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Abstract

Quantum mechanics is the physical theory that governs the behavior of atomic and
subatomic particles, as well as their interactions. The behavior of physical systems at
those tiny scales challenges our intuition, which is build upon our daily experience.
The reason why quantum properties, like quantum coherence, entanglement, or
non-locality, do not survive in the macroscopic scale is still open to discussion.
Part of the answer resides on the fact that, at a practical level, all quantum systems
interact with their environment. They are open quantum systems. Although the
interaction with the environment is in practice unavoidable, it is not necessarily
detrimental. In fact, the open system dynamics is crucial for many applications,
including cooling, particle or energy transport, or information processing.

Open quantum systems are often considered to be in contact with an in�nite
environment at equilibrium, which makes the problem more tractable at a theoreti-
cal level. While this idealization has lead to a plethora of results, for instance, in
quantum optical platforms, it also imposes strong assumptions on the dynamics
that are not always satis�ed. If the assumption of the in�nite environment at
equilibrium is relaxed, describing the dynamics of open quantum systems becomes
more challenging, in particular when the environment develops nonequilibrium
features during the evolution, or when memory e�ects cannot be disregarded.

In this thesis, we develop a weak-coupling master equation approach to tackle
the nonequilibrium dynamics of open quantum systems in contact with �nite
environments. To this end, we include in the description a dynamically evolving
environment and keep track, at a coarse-grained level, of the system environment
correlations. We complement this dynamical description with a thermodynamic
framework, from which the �rst and second law of thermodynamics are found as a
consequence of the underlying microscopic description.
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We also explore the dynamics of open quantum systems beyond the weak-
coupling limit, taking advantage of more standard approaches like the formalism of
quantum operations, or the quantum Langevin equation. While these techniques
have been studied in the literature, we use them to tackle new problems involving
exotic phases of matter or asymmetric heat transport.



Resum

La mecànica quàntica és la teoria que governa el comportament de les partícules
atòmiques i subatòmiques, així com les seves interaccions. El comportament dels
sistemes físics a aquestes escales diminutes desa�en la nostra intuïció, que està
basada en la nostra experiència diària. La raó per la qual les propietats quàntiques,
com la coherència quàntica, l’entrellaçament o la no localitat, no sobreviuen a
l’escala macroscòpica està encara oberta a debat. Part de la resposta rau en el fet
que, en l’àmbit pràctic, tots els sistemes quàntics interaccionen amb el seu entorn.
Són sistemes quàntics oberts. Tot i que la interacció amb l’entorn és inevitable, no és
necessàriament perjudicial. De fet, la dinàmica de sistemes oberts és crucial per
moltes aplicacions, per exemple, el refredament, el transport de partícules o energia,
o el processament d’informació.

Els sistemes quàntics oberts sovint es consideren en contacte amb un entorn
in�nit i en equilibri, fet que torna el problema més tractable en l’àmbit teòric.
Tot i que aquesta idealització ha portat a una plètora de resultats, per exemple, en
plataformes d’òptica quàntica, també imposa hipòtesis restrictives a la dinàmica que
no sempre es compleixen. Si relaxem la hipòtesi d’un entorn in�nit, la descripció
de la dinàmica dels sistemes quàntics oberts es torna més exigent, en particular
quan l’entorn desenvolupa trets de no equilibri durant l’evolució, o quan els efectes
de memòria no es poden obviar.

En aquesta tesi, desenvolupem una equació mestra d’interacció dèbil per de-
scriure la dinàmica de no equilibri de sistemes quàntics oberts que estan en contacte
amb un entorn �nit. Amb aquesta �nalitat, incloem en la descripció un entorn
que evoluciona de manera dinàmica i fem un seguiment, a nivell aproximat, de
les correlacions entre el sistema i l’entorn. Complementem aquesta descripció
dinàmica amb un marc termodinàmic, a partir del qual la primera i segona llei de la
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termodinàmica sorgeixen a conseqüència de la descripció microscòpica subjacent.
A més, també explorem la dinàmica de sistemes quàntics oberts més enllà del

límit d’interacció dèbil, apro�tant tècniques més estàndard com el formalisme
d’operacions quàntiques o l’equació de Langevin quàntica. Tot i que aquestes
tècniques han sigut estudiades anteriorment en la literatura, les utilitzem per atacar
problemes nous que tenen a veure amb estats exòtics de la matèria o el transport
de calor asimètric.



Resumen

La mecánica cuántica es la teoría que gobierna el comportamiento de las partículas
atómicas y subatómicas, así como sus interacciones. El comportamiento de los
sistemas físicos a estas escalas diminutas desafían nuestra intuición, que está basada
en nuestra experiencia diaria. La razón por la que las propiedades cuánticas, como
la coherencia cuántica, el entrelazamiento o la no localidad, no sobreviven a la
escala macroscópica está todavía abierta a debate. Parte de la respuesta radica en
el hecho de que, en el ámbito práctico, todos los sistemas cuánticos interaccionan
con su entorno. Son sistemas cuánticos abiertos. Aunque la interacción con el
entorno es inevitable, no es necesariamente perjudicial. De hecho, la dinámica de
sistemas abiertos es crucial para muchas aplicaciones, por ejemplo, el enfriamiento,
el transporte de partículas o energía, o el procesamiento de información.

Los sistemas cuánticos abiertos a menudo se consideran en contacto con un
entorno in�nito y en equilibrio, lo que vuelve el problema más tratable en el
ámbito teórico. Aunque esta idealización ha llevado a una plétora de resultados, por
ejemplo, en plataformas de óptica cuántica, también impone hipótesis restrictivas a
la dinámica que no siempre se cumplen. Si relajamos la hipótesis de un entorno
in�nito, la descripción de la dinámica de los sistemas cuánticos abiertos se vuelve
más exigente, en particular cuando el entorno desarrolla rasgos de no equilibrio
durante la evolución, o cuando los efectos de memoria no se pueden obviar.

En esta tesis, desarrollamos una ecuación maestra de interacción débil para
describir la dinámica de no equilibrio de sistemas cuánticos abiertos que están
en contacto con un entorno �nito. Con este �n, incluimos en la descripción un
entorno que evoluciona de manera dinámica y hacemos un seguimiento, a nivel
aproximado, de las correlaciones entre el sistema y el entorno. Complementamos
esta descripción dinámica con un marco termodinámico, a partir del cual la primera
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y segunda ley de la termodinámica surgen como consecuencia de la descripción
microscópica subyacente.

Además, también exploramos la dinámica de sistemas cuánticos abiertos más
allá del límite de interacción débil, aprovechando técnicas más estándar como el
formalismo de operaciones cuánticas o la ecuación de Langevin cuántica. Aunque
estas técnicas han sido estudiadas anteriormente en la literatura, las utilizamos
para atacar problemas nuevos que tienen que ver con los estados exóticos de la
materia o el transporte de calor asimétrico.
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systems at the Quantum Information Group (GIQ) at the Autonomous University
of Barcelona, from October 2017 to October 2021 under the supervision of Anna
Sanpera and Philipp Strasberg.

From describing the interaction of a single hydrogen atom with the electromag-
netic background to understanding the Hawking radiation that comes out of a black
hole, the theory of open quantum systems has found applications in very diverse
branches of physics. This thesis aims at giving a self-contained but not complete
picture of the theory of open quantum systems from my personal point of view.
Chapters 1 and 2 brie�y review part of the literature in open quantum systems and
motivate the open questions that we discuss in this thesis. Chapters 3 and 4 are
the theory core of this thesis, and discuss the dynamic and thermodynamic impli-
cations of open systems that interact with �nite environments. Chapters 6 and 5
move beyond the master equation paradigm, and study applications of previously
developed theory. Finally, the conclusions are presented in Chap. 7.

My hope is that this thesis is su�ciently self-contained for non-experts in open
quantum systems to follow the discussion and the derivations but, at the same
time, readers with more expertise still can �nd it insightful and interesting (maybe
skipping some parts). While I am not sure that this approach is of everyone’s taste,
I think that is what I would have liked to read when I started my PhD.
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At the beginning there was only Chaos.
— Aristophanes

1
Introduction

Physics φύσις, (literally Nature) is the scienti�c discipline that studies all natural
phenomena. Within physics, quantum mechanics is concerned about the behavior
of atomic and subatomic particles and its interactions. The behavior at such small
scales can di�er signi�cantly from that of our daily experience. For instance, exotic
phenomena like quantum coherence, entanglement, or non-locality are exclusively
observed at the microscale. The precise reason why the quantum behavior is not
observed at the macroscale remains a matter of debate. However, it is known that
part of the answer resides in the fact that, at a practical level, all quantum systems
interact with their environment. They are open quantum systems.

Quantum features are often desired for practical applications. Since open quan-
tum system dynamics are, in certain regimes, responsible for the loss of those
quantum features, they are also known as noisy. However, this nomenclature has a
bad connotation that is not always justi�ed. While open system dynamics are some-
times responsible for decoherence, they also enable more general transformations
between quantum states. For this reason, they are essential for certain applications
like, for instance, cooling, particle transport, or information processing.
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1.1. BACKGROUND AND CONTEXT

1.1 Background and context

The environment of an open quantum system often has many degrees of free-
dom and is uncontrollable. Thus, it is necessary to have e�ective descriptions of
the dynamics of the open quantum system where only the relevant environment
information is included. This is the case, for instance, of quantum master equa-
tions. Master equations have the advantage that they apply to a large class of open
systems, are intuitive, and often allow further analytical progress in the description.

Contrary to more modern applications, quantum master equations were intro-
duced to study the dynamics of the energy populations of closed quantum systems.
Their history starts in 1928, with a seminal work of Pauli [Pau28]. There, he pre-
sented a master equation for the evolution of the energy populations of a weakly
perturbed closed system using the random phase approximation. His master equa-
tion took the simple form of a probability balance equation, which nowadays is
often referred to as the Pauli master equation. Strictly speaking, Einstein already
used a master equation to describe the quantum theory of radiation in [Ein17] ten
years before Pauli. However, Einsteins’ master equation description was based on
purely statistical arguments, while Pauli derived it from an underlying microscopic
description.

In 1953, a similar quantum master equation approach was used by Wangsness
and Bloch to study the dynamics of nuclear spin populations [WB53]. Interestingly,
Wangsness and Bloch already used the idea of a system interacting with an envi-
ronment that was in a diagonal state in the energy eigenbasis. Similar ideas also
appeared in related studies of angular momentum and spin relaxation around that
time [AP53; Sol55]. In 1957, Red�eld improved the theory of Wangsness and Bloch,
obtaining the �rst approximated master equation that also included the dynamics
of the o�-diagonal elements of the density matrix [Red57]. Even though the equa-
tion was derived in the context of nuclear magnetic resonance, Red�eld already
acknowledged that it could be applied to more general problems, like Brownian
motion or spin dynamics. That quantum master equation, known as the Red�eld
equation, is still used today.

Master equations were also used to study how the macroscopic irreversibility
arises from the underlying reversible dynamical laws. After the works of Onsager
[Ons31a; Ons31b] in 1931, irreversible equilibration processes were understood
in terms of �rst-order di�erential equations that ful�lled certain symmetry rela-
tions that became known as the Onsager relations. In 1954, an enlightening work
from van Kampen [Van54] used the master equation approach of Pauli [Pau28]
together with a coarse graining procedure inspired by von Neumann [Neu29] (see
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[Neu10] for the English translation) to derive from a microscopic description the
phenomenological equations of Onsager as well as their symmetry relations.

During the decades of 1950s and 1960s, quantum master equations were gather-
ing popularity. Motivated by understanding the dynamics of the energy populations
in the problem posed by Pauli, a series of papers derived four types of generalized
(or exact) quantum master equations. The �rst of those exact master equations
was obtained by van Hove [Van57] and later generalized by Swenson [Swe62]. The
second type was obtained by Nakajima [Nak58] and independently and in greater
detail by Zwanzig [Zwa60; Zwa61]. The third type was obtained �rst by Résibois
[Rés61] and shortly after modi�ed by Prigonie and Résibois [PR61]. The fourth type
was derived by Montroll [Mon62]. Despite the fact that all the equations were exact,
it was not known whether they were equivalent. It was not until later works from
Résibois [Rés63] and Zwanzig [Zwa64], that it could be proven that the equations
obtained by Nakajima and Zwanzig, Prigonie and Résibois, and Montroll where
equivalent but not identical to the ones from van Hove and Swenson. Interestingly,
the Pauli master equation is found as a special case of those generalized master
equations.

Theoretically, the importance of exact master equations is that they provide
the most general form of open quantum system evolutions. Nonetheless, because
they are so general, they are also virtually impossible to solve in most of the
situations. Hence, from the practical point of view, exact master equations are
important because they provide a starting point to develop controlled approximated
schemes. Then, the chosen approximation scheme as well as its range of validity
depends on the particular problem to which the quantum master equation is ap-
plied. For instance, the Pauli master equation arises as a lower order expansion
of a weakly-perturbed many-body system [Van57], and the Bloch equations arise
in the limit of linear response of a nuclear spin interacting with a heat bath en-
vironment [AK64]. Other di�erent approximation schemes were used to tackle
the physics of irreversible dynamics in �elds including superradiance, supercon-
ductivity, or the criticality of magnetism to name a few; see for instance, [Aga73;
Haa73].

The derivation of a plethora of rigorous analytic results about open quantum
systems triggered by the use of exact master equations also gathered the attention
of the mathematical physics’ community. In the decade of the 1970s, many results
were derived in the context of dynamical semigroups. Those dynamical semigroups
correspond to the family of evolution maps associated with a memoryless quantum
evolution, and arise after certain simpli�cations of the exact master equations. A
review of these results can be found in a number of publications; see for instance
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[Aga73; Dav76; Ali79]. Of particular importance are the independent works of
Gorini, Kossakowski, Sudarshan [GKS76] and Lindblad [Lin76], which provided
the form of the most general generator of dynamical semigroups. Those two
works established a deep connection between weak-coupling master equations
and dynamical semigroups, thus providing quantum master equations with a solid
mathematical background.

Of course, quantum master equations are not the only approach to investigate
the dynamics of open quantum systems. An alternative technique is using the
formalism of quantum operations (also quantum evolutions, or quantum channels),
to describe the transformations that a state can undergo in the presence of the
environment. This approach was put forward by Sudarshan, Mathews, and Rau
in Ref. [SMR61]. The basic idea is to consider the most general transformation
between quantum states and then impose restrictions that guarantee, roughly
speaking, that the output of quantum operation is a quantum state if the input was
a quantum state. This approach was re�ned in the successive years by a number
of important results, from which we highlight the Kraus decomposition [Kra71],
and the Jamiołkowski-Choi isomorphism [Jam72; Cho75]. While this approach is
very useful and often even insightful in low dimensions, its complexity grows very
quickly. For instance, for a Hilbert space of N spin-1/2 particles, the most general
quantum operation has (2N )4 elements.

Another possibility that has been extensively used in the literature is the so-
called quantum Langevin equation. This approach was motivated by Ford, Kac,
and Mazur in Ref. [FKM65] as a technique to study the equilibration dynamics
of a Brownian particle. Analogously to the classical case, the quantum Langevin
equation describes the evolution of the position of a quantum particle subject to
friction and noise. The di�erence between the classical and the quantum equation
is that the friction and noise have a quantum mechanical origin. To derive it, the
authors assume that the Brownian particle interacts linearly with a collection of
harmonic oscillators initially found in a thermal state. Then, it is possible to write
down the expression for the friction and noise terms as a function of the oscillators’
parameters as well as their initial temperature. Interestingly, the quantum Langevin
equation admits an analytic solution if the Brownian particle happens to be also
harmonically trapped.

Even though the quantum Langevin equation is obtained assuming a bath
of harmonic oscillators, it can be phenomenologically applied to more general
environments. In particular, if the equations of motion of the environment can be
linearized around a certain equilibrium point, the quantum Langevin equation can
still apply provided that the in�uence of the system on the environment is small.
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However, it turns out that the resulting equation, unlike the classical case, becomes
model dependent [CWL85]. Luckily, this problem disappears when the bath can be
treated classically, even if the system preserves its quantum mechanical treatment.

Finally, we list for completeness other commonly used methods that we do not
discuss here. Those are the Feynman-Vernon in�uence functional [FV63], Heisen-
berg picture methods [AKE73; KM75] and the input-output formalism [Yur84;
GC85], the hierarchy of the equations of motion [TK89], the stochastic Schrödinger
equation [Car93], and the process tensor [Lin79; MM21]. We also invite the inter-
ested reader to �nd more information in the excellent books and reviews [GZ00;
BP02; Wei12; RH12; Sch14; VA17; Str21].

1.2 Narrowing the focus: the problem at hand

Describing open quantum systems far from equilibrium is challenging, in particular
when the environment is mesoscopic (that is, large but not in�nite), when it develops
nonequilibrium features during the evolution, or when memory e�ects and system-
bath correlations cannot be fully disregarded.

In recent years, the miniaturization of quantum experiments towards the micro-
scopic scale has led also to a more detailed description of their surroundings. As a
consequence, one has access to some dynamical information about the environment,
which could be potentially used to obtain more accurate predictions about the open
quantum system dynamics in the aforementioned challenging scenarios. Then, it
is timely to investigate how quantum master equations can pro�t from this extra
information by including, to some extent, a dynamically evolving environment.

Including more dynamical information comes, however, at a price. One could
be tempted to include as much information as possible from the environment,
having the impression that this would always lead to more accurate predictions.
But of course, this strategy requires humongous computational resources even for
relatively small environments of, say, a hundred particles. On the other end of the
spectrum, including no dynamical information about the environment often leads
to an oversimpli�ed description that may have no predictive power. Hence, the
task of the physicist is to identify which and when are those relevant dynamical
variables worth including in the description.

Which? Identifying the set of relevant variables is not an unfamiliar task
in physics. Disciplines like classical statistical mechanics have to deal with this
situation all the time. For instance, in many situations, an ideal gas of 1023 particles
is well characterized by only, say, its volume, its pressure, its temperature, and its
number of particles. In the microscopic scale, however, those relevant variables can
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be less easily related to macroscopic features. In classical or quantum mechanics, the
dynamics of a particle is generated by its energy operator (or Hamiltonian). Hence,
it comes as no surprise that energy is always closely related to the microscopic
relevant variables. For instance, the average energy of the environment or the
probability to �nd a certain energy after a measurement are, in the certain regimes,
examples of relevant dynamical variables at the microscale.

When? Understanding when it is important to consider some environment
property as a dynamical variable is not an easy task. As a rule of thumb, the larger
the size of the environment, the less important it is to consider its properties as
dynamical variables. The intuition is as follows. If both the open quantum system
and the environment contain a single particle, the state of one becomes very much
dependent on the state of the other. In other words, the state of the open quantum
system in�uences the environment and also the other way around. However, if
suddenly the environment contains thousands of particles, the dynamics of the open
system is only a�ected by certain global properties of the environment, upon whose
dynamics has only little e�ect. In the limit in which this e�ect can be neglected,
one can consider that global property to be found in a given reference state without
need of �nding how it evolves. Hence, it is no longer a relevant dynamical variable.

Given the lack of master equation approaches that make use of dynamical
environment information, in this thesis, we aim at providing a self-contained
master equation approach to study the dynamics of open quantum systems that
interact with dynamically evolving environments. To that end, we use the Nakajima-
Zwanzig exact master equation as a starting point to derive a perturbative approx-
imation scheme for weak system-environment interactions. Since our approach
includes dynamical bath information, we are able to extend the range of validity
of weak-coupling quantum master equations beyond the paradigm of an in�nite,
steady, and memoryless environment. Equipped with this technique, we aim at
answering the following theoretical questions:

(TQ1) What does our approach reveal about open quantum system dynamics?

(TQ2) How does our approach connect to previously used techniques?

(TQ3) Is it possible to complement our approach with a nonequilibrium thermody-
namic framework?

(TQ4) What does this new thermodynamic framework reveal?

So far, our focus has been on deriving new theory that takes advantage of
the bath dynamical information. In the second part of the thesis, we focus on
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more practical applications that exploit already existing techniques to tackle the
dynamics of open quantum systems.

The �rst and second practical questions are related to understanding which
knowledge can be extracted from the spectral properties of a certain quantum
evolution by using the formalism of quantum operations. In particular, we want
to exploit the fact that the spectrum of a valid quantum evolution lies within the
unit disk to understand the limitations of such quantum operations. We aim at
answering the �rst and second practical questions:

(PQ1) Can the spectral properties of a quantum evolution give information about
(dynamical) phases of matter?

(PQ2) Which is the general form of a quantum evolution (operation) that leaves
invariant a collection of pure states?

The third practical question is related to heat transport through a collection of
harmonic oscillators (the harmonic network). Given a harmonic network which
is in contact with two heat baths at di�erent temperatures, it is known that the
stationary heat current �owing through the system is symmetric; that is, if one
reverses the temperature bias, the heat current picks up a minus sign. While
the asymmetric heat conduction is desirable for some applications, it has only
been achieved using nonlinear interactions which are not present in the harmonic
network. Hence, we want to answer to the third practical question:

(PQ3) Is it possible to achieve asymmetric heat transport through a harmonic net-
work?

which we try to answer using the quantum Langevin equation approach.
We shall return to the theoretical questions (TQ1)–(TQ4) and the practical

questions (PQ1)–(PQ3) at the conclusions’ chapter.

1.3 Structure of the thesis

In the following, we summarize our main results, which also serves as an outline
for the rest of the thesis.

In Chap. 2, we start introducing the basic notions of quantum mechanics and
introduce the notation that we will use in the rest of the thesis. Then, we present a
self-contained derivation of the Pauli, Red�eld and Born-Markov-secular master
equations in the weak-coupling limit, as methods to approach the dynamics of
open quantum systems. Afterwards, we introduce the Nakajima-Zwanzig theory

7



1.3. STRUCTURE OF THE THESIS

and show that the aforementioned master equations can be obtained as particular
applications of this theory. We conclude by connecting the open quantum system
dynamics with the standard de�nitions of work, entropy and heat in quantum
thermodynamics.

In Chap. 3, we discuss how to approach the dynamics of open quantum systems
that are in contact with a �nite bath, which is one of the central topics of this thesis.
We derive the extended microcanonical master equation, study its properties, and
apply it to a particular model in which we can benchmark against the exact dynam-
ics. Also, we study how to recover the Born-Markov-secular master equation from
our approach, which leads to a de�nition of a nonequilibrium e�ective temperature.
This procedure leads to a hierarchy of master equations, in which each master
equation gives more accurate predictions by using more dynamical information
about the bath.

Chapter 4 is devoted to understand the dynamics of the extended microcanonical
master equation from a thermodynamic point of view. In particular, we give
meaningful de�nitions of internal energy, work, heat, and entropy, which we later
use in order to derive the �rst and second law of thermodynamics, as well as the
Clausius inequality. Then, we study the implications of Clausius inequality for
�nite baths, which reveals that universal reduction of the entropy production of
nanoscale devices.

We dedicate Chap. 5 we move beyonnd weak-coupling master equations and
study the spectral properties of general quantum evolutions. In particular, we are
interested in proving that the spectrum of valid quantum evolutions lies within the
unit disk. Then, we apply this spectral knowledge to two problems. The �rst is
to identify a dynamical phase of matter known as the discrete time crystal. The
second is to characterize the most general map that has as many �xed points as the
dimension of the space.

In Chap. 6 we introduce the quantum Langevin equation approach to study the
stationary dynamics of harmonic systems with and without periodic driving. Then,
we move forward to investigate whether such periodic driving can be exploited to
obtain asymmetric heat transport in harmonic systems.

Finally, we present an outlook of the thesis and our conclusions in Chap. 7.
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There is nothing more practical than a good theory
— Kurt Lewin

2
Preliminaries

This chapter sets up the stage to understand the theory of open quantum systems
that follows in the upcoming chapters. In particular, we slowly introduce the basic
concepts and tools, which hopefully help to �x the notation as well as establish
the basic notions that will become relevant later. Then, we move to study the
open quantum system dynamics and introduce the Pauli, Red�eld and the Born-
Markov-secular weak-coupling master equations. Afterwards, we introduce the
Nakajima-Zwanzig theory, and see that all those master equations become particular
applications of the theory. Finally, we introduce the “standard” framework of
quantum thermodynamics from a dynamical viewpoint.

2.1 Notation and basic quantum mechanics

In quantum mechanics, one associates to every physical system a Hilbert space .
The elementary elements of the Hilbert space are known as kets, and we represent
them as | ⟩ ∈ . The dual element of a ket is a bra ⟨�| ∈ ∗, and their inner
product or braket is a scalar

⟨�| ⟩ ∈ ℂ. (2.1)
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We say that | ⟩ is normalized (or also is a pure state) if the inner product with itself
is one ⟨ | ⟩ = 1. Instead, their outer product or ketbra is a linear operator|�⟩⟨ | ∈ Op(). (2.2)

which acts onto states as (|�⟩⟨ |)|�′⟩ = ⟨ |�′⟩|�⟩.

2.1.1 Quantum states
The state of a physical system is encoded into the density matrix � ∈ Op(), which
is nonnegative � ≥ 0 and has trace one tr(�) = 1. Let {|i⟩} be an orthonormal basis
of , then one can always expand� = ∑ij �ij |i⟩⟨j |, (2.3)

where �ij = ⟨i|�|j⟩ are the density matrix components in the basis {|i⟩}. Since
quantum states are positive, they always admit a spectral decomposition; that is, it
exists an orthonormal basis {|ri⟩} of  such that� = ∑i ri |ri⟩⟨ri | with ri ∈ ℝ, (2.4)

where i = 1,⋯ , d where d is the dimension of the Hilbert space. The collection
of eigenvalues ri is known as the spectrum of �, while |ri⟩ are the corresponding
eigenvectors. Because � is positive and has trace one, we �nd that 0 ≤ ri ≤ 1 and∑i ri = 1. That is, {ri} is a discrete probability distribution. From these properties,
we observe that

tr(�2) = ∑i r2i ≤ 1. (2.5)

The tr(�2) is known as the purity of the quantum state. Pure states ful�ll tr(�2) = 1,
and can be written in the simple form �2 = | ⟩⟨ |, where | ⟩ is normalized. The
least pure state; that is, with a smaller value of tr(�2) corresponds to � = 1/d and it
is known as the maximally mixed state.

2.1.2 Quantum measurements
A projective measurement {x,Π(x)} is a collection of di�erent measurement outputsx ∈ ℝ and eigenprojectors Π(x) ∈ Op(). The eigenprojectors Π(x) are mutually
orthogonal and complete; that is, Π(x)Π(x ′) = �x,x′Π(x) and ∑x Π(x) = 1. Then,
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performing the measurement {x,Π(x)} in a system found in the state � yields
the output x with probability p(x) = tr[Π(x)�] and leaves the system in the post-
measurement state �′(x) = Π(x)�Π(x)p(x) . (2.6)

From a measurement {x,Π(x)}, one can always construct an observable X =∑x xΠ(x) whose expectation value is given by⟨X⟩ ∶= ∑x xp(x) = tr(X�). (2.7)

Projective measurements are not the most general measurements in quantum
mechanics. The so-called positive operator-valued measures or POVMs can be
regarded as generalized measurements, which include projectors as a particular
case. A POVM {y, P (y)} is a set of measurement outputs y ∈ ℝ and a set of positive
operators P (y) = K (y)†K (y) ∈ Op() which are complete; that is, ∑y P (y) = 1,
but not necessarily orthogonal. Performing a POVM measurement on a state �
yields the output y with probability p(y) = tr[P (y)�] and leaves the system in the
post-measurement state

�′(y) = K (y)�K (y)†p(y) . (2.8)

The expectation value of Y = ∑y yP (y) is also given by the equation⟨Y⟩ ∶= ∑y yp(y) = tr(Y�). (2.9)

However, Y is not an observable in the usual sense, since {y} are not its eigenvalues
and P (y) are not eigenprojectors.

2.1.3 Quantum evolution
The evolution of an isolated quantum system is generated by the Schrödinger or
Liouville-von Neumann equation, which reads (~ = 1))t�(t) = −i[H, �(t)], (2.10)

whereH = H † is the energy operator (or Hamiltonian) associated to the microscopic
description of the physical system, and �(t) is the state of the system at time t . If it
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can be understood from the context, we will not write the time argument of the
state; namely, �(t)↦ �. The solution of the Liouville-von Neumann equation is�(t) = exp(−iH t)�(0) exp(iH t). (2.11)
We note that under the unitary dynamics (2.11) the purity is preserved; that is,
tr[�(t)2] = tr[�(0)2] for all t .

If one de�nes X (t) ∶= exp(iH t)X exp(−iH t), one can use the cyclic property
of the trace to obtain the equivalence ⟨X⟩(t) = tr[X (0)�(t)] = tr[X (t)�(0)]. Hence,
there is an alternative way to obtain the time-dependence of an expectation value.
These two alternative procedures are known as the Schrödinger (for evolving
states) and Heisenberg (for evolving observables) picture. In the Heisenberg picture,
observables evolve according to the Heisenberg equation)tX (t) = i[H, X (t)]. (2.12)
From Eq. (2.12) we see that the Hamiltonian H is a conserved quantity of the
evolution and, in particular, that the average energy ⟨H⟩ is preserved.

Actually, there are in�nite intermediate pictures in between the Schrödinger
and the Heisenberg picture. If the Hamiltonian H = H0 + �V , where V is a certain
interaction, it is common to de�ne the interaction picture with respect to the bare
Hamiltonian H0 where, both, observables and states evolve in time. It is done ac-
cording to �̃(t) = exp(iH0t)�(0) exp(−iH0t) and the evolution equation corresponds
to )t �̃(t) = −i[Ṽ (t), �̃(t)]. (2.13)

2.1.4 Composite quantum systems
Consider a composite quantum system whose corresponding Hilbert space  has
two subsystems, say A and B. Then, their Hilbert space forms a tensor structure = A⊗B. Expectation values of composite observables are computed according
to Eq. (2.7). Instead, consider the local observables XA ⊗ 1B and 1A ⊗ YB. Their
expectation values are computed

tr[(XA ⊗ 1B)�] = trA[XAtrB(�)] =∶ trA(XA�A), (2.14)
tr[(1A ⊗ YB)�] = trB[trA(�)YB] =∶ trB(YB�B), (2.15)

where we have de�ned the reduced states �A = trB(�) and �B = trA(�). Hence, the
reduced states of a subsystem are enough to compute expectation values of local
observables. For composite quantum systems, we adopt the convention of not
writing the identity matrices; that is, XA ⊗ 1B ↦ XA whenever it can be understood
from the context.
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2.1.5 Quantum maps
The last object we discuss are quantum maps, which are also known as quantum
channels, superoperators, or simply maps. A map  ∶ Op()↦ Op() is a linear
transformation between operators in a Hilbert space. Of special interest are the so-
called completely-positive and trace-preserving (CPTP) maps, which map quantum
states to quantum states. We say that a quantum map  is trace-preserving if
tr{[�]} = tr[�] for all � ∈ Op(). We say that a map  is completely positive
if for any ancillary Hilbert space A and any � ∈ Op(A ⊗ ) the combination(A ⊗ )[�] ≥ 0 if � ≥ 0, where A is the identity map in the ancillary space.
Clearly, complete positivity implies positivity; that is, [�] ≥ 0 if � ≥ 0.

An example of a CPTP map is the evolution map (t), which maps a given
initial state �(0) to an evolved state �(t) = (t)[�(0)]. Since maps are linear trans-
formations, they are fully speci�ed by the algebraic representation

[◦] = ∑iji′j′ iji′j′⟨i′|◦|j′⟩|i⟩⟨j |. (2.16)

where ◦ is a placeholder and Miji′j′ ∈ ℂ. The four-index object iji′j′ is known as a
tetradic, and behaves almost like a matrix acting on “vectors”, which correspond to
elements of Op().

The statement “almost like a matrix” can be made precise through a method
known as vectorization. Namely, there exists an isomorphism between density
matrices � ∈ Op() and kets in a doubled Hilbert space |�⟩⟩ ∈  ⊗; which takes
the form � = ∑ij �ij |i⟩⟨j | ↔ |�⟩⟩ = ∑ij �ij |i⟩|j⟩. (2.17)

While transforming operators in �, � ∈ Op() to vectors |�⟩⟩ ∈  ⊗, one has
to transform accordingly their inner product ⟨⟨� |�⟩⟩ = tr[�†�]; which is known
as the Hilber-Schmidt product. Then, the basis {|�⟩⟩ = |i⟩|j⟩} corresponds to the
canonical orthonormal basis of the double Hilbert space.

Then, a quantum map  takes the form of a standard matrix in the doubled
Hilbert space

[�] = ∑iji′j′ iji′j′�i′j′ |i⟩⟨j | ↔ |�⟩⟩ = ∑� ���� |�⟩⟩. (2.18)

It is not di�cult to check that, with the prescribed isomorphism, given two operatorsX, Y ∈ Op() the product X�Y transforms according toX�Y ↔ |X�Y⟩⟩ = X ⊗ Y t |�⟩⟩. (2.19)
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2.1.6 A useful identity
To conclude this very �rst section, we state a useful identity for the exponential
of two arbitrary matrices X and Y , that is often appears in the weakly perturbed
systems studied below. Namely, we note that

etX = etY + ∫ t
0 dt ′e(t−t′)Y (X − Y )et′X . (2.20)

Equation (2.20) is easily proven by left multiplication by exp(−tY ) and derivation
with respect to t .
2.2 Quantum Master Equations

Quantum master equations are one of the central topics of this thesis. Historically,
the name master equation was introduced by Nordsieck, Lamb, and Uhlenbeck in
Ref. [NLU40]. It was coined to refer to the following: “When the probabilities of
the elementary processes are known, one can write down a continuity equation forW [denoting a set of probabilities], from which all other equations can be derived
and which we will call therefore the master equation.” With time, the meaning of
master equation became mostly restricted to refer to equations of the form)tp("i) = ∑j≠i [w(i|j)p(j) − w(j |i)p(i)], (2.21)

where p(i) correspond to the probability of being in a certain state i, and w(i|j) are
the transition rates of going from the state j to the state i.

In quantum mechanics, those probabilities correspond to the diagonal entriesp(i) = �ii = ⟨i|�|i⟩ of the density matrix � in a certain basis of interest {|i⟩}. A
quantum master equation is then the evolution equation of, not only the diagonal
entries of the density matrix, but also of its coherences �ij = ⟨i|�|j⟩ with i ≠ j. In
general, quantum master equations can be written in the form)t�ij = ∑i′j′ iji′j′�i′j′ , (2.22)

where iji′j′ is a tetradic. Typically, quantum master equations are compactly
written using a superoperator , which is known the Liouvillian or Lindbladian)t� = [�]. (2.23)
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Consider a closed system with Hamiltonian H = ∑i "i |i⟩⟨i|. From Eq. (2.62), it is
clear that [◦] = −i[H, ◦] and that

iji′j′ = −i("i − "j)�ii′�jj′ . (2.24)

From Eq. (2.24) we easily see that energy eigenstates are stationary )t�ii = 0 and that
coherences in the energy eigenbasis gain a phase ("i − "j)t over a time t . However,
not much more can be extracted from the Liouvillian of a closed system. Quantum
master equations become really useful when one considers the evolution of open
quantum systems that weakly interact with their environment.

Consider that the isolated physical system is composed by two subsystems, say = S ⊗E, the open quantum system and the environment. In many cases of
interest, one wants to evaluate an observable AS ∶= AS ⊗ 1E that only acts on the
system Hilbert space S. Then, it is enough to compute⟨AS⟩ = tr[(AS ⊗ 1E)�] = trS[AS (trE�)] =∶ trS(AS�S). (2.25)

where we have de�ned the reduced state of the system �S ∶= trE(�).
Imagine that we are interested in how the expectation value ⟨AS⟩ depends on

time. Computing the evolution of the state � according to Eq. (2.11) can be very
ine�cient, since the environment is potentially very large. Is it possible to �nd
how the reduced state of the system evolves in time )t�S = S[�S]? Or, equivalently,
can we �nd an evolution map (t) such that �S(t) = (t)[�S(0)]?

Consider that, initially, the open system and the environment are uncorrelated;
that is, �(0) = �S(0) ⊗ �E(0). At time t = 0, they are put into contact and start
evolving together according to Eq. (2.11). Let |ri⟩E be the eigenstate of �E(0) with
eigenvalue ri . Then, at time t , the state of the system is�S(t) = trE [exp(−iH t)�S ⊗ �E(0) exp(iH t)]= ∑ij rj⟨ri | exp(−iH t)|rj⟩E�S(0)⟨rj | exp(iH t)|ri⟩†E. (2.26)

We now introduce the operators Kij(t) ∶= √rj⟨ri | exp(−iH t)|rj⟩E ∈ Op(S), which
are known as the Kraus operators, and act on the system Hilbert space. We note
that the Kraus operators ful�ll the completeness relation ∑ij Kij(t)†Kij(t) = 1S for
all times t . At t = 0 one has simply that (t = 0) = S, where S is the identity map
on the system space. It is easily checked that, if H = HS + HE; i.e., the system and
the environment do not interact, one recovers the closed system unitary evolution.
With that de�nition, we arrive at the desired result�S(t) = (t)[�S(0)] = ∑ij Kij(t)�S(0)Kij(t)†, (2.27)
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which is also known as the Kraus decomposition [Kra71]. A theorem by Choi [Cho75]
says that any map with a Kraus decomposition is CPTP and, conversely, any CPTP
map can be decomposed, although not uniquely, in Kraus operators.

In order to convert Eq. (2.27) into the form of a master equation (2.23), we need
to perform two steps. First, we take the derivative of Eq. (2.27) which leads to the
relation )t�S = )t(t)[�S(0)]. (2.28)

Second, we need the relation between �S(0) in terms of �S(t). This is obtained with
the inverse of the evolution map (t)−1, which we assume it exists, although it is
potentially very complicated. This leads to a time-dependent Lindbladian S(t)
which leads to the rather formal master equation)t�S = S(t)[�S] = [)t(t)](t)−1[�S]. (2.29)

Equation (2.29), albeit exact and completely general, is rarely of practical use. In
the case of Imposing that S(t) to be time-independent, requires also that)t(t) = S(t), (2.30)

which leads to the simple form (t) = exp(St). In this case, the dynamics forms a
dynamical semigroup; that is, (t)(t ′) = (t + t ′), and S is guaranteed to have
the Gorini–Kossakowski–Sudarshan–Lindblad form [GKS76; Lin76])t�S = −i[H ′

S , �S] +∑k �k (Jk�SJk − 12{J †k Jk , �S}) , (2.31)

with H ′
S being a Hermitian operator and �k ≥ 0 being positive. Hence, the potential

of quantum master equations for open quantum systems relies on the physically
motivated limits on which Eq. (2.29) takes this relatively simple form.

In general, the dynamics of the evolution map (t) are very di�erent from
the ones of the unitary evolution �S(t) = exp(−iHSt)�S(0) exp(iHSt) that the system
would follow when it is decoupled from the environment. For instance, under
the non-unitary dynamics (t) the system energy ⟨HS⟩ is no-longer a conserved
quantity of the evolution. Also, the purity of the state tr[�(t)2], which was preserved
under unitary dynamics, can now evolve with time. This shows that, for open
quantum systems, globally preserved properties (like energy or purity) are not
locally preserved. From a physical point of view, open quantum systems interact
with their environment by exchanging energy and building up system-environment
correlations.
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To conclude, classical and quantum master equations are not fully disconnected.
In certain cases of practical importance, the diagonal elements �ii are dynami-
cally decoupled from the coherences �ij with i ≠ j. Then, the quantum master
equation (2.22) reduces to the “classical” master equation (2.21) after identifyingw(i|j) = iijj for i ≠ j constrained to iiii = −∑j≠i w(j |i).

In the next subsections, we study the derivations of several quantum master
equations that arise in di�erent physical contexts. Despite the motivation and the
assumptions made to derive each of those master equations is in principle di�erent,
they always lead to the same formal structure. This motivates the use of a common
framework that is able to put those, in principle di�erent, derivations in the same
footage. This framework is known as the Nakajima-Zwanzig theory, which is the
object of study of the next Section 2.3.

2.2.1 The Pauli master equation
The �rst master equation derived using the rules of quantum mechanics was ob-
tained by Pauli in Ref. [Pau28]. This master equation was derived in order to
understand how the energy populations of a many-body system relax to an equilib-
rium distribution, starting out from some arbitrary initial distribution. Because the
Pauli master equation is concerned only with energy populations, albeit describing
a quantum evolution process, it has the form of a classical master equation (2.21).
The context in which the Pauli master equation is derived is the following. Consider
a many-body system whose Hamiltonian isH = H0 + �V , (2.32)

where H0 is some unperturbed Hamiltonian and �V represents a weak pertubation.
We denote by |j⟩ unpertubed energy eigenbasis, so that H0|i⟩ = "i |i⟩. We are
interested in �nding an evolution equation for the probabilities p("i) = �ii , which
become constant in time as � → 0. For simplicity, we take V to be fully o�-
diagonal, that is Vii = 0 for all i. Initially, we assume a diagonal density matrix�ij(0) = p("i; 0)�ij .

The evolution of the density matrix in the unperturbed energy eigenbasis is�ij(t) = ∑l ⟨i| exp(−iH t)|l⟩p("l ; 0)⟨l | exp(−iH t)|j⟩ (2.33)

Pauli hypothesized that, for su�ciently large systems and general interactions V ,
there exists a timescale �rpa such that the complex numbers ⟨i| exp(−iH t)|l⟩ acquire
an e�ectively random phase. Then, averaging over the initial distribution p("l ; 0)
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gives rise to approximately diagonal states for all times t > �rpa, leading to a closed
equation for the probabilities p("i). This approximation is known as the random
phase approximation.

For an initially diagonal state, the exact time dependence of p("i; t) after an
elapsed time t is given byp("i; t) = ∑j p("i; t |"j)p("j ; 0) ∶= ∑j |⟨i|e−iH t |j⟩|2p("j ; 0). (2.34)

We are interested in computing the transition probabilities p("i; t |"j) in the weak-
perturbation limit. To that end, we use the identity (2.20) for X = −iH and Y = −iH0.
The resulting identity can be used to �nd an expansion of exp(−iH t) in powers of�. The �rst order yields

e−iH t = e−iH0t − i� ∫ t
0 dt ′e−iH0(t−t′)Ve−iH0t′ + (�2). (2.35)

Thus, in the weak-perturbation limit, transition rates between di�erent states i ≠ j
are given by

⟨i|e−iH t |j⟩ = −�⟨i|V |j⟩e−i"i t ei!ij t − 1!ij + (�2), (2.36)

where we have introduced the transition frequencies !ij = "i − "j . Therefore, in the
weak-perturbtion limit we obtainp("i; t |"j) = 2��2|⟨i|V |j⟩|2Δ(!ij , t) + (�3), (2.37)

where the function Δ(!, t) = 2� sin2(!t/2)!2 , (2.38)

has been introduced. As a function of !, the function Δ(!, t) displays a series of
peaks of rapidly decaying height. The �rst peak is at the origin and has height t2/(2� )
and width 2�/t , in such a way that its area scales linearly with t . In fact, for any
time t , the area under the function Δ(!, t) is always exactly t . This behavior already
shows that the above derivation is not valid for any time t , since the transition
probability must remain bounded p("i; t |"j) ≤ 1. In particular, we restrict ourselves
to the van Hove limit [Van57], which corresponds � → 0 and t → ∞ while �2t
remains constant (and small), which leads to meaningful transition probabilitiesp("i; t |"j) in the weak-coupling limit.
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From Eq. (2.37), it is possible to obtain the so-called Fermi golden rule transition
probabilities in the limit of large times. Namely,limt→∞Δ(!, t) = �(!)t, (2.39)

which has to be dealt with care.
First, the distribution �(!) only makes sense if the spectrum of the many-body

system can be approximated by a continuous distribution. That is, the limit of the
in�nite system has to be taken before the van Hove limit. Also, equation (2.39)
predicts that only transitions that preserve the bare energy "i = "j are possible
in the large time limit. Physically speaking, only transitions that conserve the
perturbed energy should be possible, since the Hamiltonian H = H0 + �V is a
conserved quantity of the exact evolution. From perturbation theory, we obtain
that the corrections to the bare energies "i are of order �2 for Vii = 0. Hence, we
expect that the only transitions that contribute are those whose corresponding
transition frequency is of order !ij ∼ (�2).

We are now ready to write down the Pauli master equation. Let �rel be the
timescale of relaxation of the system, and consider elapsed times �t such that�rel ≫ �t ≥ �rpa. Then, �t is small enough to be considered an “in�nitesimal” time
step, but large enough for the random phase approximation to hold. Hence, from
Eq. (2.34)

)tp("i) = p("i; t + �t) − p("i; t)�t= ∑j≠i (p("i; �t |"j)�t p("j ; t) − p("j ; �t |i)�t p("i; t)) , (2.40)

where we have used that the evolution is unitary to rewrite p("i; �t |"i) = 1 −∑j≠i p("i; �t |"j). To conclude the derivation, it is only left to de�ne the transition
rates w("i |"j) = p("i; �t |"j)�t = 2��2|⟨i|V |j⟩|2�(!ij), (2.41)

with the symmetry property w("i |"j) = w("j |"i), which can be regarded as a con-
sequence of the microscopic reversibility. Thus, we arrive at the Pauli master
equation )tp("i) = ∑j≠i w("i |"j)[p("j ; t) − p("i; t)]. (2.42)
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The Pauli master equation has found applications in many areas of physics.
For instance, it has been used to study the relaxation dynamics of polyatomic
molecules [GRF72] or the electron transport in nanostructures [Fis98]. However,
the derivation is not fully transparent. It involves several approximations, like the
random phase approximation or the van Hove limit, whose range of validity is not
clear. We will revisit this derivation below in the context of the Nakajima-Zwanzig
theory.

2.2.2 The Red�eld master equation

The second type of master equation that we discuss is the Red�eld master equa-
tion [Red57]. This second type of master equation is derived for an open system,
and it is genuinely quantum; that is, is a master equation for the full density matrix
including its coherences (�S)ij . Red�eld derived this master equation to describe the
evolution of “a relatively simple system that interacts with a more complicated sys-
tem that acts as a temperature bath”. The bath is regarded as a macroscopic object
that is well-described with a collection of few macroscopic parameters such as its
temperature or number of particles that are not a�ected by the system dynamics.
To remind ourselves that the environment is a heat bath, we replace the label ‘E’
that made reference to the environment, for the label ‘B’ that makes reference to
the bath. In this sense, he was interested in the irreversible dynamics of a micro-
scopic system (for instance a nuclear spin) that arose from the interaction with a
macroscopic environment (for instance the surrounding solid).

The previous theory to describe these systems was derived by Wangsness and
Bloch [WB53], where only the diagonal elements in the energy eigenbasis where
treated. However, it was known that quantum coherence played an important role
in spin systems and Red�eld wanted to include those quantum coherences in the
theory.

The Red�eld equation is derived in the system-environment paradigm. Consider
an isolated physical system composed by two subsystems  = S ⊗ B which,
once more, we call the open quantum system and the bath. The Hamiltonian of the
isolated system can be always divided into H = HS +HB +Hint where HS = ∑i "i |i⟩⟨i|
and HB = ∑k ek |ek⟩⟨ek | contain only degrees of freedom of the system and the
bath, respectively. The interaction Hamiltonian can be generally written as Hint =�∑� S� ⊗ B� , where S� and B� are system and bath operators, respectively. Initially,
we consider that the isolated system was found in the state �(0) = �S(0) ⊗ ΦB(a),
where �S(0) is an arbitrary initial state of the system, and ΦB(a) is an equilibrium
state of the bath; that is, [HB,ΦB(a)] = 0. The parameters a = (a1, a2,⋯) are a
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collection of macroscopic equilibrium parameters that characterize the equilibrium
state; for instance, the average energy, the temperature, or the particle number.

Once the equilibrium state of the bath ΦB(a) is �xed, it is useful to introduce
the ‘mean-�eld’ interaction HamiltonianHmf

S (a) ∶= �∑� ⟨B�⟩aS� , (2.43)

where ⟨◦⟩a = tr[◦ΦB(a)], is the quantum expectation value with respect to the
equilibrium state ΦB(a). Consequently, we also de�ne the remaining interaction
Hamiltonian as �V (a) ∶= Hint − Hmf

S (a) = ∑� S� ⊗ (B� − ⟨B�⟩a), (2.44)

and also we de�ne �B� (a) ∶= B� − ⟨B�⟩a.
We are interested in deriving a quantum master equation for the reduced density

matrix �S = trB�, and we proceed as follows. First, we go to the interaction picture
with respect to Ha = HS + Hmf

S (a) + HB. Integrating the Liouville-von Neumann
equation in that picture yields

)t �̃a(t) = −i� ∫ t
0 dt ′[Ṽa(a; t ′), �̃a(t ′)]. (2.45)

where the interaction picture depends explicitly on the equilibrium parameters a;
for instance, �̃a(t) = exp(iHat)�(t) exp(−iHat). Then, we self-consistently replace
the �̃a(t ′) within the integral by the expression of �̃a(t) evaluated at the time t ′.
Taking the time-derivative, we arrive at

)t �̃a(t) = −i�[Ṽa(a; t), �̃a(0)] − �2 ∫ t
0 dt ′[Ṽa(a; t), [Ṽa(a; t ′), �̃a(t ′)]]. (2.46)

Importantly, equation (2.46) is still exact.
We now take advantage of the weak-coupling; that is, we assume that � is a

small energy scale. Then, it makes sense to expand Eq. (2.46) in powers of �. First,
we note that�a(t ′) = eiHat [eiHa(t′−t)e−iH (t′−t)] �(t) [eiH (t′−t)e−iHa(t′−t)] e−iHat = �a(t) + (�). (2.47)

which is true in virtue of the identity (2.20). Of course, for a �nite �, the fact that
the di�erence |�a(t) − �a(t ′)| ∼ (�) does not imply that one can disregard it. If we
denote by �B the largest time contributing to the integral in Eq. (2.46), then the
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condition to ignore the di�erence is that the product ��B ≪ 1. We shall return to
the discussion about �B below. Now, we return to the Schrödinger picture and take
the trace over the bath to arrive at)t�S = − i[HS + Hmf

S (a), �S] − i�trB[V (a), �̃a(−t)]− �2 ∫ t
0 dt ′trB[V (a), [Ṽ (a; t ′ − t), �]] + (�3). (2.48)

where we have used that trB([HB, ◦]) = 0 and noted that Ṽa(a; t) = Ṽ (a; t) + (�)
with the interaction picture with respect to the bare Hamiltonian H0 = HS +HB; that
is, Ṽ (a, t) = exp(iH0t)V (a) exp(−iH0t). Equation (2.48) is exact to second order in �.

We now perform the so-called Born approximation. It stands that, at any
time t , the actual state of the system-bath composite can be approximated by�(t) ≈ �S(t) ⊗ΦB(a). The Born approximation is well justi�ed for environments that
are so large that the dynamics of the open system cannot induce any appreciable
change in its state. Then, its initial state ΦB(a) remains constant at all times. With
this approximation, we obtain

)t�S = − i[HS + Hmf
S (a), �S] − �2 ∫ t

0 d� trB[V (a), [Ṽ (a; −� ), �S ⊗ ΦB(a)]], (2.49)

where we have changed variables to � = t − t ′. Equation (2.49) is important, and
we give it the name of the time-local equation.

The time-local equation is very similar to the Red�eld equation, which requires
the extra step of sending the upper limit of the time integral to in�nity. This is
known as the Markov approximation, which transforms the time-local equation,
to a time-local and time-independent equation. The Markov approximation is
justi�ed if the timescale �B in which the bath correlation function C�� ′(a; � ) ∶=⟨�B̃� (a; � )†�B̃� ′(a)⟩a decays is much shorter than the timescale of the evolution of
the system. Then, at su�ciently long times t , one can extend the upper limit of the
integral to in�nity, since for all times � & �B the integrand vanishes.

However, for any �nite system, the correlation function becomes arbitrarily
close to its initial value for su�ciently long times. This phenomenon is known as
a Poincaré recurrence, and the �rst time it occurs is the Poincaré recurrence time�P. Therefore, one should keep in mind that the master equation with the Markov
approximation is only valid up to times t . �P. Luckily, the Poincaré recurrence time�P is very large for many-body systems. Indeed, under certain assumptions [Ven15],
it can be shown to grow doubly exponential with the system size. Then, the Markov
approximation is well justi�ed for typical baths, which are many-body systems. To
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avoid the problem of recurrences, some authors take the in�nite bath limit. In this
limit, the Poincaré recurrence time tends to in�nity �B → ∞ and then, the Markov
approximation is well justi�ed for all times t . In App. A.2, we discuss in more detail
the recurrences of the bath correlation function in �nite baths and the absence of
recurrences for in�nite baths.

While taking the in�nite bath limit is typically harmless for evaluating the bath
correlation functions, it gives the wrong impression that the in�nite bath cannot
be disturbed due to the interaction with the system. This is not the case for �nite
baths, which we discuss in detail in the upcoming chapters, and one should be
careful before taking the in�nite bath limit.

Assuming that the Markov approximation is well justi�ed, we can then proceed
sending the upper limit of the time integral to in�nity, which brings us to the
Red�eld equation

)t�S = − i[HS + Hmf
S (a), �S] − �2 ∫ ∞

0 d� trB[V (a), [Ṽ (a; −� ), �S ⊗ ΦB(a)]]. (2.50)

The Red�eld equation (2.50) can also be written explicitly in terms of the bath
correlation functions C�,� ′(a; � ). To this end, we introduce the eigendecomposition
of the system operators S� . Namely, we de�neS�,! ∶= ∑ij ⟨i|S� |j⟩|i⟩⟨j |�!,"j−"i , (2.51)

in such a way that S̃� (t) = ∑! S�,! exp(−i!t). Then, using that V (a) = ∑� S�⊗�B� (a)
one obtains)t�S = − i[HS + Hmf

S (a), �S]+ �2∑�� ′ ∑! ∫ ∞
0 d�C�� ′(a; � )ei!� (S� ′,!�SS†� − S†� S� ′,!�S) + h.c., (2.52)

where we have used that ΦB(a) is an equilibrium state to take advantage of the
relation ⟨�B̃� (t)†�B̃� ′(t ′)⟩a = ⟨�B̃� (t − t ′)†�B� ′⟩a. This motivates the de�nition of
the operator �� (a) ∶= �2∑!,� ′ ∫ ∞0 d�C�� ′(a; � )ei!�S� ′,! . Then, the Red�eld equation
can be compactly cast as)t�S = − i[HS + Hmf

S (a), �S] +∑� [�� (a)�SS†� − S†� �� (a)�S + h.c.] . (2.53)

Today, the Red�eld master equation has been used in nuclear magnetic reso-
nance for more than half a century under the name of Wangsness-Bloch-Red�eld
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theory (see for instance [Sli13]). However, using the results of Davies [Dav74], it
was noticed by Dümcke and Spohn [DS79] that the quantum evolution generated
by the Red�eld equation is not always completely positive; that is, �S(t) can develop
negative eigenvalues. The negativity results from the failure of the Markovian
approximation, specially at short times. Commonly there are two solutions are
available for this problem. The �rst, is to use the slippage super-operator [SSO92;
GN99], which corrects for the short-time e�ects restoring the positivity of the
Red�eld equation. The second is to introduce a third approximation, on top of the
Born and Markov approximations, which is known as the secular approximation.
This second solution is the subject of the next subsection.

2.2.3 The Born-Markov-secular master equation
The third equation that we discuss is known as the Davies [Dav74] or Born-Markov-
secular (BMS) master equation. It requires an extra layer of approximation, the
secular approximation, which consists in averaging out the fast oscillating terms in
the interaction picture, restoring the positivity that the Red�eld equation lacked.
However, this averaging procedure neglects many dynamical processes, those with
zero time average, whose relative importance depends on the physical system under
scrutiny. Some physical systems, like quantum optical ones, are well described
after the secular approximation. Other systems, like nuclear spins, are not suited
by the secular approximation, and are better described by Red�eld equation. Hence,
it is important to understand the similarities and di�erences between the two
approaches.

We derive the BMS master equation as follows. Frist, from Eq. (2.53), we move
back to the interaction picture with respect to H0 = HS + HB)t �̃S(t) = − i∑�,! ⟨B�⟩ae−i!t[S�,! , �̃S(t)] (2.54)∑�� ′ ∑!,!′ Γ�� ′(a;!)ei(!′−!)t [S� ′,!�̃S(t)S†�,!′ − S†�,!′S� ′,!�̃S(t)] + h.c.
where Γ�� ′(a;!) ∶= �2 ∫ ∞0 d�C�� ′(a; � ) exp(i!� ) is proportional to the half Fourier
transform of the bath correlation function. The secular approximation selects the
zero frequency components of the above equation which yields)t �̃S(t) = − i∑� ⟨B�⟩a[S�,0, �̃S(t)] (2.55)+∑�� ′ ∑! Γ�� ′(a;!) [S� ′,!�̃S(t)S†�,! − S†�,!S� ′,!�̃S(t)] + h.c.
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The secular approximation is justi�ed as long as the inverse of the minimum energy
transition di�erence of the system min|! − !′|−1 for ! ≠ !′, whose inverse de�nes
the timescale of the system �S, is much smaller than the typical timescale of the
bath �B; that is |! − !′|−1 ∼ �S ≪ �B. Intuitively, this timescale di�erence justi�es
replacing the exponential factor exp[i(!−!′)t] in Eq. (2.54) by its time average �!,!′ .
For instance, this timescale separation is found in quantum optical platforms, where
typical bath correlation times �B ∼ 10−9 seconds while inverse optical frequencies�S ∼ 10−15 seconds[BP02].

Equation (2.55) is already the BMS master equation, however, it is convenient
to present it in a di�erent form. To this end, we now introduce the Hermitian and
anti-Hermitian parts of the matrix Γ�� ′(a;!) which we de�ne as�� ′(a;!) = Γ�� ′(a;!) + Γ� ′� (a;!)∗, (2.56)A�� ′(a;!) = [Γ�� ′(a;!) − Γ� ′� (a;!)∗]/(2i). (2.57)

Because the bath correlation function has the symmetry C�� ′(a; � ) = C� ′� (a; −� ),
the corresponding function �� ′(a;!) can be computed alternatively as the Fourier
transform �� ′(a;!) = �2 ∫ℝ C�� ′(a; � ) exp(i!� ).

Moving back to the Schrödinger picture, we arrive at the equation)t�S = − i[HS + Hmf
S,0 (a) + H LS

S (a), �S]+ �2∑�� ′ ∑! �� ′(a;!)(S� ′,!�SS†�,! − 12{S†�,!S� ′,! , �S}) , (2.58)

where the Hamiltonian termsHmf
S,0 (a) = �∑� ⟨B�⟩aS�,0, (2.59)H LS
S (a) = �2∑�� ′ ∑! A�� ′(a;!)S†�,!S� ′,! , (2.60)

that commute with the bare system Hamiltonian HS, have been de�ned. For histor-
ical reasons, we have labeled with the subscript ‘LS’ the third term, which stands
for the Lamb-shift Hamiltonian. Hereafter, for compactness of the notation, we
gather all the Hamiltonians into H ′

S(a) = HS + Hmf
S,0 (a) + H LS

S (a).
Finally, we recall that the rates �� ′(a;!) are Hermitian, and therefore, can be

diagonalized. Let u��(a;!) be the components of the unitary matrix that diagonal-
izes �� ′(a;!); that is, �� ′(a;!) = u∗�� ′(a;!)u�� ′(a;!)��(a;!). De�ning the jump
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operators J�,!(a) ∶= ∑� u�� (a)S�,! , we arrive at the �nal BMS master equation

)t�S = − i[H ′
S(a), �S] +∑�,! ��(a;!)(J�,!(a)�SJ�,!(a)† − 12{J�,!(a)†J�,!(a), �S})=∶ S[�S]. (2.61)

The Lindbladian S is time-independent, which implies that the evolution map(t) under the BMS master equation has the simple form (t) = exp(St). In
this simpli�ed form, it is easy to see that Eq. (2.61) becomes compatible with
Eq. (2.29). Finally, it can be shown using Bochner’s theorem [BP02; RH12] that��(a;!) ≥ 0, which guarantees that Eq. (2.61) has the form of the well-known
Gorini-Kossakowski-Sudarshan-Lindblad [GKS76; Lin76], which ensures that �S is
positive at all times.

2.3 The Nakajima-Zwanzig theory

The aim of this section is to introduce the theory derived by Nakajima and Zwanzig
in Refs. [Nak58; Zwa60; Zwa61]. The Nakajima-Zwanzig theory is based on identi-
fying the relevant part of the dynamics; which is problem dependent, in a mathe-
matically well-de�ned manner, and then, exploit the linearity of the Liouville-von
Neumann equation to obtain an equation of motion that involves only the relevant
part. The greatest advantage of this formulation is that it uni�es the derivation of
numerous master equations. As an illustration of the potential of the Nakajima-
Zwanzig techniques, we derive the master equations discussed throughout the last
section as particular applications of the theory.

We start introducing  , a time-independent linear map on the Hilbert space as well as its complementary map  ∶=  −  . Hereafter, the maps  and 
are referred to as the relevant and irrelevant map, respectively. For instance, if the
relevant part of the dynamics is the reduced state of the system �S, the relevant map corresponds basically to a partial trace over the environment of the total state �.
We consider an isolated system whose microscopic description is encoded in the
time-dependent Hamiltonian H (t). Even if the Hamiltonian H is time-independent,
the time-dependent formulation of the Nakajima-Zwanzig equation can be useful
to derive master equations in the interaction picture. Then, the system evolves
accordingly to the Liouville-von Neumann equation)t� = −i[H (t), �] =∶ (t)[�]. (2.62)
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Since the relevant  and irrelevant  map add up to the identity, it is possible to
decompose the Liouville-von Neumann equation as)t� = (t)� + (t)�, (2.63))t� = (t)� +(t)�, (2.64)

where, hereafter, we omit the square brackets to lighten the notation. Equation (2.63)
is a di�erential equation for the relevant part�, but it still depends on the irrelevant
part of the state �. We can eliminate the dependence on � as follows. First, we
formally integrate Eq. (2.64) and obtain

�(t) = (t, 0)�(0) + ∫ t
0 dt ′(t, t ′)(t ′)�(t ′). (2.65)

where we have introduced the propagator (or Green’s function)

(t, t0) = exp+ [∫ t
t0 (t ′)dt ′] , (2.66)

where exp+(◦) corresponds to the time-ordered exponential. And second, we substi-
tute Eq. (2.65) into Eq. (2.63) to arrive at the Nakajima-Zwanzig equation

)t� =(t)� + I (t) + ∫ t
0 dt ′(t, t ′)�(t ′), (2.67)

where the inhomogeneous termI (t) = (t)(t, 0)�(0), (2.68)

and the memory kernel

(t, t ′) = (t)(t, t ′)(t ′), (2.69)

have been de�ned. In the simpler case of a time-independent HamiltonianH (t) = H ,
the Liouvillian becomes time-independent (t) =  and the propagator is simply(t, t0) = (t − t0) = exp[(t − t0)]. As a consequence, the kernel (t, t ′) = (t − t ′)
becomes also a function of the time di�erence only.

The Nakajima-Zwanzig equation (2.67) is an exact equation for the relevant
part of state �. It has several interesting properties. First, given a map  , there is
a class of initial states �(0) for which the Nakajima-Zwanzig becomes particularly
simple. Namely, if the initial state is invariant under the action of the map; that
is, �(0) = �(0), the inhomogeneous term I (t) = 0 vanishes for all times. Then,
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the Nakajima-Zwanzig equation becomes a closed equation for the relevant part�. Second, the memory kernel (t, t ′) can capture the non-Markovian features of
the evolution. And third, in certain scenarios, the information leakage out of the
relevant subspace gives rise to an e�ective irreversible dynamics for �.

Despite being exact, the Nakajima-Zwanzig equation cannot always be solved.
For a weakly perturbed Hamiltonian H = H0 + �V , one can �nd a formal solution
to the Nakajima-Zwanzig equation in terms of an in�nite series, but very rarely
can be resumed to produce a closed expression for �(t). We discuss in some
depth this procedure in App. A.1. Hence, one has to rely on numerical techniques
to obtain the relevant dynamics or, crucially, use Eq. (2.67) as a starting point
to implement problem-dependent approximation schemes. Such approximations
schemes correspond to the identi�cation of the relevant map  and a perturbation
parameter �, for which it is justi�ed to truncate the expansion at some �nite order.

A good choice of the relevant map  is one such that the relevant state �
is low dimensional and a good approximation for the actual state �. The “low
dimensional” part ensures that the dynamics can be solved e�ciently; that is,
with limited computational resources. The “good approximation” part is tightly
connected with the desired property of a time-local equation. In other words, for
the state �(t + dt) is fully determined by the state at the previous time-step �(t),
and we would like this property to be transferred as much as possible to �(t + dt)
and �(t). Clearly,  should be a compromise between the “low dimensional”
and the “good approximation” parts. For instance, [◦] = tr[◦]1/d gives a zero-
dimensional description, but is a bad approximation; while, [◦] = [◦] is a perfect
approximation, but makes the Nakajima-Zwanzig equation identical to the Liouville-
von Neumann equation which is practically impossible to solve.

In the following, to illustrate the applicability of the Nakajima-Zwanzig theory,
we study perturbative expansions of the Nakajima-Zwanzig equation for di�erent
choices of the relevant map  . Those choices correspond to the Pauli, Red�eld, and
BMS master equation discussed in Sec. 2.2.

2.3.1 Revisiting the Pauli master equation

The �rst application of Nakajima-Zwanzig theory is to provide a compelling deriva-
tion of the Pauli master equation for a diagonal state �(0), and the Hamiltonian in
Eq. (2.32). We decompose the Liouvillian operator as  = 0 + �1, correspond-
ing to the zeroth and �rst order in � contributions, respectively. To be precise0[◦] = −i[H, ◦] and 1[◦] = −i[V , ◦]. We are interested in a master equation for the
diagonal elements of the density matrix. Hence, we de�ne the relevant projection
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operator

[�] ∶= ∑i ⟨i|�|i⟩|i⟩⟨i|, (2.70)

which ful�lls the property 2 = . Its components, as well as the ones for the
irrelevant map  −, are given by

iji′j′ = �ii′�jj′�ij , (2.71)[( −)]iji′j′ = �ii′�jj′(1 − �ij). (2.72)

Hence, when acting onto a quantum map , the relevant map  selects the
components ()iji′j′ = iii′j′ . It is also useful to write the components of the
total and unperturbed Liouvillian

iji′j′ = −i(⟨i|H |i′⟩�jj′ − ⟨j′|H |j⟩�ii′), (2.73)(0)iji′j′ = −i("i − "j)�ii′�jj′ . (2.74)

Using the above properties, we obtain  = 0, and noting that [�(0)] = �(0),
the Nakajima-Zwanzig equation simpli�es into

)t[�] = ∫ t
0 dt ′(t − t ′)[�(t ′)], (2.75)

or, in terms of the components of the density matrix

)t�ii = ∑j ∫ t
0 dt ′[(t − t ′)]iijj�jj(t ′). (2.76)

Equation (2.76) starts looking like a master equation. The master equation structure
can be made even more apparent by noting the sum rule ∑i′ iji′i′ = 0, which
can be used to cast [(t)]iiii = −∑j≠i[(t)]iijj . Then, identifying p("i) = �ii , and
introducing the change of variables � = t − t1, we arrive at

)tp("i) = ∑j≠i ∫ t
0 d� [(� )]iijj[p("j ; t − � ) − p("i; t − � )]. (2.77)

where no approximation has been done.
In the standard derivation of the Pauli master equation (see Sec. 2.2.1), we

introduced the timescale �� ∶= �2t in the context of the van Hove limit. To take
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this limit, it is helpful to introduce the probability distributions P ("i; ��) = p("i; t).
This transforms Eq. (2.77) to

)��P ("i) = ∑j≠i ∫ ��/�2
0 d��−2[(� )]iijj[P ("j ; �� − �2� ) − P ("i; �� − �2� )], (2.78)

which is still exact. Now, Eq. (2.78) is ready for taking the van Hove limit: � → 0,t → ∞, and �� = �2t = constant, which brings it to the master equation form

)��P ("i) = ∑j≠i ∫ ∞
0 d��−2[(� )]iijj[P ("j ; ��) − P ("i; ��)]. (2.79)

After taking the limit, we can transform back to the original probabilities p("i; t)
which leads to )tp("i) = ∑j≠i ∫ ∞

0 d� [(� )]iijj[p("j ; t) − p("i; t)]= ∑j≠i w("i |"j)[p("j ; t) − p("i; t)], (2.80)

where we have identi�ed the transition rates w("i |"j) as the integrated components
of the memory kernel.

It is only left to compute explicitly the transition rates w("i |"j) for j ≠ i. First, we
note the properties (0)iii′j′ = 0, and [( −)0]iji′i′ = 0, which are a consequence
of 0 = 0. Then, the memory kernel simpli�es into

(t) = �21 exp[( −)(0 + �1)t]( −)1. (2.81)

Now, we take advantage of the weak-perturbation limit, which allows to expand

(t) = �21 exp(0t)( −)1 + (�3), (2.82)

where we have used again that 0 = 0. Note also that the exponential of the
unperturbed Liouvillian has the components [exp(0t)]iji′j′ = exp(−i!ijt)�ii′�jj′ .
Hence, taking i ≠ j, we arrive at

w("i |"j) = �2∑kl (1)iikl[( −)1]kljj ∫ ∞
0 d�e−i!kl�= 2��2|⟨i|V |j⟩|2�(!ij), (2.83)
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which corresponds to the “Golden rule” transition rates obtained in Sec. 2.2.1.
The present derivation of the Pauli master equation, this time through Nakajima-
Zwanzig theory, is much more transparent since no random phase approximation
was done, and the van Hove limit appears in a mathematically well-de�ned way. The
only persistent pathology of the present formulation is that a �-function appears
without having introduced the notion of a continuous spectrum. Namely, for a
�nite system with a discrete spectrum, the �-function is meaningless.

2.3.2 Revisiting the Red�eld equation
The second application of the Nakajima-Zwanzig theory is the to derive the Red�eld
equation (2.50). The setup is the same as in Sec. 2.2.2. Namely, we divide the
Hamiltonian of the isolated system into H = HS + HB + Hint where HS = ∑i "i |i⟩⟨i|
and HB = ∑k ek |ek⟩⟨ek | contain only degrees of freedom of the system and the bath,
respectively. We also decompose Hint = �∑� S� ⊗ B� , where S� and B� are system
and bath operators, respectively. We denote by H0 = HS + HB the zeroth order in �
of the Hamiltonian and decompose  = 0 + �1; that is, 0[◦] = −i[H0, ◦], while1 = −i�−1[Hint, ◦]. Initially, we consider that the isolated system is in the state �(0) =�S(0) ⊗ ΦB(a), where �S(0) is an arbitrary initial state of the system, and ΦB(a) is an
equilibrium state of the bath; that is, [HB,ΦB(a)] = 0. The parameters a = (a1, a2,⋯)
are macroscopic equilibrium parameters that characterize the equilibrium state; for
instance, the energy, the temperature, or the particle number. We are interested in
the dynamics of the reduced state of the system �S = trB(�). Accordingly, we de�ne
the relevant projection operator

[�] ∶= trB(�) ⊗ ΦB(a). (2.84)

We are now ready to evaluate all terms appearing in the Nakajima-Zwanzig
equation (2.67) term by term. Because we are interested in the evolution equation
of �S, rather than [�], we can �rst trace over the bath to obtain

)t�S = trB(�) + trB[I (t)] + ∫ t
0 dt ′trB[(t − t ′)�(t ′)]. (2.85)

We start noting that, for our choice of initial state �(0), we �nd that the inhomoge-
neous term vanishes I (t) = 0 for all times t . Next, we compute

� = (−i[HS, �S] − i�[∑� ⟨B�⟩aS� , �S]) ⊗ ΦB(a). (2.86)
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At this point, many authors decide to assume for simplicity that ⟨B�⟩a = 0, which
can be done without loss of generality. We intentionally keep track of this term
since it will become important in the upcoming chapters. We take the opportunity
to de�ne �B� (a) = B� − ⟨B�⟩a, Hmf

S (a) ∶= �∑�⟨B�⟩aS� , where ‘mf’ stands for
mean-�eld, and �V(a) ∶= Hint − Hmf

S (a).
For the convolution term, we have to evaluate the memory kernel (t), whose

expression is relatively involved. Here, we take advantage of the weak-coupling
limit and compute the kernel only to second order in �. We start computing the
terms ( − )[◦] = −i�[V (a), trB(◦) ⊗ ΦB(a)], (2.87)

( − )[◦] = −i�trB([V (a), ◦]) ⊗ ΦB(a), (2.88)

where we have used the properties trB([HB, ◦]) = 0, trB([HS, ◦]) = [HS, trB(◦)], and
the fact that ΦB(a) is an equilibrium state of the bath [HB,ΦB(a)] = 0. Therefore, to
second order in � we can substitute in the exponential  by 0. The exponent is
explicitly given by ( − )0[◦] = 0[◦] + i[HS, trB(◦) ⊗ ΦB(a)], (2.89)

and a quick calculation shows that in factexp[( − )0t]( − )1� = exp(0t)( − )1�, (2.90)

which follows from trB[�B� (a)ΦB(a)] = 0, and trB([HB, ◦]) = 0. The map exp(0t)[◦] =exp(−iH0t)◦ exp(iH0t) and, hence, we identify X̃ (t) = exp(−0t)[X (0)] as the interac-
tion picture with respect toH0. Finally, we make use of exp[−iH0(t−t ′)] exp(−iH t ′) =exp(−iH t) + (�) to arrive at the time-local equation

)t�S = −i[HS + Hmf
S (a), �S] − �2 ∫ t

0 dt ′trB{[V (a), [Ṽ (a; t ′ − t), �S ⊗ ΦB(a)]]}, (2.91)

which is identical to equation (2.49). Importantly, we have arrived to Eq. (2.91)
without making use of any approximation other than a weak-coupling expansion
in �. From Eq. (2.91), one can proceed analogously to Sec. 2.2.2 and Sec. 2.2.3 to
derive the Red�eld and BMS master equations.

2.3.3 Outlook on Nakajima-Zwanzig theory
The Nakajima-Zwanzig theory is a powerful technique to derive quantum master
equations. Its power resides in its versatility. The crucial insight about this theory

32



CHAPTER 2. PRELIMINARIES

is that one can use an arbitrary linear and time-independent map  to decom-
pose the Liouville-von Neumann equation (2.62) into the two mutually dependent
equations (2.63) and (2.64). Then, injecting the formal solution of Eq. (2.64) into
Eq. (2.63) one arrives to the Nakajima-Zwanzig equation (2.67) which is a closed
equation for the relevant state �.

The task of the physicist is, then, �nding a clever choice of  from which the
relevant information about the dynamics can be extracted. However, since the
Nakajima-Zwanzig equation is basically a rearranged version of the Liouville-von
Neumann equation, solving it is virtually impossible. Hence, the choice of  has
to be also one that, given a physical problem, can help to simplify the Nakajima-
Zwanzig equation to made it tractable. Customary choices of  correspond to
projection maps 2 =  such that make the initial state �(0) invariant under the
projection �(0) = �(0). Then, the inhomogeneous term I (t) vanishes for all timest . In open quantum systems, the decomposition between system and bath degrees
of freedom can be regarded as part of the choice of  . Basically, the bath can be
regarded as the part of the isolated system that you trace over. Hence, a good
partition is one such that the interaction between the parts is weak, which allows
for an expansion in the interaction strength � along the lines of Sec. 2.2.2 and
Sec. 2.2.3.

Given the choices  =  and  =  that we used to derive the Pauli and
Red�eld master equations, respectively, it may seem that  can only select certain
components of the exact density matrix �. As it turns out, it can do much more
than that. For instance, in many quantum systems the noise can be described
by a stochastic process. In the simplest case, the stochastic process enters the
description as a stochastic term �(t)V in the Hamiltonian; that is, H = H0 + �(t)V
(see for instance [Cai19]). Then, the evolution of the density matrix becomes a
function of the noise realization ��. If one is interested on the average trajectory� = E[��], where E[◦] represents the average over the noise realizations, one can use
the projection [◦] = E[◦] to derive the corresponding quantum master equation.
The Nakajima-Zwanzig equation can be used even in the classical context. For
instance, in its pioneering work [Zwa60], Zwanzig discussed the possibility of
using the projector [◦] = [∫ dq3N ]−1 ∫ dq3N ◦, where q here denotes a canonical
coordinate of a particle, to obtain the momentum dependence of the phase-space
distribution of a classical system of N particles.
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2.4 Typical bath examples

In this section, we discuss brie�y the typical models for the bath HamiltonianHB and
the interaction Hamiltonian Hint. The aim is, for each model, to compute explicitlyΓ�� ′(a;!) as well as its ‘Hermitian’ �� ′(a;!) and ‘anti-Hermitian’ A�� ′(a;!) parts.
Because for the typical models below, the interaction has the simpler form Hint =�S ⊗ B, we drop the indices �� ′ during the computation.

2.4.1 A bath of harmonic oscillators
The �rst example we discuss is a bath of harmonic oscillators, also known as bosonic
bath, or the Caldeira-Leggett bath [CL83]. This bath consists of a collection ofNb non-interacting harmonic oscillators or bosons r = 1,⋯ , Nb with correspond-
ing bosonic operators br and b†r that ful�ll the canonical commutation relations[br , br ′] = 0, and [br , b†r ′] = �rr ′1. Then, the bath Hamiltonian is

HB = Nb∑r=1 Ωr (b†r br + 1/2), (2.92)

where Ωr ≥ 0 is the frequency of the r th oscillator. The interaction is taken of the
form Hint = �S ⊗ B = �S ⊗ Nb∑r=1 cr (b†r + br ), (2.93)

where cr is the coupling strength to the r th oscillator and S is an arbitrary system
operator. The interaction (2.93) is also known as “position-type” interaction, since
the combination (b†r + br ) is proportional to the position operator of a bosonic
system.

For each boson br , we introduce the orthonormal Fock basis |nr⟩, with nr =0, 1,⋯ with ⟨mr |nr⟩ = �mn. The action of the bosonic operators onto the Fock basis
elements is br |nr⟩ = nr |nr−1⟩ and b†r |nr⟩ = (nr+1)|nr+1⟩. Then, an energy eigenstate|n⟩ = |n1,⋯ , nr ,⋯ , nNb⟩ has energy En = ∑r nrΩr + E0, where the zero-point energyE0 ∶= Nb/2∑r Ωr is the energy of the vacuum state |0⟩. It is not hard to see that
the coupling operator is o�-diagonal in this energy eigenbasis; that is, ⟨n|B|n⟩ = 0.
Then, we �nd �B(a) = B for any equilibrium state ΦB(a). Also, it is easy to see thatb̃r (t) = exp(iHBt)br exp(−iHBt) = br exp(−iΩr t). Then, the bath correlation function
for this model is simplyC(a; � ) = ∑r c2r (trr{b†r br trCr [ΦB(a)]}eiΩr � + trr{brb†r tr

Cr [ΦB(a)]}e−iΩr �) , (2.94)
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where tr
Cr (◦) denotes taking the trace over every boson except the r th one. Inter-

estingly, to compute the r th spin contribution to the correlation function, only the
reduced state of ΦB(a) of the r th subsystem is needed. Note that the collection of
reduced states {Φr (a) ∶= tr

Cr [ΦB(a)]} contains much less information than the full
state ΦB(a).

To proceed further, one has to specify the equilibrium state ΦB(a). The most
typical choice corresponds to the Gibbs state �B(�) ∶= exp(−�HB)/ZB(�), whereZB(�) = tr[exp(−�HB)] is the canonical partition function. The Gibbs state �B(�)
depends on a single parameter a = (�), which is the inverse temperature. Then, we
�nd C(� ; � ) = ∑r c2r {nb(�,Ωr )eiΩr � + [nb(�,Ωr ) + 1]e−iΩr �} , (2.95)

where nb(�,Ω) ∶= [exp(�Ω) − 1]−1 is the bosonic occupation number.
We are ultimately interested in the functions  (a;!) and A(a;!), which, for a

single bath operator, correspond to the real and imaginary part of Γ(a;!). Hence,
we have to compute

Γ(� ;!) = limt→∞ �2 ∫ t
0 d� Nb∑r=1 c2r {nb(�,Ωr )ei(!+Ωr )� + [nb(�,Ωr ) + 1]ei(!−Ωr )�} . (2.96)

Before taking the limit, one can sum �rst over the oscillators r or integrate over
time yielding the same result. However, things become subtle after taking the limitt → ∞. On the one hand, if one decides to �rst integrate over time, the integrand
does is simply an oscillating phase which does not converge. On the other hand,
if one sum �rst over the oscillators r , many phases with di�erent weights enter
the sum. Then, the integrand becomes a rapidly decaying function of time, which
seem to converge for long but �nite times t . However, we know that, for any
�nite number Nb (even countably in�nite; see App. A.2), the correlation function
exhibits quasi periodic revivals known as Poincaré recurrences. Formally, the only
solution is taking the in�nite bath limit, for which the correlation function shows
no revivals.

To proceed with the computation, we �rst introduce the spectral density J (Ω) ∶=2��2∑Nbr=1 c2r �(Ω − Ωr ), which helps to do a smooth transition to the in�nite bath
limit. The spectral density J (Ω) can be regarded as an unnormalized distribution of
bath oscillators weighted by the corresponding coupling strength squared. Then,
we recast Eq. (2.96) asΓ(� ;!) = ∫ ∞

0 dΩ2� J (Ω) ∫ ∞
0 d� {nb(�,Ω)ei(!+Ω)� + [nb(�,Ω) + 1]ei(!−Ω)�} . (2.97)
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To compute the integral, we take advantage of the Sokhotski–Plemelj theorem,
which, for the case we consider, stands that

∫ dxf (x) lim�→0+ ∫ ∞
0 dyei(x+i�)y = �f (0) + iPV ∫ f (x)x dx, (2.98)

where PV stands for the Cauchy ‘Principal Value’. This relation is relatively easy to
prove, since the left-hand side of Eq. (2.98) amounts to

LHS = ∫ dxf (x) lim�→0+ � + ixx2 + �2= � ∫ dxf (x) lim�→0+ [ 1� �x2 + �2 ] + i ∫ f (x) lim�→0+ xx2 + �2 . (2.99)

The object between brackets in the �rst term is identi�ed as a normalized Lorentzian,
which tends to a �(x) as � tends to zero. In the second term, the pole at x = 0 is
removed symmetrically around the origin, which yields the principal value of the
integral.

We apply now the Sokhotski-Plemelj theorem to Eq. (2.97) to obtain the closed
expression Γ(� ;!) =12{�(−!)J (−!)nb(�, −!) + �(!)J (!)[1 + nb(�, !)]}+ iPV ∫ ∞

0 dΩ2� J (Ω) [nb(�,Ω)! + Ω + 1 + nb(�,Ω)! − Ω ] , (2.100)

where �(!) is the Heaviside step function. Equation (2.100) can be simpli�ed
further noting the following properties. First, the bosonic occupation number
ful�lls nb(�, −!) = −1 − nb(�, !). Second, the spectral density J (Ω) is only evaluated
for positive frequency arguments, so we can extend it towards negative frequencies
as an odd function; that is, J (−Ω) ∶= −J (Ω). Combining both properties, we can
compactly writeΓ(� ;!) = J (!)2 [1 + nb(�, !)] + iPV ∫ℝ dΩ2� J (Ω)[1 + nb(�,Ω)]! − Ω . (2.101)

Then, identifying the real and imaginary parts with the functions  (� ;!) andA(� ;!) we arrive at our �nal result (� ;!) =J (!)[1 + nb(�, !)], (2.102)A(� ;!) =PV ∫ℝ dΩ2� J (Ω)[nb(�,Ω) + 1]! − Ω . (2.103)
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To conclude, we remark that, strictly speaking, the expressions in Eqs. (2.102)
and Eq. (2.103) are only valid for an in�nite bath. Although each boson lives
in an in�nite dimensional Hilbert space, a single boson does not constitute an
in�nite bath, instead, to derive Eqs. (2.102) and Eq. (2.103) we needed a continuous
spectral density J (Ω). However, one expects those expressions to hold even for
a �nite bath provided that the bath correlation time �B is small and only timest smaller than the Poincaré recurrence time �P are considered. In that scenario,J (Ω) should be replaced by its coarse-grained approximation in the same way one
replaces continuous probability distributions by histograms of discrete probability
distributions.

2.4.2 A bath of spins
The second example of a bath that we discuss corresponds to a bath of independent
spins. This is model is referred to as the independent spin bath, or simply the spin
bath, although much more sophisticated versions of the model considered here
go under the same name (see [PS00]). The spin bath consists of a collection of Ns
non-interacting spins r = 1,⋯ , Ns with corresponding spin (Pauli) operators � x,y,zr
that ful�ll the spin commutation relations [� �r , � �r ′] = 2i�rr ′ ∑�=x,y,z ����� �r , where���� is the Levi-Civita tensor. The bath Hamiltonian is simply

HB = Ns∑r=1 Ωr2 � zr , (2.104)

where Ωr is the spin transition frequency (or Zeeman frequency) of the r th spin,
and the interaction is taken to be

Hint = �S ⊗ B = �S ⊗ Ns∑r=1 cr� xr , (2.105)

where cr is the coupling strength to the r th spin.
For each spin, we introduce the energy eigenbasis |nr⟩ where nr = ±1, and ful�lls� zr |nr⟩ = nr |nr⟩. Energy eigenstates are then given by |n⟩ = |n1,⋯ , nr ,⋯ , nNs⟩ and

have energy En = ∑r nrΩr /2. It is not hard to see that, again, we have �B(a) = B for
any equilibrium state ΦB(a). For this model, the correlation function yields

C(a; � ) = Ns∑r=1 {trr [�+r �−r Φr (a)]eiΩr t + trr{�−r �+r Φr (a)]e−iΩr t} . (2.106)

where �+r = |+r⟩⟨−r | = �−†r and, again, Φr (a) ∶= tr
Cr [ΦB(a)].
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Once more, we consider the equilibrium state ΦB(a) to be a Gibbs state �B(�) ∶=exp(−�HB)/ZB(�) at inverse temperature � . Introducing the Fermionic occupation
number nf (�,Ω) = [exp(�Ω) + 1]−1, we arrive atC(� ; � ) = ∑r c2r {nf (�,Ωr )eiΩr � + [1 − nf (�,Ωr )]e−iΩr �} , (2.107)

which is very similar to Eq. (2.95). We can now proceed with the same discussion of
the previous Section 2.4.1. We use the spectral density J (Ω) = 2��2∑r c2r �(Ω − Ωr )
to make a smooth transition to the in�nite bath, and use the Sokhotski-Plemelj
theorem (2.98) to derive a closed expression for Γ(� ;!). There is the caveat that the
Fermionic occupation number ful�lls nf (�, !) = 1 − nf (�, !) and, therefore, one has
to extend the spectral density as an even function towards negative frequencies;
that is, J (−Ω) ∶= J (Ω). Then, one arrives at

Γ(� ;!) = �22 J (!)[1 − nf (�, !)] + iPV ∫ℝ dΩ2� J (Ω)[1 − nf (�,Ω)]! − Ω . (2.108)

from which we identify (� ;!) = J (!)[1 − nf (�, !)] (2.109)A(� ;!) = PV ∫ℝ dΩ2� J (Ω)[1 − nf (�,Ω)]! − Ω . (2.110)

To conclude, we remark once more that, strictly speaking, Eqs. (2.109) and (2.110)
are only valid in the in�nite bath limit, but we expect those expressions to coincide
with the �nite bath value for times t smaller than the Poincaré recurrence time �P.

2.5 General properties of master equations

In this section, we brie�y discuss some general properties of quantum master
equations, which help to understand which is the typical dynamics of open quantum
systems.

2.5.1 Contractivity and the stationary state
Consider two quantum states � and � , a quantum evolution (t). We use the
convention that �(t) ∶= (t)[�(0)]. We ask the following question. Are � and �
“closer” or “further apart” after evolving a time t under the evolution (t)? Naively,
it seems that the answer should depend on �, � , and/or the map (t). It turns out
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that states always come closer together after a general evolution (t). We say that
CPTP maps are contractive.

However, for the above statement to make sense, we need to de�ne �rst a notion
of distance between quantum states. We start by introducing the “trace norm”.
Let X = X † be a Hermitian operator in Op() with (possibly degenerated) real
eigenvalues x and an eigenbasis {|x⟩}. We de�ne the trace norm of X as

tr|X | ∶= tr
√X †X = ∑x |x | ≥ 0. (2.111)

As a side remark, we note that the trace norm is also de�ned for non-Hermitean
operators, since the combination X †X ≥ 0 can be always diagonalized. Given the
trace norm, we de�ne the “trace distance” between two states � and � asdtr(�, � ) ∶= tr|� − � |. (2.112)

So far, we have only de�ned evolution maps (t) for positive time argumentst ≥ 0, which are CPTP. We now are in the position to prove that CPTP maps
are contractive. First, we decompose the Hermitian operator X = X+ − X− whereX+ = ∑x≥0 x |x⟩⟨x | and X− = ∑x<0 X−, where both are positive operators. Second, we
note the chain of inequalities

tr|(t)[X ]| = tr|(t)[X+] − (t)[X−]|≤ tr|(t)[X+]| + tr|(t)[X−]|= tr|X+| + tr|X−| = tr|X |, (2.113)

that is, for any time t ≥ 0 the trace norm of X is smaller or equal than its original
value. Finally, let X = � − � and let to conclude that dtr(�(0), � (0)) ≥ dtr(�(t), � (t)),
which concludes the proof. It is important to keep in mind that the inverse map(−t) = −1(t), which propagates backwards in time, is not completely-positive.

Now we restrict ourselves to quantum evolution maps of the form (t) =exp(t), which are known are dynamical semigroups. The crucial property of
dynamical semigroups is that, given two times t1 and t2, the evolution map ful�lls(t1 + t2) = (t1)(t2). Now, take t1 = t ≥ 0 and t2 = t + �t , with �t > 0. Then,
we have dtr(�(t), � (t)) ≥ dtr(�(t + �t), � (t + �t)). Hence, the contractivity property
is stronger for dynamical semigroups; that is, two arbitrary states come closer
together at every time step �t > 0.

Very much related to the notion of contractivity there is the notion of stationary
state. Given (t) = exp(t), we say that �st is stationary if (t)[�st] = �st or,
equivalently, if (�st) = 0. For stationary states, the contractivity property implies
that dtr(�st, � (0)) ≥ dtr(�st, � (t)).
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It turns out that the trace-preserving condition guarantees that every  has, at
least, one stationary state. The proof only requires basic algebra and the vector-
ization procedure of Sec. 2.1.5. First, using the vectorization procedure, we map[�]↦ |�⟩⟩. In general,  corresponds to a non-Hermitian matrix. Nonetheless,
it has a characteristic polynomial det( − ��) = 0, whose roots correspond to the
eigenvalues �� . The corresponding generalized eigenvectors have the so-called ‘left’
or ‘right’ character, which corresponds to

|R�⟩⟩ = �� |R�⟩⟩, (2.114)⟨⟨L� | = ⟨⟨L� |�� , (2.115)

which can be chosen with the bi-orthonormal property ⟨⟨L� |R�⟩⟩ = ��� . Now,
we note that because  is trace preserving, it follows that tr([X ]) = 0 for allX . But then, ⟨⟨1| must be a left generalized eigenvector of eigenvalue ⟨⟨L1| with
eigenvalue �1 = 0; that is, ⟨⟨1| = 0, since ⟨⟨1||X⟩⟩ = 0 vanishes for all X . Then,
the corresponding right eigenvector R1 = �st is a stationary state because it ful�lls[R1] = 0. We shall revisit the spectral properties of the Lindbladian in Chap. 5.

To conclude, CPTP maps are contractive, which means that an application of
the map reduces the distance between arbitrary pairs of states. If the evolution map
forms a dynamical semigroup, like for the BMS master equation, then the distance
between a pair of states is reduced at every time step. Then, for su�ciently long
times t arbitrary quantum states converge towards the stationary state (or multiple
stationary quantities).

2.5.2 Population dynamics and coherence decay
In general, the evolution of open quantum systems couples the evolution of the
populations p("i) = (�S)ii and the coherences (�S)ij with i ≠ j. This means that the
evolution of one in�uences the other. When the dynamics of the populations and
the coherences decouple, the populations follow a classical master equation of the
form (2.21). An example of decoupled dynamics is the Pauli master equation, which
gives no information about the dynamics of the coherences. Here, we discuss how
the evolution of the populations p("i) and the coherences (�S)ij in the bare system
eigenbasis {|i⟩} in�uence each other in the case of the Red�eld and the BMS master
equation. Within this section, to keep the notation light, we denote (�S)ij simply as�ij .

We start with the Red�eld equation (2.53). It is convenient to use tetradic
notation to write down the Red�eld equation in terms of the Red�eld tetradic (or
Red�eld tensor) Rijkl(a) in such a way that the ijth element of the Red�eld equation
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is )t�ij = − i("i − "j)�ij +∑kl Rijkl(a)�kl , (2.116)

where the Red�eld tetradic yieldsRijkl(a) ∶= − i[Hmf
S (a)ik�lj − Hmf

S (a)lj�ik] (2.117)+∑�� ′ [Γ�� ′(a;!ki)S� ′,ik(S�,jl)∗ − �jl ∑m Γ�� ′(a;!km)(S�,mi)∗S� ′,mk + c.c.] .
One can interpret the Red�eld tetradic Rijkl(a) as the correction to the unitary
dynamics due to the presence of the environment, which weakly couples to the
system. For instance, the in�uence of the populations onto themselves is given by
the components

Riijj(a) = ∑�� ′ [�� ′(a;!ji)S� ′,ij(S�,ij)∗ − �ij ∑k �� ′(a;!ik)(S�,ki)∗S� ′,ki] , (2.118)

where we have used (2.56). However, from Eq. (2.117), the elements Riikl(a) that
describe the in�uence of the coherences �kl on the populations are, in general,
not zero. Hence, we conclude that for the Red�eld equation, the dynamics of the
populations depend on the coherences.

We consider now the BMS master equation, which corresponds to performing
the secular approximation to the Red�eld equation. To avoid getting lost into details,
we shall focus now on non-degenerate systems with non-degenerate transitions
for which "i = "j implies i = j and !ik = !jl implies i = j and k = l. This is often
justi�ed since exact degeneracies are relatively rare. Nonetheless, we refer the
interested reader to Ref. [BES16] for an enlarged discussion including the possibility
of degenerate eigenstates and transitions. Following Sec. 2.2.3, this procedure leads
to Eq. (2.58). Denoting by Rsecijkl(a) the Red�eld tensor after the secular approximation,
we �ndRsecijkl(a) ∶= − i{[Hmf

S (a) + H LS
S (a)]ii − [Hmf

S (a) − H LS
S (a)]jj}�ik�jl (2.119)+∑�� ′ {�� ′(a;!ki)S� ′,ik(S�,jl)∗�ij�kl− (�ik�jl/2)∑mn (�ni + �nj)�� ′(a;!nm)(S�,mn)∗S� ′,mn}.
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From the Red�eld tensor after the secular approximation, we can obtain the equation
of motion for the populations )tp("i) = ∑kl Rseciikl(a)�kl . Then, the elements that
contribute to the dynamics are of the tetradic yield

Rseciikl(a) =�kl ∑�� ′ [�� ′(a;!ki)S� ′,ik(S�,jl)∗ − �ik ∑m �� ′(a;!im)(S�,mi)∗S� ′,mi] . (2.120)

Because Rseciikl(a) = 0 for k ≠ l, the populations evolve autonomously according to
the classical master equation Eq. (2.21) with the transition ratesw(a; "i |"j) = ∑�� ′ �� ′(a;!ji)S� ′,ij(S�,ij)∗. (2.121)

Similarly, one �nds that the coherences evolve autonomously, since Rsecijkk(a) = 0
for all i ≠ j. Hence, under the BMS master equation, both the populations and the
coherences evolve independently of each other. A quick calculation reveals that,
for i ≠ j, one has

)t�ij ={−i!′ij(a) −∑�� ′ ∑kl (�il + �jl)�� ′(a;!lm)(S�,ml)∗S� ′,ml
} �ij , (2.122)

where !′ij(a) = H ′
S(a)ii −H ′

S(a)jj . Equation (2.122) shows that generically coherences
decay to zero with damped oscillations.

To conclude, we have seen that the Red�eld equation couples the equations for
the populations and the coherences. Hence, it should give better results for systems
where those coherences are important. Instead, the populations and coherences
evolve independently under the BMS master equation and the coherences typically
decay to zero with damped oscillations.

2.5.3 Stationary distribution for the thermal bath

To conclude this section, we study the stationary state �st of an open quantum
system described by the BMS master equation that is in contact with a thermal
bath at inverse temperature � . In particular, we want to �nd the stationary state �st

corresponding to this setup. Here, we do not specify the microscopic model for the
bath Hamiltonian or the interaction.

We start deriving the so-called Kubo-Martin-Schwinger relation for the bath
correlation function, which holds for any bath correlation function of a bath in
a Gibbs state ΦB(a) = �B(�). The Kubo-Martin-Schwinger relation is proved by
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evaluating the bath correlation function at the imaginary time t = −� − i� and
yieldsC� ′� (� ; −� − i�) = ZB(�)−1tr[e−iHB(�+i�)�B� ′eiHB(�+i�)�B�e−�HB] = C�� ′(� ; � ). (2.123)

This symmetry of the correlation function is translated into the functions �� ′(� ;!)
that enter the BMS master equation. We see that

� ′� (� ; −!) = �2 ∫ℝ d�C�� ′(� ; −� − i�)e−i!� = e−�!�� ′(� ;!), (2.124)

which is easily veri�ed for the particular models in Sec. 2.4.1 and Sec. 2.4.2.
Our aim is to �nd the stationary state �st. Knowing that the coherences �ij

vanish in the long time limit, we focus on �nding the population distribution in
the stationary state. The populations obey the classical master equation)tp("i) = ∑j≠i [w(� ; "i |"j)p("j) − w(� ; "j |"i)p("i)], (2.125)

with the temperature-dependent transition ratesw(� ; "i |"j) = ∑�� ′ �� ′(� ;!ji)S� ′,ij(S�,ij)∗. (2.126)

To �nd the stationary distribution, since the stationary state ful�lls )tpst("i) = 0,
we look for solutions of Eq. (2.125) with the LHS equal to zero. It follows that the
stationary distribution ful�llspst("i)pst("j) = w(� ; "i |"j)w(� ; "j |"i) = e−�("i−"j ), (2.127)

where we have used Eq. (2.124) to compute the ratio of the transition rates. In
other words pst("i) ∝ exp(−�"i); that is, the stationary state �st is the Gibbs state�S(�) = exp(−�HS)/ZS(�) at the same inverse temperature � of the bath.

2.5.4 The extension to multiple baths
So far, we have considered that the environment of a quantum system is a single unit
in equilibrium. However, this is not always the case in practice. The environment
of a quantum system is a very large entity, and can itself have subsystems with
di�erent microscopic and macroscopic properties. We use the word ‘bath’ for each
subsystem at equilibrium, and refer to this case as an open quantum system in
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contact with multiple baths. For instance, two environment subsystems or baths,
which are at di�erent temperatures, can interact locally with the open quantum
system. In turns out that the description of such setup is already included in
the general derivation of the master equations in Sec. 2.2.2 and 2.2.3, and it is
revealed by adding additional structure to the interaction Hamiltonian Hint, the
bath Hamiltonian HB and the equilibrium state ΦB(a).

Consider that the environment is composed by di�erent baths that, to keep the
notation light, we label using the Greek letter � . For instance, the Hilbert space of
the isolated system is now decomposed as  = S ⨂� � . We assume that each
bath � is at local equilibrium and described by the state Φ� (a� ), with macroscopic
equilibrium parameters a� . Also, we consider that the bath Hamiltonian and the
interaction can be decomposed as

HB = ∑� H� , (2.128)Hint = �∑� ∑�(�) S�(�) ⊗ B�(�). (2.129)

The structure in Eqs. (2.128) and (2.129) assumes that the open quantum system
only interacts locally with each environment � , and that di�erent environment
subsystems � and � ′ do not interact with each other.

Given the above structure for HB and Hint, we could now repeat the derivation
of Sec. 2.2.2 and 2.2.3. However, the crucial observation is that the “crossed” terms
in the bath correlation functions of di�erent environment subsystems vanish; that
is,

tr[�B̃�(�)(� )†�B� ′(�′)ΦB({a�})] = ���′C�(�)� ′(�′)(a� ; � ). (2.130)

Formally, this implies that one can simply “add up” the dissipative structure of each
independent subsystem � to obtain the master equation for multiple baths. Or more
physically, the dissipative processes induced by di�erent baths occur independently
of each other. At the level of the Red�eld tetradic introduced in Eq. (2.116), the
resulting master equation for multiple baths has the structure

)t�ij = − i("i − "j)�ij +∑� ∑kl R�,ijkl(a� )�kl , (2.131)

where each Red�eld tetradic R�,ijkl(a� ) is computed as if no other baths were present.
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2.6 Notions on quantum thermodynamics

We conclude this preliminary chapter by introducing a basic framework to study
the thermodynamics of open quantum systems. Quantum thermodynamics aims at
�nding meaningful de�nitions for thermodynamic quantities, like internal energy or
entropy, such that the laws of thermodynamics arise from an underlying quantum
mechanical description. In particular, we focus on the �rst and second law of
thermodynamics, which can be summarized as “the energy of the universe is
constant, its entropy tends to a maximum”, but shall be discussed in more detail.
Our description of quantum thermodynamics is based in a “dynamical viewpoint”.
Namely, if the state of a physical system � evolves following a certain equation of
motion, how do the laws of thermodynamics emerge from that evolution?

Classically, thermodynamics is often discussed by a working �uid (an open
system) upon which one can perform work and that exchanges heat with the
environment (see Fig. 2.1). In the following, we discuss the de�nition of internal
energy, work, entropy, and heat, as well as the resulting �rst and second law of
thermodynamics arising from those de�nitions, when the working �uid is replaced
by a quantum system. In the following, we use serif type style letters; e.g. U, W, Q
to denote thermodynamic quantities.

2.6.1 Internal energy and work

Consider an isolated physical system whose Hamiltonian is described by a time-
dependent Hamiltonian H (�t). The parameter �t is a time-dependent parameter
that speci�es the driving protocol. For instance, classically, �t can parametrize the
force exerted to a piston that controls the volume of a container of an ideal gas of
particles or, in the quantum regime, �t can represent a laser �eld that exchanges
energy with an isolated system. Then, this arti�cial time-dependence arises as a
result of a semi-classical treatment of certain degrees of freedom; for instance, the
electromagnetic �eld. We de�ne the internal energy U(t) at a time t of a system in
the state �(t) as the average energy

U(t) ∶= tr[H (�t)�(t)]. (2.132)

The �rst law of thermodynamics dictates that the change of internal energy of
an isolated system is exclusively due to work. Hence, for consistency, we de�ne

W(t) ∶= ΔU(t) = tr[H (�t)�(t)] − tr[H (�0)�(0)]. (2.133)
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Figure 2.1: A classical open system that consists in a working substance (blue
circles) is found at equilibrium with its environment. A time-dependent force F (�t)
is exerted into the system giving rise to an amount of work d̄W(t) being injected
into the working substance. Subsequently, the system reaches the new equilibrium
by releasing an amount of heat d̄Q(t) to the environment.
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where the notation Δ has been introduced to denote a change in a state function;
for instance, ΔU(t) ∶= U(t) −U(0). Equation (2.133) can be written in the alternative
form

W(t) = ∫ t
0 dt ′ (tr{[)t′H (�t′)]�(t ′)} + tr{H (�t′)[)t′�(t ′)]})= ∫ t
0 dt ′tr{[)t′H (�t′)]�(t ′)} =∶ ∫ t

0 dt ′Ẇ(t ′), (2.134)

where the second term in the �rst line vanishes upon the use of the Liouville-von
Neumann equation. Sometimes, we also use the notation d̄W(t) ≔ Ẇ(t)dt to refer
to the in�nitesimal amount of work performed at time t .

We assume that the time-dependent driving enters only the system Hamiltonian,
in such a way that H (�t) = HS(�t)+Hint+HB. This is physically justi�ed if we assume
that one has only control over the system and not the environment. Then, Eq. (2.134)
can be written as

W(t) = ∫ t
0 dt ′tr{[)t′HS(�t′)]�S(t ′)}, (2.135)

which requires knowledge about only of system quantities; that is, the system
Hamiltonian HS(�t) and the reduced state of the system �S(t). In some experiments,
however, the interaction with the bath is turned on and o� during the experiment,
leading also to a time-dependent interaction Hint(�t). In this scenario one cannot
use Eq. (2.135) and has to get back to the original formula in Eq. (2.134).

2.6.2 Microscopic candidates for the entropy
One of the central concepts in thermodynamics is entropy. Historically, the thermo-
dynamic entropy S was introduced by Clausius in 1865 [Cla65], and he proposed to
call the quantity S entropy, from the Greek έν τροπή, which means the “transfor-
mation content”. In the same way that the expectation value of the Hamiltonian
gives rise to a microscopic notion of the internal energy of a system, it is of cen-
tral importance to quantum thermodynamics to give a microscopic de�nition of
the thermodynamic entropy. It turns out that there is not a single candidate for
thermodynamic entropy S.

The �rst notion of microscopic entropy that we discuss is the von Neumann
entropy. For a system in an arbitrary state �, its von Neumann entropy takes the
form

SvN[�] ∶= −tr(� log �) = −∑i ri log ri , (2.136)
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where ri are the eigenvalues of �. For a “classical” state � = ∑y p(y)|y⟩⟨y | with
respect to a measurement Y = ∑y y |y⟩⟨y | of interest, the von Neumann entropy
corresponds to the “classical” Shannon entropy

SSh[p(y)] = −∑y p(y) log p(y). (2.137)

The von Neumann entropy is extensively used in many areas of physics, including
quantum information and quantum communication theory, providing a plethora of
important results. In quantum thermodynamics, the von Neumann entropy SvN is a
good candidate for the thermodynamic entropy when the system is found in the
equilibrium Gibbs state � (�), that we have already encountered in Sec. 2.4. Also,
there is the consensus that it describes correctly the thermodynamic entropy of
small open quantum systems that are in weak coupling with a large thermal bath
(see Ref. [SW21] and references therein for an extended discussion).

However, the von Neumann entropy SvN is invariant under unitary evolution,
which would imply that the thermodynamic entropy of any isolated system remains
constant over time. Then, taking the von Neumann entropy as the thermodynamic
entropy goes against the empirical observation that isolated systems tend to increase
their entropy over time. Moreover, as it was already acknowledged by von Neumann
himself, it is not a good candidate for the macroscopic thermodynamic entropy
in general. In the words of von Neumann [Neu10], the von Neumann entropy is
“computed from the perspective of an observer who can carry out all measurements
that are possible in principle – i.e., regardless of whether they are macroscopic (for
example, there every pure state has entropy 0, only mixtures have entropies greater
than 0!).” Hence, while being useful for small systems, the von Neumann entropy
seems too �ne-grained to describe the thermodynamic entropy.

A second candidate for the microscopic entropy is the so-called Boltzmann-
Planck entropy SBP, inspired by the work of Boltzmann [Bol77] but explicitly
written down �rst by Planck[Pla01], which, as a side remark, lies at the heart of the
resolution of the ultraviolet catastrophe and the start of the quantum revolution. The
Boltzmann-Planck entropy is de�ned as the logarithm of the number of microstates
compatible with a given macroscopic constraint times the Boltzmann constant kB
(hereafter set to kB = 1). For clarity, let Y = ∑y y |y⟩⟨y | be an observable of a large
many-body system (for instance the Hamiltonian). For such a large many-body
system, the spacing between neighboring outcomes y is potentially very small and
resolving each of them becomes practically impossible. Consider that we can only
resolve the outcomes y with a resolution �Y so that the possible outcomes of the
measurement are the coarse-grained values Yx = x�Y and x ∈ ℤ. To each outcome,
we associate the coarse-grained projector Π(Yx ) = ∑y 1Yx (y)|y⟩⟨y |, being 1Yx (y) the
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indicator function which ful�lls1Yx (y) = {1 if y ∈ [Yx − �Y /2, Yx + �Y /2)0 else . (2.138)

E�ectively, this �nite-resolution measurement corresponds to measuring the coarse-
grained observable {Y} = ∑x YxΠ(Yx ). Then, the outcome Yx is a macroscopic con-
straint which is compatible with the microstates y such that 1Yx (y) = 1. The number
of microscopic states (or volume) compatible with the macroscopic constraint Yx is
therefore v(Yx ) = tr[Π(Yx )]. Hence, according to Boltzmann, we should associate
the entropy (kB = 1)

SBP(Yx ) = log v(Yx ), (2.139)

to any state which is compatible with Yx .
Importantly, the Boltzmann-Planck entropy SBP treats equally any state com-

patible with the macroscopic constraint. Then, if the only information available
about the system is that it is constrained to Yx , it is reasonable to think that all
microstates y compatible with the constraint Yx are equally probable. In this case,
the state of the system is described by the microcanonical state

!(Yx ) ∶= Π(Yx )v(Yx ) . (2.140)

Interestingly, for the microcanonical state !(Yx ) one �nds SvN[!B(Ex )] = log v(Ex ) =
SBP(Ex ).

Also, the Boltzmann-Planck entropy allows for an intuitive explanation of the
second law. For an isolated system, it is more probable to migrate from regions
of small volume to regions of larger volume and reside on the latter for longer
times, which is identi�ed as having reached thermodynamic equilibrium. However,
the Boltzmann-Planck entropy does not depend on the state of the system, and
therefore it seems unable to capture its microscopic dynamics. Also, it seems too
subjective. Two di�erent observers with di�erent measurement resolutions �Y
would predict a di�erent entropy values, with the extreme case that an observer
who could resolve all the microscopic details of the many-body system would
always �nd the Boltzmann-Planck entropy equals to zero.

In a sense, the von Neumann entropy is a too �ne-grained candidate for the
thermodynamic entropy, while the Boltzmann-Planck entropy is too coarse-grained
to include any microscopic information. We consider also a third candidate for the
microscopic notion of entropy, which will be crucial to our work: the observational
entropy. The observational entropy has gained attention recently (see [ŠAS+20] for
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a short review), although its use in quantum mechanics can be traced back to the
correspondence between Wigner and von Neumann [Neu10]. For a coarse-grained
observable {Y}, the observational entropy is given by

S{Y}obs [�] = ∑x p(Yx )[− log p(Yx ) + log v(Yx )]. (2.141)

where p(Yx ) are the coarse-grained probabilities Π(Yx ) = tr[�Π(Yx )]. The observa-
tional entropy interpolates nicely between the von Neumann and Boltzmann-Planck
entropies in the following sense. Consider an observer who can perform any possi-
ble measurement. On the one hand, he could measure � exactly, for which we �nd
S
�
obs[�] = SvN[�]. Also, for any state of the form� = ∑x p(Yx )!(Yx ), (2.142)

we �nd that S{Y}obs [�] = SvN[�]. On the other hand, if we know that � ful�lls the
macroscopic constraint; that is, p(Yx′) = �xx′ , we �nd that the observational entropy
corresponds to S{Y}obs [�] = SBP(Yx ). In general, Eq. (2.141) can be rewritten as

S{Y}obs [�] = SSh[p(Yx )] +∑x p(Yx )SBP(Yx ), (2.143)

which reveals that the observational entropy can be rewritten as the Shannon
entropy of the distribution p(Yx ) plus the averaged Boltzmann-Planck entropy over
the same distribution p(Yx ).
2.6.3 The �rst and second law for open systems
For this subsection, we consider that the isolated system is composed by the open
quantum system and the bath. As usual, we decompose the total Hamiltonian asH = HS(�t) +Hint(�t) +HB. Initially, the state is given by �(0) = �S(0) ⊗ �B(�). Follow-
ing [ELB10], we take the von Neumann entropy as the thermodynamic entropy for
this setup. Moreover, we introduce the reduced system and bath entropies as SS(t) =
SvN[�S(t)] = −trS[�S(t) log �S(t)] and SB(t) = SvN[�B(t)] = −trB[�B(t) log �B(t)], re-
spectively. Because the von Neumann entropy is preserved under unitary evolution
we note

S(t) = S(0) = SS(0) + SS(0). (2.144)

Then, we rewrite the change in system entropy asΔSS(t) = SS(t) − S(t) + SBP(0)= D[�(t)||�S(t) ⊗ � (�)] + trB{[�B(t) − � (�)] log � (�)}, (2.145)

50



CHAPTER 2. PRELIMINARIES

where we have introduced the always positive relative entropyD(�||� ) ∶= tr[�(log � − log � )] ≥ 0. (2.146)

The change in system entropy in Eq. (2.145) has two terms. The �rst one is always
positive, and we identify it with the entropy production Σ. The second one can be
rewritten as

trB{[�B(t) − � (�)] log � (�)} = −�ΔUB(t), (2.147)

where U(t) = trB[HB�B(t)] is the internal energy of the bath. Hence, we arrive at
the equation ΔSS(t) + �ΔUB(t) ≥ 0. (2.148)

Equation (2.148) suggests identifying the heat �ux Q(t) as minus the change in
bath internal energy; that is, Q(t) =∶= −ΔUB(t). Then, Eq. (2.148) takes the form
of the well-known Clausius inequality, which is equivalent to the second law of
thermodynamics in the limit of an in�nite an ideal heat bath.

Finally, we can connect the de�nition of the heat current with the �rst law. We
start from the de�nition of the heat current and note that

Q(t) = ∫ t
0 dt ′tr[HB)t�(t)] = ∫ t

0 dt ′tr{[HS(�t′) + Hint(�t′)])t′�(t ′)}. (2.149)

Moreover, from the de�nition of work in Eq. (2.134), we have

W(t) = ∫ t
0 dt ′tr{)t′[HS(�t′) + Hint(�t′)]�(t ′)}. (2.150)

Hence, if one de�nes the internal energy of the system as

US(t) ∶= tr{[HS(�t) + Hint(�t)]�(t)} (2.151)

it follows that ΔUS(t) = Q(t) +W(t), (2.152)

which is identical to the �rst law of thermodynamics.
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2.7 Chapter’s Outlook

In this chapter we have introduced the basic formalism of quantum mechanics, upon
which open quantum systems’ theory is based. In particular, we have introduced
quantum master equations and discussed the Pauli, Red�eld and Born-Markov-
secular master equations. Then, we have introduced the Nakajima-Zwanzig theory
as a general starting point to derive quantum master equations, and we have applied
such theory to (re-)obtain the aforementioned master equations of Pauli and Red-
�eld. Then, we have computed the dissipation rates for the in�nite non-interacting
bosonic and spin heat baths, which will become important in the upcoming chap-
ters. Afterwards, we have reviewed some general properties of quantum master
equations like the contractivity of the evolution or the existence of a stationary
state. Finally, we have discussed the conventional thermodynamic framework that
is used to describe energy and entropy exchanged in open quantum systems.

In the next chapter, we move beyond the in�nite bath paradigm and derive a
master equation to describe the dynamics of an open quantum system in contact
with a �nite and dynamically evolving bath.
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We live on an island surrounded by a sea of igno-
rance. As our island of knowledge grows, so does the
shore of our ignorance.

— John Archibald Wheeler

3
Open quantum systems beyond the
in�nite bath paradigm

In this chapter we study how to describe the evolution of open quantum systems
that interact with �nite baths, which is one of the central themes of this dissertation.
In particular, we de�ne what a �nite bath is, and discuss why we expect it to evolve
dynamically. Then, we derive the extended microcanonical master equation, a weak-
coupling master equation that includes, at a coarse-grained level, a dynamically
evolving bath. Afterwards, we consider a model Hamiltonian, which can be solved
exactly, to benchmark the dynamics predicted by the extended microcanonical
master equation against the Born-Markov-secular master equation and the exact
dynamics. Once we are con�dent that our equation is meaningful, we move to study
its general properties, from which we highlight the global energy conservation and
the form of the stationary state.

While in some cases, the �niteness and the dynamical nature of the bath are
crucial to understand the dynamics, in the appropriate limit we expect our master
equation to reduce to the Born-Markov-secular master equation. We formalize
this idea and �nd a Born-Markov-secular master equation at a time-dependent
temperature, which interpolates between the extended microcanonical master
equation and the Born-Markov-secular master equation (at �xed temperature).
Those di�erent approaches can be regarded as a hierarchy of master equations, that
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give a more accurate description by including more dynamical bath information.
Finally, we compare the dynamics predicted by the hierarchy of equations in the
model of a non-interacting spin bath, and study the di�erence between the three
predictions as a function of the relative system size. The results presented in this
chapter are largely based on the publications [RSS21b] and [RSS21a].

3.1 What are �nite baths?

In Chapter 2 we have seen that open quantum systems interact with their envi-
ronment by exchanging energy and building up system-environment correlations.
Very large environments, as compared to the size of the open system, often cause
the open system to relax to equilibrium while they keep their macroscopic prop-
erties unchanged. We used explicitly this fact in Sec. 2.2.2 to derive the Red�eld
equation under the name of the Born approximation. Since the in�uence of the
open system on the environment is imperceptible, those environments act as in�-
nite baths. However, not all baths are in�nite. In some scenarios, the interaction
with the system induces a dynamical evolution of the state of the environment.
In turn, the evolution of the environment state has a repercussion on the open
system dynamics. In other words, the dynamics of the system and the environment
mutually in�uence each other. Such environments are the central object of study
of this work. Since a �nite in�uence from the system can produce a not negligible
change in their state, we refer to them as �nite baths.

The miniaturization of quantum experiments towards the microscopic scale is
leading also to a more detailed description of their surroundings [BMS+12; BGM+13;
MLS+15; PSG16; HCS+16; MCL19; KBS+20; HFM+21]. As a consequence, there is
often more information available about the bath and, in the case of �nite baths,
this information evolves dynamically. To date, see for instance [VA17; WKO21],
most theoretical and numerical tools to describe the evolution of open quantum
systems rely on completely tracing out the environment. However, this modus
operandi ignores the dynamical nature of the bath, which could be potentially used
to obtain more accurate predictions about the open system dynamics. It is then
timely to investigate novel theoretical techniques which pro�t from this dynamical
information by including, to some extent, a dynamically evolving bath.

It is clear that �nite baths have to be, at least to some extent, treated dynamically.
However, how does one approach, from a theoretical point of view, the dynamics of
an open quantum system in contact with a dynamically evolving �nite bath? In the
following section, we exploit the Nakajima-Zwanzig theory to derive a quantum
master equation for dynamically evolving baths.
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Figure 3.1: Sketch of the system (labeled by S) interacting with the �nite bath
(labeled by B). The bath energy levels are depicted with horizontal black lines,
and their corresponding energy distribution p(ek) is plotted in the red solid line.
The measurement apparatus (labeled by M) gives an output E given an input ek
according to the weighting function W (E|ek), which introduces a �nite precision of
order �E.

3.2 Dynamically evolving baths

In this section we study how to describe, from a theoretical point of view, the
dynamics of an open quantum system that interacts with a dynamically evolving
bath. On the one hand, as it is always the case, we are interested in the reduced
system dynamics and, therefore, in the evolution of the reduced state of the system�S = trB(�). On the other hand, we would like to track the dynamics of the relevant
bath variables. The latter can be encoded into one or several bath observables
whose evolution in�uences and is in�uenced by the open system dynamics. The
extraction of the bath dynamical information is done via a quantum measurement
of the bath, which can be either projective {x,Π(x)} or a POVM {x, P (x)}. Consider,
for simplicity, the case of a projective measurement. Then, the bath dynamical
information is contained in the evolution of the probabilities p(x) ∶= tr[Π(x)�].

Consider the extended state �S(x) = trB[Π(x)�], which is not normalized. It
is clear that, both, the probabilities p(x) = tr[�S(x)], and the reduced state of the
system �S = ∑x �S(x) can be obtained from �S(x). Thus, we need an equation of
motion for the extended state �S(x). In the following subsections, we discuss the
case of a projective or a POVM measurement separately.
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3.2.1 Projective measurements
In Chapter 2, we have seen that the Nakajima-Zwanzig theory is a very versatile
tool to describe the evolution of open quantum systems. However, physicists have
to choose wisely the relevant map  to be able to extract the desired dynamical
information from the system-bath state �(t). We also know that, when the relevant
map  is a projector; that is, 2 =  the Nakajima-Zwanzig becomes simpler, and
the initial states �(0) = [�(0)] are such that the inhomogeneous term I (t) (see
Eq. (2.68)) vanishes at all times. Hence, we de�ne the relevant map

[◦] ∶= ∑x trB[Π(x)◦] ⊗ Π(x)v(x) , (3.1)

where the volume v(x) ∶= tr[Π(x)] is equal to the number of eigenstates of the
observable XB within Π(x). Using Π(x)Π(x ′) = �xx′Π(x), it is easily check that2 =  . According to Sec. 2.6.2, we can identify Π(x)/v(x) as the microcanonical
state corresponding to the macroscopic parameter x .

In principle, we are now ready to use all the Nakajima-Zwanzig machinery of
Sec. 2.3 and to derive an equation of motion for the set of states �S(x). It is left to
chose which is the relevant observable XB. An obvious choice is to pick the bath
Hamiltonian XB = HB = ∑k ek |ek⟩⟨ek |, since, in the end, the energy is the generator
of the time-evolution. The only problem with this choice is that it turns out to
be too �ne-grained for three reasons. First, the bath is a potentially very-large
many-body system with a lot of energy eigenstates. Then, �nding an equation
of motion for every �S(ek) can be computationally very costly. Second, even with
a powerful machine at our disposal, resolving single eigenstates of a many-body
system is experimentally very hard. Often, every energy measurement will have a
�nite energy resolution �E. Hence, it is not possible to track the evolution of every
energy microstate. Finally, as it turns out, a �nite energy resolution leads to simpler
equations of motion for �S(x). Hence, it is convenient to reduce the complexity of
the problem at hand by grouping energy microstates into energy macrostates in a
coarse-graining process.

We introduce the energy macrostates or coarse-grained energies Ex = x�E for
integer x ∈ ℤ. Then, we consider the coarse-grained energy observable {HB} =∑x ExΠ(Ex ), where Π(E) = ∑k 1E(ek)|ek⟩⟨ek |, and we expect that this coarse-grained
behavior is enough to describe the macroscopic properties of the bath. Moreover, as
already recognized by Boltzmann, a coarse-graining procedure is crucial to reconcile
the underlying reversible quantum mechanical description with the irreversible
macroscopic world and permits a simpli�ed dynamical description. The same coarse-
graining procedure was also used by von Neumann [Neu10] almost a century ago.
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In some physical scenarios, one may have more observables XB, YB, ⋯ which
are needed to describe the dynamically evolving bath. In an early work of van Kam-
pen [Van54], he provided a procedure to include as many observables as needed,
provided that they are slowly evolving. Van Kampen identi�ed that slowly evolv-
ing observables are the ones which can be macroscopically described, since their
“quantummechanical uncertainties are negligible compared to the experimental
inaccuracy.” Then, one could de�ne projectors Π(x) and probabilities p(x) that
include the outcomes x = (x, y,⋯) of several slowly evolving observables. Despite
this is an intriguing research direction, it is left out of the scope of this dissertation.

Finally, we have to discuss how to choose the coarse-graining scale �E. This
is a subtle issue. In principle, the choice of �E is left completely arbitrary, since it
is a free parameter of the theory. However, some choices of �E are more useful
for applications than others. In practice, a lower bound for �E is given by the
experimental accuracy in the energy measurement. Choosing �E smaller than the
experimental accuracy is meaningless, since the evolution of the corresponding
energy levels cannot be tracked. Moreover, a relatively large �E can also simplify
the dynamical equations. The reason is that, as we shall see, the energy-dependent
bath correlation functions decay only if a su�cient number of energy microstates
are included in each energy shell. Hence, a Markovian approximation will be
available in that case. At the same time, a more coarsed energy structure; that is,
a larger �E, also leads to “fewer” states �S(Ex ). However, a too large �E can blur
some relevant features of the bath density of states, leading to a poor dynamical
description. Hence, �E has to be chosen such that the coarse-grained bath spectrum
still captures the bath energy structure. Hence, albeit being a measurement property,�E has to be chosen according to the corresponding �nite bath for practical reasons.

3.2.2 Imperfect measurements

Measurements are not always sharp or projective. In some scenarios, the probability
of obtaining an outcome E after performing an energy measurement given that
the actual state was |ek⟩ is given by a conditional probability distribution W (E|ek),
known as the weighting function, which is positive and normalized. The possible
outcomes can be either in a continuous range within a certain region; that is,E ∈ [Emin, Emax], or obtained from a discrete set {Ex} for x ∈ ℤ. The POVM
elements are given by P (E) = ∑k W (E|ek)|ek⟩⟨ek |. The corresponding probability
distribution p(E) = tr[P (E)�], has to be positive p(E) ≥ 0 and normalized, which
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corresponds to a normalized weighting function

∫ dEW (E|ek) = 1, (3.2)∑x W (Ex |ek) = 1, (3.3)

for the continuous or discrete case, respectively. The weighting function is assumed
to be unbiased; that is,

∫ dEW (E|ek)E = ek , (3.4)∑x W (Ex |ek)Ex = ek , (3.5)

and to have a variance

∫ dEW (E|ek)(E − ek)2 = �E2, (3.6)∑x W (Ex |ek)(Ex − ek)2 = �E2. (3.7)

To avoid having duplicate equations, from now on we indicate with an integral,
both, the continuous and discrete case. A natural choice for the weighting function
is the “Gaussian” weighting function WG(E|ek) = (√2��E)−1 exp[−(E − ek)2/(2�E2)].
Another possible choice, that reduces to the projective measurements discussed
in the last section, corresponds to a discrete set of outputs Ex = x�E with x ∈ ℤ
and the “indicator” weighting function WI(E|ek) = 1E(ek), which equals one ifek ∈ [E − �E/2, E + �E/2) and zero otherwise.

In order to use the Nakajima-Zwanzig theory, we have to introduce the corre-
sponding relevant map  in this case. Analogously to the projective measurement
case, we chose

[◦] ∶= ∫ dEtrB[P (E)◦] ⊗ !B(E), (3.8)

where the microcanonical state !B(E) = P (E)/v(E), and the corresponding volumev(E) = tr[P (E)]. However, this choice leads to a complicated Nakajima-Zwanzig
equation since, in general, 2 ≠  and then initial states of the form �(0) = [◦] no
longer make the inhomogeneous term I (t) to vanish for all times. Therefore, for
this second case, we will take advantage of a di�erent method that below we call
the “Red�eld approach” to derive the corresponding master equation.
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3.3 The extendedmicrocanonicalmaster equation

This section is devoted to derive one of the central objects of this dissertation: the
extended microcanonical master equation (EMME). On the one hand, the word
“extended” makes reference to the fact that the dynamics happens in an extended
system space that includes bath variables, in this case the coarse-grained energy.
The word “microcanonical” makes reference to the fact that the state �S(E) is
associated with the bath being in the microcanonical state !B(E). This equation
describes the evolution of an open quantum system ‘S’ that interacts with a �nite
bath ‘B’. The Hamiltonian of the system bath composite is of the form H = HS +Hint+HB where, as usual, HS = ∑i "i |i⟩⟨i| and HB = ∑k ek |ek⟩⟨ek | contain only system
and bath degrees of freedom, respectively. Instead, Hint = �∑� S� ⊗ B� contains
degrees of freedom of, both, the system and the bath. For simplicity, we assume
that only there is only one such � ; that is, Hint = �S ⊗ B. The case with multiple
summands can be work out using analogous techniques to those of Sec. 2.2. We
present two di�erent derivations of this equation. The �rst one, uses the theory of
Nakajima and Zwanzig, with the de�nition of the relevant map

[◦] = ∑x trB[Π(Ex )◦] ⊗ !B(Ex ), (3.9)

where !B(Ex ) = Π(Ex )/v(Ex ). The second method goes along the lines of Sec. 2.2.
Despite requiring an extra assumption, the advantage of the second method is that
it is easily generalized to imperfect measurements and, moreover, it is equivalent
to the Nakajima-Zwanzig equation within second order in the coupling strength.

Before proceeding, we remark that similar master equations have been found
using similar methods than the ones displayed here in the references [EG03; Bud06;
BGM06; EG07; Bre07; FB07].

3.3.1 The EMME: Nakajima-Zwanzig approach
The starting point of this �rst approach is the Nakajima-Zwanzig equation (2.67)
with the “projective” relevant map  in Eq. (3.9). For simplicity, we take the initial
state �(0) to be invariant under the relevant map  ; that is, �(0) = ∑x �S(Ex ; 0) ⊗!B(Ex ), which implies that the inhomogeneous term vanishes I (t) = 0 for all timest .

We start by decomposing the interaction Hint into block-diagonal and block-
o�diagonal parts as Hint = ∑x Hmf

S (Ex ) ⊗ Π(Ex ) + �V , (3.10)
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where we have implicitly de�ned the mean-�eld Hamiltonian Hmf
S (Ex ) ∶= �⟨B⟩ExS.

As we already did in Sec. 2.2, we use the shortcut ⟨◦⟩Ex ∶= trB[◦!B(Ex )] for expecta-
tion values with respect to equilibrium states, and de�ne �B ∶= B −∑x⟨B⟩Ex .

We proceed by computing the di�erent blocks of the Liouvillian [◦] = −i[H, ◦],
which we do by direct calculation. In App. B.1, we prove several identities that help
in simplifying the computation. The “relevant” block is found to be

� = − i∑xx′ trB {Π(Ex )[H, �S(Ex′) ⊗ !B(Ex′)]} ⊗ !B(Ex )= − i∑x {[HS, �S(Ex )] + [Hmf
S (Ex ), �S(Ex )]} ⊗ !B(Ex ). (3.11)

To compute the Kernel we also need the o�-diagonal blocks

[◦] = −i�∑x [V , trB[Π(Ex )◦] ⊗ !B(Ex )], (3.12)

[◦] = −i�∑x trB{Π(Ex )[V , ◦]} ⊗ !B(Ex ), (3.13)

which leads to

(t) = −∑xx′ �2trB
{Π(Ex ) [V , et [[V , trB[Π(Ex′), ◦]!B(Ex′)]]} ⊗ !B(Ex ). (3.14)

In principle, the kernel (3.14) can be used into the Nakajima-Zwanzig equation (2.67)
to produce the exact dynamics. We are interested into the weak-coupling limit,
which allows for a perturbative expansion of the kernel (t) in powers of �. Then,
to the lowest order �2, one can replace exp(t) by exp(0t) in Eq. (3.14). There
are several ways to see that this is indeed the case. The shortest is probably by
making use of the properties  = 0 + (�), [,0] = 0, and 2 = . Then, from
the Taylor series expansion of the exponential, we obtainet ≈ e0t = ∞∑n=0 (0t)nn! =  ∞∑n=1 (0t)nn! +  = (e0t − ) + , (3.15)

where we have disregarded terms (�). It is only left to notice that exp(Qt)
appears in the kernel multiplied from left and right by . Hence, multiplying
Eq. (3.15) by  from the left or the right concludes our proof.

We can now use our second order kernel into the Nakajima-Zwanzig equation.
Multiplying by Π(Ex ) and tracing over the bath yields)t�S(Ex ) = − i[HS + Hmf

S (Ex ), �S(Ex )]− �2∑x′ ∫ t
0 dt ′trB

{Π(Ex )[V , [Ṽ (t ′ − t), �S(Ex′) ⊗ !(Ex′)]]} , (3.16)
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where we have used that exp[iH0(t − t ′)] exp(−iH t ′) = exp(iH0t) + (�). Equa-
tion (3.16) is the time-local version of the EMME, and it is an exact equation within
second order in the coupling strength �. Equation (3.16) is now ready to be simpli-
�ed with the help of the Markov and secular approximations, whose validity has to
be assessed for the particular problem at hand.

3.3.2 The EMME: Red�eld approach
In the case of imperfect measurements, represented by POVM elements P (E), the
relevant map is no longer a projector. This largely complicates the derivation of the
master equation using the Nakajima-Zwanzig theory. Hence, we use here a di�erent
strategy which goes along the lines of the one presented in Sec. 2.2.2. Despite being
di�erent derivations, it turns out that the resulting equation is equivalent to the
Nakajima-Zwanzig result to second order in the coupling strength, which we discuss
in App. B.2.

For technical reasons, we start by introducing a di�erent decomposition of the
bath coupling operator B. Namely, we decompose it into a diagonalBd ∶= ∑k ⟨ek |B|ek⟩|ek⟩⟨ek |, (3.17)

and an o�diagonal part�B ∶= B − Bd = B −∑k ⟨ek |B|ek⟩|ek⟩⟨ek |. (3.18)

Accordingly, we decompose the interaction Hint = H d
int + �V , whereH d

int ∶= �S ⊗ Bd, (3.19)

and the remaining interaction�V ∶= Hint − H d
int = �S ⊗ �B. (3.20)

We now follow a procedure analogous to that of Sec. 2.2.2. First, we go to the
interaction picture with respect to H − �V . Second, we self-consistently solve the
Liouville-von Neumann equation to arrive at

)t �̄(t) = −i�[V̄ (t), �(0)] − �2 ∫ t
0 dt ′[V̄ (t), [V̄ (t ′), �̄(t ′)]], (3.21)

where the bar indicates operators in the interaction picture with respect to H − �V .
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We now focus in the weak-coupling limit and assume that � is a small energy
scale. Then, it makes sense to expand Eq. (3.21) in powers of �. As discussed
in Sec. 2.2.2, we are allowed to replace �̄(t ′) by �̄(t) within the integral, since|�̄(t ′) − �̄(t)| ∼ (�). Going back to the Schrödinger picture, we arrive at

)t� = −i[H − �V , �] − i�[V , �̄(−t)] + �2 ∫ t
0 dt ′[V , [Ṽ (t ′ − t), �]] + (�3), (3.22)

where Ṽ (t) represents, as usual, operators in the interaction picture of H0 = HS +HB,
and we have used that |V̄ (t) − Ṽ (t)| ∼ (�). To this point, the derivation is identical
to that of the Red�eld equation. However, we now multiply by the POVM elementP (E) and then take the trace over the bath degrees of freedom to obtain)t�S(E) = − i[HS, �S(E)] − i�trB{P (E)[H d

int, �]} − i�trB{P (E)[V , �̄(−t)]}+ �2 ∫ t
0 dt ′trB{P (E)[V , [Ṽ (t ′ − t), �]]}. (3.23)

Equation (3.23) looks already very similar to Eq. (3.16). To conclude our derivation,
we perform now a modi�ed Born approximation. Namely, we assume that initially
the global state is of the form �(0) = ∫ dE�S(E; 0) ⊗ !B(E) and, moreover, that we
can approximate at all times

�(t) ≈ ∫ dE�S(E; t) ⊗ !B(E). (3.24)

The intuition behind this modi�ed Born approximation is the following. At timet = 0, the state of the environment was diagonal in the bath energy eigenbasis.
From the Pauli master equation (see Sec. 2.2.1), we know that it is justi�ed to assume
that coherences of many-body systems are washed out after a short time �rpa. For
a su�ciently small energy resolution �E, states of the form (3.24) corresponds
to very general bath energy distributions and, therefore, the approximation is
justi�ed. Importantly, this approximation is less restrictive than the standard Born
approximation, since it allows for classical correlations between the open quantum
system and the bath. Finally, we use Eq. (3.24) into Eq. (3.23),

)t�S(E) = − i[HS, �S(E)] − i ∫ dE′[Hmf
S (E, E′), �S(E′)]− �2 ∫ t

0 dt ′ ∫ dE′trB
{P (E)[V , [Ṽ (t ′ − t), �S(E′) ⊗ !B(E′)]]} . (3.25)

62



CHAPTER 3. OPEN QUANTUM SYSTEMS BEYOND THE INFINITE BATH
PARADIGM

where we have de�ned Hmf
S (E, E′) = �trB[P (E)B!B(E′)]S. Equation (3.25) is formally

equal to the time-local version of the EMME, but includes imperfect measurements
of the bath energy.

To conclude, we note that there are two minor di�erences between Eq. (3.25)
and Eq. (3.16). The �rst, is that the mean-�eld Hamiltonian Hmf

S (E, E′) depends on
two energy arguments in Eq. (3.25), which results from having non-orthogonal
POVM elements P (E). The second, is that the de�nition of the interaction V is
slightly di�erent. In particular, the de�nition in the present section is a �ne-grained
version of the one in Sec. 3.3.1. Hence, we expect the di�erence to be unimportant
within the coarse-grained view of the bath energy, which is on a scale �E.

3.3.3 The EMME: Markov and secular approximations
In the last two subsections, we have derived a time-local version of the EMME which
is ready for numerical implementation. However, the generator of the dynamics
is explicitly time-dependent, which complicates the analytical treatment of the
equations. As it happened in Sec. (2.2), we can now perform further approximations
that make the equation more tractable from a theoretical point of view, and that are
physically justi�ed in certain scenarios, which is the aim of this subsection. Since
Eq. (3.16) and Eq. (3.25) are formally equal, we can proceed simultaneously with
both equations. In the following, we use for convenience the notation of imperfect
measurements; that is, as in Eq. (3.25), since they include projective measurements
as a particular case.

The �rst step is to use the decomposition �V = �S ⊗ �B, and rewrite the trace
over the bath B in Eq. (3.25) in terms of bath correlation functions. As it turns out,
two di�erent types of correlation functions arise. As a function of � = t − t ′, we
denote them byC1(E, E′; � ) ∶= ⟨�B̃(� )P (E)�B⟩E′ = trB[�B̃(� )P (E)�B!B(E′)], (3.26)C2(E, E′; � ) ∶= ⟨P (E)�B̃(� )�B⟩E′ = trB[P (E)�B̃(� )�B!B(E′)]. (3.27)

In the case of projective measurements, only one type of correlation function arises
since C2(Ex , Ex′ ; � ) = �xx′ ∑x′′ C1(Ex′′ , Ex ; � ). With the help of Eqs. (3.26) and (3.27),
we cast Eq. (3.25) as

)t�S(E) = − i[HS, �S(E)] − i ∫ dE′[Hmf
S (E, E′), �S(E′)] (3.28)

+ �2∬ t
0 dE′d� [C1(E, E′; � )S̃(−� )�S(E′)S − C2(E, E′; � )SS̃(−� )�S(E′) + h.c.].
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We can now decompose, according to Eq. (2.51), the system interaction in system
eigenfrequencies; that is, as S̃(t) = ∑! S! exp(−i!t), which leads to

)t�S(E) = − i[HS, �S(E)] − i ∫ dE′[Hmf
S (E, E′), �S(E′)] (3.29)

+ �2∑! ∬ t
0 dE′d�ei!� [C1(E, E′; � )S!�S(E′)S − C2(E, E′; � )SS!�S(E′) + h.c.],

which is still equivalent to Eq. (3.25). To proceed further, we perform the Markov
approximation. We proceed analogously to Sec. 2.2.2. First, we assume that the
bath correlation functions decay at a timescale �B much faster than the timescale
of the evolution of the system. Then, we restrict ourselves to times t smaller than
the Poincaré recurrence time �P, which can be very large for a many-body bath.
Introducing the operators

�m(E, E′) ∶= �2∑! ∫ ∞
0 d�ei!�Cm(E, E′; � )S! , (3.30)

for m = 1, 2, we arrive at the Red�eld version of the EMME

)t�S(E) = − i[HS, �S(E)] − i ∫ dE′[Hmf
S (E, E′), �S(E′)]+ ∫ dE′[�1(E, E′)�S(E′)S − S�2(E, E′)�S(E′) + h.c.], (3.31)

which are analogous to Eq. (2.53).
To conclude the derivation, it is only left to perform the secular approximation.

Along the same lines of Sec. 2.2.3, we �rst de�ne Γm(E, E′;!) ∶= �2 ∫ ∞0 Cm(E, E′; � )ei!�
for m = 1, 2. Then, we go to the interaction picture with respect to H0 = HS + HB
and use the expansion of S = ∑! S†! to arrive at

)t �̃S(E; t) = − i�∑! ∫ dE′trB[P (E)B!B(E′)]e−i!t[S! , �̃S(E′; t)]
+ �2 ∑!,!′ ∫ dE′ei(!′−!)t[Γ1(E, E′;!)S!�S(E′)S†!′− Γ2(E, E′;!)S†!′S!�S(E′) + h.c.]. (3.32)

Next, we select the zero frequency component and move back to the Schrödinger
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picture, which yields)t�S(E) = − i[HS, �S(E)] − i ∫ dE′[Hmf
S,0 (E, E′) + H LS

S (E, E′), �S(E′)] (3.33)

+∑! ∫ dE′ [1(E, E′;!)S!�S(E′)S†! − 2(E, E′;!)2 {S†!S! , �S(E′)}] ,
where we used the sign function, sign(� ) = � /|� | for � ≠ 0 and sign(0) = 0, to de�neHmf

S,0 (E, E′) = �⟨P (E)B⟩E′S0, (3.34)H LS
S (E, E′) = �22i ∑! ∫ℝ d�ei!�sign(� )⟨P (E)�B̃(� )�B⟩E′ S†!S! , (3.35)

1(E, E′;!) = �2 ∫ℝ d�ei!� ⟨�B̃(� )P (E)�B⟩E′ , (3.36)2(E, E′;!) = �2 ∫ℝ d�ei!� ⟨P (E)�B̃(� )�B⟩E′ . (3.37)

Equation (3.33) is the EMME and is one of the central results of this dissertation. It
is interesting to have at hand also the version with projective measurements; that
is, we substitute P (E) by Π(E), which yields)t�S(Ex ) = − i[HS + Hmf

S,0 (Ex , Ex ) + H LS
S (Ex , Ex ), �S(Ex )] (3.38)+∑! ∑x′ [1(Ex , Ex′ ;!)S!�S(Ex′)S†! − 1(Ex′ , Ex ;!)2 {S†!S! , �S(Ex )}] ,

where we have used 2(Ex , Ex′ ;!) = �xx′ ∑x′′ 1(Ex′′ , Ex ;!), valid for projective
measurements.

3.4 Example: Random Matrix Bath Model

We take now the time to investigate a particular “toy-model”, which helps to build
the right intuition about the dynamics predicted by the EMME. Such toy-model
has the property of being analytically solvable and, at the same time, numerically
tractable for relatively large bath dimension. A very similar model was already
studied in [BGM06], and the results presented here go along the same lines. Also,
an extension of this model was studied in Ref. [RSS21b].

To keep everything as simple as possible, we consider a single spin, the open
quantum system, which is microscopically described by the HamiltonianHS = ∑i=± "i |i⟩⟨i| = !02 � z0 , (3.39)
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Figure 3.2: Sketch of our toy-model consisting in a spin-1/2 particle coupled to a
bath whose coarse-grained energy spectrum forms two bands of width �E.

where the subscript 0 is used for system properties. For convenience, we label the
system energies as "− = −!0/2 and "+ = !0/2, and the corresponding transitions
can have only two values !+− = −!−+ = !0. Instead, the bath is a potentially large
and complicated system whose microscopic description is not available at a �ne-
grained level. However, we know its coarse properties which are encoded in the
coarse-grained bath Hamiltonian{HB} = �E{−Π(E−) + Π(E+)}, (3.40)

which corresponds to two bands of width �E > 0 and centered around the energiesEx = x�E. The volumes v(Ex ) = tr[Π(Ex )] correspond to the number of eigenstates
on each energy band. For simplicity, we take �E = !0/2, in such a way that E± = "±.

We consider an interaction Hamiltonian of the form Hint = �S ⊗ B, where we
know that the system Hamiltonian has the form S = � x0 , is such a way thatS̃(� ) = S!0e−i!o� + S−!0ei!0� = �−0 e−i!0� + �+0 ei!0� , (3.41)

where �±0 = |±⟩⟨∓|. Instead, we do not know the �ne-grained properties of B and,
hence, we take a random matrix model for it. In particular, we considerB = ∑ek∈E+ ∑eq∈E− Bkq |ek⟩⟨eq | + h.c., (3.42)

to be block o�-diagonal. The numbers Bkq = B∗qk are independent and identically
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distributed complex random variables of zero mean and variance one; that is,E[Bkq] = 0, (3.43)E[BkqB∗lm] = �kq�lm, (3.44)

and the notation E[◦] stands for the average over the random number realizations.
Such a model is sketched in Fig. 3.2.

For this system, we can compute the bath correlation function for a single
realization of the bath, which yields

C(Ex , Ex′ ; � ) = ∑kq 1Ex (eq)1Ex′ (ek)BkqB∗kqv(Ex′) ei(ek−eq)� , (3.45)

which, from Eq. (3.42), is di�erent from zero only if x = + and x ′ = − or x = − andx ′ = +.
If the volumes v(E+) and v(E−) are su�ciently large, we expect the value of

the correlation function not to depend strongly on the particular realization of the
random numbers Bkq . Hence, it is justi�ed to replace the correlation function by its
average value over realizations; that is,

C(Ex , Ex′ ; � ) ≈ 1v(Ex′) [∑k 1Ex′ (ek)eiek�] [∑q 1Ex (eq)eieq�]∗ . (3.46)

This approximation is widely used in random matrix theory, and it relies on the fact
that values that deviate largely from the mean are unlikely for many i.i.d. random
variables. In the top-left panel of Fig. 3.3, we compare 20 random realizations with
the averaged bath correlation in Eq. (3.46) showing very little deviations.

The current expression of the bath correlation function (3.46) still depends
on the �ne-grained spectrum of the bath. At this point, we can proceed in two
di�erent manners. Either we assume a reasonable bath spectrum; for instance,
that the energies ek are evenly spaced within each band, or we approximate the
sum by an integral with the help of the density of states g(e) ∶= ∑k �(e − ek). It is
instructive to compare both approaches.

In the �rst approach, we relabel the bath energies according to ek ↦ Ex,kx ∶=Ex + [2kx/v(Ex ) − 1](�E/2), where x labels the energy band and kx is an integer that
runs kx = 0, 1,⋯ , v(Ex ) − 1. Hence, we can take advantage of the geometric series
to compute

C(Ex , Ex′ ; � ) = ei(Ex′−Ex )�v(Ex′) 2 − 2 cos(�E� )[1 − ei�E� /v(Ex )][1 − e−i�E� /v(Ex′ )] . (3.47)
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Figure 3.3: (top-left): Comparison between 20 realizations of the bath correlation
function with random numbers Bkq (gray translucid lines) and the correlation
function averaged over the random number distribution (orange solid line); (top-
right) comparison between the averaged bath correlation function Eq. (3.46) (solid
orange line) and its approximation in Eq. (3.48) (blue dashed line); (bottom-left)
contributions of the positive (orange solid line) and negative (blue dashed line)
frequency terms of the real part of the function Γ(E+, E−;!, t); (bottom-right) Com-
parison of the probability of �nding the open quantum system in the state |+⟩
with four methods: integrating the Schrödinger equation (Exact, solid orange line),
using the time-local version of the EMME (TL-EMME, blue dashed line), using
the Red�eld version of the EMME (RF-EMME, dotted yellow line), and using the
BMS master equation (purple dot-dashed line). The initial state of the dynamics is�(0) = |+⟩⟨+| ⊗ Π(E−)/v(E−). In all panels, the parameters are !0 = 2�E, � = 10−2�E,v(E−) = 100, and v(E+) = 200.
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In this form, the periodic nature of the correlation function of this �nite bath is
clear. However, for a many-body system, we expect the density of states g(Ex ) ≈v(Ex )/�E to be very large. Hence, for times � ≪ g(Ex ) it is justi�ed to expand the
denominator in Eq. (3.47) in a Taylor series leading toC(Ex , Ex′ ; � ) = ei(Ex′−Ex )�v(Ex )sin2(�E� /2)(�E� /2)2 . (3.48)

This procedure leads to a bath correlation function C(Ex , Ex′ ; � ) that decays on
time and for which the Markov approximation is justi�ed. In the top-right panel
of Fig. 3.3, we compare the bath correlation function before and after the Taylor
expansion of the denominator, showing a very good agreement. Numerically, we
observe the �rst recurrence of the bath correlation function roughly at � = �P ≈315�E−1.

In the second approach, we take advantage of the density of states g(e) and
assume that is approximately constant within each energy band. In particular, we
perform the approximate computation

∑k 1Ex′ (ek)eiek� = ∫ Ex′+�E/2
Ex′−�E/2 deg(e)eie� ≈ g(Ex′)eiEx′ � (2i) sin(�E� /2). (3.49)

The next step is using Eq. (3.49) in Eq. (3.46), together with the relation v(Ex ) =g(Ex )�E. This procedure leads exactly to the same correlation function as in
Eq. (3.48). Hence, for times � ≪ g(Ex ) the Markovian approximation holds, and the
correlation function for the �nite bath can be computed as if the bath was in�nite
and had a continuous spectrum.

For this toy-model, it is possible to �nd a closed expression even for the time-
local version of the EMME (3.28). Hence, it is convenient to introduce the notationΓ(Ex , Ex′ ;!, t) = �2 ∫ t

0 C(Ex , Ex′ ; � )ei!� . (3.50)

which ful�lls Γ(Ex , Ex′ ;!) = limt→∞ Γ(Ex , Ex′ ;!, t). There are only four non-vanishing
options which, for times t ≪ g(Ex ), readΓ(E±, E∓; ±!0, t) = �2v(Ex ) ∫ t

0 d� sin2(�E� /2)(�E� /2)2 , (3.51)

Γ(E±, E∓; ∓!0, t) = �2v(Ex ) ∫ t
0 d�e∓i4�E� sin2(�E� /2)(�E� /2)2 . (3.52)

It is clear that the second integral is much smaller than the �rst one, since it is
multiplied by the fast oscillating phase exp(∓i4�E� ) and, hence, we disregard them.
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In the bottom-left panel of Fig. 3.3, we compare the contributions with and without
the oscillation phase, showing that the later can be safely neglected, specially at
long times.

The next step is to de�ne the function

� (t) ∶= �E� ∫ t
0 sin2(�E� /2)(�E� /2)2 d� , (3.53)

which ful�lls � (t → ∞) = 1, and also the dissipation rates

 (E±, E∓; ±!0) = 2 limt→∞ ∫ ∞
0 Γ(E±, E∓; ±!0, t) = 2��2v(E±)�E , (3.54)

such that 2Γ(E±, E∓; ±!0, t) = � (t) (E±, E∓; ±!0), and the other combinations are set
to zero.

Finally, we are ready to write down the time-local version of the EMME for this
model. It yields)t�S(E±) = − i !02 [� z0 , �S(E±)]+ � (t)2 2��2�E v(E±){�∓�S(E∓)�x − v(E∓)v(E±) |∓⟩⟨∓|�S(E±) + h.c.

} . (3.55)

From the time-local equation (3.55), it is easy to obtain the Red�eld equation by
replacing � (t) ↦ 1 and also the EMME by replacing, additionally, �x ↦ �∓.
Moreover, projecting into the system energy eigenstates we obtain the classical
master equation)tp("±, E±) = 0, (3.56))tp("∓, E±) = � (t)2��2�E [v(E±)p("±, E∓) − v(E∓)p("∓, E±)]. (3.57)

for the populations p("i , Ex ) ∶= ⟨i|�S(Ex )|i⟩, which is identical for the Red�eld and
secular versions of the EMME. Interestingly, it exists a closed form solution for this
classical master equation.

To solve the coupled di�erential equations in Eq. (3.57), we introduce the col-
umn probability vector p = [p("−, E+), p("+, E−)]T , where the probabilities p("−, E−)
and p("+, E+) are left out since they do not take part in the dynamics. Then, the
di�erential equations can be cast in matrix form as)tp = � (t)Λp, (3.58)
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where we have de�ned the stochastic dynamical matrix

Λ = 2��2�E (−v(E−) v(E+)v(E−) −v(E+)) . (3.59)

We can now integrate Eq. (3.58) to obtain the full time-dependence of the probability
vector

p(t) = eZ (t)Λp(0). (3.60)

where Z (t) = ∫ t0 dt ′� (t ′). Finally, we note that the matrix Λ has the property

Λ2 = 2��2�E [v(E−) + v(E+)]Λ ∶= 2̄Λ. (3.61)

which leads to the �nal solution

p(t) = ∞∑n=0 [Z (t)Λ]nn! p(0) = (1 + 1 − e−2̄Z (t)2̄ Λ) p(0). (3.62)

In the bottom-right panel of Fig. 3.3, we benchmark the dynamics of the proba-
bility p("+) obtained with the time-local version of the EMME (blue dashed line)
against the exact dynamics (orange solid line), showing almost a perfect agreement.
For comparison, we also include the dynamics of p("+) using the Red�eld version of
the EMME (yellow dotted line), which fails at describing the short-time behavior,
but describes correctly the long-time dynamics. Finally, we also include the results
of the BMS master equation (purple dot-dashed line), which, for the �nite bath at
hand, fails to capture the dynamics completely.

Since the function � (t) rapidly saturates to � (t → ∞) = 1, we expect Z (t) ∼ t at
long times. Therefore, the stationary distribution can be computedpst("+, E−)pst("−, E+) = v(E−)v(E+) . (3.63)

The toy-model at hand excels for being particularly simple, and allowing for
a closed form solution of the dynamical equations. However, much of the discus-
sion and the intuition of this model can be extrapolated to more general baths. In
particular, for strongly non-integrable many-body baths, which are well approx-
imated using random matrix models, most of the discussion should hold. In the
following section, we study general properties of the EMME some of which we
have encountered for the present random matrix model.
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3.5 Properties of the EMME

In the last section we have obtained the EMME, a master equation to describe the
dynamics of an open quantum system in contact with a �nite bath. In this section,
we investigate the general properties of this master equation, which will help us to
build a physical intuition. To this end, we �rst explicitly compute the Lamb shift
Hamiltonian (3.35), and the dissipation rates (3.36) and (3.37), which help with the
discussion. The Lamb shift yields

H LS
S (E, E′) = �2∑! ∑kq W (E|eq)W (E′|eq)v(E′) |⟨eq |�B|ek⟩|2S†!S!PV

{ 1! + eq − ek} ,
(3.64)

where the principal value arises from the Sokhotski-Plemelj theorem (see Sec. 2.4.1).
Next, we explicitly write down the dissipation rates

1(E, E′;!) = 2��2∑kq |⟨ek |�B|eq⟩|2W (E|ek)W (E′|eq)v(E′) �(ek − eq − !), (3.65)

2(E, E′;!) = 2��2∑kq |⟨ek |�B|eq⟩|2W (E|eq)W (E′|eq)v(E′) �(ek − eq − !). (3.66)

where, again, the �-functions arise from the Sokhotski-Plemelj theorem. As it
happened with the master equations in Sec. 2.2, the principal value and the �-
functions appear as a consequence of the Markov approximation and can only be
treated consistently within the in�nite bath limit. Instead, we should interpret
them as time-independent approximations of the “actual” �nite bath dissipation
rates for times t smaller than the Poincaré recurrence time �P, as we did in Sec. 3.4.

3.5.1 Total average energy conservation

The �rst property we look at is energy conservation. In general, isolated mechanical
systems evolve in such a way that their energy is preserved over time. This property
should arise at some level for the open quantum system and �nite bath composite.
Here, we prove that the average energy of system plus �nite bath is conserved.

To see that the average energy is conserved, we start de�ning the system and
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bath (internal) energy as

US ∶= ∫ dEtrS[HS�S(E)], (3.67)

UB ∶= ∫ dEEtrS[�S(E)], (3.68)

whose sum U = US + UB corresponds to the total energy. Then, taking the time
derivative of the total energy and rearranging terms, we obtain

)tU = ∬ dEdE′∑! {E[1(E, E′;!) − 2(E, E′;!)] − !1(E, E′;!)} tr[S†!S!�S(E′)],
(3.69)

where we have used that [HS, S!] = −!S! . It is only left to use Eq. (3.65) and (3.66)
and the fact that the weighting function W (E|ek) is unbiased and normalized to
perform the integral over E. Then, under the use of the �-function, brings us to the
energy conservation property )tU = 0.

The fact that the dynamics of the EMME preserve the total energy U = US + UB
can be seen as a dynamical constraint that selects the dynamical processes that
are possible. For instance, a transition from a lower to a higher energy state of the
system has to be accompanied from a higher to lower transition on the bath that
supplies the corresponding energy de�cit (on average).

3.5.2 Population dynamics and the stationary state

In Sec. 2.5.2, we have seen that after the secular approximation the populationsp(i) = (�S)ii and the coherences (�S)ij evolved autonomously. As show below, this
is also the case for the EMME with the caveat that energy populations are a joint
distribution of the system and bath energy in the extended space.

We start by introducing the shortcut notation p("i , E) ∶= ⟨i|�S(E)|i⟩ for the
energy populations, which corresponds to a joint probability distribution of system
and bath energy. Naturally, the reduced probabilities p("i) = ∫ dEp("i , E) and p(E) =∑i p("i , E) can be obtained from this joint probability distribution. The dynamics of
this object can be obtained by projecting the EMME into the ith eigenstate, which
yields

)tp("i , E) = ∑j ∫ dE′|⟨i|S|j⟩|2{1(E, E′;!ji)p("j , E′) − 2(E, E′;!ij)p("i , E′)}, (3.70)
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which shows that the joint probabilities p("i , E) evolve autonomously. Unfortunately,
not much more can be said about the evolution of the energy populations for the
case of imperfect measurements. Regarding the coherences [�S(E)]ij with i ≠ j, with
the assumptions of a non-degenerate spectrum with non-degenerate transitions,
we �nd the evolution equation

)t[�S(E)]ij = − i ∫ dE′[H ′
S(E, E′)ii − H ′

S(E, E′)jj][�S(E′)]ij−∑l ∫ dE′|⟨l |S|i⟩|22(E, E′;!il)[�S(E′)]ij , (3.71)

which shows that coherences also evolve autonomously.
Instead, the version with projective measurements reveals more physical fea-

tures about the dynamics. For projective measurements, the Eq. (3.70) simpli�es
into)tp("i , Ex ) = ∑j ∑x′ {w("i , Ex |"j , Ex′)p("j , Ex′) − w("i , Ex′ |"j , Ex )p("i , Ex )}, (3.72)

which has the form of a classical master equation (2.21) with the transition ratesw("i , Ex |"j , Ex′) ∶= |⟨i|S|j⟩|21(Ex , Ex′ ; "j − "i). Often, it is convenient to introduce a
probability vector p with components p("i , Ex ) and write the evolution equation in
the compact matrix form )tp = Λp, (3.73)

where the dynamical matrix Λ has components(Λ)ijxy = w("i , Ex |"j , Ex′) − �ij�xy ∑i′x′ w("i′ , Ex′ |"i , Ex ). (3.74)

The stationary state of Eq. (3.72) is found by imposing that the LHS of Eq. (3.72)
vanishes. Then, we �nd thatpst("i , Ex )pst("j , Ex′) = w("i , Ex |"j , Ex′)w("j , Ex′ |"i , Ex ) = v(Ex )v(Ex′) , (3.75)

Physically, the stationary condition in Eq. (3.75) says that the probability of
having a system energy "i and a macroscopic bath energy Ex is proportional to
the number of microscopic states |ek⟩ compatible with that macroscopic energy,
which demonstrates once more the microcanonical character of the EMME. Indeed,
Eq. (3.75) is the microcanonical counterpart of the canonical stationary condition
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Eq. (2.127). This relation is made even more explicit by rewriting Eq. (3.75) in terms
of the Boltzmann-Planck entropy SBP(E) = log[v(E)]. Then, we �ndpst("i , Ex )pst("j , Ex′) = eSBP(Ex )−SBP(Ex′ ). (3.76)

As a �nal remark, while the probability distribution in Eq. (3.75) is always
stationary, but it may not be the only one. In particular, if other quantities are
conserved during the evolution, the stationary distribution must be compatible
with the initial value of the conserved quantities. In the following subsection, we
discuss the case when the conserved quantity is the total energy.

3.5.3 Emergent block-structure for the population dynamics
We again restrict ourselves to the case of projective measurements and ask the
following question: Does the average energy conservation constraint add any addi-
tional structure to the classical master equation for the energy populations (3.72)?

To answer this question, consider the transition rate w("i , Ex |"j , Ex′), which
explicitly reads

w("i , Ex |"j , Ex′) = 2��2∑kq |⟨i, ek |V |j, eq⟩|2v(Ex′) 1Ex (ek)1Ex′ (eq)�(ek − eq − !ji). (3.77)

Now consider that �E is chosen in such a way that the approximation1Ex (ek)1Ex′ (eq)�(ek − eq − !ji) ≈ �Ex′ ,Ex+!ij , (3.78)

is justi�ed. Then, the classical master equation for the populations turns into)tp("i , Ex ) = ∑j {w("i , Ex |"j , Ex′ + !ij)p("j , Ex + !ij) − w("i , Ex + !ij |"j , Ex )p("i , Ex )},
(3.79)

To reveal the block structure, consider the total energy Etot = "i + Ex and its cor-
responding probability distribution ptot(Etot) ∶= ∑i p("i , Etot − "i). Then, it is clear
that )tptot(Etot) =∑ij {w("i , Etot − "i |"j , Etot − "j)p("j , Etot − "j)− w("j , Etot − "j |"i , Etot − "i)p("i , Etot − "i)} = 0, (3.80)
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that is, the dynamics breaks into blocks of conserved total energy. Accordingly, the
stationary distribution should now “remember” its total energy. Because probabili-
ties belonging to di�erent total energies are disconnected, we have thatpst("i , Etot − "i)pst("j , Etot − "j) = v(Etot − "i)v(Etot − "j) , (3.81)

Equation (3.81) is less restrictive than the original stationary condition (3.75) since
it is only applied to probabilities that belong to the same total energy Etot. If we use
the Boltzmann-Planck entropypst("i , Etot − "i)pst("j , Etot − "j) = eSBP(Etot−"i )−SBP(Etot−"j ) ≈ e−�(Etot)!ij , (3.82)

where �(E) ∶= )ESBP(E) is the Boltzmann inverse temperature. Hence, the total
energy conservation gives rise to an e�ective thermal distribution provided that
SBP(E) is a su�ciently slow varying function of E.

While the discussion of this subsection provides insights about how energy is
conserved during the dynamics, it also requires further approximations. Also, we
have swept under the carpet that the coarse-grained bath energy Etot − "i may not
be de�ned. For this reason, we shall return to the general case in the following.

3.5.4 System-bath correlations
The standard derivation of master equations that we discussed in Sec. 2.2.2 and 2.2.3
takes advantage of the Born approximation, which assumes that the correlations
between the system and the bath are negligible. One of the distinctive features of
the EMME is that it is capable of capturing part of the system-bath correlations.
Hence, it can be used to assess the validity of the Born approximation.

To quantify the possibly quantum system bath correlations, we introduce the
always positive quantum mechanical mutual informationI qm

S:B [�] ∶= SvN[�S] + SvN[�B] − SvN[�] ≥ 0. (3.83)

which equals zero only if the state is fully decorrelated; that is, if � = �S ⊗ �B.
Equivalently, we could have de�ned I qm

S:B [�] through the relative entropy asI qm
S:B [�] ∶= D(�||�S ⊗ �B). (3.84)

This mutual information is particularly useful for relatively small quantum systems,
whose total state � is available.
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Instead, the EMME only captures part of the system-bath correlations, namely,
those encoded in the joint probability distribution p("i , E). Those correlations can
be quanti�ed by means of the classical mutual informationI cl

S:B[{p("i , E)}] ∶= ∑i ∫ dEp("i , E)[log p("i , E) − log p("i) − log p(E)] ≥ 0. (3.85)

In fact, one can see that I qm
S:B (�) ≥ I cl

S:B(p) ≥ 0, (3.86)

where the �rst equality is reached for � = ∫ dE∑i p("i , E)|i⟩⟨i| ⊗ !B(E).
Physically speaking, the reason why we can observe strong system-bath cor-

relations with the EMME arises from the fact that the total average energy U is
conserved under the evolution, which constraints the values that the bath energyE can take given a system energy "i .
3.6 Reduced system dynamics: a hierarchy ofmas-

ter equations

In conventional open quantum systems’ theory, one is only interested in the evolu-
tion of the reduced state of the system �S. This state encodes all information that
can be extracted by measuring locally the open quantum system at a single time;
that is, without considering multi-time statistics [MM21].

With the tools at hand, the reduced dynamics of the system can be obtained in
two ways. On the one hand, following Sec. 2.2.3 one can derive the BMS master
equation, which is already an equation for the reduced state �S. On the other hand,
one can derive the EMME and marginalize over the bath energy E to obtain an
equation for �S. We refer to the resulting equation as the “reduced EMME”. While
similar in form, the two aforementioned strategies give rise to two di�erent master
equations for the reduced state of the system. In this section, we investigate under
which circumstances both equations become equivalent.

To remain focused, we assume ⟨ek |B|ek⟩ = 0 for all k. Also, we assume the
system-bath composite to be initialized in the state �(0) = �S(0) ⊗ � ′B(�0). We note
the prime in the Gibbs state � ′B(�0), which denotes that the Gibbs state is constructed
as � ′B(�0) = ∫ dEv(E)e−�0EZ ′

B(�0) !B(E) ≈ exp(−�0HB)
tr[exp(−�0HB)] = �B(�0), (3.87)
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where Z ′
B(�) = ∫ dEv(E) exp(−�E). How well � ′B(�0) approximates the Gibbs state�B(�0) depends on the choice of the parameter �E.

For later comparison, we show here the BMS master equation (2.58) in the case
of the corresponding Gibbs state � ′B(�0) for the environment. It yields)t�S = − i[HS, �S] − i[H LS′

S (�0), �S] +∑!  ′(�0;!)(S!�SS†! − 12 {S†!S! , �S
})=∶ S(�0). (3.88)

The quantities H LS′
S (�0) and  ′(�0;!) are de�ned with respect to the modi�ed Gibbs

state � ′B(�0). More precisely, de�ning the thermal average of an arbitrary functionf (E) as ⟨⟨f (E)⟩⟩� = ∫ dEv(E) exp(−�E)Z ′
B(�) f (E), (3.89)

we have that H LS′
S (�0) = ⟨⟨H LS

S (E)⟩⟩�0 ≈ H LS
S (�0), (3.90) ′(�0;!) = ⟨⟨ (E;!)⟩⟩�0 ≈  (�0;!). (3.91)

In the following, we assume that �E is such that the above approximations are
accurate and, consequently, we drop the prime from the notation.

3.6.1 The reduced EMME
As we have seen, the central object governing the decoherence of an open quantum
system in the weak-coupling regime is the bath correlation function. We have
encountered two types of bath correlation functions: the “equilibrium” bath corre-
lation functions C(a; � ), and the “extended” bath correlation functions Cm(E, E′; � )
that appear in the EMME (3.33). Clearly, there the two types are not fully inde-
pendent. For instance, given the microcanonical equilibrium correlation functionC(E; � ) = ⟨�B(� )†�B⟩E , we �nd the relation∫ dE′C1(E′, E; � ) = ∫ dE′C2(E′, E; � ) = tr[�B(� )†�B!B(E)] = C(E; � ). (3.92)

We now integrate Eq. (3.33) over the energy E and use the property (3.92) to arrive
at the equation)t�S = − i[HS, �S] − i ∫ dE[H LS

S (E), �S(E)]+∑! ∫ dE (E;!)(S!�S(E)S†! − 12 {S†!S! , �S(E)}) . (3.93)
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where the quantities

H LS
S (E) = ∫ dE′H LS

S (E′, E), (3.94) (E;!) = ∫ dE′1(E′, E;!) = ∫ dE′2(E′, E;!), (3.95)

correspond to the de�nitions given in Sec. 2.2 for the microcanonical state !B(E).
Equation (3.93) is formally similar, but not equivalent, to the BMS master equa-

tion (3.88). Clearly, both equations cannot be identical since the EMME can give
improved dynamical predictions for certain models, as we have seen in Sec. 3.4.
A closer look reveals that Eq. (3.93) is not a closed equation for the reduced state�S, since it still depends on the extended states �S(E). Hence, for the prediction of
the EMME to coincide with that of the BMS, on needs that the dependence of the
reduced EMME on the extended states �S(E) disappears. Below, we discuss under
which circumstances this can happen.

3.6.2 Two limiting cases
We study here two limiting cases from which the BMS master equation arises from
the EMME. The �rst case (i) corresponds to the situation when the state �S(E)
remains approximately uncorrelated at all times; that is, �S(E) ≈ �Sp(E). Then, one
recovers a closed equation for the reduced state of the system in the form)t�S = − i[HS + ⟨⟨H LS

S (E)⟩⟩p , �S] +∑! ⟨⟨ (E;!)⟩⟩p (S!�SS†! − 12 {S†!S! , �S
}) .

(3.96)

where ⟨⟨f (E)⟩⟩p = ∫ dEf (E)p(E). If, moreover, the distribution p(E) happens to be
well approximated by an equilibrium distribution p(� ; E) = Z −1

B (�)v(E) exp(−�E),
then one can replace ⟨⟨◦⟩⟩p ≈ ⟨⟨◦⟩⟩� and one recovers exactly Eq. (3.88). However,
this limit is unsatisfactory, since dissipation and noise are often a consequence of
building and destroying system-bath correlations. More importantly, the limit itself
depends on the trajectory of the system-bath evolution rather than on the physical
properties of the bath.

There exists a second limit (ii) that causes Eq. (3.93) to reduce to Eq. (3.88). LetΔE be the uncertainty associated with the distribution p(E) around the average
energy UB = ⟨⟨E⟩⟩p . Then, if the H LS

S (E) and  (E;!) are constant over the range of
energies ΔE, one can marginalize the state �S(E) over the energy E in Eq. (3.93) to
�nd a closed equation for �S that is formally equal to the BMS. If, moreover, the
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Unitary EMME BMS�B �(�) �[��(�)] �[�(0)]BMS

Figure 3.4: Sketch of the hierarchy and validity range of the di�erent discussed
master equations.

equivalence of ensembles holds for the bath, in the sense that C(UB, � ) ≈ C(�, � ) for
the inverse temperature � , one recovers exactly Eq. (3.88). A similar discussion is
conducted in Ref. [EG07].

In the following, we derive a hierarchy of master equations for the reduced
state of the system �S, which is intuitively summarized as follows. First, the most
general master equation that takes into account all the environmental dynamical
information is equivalent to unitary evolution and corresponds to the Nakajima-
Zwanzig master equation. Second, an open quantum system that exchanges energy
with a weakly coupled �nite bath can be described using the EMME, which keeps
track of the dynamically evolving bath energy distribution p(E). Third, in some
cases it may su�ce to keep track of the bath average energy, which is in one-to-
one correspondence with a certain nonequilibrium e�ective temperature �⋆ (to be
de�ned below). Then, the dynamics is generated by the BMS master equation at
this inverse temperature �⋆. Finally, if one fully ignores the �niteness of the bath
and assumes it is found in a constant thermal state at inverse temperature �0, the
dynamics are generated by the BMS master equation at this constant temperature.
We sketch this hierarchy in Fig. 3.4.

3.6.3 A hierarchy of master equations

Finally, we discuss how the promised hierarchy of master equations arises. The
philosophy behind the present approach is as follows. Incorporating dynamical
information about the environment leads to more accurate predictions about the
open system dynamics. In this spirit, we wonder whether it exists a hierarchy of
such master equations, where neglecting certain dynamical information about the
environment gives rise to simpler master equations, but with a more restricted
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range of validity. The answer is positive, and it requires interpolating between the
discussed limiting cases (i) and (ii).

Typically, one wants to describe the evolution of a system under conditions that
correspond to neither (i) nor (ii), but that can be relatively close to both limits at
the same time. To discuss this situation, it is convenient to introduce a perturbative
parameter � that keeps track of the degree of closeness to (i) and (ii). Namely, we
introduce the di�erences ��S(E) ∶= �S(E) − �Sp(E), �H LS

S (E) ∶= H LS
S (E) −H LS

S (�), and� (E;!) ∶=  (E;!)− (� ;!), and assume that they are of the same order �. We now
allow the parameter � = �(t) to depend on time with the initial condition �(0) = �0.
Reexpressing Eq. (3.93) in terms of the di�erences and using that ∫ dE��S(E) = 0,
we obtain to �rst order in �)t�S ≈S(�)[�S] − i[⟨⟨�H LS

S (E)⟩⟩p , �S] (3.97)+∑! ⟨⟨� (E;!)⟩⟩p (S!�SS†! − 12 {S†!S! , �S
}) .

Hence, the EMME and the BMS coincide to zeroth order in �.
Intriguingly, the EMME and the BMS can coincide to �rst order in � provided

that we can �nd a time-dependent inverse temperature � such that ⟨⟨�HLS(E)⟩⟩p
and ⟨⟨� (E;!)⟩⟩p vanish for all times. To proceed, we Taylor expand in the energyE around the mean value UB to �nd HLS(E) ≈ HLS(UB) + [)EHLS(E)]E=UB(E − UB) and (E;!) =  (UB;!) + [)E (E;!)]E=UB(E − UB), which can be done for a su�ciently
small ΔE and a su�ciently smooth bath spectrum. In that case, there always exists
a time-dependent choice �(t) for which the �rst order of Eq. (3.97) vanishes. This
choice corresponds to the solution �⋆ of the equation⟨⟨E⟩⟩�⋆(t) !∶= UB, (3.98)

that is, the inverse temperature of a thermal state that has the same average energy
as the actual state of the bath. Therefore, the role of the time-dependent solution of
Eq. (3.98) is to update the temperature of the bath according to the current average
bath energy. This relation can be made even more apparent by taking the derivative
of Eq. (3.98), which leads to ̇�⋆(t) = − 1

(�⋆(t))Q̇(t), (3.99)

where (�) ∶= dUB/d� is the canonical heat capacity with respect to the inverse
temperature, and Q̇ = −)tUB the heat �ux. Equation (3.99) explicitly shows that in
order to use the BMS master equations for a �nite bath, one has to update the bath
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Figure 3.5: Sketch of the piecewise non-interacting spin bath. The central system
(in blue, label S) is weakly coupled to several regions (in red, labels R1, R2, R3,⋯)
that conform a lattice L.

temperature due to the heat �ux exchanged with the system. Only in the limit of
an in�nite bath, for which the extensive heat capacity (�⋆) tends to in�nity, one
is allowed to set �⋆(t) = �0 and be still correct to �rst order in � at all times.

Interestingly, the same e�ective nonequilibrium temperature �⋆ has been pro-
posed as a de�nition of nonequilibrium temperature in phenomenological nonequi-
librium thermodynamics, see Refs. [MB77; Mus77]. Moreover, it has been re-
cently shown to appear in a microscopic derivation of Clausius’ inequality [RSS21b;
SDR21a; SW21].

3.7 Piece-wise non-interacting bath

Having found the hierarchy of master equations, we take now a step back and
focus on applying the EMME to study the dynamics of open quantum systems that
are in contact with �nite baths. From a practical point of view, using Eq. (3.33) to
describe the dynamics of an open quantum system requires to compute the extended
bath correlation functions Cm(E, E′; � ) and its half-Fourier transform. This task
is setup dependent, and it can be di�cult to get an intuition for an arbitrarily
general coupling operator B or bath Hamiltonian HB. However, there is a relatively
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large class of environments for which one can take advantage of arguments of
statistical mechanics to proceed further in the calculations. This class corresponds
to environments of non-interacting parts that couple locally to the system, which
we make precise in the following.

We consider the bath to be embedded in a �nite lattice L. To each lattice siter ∈ L we associate a local Hilbert space of dimension d(r). Then, we partition
L = ∪RR into regions R, and associate to each region R a local Hamiltonian HR
that only involves sites r ∈ R and has dimension d(R) = ∏r∈R d(r). Then, the bath
Hamiltonian HB = ∑R HR , (3.100)

is piecewise non-interacting; i.e., [HR , HR′] = 0. Importantly, the notion of local
is not restricted to spatially local. The structure in Eq. (3.100) could also be, for
instance, with respect to momentum space. We sketch this scenario in Fig. 3.5.

We introduce the notation |n(R)⟩ for the ntℎ excited state of the HamiltonianHR; that is, HR |n(R)⟩ = en(R)|n(R)⟩. Then, the eigenenergies of the bath Hamiltonian
are given by en ∶= ∑R en(R) where n is a vector of components n(R). Moreover, we
assume that the open quantum system interacts locally with each local HR giving
rise to an interaction of the formHint = �S ⊗∑R BR , (3.101)

where again BR only involves sites r ∈ R. Despite being restrictive, many well-
known models of open quantum systems like the central spin [Gau76] or the
Caldeira-Leggett [CL83] model fall in this category.

3.7.1 Local correlation functions
With a Hamiltonian of the form (3.100) and an interaction of the form (3.101), the
computation of the correlation functions simpli�es and can be written as a sum
of local correlation functions; for instance, ⟨B̃(� )B⟩E′ = ∑R⟨BR(� )BR⟩E′ . We start
considering the computation of the correlation function⟨BR(� )BR⟩E′ = trR{BR(� )BRtrR̄[!B(E′)]}, (3.102)
where R̄ is the complementary set of R; that is, R ∪ R̄ = L. The trace over R̄ can be
now performed as follows. De�ne the conditional POVM elementsP (E|n(R)) ∶=|n(R)⟩⟨n(R)|P (E)|n(R)⟩⟨n(R)|=∑̄

n
W (E|en(R) + en̄)|n(R), n̄⟩⟨n(R), n̄|, (3.103)
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where n̄ sums over the complementary components of n(R) and also de�ne the
corresponding conditional volumes v(E|n(R)) = tr[P (E|n(R))]. Then, we arrive at
the exact formulaΦR(E) = trR̄[!B(E)] =∑n(R) v(E|n(R))v(E) |n(R)⟩⟨n(R)|, (3.104)

for the reduced state of the subsystem R. With the help of the reduced states ΦR(E),
we can simply compute the correlation function as a sum of local terms asC(E; � ) = ∑R trR[BR(� )BRΦR(E)]. (3.105)

3.7.2 Emergent Gibbs distribution
Despite being formally exact, the expression of the correlation function C(E; � )
is not yet transparent. In particular, we would like to attach a physical meaning
to the ratio of volume terms appearing in the reduced state ΦR(E). To this end,
we use a well-known argument from statistical mechanics. While we expect this
argument to work for typical baths, we have to make further assumptions to derive
it formally.

Namely, we assume that (i) the weighting functions to be only a function of the
di�erence W (E|ek) = W (E − ek); (ii) the volumes ful�ll v(E|n(R)) ≈ d(R)v(E − en(R));
and (iii) the Boltzmann-Planck entropy SBP(E) = log[v(E)�E] is a su�ciently slowly
varying function of E and can be Taylor expanded to �rst order at the local energy
scale en(R).

Assumption (i) is to be expected in many practical cases. For instance, bothWI(E|ek) and WG(E|ek) fall in this category. Assumption (ii), is expected for large
baths where the eigenstate distribution of R̄ has reached its limiting value, and at-
taching to it the extra region R is equivalent to multiplying the limiting distribution
by the local dimension d(R). Finally, assupmtion (iii) is also to be expected for large
baths with many regions R, since the local energies en(R) are a small contribution
to the total energy. Then, with the help of the Boltzmann inverse temperature�(E) ∶= ))ESBP(E) one can expand SBP(E − en(R)) ≈ SBP(E) − �(E)en(R).

Putting assumptions (i)–(iii) together, we arrive at the well-known result of
statistical mechanics that the Gibbs distribution arises as measuring locally a system
in a global microcanonical state at a given energy E [LL13]. In our notation,

ΦR(E) = trR̄[!B(E)] ≈ ∑n(R) e−�(E)en(R)ZR(�(E)) |n(R)⟩⟨n(R)| = �R(�B(E)), (3.106)
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where ZR(�) = ∑n(R) exp(−�en(R)). Finally, we believe that the above assumptions are
not crucial to the derivation of Eq. (3.106), since the thermal state has been shown
to arise as the correct reduced state for the overwhelming majority of quantum
states [GLT+06; PSW06].

3.7.3 Kubo-Martin-Schwinger relation
Interestingly, exploiting the emergent thermal distribution discussed of the last
subsection, one recovers the Kubo-Martin-Schwinger relation that governs the
equilibrium properties under the BMS master equation as we saw in Sec. 2.5.3. In
particular, we note that the correlation function ful�llC(E; � ) ≈ ∑R trR[BR(� )BR�R(�B(E))] =∶ ∑R CR(�B(E); � ). (3.107)

where CR(� ; � ) are thermal correlation functions for the region R. Because each
region has a thermal correlation function, we see thatC(E; � ) = ∑R CR(�B(E); −� − i�B(E)) = C(E; −� − i�B(E)). (3.108)

Therefore, we �nd that the dissipation rates obey (E; −!) = �2 ∫ℝ d�C(� ; −� − i�B(E))e−i!� = e−�(E)! (E;!). (3.109)

Crucially, because the Boltzmann temperature depends on the energy this does not
always lead to a Gibbs state for the system as the stationary distribution.

3.8 Example: Central spin model

In this section, we use the EMME to numerically investigate the dynamics of a spin
system coupled to a bath of non-interacting spin-1/2 particles, which is also known
as the central spin model (see Fig. 3.6 for a sketch). This bath for this model is a
piecewise non-interacting bath, which allows us to take advantage of the results
of Sec. 3.7. Central spin baths describe the e�ect of an environment dominated
by localized modes, such as nuclear spins, paramagnetic spins, or defects [PS00].
Hence, they are suitable to describe the interaction of a spin system embedded in an
environment which contains many other spin degrees of freedom; such as nitrogen-
vacancy centers in diamond [LSC+13; SLC+14; SST+18] or quantum dots [HKP+07;
UMA+13].
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Figure 3.6: Sketch of the central spin model, where the central spin has an energy
scale!S and the spins in the bath have di�erent energy splittingsΩr . The interaction
strength between the system and the spins in the environment is of order �.

Ultimately, the aim of this section is to investigate the hierarchy of master
equations that we have discussed in Sec. 3.6.3 for the central spin model. To
this end, we start computing the volume terms v(E) and correlation functionsCm(E, E′;!) for the central spin model and afterwards �nding the corresponding
EMME.

3.8.1 The spin bath: volumes and correlation functions
We start studying the properties of the spin bath, which consists of a collection ofNs spin-1/2 particles, which are microscopically described by the Hamiltonian

HB = Ns∑r=1 Ωr2 � zr , (3.110)

where � x,y,zr and Ωr are respectively the Pauli matrices and the Zeeman energy of
the r tℎ spin. Its eigenenergies are given by

en ∶= Ns∑r=1 nrΩr2 , (3.111)

where n = (n1,⋯ , nNs ) has components nr ∈ {−1, 1}. We consider that the frequen-
cies Ωr to be sampled from a given underlying probability distribution %(Ω) with
average Ω0 and variance �Ω.

Interestingly, every energy en can be regarded as the endpoint of a random
walk of Ns steps and random step sizes Ωr /2. In that scenario, the central limit
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theorem applies (see App. B.3) and the distribution of end points is given by a
normal distribution of variance � 2Ns� 2N = Ns∑r=1 12 [(Ωr2 )2 +(−Ωr2 )2] = Ns∑r=1 Ω2r4 . (3.112)

Then, it is then possible to approximate the density of states of the bathg(e) ∶= ∑
n
�(e − en) ≈ 2Ns√2��Ns exp(− e22� 2Ns ) . (3.113)

In the top-left panel of Fig. 3.7, we compare the histogram of the exact spectrum
with the normalized Gaussian �t in Eq. (3.113), showing a very good agreement.

With the density of states at hand, we can proceed to compute the volume termsv(E). In terms of the density of states g(e), the volumes can be written asv(E) = ∫ deW (E|e)g(e). (3.114)

We can �nd closed expressions for the volume terms in the cases of WI(E|ek) andWG(E|ek). They read respectivelyvI(Ex ) ≈ 2Ns−1�E [erf(Ex + �E/2√2�Ns ) − erf(Ex − �E/2√2�Ns )] ,vG(E) ≈ 2Ns√2� (�E2 + � 2Ns ) exp [− E22(�E2 + � 2Ns )] , (3.115)

where erf(x) is the error function, and which become equivalent in the limit �E → 0.
Provided the analytical expressions for the volumes vI(E) and vG(E), we can also

compute analytically the Boltzmann-Planck entropy SBP(E) taking the logarithm. In
particular, for the Gaussian volume vG(E), we �nd the linear relation �B(E) = −E/� 2Ns ,
between the Boltzmann temperature and the energy E. The same relation also holds
for vI(Ex ), provided that �E/(√2�Ns ) is small enough to Taylor expand the error
function erf(x + �x) ≈ erf(x) + exp(x2)�x/√� . Interestingly, the microcanonical
heat capacity for this model turns out to be a constant C(�(E)) = −� 2Ns which, as
expected, is extensive with the number of spins Ns .

The next step is computing the bath correlation functions C(E, E′; � ) for the
central spin model. To this end, we need to specify the interaction Hamiltonian
which we take to be Hint = �S ⊗ Ns∑r=1 cr� xr . (3.116)
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Figure 3.7: (top-left) Histogram of eigenstates for the central spin bath and compari-
son with the approximate normalized density of states (solid orange line) forNs = 14
spins; (top-right) Ratio of the computation of f (Ex , Ex′ ; Ω) using the exact Eq. (3.118)
over the approximated Eq. (3.119) expressions as a function of the number of spinsNs , with Ex = −2�E, Ex′ = −�E, and Ω = �E; (bottom-left) Real (solid orange line)
and imaginary (dashed blue line) parts of the correlation function C(Ex , Ex′ ; � ) as a
function of time for Ns = 300 spins, with Ex = −8�E and Ex′ = −9�E; (bottom-right)
Comparison of the analytical approximation (solid orange line) and the numerical
calculation (blue dashed line) corresponding to the correlation function of the
bottom-left panel with � = 0.01�E. In all panels, the frequencies Ωr are distributed
according to a normal distribution of mean Ω0 = �E and variance �Ω = 0.2�E.
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We note that HB and Hint have the form given by (3.100) and (3.101) respectively. In
particular, the regions R contain a single site r and the corresponding HamiltoniansHr = Ωr� zr /2 have dimension d(R) = d(r) = 2. Therefore, the correlation function
can be computed as a sum of local terms, and we �nd

C1(E, E′; � ) = 1v(E′) Ns∑r=1 c2r [e−iΩr � f (E, E′; Ωr ) + eiΩr tf (E, E′; −Ωr )] . (3.117)

In Eq. (3.117) we have introduced the functionf (E, E′; Ωr ) = ∑̄
n
W (E|en̄ + Ωr /2)W (E′|en̄ − Ωr /2), (3.118)

that has the symmetry f (E, E′; Ωr ) = f (E′, E; −Ωr ). An exact computation of f (E, E′; Ωr )
is in general only available through numerical calculation. However, we can make
use of the density of states g(e) in Eq. (3.113) to approximate

f (E, E′; Ωr ) ≈ 12 ∫ deg(e)W (E|e + Ωr /2)W (E′|e − Ωr /2). (3.119)

where we have used that, for a su�ciently large Ns , removing a particle approxi-
mately scales down g(e) by a factor of two. In the top-right panel of Fig. 3.7, we
show the ratio of the exact value of f (E, E′; Ω) in Eq. (3.118) over its approximated
value as computed with Eq. (3.119) as a function of the number of spins Ns . One
observes that, for a su�ciently large number of particles Ns ∼ 12, it is justi�ed to
use Eq. (3.119) to evaluate the function f (E, E′; Ωr ).

In the derivation of the EMME, we have used that the correlation functions
decay rapidly in time. This approximation is crucial to obtain a time-independent
equation for the evolution of �S(E) and thus, its validity has to be assessed. With the
help of g(e) it is possible to evaluate e�ciently the correlation function Cm(E, E′; � ),
for m = 1, 2, for a large number of particles. In the bottom-left panel of Fig. 3.7
we show the C1(Ex , Ex′ ; � ) as a function of � for a particular choice of Ex = −9�E,Ex′ = −8�E for a bath of Ns = 300 spin-1/2 particles. We show the decay of the
correlation functions as a function of time for a particular choice of the energies E
and E′. As we discussed, the decay of the correlation function is an indicator for
the validity of the Markovian approximation.

Ultimately, we are interested in computing the dissipation rates; for instance1(E, E′; Ω), that enter the EMME. If the number of spins of the bath is very large and
their splittingsΩr densely �ll a spectral region, the dissipation rates are conveniently
written in terms of the spectral density J (Ω) = 2��2∑r c2r �(Ω−Ωr ) de�ned forΩ ≥ 0.
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Continuing J (Ω) towards negative frequencies as J (−Ω) = J (Ω) we �nd the relation1(E, E′; Ω) = J (Ω)f (E, E′; Ω)/V (E′). (3.120)

We note that, for a spin-independent coupling cr = 1 for all r , the spectral density
is linked to the distribution of Zeeman energies through

J (Ω) = 2��2 Ns∑r=1 �(Ω − Ωr ) ≈ 2��2Ns%(Ω). (3.121)

where the approximated sign holds exactly in the limitNs → ∞. In the bottom-right
panel of Fig. 3.7, we compare the numerical value of the dissipation rates 1(E, E′; Ω)
versus its analytic value in Eq. (3.120), where the function f (E, E′; Ω) is computed
using Eq. (3.119). We �nd a good agreement between both expressions Ns = 300,
which improves increasing Ns .
3.8.2 Comparison between the master equations

Finally, we compare the dynamics generated by the EMME and those generated by
the BMS with the e�ective nonequilibibrium temperature �⋆(t) and at the constant
temperature �0. At this point, we have to specify the system Hamiltonian HS and
the system interaction S. We consider a particle of spin-s with HS = !0Sz andS = 2Sx , being !S the central spin frequency, and Sx and Sz are the central spin
operators. In the energy eigenbasis the spin operators read

Sz = 2s∑i=0 (i − s)|i⟩⟨i|,
2Sx = 2s−1∑i=0 √(i + 1)(2s − i)|i⟩⟨i + 1| + h.c. (3.122)

For instance, for a spin-1/2 particle, we have HS = !0� z0 /2 and S = � x0 , being� z0 and � x0 the standard Pauli operators of the central spin. For simplicity, we
consider only the weighting function WI(Ex |ek) where the energies Ex = x�E
with x ∈ ℤ; i.e, we coarse-grain the bath energies into non-overlapping en-
ergy windows. With this choice of weighting function, we have the relation2(Ex , Ex′ ;!) = �x,x′ ∑x′′ 1(Ex′′ , Ex ;!).

It is convenient to gather the probabilities p("i , Ex ) into the probability vector p
and to de�ne the stochastic matrix Λ with o�-diagonal elements Λ("i , Ex ; "j , Ex′) =
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Figure 3.8: (left-column) Comparison between the EMME dynamics (solid orange
line), the BMS with the e�ective nonequilibrium temperature �⋆(t) (blue dashed
line), and the BMS at �xed temperature �0 (yellow dotted line) for: (top-row) the
�rst excited state of a spin-1/2 particle and (bottom-row) the third excited state
of a spin-10 particle; (right-column) corresponding evolution of the e�ective non-
equilibrium temperature (solid orange line). Initially, the system-bath composite is
found in the state �(0) = |2s⟩⟨2s| ⊗ �B(�0) with �0 = 0.75�E. We take the parametersNs = 100 spins, !0 = �E, � = 0.01�E, Ω0 = �E, �Ω = 0.2�E, and a spin independent
coupling cr → 1.
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Figure 3.9: (left-column) Comparison between the stationary distributions of the
system pst("i) and the bath pst(Ex ) as predicted for the EMME dynamics (solid oragne
line), the BMS with the e�ective nonequilibrium temperature �⋆(t) (blue dashed
line), and the BMS at �xed temperature �0 (yellow dotted line) for the same initial
states and parameters than Fig. 3.8. (top-row) the �rst excited state of a spin-1/2
particle and (bottom) the third excited state of a spin-10 particle; (right-column)
corresponding evolution of the e�ective non-equilibrium temperature (solid orange
line). Initially, the system-bath composite is found in the state �(0) = |2s⟩⟨2s|⊗�B(�0)
with �0 = 0.75�E. We take the parameters Ns = 100 spins, !0 = �E, � = 0.01�E,Ω0 = �E, �Ω = 0.2�E, and a spin independent coupling cr → 1.
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|⟨i|S|j⟩|21(Ex , Ex′ ;!ji), and the diagonal ones determined by the probability con-
servation condition ∑i,x Λ("i , Ex ; "j , Ex′) = 0. Then, we can compactly write the
population evolution equaiton as )tp =Λp. (3.123)

Using the results of Sec. 3.7.1, we explicitly �nd the o�-diagonal elements

Λ("i , Ex ; "j , Ex′) = |⟨i|S|j⟩|2J (!ji) f (Ex , Ex′ ;!ji)v(Ex′) , (3.124)

with the matrix elements of the system coupling operator|⟨i|2Sx |j⟩|2 =�i,j−1(i + 1)(2s − i) + �i,j+1i(2s − i + 1). (3.125)

In Fig. 3.8, we show a comparison between the EMME dynamics, the BMS
with the e�ective nonequilibrium temperature �⋆(t), and the BMS at the �xed
inverse temperature �0 for a particle of (left-column) spin s=1/2 and (right-column)
spin s=10. For a spin-1/2 particle, the amount of energy transferred from the
system to the bath is very small as compared to the bath average energy. Hence,
during the evolution the e�ective nonequilibrium temperature �⋆(t), in one to one
correspondence with the average energy, remains constant. Hence, the in�nite bath
approximation is well justi�ed in this situation, and the three master equations
coincide. Instead, an initially excited spin-10 particle is able to transfer a non-
negligible amount of energy to the bath. This is observed in the dynamics of the
non-equilibrium temperature �⋆(t), which changes substantially. As a result, the
three master equations give rise to a distinguishable dynamics, as we can see in the
bottom-left panel of Fig. 3.8.

Of course, the dependence on the spin, playing the role of the system-size, of
these dynamics is re�ected in the stationary distributions. In Fig. 3.9, we show the
stationary distributions for the system (left-column) and the bath (right-column)
for a (top-row) spin-1/2 particle and (bottom-row) spin-10 particle. Similarly to
the time-dependent dynamics, the three stationary distributions agree for the
system and the bath for the spin-1/2 particle in the top row. Instead, they become
substantially di�erent for a large spin-10 central particle.

3.8.3 System-bath correlations
One of the special features of the EMME is that it is capable to describe the evolution
of part of the system-bath correlations. Those correlations can be present either
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Figure 3.10: (left) System-bath correlations as measured by the classical mutual
information for a state of the bath in a microcanonical state !B(Ex )with Ex = −22�E
and corresponding Boltzmann temperature �(E) ≈ 0.83�E−1 (orange solid and yellow
dotted lines); or a canonical state at initial inverse temperature �0 = 0.75�E−1 (blue
dashed and purple dotdashed lines). The central particle has a spin of s = 1/2
(solid orange and blue dashed lines) or s = 10 (yellow dotted and purple dotdashed
lines). The horizontal gray dashed lines correspond to the maximal value of the
mutual information log(2s + 1) for s = 1/2 and s = 10. (right) Magnitude of the
matrix elements of Λ as a function of the position in the basis {⋯ , p(−!0/2, Ex +�E), p(!0/2, Ex ),⋯} for a spin-1/2 particle. The color white is used to mark elements
whose order of magnitude is smaller or equal than 10−10. The rest of the parameters
are set to Ns = 100, !0 = �E, Ω0 = �E, �Ω = 0.2�E, cr = 1, and � = 0.01�E.
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in the initial system-bath state �(0) or can be developed during the system-bath
interaction. It is sometimes assumed that, in the weak-coupling limit, system-bath
correlations are negligible. Here, we brie�y investigate whether this is the case for
the central spin model. To this end, we will take advantage of the “classical” mutual
information I cl

S:B({p("i , E)}) in Eq. (3.85). The mutual information is zero if and only
if the system and bath are uncorrelated, and it is upper bounded by log dS, wheredS is the system dimension (assuming the dimensionality of the bath is larger).

In the left panel of Fig. 3.10, we show the evolution of I cl
S∶B(p) as a function of

time. We observe that if the initial state of the bath is canonical �B(�), system-
bath correlations remain small throughout the evolution. However, if the bath
starts in a microcanonical state !B(E), system-bath correlations grow close to their
maximum possible value. Therefore, system-bath correlations can grow close
to their maximum value even in the weak-coupling limit. Physically speaking,
the reason why is that the EMME dynamics is constrained by the total energy
conservation as we investigated in Sec. 3.5.1. This give rise to a dynamics with
many conserved quantities giving rise to an approximate block-structure for the
dynamical matrix Λ as it can be observed in the right panel of Fig. 3.10. Hence,
starting with a microcanonical state leads to stronger system-bath correlations,
since the value of the stochastic variable Ex is determined by Ex = UB − "i .
3.9 Chapter’s outlook

John von Neumann once said that “truth... is much too complicated to allow
anything but approximations”. Although controversial, this quotation holds un-
doubtedly a part of truth. Reality is complicated, practically unsolvable, and, as
physicists, we have to �nd models which capture what is essential and disregard
what is not.

In this chapter, we have discussed what a �nite bath is and why we expect it to
evolve dynamically. Then, starting from the from the fundamental laws of quantum
mechanics, we derived an e�ective master equation that describes the evolution
of an open quantum system in contact with a dynamically evolving bath, from
which we have access only to coarse-grained properties. To build some intuition,
we have introduced a toy model that can be solved exactly (numerically), and we
have benchmarked our master equation against the exact dynamics showing very
good agreement.

Then, we proceed to investigate the general properties of our master equation.
Importantly, we have found that the system plus bath energy is conserved and we
have obtained the stationary distribution of our master equation.
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The Born-Markov-secular master equation has to arise, in the appropriate limit,
from our master equation. Studying how this transition happens, we have found a
hierarchy of master equations that give more accurate predictions of the dynamics
by including more dynamical bath information. In particular, the middle level of the
hierarchy has an associated e�ective nonequilibrium inverse temperature, which is
in one to one correspondence with the bath average energy.

In the following chapter, we explore how this dynamical description can be
complemented with a nonequilibrium thermodynamic framework, from which the
laws of thermodynamics emerge from the current microscopic description.
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If you mix the mashed potatoes and sauce, you can’t
separate them later. It’s forever. The smoke comes
out of Daddy’s cigarette, but it never goes back in.
We cannot go back. That’s why it’s hard to choose.
You have to make the right choice. As long as you
don’t choose, everything remains possible.

— Mr. Nobody 4
Nonequilibrium thermodynamics for
�nite baths

In the previous chapter, we have derived the EMME (3.9) starting from a microscopic
description of the system and the bath. One motivation to derive such a master
equation is its potential to describe small quantum devices including heat engines,
refrigerators or heat pumps. If the bath is �nite, operating those small quantum
devices can cause the bath to develop nonequilibrium features during the evolution
and then, the standard approach relying on a large bath in a Gibbs state cannot
be applied. In this respect, it is important to obtain a consistent (nonequilibrium)
thermodynamic interpretation of the dynamics.

While the discussion of imperfect measurements was useful in the last chapter,
in the present one we remain focused on the case of projective measurements.
Hence, we have in mind a coarse-grained description of the bath Hamiltonian{HB} ∶= ∑x ExΠ(Ex ), where the energy projectors Π(Ex ) = ∑k 1Ex (ek)|ek⟩⟨ek | andEx = x�E, with x ∈ ℤ.

This chapter is devoted to study the implications of the master equation ap-
proach derived in the Ch. 3 to quantum thermodynamics (or quantum statistical
mechanics). In particular, we start discussing how to extend the EMME to include
slow driving and multiple heat baths. Then, we de�ne the thermodynamic quanti-
ties of interest, like internal energy or entropy, that give rise to the �rst and second
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laws of thermodynamics with our dynamical description. Also, we connect the �rst
and second law with Clausius inequality. While we keep the discussion general, we
occasionally illustrate our �ndings with certain models. In particular, we revisit the
Random Matrix bath model studied in Sec. 3.4. Also, we discuss the SWAP engine
together with the repeated interaction scheme. The discussion of this chapter is
largely based on the two publications [RSS21b] and [SDR21b].

4.1 Slow driving and multiple heat baths

The EMME is primarily a tool for describing nonequilibrium physics. In particular,
it is able to capture three nonequilibrium sources: (i) A non-thermal initial state �(0)
of the system and bath composite, (ii) a time-dependent system energy spectrum"i(�t), where �t represents a su�ciently slow driving protocol (�̇t�t ≪ 1), and (iii)
the system S being in contact with multiple environments. So far, we have only
shown how to explore (i); that is, how to incorporate initial states which are not
in the usual form �(0) = �S(0) ⊗ �B(�) but can, in principle, contain system-bath
correlations and non-Gibbs bath states.

Those nonequilibrium sources are of interest to the study of quantum thermo-
dynamics. In particular, the time-dependent energies (ii) introduce the notion of
work, while multiple heat baths (iii) give rise to local heat currents. Hence, before
going into deriving the laws of thermodynamics, it is convenient to extend the
EMME to those scenarios.

It is possible to include a slow time-dependent driving of the system energies"i(�t) analogously to Sec. 2.6. Namely, if the driving is slow; that is, �̇t is small, one
is able to substitute directly "i ↦ "i(�t) in Eq. (3.9). Intuitively, if at time t , given
a time step �t , we can neglect �t�t ≪ 1, then one can derive the generator of the
EMME with the energies "i(�t). Then, at the next time step, one has to repeat the
derivation but updating the energies to the value "i(�t+�t) and iterate.

The third nonequilibrium source (iii) can be also treated analogously to Sec. 2.5.4.
Consider multiple baths labeled by the Greek letter � , each of them with HamiltonianH� and coupled to the system with an interaction Hint = �∑� S� ⊗B� . Let �E� denote
the coarse-graining energy scale with respect to the � th bath. Then, one can coarse-
grain in the usual sense each bath Hamiltonian H� into non-overlapping energy
windows to obtain {H�} = ∑x� Ex�Π(Ex� ) with energies Ex� = x��E� with x� ∈ ℤ.
For notational convenience, we introduce the vector x = (x1,⋯ , x� ,⋯). Then, the
projector Π(Ex) = Π(Ex1) ⊗⋯Π(Ex� ) ⊗⋯ is the product of the local projectors.

In the case of multiple heat baths, the EMME corresponds to an evolution
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equation for �S(Ex) ∶= trB[�Π(Ex)]. This is achieved introducing the relevant map

[◦] = ∑
x

trB[Π(Ex)◦] ⊗ !B(Ex), (4.1)

with !B(Ex) = Π(Ex)/v(Ex) and v(Ex) = tr[Π(Ex)] = ∏� v(Ex� ), and then using the
Nakajima-Zwanzig equation analogously to Sec. 3.3.1. For the EMME to have an
additive structure with respect to each bath, we have to prove that the crossed
correlations of the formC1,��′(E, E′; � ) ∶= trB[�B̃� (� )Π(Ex)�B�′!B(Ex′)], (4.2)

with � ≠ � ′ vanish. But this is easy to see since for � ≠ � ′, we haveC1,��′(E, E′; � ) ∶=trB[�B̃� (� )Π(Ex)�B�′!B(Ex′)]=tr�[�B̃� (� )!� (Ex� )]tr�′[�B�′!�′(Ex�′ )] = 0. (4.3)

Thus, even though we do not discuss explicitly the thermodynamics with multiple
baths, many of the following results can be extended to multiple baths by exploiting
the additive structure of the EMME. We refer the interested reader to Ref. [RSS21b]
for an extended discussion.

4.2 The laws of thermodynamics

The aim of this section is providing a nonequilibrium thermodynamic framework
to describe the dynamical evolution of quantum systems in contact with �nite
baths. Even though our master equation describes a dynamically evolving bath not
described by a Gibbs state, we derive the �rst and second law of thermodynamics
as well as the Clausius inequality.

4.2.1 The �rst law of thermodynamics

The �rst law of thermodynamics essentially states that the energy of an isolated
system is conserved. To discuss it, we need to introduce the notions of internal
energy work and heat. A natural way to de�ne the (coarse-grained) internal energy
of the universe, corresponds to

U(t) ∶= ∑i,x ["i(�t) + Ex]p("i , Ex ) =∶ US + UB, (4.4)
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where US and UB are the internal energy of the system and the bath, respectively.
In Sec. 3.5, we have seen that )tU = 0 under the dynamics generated by the EMME.
Hence, the de�nition in Eq. (4.4) guarantees that in the absence of time-dependent
forces the internal energy of the system-bath composite is conserved.

In the presence of a time-dependent system Hamiltonian, the internal energy U

can only change due to the mechanical work W done on the system. Hence, using
that )tU = 0, we arrive at the de�nition for the internal work

Ẇ ∶= ddtU = ∑k,x [)t"i(�t)]p("i , Ex ). (4.5)

Since the open quantum system is open; that is, in contact with the �nite bath, the
change in its internal energy is now due to work and heat. De�ning the heat �ux as

Q̇ ∶= −∑i,x Ex)tp("i , Ex ) = ∑i,x "i(�t))tp("i , Ex ), (4.6)

where the second equality follows again from )tU = 0, we arrive atddtUS = Ẇ + Q̇. (4.7)

which is a consequence of global energy conservation, and has the usual form of
the �rst law of thermodynamics.

4.2.2 The second law of thermodynamics
The second law of thermodynamics states that a change in the thermodynamic
entropy of the universe is always non-negative. However, there is no consen-
sus on the microscopic de�nition of the thermodynamic entropy. Given that we
have a probabilistic knowledge of the coarse-grained energy distribution of the
isolated system-bath composite, we take the observational entropy S

HS(�t )+{HB}
obs (see

Eq. (2.141)) as the proper thermodynamic entropy S(t) at our level of description, in
and out of equilibrium. Namely, we de�ne the thermodynamic entropy (kB = 1) as

S(t) ∶= ∑i,x p("i , Ex ) [− log p("i , Ex ) + log v(Ex )] . (4.8)

The use of the observational entropy as the thermodynamic entropy has been put
forward recently [SDA19b; SDA19a; SŠA20; SW21]. However, it �rst appearance in
quantum thermodynamics can be tracked back to private correspondence between
von Neumann and Wigner [Neu10]. Note that, for a diagonal state in the energy
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eigenbasis with ⟨i, ek |�|i, ek⟩ = p("i , Ex )/v(Ex ) for all ek compatible with Ex , we �nd
that the observational entropy equals the von Neumann entropy; that is, S = SvN[�].

The form of the observational entropy in Eq. (4.8) suggests that it can be rewrit-
ten in terms of a “classical” relative entropy which we de�ne asDcl(p||q) ∶= ∑i,x p("i , Ex )[log p("i , Ex ) − log q("i , Ex )] ≥ 0, (4.9)

for probability vectors p and q at the coarse-grained level of description. Then, it
is easy to see that

S(t) = −Dcl(p||pst) + log(dSdB), (4.10)

where the stationary state pst("i , Ex ) = v(Ex )/(dSdB) and dS and dB are the system
and bath dimensions respectively. Importantly, the stationary state pst ful�lls the
stationary condition (3.75) and is independent of the driving �t . Then, the quantitylog dSdB can be regarded as the maximum entropy.

The second law of thermodynamics stands that the entropy production Σ ∶=ΔS(t) = S(t) − S(0) is positive for any physically allowed transformation. A more
restrictive version of the second law stands that at every time step, the entropy
production rate is positive; that is, Σ̇ = dS(t)/dt ≥ 0. Taking the derivative of
Eq. (4.10) we see that Σ̇ ∶= ddt S(t) = − ddt Dcl(p||pst), (4.11)

Therefore, proving that the relative entropy Dcl(p||pst) decreases monotonically
under the evolution equation (3.72) is equivalent to proving that the entropy pro-
duction rate is always positive.

For compactness, we use for the proof the joint index n = (i, x) so that p(n)
denotes the joint probability p("i , Ex ) and, also, the ratio r(n) = p(n)/pst(n). We see
that ddt Dcl(p||pst) =∑n [)tp(n)]{log r(n) + 1}=∑nn′ [Λ(�t)]nn′pst(n′){r(n′) log r(n) − r(n′) log r(n′)}, (4.12)

where Λ(�t) is the possibly driving dependent dynamical matrix for the populations.
We now note that, using the stationarity of pst, the combination∑nn′ [Λ(�t)]nn′pst(n′)[ (n) −  (n′)] = 0, (4.13)
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for an arbitrary set of numbers { (n)}. Let  (n) = r(n), and add it to Eq. (4.12) to
�nd at the equationddt Dcl(p||pst) = −∑nn′ [Λ(�t)]nn′pst(n′)r(n′){ r(n)r(n′) − log r(n)r(n′) − 1} ≤ 0, (4.14)

which is negative since x ≥ 1 + log x for all x ≥ 0 and, therefore, all summands in
Eq. (4.14) are positive. Hence, we arrive at the second law

Σ̇ ∶= ddt S(t) = − ddt Dcl(p||pst) ≥ 0, (4.15)

showing that the entropy production rate is always positive under the EMME.
To conclude, the second law follows from two facts: First, pst is an equilibrium

state of the dynamics and, second, the dynamics of p are given in the classical
master equation form in Eq. (3.73). If any of these two assumptions is violated,
negative entropy production rates can appear, although Σ(t) = ΔSobs(t) remains
positive [SW21].

4.2.3 Clausius inequality
We have derived independently the �rst and second law of thermodynamics and, at
this point, they appear rather disconnected. The aim of this subsection is deriving
Clausius inequality from our dynamical description based on the EMME. Before
proceeding with the derivation, however, we take the opportunity to remind the
reader about the phenomenological origin of this inequality.

In standard phenomenological thermodynamics, the �rst and second law are
related through the well-known Clausius inequality. More than 150 years ago,
Clausius wrote down the following inequality, which now bears his name [Cla65]:

ΔSS(t) − ∫ t
0 �(t ′)d̄Q(t ′) ≥ 0, (4.16)

where ΔSS(t) is the change in thermodynamic entropy of a large system. Clau-
sius had in mind a process where an open system S undergoes a nonequilibrium
transformation for a time t , while being in contact with an ideal heat bath at a
time-dependent inverse temperature �(t ′) with which it exchanged an in�nitesimal
amount of heat d̄Q(t ′) at time t ′. Since an ideal heat bath is characterized by the
property dSB(t ′) = �(t ′)d̄Q(t ′), being dSB(t ′) the in�nitesimal change in bath en-
tropy, then, if system and bath correlations can be neglected, Eq. (4.16) coincides
with the second law ΔS(t) ≥ 0. If the bath is very large, and its temperature remains
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constant during the transformation to its initial value �(0) = �0, then Eq. (4.16)
reduces to ΔSS(t) − �0Q(t) ≥ 0, (4.17)

where Q(t) is the total heat exchanged. So far, our considerations are purely based
in phenomenological thermodynamics.

In quantum thermodynamics, the task is to derive Eq. (4.16) from an underlying
microscopic reversible description, and Eq. (4.17) should arise as its consequence.
Interestingly, this is not the usual case in quantum thermodynamics, where Eq. (4.17)
is considered as the standard Clausius inequality and second law. As we saw
in Sec. 2.6.3, deriving Eq. (4.17) is possible under the assumptions that: (i) the
initial state is of the form �(0) = �S(0) ⊗ �B(�0), (ii) the thermodynamic entropy
S is identi�ed as the sum of von Neumann entropies of the system plus the bath
SvN,S+SvN,B, and (iii) the heat �ux Q(t) is identi�ed with minus the change in energy
of the bath; that is, Q(t) = −ΔUB(t).

The aforementioned derivation of Clausius inequality is remarkable because no
approximation is done in the size of the bath. For instance, it holds if the bath is a
single spin-1/2 particle. In that case, while Eq. (4.17) is still a valid inequality, the
term −�0Q(t) does not correspond to the bath entropy change and, hence, Eq. (4.17)
is not a consequence of the second law.

In the present derivation, Clausius inequality is a consequence of the second
law Eq. (4.15) using the observational entropy as the thermodynamic entropy, it
has the form in Eq. (4.16), and it reduces to (4.17) only in the limit of an in�nite
heat bath with an in�nite heat capacity. We will assume that the initial state is of
the form �(0) = �S ⊗ �B(�0) and argue as follows.

We start from the integrated version of the second law (4.15). The �rst step is
noting that 0 ≤ ΔS(t) = ΔSS(t) + ΔSB(t) − I cl

S:B(p) ≤ ΔSS(t) + ΔSB(t), (4.18)

where the system entropy is SS(t) ∶= −∑i p("i) log p("i), and similarly the bath en-
tropy SB(t) ∶= −∑x p(Ex ) log p(Ex )/v(Ex ), while the always positive coarse-grained
mutual information yields I cl

S:B(p) = ∑i,x p("i , Ex )[log p("i , Ex ) − log p("i) − log p(Ex )].
The next step is to quantify the change of bath entropy.

In our description, during a general transformation �(0) ↦ �(t), the bath
generically goes through several nonequilibrium states. For those nonequilibrium
states, the inverse temperature �(t) appearing in Eq. (4.16) may not even be de-
�ned. Hence, to derive the Clausius inequality, we need a notion of temperature
out of equilibrium. We bring back the de�nition of the e�ective nonequilbrium
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inverse temperature �⋆(t) introduced in Eq. (3.98) Sec. 3.6.3. Namely, given the
bath energy distribution p(Ex ), we associate to it a temperature �⋆(t) such that the
average energy of the bath is equal to the energy of the coarse-grained thermal
state �B(�⋆(t)) ∝ exp[−�⋆(t){HB}]. More explicitly, recovering the double bracket
notation for classical expectation values of the last chapter

⟨⟨Ex⟩⟩p = ∑x Exp(Ex ) != ∑x Ex v(Ex ) exp[−�⋆(t)Ex]ZB(�⋆(t)) = ⟨⟨Ex⟩⟩�⋆(t), (4.19)

where the last term can equivalently be written as ⟨{HB}⟩�⋆(t) = tr[�B(�⋆(t)){HB}].
For a thermal distribution p(Ex ; �) = v(Ex ) exp(−�Ex )/ZB(�), we �nd the di�er-

ential property dp(Ex ; �) = −d�p(Ex ; �)�Ex (�) with �Ex (�) = Ex − ⟨⟨Ex⟩⟩� . From this
di�erential relation we can easily compute the di�erential internal energy changedUB = ∑x Exdp(Ex ; �) = −d�⟨⟨�Ex (�)2⟩⟩� , (4.20)

and likewise the di�erential change of entropydSB = ∑x dp(Ex ; �) [− log p(Ex ; �) + log v(Ex ) − 1] = −�d�⟨⟨�Ex (�)2⟩⟩� . (4.21)

Combining Eqs. (4.20) and (4.21) we arrive at the well-known relationdSB = �dUB. (4.22)

We use now the assumption that the initial state has the form �(0) = �S ⊗ �B(�0).
With the di�erential relation in Eq. (4.22), we can rewrite any change in bath
entropy as ΔSB(t) =SB(t) − SB[�B(�⋆(t))] + SB[�B(�⋆(t))] − SB(0)=SB(t) − SB[�B(�⋆(t))] + ∫ t

0 dt ′�⋆(t ′)dUB(t ′). (4.23)

We are now ready to derive the Clausius inequality. The next step is to use
Eq. (4.23) together with the property that, given average energy UB(t), the thermal
state is that of larger entropy. Then,

ΔSS(t) + ΔSB(t) ≤ ΔSS(t) − ∫ t
0 dt ′�⋆(t ′)Q̇(t ′). (4.24)

where we have identi�ed dUB(t) = −Q̇(t)dt . Finally, in the limit of an in�nite bath,
when the extensive heat capacity tends to in�nity, the nonequilibrium e�ective
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inverse temperature �⋆(t) = �0 remains constant during the transformation (see
Eq. (3.99)). Then, putting everything together, we �nd the hierarchy of second laws0 ≤ΔS(t)≤ΔSS(t) + ΔSB(t)≤ΔSS(t) − ∫ t

0 dt ′�⋆(t ′)d̄Q(t ′)≤ΔSS(t) − �0Q(t). (4.25)

which reproduce, in the appropriate limit, the phenomenological Clausius inequality.
As a �nal remark, we note that the second inequality becomes an equality when
the bath does not develop nonequilibrium features.

4.3 Example: Driven Random Matrix Bath Model

We recover now the random matrix model studied in Sec. 3.4. We slightly generalize
it in the following sense. First, we allow the system Hamiltonian to depend on
time as HS ↦ HS(�t) = �t!0� z0 /2, and we chose !0 = 2�E. The driving protocol is
speci�ed as

�t = { 1 for t ∈ [0, �d/2)2 for t ∈ [�d/2, �d), (4.26)

and repeats periodically with the driving period �d; that is, �t+�d = �t . In this case,
we consider that the driving is slow if the relaxation time of the bath is fast as
compared to the driving period; that is, �B ≪ �d. Second, we assume that a third
energy band is present, so that the coarse-grained description of the bath is{HB} = �E[−Π(E−) + Π(E+) + 3Π(E3)], (4.27)

so that the transition E3 − E− = 4�E becomes equal to 2!0. We take the bath
interaction to be given by the random operatorB = ∑ek∈E+,E3 ∑eq∈E− Bkq |ek⟩⟨eq | + h.c. (4.28)

and with the same stochastic properties than in Sec. 3.4.
We assume that initially, the system-bath composite is found in the state�(0) = |+⟩⟨+| ⊗ !B(E−). Following Sec. 3.4, we see that there are three proba-

bilities that enter the dynamics. We gather them in the probability vector p =
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Figure 4.1: Dynamics and thermodynamics of a driven spin-1/2 particle subject to
the driving �t . White background corresponds to �t = 1, while gray background
corresponds to �t = 2 (see main text for details). (Top-left) Comparison of the
exact dynamics (circle, triangle and diamond markers) with the dynamics predicted
by the time-local equation (solid, dashed and dotted lines) for the three non-zero
probabilities p("i , Ex ); (top-right) evolution of the e�ective nonequilibrium inverse
temperature �⋆(t); (bottom-left) dynamics of the quantities contributing to the
�rst law: (solid orange line) system internal energy, (dashed blue line) heat, and
(yellow dotted line) work; (bottom-right) hierarchy of second laws: total change in
observational entropy (solid orange line), system plus bath change in observational
entropy (blue dashed line), and the LHS of Clausius inequality (4.19). The initial
state is �(0) = |+⟩⟨+| ⊗ !B(E−). The parameters are taken as !0 = 2�E, v(E−) = 100,v(E+) = 200, v(E3) = 400, � = 0.01�E, and �d = 50�E−1.
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[p("−, E+), p("+, E−), p("−, E3)]T . In the subspace of the �rst two components, the dy-
namical matrix for t ∈ [0, �d/2) is identical to Eq. (3.59) and zero elsewhere; that
is,

Λ(�t) = 2��2�E ⎛⎜⎜⎝
−v(E−) v(E+) 0v(E−) −v(E+) 00 0 0⎞⎟⎟⎠ for t ∈ [0, �d/2). (4.29)

Instead, for t ∈ [�d/2, �d), we have the dynamical matrix

Λ(�t) = 2��2�E ⎛⎜⎜⎝
0 0 00 −v(E3) v(E−)0 v(E3) −v(E−)⎞⎟⎟⎠ for t ∈ [�d/2, �d). (4.30)

In the top-left panel of Fig. 4.1, we compare the exact dynamics of the present
driven random matrix bath model (shown with circle, triangle, and diamond mark-
ers) with the prediction of the time-local version of the EMME (3.16) (shown with
solid, dashed, and dotted lines). We observe that we are able to reproduce accurately
the dynamics, even when the system energy levels are periodically quenched. This
justi�es in retrospective our claim above that we can replace the static system
energies "i with time-dependent energies "i(�t) as long as �d varies slowly compared
with the relaxation time of the bath �B.

In the top-right panel of Fig. 4.1, we show the evolution of the nonequilibrium
e�ective inverse temperature �⋆(t). Clearly, the dynamics of this object is not
negligible in the model under scrutiny. This fact signals that the thermodynamic
properties of the driven random matrix bath model cannot be treated with the
conventional in�nite bath thermodynamic framework.

In the bottom-row of Fig. 4.1, we show the �rst and second law for the driven
random matrix bath model. In the bottom-left panel, we show the evolution of
the system internal energy (solid orange line), the heat exchanged with the �nite
bath (dashed blue line), and the work exchanged with the driving (yellow dotted
line). As expected, work is introduced or extracted from the system only when the
driving �t changes its value. In the bottom-right panel, we compare the di�erent
second laws in Eq. (4.25). The solid orange line corresponds to the change in
observational entropy of the system bath composite, which increases monotonously.
Ignoring the system bath correlations contained in the mutual information I cl

S:B,
one obtains a less tight bound, that corresponds to adding up the system and the
bath contributions to the observational entropy (blue dashed line). Finally, if one
disregards the nonequilibrium transformations in the bath, one obtains an even
less tight bound corresponding to the Clausius inequality (yellow dotted line). The
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version of Clausius inequality at the initial inverse temperature �0 is not shown in
the �gure.

4.4 General relation between entropy productions

In Sec. 4.2.3, we have discussed that Clausius inequality in its original form (4.16) is
the appropriate inequality to discuss the entropy production of an open quantum
system coupled to a �nite bath. The microscopically derived version of Eq. (4.16)
appearing in Eq. (4.25) is valid even out of equilibrium and does not rely on the
Gibbs state. Instead, the inequality Eq. (4.17) should be used only when the heat
capacity of the bath is in�nite, at least at a practical level. As we shall see, using
Eq. (4.16) instead of Eq. (4.17), reveals surprising insights for �nite-time information
erasure and heat engines, which have higher e�ciencies than previously thought.

4.4.1 General discussion
Consider an open quantum system that is coupled to a potentially �nite bath,
from which we have only coarse-grained knowledge about its energy distribution.
Initially, the system-bath composite is found in the state �(0) = �S(0)⊗ �B(�0), being
the Gibbs state �B(�0) ∝ exp(−�0{HB}), de�ned according to the coarse-grained
Hamiltonian. For the sake of the discussion, we introduce two di�erent entropy
productions Σ and Σ′ associated with a transformation process �(0)↦ �(t). They
correspond to the independent Clausius inequalities

Σ(t) = ΔSS(t) − ∫ t
0 dt ′�⋆(t ′)Q̇(t ′) ≥ 0, (4.31)Σ′(t) = ΔSS(t) − �0Q(t) ≥ 0, (4.32)

where the quantities entering both inequalities have the same microscopic de�ni-
tions.

A natural question arise: is there a de�nite relation between Σ(t) and Σ′(t)?
The answer is positive, and is simply found by subtracting Σ(t) from Σ′(t) and
manipulating the result. We note thatΣ′(t) − Σ(t) = −�0Q(t) − SB(�B(�⋆(t))) + SB(�B(�0)). (4.33)

Next, we rewrite the total heat exchanged as−�0Q(t) = tr[�B(t) − � (�0)] log �B[�0]. (4.34)
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However, we have �xed �⋆(t) such that tr[�B(t){HB}] = tr[� (�⋆(t)){HB}]. Hence,−�0Q(t) = tr[�B(t) − � (�0)] log �B[�0] =tr[�B(�⋆(t)) − � (�0)] log �B[�0]. (4.35)

Combining Eqs. (4.33) and (4.35), we arrive at the relationΣ′(t) − Σ(t) = D(�[�⋆(t)]||�[�0]) ≥ 0. (4.36)

The central result (4.36) tells us that the entropy production Σ(t) is smaller
than what one would naively expect from Σ′(t). Thus, physical transformations of
physical systems in contact with �nite baths are less irreversible if one considers the
entropy production Σ. Physically speaking, we can explain Eq. (4.36) by pointing out
that the available information about the heat �ow Q(t) is taken fully into account
in Σ but only partially in Σ′. The inequality Σ′(t) ≥ 0 re�ects the second law for an
observer who ignores that the bath is �nite. However, if one already knows the heat
�ow Q(t), one can use it to gain a more accurate description via the de�nition of the
e�ective nonequilibrium inverse temperature �⋆(t) in Eq. (4.19). Thus, Σ e�ciently
uses the available information and the loss in predictive power resulting from
ignoring the �niteness of the bath is quanti�ed by the relative entropy in Eq. (4.36).
Remarkably, since the e�ective temperature �⋆(t) is in one-to-one correspondence
to the bath energy, Eq. (4.36) also reveals that the computation of Σ does not require
more information than the computation of Σ′: both are uniquely �xed by knowing�0 and Q(t ′).

Another interpretation of Eq. (4.36) is the following. Suppose that we have an
additional in�nitely large superbath at our disposal with �xed temperature �0. After
the �nite bath has interacted with the system, it is out of equilibrium with respect
to this superbath if �⋆(t) ≠ �0. This nonequilibrium situation can be used to extract
work. The maximum extractable work equals the change in free energy: Wmax

ext =
FB(�⋆(t)) −FB(�0)[BCG+19; LP20]. Here, FB(�⋆(t)) ∶= UB(t) − �−10 SvN,B(�⋆(t)) denotes
the nonequilibrium free energy with respect to the reference inverse temperature �0.
Note that, even if �B(t) ≠ �B[�⋆(t)], FB(�⋆(t)) correctly quanti�es the nonequilibrium
free energy at time t based on our level of description, which assumes only the
bath energy to be known (in case of additional information, more work can be
extracted). We �nd

Wmax
ext (t) = �−10 [Σ′(t) − Σ(t)] ≥ 0. (4.37)

Thus, if we demand that the bath in our description gets reset after each process to
its initial temperature, Eq. (4.36) tells us that we can always use this reset stage to
extract useful work, which remains unaccounted for in Eq. (4.32). In the following,
we explicitly demonstrate the use and bene�t of Eq. (4.31) for heat engines.
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4.4.2 Multiple heat baths and stationary regime
For some practical applications, for instance thermal machines, one has to con-
sider multiple heat baths. We consider that the initial state is given by �(0) =�S(0)⨂� �� (�0,� ). Then, the analysis of the previous section holds also for multiple
�nite baths. The two entropy productions are, in this case

Σ(t) = ΔSS(t) −∑� ∫ t
0 dt ′�⋆� (t ′)Q̇� (t ′) ≥ 0, (4.38)Σ′(t) = ΔSS(t) −∑� �0,�Q� (t) ≥ 0, (4.39)

where � labels the possibly multiple �nite baths. Now, arguing analogously to the
previous section, we conclude thatΣ′(t) − Σ(t) = ∑� Dqm(�� (�⋆� (t))||�� (�0,� )) ≥ 0. (4.40)

Often, thermal machines operate cyclically for long periods of time. For sim-
plicity, we assume that the engine has operated for a su�cient amount of time (or
cycles) such that its change in entropy ΔSS and internal energy ΔUS is negligible
compared to other terms appearing in the �rst and second law. This is called the
stationary regime, and it is well justi�ed if the system is small in comparison with
the baths. Then, it is justi�ed to approximate the �rst law by0 = W(t) +∑� Q� (t) (4.41)

and the two Clausius inequalities as

Σ(t) = −∑� ∫ t
0 dt ′�⋆� (t ′)Q̇� (t ′) ≥ 0, (4.42)Σ′(t) = −∑� �0,�Q� (t) ≥ 0. (4.43)

In the following subsection, we make use of such stationary regime to discuss
the e�ciency of heat engines coupled to �nite baths.

4.4.3 Heat engines and e�ciencies
We consider a heat engine that operates at the stationary regime between two heat
sources that correspond to �nite baths, and we label by � = h, c for hot and cold.
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They are initialized at the inverse temperatures �0,h ≤ �0,c, and we are interested in
the e�ciency �.

However, de�ning an e�ciency in the case of �nite baths with dynamically
evolving temperatures is subtle and requires some care. For work extraction,
the standard choice of e�ciency is −W(t)/Qh(t), which implies the Carnot bound�C(�0,h, �0,c) = 1 − �0,h/�0,c, is well suited to describe the situation of an engine
operating between two heat baths that operate at a �xed temperature. Importantly,
this is not the case we are interested in. We de�ne e�ciency in the following way.

In general, an e�ciency quanti�es how much of a certain quantity of interest A
we can extract given a certain dynamical constraint in the form of an inequalityΣ = A + B ≥ 0, for instance the second law. In our sign convention, extracting
is re�ected with a negative value of the quantity of interest; that is, extracting A

it implies A < 0. Thus, in order to extract A the remaining part B of the entropy
production has to “overcompensate” for it in such a way that Σ ≥ 0 remains positive.
Then, � = −A/B ≤ 1 always de�nes an e�ciency which is bounded by the value� = 1.

In the case of heat engines and work extraction in the stationary regime, our
dynamical constraints are given by the �rst law (4.41) and second law given by
either Eq. (4.42) or and (4.43). Hence, for the same physical transformation, two
di�erent e�ciencies can be de�ned corresponding to Σ and Σ′. First, consider Σ′Σ′(t) = −�0,cQc(t) − �0,ℎQh(t) = �0,c[W(t) + Qh(t)] − �0,ℎQh(t) ≥ 0, (4.44)

where we have used Eq. (4.41) to rewrite Qc in terms of W(t) and Qh. We identify
the quantities A(t) = �0,cW(t) and B′(t) = [�0,c − �0,h]Qh(t). Hence, applying the
aforementioned logic we obtain

�′(t) = − A(t)
B′(t) = �0,c�0,c − �0,h −W(t)Qh(t) = 1�C(�0,h, �0,c) −W(t)Qh(t) ≤ 1, (4.45)

which is just a rescaled version of Carnot e�ciency such that is bounded by 1.
Instead, if we consider the dynamical constraint Σ, we haveΣ(t) = Σ′(t) + [Σ(t) − Σ′(t)] = A(t) + B′(t) + [Σ(t) − Σ′(t)] ≥ 0, (4.46)

from which we identify B(t) = B′(t) + [Σ(t) − Σ′(t)]. Therefore, if we de�ne the
e�ciency

�(t) = −A(t)
B(t) = − A(t)

B′(t) B′(t)B(t) = 11 + Σ(t)−Σ′(t)�C(�0,h,�0,c)�0,cQh(t) �′(t). (4.47)
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The denominator of Eq. (4.47) is smaller than one, which leads to �(t) ≥ �′(t). This
result implies that quantum thermal machines in contact with �nite bath have
higher e�ciencies than previously anticipated. Accordingly, the physical process
undergone by the thermal machine is less irreversible if the entropy production is
computed with the Clausius inequality (4.38) for �nite baths.

To conclude this section, we remark that the stationary regime is not crucial
to arrive at the conclusion that thermal machines have a higher e�ciency than
previously anticipated. A discussion about the non-stationary regime can be found
in the supplemental material of Ref. [SDR21b]. To illustrate the above discussion,
we introduce a model for the heat engine that combines the SWAP engine with the
idea of repeated interactions in the following section.

4.5 Example: the SWAP engine

We consider the system S to be a spin-1/2 particle that interacts with an ideal in�nite
cold bath and a �nite hot bath at inverse temperatures �0,c ≥ �0,h, respectively. The
system is microscopically described by the HamiltonianHS = !0� z0 /2, (4.48)

and we denote by |±⟩ the energy eigenbasis, which ful�lls HS|±⟩ = ±!0/2|±⟩.
We model the cold bath as an ideal bath weakly coupled to the system, which

after interacting with the system simply prepares the system in the Gibbs state�S(�0,c) = exp(−�0,cHS)/ZS(�0,c), with ZS(�0,c) = tr[exp(−�0,cHS)].
The hot bath is made out of Ns identical and non-interacting spins, and it is

microscopically described by the HamiltonianHh = ∑r Hr = ∑r Ωh� zr /2. (4.49)

Similarly to the system Hamiltonian, we introduce the states |±⟩r which ful�llHh,r |±⟩r = (±Ωh/2)|±⟩r .
We now consider the framework of repeated interactions [SSB+17]. Namely,

we consider that at regular times tn = n�d, being �d the driving period, the nth spin
of the hot bath interacts with the system. This interaction is assumed to happen
instantaneously, which in practice means much faster than any other timescale of
the model. Moreover, we assume the time in between interactions �d to be large
enough for the system to relax to the equilibrium state �S(�0,c). Finally, we consider
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Figure 4.2: Sketch of our SWAP engine model. A �nite hot bath in red (right) and
an ideal in�nite bath in blue (left) interact alternatively with the spin-1/2 system
(center). The SWAP engine operates in two steps. First, the state of the system is
swapped with the state of a spin-1/2 particle in the �nite hot bath. Second, the
system thermalizes with the cold bath.
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that the interaction between the system and the hot bath implements a SWAP
operation USWAP in such a way thatUSWAP|i⟩S|k⟩n = |k⟩S|i⟩n, (4.50)
for i, k = ±. This model is known as the SWAP engine and was introduced in
Ref. [CPF15]. We remark that the e�ective SWAP interaction has to be thought
as a time-dependent Hamiltonian HSWAP(t) which at a time t−n a certain interaction
with the nthis turned on and at a time t+n turned o� again, in such a way that the
corresponding unitary implements a SWAP operation. From a thermodynamic
point of view, this time-dependent interaction gives rise to a work contribution at
every time tn. This SWAP engine is sketched in Fig. 4.2.

We can now start to analyze this model from a thermodynamic perspective.
We start by computing the amount of work exchanged in every interaction. Right
before and right after the interaction, at times t−n and t+n , the state of the system is
given by �(t−n ) = �c(�0,c) ⊗ �S(�0,c) n−1⨂r=1 �̃r (�0,c) Ns⨂r=n �r (�0,h), (4.51)

�(t+n ) = �c(�0,c) ⊗ �̃S(�0,c) n⨂r=1 �̃r (�0,c) Ns⨂r=n+1 �r (�0,h), (4.52)

being �̃S(�) = ∑i exp(i�Ωh)|i⟩⟨i|/ZB(�) and �̃r (�) = ∑k exp(k�!0)|k⟩⟨k|/ZS(�) the
“swapped” thermal states. Hence, using the �rst law (4.5) the work contribution at
time tn is given byd̄W(tn) = (!02 − Ωh2 )[tanh(�0,c!02 ) − tanh(�0,hΩh2 )] . (4.53)

where we use the di�erential notation to denote that the work exchange happens
only during the in�nitesimal time t+n − t−n . From Eq. (4.53), we see that the condition
of work extraction W(tn) < 0 requires being in the regime�0,c�0,h > Ωh!0 > 1. (4.54)

Similarly, one can compute also the change in system and bath internal energy
during the SWAP operation, which amounts todUS(tn) = !02 [tanh(�0,c!02 ) − tanh(�0,hΩh2 )] =∶ Δu, (4.55)

d̄Qh(tn) = −dUh(tn) = Ωh2 [tanh(�0,c!02 ) − tanh(�0,hΩh2 )] = Ωh!0 Δu, (4.56)
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Figure 4.3: (left) Comparison of the two entropy productions Σ (solid orange line)
and Σ′ (dashed blue line) in Eqs. (4.58) and (4.59) for the SWAP engine described in
the main text; (right) corresponding e�ciencies � (solid orange line) and �′ (dashed
blue line). The parameters are Ωℎ = 3/2!0, �0,c = 3!−10 , �0,h = !−10 , and Ns = 100.
where Δu is the energy gained by the system during the SWAP operation. As
expected, the �rst law is ful�lled during the SWAP operation since dUS(tn) =d̄Qh(tn) + d̄W(tn).

During the subsequent equilibration step of duration �d, the system at state�̃S(�0,h) relaxes to �S(�0,c) by releasing the internal energy

US(t−n+1) − US(t+n ) = −!02 [tanh(�0,c!02 ) − tanh(�0,hΩh2 )] = −Δu, (4.57)

to the cold bath in the form of heat, which concludes the cycle for the state of the
system.

In our heat engine model, the amount of heat and work exchanged with the heat
baths does not depend on the number of cycles n that have occurred. Hence, we
can rewrite the energy balance in terms of absolute quantities as Qc(t−n+1) = −nΔu,
Qh(t+n ) = nΔuΩh/!0, and W(t+n ) = n(1 − Ωh/!0)Δu. Therefore, we arrive at the
expressions

Σ(t−n+1) = −n�0,cΔu + n∑r=1 �⋆h (tn)Ωh!0 Δu ≥ 0, (4.58)

Σ(t−n+1) = −n�0,cΔu + n�0,hΩh!0 Δu ≥ 0, (4.59)

at the end of the nth cycle, where the e�ective nonequilibrium inverse temperature
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�⋆h (tn) of the �nite hot bath is computed by solving the equationn tanh(�0,c!02 ) + (Ns − n) tanh(�0,hΩh2 ) = Ns tanh(�⋆h (tn)Ωh2 ) . (4.60)

In the left panel of Fig. 4.3, we compare the entropy production Σ (4.58) andΣ′ (4.59) as a function of the cycle n, which shows that Σ(tn) ≥ Σ′(tn) at all times
consistently with the relation (4.36). In the right panel of Fig. 4.3 we compare the
corresponding e�ciencies which, accordingly, show that �(tn) ≥ �′(tn) at all times.

4.6 Chapter’s outlook

In this chapter we have explored the thermodynamic consequences of the coarse-
grained description given by the EMME. In such description, the �rst law follows
from the conservation of the average coarse-grained energy that we discussed in
the previous chapter. The second law, requires de�ning entropy microscopically,
and we use the observational entropy to do it. Then, we obtain that during a
transformation, the observational entropy always increases, which is our statement
of the second law.

In phenomenological thermodynamics, Clausius’ inequality quanti�es the en-
tropy production that a closed system composed by a “small” open system and
heat bath composite experiences after a transformation. Importantly, Clausius’
inequality is a consequence of the second law particularized to the aforementioned
system-bath composite. In our setup, we found Clausius’ inequality as a result
of de�ning the e�ective nonequilibrium temperature �⋆(t) that is in one to one
correspondence with the average energy of the bath. That is, instead of keeping
track of all the bath energy distribution, as the EMME does, Clausius’ inequality
is only concerned about the bath average energy. For a bath with an in�nite heat
capacity, one can even replace the e�ective nonequilibrium temperature �⋆(t) by
the original temperature �0, which gives rise to yet another level of description that
only keeps track of the initial temperature. This forms a hierarchy of second laws
that lines up with the hierarchy of master equations that we encountered in the
previous chapter.

To conclude, we have explored the use of di�erent second laws to quantify the
entropy production and e�ciency of a quantum heat engine that operates between a
�nite and an in�nite bath. The use of Clausius’ inequality for a �nite bath, reveals a
universal e�ciency improvement as compared to Clausius inequality in the in�nite
heat capacity limit. We could see this for a particular model that combines the idea
of the SWAP engine with the framework of repeated interactions.
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In the next chapter, we move beyond weak-coupling master equations and
study the dynamics of open quantum systems using the framework of quantum
operations. In particular, we explore the spectral properties of general quantum
evolutions.
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It is better to say something that is true although
not proved, than to prove something that is not true.

— N.G. van Kampen.

5
Spectral properties of quantum evo-
lutions

It is now time to move forward from quantum master equations, and study other
approaches to the dynamics of open quantum systems. In this chapter, we introduce
the framework of quantum operations to characterize the spectral properties of a
quantum evolution. In particular, we start studying the spectral properties of clas-
sical stochastic matrices, which correspond to the “population block” of quantum
evolutions and that take the form of classical master equations.

Then, we move to the quantum counterpart of the problem. As we have seen
in Ch. 2, any quantum map admits a matrix representation in a doubled Hilbert
space. This matrix representation encodes some important features of the dynamics
in its eigenvalues and eigenvectors. Here, we want to exploit such spectral prop-
erties to obtain information about a general quantum dynamics that we denote(t). Sometimes, one can proceed further by restricting to the subset of quantum
dynamical semigroups, for which (t) = exp(t), and study the spectral properties
of . We explore also this route below. Importantly, this chapter is not meant to
give a review from all known results in the literature about properties of quantum
evolutions. It is rather devoted to review some properties of quantum evolutions,
which are of our interest.

Finally, we give two applications, based on the references [RMS20] and [LGR+21],
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where the eigenstructure of the quantum evolution is used to provide physical
insight about two particular problems.

5.1 Warm up: classical stochastic maps

A quantum evolution (t) propagates forward in time a certain quantum state �(0)
as �(t) = (t)[�(0)], while being CPTP. Roughly speaking, these two conditions
follow from the requirement that if the input �(0) is a quantum state, the output�(t) must be also a quantum state.

The classical analog of a quantum evolution is a matrix E(t), which propa-
gates forward in time a certain probability vector p(0), of components [p(0)]ii = 1,⋯ , d , as p(t) = E(t)p(0). In terms of components, we can write that [p(t)]i =∑j[E(t)]ij[p(0)]j . Similarly to the quantum case, requiring that p(t) is a probability
vector imposes some restrictions on the evolution matrix E(t). Namely,

(a) [E(t)]ij ≥ 0 for all i, j = 1,⋯ , d ,

(b) ∑i[E(t)]ij = 1 for all j = 1,⋯ , d ,
where (a) ensures that {[p(t)]i} is a set of positive numbers, while (b) ensures that
add to one ∑i[p(t)]i = 1. Conditions (a) and (b) de�ne a stochastic matrix. Some
stochastic matrices ful�ll a third condition

(c) ∑j[E(t)]ij = 1 for all i = 1,⋯ , d .
If a stochastic matrix E(t) ful�lls the property (c), then E(t) is known as a bistochastic
matrix. Given a bistochastic matrix E(t), the process described by its transposeE(t)T is also a valid classical evolution.

Finally, some classical evolutions E(t) ful�ll the semigroup property
(d) E(t + t ′) = E(t)E(t ′) for all t, t ′ ∈ ℝ.

If property (d) holds, it is possible to recast the evolution equation of the probability
vector p as equation

p(t + dt) = E(t + dt)p(0) = E(dt)p(t) ≈ (1d + dtΛ)p(t), (5.1)

where Λ = [)tE(t)]t=0 is the generator of the evolution. This leads to the di�erential
equation form )tp(t) = Λp(t), (5.2)

with solution E(t) = exp(Λt), which we have encountered several times. Impor-
tantly, the properties of E(t) are inherited by Λ in the form
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(e) Λij ≥ 0 for i ≠ j,
(f) ∑i Λij = 0 for j = 1,⋯ , d ,

and if moreover the condition (c) holds we also have

(g) ∑j Λij = 0 for i = 1,⋯ , d .

5.1.1 Spectral properties of classical evolutions
Consider a general matrix Z . Our aim is to understand which are the vectors r that
are not rotated by the action of Z ; that is,Zri = ziri , (5.3)

where z ∈ ℂ is a scalar. If det[Z − z1d] ≠ 0, Eq. (5.3) has a unique solution which is
trivial r = 0. Then, non-trivial solutions r ≠ 0 are only possible if det(Z − z1d ) = 0.
We de�ne the characteristic polynomialPZ (z) = det(Z − z1d ), (5.4)

whose roots zi with i = 1,⋯ , d are the eigenvalues of the stochastic matrix Z . We
order the collection of eigenvalues {zi} is, also known as the spectrum, according
to |z1| ≥ |z2| ≥ ⋯ ≥ |zN |. The non-trivial vectors ri that solve Eq. (5.3) are the
corresponding (right) eigenvectors. For every di�erent, zi there exists at least one
eigenvector ri . In the case of eigenvector multiplicity, zi = zj , the existence of two
(ordinary) eigenvectors ri ≠ rj is not guaranteed.

Now we assume that Z is a stochastic matrix, that is, it ful�lls properties (a)
and (b) above. Then the spectrum of Z ful�lls

(i) The spectrum of Z belongs to the unit disk |zi | ≤ 1, and the leading eigenvalue
equals unity zi = 1.

(ii) The eigenspace associated with z1 contains at least a positive eigenstate
pst ≥ 0 which is stationary; that is, Zr1 = r1.

The proof of (i) is as follows. First, we note that the characteristic polynomial
of a matrix Z is equal to the characteristic polynomial of its transpose Z T , which
implies that Z and Z T have the same spectrum. Then, we note that using property
(b) the eigenvector (1,⋯ , 1) is an eigenvector of Z T with eigenvalue z = 1, which
implies that Z has also an eigenvalue z = 1. Second, we have to prove that z = 1
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has the largest magnitude. To this end, we introduce the norm ||r||1 = ∑i |ri |, and
note that |zi |||ri ||1 = ||Zri ||1 = ∑j |∑k Zjk(ri)k | ≤ ∑jk Zjk |(ri)k | = ||ri ||1, (5.5)

which implies |zi | ≤ 1 and z1 = 1. The property (ii) follows by applying (5.5) to r1.
We obtain ||r1||1 = ∑i |∑j Zij(r1)j | ≤ ∑ij Zij |(r1)j | = ||r1||1, (5.6)

and, therefore, the inequality must be saturated, implying that all summands inside
the absolute value have the same phase, which we take to be (r1)i ≥ 0. Then, all(r1)j are positive and pst = r1/||r1||1 is a stationary probability distribution.

If, moreover, Z is bistochastic; that is, it ful�lls property (c), then

(iii) the maximally mixed state pst = (1/d,⋯ , 1/d) is stationary.

which can be checked by direct computation.

5.1.2 Spectral properties of the generator
Having understood the spectrum of a general stochastic matrix Z = E(t), we now
investigate the case in which E(t) ful�lls property (d); that is, we can rewriteE(t) = exp(Λt). In particular, we are interested in the spectral properties of the
generator Λ. We start with the property

Λ = limdt→0+ Ė(dt) = limdt→0+ E(dt) − 1ddt , (5.7)

which implies that the spectral properties of Λ are tightly bounded to the properties
of the stochastic matrix E(dt). We note that the eigenvectors of E(t) remain constant,
while its eigenvalues depend on time. In particular, given that we know zi(t) and ri
for Z = E(dt), we �nd

Λri = [ limdt→0+ zi(dt) − 1dt ] ri =∶ �iri . (5.8)

and thereforeΛ and E(dt) share the same (constant) eigenvectors. Clearly, the eigen-
value z1 = 1 of r1 does not depend on time and, therefore, Λ has a corresponding
eigenvalue �1 = 0. The evolution equation of pst = r1/||r1|| yields )tpst = Λpst = 0
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which, as expected, is a stationary state. Moreover, from Eq. (5.8) and |zi | ≤ 1 it is
easy to see that Re�i ≤ 0; that is, all the eigenvalues �i lie in the non-positive real
part of the complex plane.

We have seen that spectral properties of classical stochastic matrices reveal
many features of the evolution. Also, those classical stochastic dynamics can
appear in certain regimes of the quantum evolution, as it is the case of the energy
populations of the BMS master equation. We are now ready to investigate the
corresponding properties for a quantum evolution (t).
5.2 The quantum evolution

We now turn to quantum evolution maps. Consider a Hilbert space  with a
canonical basis {|i⟩} where i = 1,⋯ , d . Then, a quantum evolution (t) evolves
a quantum state �(0) as �(t) = (t)[�(0)]. Requiring that the state �(t) remains a
valid state for all times t implies that the quantum evolution ful�lls the properties

(a’) (t) is completely positive; that is, ( ⊗(t))[◦] ≥ 0 if ◦ ≥ 0, where the identity acts on an arbitrary ancillary space,

(b’) (t) is trace preserving; that is, tr{(t)[◦]} = tr(◦).
As we encountered in Sec. 2.1.5, properties (a’) and (b’) holding simultaneously
are equivalent to requiring (t) to have a Kraus decomposition; that is, (t)[◦] =∑k Kk(t)◦Kk(t)† with ∑k Kk(t)†Kk(t) = 1d .

To discuss the spectrum of a CPTP map, we need �rst to �nd a matrix represen-
tation of it. This can be achieved by the process of “vectorization” that we discussed
in Sec. 2.1.5. Namely,

(t) = ∑ij ∑i′j′ [(t)]ij,i′j′ |ij⟩⟨i′j′| = ∑k Kk(t) ⊗ Kk(t)⋆, (5.9)

where the matrix elements [(t)]ij,i′j′ correspond to ⟨i|(t)[|i′⟩⟨j′|]|j⟩. The vectorized
form of a quantum evolution (t) is also known as the dynamical matrix.

In this vectorized representation, states � becomes vectors |�⟩⟩ and the inner
product ⟨⟨� |�⟩⟩ = tr[�†�] corresponds to the Hilbert-Schmidt product. An impor-
tant notion is that of the dual of a quantum map with respect to the Hilbert-Schmidt
product. Namely, the dual map (t)‡ is de�ned as the one that ful�lls⟨⟨� |(t)[�]⟩⟩ = tr[�†(t)[�]] = tr[((t)‡[�])†�] = ⟨⟨(t)‡[�]|�⟩⟩, (5.10)
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for any pair of elements �, � ∈ Op(). The dual map can be interpreted as the
quantum evolution in the Heisenberg picture. Moreover, its explicit expression
can be found in terms of the Kraus operators to be (t)‡[◦] = ∑k Kk(t)†◦Kk(t).
Therefore, it is a completely positive and identity preserving map since (t)‡[1d] =1d . Trace preservation and unit preservation are dual properties: the dual of a
trace-preserving map preserves the identity and vice versa. This property will be
crucial in the following.

Some CPTP maps are also identity preserving and ful�ll the third condition

(c’) (t)[1d] = 1d ,

which implies that the dual map (t)‡ is also a valid quantum evolution.
Finally, some maps also ful�ll the semigroup property

(d’) (t + t ′) = (t)(t ′) for all t, t ′ ∈ ℝ.

If property (d’) holds, it is possible to recast the evolution equation of a state �(t) as�(t + dt) = (t + dt)�(0) = (dt)�(t) ≈ ( + dt)�(t), (5.11)

where  = [)t(t)]t=0 is the generator of the evolution. This leads to a di�erential
equation of the form of a quantum master equation)t� = [�(t)], (5.12)

with the solution (t) = exp(t), as it was the case for the BMS master equation.
Again, the properties of (t) are inherited by  in the form

(e’)  is of the Gorini-Kossakowski-Sudarshan-Lindblad form,

(f’)  is traceless in the sense that tr{[◦]} = 0,
and if moreover (c’) holds also

(g’) ‡ is traceless in the sense that tr{‡[◦]} = 0.
Properties (a’)–(g’) are the analogous to the properties (a)–(g) and, for this

reason, quantum evolutions are taken to be the quantum counterpart of the classical
stochastic matrices. In the following, we see that this analogy also determines
similar spectral properties for classical and quantum stochastic maps.
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5.3 Spectral properties of the quantum evolution

Consider a general quantum map . As before, our aim is to understand which
right vectorized operators |R�⟩⟩ are not “rotated” by the action of the dynamical
matrix . That is,

[R�] = z�R� ⇔ |R�⟩⟩ = z� |R�⟩⟩, (5.13)

where z� ∈ ℂ. This is only possible for the d2 roots of the characteristic polynomialP(z) = det( − z1d2). Again, we order the eigenvalues according to |z1| ≥ |z2| ≥⋯ ≥ |zd2 |. For every di�erent z� , there is at least one non-trivial eigenmatrix R� that
ful�lls Eq. (5.13). Similarly, we can consider the left eigenvalue equation

‡|L�⟩⟩ = z� |L�⟩⟩ ⇔ ⟨⟨L� | = z�⟨⟨L� |, (5.14)

which shares the same spectrum {z�}.
Assuming that  is a CPTP map; that is, it ful�lls properties (a’) and (b’) above,

we �nd that

(i’) The spectrum of  belongs to the unit disk |z� | ≤ 1, and the leading eigenvalue
equals unity z� = 1.

(ii’) The eigenspace associated with z1 contains at least a positive eigenstate�st ≥ 0 which is stationary; that is, [�st] = �st.

As it turns out, it is easier to argue about the spectrum of the dual map ‡, which
is identity preserving and has the same spectrum as . We proceed as follows.

Let L� be a left eigenvector of  with eigenvalue z� an

A ∶= (1d L�L†� �1d) , (5.15)

be a matrix in the extended space ℂ2 ⊗, where � ≥ 0 is the largest eigenvalue of
the positive operator L†�L� . The Schur complement Sc[A] of the matrix A yieldsSc[A] ∶= �1d − L†�L� ≥ 0, (5.16)

which, with our choice of � , is positive semide�nite. By completeness, we show in
App. C.1 that the Schur complement of a matrix is positive if and only if the matrix
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is positive; that is, Sc[A] ≥ 0⇔ A ≥ 0. Using the completely positive and identity
preserving properties we see that if A ≥ 0 also the matrix

A′ ∶= (2 ⊗‡)[A] = ( 1d ‡[L�]{‡[L�]}† �1d ) ≥ 0, (5.17)

is positive. Hence, the Schur complement of A′ has to be positive, which implies
that Sc[A′] ∶= �1d − {‡[L�]}†‡[L�] = �1d − |z� |2L†�L� ≥ 0 (5.18)

Subtracting Eq. (5.16) from Eq. (5.18), we arrive at the condition |z� | ≤ 1; that is, the
spectrum lies in the unit disk. Also, the identity preserving property of ‡ which
implies that L1 = 1d has the eigenvalue z1 = 1, which concludes the proof of (i’).

To prove (ii’), we use that completely positive maps also ful�ll that[◦†] = [◦]†,
which can be easily checked from the Kraus decomposition. This implies that if R� is
an eigenmatrix with eigenvalue z� , then R†� is also an eigenmatrix with eigenvaluez∗� . In other words, complex eigenvalues come in pairs {z� , z∗�}. This property
implies that eigenmatrices of real eigenvalue z∗� can be chosen to be Hermitian; that
is, if R� is an eigenmatrix with real eigenvalue, the combinations (R� + R†� )/2 and(R� − R†� )/(2i) are Hermitian eigenmatrices with the same eigenvalue. In turn, this
implies that R1 can be diagonalized and has real eigenvalues. Hence, it admits the
decomposition R1 = R1,+ − R1,−, where R1,± ≥ 0. Let P± denote the projectors onto
the positive and negative subspaces; that is, P±R1 = R1,±.

tr(R1,+) = tr{P+[R1,+] + P+[R1,−]} ≤ tr{P+(R1,+)} ≤ tr{[R+]} = tr(R1,+), (5.19)

then, the two inequalities must be equalities. The �rst inequality implies thatP+[R1,−] = 0, while the second that P−[R1,+] = 0. Hence, R1,+ ≥ 0 is an eigenmatrix
with eigenvalue z1 = 1, which concludes the proof of property (ii’).

If, moreover,  ful�lls property (c’), we also have that

(iii’) the maximally mixed state �st = R1 = 1d/d is stationary,

which is checked by direct computation.

5.3.1 Spectral properties of the Lindbladian
Having understood the spectral properties of completely positive and trace pre-
serving maps, we consider now quantum evolutions that ful�ll property (d’). We
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are interested in the spectral properties of the generator of that evolution,

 = limdt→0+ (dt) = limdt→0+ (dt) − dt . (5.20)

We consider now  = (t), in such a way that

R� = [ limdt→0+ z�(dt) − 1dt ] R� =∶ ��R� , (5.21)

and, then,  and (t) share the same eigenvectors. Clearly, the eigenvalue z1 = 1 is
time-independent and, therefore,  has a corresponding eigenvalue �1 = 0. Then,
the evolution equation of �st = R1/tr[R1] ≥ 0 yields simply )t�st = [�st] = 0 and
corresponds to a stationary state. Again, all the eigenvalues �� lie in the negative
real part half plane, since Re[z�(t)] ≤ 1 for all eigenvalues in the unit disk |z�(t)| ≤ 1.
Therefore, all Re�� ≤ 0 for all �� .
5.3.2 The Jamiołkowski-Choi state
So far, we have taken the “vectorized” version of a CPTP map ; that is, the
dynamical matrix, to be the most natural choice of a matrix representation for
the map. As it turns out, such a representation is not unique. Here, we introduce
an alternative matrix description of  which establishes a connection between
quantum maps and quantum states: the Jamiołkowski-Choi state.

Consider  that acts on matrices de�ned in the Hilbert space A, with a canon-
ical basis {|i⟩} i = 1,⋯ , d , and B which is a copy of A. We de�ne the state|Ψ+⟩ = d−1/2∑i′ |i′i′⟩ ∈ B ⊗A. Then, the Jamiołkowski-Choi state is de�ned as� ∶= ( ⊗ )[|Ψ+⟩⟨Ψ+|] = 1d ∑i′j′ [|i′⟩⟨j′|] ⊗ |i′⟩⟨j′| = 1d ∑iji′j′ iji′j′ |ii′⟩⟨jj′|. (5.22)

Hence, the Jamiołkowski-Choi state � contains all the information about the
output-input relations of the map in the same way that the vectorized map  did.
In fact, � is just a reshu�ed version of the vectorized map (�)ii′jj′ = iji′j′ . (5.23)

The trace preserving property of  is inherited by the Jamiołkowski-Choi state as
the property

trB[�] = 1dd . (5.24)
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Moreover, since the map  is completely positive, the resulting Jamiołkowski-Choi
state is a positive matrix � ≥ 0 and, in particular, Hermitian. On the plus side, this
implies that, unlike the vectorized map , � is diagonalizable and has positive
eigenvalues. On the downside, the corresponding eigenproperties of � cannot be
straightforwardly interpreted.

In order to give an interpretation to the eigendecomposition of the Jamiołkowski-
Choi state, we write explicitly the components iji′j′ in the de�nition (5.22) using
the Kraus operators. This leads to

� = 1d ∑k (∑i′i Kk,ii′ |ii′⟩)(∑jj′ Kk,jj′ |jj′⟩)† = 1d ∑k |Kk⟩⟩⟨⟨Kk |, (5.25)

where |Kk⟩⟩ = ∑ii′ Kk,ii′ |ii′⟩ is the vectorized form of the Kraus operators. Equa-
tion (5.25) is closely related to the eigendecomposition of �. The eigenvalues of �
are ⟨⟨Kk |Kk⟩⟩/d , while the normalized eigenvectors correspond to |Kk⟩⟩/√⟨⟨Kk |Kk⟩⟩
to the vectorized form of the Kraus operators.

In the following, we consider two applications that make use of the spectral
properties of quantum evolutions to study two very di�erent problems of interest.
The �rst, uses the Jamiołkowski-Choi state representation of a quantum channel
to obtain the most general form of a CPTP map that achieves a certain task. The
second, studies quantum evolutions that form a quantum-semigroup and that admit
more than one stationary state.

5.4 Application I: spectral properties of open dis-
crete time crystals

Time crystals are a novel phase of matter that was proposed by Frank Wilczek in
2012 [Wil12]. A time crystal is a phase of matter in which the system breaks time
translational symmetry. This behavior is analogous to the usual “space crystals”
which break the space translational symmetry of the Hamiltonian. As we shall see,
the particular properties of discrete time crystals in open quantum systems are
re�ected in its eigenvalues, which makes the spectral study of the corresponding
quantum evolution a promising approach to understand this phase of matter.

The Hamiltonian of a physical system can have a continuous time symmetryH (t) = H (t + � ) with � ∈ ℝ (H is time-independent) or a discrete time symmetryH (t) = H (t + �d), where �d is the driving period. Time crystals as conceived by
Wilczek are not possible in closed quantum systems that have a continuous time
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symmetry (see [KMS19] for an enlarged the discussion). Instead, discrete time
crystals can break the discrete time symmetry of a periodically driven Hamiltonian,
giving rise to a response function fX (t) = tr[X�S(t)] associated to an observable X ,
that does not share the periodicity of the Hamiltonian; that is, fX (t) ≠ fX (t + �d). For
discrete time crystals, the symmetry is recovered after a certain number of driving
periods M , such that fX (t +M�d) = fX (t), which is known as subharmonic response
since it has a frequency 2�/(M�d). Typical time crystal phases are engineered to
have the so-called period-doubling response, in which f (t) = f (t+2�d) ≠ f (t+�d). For
instance, period-doubling discrete time crystals are often implemented in condensed
matter systems with parity symmetry. The system is prepared in one of the two
symmetry broken ground states, and the driving implements a unitary transition
that maps one into the other, giving rise to a response with period 2�d.

Time crystals are distinguished from other time-periodic oscillations, such
as Rabi oscillations, because the frequency of the oscillations is robust to small
perturbations. Namely, if the driving protocol is implemented with a certain error,
one expects the response to still exhibit the symmetry breaking. Moreover, the
oscillations should persist ideally to in�nite time.

Experimentally, the observation of time-crystalline behavior in closed quantum
systems have been reported [CCL+17; ZHK+17]. In those experiments, dissipation
and decoherence were seen as detrimental e�ects for the time-crystal. Recently, it
has been proposed to use the unavoidable dissipation and decoherence to stabilize
the time crystal, which has led to the study of time crystallinity in open quantum
systems. While a lot of research is missing in this direction, the �rst steps towards
the understanding of this phenomenon have been already taken, resulting in both
theoretical [GHU18] and experimental [KKG+21] advances.

5.4.1 Quantum evolution and Floquet map of a periodic evo-
lution

Here, we discuss how to translate the properties of discrete time crystal in open
systems to the spectral properties of the so-called Floquet map. We start our
discussion by considering a general time-periodic system whose evolution equation
is given by

)t�S = (t)[�S] = (t + �d)[�S], (5.26)
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where �d is the driving period. The quantum evolution (t)[◦] that solves Eq. (5.26)
takes the form of a time-ordered exponential, and it is given by

(t) = exp+ [∫ t
0 dt ′(t ′)] , (5.27)

which is a completely positive and trace preserving map. Because the generator
of the evolution (t) is periodic; that is, (t) = (t + �d), the evolution at timestm = m�d with m ∈ ℕ can be written as�S(tm) = (�d)[�S(tm−1)] = (�d)m[�S(0)] =∶ m[�S(0)]. (5.28)

where we call  the Floquet map, and encodes the information about the evolution
of the system at the stroboscopic times tm.

There are two important notions associated with the Floquet map  that are
useful for the subsequent discussion. Consider the eigenvalue equation [R�] =z�R� . The �rst notion is the asymptotic subspace As() of the Floquet map , that
we de�ne as As() ∶= span(R� ∶ |z� | = 1). The elements of the asymptotic subspace
As() determine the long-time behavior of the dynamics. The second notion is the
dissipative Floquet gap

Δ ∶= − 1�d
maxz�∶|z� |≠1 log |z� |, (5.29)

whose inverse determines the timescale of decay towards the asymptotic subspace.

5.4.2 Time crystals as spectral properties of the Floquet map

As discussed in the introduction, time crystals in closed systems are identi�ed
by exhibiting: (i) a discrete time-translational symmetry breaking that persists to
in�nite time and (ii) a robust subharmonic response. Analogously, we de�ne an
open quantum system to be in the discrete time crystal phase if its Floquet map
satis�es

(i) There exists at least one eigenvalue z� such that z� ≠ 1 but zM� = 1 for some
integer M > 1. We denote such eigenvalue by z⋆.

(ii) Given a linear deformation of the Floquet map  ↦ (�) =  + � for
a reasonable perturbation  , the eigenvalue z⋆ is linearly robust; that is,[)�z⋆(�)]�=0 = 0.
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Figure 5.1: Typical spectrum of the Floquet operator corresponding to the time-
crystal phase. The eigenvalues corresponding to the asymptotic space (colored in
blue) are z1 = 1 and z2 = z⋆ = −1. The decaying states (colored in red) decay with a
timescale �xed by the Floquet gap Δ.

In the opposite case, the system becomes periodic with period �d and reaches the
trivial phase. In Fig. 5.1 we show the typical spectrum of the Floquet operator corre-
sponding to the time-crystal phase, which has two eigenmatrices in the asymptotic
subspace As().

Some remarks are in order. First, we are assuming that we are able to measure
an observable X whose average fX (t) detects the discrete time translation symmetry
breaking. In principle, the observable X could have the same average over two
di�erent states �(tm) ≠ �(tm+1) in such a way that, despite having subharmonic
response, fX (t) cannot detect it. Second, we require the subharmonic response to be
robust with respect to reasonable perturbations  . The “reasonable” perturbations
depend on the particular periodic driving. Typically,  is considered an error due
to disordered rotation errors or global rotation errors (see the following subsection).
Finally, our de�nition of the time crystal phase does not correspond to a “phase of
matter” in the usual sense. Simply, a system ful�lling (i) and (ii) displays in�nitely-
lived and robust subharmonic response, which are necessary conditions for a time
crystal to exist.
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Figure 5.2: Sketch of the time crystalline behavior of the periodically driven XY
chain of N = 6 spins.

5.4.3 Example: the open XY model

Let us investigate the stability of an open discrete time crystal in the paradigmatic
XY chain, described by the Hamiltonian

HS = −J N∑r=1 (1 + g2 � xr � xr+1 + 1 − g2 �yr �yr+1 + ℎ� zr ) , (5.30)

which represents a one dimensional chain of N spins that interact anisotropically.
In Eq. (5.30), J is an energy scale, g is the anisotropy constant, and ℎ is the di-
mensionless transverse �eld. We consider periodic boundary conditions in such a
way that � x,y,zr = � x,y,zN+r and, for technical reasons, we restrict ourselves to an even
number of sites N . A sketch of this model is shown in Fig. 5.2.

This model and its symmetries have been largely investigated in the literature,
for instance, see [Fra17]. For our purposes, it is su�cient to mention that the
Hamiltonian HS in Eq. (5.30) is symmetric under the parity operator P = ∏Nr=1 � zr ;
that is PHSP = HS. This implies that HS can be block-diagonalized into blocks of
�xed parity value p = ±1. We use the notation |GS, p⟩ to denote the corresponding
ground state of each parity block.

We consider the XY chain to be in weak contact with a bosonic heat bath.
Namely, the total Hamiltonian takes is of the form H = HS + Hint + HB, where the
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interaction Hamiltonian is taken of the formHint = �Mz ⊗ B ∶= �∑k N∑r=1 ck� zr ⊗ (b†k + bk), (5.31)

where Mz = ∑Nr=1 � zr is the magnetization along the z-axis, andHB = Ωk(b†k bk + 1/2). (5.32)

With the interaction (5.31), the parity P becomes a strong symmetry of the dynamics
since [P, H ] = 0. Also, we note that the coupling to the bath is global in the sense that
all particles are identically coupled to the reservoir bosonic mode k of the heat bath.
Then, combining the results of Sec. 2.2.3 and Sec. 2.4.1 we �nd a weak-coupling
master equation for the reduced state of the system that yields )t�S(t) = [�S],
where  is of the form of the BMS generator. At zero temperature, when the
heat bath is found has � → ∞, the dissipation brings the system closer to the
ground subspace. The quantum evolution (t) can be seen to have more than
one eigenvalue with modulus one. For instance, any matrix element of the form|GS, p⟩⟨GS, p′| with p, p′ = ±1 is stationary.

The �nal part for our model is the periodic driving. We assume that the XY
chain is “kicked” periodically with the HamiltonianHK(t) = k02 ∞∑m=1Mz�(t −m�d), (5.33)

where k0 is the kick strength, at regular times tm = m�d withm = 1, 2,⋯. The unitary
transformation UK induced in the system after one of the pulses has interacted with
it is UK = exp(−ik0 N∑r=1 � zr ) = N∏r=1 (cos(k0/2)12 − i sin(k0/2)� zr ) . (5.34)

For instance, for k0 = � the unitary transformation UK equals to the parity operatorP up to an unimportant phase. The corresponding Floquet map is computed in its
vectorized form as

 = UK ⊗ U ∗
K exp(�d). (5.35)

Then, in order to implement the discrete time crystal in the XY spin chain, we
consider the following protocol. First, the system is prepared in the superposition
state �(0) = 12(|GS, +⟩ + |GS, −⟩)(⟨GS, +| + ⟨GS, −|), (5.36)
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which is invariant under the dissipative dynamics exp(�d). Then, if we kick the
system with strength k0 = � , and repeat the operation for m driving periods, we
obtain �(tm) = 12(|GS, +⟩ + (−)m|GS, −⟩)(⟨GS, +| + (−)m⟨GS, −|), (5.37)

which displays subharmonic oscillations. We note that the magnetization per spin
along the x-axis mx ∶= N −1∑Nr=1 � xr transforms under the parity asPmxP = −mx . (5.38)

The same e�ect happens for the magnetization along the y-axis. Hence, the corre-
sponding response function fmx (tm) = (−)mfmx (0), (5.39)

displays subharmonic oscillations that last, ideally, up to in�nite time.
Finally, it is left to check whether the subharmonic oscillations are robust. We

consider two types of perturbations in our protocol: (a) a disordered rotation error
and (b) a global rotation error.

The disordered rotation error (a) is induced by a kick Hamiltonian with a site
dependent disorder

HK(t) = ∑m �(t −m�d) N∑r=1 (� + ��r )� zr2 , (5.40)

where the small parameter � parametrizes the disorder strength, and �r measures
is the �uctuation at site r , which is subject to ∑r �r = 0. To �rst order in �, the
corresponding perturbation dis is

dis(◦) = −i 12∑r �r [� zr ,(◦)]. (5.41)

The linear correction of the perturbed eigenvalues z�(�) of the perturbed Floquet
map (�) =  + �dis can be computed using perturbation theory (see App. C.2)

[)�z�(�)]�=0 = − i2∑r �r tr{L†� [� zr ,(R�)]} = z� i2 (∑r �r) tr{L�[� z1 , R�]}, (5.42)

where we have used the permutationally invariance of the system. Therefore, the
time crystal is linearly robust to a disordered rotation error.
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Figure 5.3: Subharmonic oscillations in the open XY time crystal for three global
error values � = 0 (orange line with circle markers), � = �/20 (blue line with
triangular markers), and (yellow line with diamond markers) for a chain of N = 6
spins. (left panel) Robust subharmonic oscillations of the response function fX (t)
with X = mx the magnetization per spin along the x-axis. (right panel) Less robust
subharmonic oscillations of the response function fX (t) for X = sin(')mx +cos(')my
where the angle ' ful�lls cos(') = √(1 + g)/(1 − g). Parameters are �d = 100/J ,� = ∞, J (!) = 0!, 0 = 0.01J .

For the global rotation error type of perturbation (b), we have to rely on numerics.
In Fig. 5.3, we show the subharmonic oscillations for chain of N = 6 spins with
parameters g = 1 and ℎ = 0 (left panel) and g = 1/√2 and ℎ = 1/√2 (right panel).
For each parameter set, we consider rotation errors � = (0, �/40, �/20). As the initial
state of the evolution we take �(0) in Eq. (5.36). In the left panel of Fig. 5.3 we
observe that the oscillations are robust against errors at the Ising point, while they
become weaker as the transverse �eld ℎ increases. In Ref. [RMS20] it is discussed
how this e�ect can be understood from the nature of the decay processes involved
for each parameter set {g, ℎ}, but this is out of the scope of the present discussion.

5.5 Application II: storage capacity of quantumneu-
ral networks

Completely positive and trace preserving maps have been largely studied in the
context of quantum information and quantum communication. In this context, the
completely positive and trace preserving map is also called a quantum channel or
simply a channel. Two �ctional characters, Alice and Bob, communicate using the
quantum channel and their aim is to send quantum information through a quantum
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channel [NC10]. In this sense, information has to be transmitted from one spatial
point, corresponding to Alice’s position, to another spatial point, corresponding
to Bob’s position. Attractor quantum neural networks work similarly, but instead
of propagating information in space, one is interested in storing certain patterns
in time. Intuitively, the storage capacity of an attractor quantum neural network
corresponds to how many states or patterns can a certain completely positive and
trace preserving map store, as we discuss in Ref. [LGR+21].

Here, we are interested in �nding which is the form of the most general quantum
evolution  that is able to store d orthogonal patterns, where d is the dimension
of the Hilbert space. Namely, given a set of pure and orthogonal quantum states{�i = |i⟩⟨i|} with i = 1,⋯ , d corresponding to the patterns that we are interested to
store, we want to �nd non-trivial maps  ≠  such that [|i⟩⟨i|] = |i⟩⟨i|.

The �rst step is to consider � the Jamiołkowski-Choi state of the map , which
has the general form� = 1d ∑i′j′ [|i′⟩⟨j′|] ⊗ |i′⟩⟨j′| = 1d ∑iji′j′ iji′j′ |ii′⟩⟨jj′|. (5.43)

We rewrite  =  + −  to obtain the decomposition� = � + 1d ∑ij,i′j′(iji′j′ − �ii′�jj′)|ii′⟩⟨jj′| =∶ � + 1d Q, (5.44)

where � is the Jamiołkowski-Choi state of the identity map , and reads� = 1d ∑ij |ii⟩⟨jj |. (5.45)

Several properties can be deduced forQ that follow from its de�nition (5.44) together
with the properties of �. First, the fact that � is a non-trivial map implies thatQ ≠ 0. Second, the trace preserving condition implies that trB[�] = trB[�] = 1d/d ,
and then trB[Q] = 0. Crucially, we also observe from the de�nition of Q that⟨i′|Q|i′⟩ = 0. Therefore, for i ≠ i′⟨ii′|�|ii′⟩ = ⟨ii′|� |ii′⟩ + 1d ⟨ii′|Q|ii′⟩ = 0. (5.46)

which, in turn, implies that �|ii′⟩ = 0 because � ≥ 0. Then, projecting Eq. (5.44)
from the right by |ii′⟩ with i ≠ i′ reveals that�|ii′⟩ = 0 = Q|ii′⟩. (5.47)
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Therefore, we can write Q in the reduced subspace with basis {|ii⟩}with i = 1,⋯ , d
in such a way that has the matrix representationQ = ∑ij Qij |ii⟩⟨jj |, (5.48)

with Qij = Q∗ji from the Hermiticity of Q, and Qii = 0 since ⟨ii|Q|ii⟩ = 0. Thus, we
arrive at the �nal form

� = 1d ∑ij (1 + Qij)|ii⟩⟨jj | ≥ 0. (5.49)

Note that the positivity of the state further restricts |1 + Qij | ≤ 1, which follows
from imposing that the ijth minor of the matrix � has a positive determinant.

Equation (5.49) corresponds to the most general Jamiołkowski-Choi state of
the form of a completely positive and trace preserving map  that stores the d
orthogonal patterns �i = |i⟩⟨i| for i = 1,⋯ , d .

As an example, we consider the case of a single spin-1/2 particle  = ℂ2
for which we want to store two orthogonal states |−⟩ and |+⟩. In this basis, the
corresponding Jamiołkowski-Choi state is given by

� = 12 ⎛⎜⎜⎜⎝
1 0 0 |q|e−i�0 0 0 00 0 0 0|q|ei� 0 0 1

⎞⎟⎟⎟⎠ , (5.50)

where q = 1 + Q+− = |q| exp(i�) is a complex number whose modulus |q| ≤ 1. The
diagonalization of � gives rise to the Kraus operators

K1 = √1 + |q|2 (1 00 ei�) , (5.51)

K2 = √1 − |q|2 (1 00 −ei�) , (5.52)

for the canonical map .
As a �nal remark, in [LGR+21] we discuss more extensively how to use the

formalism of quantum operations to analyze the storage capacity of quantum
attractor neural networks as well as their learning capabilities.
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5.6 Chapter’s outlook

In this chapter we review the spectral properties of completely positive and trace
preserving maps, which are close analogues of those of classical stochastic maps.
Interestingly, we have seen that the eigenvalues of the so-called dynamical matrix
(the vectorized map) lie within the unit disk. However, the dynamical matrix is not
the only possible matrix representation of a quantum evolution. A reshu�ing of
the indices leads to the so-called Jamiołkowski-Choi state, which is a normalized
quantum state in a higher dimension space. Interestingly, the eigenvectors of the
Jamiołkowski-Choi state are a vectorized form of the Kraus operators.

Knowing that the spectral properties of quantum evolutions inherit important
constraints from the conditions of complete positivity and trace preservation, we
move to study whether is it possible to characterize quantum evolutions by their
spectral properties. We study two examples of such characterization. The �rst
is related to time crystals, an exotic phase of matter that breaks (discrete) time
translational symmetry, and the second to the storage capacity of attractor quantum
neural networks.

In the next chapter, we take the quantum Langevin equation approach to study
the dynamics and thermodynamics of a system of linearly coupled harmonic oscil-
lators.
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All models are wrong, but some are useful.
— George E. P. Box

6
Heat transport in harmonic systems

In the weak-coupling master equation description, we have focused on approaching
the dynamics of open quantum systems with arbitrary Hamiltonians and requiring a
weak coupling with its environment. We now take the complementary strategy. We
�x the underlying Hamiltonian description while allowing for arbitrary coupling
strengths to the environment. The underlying Hamiltonian description is �xed
to be that of quadratic Hamiltonians or, equivalently, linear equations of motion.
Taking this approach has, of course, advantages and limitations.

On the positive side, the study of quadratic Hamiltonians allows studying the
dynamics of open quantum system beyond the commonly used approximations of
weak-coupling and memoryless environments. In fact, the linear structure of the
equations of motion allow for an exact analytical solution of the dynamics through
an object known as the covariance matrix. Moreover, arbitrarily complicated physi-
cal systems that are weakly perturbed out of equilibrium can be “linearized” and
modelled using quadratic Hamiltonians. On the downside, of course, this pro-
cess can disregard important dynamical processes and one has to be careful when
extracting conclusions from a linearized dynamics.

Nonetheless, the versatility and transversality of quadratic Hamiltonians has
given this approach popularity in a variety of models and applications, from heat
transport in ion traps [FMP15], nanomagnetic rigid rotors [RR16], or thermome-
try [MSC19] to name a few. In this chapter, we closely follow Ref. [RMP+19] to
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explore one of such applications, which is closely related to the problem of heat
recti�cation (see for instance [LRW+12]).

In this chapter, we aim at studying the dynamics and thermodynamics of a
collection of linearly coupled harmonic oscillators and, in particular, to study the
problem of heat recti�cation in linear systems. To this end, we �rst introduce the
quantum Langevin equation and a method to solve its stationary dynamics. Then,
we de�ne the thermodynamic quantities of interest like internal energy, heat, or
work. Afterwards, we introduce the problem of heat recti�cation and analyze it
for general harmonic networks. Finally, we quantify the asymmetry of the heat
transfer in the harmonic network for a minimal model of two coupled oscillators.

In this chapter, we encounter some unusual notation. For instance, we use the
bold face characters to denote vectors of quantum operators, expectation values⟨◦⟩ are taken with respect to the initial system plus bath state �(t0), and the trace
tr is sometimes taken with respect to “usual” matrices and not quantum states.
Moreover, we drop the inverse temperature from the bosonic occupation numbern� (�� , !)↦ n� (!) for notational simplicity.

6.1 The quantum Langevin equation

In this section, we derive the so-called quantum Langevin equation [FKM65;
GWT84; Bre07]. To this end, we introduce �rst a model known as the harmonic
network, which corresponds to a collection of harmonic oscillators. Such network
is in contact with a set of in�nite baths that are initially decorrelated from the
system. Then, we derive the equation of motion for the position and momenta
of the harmonic network, which is the quantum Langevin equation. Finally, we
discuss brie�y the �uctuation-dissipation relation for this model.

6.1.1 The harmonic network
We start introducing the microscopic description of the open harmonic network.
Each node of the network is one of a collection of N linearly-coupled harmonic
oscillators with a time-dependent Hamiltonian:

HS(t) = pTM−1p2 + xTV (t)x2 . (6.1)

We assume that the system S is driven periodically; that is, the potential V (t) =V (t)T = V (t + �d) is a periodic function with period �d. In Eq. (6.1), the vector
x = (x1,⋯ , xN )T collects all position operators of the network, while the vector p =
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(p1,⋯ , pN )T collects all momenta. They ful�ll the standard canonical commutation
relations [xi , pj] = i�ij (= 1). The matrix M = diag(m1,⋯ , mN ) is a diagonal matrix
that gathers all the masses of the harmonic network. The o�-diagonal terms of the
time-dependent matrix V (t) capture the interaction strength between the oscillators,
while its diagonal part encodes their self-energy.

We consider the system S to be coupled to several baths labeled by � , beingH� the Hamiltonian of the bath � . In turn, each bath is described by a collection
of non-interacting oscillators r , with masses M� = diag({m�,r}) and frequenciesΩ� = diag({Ω�,r}). The bath Hamiltonian is

H� = pT�M−1� p�2 + xT�M�Ω2�x�2 , (6.2)

where x� = ({x�,r})T and p� = ({p�,r})T are the bath position and momentum vector
operators, respectively. The interaction Hamiltonian between the system S and the
bath � is given by Hint,� = −xTC�x� , (6.3)

where the rectangular matrix C� encodes the coupling strength between the system
and the bath � . Then, the total Hamiltonian is given by H = HS +∑� Hint,� +∑� H� .

We can compute the Heisenberg equations of motion (2.12) for the system and
bath degrees of freedom, which in matrix form are

ẋ = M−1p, (6.4)
ṗ = −V (t)x +∑� C�x� , (6.5)

ẋ� = M−1� p� , (6.6)
ṗ� = −M�Ω2�x� + CT� x, (6.7)

where, for compactness, we use the ẋ to denote its total time derivative ẋ = (d/dt)x.
We assume that the system S is initially uncorrelated from the environment �(t0) =�S(t0)⨂� �� (t0). Then, taking the time derivative of Eq. (6.6), and combining with
Eq. (6.7), we end up with a second order di�erential equation for the position
operator x� of the bath � , whose solution yieldsx� (t) = cos [Ω� (t − t0)] x� (t0) + (M�Ω� )−1 sin [Ω� (t − t0)] p� (t0)++ ∫ t

t0 dt ′(M�Ω� )−1 sin [Ω� (t − t ′)]CT� x(t ′), (6.8)
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where x� (t0) and p� (t0) correspond to the initial conditions. In the same manner, by
taking the time derivative of Eq. (6.4), and by substituting Eqs. (6.5) and (6.8) into
it, we arrive at

M ẍ + V (t)x −∑� ∫ t
t0 dt ′C� (M�Ω� )−1 sin[Ω� (t − t ′)]CT� x(t ′)= ∑� C� (cos[Ω� (t − t0)]x� (t0) + (M�Ω� )−1 sin[Ω� (t − t0)]p� (t0)) (6.9)

Since we are only interested in the steady-state behavior, we take the limit t0 → −∞,
which leads to the quantum Langevin equationM ẍ + V (t)x − (� ⋆ x)(t) = B(t), (6.10)

where ⋆ denotes the convolution in the Fourier sense; that is, given two arbitrary
functions f (t) and g(t) its convolution is de�ned as (f ⋆ g)(t) ∶= ∫ℝ dt ′f (t − t ′)g(t ′).
The susceptibility matrix � (t) acts as a damping source, whereas the noise vectorB(t) as a “random” external force. Their explicit expressions are� (t) = �(t)∑� C� (M�Ω� )−1 sin(Ω� t)CT� , (6.11)

B(t) = limt0→−∞∑� C� {sin[Ω� (t − t0)]x� (t0) + (M�Ω� )−1 cos[Ω� (t − t0)]p� (t0)} , (6.12)

with �(t) being the Heaviside step function, which arises from causality. We also
introduce the spectral density matrix for the � th bath J� (Ω) = 1/2C� (M�Ω� )−1Δ(Ω)CT� ,
being [Δ(Ω)]rr ′ = �rr ′�(Ω−Ω�,r ). We further assume that all oscillators of the network
are at most coupled to one bath. One can think of J� (Ω) as a measure of the number
of modes in bath � whose frequencies lie betweenΩ andΩ+dΩ. With the help of the
spectral density, we rewrite � (t) = 2�(t)∑� ∫ ∞0 dΩJ� (Ω) sin(Ωt). By extending J (Ω)
to negative frequencies as J� (−!) ∶= −J� (!), it follows that Im� (!) = � ∑� J� (!),
which we shall keep in mind.

6.1.2 Solution to the quantum Langevin equation
We are only interested in the stationary dynamics of the network. For periodically
driven systems, the dynamics is not always stable and, therefore, there is not always
a stationary regime. In the following, we assume that such stationary regime exists,
and it is independent of the initial conditions of the system [FP17].

We start looking at the easier case of a static harmonic network, for whichV (t) = V0 is a constant. Then, a particular solution of the quantum Langevin
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equation can be found by means of a Fourier transform f̂ (!) = ∫ℝ dtf (t) exp(i!t).
We �nd that

x̂(!) = [−!2M + V0 − �̂ (!)]−1B̂(!) =∶ Ĝ0(!)B̂(!). (6.13)

where Ĝ0(!) is the static Green’s function. Finally, one can transform back to time
domain to obtain the stationary solution

xst(t) = ∫ d!2� Ĝ0(!)B̂(!)e−i!t , (6.14)

pst(t) = −i ∫ d!2� !MĜ0(!)B̂(!)e−i!t . (6.15)

We remark that here we refer to this solution as “stationary” in the sense that the
system has evolved for long enough to forget about the initial conditions. Clearly,
xst(t) cannot be a constant, since the �uctuating force B(t) acts on the system at all
times.

Let us turn again to the case of a dynamical network with a time-dependent
interaction V (t) = V (t + �d). Let D(t)[◦] ∶= M(d/dt)2◦ + V (t)◦ − (� ⋆ ◦)(t) be the
integro-di�erential operator associated with the quantum Langevin equation. The
equation of motion for the dynamical Green’s function of this problem is obtained
by solving

D(t)[G(t, t0)] = Md2G(t, t0)dt2 + V (t)G(t, t0) − ∫ℝ dt ′� (t − t ′)G(t ′, t0) = �(t − t0)1N ,
(6.16)

being 1N the N × N identity matrix. Let G+(t, t0) = G(t + �d, t0 + �d), which clearly
satis�es that D(t + �d)[G+(t, t0)] = �(t − t0)1N . We note that using the propertiesd/dt = d/d(t + �d), V (t) = V (t + �d), and (� ⋆ G+)(t) = (� ⋆ G)(t + �d), we obtain thatD(t)[G+(t, t0)] = �(t − t0)1N . Therefore, the functions G(t, t0) and G+(t, t0) ful�ll the
same di�erential equation. Hence, by uniqueness of the solution, both functions
are identical G(t, t0) = G+(t, t0) in the stationary regime, where the information
about the initial conditions is lost.

To solve the quantum Langevin equation in the dynamical case, we exploit the
periodicity of the driving. Namely, we de�ne P (t, !) ∶= ∫ℝ dt ′ exp[i!(t − t ′)]G(t, t ′),
which is a periodic function since

P (t + �d, !) = ei!(t+�d) ∫ℝ dt ′ei!t′G(t + �d, t ′) = P (t, !), (6.17)
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since G(t + �d, t ′ + �d) = G(t, t ′). Thus, we can Fourier expand the periodic functionsV (t) = V (t + �d) = ∑k Vkeik!dt , (6.18)P (t, !) = P (t + �d, !) = ∑k Ak(!)eik!d , (6.19)

where !d = 2�/�d is the driving frequency. Since D(t) is a linear operator, we have
that

∫ℝ dt ′ exp(−i!t ′)D(t)[G(t, t ′)] = D(t)[exp(−i!t)P (t, !)] = exp(−i!t)1N . (6.20)

Thus, using the expansions (6.18) and (6.19), we arrive at

∑k [−M(! − k!d)2eik!dt +∑j Vjei(j+k)!dt + � (! − k!d)eik!dt]Ak(!) = 1N . (6.21)

Finally, projecting on the kth element of the Fourier expansion, one arrives atĜ−10 (! − k!d)Ak(!) +∑j≠0 VjAk−j(!) = �k,01N , (6.22)

which determines the amplitudes Ak(!). While a closed form solution for Ak(!) is
rarely available, one can solve self-consistently Eq. (6.22) to obtainA0(!) = Ĝ0(!) +∑j≠0 Ĝ0(!)VjĜ0(! + j!d)V−jĜ0(!) + (V 4j ), (6.23)Ak(!) = −Ĝ0(! − k!d)VkĜ0(!) + (V 3j ), for k ≠ 0 (6.24)

These are perturbative expansions in terms of the strength of the driving potentialVj . Such expansions can be seen as a combination of free evolution with interactions
with the periodic driving, the latter causing a sudden change of the propagation
frequency. This idea is depicted in the diagrams in Fig. 6.1.

Finally, we can use the amplitudes {Ak(!)} to compute the stationary solution
for the dynamical harmonic network

xst(t) = ∫ℝ dt ′G(t, t ′)B(t ′) = ∑k ∫ℝ d!2� Ak(!)B̂(!)e−i(!−k!d)t , (6.25)

pst(t) = ddt ∫ℝMG(t, t ′)B(t ′) = −i∑k ∫ℝ d!2� (! − k!d)MAk(!)B̂(!)e−i(!−k!d)t .
(6.26)
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Figure 6.1: Schematic representation of the perturbative expansion of the amplitudesAk(!) giving rise to energy exchange processes between the driving and two heat
baths with spectral densities J� (!) and J�(!).
6.1.3 The second moment matrix

Given two observables X and Y , we de�ne its second moment as ⟨XY⟩. For a
system of N oscillators, the second moment matrix is a 2N × 2N matrix, which we
divide into the four N × N blocks

Σ(t) ∶= (⟨xxT⟩ ⟨xpT⟩⟨pxT⟩ ⟨ppT⟩) , (6.27)

where, for instance, [xpT]ij = ⟨xipj⟩. For quadratic Hamiltonians, all the relevant
dynamical information can be computed from the �rst ⟨x⟩ and ⟨p⟩ and second
moments encoded in Σ(t). Using the stationary solutions in Eq. (6.25) and Eq. (6.26),
one can obtain the dynamics of the covariance matrix Σ(t). Then, in the stationary
regime, all blocks are connected to expectation values of the form ⟨B̂(!)B̂(!′)T⟩.
For instance, we �nd that

⟨xst(t)xst(t)T⟩ = ∑kk′ ∬ℝ d!d!′(2� )2 Ak(!)⟨B̂(!)B̂(!′)T⟩Ak(!′)T e−i(!+!′−(k+k′)!d)t . (6.28)

To proceed on the computation, one has to �x the state �(t0) over which the expec-
tation value is taken, which we do in the following section.
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As we will see in the next section, the second moment matrix is also closely
related to the thermodynamic quantities of interest, the heat �uxes Q̇� and the work
rate Ẇ.

6.2 Thermodynamics of harmonic networks

In this section, we study the thermodynamic properties of the harmonic network.
In particular, we focus on the study of heat transport through the harmonic network
and, in what follows, we assume that �� (t0) = �� (�� ) is a thermal state at inverse
temperature �� .
6.2.1 Thermodynamic quantities

We start introducing the system internal energy US ∶= ⟨HS⟩, for which we obtain

US(t) = 12 tr[M−1⟨ppT⟩] + 12 tr[V (t)⟨xxT⟩], (6.29)

To write Eq. (6.29) in “trace form”, we have used the property ⟨xTAy⟩ = ∑ij Aij⟨xiyj⟩ =
tr[AT⟨xyT⟩], for arbitrary x, y and A. Note that the internal energy is directly re-
lated to the xx-block and the pp-block of the second moment matrix Σ(t).

The next quantity we are interested in is the work rate Ẇ = )t⟨tr{[)tH (t)]⟩,
which we de�ned in Eq. (2.134). Since only HS(t) depends on time, we can compute
the work as

Ẇ = 12 tr{[)tV (t)]⟨xxT⟩}. (6.30)

Using the Heisenberg equation of motion for HS(t), and taking its average ⟨◦⟩ we
�nd that ddtUS(t) = ∑� i⟨[Hint,� , HS(t)]⟩ + Ẇ =∶ ∑� Q̇� + Ẇ (6.31)

which motivates the de�nition of the local heat �ux Q̇� ∶= i⟨[Hint,� , HS(t)]⟩ that
makes Eq. (6.31) identical the �rst law. Note, however, that this is an unusual
de�nition for the heat �ux, which di�ers from the more standard

Q̇′� ∶= −d⟨H�⟩/dt = Q� + ⟨[Hint,� , H�]⟩. (6.32)
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As it turns out, the di�erence between Q̇� and Q̇′� is irrelevant for our purposes,
while the de�nition of heat �ux Q̇� yields simpler expressions and, thus, we shall
stick to it (see App. D.1). We can compute

Q̇� = ⟨pTM−1C�x�⟩. (6.33)

The problem with Eq. (6.33) is that it depends on quantities of the bath � . To avoid
this, we introduce the projectors Π� , which project on the sites of the harmonic
network that are coupled to the � th bath. We assume that each oscillator in the
network is coupled to at most one bath and, therefore, Π�Π� = Π���� . Then, we can
project Eq. (6.5) to obtain

Q̇� = tr[Π�M−1⟨pṗT⟩] + tr[Π�M−1⟨pxT⟩V (t)], (6.34)

which again is connected to blocks of the second moment matrix Σ(t). To simplify
Eq. (6.34) we use that by de�nition Q̇� ∈ ℝ and that ⟨zizj⟩ = ⟨zjzi⟩⋆ if zi is Hermitian.
We arrive at the �nal expression

Q̇� = 12 tr[Π�M−1 ddt ⟨ppT⟩] + tr{Π�M−1V (t)Re[⟨xpT⟩]}. (6.35)

6.2.2 Fluctuation-Dissipation Relation

To compute the stationary second moment matrix Σst, we need to often evaluate
expectation values of the noise vector B(t). Here, we perform precisely this compu-
tation and show that the result corresponds to a well known form of the �uctuation-
dissipation theorem. We now take advantage of the initial state �� (t0) = �� (�� ) to
perform the calculation. For such thermal state, all �rst order moments vanish in
the stationary regime. Moreover, the second order moments yield:

M�Ω�⟨x� (t0)xT� (t0)⟩ = ⟨p� (t0)pT� (t0)⟩(M�Ω� )−1 = 12 coth(��Ω�2 ) , (6.36)

⟨x� (t0)pT� (t0)⟩ = ⟨p� (t0)xT� (t0)⟩∗ = i2 . (6.37)

With these expressions at hand, we are ready to compute the two time expectation
value of the noise vector⟨B(� )BT (0)⟩ = 12∑� C� (M�Ω� )−1(cos(Ω�� ) coth(��Ω�2 ) + i sin(Ω�� ))CT� ,

(6.38)
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which is only a function of the elapsed time � . By introducing the spectral density
to the last expression, it can be written as

⟨B(� )B(0)T⟩ = ∑� ∫ ∞
0 dΩJ� (Ω)[cos(Ω� )(2n� (!) + 1) + i sin(Ω� )], (6.39)

where n� (!) ∶= [exp(��Ω) − 1]−1 is the bosonic occupation number of the � th bath.
The real part of the above quantity is known as the noise kernel

 (� ) ∶=Re[⟨B(� )B(0)T⟩] = ∑� ∫ℝ d!J (!)[n� (!) + 1/2]e−i!� . (6.40)

which appears very often in the calculations. Finally, the Fourier transformed
counterpart of Eq. (6.39) is the well-known �uctuation-dissipation relation⟨B̂(!)B̂(!′)T⟩ = �(! + !′)(2� )2∑� J� (!)(n� (!) + 1). (6.41)

6.2.3 Heat transport in static harmonic networks

We are �nally ready to evaluate the heat �ux in the stationary regime by putting
together the results of Sec. 6.1.3, Sec. 6.2.1 and Sec. 6.2.2.

We start considering the simpler case of a static network, for which V (t) = V0
becomes a constant and, then, we have Ẇ = 0. In this scenario, the second moment
matrix Σ(t) ↦ Σst0 becomes a constant in the stationary regime. The subscript 0
is added to make a clear distinction from the periodically driven network. The
time-independence of Σst0 can be checked by direct computation using the noise
kernel (6.40). For instance, for the static version of Eq. (6.28) we obtain

⟨xst(t)xst(t)T⟩ =∬ dt ′dt ′′G0(t − t ′) (t ′ − t ′′)G0(t − t ′′)T=∑� ∫ℝ d!Ĝ0(!)J� (!)Ĝ0(!)†[n� (!) + 1/2]. (6.42)

Because Σst0 is time-independent, the expression of the local heat �ux in the
stationary regime simpli�es into

Q̇st� =tr{Π�V0Re[⟨xst(t)pst(t)T⟩]M−1]}. (6.43)
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We start computing the real part of the xp-block of the second moment matrix.
Using Eq. (6.39) together with the extension J� (−!) = −J� (!) we �nd that

Re[⟨xst(t)pst(t)T⟩] =∬ℝ dt ′dt ′′G0(t − t ′) (t ′ − t ′′)Ġ0(t − t ′′)TM=∑� ∫ℝ d!(i!)Ĝ0(!)J�(!)Ĝ0(!)†M[n�(!) + 1/2]. (6.44)

where we have used that Ġ0(t) = (2� )−1 ∫ℝ d!(−i!)Ĝ0(!) exp(−i!t). Therefore, the
stationary heat �ux yields

Q̇st� = −∑� ∫ℝ d!!Im{tr[Π�V0Ĝ0(!)J�(!)Ĝ0(!)†]}[n�(!) + 1/2]. (6.45)

We now use Eq. (6.13) to rewrite V0Ĝ0(!) = 1N + !2MG0(!) + � (!)G0(!). Clearly,
the only contribution to the heat �ux comes from the imaginary part Im� (!) =� ∑� J�(!). Hence, using Π� Im� (!) = �J� (!) we arrive at

Q̇st� = −∑� ∫ℝ d!�!tr[J� (!)Ĝ0(!)J�(!)Ĝ0(!)†][n�(!) + 1/2], (6.46)

which suggests the de�nition of the static heat transfer matrixT0,��(!) ∶= �!tr[J� (!)Ĝ0(!)J�(!)Ĝ0(!)†]. (6.47)

Finally, the stationary heat �ux can be written into a more convenient form with
the help of the �rst law (6.31). Namely, we have that in the stationary regime∑� Q̇st� = 0, which implies ∑� T0,�� (!) = 0. Therefore, we have that

Q̇st� = − ∫ℝ d!T0,�� (!)[n� (!) + 1/2] −∑�≠� ∫ℝ d!T0,��(!)[n�(!) + 1/2]= ∑�≠� ∫ℝ d!T0,��(!)[n� (!) − n�(!)], (6.48)

where we have used that the static heat transfer matrix T0,�� (!) = T0,��(!) is sym-
metric. This form of the stationary heat �uxs can be found using the nonequilibrium
Green’s function approach, and we refer to the interested reader to Ref. [DR06] for
an extended discussion of the connections between the quantum Langevin equation
and nonequilibrium Green’s function.
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6.2.4 Heat transport in dynamic harmonic networks
We consider again a periodically driven harmonic network with a time periodic
potential V (t) = ∑k Vk exp(ik!dt), with Fourier amplitudes Vk . In this case, the
second moment matrix is not constant in the stationary regime. Instead, it adapts
to the driving period �d, in such a way that Σst(t + �d) = Σst(t). Again, we can check
this property by explicit calculation using Eq. (6.40). For instance, with the help of
Eq. (6.25) the xx-block yields⟨xst(t)xst(t)T⟩ =∑� ∫ d!P (t, !)J�(!)P (t, !)†[n� (!) + 1/2]

=∑� ∑jk ∫ d!Aj(!)J�(!)Ak(!)†[n� (!) + 1/2]ei(j−k)!dt , (6.49)

which is clearly a periodic function of time.
As a consequence of the periodicity of Σst(t), the thermodynamic quantities

Q̇st� (t) and Ẇst(t) also become time-periodic functions of time in the stationary
regime. Thus, we are interested in period-averaged quantities in the stationary
regime. We introduce the average over one periodf (t) ∶= 1�d

∫ �d

0 dt ′f (t ′). (6.50)

which is constant for any periodic function. A useful property of the average (6.50)
is that exp[i(j − k)!dt] = �jk , (6.51)

for j, k ∈ ℤ; that is, the functions {exp[ij!dt]}j are an orthonormal with respect to
the “inner product” ⟨f (t), g(t)⟩ ∶= f (t)⋆g(t).

We are now ready to repeat the logic of the last subsection to �nd the period-
averaged work rate Ẇst(t) and heat �ux Q̇st� (t). We start by computing the work
rate which using Eq. (6.30) yields

Ẇst(t) = i2∑� ∑jkl l!d ∫ d!tr[VlAj(!)J�(!)Ak(!)†][n�(!) + 1/2]ei(j−k+l)!dt . (6.52)

Then, the period averaged work takes the form

Ẇst(t) = i2 ∫ d!∑� ∑jk (k − j)!dtr[Vk−jAj(!)J�(!)Ak(!)†][n�(!) + 1/2]
= − ∫ d!∑� ∑jk k!dIm{tr[Vk−jAj(!)J�(!)Ak(!)†]}[n�(!) + 1/2], (6.53)
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where the second line requires splitting the sum into the part proportional to k!d
and the one proportional to j!d, then exchange the dummy indices j and k, and
�nally use that Vk = V †−k to identify the imaginary part of the trace. The expression
of the work can be simpli�ed further by noting that Eq. (6.22) implies that∑j VjAk−j = �k,01 + (! − k!d)2MAk(!) + � (! − k!d)Ak(!), (6.54)

which leads to the �nal form

Ẇst(t) =∑� ∫ d!∑k � (−k!d)tr[J (! − k!d)J�(!)Ak(!)†][n�(!) + 1/2]
=∶∑� ∫ d!T̃�(!)[n�(!) + 1/2]. (6.55)

Next, we proceed to compute the period averaged heat �ux in the same manner.
We start with computing the xp-block of the covariance matrix

Re[⟨xst(t)pst(t)T⟩] = ∑�,jk ∫ℝ d!i(! − k!d)Aj(!)J�(!)Ak(!)†M[n�(!) + 1/2]ei(j−k)!dt .
(6.56)

Then, we use this expression in Eq. (6.35), and note that the �rst term does not
contribute since ⟨pst(t)pst(t)T⟩ is a periodic function of time and, therefore, the
period average of its derivative vanishes. Therefore, using Eq. (6.56) leads to

Q̇st� (t) =tr[Π�V (t)Re[⟨xst(t)pst(t)T⟩]M−1] (6.57)= −∑�,jk ∫ℝ d!(! − k!d)Im{
tr [Π�VjAk−j(!)J�(!)Ak(!)†]} [n�(!) + 1/2].

Using again Eq. (6.54) to perform the sum over j, we can introduce the dynamical
heat transfer matrixT��(!) = ∑k (! − k!d)�tr [J� (! − k!d)Ak(!)J�(!)Ak(!)†] (6.58)

in order to rewrite the heat �ux as

Q̇st� (t) ∶= −∑� ∫ℝ d!T��(!)[n�(!) + 1/2], (6.59)
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Figure 6.2: Sketch of a heat recti�cation setup where a system S with linear interac-
tions V (t) is connected to two reservoirs at inverse �xed temperatures �1 and �2:
(top) forward con�guration, (bottom) reversed con�guration.

In Eq. (6.59), the diagonal terms of the heat transfer matrix can be computed using
the �rst law Ẇst(t) +∑� Q̇st� (t) = 0, which implies that T̃�(!) = ∑� T��(!) with T̃�(!)
de�ned in Eq. (6.55). Thus, we arrive at the �nal result

Q̇st� (t) = − ∫ℝ d!T̃� (!)[n� (!) + 1/2]+∑�≠� ∫ℝ d!{T�� (!)[n� (!) + 1/2] − T��(!)[n�(!) + 1/2]} . (6.60)

Hence, using the formalism of the quantum Langevin equation, we are able to
compute analytic expressions for the work rate and the heat �ux of a periodically
driven harmonic network coupled to an arbitrary number of heat baths.

6.3 An application: the heat recti�er

To illustrate the potential of periodically driven systems, we consider here the
particular problem of a heat recti�er. Recti�ers are physical systems capable of
conducting energy asymmetrically, whether in the form of electric, magnetic, or
thermal energy. A thermal recti�er, when connected to two thermal baths at
di�erent temperatures, conducts heat asymmetrically if the temperatures of the
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baths are interchanged. This e�ect allows for an e�ective heat dissipation with a
suppressed back�ow reaction. We can formulate the problem of heat recti�cation
in the harmonic network as follows.

Consider the harmonic network to be coupled to two heat baths � = 1, 2
which are initially found at the �xed inverse temperatures �1 ≤ �2. In any out-
of-equilibrium scenario, the energy of the reservoirs is redistributed through the
system in the form of heat �uxs. We say that the harmonic network acts as a heat
recti�er if the magnitude of the heat �ux depends on the sign of the temperature
gradient. Such asymmetric heat �ux is conventionally quanti�ed by the so-called
recti�cation coe�cient

R(Q̇1, Q̇r1) ∶= |Q̇1 + Q̇r1|
max(|Q̇1|, |Q̇r1|) , (6.61)

where Q̇1 (Q̇r1) is the heat �owing into the system from the �rst reservoir in the
forward (�1 ≤ �2) and reversed (�1 > �2) con�guration, respectively. For �1 ≤ �2,
forward and reversed con�gurations refer to, respectively, negative and positive
temperature gradients (see Fig. 3.1). Notice that 0 ≤ R(Q̇1, Q̇r1) ≤ 2. The lower bound
is achieved for a system that conducts symmetrically: Q̇r1 = −Q̇1, while the upper
bound is saturated for heat �uxs that are independent of the sign of the temperature
gradient: Q̇1 = Q̇r1. A system that blocks the heat �ux in either con�guration ful�llsR(Q̇1, 0) = R(0, Q̇r1) = 1.

Consider �rst the case of a static network, where the heat �ux is given by
Eq. (6.48). One obtains that the reversed heat �ux is Q̇st,r1 = −Q̇st1 , which leads toR(Q̇st1 , −Q̇st1 ) = 0. This is true for every geometry of the harmonic network, which
is encoded in V0, regardless of how asymmetric one tries to make it. Even if the
properties of the bath are di�erent; that is, di�erent J� (!), the heat �ux is conducted
symmetrically. Is it possible to attain asymmetric heat �uxes within harmonic
systems? The answer is positive, but it requires exploring time-dependent systems.

In the static network, the symmetric heat conduction is inherited from the
symmetry of the static heat transfer matrix T0,�� (!) = T0,��(!), which allowed to
cast the heat �ux in the form Eq. (6.34). In Sec. 6.2.4, we have learned that the heat
transfer in periodically driven systems leads to an asymmetric heat transfer matrixT�� (!) ≠ T��(!). Therefore, periodically driven systems are, in principle, able to
conduct heat asymmetrically.

For a periodically driven network, the numerator of Eq.(6.61), is given by the
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absolute value of

Q̇st1 (t) + Q̇st,r1 (t) = −Ẇst1 (t) − Ẇst,r1 (t) + ∫ℝ d! [T21(!) − T12(!)] [n1(!) + n2(!) + 1] ,
(6.62)

where we have rewritten

Ẇst(t) = ∑� Ẇst� (t) ∶= ∑� ∫ d!T̃� (!)[n� (!) + 1/2], (6.63)

being Ẇst� (t) the local work rates.
The notion of a local work rate is unusual, since work is done on the whole

harmonic network and it is independent of the heat baths. However, in the sta-
tionary regime, we know that the work has to be compensated by the heat �uxes
to give rise to the �rst law. Hence, we give to Ẇst� (t) the following interpretation.
Consider a particular cycle of the stationary regime, where an amount of energy
W(�d) ∶= �d ∑� Ẇst� (t) has been injected to/extracted from the harmonic network.
Because in the stationary regime the period averaged internal energy Ust

S (t) of the
harmonic network remains constant, the extra/de�cit of energy W(�d) cannot be
stored in the system, and should be dissipated to the heat baths in the following
cycle. Then, the quantity Ẇst� (t) corresponds to the average work dissipated to bath� per unit time.

Heat recti�cation in periodically driven systems is based on two facts: (i) the
work injected into the system is a useful resource to redistribute energy and (ii)
periodically driven systems exhibit new asymmetric energy exchange processes
that have no analog in static systems. We are mostly interested in (ii) and, in
order to study explicitly the asymmetric heat conduction, we de�ne the static quasi
currents q̇� = Ẇst� (t) + Q̇st� (t), where the contribution of the work has been explicitly
singled out. They ful�ll the static �rst law q̇1 + q̇2 = 0 and, as the driving is turned
o�, they reduce to the static currents of Eq. (6.48). Then, the recti�cation coe�cient

R(q̇1, q̇r1) ∝ ||||∫ℝ d! [T21(!) − T12(!)] [n1(!) + n2(!) + 1]|||| . (6.64)

is a measure of the asymmetry in the heat transfer matrix.
To clarify the relevance of R(q̇1, q̇r1) we consider the following situation. Notice,

that the fact (i) above can be also achieved by introducing a third “work” bath that
provides the energy while keeping the setup static. Let us denote �3 and n3(!) the
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inverse temperature and thermal occupation number of such work bath. The static
currents in direct and reversed con�guration read

Q̇st1 = ∫ℝ d!T0,12(!)[n1(!) − n2(!)] + ∫ℝ d!T0,13(!)[n1(!) − n3(!)], (6.65)

Q̇st,r1 = ∫ℝ d!T0,12(!)[n2(!) − n1(!)] + ∫ℝ d!T0,13(!)[n2(!) − n3(!)]. (6.66)

We now single out the current of the third reservoir and denote it by

Ẇst ∶= Q̇st3 = ∫ℝ d!T0,31(!)[n3(!) − n1(!)] + ∫ℝ d!T0,32(!)[n3(!) − n2(!)]. (6.67)

The �rst law can be now written as Q̇st1 + Q̇st2 + Ẇst = 0. Again, we can think about
the local contributions to reservoir � = 1, 2 as Ẇst� = ∫ℝ d!T0,3� (!)(n3(!) − n� (!)).
It is clear, that R(Q̇st1 , Q̇st,r1 ) ∝ |Ẇst1 + Ẇst,r1 | ≠ 0 under the interchange �1 ↔ �2.
However, there is no genuine asymmetric transport happening in the sense thatT0,12(!) = T0,21(!) for a static system. By de�ning q̇� ∶= Q̇st� + Ẇst� , we only take into
account the genuine contributions to the recti�cation, such that, in the static caseR(q̇� , q̇r� ) = 0. With this intuition, we use R(q̇� , q̇r� ) as a measure of the asymmetric
transport in the driven network that is present exclusively due to periodic forcing.

6.4 A minimal model

To better illustrate the phenomenon of heat recti�cation in the harmonic network,
we consider a minimal model of N = 2 harmonic oscillators with unit mass M = 12
and squared natural frequencies !20 ≥ 0 and !20 +� ≥ 0. They interact via a quadratic
coupling of the form c0(x1 − x2)2 in such a way that

V0 = (!20 + c0 −c0−c0 !20 + � + c0) . (6.68)

The matrix V0 is positive and has eigenvalues !2± = !20 + c0 + (�/2) ± √c20 + (�/2)2,
where !± are the normal mode frequencies. We assume that the �rst oscillation is
periodically driven with period �d in the form V (t) = V0 + 2V1 cos(!dt), with

V1 = (� 00 0) . (6.69)

where � is a small driving amplitude.
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We consider that the harmonic network is coupled to two identical heat baths
with susceptibility matrix � (!) = �̃ (!)1N , where �̃ (!) ∈ ℂ is the susceptibility
function. We �x the imaginary part of the susceptibility through

Im�̃ (!) = �J̃ (!) = 2j0! !2
c!2

c + !2 , (6.70)

where J̃� (!) is the spectral density function, j0 measures the dissipation strength
and !c is a high-frequency cuto�.

We are interested in the total susceptibility function, not only in its imaginary
part. To �nd the real part, we take advantage from the fact that �̃ (t) is a causal
response; that is, proportional to �(t). Hence, the susceptibility function �̃ (!) is
an analytic function of ! ∈ ℂ in the upper-half complex plane. To see this, it
is su�cient to have in mind the de�nition �̃ (t) = (2� )−1 ∫ d!�̃ (!) exp(−i!t) and
regard ! as a complex parameter. Consider a closed semicircle contour “SC” of
radius r in the upper-half complex plane that goes in the real axis from −r to +r ,
and closes with !(�) = r exp(i�) with � ∈ [0, � ). Then, for t < 0 we havelimr→∞∮

SC

d!2� �̃ (!)e−i!t = limr→∞ ∫ r
−r d!2� �̃ (!)e−i!t + (ert) = �̃ (t < 0) = 0. (6.71)

Now, we can single out a point ! ∈ ℝ to rewrite0 = ∮C d!′ �̃ (!′)!′ − ! = PV ∫ d!′ �̃ (!′)!′ − ! − i��̃ (!). (6.72)

for any contour C contained in the upper-half complex plane. Taking the real part
of the above equation, we arrive at the so-called Kramers-Kronig relation

Re[�̃ (!)] = 1� PV ∫ d!′ Im[�̃ (!′)]!′ − ! . (6.73)

Equation (6.73) tells us that the real and imaginary part of a causal response in
the spectral domain are not independent of each other. Then, a standard complex
integral calculation reveals that�̃ (!) = 2j0 !2

c!c − i! , (6.74)

which, as expected, is analytic in the upper-half plane.
The next step is founding the static Green’s function G0(!), which governs the

dynamics in the limit of a static network, when � → 0+. We have that{−!212 + V0 − Re[�̃ (!)]12 − i� J̃ (!)12}G0(!) = 12. (6.75)
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We assume a large high-frequency cuto�!c, so that one can approximate Re[�̃ (!)] ≈2j0!c , which can be reabsorbed in the frequency !0. We now want to solve Eq. (6.77).
Let us denote by ui with i = ± the eigenvectors of V0, such that V0 = ∑i !2i uiuTi and12 = ∑i uiuTi . Then, the static Green function is found to be

G0(!) = ∑i uiuTi!2i − !2 − i� J̃ (!) . (6.76)

The normal mode vectors ui are real, orthogonal and normalized to one, and
therefore can be parametrized with an angle ' such that u+ = (sin('), cos(')) andu− = (cos('), − sin(')). The angle ' is determined as a function of the system
parameters as tan(2') = −2c0/� . Then, we �nd the static Green’s function is
explicitly given by

G0(!) = 1!2− − !2 − i� J̃ (!) ( cos(')2 − sin(') cos(')− sin(') cos(') sin(')2 )+ 1!2+ − !2 − i� J̃ (!) ( sin(')2 sin(') cos(')sin(') cos(') cos(')2 ) . (6.77)

We can use the expression of the static Green’s function to evaluate the heat
transfer matrix T�� (!). Because we assume that the system is weakly driven, we
will compute it only to �rst order in �, taking advantage of the expansion (6.23)
and (6.24). We �ndA0(!)ij = G0(!)ij +∑j=± G0(!)i1G0(! + j!d)11G0(!)1j + (�4), (6.78)Ak(!)ij = −�[G0(! − k!d)]i1[G0(!)]1j + (�3). (6.79)

In principle, combining Eq. (6.77), Eq. (6.78), Eq. (6.79), and Eq. (6.58), we can
�nd an analytic expression for the heat transfer matrix T��(!) and an integral form
for the heat �ux Q̇st� (t). However, the resulting formula is not very insightful, and it
is more instructive to compute numerically the heat �ux.

In the top panel of Fig. 6.3, we show the recti�cation coe�cient as a func-
tion of the driving frequency !d and the coupling constant c0. Notice that the
driven network reaches R(Q̇st1 (t), Q̇st,r1 (t)) = 1, indicating that the heat �ux ̄̇Q1 is
completely suppressed in one of the con�gurations. In fact, such a system even
attains R(Q̇st1 (t), Q̇st,r1 (t)) ≥ 1, a regime only possible when the network conducts heat
against a thermal gradient in one of the con�gurations. The regions with non-zero
recti�cation correspond to driving frequencies of !d = {!+ − !−, 2!−, !+ + !−, 2!+}.
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Figure 6.3: Recti�cation coe�cient as a function of the driving frequency !d and
the coupling constant c0: (top) using the full current Q̇st1 (t); (bottom) using the
static quasi-current q̇1. The black dashed lines lie at the driving frequencies !d ={!+ − !−, 2!−, !+ + !−, 2!+}. The parameters are � = !20 , j0 = 0.01!0, !c = 10!0,� = 0.1!20 , �1 = (1.2!0)−1, and �2 = !−10 .

158



CHAPTER 6. HEAT TRANSPORT IN HARMONIC SYSTEMS

In the bottom panel of Fig. 6.3, we show the R(q̇1, q̇r1) versus the driving frequency!d and the coupling constant c0. In comparison with the top panel of Fig. 6.3, we
no longer observe the regions of high recti�cation corresponding to !d = 2!− and2!+. This implies that, even though the energy of the bath � = 1 is kept constant
and energy is being injected into the system, no asymmetry of the dynamical heat
transfer matrix is achieved. This e�ect can be understood intuitively by focusing
again in the normal mode picture. When the system is driven at frequencies!d = 2!− or 2!+, the two normal modes remain independent and asymmetric heat
exchange is forbidden. However, if the system is driven at !d = !+ ± !−, they
can interact, enabling asymmetric heat currents. In accordance with the previous
discussion, highly asymmetric heat transport occurs at the vicinity of !d = !+ ± !−,
independently of the driving strength �.

The above results can be understood as follows. In general, a driven harmonic
network of N oscillators under consideration is very general, and it is hard to
understand a global property such as the heat recti�cation as a function of the
network parameters. However, we can take advantage of the peaked structure
of G0(!) obtained in Eq. (6.77), and consider only the main contributions to the
asymmetric transport in frequency domain. We start using Eq. (6.58) to writeT21(!) − T12(!) =∑k ~(! − k!d )J (! − k!d )J (!)��2× (|G0(! − k!d )21G0(!)11|2 − |G0(! − k!d )11G0(!)12|2) . (6.80)

Therefore, highly asymmetric heat transport can only occur when the two numbers|G0(!−k!d )21G0(!)11|2 and |G0(!−k!d )11G0(!)12|2 are large compared with the static
transport. The Green’s function G0(!) is peaked at the normal mode frequencies±!i . Hence, the principal contributions to the asymmetric transport occur when!−k!d and! correspond to a normal mode frequency ±!i simultaneously. However,
notice that when i = j we are evaluating |G0(�i)21G0(�i)11|2 − |G0(�i)11G0(�i)12|2 = 0
and consequently the recti�cation is small. Therefore, only at k!d = ±!i ± !j withi ≠ j, the asymmetric heat transport is expected to be large. In the particular, if we
go back to the case of N = 2, the positive driving frequencies at which one expects
large recti�cation are !d = !+ ± !−, as we have observed in Fig. 6.3.

6.5 Chapter’s outlook

The dynamics of physical systems can be profoundly modi�ed by a time periodic
perturbation. A fascinating example of this is the Kapitza pendulum. A static
pendulum has a single equilibrium position where its center of mass is at its lowest
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height. However, in the Kapitza pendulum one drives periodically the pendulum
giving rise to a new stable equilibrium position where the center of mass is at
its maximum height! In this chapter, we have exploited a similar idea to obtain
asymmetric stationary heat transport in a harmonic network.

We have started introducing the formalism of the quantum Langevin equation
to describe the exact open system dynamics of a collection of harmonic oscillators
that we refer to as the harmonic network. Then, we have de�ned internal energy,
heat, and work to �nd that any static (non-driven) network gives rise to vanishing
asymmetric currents as quanti�ed by the recti�cation coe�cient. Then, we have
considered the case of the periodically driven harmonic network and shown that
the asymmetric transport can be di�erent from zero in that case. Finally, we have
applied those general idea to a minimal model of only two oscillators. There, we
have seen that asymmetric transport occurs when the frequency of the driving is
resonant with the sum or di�erence of the normal mode frequencies of the network.
Intuitively, in only in that case that the driving induces an e�ective interaction
between the two normal modes, making possible the heat transport.
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There is no real ending. It’s just the place where you
stop the story.

— Frank Herbert

7
Conclusions and Outlook

In this thesis we have studied the dynamics of open quantum systems that are in or
out of equilibrium. In particular, in the �rst part of the thesis, we have developed a
new master equation approach that goes beyond the Born-Markov-secular paradigm.
The motivation for this is as follows. The miniaturization of quantum experiments
towards the microscale is often accompanied by a more detailed description of its
surroundings. This new available information can potentially be used to predict
more accurately the dynamics of open quantum systems. Moreover, for a �nite
environment, this extra information evolves dynamically and, therefore, it is timely
to develop new techniques that can take advantage of this fact. Our master equation
approach, the extended microcanonical master equation, takes advantage of this
fact by including a dynamically evolving bath and keeping track of the system-bath
correlations at a coarse-grained level. We are now in the position to give a concise
answer to the theoretical questions (TQ1)–(TQ4), that we posed at the beginning
of this thesis.

(TQ1) What does our approach reveal about open quantum system dynamics?

The answer is part of the output of Chap. 3. The extended microcanonical master
equation opens up the possibility to describe the dynamics of open quantum systems
that interact with a �nite, and therefore, dynamically evolving bath. In those
systems, the open system generates a non-negligible in�uence on the bath, causing
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it to dynamically evolve by, for instance, building up system-bath correlations
or generating nonequilibrium features in the bath. Contrary to the in�nite bath
paradigm, the global system-bath reaches an equilibrium state that maximizes the
total (observational) entropy. That is, in opposition to the system evolving to reach
the equilibrium temperature of the bath, which maximizes its local entropy, while
leaving the bath “untouched”.

(TQ2) How does our approach connect to previously used techniques?

Also this answer is part of the output of Chap. 3. Consider the generator of
the Born-Markov-secular master equation as a function of the inverse temperature
of the bath thermal state. We can now ask: which is the time-dependent value of
the inverse temperature � that makes the dynamics of the Born-Markov-secular
master equation as close as possible to the one of the extended microcanonical
master equation for the reduced state of the system? Answering this question is
in general hard. However, we were able to give an answer to this question in the
limit in which the system-bath correlations are small and where the rates that enter
the extended microcanonical master equation are a slowly varying function of the
energy. In that case, the optimal choice of the inverse temperature corresponds to a
nonequilibrium e�ective inverse temperature �⋆(t) that interpolates in a hierarchy
between the two master equation approaches, and it is in one to one correspondence
with the bath average energy. Moreover, from the de�nition of �⋆(t), it follows that
only a heat bath with an in�nite canonical heat capacity has a constant value for
the e�ective nonequilibrium inverse temperature �⋆(t) = �0.

(TQ3) Is it possible to complement our approach with a nonequilibrium thermodynamic
framework?

The short answer is yes, it is possible, as we have extensively discussed through-
out Chap. 4. Namely, we have seen that it is possible to give thermodynamic
de�nitions for the thermodynamic quantities (like internal energy, work, heat, or
entropy) such that the laws of thermodynamics arise from the underlying quan-
tum mechanical description. For instance, the total energy of the system plus the
coarse-grained energy of the bath is conserved under the dynamics of the extended
microcanonical master equation, which ultimately gives rise to the �rst law. Or,
also, we have seen that the total system plus bath observational entropy always
increases, which gives rise to the second law. We brie�y discuss how one can
extend those result to study transport scenarios, in which there is more than one
heat bath, although we do not give the explicit thermodynamic treatment in this
more general case.
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(TQ4) What does this new thermodynamic framework reveal?

One of the most interesting outputs of the discussion in Chap. 4, is that we
found a hierarchy of second laws, which is analogous to the hierarchy of master
equations obtained in Chap. 3. The �rst element in the hierarchy states that the
change in global observational entropy increases, which follows from the use of the
extended microcanonical master equation. From it, we obtain a second law in the
form of Clausius inequality, with a time dependent e�ective inverse temperature
given by �⋆(t). Finally, in the limit of an in�nite heat capacity, one can replace the�⋆(t) by its initial value �0 to obtain the Clausius inequality for an in�nite bath.

As it turns out, the use of Clausius inequality at a constant temperature �0 has
been used to compute the entropy production even for �nite baths. We show that
taking this approach always leads to higher entropy production or, for the case of
thermal machines, a lower e�ciency.

In the second part of the thesis, we have move forward weak-coupling master
equations, and we have studied other approaches to the dynamics of open quan-
tum systems. The �rst approach that we consider is the framework of quantum
operations, which we use to study general spectral properties of the evolution of
open quantum systems. We review the known fact that the completely positive
and trace preserving conditions of a quantum evolution implies that the spectrum
of the dynamical matrix is contained in the unit disk of the complex plane. Also,
after reshu�ing the indices of the dynamical matrix one obtains the so-called
Jamiołkowski-Choi state, and we also see that its eigenvectors are related to a
vectorized form of the Kraus operators. With this information at hand, we proceed
to investigate the practical questions (PQ1) and (PQ2).

(PQ1) Can the spectral properties of a quantum evolution give information about
(dynamical) phases of matter?

Again, the short answer is yes, as we discuss in Chap. 5. There, we study a
dynamical phase of matter known as open discrete time crystals, which can only
occur in periodically driven systems. This phase of matter is characterized by
displaying robust subharmonic oscillations that last, ideally, up to in�nite time. The
idea is that if such a phase of matter can exist, these properties must be re�ected
on the spectrum of the corresponding dynamical matrix. For instance, given that at
least two states are visited at stroboscopic times in the long time limit, at least two
eigenvalues must lie in the unit circle. Moreover, if the subharmonic oscillations
correspond to the usual period doubling, this phase of matter can be detected by
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having an eigenvalue equal to minus one, which shows that this dynamical phase
of matter can be detected by analyzing the spectrum of the corresponding quantum
evolution.

(PQ2) Which is the general form of a quantum evolution (operation) that leaves
invariant a collection of pure states?

As we discuss in Chap. 5, the most general quantum operation that leaves invari-
ant a collection of pure states (patterns) with as many elements as the dimension of
the Hilbert space has a very sparse dynamical matrix which has as eigenvectors the
populations and coherences of the patterns. While this result may not be surprising,
the fact that can be proved within the framework of quantum operations is an
example of the potential of this approach.

Finally, we explore the quantum Langevin equation. We have use this approach
to study the stationary thermodynamics in periodically driven harmonic networks.
This study has led to the answer to the practical question (PQ3).

(PQ3) Is it possible to achieve asymmetric heat transport through a harmonic net-
work?

As we discuss in Chap. 6, the heat transport in static harmonic networks is always
symmetric, in the sense that reversing the temperature bias always leads to a global
minus sign in the heat current. However, this ceases to be true for periodically
driven networks. The heat exchange processes enabled by the periodic driving give
rise to a heat exchange asymmetry that we quantify in terms of the recti�cation
coe�cient.

To conclude, we have extensively studied a variety of approaches to the dy-
namics of open quantum systems that are able to describe equilibrium and non
equilibrium scenarios. We hope that the theory developed in the �rst part of this
thesis can be extended and combined with existing techniques to explore the in-
triguing world of �nite baths, or to give more accurate predictions about open
quantum system dynamics. Also, we also hope that the applications studied in the
second part of this thesis may serve as inspiration for further research or, at least,
be regarded as original applications of the preexisting theory.
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Technicalities chapter 2

A.1 Exact perturbation expansions for theNakajima-
Zwanzig equation

In this section, we �nd an exact solution for the Nakajima-Zwanzig equation for a
weakly perturbed Hamiltonian H = H0 + �V in the form of a perturbation series in
powers of a small parameter �.

Solutions of the Nakajima-Zwanzig master equation are conveniently found in
terms of the Laplace transform, which for the density matrix reads

�̂(s) = ∫ ∞
0 dt�(t)e−st . (A.1)

Then, the Liouville-von Neumann equation (2.62) takes the simple forms�̂(s) − �(0) = �̂(s), (A.2)

which leads to the solution �̂(s) = 1s −  �(0). (A.3)
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In many cases of interest, the Liouville operator can be decomposed as an unper-
turbed part 0 and a perturbation 1; that is,  = 0 + �1. Then, one can take
advantage of the identity 1s −  = 1s − 0 + 1s − 0�1 1s −  , (A.4)

to obtain perturbative expansions in the parameter �. Equation (A.4) is nothing
else than the Laplace transform of Eq. (??) for X =  and Y = 0. The Laplace
transform of the Kernel is

̂(s) =  1s − =  1s −0
∞∑n=0 �n [1 1s −0 ]n . (A.5)

We now see that the lowest order solution of the Kernel n = 0 corresponds to
weak-coupling master equations, which are second order in �. Specifying further
the relevant map  often leads to further simpli�cations of ̂(s), but we do not
discuss this here. Similarly, the inhomogenous term in Laplace space is

Î (s) =  1s −0
∞∑n=0 �n [1 1s −0 ]n �(0). (A.6)

With those expressions at hand, the full solution of the Nakajima-Zwanzig equation
is simply

 �̂(s) = 1s −  − ̂(s) [�(0) + Î (s)], (A.7)

which is of no practical use.

A.2 More about the Markov approximation

The derivation of the master equations presented in Sec. 2.2 is rigorous. Nonetheless,
the Markovian approximation requires further discussion. Here, we discuss the
close relationship between the Markov approximation and the in�nite bath limit.

First, taking the limit t → ∞ in Eq. (2.49) is only justi�ed if the integrand
converges su�ciently quickly to zero. However, the bath correlation functions
cannot decay for arbitrary long times if the bath has a discrete spectrum. This result
is known as the quantum Poincaré recurrence theorem. The proof of the quantum
recurrence theorem requires mathematical notions of the theory of quasi-periodic
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functions [BL57]. Physical intuition about the recurrences can be obtained as
follows.

For simplicity, we take the bath correlation functions with � = � ′. To show that
the bath correlation function has recurrences, we need to show that |C�� (a; � ) −C�� (a; 0)| is bounded from above for an arbitrarily small parameter �. We �rst write

|C�� (a; � ) − C�� (a; 0)| = ||||||∑kq |[�B� (a)]qk |2[ΦB(a)]kk(ei(ek−eq)� − 1)||||||≤ 2∑kq |[�B� (a)]qk |2[ΦB(a)]kk(1 − cos[(ek − eq)� ]). (A.8)

We de�ne a small frequency �! such that ek − eq = (nkq + �kq)�! with �kq ≪ 1 andnkq ∈ ℤ. Also, consider the long time � = � (�!) = 2�/�!. Then,|C�� (a; � ) − C�� (a; 0)| ≈ (2� )2∑kq |[�B� (a)]qk |2|[ΦB(a)]kk |�2kq≤ (2� )2M� (a)∑i [ΦB(a)]kk ∑q �2kq, (A.9)

where M� (a) ∶= maxqk |[�B� (a)]qk |2. Similarly, we introduce the � ∶= √
maxk ∑q �2kq .

Hence, we arrive at |C�� (a; � ) − C�� (a; 0)| . (2� )2M� (a)�2, (A.10)

where � can be made arbitrarily small for an arbitrarily small choice of �!. Similar
arguments hold for the case � ≠ � ′. Hence, the integrals Γ�� ′(a;!) do not converge.

The situation is very di�erent if the bath has a continuous spectrum; that
is, if the bath has an uncountable in�nite number of frequencies. The reason is
the Riemann-Lebesgue lemma, which stands that given an absolutely integrable
function f̂ (!), then

lim�→∞ f (� ) = lim�→∞ ∫ d!2� f̂ (!)e−i!� = 0. (A.11)

The proof is as follows. Let the indicator function 1[a,b](!) = 1 if ! ∈ [a, b] and1[a,b](!) = 0 else. For any f̂ (!) it exists an arbitrarily good approximation ℎ̂(!) =∑i ℎi1[ai ,bi](!) with arbitrary coe�cients ℎi ∈ ℂ and ai , bi ∈ ℝ, such that

∫ d!|f̂ (!) − ℎ̂(!)| ≤ 2��, (A.12)
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where � ≥ 0 is arbitrarily small. Moreover, the function ℎ̂(!) ful�lls the condition

lim�→∞ ℎ(� ) ∶= lim�→∞ ∫ d!2� ℎ̂(!)ei!� = ∑i ℎi2� lim�→∞ eibi� − eiai�i� = 0. (A.13)

Then, we arrive at

lim�→∞ |f̂ (!)| ≤ ∫ d!2� |f̂ (!) − ℎ̂(!)| + lim�→∞ ||||∫ d!2� ℎ̂(!)ei!� |||| ≤ �. (A.14)

which is arbitrarily small and, therefore, proves the initial claim. A similar statement
holds for square integrable functions [RH12].

Consider now the absolutely integrable operator �B̂� (a;!) that ful�lls

∫ d!2� �B̂� (a;!) = �B� (a), (A.15)

Then the function f̂ (!) = ⟨�B̂� (a;!)†�B� (a)⟩a is also integrable since

∫ d!2� f̂ (!) = ⟨�B� (a)†�B� (a)⟩a < +∞ (A.16)

Then, the correlation function yields

lim�→∞C�� (a; � ) = lim�→∞ ∫ d!2� f̂ (!)ei!� = 0, (A.17)

and the decay of the correlation function to zero is guaranteed by the Riemann-
Lebesgue lemma.

To conclude, the Markov approximation is well justi�ed in two di�erent sce-
narios. The �rst one corresponds to considering times t are much smaller than the
typical recurrence time, albeit, much larger than the bath correlation time �B. The
second, corresponds to taking the in�nite bath limit which, intuitively, pushes the
recurrence time to in�nity.

168



B
Technicalities chapter 3

B.1 Useful properties EMME projectors

We divide the Liouvillian as follows  = 0,S + 0,B + �1, where 0,S[◦] = −i[HS, ◦],0,B[◦] = −i[HB, ◦], and 1[◦] = mf + V = −i�−1∑x[Hmf
S (Ex ) ⊗ Π(Ex ), ◦] − i[V , ◦].

We note the properties

0,S = 0,S = −i[HS,∑x tr[Π(Ex )◦] ⊗ !B(Ex )], (B.1)

0,B = 0,B = 0, (B.2)�mf = �mf = −i∑x [Hmf
S (Ex ), trB[Π(Ex )◦] ⊗ !B(Ex )], (B.3)�V = −i�∑x trB[Π(Ex )[V , ◦]] ⊗ !B(Ex ), (B.4)�V = −i�∑x [V , trB[Π(Ex )◦] ⊗ !B(Ex )], (B.5)�V = 0. (B.6)

which also show that [,0] = [ ,0] = 0.
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B.2 Equivalence Nakajima-Zwanzig and the time-
local equation

In this section, we show the non-trivial correspondance between the second order
Nakajima-Zwanzig equation and the time-local equation. Let  be the relevant
map, and  =  −  be its complementary. Let H = H0 + �V , where H0 is zeroth
order in the coupling strength �. In the interaction picture with respect to H0, the
corresponding Liouville-von Neumann equation yields)t �̃(t) = −i�[Ṽ (t), �̃(t)] =∶ (t)[�̃(t)]. (B.7)

Then, the Nakajima-Zwanzig equation (2.67) applies. Expanding such equation to
second order in � we arrive at)t �̃(t) =(t) �̃(t) + (t)�̃(0)+ (t) ∫ t

0 dt ′(t ′)�̃(0) + (t) ∫ t
0 dt ′(t ′) �̃(t ′). (B.8)

We want to manipulate Eq. (B.8) to make contact with the alternative derivation in
the main text. First, note that the formal integration of the Liouville-von Neumann
equation and left multiplication by  gives

 �̃(t) =  �̃(0) +  ∫ t
0 dt ′(t ′)�̃(t ′). (B.9)

Substituting  �̃(t) into Eq. (B.8) and rearranging yields)t �̃(t) =(t)�̃(0) + (t) ∫ t
0 dt ′(t ′)�̃(t ′)

+ (t) ∫ t
0 dt ′(t ′)[�̃(0) −�̃(t ′)], (B.10)

where the rightmost term can be ignored since the di�erence �̃(0) −�̃(t ′) is of
order �. Interestingly, there is a much simpler way to arrive to Eq. (B.10). The
formal solution of the Liouville-von Neumann Eq. (B.7) reads

�̃(t) = �̃(0) + ∫ t
0 dt ′(t)�̃(0) + ∫ t

0 dt ′ ∫ t′
0 dt ′′(t ′)(t ′′)�̃(t ′′). (B.11)

After taking the derivative of the above equation we get)t �̃(t) = (t)�̃(0) + (t) ∫ t
0 dt ′(t ′)�̃(t ′), (B.12)
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which after acting with  from the left is identical to Eq. (B.10) to second order in
the coupling strength �.

In conclusion, we have proven that it is equivalent to use the second-order
expansion of the Nakajima-Zwanzig equation or the time-local equation as a starting
point to derive a second order master equation for the relevant degrees of freedom� even in the case where 2 ≠  .

B.3 The Lindeberg theorem

In probability theory, the Lindeberg theorem provides a su�cient condition for a
set of random variables to converge to a normal distribution. We present here the
details showing that Lindeberg theorem guarantees the convergence of the density
of states g(e) of the spin bath to a normal distribution.

The Lindeberg theorem is as follows. Let XN ,r be a triangular array of in-
dependent (but not necessarily identically distributed) random variables wherer = 1,⋯ , N , with E[XN ,r ] = 0 and E[X 2N ,r ] = � 2N ,r . De�ne the random variable of the
sum SN ∶= ∑Nr=1 XN ,r with E[SN ] = 0 and E[S2N ] = � 2N ∶= ∑Nr=1 � 2N ,r . If the Lindeberg
condition

limN→∞ 1� 2N N∑r=1 E[X 2N ,r ∶ |XN ,r | > ��N ] = 0 ∀� > 0, (B.13)

holds, then, SN is normally distributed with zero mean and standard deviation �N
as N tends to in�nity.

The application to the spin bath is as follows. Consider a spin bath of N non-
interacting spin-1/2 particles. A bath eigenstate |en⟩ is uniquely identi�ed by the
sequence n = (n1,⋯ , nN ) where nr = {−1, +1} are independent and identically
distributed random variables with probability p(±1) = 1/2, with associated meanE[nr ] = 0 and variance E[n2r ] = 1/4. However, the individual contribution to the
energy is scaled by a prefactor Ωr /2 > 0, so we de�ne XN ,r = nrΩr /2. We note that

N∑r=1 E[X 2N ,r ∶ |XN ,r | > ��N ] = N∑r=1 Ω2rE[n2r ∶ |nr | > Ω−1r ��N ]
= ( N∑r=1 Ω2r)E[n21 ∶ |n1| > {maxr Ωr}−1��N ], (B.14)

where we have used the independent and identically distribution for the nr ’s. Hence,
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the Lindeberg condition holds provided that

limN→∞ maxr Ωr√∑r Ω2r /4 = 0, (B.15)

which we assume to be true for our spin bath. Therefore, we obtain a Gaussian
density of states g(e) = 2N (e, �N ).
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C.1 Matrix inequality in an extended space

In this appendix, we want to prove the following equivalence between matrix
inequalities. Consider X, Y , Z to be d × d matrices, with X > 0. Then,

Sc[A] ∶= Z − Y †X −1Y ≥ 0⇔ A ∶= (X YY † Z) ≥ 0. (C.1)

where the combination Sc[A] is also known as the Schur complement. The proof is
as follows. First, a quick calculation reveals that

(X 00 Sc[A]) = (1d −X −1Y0 1d )†(X YY † Z)(1d −X −1Y0 1d ) . (C.2)

We moreover note that

T ∶= ( 1d 0−Y †X −1 1d) = ( 1d 0Y †X −1 1d)−1 . (C.3)

is an invertible matrix. Then, given a matrix A and an invertible matrix T , one
has that A ≥ 0 if and only if T †AT ≥ 0, since for every state | ⟩ it exists another
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state |�⟩ = T −1| ⟩, such that | ⟩ = T |�⟩. Moreover, a block-diagonal matrix T †AT
is positive T †AT ≥ 0 if and only if each of the diagonal blocks is positive; that is,X ≥ 0 and Sc[A] ≥ 0, which proves our original claim (C.1).

C.2 Perturbation theory for maps

In order to assess the robustness of an eigenvalue, we want to consider that given
a map (�) =  + � , the �rst order dependence of the eigenvalues z(�) in �. Here,
we give a recipe to compute all the dependence of z(�) in � ≪ 1 in terms of an
in�nite series. The spectral equation of the map yields,⟨⟨L(�)|(�) = ⟨⟨L(�)|z(�), (C.4)

(�)|R(�)⟩⟩ = z(�)|R(�)⟩⟩, (C.5)

for a particular eigenvalue z(�). We assume that R(�), L(�) and z(�) can be expanded
in powers of � |R(�)⟩⟩ = ∑k≥0 �k |R(k)⟩⟩, (C.6)⟨⟨L(�)| = ∑k≥0 �k⟨⟨L(k)|, (C.7)z(�) = ∑k≥0 �kz(k). (C.8)

Using the above expansions into the eigenvalue equation (C.5), it follows that

|R(0)⟩⟩ +∑k≥1 �k (|R(k)⟩⟩ +  |R(k−1)⟩⟩) = ∑k≥1 k∑l=1 �kz(l)|R(k−l)⟩⟩ +∑k≥0 z(0)�(k)|R(k)⟩⟩.
(C.9)

Because the expansion has to be equal order by order in �, we obtain the recurrence
relation

( − � (0)) |R(k)⟩⟩ =  |R(k−1)⟩⟩ − k∑l=1 z(l)|R(k−l)⟩⟩. (C.10)

The correction to the eigenvalues can be computed by projecting onto ⟨⟨L(0)|, which
leads to z(k) = ⟨⟨L(0)||R(k−1)⟩⟩ − k−1∑l=1 z(l)⟨⟨L(0)|R(k−l)⟩⟩ = 1k! [)kz(�))�k ]�=0 (C.11)
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Finally, the �rst order correction is computed from the simple equationz(1) = [)�z(�)]�=0 = ⟨⟨L(0)||R(0)⟩⟩, (C.12)

which is the expression used in the main text.
As a �nal remark, perturbed eigenvectors can be also computed from Eq. (C.10),

however its expression is quite involved and dependent on the choice of the inverse
of the operator  − � (0) [LPK14] and we do not include them here.
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D
Technicalities chapter 6

D.1 Equivalence of the heat currents

In Chap. 2 and Chap. 3, we have argued that the correct de�nition of the heat �ux
that comes from the bath � corresponds to

Q̇′� ∶= − tr{H�[)t�]} = tr{(HS(t) + Hint,� )[)t�]} = tr [(HS(t) + HSR� )�̇(t)]=Q̇� − �Q̇� , (D.1)

where we have used that tr{H (t)[)t�(t)]} = 0, and de�ned �Q̇� = Q̇� − Q̇′� as the
di�erence between the heat �ux Q̇� de�ned in the main text and the standard
de�nition Q′� . Equivalently, using the equation of motion for �(t), we can recast
the di�erence as �Q̇� = i⟨[Hint,� , HS(t) + H�]⟩ = −i⟨[H (t), Hint,�]⟩. (D.2)

Now, using the Heisenberg equation of motion for Hint,� and rewriting it in terms
of the vector operators we arrive at

�Q̇� = ddt ⟨xTC�x�⟩ = ddt ⟨xTΠ� (dpdt + V (t)x)⟩. (D.3)
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In the stationary regime, we can compute the two summands in Eq. (D.3) using the
same techniques displayed in the main text, to arrive at the conclusion that �Q̇st� is
the time derivative of a time periodic function. More explicitly

⟨xTΠ� dpdt ⟩st = ∑jk K1(j, k)ei(j−k)!dt , (D.4)⟨xTΠ�V (t)x⟩st = ∑jlk K2(j, l, k)ei(j+l−k)!dt . (D.5)

where the functions K1(k, k′) and K2(j, k, k′) are time-independent, and its explicit
expression is not important. Therefore, the right-hand-side of Eq. (D.3) is the time-
derivative of a periodic function of period �d, whose contribution over a period
averages to zero �Q̇st(t) = 0 which make the two de�nitions equivalent for periodic
drivings in the stationary regime.
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