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Abstract

Alzheimer disease (AD) is the most important cause of dementia. Its histopathological hallmarks

are  intracellular  hyperphosphorylated  tau  and  extracellular  amyloid  plaques,  which  start  to

accumulate  decades  before  the  onset  of  clinical  symptoms  and  eventually  lead  to

neurodegeneration and brain atrophy. Magnetic resonance imaging (MRI) provides a window to

characterize in vivo the cortical changes in the preclinical and clinical phases of the disease. This

thesis studied the cortical macrostructural, microstructural and metabolite changes along the AD

continuum. It  highlights  the complex and non-linear  alterations in  the preclinical  phase and

analyzes the characteristic regional vulnerability underlying the spread of tau in early stages of

the disease. Specifically, the  first work of the thesis mathematically modeled the trajectory of

cortical thickness and cortical mean diffusivity in autosomal dominant Alzheimer disease. This

work demonstrated a biphasic trajectory of cortical alterations, in which the initial increases of

amyloid were associated with increased cortical thickness and decreased cortical diffusivity, but

were followed by cortical thinning and increased cortical diffusivity once tau becomes abnormal

(15 years prior to symptom onset). The second work of this thesis characterized the alterations of

metabolites along the AD continuum in a cohort of Down Syndrome using magnetic resonance

spectroscopy  (MRS).  This  work  showed  the  potential  of  MRS  to   detect  AD-related

inflammation and neurodegeneration. The third work of this thesis investigated the potential of

cortical diffusivity as a marker of neurodegeneration and its relationship with the accumulation

of tau in preclinical AD. This work showed cortical diffusivity decreases were associated with

the accumulation of tau in inferior temporal regions and predicted clinical deterioration. The

fourth  work of  this  thesis  studied  the  genetic  regional  vulnerability  associated  to  the

stereotypical  pattern  of  tau  accumulation.  This  work  developed  a  novel  graph-theory-based

framework  to  characterize  the  spread  of  tau  integrating  a  high-resolution  data  of  gene

expression. This thesis  has several important potential  implications.  First,  it  consolidates the

biphasic  trajectory  of  cortical  alterations  that  reconciles  previous  conflicting  results  in  the

literature, greatly expand the potential of MRI to track changes in preclinical AD and provides a

rationale to understand the (otherwise) paradoxical findings of increased atrophy in the active
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arm of  anti-amyloid  trials.  Second,  this  thesis  showed  MRS  could  be  a  good  noninvasive

disease-stage biomarker in Down syndrome to track neurodegeneration and neuroinflammation.

Third, it shows cortical mean diffusivity could be a more sensitive marker of neurodegeneration

than cortical thickness that could be implemented in clinical trials. Finally, it provides a new

framework to analyze the regional vulnerability underlying the spread of tau which could lead to

the identification of new drug targets. In conclusion, this thesis highlights the complexity of the

cortical  changes  preclinical  AD  and  their  regional  vulnerability,  but  also  demonstrates  the

potential of MRI to track these changes when using a multimodal approach, non-linear models

and new analytical frameworks.
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 Resumen

La  enfermedad  de  Alzheimer  es  la  principal  causa  de  demencia.  Patológicamente,  está

caracterizada  por  tau  hiperfosforilada  intracelular  y  el  depósito  de  placas  de  amiloide

extracelular.  Estos  procesos  fisiopatológicos  empiezan  décadas  antes  de  que  aparezca  el

deterioro cognitivo, y conllevan atrofia cerebral y neurodegeneracion. La imagen por resonancia

magnética  (RM)  nos  permite  caracterizar  “in-vivo”  los  cambios  corticales  en  las  fases

preclínicas  de  la  enfermedad.  Esta  tesis  incluye  trabajos  donde  se  estudian  los  cambios

macroestructurales, microestrucutrales y de metabolitos corticales a lo largo del continuo de la

EA. Este trabajo destaca la complejidad de estos cambios y su trayectoria no lineal, y analiza la

vulnerabilidad  regional  que  subyace  a  la  propagación  de  tau  en  las  fases  tempranas  de  la

enfermedad.  En concreto,  en el  primer trabajo de esta  tesis,  se modeló matemáticamente la

trayectoria de cambios de grosor cortical y difusividad cortical en la EA autosómica dominante.

Demostramos que existe  los cambios  corticales  siguen una trayectoria  bifásica,  donde en el

inicio y relacionado con el acúmulo de amiloide, aparece un incremento del grosor cortical y un

descenso  de  la  difusividad  cortical,  que  siguen  a  cambios  hacia  atrofia  e  incrementos  de

difusividad  una  vez  tau  adquiere  valores  patológicos  (15  años  antes  de  que  empiecen  los

síntomas  clínicos).  En  el  segundo  trabajo de  esta  tesis  se  caracterizó  las  alteraciones  de

metabolitos en el continuo de la EA en una muestra de adultos con Síndrome de Down usando

resonancia magnética por espectroscopia (RMS). Este estudio demuestra el potencial de la RMS

para detectar alteraciones relacionadas con la neurodegeneracion en la EA. En el tercer trabajo

de  esta  tesis  se  investigó  el  potencial  de  la  difusividad  cortical  como  marcador  de

neurodegeneracion, y su relación con el acúmulo patológico de tau en las fases preclínicas de la

EA. En el cuarto trabajo de esta tesis se estudió el perfil genético de la vulnerabilidad regional

asociada al patrón de propagación de tau. Para este trabajo se desarrollaron herramientas basadas

en teoría  de  grafos  para  caracterizar  la  propagación de  tau,  integrando  información  de  alta

resolución sobre expresión génica. Esta tesis supone potenciales implicaciones. En primer lugar,

consolida  la  presencia  de  un  modelo  bifasico  de  cambios  corticales  que  proporciona  una

explicacion a resultados aparentemente adversos en la literatura, y propone el potencial de la

RM  para  capturar  alteraciones  estructurales  en  las  etapas  tempranas  de  la  enfermedad.  En
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segundo lugar, demuestra el potencial  de la RMS como marcador no invasico para medir la

neurodegeneracion  e  inflamacion  en  la  poblacion  con  Sindrome de  Down.  En  tercer  lugar,

propone que la difusividad cortical es un potencial marcador de neurodegeneracion mas sensible

que el grosor cortical, con potencial para ser usado en ensayos clinicos. En ultimo lugar, propone

un marco analitico para estudiar las vulnerabilidades regionales asociadas a la propagacion de

tau, cuyos resultados pueden suponer una guia de investigacion a nuevas dianas farmacologicas.

En conclusion, esta tesis destaca la complejidad de los cambios corticales en etapas preclinicas

de la EA y su vulnerabilidad regional.
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Introduction

1.1 Alzheimer Disease

1.1.1 A Global Health Problem

Dementia, a term used to describe the affectation of memory, thinking, behaviour and emotion in several

brain disorders, is estimated to be affecting over 55 million people in 2021. Alzheimer disease (AD) is

the most important cause of dementia, accounting for 50-60% of people with cases. Alzheimer’s disease

is the most common cause of dementia in the world, with more than 6.8 million people aged 65 or older

suffering of AD dementia only in the United States1. Unfortunately, there is no cure, despite the recent

FDA approval of Aduhelm2. Thus, the global burden of AD, and the tremendous impact on both patients

and caregivers makes research in AD a priority of the utmost importance.

1.1.2 Pathological hallmarks of the disease

Part of the complexity to understand and characterize AD might stem from the fact that it is the only

neurodegenerative  disease  associated  with  two  proteinopathies3.  AD  has  two  core  pathological

hallmarks: the presence of extracellular amyloid plaques (composed mainly by amyloid 1-42) and the

accumulation of intracellular hyperphosphorylated species of the microtubule-associated tau protein in

neurofibrillary tangles. 

Amyloid plaques are formed through the accumulation of extracellular soluble fragments of amyloid-β

(Aβ). Aβ is the result of the sequential cleavage of the Amyloid Precursor protein (APP)4,  which is

mainly found in neurons, by three protease activities. The cleavage of APP by the beta- and gamma-

secretase, generates Aβ peptides between 40 and 43 amino acids in length that are prone to aggregation.

The most frequent species in amyloid plaques is the Aβ1-42 peptide5. Amyloid plaques can be found in

several conformations, the two most frequent being diffuse and dense-core plaques. Topographically,

amyloid deposition starts in the isocortex, and later spreads to subcortical areas3.

Neurofibrillary tangles (NFT) result from the pathological accumulation of intraneuronal paired helical

filaments of hyperphosphorilated tau (pTau)3. Tau is expressed by the microtubule associated protein tau

(MAPT). Tau can be phosphorilated by several kinases, the most important of which is the  glycogen

synthase  kinase  3  (CSK3β)6.  Hyperphosophorilated  tau  dissociates  from  the  microtubules  and

accumulates  in  tangles3.  The  topography of  the  pathological  accumulation  of  tau  in  AD follows  a

stereotypical  pattern,  which  starts  at  the  locus  coeruleus,  expands  to  medial  temporal  cortex,  to

subsequently accumulate in the neocortex7.
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Even though amyloid plaques and NFT are the most prominent hallmarks, AD also presents several

other pathological findings that are important in the progression of the disease 8. In this sense, the role of

glia cells  in the progression of AD has recently received enormous atztention due to the consistent

findings  in  GWAS  studies  implicating  innate  immunity9.  The  complex  changes  of  astrocytes  and

microglia from their homeostatic state to its reactivity is only beginning to be understood, but clearly

modulate the accumulation and spread of both amyloid and tau10. In addition, recent findings also point

to the direct toxic effect of reactive glia to cause neuronal death11. 

Figure 1. Pathological hallmarks of AD. (A) Amyloid plaques formation and (B) NFT formation

Amyloid plaques and tau tangles have been described pathologically for more than a century with silver

staining methods among others. The biochemical composition, however, was not described until  the

1980s, and together with the development of immunohistochemistry, eventually led in the 2000s to the

development of several protocols and scales to measure the burden of each proteinopath 7,12. For amyloid
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deposition, the two most widely used scales are the CERAD12 (for neuritic plaques) and the Thal scales

(for Aβ deposition)13. For tau, the Braak staging criteria is the most widely used. It proposes a sequential

propagation of tau in the brain and describes six stages7. Microglia was first described by Pío del Río

Hortega,  who  beautifully  described  its different  morphological  states14.  However,  there  are  not

standardized scales to quantify the amount of pathological glia, probably because its importance has

been neglected until very recently. This will probably change as there is very active research in this

topic. 

1.1.3 Sporadic and familial Alzheimer Disease

AD dementia is clinically characterized by a progressive loss of memory and executive functions. Its

more common presentation is initially characterized by a gradual deterioration of episodic memory that

disturbs the ability to acquire and recall recently learnt information15. AD is  a  complex multifactorial

disease, in which the combination of genetic vulnerability, risk factors and epigenomic changes lead to

the development  of  the  disease.  Nevertheless,  recent  genetic  studies  with  thousands of  participants

identified 38 loci that increase the risk of developing AD, being APOE the most important one9. Among

the risk factors for sporadic AD the most important is age16. In most individuals, the disease occurs

between 70 and 90 years of age.

Currently, there are two frameworks to diagnose the disease. On the one hand, the NIA-AA framework

proposes a biological definition of the disease based solely on biomarkers (i.e amyloid and tau) 17. The

clinical  symptoms  or  syndromes  stage  the  disease  (e.g.  AD  dementia  in  those  individuals  with

pathological  amyloid  and  pathological  tau  and  a  dementia  syndrome).  On  the  other  hand,  the

International Working Group, in addition to the considering the presentation of pathological changes,

requires the presence of a clinical syndrome to diagnose an individual with AD18.

Despite the high heritability (estimated in about 70%19,  Figure 2-A), less than 1% of AD dementia

presentations  arise  from autosomal  dominant  mutations.  Concretely,  autosomal  dominant  Alzheimer

Disease (ADAD) is caused by mutations in the APP, presenlilin-1 (PSEN1) and presenilin-2 (PSEN2)

genes20. The clinical symptomatology in ADAD resembles that of sporadic AD, even though it appears

more than 20 or 30 years before late onset AD. Importantly, the topography and laminar distribution of

amyloid and tau accumulations are very similar between the two forms. 

Another population recently categorized as genetic form of dementia is Down Syndrome(DS)21. Recent

epidemiologic studies have shown that the lifetime risk of Alzheimer’s disease in people with  DS is

more than 95%22. This ultra-high risk stems from the trisomy of chromosome 21 itself, where the APP

gene its coded, resulting into an over-production of amyloid since birth. Importantly, the trajectory of
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biomarkers  and  clinical  changes  of  AD  in  the  DS  population  (DSAD)  is  identical  to  that  of

ADAD21 (Figure 2-B). ADAD and DSAD are both thus genetically determined forms of AD.

Genetically determined forms of AD present a unique opportunity to study AD pathophysiology over

sporadic AD. Most importantly, the age of presentation of clinical symptoms in these two forms of

familial AD is highly predictable21,23, which allow to estimate the years to symptom onset and thus study

the chrono-pathophysiology of the disease even in  cross-sectional  studies (often referred to,  in this

context, as pseudo-longitudinal studies). This predictability (and unavoidability) of the disease even in

asymptomatic individuals makes these populations ideal  for both primary and secondary preventive

trials.

Figure 2. Genetic landscape in Alzheimer Disease. (A) Genetic risk genes and their prevalence in the

genera population (adapted from Alzforum) and (B) Biomarker trajectories in ADAD and DS.
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1.2 Biomarker for Alzheimer Disease
A biomarker is a measurable indicator of some biological state or condition, that can be objectively and

reliably quantified. Many biomarkers have been discovered and validated to diagnose and study the AD

pathophysiology24. Due to the diverse properties of those biomarkers, it is possible to group them in

diverse ways, for example by the nature of the biomarkers, such as differentiating between biochemical

and imaging biomarkers. The biomarkers of particular interest in this PhD are cerebrospinal fluid (CSF)

and plasma biomarkers in the biochemical  subgroup,  and the  positron emission tomography (PET),

structural and diffusion magnetic resonance and magnetic resonance spectroscopy biomarkers, for the

imaging biomarkers.

1.2.1 Biochemical Biomarkers

i) Cerebrospinal Fluid Biomarkers

Cerebrospinal  fluid (CSF),  which can be obtained through a  lumbar puncture25,  is  in direct

contact with the extracellular space of the brain.  Thus,  CSF biomarkers are ideally poised to

measure the AD pathological changes. CSF has been used for more than two decades in AD and

other neurodegenerative diseases. There are three main proteins that have been studied in CSF:

1) Aβ1-42 (decrease in AD), 2) pTau (increased in AD) and 3) total Tau (increased in AD) 24.

These core AD biomarkers have repeatedly been shown to correlate with brain pathology, both

in postmortem pathological studies26 or when using amyloid or tau PET data as a proxy of brain

pathology27,28.  Researchers  have  also  used  CSF  data  to  measure  and  study  other

pathophysiological  alterations  such  as  neuroinflammation,  neurodegeneration  (through

neurofilament-light chain -NfL) or synaptic loss29.

ii) Plasma Biomarkers

Plasma is a very accessible biofluid that might provide important information both for research

and clinical practice because of its low-cost and availability. In the last 3 years, in parallel with

major  technical  advancements,  several  plasma  biomarkers  have  been  developed  in  the  AD

field24.  One  of  the  earliest  and  most  successful  is  plasma  NfL,  which  reliable  measure

neurodegeneration,  although  it  is  not  specific  for  AD  as  it  is  increased  in  all  other

neurodegenerative  conditions.  Other  recent  advancements  have  also  allowed  to  measure

different tau isoforms (pTau181 and pTau217 and pTau231)24,30,31,  which showed potential to

track  pathological  alterations  in  early  stages  of  the  disease.  Importantly,  plasma  pTau

biomarkers showed high correlation with tau (and amyloid) PET and CSF measurements30,32,

reinforcing its potential to be used in clinical practice.
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1.2.2 Imaging Biomarkers

i) Positron emission tomography biomarkers

Positron  emission  tomography  (PET)  is  a  nuclear  medicine  technique  that  enables  the

measurement and spatially location of specific protein aggregates or receptors in-vivo through

the use of radiotracers. It  is grounded on several radioisotopes based on  fluoride, carbon or

oxygen  that  emit  positrons  and  that  can  be  incorporated  in  different  molecules  (named

radiotracer or ligands)33. These radiotracers are injected into the bloodstream, cross the brain

blood  barrier  and  reach  their  target.  The  collision  of  the  emitted  positrons  with  electrons

generate gamma rays that can be measured in the PET. Fluorinated tracers have a much longer

halve life than those based on carbon and are thus much better suited to be used in clinical

practice. The ligands more widely used in the AD field are fluorodeoxyglucose (FDG), amyloid

tracers and, more recently tau tracers. FDG has been used to measure brain metabolism for more

than 30 years. AD dementia patients typically show hypometabolism in temporoparietal regions.

Amyloid tracers (such as Florbetapir, florbetaben or flutemetamol) measure the deposition of

amyloid,  whereas  tau  tracers  (such  as  FTP,  RO948,  PI2620  or  MK6240)  measure  tau

pathology34.  PET can  also be used to measure other pathological  processes such as reactive

astrocytosis35 (e.g using Deprenyl-PET) or microglia activation36 (using TSPO-PET). Compared

to  other  biomarkers  that  provide  only  a  scalar  measure  of  brain pathology,  PET provides

topographical information. However, it does have some technical caveats such as low spatial-

resolution (compared to other imaging techniques), non-specific tissue binding  and/or partial

volume contamination37. 

ii) Strucutral MRI

Magnetic resonance imaging (MRI) is a radiological technique that enables the visualization and

study of the biophysical properties of the brain in-vivo.  MRI is based on the use of  strong

magnetic fields, magnetic field gradients, and radio waves that can be measured via antennas,

to generate images of the  brain38.  In dementia clinical practice, MRI is used to rule out the

presence of morphological alterations that might justify or contribute to the symptomatology,

such as vascular lesions or brain tumours. However, with advanced settings of the acquisition

parameters,  is it  also viable to study more concrete biophysical properties.  One of the most

widely used is  the  T1-weighted MRI  which  has a high signal-to-noise ratio and maximizes

tissue-class differentiation (gray matter vs white matter and vs CSF). It results into a spatial

high-resolution  snapshot  of  the  brain,  that  helps  to  study  its  morphology (shape,  size,  and

integrity). It is based on short echo time (interval between the magnetic pulse and acquisition of

the radio-frequency signal) and short repetition time (interval between the different magnetic

pulses). In research, T1w-MRI are processed using various software to obtain measurements

that can eventually be used as biomarkers39. One of the most used software is Freesurfer, which
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return a map of cortical thickness (i.e the normal distance between the white matter surface and

the  pial  surface  –the  cortex  height)40.  Using  cortical  thickness,  researchers  have  widely

characterized  the  cortical  thinning  pattern  commonly  found  in  AD,  that  mainly  affects  the

temporal and parieto-occipital regions41. These measurements have been validated against time-

consuming postmortem neuropathological  studies42.  The  use  of  MRI  with  other  biomarkers

enable multimodal studies that have identified associations such as that of cortical thinning and

tau deposition as measured by PET43.  Overall,  these findings suggest that cortical thickness,

obtained from T1w-MRI, might  be a potential non-invasive biomarker of neurodegeneration

associated with tau accumulation.

iii) Diffusion-Weighted Imaging MRI

Diffusion-weighted imaging (DWI) is another type of MRI sequence, developed to study the

movement  of  water  molecules  in  the  brain.  It  is  mainly  used  to  infer  the  microstructural

alterations of the tissue44. In 1905, Albert Einstein described that water molecules, in free-space,

follow  a  random  distribution  of  movement  named  Brownian  movement45.  However,  water

molecules in the brain are strongly constrained by the local cellular architecture, namely cell

membranes,  fibres  and  other  macromolecules/proteins44,46.  The  cumulative  effect  of  such

constrains limits the displacement of the water molecules. Thus, properly modelled, DWI can

inform about the microstructural changes of the different tissues in AD. The raw DWI data in

research  settings  obtained  with  over  30  gradient  directions  is  not  directly  interpretable:  it

provides high-dimensional information and is hard to inspect visually. Thus, there have been

efforts to develop models over DWI data to interpret it more easily 47. The most widely used,

diffusion tensor imaging (DTI), is grounded in the idea of computing a tensor representation (i.e

3 directions) summarizing the information of all the gradients46,48.  After the decomposition of

the high-dimensional signal to the tensor, it is possible to compute several metrics that might

help to study and interpret the displacement of water molecules. One of the most widely used

metric driven from DTI is mean diffusivity49, which average the magnitude of diffusion over the

3 tensor decompositions. Mean diffusivity can  be interpreted as: how isotropic/spheric is the

displacement  of  water?  If  we  are  assessing  the  microstrucure  of  the  cerebrospinal  fluid

surrendering the cortex,  we  will  observe high mean diffusivity  due to  the  lack of  physical

barriers. Nevertheless, if we study the microstuructural architecture of brain tissue, such as the

cortex,  mean diffusivity will  be reduced due to  the presence of  more physical  barriers that

constrains water displacement. This decrease is more prominent in the white matter, where the

inherent directionality of the axons limit the water displacement. Importantly, in the presence of

neurodegeneration where there is cell  death and breakdown of biological barriers,  water can

move more freely which result into higher mean diffusivity compared to a healthy state50.
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Most  literature  in  the  AD  field  has  focused  on  the  study  of  white  matter  microstructure.

Nevertheless, DWI can also be used to measure microstructural changes in the grey matter 51,52.

The  cortex  diffusivity  is  isotropic  as  there  is  not  such  a  well-defined  directionality  of  the

intracortical bundles compared to the white matter. Thus, an isotropic metric derived from DTI

such  as  mean  diffusivity,  is  very  well  poised  to  evaluate  microstructural  alterations.

Neurodegeneration will be reflected as increases in mean diffusivity due to the breakdown of

biological physical barriers that restricts the movement of water molecules50. However, cortical

diffusivity is only rarely studied in detail due to some methodological caveats, being the partial

volume contamination from the CSF the most important one53. In this sense, our group recently

developed a surface-based approach (DONSURF), combining several neuroimaging toolbox, to

create a robust pipeline to compute cortical mean diffusivity (cMD) overcoming several major

preprocessing caveats54. In previous work by our group, we demonstrated that cMD was robust

against  CSF partial  volume contamination,  and that  it  was able to  track neurodegenerative-

related changes in AD patients compared to healthy controls54. These results have been recently

replicated by others55,56. We have also shown that cMD is a sensitive and robust biomarker of

neurodegeneration in other diseases such as the behavioural variant of frontotemporal dementia

(bvFTD)57, multiple sclerosis58, primary progressive aphasia (under review) or in amyotrophic

lateral sclerosis (ALS)59 patients. Importantly, in previous works, we showed that cMD was able

to detect subtle microstructural alterations even in the absence of atrophy57, suggesting it could

be a more sensitive marker of neurodegeneration than atrophy.

iv) Magnetic ressonance spectroscopy 

Magnetic resonance spectroscopy (MRS) is a nuclear magnetic technique designed to measure

metabolites (or the neurochemical state) of the brain. MRS is based on the physical properties of

the  chemicals,  which  have  different  magnetic  resonance  frequencies.  Thus,  with  a  MRS

acquisition, we can quantify several metabolites in the brain60. These metabolites have shown to

change  along the  AD continuum and  to  inform of  the  pathophysiological  process61,62.  Even

though several  metabolites  (including lipids)  can be  measured  with  MRS,  two of  the  most

studied metabolites in the AD field are N-Acetyl-aspartate (NAA)61 and myo-inositol (mI)62.

NAA is  a  general  marker  of  neuron integrity  and it  has  been shown to be reduced in  AD

participants compared to healthy controls63. mI is a sugar, synthesized mainly in astrocytes. It is

considered to be a marker of neuroinflammation64, and contrary to NAA, mI is increased in AD

participants compared to healthy controls63. These metabolite alterations are region-specific and

might differ depending on which region is assessed63. Nevertheless, despite its potential as a

biomarker in AD, MRS is not routinely used due to its lower spatial resolution (it is usually

acquired in a specific region of 8mm^3) and to the more complicated processing it  requires

compared to more conventional MRI techniques.
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Figure 3. MRI-based imaging markers. a) raw T1w MRI; b) Cortical thickness segmentation; c)  AD

atrophy pattern; d) raw DWI; e) tensor decomposition (DTI); f) AD increased diffusivity pattern; g) MRS

voxel localization and raw signal; h) metabolite fitting; i) AD pattern of metabolite changes.

1.3 Preclinical Alzheimer Disease
AD  is  characterized  by  a  long  preclinical  phase  of  more  than  20  years 65,  in  which  pathological

alterations occur in the absence of clinical symptoms. This preclinical phase was first identified in large

post-mortem  pathological  studies66.  With  the  development  of  in-vivo  biomarkers,  it  has  been

consistently  demonstrated  in  many  observational  studies,  both  in  the  general  population67 and  in
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autosomal  dominant  AD68.  The  NIA-AA  criteria  framework17 classifies  cognitively  unimpaired

participants into different groups based on their biomarker profile: participants with normal levels of

amyloid and tau (A-T-), those with abnormal levels of amyloid but normal levels of tau (A+T-), and

finally those with abnormal levels of both amyloid and tau (A+T+). 

Our group has been particularly interested in the study of the changes in cortical thickness in preclinical

AD.  We  have  proposed  a  biphasic  model  of  cortical  structural  alterations  to  reconcile  apparently

contradictory changes in this long phase of the disease. In early stages of this preclinical phase, in the

presence  of  pathological  amyloid  levels,  but  normal  tau  (A+T-),  we  found  increased  cortical

thickness51,54,69,  and  a  positive  relationship  between  more  amyloid  pathology  and  thicker  cortex70.

However,  those participants with pathological  levels of  amyloid and tau (A+T+) had more atrophy

compared to age-matched participants with normal biomarkers. Our biphasic model is also congruent

with longitudinal findings, where we reported that A+T- participants have lower rates of atrophy when

compared  to  A-T-,  whereas  A+T+  have  higher  atrophy  rates71.  Importantly,  we  also  found  the

aforementioned  biphasic  model  when  analysing  cortical  microstrutural  alterations  using  cortical

diffusivity: A+T- participants revealed a pattern of decreased diffusivity that evolved into significant

increases of water diffusion in A+T+51,54. We hypothesized that these early alterations in A+T- are caused

by  an  amyloid-related  inflammation  that  causes  neuronal  hypertrophy  and/or  glia  reactivity  and

recruitment, leading to the increase in cortical thickness and the decrease in cortical diffusivity. In our

model, we posit that once tau also becomes abnormal, the synergistic toxic effect of amyloid and tau

leads to neurodegeneration, as reflected in cortical atrophy and increased water diffusivity. Our group

has  extensively  studied  this  relationship  between inflammation  and cortical  alterations  in  the  early

stages  of  the  disease.  One  example  is  a  proof-of-concept  study  that  targeted  the  amyloid-related

neuroinflammation72. In this study we found that increased astrocyte reactivity (as measured by deprenyl

PET) was directly associated to increased cortical thickness and decreased cortical diffusivity in a small

sample of ADAD participants. However, there are several other biomarkers of inflammation that could

be used to study the interplay between neuroinflammation and cortical alterations. A potential candidate

that has not being explored before, is the quantification of metabolites related to neuroinflammation is

myo-inositol (as measured by MRS). 

1.4 Regional Vulnerability in Early Stages of the Disease
The pathological accumulation of amyloid and tau are not randomly distributed in the brain but rather

follow a stereotypical spatial pattern that recapitulates the large-scale networks described in functional

MRI. Consequently, it has been suggested that AD (and the rest of the neurodegenerative diseases) are

network-afflicting diseases73–78, in which the different  neurodegenerative diseases target specific and
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distinct brain networks. Similarly, neurodegeneration and atrophy have also shown to be localized in

specific brain areas41,77,79. In this sense, in our neuroimaging studies in preclinical AD, we also identified

that the regions showing increased cortical thickness and decreased cortical diffusivity overlap 54. The

study of the specific vulnerability of the different neurodegenerative diseases and AD in particular, is

increasingly recognized as one of the major topics of research80,81. Investigating the factors that make

these vulnerable brain regions  unique is essential.  The study of regional vulnerability might best  be

studied from different angles: from exploring the morphology of the most vulnerable cell types using in-

vitro studies82, to investigating the genetic fingerprint that might contribute to such vulnerabilities83.

The study of cortical  transcriptomic data has led to the discovery of novel  pathways that might  be

affected (or more prone to be affected) in AD83,84. Nevertheless, the use of bulk RNA or single-nuclei

RNA transcriptomic analyses have been focused on specific brain regions, thus neglecting the extent of

the entire cortex, mainly due to its expensive cost. To overcome some of these limitations, in 2012,

researchers from the Allen Institute made publicly-available the Allan Brain Atlas (ABA) dataset85. This

dataset contains the expression of 10027 genes from 3,702 postmortem slices from 6 healthy volunteers

across the cortex. This database has enabled the analysis of regional vulnerability in multiple cognitive

disorders86–88, and the study of the relationship between the expression of APP and MAPT and amyloid

accumulation  and  neurodegeneration89.  Unfortunately,  most  of  the  analyses  using  the  ABA  have

neglected  the  large-scale  and  network  nature  of  the  stereotypical  pattern  of  amyloid  and  tau

accumulation, having focused only on local measurements of such proteins.

1.5 The complexity of the cortical alterations in the continuum of AD
During the last decade, the study of macrostructural and microstructural alterations in preclinical AD

have witnessed an important increase in publications (from 22 studies in 2010 to 84 in 2020; Pubmed).

Nevertheless,  there  are  still  some  challenges  that  need  to  be  addressed  to  better  comprehend  and

characterize the cortical structural alterations in this early phase of the disease.

A major challenge preclinical AD research is the assessment of the trajectory of changes of biomarkers

along the AD continuum.  For decades, researchers have compared biomarkers between the different

groups of the AD continuum (e.g participants with AD dementia compared to cognitively unimpaired or

patients with mild cognitive impairment), and/or how the biomarkers (linearly) change with age or the

(linear again) relationship between biomarkers (e.g assess the association between tau CSF values and

cognitive  performance).  Nevertheless,  recent  studies  increasingly  highlight  the  limitations  of  these

(simplistic) approaches or models, which in addition require strong a priori assumptions (i.e changes are

linear)54,90.  In this sense,  a large and rapidly growing body of research is  trying to overcome these

limitations using new analytic models,  such as non-linear models90,  LOESS or linear mixed effects
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models91. In addition to these statistical approaches, researchers have also developed and applied novel

(and more abstract) methods such as graph theory, to investigate non-trivial relationships. Graph theory

is a field in mathematics that allows the abstraction of complex systems, and provides analytical tools to

study such systems92,93. In short, graph theory is based in the study of graphs or networks, which are

mathematical structures used to model pairwise relations between objects. A graph/network is composed

of  abstract  entities  (e.g  biomarkers,  participants,  brain  regions)  named  nodes,  and  the  pairwise

relationship between them (correlation, co-occurrence, etc) represented by links93–95. Graph theory in AD

has been mainly used to study the relationship between the  functional and/or structural connectome

alterations AD-core biomarkers, or to study difference between diagnostic groups96.

Our group have intensely work to overcome such modeling limitations. Although we have been able to

show using diverse statistical approaches a biphasic model of cortical alterations, we were not able to

determine the exact temporal moment in the disease continuum in which those alterations take place. A

continuous approach,  as opposed to stratifying subjects into diagnostic categories,  using genetically

determined  AD,  allows  to  temporarily  position  subjects  along  the  disease  continuum  and  the

determination of the temporal points in which the dynamics of cortical structural alterations occur. The

first  study  of  this  thesis  aimed  to  tackle  these  issues  using an  international  multicentre cohort  of

autosomal dominant AD.

Another  challenge  when  evaluating  our  biphasic  model  is  the  measurement  of  neuroinflammation.

Neuroinflammation is certainly complex, but different studies have used different approaches such as

the measurement of different cytoquines or proteins in biofluids or through PET ligands, such as the

aforementioned deprenyl72. However, no study has assessed the metabolites obtained from MRS data in

relation with cortical thickness, which would have obvious advantages as its acquisition could easily be

included in MRIs protocols. The second study of this thesis assessed these relationships in a cohort of

adults with DS, another model of genetically determined AD.

Another hurdle in AD research is the validation of novel biomarkers. In this sense, our group have

previously demonstrated  that cortical  diffusivity  is  a  novel  and promising  biomarker  that  has  been

successful  to  track  the  biphasic  model.  Nevertheless,  little  is  known  about  its  relationship  to

pathological  markers (i.e  tau or amyloid PET) and its  potential  to serve as a prognostic marker of

cognitive decline. The third study of this thesis assessed the relationship between cortical diffusivity and

in-vivo measurements of tau-PET and evaluate its prognostic value.

Finally, the study of local vulnerability to accumulate amyloid and tau dates from several decades ago.

Nevertheless, two questions remain  unstudied. First, the study of this vulnerability across the whole

cortical  mantel  (as opposed of  a focus  only in the entorhinal  or  hippocampus).  There  is  a need to
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develop  an  analytical  framework  that  enables  capturing  a  gradient  of  characteristics  (e.g  gene

expression)  that  accompany  the  stereotypical  pattern  of  protein  accumulation  and  thus  explain  the

temporality of the spread of the pathology. Second, the use of novel methodological frameworks (such

as graph theory) to merge multi-domain and multiscale information in order to characterize the AD-

related regional vulnerabilities. These questions were addressed in the fourth work of this PhD.
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2. Hypothesis and Objectives



This thesis is based on the following hypothesis:

1. Cortical  macrostructure  and  microstructure  alterations  start  more  than  two  decades  before

symptom onset in AD and follow a biphasic trajectory in parallel to the development of amyloid

first and then tau biomarker alterations.

2. Early-disease neuroinflammation measured as measured by MRS is related to increased cortical

thickness and core AD biomarkers in preclinical AD.

3. Cortical diffusivity is able to capture the microstructural alterations in preclinical AD related to

the accumulation of  tau in  early Braak stages,  and can be used as  a  prognostic  marker  of

cognitive decline.

4. The  stereotypical  temporal  and  regional  pattern  of  tau  spreading  is  related  to  regional

vulnerability  as  reflected  in  gradual gene  expression  alterations  along  the  spreading

topographical pattern.

The specific objectives of this thesis are:

1. To mathematically model the non-linear trajectory of cortical thickness and cortical diffusivity

in autosomal dominant Alzheimer disease in relation to age and CSF AD biomarkers.

2. To measure the alterations of metabolite levels measured using MRS in the Alzheimer Disease

continuum in adults with Down Syndrome, and its correlation to core AD biomarkers and brain

structure.

3. To  study  the  association  between  cortical  diffusivity  and  medial  temporal  lobe  tau-PET

accumulation  in  preclinical  Alzheimer  disease,  and  how  cortical  diffusivity  predicts  future

cognitive decline.

4. To determine the gradient of gene expression that fingerprints tau spreading, measured via tau-

PET, using graph theory tools and high-spatial-resolution gene expression data.
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Study 1:   Biphasic cortical changes in ADAD  

ABSTRACT
A biphasic model for brain structural  changes in preclinical

Alzheimer  Disease  could  reconcile  some  conflicting  and

paradoxical findings in observational studies and anti-amyloid

clinical trials. In this study we tested this model fitting linear

vs  quadratic  trajectories  and  computed  the  timing  of  the

inflection points vertexwise of cortical thickness and cortical

diffusivity–a novel marker of cortical microstructure–changes

in 389 participants from the Dominantly Inherited Alzheimer’s

Network.  In  early  preclinical  AD,  between  20  to  15  years

before  estimated  symptom  onset,  we  found  increases  in

cortical  thickness  and  decreases  in  cortical  diffusivity

followed by, cortical thinning and cortical diffusivity increases

in  later  preclinical  and  symptomatic  stages.  The  inflection

points 16 to 19 years before estimated symptom onset are in

agreement with the start of tau biomarker alterations. These

findings  confirm  a  biphasic  trajectory  for  brain  structural

changes and have direct implications when interpreting MRI

measures in preventive AD clinical trials.

BACKGROUND

Alzheimer  disease  has  a  long  preclinical  phase  in  which

multiple  pathophysiological  alterations  coexist.  Individuals

who  carry  mutations  in  the  Presenilin-1,  Presenilin-2  or

amyloid  precursor  protein  genes  are  destined  to  develop

symptomatic  Alzheimer´s  disease.  Although  autosomal

dominant  Alzheimer  disease  (ADAD)  is  an  etiologically

distinct form of Alzheimer disease (AD), it shares pathological

features,  and  a  similar  clinical  presentation,  to  sporadic

Alzheimer´s  disease.1,2 The  Dominantly  Inherited  Alzheimer

Network  (DIAN)  Observational  Study  evaluates  mutation

carriers with standardized clinical and cognitive testing, brain

imaging,  and  biochemical  biomarkers  with  the  goal  of

determining  the  sequence  of  changes  in  pre-symptomatic

carriers. It is thus a unique population in which to study

the  timing  of  events  in  Alzheimer´s  disease

pathophysiology.3–5

We have recently proposed a biphasic model of  cortical

changes in the preclinical stage of sporadic AD based on

cross-sectional6-8 and  longitudinal  data.9 In  this  model,

early  pathological  cortical  thickening  in  Alzheimer´s

disease  vulnerable  regions  is  found  in  subjects  with

pathological  CSF  amyloid  levels  and  normal  CSF  tau

levels.  This  phase,  which  might  be  due  to  early

neuroinflammatory changes,10 is followed by atrophy once

CSF  tau  also  becomes  abnormal.7–9,11,12 Several  cross-

sectional  studies  have  analyzed  the  brain  structural

changes in  ADAD showing different  cortical  changes  at

different preclinical stages. Cortical thinning occurs in the

precuneus,  and  temporal  lateral  regions  seven  to  three

years  prior  to  symptom  onset.3 However,  in  young

presymptomatic  mutation  carriers  increased  cortical

thickness10,13–16 and  increased  volumes  in  subcortical

regions13,17,18 have  been  described  in  small  cohorts  of

ADAD.

Diffusion  tensor  imaging  enables  the  study of  the  brain

microstructure. Most diffusion weighted imaging studies in

AD have focused on the white matter. However, it can also

be  used  to  study the  cortical  microstructure.13,19 Cortical

mean diffusivity has been proposed as a new biomarker in

neurodegenerative  diseases  that  could  be  more  sensitive

than  cortical  thickness  to  detect  cortical  changes,

especially  on  symptomatic  phases  of  the  disease.8,13,19–21

Importantly,  cortical  mean  diffusivity  also  follows  a

biphasic trajectory  in  sporadic AD,  with early decreases

associated with cortical  thickening and increases in later

preclinical  phases.8 Interestingly,  previous  small  cohort

studies  of  ADAD  reported  cortical  mean  diffusivity
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decreases  in  early  presymptomatic  ADAD10,13,17 and  later

increases in symptomatic mutation carriers.13,17

Therefore,  a  biphasic  trajectory  of  cortical  changes  might

reconcile the aforementioned changes in ADAD (and sporadic

Alzheimer´s disease). However, this biphasic model is based

on the comparison between the different stages of preclinical

Alzheimer´s  disease,8,9 or  on  observations  in  small  ADAD

studies.10,13,17 It  has  not  been  mathematically  tested.  ADAD

offers  the  opportunity  to  compare  different  mathematical

models (ie. linear vs quadratic) to detect the inflection points

at which these changes occur. 

Using  the  largest  sample  of  ADAD,  the  multicenter  DIAN

cohort, we aimed to confirm and test this biphasic model of

cortical  changes  in  preclinical  AD.  Specifically,  (i)  we

explored  the  trajectories  of  cortical  thickness  and  cortical

mean diffusivity comparing mutation carriers and non-carriers

in  relation  to  estimated  years  to  symptoms  onset,  (ii)

compared the fit of a biphasic (or quadratic) model as opposed

to the linear one and computed the inflection point for cortical

changes,  and  (iii)  assess  the  influence  of  CSF pTau  in  the

relationship between cortical alterations and estimated years to

symptoms onset. A better characterization of the trajectory of

MRI structural  changes in ADAD and the confirmation and

characterization  of  this  biphasic  model  in  ADAD  would

inform  the  use  of  MRI  outcome  in  current  anti-amyloid

preventive trials and future anti-inflammatory trials. 

METHODS

Participants

Individuals from families with mutations in the presenilin-1,

presenilin-2  and  amyloid  precursor  protein  genes  were

recruited  from  14  sites  participating  in  the  DIAN

observational  study.  We  included  all  participants  who  had

genetic,  clinical  data and an available quality checked MRI

from the 12th data-freeze. The period of recruitment was

January  2009  to  December  2017.  Estimated  years  to

expected symptoms onset was computed as the difference

between  the  participant’s  current  age  and  the  mutation-

specific expected age of clinical  symptoms onset.3,22.  All

participants  provided  written  informed  consent.  Local

ethical approval was obtained at each participating DIAN

site. 

Structural and diffusion MRI 

MRI  acquisition  parameters  were  based  on  the  ADNI

protocol.  Briefly,  all  subjects  underwent  a  3  Tesla  T1-

weighted scan at resolution of 1.1 x 1.1 x 1.2 mm voxels.

Scans with artifacts were excluded. Images were processed

with Freesurfer 5.3 and normalized to a standard space and

smoothed using a Gaussian kernel of 15mm for statistical

analysis as commonly done in cortical thickness analyses.

A final number of 389 subjects with correctly preprocessed

T1w  images  were  included.  Diffusion  weighted  images

were  available  for  a  subset  of  the  participants  (N=300)

with one b=0 and 64 directions at b=1000 with an isotropic

voxel  size  of  2.5mm.  We  excluded  11  subjects  due  to

image  artifacts.  We  computed  cortical  mean  diffusivity

using  a  surface-based  in-house  pipeline  as  previously

reported.8 Briefly,  we computed a rigid-body registration

between the b=0 and the 64 b=1000 volumes to correct for

motion effects. After removing non-brain tissue, a tensor

model  was  fitted  using  FSL’s  dtifit  command,  and  we

computed  the  mean  diffusivity  metric.  We  then

coregistered the b=0 scan to the segmented T1w image.

Eight additional  subjects were excluded due to incorrect

registration. We then sampled the mean diffusivity volume

for  each  participant  at  the  midpoint  cortical  ribbon  and

projected  it  to  each  individual  surface,  previously
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constructed  by  Freesurfer,  in  order  to  generate  individual

cortical  mean  diffusivity  maps.  Finally,  cortical  diffusivity

maps were normalized a standard surface template (fsaverage)

and smoothed using a 15mm kernel.  A total number of 281

participants  were  finally  included  in  the  cortical  mean

diffusivity analyses. 

Biochemical quantifications of pTau

A subset of 327 individuals also underwent a lumbar puncture.

CSF sample collection and measurement in the DIAN cohort

has been previously described23. Briefly, CSF pTau181 (further

referred  as  pTau)  was  measured  by  immunoassay  using

Luminex bead-based multi-plexed xMAP technology (INNO-

BIA AlzBio3, Innogenetics).

Statistical analysis

Demographics  were compared using the non-parametric test

Man-Whitney  U  test  and  the  Fisher´s  exact  test  as

implemented in the R statistical software. 

We designed three  independent,  but  interrelated  analyses  to

specifically assess the biphasic model in ADAD, using EYO

as  a  proxy  of  disease  staging.  We  first  performed  an

exploratory analysis to compare cortical thickness and cortical

mean diffusivity between mutation carriers and non-carriers in

5-year intervals with respect estimated symptom onset (ranges

from -25 to +5) computing the vertex-wise Cohen’s d effect

size maps in order to explore group differences. We then used

a  2-class  general  linear  model  to  identify  regions  with

statistically  significant  differences,  including  sex  and

education  as  nuisance  factors.  To  avoid  false  positives,  we

corrected  the  results  with a  cluster-sized  based  MonteCarlo

simulation with 10,000 repeats as implemented in Freesurfer

(familywise error [FWE], p < 0.05). 

Second, we compared different mathematical models (ie.

linear  vs  quadratic).  We  initially  assessed  the  linear

relationship between both neuroimaging metrics and age in

non-carriers,  finding  a  significant  association  in  non-

carriers (Suppl Fig 1). Therefore, in order to mitigate this

age-related  effect  and  model  the  changes  in  mutation

carriers,  we  first  normalized  each  mutation  carrier

individual map using a W-score approach.24,25  We finally

compared the linear model and, the linear model with the

addition  of  a  quadratic  term  of  estimated  years  to

symptoms’ onset to the model at each surface vertex: 

Wscore-NI ~ EYO^2 + EYO

We  applied  the  Akaike  information  criterion  (AIC)  to

assess the improvement in the model with the inclusion of

the quadratic term. Importantly, the AIC penalizes model

complexity  to  avoid  the  risk  of  overfitting  the  data.

Afterwards, we assessed the statistical significance of the

quadratic model in those regions were the addition of the

quadratic  term  improved  the  fitting.  In  addition,  we

computed  interaction  analyses  to  assess  if  the  quadratic

relationship  of  the  imaging  biomarkers  with  EYO were

significantly stronger in the mutation carriers compared to

the non carriers, using the following model at each vertex: 

NI ~ EYO^2*MutationStatus + EYO + Sex

Only  those  regions  that  survived  multiple  comparisons

based  on  cluster-extension  Monte  Carlo  simulations  are

shown (FWE,  p  <  0.05).  Then,  to  assess  the  inflection

point  for  the  cortical  changes  we  fitted  a  second-order

polynomial equation (i.e a parabola) and computed the first

derivative  of  the  polynomial  in  a  vertex-wise  basis.  Of

note, we only report the inflection points in those regions
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where the addition of the quadratic term improved the fitting

of our data. The second-order polynomial fitting and the AIC

metric were computed using the python packages numpy26 and

statsmodels27, respectively.

Finally, we compared if the relationship between both imaging

markers  and  EYO  differed  depending  on  the  CSF  pTau

positivity  status  in  asymptomatic  mutation  carriers.  We

computed  a  threshold  of  pTau  positivity  based  on  a  ROC

analyses  comparing asymptomatic  vs  symptomatic  mutation

carriers,  using  the  Youden’s  algorithm.  This  threshold  was

used to categorize mutation carrier individuals into positive or

negative  pTau  individuals.  Then,  we  used  a  vertex-wise

interaction model defined as: 

Wscore-NI ~ EYO*pTauStatus

Only  regions  that  survived  multiple  comparisons  based  on

cluster-extension Monte Carlo simulations are shown (FWE, p

< 0.05).

RESULTS

Participants

Table 1 summarizes the demographics and clinical data of all

participants. There were no statistical differences in age, sex

distribution, estimated years  to symptoms onset  or  mutation

type  frequency  between  the  mutation  carriers  and  the  non-

carriers.  As  expected,  we  found  significant  differences  in

global CDR scores and CSF pTau measurements (p < 0.001). 

Cortical  macro  and  microstructural  changes  with

respect estimated years to symptom onset 

We first  compared  the  cortical  thickness  and  cortical  mean

diffusivity  between  carriers  and  non-carriers  in  5-year  age

intervals (Figure 1 and Suppl Fig 2). The youngest mutation

carriers  (25  to  20  years  before  symptom onset)  showed

significant  cortical  thinning  in  middle  temporal  regions

and  increased  diffusivity  on  the  insula,  with  non-

significant  middle-to-high  effect  size  differences  in  the

precuneus  and  in  the  anterior  cingulate  and  medial

prefrontal cortex. Between 20 to 15 years before estimated

symptom onset  there  was  a  shift,  and  mutation  carriers

showed  significant  increased  cortical  thickness  in  the

occipital fusiform and insula and non-significant middle-

to-high  effect  size  in  the  precuneus,  lateral  temporal

cortex,  whereas  mutation  carriers  showed  significant

reduced diffusivity on the left  insula and frontal-parietal

cortices  and  non-significant  middle-to-high  effect  size

differences  posterior  cingulate  and  lateral  temporal

regions.  In  the  decade  before  symptom onset,  mutation

carriers  showed  significant  cortical  thinning  in

temporoparietal and occipital areas and increased cortical

mean diffusivity in the precuneus and lateral and medial

occipitotemporoparietal regions that further extended after

the onset of clinical symptoms.

Cortical thickness and cortical diffusivity change

following a quadratic model in preclinical AD

We then compared a quadratic vs a linear modeling for the

normalized  cortical  changes  (W-scores)  in  the  mutation

carriers individuals. Specifically, we first calculated if the

addition of a quadratic term of EYO to the linear model at

each surface vertex W-scores improved data fitting (Suppl

Fig  3).  Fig  2  (left  panels)  show  the  regions  where  the

quadratic  term  of  estimated  years  to  onset  for  both

neuroimaging metrics were significant after correcting for

overfitting  using  the  AIC  criteria  and  correcting  for

multiple  comparisons.  The normalized  cortical  thickness
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(Fig 2 top row) showed a significant quadratic relationship in

regions of the temporal cortex, temporoparietal junction, 

and parts of the precuneus and parieto-occipital regions. The

normalized  cortical  mean  diffusivity  revealed  a  more

widespread  pattern  of  regions  with  significant  quadratic

relationships,  especially  in  the  lateral  and  medial  temporal

cortex, the precuneus,  and temporoparietal regions. Of note,

the  results  are  qualitatively  the  same  when  restricting  the

analyzing the PSEN1 carriers  alone and when analyzing

the PSEN2 and APP mutation carriers combined (results

not shown).

Structural  MRI  markers  inflection  points  are

coincident  with  biochemical  neurodegenerative

biomarkers
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Figure 1. Group comparisons in cortical thickness and cortical mean diffusivity between carriers and non-carriers in 5-year age
intervals.  We show the Cohen’s d effect sizes to show trajectory of changes.  Of note,  only mid to high effect sizes are shown.
Furthermore,  statistically  significant  group differences clusters are outlined in black.  For display purpose,  only results  in  the left
hemisphere are shown but the right hemisphere revealed similar changes. A) Cortical thickness effect size differences between the
mutation carriers (MC) and the non-carriers (NonC) for different subsets of estimated years to onset. Blue is associated to less cortical
thickness  in  the mutation carriers,  whereas orange-yellow reflects  higher  cortical  thickness  in  comparison to  the non-carriers.  B)
Cortical mean diffusivity differences between mutation carriers and non-carriers for different subsets of estimated years to onset. Green
is associated with increases of cortical mean diffusivity in the mutation carrier group, whereas purple reflects decreases in cortical mean
diffusivity in comparison to the non-carriers. EYO = estimated years to onset; NonC = Non-carriers; MC = Mutation Carriers.



We  then  calculated  the  inflection  points  for  both  the

normalized  cortical  thickness  and  the  normalized  cortical

mean diffusivity after fitting a second-order polynomial in the

regions where the quadratic term was significant. To this aim,

we computed the first derivative of the polynomial in a vertex-

wise  basis.  Our  data  show  that  for  cortical  thickness,  the

trajectory changed around -18.8 years of onset and for cortical

mean diffusivity around -16.25 years of onset. Of note, similar

results  were  found  when  excluding  the  individuals  with

EYO>0 (Suppl. Fig 5).

The  association  between  both  cortical  thickness

and cortical mean diffusivity and estimated years

to symptom onset depends on CSF pTau status

We  dichotomized  mutation  carriers  into  pTau  positive

(pTau+)  or  negative  (pTau-)  using  a  threshold  of  52.8
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Figure 2. Brain regions showing a significant quadratic association with estimated years to symptom onset in mutation carriers. 

Left panel shows the significant clusters for the association between the normalized cortical thickness (W-CTh; top row) and the 

normalized cortical mean diffusivity (W-MD; lower row) and the squared of estimated years of onset in mutation carriers participants. 

The middle panels show the inflection points for the W-CTh and W-MD (ie. the EYO at which W-CTh change from increasing to 

decreasing (top row) and where the W-MD change from decreasing to increasing (lower row). The right panels show the scatter plots 

for the fitting of the second order polynomial in the most significant vertex of the cortical mantle (marked as *) for both W-CTh (top 

row) and W-cMD (lower row). 
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pg/ml, in order to run interaction analyses of the relationship

between imaging markers and EYO by pTau status. Figure 3

shows the brain areas where/in which these interactions were

significant.  Specifically,  we  found  a  cluster  of  significant

interaction for cortical thickness in parieto-occipital regions of

the  left  hemisphere  (Figure  3  top-row  left  panel)  that  was

driven by increases of cortical thickness related to EYO in the

pTau- and atrophy in the pTau+ (Figure 3 top-row right panel).

For  cortical  mean  diffusivity,  we  found a  more  widespread

pattern  of  significant  interactions,  encompassing  parieto-

occipito-temporal areas bilaterally, and frontal regions for the

right  hemisphere  (Figure  3  lower-row  left  panel).  These

interactions were driven by decreases of cortical diffusivity in

relationship to EYO in the pTau- subgroup and diffusion

increases in the pTau+ subgroup (Figure 3 top-row right

panel).

A biphasic model of structural changes along the

Alzheimer’s Disease continuum

We  finally  integrate  the  proposed  biphasic  model  for

cortical macro and microstructural changes in relation with

the  reported  pathophysiological  biomarker  changes  in

ADAD  using  the  AT(N)  framework28 (Figure  4).

Importantly,  we did not categorize our individuals based

on  their  biomarkers  profiles,  but  contextualized  the

hypothetical  biphasic  model  of  alterations  with previous

findings in ADAD. Mutation carriers with EYO at the A-T-

range present cortical thinning and increased cortical mean

diffusivity. The onset of amyloid biomarker changes varies

across ADAD studies, but between 25 to 20 years before

estimated symptom onset, the rates of change in CSF Aβ42

values and amyloid uptake values start to occur.29,30 This is

10 to  5 years  before the earliest  increases  in  CSF pTau

levels have been reported.31 Mutation carriers with EYO in

the A+T- phase showed the first signs of increased cortical

thickness and decreased cortical mean diffusivity changes

in  mutation  carriers.  The  reported  onset  for  CSF  pTau

increases is close to our calculated inflection points for the

trajectory  of  changes  in  both  neuroimaging  metrics.

Thereafter,  when  comparing  mutation  carriers  and  non–

carriers with EYO in the A+TCSF+ phase, we did not see

differences  until  the  earliest  reported  alterations  in  tau

PET,  which  occur  6 years  before  the  symptoms onset32.

When comparing individuals with EYO in this A+TPET+

phase we found a widespread pattern of cortical thinning

and increased cortical mean diffusivity. It is important to

note that this biphasic trajectory does not occur in all the
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Figure  3.  Interaction  analyses  between  estimated  years  to

symptom  onset  and  CSF  pTau  positivity  status  on  cortical

thickness and cortical mean diffusivity. Left panel: Brain regions

with a significant interaction for both cortical thickness (top row) and

cortical mean diffusivity (bottom row). Right panel: scatter plots for

the interaction analyses in cortical thickness (upper right panel) and

cortical  mean diffusivity (lower right panel) in the most significant

vertex for each interaction analysis (marked as red *)



regions of the brain, but in specific regions. Furthermore, the

temporality might vary in different areas of the cortex.

DISCUSSION

This study confirms that cortical thickness and cortical mean

diffusivity follow a biphasic trajectory in ADAD. This model

reconciles  the  apparently  conflicting  initial  observations  in

small  cohort  studies.  This  biphasic  trajectory  should  be

considered when analyzing the MRI endpoints in preventive

Alzheimer´s disease clinical trials.

This  study confirms  initial  observations  from small  ADAD

cohorts,  which had  already reported cortical  thickening and

decreased cortical mean diffusivity in early preclinical AD in a

small independent samples of presenilin-1 mutation carriers in

Spain,13–15 Colombia,16 and Sweden.10 Similarly, we and others

have  also  reported  increases  of  volume  in  subcortical

structures.13,17,18 Cortical  mean  diffusivity  has  also  been

assessed  in  a  subset  of  the  aforementioned  studies.  In

agreement with our results, early decreases in cortical  mean

diffusivity were found in association with increased cortical

thickness.13 The present study not only confirms this early

phase of cortical thickening, but importantly, it also shows,

for  the  first  time,  that  these  changes  are  not

neurodevelopmental,  but  pathological.  Indeed,  the

youngest  mutation  carriers  in  the  present  study  showed

cortical  thinning and increased  cortical  mean diffusivity.

Cortical  thickening  and  decreased  mean diffusivity  only

emerged 20 to 15 years before estimated symptom onset.

Atrophy, on the other hand, has been consistently reported

in later preclinical (and symptomatic) ADAD. In this sense

previous  cross-sectional  studies  in  DIAN  and  in  other

independent cohorts demonstrated cortical thinning in the

precuneus ~7 to 4 years before symptom onset, a timing

which  is  in  agreement  with  our  results.3,33–36 Of  note,

although the main analyses show an overlapping pattern of

changes for MD and CTh and between regions with the

early  increased  cortical  thickness  and  decreased  cortical

mean diffusivity and the later decreased cortical thickness

and increased cortical  mean diffusivity, some differences

between modalities and regions should be further explored.

We have previously shown that MD might have superior

sensitivity  than  CTh20,  especially  in  frontal  and  insular

regions. Furthermore, not all regions follow or are at the

same pathophysiological stage in a given time-point9, and

some of  the  changes  at  early  stages  of  the  disease  (co-

occuring with presumably amyloid related inflammation as

shown in a proof-of-concept deprenyl study in ADAD10)

might  not  overlap  completely  with  the  later  tau-related

atrophy.

This paper provides the first mathematical modeling for a

biphasic trajectory of changes in ADAD. The addition of a

quadratic term significantly improved the linear model in

several  Alzheimer´s  disease  vulnerable  regions.8,37 This

analysis enabled us to calculate the inflection points for

both the normalized cortical thickness and normalized 
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Table 1. Demographics from DIAN sample

Non-Carriers Mutation Carriers

N (% DTI) 166 (74.7) 223 (70.4)

Asymptomatic (%) N/A 68.1

Age (median, IQR) 36.74 [30.15 – 46.46] 36.48 [30.31 – 46.52]

Female (%) 57.2 54.7

Family Mutation
   PSEN1/PSEN2/AP

P (%)
65 / 12 / 23 72 / 9 / 17

EYO (median, IQR) -10.41 [-19.1 - -2.5] -9.13 [-18.56 - -1.31]

CDR (median, IQR) 0·0 [0 - 0] 0 [0 – 0.5]

CSF pTau pg/ml
(median, IQR)

26.76 [21.9 – 34.22] 44.48 [31.1 – 83.5]
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cortical mean diffusivity, which occurred 16 to 19 years before

the expected symptom onset. This type of analyses can only be

performed in ADAD, in which years to symptom onset can be

reliably  estimated.  However,  these  analyses  also  require  a

large cohort of mutation carriers, which were not available in

the  aforementioned  studies  in  the  small  independent

ADAD  cohorts.  This  biphasic  trajectory  of  changes

substantially expands the possibilities of MRI to detect the

changes  in  preclinical  Alzheimer´s  disease,  if  properly

modeled.  Indeed,  it  shows  dynamic  changes  in  the  two
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Figure 4. Hypothetical model of cortical thickness and cortical diffusivity changes in the presymptomatic phase of autosomal 

dominant Alzheimer´s disease.  Top: Summary of MRI findings reported in the present study for cortical thickness (red) and cortical 

diffusivity (purple) Bottom: Previously reported time-points of pathophysiological biomarker changes. The ordering of the biomarkers 

correspond to: CSF amyloid levels, cross-sectional and rate of change (ACSF and δACSF, respectively); amyloid PET, cross-sectional 

and rate of change (APET and δAPET, respectively); CSF pTau levels, crossectional and rate of change (TCSF and δTCSF, 

respectively); and Tau PET, crossectional and rate of change (TPET and δTPET, respectively; the later hypothetical*). The letters refer 

to the different studies which report the estimated years to symptom onset at which these changes occur: (A) McDade et al 2018, (B) 

Bateman et al 2012, (C) McDade et al 2018, (D) McDade et al 2018, (E) Gordon et al 2018, (F) McDade et al 2018, (G) Bateman et al 

2012, (H) Llibre-Guerra et al 2019, (I) Llibre-Guerra et al 2019, (J) Bateman et al 2012, (K)  McDade et al 2018, (L) Quiroz et al 2018 

and (M) Gordon et al 2019. *As there are no published longitudinal studies using Tau PET in autosomal dominant Alzheimer´s disease,

(?) refers to unknown event time-point of Tau PET longitudinal changes. Shaded color-lines reflect uncertainty of biomarker positivity 

due to discrepancies in the literature.



decades  prior  to  symptom  onset  as  opposed  to  the

aforementioned capability to detect atrophy in the last decade

before symptom onset.

The  interaction  analyses  showed  clear  differences  when

comparing  the  trajectories  between  CSF  pTau+  and  pTau-

subgroups.  In  early  preclinical  Alzheimer´s  disease,  in

individuals  with  low  CSF  pTau  values,  cortical  thickness

increased and mean diffusivity decreased in mutation carriers,

whereas  in  later  stages,  in those individuals  with high CSF

pTau  values,  there  was  cortical  thinning  and  increases  in

cortical mean diffusivity. Interestingly, a previous longitudinal

study in the DIAN cohort showed accelerated rates of atrophy

up  to  13  years  before  symptom  onset  in  the  precuneus,30

earlier  than  the  aforementioned  cross-sectional  studies.  We

speculate  that  longitudinal  atrophy  begins  after  CSF  pTau

levels start  to increase,  theoretically around 15 years before

symptom  onset  (or  earlier)  in  the  DIAN  cohort.1,31 In  this

sense,  we had  previously  shown that  increased  longitudinal

atrophy  rates  can  co-occur  with  increased  cross-sectional

cortical thickness.14

We  finally  integrate  the  cortical  macro  and  microstructural

changes  in  relation  to  the  reported  pathophysiological

biomarker  changes  in  ADAD.  The  timing  of  the  cortical

changes is strikingly congruent with those of amyloid and tau.

The increase in cortical thickness and the decrease in cortical

diffusivity  coincided  with  the  start  of  fibrillar  amyloid

accumulation,15,30 around  20  years  before  symptom  onset.

However, 16 years before symptom onset, most regions had

reached  an  inflection  point,  in  agreement  with  the

aforementioned reported increases in atrophy rates,14,30 and the

beginning  of  the  increases  in  CSF  pTau  levels.1,29,31 These

results  support  the  hypothesis  previously  reported  by  our

group  and  others8,9,38 that  amyloid  and  tau  have  a  toxic

synergistic  effect  that  might  drive  the  inflexion  point  in

cortical changes, leading to cortical atrophy and increases in

cortical  mean  diffusivity.  Finally,  we  found  widespread

cortical thinning and increased cortical mean diffusivity in

subjects close to symptoms onset (EYO -5). Interestingly,

this is the age-range at which the earliest increases in the

uptake of tau PET have been reported.32,39 Further work is

needed in order to test  the A/T/N framework in ADAD.

This  biphasic  trajectory  of  changes  is  not  unique  to

ADAD;  our group and  others  have  already shown early

pathological  cortical  thickening  and  decreased  cortical

mean diffusivity in Alzheimer´s disease vulnerable regions

in  cognitively  unpaired  subjects  from  the  general

population with pathological CSF Aβ42 levels and normal

CSF  tau  levels.8,40,41 Cortical  thinning,  and  increases  in

mean  diffusivity,  only  occurred  in  the  presence  of  both

abnormal amyloid and tau biomarkers.6–9 The atrophy and

increased mean diffusivity found in the youngest mutation

carriers  might  reflect  neurodevelopmental  abnormalities.

In  this  sense,  in  animal  models  using  Tg2576  mice,

decreased  spine  density  and  reduced  levels  of

synaptophysin,  in  addition  to  behavioral  changes  have

been  described  months  prior  to  amyloid  plaque

deposition42. Similarly, in humans, Quiroz et al43 reported

cognitive  vulnerabilities  in  verbal  comprehension,

processing speed and interpersonal relations tests, decades

before the symptom onset. However, further studies with

larger  sample  sizes  in  this  age-range  and  earlier  time-

points  are  needed  to  confirm  this  neurodebelopmental

hypothesis. The rationale for cortical diffusivity decreases

and  cortical  thickness  increases  early  in  AD  has  been

previously reviewed.10 In short,  these changes could be

related to amyloid-related inflammatory processes. Several

studies  have  shown  early  astrocytic  activation  prior  to

neurodegeneration in  animal  models  (see44  for  a  review)

and  even  prior  to  amyloid  plaque  accumulation  in

humans.45  A  local  relationship  has  been  demonstrated
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between  astrocytosis  measured  using  deprenyl  PET  and

increases of cortical thickness and decreases of diffusivity in a

Swedish ADAD cohort.10

Our  results  have  important  implications  for  the  design  of

clinical  trials  with  anti-amyloid  therapies  such  as  the

Colombian  (NCT01998841) and  DIAN-TU (NCT01760005)

cohorts. MRI measures are commonly used as endpoints, but

under  the  assumption  of  a  linear  trajectory  of  changes.  A

biphasic  trajectory  in  the  design  and  interpretation  of  such

trials outcomes should be considered. Our model might help

understand the paradoxical findings in anti-amyloid trials (e.g.

AN1792,  solanezumab  or  bapineuzumab)  where  the  active

arm showed increased atrophy rates with respect  to placebo

(i.e  a  drug  that  effectively  decreased  amyloid  related

inflammation  could  lead  to  the  counterintuitive  effect  of

increasing atrophy, as it  has been repeatedly shown in anti-

amyloid trials). Our model also has immediate implications for

secondary  prevention  trials  in  sporadic  AD such  as  the  A3

study  (1R01AG054029-01),  the  A4  study  (NCT02008357),

ADAPT (NCT00007189) or  TOMORROW (NCT01931566)

trials as well as in future trials with anti-inflammatory drugs.

Finally,  this  study  confirms  the  sensitivity  of  cortical  mean

diffusivity  to  track  the  cortical  microstructural  changes  in

Alzheimer´s disease. 

The main strength of this study are the inclusion of the largest

cohort  of  ADAD  and  the  mathematical  modeling  of  the

biphasic  trajectory  using  two  complementary  imaging

measures.  Our  methodology  to  measure  cortical  mean

diffusivity  is  another  strength  as  it  overcomes  limitations

previously reported when using voxel-based approaches, such

as  partial  volume  contamination  and  kernel-sensitive  CSF

inclusion during data smoothing.46 Interestingly, cortical mean

diffusivity captured the biphasic trajectory of changes in more

widespread  regions than cortical  thickness.  However,  future

studies  should  compare  the  sensitivity  of  cortical  thickness

and cortical mean diffusivity in the continuum of AD (both

sporadic  and  ADAD),  as  it  has  been  demonstrated  in

bvFTD20. This study also has several limitations. First, this

study relies  on  the  concept  of  estimated  years  to  onset;

however,  several  external  factors  might  affect  clinical

presentation.  Second,  despite  the  use  of  a  previously

validated  surface-based  in-house  pipeline  developed  to

minimize CSF contamination, the cortical diffusivity might

still be contaminated by partial volume effect related to the

DWI low resolution. Finally, only a longitudinal study with

long  follow-ups  periods  with  individual  amyloid,  tau,

metabolic  (PET-FDG) and inflammatory biomarkers  will

determine with accuracy the trajectory of changes at the

individual  level  and  the  interplay  between  them.  These

analyses might become soon possible with the advent of

plasma amyloid, tau and neurodegenerative biomarkers.

In  summary,  we  showed  that  cortical  changes  in  the

preclinical ADAD follow a biphasic trajectory with early

cortical  thickening  and  decreases  in  cortical  mean

diffusivity  followed  by  atrophy  and  increases  cortical

mean diffusivity around 16 years before symptom onset,

an age when CSF Tau levels start to increase. This biphasic

trajectory  might  be  crucial  when  interpreting  MRI

measures  in  current  and  future  preventive  trials  in

Alzheimer´s disease.
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Supplementary Figure 2. Right hemisphere group comparisons in cortical thickness and cortical mean diffusivity between
carriers and non-carriers in 5-year age intervals. 

Supplementary Figure 1. Correlation between age and cortical thickness and cortical mean diffusivity in non-carriers.  Both
cortical thickness (left) and cortical mean diffusivity (right) showed a widespread pattern of significant correlation with age. Blue-
white colors reflect negative association of age with cortical thickness, whereas green-yellow colors reflect increases of cortical mean
diffusivity related to age.
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Supplementary Figure 3. Regions where the inclusion of the quadratic term improved the fitting of our data. Regions (in
yellow) where the inclusion of the quadratic term of estimated years to symptoms onset improved the modeling of the cortical

thickness (left) and cortical diffusivity (right) data in relation to EYO using the AIC criterion. Figure shows a binarized map of the
regions were AIC was lower for the model including the quadratic model. No quantitative measure of the AIC difference is shown,

since it is not interpretable.

Supplementary Figure 4. Interaction analyses of the relationship between cortical thickness (left) and cortical mean diffusivity
(right) with EYO², depending on mutation status. Colored vertex represents those brain regions were data in mutation carriers

follow a statistically significant stronger quadratic relationship compared to non carriers
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Supplementary Figure 5. Biphasic model of neuroimaging markers in preclinical ADAD mutation carriers alone. The left panels
show the clusters where the association between W-CTh (top row) and W-cMD (lower row) and EYO2 were significant and survived

multiple comparisons. The right panels show the EYO for the inflection points vertexwise for W-CTh (upper right panel) and W-cMD
(lower right panel).  
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Study 2:  Metabolite  signature of AD in DS

ABSTRACT
To examine  the  Alzheimer’s  Disease  metabolite  signature

through  magnetic  resonance  spectroscopy  in  adults  with

Down syndrome and its relation with Alzheimer’s Disease

biomarkers and cortical thickness.

We  included  118  adults  with  Down  syndrome  from  the

Down  Alzheimer  Barcelona  Imaging  Initiative  and  71

euploid  healthy  controls  from  the  Sant  Pau  Initiative  on

Neurodegeneration cohort. We measured the levels of myo-

inositol  (a  marker  of  neuroinflammation)  and  N-acetyl-

aspartate (a marker of neuronal integrity) in the precuneus

using magnetic resonance spectroscopy. We investigated the

changes  with  age  and  along  the  disease  continuum

(asymptomatic,  prodromal  Alzheimer’s  Disease,  and

Alzheimer’s  Disease  dementia  stages).  We  assessed  the

relationship between these metabolites and Aβ42/Aβ40 ratio,

phosphorylated  tau-181,  NfL,  and  YKL-40  Cerebrospinal

fluid  levels  as  well  as  amyloid  positron  emission

tomography uptake using Spearman correlations controlling

for  multiple  comparisons.  Finally,  we  computed  the

relationship between cortical thickness and metabolite levels

using Freesurfer.

Asymptomatic  adults  with  Down  syndrome  had  a  27.5%

increase in the levels of myo-inositol, but equal levels of N-

acetyl-aspartate compared to euploid healthy controls. With

disease progression, myo-inositol levels increased while N-

acetyl-aspartate  levels  decreased in  symptomatic  stages  of

the disease. Myo-inositol was associated with amyloid, tau,

and  neurodegeneration  markers,  mainly  at  symptomatic

stages of the disease, whereas N-acetyl-aspartate was related

to  neurodegeneration  biomarkers  in  symptomatic  stages.

Both metabolites were significantly associated with cortical

thinning, mainly in symptomatic participants.

Magnetic  resonance  spectroscopy  detects  Alzheimer’s

disease  related  inflammation  and  neurodegeneration,  and

could  be  a  good  noninvasive  disease-stage  biomarker  in

Down syndrome.

INTRODUCTION

The lifetime risk of symptomatic Alzheimer´s disease (AD)

in  adults  with  Down  syndrome  (DS)  is  over  90%.1 This

ultra-high risk  is  mainly  caused  by the  extra  copy of  the

amyloid precursor protein gene, coded on chromosome 21.

DS  is  consequently  conceptualized  as  a  genetically

determined form of AD.2 The clinical and biomarker changes

of  AD  in  adults  with  DS  are  strikingly  similar  to  those

described  in  autosomal  dominant  AD  (ADAD).3 DS  thus

offers,  likewise ADAD, a unique opportunity to determine

the sequence of changes from preclinical AD to symptomatic

stages.3 

The  study  of  regional  metabolite  levels  using  proton

magnetic  resonance  spectroscopy  (MRS)  has  shown

potential  to  track  brain  alterations  in  vivo  along  the  AD

continuum in sporadic AD.4,5 There is a strong convergence

of  findings  reporting  increases  in  myo-inositol  (mI),  a

marker of astrocytosis neuroinflammation, and decreases in

N-acetylaspartate (tNAA), a neuronal marker,  with disease

progression  in  various  brain  areas.4–8 This  metabolic

signature  correlates  to  both  in  vivo  imaging  measures  of

amyloid5,6,9 and to postmortem AD pathology.10

The few MRS studies in people with DS, have identified a

similar  pattern  of  changes  in  MRS  metabolites,  with

increases  of  mI  and  decreases  of  tNAA.  These  changes

might arise from AD-related pathological alterations, but in

the case of mI, could also result from the presence of the mI

transporter  gene  in  the  chromosome  21.11,12 However,  the

temporality of MRS changes with age and their relationship

with core-AD biomarkers and brain atrophy is still unknown.

Taking  advantage  of  the  Down  Alzheimer  Neuroimaging

Initiative (DABNI), a large cohort  of adults with DS with
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available  MRI,  MRS,  PET and  cerebrospinal  fluid  (CSF)

biomarkers,  we  aimed  to  determine  the  metabolite  levels

changes i) with age and ii) along the diagnostic groups of the

AD  continuum,  and  assess  the  relationship  between

metabolite alterations and iii) core-AD CSF biomarkers and

iv) cortical thickness.

METHODS

Participants

This  is  a  single-center  cross-sectional  study.  We recruited

118 adults with DS aged 18 or older from the population-

based Down Alzheimer Barcelona Neuroimaging Initiative

(DABNI) cohort.3 We also included a convenience sample of

71 cognitively normal euploid subjects (controls) from the

Sant Pau Initiative of Neurodegeneration SPIN cohort.13 The

study  was  approved  by  the  Sant  Pau  Research  Ethics

Committee, following the standards for medical research in

humans recommended by the Declaration of  Helsinki.  All

participants or their legally authorized representatives gave

written informed consent.

Adults  with  DS  were  clinically  evaluated  to  assess  their

clinical and cognitive status, including the administration of

a  semi-structured  health  questionnaire  (Cambridge

Examination  for  Mental  Disorders  of  Older  People  with

Down  Syndrome,  CAMDEX-DS)14 and  a

neuropsychological  battery  including  the  Cambridge

Cognitive  Examination  for  Older  Adults  with  Down’s

syndrome (CAMCOG-DS) Spanish version.14 As in previous

studies,15,16 participants  were classified during a consensus

meeting between the neurologist and neuropsychologist into

the  following  clinical  groups:  asymptomatic  (aDS),  when

there  was  no  clinical  suspicion  of  AD-related  cognitive

decline, prodromal AD (pDS), when there was evidence of

cognitive decline due to AD, but no significant impact on

baseline activities of daily living (ADL), and AD dementia

(dDS)  when  the  cognitive  decline  impacted  ADL.  This

classification  was  blinded  to  biomarker  data.  Eleven

individuals were excluded for having medical or psychiatric

conditions.

1H-MRS acquisition and analysis

MRS  was  performed  on  a  3T  Philips  Achieva  magnet

scanner, using the point-resolved spectroscopy single-voxel

(PRESS)  sequence,  with  an  echo  time  of  2000  ms  and

repetition time of 35 ms, flip angle of 90º, and 1024 points.

The metabolite data profile was acquired in a 2x2x1.1 mm

voxel  placed  in  a  region  of  interest  (ROI)  located  in  the

posterior  cingulate  cortex  (PCC)  and  the  precuneus.  This

region was selected due to its reported sensitivity to detect

metabolite differences in sporadic AD.17 We processed MRS

data  using  Spectroscopy  Analysis  Tools  (SPANT)  v1.4.0

(https://martin3141.github.io/spant/index.html),  an  open-

source R toolbox which relies on iteratively adapted baseline

fitting of MRS signal based on multiple penalized splines.18

We preprocessed the raw MRS data removing the residual

water signal using an HSVD filter, and realigning the data to

2.01  reference  point  (tNAA  peak).  We  then  run  the

SPANT::fit_mrs()  with  the  ABFIT  method  to  quantify

different metabolites, providing measures for mI, tNAA, and

total Cr (TCr). We used the ratio by TCr (phosphocreatine +

creatine) for the two metabolites (i.e., ml and tNAA) in all

statistical analyses given the stability of its resonance peak.8

Moreover,  TCr  did  not  change  along the  age-span  in  our

sample (both DS and controls with Spearman rho < 0.15,

data  not  shown),  as  previously  shown  in  the  literature.8

Moreover,  by  normalizing  with  TCr,  we  control  inter-

individual differences that might arise from different amount

of water due to atrophy and/or voxel location. 

Quality  control  criteria  included  a  signal-to-noise  ratio

higher than 5, a FWHM lower than 0.15ppm, and a Q value
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(a  measure  of  quality  fitting)19  lower  than  2.  In  addition,

SPANT  provides  estimated  SDs  (based  on  Cramér-Rao

lower  bounds),  which  reflect  the  quality  of  the  expected

fitting. Due to the disease-associated changes, the SDs in a

cohort  along the whole  AD continuum are increased with

respect to those in homogeneous samples. Thus, we imposed

a  liberal  threshold  of  less  than  50% of  SDs  as  a  quality

criterion. Four participants did not fulfill the aforementioned

quality control criteria.

CSF acquisition and analysis

A subset of 73 adults with DS underwent a lumbar puncture

to  obtain  CSF  sampling,  following  international

recommendations.20 We  measured  core  AD  biomarkers

(Aβ42,  Aβ40,  phosphorylated  tau  181  -pTau)  using  the

Lumipulse  G  assays  on  LUMIPULSE  G600II  automated

platform (Fujirebio). In addition, we quantified CSF levels

of YKL-40 (chitinase-3-like protein 1), a marker of reactive

astroglia in AD,21 and neurofilament light (NfL), a marker of

neurodegeneration,22,23 using ELISA Kit MicroVue (Quidel,

San  Diego,  CA)  and  NF-light  (UmanDiagnostics,  Umeå,

Sweden), respectively. All euploid controls had normal core

AD biomarkers levels, assessed in the same conditions and

with the same technique.13

Amyloid PET acquisition and processing

A subset  of  38  participants  with  DS  also  underwent  an

amyloid  PET  scan  using  the  tracer  18F-florbetapir.  We

initially only offered amyloid PET to those subjects that also

consented to CSF analyses due to grant protocol restraints.

We  had  to  stop  the  florbetapir  PET  recruitment  due  to

restricted access in Spain for research. Florbetapir PET was

acquired  using  a  Philips  Gemini  TF  scan  50  min  after

injection  of  370mBq of  18F-florbetapir,  with  2  mm slice

thickness  and  128x128  image  size.  The  images  were

processed to obtain a unique value that represents the global

amyloid load in the brain.24 Briefly, florbetapir PET images

were  normalized  to  a  standard  space  using  a  two-step

registration approach: native florbetapir image to structural

T1-weighted  MRI,  and  T1-weighted  MRI  to  standard

MNI152  template.  We  computed  a  global  amyloid  PET

measure, averaging the signal across the cingulate, parietal,

frontal  and  temporal  cortical  areas,  previously normalized

using the whole cerebellum as the reference regions. Such

global  amyloid  scalar  value,  referenced  as  Landau’s

florbetapir signature along the manuscript, has been shown

to  accurately  differentiate  amyloid  positive  patients  in

sporadic AD.

Structural T1-MRI acquisition and processing

Structural T1-weighted images were acquired with a 3 Tesla

Philips Achieva scanner, using an MPRAGE protocol with

0.94x0.94x1  mm voxel  resolution,  8.1  ms  and  3.7  ms  of

repetition time and echo time, respectively, and 160 slices.

We computed  cortical  thickness  using  Freesurfer  package

v6.0  (https://surfer.nmr.mgh.harvard.edu/)  following  a

procedure  previously  described.25,26 Briefly,  Freesurfer

automatically delineates the white matter and pial surfaces in

order to compute a cortical thickness value for each vertex in

the  brain.  Each  individual  cortical  thickness  map  is  then

normalized to the standard space (fsaverage) and smoothed

using a gaussian kernel of 15mm. From the initial set of 108

adults  with  DS with  good quality  MRS data,  26  subjects

were excluded due to erroneous segmentation.
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To assess differences in baseline demographic characteristics

and  metabolites  levels  between the  diagnostic  groups,  we

used  a  Kruskal-Wallis  rank  sum  test,  with  pairwise

comparisons using  the  Dwass-Steel-Critchlow-Fligner  test.

In  addition, for  the metabolite analyses,  we controlled for

multiple comparisons using the Benjamin & Hochberg false

discovery  rate  (FDR)  method.  All  these  analyses  were

performed using the R package StatsExpressions.27 

To test  the diagnostic performance of each metabolite,  we

used  receiver  operating  characteristic  (ROC)  curves  and

assessed  the  area  under  the  curve  (AUC)  for  each

metabolite.  We  used  the  Youden's  index  to  compute  the

optimal  threshold  that  differentiates  between  the  clinical

groups.
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Table 1. Participants demographics

Controls
(N= 71)

All Down
syndrome
(N= 103)

Asymptomatic
Down syndrome

(N= 62)

Prodromal Down
syndrome
(N= 21)

Demented Down
syndrome
(N= 20)

Statistical
Differences
(p-value)

Age 54.3 (49.4-
57.1)

44.8 (36.9-53.2) 40.2 (31-46.3) 49.8 (44.8-53.6) 54.1 (49.9-56.2) <0.001

Sex (N
Female) 45 39 25 7 7  0.118 

Total-
CAMCOG NA 74 (58-83) 78 (65-85) 73 (58-78) 52 (39-63) <0.001

CSF Aβ42/Aβ40

ratio NA 0.061 (0.042-
0.084)

0.08 (0.062-0.094)
(N=35)

0.041 (0.030-0.051)
(N=31)  <0.001

Florbetapir
Landau

Signature
(SUVr)

NA 1.16 (1.02-1.3) 1.04 (1-1.19)
(N=24)

1.27 (1.21-1.37)
(N=14) 0.002

CSF pTau  181
(pg/mL) NA 58.7 (27.9-122.7)

29.6 (17.1-56.7)
(N=40)

146.4 (96.3-209.6)
(N=33)

 
<0.001

CSF NfL
(pg/mL)

NA 475.5 (305.4-
764.5)

353.2 (201-450.1) 
(N=36)

766.3 (684.5-1618.5)
(N=28) <0.001

CSF YKL-40
(ng/mL) NA 107.3 (90.4-

214.2)
134 (70-178)

(N=34)
206.3 (204.6-323)

(N=18)
 

<0.001
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Fig 1. mI and tNAA changes with age and along the AD continuum in Down syndrome . Panel A) The association for mI/TCr (left)
and tNAA/TCr (right) with age. Lines were obtained fitting a  linear model for each subgroup. Panel B) Boxplot (median and inter-
quartile ranges) and data-point distribution for mI/TCr (left) and tNAA/TCr (right) for each subgroup. HC = euploid healthy controls;
aDS = asymptomatic Down Syndrome; pDS = prodomal Down Syndrome; dDS = Down Syndrome with dementia; ** = p < 0.01 FDR
corrected; * = p < 0.05 FDR corrected



 

To investigate the relationship between the metabolite’s ratio

levels and AD biomarkers (i.e ratio Aβ42/Aβ40, pTau, YKL-

40, NfL, and Landau's florbetapir signature), we performed

Spearman correlation tests both in all  adults with DS and

separately in aDS and symptomatic DS (i.e.,  pooling pDS

and dDS together due to the relatively small sample size).

We considered significant those correlations with a p-value <

0.05  after  controlling  for  multiple  comparisons  using  the

Benjamin  & Hochberg  FDR test.  To  further  visualize  the

stability  of  our  associations,  we  ran  bootstrap  analyses,

subsetting and shuffling our DS sample 1000 times using the

R package boot and recomputing the Spearman Rho estimate

using the package ppcor.  We plotted  the  original  estimate

and the interquartile range of these 1000 permutations. 

Finally,  to study the association between metabolite  ratios

and cortical thickness, we used a general linear model with

sex as a nuisance factor, for each vertex of the surface, as

implemented in Freesurfer.  We performed this analysis for

the whole DS sample,  and aDS and symptomatic patients

separately. 

We  controlled  for  false  positives  using  a  cluster-extent

MonteCarlo  approach  also  implemented  in  Freesurfer.28

Only  results  that  survived  multiple  comparisons  (FWE

p<0.05) are shown. Adjusting by age in autosomal dominant

AD  and  Down  syndrome  studies  is  a  topic  of  debate,

addressed  with  different  approaches  in  the  literature.  In

Down syndrome, AD pathology is universal by age 40, and

the cumulative incidence is over 90% in the seventh decade.

Therefore, the concept of healthy aging in this population is

very  problematic  and  very  difficult  to  dissect  from

preclinical AD (i.e. we cannot remove the effect of normal

aging  from that  of  the  disease  process).  However,  on  the

other  hand,  the  shared  association  with  age  of  several

variables  makes  the  epiphenomenological  association

between such variables problematic. Hence, in the present

study, we decided to perform both adjusted and unadjusted

(by age) statistical analyses. For the group comparisons, in

addition  to  the  non-parametric  approach  we  repeated  the

analyses  using  a  ANCOVA.  We also  performed the  ROC

analyses adjusting by age. For the association between AD-

core  biomarkers,  we  corrected  age-related  effect  using  a

partial Spearman correlation. For cortical thickness analyses,

we re-run the analyses using a GLM with age as nuisance

factor, as implemented in Freesurfer.

RESULTS

Sample

The final sample included 71 controls and 103 adults with

DS, of whom 62 were asymptomatic, 21 pAD and 20 dAD.

Table 1 shows the demographics and biomarker data of the

participants.  As  expected,  there  were  significant  statistical

differences  in  age  and  all  biomarker  levels  between  the

different clinical groups. 

Changes  in  MRS  metabolites  profiles  along  the  AD

continuum in DS

Fig 1A shows the relationship between age and both mI/TCr

and tNAA/TCr in adults with DS and controls. mI/TCr was

increased  in  all  DS  compared  to  controls,  and  further

increased in the early 40s. tNAA/TCr decreased with age in

both adults with DS and controls. Asymptomatic adults with

DS showed comparable tNAA levels as controls, although

tNAA levels started to decrease in their mid-40s. 

Fig 1B shows the mI/TCr and tNAA/TCr ratios along the

AD continuum. There were significant group differences for

both mI/TCr (p < 0.001) and tNAA/TCr (p = 0.002). All the

DS subgroups had a higher mI/TC ratio than controls (p <

0.001 FDR corrected). pDS and dDS groups had increased

levels  compared  to  aDS  (both  with  p  <  0.01  after  FDR

corrected), but there were no significant differences between
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pDS and dDS. We identified the same pattern of significant

results  when adjusting the comparisons by age.  The ROC

analyses showed an AUC of 0.74 (cut-point=0.786; CI=0.76-

0.87)  and  0.85  (cut-point=0.824;  CI=0.77-0.89),  when

comparing aDS vs pDS and aDS vs dDS, respectively. For

the tNAA/TCr ratio, the pairwise comparisons only revealed

statistical differences between aDS and dDS (p = 0.001 FDR

corrected). In the ROC analyses, the AUC analyses showed

an  AUC of  0.62  (cut-point=0.98;  CI=0.88-1.00)  and  0.78

(cut-point=0.938;  CI=0.89-1.03),  when  comparing  aDS  vs

pDS and aDS vs dDS, respectively. We found similar results

when adjusting by age. Concretely, for mI, we obtained an

AUC of 0.75 and 0.88 when comparing aDS against  pDS

and dDS, respectively, and an AUC of 0.65 and 0.82 when

comparing  tNAA  levels  of  aDS  against  pDS  and  dDS,

respectively.

Metabolite associations with core AD and inflammatory

biomarkers

We next  studied the relationship between both the  mI/TC

and tNAA/TC ratios and AD biomarkers (Fig 2). The mI/TC

ratio was significantly associated with amyloid biomarkers,

both with the CSF Aβ42/Aβ40 ratio and with the Landau’s

florbetapir signature in the whole sample of DS (p < 0.05 
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Fig 2.  mI and tNAA correlate with AD-core biomarkers. Association between AD biomarkers and mI/TCr and tNAA/TCr for the
whole sample (left column), prodromal and  Down Syndrome with dementia (central column) and asymptomatic Down Syndrome
(right column). Midpoint shows the (partial) Spearman Rho value for the included sample, whereas the line represents the CI for
bootstrap with 1000 permutations. For each biomarker, we compute both the adjusted (age-cov) and no-adjusted (no-cov) Spearman
Rho value.



 

FDR corrected for both biomarker). However, when splitting

our sample into subgroups, only those with symptomatic AD

showed a significant association with CSF Aβ42/Aβ40 ratio.

The mI/TC ratio was also significantly associated with CSF

pTau levels in the whole sample (p < 0.05 FDR corrected).

When splitting the sample, no association survived multiple

comparisons.  We  also  found  a  significant  positive

association between the mI/TCr ratio and CSF NfL both in

the whole sample and in the symptomatic AD subgroup (p <

0.05 FDR corrected). We did not find any correlation that

survived  multiple  comparisons  between  mI/Tcr  and  CSF

YKL-40.  The  tNAA/TCr  ratio  was  associated  with

Laundau’s  florbetapir  signature  in  both  the  whole  sample

and  in  aDS  (both  p  <  0.05,  uncorrected),  but  these

associations  did  not  survive  multiple  comparisons.  The

tNAA/TCr ratio was also associated with CSF NfL in the

whole sample and in the symptomatic AD subgroup (both p

<  0.05,  uncorrected).  When  adjusting  correlations  by  age

using partial Spearman correlation, we found similar results.

Cortical  thickness  is  associated  with  MRS  metabolite

alterations

Fig  3  shows  the  association  between  the  mI/TCr  and

tNAA/TCr ratios and cortical thickness in the whole sample

and in symptomatic patients. We found a widespread pattern

of  cortical  thinning  with  increasing  mI/TC  ratios  in  AD
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Fig 3. mI and tNAA are related to cortical atrophy in the AD continuum in Down syndrome . Cortical surface representation of
significant  negative  (blue)  association  between mI/TCr  and  cortical  thickness  and  positive  (red)  association  between tNAA/TCr.
Scatterplots show the associations for the most significant vertex (marked with black *). 
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vulnerable regions,  encompassing the precuneus,  temporo-

parietal  and  lateral  temporal  areas  bilaterally,  the  medial

temporal  in  the  right  hemisphere,  and  part  of  the  medial

inferior  frontal  cortex  in  the  left  hemisphere.  This

association  was  mainly  driven  by  symptomatic  patients.

Similarly, the tNAA/TCr ratio was associated with cortical

thickness in an overlapping (but less extended) pattern, both

in the whole sample and in symptomatic patients.  We found

no  significant  association  between  the  mI/TC  ratio  and

cortical  thickness  in  the  aDS subgroup,  and  only  a  small

cluster in the left superior frontal gyrus for the tNAA/TCr

analysis  (results  not  shown).  When  adjusting  by  age,  we

found a similar pattern of results, even though no cluster-

extend multiple comparisons clusters survived for the tNAA

analyses.

DISCUSSION

This study investigated for the first time the MRS changes

with  age  and  along  the  AD  continuum,  as  well  as  their

diagnostic  performance  and  association  with  core  AD,

inflammatory biomarkers and cortical thickness. Metabolite

levels are altered in symptomatic AD and are associated with

core AD biomarkers changes in adults with Down syndrome.

Despite the lower diagnostic performance with respect core

AD  biromarkers,  MRS  is  able  to  track  AD-related

neuroinflammatory and neurodegenerative changes, and has

the advantage with respect CSF or PET biomarkers, that it

could  be  easily  included  in  the  MRI  acquisition  in

longitudinal studies. MRS could thus be used as a disease-

staging  biomarker  in  DS,  with  potential  of  demonstrating

target engagement in disease-modifying therapies. 

This  study  showed  MRS  metabolic  alterations  associated

with  DS  and  with  AD pathophysiology.  The  mI/TCr  had

clear  differences  even  in  the  youngest  asymptomatic

individuals  (and  throughout  all  ages)  with  respect  to

controls,  while  the  tNAA/TCr  was  unchanged  in

asymptomatic  individuals.  These  results  underscore  the

importance  of  considering  the  neurodevelopmental  or

constitutive  differences  in  individuals  with  DS  when

interpreting  biomarker  results.3 The  increases  of  mI  in

asymptomatic DS individuals are not only a result of aging,

as  previously  reported  for  the  general  population,29–31 but

probably also due to the presence of the inositol transporter

gene  on  chromosome  2112 and/or  a  consequence  of

neuroinflammation32–34 resulting  from  an  increase  in

inflammatory  cytokine  expression.35 A prior  study  with  a

smaller  sample  size11  (17  aDS  and  5  dDS)  also  found

increases in mI in aDS compared to controls, but was not

able to detect differences between the DS subgroups. We did

find changes both in the mI/TC and tNAA/TC ratios along

the  AD  continuum.  The  larger  sample  size  in  our  study

enabled us the identification of a gradient of increases along

the  AD  continuum  in  the  mI/TC  ratio.  These  results  are

congruent with previous reports in sporadic AD, in which

participants  with  mild  cognitive  impairment  and  AD

dementia showed increases in the mI/TC ratio compared to

controls.4,5,7,8,36,37 The  tNAA/TC ratio  was  less  sensitive  to

detect  changes  with  disease  progression.  We  only  found

differences  in  the  aDS vs  dDS comparison,  in  agreement

with  previous  reports.11 Further  research  positioning  the

MRS  voxel  in  a  more  prominent  and  early-stage

neurodegenetion region, such as the temporal cortex, might

enhance the sensitivity of tNAA/TCr. Despite the differences

between clinical groups, the ROC analyses for MRS showed

lower  diagnostic  performance  than  plasma  or  CSF

biomarkers.3

This  study  also  assessed  the  relationship  between  MRS

metabolite alterations and AD biomarkers. The mI/TC ratio

was  more  strongly  associated  with  AD  biomarkers  than

tNAA,  and  was  the  only  metabolite  to  survive  multiple
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comparisons  correction.  The  mI/TC  ratio  was  associated

with  amyloid  biomarkers  (both  the  CSF Aβ42/Aβ40 ratio

and amyloid PET uptake), CSF pTau, and CSF NfL levels in

the whole sample, and with the CSF Aβ42/Aβ40 ratio and

CSF  NfL  (and  a  trend  for  CSF  pTau  levels)  in  the

symptomatic  patients.  Previous  studies  had  also  found  a

positive association between mI and amyloid PET uptake5,6,9

or amyloid neuropathology10  in sporadic AD. In our study,

mI  was  also  correlated  with  tau  and  neurodegeneration

markers. While previous studies in sporadic AD did not find

an  association  between  neurofibrillary  tangles  and  mI10,

others  have  shown  a  co-localization  of  neurofibrillary

tangles  and  reactive  astrocytes  (see  Laurent  et  al38 for  a

review),  suggesting  a  possible  association  between  both

markers. Alternatively, the positive correlation between mI

and  CSF  pTau  might  be  driven  by  the  group  differences

along  the  AD  continuum  as  the  association  within  each

subgroup did not survive the multiple comparison correction

in the stratified analyses. Further studies using in-vivo local

measures  of  tau  pathological  changes  (such  as  tau  PET)

might resolve these discrepancies between CSF biomarkers

and postmortem quantifications. 

Contrary  to  our  expectations,  there  were  no  associations

between mI and CSF YKL-40 levels (only a counterintuitive

negative  association  in  asymptomatic  subjects).  This  is

surprising  given  that  both  mI  and  YKL-40  have  been

proposed as markers of astrocytosis,21 and both are increased

with  disease  progression.4,39 It  is  possible  that  both

biomarkers  reflect  different  astrocytic  and

neuroinflammatory  responses  in  AD,  or  that  they  track

changes in different astrocyte subtypes.40,41 This suggests to

us  that  the  inflammatory  processes  measured  by  both

biomarkers are different. The inflammatory response in AD

is complex and probably evolves in different phases along

the disease course. Further research using in-vivo markers of

inflammation (such as deprenyl or SMBT-1 PET tracer) or

animal  studies  will  help  further  understand  these

associations.  Although  no  correlation  survived  multiple

comparisons  correction  for  tNAA,  we  found  significant

(uncorrected) correlations between tNAA and both CSF NFL

levels  and  florbetapir  PET  uptake.  As  expected  the

correlation  with  amyloid  biomarkers  were  found  in

asymptomatic  subjects,  and  the  correlation  with

neurodegeneration in symptomatic subjects.

Metabolite  levels  are  also  associated  with

neurodegeneration. We found an association between both

the  mI/TC and tNAA/TC ratios  in  the  precuneus  and  the

cortical thinning in widespread regions typically affected in

AD.  Of  note,  the  AD-vulnerable  regions  are  similar  in

sporadic  amnesic  AD26,42 and  DS.16,43,44 These  associations

were more prominent in symptomatic stages of the disease.

To  our  knowledge,  it  is  the  first  study  reporting  these

relationships in DS. In sporadic AD, there are some previous

reports assessing the association between MRS metabolites

and  local  neuroimaging  changes  in  AD.  For  instance,  a

recent work by Sheikh-Bahaei and colleagues9 investigated

the local relationship between metabolite levels and amyloid

and  FDG PET uptake.  Others  have  focused  on  the  local

relationship  between  structural  imaging  alterations  and

metabolites  levels  in  subcortical  regions  and  the  white

matter,  using  both  whole-brain  MRS,45,46 or  investigating

specific structures, such as the hippocampus.47 However, no

previous  study had  assessed  the  impact  of  the  metabolite

signature on the whole cortical mantle.

The main strength of this study is the inclusion of a large

population-based  cohort  of  adults  with  DS  with  available

multimodal  biomarker  data,  including  MRS,  MRI,

florbetapir  PET  and  CSF  biochemical  biomarkers.  The

population-based cohort of adults with DS with subjects in
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all the clinical stages of the AD continuum and the control

group  helped  to  disentangle  the  neurodevelopmental  and

AD-associated  changes.  Furthermore,  the  multimodal

assessments helped us to investigate the relationship with the

AD  pathophysiology.  Despite  the  lower  diagnostic

performance  of  MRS  with  respect  to  plasma  or  CSF

biomarkers,  our  results  suggest  that  MRS  can  detect

neuroinflammatory  and  neurodegenerative  changes

associated  with  AD  in  adults  with  DS.  MRS  is  more

accessible (and far cheaper) than PET studies and easier to

implement  in  longitudinal  designs  than  CSF  studies.

Therefore, MRS could be used to assess target engagement

or  as  surrogate  markers  of  efficacy  in  disease  modifying

therapies. 

This  study  also  has  limitations.  Metabolite  levels  were

assessed  in  only  one  specific  location  using  single-voxel

MRS.  The acquisition  of  multi-voxel  MRS could  provide

further  insights  into  the  pattern  of  metabolite  alterations

beyond  the  precuneus.  Moreover,  our  MRS  acquisition

protocol is not suitable to use state-of-the-art models, such

as  the  MRS-diffusion  model,  that  would  allow  the

measurement  not  only  of  metabolite  levels,  but  also  the

measurement  of  the  within-cellular  displacement  of

metabolites  that  might  change  due  to  glia  morphological

alterations in early stages of the disease.48 In addition, the

discrepancies  between  mI  and  CSF  YKL-40  suggest  that

further work, with more specific cytokine-expression should

be  done  to  understand  the  origin  of  the  mI  alterations.

Finally,  longitudinal  studies  are  required  to  better

characterize the longitudinal alterations of these metabolites

in a single-subject basis.

In  summary,  this  study  supports  the  use  of  MRS  to

characterize  pathophysiological  alterations  in  DS  and  its

potential to track AD pathophysiology in AD clinical trials in

DS.
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Study 3:   Association of cortical microstructure with amyloid-β and tau  

ABSTRACT

Non-invasive biomarkers of early neuronal injury may help

identify cognitively-normal individuals at risk of developing

Alzheimer’s  disease  (AD).  A  recent  diffusion-weighted

imaging  (DWI)  method  allows  assessing  cortical

microstructure  via  cortical  mean  diffusivity  (cMD),

suggested  to  be  more  sensitive  than  macrostructural

neurodegeneration.  Here,  we  aimed  to  investigate  the

association  of  cMD with  amyloid-β  and  tau  pathology in

older  adults,  and  whether  cMD  predicts  longitudinal

cognitive  decline,  neurodegeneration  and  clinical

progression.  The  study  sample  comprised  n=196

cognitively-normal older adults (mean[SD] 72.5[9.4] years;

144 women[58.3%]) from the Harvard Aging Brain Study.

At baseline, all participants underwent structural MRI, DWI,

11C-Pittsburgh  compound-B-PET,  18F-flortaucipir-PET

imaging and cognitive assessments. Longitudinal measures

of  Preclinical  Alzheimer  Cognitive  Composite-5  were

available for n=186 individuals over 3.72 (1.96)-year follow-

up. Prospective clinical follow-up was available for n=163

individuals  over  3.2  (1.7)-years.  Surface-based  image

analysis  assessed  vertex-wise  relationships  between  cMD,

global amyloid-β, and entorhinal and inferior-temporal tau.

Multivariable  regression,  mixed-effects  models  and  Cox

proportional-hazards  regression  assessed  longitudinal

cognition, brain structural changes and clinical progression.

Tau, but not amyloid-β, was positively associated with cMD

in  AD-vulnerable  regions.  Correcting  for  baseline

demographics  and  cognition,  increased  cMD  predicted

steeper cognitive decline,  which remained significant after

correcting for amyloid-β, thickness and entorhinal tau; there

was  a  synergistic  interaction  between  cMD  and  both

amyloid-β  and  tau  on  cognitive  slope.  Regional  cMD

predicted  hippocampal  atrophy  rate,  independently  from

amyloid-β,  tau  and  thickness.  Elevated  cMD  predicted

progression  to  MCI.  Cortical  microstructure  is  a  non-

invasive  biomarker  that  independently predicts  subsequent

cognitive  decline,  neurodegeneration  and  clinical

progression, suggesting utility in clinical trials. 

INTRODUCTION

Alzheimer's disease (AD) is characterized by the misfolding

and deposition of amyloid-β(Aβ) and hyperphosphorylated

tau  in  the  brain[1,  2],  a  process  that  begins  years  before

clinical  onset[3].  Accumulating  evidence  from  preclinical

and  clinical  studies  supports  the  notion  that  Aβand  tau

pathologies interact synergistically in the preclinical stages

of  AD,  contributing  to  faster  neurodegeneration  and

cognitive  decline[4–7].  Therefore,  in-vivo  imaging

biomarkers  of  AD  proteinopathy,  neuronal  injury  and

neurodegeneration are of interest to elucidate the dynamic

interplay among biological mechanisms underlying disease

progression. 

Although  Aβpositivity  and  even  sub-threshold  Aβ load

have  been  shown  to  predict  cognitive  decline  happening

over longer time periods[8–10],  Aβalone is not  accurate

enough  to  predict  short-term  cognitive  decline  or  clinical

progression[11, 12]. Therefore, complementary non-invasive

imaging  biomarkers  of  subtle  neuronal  injury  whether

alone  or  in  combination  with  Aβmay  help  select

participants at the earliest stages with an enhanced risk of

impending  cognitive  decline  or  clinical  progression.

Biomarkers for identification of at-risk individuals prior to

widespread  neurodegeneration  are  of  great  interest  for

optimization of secondary prevention trials[13–15],  and as

outcome measures of therapeutic efficacy.

While  neurodegeneration  is  typically  reflected  in

macrostructural  changes  including  atrophy  and  cortical

thinning  measured  by  structural  MRI,  a  recent  diffusion-

weighted  imaging  (DWI)  method  has  allowed  to  assess
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microstructural properties of the grey matter (GM) [16, 17]

by  means  of  cortical  mean  diffusivity  (cMD).  Increased

cMD  is  thought  to  reflect  the  early  breakdown  of

microstructural  integrity  due  to  damage  to  cellular

membranes and dendritic processes[18], and therefore cMD

has  been  proposed  as  a  sensitive  biomarker  of  subtle

microstructural  injury,  prior  to  overt  neurodegeneration

measured by atrophy or cortical thinning[19, 20]. Previous

cross-sectional  studies  have  reported  increased  cMD  in

prodromal and dementia stages of sporadic AD[16, 21], and

a  positive  association  between  cMD  values  and  years  to

symptom onset  in autosomal-dominant AD[17,  22, 23].  In

sporadic  fronto-temporal  degeneration  and  amyotrophic

lateral sclerosis, increased cMD was more widespread, had a

larger  effect  size  and  was  more  closely  associated  with

disease  severity  compared  with  cortical  thinning[24,  25].

Increased  cMD has  also  been  observed  in  AD-vulnerable

regions in pre-dementia stages of AD at pathological levels

of CSF Aβand phospho-tau[16]. However, the relationship

between  cMD  and  the  underlying  in-vivo  Aβand  tau

burden in cognitively-normal adults is unknown. Moreover,

the ability of cMD to predict subsequent cognitive decline,

neurodegeneration  and  clinical  progression  in  the  AD-

continuum remains unknown. 

The  specific  aims  of  this  study  are  to:  (i)  investigate  the

cross-sectional  association  of  in-vivo  Aβ and  tau  burden

with  cMD  and  in  a  cohort  of  cognitively-normal  older

adults,  (ii)  determine  whether  baseline  cMD is  associated

with  prospective  longitudinal  cognitive  change  and

hippocampal  atrophy  rates,  independently  and/or

interactively  with  Aβ and  tau  at  baseline,  (iii)  determine

whether  baseline  cMD  predicts  subsequent  clinical

progression. 

METHODS

Participants

The study sample consisted of n=196 community-dwelling

older adults from the Harvard Aging Brain Study (HABS)

(Table 1),  a  longitudinal  observational  study of aging and

preclinical AD conducted at Massachusetts General Hospital

and Brigham and Women's Hospital in Boston, MA [26].

For  the  aims  of  this  study,  we  selected  participants  with

concurrent data on DWI, T1-weighted MRI, 11C-Pittsburgh

Compound-B  (PIB)-PET,  18F-flortaucipir  (FTP)-PET  and

cognitive  assessments  summarized  using  the  Preclinical

Alzheimer  Cognitive  Composite-5  (PACC5)[27].  All

assessments had been performed within one year of the T1-

weighted MRI scan. Using these inclusion criteria, we got a

group  of  n=196 participants  (referred  to  as  'baseline'),  all

deemed  cognitively-normal.  Of  note,  the  majority  of

participants  had  a  Clinical  Dementia  Rating  (CDR)=0,

except for nine participants with CDR=0.5. Subsets of the

cohort had longitudinal MRI, neuropsychological, CDR and

clinical  evaluations (Table 1).  Ethical  approvals, exclusion

criteria  and neuropsychological  evaluations are detailed in

Supplementary Methods.

MRI methods 

All  participants  underwent  a  structural  3D  T1-weighted

magnetization-prepared  rapid-acquisition  gradient-echo

(MPRAGE)  sequence  and  a  DWI  sequence  on  a  3-Tesla

TimTrio scanner (Siemens, Erlangen, Germany) with a 12-

channel  phased-array  head  coil  (acquisition  parameters  in

Supplementary Methods). 

Structural  MRI  was  processed  for  estimation  of  cortical

thickness  (CTh)  and  subcortical  volumetric  segmentation

using  FreeSurfer  6.0  (http://surfer.nmr.mgh.harvard.edu)

[28].  Cortical  segmentations  were  visually  inspected  to

detect and correct processing errors and an automatic region-
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Table 1. Sample composition

Characteristic All participants
(n = 196)

Aβ-
(n = 147)

Aβ+
(n = 49)

P value

No. (% of sample)

Female, No. (%) 114 (58.2%) 86 (58.1%) 28 (57.1%) 0.87

White/non-hispanic, No. (%) 148 (75.5%) 105 (71.4%) 43 (87.8%) 0.02

APOE-4+ 53 (27.0%) 23 (15.6%) 30 (61.2%) <0.001

CDR = 0.5 9 (4.6%) 8 (5.4%) 1 (2.0%) 0.32

Mean (SD)

Age, years 72.5 (9.4) 70.9 (9.6) 77.3 (7.2) <0.001

Years of education 16.2 (2.9) 16.2 (3.0) 16.0 (2.8) 0.63

MMSE 29.1 (1.12) 29.1 (1.13) 29.2 (1.11) 0.80

Logical memory, delayed recall 15.7 (3.86) 15.7 (3.86) 15.7 (3.89) >0.99

PACC5 0.19 (0.75) 0.22 (0.75) 0.09 (0.74) 0.30

PIB-FLR DVR 1.17 (0.19) 1.08 (0.04) 1.45 (0.19) <0.001

entFTP PVC SUVr 1.36 (0.29) 1.29 (0.23) 1.56 (0.34) <0.001

i-tFTP PVC SUVr 1.44 (0.18) 1.40 (0.15) 1.56 (0.21) <0.001

No. follow-up MRI scans

Prospective MRI follow-up, years

Subsample n / total n (%) 

1.47 (0.52)

3.11 (1.52)

118/196 (60.2%)

1.44 (0.50)

3.01 (1.50)

79/147 (53.7%)

1.51 (0.56)

3.31 (1.55)

39/49 (79.6%)

0.49

0.31

No. follow-up cognitive assessments 

Prospective cognitive follow-up, years

Subsample n / total n (%)

3.56 (1.80)

3.72 (1.96)

186/196 (94.9%)

3.40 (1.81)

3.50 (1.92)

138/147 (93.9%)

4.04 (1.71)

4.34 (1.95)

48/49 (98.0%)

0.03

0.01

Prospective clinical follow-up, years

Subsample n / total n (%) 

Progressors to MCI, n /total (%)

Time to progression in those who 
progressed, years 

3.2 (1.7)

163/196 (83.2%)

11/163 (6.7%)

3.3 (1.5)

3.1 (1.7)

116/147 (78.9%)

1/116 (0.86%)

4.5 (-)

3.4 (1.6)

47/49 (95.9%)

10/47 (21.3%)

3.2 (1.5)

0.30

Prospective CDR follow-up, years

Subsample n / total n (%) 

Progressors to CDR=0.5, n /total (%)

Time to CDR=0.5 in those who 
progressed, years 

3.3 (1.7)

165/187 (88.2%)

15/165 (9.1%)

2.7 (1.7)

3.3 (1.6)

119/139 (85.6%)

3/119 (2.5%)

3.4 (0.9)

3.3 (1.8)

46/48 (95.8%)

12/46 (26.1%)

2.5 (1.9)

>0.99



 

of-interest  (ROI)  parcellation  was  performed[29].

Hippocampal  volume  (HV),  adjusted  for  intracranial

volume, was assessed using Freesurfer.

DWI data  were  processed  with  an  in-house  surface-based

diffusion  tensor  imaging  (DTI)  approach  combining  FSL

(FMRIB  Software  Library)

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki,  v5.0.9)  and  FreeSurfer

6.0 tools [16]. This surface-based approach applies recently

developed  techniques  [30–32]  to  overcome  limitations  of

traditional  voxel-based  approaches.  First,  it  reduces  the

contribution  from  CSF  and  white  matter  signal  on  GM

voxels that can confound cMD measures. Second, it applies

a  surface-based  smoothing  procedure,  less  sensitive  to

smoothing kernel size compared with voxel-based analyses

[33].  In  the  surface-based  DTI  approach,  images  were

motion-corrected  via  rigid-body  registration  between  the

b=0 and the 30 b=700 volumes. After removing non-brain

tissue, a tensor model was fitted using FSL’s dtifit command,

and  we  computed  the  cMD metric.  The  diffusion  images

were then coregistered to each subject’s T1 using bbregister,

a boundary-based registration algorithm in FreeSurfer [34].

The  cMD  maps  resulting  from  DTI  fitting  were  then

sampled in  the midpoint  between white and pial  surfaces,

projected  onto  the  subject’s  cortical  surface  space,  and

registered to FreeSurfer standard space. Finally, cMD maps

were normalized to a standard surface template (fsaverage)

and smoothed using a 15-mm 2D full-width half-maximum

Gaussian  kernel  across  the  cortical  mantle.  cMD  was

extracted  from  eight  AD-vulnerable  ROIs:  entorhinal,

fusiform gyrus, inferior-temporal, middle-temporal, inferior-

parietal,  orbitofrontal,  isthmus  cingulate  and

parahippocampal  gyrus.  These  eight  ROIs  are  typically

described  as  vulnerable  to  tau  aggregation  based  on

postmortem and in  vivo  staging (Braak  and  Braak,  1991;

Jack  et  al.  2017;  Schöll  et  al.  2016),  and  data-driven

approaches (Sepulcre et al. 2017).

PET methods

All  PIB  and  FTP-PET  scans  were  acquired  at  the

Massachusetts  General  Hospital  PET  facility  (ECAT

EXACT HR+ scanner;  Siemens,  Erlangen,  Germany) [26,

35];  (acquisition  parameters  in  Supplementary  methods).

Late-sum PIB and FTP-PET images were used to coregister

the  respective  PET  volumes  to  each  subject’s  native  T1

using mri_coreg in FreeSurfer, prior to quantification.

PIB-PET  quantification:  A Logan  model  was  applied  to

dynamic PIB-PET images using cerebellar GM as reference

to  generate  parametric  non-partial  volume corrected  (non-

PVC)  Logan  Distribution  Volume  Ratio  (DVR)  images,

which were projected onto the cortical  surface.  Individual

burden was extracted from a cortical  composite  including

frontal,  lateral-temporal,  parietal  and  retrosplenial  (PIB-

FLR) regions [35,  36].  Participants  were  further  stratified

into  Aβ+ and  Aβ-  sub-groups  at  baseline  using  non-PVC

PIB-FLR  Logan  DVR=1.2  as  cut-off,  previously  derived

using Gaussian mixture modeling [12]. 

Tau  PET quantification:  FTP-PET images  were  projected

onto the cortical surface space and partial volume corrected

using the geometric transfer matrix method [37]. FTP-PET

was  then quantified using PVC standardized uptake  value

ratio (SUVr) using cerebellar GM as reference. Individual

tau burden was extracted from the bilateral entorhinal and

inferior-temporal  cortices.  Entorhinal  FTP  (entFTP)  was

used  as  a  proxy  for  aging  and  early  tau  deposition  in

preclinical  AD,  while  inferior-temporal  FTP  (i-tFTP)

represents AD-related neocortical tau [5, 35, 38, 39]. 
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Statistical analyses

Cross-sectional analyses

Surface-based  analyses: To  investigate  the  associations  of

A  and  tau  with  cortical  microstructure,  we  applied  a

general linear model in FreeSurfer with vertex-wise cMD as

dependent  variable  in  three  models.  For  each  model,  the

independent predictor was global Aβ burden evaluated in the

PIB-FLR cortical composite, entFTP or i-tFTP; age and sex

were  covariates.  Vertex-wise  analyses  were  corrected  for

multiple  comparisons  within  FreeSurfer  using  a  cluster

extension  criterion based on Monte Carlo simulation with

10,000 repeats, with family-wise error correction at P<0.05,

two-sided test.

Regional-based analyses: Separate multivariable regression

models  were  used  to  independently  assess  the  ability  of

global  Aβ burden  (continuous  or  dichotomous  PIB-FLR),

entFTP and i-tFTP to predict  regional cMD. Also, models

were  set-up  to  examine  the  interaction  of  global  Aβ and

either  entFTP or  i-tFTP in  predicting  regional  cMD,  and

their  respective  independent  contributions.  All  models

included age and sex as covariates. Corrections for multiple

regional  comparisons  were  performed  using  a  false

discovery rate (q<0.05) approach, two-sided test.

Longitudinal analyses

Prediction of cognitive decline and neurodegeneration rates:

To  investigate  whether  regional  cMD  is  associated  with

longitudinal  cognitive  and  neurodegeneration  rates,  the

longitudinal changes in PACC5 or HV were extracted from

mixed-effects models with PACC5 or HV as outcome, using

time  (years  from  baseline)  as  fixed-effects  predictor,  and

incorporating  random  intercepts  and  slopes  at  the  subject

level (Eq.1). From these models, we extracted an individual

random slope  of  PACC5 and  of  HV for  each  participant,

which represented the corresponding rates of change [40]:

Multivariable  regression  models  were  then  used  to

investigate whether regional cMD at baseline predicts slope

of  PACC5  or  HV.  All  models  included  age  and  sex  as

covariates; in models predicting cognitive decline, baseline

PACC5  and  education  were  also  added  as  covariates.

Furthermore,  we  tested  whether  cMD  interacted  with

dichotomous or continuous PIB-FLR, entFTP or i-tFTP on

the slope of PACC5 or HV; models with interaction terms

included all lower-order terms. 

We further applied a hierarchical regression approach to test

the ability of cMD to predict  PACC5 or HV slopes when

sequentially  including  PIB-FLR  and  CTh  as  independent

predictors, and finally adding entFTP or i-tFTP as predictors.

The  statistical  fit  of  different  models  was  inter-compared

using  R2  and  Akaike  information  criterion  (AIC);  lowest

AIC indicates better fit. All statistical tests were two-sided.

Prediction of clinical outcomes: We used survival analysis to

investigate  whether  cMD  predicts  subsequent  clinical

progression.  Time-to-event  was  defined  as  years  from

baseline to the first follow-up visit when a participant was

diagnosed  as  mild  cognitive  impairment  (MCI).  For

comparison,  separate  survival  models  were  set-up  using

progression from CDR=0 to 0.5 as a  subtler  definition of

clinical  progression  [41].  We  applied  multivariable  Cox

proportional-hazards  regression  models  to  estimate  hazard

ratios  (HRs)  with  95%  confidence  intervals  (CI)  to

investigate  whether  dichotomous  regional  cMD  ("high

cMD"  defined  as  top-tertile  cMD;  "low cMD"  otherwise)

predicts subsequent diagnosis of MCI/AD, or progression to

CDR=0.5.  Cox  regression  analyses  were  controlled  for

baseline age, sex and education, to account for demographic

differences across participants. Additional exploratory Cox 
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regression analyses sequentially incorporated PIB status and

CTh as  predictors.  Results  were  visualized  using  Kaplan-

Meier  curves.  All  statistical  tests  were  two-sided.  Further

details  about  statistical  tests  and  software  are  included  in

Supplementary methods.

RESULTS

Demographic and clinical data of the 196 participants with

baseline  data  stratified  into  Aβ+  and  Aβ-  sub-groups  are

presented  in  Table  1.  Aβ+  participants  had  greater

prevalence of APOE-4 positivity, were older and had greater

Aβ and tau pathology than the Aβ- sub-group; there were no

significant  differences  in  cognitive  performance  between

Aβ+ and Aβ- sub-groups at baseline. 

Cross-sectional  associations of  in-vivo Aβ and tau with

cMD in older adults
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Figure  1.  Cross-sectional  associations  of  entorhinal  and  inferior-temporal  tau  with  cMD.  (A)  Surface-based  statistical  map
representing  the  clusters  with  significant  association  of  vertex-wise  cMD  with  entorhinal  18F-flortaucipir  (FTP)  uptake;  clusters
survived correction for multiple comparisons implemented in  FreeSurfer  by using a  cluster  extension criterion in a Monte Carlo
simulation with 10,000 repeats, with the family-wise error correction settled at P < 0.05. (B) Scatterplot illustrating the association of
cMD in the middle-temporal gyrus region-of-interest (ROI) and entorhinal FTP uptake.  (C) Surface-based statistical map representing
the  clusters  with  significant  association  of  vertex-wise  cMD with  inferior-temporal  FTP uptake;  clusters  survived  correction  for
multiple  comparisons implemented in  FreeSurfer by using a  cluster  extension criterion in a  Monte Carlo simulation with 10,000
repeats, with the family-wise error correction settled at P < 0.05. (D) Scatterplot illustrating the association of milddle-temporal cMD
with inferior-temporal FTP uptake.  cMD = cortical mean diffusivity; FTP = 18F-flortaucipir; PVC = partial volume corrected; SUVr =
standardized uptake value ratio.
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No significant association was found between PIB-FLR and

vertex-wise cMD after multiple-comparisons correction. In

the ROI-based analysis, neither dichotomous nor continuous

PIB-FLR were associated with regional cMD, corrected for

multiple comparisons. 

Entorhinal  and  inferior-temporal  tau  (entFTP,  i-tFTP)

showed  a  positive  cross-sectional  association  with  vertex-

wise  cMD  across  all  n=196  participants  (Fig.  1).  The

association of entFTP with vertex-wise cMD was localized

to  clusters  in  the  entorhinal  and  inferior-middle  temporal

gyrus on the right hemisphere (Fig. 1A), while i-tFTP was

associated to more widespread increases in cMD in bilateral

clusters  of  entorhinal,  isthmus  cingulate,  fusiform  gyrus,

inferior-middle temporal gyrus, and parts of lateral occipital,

lateral orbitofrontal  cortex and precuneus (Fig. 1C). These

associations were confirmed when using ROI-based analyses

for eight bilateral cMD ROIs (Supplementary Table 1). Both

entFTP and  i-tFTP had  the  strongest  positive  association

with inferior-middle temporal gyrus cMD, where regression

models explained up to 40-45% of the total variance in cMD

(Supplementary  Table  1).  Scatterplots  for  the  ROI-based

analyses are illustrated for the middle-temporal gyrus (Figs.

1B,  1D).  There  was  no  significant  interaction  between

entFTP or i-tFTP and either dichotomous or continuous PIB-

FLR in  predicting  concurrent  regional  cMD (not  shown).

When  either  dichotomous  or  continuous  PIB-FLR  and

entFTP or i-tFTP were entered as independent predictors, the

PIB-FLR  term  was  non-significant,  while  the  predictive

ability of entFTP or i-tFTP was not substantially altered (not

shown). 

Relationship between baseline cMD and subsequent rate

of cognitive decline 

Correcting for  baseline demographics  and  cognitive  status

(PACC5),  baseline  cMD  in  all  ROIs  predicted  steeper

decline in PACC5 (Supplementary Table 2); illustrated in the

lateral middle-temporal gyrus (Fig. 2A). In five ROIs (Table

2),  cMD remained a significant predictor of PACC5 slope

after  correcting  for  PIB-FLR,  and  after  simultaneously

correcting for both PIB-FLR and regional CTh, indicating

that  baseline  cMD  is  capturing  variance  in  subsequent

cognitive  decline,  independently  from  Aβ and  CTh

biomarkers. The observation that CTh was a non-significant

predictor  in  four  of  the  five  ROIs  (Table  2)  supports  the

concept  that  cMD  has  higher  sensitivity  than  CTh  as  a

prognostic marker of cognitive decline.  When entFTP was

additionally  included  as  predictor,  cMD  in  the  isthmus

cingulate cortex remained a significant predictor of cognitive

decline (Supplementary Table 3); when i-tFTP was used as

predictor  instead  of  entFTP,  none  of  the  regional  cMD

values remained predictive of cognitive decline, suggesting

that  the  shared  variance  between  cMD  and  subsequent

cognitive decline is explained by increased neocortical tau

pathology.

Cortical mean diffusivity is synergistic with amyloid-β

and tau burden in predicting future cognitive decline

We  observed  a  significant  interaction  between  cMD  and

continuous or dichotomous PIB-FLR in predicting PACC5

slope;  which  was  significant  in  all  ROIs  after  multiple-

comparisons  correction  (Supplementary  Table  4).  This

interaction  is  illustrated  in  Fig.  2A  where,  as  middle-

temporal  cMD  increases,  PACC5  declines  with  a  steeper

slope in  the Aβ+ compared with the Aβ-sub-group.  The

interaction  between  cMD  and  continuous  PIB-FLR  is

illustrated  in  Supplementary  Fig.  1,  which  represents  the

association of baseline middle-temporal cMD with PACC5

slope for mean PIB-FLR ± 1 standard deviation (SD) range.

In these interaction models, the individual terms PIB-FLR 
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and  regional  cMD  remained  significant  independent

predictors. 

There  was  also  a  significant  interaction  between  regional

cMD and tau burden as measured by either entFTP or i-tFTP

(Supplementary Table 5) in predicting the rate of cognitive

decline,  as  illustrated  in  Fig.  2B for  cMD in the  middle-

temporal region. In these interaction models, the individual

terms entFTP, itFTP and regional cMD remained significant

independent predictors.

Relationship between baseline cMD and subsequent rate

of HV loss

Regional cMD in all ROIs predicted rate of HV loss, after

multiple-comparisons  correction  (Supplementary  Table  6);

illustrated in Fig.  2C for the middle-temporal  gyrus cMD.

The  ability  of  regional  cMD  to  predict  rate  of  HV loss

remained significant after correcting for PIB-FLR, regional
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Figure 2.  Associations of  cMD with subsequent rates  of  cognitive decline and hippocampal  volume loss.  (A) Association of
middle-temporal  cMD at  baseline  with  subsequent  rate  of  cognitive  decline  as  measured  by  the  Preclinical  Alzheimer  Cognitive
Composite-5 (PACC5), illustrating the significant interaction between cMD and dichotomized Aburden. (B) Middle-temporal cMD
interacts with tau burden (entFTP, i-tFTP) in predicting future rate of cognitive decline.  (C) Association of middle-temporal cMD at
baseline with subsequent rate of hippocampal volume loss.  (D) Middle-temporal cMD does not significantly interact with tau burden
(entFTP, i-tFTP) in predicting future rate of hippocampal volume loss. cMD = cortical  mean diffusivity;  entFTP = entorhinal  18F-
flortaucipir; i-tFTP = inferior-temporal 18F-flortaucipir; PACC5 = Preclinical Alzheimer Cognitive Composite-5.
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CTh and either entFTP (Supplementary Table 7) or i-tFTP

(Supplementary Table 8).

Regional cMD did not interact with PIB-FLR (not shown).

Also, the interaction of cMD with continuous measures of

tau  burden  (entFTP  or  i-tFTP)  was  non-significant  in

predicting rate of HV loss (Fig. 2D). 

Cortical  mean  diffusivity  is  predictive  of  subsequent

clinical progression

Eleven participants (5.6% [11/196]) progressed to a clinical

diagnosis of MCI within a mean (SD) progression time of

3.3 (1.5) years. Using CDR as outcome, we found that 15

participants (9.1% [15/187]) progressed to CDR=0.5 during

2.7  (1.7)  years.  Despite  few  participants  progressed

clinically during the study period, we observed that higher

cMD predicted faster progression. In particular, entorhinal,

middle-temporal  and  orbitofrontal  cMD  predicted  shorter

survival using MCI or CDR=0.5 as outcome, as illustrated in

Fig.  3  for  the orbitofrontal  cMD.  In  all  Cox proportional

hazards models, which included age, sex and education as

covariates, PIB status was the strongest predictor of clinical

progression  and  showed  an  HR[95%  CI]=25.98  [3.19  to

211.32],  P=0.002  in  predicting  progression  to  MCI  and

HR[95% CI]=10.20 [2.82 to 36.93] in prediction progression

to CDR=0.5. Orbitofrontal  cMD remained significant after

inclusion of PIB status and CTh as independent predictors

(Fig. 3). Orbitofrontal cMD had an HR[95% CI]=11.06 [2.22

to 55.03],  P=0.003 in predicting progression to  MCI,  and

HR[95% CI]= 4.78 [1.57 to 14.59],  P=0.006 in predicting

progression to CDR=0.5. CTh did not significantly predict

clinical progression in any of the clinical progression models

(Fig.  3).  Respective  survival  analyses  in  entorhinal  and

middle-temporal gyrus are illustrated in Supplementary Figs.

2 and 3.

DISCUSSION

In  this  study of  196 older  adults,  entorhinal  and  inferior-

temporal tau, but not global Aβ, were positively associated

with cMD in AD-vulnerable brain areas. Increased cMD at

baseline predicted faster cognitive decline, which remained

significant after correction for global Aβ, regional CTh and

entorhinal  tau.  We also  observed  a  synergistic  interaction

between cMD and global  Aβ,  and  between cMD and tau

burden,  on  subsequent  rate  of  cognitive  decline.  Higher

cMD at baseline predicted faster hippocampal atrophy and

clinical  progression  to  MCI.  At  baseline,  entorhinal  and

inferior-temporal  tau  were  positively  associated  with

regional cMD, suggesting that elevated cMD is a marker of

neuronal  injury  accompanying  tau  as  it  spreads  into  the

neocortex. Our finding that increased cMD is associated to

tau but not Aβburden is consistent with the independent

roles  that  these  proteinopathies  play  in  the  brain  [4,  42].

Recent  studies[16,  17,  43]  reported  a  non-linear  effect  of

Aβload on structural biomarkers in the brain in clinically-

normal  individuals  prior  to overt  neuronal damage,  which

could explain the lack of a linear association between cMD

and  global  Aβin  our  cohort.  We  then  assessed  the

relationship  between  baseline  cMD  and  subsequent

cognitive  decline,  neurodegeneration  and  clinical

progression. We found that higher cMD values were strongly

predictive  of  steeper  cognitive  decline  and  HV loss.  The

ability  of  regional  cMD  to  predict  subsequent  cognitive

decline  remained  significant  after  sequentially  accounting

for  global  Aβ burden,  regional  CTh  and  entorhinal  tau,

suggesting  that  cMD  independently  explains  variance  in

cognitive  decline,  beyond  those  traditional  imaging

biomarkers. In contrast, regional cMD did not significantly 
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Table 2. Statistical regression analyses

Indep. 
pred.

Std.  
(95% CI)

P 
value

q 
value

R2

(AIC)
Indep.
pred.

Std.  
(95% CI)

P 
value

q 
value

R2

(AIC)

Slope PACC5 ~ fusiform cMD + PIB-FLR + PACC5 + (fusiform CTh) 

Fusiform 
cMD

-0.24 
(-0.38 to -0.10)

8x10-4 0.005 0.34
(489)

Fusifor
m cMD

-0.17 
(-0.32 to -0.03)

0.022 0.043 0.37
(484)

PIB-FLR -0.33 
(-0.45 to -0.21)

2x10-7 3x10-7 PIB-
FLR

-0.32 
(-0.44 to -0.20)

3x10-7 4x10-7

PACC5 0.27 
(0.14 to 0.40)

9x10-5 1x10-4 PACC5 0.25 
(0.12 to 0.38)

2x10-4 3x10-4

Fusifor
m CTh

0.17 
(0.04 to 0.30)

0.012 0.046

Slope PACC5 ~ inferior temporal cMD + PIB-FLR + PACC5 + (inferior temporal CTh)

Inf. temp. 
cMD

-0.23 
(-0.39 to -0.08)

0.003 0.005 0.34
(491)

Inf. 
temp. 
cMD

-0.20 
(-0.37 to -0.03)

0.020 0.043 0.34
(492)

PIB-FLR -0.34 
(-0.47 to -0.22)

8x10-8 2x10-7 PIB-
FLR

-0.35 
(-0.47 to -0.23)

6x10-8 2x10-7

PACC5 0.27 
(0.14 to 0.41)

6x10-5 1x10-4 PACC5 0.27 
(0.14 to 0.40)

8x10-5 2x10-4

Inf. 
temp. 
CTh

0.06 
(-0.08 to 0.19)

0.40 0.48

Slope PACC5 ~ isthmus cingulate cMD + PIB-FLR + PACC5 + (isthmus cingulate CTh)

Isthmus 
cing. cMD

-0.21 
(-0.34 to -0.08)

0.001 0.005 0.34
(490)

Isthmus 
cing. 
cMD

-0.21 
(-0.34 to -0.08)

0.001 0.011 0.34
(491)

PIB-FLR -0.34 
(-0.46 to -0.22)

1x10-7 2x10-7 PIB-
FLR

-0.34 
(-0.46 to -0.21)

2x10-7 3x10-7

PACC5 0.26 
(0.13 to 0.39)

1x10-4 1x10-4 PACC5 0.26 
(0.13 to 0.39)

2x10-4 2x10-4

Isthmus 
cing. 
CTh

0.04 
(-0.09 to 0.16)

0.57 0.57

Slope PACC5 ~ lateral orbitofrontal cMD + PIB-FLR + PACC5 + (lateral orbitofrontal CTh)

Lateral 
orbitofr.MD

-0.15 
(-0.28 to -0.01)

0.034 0.039 0.32
(496)

Lateral 
orbitofr.
MD

-0.16 
(-0.29 to -0.02)

0.027 0.044 0.32
(497)

PIB-FLR -0.35 
(-0.47 to -0.23)

6x10-8 2x10-7 PIB-
FLR

-0.35 
(-0.48 to -0.23)

6x10-8 2x10-7

PACC5 0.28 
(0.14 to 0.41)

6x10-5 1x10-4 PACC5 0.28 
(0.15 to 0.42)

5x10-5 2x10-4

Lateral 
orbitofr.
CTh

-0.05 
(-0.17 to 0.07)

0.42 0.48

Slope PACC5 ~ middle temporal cMD + PIB-FLR + PACC5 + (middle temporal CTh)

Mid. temp.
cMD

-0.24 
(-0.39 to -0.09)

0.002 0.005 0.34
(490)

Mid. 
temp.
cMD

-0.21 
(-0.37 to -0.04)

0.016 0.043 0.34
(492)

PIB-FLR -0.34 
(-0.46 to -0.22)

1x10-7 2x10-7 PIB-
FLR

-0.34 
(-0.46 to -0.22)

1x10-7 2x10-7

PACC5 0.26 
(0.13 to 0.40)

1x10-4 1x10-4 PACC5 0.26 
(0.13 to 0.39)

1x10-4 2x10-4

Mid.
temp 
CTh

0.06 
(-0.08 to 0.21)

0.37 0.48
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predict subsequent cognitive decline once inferior temporal

tau  was  included  as  independent  predictor.  Our  findings

suggest  that  the  shared  variance  between  cMD  and

subsequent cognitive decline may be explained by increasing

neocortical  tau  pathology,  which  is  likely  an  underlying

biological  substrate  driving  the  elevated  cMD signal.  Our

results  are  in  line  with accumulating evidence  that,  while

entorhinal tau can increase with aging without being an AD-

specific process, inferior temporal tau is a stronger predictor

of subsequent AD-specific cognitive decline (Cho et al 2019;

Ossenkoppele et al 2021). In previous cross-sectional studies

in patients with sporadic AD, fronto-temporal degeneration

and amyotrophic lateral sclerosis[19, 20, 24, 25], cMD was

associated with cognitive performance independently from

CTh.  Our  study  extends  our  knowledge  about  cMD  to

cognitively-unimpaired  individuals,  where  we  found  that

cMD has prognostic ability to predict short-term cognitive

decline beyond that provided by Aβstructural biomarkers

and entorhinal tau. 

The  regions  where  increased  cMD  was  predictive  of

cognitive  decline  independently  from  CTh  are  consistent

with regions undergoing hypometabolism in preclinical AD,

in  particular  the  isthmus  cingulate  located  next  to  the

posterior  cingulate  cortex[38],  where  a  synergistic

contribution of Aβand tau leads to metabolic dysfunction

in  the  absence  of  atrophy.  Together  with  those  previous

reports, our findings support the notion that both cMD and

18F-fluorodeoxyglucose-PET are  early  biomarkers  of  tau-

driven synaptic dysfunction preceding overt neuronal death

and  atrophy.  Increased  cMD  in  the  absence  of  cortical

thinning might also reflect early microstructural damage in

response to tau oligomers that  cause synaptic toxicity and

dysfunction  prior  to  neuronal  death  as  demonstrated  in

preclinical studies[4], or to the accumulation of other protein

oligomers or deposits of TDP-43 or -synuclein, for which

no PET tracers are yet available. 

Our  study  also  showed  that  cMD  and  either  Aβor  tau

burden  contribute  independently  and  synergistically  to

subsequent cognitive decline over ~3.5 years. This finding

suggests that in a clinical trial selecting Aβparticipants[13,

15],  the  addition  of  the  cMD  biomarker  would  help  to

further select those participants most likely to decline over a

relatively short term. Our finding adds to current efforts to

compare the utility of different biomarkers of Aβtau and

neurodegeneration, whether used alone or in combination, to

predict  short-term  cognitive  decline  and  clinical

progression[41,  44].  In  line  with  previous  observations

(Farrell  et  al.  2020),  we  found  that  PIB  status  was  the

strongest  predictor  of  clinical  progression  to  MCI  or

CDR=0.5 during ~3.5 years follow-up. In addition, a novel

finding  of  our  stuy  was  that  higher  cMD  independently

predicted  faster  clinical  progression  to  MCI or  CDR=0.5,

beyond  that  predicted  by  PIB  status,  while  CTh  did  not

provide any significant predictive value. These findings add

support to the concept that cMD has higher sensitivity than

CTh  in  the  AD  continuum  and  that  it  may  be  a  useful

biomarker  for  stratification  of  at-risk  individuals  for

prevention  trials  that  typically  extend  over  three  to  five

years. 

Regional cMD showed prognostic  ability for  subsequently

faster  rate  of  hippocampal  atrophy,  demonstrating  added

value  beyond imaging biomarkers  of  global  Aβ,  CTh and

entorhinal  or  inferior-temporal  tau;  the  absence  of  a

synergistic effect between cMD and either Aβor tau might

be explained because longitudinal MRI data was available

for  only  ~60%  of  baseline  participants,  having  fewer

longitudinal  follow-ups  compared  to  the  more

comprehensive  longitudinal  cognitive  and  clinical  data

available. Alternatively, the presence of co-pathologies 
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might  in  part  explain  the  observed  hippocampal  atrophy.

Previous  reports  have  suggested  that,  while  hippocampal

atrophy  is  a  rather  specific  feature  of  underlying  AD

pathology (Jack et al. 2002), neurodegeneration in this brain

region may be due to a confluence of multiple underlying

AD and non-AD co-pathologies including TDP-43 (Wilson

et al. 2013). In particular, postmortem TDP-43 burden was

found  to  be  associated  with  antemortem  hippocampal
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Figure 3. Survival analyses illustrating the ability of cMD to predict subsequent clinical progression. Kaplan-Meier curves and 
Cox proportional hazards regression results for lateral orbitofrontal cMD (high/low groups) predicting (A) progression to MCI, (B) 
progression to CDR = 0.5. cMD = cortical mean diffusivity; CTh = cortical thickness; PIB_status = A+ vs A-; "High cMD" = top-
tertile cMD values ("Low cMD", otherwise). 
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atrophy as measured with MRI, independently from Aβ and

tau pathology (Bejanin et al. 2019). Based on these previous

reports, we speculate that the cMD signal in our study may

be  partly  due  to  underlying  TDP-43  pathology  that

contributes  to  HV  loss  independently  from  Aβ and  tau

pathology, and which may be associated with a slower rate

of decline than AD pathology. 

While our study focused on microstructural properties in the

grey matter, three previous studies investigated white matter

microstructural  changes  in  the  same  cohort  (Jacobs  et  al.

2018; Rabin et al. 2018, 2019). Increased mean diffusivity in

the  hippocampal  cingulum  white  matter  bundle  was

associated  to  greater  downstream  tau  pathology  in  the

posterior  cingulate  cortex,  an  effect  that  was  enhanced  at

high levels of A burden, and suggesting that white matter

tracts  might  serve  as  pathways  for  tau  propagation.  Our

results are in line with Jacobs et al. with one key difference

in  that  we  studied  microstructural  properties  in  the  grey

matter. Our study found that AD pathology, in particular tau,

is  associated  to  microstructural  injury  in  the  grey  matter.

Further  longitudinal  studies  are  needed  to  investigate

whether  changes  in  cMD  in  the  grey  matter  are  locally

and/or  distally  associated  to  longitudinal  accumulation  of

tau,  and  whether  they  temporally  precede  or  follow from

degeneration of white matter tracts. A related study in older

adults  from  HABS  (Rabin  et  al  2018)  found  that  global

fractional  anisotropy  (FA)  in  nine  WM  tracts  predicted

longitudinal  cognitive  decline  independently  but  not

synergistically with A burden. A follow-up study (Rabin et

al. 2019) reported that the synergistic interaction between FA

in the fornix and A burden was associated to subsequently

faster episodic memory decline. In common with these two

reports (Rabin 2018 2019), we found that cMD is predictive

of  subsequent  cognitive  decline  independently  from  Aβ

status; in addition, we found that  cMD is synergistic with

A  in  predicting  cognitive  decline.  From our  results  we

conclude  that  in  the  continuum of  AD,  and  especially  in

presymptomatic  A-positive individuals,  cMD could be a

promising marker to identify individuals at enhanced risk of

short-term cognitive decline and clinical  progression,  with

utility for prevention trials.  

HABS is a cohort study enrolling community-dwelling older

adults that are followed over time. Our finding that cMD has

prognostic value in a convenience sample such as HABS,

not  enriched  for  AD-risk  factors,  suggests  that  cMD is  a

sensitive marker  of  early and subtle  neuronal  injury,  with

promising potential  as a prognostic biomarker with higher

sensitivity  compared  with  macrostructural  biomarkers.

Additional studies on the ability of cMD to predict cognitive

decline and clinical progression in cohorts enriched for AD-

risk factors such as APOE-4, autosomal-dominant mutations

or other more stringent inclusion criteria, would be valuable

to confirm our results.

A major strength of our study is its highly multimodal nature

including concurrent  T1-weighted MRI,  DWI,  Aβ and tau

neuroimaging data.  Also,  the  cohort  was comprehensively

characterized in terms of cognitive assessments and multiple

longitudinal neuroimaging, neuropsychological and clinical

data points. Since grey matter is considered mostly isotropic

with respect to the motion of water molecules (Le Bihan et

al.  2003;  Weston  et  al.  2015),  we  selected  cMD  as  an

optimum metric to assess cortical microstructure in the grey

matter. Although it could be technically possible to compute

FA in  the  grey  matter,  its  anisotropic-based  computation

would  make  it  less  informative  and  straightforward  to

interpret  compared  with  cMD.  Our  study  has  some

limitations.  Only  ~60%  of  the  study  participants  had

longitudinal  MRI  scans,  which  possibly  limited  the

statistical power of the analyses involving HV loss. We only

had longitudinal  DWI in a small  subset  of participants so
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DWI analyses were restricted to cross-sectional data; further

longitudinal  investigations  would  be  valuable  to  explore

relationships  between  changes  in  cMD,  Aβ and  tau  to

investigate  the  temporal  dynamics  of  microstructural

damage and proteinopathy accumulation. 

Our study showed that cortical microstructure is a promising

non-invasive  technique,  sensitive  to  early  microstructural

injury  in  older  adults.  Given  that  neuronal  loss  is

irreversible,  the  ability  of  cMD  to  detect  subtle

microstructural  damage  prior  to  overt  atrophy  may  have

important  clinical  implications.  We  found  that  tau  is  an

underlying pathological substrate associated with increases

in cMD. As such, cMD might be a proxy for tau-induced

neuronal injury, and cortical microstructure could serve as a

lower-cost,  non-invasive alternative to  tau PET in clinical

settings.  The  combination  of  multimodal  baseline  and

longitudinal  data  allowed us  to  demonstrate  the ability  of

cMD  to  predict  cognitive  and  clinical  progression  using

three different independent measures: slope of PACC5 and

progression to MCI or to CDR=0.5; the confirmation of the

prognostic ability of cMD using three different methods adds

robustness  to  our  findings.  The ability  of  cMD to predict

short-term  cognitive  decline  and  clinical  progression

suggests  utility  as  outcome  measure  and  to  improve  risk

stratification of participants in clinical trials. 
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ABSTRACT

A key hallmark of Alzheimer Disease (AD) pathology is the

accumulation of  tau protein  in  the  form of neurofibrillary

tangles  across  large-scale  networks  of  the  human  brain

cortex.  Currently,  it  is  still  unclear  how  tau  accumulates

within specific cortical systems, and whether in situ genetic

traits  play  a  role  in  this  circuit-based  propagation

progression. In this study, using two independent cohorts of

cognitively  healthy  older  participants,  we  reveal  the

backbone of tau spreading and its connectomic intersections

with  high-resolution  transcriptomic  genetic  data.  We

observed  that  specific  connectomic-genetic  gradients  exist

along the tau spreading network. Particularly, we identified

577 genes that significantly accompany the spatial spreading

of  tau;  a  set  of  genes  in  which  APOE and  glutamatergic

synaptic genes (e.g. SLC1A2) play a central role. Thus, our

study characterizes neurogenetic topological vulnerabilities

in distinctive brain circuits of tau spreading and suggests that

drug  development  strategies  targeting  the  gradient

expression of this set of genes should be explored to help

stop or prevent the accumulation of tau. 

INTRODUCTION

The  most  common  form  of  dementia,  Alzheimer  Disease

(AD) is  one  of  the  biggest  public  health  challenge  today.

Moreover, its prevalence is expected to double in the coming

20  years  increasing  its  burden  on  society1.  AD  is

characterized by the abnormal accumulation of amyloid and

tau,  which either  alone  or  more probably in  combination,

might  be  among  the  most  significant  factors  of  disease

progression.  Advances  in  the  development  of  novel  high-

affinity  radiolabels  have  enabled  the  study  of  tau

accumulation in  vivo2.   Specifically,  tau-PET (also named

FTP-PET  for  the  specific  Flortaucipir  tracer)  has  been

reported  to  detect  early  local  tau  pathology in  preclinical

AD3, showed good concordance with histopathological data,

and  accurately  recapitulated  the  Braak  neuropathological

staging  of  neurofibrillary  tangles  (NFT)2,4,5.  Such

pathological accumulation of tau has been directly linked to

longitudinal atrophy6,  and is predictive of memory decline

and  clinical  progression7.  Thus,  it  is  crucial  to  better

understand, preemptively detect, and individually predict tau

accumulation in order to treat AD.

The pathological  accumulation of amyloid and tau are not

randomly distributed but rather follow a stereotypical spatial

pattern that follows large-scale networks, suggesting that AD

is  a  network-afflicting  brain  disease.  Accordingly,  recent

studies have focused not only on signal intensity changes,

but also on the large-scale network relationship of molecular

binding affinity between distributed brain regions using both

dimensionality reduction approaches8,9 and  high-resolution

network analyses3,10.  However,  it  is  still  unknown whether

tau  accumulation  relates  to  cerebral  local  in  situ  genetic

traits  that  might  cause  or  influence  the  circuit-based

propagation  of  tau.  Recent  research  has  focused  on

analyzing the genetic and metabolic fingerprint that  might

characterize  a  regional  vulnerability  in  the  most  affected

areas11,12. Concerted efforts have been directed to study the

local region properties using post-mortem data, from cellular

morphology to cell-type specific gene expression13,14. Thus,

previous neuroimaging-genetic studies have mainly focused

on  the  spatial  relationship  between  gene  expression  and

diverse  neuroimaging  measures  but  have  neglected  the

connectomic  signatures  of  AD-related  pathology  or  the

topographic  integration  between  the  large  scale  networks

underlying tau propagation and the local constitutive genetic

expression patterns.

Here,  we  aimed  to  characterize  the  network  stereotypical

pattern of tau accumulation and the spatial gene expression

gradients across the cortical mantle suggesting a regional 
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vulnerability that  accompanies tau propagation. Using two

independent samples of cognitively unimpaired participants

from  the  Harvard  Aging  Brain  Study  (HABS)  and

Alzheimer's  Disease  Neuroimaging  Initiative  (ADNI)

cohorts, we first developed a novel graph theory algorithm

to obtain the backbone tau-PET network across cortical areas

in the aging brain and assess its utility to predict one and

two-year tau accumulation. This data-driven strategy led us

to identify and analyze  regions that  encompass the whole

continuum of the Braak staging. Thereafter, we studied how

the  network-wise  propagation  of  tau  within  the  backbone

network was related to the local expression of genes using

the  AHBA  high-resolution  transcriptome  dataset15.  Such

analysis allowed us to identify a set of genes, representing

the  connectomic-genetic  gradients  of  gene  expression that

characterize  the  regional  vulnerability  along  the  tau

spreading  network.  We  then  studied  the  biological

significance  and  potential  implications  of  these  protein

coding genes based on their genetic functional components,

interactomic  properties  and  relationship  with  NFT-related

proteins.  The  integration  of  large-scale  connectomic

information  with  high-resolution  gene  expression  data

allowed  us  to  describe  gradients  of  neurogenetic

vulnerability of tau spreading in the human cerebral cortex.

RESULTS

Tau-PET  Backbone-Graph  Follows  Tau  Accumulation

Patterns of preclinical AD

Using cross-sectional data from a subset of amyloid positive

cognitively unimpaired participants from HABS (N=19) and

ADNI (N=52) with no follow-up data, we studied the FTP-

PET signal changes in preclinical AD across different brain

systems  using  a  graph  theory  approach.  We  developed  a

node-aggregation algorithm (NAA, Fig 1-I) that aggregates

groups of nodes with converging information, into a set of

regions  of  interest,  here  referred  to  as  super-nodes,  that

characterize  the  system  information  of  in  vivo  tau

accumulation  in  preclinical  AD  (online  methods).  By

applying  the  NAA,  we  obtained  58  super-nodes

encompassing medial  and lateral  temporal  regions,  cuneus

and  precuneus,  and  posterior  cingulate  cortex,

temporoparietal areas, and portions of the inferior frontal 
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Figure 1. Methodological summary. I) For each pair of voxels of tau-PET (or FTP-PET), we computed the pairwise Pearson correlation
to obtain a population connectivity (adjacency) matrix to further apply the node-aggregation algorithm to retrieve the Tau-PET network
backbone. II) AHBA dataset with transcriptome information from 10,027 genes in 180 regions from the Glasser atlas are projected to the
super-nodes from the NAA to investigate the relationship between gene expression and network-distance from the left entorhinal. III) 



cortex,  including  areas  in  the  whole  spectrum  of  Braak

staging (Fig 2-II). Importantly, we confirmed the robustness

of the super-nodes size and localization with a permutation

approach using 500 random subsets of 50 participants from

the  original  sample  and  assessing  their  overlap  with  the

original  network  (Fig  2-II).  The  similarity  between  the

permutations  from  the  subsets  were  significantly  larger

compared  to  the  null  distribution  created  from  500

permutations  of  synthetic  super-nodes  (online  methods).

When  studying  the  importance  of  each  super-node  in  the

network, as measured by the degree centrality, we identified

hub  super-nodes  with  a  number  of  connections  over  the

mean,  including  the  middle  temporal  gyrus,  inferior

temporal gyrus and precuneus (Fig 2-III).

Next, we assessed the accuracy of the prediction of regional

tau accumulation in a  non-overlapping longitudinal  cohort

from HABS (N=32; 2-year follow-up) and ADNI (N=32; 1-

year follow-up). Compared to other approaches that use the
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Figure 2. Tau-PET network backbone. I) The initial voxel-wise network. II) The 58 nodes resulting from the Node-Aggregation
Algorithm (NAA), its network representation and the histogram resampling the robustness of our results over 500 permutations with a
subset  of  50  participants.  III)  The  topographical  degree  centrality  measure  of  the  tau  network  backbone.  IV)  Scatterplot  of  the
association between predicted and real Tau-PET, the individual correlation for each of the participants and the MSE error per ROI.
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(structural or functional) connectome as a proxy to predict

the  longitudinal  tau  accumulation,  we  instead  took

advantage of the previously computed FTP-PET backbone

graph. Overall, when considering the pool of all super-nodes

mean FTP-PET signal from all the participants, we found a

high association between the real longitudinal FTP-PET and

the  predicted  FTP-PET,  for  both  the  HABS  cohort

(rho=0.92)  and  in  ADNI  (rho=0.85).  We  also  found  high

associations at the individual level for both cohorts (HABS=

0.92+/-0.04,  ADNI=0.87+/-0.08).  We  then  studied  the

reliability  in  the  regional  prediction  of  tau  accumulation,

assessing the mean squared error (MSE) between predicted

and real FTP-PET signal for each super-node, in each cohort

separately. The super-node with the maximum error was the

left  lateral  temporal  gyrus,  with a MSE value of  0.026 in

ADNI and 0.028 in HABS (Fig 2-IV). 

Genetic Vulnerability of Tau Network Spreading

Next,  we  combined  high-resolution  gene  expression  data

from  the  AHBA with  the  previously  computed  FTP-PET

backbone  network  to  identify  which  genes  showed  a

gradient of transcriptomic expression related to the network-

based tau spreading. For each super-node, we computed the

network distance to the left entorhinal, where those regions

with shorter  distance regions would be next regions to be

affected  by  tau  spreading  (online  methods).  When  we

assessed the association between each super-node distance

from  the  seed  and  the  transcriptome  expression  from the

10,027  genes  in  the  AHBA,  we  identified  a  set  of  744

statistically significant associations (Fig 3-II; FDR < 0.001).

The  expression  of  414  of  the  genes  were  positively

associated  with  network-based  distance  to  seed  with  a

Spearman  rho>0.55,  whereas  330  genes  were  negatively

associated with network-based distance with a Spearman rho

<  -0.56.  Of  note,  all  obtained  genes  remained  significant

when  applying  a  permutation-based  approach  where  the

backbone  FTP-PET  network  links  where  randomly

interchanged to generate random maps of different spreading

patterns,  which  suggests  that  the  relationship  between the

gradient of gene expression and the network-wise distance

was dependent on the FTP-PET backbone structure (Suppl.

Material  1).  Among  the  744  genes,  167  could  not  be

validated  with  the  transcriptome  data  of  the  ROS/MAP

participants – a cohort with bulkRNA sequencing of more

than 700 participants  in  the  continuum of AD-,  and  were

thus excluded from further analyses. From the resulting 577

genes, 122 were significantly differentially expressed when

comparing HC vs AD in the ROS/MAP cohort.

Interactome and Gene Ontology Analyses

To assess the biological  meaning of our 577 tau network-

related genes (TNG), we focused on their molecular physical

interactions  and  cellular  component  overrepresentations

(Fig3). The Panther GO analysis revealed a set of enriched

genes  involved  in  neuron  structure  (main  axon,  dendritic

spine,  and neuronal  cell  body),  the synapsis  (postsynaptic

density  and  presynaptic  membrane)  and  the  Schaffer

collateral in the hippocampi (FWE < 0.05; Fold Enrichment

> 2). We then analyzed the importance of each gene within

the TNG-interactome network using a curated set of gene-
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Table 1. Sample Characteristics

HABS ADNI

Sample (N) 51 85

Sample long (N) 32 32

Age (median, IQR) 79.2 [73.7-82.9] 74.8 [69.6-79.1]

Sex (female %) 62.74 57.64

metaROI FTP-PET, 

SUVr (median, IQR) 1.15 [1.11-1.22] 1.19 [1.15-1.25]



gene physical interaction from Genemania (online methods).

We  found  that  MAPK3  (top1)  and  APOE  (top6)  had  a

central  role  in  these  genetic  interactions,  being  the  genes

with  higher  degree,  betweenness  and  closeness  centrality

(Suppl  Table  1).  We  validated  our  results  studying  the

relationship  between  our  577  TNG  and  the  74  pTau-

interactome  genes  recently  described  by  Drummond  and

colleagues 16, computing a bi-partite network to display the

relationship  between  those  two  sets  of  genes  (online

methods). We found that most of the TNG were associated

with  pTau-interactome  genes  (Fig  4-I).  Importantly,  these

associations  were  non-random,  as  shown  in  the  ad-hoc

permutation-based  analyses  (Fig  4-II,  online  methods),

suggesting  a  high  affinity  between  the  TNG  and  pTau-

interactome  genes,  compared  to  random  neuro-genes.

Specifically,  the  mean  degree  and  the  unique  number  of

genes  interconnecting  the  TNG  to  the  pTau-interactome

were  significantly  higher  (a  mean  degree  of  0.8  and  108
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Figure 3. Connectomic-genetic gradient within the Tau-PET network. I) Surface representation of the network-based distance of each
super-node to the left entorhinal. II) Histogram of the association between gene expression and network-based distance for 10,027 genes
and the scatterplot  for  APOE.  III)  Cellular  components  over-representation based on Panther-GO.  IV) Gene-gene network based on
physical interaction and the centrality measure for its genes
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unique genes compared to lower than 0.3 mean degree and

lower than 65 unique genes for the random permutations).

We did  not  find  that  these  associations  were  driven  by a

group of genes in any specific cellular component GO-term.

We also studied which TNG were more directly related to

more protein expression in NFT, as measured in Drummond

et al. We found that APOE and SLC1A2, the two only TNG

related to MAPT, had a strong influence in the level of NFT

protein expression (Fig 4).

DISCUSSION

In this study, using two independent cohorts of cognitively

unimpaired  older  participants  (HABS  and  ADNI),  we

characterized the in vivo accumulation of tau pathology in

large-scale  networks using a novel  graph theory  approach

and demonstrated its potential to be used as a proxy for the

prediction  of  longitudinal  tau  accumulation  in  preclinical

AD.  Moreover,  we  integrated  the  tau  large-scale  network

information with high-resolution transcriptomic genetic data

to  characterize  the  gradient  of  neurogenetic  vulnerability

related  to  the  spreading  of  tau  across  brain  circuits.  We

found that 577 genes specifically predispose the spread of

tau;  a  set  of  genes  in  which  APOE  and  glutamatergic

synaptic genes (SLC1A2) have central roles. 

Our  study  integrated  high-resolution  cortical  gene

expression information with neuroimaging connectome data

to  investigate  the  underlying  biological  pathways  of  AD-

related  pathology  spreading.   Several  recent  studies  have

focused  on  assessing  the  relationship  between  gene

expression  and  both  imaging  signal  intensity17,18 and

statistical  differences19,20.  For  example,  Grothe  and

collaborators (2018) showed that the topographic expression

of APP and MAPT was related to amyloid accumulation and

neurodegeneration in AD, respectively. Recently, our group

expanded these results by studying the biological  basis of

both  tau  and  amyloid  propagation,  finding  an  over-

representation of genes associated with lipid metabolism 10.

Our  approach  in  the  present  manuscript  builds  on  the

aforementioned  studies,  but  with  a  key  innovation:  we

developed a method to integrate gene expression data into

the  FTP-PET  network  to  study  the  association  between

them.  Concretely,  instead  of  assessing  the  relationship

between signal intensity and gene expression, we integrated

the network-based distance from the entorhinal cortex to all

the subsequent regions, to evaluate if the network spreading

of  tau  accumulation  was  related  to  a  gradient  of  gene

expression. 

In contrast to the consensus in the literature that tau spreads

in a prion-like manner, recent findings have cast doubt on

the notion that all tau accumulation is only driven by cell-

cell  transmission.  It  has  been  suggested  that  tau

accumulation could be a result of both spreading and local

amplification/phosphorylation,  in  addition  to  local

vulnerability21,22. For example, Meisl and colleagues (2020)

have recently shown that the tau accumulation rate in animal

models  is  more  related  to  local  amplification  than  seed

spreading.  In  this  sense,  several  studies  have  suggested  a

specific  cellular/molecular  vulnerability  driving  (or

modulating)  the  downstream  neurodegeneration  (and  tau

spreading) process13,23,24.  However,  most  studies  have  only

assessed whether  local  regional  vulnerability  (i.e.  study if

the cellular-composition, genetic and molecular environment

for a specific region) present such selectivity to accumulate

tau. Thus, when integrating global-brain information, such

genetic  vulnerabilities  have  been  studied  using  intensity

maps, which do not account for biological spreading or the

network-wise  nature  of  tau  accumulation.  In  the  present

study,  we  studied  the  gradient  of  change  in  the  gene

expression  from healthy  young  individuals  across  several

brain regions, in conjunction with the network of tau 
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deposition, to disentangle the gradient genetic fingerprint of

regional  vulnerability  leading  to  tau  spread.  We observed

that  the set  of  TNG is overrepresented by various genetic

pathways  suggesting  regional  vulnerability,  such  as

glutamatergic  synaptic  ontologies.  Previous  research  has

described  that  glutamatergic  excitatory  neurons  are  more

vulnerable  to  AD25,  and  conversely,  that  the  pathways  of

genes overexpressed in such neurons are strongly related to

tau accumulation13.  Here,  we show that  gene SLC1A2 (or

EAAT2) is associated with tau network spreading and pTau

genetic profiles. SLC1A2 is localized in the neuron and glia

membrane and its main function is to clear glutamate from
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Figure 4.  Tau network-related genes (TNG) are associated to pTau-interactome genes .  I)  The circular layout of the bi-partite
network. Links between the TNG and pTau-interactome sets are shown in blue. Green bars represent the gene degree within each set and
red bars represent the amount of protein expressed in NFT of the pTau-interactome connected to each TNG.
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the synaptic cleft. The association between SLC1A2 and tau

is in agreement with the hypothesis that excitatory neurons

are more vulnerable to tau pathology. Several studies have

also  pointed  to  its  importance  in  cognitive  decline  where

lower expression of this gene in astrocytes and neurons was

associated  to  worse  cognitive  performance26.  Additional

studies using animal models and bioinformatic approaches

have also  identified  SLC1A2 as  a  potential  candidate  for

drug development in AD27.

Whereas historically APOE has been more associated with

amyloid pathology rather than with tau, we found that it has

a  central  role  in  our  TNG  interactome,  highlighting  its

potential relevance in the vulnerability of tau accumulation

as well10. Moreover, our bipartite network analyses showed

that APOE has a high indirect influence in the expression of

proteins in NFT, due to its physical interaction with MAPT.

Several  recent  studies  have  found  a  direct  association

between  ApoE4  and  the  proliferation  of  tau  in  animal

models28.  In  fact,  the  removal/reduction  in  ApoE,

specifically ApoE expressed on astrocytes, has been shown

to  decrease  tau  accumulation  and  decrease  tau-mediated

neurodegeneration29,30.  Such  cellular  vulnerability  has  also

been recently reported in human neurons where ApoE drive

selective neurodegeneration31. Importantly, both APOE and

SLC1A2  showed  a  negative  correlation  between  their

expression and FTP-PET network-based distance, suggesting

that early areas to accumulate tau might be more vulnerable

due  to  higher  basal  expression  of  both  genes,  where  a

transcriptome  alteration  of  their  expression  might  have  a

stronger  impact  in  tau  accumulation.  Our  results  would

suggest  that  the  stereotypical  pattern  of  the  spread  of  tau

follow the  gradient  of  expression of  APOE and SLC1A2,

where a pathological alteration of its expression could affect

more severely, and earlier, those brain regions with higher

expression  and  network-wise  proximity  to  the  entorhinal

cortex. 

Our  investigations  used  network  information  to  obtain  a

robust  backbone  representation  of  the  FTP-PET network,

aggregating  groups  of  nodes  which  share  connectivity

profiles.  As  a  result,  we  obtained  a  low  dimensional

connectome  that  overcomes  previous  limitation  when

studying topological and temporal tau alterations using high-

dimensionality PET network studies, such as redundant link

information (caused by inherent local smoothing of the data)

and extensive computational resources. Notably, our method

identified,  using a  sample of  amyloid positive cognitively

unimpaired individuals, a pattern of co-accumulation in both

early Braak stages (e.g.,  entorhinal,  or inferior  temporal)32

and  neocortical  regions  affected  at  late  Braak  stages  2

suggesting that slight increases in FTP-PET in Braak V/VI

might also be meaningful in early stages of the disease. We

also propose that the backbone FTP-PET network might be a

reliable  proxy  to  predict  longitudinal  tau  accumulation.

Strongly grounded on the prion-like spreading of tau, several

studies in the literature have proposed various propagation

models to accurately predict longitudinal  tau accumulation

based  on  the  structural  or  functional  connectomes33–36.

Contrary to such approaches, we explored the possibility to

first,  use  data-driven  backbone-nodes  instead  of  cortical

parcellation  atlas  -  which  are  not  generated  from and for

FTP-PET data  -  and  second,  use  the  backbone  FTP-PET

connectome as a proxy for the spreading of tau, instead of

focusing on the structural or functional connectome. In this

sense, we obtained high significant correspondence between

the real and predicted longitudinal tau accumulation both at

individual level and at region of interest level. Further work

is nonetheless needed to validate this model in later stages of

the disease,  where the amount of accumulation of tau per

year is increased. 
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Overall, our analyses identified a gradient gene-expression

signature of cell-susceptibility to accumulate tau along the

different Braak areas. Our results highlight the key role of

neuron-  and  synapse-related  genes,  such  as  APOE  and

SLC1A2,  in  the  stereotypical  pattern  of  tau  spread.

Moreover, the multi-genetic findings presented in this study

support  recent  views  about  the  different  patterns  of

spreading of tau, where substantial individual differences in

the  topological  gene  expression  profile  and  its  local

vulnerability  could explain the different  pathways through

which tau would propagate.

METHODS

Participants

We  included  a  total  of  490  participants  from  two  large

studies. We included 145 participants from our cohort, the

Harvard  Aging  Brain  Study  (HABS,

https://habs.mgh.harvard.edu/),  a cohort of cognitive aging

and preclinical AD recruited from the community conducted

at  Massachusetts  General  Hospital  (MGH);  and  345

cognitively  unimpaired  participants  from  the  Alzheimer’s

Disease  Neuroimaging  Initiative  (ADNI;

http://adni.loni.usc.edu/),  a  multi-center  study  designed  to

accelerate  the  discovery  of  biomarkers  indicating

progression  of  Alzheimer’s  disease  pathology.  ADNI  was

launched  in  2003  as  a  public–  private  partnership  led  by

principal  investigator  M. W.  Weiner.  The primary  goal  of

ADNI has  been to  test  whether  serial  magnetic  resonance

imaging (MRI), PET, other biological markers and clinical

and  neuropsychological  assessment  can  be  combined  to

measure the progression of MCI and early-onset AD. For up-

to-date information, see http://adni.loni.usc.edu.

At study entry, all the included participants were assessed as

cognitively clinically normal, with clinical dementia rating

value  of  zero.  Participants  were  included  based  on  the

following inclusion criteria: i) baseline tau-PET, ii) baseline

amyloid-PET and,  iii)  a  structural  T1-weighted  MRI.  We

tested  demographic  study  differences  using  the  Mann-

Whitney U Test and chi square test.

Structural MRI    

Structural 3D T1-weighted were acquired in 3 Tesla scanner,

using  a  magnetization-prepared  rapid-acquisition  gradient-

echo  (MPRAGE)  sequence.  The  T1-weighted  MPRAGE

structural images had a resolution of at least 1.3 x 1.3 x 1.3

mm voxels. All the T1-weighted images were preprocessed

with Freesurfer v6.0 (https://surfer.nmr.mgh.harvard.edu/) as

previously described37. 

Tau PET

Tau  burden  was  measured  in  both  cohorts  using  the

Flortaucipir (FTP-PET) tracer (formerly AV1451 or T807).

Acquisition parameters for each study have been described

elsewhere2.  FTP  was  preprocessed  using  previously

published  in-house  pipelines  (Jorge  Sepulcre  et  al.  2018).

Briefly,  we  computed  the  SUVr  parametric  maps

normalizing the FTP intensity by the mean cerebellar grey

matter intensity. We co-registered the FTP map to T1 using

Freesurfer’s  mri_coreg.  We  computed  the  T1-MNI

registration using SPM12. We then normalized the FTP-PET

SUVr maps to the MNI space concatenating the PET-T1 and

the  T1-MNI  registration.  All  FTP-PET maps  were  down-

sampled at the normalized space to 8-mm isotropic voxel to

study  the  high-dimensional  data  without  computational

limitations. For subsequent analyses, and to discard cortical

brain  regions  with  off-target  FTP-PET binding,  we  select

only those voxels were the fitting of the FTP-PET signal for

the  whole  sample  of  participants  with  a  2-component

Gaussian Mixture Model outperformed the fitting of a single

Gaussian, using the Akaike Information Criteria to compare
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between both models33 [Suppl. Fig 2]. This is founded in the

idea that if a certain voxel is strongly contaminated by off-

target binding, partial volume effect, or none of the included

participants  do present  abnormal  AD-related  binding,  data

should show a  skewed distribution (one gaussian).  Voxels

following  this  pattern  were  excluded  for  subsequent

analyses.  After  visual  inspection  on  the  raw  FTP-PET

intensity  image,  and  FTP-PET  to  T1  registration,  we

excluded 65 participants due to miss-alignment during the

registration  and  low  SNR  quality  of  the  raw  FTP-PET

images.

Amyloid PET

HABS participants were injected with 10-15 mCi 11C-PiB

intravenously as a bolus and followed immediately by a 60-

min dynamic PET scan in 3-D mode. PiB-PET images were

co-registered to  T1-MRI using mri_coreg from Freesurfer.

Dynamic PIB-PET was modeled with a Logan model, using

the cerebellar GM as reference region to generate parametric

Logan DVR images. For each participant, we computed the

amyloid  burden  as  the  mean  from  a  cortical  composite

including  frontal,  lateral  temporal,  and  parietal,  and

retrosplenial  (FLR) regions  as  defined  using the  Desikan-

Killiany  atlas,  as  in  previous  studies2.  PIB-PET positivity

was  computed  using  a  threshold  of  Logan  DVR  >  1.2,

previously computed in the HABS sample derived from a

Gaussian  mixture  modeling38.  For  ADNI  participants,  we

download the amyloid burden composite directly from their

webpage (12 Feb 2020). Details for FBP-PET and FBB-PET

acquisitions  are  described  elsewhere

(http://adni.loni.usc.edu/wp-content/uploads/2012/10/ADNI

3_PET-Tech-Manual_V2.0_20161206.pdf).  Briefly,  FBP-

PET and  FBB-PET images  were  co-registered  to  the  T1-

MRI Freesurfer processed image and computed the weighted

mean inside a cortical summary region that is made up of

frontal,  anterior/posterior  cingulate,  lateral  parietal,  lateral

temporal regions, normalized by the signal intensity of the

whole cerebellum to obtain an amyloid burden FBP-PET and

FBB-PET SUVr scalar value39. We used a previous validated

threshold of FBP-PET > 1.11 and FBB-PET > 1.08 to assess

amyloid  positivity.  We end  up  with  136 amyloid  positive

participants across the two samples. 

Tau-PET and Backbone Graphs

Contrary  to  conventional  intensity-based  PET  imaging

studies,  recent  methodological  advances  have  allowed  the

study  of  FTP-PET signals  across  different  brain  systems

using high-dimensional network-based approaches 3,10. Due

to the intrinsic shared properties, as well as local gaussian

smoothing  of  the  PET signal,  nodes  in  high-dimensional

networks might be interrelated between them, sharing link

information, and including redundancy in the analyses which

result into technical caveats (such as computational time or

difficulties to get significant results due to high-dimensional

multiple comparisons corrections). In the present study, we

developed a novel node-aggregation algorithm (NAA) with

the intention of i) integrating all the converging information

and  ii)  obtaining  a  backbone  or  minimal  graph

characterization of the FTP-PET network. Moreover, such an

approach will result in a set of meaningful data-driven ROIs

for  tau  uptake,  compared  to  conventional  atlas-based

approaches,  where  the  delineation  of  the  ROIs  might  be

mining-less for the study of in vivo tau pathology. 

Computation  of  high-dimensional  FTP-PET  association

matrix (or connectivity matrix) has been explained in detail

elsewhere10.  Briefly,  for  each  pair  of  voxels  within  the

previously  obtained  FTP-PET  grey  matter  mask,  we

computed the Pearson r correlation and its corresponding p-

value  using  the  cross-sectional  sample  of  participants

(N=71).  We  corrected  for  multiple  comparisons  using  a
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threshold  of  FDR  q  <  0.005  and  selected  the  top  20%

correlations.  The resulting association matrix  was used as

input to the NAA. The aim of NAA is to iteratively identify

the  set  of  nodes  with  maximum  shared  information  and

aggregate them. Thus, we first computed the number of 2-

simplex (i.e., set of 3 nodes interconnected) for each node of

the high-dimensional matrix using equation 1:

where N is the total number of nodes, A is the voxel-wise

adjacency matrix  and j,k,i  are nodes.  After  computing the

number of 2-simplex per voxel, we, searched for the node

with  highest  number  of  2-simplex  and  aggregate  all  the

interconnected  nodes  into  a  new  super-node  (Fig  1).  We

repeated  the  aggregation  of  nodes  iteratively,  using  the

original  adjacency  matrix,  till  there  is  not  any  set  of  2-

simplex  in  the  network.  Afterwards,  we  computed  the

edge/link  between  two  super-nodes  as  the  mean  of  the

correlation between all the nodes that are part of the super-

nodes, which resulted into the minimal FTP-PET network.

We  studied  the  stability  of  the  resulting  network  with  a

permutation approach by re-running the algorithm 500 times

in  a  subset  of  50  random  participants  and  computed  the

spatial normalized Mutual Information (NMI) comparing the

permuted-sample  vs  original  sample  network.  To estimate

the  significance  of  our  findings,  we  created  a  null-

distribution  generating  500  synthetic  maps  of  super-node

(same extension as the original super-nodes) to evaluate the

NMI between random maps and the original backbone FTP-

PET network.  We  studied  the  resulting  minimal  network

computing each super-node degree as the sum of weighted

links  that  arise  from  each  super-node  (Fig  2).  For

visualization purposes, we projected the set of super-nodes

and the degree map to Freesurfer fsaverage standard space

using mri_vol2surf.

Longitudinal  Individual  Prediction  of  tau-PET

Accumulation

A subset of 64 participants had longitudinal FTP-PET data

(32 HABS participants at 2 years, 32 ADNI participants at 1

year follow-up). We designed a propagation model grounded

on recent in vivo findings36,40, but instead of using structural

or  functional  connectome  information  to  define  the

connectivity  between  different  regions,  we  used  as  a

propagation skeleton  the  FTP-PET network  driven  by  the

NAA  approach.  We  defined  the  longitudinal  model

propagation as:

where  j  refers  to  super-node,  p  to  participant,  A is  the

adjacency matrix, crossTau is the cross-sectional mean FTP-

PET on super-node  j  and  participant  p,  and  BETA is  the

regularization parameter.  We estimated the BETA parameter

using  the  Powell  optimizer  as  implemented  in  the  SciPy

python package. We performed three statistical analyses to

evaluate  the  performance  of  our  model  to  predict

longitudinal  data.  For  each  cohort,  we first  computed  the

Spearman Rho between the predicted and real longitudinal

FTP-PET  pooling  all  the  super-nodes  from  all  the

participants together. We then estimated the intra-participant

agreement using the Spearman Rho coefficient to evaluate

individually the accuracy of the model. Finally, we assessed

the accuracy of the prediction on a regional basis, computing

the mean standard error (MSE) for each one of the super-

nodes, displaying the values in the cortical surface.
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Network-Brain-Gene Association Relationship

In the present  study we have developed a novel approach

that integrates spatial high-resolution gene expression within

the  network  structure  of  tau  accumulation.  This  strategy

brings  a  novel  framework  to  incorporate  gene  expression

data  into  brain  connectivity  circuits,  rather  than  just

investigate  spatial  overlaps  between  transcriptomic  and

neuroimaging  phenotypes.  The  rationale  behind  such  an

approach is to study whether the network of tau spreading

from an initial seed point (entorhinal) is also reflected in a

gradient of constitutive gene expression within the network,

reflecting brain vulnerability to tau propagation. We used a

surface  anatomical  transformation  of  the  cortical

transcription  profiles  of  10027  protein-coding  genes  that

fullfilled  a  quality  control  filter,  based  on  58,692

measurements  of  gene  expression  in  3,702  brain  samples

obtained  from  the  left  hemisphere  of  6  adult  human

participants of the AHBA41,42. Gene expression was averaged

within 180 cortical areas from the Glasser et al atlas43. Based

on previous reports of hemisphere-symmetry in the cortical

gene  expression,  we  mirrored  the  left  hemisphere  gene

expression to the right hemisphere. Since our NAA approach

creates  data-driven  ROIs  that  do  not  match  the  Glasser

parcellation, we computed the gene expression within each

super-node as the weighted average of each region from the

Glasser  atlas  that  co-localized  with  each  super-node,

resulting into a gene expression matrix of 58 regions (the

number of super-nodes in the backbone FTP-PET network)

by 10027 genes.  To assess the network-based spreading, we

selected  as  seed  with  the  highest  degree  of  entorhinal

overlap in our data, namely the left hemisphere entorhinal,

previously  identified  as  a  starting  point  of  tau-pathology

spreading in AB positive individuals32, and we computed the

distance between nodes using the inverse weight of the links,

and based on Dijsktra algorithm, which resulted in a single

value  of  network  distance  from  each  super-node  to  the

entorhinal. Then, for each gene, we computed the Spearman

Rho  coefficient  between  gene  expression  and  network

distance.  We  selected  the  significant  correlations  using  a

Benjamin-Hochberg FDR q < 0.001. Moreover, we studied if

the pattern  of  genes  significantly associated  with distance

from  the  entorhinal  were  network-topography  dependent,

generating a null-model computation of the distance and the

calculation of the Spearman Rho after permuting randomly

the super-node edges 1000 times. 

Bulk RNAseq Differential Expression

We included bulkRNAseq gene expression derived from the

dorsolateral  prefrontal  cortex  of  792 participants  from the

ROS/MAP cohort. A detailed description of the cohort and

patient characteristics can be found elsewhere44. Participants

were categorized as HC (N=260), mild cognitive impaired

(N=206) or AD (N=326) based on clinical status. Details on

sample collections, tissue and RNA preparation and quality

control  are  provided  in  previously  published  work44.  We

downloaded the “.bam” files for each participant data from

the  ROS/MAP  repository

(https://adknowledgeportal.synapse.org/Explore/Studies/Det

ailsPage?Study=syn3219045).  To  assess  the  deferentially

expressed  (DE)  genes  set,  we  compared  gene  expression

from 55765 genes of HC against AD using DESeq2 (Love,

Huber, and Anders 2014), controlling by age at death, sex,

education,  library  preparation  and  library  batch  and  extra

batch  effects  as  detected  by  the  SVAseq  package45.  We

considered  significant  genes  with  p-value  after  correction

with FDR q < 0.05, as usually done in DE analyses46. 
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Tau  Network-Based  Genes  Interactome  and  Gene

Ontology Analysis

We characterize the biological meaning of gene sets from the

tau network-based genes (TNG) using Gene Ontology (GO)

cellular  component  profile  (Panther  DB;  default  set  of

parameters47).  Then,  we analyzed the relationship between

TNG imputing their interactome using Genemania48  which

returned the gene-gene network based on a curated list  of

gene physical  interaction.  From the  resulting network,  we

compute  the  relevance  of  each  gene  computing  three

centrality  measures:  closeness,  degree  and  betweenness

using Cytoscape49.  

Tau Network-Based Genes and NFT Bipartite Network 

Finally,  we investigate  the  relationship  between  our  TNG

results  (577 genes)  and  an  overlapping  NFT-pTau affinity

purification-mass  spectrometry  derived  profile  that  has

recently been reported as the pTau-interactome (74 genes)16.

First, using Genemania, we create the bi-partite network of

the relationship between the TNG and the pTau-interactome

genes. We studied the relationship between the two sets of

genes  using  three  measures:  i)  mean  inter-set  degree,  ii)

number of genes inter-connecting from each gene-set and iii)

the  total  sum  degree.  To  estimate  their  significance,  we

generated  a  null  distribution  of  these  parameters  using  a

random  set  of  of  neuro-genes  obtained  from  the

bulkRNAseq data from the ROS/MAP cohort: 577 TNG vs

74  random  genes.  Finally,  using  the  information  of  the

amount  of  protein  expressed  by  each  gene  of  the  pTau-

interactome in NFTs, as published in Drummond et al, we

computed the importance of each of the TNG as the mean of

expressed  protein  for  each  of  its  connected  genes  in  the

pTau-interactome. This is grounded in the idea that one gene

in the TNG might be more relevant to tau pathology if it is

related to a gene that does express a lot of proteins in the

NFT. We used CIRCOS50 to visualize the inter-group links,

the intra-group degree (green histogram), the GO-term mean

inter-set  degree  and  the  protein-based  importance  of  each

gene (red-histogram).  For  visualization  purposes,  we  only

plot genes present in the GO-terms, which resulted in some

genes being displayed more than once.
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Suppl material 2. Surface rendering of the mask of regions used to compute the FTP-PET adjacency matrix. These are the areas 
were the FTP-PET signal follow a 2-component GMM in AB+ participants. 

Suppl. material 1. Spearman correlation histogram of the null-model of the association between APOE gene expression and 
distance from entorhinal after randomly permuting the super-node edges 1000 times. In red, the Spearman correlation using the 
original FTP-PET network backbone.



4. Discussion



Discussion

In this thesis we studied the cortical changes and regional vulnerability along the AD continuum using

MRI and PET biomarkers (structural, diffusion and spectroscopy MRI and tau PET) as well as other

multiomics  data  (microarray  expression  data).  Concretely,  in  study 1,  we  investigated  the  biphasic

trajectory  of  cortical  thickness  and  cortical  diffusivity  in  the  largest  sample  of  ADAD  available

worldwide. In study 2, we investigated the pattern of the inflammation and neuron-integrity metabolite

alterations along the AD continuum, and its relationship to cortical thickness and core-AD biomarkers,

in a sample of adults with DS. In study 3, we investigated the relationship between cortical diffusivity

and tau-PET in preclinical AD, and its prognostic value. Finally, in study 4, we investigated the regional

vulnerability of tau spreading combining tau-PET and high-resolution spatial  microarray data using

graph-theory tools. Overall, these four studies illustrate the complexity of cortical alteration (both in

terms of imaging markers and genetic vulnerability) in AD, with a focus on the preclinical phase of the

disease.

4.1 A Biphasic Model of Cortical Macro- and Micro-structural Changes
At the start of this thesis, our group had previously reported a biphasic trajectory of cortical changes in

preclinical  AD. We first  demonstrated in 2010 using a small  cohort  of  ADAD, that  decades before

clinical symptoms, participants with ADAD showed increased cortical thickness and decreased cortical

diffusivity51. In 2011, we showed that increased cortical thickness could also be found in early stages of

preclinical AD in those participants with transitional Aβ  values69.  This study also suggested that the

relationship  between  cortical  thickness and  CSF  Aβ could  be  non-linear.  However,  in  2014,  in  a

different cohort (ADNI) we showed that this non-linear relationship was due to the confounding effect

of an amyloid and tau toxic interaction70. In particular, we showed that those cognitively unimpaired

participants with abnormal amyloid, but normal tau levels  had  increased cortical thickness, but those

with  both  abnormal  amyloid  and  tau  showed  more  atrophy  with  respect  cognitively  unimpaired

participants  with  normal  biomarkers.  More  recently,  using  a  large  Spanish  multicentre  cohort  of

cognitively  unimpaired  participants,  we  showed  that  the  cortical  macrostructural  changes  (cortical

thickness) were accompanied by changes in the cortical microstructure that supported that amyloid-

related inflammation was the probable cause of the increases in cortical thickness54. In particular, A+T-

participants had increased thickness and decreased diffusivity and A+T+ participants had more atrophy

and increased diffusivity, compared to A-T- subjects (Annex 1, first co-author of the paper, but included

in Dr Vilaplana thesis). One of the caveats of the previous work was that we were using group-wise

analyses based on biomarker status (i.e not taking into account the specific temporality of events along

the disease continuum) and thus could not ascertain the temporality of changing points (ie. when in the

disease process the inflexion point occurred).

Therefore, and building on these previous works, we aimed to mathematically estimate the inflexion

point  where  cortical  thickness  changed  from  thickening  to  atrophy,  and  where  cortical  diffusivity
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changed from decreasing to increasing taking advantage of the largest sample of ADAD. In Study 1, we

identified for the first time, that the inflexion point for the cortical dynamics is around 15 years prior to

symptom onset, but that the increases in thickness and decreases in diffusivity already started over 2

decades before. Of note, we also showed that these changes parallel the changes in core AD biomarkers.

Importantly, our group was the first to propose a conceptual framework and a biological hypothesis to

explain the increases of cortical thickness and decreases of diffusivity in early phases of preclinical AD.

In  particular,  we  posit  that  the  pathological  cortical  thickening  and  decreased  diffusivity  in  early

preclinical  AD is  driven  by  early  amyloid-related  inflammation  (Figure  4).  In  this  sense,  there  is

converging evidence in the literature suggesting that the pathological accumulation of amyloid drives to

astroglial97 and microglial activation and recruitment98. Moreover, recent neuropathological studies have

pointed to an increased cortical thickness related to more amyloidosis, even in symptomatic stages of

the  disease99. In  our  model,  we  hypothesize  that  such  glia  recruitment/activation  would  result  into

adding  new  diffusion  barriers  limiting  the  extracellular  cortical  water  displacement,  resulting  into

decreased  diffusivity,  as  previously  explored  in  animal  models100.  The  association  between cortical

thickening and increase neuroinflammation have been shown by our group in a pilot study72 with a small

sample of ADAD and deprenyl-PET – an astrocytosis in-vivo marker, and by other who assessed the

association between microglia activation measured using microglia PET and increased cortical thickness

in prodromal AD101,102. In our biological model, we consider that the inflexion point and the subsequent

atrophy / increases in diffusivity will arise from the toxic synergistic effect between amyloid and tau103.

In  this  sense,  several  authors  have  studied  the  subgroup  of  A+T+  preclinical  participants,  finding

atrophy in medial temporal regions104, a finding that we have also replicated in our studies54,70.
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Figure  4. Biological  rationale  for  the  biphasic  model  of  cortical  changes.  (Left)  basal  state  with

homeostatic glia, and no pathological amyloid nor tau; (Middle) Amyloid positivity result into reactive

glia, increased cortical thickness and decreased cortical diffusivity; (Right) Amyloid and tau positivity

result into reactive glia, increased atrophy and increased cortical diffusivity

Whereas  our  group have consistently  identified such biphasic  trajectory,  the  reported results  in  the

literature  are  despair  and,  apparently,  conflicting.  These  discrepancies  might  arise  by  inaccurate

modelling of the data (i.e. imposing a linear model in their statistical analyses and/or neglecting the

toxic synergistic effect of amyloid and tau at late stages of the preclinical AD phase). In this sense,

previous studies have also shown pathological cortical thickening in relation with amyloid deposition,

but provide a different interpretation. An example is the study published by Johnson et al, who found

increased  thickness  in  the  Wisconsin  Registery  cohort,  who  only  mentioned  it  as  “unexpected

finding”105. This study did not assess the effect of tau, but was performed in a relatively young cohort

(mean age 61) and thus more likely to have A+/T- individuals than A+/T+ and less age-related atrophy.

Another example is the paper by Chetelat et al106, who associated the thickening in preclinical AD to

“cognitive reserve” in the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL)
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cohort, but only when excluding those with subjective cognitive complaints,  also probably selecting

more  likely  less  advanced  individuals.  Other  groups  have  found  no  cortical  changes  along  the

preclinical stage107 or even atrophy related to amyloidosis108, probably as a result of only considering

linear models and/or mixing together participants in different phases of the disease that might obscure

the biphasic phenomena (i.e pooling together A+T- participants - which show thickening - and A+T+ -

which present atrophy – masking the biphasic trajectory of changes). Nevertheless, since our 2014 and

2017  papers,  more  groups  have  considered  the  toxic  synergy  between  amyloid  and  tau  and  have

consistently found the biphasic trajectory of cortical changes in independent cohorts and concurred with

our  biological  interpretation  to  justify  their  findings.  Some  examples  are  a  recent  study  from  the

European  Prevention  of  AD  cohort  with  more  than  1500  participants,  where  Ingala  et  al  found

significant increases in grey matter in  A+T- participants67,  a manuscript by Harrison et al  using the

Berkeley Aging Cohort Study109 and a recent manuscript by Vogt et al using the Wisconsin Registry for

Alzheimer’s Prevention cohort110. Our biphasic model has also been found in independent cohorts of

ADAD. For example, our group have repetitively found the biphasic model in the PICOGEN cohort 51,111,

it  has  also been observed in  the  PSEN1 mutation Colombian cohort112,  in  the  Karolinska Insititute

Swedish cohort72, the Chinese Familial Alzheimer Disease Network113 and has also been replicated in

DIAN114.

Based on our hypothesis that the cortical thickening and decreased cortical diffusivity would be a result

of an inflammatory process, we decided to further study such relationship using different inflammatory

markers. We first showed that YKL-40, a marker of astrogliosis115 which was increased in later stages of

the disease,  is related to tau and atrophy in temporal regions  that was stronger in A+ participants116.

Later, we investigated the relationship between astrogliosis, measured using Deprenyl-PET and cortical

thickness and cortical diffusivity in a preclinical cohort of ADAD72. Finally, in Study 2 we decided to

study  neuroinflammation  alterations  in  the  AD  continuum  using  MRS  -  and  more  concretely  the

measurements of myo-inositol - and correlate  it with  diverse cortical alterations. Thus,  our primary

hypothesis for Study 2 based on our biphasic model was that mI would be increased very early in the

disease, and that it would be related to cortical thickening. However, when we analysed the trajectories

of mI along the disease continuum in a large cohort of DS, we found that mI, similarly to what we had

found in the aforementioned YKL-40 study, is mainly altered in symptomatic stages of the disease, and

that it was related to atrophy and core-AD biomarkers of neurodegeneration. Of note, we found that

despite that YKL-40 and mI have a similar temporality and both measure astrogliosis, the two measures

do not correlate. This is consistent with the existence of different populations of astroglia with different

gene expression and different markers observed in the neuropathology83,84 (e.g. YKL is only found only

in a subset), and more broadly reflects the complexity of neuroinflammation in AD. 
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Importantly, despite our unexpected results, in  Study 2 we reported for the first time the trajectory of

MRS-driven markers along the AD continuum, and its relationship to cortical thickness and biochemical

biomarkers.  We were able  to  capture  the  effects  of  the  trisomy (the mI transporter  is  expressed  in

chromosome 21), and found that adults with DS had increased mI compared to non-euploid participants

at all ages, but that further increased in symptomatic stages of the disease as it had been described in

sporadic  AD117.  This  finding  further  reinforces  that  although  most  AD biomarkers  show the  same

temporality and magnitude of changes in DSAD and sporadic AD, it is very important to assess the

starting points as there might be neurodevelopmental differences that must be taken into account118.

4.2 Implications for disease modelling
A key result from our research present in this thesis, is that the use of linear models is not appropriate to

study the complex cortical changes occurring in the AD continuum. The non-linear trajectory of changes

can be ascertained in two ways (Figure 5). First, in the ADAD studies, because of the predictability of

disease  onset,  we  can  calculate  the  estimated  years  to  symptom onset  in  mutation  carriers  at  the

individual  level,  and  temporally locate participants along the disease. This estimated years to onset

concept  a  good proxy to ascertain the  disease cronopathology and enable  the  study of  the  cortical

changes (or other biomarkers) continuously (Figure 5-A). When using a large dataset such in DIAN it

becomes apparent that the cortical changes are better modelled with a quadratic function over a linear

one. The biphasic trajectory is missed if only linear models are tested.

The second way is to consider the participants biomarkers profiles and specifically stratify the analyses

based on the biomarker profiles of the individual participants. As exemplified in Figure 5-B (for didactic

purposes using the hypothetical data in ADAD, but which can also be applied to sporadic AD), mixing

up participants with different biomarker profiles leads to erroneous interpretations. For example, a study

evaluating  the  linear  relationship  between  cortical  thickness  and  amyloid  deposition,  without

considering  the  effect  of  tau  might  find  (as  it  has  been  the  case)  increased  cortical  thickness,  no

relationship or atrophy depending on the relative compositions of A+T- and A+T+ individuals.

Another  difficulty  is  the  presence  of  confounding  factors  (and  their  relationships  to  core  AD

biomarkers).  One  of  the  most  significant  confounding  factors  in  sporadic  AD  studies,  and  more

importantly  in  preclinical  AD,  is  age16.  This  is  because  age,  in  the  absence  of  AD  biomarker

abnormalities, is strongly associated with atrophy119–121, even from young ages122, on the one hand, but it

is also associated with biomarker positivity (both amyloid and tau) on the other123. Thus, the increase in

the prevalence of amyloid positivity both in PET and CSF with age has been consistently described in

the literature124,125. Furthermore, several  studies have also reported an association between ageing and

101



tau  accumulation  in  the  mesial  temporal  in  cognitively  unimpaired  subjects123,126.  Critical  for  the

purposes of this thesis, the increases in amyloid burden that we have repeatedly found to be associated

with thickening in the absence of tau would be mitigated  because amyloid positivity is likely to be

found in  older  individuals,  who  have  age-related  atrophy (and are  more  likely  to  have  higher  tau

pathology). These conflicting effects explain some of the results in a previous study from our group 71, in

which, A+T- individuals most often showed an attenuation in the rates of atrophy with respect A-T-

individuals rather longitudinally (rather than actual longitudinal thickening), although cross-sectionally

this translated into thicker cortex in the group comparison54. It also explains the fining of thinning in the

medial temporal lobe, which is very likely to have tau pathology and thus exhibit the toxic interaction

(of note the fact that different cortical regions could be at different stages is predicted in Jack models).

Thus, we need to control for the confounding effects of age (both positive -for tau- and negative-for

amyloid) on the correlational analyses between brain structure and other AD biomarkers (Figure 5-C).

Importantly, including age as a covariate does not control  effectively  for this effect. One of the most

widely used strategies in the literature to regress-out the ageing effect is to use normative values, for

example, based on the W-score approach127. This is the approach we used in the Study   1   of this thesis.

We again could show that this enabled us to show cortical thickening in the critical period in which

there is amyloid accumulation, but no tau pathology. Overall, to fully capture the cortical changes in AD

we must use more complex models than the ones commonly used in the last decades. It is also crucial to

have an appropriate  study design (considering the target  population,  stratification,  age confounding

effect, etc) in addition to using adequate analytical and statistical models. These multifactorial effects

overt the cortical structure (i.e ageing-related atrophy, amyloid, and tau interaction-related atrophy and

amyloid-related thickening) highlights the technical and statistical difficulties when studying cortical

alterations along the AD continuum (Figure 5).

The biphasic model of cortical alterations in AD supported by the works of this thesis could also help

explain  some  paradoxical  findings  in  recent  clinical  trials.  Trials  using  drugs  that  target  amyloid

clearance have repeatedly shown a paradoxical atrophy in the context of successful amyloid removal.

For example, in 2007 Fox and colleagues reported that participants treated with the AN1792 vaccine

showed greater atrophy compared to the placebo group128. Recent studies on the effect of verubecestat (a

BACE-1 inhibitor) also reported stronger atrophy in treated patients compared to the placebo group129,

even though BACE inhibitors do not necessarily impact the synapse integrity130. 
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Figure 5. Data modelling complexity in AD studies. (A) Statistical model bias for data fitting; (B) Group

composition bias for data fitting; (C) multiple confounding-effects for data interpretation
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In a recent promising Phase II anti-amyloid trial using donanemab, the treated group had accelerated

whole brain atrophy after an effective clearance of amyloid as compared with the placebo group131. We

hypothesize  that  this  (extra)  atrophy is  not  a  pathological/deleterious  effect  of  these  drugs,  but  an

expected effect of removing the amyloid-related inflammatory-response. Such interpretation over these

recurrent findings in anti-amyloid trials highlight the need to reconsider the biphasic model, both when

interpreting the results, and when defining imaging-based primary or secondary endpoints in clinical

trials.

Another important implication of the biphasic model is that it greatly expands the time window in which

MRI can capture changes.  The current dogma in the field is that MRI is only sensible to capture and

track structural alterations 7 years before clinical symptoms manifest132,133. However, in the context of

the biphasic model and as it has been shown in Study 1, cortical structures start to change more than 20

years  prior  to  symptoms  onset.  Thus,  MRI-markers,  such  as  cortical  thickness  and  cortical  mean

diffusivity are promising markers to be integrated in clinical trials as primary or secondary endpoints,

specially in measuring drug efficacy.

Whereas the work presented in this thesis have answered important questions about the dynamics of

cortical  alteration  in  the  AD  continuum,  further  work  is  needed  to  better  comprehend  and  more

accurately model early alterations. We need to better understand how the accumulation of amyloid and

NFT, measured in-vivo using PET, might affect cortical thickness and cortical diffusivity, both locally

and non-locally.  Furthermore,  we need to  revisit  the  individual  and synergetic  effect  along the AD

continuum of each pathological hallmark (i.e amyloid and tau)  after controlling by the multifactorial

confounding factors such as age-related alterations. In addition, even though we only focused on grey

matter  alterations,  several  studies in  ADAD and in sporadic AD134–136 have pointed to white  matter

alterations in preclinical AD related to amyloid and tau alterations. Thus, it is important to also study

how amyloid and tau pathology might cause structural and connectivity alterations in fibre tracks and

subsequent  effect  in  the  cortex via  diasquisis,  and how such white matter  alterations  fit  within the

proposed biphasic model.

4.3 The Effects of the AD Inflammasome Complexity in MRI Outcomes
A fundamental element to explain the biphasic trajectories of cortical changes is neuroinflammation.

Glia cells have received much less attention than neurons in AD pathophysiology. Only recently, studies

started  to  highlight  the  complex  dynamics  of  neuroinflammation  along  the  AD continuum.  These

complex  (and non-linear)  changes  in  basic,  animal  and human studies137–140 make  the  study of  the

relationship between cortical  alterations  and glia  complex.  This  complexity is  partially  reflected in
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Study 2, in which we observed two unexpected results: that mI was only altered in late stages of the

disease (compared to other reactive astrocytosis markers such as GFAP141 or deprenyl-PET35 shown to

be altered early in the disease) and second, that it did not correlate with CSF YKL-40, another marker of

astrocytosis115.  The latter is especially significant as both mI and YKL-40 elevations have a similar

temporality, a similar cellular origin, but do not correlate. This finding is in agreement with the fact that

YKL-40 is only expressed in a subset of astrocytes115 and that recent single cell RNA seq studies showed

several subpopulations of glia with very different (genetic) profiles84,142.

Indeed, the novel microscopic and transcriptomic studies have shown the heterogeneity glia cells. We

are  only  beginning  to  understand  how  these  cells  transition  from  homeosis  to  (importantly)  both

protective and toxic  states in  relation with the  AD pathophysiology.  For example,  using single-cell

RNA-seq, Mayers et al. showed that only a subtype of astroctyes cells is altered in late-stages of the

disease83. In a follow-up paper, Habibib et al. demonstrated, using mice models, that there is a specific

subtype of astrocytes that is gradually altered in the AD continuum84. Similarly, Keren-Shaul al showed

that there is a specific subtype of microglia that is activated in late-stages of AD, which they named

DAM (Disease-Associated Microglia)143. Such heterogeneity in glia alterations have recently led to a re-

thinking of the vague term “reactive astrocyte or reactive glia”144.

An extra layer of complexity to comprehend neuroinflammation in AD is understanding the temporality

of these alterations. Indeed, neuroinflammatory changes follow a non-linear or non-monotonic temporal

trajectory  of  changes.  For  example,  using  an  in-vivo  tracer  of  reactive  astrocytes  that  binds  to

Monoamine oxidase B (MAO-B), namely C11- deprenyl, collaborators from Karolinska Institute have

shown both in animal models and autosomal dominant AD, that there are early increases in deprenyl

uptake in the preclinical stage of the disease that decrease in the symptomatic stage of the disease35. On

the contrary, YKL-40, another marker of reactive astrogliosis, has been shown to be increased mainly in

the symptomatic stages of the disease145, much later than deprenyl-PET. Similarly, microglia alterations

also follow a non-linear non-monotonic trajectory. For example, several studies have shown that soluble

triggering receptor expressed on myeloid cells 2 (sTREM2), which is mainly expressed in microglia, is

altered in prodromal stages of the disease, to later decrease in late-AD, as shown both in sporadic and

familial AD29,139. Another example is the findings using the PK11195-PET – a tracer that binds to the

benzodiazepine receptor in the mitochondria and which is overexpressed in activated microglia. The

uptake of this tracer seems to have two peaks with disease progression: one at late preclinical-early

prodromal AD, followed by decreases in later prodromal AD, and another peak early in the dementia

stage140.
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Figure  6. Inflammasome complexy  along  the  AD continuum.  Diverse  inflammatory  markers  have

different trajectories along the disease continuum. Estimations based on literature reports.

The complexity of neuroinflammation has important implications when evaluation the biphasic model.

First, it is clear that lumping together all inflammation markers under the label “neuroinflammatory

markers” is a oversimplification that leads inevitably to erroneous interpretations of the findings. Such

complexity can be observed in part by the work from our group, where the temporality of alterations and

its relationship with cortical structure changes vary depending on the inflammation marker (e.g YKL-

40,  deprenyl-PET and mI).  Second,  the effect  of  inflammation  over  the cortical  structure might  be

obscured by co-ocurring phenomena. The effect of tau-related and age-related atrophy, which is very

strong  specially  in  late  stages  of  the  disease,  could  mask  the  inflammatory-related  thickening  and

decrease of diffusivity. As an example, a recent work by Gispert et al. found a pattern of increased grey

matter  volume related to  sTREM2 in prodomal  AD only when accounting for  the  amount  of  CSF

pTau146.  Third,  recent  findings  have  shown the  interplay  between  glia  cells  and  both  amyloid  and

tau97,147. Thus, when evaluating cortical alterations along the AD continuum, it is important not only to
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consider the amyloid and tau toxic interaction, but also the interaction (and not only additive) effect of

glia, which might lead to unexpected findings specially in preclinical AD.

Given the increasingly recognized importance of glia alterations in AD, clearly demonstrated in GWAS

studies9, we should rethink the current framework to classify participants.  This will result into better

patient profiling, which might be important in the advent of novel anti-inflammatory clinical trials (e.g

to increase TREM2 reactivity). Thus, we need to develop candidate inflammation markers for a correct

participant recruitment. Importantly, as we shown in the present thesis, the use of MRI markers such as

cortical  thickness  and  cortical  diffusivity  might  be  used  as  a  surrogate  markeres  of  inflammation

change, and could be included as secondary end-point in these anti-inflammatory trials. 

The impressive advancement in biomarker discovery and validation in recent years offer unprecedented

opportunities to study the neuroinflammatory changes along the AD continuum and to disentangle the

relationship  between  neuroinflammation  and  cortical  alterations.  In  addition  to  the  aforementioned

biomarkers summarized in Figure 6, some new biomarkers would be especially well suited to continue

the study of the cortical biphasic changes. First, new imaging modalities such as diffusion-weighted

MRS (DW-MRS) might  help to  dissect  the  different  neuroinflammation processes.  Whereas  classic

MRS only measure metabolites, DW-MRS has the capability to quantify the displacement of certain

metabolites, providing also morphological/microstructural information148. Previous work with DW-MRS

have shown its  capability  to measure  not  only increases in  astrocytosis,  but  also a change in  their

morphology when they change to a reactive conformation149–151. This biomarker is thus promising to

differentiate the moment at which glia start to react and undergo morphological changes. Second, with

novel  machine  learning  approaches,  one  could  integrate  information  from  several  already-existing

biomarkers  to  produce  a  model  for  neuroinflammation.  This  data-driven  approach  could  help  to

disentangle the complexity and temporality at which each biomarker is altered, and its relationship to

cortical structure. Finally, only a small number of papers have started to study, using neuroimaging data,

the role that neuroinflammation have on the interaction between amyloid and tau, and its subsequent

structural alterations147. The study on the role of inflammation on this toxic interaction necessary for

cortical  atrophy  and  cognitive  decline  might  provide  new  targets  for  intervention  and  preventive

therapies.

4.4 Cortical Diffusivity Biomarker as a Prognostic and Diagnostic Tool
During my MSc and at the beginning of this thesis, we developed a surface-based pipeline that mitigates

the  pitfalls  of  volumetric  approaches  when  measuring  the  cortical  microstructural  alterations 54.

Concretely, we developed this technique to measure the effects of the amyloid-related inflammation on

the cortical microstructure, under the assumption that this technique would capture glia recruitment and
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activation as well as reactive cellular hypertrophy, all of which would result in more barriers to the

movement of water. As reported in  Study 1 (and previously in the 2017 paper, Annex I), we indeed

found that cortical diffusivity was significantly decreased in early preclinical AD in A+T- participants.

However, the performance of this technique in tracking neurodegeneration and astrodegeneration along

the disease continuum, which would result in the removal of barriers and increased cortical diffusivity,

was not tested. Therefore, we also studied the microstructural alterations in later stages of AD (and in

other neurodegenerative diseases) and realized that cortical diffusivity was also a sensitive marker of

neurodegeneration. In Study 1 we showed that cortical diffusivity was altered before cortical thickness

(between the age-range of -10 and -5, compared to cortical thickness, which was altered between -5 and

0 years before symptom onset), and that the pattern of alterations was more widespread for cortical

mean diffusivity compared to the atrophy maps.  In  Study 3, we wanted to evaluate the association of

cortical diffusivity with the accumulation of NFT, as measured with flortaucipir uptake, in earlier stages

of the disease.  We found that  the  amount of NFT accumulation in  early-Braak stages (such as the

inferior  temporal)  was related to  widespread increased diffusivity.  Interestingly,  the cortical  regions

where this association remained significant resembled the areas identified in Study 4 when generating

the backbone tau network, which suggest that cortical diffusivity might be tracking early and subtle tau-

related neurodegeneration. In  Study 3, we also experimented the complexity of analysing the cortical

alterations in preclinical AD. Specifically we had to segregate the cognitively unimpaired participants

based on their amyloid profile.  As previously  aforementioned, to avoid mixing group of participants

with different biomarker profiles that might obscure the diffusivity-neurodegeneration relationship, we

restricted our analysis to A+ cognitively unimpaired participants.  This was a crucial  step,  since we

wanted  to  capture  the  association  with  the  spread  of  tau,  which  only  occurs  in  the  presence  of

pathological levels of amyloid152,153. Thus, we highlighted again the need to correctly model the changes

in the AD.

Study 1 and   3   of this thesis confirm the potential of cortical diffusivity to track neurodegeneration in

AD. Furthermore, in parallel to the works of this thesis, cortical diffusivity has been shown to be a

promising marker of neurodegeneration in several other neurodegenerative diseases. Specifically, we

showed  increased  diffusivity  in  patients  with  the  behavioural  variant  of  frontotemporal  dementia

(bvFTD)57 (Annex2 paper, co-first author, used in Dr Illan thesis), in ALS59, in Multiple Sclerosis58 and

in primary progressive aphasia (under review). A key result from all these studies is the observation of

cortical diffusivity alterations in the absence of atrophy. In this sense, in Illan et al. we showed that a

subgroup  of  bvFTD  participants  that  were  visually  categorized  with  “absent  atrophy”  by  two

neurologists,  did  present  increased  diffusivity  in  regions  typically  reported  of suffer  from

neurodegeneration in bvFTD patients57.  Our rationale behind the sensitivity of cortical diffusivity vs

cortical thickness, is that microstructural changes precede overt neuronal loss and therefore, cortical
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diffusivity can capture the earlier more subtle alterations. Indeed, in early stages of neurodegeneration,

the loss of a small number of neurons and the loss in the arborization of dendrites might not be severe

enough  to  result  into  a  thinner  cortex,  but  the  microstructural  local  environment  could  change

sufficiently to increase water displacement and, therefore result into increased cortical mean diffusivity.

After the publication of our 2017 paper in which we presented the surface-based approach to measure

cortical diffusivity for the first time, there have been several studies that, based on our methodology,

studied the profile of cortical microstructural alterations in AD. For example, Vogt et al. showed in a

cohort  of  prodomal AD, that  cortical  diffusivity was more sensitive than cortical  thickness to track

neurodegeneration in MCI55. Similarly, Parker et al. showed that cortical diffusivity could also be used

to measure neurodegeneration in early-onset AD56. All these works suggest that cortical diffusivity could

improve the sensitivity to track neurodegeneration in the  AD continuum.  However,  further work is

needed to translate cortical mean diffusivity to clinical practice and clinical trials. First of all, we need to

define a signature of microstructural changes in AD from which to derive a scalar metric to be used at

the individual level, similarly to the approaches used in cortical thickness 41. Indeed, one of the most

common markers used to measure neurodegeneration in the average of cortical thickness in regions

well-known to  be  atrophied  in  late  stages  of  the  disease.  Thus,  we  need to  create  a  signature  (or

fingerprint) map of which regions might be the most sensitive to track alterations in the whole AD

continuum. The use of machine learning tools and variance analyses, in combination with association

studies with in  vivo tau PET studies  and cognitive  scores, might  help identify the  most  promising

regions  to  be  included  in  such  a  cortical  diffusivity  signature  to  measure  the  AD microstructural

changes.

Our measure of cortical diffusivity is based on one of the simplest models of DWI data: mean diffusivity

as measured from the tensor decomposition (DTI) of DWI signal. However, in the last decade, there

have been various advances in both DWI acquisition sequences and modelling. In terms of acquisition,

there are now many protocols with different gradient directions  (e.g high angular resolution diffusion

imaging - HARDI154) and multi-shells acquisitions with several b-values, some of which at the cost of

very long acquisition  times,  but  which more accurately capture  the  water  displacement.  Regarding

modelling, one of the most promising biological-based compartmental models is the neurite orientation

dispersion and density imaging155 (NODDI), which accounts for intracellular diffusivity (bounded by the

membrane of neurites and myelin sheaths), anisotropic extracellular diffusivity (outside neurites and

potentially including glial  cells),  and the CSF compartments diffusion (isotropic diffusion).  Another

promising model is diffusion kurtosis imaging156 (DKI), which overcomes some assumptions in the DTI

model, such as considering the water diffusivity a  Gaussian process in the  presence of high-strength

gradients.  In the context  of these new, advanced,  and promising alternatives,  is there space for our

simple DTI model? We believe there is.  The two options are not mutually exclusive, and each one
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provides benefits over the other. On the one hand, the use of NOODI (or other compartment models)

offer clear advantages for research as it better captures the biology of the cortical alterations157.  For

example, NOODI enables the investigation of the amount of intra and extra cellular diffusivity that is

disturbed  due  to  an  inflammatory  process  or  the  accumulation  of  amyloid110.  However,  in  clinical

practice, it is not yet feasible (in terms of time and cost) to acquire the data to compute NOODI-based

metrics and to process it. In addition, due to the long acquisition time, using such sequences in certain

populations (such as Down Syndrome or AD) might result into low quality images due to movement

artifacts. Mean diffusivity as measured from the tensor decomposition (DTI) of DWI signal is already

often  included  in  many  acquisition  protocols,  which  facilitates  its  implementation  in  the  clinical

practice. We proved that it is feasible to obtain meaningful values of cortical diffusivity from a low

number of gradient directions54, which require a short time acquisition, making it interesting both in

terms of  costs  and to  minimize  motion-related  artifacts.  Further  work is  required to  compare  both

modelling frameworks, and to evaluate the additive value of using a complex acquisition/modelling over

a simplistic approach, but the cortical mean diffusivity metric has important advantages in multi-centre

studies and clinical trials. In this sense we have previously shown that with adequate harmonization

processes, it is feasible to pool together data in multi-centre studies with different protocols, even with

different  number of directions54 (and to some extent when the b-values differ). The more recent and

complex acquisitions are much more sensitive to the acquisition protocols. Furthermore, it will be most

probably easier to derive a scalar measure from a cortical signature (to be used at the individual level)

from  cortical mean diffusivity than from the more complex multi-compartment approaches. All these

pragmatic factors make our metric of cortical mean diffusivity much easier to implement in multi-centre

studies and clinical trials.

4.5 Integration of multiomics data study regional vulnerability in AD
During the study of the cortical microstructural alteration in  Study 3, we realized that the pattern of

microstructural changes resembled that of the spreading of tau along the Braak stages. This led us to

inquire about the genetic fingerprint that could characterize (if existing) the regional vulnerability to the

spread of tau, and the subsequent pattern of macro and microstructural changes. Concretely, we wanted

to assess if the constitutive gradient of changes in gene expression in healthy individuals was related to

the temporality of tau accumulation in preclinical AD. 

To investigate these phenomena we needed to integrate data from different sources and at different

scales. Recent advances in data acquisition and the development of new methodological frameworks

have  helped  to  solve  this  gap88,158.  Moreover,  novel  statistical  approaches  have  led  to  integrate

(macroscale)  neuroimaging  data  (such  as  atrophy  or  functional  maps)  with  the  (mesoscale)

quantifications  of  gene  expression.  Taking  advantage  of  the  ABA high-resolution  map  of  gene
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expression, and the tau accumulation information obtained using tau-PET, in Study 4, we characterized

the gradual change in the expression of certain genes that were related to the spread of tau.

In  Study 4, we developed a novel methodology, based on graph theory tools for two different case

scenarios. First, we developed an algorithm to obtain the backbone of tau-PET, which results into a

minimal  representation of the relationship between the accumulation of  tau between different  brain

regions.  Of  note,  although  this  algorithm  was  used  for  tau-PET  data,  it  can  be  applied  to  other

neuroimaging measures. In this sense, it would be interesting to investigate the pattern of accumulation

of amyloid, which despite it is considered to occur globally (and simultaneously) in the whole cortical

mantel (contrary to the Braak staging system). Our approach might elicit a backbone which could be

used to provide more accurate quantifications or to study local  and non-local  relationships between

amyloid and tau. Second, we developed a framework to integrate network information (such as network-

based distance) with the genetic data from the ABA, that could be also used to investigate other source

of data (such as amyloid accumulation or cortical diffusivity maps).  

The integration of multiomics data, in conjunction with the tools develop in Study 4, could also be used

to study the pathophysiological alterations underlying the cortical  changes in the proposed biphasic

model. The increase in cortical thickness and the decreases in cortical mean diffusivity in Study 1 were

attributed to an amyloid-related inflammatory process. We are, nonetheless, aware that there is not an

overlap between the identified regions and the pattern of amyloid accumulation. In other words, the

response  or  consequences  of  amyloid  accumulation  might  differ  in  the  different  areas.  This

heterogeneity in the response might reflect different local vulnerabilites. The methodology developed in

Study 4 might enable us to answer some of these questions. However, a major caveat is that the RNA

expression measurements used in  Study 4 (and similar  studies)  are obtained from a small  group of

healthy adults, which might be useful to assess vulnerability  but causation cannot be proven in such

analyses. One conceivable promising study would be to study how bulkRNA gene expression would be

related to cortical thickness, measured from ante-mortem MRI scans in a concrete region of interest, to

explore  the  genetic  fingerprint  suggestive  of  cortical  thickening. Similarly,  it  would  be  feasible  to

explore using gene RNA sequencing data, if the increases in myo-inositol found in Study 2 would be the

result of  alterations in the overall number of certain glia-type cells.

In Study 4 we performed several graph theory analyses to investigate the role of APOE in the spread of

tau. Unfortunately, the focus on tau, impeded us to assess the impact of the other major pathological

hallmarks, especially amyloid (and inflammation). The potential of graph theory analyses could expand

the results of Study 4 to investigate the set of genes mediating the relationship between amyoid-plaques

genes and tau-NFT genes, as it has been done in other clinical conditions 159.  Using a curated list of

physical interactions, as well as known pathways interactions  (e.g using Reactome  database), we can

create a network of genes that inter-connect both amyloid and tau-related genes (Figure 7). From such
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amyloid-tau network, we could identify the group of genes more closely associated with the interaction

between amyloid and tau and study its biological and cellular profile  (Figure 7). Moreover, we could

integrate those findings with large cohorts of post-mortem data to analyse which set of genes is altered

early in the AD continuum. Overall, the use of graph theory tools to integrate multidimensional and

multiscale data is a promising and powerful framework to investigate the pathological alterations along

the AD continuum.

Figure 7. Study of the gene-interactions network between proteins encoded in amyloid plaques and NFT. (Left)

Network construction to identify mediating genes (orange) between amyloid-related genes (green) and tau-related

genes (blue); (Right) Hypothetical models to study the aetiology and causes of AD progression.

4.6 Limitations
The  most  important  technical limitations  of  the  works  included  in  this  thesis  have  already  been

acknowledged in the articles. Nevertheless, other conceptual limitations should also be acknowledged.

First, the lack of an in-vivo measurement of astrocyte and microglia reactivity using PET. This could

have been specially relevant in Study 1 and Study 2. In this sense, a pilot study published by our group

showed that  the  early  cortical  thickening  and decreased  cortical  mean diffusivity  are  associated  to
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astrocytosis72 (measured using deprenyl-PET). It would be ideal to model the astrocytosis reactivity and

how it impacts cortical changes in the DIAN cohort. Similarly, these inflammatory markers could also

help disentangle the pathological alterations behind the myo-inositol increases in the cohort of Down

syndrome participants. Another limitation is that at the design of Study 3, we only had the HABS cohort

with  available  amyloid  and  tau  PET data,  with  a  diffusion  MRI  acquisition  of  sufficient  quality.

Currently, the increase of participants recruited in several public cohorts (such as ADNI or prevent-AD)

would enable for a  replication of  the  results  in  different  cohorts,  and more importantly  to  perform

further analyses with increased statistical power. Finally, the only resource available for  S  tudy 4   of

spatial high-resolution RNA sequence measurements was derived from the ABA, which is composed of

healthy adults. There is not a similar database from AD patients. Despite the fact that we identify a gene

expression profile to explain the regional vulnerability for the spread of tau, it would have been ideal to

have  a  similar  information-map  in  a  cohort  of  AD  participants,  to  measure  the  changes  in  gene

expression that  might underlie the vulnerability to the AD pathological alterations across the whole

cortex.

4.7 General discussion
This doctoral thesis highlights the complexity on cortical alterations along the AD continuum and how

we can study such dynamics using macrostructural, microstrucutral and genetic data. We used state-of-

the-art neuroimaging software, and we also developed an in-house algorithm (cortical diffusivity) to

study the preclinical cortical AD alterations. Our studies have: i) consolidated the biphasic model of

cortical changes in preclinical AD, ii) shown the metabolite-related changes in late-stages of the disease,

iii) demonstrated the potential of cortical diffusivity as a neurodegeneration marker and iv) proposed a

gradient of gene-expression vulnerability associated to tau accumulation. 

The consolidation of the biphasic model highlights the complexity of the AD pathophysiology and the

importance  of  correctly  modelling  the  cortical  changes  when  considering  MRI  outcomes  in  AD

preventive clinical trials. The validation of cortical diffusivity as a prognostic marker could result into

its  implementation in  clinical  practice  and in  clinical  trials.  Finally,  the  exploration  of  the  genetic

vulnerability to understand the spread of tau might help to identify novel pharmacological targets and to

provide an analytical framework to integrate genetic and imaging data. Nonetheless, this thesis leaves

even more open questions to better comprehend the pathophysiological drivers of the non-lineal cortical

dynamics, the role of neuroinflammation, and the development of novel biomarkers to more accurately

track preclinical AD, all of which are critical steps for the development of preventive therapies for this

devastating disease.
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5. Conclusions



Conclusions

The main conclusions of this thesis are:

1) Cortical thickness and cortical mean diffusivity in autosomal dominant Alzheimer disease follow a

biphasic trajectory of changes. A non-linear trajectory greatly expands the performance of MRI to track

the preclinical AD, reconciles conflicting data with respect the effects of amyloid accumulation on brain

structure, and helps understand the (apparently) paradoxical trials in anti-amyloid therapies, in which

the active arm was associated with increased atrophy. 

2)  Myo-inositol  is  constitutively  increased  in  adults  with  Down  Syndrome,  but  increases  in

symptomatic AD and is might be a non-invasive and cheap marker of neuroinflammation which could

be used as an outcome measure in anti-inflammatory clinical trials.

3) Cortical mean diffusivity is a new biomarker that might have more sensitivity to detect and track

neurodegeneration than cortical thickness. It correlates with tau-PET uptake in preclinical Alzheimer

disease  and has  good prognostic  performance.  Therefore,  it  might  be  useful  in  clinical  trials  as  a

surrogate marker of tau accumulation and as an outcome measure of efficacy.

4) The pattern of topographical gradual change in gene expression suggest a regional vulnerability to

tau accumulation. Identifying the genetic local vulnerability might help identify novel pharmacological

targets to prevent AD.
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Supl. study 1:  Cortical  microstructural changes in sporadic AD

ABSTRACT

Cortical mean diffusivity (MD) and free water (FW) changes

are proposed biomarkers for Alzheimer’s disease (AD). We

included  healthy  controls  (N=254,  HC),  mild  cognitive

impairment  (N=41,  MCI) and AD dementia  (N=31,  dAD)

patients. Participants underwent a lumbar puncture and a 3T-

MRI. HC were classified following NIA-AA stages (Stage 0,

N=220; Stage 1, N=25 and; Stage 2/3, N=9). We assessed

the cortical MD, cortical FW and cortical  thickness (CTh)

changes  along  the  AD  continuum.  Micro  and

macrostructural changes show a biphasic trajectory. Stage 1

subjects showed increased CTh and decreased MD and FW

with respect the Stage 0 subjects. Stage 2/3 subjects showed

decreased CTh and increased cortical MD and FW, changes

that  were  more  widespread  in  symptomatic  stages.  These

results support a biphasic model of changes in AD, which

could affect the selection of patients for clinical trials and the

use of MRI as surrogate marker of disease modification.

BACKGROUND

Alzheimer’s  disease  (AD) has  a  long preclinical  phase  in

which  several  pathophysiological  processes  coexist  before

the appearance of the first clinical symptoms [1,2]. Despite

the  well-established  description  of  brain  atrophy  in  the

symptomatic  phase  of  AD,  the  structural  trajectory  of

changes in preclinical AD is still controversial. It has been

recently  shown  that  β-amyloid  interacts  with  cortical  tau

pathology  to  affect  neurodegeneration  [3–5].  The  cortical

changes  might,  however,  be  non-linear.  There  are  several

reports in different cohorts of an association between cortical

thickening  and  brain  amyloidosis,  both  in  cross-sectional

[4,6–10]  and  in  longitudinal  studies  [11].  Based  on  those

reports,  we  have  previously  proposed  a  model  in  which

interactions between biomarkers in the preclinical phase of

AD  result  in  a  2-phase  phenomenon:  an  initial  phase  of

cortical thickening associated with brain amyloidosis, in the

absence of tau, followed by a cortical atrophy phase, which

occurs once tau biomarkers become abnormal [4]. 

New  imaging  biomarkers  and  extensive  multimodal

approaches could improve our understanding of the cortical

changes along the AD continuum. For example, in the last

decade,  there  has  been  a  growing  interest  in  diffusion-

weighted  imaging  (DWI),  which  is  sensitive  to  the

microstructural  properties  of  brain  tissue  [12].  Although

most  studies  in  the  literature  have  used  this  technique  to

assess  the  microstructure  in  the  white  matter  (WM) [13],

DWI are also studied to reflect microstructural changes in

the grey matter (GM). The mean diffusivity (MD) metric is

often used in GM studies because the cortex is mostly an

isotropic structure [8,12]. 

The  number  of  GM diffusivity  studies  in  AD  to  date  is,

however, limited, and all have small sample sizes. Based on

these  studies  in  familial  [8,14]  and  sporadic  AD  [15],  a

biphasic trajectory of MD changes in the AD continuum has

also  been  suggested  [12].  Accordingly,  in  the  pre

symptomatic phase, MD would initially decrease because of

cellular hypertrophy and/or inflammation (glial recruitment)

[8,14]. Then, during the symptomatic phase, the progressive

cellular loss and microstructural disorganization would cause

the breakdown of diffusion barriers and leads to an increase

in extracellular  water  and MD in vulnerable regions [12].

Therefore, this proposed biphasic trajectory of grey matter

diffusivity  changes would be  similar  to  that  described for

cortical thickness (CTh) [4].

Another  promising  measure  that  can  be  derived  from

diffusion imaging is the free water fraction (FW)[16]. The

proposed  two-compartment  model  distinguishes  the

contribution of freely diffusing extracellular water from that

of tissue-restricted water. It has been recently suggested that

the  FW  component  provides  great  sensitivity  to  detect
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extracellular  processes  such as  atrophy,  cerebral  edema or

even  neuroinflammation  [17].  Moreover,  the  FW measure

has  been  suggested  as  an  important  marker  in  the  AD

continuum [18–20].

We hypothesized that  cortical  diffusivity,  cortical  FW and

CTh follow a biphasic trajectory of changes, where increases

in CTh are associated with decreases in MD and FW in the

early preclinical phase followed by atrophy associated with

increased  MD  and  FW in  the  symptomatic  phase  of  the

disease.  Our  objective  was  to  study  the  cortical

microstructural  changes  and  their  relationship  with  CTh

along the AD continuum. 

METHODS

Participants

A total  of  449  subjects  were  recruited  from 3  centers  in

Spain:  Hospital  de  Sant  Pau  (HSP),  Barcelona  (n=263),

Hospital  Marqués de Valdecilla  (HMV),  Santander (n=22)

and CITA Alzheimer, San Sebastián (n=164).  We included

cognitively normal healthy controls (HC), people with mild

cognitive  impairment  (MCI)  and  AD  dementia  patients

(dAD). All subjects underwent a lumbar puncture and a 3

Tesla MRI. A flowchart of the sample can be found in Fig. 1.

The HC (N=329) participants were unaffected relatives of

patients in the three centers or volunteers who enrolled after

hearing about the study in the media. The HC did not have

cognitive complaints, they scored 0 on the clinical dementia

rating scale (CDR) and their neuropsychological evaluation

was normal for their age and education. Based on the CSF

biomarker  profile,  and  using  previously  published  cut-off

thresholds (Aß+ <550 pg/mL for CSF Aß1-42 and p-tau+ >

61  pg/  mL  for  CSF  p-tau)  [21],  the  HC  subjects  were

classified into preclinical  AD stages:  Stage 0 (Aß-/p-tau-),

Stage  1  (Aß+/p-tau-)  and  Stage  2/3  (Aß+/p-tau+).  23

subjects did not meet the NIA-AA preclinical staging criteria

(Aß-/p-tau+)  and  were  excluded  from  further  analyses

[1,11].

The  MCI  and  the  AD  dementia  subjects  (N=120)  were

recruited  at  the  HSP  (SPIN  cohort,

http://santpaumemoryunit.com/). They all fulfilled the NIA-

AA clinical criteria for probable AD dementia. From these,

we  selected  only  those  with  evidence  of  the  AD

pathophysiological  process  [22]  according to  CSF Aß1-42

and p-tau values [21].  Thus, 35 MCI and 1 dAD subjects

were excluded because of a negative CSF AD profile. 

More  details  about  the  recruitment  and  the  assessments

performed  can  be  found  elsewhere  [21,23].  Briefly,  all

participants  enrolled  in  this  study  were  evaluated  by

neurologists  with  expertise  in  neurodegenerative  diseases,

and all had an extensive neuropsychological evaluation, as

defined  by  the  SIGNAL study  (www.signalstudy.es).  The

complete neuropsychological battery can be found in [24].

The study was approved by the local Ethics Committee in

each center following the ethical standards recommended by

the  Helsinki  Declaration.  All  subjects  gave  their  written

informed consent.

MRI acquisition

3  Tesla  MRIs  were  acquired  at  three  different  sites  with

different acquisition protocols. HMV subjects did not have

DWI data. The acquisition parameters can be found in the

supplementary  material.  Importantly,  all  centers  had  a

structural acquisition of 1x1x1 mm isotropic resolution and a

diffusion  acquisition  of  at  least  2x2x2  mm  isotropic

resolution.

CSF acquisition and analysis

CSF  was  acquired  following  international  consensus

recommendations,  as  previously  described  [21].  All  the

analyses  were  done  in  the  Hospital  of  Sant  Pau  using
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commercial  ELISA kits (Fujirebio Europe).  The interassay

CV for all CSF determinations performed in this study was

less than 15% [21].

Genetic Analysis

APOE  genotype  was  determined  as  previously  described

[21].

Cortical thickness processing

Cortical  thickness   reconstruction  was  performed  with

Freesurfer package v5.1 (http://surfer.nmr.mgh.harvard.edu)

using a procedure that has been described in detail elsewhere

[25] (Fig. 2-Left) as previously reported [4,23]. A Gaussian

kernel of 15 mm full-width at half maximum was applied to

the  subjects’ CTh  maps  before  further  analyses  as  it  is

customary  in  surface  based  analyses  [4,11,26].  From  the

remaining 390 subjects, 21 were excluded due to suboptimal

image  quality,  which  included  subtle  movement  artifacts,

poor  SNR  and  gradient  artifacts.  Additional  43  subjects

(11%) were excluded due to incorrect cortical segmentation

by Freesurfer. 

Cortical mean diffusivity processing

From  the  resulting  326  subjects,  284  were  included  for

diffusion  MRI  analysis  (34  had  no  raw data  and  8  were

excluded due to processing errors).  We used a homemade

surface-based  approach  based  on  the  recent  literature

advances [27,28] to process cortical diffusion MRI, since the

commonly used voxel-based morphometry (VBM) approach

has  limitations  when  used  in  GM analyses,  where  partial

volume effects may bias cortical MD measurements [29] due

to  CSF  signal  inclusion  in  GM  voxels.  Moreover,  VBM

analyses are very sensitive to the smoothing kernel: different

volume-based smoothing kernels provide diverse statistical

results  [30].  In  order  to  mitigate these pitfalls,  we used a

surface-based  DTI  approach  using  the  FSL  package

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/, version 5.0.9) and, the

Freesurfer package (v5.1). Further, to eliminate possible site

biases  on  the  diffusion  MRI  data,  we  applied  a

harmonization  procedure  using  the  ComBat  toolbox  [31],

which  was  designed  for  multi-site  studies.  Please  see

harmonization  details  in  the  Supplementary  material.  The

MD  procedures  are  summarized  in  Fig.  2-Right  and

explained in detail in the Supplementary data.  Briefly, the

diffusion  images  were  corrected  for  motion  effects,  skull-

stripped, DTI tensor fitted and projected to the brain surface.

A Gaussian kernel  of 15 mm full-width at  half  maximum

was applied to the subjects’ mean diffusivity surface maps

before further analyses [26]. Finally, the surface MD maps

were harmonized and used for the statistical analyses. 

All  the  MD  analyses  were  repeated  applying  a  partial

volume  (PV)  correction  especially  designed  for  mean

diffusivity studies [29].  Further detail can be found in the

Supplementary material.
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Fig. 1. Flowchart of the methodological procedures and the 
resulting samples after each process. 
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Fig. 3. Top. Cortical Thickness patterns in the AD continuum. (A) CTh differences in Stage 0 vs Stage 1 HC, (B) Stage 0 vs Stage 2 HC,
(C) Stage 0 HC vs MCI-AD patients and (D) Stage 0 HC vs AD patients. Only clusters that survive family-wise error corrected p<0.05 are
shown. All the analyses are adjusted by age, sex, center and APOE. 
Mid. Cortical Mean Diffusivity patterns in the AD continuum. (A) MD differences in Stage 0 vs Stage 1 HC, (B) Stage 0 vs Stage 2 HC,
(C) Stage 0 vs MCI-AD patients and (D) Stage 0 HC vs dAD patients. Only clusters that survive family-wise error corrected p<0.05 are
shown. All the analyses are adjusted by age, sex and APOE.
Bottom. Free-water (FW) patterns in the AD continuum. (A) FW differences in Stage 0 vs Stage 1 HC, (B) Stage 0 vs Stage 2 HC, (C)
Stage 0 vs MCI-AD patients and (D) Stage 0 HC vs dAD patients. Only clusters that survive family-wise error corrected p<0.05 are shown.
All the analyses are adjusted by age, sex and APOE. 
MD=Mean Diffusivity;  FW=Free-water; CTh = Cortical Thickness;  HC= Healthy Controls; MCI-AD= Mild cognitive impairment with
evidence  of  an  underlying  AD pathophysiological  process;  dAD= Alzheimer's  disease  dementia  with  evidence  of  an  underlying  AD
pathophysiological process.
For visualization purposes, different color-codes were used for MD/FW and CTh. For the MD/FW results, we used a green-yellow color-
code and a purple-white color representation for positive and negative significant values, respectively. For CTh results, we used a gradient-
blue scale color-code and a red-yellow color representation for negative and positive significant values, respectively. In the stage 2 vs stage 0
comparisons, significant clusters are highlighted with an asterisk for visualization purposes.
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Cortical free-water processing

The FW maps were computed as previously reported [16].

Briefly, the FW maps were estimated fitting a regularized bi-

compartment model to our DWI data. This model includes a

“tissue”  compartment  and  a FW compartment.  Free  water

was  defined  as  water  molecules  that  are  not  hindered  or

restricted,  and  are  hence  extracellular,  with  a  diffusion

coefficient  of  water  in  body temperature.  The  FW metric

stands for the fraction of the FW compartment in a certain

voxel (i.e. percentage of a certain voxel). Once the FW maps

were  computed,  they  were  projected  to  the  surface,

smoothed (kernel size of FWHM 15 mm) and finally were

harmonized before further statistical analyses. Same as for

the MD, all  the analyses  were repeated applying a partial

volume  correction  before  the  surface  projection  (see

Supplementary material). 

Statistical methods

Demographic group analyses were made using R statistical

software (https://www.r-project.org/). Comparisons between

groups were performed using an ANOVA with Tukey post-

hoc  corrections  for  continuous  variables  and  with  a  chi-

square test for categorical variables.

We first performed group analyses for MD, FW and CTh 

with  a  2  class  general  linear  model,  as  implemented  in

Freesurfer,  between  Stage  0  HC  and  the  rest  of  the

preclinical and clinical AD stages. Then, significant regions

were plotted in a box and whisker plots to better illustrate

the dynamics across de AD continuum.Second, to assess the

relationship between MD and CTh, a vertex by vertex partial

correlation was computed between the CTh and MD values

in the whole sample, HC and symptomatic AD. Specifically,

a  general  linear  model  was  created,  being  the  MD  the

dependent variable of interest, using CTh as the independent

variable  and  introducing  age,  sex  and  APOE4  status  as

nuisance variables. All the group analyses included age, sex

and APOE4 status as covariates. Additionally, CTh analyses

included the center as covariate. To avoid false positives, a

Monte Carlo simulation with 10,000 repeats as implemented

in  Freesurfer  (family-wise  error  [FWE],  p  <  0.05)  was

tested. Full details 

can  be  found  in  the  Supplementary  material.  Only  those

regions that survived those multiple comparison were shown

in the figures. 

For  the  figure  projection  and  design,  we  used  a  freely

available  python  library  to  overlay  the  results  into  the

standard surface (Pysurf: https://pysurfer.github.io/).

RESULTS

Demographics, CSF biomarkers and APOE genotype

Table  1  summarizes  the  demographics,  CSF  biomarker

levels and neuropsychological assessments of the subjects.

Three  hundred  and  twenty-six  subjects  were  finally

included: 220 Stage 0, 25 Stage 1, 9 Stage 2/3, 41 MCI-AD

and 31 dAD.  There  were  no  statistical  differences  in  any

variable between the CTh whole sample and the diffusion

MRI subset.

Biphasic trajectory of changes in MD and CTh in the AD

continuum

Fig. 3-top shows the CTh group-difference maps covaried by

age, sex,and APOE4 status (p<0.05 FWE corrected). Stage 1

HC showed areas of increased CTh with respect to Stage 0

HC  (Fig.  3-top  A)  in  the  middle  temporal  gyrus  and

precuneus,  in  the  left  hemisphere,  and  superior  parietal

areas, in both hemispheres. Stage 2/3 HC revealed regions of

atrophy in the middle temporal areas bilaterally with respect

to Stage 0 HC (Fig. 3-top B). The MCI-AD patients vs the

Stage  0  HC  comparison  showed  an  atrophy  map  in  the
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fusiform gyrus, precuneus, posterior cingulate cortex (PCC)

and temporoparietal areas in the right hemisphere, and in the

middle temporal gyrus left hemisphere (Fig. 3-top C). The

dAD  patients  revealed  a  widespread  atrophy  pattern  that

further extended to the superior frontal gyrus, the enthorinal

cortex and the superior, middle and inferior temporal gyrus

bilaterally (Fig.  3-top D).

Fig. 3-mid shows the MD group-difference maps, covaried

by  age,  sex,and  APOE4  status  (p<0.05  FWE  corrected).

Stage  1  HC revealed  lower  MD values  in  comparison  to

Stage 0 HC (Fig. 3-mid A) in the left and right inferior and

middle  temporal  gyrus,  and  in  the  right  superior  parietal

areas.  Stage 2/3 HC showed higher MD values in the left

inferior  frontal  gyrus  (Fig.  3-mid  B).  MCI-AD  patients

showed  a  widespread  pattern  of  increased  MD  in  both

hemispheres, mainly in the temporal lobe, supramarginal and

the PCC (Fig. 3-mid C). The dAD patients showed similar

results  that  further  extended  to  almost  the  entire  cortical

mantle  with  a  preservation of  primary  motor  and  sensory

areas (Fig. 3-mid D).

Fig. 3-bottom shows the FW group-difference maps covaried

by  age,  sex,and  APOE4  status  (p<0.05  FWE  corrected).

Stage 1 HC presented lower FW values  in  comparison to

Stage  0  HC  (Fig.  3-bottom  A)  in  superior  parietal  areas

bilaterally and in right inferior and middle temporal areas.

Stage  2/3  HC  showed  higher  FW values  in  orbitofrontal

cortex  bilateraly  and  portions  of  the  left  middle  temporal

cortex  (Fig.  3-bottom  B).  MCI-AD  patients  showed

increases of FW in vulnerable AD areas (Fig. 3-bottom C)

that are more widespread in the dAD(Fig. 3-bottom D).

Figure 4 shows a box-plot for the most significant region,

illustrating the proposed theoretical dynamic trajectories for

CTh, MD and FW in AD vulnerable areas. 

We  repeated  all  the  analyses  using  perfectly  number-

balanced and age-, gender- and center-matched samples. 

Also, the MCI analyses were repeated selecting the amnestic

presentation forms (n=22). Then, we repeated the stage 0 vs

stage  1  analysis  without  including  APOE4  status  as  a

covariate. Moreover, we repeated the MD stage 0 vs stage 1
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Fig.  4.  Box  and  whisker  plots  illustrating  the  cortical
dynamics in the AD continuum. Most significant cluster from
the stage 0 vs  stage 1 analyses  were isolated,  averaged and
plotted by group. Specifically, A) Cortical thickness analyses,
B)  Mean  diffusivity  analyses  and,  C)  Free  Water  analyses..
MCI-AD=  Mild  cognitive  impairment  with  evidence  of  an
underlying AD pathophysiological process; dAD= Alzheimer's
disease  dementia  with  evidence  of  an  underlying  AD
pathophysiological process.
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analyses splitting by center. The results did not qualitatively

change in any contrast (data not shown).

Finally,  we repeated all  the analyses  presented applying a

partial  volume correction  and  the  results  did  not  change.

Thus, only results uncorrected for partial volume are shown.

The entire partial volume corrected results are shown in the

Supplementary material Figure 1.

Cortical  microstructural changes are intimately related

to cortical thickness 

The distribution of changes for both CTh and MD presented

an  overlapping  pattern  in  the  AD  continuum.  To  further

assess the relationship between CTh and MD, we performed

a  vertex-wise  correlation  analysis  between  CTh  and  MD

values  in  the  whole  sample  (N=284),  in  symptomatic

patients (MCI and AD patients; N=59) and in HC (N=225)

(Fig. Suppl 2), covaried by age, sexand APOE4 status. In the

whole sample, the correlation was widely significant across

almost the entire cortex (Fig. Suppl 2 A). These correlations

were  also  found when  HC (Suppl  2  B)  and  symptomatic

patients (Suppl 2 C) were analyzed independently. 

DISCUSSION

This study assesses the cortical microstructural changes and

their relationship with CTh in the AD continuum in a large

multicenter cohort. We found that micro and macrostructural

brain changes are intimately related and that cortical  MD,

FW and CTh followed a biphasic trajectory of changes in

AD (Fig. 4 and Fig. 5). In early preclinical AD (Stage 1), we

observed  cortical  thickening  and  MD  and  FW  decreases

suggesting  a  relationship  with  amyloid  deposition.  In  late

preclinical  AD  (stage  2/3),  and,  especially  in  the

symptomatic phase of the disease,  there is  increased MD,

FW  and  atrophy  in  areas  typically  related  to  the  AD-

signature [32]. 

Our  results  confirm  in  another  independent  cohort,  the

biphasic  trajectory  of  changes  for  CTh  along  the  AD

continuum. The finding of increased CTh in relation to brain

amyloidosis has  already been reported in several  different

cohorts in familial and sporadic AD in cross-sectional [4,7–

10,33],  and  longitudinal  studies  [11].  The  relationship

between  brain  structure  and  CSF biomarkers,  however,  is

still  controversial.  In  fact,  not  all  studies  have  reported

increased  CTh  in  relation  to  amyloid  [34–37].  However,

none of them have explicitly explored the influence of tau on

these  results.  It’s  important  to  consider  that,  longitudinal

studies by Desikan et al showed that volume loss [38] and

cognitive decline [39] only occurs in the presence of both

amyloid and tau alterations. On the other hand, brain atrophy

in late preclinical AD stages and in symptomatic AD is very

well established [32].

We found a similar 2-phase phenomenon for MD changes in

preclinical AD, a trajectory of changes that had already been

proposed in autosomal dominant AD [8,12]. In Stage 1 HC,

we  found  decreases  in  cortical  MD  associated  with  the

cortical  thickening. In Stage 2/3 HC, and especially when

comparing MCI and AD patients with respect to Stage 0 HC,

we found a pattern of increased MD accompanied by cortical

atrophy in AD vulnerable areas [32]. This study is the first to

assess the entire AD continuum. The studies assessing the

GM microstructural  changes in AD are limited, and all of

them with small samples sizes. These previous studies found

MD decreases  in  asymptomatic  familial  AD [8,14].  Other

studies with MCI and AD patients found MD increases in

the symptomatic phase of AD [12]. The FW results present a

high degree of overlap with the MD maps.  

Our results confirm the proposed biphasic models for both

CTh  and  diffusivity  changes  and  FW  (Fig.  5).  Brain

amyloidosis,  in  the  absence  of  tau,  would  be  related  to

pathological cortical thickening, decreased MD and 
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decreased  FW,  which  would  be  followed  by  atrophy,

increased MD and increased FW once tau markers become

abnormal [4]. In this sense, Racine et al. found a correlation

between amyloid deposition, as measured by PIB-PET, and

decreased MD [15] in the Wisconsin Registry for Alzheimer

´s  Prevention  (WRAP)  cohort.  Importantly,  increased

cortical  volumes  in  relation  to  Aß  deposition  have  been

reported in a different work from the same cohort  [7].  Of

note, similar to the WRAP study, our cohort of HC is also

relatively young and is also enriched for family history and

APOE4 genotype. In both cohorts, increased CTh seems to

be  accompanied  by  decreased  cortical  MD  values  in

preclinical  AD. The increases in GM MD in symptomatic

AD  have  been  reported  by  several  groups.  Specifically,

hippocampal MD has been found to be increased in  MCI

subjects  who progressed to  dementia  compared with non-

progressors [12]. In fact, hippocampal MD could be a better

predictor  for  conversion  to  dementia  than  hippocampal

volume  itself  [40].  Cortical  MD  has  also  been  found

increased in both MCI [41] and AD [42] patients. These MD

increases  have  been  related  to  cellular  loss  and

microstructural  disorganization,  which  would  result  in  a

breakdown  of  the  usual  barriers  for  water  diffusion  [12].

Again, the FW maps highly correlate with the MD results.

Our  interpretation  is  that  the  FW  increases  in  the

symptomatic phase of the disease would correspond with the

same biological source as MD, which is likely extracellular.
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Fig.  5.  Biphasic  model of  cortical thickness and mean diffusivity changes along the AD continuum.  Proposed model  for the
trajectory of cortical  changes in the Alzheimer’s  disease continuum. Cortical  thickness  is plotted in red while mean diffusivity  is
represented in purple. The color gradation between stages is used for illustrative purposes.
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We found a  strong negative  correlation  between MD and

CTh in the AD continuum. These data support an intimate

relationship between the micro and macrostructural changes.

This  finding is  in  agreement  with the  inverse  correlations

between  CTh  and  GM  MD  in  a  group  of  MCI  patients

reported  by  Jacobs  et  al  [41].  However,  previous  studies

have  also  proposed  that  microstructural  changes  precede

changes in macrostructure [43]. Further studies are needed to

confirm this hypothesis.

Our results are biologically plausible.  We have previously

discussed  the  rationale  for  the  increases  in  CTh  [4,9,11].

Both the increase in CTh and the MD and FW decreases in 

the early asymptomatic stage of AD might be caused by an

amyloid-induced inflammatory response. This inflammation

would  trigger  changes  in  cell  volume  (neuronal  and  glia

swelling) and cell number (glia recruitment and activation)

that  could  justify  the  decreases  in  cortical  diffusivity

[8,12,14].  In  this  respect,  a  recent  paper  showed  that

astrocyte activation is implicated in the very early stages of

AD  pathology  [44].  Indeed,  neuroinflammation  and  glial

activation  are  increasingly  recognized  as  early  events  in

Alzheimer’s, even before Aß1-42 deposition[45]. It has been

shown that  both  cell  hypertrophy and  glial  activation can

alter  the  diffusion  properties  of  tissue  by  adding  new

diffusion barriers[46]. Moreover, extracellular deposition of

Aß  fibrils  could  also  contribute  to  the  reduced  cortical

diffusivity [47], although this is still under debate [48]. The

increases in cortical MD and FW are to be expected in the

AD  symptomatic  phases  due  to  the  breakdown  of

microstructural barriers, such as myelin cell membranes and

intracellular  organelles,  that  would normally restrict  water

molecule motion [12]. This breakdown would be due to the

synergy between amyloid and tau pathologies [5] that starts

in late preclinical AD (Stage 2/3).

Our  results  have  several  clinical  implications.  First,  our

results suggest a potential  use of cortical MD or FW as a

biomarker for AD. Second, we expand our proposed model

of  a  2-phase  phenomenon  [4,11]  to   MD  and  FW,  thus

strengthening  the  role  of  pathogenic  synergies  between

biomarkers  and  nonlinear  trajectories  of  changes  in

hypothetical  biomarker  models  of  AD.  Third,  our  results

highlight  the  relevance  of  the  NIA-AA  preclinical  AD

research criteria in predicting different stages with different

biology. Moreover,  a multimodal approach with both CTh

and diffusion measures might enable a  better modeling of

the cortical  changes along the AD continuum. Finally,  the

results also have implications in clinical trials for preclinical

AD. MRI measures are commonly used as surrogate markers

of disease modification, but a linear trajectory of changes is

always  assumed.  We  suggest  that  a  non-linear  trajectory

should be modeled,  differentiating between the preclinical

AD stages [11].  

The  main strengths  of  this  study are the large  number  of

subjects  included  in  the  sample  and  the  surface-based

analysis, which tries to overcome processing limitations and

methodological concerns repeatedly reported in the literature

[12,49]. Moreover, we applied different strategies to ensure

that our results have strong biological basis. First, the results

did not significantly changed when applying partial volume

correction. Second, we included a harmonization processing

step  that  mitigates  the  potential  site  variation  in  the

acquisition protocols. Finally, were found qualitatively very

similar  results  both  with  MD  and  FW  (using  different

approaches to correct for partial volume effect). This study

has also some limitations. First of all, the relatively young

age of the HC accounts for the relatively small number of

subjects in preclinical AD and in the suspected non-amyloid

pathology (SNAP) group, despite the overall  large sample

size.  This  fact  results  in  unbalanced  preclinical  stages
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groups. Nonetheless, all the results survived correction for

multiple comparisons and remained unchanged when using

balanced groups for every analysis. The young age of both

HC and symptomatic patients should be taken into account

when  comparing  these  results  with  other  studies.  Second,

another  important  limitation  is  the  indirect  assessment  of

amyloid pathology and the lack of longitudinal  follow-up.

Only  with  longitudinal  comparisons  can  we  be  sure  that

these stage 0 to stage 1 changes are due to progression rather

than other intrinsic or longstanding differences (e.g. genetic)

that  cause  both  thicker  cortices  and  a  predisposition  to

amyloid deposition. Further  studies  with amyloid,  tau and

inflammation/glial  activation  PET as  well  as  longitudinal

diffusion MRI studies with harmonized protocols will help

to confirm the sequence of alterations and the relationship

between  them.  Third,  this  was  a  multicenter  study  with

different  diffusion  protocols  and  number  of  directions.

However, MD has been reported to be robust measure [50]

and,  as  mentioned  before,  we  also  applied  a  novel  and

powerful  harmonization  processing  step  to  address  this

issue.  Nonetheless  there  was  a  relative  imbalance  of  the

group  proportions  at  each  site  which  might  affect  the

algorithm.  Diffusion  MRI  data  is  particularly  prone  to

susceptibility  artifacts.  A common approach to  correct  for

gradient distortions in EPI sequences is to use the gradient

field  map  (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE).

Unfortunately, this acquisition is not available in our dataset

so we could not perform a physics-based correction for EPI

distortion.  Therefore,  despite  the  effort  invested  in

harmonizing the diffusion sequences, we acknowledge that a

clinical  and physical  phantom study would be required to

more robustly detect  possible sources of site biases in the

data acquisition [51].

In  conclusion,  this  study  shows  that  cortical  micro  and

macrostructure are closely related in AD. Cortical diffusivity

follows  a  biphasic  trajectory  of  changes:  MD  and  FW

initially  decrease  in  the  early  preclinical  phase  and  then

increase in late  preclinical  and symptomatic stages.  These

results should be considered in clinical trials in the selection

of subjects and in the modeling of the predicted changes to

be expected with anti-amyloid therapies.
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Suppl. Fig 1. Top. Cortical Mean Diffusivity patterns in the AD continuum. (A) MD differences in Stage 0 vs Stage 1 HC, (B) Stage 0
vs Stage 2 HC, (C) Stage 0 vs MCI-AD patients and (D) Stage 0 HC vs dAD patients. 
Bottom. Free-water (FW) patterns in the AD continuum. (A) FW differences in Stage 0 vs Stage 1 HC, (B) Stage 0 vs Stage 2 HC, (C)
Stage 0 vs MCI-AD patients and (D) Stage 0 HC vs dAD patients. 

Suppl.  Fig 2.  Mean diffusivity correlates  with cortical  thickness.  Vertex-wise partial  correlation between mean diffusivity  and
cortical thickness for (A) the whole sample, (B) the cognitively healthy control group and, (C) the symptomatic group. Only clusters that
survive family-wise error corrected p<0.05 are shown. All the analyses are adjusted by age, sex, centre and APOE
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SUPPLEMENTARY METHODS

Site Harmonization

Briefly, the ComBat algorithm works on the MD data along with all

the interest and nuisance variables, estimating and removing just

the site effect, while maintaining the biological information. 

Monte Carlo simulation

In  this  work  we  used  the  Monte  Carlo  simulation  with  10000

repeats  as  implemented  in  Freesurfer.  Briefly,  this  cluster-based

method is based in the probability that a certain cluster of certain

size  is  obtained  by  chance/noise.  This  probability  is  computed

using Monte Carlo simulations where: 1) white Gaussian noise is

synthesized in the standard space surface, 2) the noise is smoothed

by a certain FWHM (data-dependent), 3) the smoothed values are

thresholded using a thr>1.3 (i.e p < 10-1.3) and, 4) the maximum

cluster size for the simulation is recorded. These steps are repeated

10000 times in order to generate a distribution of maximum cluster

size  generated  by  random  noise.  If  our  statistically  significant

cluster  size  is  NOT smaller  than the obtained during the Monte

Carlo simulation more than 500 iterations ( p < 0.05), the software

considers  that  the  cluster  is  not  given  by  chance  and  survived

multiple comparisons. This distribution is provided by Freesurfer

(specifically, in the command mri_surfcluster)”.

Dti processing

First, a rigid body transformation between the b=0 image and all

the diffusion-weighted acquisition was applied to mitigate motion

effects.  After  removing  non-brain  tissue  using  Brain  Extraction

Tool,  diffusion tensors were fitted and MD was calculated using

FSL’s  DTIfit  command.  A  boundary-based  algorithm  as

implemented in Freesurfer bbregister, was then used to compute an

affine registration matrix  between the skull-stripped b0 diffusion

image and the segmented structural T1-weigthed volume. At this

point, all b0 to T1 registrations were visually inspected in order to

exclude those individuals with errors in the coregistration. Then,

MD  volumes  were  projected  to  each  individual’s  surface  space

generated during the cortical segmentation. At each vertex, cortical

MD was sampled using the middle point along the normal vector

between white and pial surfaces using the Freesurfer’s mri_vol2surf

command, as it has been done in recent surface-based approaches.

Then,  the  spherical  registration  computed  during  the  CTh

segmentation process was used to normalize each individual MD

surface map to an average standard surface, enabling an accurate

matching  of  cortical  locations  for  the  computation  of  further

statistics

PV Correction for MD maps

In brief, after motion correction, tensor estimation and T1 – DWI

registration,  the  images  were  introduced  to  the  Koo  et  al  PV

toolbox. This toolbox computes the CSF contribution in each voxel,

it then subtracts it and estimates the net MD value in the cortical

GM. Only those voxels that contained at least a 30% of GM, as

computed  by  Freesurfer’s  gtmseg,  were  considered  for  these

analyses.

PV Correction for Free water maps

In this case, the corrected FW maps were the difference between

the  original  FW  and  the  percent  of  CSF  in  a  given  voxel  as

computed by FreeSurfer. Again, only voxels that contained more

than 30% of GM as computed by Freesurfer were included in these

analyses.
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Abstract

Cortical  mean  diffusivity  has  been  proposed  as  a  novel

biomarker  for  the  study  of  the  cortical  microstructure  in

Alzheimer´s disease. In this multicenter study, we aimed to

assess the cortical microstructural changes in the behavioral

variant of frontotemporal dementia; and to correlate cortical

mean diffusivity with clinical measures of disease severity

and  CSF  biomarkers  (neurofilament  light  and  the  soluble

fraction beta of the Amyloid precursor protein). We included

148  participants  with  a  three-Tesla  MRI  and  appropriate

magnetization-prepared  rapid  gradient-echo  and  diffusion

weighted  imaging  sequences:  70  behavioral  variant  of

frontotemporal  dementia  patients  and  78  age-matched

healthy  controls.  The  modified  frontotemporal  lobar

degeneration  clinical  dementia  rating  was  obtained  as  a

measure  of  disease  severity.  A  subset  of  patients  also

underwent a lumbar puncture for CSF biomarker analysis.

Two independent raters blind to the clinical data determined

the  presence  of  significant  frontotemporal  atrophy  to

dichotomize  the  participants  into  possible  or  probable

behavioral  variant  frontotemporal  dementia.  Cortical

thickness  and  mean  diffusivity  were  computed  using  a

surface-based approach.  We performed group comparisons

of cortical thickness and cortical mean diffusivity between

behavioral  variant  of  frontotemporal  dementia  (both using

the  whole  sample  and  probable  and  possible  behavioral

variant of frontotemporal dementia subgroups) and healthy

controls.  We also  performed correlation  analyses  with the

modified  frontotemporal  lobar  degeneration  clinical

dementia  rating  score  and  CSF neuronal  biomarkers.  The

mean  diffusivity  maps,  in  the  whole  cohort  and  in  the

probable  behavioral  variant  of  frontotemporal  dementia

group,  showed  widespread  cortical  areas  with  increased

mean  diffusivity  that  partially  overlapped  with  cortical

thickness, but further expanded to other behavioral variant of

frontotemporal  dementia-related  regions. In  the  possible

behavioral  variant  of  frontotemporal  dementia  group,  we

found increased cortical mean diffusivity in frontotemporal

regions (especially in the dorsolateral and medial prefrontal

cortex  of  both  hemispheres),  but  only  minimal  cortical

thickness loss. Both mean diffusivity and cortical thickness

correlated  with  measures  of  disease  severity  and  CSF

biomarkers.  However,  the  areas  of  correlation  with  mean

diffusivity  were  more  extensive.   Our  data  suggest  that

cortical mean diffusivity could be a sensitive biomarker for

the  study of  the  neurodegeneration-related  microstructural

changes in  behavioral  variant  of  frontotemporal  dementia.

Further longitudinal studies should determine the diagnostic

and  prognostic  utility  and  the  longitudinal  change  of  this

novel  neuroimaging  biomarker  especially  at  the  earliest

stages of the disease.

INTRODUCTION

Frontotemporal  lobar  degeneration  (FTLD)  is  a

neuropathological  construct  encompassing  multiple

neurodegenerative  diseases  sharing  partially  overlapping

patterns  of  frontal  and/or  temporal  grey  matter

neurodegeneration  (Bang  et  al.,  2015).  The  behavioral

variant  of  frontotemporal  dementia (bvFTD) is a common

clinical presentation of FTLD (Seo et al., 2018). Clinically,

bvFTD is characterized by progressive personality changes

followed  by  social,  cognitive  and  functional  deterioration

(Ranasinghe et al., 2016). With the exception of genetically

determined  cases,  the  diagnosis  of  bvFTD  relies  on  the

clinical and neuroimaging features (Rascovsky et al., 2011;

Wood et al., 2013). The refinement of the diagnostic criteria

proposed  by  the  frontotemporal  dementia  consortium  has

been an important step forward to improve the diagnosis of

the bvFTD. Furthermore, these criteria have shown a good

diagnostic value in pathology-confirmed cases (Balasa et al.,
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2015; Chare et al., 2014; Perry et al., 2017; Rascovsky et al.,

2011;  Seo  et  al.,  2018).  In  the  frontotemporal  dementia

consortium criteria, the presence of frontal and/or temporal

atrophy increases the diagnostic certainty once the clinical

criteria for possible bvFTD are met. However, a number of

patients are still misdiagnosed with other neurodegenerative

and  non-neurodegenerative  diseases  (Bang  et  al.,  2015).

Several  factors,  such as  the absence of  prominent  cortical

atrophy in up to a third of the patients (Ranasinghe et al.,

2016;  Rascovsky  et  al.,  2011),  may  contribute  to

misdiagnosis. Conversely, possible bvFTD may include both

neurodegenerative cases in early phases of the disease and

non-neurodegenerative  phenocopies  (Gossink  et  al.,  2016;

Khan  et  al.,  2012).  Thus,  the  development  of  novel

biomarkers able to increase the diagnostic certainty of FTLD

is essential (Binney et al., 2017; Downey et al., 2015; Lam et

al., 2013; Meeter et al., 2017). These are key aspects for the

detection  of  patients  with  FTLD-related  syndromes,

especially at the earliest phase in clinical practice and for the

selection of candidates to trials with protein-specific targeted

therapies that may be more effective in earlier stages (Elahi

and Miller, 2017).

Most neuroimaging studies in bvFTD have been focused on

the  cortical  macrostructure  with  different  metrics  (grey

matter  density  in  voxel-based  morphometry  studies  or

cortical  thickness  in  surface-based  analyses)  (Elahi  et  al.,

2017; Mahoney, Simpson, et al., 2014; Meeter et al., 2017)

or white matter microstructural properties (namely diffusor

tensor  imaging  metrics  such  as,  fractional  anisotropy).

However,  diffusor  tensor  imaging  can  also  be  used  to

measure the magnitude of diffusivity (mean diffusivity), in

the cerebral cortex (Weston et al., 2015; Montal et al., 2017).

Higher  cortical  mean  diffusivity  values  reflect

microstructural  disorganization  and  disruption  of  cellular

membranes,  and  have  been  proposed  as  a  sensitive

biomarker  which  might  antedate  macroscopic  cortical

changes (Weston et al., 2015). However, only a single small

study  has  assessed  mean  diffusivity  changes  in

frontotemporal  dementia  (Whitwell  et  al.,  2010).  In  this

previous study no clear differences were found between gray

matter density and gray matter mean diffusivity, as assessed

on  a  voxel-based  approach.  However,  the  voxel-based

approach  may  fail  to  capture  the  subtle  tissue-specific

changes that  take place at  the cortex level  (Weston et  al.,

2015). As we have previously shown in Alzheimer’s disease,

cortical mean diffusivity can be accurately determined on a

surface-based approach for the study of the microstructural

changes  that  occur  with  disease  progression  and  may

antedate cortical thickness changes (Montal et al., 2017).

In  bvFTD,  there  are  no  validated  pathophysiologic

biomarkers  to  reflect  the  underlying  pathology,  with  the

exception  of  pathogenic  mutations  that  predict  specific

FTLD  subtypes.  However,  CSF  biomarkers  may  also

contribute to  our understanding of  FTLD pathophysiology

(Lleo et al., 2018; Meeter et al., 2017). Particularly, the CSF

levels of neurofilament light (NfL) (an axonal cytoskeletal

constituent essential for axonal growth) have shown to be a

useful  neurodegeneration  biomarker  in  FTLD-related

syndromes (Menke et al.,  2015; Scherling et al.,  2014). In

addition to NfL, we have recently shown that the levels of

the soluble fragment-beta of the Amyloid Precursor Protein

(sAPPβ)  (Alcolea  et  al.,  2017)  may  be  useful  to  track

neurodegeneration  in  frontotemporal  structures  in

frontotemporal dementia (Alcolea et al., 2017; Illán-Gala I et

al., 2018).

In  this  multicentre  study,  we aimed  to  assess  the  cortical

mean  diffusivity  changes  in  a  large  multicenter  cohort  of

bvFTD patients, and to correlate these changes with clinical

measures  of  disease  severity  (FTLD-CDR)  and  CSF

biomarkers (NfL and sAPPβ). We hypothesized that cortical

146



Supl. study 2: Cortical  microstructural changes in   bvFTD  

mean  diffusivity  may  be  more  sensitive  than  cortical

thickness  to  detect  the  cortical  changes  associated  with

bvFTD.

METHODS

Participants

Participants  were  recruited  in  three  different  centers  from

two  collaborative  studies:  The  Catalan  Frontotemporal

Dementia Initiative (CATFI) and the Frontotemporal Lobar

Degeneration Neuroimaging Initiative (FTLDNI). 

The  CATFI  is  a  multicenter  study  focused  on  the

development  of  novel  biomarkers  and  therapeutic

interventions  for  patients  suffering  from  frontotemporal

dementia.  The  CATFI  study  includes  patients  from  three

centers  (Hospital  de  Sant  Pau  [HSP],  Hospital  Clínic  de

Barcelona  [HCB]  and  Hospital  Arnau  de  Vilanova).  The

principal  investigator  of  the  CATFI  study  is  Dr.  Alberto

Lleó.  The  primary  goals  of  FTLDNI  are  to  identify

neuroimaging  modalities  and  methods  of  analysis  for

tracking FTLD and to assess  the value of  imaging versus

other  biomarkers  in  diagnostic  roles.  The  Principal

Investigator  of  FTLDNI  is  Dr.  Howard  Rosen  at  the

University of California, San Francisco (UCSF). For up-to-

date  information  on  participation  and  protocol,  please

visit: http://memory.ucsf.edu/research/studies/nifd. 

The  inclusion  criteria  in  this  study  were:  (i)  diagnosis  of

possible or probable bvFTD according to the frontotemporal

dementia consortium criteria (Rascovsky et al.,  2011); and

(ii) 3T MRI study available for structural and cortical mean

diffusivity analysis (see below for details). In both cohorts

the diagnosis was made by neurologists with expertise in the

evaluation the FTLD-related syndromes after  an extensive

neurological and neuropsychological  evaluation. Moreover,

patients  were  followed  longitudinally  at  each  center  to

ascertain if they presented a progressive clinical evaluation

or  developped  a  second  FTLD-related  syndrome  (i.e.

amyotrophic lateral sclerosis or a progressive supranuclear

palsy phenotype). 

Because the diagnosis of  bvFTD has been related to non-

neurodegenerative conditions in some cases that do not show

the  typical  clinical  progression,  we  identified  bvFTD

patients with increased certainty of underlying FTLD when

any of the following criteria were met: (i) clinical evidence

of  disease  progression  (clinical  deterioration  evidenced

during  follow-up  or  progression  to  a  second  phenotype

related  to  FTLD);  (ii)  genetic  confirmation  of  FTLD

(identification of a pathogenic mutation); (iii) confirmation

of  FTLD those  patients  with  neuropathological  evaluation

available. 

Fig.  1  shows the flowchart  of  the  sample composition.  A

total of 192 participants with appropriate 3T structural and

diffusion-weighted  MRI  were  considered  for  analysis.  Of

these,  44 (23%) participants were excluded due to quality

control  issues or processing errors.  All the excluded cases

were bvFTD patients. 
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Figure 1. Flowchart of the sample composition.



Clinical measures of disease severity

The  modified  frontotemporal  lobar  degeneration  clinical

dementia  rating  (FTLD-CDR)  was  obtained  as  previously

described,  as  a  measure  of  disease  severity  the  bvFTD

(Knopman et  al.,  2008).  Higher scores in the FTLD-CDR

reflect a higher disease severity. 

Genetic studies 

Patients were screened for genetic mutations known to cause

autosomal dominant inheritance of frontotemporal dementia

as previously reported (Illán-Gala I et al., 2018; Perry et al.,

2017). 

Pathological assessment

Neuropathological  assessments  were  performed  at  the

Barcelona  brain  bank  (n=1)  or  at  UCSF  (n=5)  following

previously  described  procedures  (Tartaglia  et  al.,  2010;

Balasa  et  al.,  2015).  Pathology-proven  FTLD  cases  were

classified in one of the major molecular subtypes (tau, TDP-

43, FUS or unclassifiable). 

MRI acquisition

MRIs  (3  T)  were  acquired  at  three  different  sites.  The

acquisition  parameters  by  center  can  be  found  in  the

Supplementary  Material.  All  centers  had  a  structural

MPRAGE T1-weighted acquisition of approximately 1 X 1

X 1 mm isotropic resolution and an EPI diffusion-weighted

acquisition  of  at  least  2.7  X  2.7  X  2.7  mm  isotropic

resolution.  

Possible/Probable  classification  according  to  MRI

atrophy on visual inspection 

In  order  to  determine  the  presence  of  significant

frontotemporal  atrophy  consistent  with  the  diagnosis  of

probable bvFTD according to the frontotemporal  dementia

consortium criteria  (Rascovsky et  al.,  2011),  all  the MRIs

from  bvFTD  participants  analyzed  in  this  study  (n=114)

were visually inspected by two independent raters blinded to

the  clinical  data  in  order  to  determine  the  presence  of

significant  frontotemporal  atrophy  to  dichotomize  the

participants  into  possible  bvFTD  (bvFTD  patients  with  a

negative or conflicting atrophy rating) or probable bvFTD

(bvFTD patients rated as positive atrophy by the two raters)

(Rascovsky et al., 2011). 

CSF sampling and analysis

A subset of 32 CATFI patients had also cerebrospinal fluid

(CSF) available.  We measured the CSF levels of NfL and

sAPPβ as previously described (Alcolea et al., 2014; 2015;

2017).  All  biomarkers  were  analyzed  at  the  Sant  Pau

Memory  Unit  Laboratory  with  commercially  available

ELISA kits  (NF-light,  Uman Diagnostics,  Umea,  Sweden;

human sAPPß-w, highly sensitive, IBL, Gunma, Japan). 

Cortical thickness processing

Cortical  thickness  reconstruction  was  performed  with  the

Freesurfer  package  v5.1

(http://surfer.nmr.mhg.hardvard.edu) using a procedure that

has  been  described  in  detail  elsewhere  (Fischl  and  Dale,

2000). All individual cortical reconstructions were visually

inspected in a slice-by-slice basis to check for accuracy of

the  grey/white  matter  boundary  segmentation.  From  the

initial 115 bvFTD subjects with 3T MRI available from the

three centers, 37 (32.2%) were excluded due to segmentation

issues.  Healthy  controls  scans  did  not  require  manual

editing.  Finally,  each  individual  reconstructed  brain  was

registered, and cortical thickness maps were morphed, to the

fsaverage standard surface provided by Freesurfer,  using a

spherical  registration,  enabling  an  accurate  inter-subject

matching of cortical locations for the computation of further

statistics.  Prior  to  statistical  analyses,  we  smoothed  the

cortical thickness maps using a Gaussian kernel with 
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FWHM of 10mm as implemented in Freesurfer (Hagler et

al., 2006).

Cortical mean diffusivity processing

We used a previously described home-made surface-based

approach to process cortical  diffusion MRI (Montal et al.,

2017). Recent studies have shown the potential of surface-

based  methods  to  measure  microstructural  changes  in

neurodegenerative diseases (Montal  et  al.,  2017; Parker et

al.,  2018)  and  the  cortical  architecture  (Ganepola  et  al.,

2017).  An  important  advantage  of  these  methods  is  the

mitigation of partial volume effects or kernel-sensitive CSF 
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Table 1. Sample demographics

Characteristics Possible bvFTD Probable bvFTD All bvFTD Cognitively

healthy controls

n (% of bvFTD) 30 (43) 40 (57) 70 (100) 78

Age at symptom onset, years 60.2 ± 11.4 57.9 ± 8.8 58.8 ± 10 -

Age at MRI, years 65.8 ± 10.9 62.4 ± 9.2 63.8 ± 10 62.3 ± 6.1

Time from onset to MRI,

years

5.5 ± 4.2 4.5 ± 3.1 4.9 ± 3.6 -

Sex Male/Female, n 24/6 27/13 51/19 26/52

Education, years 12.5 ± 5.6 13 ± 5.4 12.7 ± 5.5 13.4 ± 4.3

FTLD-CDR† 6.4 ± 3.7 8.3 ± 4 7.5 ± 4 -

Follow-up time, years 1.7 ± 1.4 1.9 ± 2 1.8 ± 1.7 -

Last reported phenotype 24 bvFTD

1 bvFTD with

progressive

aphasia

2 FTD-ALS

3 PSP-CBD

27 bvFTD

4 bvFTD with

progressive

aphasia

7 FTD-ALS

2 PSP-CBD

51 bvFTD

5 bvFTD with

progressive

aphasia

9 FTD-ALS

5 PSP-CBD

Increased certainty of

underlying FTLD

(% of cases)

21 (70)b 38 (95)a 59 (84.3) -

Definitive bvFTD

(% of cases)

7 (23.3) 12 (30) 19 (27.1) -



signal inclusion during the smoothing step (Coalson et al.,

2018).  Briefly,  diffusion weighted imaging data were first

corrected  for  motion  effects  applying  a  rigid  body

transformation  between  the  b=0  image  and  the  diffusion-

weighted acquisitions. Then, after removing non-brain tissue

using  the  Brain  Extraction  Tool,  diffusion  tensors  were

fitted, and mean diffusivity was computed using the FSL’s

dtifit command. We then computed the affine transformation

between  the  skull-stripped  b0  and  the  segmented  T1-

weighted  volume  using  a  boundary-based  algorithm  as
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Figure 2. Group comparison of cortical thickness and cortical mean diffusivity between bvFTD and cognitively healthy controls.
Top: Statistically significant results between all bvFTD and cognitively healthy controls for cortical thickness and cortical mean 
diffusivity. Regions in blue represent thinner cortex in the bvFTD group, whereas regions in green, represents higher cortical mean 
diffusivity in the bvFTD group. For illustration purposes, we included the overlapping map between both metrics (top-right). Cortical 
thickness analyses were adjusted for age, sex and center. Mean diffusivity analyses were adjusted for age and sex after a harmonization 
step. Only the clusters that survived familywise error correction P<0.05 are shown. Bottom: Medium to large effect sizes between the 
bvFTD and cognitively healthy controls for both cortical thickness and cortical mean diffusivity. The orange-gold colour represents 
higher effect size. In addition, the difference between both maps of effect size is displayed (bottom-right). The red-white colour 
represents gray matter areas where the cortical mean diffusivity has higher effect size than cortical thickness.
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implemented in Freesurfer’s bbregister. This approach takes

advantage of the accurate segmentation of the white surface

and  pial  surface  obtained  during  the  Freesurfer’s

segmentation  (cortical  thickness  processing  section),  to

accurately  register  the  b0  and  the  T1-weighted  image,

maximizing  the  intensity  gradient  across  grey  matter  and

white matter  between both volumes.  At this point,  all  the

diffusion  to  T1  registrations  were  visually  inspected  to

exclude  those  subjects  with  an  erroneous  co-registration.

Then, each individual mean diffusivity volume was sampled 

at the midpoint of the cortical ribbon (i.e half distance along

the normal vector between the white matter surface and the

gray matter surface) and projected to each individual surface

reconstruction obtained during the Freesurfer processing, to

create  a  surface  map  of  cortical  mean  diffusivity  (using

Freesurfer’s  mri_vol2surf  command).  Finally,  individual

cortical  mean  diffusivity  maps  were  normalized  to  an

average  standard  surface  using  a  spherical  registration,

enabling  an  accurate  inter-subject  matching  of  cortical

locations  for  the  statistical  analyses.  Prior  to  statistical

analyses,  we  applied  a  Gaussian  kernel  of  15mm  as

implemented in Freesurfer, in order to obtain equivalent data

effective smoothing between cortical thickness and cortical

mean diffusivity (Bejanin et al., 2018; La Joie et al., 2012).

The scripts used to process cortical mean diffusivity can be

requested to the first authors. 

Cortical mean diffusivity harmonization between centers

Diffusor  tensor  imaging  metrics  are  very  sensitive  to

acquisition  parameters  (Zhu  et  al.,  2011).  Thus,  it  is

imprescindible to use harmonization approaches in order to

mitigate  center-specific  differences  in  multicenter  studies.

Here,  we  applied  a  multi-center  harmonization  algorithm

based  on  ComBat,  in  order  to  reduce  center-specific

differences in cortical mean diffusivity quantifications prior

to  any  statistical  analysis  (Fortin  et  al.,  2017).  Briefly,

ComBat uses an empirical Bayes framework to estimate the

additive (mean) and multiplicative (variance) contribution of

each  site,  at  each  vertex,  for  a  specific  diffusor  tensor

imaging metric, and corrects these effects. Importantly, this

approach allows to include biological information (such as

clinical group, age or biomarkers), and it has been reported

to preserver within-site biological variability, increasing the

statistical power. 

Statistical methods

Group differences in the clinical  and biomarker data were

assessed  using  t-test  or  ANOVA for  continuous  variables,

and  Chi-square  for  dichotomous  or  categorical  data.

Biomarker values not following a normal distribution were

log-transformed.  Statistical  analyses  were  performed  with

the IBM SPSS Statistics 25 (IBM corp.) software. Statistical

significance  for  all  tests  was  set  at  5% (α=0.05),  and  all

statistical tests were two-sided. 

We  first  performed  group  comparisons  for  cortical  mean

diffusivity  and  cortical  thickness  with  a  two-class  general

linear  model,  as  implemented  in  Freesurfer,  comparing

bvFTD and the cognitively healthy controls groups. These

analyses were repeated for each center indepently. Moreover,

as it has been reported that some possible bvFTD cases may

represent either non-neurodegenerative cases or cases with a

slowly  progressive  clinical  course,  we  found  relevant  to

compare the patterns of cortical thickness and cortical mean

diffusivity in both the probable and possible subgroups. We

then performed a vertexwise partial correlation analysis in

the bvFTD group between the cortical mean diffusivity and

cortical thickness and the log-transformed CSF sAPPβ and

NfL values,  in addition to the FTLD-CDR. Specifically,  a

general linear model was created, being mean diffusivity or

cortical thickness the dependent variable of interest, and 
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CSF  values  and  FTLD-CDR  scores  the  independent

variables.  We  included  age,  sex,  and  center  as  nuisance

variables  in  the  cortical  thickness  analysis.  In  mean

diffusivity analysis,  only age and sex were included since

diffusor  tensor  imaging  data  were  already  harmonized

between centers in a previous step. The correlation between

both metrics and FTLD-CDR was also assessed segregating

the bvFTD group in possibles and probables.  Only results

that  survived  multiple  comparisons  (Family  wise  error  <

0.05) based on Monte Carlo simulation with 10,000 repeats

as implemented in Freesurfer are presented. We used a very

stringent threshold of α=0.001 for the group analyses and a

threshold  of  α=0.05  for  the  correlation  analyses.  A  full

description of the multiple comparisons methodology can be

found in the Supplementary material. 

In  order  to  have  a  quantitative  metric  of  the  spatial

differences between both groups; we computed the cortical

thickness  and  cortical  mean  diffusivity  vertex-wise  effect

sizes of the group comparison between bvFTD patients and

cognitively  healthy  controls  using  the  Cohen’s  d  formula.

We also  computed  the  difference  between  the  effect  size

maps of cortical  mean diffusivity and cortical thickness to

obtain  a  topographical  representation  of  the  sensitivity

difference between both metrics.

For  the  figure  projection  and  design,  we  used  a  freely

available python library to overlay the results into the 
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Figure 3. Group comparison of cortical thickness and cortical mean diffusivity between patients with possible and probable
bvFTD and cognitively healthy controls.Cortical thickness and cortical mean diffusivity group comparisons between probable (top)
and possible (bottom) bvFTD against cognitively healthy controls. On the right (top and bottom), we included the overlapping map
between both metrics. Cortical thickness analyses are adjusted by age, sex and center. Mean diffusivity analyses were adjusted by age
and sex after  a  harmonization step.  Only clusters  that  survived familywise error  correction (P<0.05)  are  shown.  For  visualization
purposes, different color codes were used for cortical thickness and cortical mean diffusivity. 
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Figure 4. Relationship between cortical thickness and cortical mean diffusivity with the frontotemporal lobar degeneration 
clinical dementia rating score. Correlation of cortical mean diffusivity with the frontotemporal lobar degeneration clinical dementia 
rating score in the whole sample (top), probable bvFTD subgroup (middle) and possible bvFTD subgroup (bottom). Small regions of 
cortical thinning associated to higher FTLD-CDR scores (blue) were found in the probable subgroup, whereas extensive areas of 
increases of cortical mean diffusivity related to increases in FTLD-CDR scores (green) were found in both subgroups. Cortical thickness 
analyses were adjusted for age, sex and center. Mean diffusivity analyses were adjusted for age and sex after a harmonization step. The 
overlap between both maps is displayed on the right (top and bottom).



standard  fsaverage  surface  (Pysurf:

https://pysurfer.github.io)

RESULTS

Demographics and sample composition

Table 1 shows the demographics, clinical and neuroimaging

features  of  the participants  in  the study.  Age at  MRI and

years of education was similar between the bvFTD and HC

groups but women were more frequent in the controls group

than in the bvFTD group ( 2(1)=23.090; p<0.001). Age at𝛘

symptom onset,  age at  MRI, time from symptom onset to

MRI, sex distribution, education, FTLD-CDR, and follow-

up time were  similar  between  the  possible  and  probable

bvFTD groups. However, the proportion of patients with an

increased  certainty of  FTLD at  the  end  of  follow-up was

higher  in  the  probable  bvFTD group than  in  the possible

bvFTD group ( 2(1)=8.089; p=0.004). As shown in Fig. 1,𝛘

44  out  of  114  (40%)  bvFTD  participants  were  excluded

because  of  segmentation  or  diffusion  weighted  imaging

processing errors. The excluded patients had higher FTLD-

CDR  than  the  included  bvFTD  participants  (t(92)=2.041;

p=0.044; Supplementary Table 3). 

Group  comparison  of  cortical  thickness  and  cortical

mean diffusivity 

Fig.  2  shows  the  cortical  thickness  and  cortical  mean

diffusivity  group  comparisons  between  the  bvFTD  and

cognitively  healthy  controls.  The  bvFTD  group  showed

cortical  thinning  in  the  prefrontal  cortex,  the  insula,  the

cingulate  gyrus  (anterior,  dorsal  and  posterior),  the

orbitofrontal  cortex,  the anterior  temporal  pole,  the lateral

and  medial  temporal  lobe,  the  angular  gyrus  and  the

precuneus. The mean diffusivity cortical map involved more

regions  than  the  cortical  thinning  map,  encompassing  the

whole of the frontal and temporal cortices, and extending to

posterior regions such as the inferior parietal and occipital

lobe.  As  depicted  in  the  overlap  map included  in  Fig.  2,

cortical thickness and cortical mean diffusivity maps showed

a  partial  overlap  but  cortical  mean  diffusivity  changes

extended beyond the areas of cortical thinning. Of note, we

observed similar patterns of cortical thickness and cortical

mean diffusivity  changes  when each  cohort  was  analyzed

separately (data not shown).

Cortical  thickness  and  cortical  mean  diffusivity  in

possible and probable bvFTD 

We  then  assessed  cortical  thickness  and  cortical  mean

diffusivity  separately in  the possible and  probable bvFTD

subgroups  (Fig.  3).  In  the  probable  bvFTD  group  we

observed extensive clusters of cortical thinning that included

essentially the same regions typically involved in the bvFTD

that  were  observed  in  the  Fig.  2.  Similar  to  what  we

observed  in  the  primary  analyses  the  cortical  mean

diffusivity changes were more widespread than the cortical

thickness  changes  (Fig.  3  top).  In  the  possible  bvFTD

subgroup, we observed small clusters of cortical thinning in

the insula, and the medial temporal lobe in both 

hemispheres.  Interestingly,  we  observed  extensive  cortical

mean  diffusivity  increases  in  the  dorsal  and  medial

prefrontal  cortex,  as  well  as  in  the  supplementary  motor

cortex  and  the  frontal  pole  in  both  hemispheres  (Fig.  3

bottom). 

Relationship  between  cortical  thickness  and  cortical

mean diffusivity with the FTLD-CDR 

We  next  evaluated  the  capacity  of  cortical  thickness  and

cortical mean diffusivity to reflect the disease severity in the

bvFTD as measured by the FTLD-CDR scale. When pooling

together  all  the  bvFTD subjects,  we  observed  an  inverse

correlation between FTLD-CDR scores and cortical 
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thickness in small clusters in the inferior frontal gyrus, the

anterior  insula,  the  anterior  temporal  pole  and  the medial

temporal lobe in both hemispheres and a a correlation in the

medial orbitofrontal cortex and in the precuneus in the left

hemisphere.  We  observed  larger  clusters  of  significant

positive correlations between cortical  mean diffusivity and

FTLD-CDR scores in both hemispheres (Fig. 4-top). Similar

results  were  found  when  restricting  the  analyses  to  the

probable bvFTD group (Fig. 4-middle). When restricting the

analysis  to  the  possible  bvFTD,  we  did  not  find  any

correlation  between  cortical  thickness  and  FTLD-CDR

scores.  However,  cortical  mean  diffusivity  was  positively

associated with FTLD-CDR scores in the anterior cingulate,

frontal insula and lateral temporal in both hemispheres (Fig.

4-bottom).

Correlation  of  cortical  thickness  and  mean  diffusivity

changes with CSF biomarkers

We finally assessed the correlation of cortical thickness and

cortical mean diffusivity with CSF NfL and sAPPβ levels.

CSF  NfL levels  were  negatively  correlated  with  cortical

thickness in dorsolateral and medial prefrontal areas of the

frontal lobe . The correlation between CSF NfL levels and

cortical mean diffusivity included those areas, but also areas

in the temporal and parietal lobes (Fig. 5 top). CSF sAPPβ

levels were positively correlated with cortical  thickness in

regions  of  the  prefrontal  cortex,  the  insula,  the  temporo-

parietal union and the lateral temporal cortex. The negative

correlation  between  CSF sAPPβ levels  and  cortical  mean

diffusivity  extended  to  more  widespread  frontal  and

temporal  regions,  as  well  as  to  posterior  regions  (Fig.  5-

bottom).

DISCUSSION

In  this  study  we  investigated  the  value  of  cortical  mean

diffusivity as a biomarker in bvFTD in a large multicenter

sample.  We showed that  cortical mean diffusivity was not

only able to elicit those areas with cortical thinning, but also

involved  other  areas  that  typically  become  affected  with

disease progression (Binney et al., 2017). Furthermore, we

found  cortical  mean  diffusivity  increases  in  patients

classified as possible bvFTD that had only minimal cortical

thinning. Clinical measures of disease severity (FTLD-CDR)

and CSF neuronal biomarkers (CSF NfL and sAPPβ levels)
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Figure 5. Correlation of cortical thickness and cortical mean 
diffusivity with CSF biomarkers Relationship of cortical 
thickness and cortical mean diffusivity with the CSF levels of 
Neurofilament light (NfL) (top) and the CSF levels of the 
soluble fraction beta of the amyloid precursor protein (sAPPβ) 
(bottom) in the subgroup of bvFTD participants with CSF 
sample available for analysis (n=32). As NfL and sAPPβ values 
were not normally distributed, we used log-transformed values 
for these biomarkers NfL levels  negatively correlated with 
cortical thickness (blue) and positively correlated with cortical 
mean diffusivity (green). sAPPβ positively correlated with 
cortical thickness (red) and negative correlated with cortical 
mean diffusivity (purple). Cortical thickness analyses were 
adjusted for age, sex and center. Mean diffusivity analyses were 
adjusted for age and sex after a harmonization step. Only 
clusters that survived familywise error correction at P<0.05 are 
shown.



showed a more widespread correlation with cortical  mean

diffusivity than with cortical thickness. Taken together, these

findings suggest that cortical mean diffusivity might be more

sensitive than cortical thickness to detect the earliest disease-

related cortical changes in bvFTD.

Cortical  mean diffusivity has  been recently proposed as  a

sensitive biomarker for the detection of the earliest cortical

changes in sporadic AD (Montal et al., 2017; Weston et al.,

2015). We show, for the first time in bvFTD using a surface-

based  approach,  that  cortical  mean  diffusivity  increases

spread beyond the areas of cortical thinning in bvFTD, even

in  patients  with  possible  bvFTD.  Most  previous  studies

using  diffusor  tensor  imaging  in  bvFTD  patients  have

focused  on  the  white  matter,  probably  because  of  the

technical difficulties in the study of cortical microstructure

(Papma et al., 2017). We identified a single previous small

study (with 16 bvFTD patients) assessing cortical  diffusor

tensor  imaging  in  the  bvFTD  using  a  volume-based

approach  (Whitwell  et  al.,  2010).  This  study  found

overlapping patterns between atrophy and increases on mean

diffusivity. Our study builds on these results using a larger

sample,  a  surface-based  approach,  and  the  inclusion  of

bvFTD patients at milder disease stages. Consequently we

were  able  to  show  the  added  value  of  cortical  mean

diffusivity  as  a  more  sensitive  biomarker  in  bvFTD over

cortical thickness.

We  found  minimal  cortical  thinning  when  comparing

possible  bvFTD  patients  and  controls.  However,  we

observed  extensive  cortical  mean  diffusivity  increases  in

regions known to be  affected in  bvFTD (Schroeter  et  al.,

2014;  Brettschneider  et  al.,  2014;  Irwin  et  al.,  2016).

Moreover,  we  calculated  effect  size  maps  to  quantify  the

impact of cortical thickness and cortical mean diffusivity for

the  differentiation  of  bvFTD  patients  from  controls.

Importantly,  we obtained  moderate to  high net  effect  size

favoring cortical mean diffusivity in critical bvFTD-related

cortical regions such as the anterior cingulate, the prefrontal

dorsal  cortex and the insula.   The suggestion that  cortical

mean  diffusivity  may  be  more  sensitive  than  cortical

thickness  to  detect  the  bvFTD cortical  changes  is  further

supported by our correlation analyses with the FTLD-CDR

and CSF NfL and sAPPβ levels. Both the clinical measures

of disease severity and the CSF biomarkers, they all showed

a better correlation with cortical mean diffusivity than with

cortical thickness. The FTLD-CDR has been validated as a

tool for disease monitoring in clinical trials (Knopman et al.,

2008). Although the FTLD-CDR scores also correlated with

cortical thickness in some small frontotemporal clusters, we

found  a  substantially  widespread  correlation  with  cortical

mean diffusivity. Moreover, when restricting the analyses in

the  possible  bvFTD  subgroup,  only  associations  between

cortical mean diffusivity and FTLD-CDR scores were found.

This  finding  supports  a  possible  role  for  cortical  mean

diffusivity  as  a  candidate  neuroimaging  biomarker  for

disease staging. 

To further evaluate the role of cortical mean diffusivity as a

neurogeneration  biomarker,  we  investigated  its  correlation

with CSF biomarkers in a subgroup of patients. NfL is one

of  the  major  constituents  of  the  axonal  cytoskeleton  and

plays  an  important  role  in  axonal  transport.  The

measurement of NfL levels both in the CSF and in serum

correlates with disease severity, progression and survival in

multiples  neurodegenerative  diseases  (Landqvist  Waldö  et

al., 2013; Meeter et al., 2016; Pijnenburg et al., 2015; Rohrer

et  al.,  2016;  Scherling  et  al.,  2014;  Wilke  et  al.,  2016)

(Alcolea et al., 2017). We also measured CSF sAPPβ levels,

as we have previously shown that this biomarker correlates

with  frontotemporal  neurodegeneration  in  FTLD-related

syndromes (Alcolea D et al., 2017; Illán-Gala I et al., 2018).

The association between cortical mean diffusivity and CSF
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values  further  reinforce  the  notion  that  cortical  mean

diffusivity changes reflect the underlying neurodegeneration.

Although  we  acknowledge  that  it  is  possible  that  some

patients  classified  as  possible  bvFTD  may  not  have

underlying  FTLD (Devenney et  al.,  2016;  Gossink  et  al.,

2015),  recent  studies  in  deep-phenotyped  cohorts  have

shown that a significant proportion of bvFTD cases do not

have frontotemporal atrophy and may be characterized by a

slower disease course (Ranasinghe et al., 2016; Rascovsky et

al.,  2011).  In the present study, 70% patients classified as

possible bvFTD were found to have an increased certainty of

underlying  FTLD as  suggested  by  follow-up,  genetic  and

neuropathological  information  available.  Indeed,

longitudinal decline was observed in most possible bvFTD

patients and psychiatric diagnoses were excluded by expert

clinicians. Of note, two cases classified as possible bvFTD

were found to have a C9orf72 expansion, a finding that has

been previously reported in different cohorts (refs). Thus, we

think that  the patients classified as possible bvFTD are at

high risk of having underlying FTLD and that our cortical

mean diffusivity results support that at least a proportion of

possible bvFTD patients have a neurodegenerative disease.

Cortical  mean  diffusivity  may  be  a  relevant  tool  for

increasing  the  diagnostic  certainty  in  these  “slowly

progressive”  bvFTD without  overt  frontotemporal  atrophy

(Davies et al., 2006; Khan et al., 2012). 

Taken  together,  our  findings  support  the  role  of  cortical

mean  diffusivity  as  a  novel  potential  neurodegeneration

biomarker  in  bvFTD.  We  hypothesize  that  cortical  mean

diffusivity  may be a sensitive tool for  the refinement  and

monitoring of the very earliest cortical changes genetically-

determined FTLD (Rohrer et al., 2015). Importantly, further

longitudinal  studies  should  explore  the  ability  of  cortical

mean diffusivity to predict disease progression at the single-

subject  levels. Additionally, our study is the first to report

the potential added value of cortical diffusor tensor imaging

changes over cortical  thickness  in bvFTD. Further  studies

could  explore  the  added  value  of  the  combined  study  of

white and  grey  matter  diffusor  tensor imaging changes to

improve  pathological  predictions  (Downey  et  al.,  2015;

McMillan et  al.,  2014).  All  the aforementioned points are

key  aspects  for  candidate  selection  in  clinical  trials  once

protein-specific  targeted therapies  become available (Elahi

and Miller, 2017).

The  main  strengths  of  this  study  are  the  relatively  large

number of bvFTD participants at a mild to moderate disease

stage,  and  the  surface-based  analyses  using  a  previously

validated  technique.  This  surface-based  approach  solves

some of  the  limitations  and  methodological  concerns  that

have  been  previously  reported  when  using  a  voxel-based

approach  (Henf  et  al.,  2018).  Moreover,  we  enriched  our

description  of  the  cortical  mean  diffusivity  in  the  bvFTD

with  established  clinical  measures  of  disease  severity  and

CSF biomarkers. This study has also some limitations. First,

we acknowledge that  a substantial  part  (up to 40% of the

cases)  of  bvFTD  cases  were  excluded  because  of

segmentation or  diffusor tensor imaging processing errors.

Even though this is  an inherent  limitation of  our surface-

based  approach,  future  improvements  in  T1  MRI

acquisitions or the use of higher field MRIs, together with

software  improvements  will  likely  reduce  the  number  of

subjects excluded due to segmentation errors.  Of note, we

observed that the excluded patients belonged to the probable

bvFTD group (77.3% of the excluded cases) and were at a

more  advanced  disease  stage,  as  measured  by  the  FTLD-

CDR. Notwithstanding,  cortical  mean diffusivity  may still

provide  valuable  topographical  information  regarding  the

earliest cortical microstructural changes in patients at very

mild  disease  stages  (for  example,  sporadic  bvFTD  cases

without overt cortical atrophy or even genetic cases) were
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less  segmentation errors  are  expected to  occur.  Second,  it

may be argued that there may be confounding results related

to  the  different  acquisition  protocols  across  centers.

However,  the  results  presented  in  the  current  manuscript

were  obtained  after  using  a  validated  state-of-the-art

algorithm  to  harmonize  diffusion  data  between  centers

(Fortin et al., 2017; Montal et al., 2017). Moreover, results

were  similar  when  analyzing  each  center  independently

regardless of the use of different diffusion weighted imaging

sequences.  Third,  although  we  provide  cross-sectional

evidence  that  cortical  mean diffusivity  changes  may be  a

novel sensitive metric to reflect neurodegeneration, further

longitudinal  studies  and  using  presymptomatic  mutation

carriers  should  confirm  that  cortical  mean  diffusivity

changes antedate cortical  atrophy in patients with bvFTD.

Fourth, because most of the included bvFTD cases did not

have neuropathological evaluation, misdiagnosis could have

occurred, especially in the possible bvFTD group. However,

a high proportion of cases were found to have an increased

certainty  of  underlying  frontotemporal  lobar  degeneration

when  considering  the  available  clinical,  genetic  and

neuropathological information. Finally, as neuropathological

evaluation was not available in most cases we were not able

to explore the precise pathological correlates of the observed

cortical mean diffusivity changes.

In  summary,  this  study  suggests  that  cortical  mean

diffusivity  may  be  a  valuable  novel  biomarker  for  the

cortical  mapping  of  neurodegeneration-related

microstructural  changes  in  bvFTD.  Further  longitudinal

studies  in  different  populations  including  preclinical

mutation  carriers  should  precise  the  diagnostic  and

prognostic  utility  especially  at  the  earliest  stages  of  the

disease.
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