The resulting error is used to rank the individuals in a list, from minor error
to higher error. Then, a new generation of individuals is created by applying the
aforementioned genetic operations.

1.4 Objectives

In the area of emergency management, the concepts of urgency and accuracy are
closely related. Fire fighting decisions depend on reliable predictions that must
allow time for planning and applying actions in the field. For that reason, during
this thesis, we focus on three different objectives:

1. The Two-Stage Dynamic Data Driven Forest Fire Prediction Methodology is
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an expensive process in terms of execution time and computing power. For
that reason, the first objective is to reduce the execution time of the GA
in the calibration stage. To accomplish this objective, we implement the
Mixed-Precision Methodology.

2. The prediction of the simulation has to be as accurate as possible. For that
reason, the second objective of our research is to increase the accuracy of the
Forest Fires Spread simulator without excessive execution time penalties. To
achieve this goal, we implement a Fine Grained Parallelization.

3. The last strategy has the objective to reduce the uncertainty of the input
parameters and, at the same time, provides a powerful tool to the firefighters.
This strategy consists of performing the simulation/prediction of the forest
fire spread simulation near real-time and near the fire’s location. To reach
this strategy useful, evaluate the benefits of applying an Edge Computing
solution.
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Chapter 2

Fire Area Simulator (FARSITE)

To carry out this study, we focus on the Fire Area Simulator (FARSITE) forest
fire simulator [29], which has extensively been tested on real fires and produces
successful results. FARSITE has been used for several years for forest fire evolution
simulation, and it has become widely used for operational prediction of fire growth
of active wildfires as well as for modelling in support of planning for potential fires.

FARSITE is a Forest Fire spread simulator based on the Propagation of El-
liptical Wave (EPW), see Section 1.2. This kind of simulator has been proven to
provide more accurate results than the Forest Fire Simulators based on the Cellu-
lar Automata and faster than the Forest Fires simulators based on the Level Set
Method. The main problem with the Forest Fire Spread simulators based on the
EWP is that they cannot distinguish the burned areas from the unburned. The
simulation process (see Figure 2.1) shows the nested logic of the model structure.
The total length of the simulation is broken down into time steps. In each time
step, the fire evolution in FARSITE can be divided into two main processes: the
Fire Front Propagation, and the Fire Front Reconstruction.

Figure 2.2 displays the impact of the execution time distribution of FARSITE.
Previous studies found that for fire with large propagation, the point expansion
represents only around of the 7% of the total execution time, while the fire front
reconstruction is around the 58%, [6]. In the following sections, both algorithms
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2. FIRE AREA SIMULATOR (FARSITE)

Figure 2.1: Fire growth process control used in FARSITE, [30].

are explained in deep detail.

2.1 Fire Front Propagation

As we said, FARSITE is based on the Elliptical Wave Propagation. In this ap-
proach, the perimeter of the fire is divided into a series of points, [40]. To obtain
the evolution of the fire front, an ellipse is generated for each point. The local
characteristics at each point determine the shape of the ellipses. In this way, the
new perimeter is obtained by joining the obtained ellipses (see Figure 2.3).

To compute the propagation of each point perimeter, the model uses the or-
thogonal spread rate differentials (m ·min−1):

Xt =
a2 · cos θ(xs sin θ + ys cos θ)− b2 · sin θ(xs cos θ − ys sin θ)

(b2(xs cos θ + ys sin θ)2 − a2(xs sin θ − ys cos θ)2)1/2
+ c sin θ (2.1)
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Figure 2.2: Percentage of the execution time invested into perform a forest fire
spread simulation.

Yt =
−a2 · sin θ(xs sin θ + ys cos θ)− b2 · cos θ(xs cos θ − ys sin θ)

(b2(xs cos θ + ys sin θ)2 − a2(xs sin θ − ys cos θ)2)1/2
+ c cos θ (2.2)

where xs and ys are the orientation of the point on the fire front in terms of
component differential, in meters. θ is the direction of the maximum spread rate, in
radians, and a, b and c determine the shape of the ellipse from the local conditions
of that point, see Figure 2.4.

The angle differentials xs and ys determine the direction normal to the fire front
for point (xi, yi) in a plane parallel to the ground surface. They are transformed
from their original horizontal values by adding or subtracting a slope correction
Di (m) depending on the aspect ωi (radians) of the ith point:

xs = (xi−1 − xi+1)±Di sinωi (2.3)

ys = (yi−1 − yi+1)±Di cosωi (2.4)

where
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Figure 2.3: Elliptical wave propagation from t1 to t2.

Di =
[
(xi−1 − xi+1)

2 + (yi−1 − yi+1)
2
] 1

2 · cos δi(1− cosφi) (2.5)

φi is the local slope, ωi is the aspect, and δi represents the difference between the
aspect and the orientation of the perimeter segment.

Figure 2.4: Dimensions of elliptical wavelets used in computing fire growth with
equations 2.1 and 2.2. Dimension a corresponds to 1/2 the minor axis (lateral
from the center), b identifies 1/2 the major axis (forward from the center), and c
is the distance forward of the ignition point to the center.

The parameters of the ellipses axes can be computed in the following way:
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2. FIRE AREA SIMULATOR (FARSITE)

a = 0.5 · R +R/HB

LB
(2.6)

b =
R +R/HB

2
(2.7)

c = b− R

HB
(2.8)

where R symbolizes the rate of spread, LB and HB are the lengths to breath ratio
and the head to back ratio respectively expressed by equations 2.9 and 2.10:

LB = 0.936 · e(0.2566·U) + 0.461 · e(−0.1548·U) − 0.397 (2.9)

HB =
LB + (LB2 − 1)1/2

LB − (LB2 − 1)1/2
(2.10)

U is the mid flame wind speed (m · s−1). In this model, the propagation of each
point of the perimeter is done in a continuous space and independently from other
points. The rate of spread, which determines the dimensions of each ellipse, is
calculated using Rothermel’s fire spread model.

2.1.1 Rothermel’s Fire Spread Model

Fire modelling is used to calculate fire behaviour characteristics and subsequent fire
effects. Rothermel’s semi-empirical forest fire spread model [51] is the foundation
of most forest fire simulators. The fire spread model is based on the conservation
of energy principle to a unit volume of fuel ahead of a steadily advancing fire in
a homogeneous fuel bed. The fuel-reaction zone is viewed as fixed, and the unit
volume moves at a constant depth toward the interface. The unit volume ignites at
the interface. The rate of spread is then a ratio between the heat flux received from
the source and the heat required for ignition by the potential fuel. Rothermel’s
model is formulated in the following way:
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2. FIRE AREA SIMULATOR (FARSITE)

R =
IRξ · (−→n +

−→
φ w +

−→
φ s)

ρbεQig

(2.11)

where R represents the Rate of Spread (ROS) in a particular point (M
s
), IR is the

reaction intensity, ξ is the propagation flux ratio, ρb is the ovendry bulk density,
ε is the effective heating number, Qig is the heat of pre-ignition, −→n is the normal
direction to the fire perimeter on that particular point,

−→
φ w is the wind factor and−→

φ s the slope factor. Except
−→
φ w and

−→
φ s, all the remaining factors only depend

on the particular vegetation of the cell. Equation 2.11 can be rewritten as shown
below:

R = R0 · (−→n +
−→
φ w +

−→
φ s) (2.12)

where R0 represents the rate of spread in a particular point with no wind and no
slope.

Slope factor
−→
φ s is based on an evaluation of experimental data, and can be

formulated in the following way:

−→
φ s = 5.275β̇−0.3 · tanφ2 (2.13)

where β is the packing ratio of the fuel bed, which is the ratio of the fuel oven-dry
bulk density(ρb) and the fuel oven-dry particle density (ρp), φ represents the slope
of the terrain in radians.

Wind and slope change the no-wind no-slope propagating flux (IRξ) by expos-
ing the potential fuel to additional convective and radiant heat. The vertical flux is
more significant during wind-driven and upslope fires because it was thought that
flame tilt over the potential fuel would increase radiation and, more significantly,
cause direct flame contact and increased convective heat transfer to the potential
fuel.

Wind factor
−→
φ w was developed from wind tunnel data and wildfire data, and
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2. FIRE AREA SIMULATOR (FARSITE)

is expressed as follows:

−→
φ w = C · (3.281 · U)B

(
β

βop

)−E
(2.14)

where U is the middle flame wind speed. The others factors depends on the fuel
bed:

βop = 3.348 · σ−0.8189 (2.15)

C = 7.47exp(−0.133 · σ0.55) (2.16)

B = 0.02526 · σ0.54 (2.17)

E = 0.715exp(−3.59 · 10−4 · σ) (2.18)

where σ is the surface-area-to-volume ratio (m−1)). The higher its value, the faster
a particle responds to changes in environmental conditions, such as temperature
or moisture. Higher values are also correlated to shorter fuel ignition times and
faster fire spread rates.

The precision of forest fire spread simulators based on the Elliptical Wave Prop-
agation is directly related to the number of points of the perimeter of the fire. The
higher the number of points, the more sensitive to small-scale variations. The
execution time depends on the number of points to expand; hence, high-resolution
simulations have long execution times. Hence, in this two-step methodology, very
high-resolution simulations may be of limited use due to their extended execution
time. However, the propagation of each point is entirely independent of the prop-
agation of other points. For that reason, this algorithm is the best starting point
for apply parallelization techniques.
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2.2 Fire Front Reconstruction

One of the main drawbacks of forest fire simulators based on the EWP is that they
do not intrinsically distinguish burned from unburned areas. If allowed to continue
without detecting burned terrain, the fire front will form artificial complex loops
and knots. These intersections of the fire front must be removed to preserve the
meaningful portions of the fire front.

(a) FARSITE makes a list of pairwise of
points to detect intersections between
perimeter segment.

(b) If a crosswalk is detected, the cross
point is stored as new vertex and the
two inner points are removed

(c) The new point is used to perform
the fire perimeter expansion in the next
time step .

Figure 2.5: Fire front reconstruction algorithm.

The algorithm used in FARSITE to reconstruct the perimeter of the fire re-
quires three preliminary steps, [30]:

1. The vertices of the fire perimeter must be ordered beginning from a vertex
on the outside edge of the fire polygon; this is guaranteed by employing one
of the polygon vertices that defines the farthest extent of the polygon along
a given horizontal axis.

2. A list of pairwise points comparisons is made to identify intersections between
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each perimeter segment and another perimeter segment of a given burned
area. If an intersection is found, its pairs of points are stored in the order
found and designated by the order number of the first vertex on the crossing
spans, as seen in figure 2.5.

3. The intersection list is reviewed to identify multiple intersections within a
given segment. Multiple intersections on a segment are reordered to appear
in the sequence in which they would be encountered starting from the first
vertex.

If intersections are detected during the preliminary steps, the algorithm corrects
the fire polygon by following the outer edge from the first vertex on the polygon.
For an outward burning fire, it proceeds with each perimeter segment (pair of ver-
tices) until an intersection with another segment is encountered. Vertices between
intersections are stored separately to form what will be the corrected fire polygon.
When the process finds one of the intersections identified above, it decides first the
rotation direction produced by the intersection with the new perimeter segment
and second the local shape of the fire front (convex or concave). These criteria are
used to determine the next vertex to be processed (either in the existing direction
around the fire polygon or in the reverse direction), see Table 2.1.

Table 2.1: Criteria used in FARSITE to determine the next vertex to be processed.

Clockwise Counter-Clockwise Linear
Convex reverse direction reverse direction existing direction
Concave reverse direction existing direction existing direction

The intersection point is stored as the next vertex of the new fire polygon.
The process continues until the algorithm arrives at the start and determines the
vertices that now define the outermost fire perimeter. This process is repeated until
there are no remaining unprocessed crosses on the original fire perimeter polygon.
The process of fire front reconstruction is expensive in time and computing power.
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2.3 FARSITE Accuracy Control

In FARSITE there are three different parameters that have a direct impact on the
accuracy of the simulations. They are used to control the spatial and temporal res-
olution of the calculation and, therefore, on the execution time, [30], see Figure 2.6:

• Time Step: The time step is the maximum amount of time that the condi-
tions at a given point are assumed constant so that the position of the fire
front can be projected. The positions of all fires will be projected over this
time step so that possible mergers can be computed. The time step is really
of secondary importance compared with the spatial resolution of the cal-
culations (as determined by the perimeter and distance resolutions below).
FARSITE dynamically adjusts the Time Step to achieve a specified level of
spatial detail determined by the Distance Resolution. The Time Step may
also be reduced to ensure the use of all the time-specific wind data if the
time until the next wind observation is less than that required to achieve the
distance resolution.

• Perimeter Resolution: The perimeter resolution determines the maximum
distance between points used to define the fire perimeter. It is a resolution of
a fire front in the direction tangential to the fire perimeter at each point. The
perimeter resolution controls the detail of the fire front, both in curvature
and in the ability of a fire perimeter to respond to heterogeneous situations
occurring at a fine scale. A low Perimeter Resolution is necessary to make
a spreading fire sensitive to small-scale variations in spatial variables (e.g.
fuels or topography varying on the scale of a few cells) as well as temporal
changes in wind directions.

• Distance Resolution: The distance resolution is the maximum projected
spread distance from any perimeter point. This distance cannot be exceeded
in a time step before new fuels, weather, and topography data are used to
compute the spread rate. It is the resolution in the radial or spreading di-
rection for each point. The distance resolution depends somewhat on the
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perimeter resolution because it cannot exceed that distance because of the
potential for complex crosswalks between points. However, the distance res-
olution can be set shorter than the perimeter resolution. This would give a
greater radial than the perimeter resolution.

Figure 2.6: Graphic representation of time step (black), Perimeter Resolution
(green) and Distance Resolution (red), [30].

The following procedure illustrates how FARSITE uses the Time Step and
distance resolution to control a fire simulation. For a given Time Step:

1. Determine the fastest spreading point on the fire front and calculate the
amount of time required to spread the distance resolution (including accel-
eration from its current state). This will be the new sub-time step required
to achieve the distance resolution if it is less than the original Time Step or
the time interval to the next wind observation.

2. Set the dynamic time step to this sub-time step.

3. Calculate the fire growth for the sub-sub-time step.

4. Calculate the time remaining in the original time step by subtracting the
sub-time step.

5. Repeat steps 1 through 4 until the original Time Step is exhausted.

At the end of sub-time step each fire perimeter is re-discretized to check the

23



2. FIRE AREA SIMULATOR (FARSITE)

Perimeter Resolution. New points must be inserted at the mid-span of a perimeter
segment if the distance between points is greater than the perimeter resolution.

These variables are defined in the Settings input file by the user at the beginning
of the simulation, and they have a direct impact on the accuracy of the forest fire
spread simulations. Nonetheless, the increment of the accuracy of the simulations
has, as a consequence, an increment of the time invested into performing the
simulation.
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Chapter 3

Mixed Precision Methodology

The Two-Stage Dynamic Data Driven Methodology is an expensive process in
terms of resources and execution time. For that reason, the first objective is to
implement a strategy to reduce its requirements.

For historical reasons, most scientific codes, including forest fire spread simu-
lators, have overestimated the needed numerical precision of a model leading to a
situation where simulators use more precision than required without considering
whether this precision is really needed.

In many cases, not all variables in a program need this double-precision. This
over-engineering of the numerical precision code often leads to a situation where
models are using more resources than required without a clear view of the actual
needs of the program. The impact in the application execution of this imple-
mentation decision is far from trivial. On modern computer architectures, the
performance of 32-bit operations is often at least twice as fast as the performance
of 64-bit operations. By using a more appropriate choice of 32-bit and 64-bit
floating-point arithmetic, the performance of some scientific applications was sig-
nificantly enhanced without affecting the accuracy of the results, [38], [13], [43].
For this reason, it is adapting the computational models to use the numerical preci-
sion that is really required could pay back in terms of performance improvements.
One research field that has gained momentum and can improve the performance
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of a model is the use of mixed-precision. The main principle is to review programs
from the observation that, in many cases, a single-precision solution of a problem
can be refined to the degree where double-precision accuracy is achieved. Different
studies have demonstrated the potential benefits that mixed-precision approaches
can provide to many different kinds of scientific codes since it is possible to achieve
substantial speed-ups for both compute and memory-bound algorithms requiring
little code effort and acceptable impact on functionality, [9], [49]. This new way
of managing floating-point precision that outstrips double-precision performance
motivated us to study if using the mixed-precision models allows reducing the exe-
cution time of the forest fire spread simulations without losing accuracy. Therefore,
we shall subsequently introduce the validation process used to determine that the
obtained results applying mixed-precision guarantee the forest fire prediction qual-
ity. Later on, the methodology used to determine the suitable set of variables to
be moved to single-precision is described.

3.1 Validation Process

As we have just mentioned, we need to compare the proposed mixed-precision
model against a reference implementation (double-precision scheme) to ensure not
to modify excessively the quality of the results. For that purpose, the forest fire
area is divided into cells, and each cell will have a meaning according to the values
depicted in figure 3.1. Considering these definitions, then, a contingency table can
be constructed, as shown in Figure 1.5 where a perfect match would have data only
on the main diagonal. Focusing in figure 3.1, the cells around the map that have
been burnt by neither the reference simulation nor the mixed-precision simulation
are considered Correct Negatives (CN). Those cells that have been burnt in both
simulated fires are called Hits. The cells that are only burnt in the Reference
simulation and are not burnt in the mixed-precision simulation are called Misses.
Finally, in the opposite case, the cells burnt in the mixed-precision simulation, but
the Reference simulation does not reach them are called False Alarms (FA).

To verify the proposed mixed-precision implementation, we used three different
validation metrics, [10]. The first metric used is the Bias score or frequency Bias
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Figure 3.1: Events involved in metrics related to model verification.

Table 3.1: Elements of model verification expressed in the context of difference
between sets.

DPCell Hits+Misses Cells burnt in the reference simulation
MPCell Hits+ FA Cells burnt by the mixed-precision
UCell Hits+Misses+ FA Union of cells burnt in both simulations
ICell Hits Cells burnt by both implementations

(BIAS). The BIAS represents the ratio of the number of correct forecasts over the
number of correct observations. Equation 3.1 describes this validation function.
This metric represents the normalized symmetric difference between the real and
simulated maps.

BIAS =
Hits+ FA

Hits+Misses
(3.1)

The same BIAS equation can be expressed in terms of the difference between
sets, see Table 3.1. The Equation 3.2 shows the obtained formula.

BIAS =
MPCell

DPCell
(3.2)

The BIAS indicates whether the simulation has tendency to underestimate
(BIAS < 0 ) or overestimate (BIAS > 0 ). The perfect has a BIAS value equal to
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1.

The second validation metric used is the False Alarm Rate (FAR). The FAR
measures the proportion of the wrong events forecast (see Equation 3.3).

FAR =
FA

(Hits+ FA)
(3.3)

Equation 3.4 shows the FAR validation function in terms of difference between
cell sets.

FAR =
(MPCell − ICell)

(MPCell)
(3.4)

The FAR is sensitive to False Alarms, but ignores the misses. A perfect comparison
has a FAR value equal to 0.

The last metric used to validate our implementation is the Probability of Detec-
tion of hits rate (POD). POD takes into consideration the observed and positively
estimated events. Thus, it represents the probability of an event being detected.
The Equation 3.5 shows the POD validation function in terms of events and dif-
ference between cell sets.

POD =
Hits

Hits+Misses

BIAS =
ICell

DPCell
(3.5)

The POD is sensitive to hits but ignores the false alarms. The ideal value of
the POD is 1.

Once we have described how we shall validate the obtained results when ap-
plying the mixed-precision approach, we introduced the proposed methodology to
determine the set of variables to apply the precision reduction.
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3.2 Mixed-precision Arithmetic

Our objective is to evaluate the sensitivity of the simulation quality and execution
time when changing the variables of FARSITE that can use single-precision. In
this way, we can estimate how the use of mixed-precision affects the Two-stage
Methodology and, thus, the general prediction of the forest fire behaviour. As we
will see, in our particular case, the performance benefice depends on the wildfire
scenario considered. Depending on the local condition where the fire took place,
the reduction of the execution time and the computational cost can vary more or
less. However, in all situations, we obtain some performance improvement.

First of all, we perform a representative simulation without modifying the
precision of any variable. The obtained simulation will be utilized as a reference
against which we will validate any mixed-precision approach taken later on.

The next step is to define an accuracy threshold. As we saw, the validation
functions used to verify the mixed-precision implementation are the BIAS, see
Equation 3.1, FAR, see Equation 3.3, and POD, see Equation 3.5. Table 3.2 dis-
plays the thresholds used for the different metrics when the mixed-precision sim-
ulations are compared against the Reference one. If the computed error complies
with all three thresholds simultaneously, the variable can be defined in single-
precision. If the error does not satisfy any of the thresholds, the variable has to
keep its double-precision.

Table 3.2: Threshold for the different validation metrics used to compare the
Reference and mixed-precision simulations.

1.05 > BIAS > 0.95
FAR < 0.05
POD > 0.95

An individual accuracy test was done for each variable to analyze the global
impact of the mixed-precision implementation. For each test, the precision of
a single variable was reduced, and a new fire spread simulation was done. The
obtained simulation was compared with the reference, and a new BIAS, FAR and
POD were calculated. If the new values do not exceed the thresholds, the precision
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reduction for this variable was accepted. If the error values were beyond the
thresholds limits, the variable maintained its original double-precision definition.

Then, we repeated this process with all variables in the simulator. That is, a
second variable was selected, its precision was reduced, and the validation process
started again. Finally, when all variables were tested, the new forest fire spread
simulator based on a mixed-precision model was obtained.

It is of mandatory importance to indicate that in this work, the fire front
propagation and the fire front reconstruction algorithms are evaluated separately to
have more detailed information on the performance and quality of both algorithms
as they represent the two most relevant parts of the application. We will see that
the performance of each algorithm has a direct impact on the final performance of
the whole simulator.

At the end of the whole process, 266 different variables were tested, 221 for the
fire front propagation algorithm and 45 for the fire front reconstruction algorithm.
We found that nearly the 74% variables of the fire front propagation algorithm
could safely use single-precision. In this case, we observed that the single-precision
variables that have the highest impact in the fire propagation are those variables
involved in the calculation of the rate of spread in a particular point, (R0). For
the fire front reconstruction algorithm, only 15% of the variables could use single-
precision without compromising the accuracy of the prediction. In this case, the
highest impact arises from those variables used to compute the crossovers.

This variable accuracy analysis is costly in time since to determine the necessary
accuracy for each variable; a complete fire propagation simulation has to be done.
Then, the validation values have to be computed. Some studies are working on
different methods to automatically explore the precision needed for real variables
without compromising the accuracy of the results, [33], [56]. Thus, we expect that
this variable precision analysis will be done in a faster way in the future. Anyhow,
its approach’s most remarkable characteristic is that the work invested in finding
the variables that can use a lower precision and the code’s modifications only
have to be done once, but the work done will be applied in all future executions.

30



3. MIXED PRECISION METHODOLOGY

For that reason, when we have to run thousands of simulations, although the
earned performance benefit from a single execution is not prominent; therefore,
the performance benefit obtained will be noticeable in the long run.

This study is a starting point for implementing the mixed-precision approach
on Forest Fire simulators that work with accelerators and low consumption sys-
tems like GPUs and FPGAs. Some studies have demonstrated the the use of
accelerators allows to reduce the execution time without penalizing the accuracy
of the simulations,[52], [45], [25], [19], [35]. Considering GPU platforms, the num-
ber of floating operations per second (FLOPS) in single-precision is around 32
times better than in double-precision. Therefore, the use of 32-bits floating points
representation implies that a theoretical speed up of 32 is possible. Consequently,
the utilization of the mixed-precision in GPUs could lead to a significant execution
time reduction.

3.3 Experimental Study and Results

In order to see how the mixed-precision affects the propagation of the fire, two dif-
ferent studies were carried out. First of all, we validate the methodology described
in the previous section 3.2 by analyzing the mixed-precision effect on a classical
prediction scheme, like described in Figure 1.2(a).

In the second study, we measured the effect of the mixed-precision implemen-
tation using the Two-stage Methodology, see Figure 1.2(b), to reduce the input
uncertainty. In this study, we also want to analyze the possible limitations of the
proposed mixed-precision methodology. As we will see, the actual impact in the
simulation performance will depend on the characteristics of the fire. We will use
two different fire scenarios to describe the performance variations in real cases.
We have selected as study cases two different events belonging to the database of
EFFIS (European Forest Fire Information System) [23].

In this research, a population size of 128 individuals was used, and the num-
ber of iterations (generations) was set to 10. All calculations reported here were
performed using CPU Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz, with six
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cores. All the individuals of a single generation of the Genetic Algorithm are sim-
ulated in parallel. For this analysis, we assess the accuracy of the output when
the mixed-precision is utilized compared to the reference simulation.

Figure 3.2: Digital Elevation map of Arkadia fire area and the three different
perimeters of the forest fire. The Perimeter 1-red was used as the initial perimeter
(ignition Perimeter), Perimeter 2-green was used in the calibration stage and the
perimeter to be predicted is Perimeter 3-blue, [23].

3.3.1 Fire Front Reconstruction Oriented Fire Study: Arka-

dia Case

As first study case, we have retrieved the information of a past fire that took place
in Greece during the summer season of 2011 in the region of Arkadia. The forest
fire began on August 26th, and the total burnt area was 1, 761 ha. In Figure
3.2, we can see the fire perimeters at three different time instants: t0 (August
26th at 09:43am), t1 (August 26th at 11:27am) and t2 (August 27th at 08:49am).
The grid size of this fire is 100m x 100m. The reason for choosing this fire is
because characteristics of the terrain benefit a slow propagation of the fire front,
and the final spread is relatively modest. So the time invested in propagating the
perimeter points is paltry. Besides, the complexity of the terrain implies that as
the fire progresses, it could form a large number of complex loops and knots to
be solved. Therefore, the weight of the Fire Front Reconstruction is much higher
than the point expansion algorithm.
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Considering the whole execution, this case represents the worst condition case
for our methodology.

Methodology Validation

First of all, we apply the classical prediction scheme for simulating fire behaviour.
In this part, we perform the simulation of the burned area using a Perimeter
resolutions, see Section 2, of 100 meters. The main objective of this section is
to validate the methodology described above, analyzing the impact of the mixed-
precision on the fire front evolution and the performance benefit.

Table 3.3 displays the comparison of the real fire front evolution against the
propagation of the simulated fire when the double-precision and the mixed-precision
implementations are employed. When considering the different validation metrics,
BIAS, FAR, POD, the values are very close for both implementations. Therefore,
we can confirm that the two implementations reproduce real fire behaviour simi-
larly. Nonetheless, the computed ERROR is slightly higher for the mixed-precision
implementation.

Table 3.3: Results of the comparison of both simulations (double and mixed-
precision) with the final perimeter of the real fire. RealCell represents the cells
burnt in the real fire and SimCell represents the cells burnt by the simulation.

double-precision mixed-precision
RealCell 1, 305 1, 305
SimCell 1, 571 1, 566
UCell 2, 136 2, 136
ICell 740 735
BIAS 1.203 1.200
FAR 0.529 0.531
POD 0.567 0.563
ERROR 1.069 1.074

Figure 3.3 shows the obtained fire propagation when mixed-precision (red)
and Reference (green) are utilized. We see that both simulations reproduce the
behaviour of the real fire alike, see Figure 3.3(a).

Our objective is to validate the mixed-precision implementation; therefore, we
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(a) Forest fire spread simulation. (b) Detail of the difference between
both obtained simulations.

Figure 3.3: Simulation of the Arkadia’s fire. The initial perimeter is drawn in red.
In b, the dark red line indicates the fire propagation when mixed-precision is used,
the dark green line indicates the fire propagation when we use Reference. The light
blue represents the final perimeter of the fire. The Perimeter Resolution is fixed
to 100 meters.

are more interested in comparing the simulation when mixed-precision is used with
the reference simulation. We observed that the difference between both simula-
tions is not very significant, see Figure 3.3(b). For short propagation times, the
difference between both simulations is negligible. However, this difference increases
for higher propagation times. Nonetheless, the maximum difference between both
perimeters is around a few hundred of meters.

Due to the input data uncertainty, when a forest fire is simulated, it is impos-
sible to reproduce the exact behaviour of the real fire. As we are more interested
in the evolution tendency of the fire front, a maximum difference of hundreds of
meters between fire perimeters is usually acceptable.

Table 3.4 shows the comparison between both simulations in terms of the dif-
ference between sets. We see that the number of cells burnt by both simulations is
very close. In this case the number of FA is 8 cells and the number of Misses is 7

cells. These values are hardly significant in front of the 1, 565 cells burned by the
reference simulation. When the validation values are computed, we obtain a BIAS
and a POD very close to one and the FAR is equal to 0.04. The obtained results
suggest that the use of mixed-precision does not excessively modify the simulation
of the fire evolution.
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Table 3.4: Obtained results of the comparison between the Reference simulation
of the evolution of the fire and when using mixed-precision with a Perimeter Res-
olution equal to 100 meters.

DPCell 1, 565
MPCell 1, 566
UCell 1, 573
ICell 1, 558
BIAS 1.001
FAR 0.004
POD 0.995

Figure 3.4 summarizes the execution time for the reference simulation and for
the mixed-precision implementation. In Figure 3.4(a), we describe the execution
time measured for the different scenarios of the reference fire. In this case, the
performance benefit is not very high when the mixed-precision is used. In this
scenario, we obtain a speed up of 1.01. Figure 3.4(b) show the execution time of
point expansion and Fire Front Reconstruction algorithms. It is easy to see that
the fire front reconstruction algorithm takes more time than the point expansion
algorithm. We can see that the execution time for the two implementations is
very similar. The use of mixed-precision reduces the execution time of the point
expansion into 0.01 seconds.

(a) Execution time of the two different imple-
mentations for all the simulation process.

(b) Execution time of the point expansion and
fire front reconstruction algorithms.

Figure 3.4: Performance of two different implementations, the double-precision
reference (red column), the mixed-precision (blue column) with a Perimeter Res-
olution equal to 100 meters.
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As shown, the use of the mixed-precision methodology does not compromise
the simulation of fire propagation; the quality of the simulation is maintained.

The performance impact detected in propagation is much better, but this im-
pact is much more remarkable in the point expansion algorithm than in the fire
front reconstruction.

Two-Stage Methodology

After validating our methodology and seeing that the mixed prediction utilization
does not compromise the simulation’s correctness, we now want to analyze the
precision sensibility of the Two-Stage methodology to calibrate the fire’s input
parameters. The Perimeter resolution is equal to 100 meters in all cases. Our ob-
jective is to evaluate whether using the mixed-precision methodology can improve
the Two-Stage Methodology’s performance while keeping the same prediction ac-
curacy.

As we said, the Two-stage Methodology consists of two different operations: the
calibration stage, where the best individuals are selected, and the prediction stage,
where the best individuals are used to perform the prediction of the fire behaviour.
We present and compare two implementations: with double and mixed-precision
using the same individuals in both cases. In a second analysis, to evaluate in detail
the impact of the mixed-precision usage, we select the 5 individuals with the lowest
average error to perform 5 different fire predictions.

To select the best individuals, the place where the fire is taking place is divided
into cells, see Section 1.3.1. then we use a contingency table, see Figure 1.5,
and the error Equation 1.4. The individuals with the lowest computed error are
selected as the best individuals. Figure 3.5 reports the evolution of the error of the
simulation per each generation during the calibration stage. As we can observe,
the evolution of the computed error reveals an improvement of the reproduction
of the real wildfire, generation after generation. Besides, we cannote that the
computed error for both implementations is very close. These values confirm
that the reference simulation and the obtained when the mixed-precision is used
reproduce the behaviour of the real fire similarly. We detected that the difference
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Figure 3.5: Error Simulation computed using Equation 1.4 when double-precision
(red) and mixed-precision (blue) are used.

between the output fire perimeters is too small, a few meters; for that reason, it
is not possible to distinguish the difference between the fire propagation of both
implementations in the calibration stage. In this scenario, the five best individuals
tend to underestimate the real fire perimeter.

Figure 3.6: Computed error using Equation 1.4 for the prediction of the Arkadia’s
fire when double-precision (red column) and mixed-precision (blue column) are
used.

After the calibration stage, we select the same five individuals for both double
and mixed implementations to evaluate the impact of the mixed-precision imple-
mentation of affecting the calibration algorithm. Figure 3.6 plots the error for the
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different fire spread predictions when the five best individuals are used in both
implementations. We can see that the calculated error is very similar in all cases
for both implementations. In the first and the fourth prediction, the difference of
the computed error is minimal. The highest difference, 0.93, is obtained when the
fifth individual is used. This individual tends to overestimate most of the prop-
agation of the fire front. In Figure 3.7, we can see the difference of the fire front
between the reference simulation (green) and the mixed-precision (red) of the fifth
individual. We observe that the difference between both implementations is more
evident as the spread of the fire is extended. This is because, for short distances,
the propagation difference between both implementations is negligible. Though,
as the propagation of the fire increases, this difference is accumulative; therefore,
for the most extended fire fronts, the difference between both perimeters is more
significant. However, when a forest fire is simulated, it is impossible to reproduce
the exact behaviour of the real fire, which is why we are more interested in the
general fire evolution tendency. In this fire evaluation context, a difference of a
few meters between fire perimeters is usually acceptable.

Figure 3.7: Obtained simulations of the Arkadia’s fire after prediction stage when
the fifth individual is used. The initial perimeter is drawn in green area. The dark
red line indicates the fire propagation when mixed-precision is used, thedark green
line indicates the fire propagation when we use double-precision. The light blue
area represents the final perimeter of the fire.
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Table 3.5: Obtained results of the comparison between the double-precision predic-
tion of the fire spread and when mixed-precision using the Two-stage Methodology.

1st Pred. 2nd Pred. 3th Pred. 4th Pred. 5th Pred.
DPCell 5, 907 6, 042 5, 850 5, 563 7, 055
MPCell 5, 935 6, 076 5, 862 5, 578 7, 086
UCell 5, 961 6, 100 5, 912 5, 607 7, 146
ICell 5, 881 6, 018 5, 800 5, 534 6, 995
BIAS 1.004 1.005 1.002 1.002 1.004
FAR 0.009 0.009 0.010 0.008 0.012
POD 0.996 0.996 0.991 0.995 0.991

Table 3.5 shows the comparison between simulations in terms of the difference
between sets. We see that the number of cells burnt by both simulations is very
close. For all individuals the difference between DPCell and MPCell is less than 35

cells. The computed error of the best individual is 0.9 for both implementations,
while the error for the classic prediction scheme is higher than 1.06, even we use a
higher Perimeter resolution. In this case, the computed validation values for the
best individual are BIAS= 1.004, FAR= 0.009 and POD= 0.996. A BIAS value
higher than one means that the mixed-precision implementation burns more area
than the reference simulation.

These results mean that the difference between both simulations is shallow.
When a wildfire is simulated, the most basic information is related to the evolu-
tion tendency of fire behaviour, which is the most relevant information that the
firefighter can use to tackle these hazards efficiently. For this reason, we can con-
firm that the mixed-precision implementation does not excessively influence the
quality of the prediction when the Two-Stage Methodology is used.

It is time to see the impact on the reduction of the execution time. Figure 3.8
displays the execution time invested in achieving a single prediction using the Two-
stage Methodology in a forest fire spread. In Figure 3.8(a) we detail the execution
time per generation in the Calibration Stage. Here we have to notice that the
execution of all individuals is done in parallel, so the slowest individual determines
the execution time of the generation. It shows that the impact of mixed-precision is
not very significant in terms of execution time. The best improvement is obtained
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in the third generation, where we compute a speed up of 1.14. Figure 3.8(b)
indicates the execution time to simulate each individual of the Prediction Stage.
As in the calibration stage, the repercussion of the mixed-precision methodology
shows a modest performance improvement in terms of execution time. However,
we can see that the mixed-precision methodology reduces the execution time of
the last individual, which represents the longest prediction, in 5.15 seconds.

(a) Maximum execution time invested to simu-
late a generation of the Calibration Stage.

(b) Execution time spent to perform the pre-
diction of the best individuals.

Figure 3.8: Execution time comparison of the Two-stage Methodology for two
different implementations, reference and mixed-precision in Arkadia’s fire.

Figure 3.9: Execution time of the Two-stage Methodology for two different imple-
mentations, reference and mixed-precision in Arkadia’s fire.

As we said at the beginning of this section, the simulation of each individ-
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ual of a generation is done in parallel. Therefore if all individuals are executed
simultaneously, the time invested in applying the Two-stage Methodology is de-
termined by the slowest individual of each generation and the slowest individual
of the prediction stage. Figure 3.9 compares the execution time invested in the
calibration stage (lower green) and the prediction stage (upper blue) for the the
two different implementations: double and mixed-precision. The time invested in
the calibration stage is the sum of the execution time of the slowest individual of
each generation. The execution time reduction is 16.92 seconds, 11.77 seconds for
the Calibration Stage, and 5.15 for the Prediction Stage. The speeds up are 1.03

for Calibration Stage and 1.06 for the Prediction Stage, respectively. The speed
up of the whole process is 1.04. In this case, the use of mixed-precision produces
a modest execution time reduction of the Two-stage Methodology.

Table 3.6 compares the error of the classic scheme and the Two-stage Method-
ology. In an emergency, the utilization of the Two-stage Methodology, can only
produce a single prediction, the prediction for the best individual after the cal-
ibration stage. For that reason, table 3.6 uses the computed error of the best
individual (the first of the Figure 3.8(b)).

If we compare the performance of both implementations, see Figures 3.4(a)
and 3.9, we observe that the Two-stage Methodology is much slower than the
classic scheme; however, its prediction improvement justifies this execution time
increment.

Table 3.6: Comparison of the computational error, see Equation 1.4, for the Classic
Scheme and the Two-stage Methodology.

Double-precision Mixed-precision
Classic Scheme 1.069 1.074
Two-Stage Methodology 0.896 0.904

As we saw in the classic scheme, the quality of the forest fire spread simulation
is not affected by the utilization of the mixed-precision strategy. Nevertheless,
the reduction of computational cost and execution time is relatively modest. The
collected data reveals that the scenarios, like the Arkadia’s fire, where the char-
acteristics of the terrain benefit a slow evolution of the fire spread and to form a
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large number of complex loops and knots to be solved, the fire front reconstruction
algorithm has a higher weight than the point expansion algorithm. Therefore, the
performance improvement is meager. This is due to the fire front reconstruction
algorithm representing around the 60%, see Figure 2.2 of the execution time; there-
fore, it is a significant bottleneck that limits improvement of the point expansion
performance. However, when we analyzed which variables can be expressed in
single-precision, we observed that only 15% of the variables used to reconstruct
the perimeter of the fire could use single-precision without compromising the sim-
ulation of the fire spread.

3.3.2 Point Expansion Oriented Fire Study. Nuñomoral

Case

The second study case took place in 2009 in the region of Nuñomoral, Spain. The
forest fire began on July 25th, and the total burnt area was 3, 314ha. In Figure
3.10, we show the fire perimeters at three different time instants: t0 (July 26th
at 11:27am), t1 (July 27th at 10:32am) and t2 (July 28th at 11:15am). As in
the first scenario, the grid size of this fire is 100m X 100m. The main reason to
pick up this fire is that the characteristics of the place where the fire took place
are very different from the Arkadia’s fire. In this case, the nature of the terrain
fostered the fast propagation of the fire spread. The burned area is wider than
in the Arkadia’s fire, so we have a larger number of perimeter points. Then, the
time invested in point expansion is more relevant than in the previous study case.
Also, the complexity of the terrain is lower than in the previous scenario, which
reduces the possibility that the fire front forms complex loops and knots. That
combination of these factors: velocity and extension, produces an increment of
the total weight of the point expansion in the global computation; therefore, the
benefits of mixed-precision could produce a significant performance improvement.

Unlike the previous case, we only present the obtained result when the Two-
stage Methodology is applied, see Figure 1.2(b), as the procedure used to validate
the methodology is the same as the presented in the previous section, 3.3.1. As in
Arkadia’s fire, the obtained results show that the quality of the forest fire spread
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Figure 3.10: Digital Elevation map of Nuñomoral fire area and the three different
perimeters of the forest fire. The Perimeter 1 - red was used as initial perimeter
(ignition Perimeter), Perimeter 2 - green was used in the calibration stage and the
perimeter to be predicted is Perimeter 3 - blue, [23].

simulation is not compromised when the mixed-precision is used.

Two-Stage Methodology

In this section, we apply the Two-stage Methodology to calibrate the input param-
eters of the fire. As in the case of Arkadia’s fire, to effectively compare the double
and mixed-precision implementations, the same individuals are used in both cases.
The Perimeter resolution is fixed to 100 meters. After the calibration stage, the
5 individuals with the lowest error value are used to perform fire predictions. The
error of each simulation is calculated using Equation 1.4.

In Figure 3.11, we can see the evolution of the computed error of the simulation
through the generations of the calibration stage. As we can see, the progression
of the computed error reveals that the simulated perimeter of the fire looks more
and more like the real fire perimeter. Moreover, we can see that the error is lower
for the double-precision simulation than the mixed-precision. Nevertheless, at the
end of the calibration process, the error of the tenth generation is very close for
both implementations. We observed that the two simulated fire fronts are very
similar.
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Figure 3.11: Error Simulation computed using Equation 1.4 when double (red)
and mixed-precision (blue) are used.

At the end of the whole calibration process, the same best individuals are
selected for the double and mixed-precision implementations. For this analysis, we
can assume that the mixed-precision does not alter the selection of the individuals
of the calibration process. Figure 3.12 reveals the computed error of the predictions
when the same five best individuals are used in both implementations. We see that,
in all predictions, the error for both implementations is very close. In the example,
we will use the third individual, as the prediction produces the lowest error.

The maximum error difference is obtained with the second individual in this
scenario. Figure 3.13 details the difference of the fire evolution between double
(green) and mixed-precision (red) when the second individual is used. We can
see that the difference between the perimeter evolution of both implementations
increases as the extension of the fire widens. As we said, the reduction of the
precision produces a slight difference when Rothermel’s model is applied, see 2.11.
This difference is accumulative and increases with the velocity of the propagation
of the fire front. We notice that in some parts of the maps, the perimeter of the
fire spreads very fast.

Table 3.7 compares the five fire predictions when the two implementations are
used in terms of the difference between sets. It shows that the number of cells
burnt by both simulations is very close. In this case, the computed validation
values for the best individual are BIAS= 1.012, FAR= 0.018 and POD= 0.993. A
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Figure 3.12: Computed error using Equation 1.4 for the prediction of the Nuño-
moral’s fire when double-precision (red) and mixed-precision (blue) are used.

Table 3.7: Obtained results of the comparison between the double-precision predic-
tion of the fire spread and when mixed-precision using the Two-stage Methodology.

1st Pred. 2nd Pred. 3th Pred. 4th Pred. 5th Pred.
DPCell 2, 569 3, 217 1, 666 3, 585 1, 798
MPCell 2, 599 3, 224 1, 666 3, 579 1, 802
UCell 2, 616 3, 332 1, 666 3, 648 1, 807
ICell 2, 552 3, 121 1, 666 3, 516 1, 793
BIAS 1.012 1.002 1.000 0.998 1.002
FAR 0.018 0.032 0.000 0.017 0.005
POD 0.993 0.970 1.000 0.980 0.997

BIAS value higher than one means that the mixed-precision implementation burns
more area than the reference simulation. We can see that the mixed-precision
implementation produces the same prediction of the fire behaviour when the third
individual is used. Its validation values are BIAS= 1.000, FAR= 0.000 and POD=

1.000. In this case, the propagation of the fire front is not very extended. The
computed validation values confirm that the difference between both simulations
is low.

A consequence of the mixed-precision implementation is that, in some circum-
stances, the fire perimeter shape is simplified due to its lower accuracy. This
outcome has an indirect repercussion in the execution time. When the shape is
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Figure 3.13: Obtained simulations of the Nuñomoral’s fire after prediction stage
when the second best individual is used. The initial perimeter is drawn in green
area. The dark red line indicates the fire propagation when mixed-precision is used,
the dark green line indicates the fire propagation when we use double-precision.
The light blue area represents the final perimeter of the fire.

smoother, see Figure 3.13, we need a fewer number of points to represent the
fire front; therefore, the time consumed by the point expansion and the fire front
reconstruction algorithms decreases, which generates an execution performance
improvement. However, the computed error increases in these cases but within
the acceptable parameter range of values. As we mentioned above, when a wildfire
is simulated, the most basic information is related to the evolution tendency of
fire behaviour, which is the most relevant information that the firefighter can use
to tackle these hazards efficiently. Therefore, we confirm that the mixed-precision
implementation does not significantly reduce the prediction quality when the Two-
Stage Methodology is applied.

In Figure 3.14 we illustrate the execution time when the Two-stage Methodology
is used to predict the forest fire behaviour. Figure 3.14(a) displays the execution
time per generation in the calibration stage. As we commented, the execution
time of a generation is determined by the slowest individual. This figure shows a
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(a) Maximum execution time invested to simu-
late a generation of the Calibration Stage.

(b) Execution time spent to perform the pre-
diction of the best individuals.

Figure 3.14: Execution time of the Two-stage Methodology for two different im-
plementations, the reference and the mixed-precision in Nuñomoral’s fire.

considerable reduction in the execution time when the mixed-precision is employed.
The highest performance improvement is obtained in the third generation, where
the execution time is reduced a 53.5% when the mixed-precision is applied, which
represents a speed up of 2.15. The worst performance improvement is obtained in
the first and second generation, where the computed speed up is around 1.18 in
both cases. Figure 3.14(b) illustrates the execution time of each individual from
the prediction stage. As in the calibration stage, the usage of mixed-precision
shows a significant reduction of the execution time. The third best individual
obtains the maximum speed up, 1.44. If we focus only on the best individual, the
speed up calculated is 1.38, representing a substantial performance improvement.
Therefore, we can confirm that the use of mixed-precision methodology reduces
the execution time.

Figure 3.15 details the execution time invested in completing a forest fire spread
prediction when the Two-Stage Methodology is applied. The green column repre-
sents the execution time of the calibration Stage and the blue column the predic-
tion stage for the two different implementations: double and mixed-precision. We
can see that, in this fire scenario, the reduction of the execution time is notable,
374.12 seconds, 350.85 seconds for the Calibration Stage, and 23.27 for the Predic-
tion Stage, which represents an improvement around the 27.3% of the execution
time, 27, 4% for the Calibration Stage and 25.1% for the Prediction Stage. The
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Figure 3.15: Execution time of the Two-stage Methodology for the different sce-
narios: double and mixed-precision in Nuñomoral’s fire.

computed speeds up are 1.40 for Calibration Stage and 1.33 for the Prediction
Stage, respectively. The speed up of the whole Two-stage Methodology is 1.37. If
the performance of both scenarios is compared, 3.8, 3.9 and 3.14, 3.15, we note
that for the case of Nuñomoral’s fire the execution time reduction is significant.

In order to better understand the computational effect of the implementation
of the mixed-precision in the Two-Stage Methodology, we used a profiling tool,
Linux prof, to get the basic performance metrics of the experiments and compare
the results of the execution. We will use CPU Cycles Per machine code Instruction
(CPI) as a metric for comparing the computational cost of both implementations.
The CPI is the ratio between the number of CPU cycles over the number of
instructions executed. It reflects the average number of CPU cycles needed to
complete an instruction. Thus, CPI is an indication of how much latency is in
the system and can be a valuable measure of how an application is performing.
A low CPI indicates that a few instructions are needed to execute an instruction.
However, if the CPI is high, the execution of a single instruction requires a large
number of CPU cycles, which indicates that the application has poor performance.
Because CPI is affected by either change in the number of CPU cycles that an
application takes or changes in the number of instructions executed, it is best used
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for comparison when only one part of the ratio changes. The goal is to lower the
CPI in certain parts of the code as well as the whole application. In our particular
case, we want to understand the impact of mixed precision in the complexity
of calculating specific functionality. CPI helps to determine the reduction of the
processing complexity in those parts of the code where the mixed precision has been
implemented, as in the point expansion and fire front reconstruction algorithms.

Figure 3.16(a) displays the average CPI for each generation in the calibration
stage. It shows that the usage of mixed-precision implementation improves the
average CPI in all generations. As we can see, the highest CPI reduction is found
in the fourth generation, with a reduction of around 28%. This substantial com-
putational cost reduction is due to a high number of individuals with an extended
perimeter. In these individuals, the weight of the point expansion is considerable,
so we have many potential instructions that can be simplified with mixed precision.

(a) Average CPI per generation in the Calibra-
tion Stage.

(b) CPI per individual of the Prediction Stage

Figure 3.16: CPI of the Two-stage Methodology for two different implementations,
reference and mixed-precision in Nuñomoral’s fire.

This notable difference is a consequence of the explosion points. An explosion
point is an area of the terrain with the worst possible combination of the factors
that drive the fire evolution. These factors are the slope, aspect, fuel, and wind.
When these four factors are combined in a specific adversarial way, the acceleration
of the fire front increases exponentially when the fire arrives at this area.

As we saw, there are a few differences between the fire propagation of both im-
plementations. In the majority of the cases, this difference is negligible. Nonethe-
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less, when double precision is used, the fire perimeter tends to spread slightly
further than when mixed precision is used. We found that, in some individuals,
this small difference in fire propagation causes the perimeter of the reference sim-
ulation to reach an explosion point, whereas simulations using mixed precision do
not burn this zone, which leads to the difference between both burned areas could
be considerable. Therefore, double precision simulation considers a larger number
of perimeter points in these specific cases and induces a higher computational cost
than equivalent mixed-precision simulation.

An important point is how the different fire spread of these individuals affects
the burned area at the end of the prediction stage. We found that the final burned
area is not influenced by these individuals, as the error function derives the GA,
see Section 1.3.2, these expensive to simulate individuals are discarded for their
high error rates.

Another consideration that justifies this computational cost reduction is due
to the Distance Resolution, see Figure 2.6. When the fire front arrives at one
explosion point, the perimeter points will propagate forward a long distance. As
explained above, the Distance Resolution limits the maximum expansion of a single
perimeter point in a single time iteration. For that reason, the propagation of
these perimeter points is divided into a set of shorter propagation sub-steps, which
implies a greater consumption of resources by the perimeter expansion algorithm.
The propagation is much simpler when mixed-precision is applied as it needs fewer
steps. If we evaluate the whole calibration stage, the obtained CPI is 1.91 for the
reference simulation and 1.67 for the mixed-precision implementation, representing
a reduction of 12.60% of the computational cost. So, we can conclude that the
utilization of the mixed-precision produces a notable computational consumption
reduction maintaining the quality of the simulation.

In Figure 3.16(b), we can observe the CPI for each individual of the prediction
stage. It shows that, as in the calibration stage, the utilization of the mixed-
precision provides a reasonable diminution of the computational cost. In this
scenario, the highest CPI reduction when the simulation utilizes the second-best
individual, in which the computational cost decreases from 1.40 CPI in the refer-
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ence simulation to 1.18 when the mixed-precision implementation is used. This
represents a reduction of the 15.5% of the computational cost. In a real forest fire
emergency, the velocity to provide a prediction of the future fire behavior is very
crucial; for that reason, only the best individual is used to predict the fire spread.
If we focus on the best individual, we see a reduction of the 10.5% of the CPI.
This computational cost reduction contributes to performance improvement when
the mixed-precision approach is employed.

In conclusion, when we consider those fires with faster and more extensive
fire front propagation, "Point Expansion Oriented" fires, more time is invested
in the point expansion stage. Hence, the opportunity of performance improve-
ment of mixed precision methodology is higher. In those particular cases, the
land’s characteristics where the fire take place generate a fast and large perime-
ter spread. Besides, if the complexity of the terrain is low, the likelihood of the
fire front creating complex loops and knots are relatively small. These character-
istics of the terrain may facilitate the apparition of explosion points, where the
mixed-precision approach reduces the computational cost of the point expansion
algorithm substantially. For these reasons, in these kinds of scenarios, the mixed-
precision implementation can achieve notable performance improvements without
compromising the quality of the simulation fire spread.

3.3.3 Mixed-precision impact comparison

This study presents two types of scenarios instanced by Arkadia’s and Nuñomoral’s
fires. The purpose of using different fires is to show the sensitivity of the mixed-
precision impact on the local conditions of the scenario where the fire occurred.
Depending on local conditions, we can classify the wildfires as Fire Front Re-
construction Oriented, as Arkadia, or Point Expansion Oriented, as Nuñomoral.
However, this is not a permanent classification. Not all forest fires belong to just
one type. Some fires could begin to be more Fire Front Reconstruction Oriented,
and as the fire front evolves, become more Point Expansion Oriented. Also, a fire
could be more Point Expansion Oriented in some zones of the fire front and Fire
Front Reconstruction Oriented on others.
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Figure 3.17: Quality comparison of the two different fire scenarios, Arkadia and
Nuñomoral when the mixed-precision is used.

Our results highlight that the quality of simulations is not substantially mod-
ified by utilizing the mixed-precision in any case. However, the reduction of the
computational cost and the execution time depends on the study case. Figure
3.17 displays the computed error of the prediction using the best individual after
the calibration stage of the two types of fires studied, Arkadia and the Nuñomoral
when the Two-stage methodology is applied. We can detect that the utilization
of mixed precision does not significantly increase the error of the simulations. As
we see, in the case of Arkadia’s fire, the increase of the error is only 0.01. In the
case of Nuñomoral’s fire, this raise is around 0.02, representing an increment of
the 1.12% and 1.60% respectively of the computed error. Most important is to
highlight that the utilization of the mixed-precision does not negatively affect the
quality of the simulations. As we commented, the relevant information when we
perform a forest fire spread simulation is to predict the general forest fire propa-
gation. In all scenarios, the utilization of the mixed-precision does not alter the
forest fire’s general behaviour simulated.

In order to effectively compare the computation cost and the performance im-
pact of mixed-precision in both scenarios studied, we introduced the metric seconds
per point (T ime/Point), see Figure 3.18. This metric reflects the average time
needed to propagate a single point from the initial perimeter to the final perime-
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Figure 3.18: T ime/point comparison on the two different fire scenarios, Arkadia
and Nuñomoral, between the reference and the mixed-precision implementations.

ter; the higher it is, the more time is spent to spread one perimeter point. Figure
3.18 illustrates the average seconds/point. As we expect, in the case of Arkadia’s
fire, less time is invested in propagating one perimeter point. In this kind of fire,
the impact of mixed-precision is moderated. However, in this scenario, the gain
is only 3% of the time needed to spread a single point. If we focus on the Nuño-
moral’s fire, we see a significant reduction in the time required to propagate a single
point when using mixed-precision. In this case, the decline of the seconds/point

is around 24.5%. So, we confirm that the usage of the mixed-precision could pro-
duce an execution time reduction. We can express the performance improvement
in terms of speed up. Figure 3.19 displays the comparison of the speed up of the
two scenarios. On the one hand, it reveals that in Nuñomoral’s case, applying the
mixed-precision methodology allows improving the performance. The computed
speed up is 1.37 when the Two-stage scheme is used. On the other hand, in the
case of Arkadia’s fire, the obtained speed up is close to 1, which indicates that, in
this scenario, the implementation of the mixed-precision methodology provides a
poor performance improvement.

As we saw, the repercussion of the mixed-precision strategy is different in the
two scenarios studied. There exist significant differences between the characteris-
tics of both fires. In the case of Arkadia, as a Fire Front Reconstruction Oriented
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Figure 3.19: Speed up comparison of the two different fire scenarios, Arkadia and
Nuñomoral when the mixed-precision approach is used.

fire, the peculiarity of the zone where the fire took place helps to the relatively
slow velocity of the fire propagation. Moreover, the complexity of the region is
conducive to forming complex loops and knots. For that reason, the weight of
the point expansion is meager in front of the fire front reconstruction, which con-
sumes the majority of the execution time to perform a simulation. On the other
side, in the Nuñomoral’s scenario, a Point Expansion Oriented fire, the fire front
propagation is quite fast and the extension of the burned area very high, also the
complexity of the place where the fire burned is lower than in Arkadia’s fire. This
low complexity helps to reduce the number of knots and complex loops. These
land characteristics reduce the weight of the fire front reconstruction and increase
the proportion of the execution time invested in the point expansion algorithm. In
terms of quality, the utilization of the mixed-precision does not compromise the
quality of the fire predictions. We are interested in predicting the general evolu-
tion tendency of fire because it is the most useful information that fire firefighters
can get. In both cases, both implementation, the double and the mixed-precision
predict the same fire propagation tendency. In all scenarios, the computed error
for both implementations is very close.

The Point Expansion Oriented fires, Nuñomoral’s, tends to have a more con-
siderable performance improvement than in the case of Fire Front Reconstruction
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Oriented fires, like Arkadia’s case. This improvement variation could be caused
due to the higher terrain complexity, like in the Arkadia’s fire. In the fire front
reconstruction algorithm, all the pairs of perimeter points are checked against all
the other pairs of points to find loops and knots. This operation is repeated until
all the crosswalks are solved. When the simulation is done in complex terrain, the
number of loops and knots is higher. Therefore the checking process of the points
has to be repeated more times, which implies that the weight of the fire front re-
construction algorithm raises. The fire front reconstruction algorithm complexity
is O(n4), where n represents the number of perimeter points. As we commented,
only the 15% of the variables invested in the fire front reconstruction can use
single-precision; for this reason, the performance benefit is penalized. Thus, the
performance improvement of the mixed-precision approach will be more substan-
tial when the region where the fire takes place facilitates that fire becomes more
Point Expansion Oriented.
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Chapter 4

Fine-Grained Paralelization

One critical aspect when dealing with simulations related to wildfires taking place
in complex terrains is the necessity of using high-resolution data to obtain reli-
able simulations. The use of finer resolution makes the spreading fire sensitive
to small-scale variations in spatial variables (e.g., fuels or topography) and tem-
poral changes in the weather conditions. Figure 4.1 compare the simulation of
the forest fire spread when two different accuracy are used, Perimeter Resolution
= 5 meters and Perimeter Resolution = 100 meters. We can see a notable dif-
ference between both Perimeter Resolution values. In addition, the utilization
of low Perimeter Resolution implies an increment of the number of points where
the fire front splits. This perimeter points increment will be allowed to substi-
tute the currently Fire Front Reconstruction algorithm for an envelope algorithm,
like α-shape, with low errors and reducing the execution time invested in the Fire
Front Reconstruction. Nonetheless, when the precision of the simulation rises, the
computational complexity of the model increases, and, therefore, its effectiveness
in real-time prediction is reduced. For that reason, it is necessary to develop new
methods to tackle this complexity to provide accurate fire spread simulations in a
reasonable time. Several strategies have been improved the performance of wildfire
spread simulators without altering the precision of the results. On the one hand,
some studies apply multi-core architectures to accelerate forest fire simulations
[20][12][7]. The main idea in these approaches consists of determining the number
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of cores to allocate for a given simulation to accomplish particular time constrain.
The main concern about these methods is their dependency on access to comput-
ing clusters in real-time, which operationally limits their use. Furthermore, these
approaches are impractical for embedded applications that would be more appro-
priate for running the simulations on the field next to where the disaster is taking
place. On the other hand, different works carried out to apply computational
accelerators, like Graphic Processor Units (GPUs) systems, to the simulation of
forest fire behaviour in order to accelerate these simulations [52][45][25][34][35].
These studies demonstrate that the computational capacity of GPUs can improve
the simulator’s performance in terms of execution time without losing the accu-
racy of the results for a given data resolution. However, most of these works focus
on simulators based on CA, whose primary constraint is the low accuracy of their
prediction results. Simulators based on the EWP scheme provide better predic-
tions than those based on CA in terms of quality. Nonetheless, the execution time
incurred in running one simulation based on EWP is higher.

Figure 4.1: Comparative of the final fire perimeters simulated Perimeter Resolution
equal to 100 meters (Red) and Perimeter Resolution equal to 5 meters (Green).

The main objective of this study is to present a novel Fine-Grained Paralleliza-
tion implemented in GPU to increase the accuracy of the Forest Fires Spread sim-
ulator FARSITE without excessive execution time penalties. During our research,
we focus on the parallelization of the Perimeter Propagation and the Fire Front
Reconstruction algorithms, which are the most time execution expensive, see Fig-
ure 2.2. In order to program the GPU, the Compute Unified Device Architecture
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(CUDA) [46] is used. The GPU activation is obtained in CUDA by writing device
functions in C language called kernels. When a kernel is invoked, the CPU sends
the data from the host memory to the GPU global memory and invokes the paral-
lel computation on the GPU. Our GPU fire spread simulator has been compared
against a CPU parallel implementation to analyze the performance improvement.
To employ the maximum capabilities of the multi-core CPU, the point propagation
algorithm was implemented using OpenMP (Open Multi-Processing) [24], which
is a set of compiler directives, library routines, and environment variables. The
following section describes the implementation of the Fire Front Propagation and
the Fire Front Reconstruction parallelizations in detail.

4.1 Perimeter Propagation

The execution time invested into performing a simulation increases when the num-
ber of points increases in the forest fire spread simulators based on the EWP. So,
simulations with high resolutions provide long execution times, which limits their
use in real situations. In the forest fire spread simulators based on the EWP, the
evolution of each point only depends on the local condition of that point; therefore,
each point propagation is entirely independent of the other points’ evolution. This
characteristic suggests that substantial gains in performance could be obtained
through parallel processing of each point expansion. CPUs are latency-oriented
systems that use architecture features like large caches or branch prediction tech-
niques to deal with data dependencies. GPUs, by contrast, are throughput-
oriented systems that use massive parallelism to hide latency. Modern GPUs
are multiprocessors with highly efficient hardware-coded multi-threading support.
The key capability of a GPU unit is thus to execute thousands of threads running
the same function concurrently on different data. Hence, GPUs are good target
platforms for processing problems with large amounts of data. To effectively use
a GPU, programmers need to deal with different challenges like memory manage-
ment, load balance of the execution threads, data races, and data transfer cost.
The data flow between the CPU (Host) and the GPU (Device) means that part
of the program’s execution time must be dedicated to copying data between CPU
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and GPU detached memory systems. In previous work, it has been demonstrated
that for high-resolution simulations, a parallel implementation of Fire Front Prop-
agation in GPU has better performance than a CPU parallel implementation, [19].

4.1.1 OpenMP parallel Optimization

To explode the capabilities of the multi-core CPU, the point propagation algo-
rithm was implemented using OpenMP. The workflow of the fire front evolution
simulation process is shown in Figure 4.2. The OpenMP parallelization used in
this research is based on the OpenMP implementation described in [8].

As can be observed, the fire spread is done using two nested loops. The outer
loop is temporal. That is, it controls the lifespan of fire propagation. The simulated
propagation time is broken down into Time Step. The Time Step is defined in the
Settings input file by the user. However, in FARSITE, the spread of each perimeter
point is done in a continuous space. For that reason, for a given Time Step, in some
cases, the local characteristics of a single point produce such long propagation that
crosses some places where the local conditions could be very different and affect
the evolution of that point. To avoid this issue, the Distance Resolution is used,
[30]. The Distance Resolution is the maximum projected spread distance from any
perimeter point. This distance cannot be exceeded in a time step before new fuels,
weather, and topography data are used to compute the new spread rate.

When the Perimeter Resolution is defined, the perimeter of the fire is split in
a set of points, each of them with their coordinates Xi, Yi. The CPU parallel
implementation divides the front of the fire into zones with the same number of
perimeter points. The number of threads that the CPU can support; determines
the number of zones in which the fire front is partitioned. Figure 4.3 shows how
the perimeter of the fire is partitioned to capitalize the multi-core architecture of
the CPU. The assignation of the area is done in the same order as the threads.
For example, all the points into zone 0 are propagated by thread 0, and the zone
n is spread in the thread n.
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Figure 4.2: Perimeter propagation based on the Elliptical wave propagation im-
plemented in OpenMP.

Next, for each zone or thread, a pointer of structures is created. These struc-
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tures are used to store the information needed to propagate the points. The
evolution of the perimeter points in the same perimeter partitioning is done in se-
rial, so the information of a new point to evolve overwrites the information of the
previous one. When the spatial loop starts, the simulator checks the coordinates
Xi and Yi, reed topography and the meteorological information of that point and
writes the information into the corresponding structure.

Figure 4.3: Fire front partitioning. The number threads executed by the CPU
determine the number of divisions.

To expand a single point, two functional parts are coupled together to calculate
the next fire front evolution. These functions run parallel for every area, but they
run in serial for the same zone points. The first part computes the ROS for the
point Xi, Yi using the Rothermel Model without taking into account the wind and
the slope of the terrain. This represents the ROS of that point on flat terrain
with no wind. Then, the corrections of the wind and the slope effects are applied
to the ROS. The second part uses the obtained ROS to calculate the shape of a
propagation ellipse of the point. Finally the new coordinates X ′

i, Y ′i are stored in
a vector. This procedure is repeated for all the points in the partition.
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At the final of the spatial loop, there is a synchronized directive. This directive
aims to ensure that all threads have been able to complete the propagation of all
points in their perimeter zone. Finally, the new coordinates are stored in a global
vector. The thread id determines the order where the area’s information is stored,
so the first points stored are the points of the thread 0 and so successively. When
all the points have been written in the global vector, the Perimeter Resolution is
checked. If the distance between points is higher than the Perimeter Resolution,
new points must be inserted in the mid-span of a perimeter segment if it is required.
At the end of the time loop, the new fire perimeter is reconstructed, and the
operation is repeated for the next time step.

A critical aspect of dealing with in the event of a forest fire is the response
time of emergency systems and the ability to act in the most efficient way to avoid
significant damages. That implies making critical decisions as quickly as possible
with the only support of existing information. In this context, the time invested
in performing an informative simulation has to be as short as possible.

Then, the use of highly accurate, small Perimeter Resolution simulations pro-
vides long and unpractical execution times, which limits their use in real situations.
In this work, a novel EWP algorithm is presented. Our proposal consists of ex-
ploiting the computational power of the GPU computational resources to perform
a forest fire spread evolution with very high resolution without increasing the time
invested in the point evolution process.

4.1.2 GPU parallel Optimization

Figure 4.4 displays the algorithm flowchart of GPU Perimeter Propagation im-
plementation. In this implementation, only the temporal loop is needed. As we
saw, the temporal loop controls the lifespan of fire propagation. The number of
time iterations is related with the Time Step and the Distance Resolution, see
Section 4.1.1. The temporal evolution of the fire perimeter must be done in serial
because the position of the point Xi, Yi at time t + 1 depends on its position at
time t. The discretization of the fire front is done in the CPU. Then, the perime-
ter points (Xi,Yi) are copied from the CPU memory (Host) to the GPU memory
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(Device). A significant difference from the OpenMP implementation is how the
fire variables (topology, vegetation, and meteorology) are passed to the Rother-
mel model to expand the points. While in the OpenMP implementation, a single
structure to store the topology and meteorological information is created, in the
GPU implementation, this structure is created for each perimeter point.

Figure 4.4: Elliptical wave propagation implemented on GPU (EWPG).

In our fine-grained parallel strategy, a single thread is assigned to compute a
single perimeter point propagation. As we saw, in the forest fire spread simula-
tions based on the elliptical wave propagation, the evolution of a perimeter point
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is independent of the propagation of the other; therefore, threads can be processed
independently (i.e., in any order), having a unique identifier assigned by the CUDA
framework. Here lies one of the main differences from the previous implementa-
tion: the sequential loop, overall points, is replaced by an implicit loop, where all
elements can be calculated simultaneously.

In order to minimize the communication between the Host and the Device, the
Time Step is computed in the GPU. As we said, the Time Step depends on the
Distance Resolution; so, the Distance Resolution of each point is checked by its
assigned thread. If the evolved distance is higher than the Distance Resolution, a
new Time Step is calculated for each point. Finally, this new Time Step is used
to compute the propagation of the perimeter point.

At the final of the temporal loop, there is an implicit synchronization to guar-
antee that all perimeter points are propagated. Then the computed coordinate
X ′

i, Y ′i are stored in a vector. Finally the vector is copied from the Device to the
Host. The Perimeter Resolution is checked in the CPU, and, if it is necessary,
new points are introduced in the fire front. Finally, the current fire perimeter
is reconstructed, and the operation is repeated for the next Time Step until the
simulation is finished.

One of the main drawbacks of this implementation is the large amount of
data necessary to compute the propagation of a single point. To optimize the
time invested in the data transfer from the Host to the Device we use the CUDA
Streams. In the earliest versions of CUDA, all the kernels had to be executed
sequentially. At the end of each Kernel, there is an implicit synchronization of
the threads; so, the execution time is related to the number of kernels that our
application executed. A CUDA Stream is a sequence of operations that execute on
the Device in the order in which the host code uses them. While operations within
a stream are guaranteed to execute in the prescribed order, operations in different
streams can be interleaved, and, when possible, they can even run concurrently,
[54]. CUDA Streams allows us to overlap the data transfer and the execution of
the kernels. Figure 4.5 schematizes the how CUDA Streams.
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(a) Execution of GPU implementation without CUDA Streams.

(b) Execution of GPU implementation when the CUDA Streams are used.

Figure 4.5: Difference between the CUDA execution without and with Streams.
It can be appreciate that overlapping the data transfer with the Kernel execution
could reduce the execution time notably.

The employment of the CUDA streams allows the concurrence of different
kernel execution. In our case, we defined three different CUDA streams. At the
beginning of the execution, the three streams optimize the data transfer between
the Host and Device. FARSITE uses different structures to compute the evolution
of the fire perimeter. This strategy lets us minimize the time invested in the copy
data, for example, characteristics of the fuels or the weather data and features of
the fire front. Next, the estimation of the Time step, the reading of topographical
and meteorological data from the input files, is done at the same time. Because
the kernel which computes the propagation of the perimeter points depends on the
previous kernels, there is an explicit thread synchronization before it starts. As a
result of this dependence, the execution of this kernel cannot be overlap with any
other kernel. Finally, the new coordinates and features of the fire front are copied
from the Device to Host exploiting the three different CUDA streams. When all
the information is into the Host, the reconstruction of the fire front starts.

4.2 Fire Front Reconstruction

As we said, the main drawback of the forest fire spread simulators based on the
EWP, like FARSITE, is that they do not intrinsically distinguish burned from
unburned areas. For this reason, it is necessary an algorithm to rebuild the fire
front of the fire after each time step. This process of Fire Front Reconstruction is
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expensive in time and computing power because it checks all the possible points
pairwise against the rest possible pairs of points. The complexity of the Fire Front
Reconstruction algorithm is O(n4) where n represents the number of perimeter
points.

4.2.1 CPU parallel Optimization

The Fire Front Reconstruction algorithm needs fewer memory requirements than
the Fire Front Propagation algorithm. However, it is much more computationally
expensive. Figure 4.6 displays the workflow of the fire front reconstruction process.

As we saw, the Fire Front Reconstruction algorithm test all the pairwise points
against all the possible pairs of points. Two nested spacial loops are needed. As in
the case of the Fire Front Propagation, see Section 4.1.1, when the implementation
is running with OpenMP, the perimeter of the fire is divided into different areas,
see Figure 4.3. The number of zones is determined by the number of threads used
to execute the Fire Front Reconstruction algorithm.

Each thread tests the pairwise point of its zone against the pairs of points of
the whole perimeter. The first pair of points, X1, Y1 and X2, Y2 are tested against
the first different point pairwise of the fire perimeter, X ′

3, Y ′3 and X ′
4, Y ′4 . If an

intersection is found, the coordinates Xcross
1 , Y cross

1 of the new points are stored in
a pointer array. FARSITE creates a pointer array for each thread or zone. If there
is no intersection, the pair X1, Y1 and X2, Y2 are tested against the next different
point pairwise X ′

3, Y ′3 and X ′
5, Y ′5 . When all the possible pairs points are checked,

the next pairwise point, X1, Y1 and X3, Y3 is tested. This process is repeated until
all the possible combinations are checked. At the end of the outer loop, all the
intersections are unified in a single pointer array. The thread id determines the
order of coordinates; the thread 0 writes first the coordinates of the intersections
that it found, then the thread 1, etc. Finally, the new coordinates are introduced
in the fire perimeter, and the points are reordered so that they appear in the
sequence in which they would be encountered, starting from the first vertex.
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Figure 4.6: Fire Front Reconstruction Algorithm implemented in OpenMP.

4.2.2 GPU parallel Optimization

In order to reduce the execution time invested in the Fire Front Reconstruction,
the original algorithm has been modified, implementing a fine-grain parallel imple-
mentation for exploiting the computational power of the GPUs. The workflow of
the Fire Front Reconstruction process is illustrated in Figure 4.7. Because in the
Fire Front Reconstruction, the memory requirements are fewer than in the Point
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Propagation algorithm; consequently, the time invested in the data transfer from
the Host to Device is shorter. However, it is more computationally expensive and
consumes more execution time.

In the GPU fine-grain parallel implementation of the Fire Front Reconstruction
algorithm, a thread is responsible for checking only a particular pairwise point,
X1, Y1 and X2, Y2, against all other possible pairs of points, X ′

i, Y ′i and X ′
j, Y ′j ,

from the fire front. Therefore, in the GPU implementation, a single spatial loop is
needed. Because the GPU is throughput-oriented, thousands of pairs can be tested
simultaneously. In this case, a single pointer vector is used to store the coordinates,
Xcross

1 , Y cross
1 , of the intersection points. As in the CPU implementations, The

position in which the coordinates are written is controlled with a single variable.
When an intersection is found, the value of this variable is incremented by 1. In
the CPU implementations, this value is increased in serial. Therefore the pointer
used to store the intersection coordinates is filling sequentially. However, the GPU
implementation could have a competition between threads to read and write this
variable, race conditions. To avoid this conflict between threads, we employ an
atomic operation, [46]. This kind of operation is used to avoid race conditions.
When an intersection is found, the atomic operation increases the value of the
variable by 1. Then, this variable determines the position in which position the
coordinates and the fire characteristics of the point (ROS, Flame Intensity, and
Reaction Intensity) are stored. This is possible because the order in which the
intersections are stored does not affect the final shape of the fire perimeter. If
there is no intersection, the thread continues checking the next pairwise. There
is an explicit thread synchronization at the end of the whole process to verify
that all the possible pairs of points have been processed. Then the intersection
pointer is copied from the Device to Host. Finally, the intersection coordinates and
arrangements are entered into the fire perimeter and sorted in the CPU. As we can
observe, the order in where the intersections are found does not affect the shape
of the fire at the end of the process. The fine-grain GPU implementation reduce
the complexity of the Fire Front Reconstruction from Oserial(n

4) to OGPU(n
3).
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Figure 4.7: Fire Front Reconstruction Algorithm implemented in GPU.
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4.3 Experimental Study and Results

All calculations described here were performed using a server system with a CPU
and a single GPU card. Our execution platform has an Intel(R) Core(TM) i9-
9900K CPU @ 3.60GHz with eight cores and a GeForce RTX 2080 Ti with 4352
CUDA cores.

Figure 4.8: Digital Elevation map of Arkadia fire area. The Red Perimeter was
used as initial perimeter (ignition Perimeter). The perimeter to be predicted is
Blue Perimeter, [23].

As a study case, we selected a past fire that took place in Greece during the
summer season of 2011 in the region of Arkadia fire belonging to the database of
EFFIS (European Forest Fire Information System) [23]. The forest fire began on
the 26th of August, and the total burnt area was 1.761 ha. In Figure 4.8, it can
be seen the fire perimeters at three different time instants: t0 (August 26th at
09:43am), t1 (August 26th at 11:27am) and t2 (August 27th at 08:49am).

4.3.1 OpenMP Scalability of FARSITE

When we work with parallel implementations, one important aspect is determining
the adequate amount of resources invested in executing an application. If the
application shows some kind of dependency, performance will not improve if more
resources are provided. As is well known, above certain resources employed, the
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performance improvement is not significantly. For that reason, as a first step, we
study the scalability of FARSITE when the Perimeter propagation and the Fire
Front Reconstruction are implemented in OpenMP. The CPU used in this study
has eight cores with multi-threading, which means we can execute FARSITE with
16 threads. Figure 4.9 shows the scalability of FARSITE with different Perimeter
Resolution.

(a) Execution time of the Arkadia forest fire with different Perimeter Resolution
and different number of threads. The Y-axis is in a log scale.

(b) OpenMP speed up of the Arkadia forest fire with different Perimeter Resolu-
tion and different number of threads.

Figure 4.9: Scalability of FARSITE with five different Perimeter Resolution.

Figure 4.9(a) displays the execution time for five different Perimeter Resolu-
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tion. The Y-axis is on a log scale. As we can appreciate, the Perimeter Resolution
has a direct impact on the time invested in performing a forest fire spread simula-
tion. As we said, as low Perimeter Resolution, greater is the number of perimeter
points; therefore, the execution time increases. It can be observed that for all
Perimeter Resolution, the lower execution time is reached when we execute FAR-
SITE with 8 threads. In Figure 4.9(b) we can see the speed up of the simulation for
different threads and different Perimeter Resolution. It demonstrates that, over
some point, the increment of resources does not significantly improve the perfor-
mance of the FARSITE. During this study, we focus our effort to paralyze the Fire
Front Propagation and the Fire Front Reconstruction algorithms, which represent
around the 67% of the execution time for big fires, see Figure 2.2. If the number
of perimeter points increases, this percentage could be higher.

It can be observed that, for all Perimeter Resolution, above 8 threads, the
increment of threads does not significantly reduce the execution time. When the
perimeter resolution is 100m and 50m, the maximum performance improvement is
obtained with 8 threads. For 10 and 5 meters, the maximum speed up is reached
with 16 threads. However, the speed up difference between 8 and 16 threads is
between 0.07 and 0.09 of speed up, which does not justify the increment of threads.
In the following sections, our Fine-Grained Parallelization implementation in GPU
against the implementation in OpenMP with 8 threads is compared.

4.3.2 Forest Fire Spread Simulator Performance Analysis

An essential aspect, when we compare the implementations of the forest fire spread
simulator in GPU and OpenMP, is the final burned area obtained at the end
of the simulation. Figure 4.10 shows the final fire perimeter obtained for both
implementations. We can observe a small difference in both simulations.

We can observe that the OpenMP implementation tends to propagate a few
more in the forest fire front. This slight difference is due to the different numerical
methods implemented in GPU and OpenMP, [39]. However, a forest fire is a
very complex system subject to a high number of variables. For that reason, we
are more interested in simulating the general behaviour of forest fire. Therefore,
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Figure 4.10: Comparative of the final fire perimeters simulated for the implemen-
tation of FARSITE in OpenMP (Red) and in GPU (Green).

we can conclude that the difference between GPU and OpenMP implementations
is unimportant. The main objective of this research is to accelerate the high-
accuracy forest fire spread simulator FARSITE without excessively increasing the
execution time. We wonder whether it is possible to carry out faster executions
while keeping accurate simulations using GPUs accelerators. For that reason, we
are going to compare the efficiency of the GPU and OpenMP applications proposed
and compare the throughput of both implementations. We are interested in the
evolution of the throughput in a simulation modifying the Perimeter Resolution
and, therefore, the number of points to expand. For that, we use three different
parameters: the Execution Time, the Speed UP and the processed number of
Points/Second which is the number of points propagated per time unit.

Fire Front Propagation Performance Analysis

Because FARSITE has become broadly used for operational prediction of active
wildfires, in this section, we focus on analyzing only the performance of the Fire
Front Propagation algorithm. As we saw, the propagation of the fire front rep-
resents around the 7% execution time, see Figure 2.2. Nonetheless, because the
propagation of a point is entirely independent of the propagation of the others, its
parallelization is relatively easy. Figure 4.11 displays the performance of the Fire
Front Propagation algorithm into the GPU and the OpenMP implementations.
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(a) Execution time of Perimeter Propagation algorithm with different Perimeter
Resolution into the GPU (Blue) and the OpenMP (Orange) implementations.

(b) Speed up of The GPU over the OpenMP implementation the Perimeter Prop-
agation Algorithm with different Perimeter Resolution.

Figure 4.11: Perimeter Propagation Performance with five different Perimeter
Resolution. Below the Perimeter Resolution the number of total perimeter point
processed in the GPU are shown.

Figure 4.11(a) shows the execution time invested in both implementations to
perform the evolution of the fire front in the whole simulation. To better un-
derstand the computational work for each Perimeter Resolution. In order to un-
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derstand the order of magnitude of the computational work, the total number of
perimeter points processed in the GPU are shown under the Perimeter Resolution.
We have to bear in mind that in the OpenMP implementation tends to propagate
a few more the fire front, see Figure 4.10, so the number of perimeter points to
be processed is higher, but this difference is not relevant, around thousands of
points. As we can see, for high Perimeter Resolution (100, 50, and 25 meters),
a low number of perimeter points, the OpenMP implementation invests less time
into propagating the perimeter of the fire than the GPU implementation. For
Perimeter Resolution above 10 meters, the execution time of the forest fire front
propagation algorithm in GPU is higher than the time invested in the OpenMP
implementation. All GPU has a start-up cost caused by its initialization and the
data transfer time from CPU memory to GPU memory. The computational work
has to compensate for the start-up time. In our particular case, it means that
under a certain number of perimeter points, this start-up time is not compen-
sated, [14]. For example, when the Perimeter Resolution is equal to 25 meters,
the number of perimeter points, 729, 518 points, is not enough to compensate for
the start-up and the copy time. For that reason, in this case, the OpenMP im-
plementation is the most efficient. This tendency is confirmed for lower Perimeter
Resolution. For Perimeter Resolution equal to 10 meters, the number of perime-
ter points, 3, 025, 046 points, is large enough so that the computational work can
compensate for the start-up and the copy time. For that reason, the OpenMP im-
plementation is the less efficient and, therefore, the slowest one over this number of
points. When the Perimeter Resolution is 5 meters, 9, 534, 349 perimeter points,
the GPU implementation allows a reduction of 44.5% of the execution time, which
implies that the efficiency of the GPU implementation increases while the distance
between perimeter points is reduced.

Figure 4.11(b) displays the computed speed up when the propagation of the fire
front is done in the GPU. As it can be expect, when the Perimeter Resolution is
100, 50 or 25 meters (87, 636, 178, 623 and 729, 518 perimeter points respectively)
the speed up is under 1. This indicates that, for these Perimeter Resolution
values, the OpenMP parallelization is the faster one. In the case of the Fire
Front Propagation, when the Perimeter Resolution is equal to 5 meters, 9, 534, 349
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perimeter points, the maximum speed up, 1.80, is obtained. As it can be seen, the
speed up increases as the number of perimeter points rises, or Perimeter Resolution
decreases. This is due to the GPUs have evolved on the line of throughput-oriented
processor architecture. This is due to the fact that GPUs have evolved on the line
of throughput-oriented processor architecture.

Figure 4.12: Points per second of the Perimeter Propagation algorithm depending
on the Perimeter Resolution for the GPU (Blue) and OpenMP (Orange) imple-
mentations. Below the Perimeter Resolution the number of total perimeter point
processed are shown.

The OpenMP implementation tends to propagate a few more in the front of
the forest fire. Consequently, the OpenMP parallelization has to propagate a few
more perimeter points, penalizing its execution time. In order to compare the
performance of both implementations, the number of perimeter points per second
is used to normalize the computational work. It represents the number of points
that evolved in a time unit. Figure 4.12 presents the number of thousand points
per second for GPU and OpenMP Fire Front Propagation implementations. For
Perimeter Resolution equal to 100, 50 and 25 meters, 87.636, 178, 623 and 729, 518

perimeter points, the number of points processed by the OpenMP implementation
is higher than the number of points evolved by the GPU implementation. But,
when Perimeter Resolution is 50 and 25 meters, the OpenMP implementation ex-
pands much more perimeter points per second than the GPU implementation. As
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we saw, the OpenMP implementation tends to spread a few more the perimeter of
the fire, see Figure 4.10, than GPU implementation. For that reason, the number
of the points/Second is bigger in the OpenMP implementation. The number of
perimeter points of the OpenMP implementation, with a Perimeter Resolution
equal to 5 meters, is 10, 082, 192 points, 547, 843 more than the GPU implemen-
tation, and decreases as the Perimeter Resolution diminish. When the Perimeter
Resolution is 10 meters, both implementations evolve a comparable number of
points per second, but the GPU implementation is the fastest. Nonetheless, for
Perimeter Resolution of 5 meters, the GPU propagates more than the double
number of points per second than the OpenMP implementation. These results
highlight that implementing a fine-grain parallelization in the GPU has a better
performance than the OpenMP implementation for high accuracy simulations.

Fire Front Reconstruction Performance Analysis

In the following section, the performance of the Fire Front Reconstruction algo-
rithm is analyzed separately. In FARSITE, the Fire Front Reconstruction algo-
rithm represents around 60% of execution time, see Figure 2.2. This is the part
of the code with the highest computational cost of the whole process. Figure 4.13
summarizes the performance of the Fire Front Reconstruction algorithm paral-
lelizations implemented in the GPU and OpenMP. In Figure 4.13(a) the execution
time invested in reconstructing the front of the fire for both parallel implementa-
tions is presented. At first sight, we see that the Fire Front Reconstruction has a
higher computational cost than the Perimeter Propagation algorithm. It is possi-
ble to observe that when we work with low resolution, Perimeter Resolution equal
to 100, the OpenMP implementation is faster than the GPU implementation. This
is because with this Perimeter Resolution the computational work is not enough
to exploit the computational power of the GPU, and the star-up and copy times
are not compensated. However, the time invested by both applications is less than
a second. For lower values of Perimeter Resolution, the GPU parallelization is
more efficient than the OpenMP implementation. For simulations with high ac-
curacy, Perimeter Resolution equal to 5 meters, the execution time invested to
the OpenMP implementation is 935, 52 seconds while the GPU consumes 309.59
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seconds, more than 10 minutes faster than the OpenMP parallelization.

(a) Execution time of Fire Front Reconstruction algorithm with different Perime-
ter Resolution into the GPU (Blue) and the OpenMP (Orange) implementations.

(b) peed Up of The GPU over the OpenMP implementation the Fire Front Re-
construction Algorithm with different Perimeter Resolution.

Figure 4.13: Fire Front Reconstruction Performance with five different Perimeter
Resolution. Below the Perimeter Resolution the number of total perimeter point
processed in the GPU are shown.

Figure 4.13(b) displays the speed up when the Reconstruction algorithm is ex-
ecuted in the GPU. We can see that for the lowest Perimeter Resolution, 5 meters,
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the computed speed up is 3.02. However, this is not the maximum speed up com-
puted. When the Perimeter Resolution is equal to 25 and 10 meters, the speed up
is higher, 4.96 and 5.58 respectively. This outcome is because the proposed GPU
parallelization reaches maximum bandwidth, so for Perimeter Resolution of 5 me-
ters, we skip from a computational-bound problem to a memory-bound problem
has been reached. For this reason, the speed up decreases for high accuracy sim-
ulations, more than 9, 500, 000 perimeter points. Nonetheless, the GPU is faster
than the OpenMP parallelization.

Figure 4.14: Points per second of the Fire Front Reconstruction algorithm de-
pending on the Perimeter Resolution for the GPU (Blue) and OpenMP (Orange)
implementations.

As in the previous section, to compare the performance of both implementa-
tions, the computational work has been normalized. The number of perimeter
points per second computed is compared. Figure 4.14 shows the number of thou-
sand points per second processed by the Fire Front Reconstruction algorithm for
both parallelizations. When the Perimeter Resolution is equal to 100, ∼ 87, 636

perimeter points, the OpenMP parallelization processes more points per second
than the GPU implementation. This means that the OpenMP implementation is
most efficient. However, for lower Perimeter Resolution, or a higher number of
perimeter points, the GPU implementation treats more points per second. When
the Perimeter Resolution is 5 meters, the difference between both parallelizations
is not significant; the GPU treats 77, 6 than the OpenMP application. Neverthe-
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less, the difference is notably when the number of perimeter points raises. This is
a clear indicator that the GPU parallelization is the most efficient when we work
with high simulation resolution, low Perimeter Resolution. In this case, the maxi-
mum of points per second, 639.30 points/sec is reached at Perimeter Resolution of
10 meters, or 3, 025, 024 perimeter points. In Addition, we can see which Perimeter
Resolution equal to 5 meters, the number of point/second does not increase; on
the contrary, it is lower. This is due because above ∼ 3, 000, 000 perimeter points,
the GPU is saturated, and the execution time invested into the copy data between
the Device and Host augment as the number of points increases. Therefore, in the
case of Perimeter Resolution under 10 meters, the execution of the perimeter re-
construction algorithm is dominated by memory transfers, and global performance
is not improved. The obtained result highlight that, for low Perimeter Resolution,
the execution of the Fire Front Reconstruction algorithm is more efficient in the
GPU than in the OpenMP implementation.

Figure 4.15: Execution time of the Arkadia’s fire simulation for FARSITE in Se-
rial (Grey), in GPU (Blue) and in OpenMP (Orange) for different Perimeter
Resolution. Below the Perimeter Resolution the number of total perimeter point
processed are shown.
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FARSITE Performance Analysis

In order to estimate the impact of both parallelizations, the performance of a
whole FARSITE simulation is analyzed. Figure 4.15 displays the execution time
when FARSITE is executed in serial, in GPU, and in OpenMP. We can see that
for Perimeter Resolution equal to 100 meters, 87, 636 perimeter points; the GPU
implementation is the one that consumes more time, around 0.3 seconds slower
than the OpenMP application. In this case, the faster implementation is the Serial.
For lower Perimeter Resolution values, both parallel implementations are faster
than the serial simulation. Furthermore, in all these cases, GPU parallelization
is the implementation with the best performance. For high accuracy simulations,
Perimeter Resolution equal to 5 meters, or 9, 534, 349 perimeter points, the se-
rial implementation spends more than an hour to perform the forest fire spread
simulation. In the case of the OpenMP implementation, this time is reduced to
around 16 minutes, 964.42 seconds. However, as we said, the most efficient ap-
plication is GPU parallelization. With this implementation, the execution time is
reduced to approximately 5 minutes, 318.79 seconds, representing a reduction of
the 67% of the execution time of the OpenMP execution, and a reduction of 91%
of the Serial simulation. Table 4.1 summarizes the speed up of parallel both im-
plementations depending on the Perimeter Resolution. As we can observe, as the
Perimeter Resolution decreases or the number of perimeter points is raised, the
parallel applications become more efficient. The maximum speed up is obtained
with a Perimeter Resolution equal to 5 meters, with a value of 11.99 for the GPU
implementation and 3.96 for the OpenMP implementation. As we can observe,
the GPU parallelization allows a notable execution time reduction, indicating that
it is the implementation with the best performance.

Finally, the performance of both parallel applications is compared. Figure
4.16 shows the speed up of the GPU implementation over OpenMP. As we saw,
for simulations with low accuracy, Perimeter Resolution equal to 100 meters, the
OpenMP implementation is faster than the GPU one. However, this is the only
situation in which the OpenMP parallelization has the best performance as the
Perimeter Resolution is reduced, the speed up of the GPU simulation increases.
Nonetheless, we can see that the maximum speed up is reached for Perimeter
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Table 4.1: Speed up computed for the GPU and OpenMP implementation with
different Perimeter Resolution.

Perimeter Resolution OpenMP GPU
100 0.91 0.70
50 1.21 2.40
25 1.37 6.56
10 1.49 8.23
5 3.96 11.99

Figure 4.16: Computed speed up when FARSITE is executed in the GPU and
OpenMP.

Resolution equal to 10 meters, 5.54. For Perimeter Resolution under this value, 5
meters, the speed up recede to 3.03. This is because when the Perimeter Resolution
correspond to 5 meters, the number of perimeter points, more than 9.5 million
points, saturates the bandwidth of the GPU device. As a consequence, the weight
of the copy data between the GPU and CPU memory increases, penalizing the
execution time for low Perimeter Resolution.

In order to understand the reason because the speed up decreases for Perimeter
Resolution below 10 meters, we analyze the execution time invested in the copy
data between memories of the GPU parallelization of the forest fire spread simu-
lator using the NVIDIA visual profiling, [47]. The obtained results reveal that the
time invested in the copy data from the GPU memory to the CPU memory in-
creases as the Perimeter Resolution diminishes. Figure 4.17 exposes the execution
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Figure 4.17: Execution time invested in the data transfer between memories in the
GPU parallelization for different Perimeter Resolution.

time consumed by the movement of data between memories in milliseconds. As it
can be seen, this copy time increases exponentially when the Perimeter Resolution
is reduced. On the one hand, for Perimeter Resolution equal to 100 meters, the
copy time is 0.56 milliseconds. On the other hand, the time invested in the data
transfer is 564.43 milliseconds for a Perimeter Resolution equal to 5. As we saw,
when the Perimeter Resolution decreases, the number of perimeter points increases
significantly, therefore the time invested in the copy of the perimeter coordinates
from the GPU memory to the Host memory and the time invested in copying the
intersection vector from Host to Device increases notably.

In Figure 4.18 are shown the transfer data work normalized. We compute the
copy time invested in each perimeter point, Points/millisecond. In this case, the
measurement of the Perimeter Resolution equal to 100 meters has been discarded
because its short execution time distorts the results. As it is shown for Perimeter
Resolution of 25, 10, and 5 meters, the number of perimeter points per milliseconds
does not rise significantly; even the number of perimeter points is more than
three times higher. The obtained results highlight that for a Perimeter resolution
equal of 25 meters, the number of perimeter points is high enough to saturate the
bandwidth of the GPU. Therefore, over this number of perimeter points copied
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Figure 4.18: Number of points per millisecond transferred between memories in
the GPU parallelization for different Perimeter Resolution.

does not increase. As a consequence, the execution time of the simulation is
penalized. However, the GPU implementation is the most efficient execution when
we perform simulations with low Perimeter Resolution.

In the future, we will deeply analyze the bottleneck of our GPU parallelization
to overcome the current restrictions. The best way to overcome these restrictions is
to utilize an alternative Fire Front reconstruction algorithm with low complexity.
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Chapter 5

Edge Computing

The uncertainty of the input data required by wildfire simulators could be a rele-
vant drawback to accurately predicting the forest fire evolution in a short period.
As we saw, different strategies have been used to reduce this uncertainty. How-
ever, these studies are based on adjusting the input data better to reproduce the
behaviour of the real wildfire. Nevertheless, the acquisition of the input data is
not improved. In the last decades, many experiments demonstrate that the ap-
plication of Unmanned Aerial Vehicles (UAVs) to collect real-time data, such as
meteorology, vegetation status, or fire evolution, in the same area where the fire
is taking place can significantly reduces this input data uncertainty, [2], [1], [41].
The problem arises when we assume that the location where the fire is taking place
has low connectivity. In that case, the data cannot be sent, so it is of paramount
importance to have a platform to perform the forest fire spread simulation in situ
using the gathered information. The new forecasting platforms for fighting natural
disasters such as extreme forest fire events are swarms of UVAs with low energy
consumption computational resources on board, including a wide range of embed-
ded sensors to measure almost everything in real-time. The resulting embedded
system could exploit the edge computing paradigm, distributing the forecasting
system into mobiles elements with computing capacities that couldprovide a more
realistic view of the input data parametrs and dynamic conditions of the situation.
In addition, we saw that when the fire takes place in complex terrain, high reso-
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lution, low Perimeter Resolution, is necessary to obtain reliable simulations. The
use of small Perimeter Resolution makes the spreading fire sensitive to small-scale
variations in spatial variables. At this point, we have to distinguish between two
different types of forest fire spread simulations: Mid-Term Simulation and the
Short-term Simulation. In the Mid-Term Simulation the forest fire spread sim-
ulator simulates 24 hours or more of the fire evolution. To accomplish the time
response requirements, a few hours, the utilization of High-Performance Comput-
ing becomes imperative. On the other side, the Short-term Simulation consists of
simulating less than 5 hours of fire spread. The firefighters can use this informa-
tion of the evolution of the near future fire propagation to optimize the resources
and strategy promptly. In this sense, the new parallelization of GPU-FARSITE
presented in this work, see Chapter 4, allows the possibility to exploit the maxi-
mum capabilities of the low consumption embedded systems. Embedded systems
are wholly integrated systems on a module, including CPU, GPU, memory, power
management, and high-speed interfaces. They are the ideal device for industrial
automation, healthcare, transportation, aerospace, and defense. The fast-growing
capabilities of embedded systems make them the ideal tool to edge devices. In
order to overcome the energy restriction, the embedded systems with low con-
sumption GPUs are the response of some manufacturers to the edge computing
requirements of the new century, which principal are three: it has to work in a low
connectivity environment, has low execution times, and be very energy efficient. In
the particular case of forest fire, we examine edge computing as a tool to explore
different fire scenarios and h parameters, like wind change, to take decisions in
the field, like concentrate fire prevention in predicted areas. The objective is to
advance the data calculations of complex models, like wildfire, in not so powerful
close-to-emergency distributed environments.

As we highlight, the new GPU-FARSITE parallelization significantly reduces
the execution time needed to simulate the forest fire evolution with high resolution.
We will see that the utilization of embedded systems combined with our GPU-
FARSITE simulation permits the near real-time time simulation of the Short-Term
Simulation.
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Figure 5.1: Nvidia Jetson AGX Xavier developer kit.

In this study, we focus on analyzing the capability of low consumption em-
bedded systems to see if they can reach the requirements of execution time and
accuracy in the simulations of the fire spread for being used in real scenarios. Dur-
ing this work, we analys the possibilities of the low consumption GPU NVIDIA
Jetson AGX Xavier developer kit, (Xavier), see Figure 5.1. It is specially de-
signed as an AI computer for autonomous machines, like robots, drones, and other
autonomous machines, delivering the performance of a GPU workstation in an
embedded module under 30W, [36]. In order to achieve this objective, the GPU-
FARSITE execution performance in the Xavier platform is analysed. As prelim-
inary study, the efficiency of the Xavier is compared against a desktop GPU, a
GeForce RTX 2080 Ti (GeForce 2080). Table 5.1 gathers the platform’s hardware
specs as declared by the manufacturer. It shows that Xavier has 8.5 times less
computational capacity and 8.3 less energy needs than a desktop system. For that
reason, we want to study if it is possible to use such a system as our base resource
for an edge computing solution.

The Jetson AGX Xavier has the possibility to work with different Energy Modes
defined by a set of parameters that effectively characterizes the performance for
a given power envelope. Xavier GPU covers a wide range of performance and
power requirements, [37]. Balancing the performance and power requirements is
essential to obtaining optimal performance in a particular case. To study the
optimal configuration of the Xavier, we took advantage of its flexibility to modify
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Table 5.1: Hardware specifications of the experimentation platforms.

Jetson AGX Xavier GeForce RTX 2080 Ti
CPU ARM v8.2 64-bit Intel(R) Core(TM) i9-9900K
CPU Cores 8 8
GPU Architecture Volta Turing
CUDA Cores 512 4, 352
Frequency (Mhz) 670 1, 545
Bandwitdh (GB/s) 137 616
TDP (W) 15 or 30 250

the energy Mode of the Xavier and compare their performance for our particular
problem. To characterize the optimal balance between the energy consumption and
the computational power, a real fire has been used to compare our GPU-FARSITE
application with different power Modes.

Figure 5.2: Jetson AGX Xavier power configuration Mode characteristics. The
green colour indicates the default power Mode characteristics, [37].

For studying the performance and the energy requirements of each GPU and
the power Modes of Xavier, we use three different parameters:
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• Execution Time: It represents the total time to perform a simulation, in s.

• Points per second : Which represents the number of processed points per
second, in #Points/s.

• Energy Capability : It is the number of computed points per work unit, (see
Equation 5.1). It represents the number of points that can be propagated
per work unit. The higher it is, the more energetically efficient it is.

E.C. =

(
Number Points

T ime · TDP

)
· Execution T ime (5.1)

where the TDP is the Thermal Design Power, which is defined by the
manufacturers.

5.1 Experimental Study and Results

In order to analyse the viability of the utilization of the low consumption embedded
systems in a real forest fire, we analyse the performance of the GPU-FARSITE
parallelization, see Chapter 4 in two different scenarios. First of all, as a first
approximation of the problem, a synthetic fire was used. In this particular case, it
has been considered a flat terrain, with homogeneous vegetation and constant wind
speed and wind direction during the whole simulation. Under these conditions,
the crosswalks between points are minimised. In this experiment we compare
the performance of the Xavier default Mode (Mode 2), see Figure 5.2, against a
desktop GPU GeForce 2080.

As we observed, the Xavier is an embedded system with the capacity to work
with a wide range of energy configurations. Because of this adaptability capac-
ity and to taking account all the possible computational capabilities and the en-
ergy modes characteristics, in the second experiment, a real fire is simulated to
find the optimal balancing between energy consumption and computational power.
Therefore, the performance of different energy Modes of the Xavier is tested and
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analysed.

Figure 5.3: Evolution of the synthetic fire front on flat terrain, with homogeneous
vegetation and constant wind speed and wind direction. A single ignition point is
used.

5.1.1 Preliminary Study (Synthetic fire)

To analyze under which condition the Xavier can accomplish with the computa-
tional requirements and the time execution limitation, we compare the performance
of its low consumption GPU and the GeForce 2080 with various simulations and
evaluate a list of evolution times. The tested propagation times were 5 hours, 10
hours, 24 hours, and 48 hours. The Perimeter Resolution was fixed to 100, 50,
25, 10 and 5 meters. Finally, we also carried out 5 repetitions for each particular
simulation. The times presented are obtained from the average of the five times
obtained of each simulation with a maximum standard deviation under σ = 0.05.
We used a synthetic fire in flat terrain, with homogeneous fuel and a constant wind
speed and wind direction as a study case. The evolution of the fire front is shown
in Figure 5.3.

Table 5.2 summarises the obtained execution time for the different simula-
tions performed in both GPUs. As we can see, in most of the situations, the
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Table 5.2: Execution time invested for both GPU to perform the simulations with
Perimeter Resolution of 100, 50, 25, 10 and 5 meters for four different propagation
time, 5, 10, 24 and 48 hours.

Perimeter
Resolution

5 hours 10 hours 24 hours 48 hours
Xavier GeForce Xavier GeForce Xavier GeForce Xavier GeForce

100 0.528 0.826 0.629 0.854 1.062 0.941 1.883 1.066
50 0.531 0.843 0.649 0.856 1.229 0.959 1.265 1.205
25 0.546 0.827 0.729 0.860 1.736 1.062 23.564 2.555
10 0.749 0.881 1.608 1.027 8.766 1.936 80.021 12.860
5 1.645 1.050 5.600 1.572 42.938 4.927 121.389 29.392

GeForce 2080 performs the simulation faster. As we said, the GeForce 2080 has
8.5 times more computational resources available than the Xavier see Table 5.1,
consequently, the expected result should show that the GeForce 2080 is around 8.5

time faster than the Xavier. For a Perimeter Resolution of 10 and 5 meters and
a fire propagation of 48 and 24 hours, the GeForce 2080 is 9.22 and 8.71 times,
respectively faster than the Xavier. However, for all the other scenario, the Xavier
is not 8.5 time slower than GeForce 2080. This is a crucial point because, in some
situations, the fastest device is the Xavier. This happens when the execution time
is under one second. For example, when the Perimeter Resolution is equal to 100

meters, and the fire propagation equal to 5 and 10 hours, the Xavier is around 0.3

seconds faster than the GeForce 2080. Nevertheless, GeForce 2080 consumes less
execution time for the Mid-Term Simulation.
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Figure 5.4: Execution time difference depending on the different Perimeter Resolution for the two different
GPU platforms.
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Figure 5.4 displays the difference of execution time for both GPUs per different
Perimeter Resolution and propagation times. For for the Short-Term Simulation,
5 hours, Perimeter Resolution equal to 5 meters, the Xavier is only 0.6 seconds
slower than the GeForce 2080. The execution time difference increases as the fire
propagation and the Perimeter Resolution increases. The maximum difference
between both executions is reached with 48 hours of fire evolution and Perimeter
Resolution of 5 meters. However, we can see that exists some situations in which
the device with the better performance is the Xavier, although the GeForce 2080
has more computational resources. This is because, for short propagation time
or low accuracy, the computational work does not compensate the initialization
time. In previous works, we observed that the initialization time of the GeForce
2080 is around 0.8 seconds, which means that only to start up the GPU, you need
this time before starting to process any data. For that reason, in the case where
the whole simulation takes less than a second, the Xavier is the faster device.
This overhead is less relevant as the number of propagation hours grows, or the
Perimeter resolution decreases. However, when we work with high simulation
accuracy, Perimeter Resolution equal to 5 meters, the GeForce 2080 is the faster
device.

Figure 5.5: Speed up of the GeForce 2080 Ti in front of the Xavier when the
Perimeter Resolution is 5 meters for different propagation time.

Because we are interested in performing the simulation of the forest fire spread
with high accuracy, for that reason, we analyse in deep detail the performance
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of both devices when the Perimeter Resolution is equal to 5 meters. Figure 5.5
represents the speed up of the GeForce 2080 in front of the Xavier for the different
propagation times. As we repeated, the GeForce 2080 has 8.5 times more com-
putational power than the Xavier, the expected speed up should be around 8.5.
Nonetheless, for propagation times equal to 10 and 48 hours, the speed up is 3.56
and 4.13 respectively, much lower than the expected speed up. The only situation
where the speed up is around the expected result is when the propagation time is
24 hours, 8.7. The worst speed up value is obtained for Short-Term Simulation, 5
hours of fire propagation where the speed up is reduced significantly, only 1.5.

Table 5.3: Thousands of perimeter points per seconds processed for Xavier and
GeForce 2080 GPUs for a Perimeter Resolution equal to 5 meters.

Propagation
Time

Xavier GeForce 2080
(K points/Second) (K points/second)

5 hour 41.365 64.792
10 hours 45.010 160.343
24 hours 31.519 274.690
48 hours 11.575 47.807

In order to normalize the execution time invested in the propagation of a single
point, we compute the number of perimeter points processed per second. Table
5.3 summarises the computed values. First of all, we see that the GeForce 2080
processes more perimeter points per second than the Xavier. As we can see, the
Xavier reaches its maximum number of points per second when we simulate 10

hours of fire evolution, but the GeForce 2080 reaches its maximum number when
we simulate 24 hours of fire propagation. However, when we are in the Short-
Term Simulation zone, 5 hours or less, the difference of the number of perimeter
points processed per second by both GPUs is less than 25, 000 points. Considering
that we are interested in a device that can collect the necessary input parameters
and performs the simulations of the wildfire spread in situ, we are interested in
evaluating the energy efficiency of the platform. To measure the energy efficiency
of each GPU, we computed the Energy Capability, see Equation 5.1.

Figure 5.6 shows the Energy Capability of both GPU. Energy Capability rep-
resents the number of propagated points per work unit. The larger it is, the more
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Figure 5.6: Energy Capability of the forest fire spread simulations for both GPUs
with a Perimeter Resolution equal to 5 meters, depending on the propagation
time.

energetically efficient it will be. When comparing the nominal energetic efficien-
cies (Figure 5.6, obtained from the performances and Table 5.1) one notes that the
Xavier stands out among GeForce 2080 in terms of the number of point/joule.
As we can see, the Energy Capability of the Xavier is higher than the Energy
Capability of the GeForce 2080, specially when we are in the Short-Term Simu-
lation region. In this case Energy Capability, for the GeForce 2080, is between
259.17 points/Joule, while the Xavier obtains a value of 2, 757.12 points/Joule.
These values indicate that the propagation of a single point consumes around 10

times more energy in theGeForce 2080 than in the Xavier. However, we need a
parameter to compare the energy efficiency of both devices and help us choose in
which situation the increment of the energy consumption is not compensated by
the reduction of the execution time.

Green Up =
Energy CapabilityJetson

Energy CapabilityGeForce2080

(5.2)

To compare the energy efficiency of the two GPUs, we define the Green Up.
The term Green Up is defined as the ratio of the Energy Capability of the Xavier
over the Energy Capability of the GeForce 2080, see Equation 5.2. Green Up is
analogous to Speed Up as it reflects how better is the simulation in terms of energy
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consumption. If the Green Up is higher than the speed up, it means that the
increment of the energy consumption is not compensated with the acceleration of
the simulation. On the contrary, if the speed up is higher than the Green Up,
it indicates that the increment of the energy consumption is compensated by the
reduction of the execution time.

Figure 5.7: Speed up (dark green column) of the GeForce 2080 and Green Up
(light green column) of the Xavier for different propagation time. The term Green
Up is defined as the ratio of the Energy Capability of the Xavier over the Energy
Capability of the GeForce 2080, see Equation 5.2.

Figure 5.7 displays the speed up (dark green column) of the GeForce 2080 and
Green Up (light green column) of the Xavier for the four different propagation
times. On one hand, the GreenUp shows that the Xavier platform is between 2

and 10 more energy efficient that the GeForce 2080. On the other hand, the speed
up varies from 1.57 to 8.71, which indicates that the GeForce 2080 has a better
performance than the Xavier. We observe a balance between the speed up and
Green Up that determines when it is expedient the use one GPU or the other.
When we compare the obtained values of the Green Up with the speed up, we can
identify a clear use case. It can be seen, than for 5 hours (Short-Term Simulation)
of fire evolution, the Green Up of the Xavier is 10.64, while the speed up of the
GeForce 2080 is 1.57. It means that, in this case, the acceleration of the GeForce
2080 does not compensate the increment of the energetic consumption. As we
expect, in all cases, the Xavier platform has the best energy efficiency; neverthe-
less, when we simulate 24 hours of fire propagation, the speed up of the GeForce
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2080, 8.71, extensively compensates the Green Up, 1.91, of the Xavier, therefore,
in this situation, the increment of the energy consumption is clear compensated
by the speed up of the GeForce 2080. It can be observed that when we simulated
48 hours of fire evolution, the speed up and the Green Up are very close in this
situation.

Analysing the balance between the speed up and Green Up we can select the
best scenario to be used in edge computing. The results show a clear case in which
the Xavier takes advantage in front of the GeForce 2080. When the propagation
time is equal to 5 hour, the Xavier is 10 time more efficient than the GeForce 2080,
but the speed up is only 1.57. For that reason, we can define this situation as the
Edge Scenario. This is the best candidate to be simulated with edge computing.
Therefore, this scenario is studied in deep detail for different Perimeter Resolution.

Figure 5.8: Execution time depending of the Perimeter Resolutionin the Edge
Scenario for Xavier (blue) and GeForce 2080 (orange).

In figure 5.8, the execution time consumed in the Edge Scenario for different
Perimeter Resolution is shown. We can observe that for Perimeter Resolution
above 5 meters, or less than 68, 032 perimeter points, the Xavier is faster than
the GeForce 2080. As we said, the regular desktop GPUs, like GeForce 2080,
spend around 0, 8 seconds in the start-up. For that reason, when the number of
perimeter points is not big enough, the start-up time cannot be compensated by
the computational work. For that reason, in these cases, the Xavier consumes less

99



5. EDGE COMPUTING

execution time. When the Perimeter Resolution is 5 meters the GeForce 2080 is
faster than the Xavier. In this case, the number of perimeter points is sufficient
so that the computational work can compensate the start-up time.

Figure 5.9: Speed up (dark green column) of the GeForce 2080 and Green Up
(light green column) of the Xavier for different Perimeter Resolution in the Edge
Scenario.

As we did above, we evaluate the balance between the Green Up of the Xavier
and the speed up of the GeForce 2080 for different Perimeter Resolution in the
Edge Scenario. When we work with high Perimeter Resolution, the Xavier is
faster than the GeForce 2080, as a result, the speed up is under 1. In addition,
because its execution time is less than the execution time needed by the GeForce
2080, the computed Green UP is between 19 and 26, which means that the Xavier
is 20 time more efficient than the GeForce 2080.

Analysing these results, we can clearly see that, although the GeForce 2080
has 8.5 time more computational resources, in most scenarios, the Xavier is not
8.5 slower than the GeForce 2080. In addition, the power efficiency of the Xavier
makes it the perfect platform to apply edge computing to the simulation of the
forest fire spread. Therefore, the utilization of the Xavier can help to assess the
short-term risk of a forest fire in sito where the fire is burning, favoring a rapid
response to possible fire variations and optimizing firefighting resources.

The previous results obtained, Mode 15W or Mode 2, (see Figure 5.2), was
used, which is the default Mode. Nonetheless, one of the most interesting aspects
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Figure 5.10: Maximum execution time difference between Xavier in Mode 0
(TDP=30W) and Mode 2 (TDP=15W) for the different fire evolution times.

of the Jetson ARG Xavier is the capacity to work in different energy Modes and
configurations. We are interested in studying the optimal balance between perfor-
mance and energy consumption. Therefore, to see if the reduction of the execution
time compensates the increment of the energy consumption, we compare the pre-
vious results obtained with Mode 2 (TDP=15W) against the Mode EDP, or Mode
0, which work with a TDP of 30W, (see Figure 5.2). Figure 5.10 displays the max-
imum execution time difference between the Xavier in Mode 2 and the Xavier in
Mode 0. We observed that when the simulation is performed in Mode 0, the simu-
lation is faster than when Mode 2 is used. However, we are interested in studying
the optimal balance between the execution time and the Energy Capability in the
particular case of forest fire simulation. To allow us to analyze this equilibrium
between performance and energy consumption, we compare the speed up of Mode
0 and the Green Up of Mode 2. The ideal case would be one in which the speed
up is equal or greater than the Green Up, which means that the reduction in the
execution time compensates the increment in energy consumption.

Figure 5.11 illustrates the maximum speed up (dark green column) of the
Xavier in Mode 0, and the obtained Green Up (light green column) for the Xavier
in Mode 2. As displayed, the Green Up decreases when the propagation time
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Figure 5.11: Speed up (dark green) of the Xavier in the EDP Mode and Green Up
(light green) in the Mode 2 (15W mode).

increases. In contrast, the speed up raises with the propagation time. It can be
seen that for 5 hours of fire evolution, Short-Term Simulation, the consumption of
energy is not compensated by the reduction of the execution time. We found that
the Green Up is 1, 1.48 while the Seep Up is 1.35. These results illustrate that the
speed up does not compensate the increment of the energy consumption of Mode
0; therefore, in this case, Mode 2 would be the best option. On the contrary,
for propagation time higher than 10 hours, the results suggest that the speed up
compensates the Green Up; hence, Mode 0 would be the best choice to perform
this kind of forest fire spread simulation. Nonetheless, the Green Up and the Seep
Up of both energy Modes are very close. In the following section, the different
energy Modes of the Xavier are compared using a real forest fire.

We analysed the different characteristics needed in edge computing using an
ideal scenario. Edge scenario has been defined as the best scenario to be simulated
in edge computing. In order to identify this Edge scenario the Green Up and the
speed up are compared. The Edge scenario is those that the Green Up is higher
than the speed up. In the case of a synthetic fire, the obtained results demonstrate
that the Edge scenario is when the Short-term Simulation, 5 hours of fire evolution,
with a Perimeter Resolution equal to 5 meters. In the following section, a real
fire is used to analyse the best energy mode to respond to the computational
requirement that edge computing requires.
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Figure 5.12: Digital Elevation map of São Joaninho fire area. The Red Perimeter
was used as initial perimeter (ignition Perimeter). The perimeter to be predicted
is Blue Perimeter, [23].

5.1.2 Real fire

In the second experiment, we focus on the 5 hours of fire evolution scenario to
evaluate the performance of our target edge computing case, Edge Scenario. In
this scenario, the features of the Xavier make it stand above the GeForce 2080
for edge computing. As a study case, we use a forest fire that took place in 2013
in the region of São Joaninho, Portugal. The forest fire began on August 3rd,
and the total burnt area was 1, 973ha. Figure 5.12 shows the fire perimeters at
two different time instants: t0 (August 3th at 13:38am) and t1 (August 9th at
10:56am).

Because, Short-term fire propagation is the most relevant information that
allows firefighters to assess the short-term risk in order to quickly optimize the
strategy to reduce the impact of the wildfire, we simulate the evolution of the fire
front for five different propagation times, 1 hour, 2 hours, 3 hours 4 hours and 5

hours, and for five different Perimeter Resolution, 5, 10, 25, 50, and 100 meters.
The performance of different energy Modes of the Xavier is analyzed. The main
objective is to analyse how the energy consumption affects the performance of the
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simulations and which is the most efficient combination of Jetson ARG Xavier
developer kit energy Mode to apply the edge computing to the forest fire spread
simulation in the Short-Term Simulation.

Figure 5.13 summarizes the execution time for the different propagation time
and different Perimeter Resolution in Mode 2 (default), see 5.2. We can see that for
propagation time of 1, 2, and 3 hours, the execution time invested into performing
the simulation is under 2.5 seconds for all Perimeter Resolution. In addition, we
can observe that the difference between simulating 1 hour or 3 hours is less than
a second. When the propagation time is fixed to 4 hours, the execution time is
between 3.69 and 9.30 seconds. However, the execution time notably increases
when we simulate 5 hours of propagation time. The simulation that needs more
time to perform the simulation is the simulation with a Perimeter Resolution equal
to 5 meters, 57.09 seconds. Nonetheless, we simulated the near future of the forest
fire in less than a minute, which is close to simulating the forest fire spread near
real-time. Consequently, in the following paragraphs, we consider work with a
Perimeter Resolution equal to 5 meters and a fire propagation time of 5 hours.
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Figure 5.13: Execution time for five different propagation times and for five different Perimeter Resolution
in Xavier with Mode 2 (15W).
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Table 5.4: Execution time invested for different energy Mode, to perform the sim-
ulations with Perimeter Resolution equal to 5 meters for five different propagation
time, 1, 2, 3, 4 and 5 hours.

Energy Mode TDP 1 hours 2 hours 3 hours 4 hours 5 hours
Mode 0 (30W) 9.745 17.678 23.673 27.706 32.566
Mode 2 (15W) 16.373 29.973 41.091 47.808 57.087
Mode 3 (30W) 12.745 21.512 33.079 46.079 54.598
Mode 4 (30W) 13.944 25.553 34.534 40.486 47.002
Mode 5 (30W) 11.672 21.918 29.232 34.167 39.770
Mode 6 (30W) 10.650 19.373 26.035 30.441 35.877

Table 5.4 presents the execution time for the different energy Modes of the
Xavier, see Figure 5.2, and different fire evolution times for both parallel imple-
mentations. In this case, the Mode 10W (Mode 1) is not used because, in this
energy Mode, the GPU remains off. As we expect, the lowest execution time is
obtained when Mode 0 is used. In this energy Mode, the Xavier works at a max-
imum capacity. One interesting aspect when we analyze the performance of the
GPU-FARSITE implementation is that the second fastest energy Mode is Mode
6. This is an unexpected result because Modes 3, 4, and 5 allow the utilization
of more CPU cores than Mode 6; 8, 6, and 4 CPU cores, respectively. While the
code executed in the GPU is similar in all Modes, there are parts of the code that
runs in the CPU. These Modes limit the maximal frequency of the CPU. While
Modes 3, Modes 4 and 5 have 1, 200MHz, 1, 450MHz and 1780MHz, Mode 6
has a CPU Maximal Frequency equal to 2, 100. This frequency increment com-
pensates the reduction of the CPU cores available; therefore, the Mode with the
higher maximal frequency has the best performance.

As we said, in order to measure the energy efficiency of the different Modes, the
Energy Capability is computed, see Equation 5.1. The Energy Capability reflects
the work necessary to propagate a single point from the initial perimeter to the final
perimeter. Figure 5.14 reveals the Energy Capability for different energy Modes
when the Perimeter Resolution is 5 meters and the propagation time is 5 hours.
We see that the maximum Energy Capability is obtained with Mode 2. However,
the second energy Mode with the highest Energy Capability is Mode 0. Until Mode
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0 consumes 30W, double than Mode 2, its energy capability is only 12% less than
Mode 2. This is because Mode 0 only needs 32.57 seconds to simulate the forest
fire evolution, around 42% less execution time than Mode 2. On the contrary, the
Mode with the worst Energy Capability is Mode 3. This seems to have no sense
because Mode 3 allows the utilization of the 8 cores of the CPU. However, in this
case, the CPU Maximal Frequency, 1200Mhz, is the lowest of all the Modes that
have a TDP of 30W, see Figure 5.2. The increment of the CPU cores does not
compensate this reduction of the CPU Maximal Frequency; therefore, it is the
Mode with the lowest Energy Capability.

Figure 5.14: Energy Capability of the GPU-FARSITE parallelization for five dif-
ferent propagation times and a Perimeter Resolution equal to 5 meters.

As in the previous section, we use the Green Up and theSpeed Up to evaluate in
which circumstances we can suggest the utilization of one energy Mode or another.
As a reference Mode, we utilize Mode 2 because it is the Mode with the highest
Energy Capability and the highest execution time. Consequently, we calculate the
Green Up of energy Mode 2 over the other Modes and the Speed Up of the other
Modes over Mode 2. Figure 5.15 reveals the comparison of the Green Up and
the speed up obtained. In the case of energy Modes 3 and 4, the Green Up is
higher than the speed up. Therefore, these energy modules do not compensate for
the increment of energy consumption. Nonetheless, when Mode 0 is utilized, the
speed up is higher than the Green UP. This result suggests that the energy Mode

107



5. EDGE COMPUTING

with the best balance between energy consumption and computational power is
Mode 0. This is a consequence of the increment of the perimeter points. When
we work with a synthetic fire, the maximum number of points to be processed
is around 68, 000 perimeter points. This number increases in the real fire case
since 850, 000 perimeter points. Therefore, the computational work to simulate
the behaviour of the real forest fire is 12.5 times higher than the synthetic fire.
For that reason, in this particular case, the best energy Mode is the one that has
the highest computational capability.

Figure 5.15: Green Up (light green) and speed up (dark green) for five Different
propagation times and a Perimeter Resolution equal to 5 meters.

The new embedded systems, like Xavier, open a new perspective where the
monitoring and prediction of the fire behaviour could be made in the same place
where the fire is taking place. Clearly, we can distinguish two different situations.
On one side, when we are interested in minimizing the execution time to perform
the simulation of the forest fire, in which case, the obtained results show that
Mode 0 is the best option. On the other side, when we want to maximize energy
efficiency, the best choice is Mode 2. However, we have to sacrifice some perfor-
mance, which translates into an increment in execution time. In the particular
case, where the embedded system is combined with a drone to reduce input data
uncertainty, "extreme edge computing", energy optimization could be a crucial
aspect. Suppose the fire burns in a zone with difficult access and low connectivity.
In that case, the computational system must be as energy efficient as possible,
although this implies increasing the execution time in a few seconds. In this case,
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the utilization of the Xavier with energy Mode 2 is the best choice. The obtained
results highlight that the computational and consumption characteristics Xavier
make them the perfect platform when we need to assess the short-term risk of a
wildfire. However, depending on the characteristics of the urgent response to a
hazard, like a forest fire, the simulation requirements can change, and the balance
time/cost may change. Under these circumstances, the users should consider the
peculiarities of their problem, taking into account their limitations to choose the
best energy Mode.
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Chapter 6

Conclusions and OpenLines

In the last years, the augment of the global temperature caused by climate change
has intensified the number and damage of forest fires. Models and their implemen-
tation in simulators can estimate the behaviour of the wildfires, but they are not
exempt from a certain degree of error. The quality results of these models depend
not only on the propagation equations describing the behaviour of the fire but also
on the input data required to initialize the model. Typically, this data is subjected
to a high degree of uncertainty and variability during the evolution of the event
due to the dynamic nature of some of them, such as meteorological conditions or
moisture contents in the vegetation. Consequently, it is necessary to find strate-
gies to minimize this uncertainty in order to provide better predictions. Previous
studies have demonstrated that the use of the Two-stage Methodology increases
undoubtedly the accuracy of the predictions. However, due to its characteristics,
Two-stage Methodology implies that the execution time invested in performing a
prediction of the fire propagation increases significantly. Because the forest fire
spread simulators based on the Elliptical Wave Propagation Algorithm cannot dis-
tinguish between burned and not burned zones, the simulation of the forest fire
evolution can be classified into big blocks: the propagation of the fire front and
the reconstruction of the fire perimeter, which represent around the 7% and 60%

of the execution time respectively for big fires. In this study, the two blocks are
analyzed separately. In particular, we focus on the forest fire spread simulator
FARSITE, which is a widely accepted forest fire spread simulator in the scientific
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community related to this field; however, the proposed methodology is simulator
independent and could be applied to any other forest fire spread simulator. Dur-
ing this thesis, we want to achieve three main objectives: The first objective is to
reduce the execution time invested in the GA. The second objective is to improve
the accuracy of the forest fire spread simulator without excessive execution time
penalties, and the last objective is to accomplish forest fire spread simulations
near real-time and near the location where the fire is taking place. To achieve
these goals, three different strategies were developed. The main conclusions of
each strategy are described in the following sections.

6.1 Mixed Precision Methodology Conclusions

For historical reasons, a large part of the scientific codes overestimate the numer-
ical precision that a model needs; for that reason, the generalized use of double-
precision in scientific codes has been put into revision as not all variables require
it. Different works expose that the generalized use of double-precision in most
scientific codes could be notably reduced. The use of mixed-precision would pay-
back in terms of performance improvement, requiring little coding effort. For this
reason, our first strategy consists of applying the mixed-precision methodology to
simulate forest fire propagation using the Two-stage Methodology, which is based
on an evolutionary scheme (GA) without damaging the accuracy of the final sim-
ulation. A relevant outcome from the experimental study is that around 74% of
the variables used to calculate the point expansion algorithm can be defined in
single-precision. On the other hand, only 15% of the variables used in the fire
front reconstruction module could be used with single-precision. This is an es-
sential restriction because that part represents, in some cases, around 60% of the
total simulation time. For that reason, in those particular cases where the Fire
Front reconstruction algorithm has a higher weight, the performance improvement
using mixed-precision is limited.

The proposed mixed-precision methodology has been tested two types of sce-
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narios instanced by Arkadia’s, Fire Front Reconstruction Oriented, and Nuño-
moral’s fires, Point Expansion Oriented. We saw that the local conditions of the
scenario where the fire occurred have a notable impact on the performance im-
provement provided by the mixed-precision methodology. The experimental study
performed analyzes the impact of the mixed-precision in the classic prediction
scheme where a single simulation is done to predict the evolution and also it has
been tested on the Two-stage Methodology where a genetic algorithm is used in
a data-driven way to determine the most suitable values of the input simulator
parameters based on the current evolution of the forest fire. As it was expected,
the application of the Two-stage approach improves notably the prediction of the
evolution of the fire front. In both simulated scenarios, the computed error of
the prediction was lower when we used the Two-stage approach than the classic
scheme. However, this improvement in terms of quality has a high cost in terms of
execution time. We saw that, in general, the Two-stage approach consumes around
10 times more execution time than the classic scheme. The obtained results, when
combining the Two-stage Methodology with the mixed-precision implementation,
show that the mixed-precision implementation does not compromise the quality
of the forest fire spread simulation because of the slight differences in the fire
evolution.

However, this difference is accumulative; therefore, this difference is more dis-
cernible when the fire propagation increases. This is because the usage of less
precision introduces a tiny error for each time loop; consequently, when the propa-
gation of the fire front raises, the error becomes slightly detectable even values are
always below predefined error limits. Due to the forest fires being very complex
systems, we are interested in predicting the general evolution tendency of fire. In
both scenarios, both implementation, the double and the mixed-precision predict
the same fire propagation tendency. The performance improvement of the mixed-
precision implementation depends on the wildfire scenario. The Point Expansion
Oriented fires, Nuñomoral’s, tends to have a better performance improvement than
in the case of Fire Front Reconstruction Oriented fires, like Arkadia’s case. This
improvement variation could be caused due to the higher terrain complexity, like
in the Arkadia’s fire. When the wildfire takes place in complex terrain, the weight
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of the fire front reconstruction algorithm raises. In the fire front reconstruction
algorithm, only the 15% of the variables can use single-precision; for this reason,
the performance benefit is limited. Thus, the performance improvement of the
mixed-precision approach is more significant for those scenarios where the fire is
more Point Expansion Oriented.

6.2 Fine-Grained Paralelization Conclusions

In order to improve the accuracy of the forest fire spread simulation without penal-
izing the execution time excessively, we apply a novel fine-grained parallelization.
The computing power of GPUs make them the ideal device to implement the
fine-grain parallelization of the forest fire spread effectively. In Chapter 4 a novel
GPU implementation for forest fire spread simulators based on the Elliptical Wave
Propagation is described. The proposed GPU implementation has been validated
utilizing a real scenario that took place in Arkadia (Greece) in 2011. To analyze the
efficiency of the novel GPU implementation, it has been tested against an OpenMP
implementation. First of all, the two simulation blocks, the Fire Front Propagation
algorithm, and the Fire Front Reconstruction algorithm, are evaluated separately.
Finally, the performance of the whole simulator is analyzed.

When the Fire Front Propagation algorithm is evaluated, we see that for
Perimeter Resolution equal to 100, 50, and 25 meters, less than 730, 000 perimeter
points, the implementation in OpenMP is faster than the GPU implementation.
This is because GPUs have an ongoing start-up cost caused by their initialization
and the time invested in the data transfer from the Host to device memories. In
this situation, the start-up and copies times are not compensated by the compu-
tational work. However, for lower Perimeter Resolution, the GPU becomes more
efficient than the OpenMP implementation. We see that the speed up increases
as the Perimeter Resolution decreases. The maximum speed up is reached for
the lowest Perimeter Resolution, 5 meters. This is due to the complexity of the
Fire Front Propagation algorithm being O(n), where n is the number of perimeter
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points. We saw that for low Perimeter Resolution the GPU is the most efficient
device to execute the Fire Front Propagation algorithm. In order to normalize the
computational work, we compute the number of propagated points per second.
For Perimeter Resolution equal to 5, the GPU parallelization propagates around
54% more perimeter points per second than the OpenMP implementation.

When the Fire Front Reconstruction algorithm is analyzed, we see that the
execution time consumed is much higher than in the Fire Front Propagation algo-
rithm. The obtained results reveal that, except for Perimeter Resolution equal to
100 meters, the GPU parallelization is the fastest in all situations. However, when
the speed up is analyzed, we found that the maximum speed up is reached with a
Perimeter Resolution equal to 10 meters. In this situation, we obtain a speed up
round of 5.48. Under this Perimeter Resolution the speed up decays to 3.02.

The performance improvement is notable if we combine the GPU implanta-
tion of the Fire Front Propagation and the Fire Front Reconstruction in a GPU-
FARSITE fire spread simulator. For Perimeter Resolution of 100 meters, the serial
implementation is the fastest one. As we mention, in this situation, computational
work cannot compensate for the start-up time of the parallel implementations, and
the copy data time, in the case of the GPU application. For this Perimeter Res-
olution, the GPU implementation is the slowest implementation. For the other
Perimeter Resolution, both parallel implementations are more efficient than the
serial FARSITE. The maximum speed up of both parallel implementations is ob-
tained with the lowest Perimeter Resolution, 11.99 for the GPU and 3.96 for the
OpenMP applications. Except for a Perimeter Resolution of 100 meters, the GPU
implementation is faster than the OpenMP one in all different scenarios. When we
compare both parallel implementations, we observe that the GPU application is
the most efficient to perform simulations with high accuracy, low Perimeter Res-
olution. We obtain the maximum speed up for Perimeter Resolution equal to 10

meters. This is because the bandwidth of the GPU is saturated. Therefore, we
went from a compute-bound problem, where the number of perimeter points can
be raised without increasing the execution time significantly, to a memory-bound
problem, where the increment of perimeter points has a higher impact on the ex-
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ecution time. In order to analyze the data transfer between memories, the copy
time was measured.

We obtain that the execution time invested in the data transfer decrease ex-
ponentially as the number of perimeter point raise. When the transfer work is
normalized, we see that above 16, 500 points per second, the bandwidth of the
GPU is saturated. Hence, the increment of the perimeter points directly impacts
the execution time needed to simulate the forest fir spread. As a take-home mes-
sage, we can conclude that the new GPU-FARSITE simulator possibilities the
forest fire spread propagation simulation with high accuracy because it signifi-
cantly improves the performance of the serial implementation and the OpenMP
parallelization.

6.3 Edge Computing Conclusions

As we saw, one of the principal problems of the forest fire spread simulators is
related to the input data uncertainty. Different strategies had been developed in
order to reduce this input data uncertainty, like Two-stage Methodology. These
strategies focus their effort on calibrating the input parameter; however, none
of these are oriented to improve the quality of input measurements. In the last
years, the advances in the UAVs field allowed the utilization of drones to collect
the data parameters of the forest fire needed for the forest fire spread simulator.
The direct measurement of these data by a drone at the same place and at the
same time when a fire is occurring could reduce the uncertainty of the input data
parameters significantly. However, this data has to be sent somewhere in order to
be processed, and the evolution of the forest fire simulation has to be sent back
to the firefighters. This is time expensive and impossible in those zones with low
connectivity. For this reason, the optimal solution is to perform the simulation
of the near future of the fire spread in the same place, or close, where the fire is
taking place. To accomplish this objective, we utilize Edge Computing. The main
requirements that edge computing has to accomplish are three: it has to work in
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a low connectivity environment, has short execution times, and be very energy
efficient.

The new Embedded Systems with our novel GPU-FARSITE implementation
opens a new way to exploit maximum edge computing. In the last part of the thesis,
we test the GPU-FARSITE implementation in an embedded system with a low
consumption GPU the Short-term Simulation, less than 5 hours of fire propagation.
In our case, we utilize an NVIDIA Jetson AGX Xavier developer kit, Xavier. For
the purpose of studying the possibilities of these kinds of devices, we tested the
Xavier into two different studies. In the first experiment, we used a synthetic fire in
flat terrain, with homogeneous fuel and a constant wind speed and wind direction
throughout the simulation. The performance of the Xavier has been compared
against a desktop GPU, GeForce RTX 2080 Ti, GeForce. In general, the GeForce
needs less execution time to perform the forest fire spread simulation than the
Xavier. However, GeForce has 8.7 more computational power than the Xavier,
but Xavier is not 8.7 times slower. According to the study carried out, when we
work with high Perimeter Resolution, 100 and 50 meters, and less than 10 hours
of fire propagation, the Xavier is faster than the GeForce. This is because the
GeForce has a higher start-up time than the Xavier ; therefore, in those situations
in which the number of perimeter points to be processed is not large enough, the
computational work cannot compensate this time. As a consequence, the Xavier
is the fastest in those simulations in which the execution time is less than a second.

In the other scenarios, the GeForce needs less execution time to perform the
forest fire spread simulation than the Xavier. However, we want to study the
possibility of using the low consumption GPUs to create a new device to simulate
the evolution of the fire in situ. For that reason, the consumption of energy is
a crucial point to take into account. When the Energy Capability is computed,
we saw that the Xavier processed more perimeter points per energy unit than
the GeForce or, we need less energy to compute the evolution of a single point
in the Xavier than in the GeForce. This is due the Energy Capability of the
Xavier is higher than the Energy Capability of the GeForce. This result highlight
that the Xavier is more energetically efficient than the GeForce. Consequently,

117



6. CONCLUSIONS AND OPENLINES

even the Xavier is slower than the GeForce, the obtained execution time proves
that we can use a low consumption GPU to simulate the evolution of the front
fire with high accuracy, with operational times. This is illustrated by comparing
the Green Up and the speed up. We saw that for Short Term simulation the
Green Up is 10 higher than the speed up, which indicates that the increment
of the simulation velocity does not compensate for the increment of the energy
consumption. Analysing the balance between Green Up and the speed up, we can
define this situation as the Edge Scenario, as the best candidate to be simulated
with edge computing. The Edge scenario is those that the Green Up is higher
than the speed up. The obtained results highlight that the Edge Scenario is when
the propagation time is 5 hours of fire evolution, and a Perimeter Resolution equal
to 5 meters. Or in other words, the Edge Scenario is Short-term Simulation, with
high accuracy. We clearly saw that the power efficiency of the Xavier makes it
the perfect platform to apply edge computing to the simulation of the forest fire
spread. Therefore, the utilization of the Xavier can help to assess the short-term
risk of a forest fire in situ where the fire is burning, favoring a rapid response to
possible fire variations and optimizing firefighting resources.

Because Xavier has different operating modes, we are interested in studying the
optimal balance between the Simulation Time and energy consumption. For this
purpose, in the second experiment, the different energy modes of the Xavier are
tested in the Short Term simulation. In particular, we focus on the fire evolution
time of 1, 2, 3, 4, and 5 hours. We use a real fire to analyse the efficiency of
the different power configurations of the Xavier. From the six possible power
configurations, the most interesting is the Mode 2, default Mode, with a Thermal
Design Power of 15W, and Mode 0, in which the Xavier works at full capacity,
with a Thermal Design Power of 30W. Mode 0 is the energy mode that allows
the faster simulation, around 30 seconds, but it has a higher energy consumption
than Mode 2. On the contrary, with Mode 2, the obtained execution time is the
highest. However, with this power configuration, we reach the maximum energy
capability of the Xavier. In order to determine which is the optimum energy mode,
we compare the Green Up of Mode 2 against the speed up of the other Modes. We
observed that Mode 0 has a speed up higher than the Green Up of Mode 2. The
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other energy configuration with a higher speed up than Green Up is Mode 6, but
this Mode is slower and has less energy capability than Mode 0.

The new embedded systems, like Xavier, opens a new perspective where the
monitoring and prediction of the fire behaviour could be made in the in situ where
the fire is burning. We distinguished two different situations. On one side, when
the minimization of the execution time to perform the forest fire simulation is the
priority, the obtained results show that Mode 0 is the best option. The second case
is in those situations where the maximization of energy efficiency is of paramount
importance. In these scenarios, the best choice is Mode 2. However, we have to
sacrifice some performance. If an embedded system is combined with a drone in
order to reduce input data uncertainty, "extreme edge computing", the optimiza-
tion of the energy consumption is critical. In addition, If the fire takes place in a
zone with low connectivity, the computational system must be as energy efficient
as possible, although this implies increasing the execution time in a few seconds.
In this case, the utilization of the Xavier with energy Mode 2 is the best choice.
These results highlight that the computational and consumption characteristics
Xavier makes them the perfect platform when we need to assess short-term risk
of a wildfire. However, depending on the characteristics of the urgent response
to the fire propagation, the simulation requirements can change, and the balance
time/cost may change. Under these circumstances, the users should consider the
peculiarities of their problem, taking into account their limitations to determine
the best energy configuration.
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6.4 Open Lines and Future Work

At the final of this thesis, some Open Lines must be solved in the near future.
First of all, the mixed-precision methodology has to be applied to GPU-FARSITE
parallel implementation, which will improve its performance and reduce the weight
of the data transfer between memories. Finally, the most relevant open line is
to find a new Fire Front Reconstruction algorithm with low complexity. The
complexity of the current Fire Front Reconstruction algorithm is O(n4). Our
GPU parallel implementation of the Fire Front Reconstruction algorithm reduces
its complexity to O(n3). If the number of perimeter points is high enough, we can
replace the Crosswalk algorithm with an enveloping algorithm, like α-Shape, with
low error. This new algorithm reduces the complexity of the Fire Reconstruction
to O(n · log n). Increase the accuracy to go faster.
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