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Abstract

Artificial intelligence is innovating the fashion industry by proposing new appli-
cations and solutions to the problems encountered by researchers and engineers
working in the industry. In this thesis, we address three of these problems. In the
first part of the thesis, we tackle the problem of multi-label image classification
which is very related to fashion attribute recognition. In the second part of the
thesis, we address two problems that are specific to fashion. Firstly, we address the
problem of main product detection which is the task of associating correct image
parts (e.g. bounding boxes) with the fashion product being sold. Secondly, we
address the problem of color naming for multicolored fashion items.

The task of multi-label image classification consists in assigning various con-
cepts such as objects or attributes to images. Usually, there are dependencies that
can be learned between the concepts to capture label correlations (chair and table
classes are more likely to co-exist than chair and giraffe). If we treat the multi-label
image classification problem as an orderless set prediction problem, we can exploit
recurrent neural networks (RNN) to capture label correlations. However, RNNs
are trained to predict ordered sequences of tokens, so if the order of the predicted
sequence is different than the order of the ground truth sequence, there will be
penalization although the predictions are correct. Therefore, in the first part of
the thesis, we propose an orderless loss function which will order the labels in the
ground truth sequence dynamically in a way that the minimum loss is achieved.
This results in a significant improvement of RNN models on multi-label image
classification over the previous methods.

However, RNNs suffer from long term dependencies when the cardinality of set
grows bigger. The decoding process might stop early if the current hidden state
cannot find any object and outputs the termination token. This would cause the
remaining classes not to be predicted and lower recall metric. Transformers can
be used to avoid the long term dependency problem exploiting their self-attention
modules that process sequential data simultaneously. Consequently, we propose a
novel transformer model for multi-label image classification which surpasses the
state-of-the-art results by a large margin.

In the second part of thesis, we focus on two fashion-specific problems. Main
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product detection is the task of associating image parts with the fashion product
that is being sold, generally using associated textual metadata (product title or
description). Normally, in fashion e-commerces, products are represented by mul-
tiple images where a person wears the product along with other fashion items. If
all the fashion items in the images are marked with bounding boxes, we can use
the textual metadata to decide which item is the main product. The initial work
treated each of these images independently, discarding the fact that they all belong
to the same product. In this thesis, we represent the bounding boxes from all the
images as nodes in a fully connected graph. This allows the algorithm to learn rela-
tions between the nodes during training and take the entire context into account
for the final decision. Our algorithm results in a significant improvement of the
state-of-the-art.

Moreover, we address the problem of color naming for multicolored fashion
items, which is a challenging task due to the external factors such as illumination
changes or objects that act as clutter. In the context of multi-label classification,
the vaguely defined lines between the classes in the color space cause ambiguity.
For example, a shade of blue which is very close to green might cause the model to
incorrectly predict the color blue and green at the same time. Based on this, models
trained for color naming are expected to recognize the colors and their quantities
in both single colored and multicolored fashion items. Therefore, in this thesis, we
propose a novel architecture with an additional head that explicitly estimates the
number of colors in fashion items. This removes the ambiguity problem and results
in better color naming performance.

Key words: multi-label image classification, orderless recurrent models, trans-
formers for multi-label classification, main product detection, graph convolutional
networks, color naming
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Resum

La intel·ligència artificial innova la indústria de la moda proposant noves aplicaci-
ons i solucions als problemes als quals s’enfronten els investigadors i enginyers que
treballen en la indústria. En aquesta tesi abordem tres d’aquests problemes. A la
primera part de la tesi investiguem el problema de la classificació multi-etiqueta
d’imatges, que està molt relacionat amb el reconeixement d’atributs de moda. A
la segona part de la tesi abordem dos problemes específics de la moda. En primer
lloc, abordem el problema de la detecció del producte principal, que és la tasca
d’associar les parts correctes de la imatge (per exemple, delimitades mitjançant
regions d’interès rectangulars) amb el producte de moda que es ven. En segon
lloc, abordem el problema de el reconeixement categòric de colors per a robes
multicolors.

La tasca de la classificació d’imatges multi-etiqueta consisteix a assignar diver-
sos conceptes com objectes o atributs a una imatge. En general, es poden aprendre
dependències entre els conceptes per capturar correlacions d’etiquetes (les classes
cadira i taula tenen mes probabilitats de coexistir que cadira i girafa). Si tractem
el problema de classificació multi-etiqueta d’imatges com un problema de predic-
ció de conjunts de conceptes sense un ordre específic, podem aprofitar les xarxes
neuronals recurrents (RNN) per capturar aquestes correlacions d’etiquetes. No
obstant això, les RNN són entrenades per predir seqüències ordenades de símbols,
de manera que si l’ordre de la seqüència predita és diferent a l’ordre de la seqüència
de l’anotació de referència associada amb la imatge, la xarxa neuronal patirà una
penalització tot i que les prediccions siguin correctes. Per tant, en la primera part
de la tesi, proposem una funció objectiu per ordenar dinàmicament la seqüència
d’etiquetes en l’anotació de referència de manera que s’aconsegueixi la mínima
discrepància en la predicció. Això dóna com a resultat una millora significativa dels
models RNN en la classificació multi-etiqueta d’imatges comparat amb els mètodes
anteriors.

No obstant això, les RNN pateixen dependències a llarg termini quan la car-
dinalitat del conjunt augmenta. El procés de descodificació es pot aturar abans
si l’estat intern actual no pot trobar cap objecte i genera el símbol de terminació.
Això provocaria que les classes restants no es prediguessin i un percentatge menor
d’identificació de conceptes. Els models transformer es poden utilitzar per evitar el

v



problema de dependència a llarg termini explotant els seus mòduls d’auto-atenció
que processen seqüències completes de dades simultàniament. En conseqüèn-
cia, proposem un nou model de transformer per a la classificació multi-etiqueta
d’imatges que supera els resultats de l’estat de l’art per un ampli marge.

A la segona part de la tesi, ens enfoquem en dos problemes específics de la moda.
La detecció de producte principal és la tasca d’associar parts de la imatge amb el
producte de moda que es ven, generalment utilitzant metadades textuals associats
(títol o descripció del producte). Normalment, en les botigues electròniques de
moda, els productes estan representats per diverses imatges en què una persona
porta el producte principal juntament amb altres peces de roba. Si totes les peces
en les imatges estan anotades amb regions d’interès rectangulars, podem usar les
metadades textuals per decidir quin article és el producte principal. El mètode que
actualment representa l’estat de l’art en aquest camp tracta cadascuna d’aquestes
imatges de forma independent, descartant que totes pertanyen al mateix producte.
En aquesta tesi, representem les regions d’interès rectangulars de totes les imatges
com vèrtexs en un graf completament connectat. Això permet que l’algorisme
aprengui les relacions entre els vèrtexs durant l’entrenament i tingui en compte tot
el context per a la decisió final. El nostre algoritme dóna com a resultat una millora
significativa respecte a l’estat de l’art.

A més, abordem el problema del reconeixement categòric de colors per a ro-
bes multicolors, que és una tasca difícil a causa de factors externs com canvis
d’il·luminació o oclusions causades per altres objectes. En el context de la classifi-
cació multi-etiqueta d’imatges, les fronteres difuses entre les classes en l’espai de
color causen ambigüitat. Per exemple, un to de color blau que és molt proper al verd
pot fer que el model predigui incorrectament els colors blau i verd al mateix temps.
No obstant això, s’espera que un model intel·ligent de reconeixement categòric de
colors sigui capaç a més d’encertar el nombre correcte de colors a predir en roba
d’un o diversos colors. Per això, en aquesta tesi proposem una arquitectura nova
amb una sortida addicional que prediu explícitament el nombre de colors en robes
de moda. Això elimina el problema de l’ambigüitat i millora significativament els
resultats.

Paraules clau: classificació d’imatges multi-etiqueta, models recurrents sense
ordre, transformers per a classificació de multi-etiqueta, detecció de productes prin-
cipals, xarxes convolucionals de grafs, reconeixement categòric de colors
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Resumen

La inteligencia artificial innova la industria de la moda proponiendo nuevas aplica-
ciones y soluciones a los problemas que afrontan los investigadores e ingenieros
que trabajan en la industria. En esta tesis abordamos tres de estos problemas. En la
primera parte de la tesis investigamos el problema de la clasificación multi-etiqueta
de imágenes, que está muy relacionado con el reconocimiento de atributos de
moda. En la segunda parte de la tesis abordamos dos problemas específicos de
la moda. En primer lugar, abordamos el problema de la detección del producto
principal, que es la tarea de asociar las partes correctas de la imagen (por ejemplo,
delimitadas mediante regiones de interés rectangulares) con el producto de mo-
da que se vende. En segundo lugar, abordamos el problema del reconocimiento
categorico de colores para ropas multicolores.

La tarea de la clasificación de imágenes multi-etiqueta consiste en asignar va-
rios conceptos como objetos o atributos a una imagen. Por lo general, se pueden
aprender dependencias entre los conceptos para capturar correlaciones de eti-
quetas (las clases silla y mesa tienen mas probabilidades de coexistir que silla y
jirafa). Si tratamos el problema de clasificación multi-etiqueta de imágenes como
un problema de predicción de conjuntos de conceptos sin un orden especifico,
podemos aprovechar las redes neuronales recurrentes (RNN) para capturar dichas
correlaciones de etiquetas. Sin embargo, las RNN son entrenados para predecir
secuencias ordenadas de símbolos, por lo que si el orden de la secuencia predicha
es diferente al orden de la secuencia de la anotación de referencia asociada con
la imagen, la red neuronal sufrirá una penalización aunque las predicciones sean
correctas. Por lo tanto, en la primera parte de la tesis, proponemos una función
objetivo que ordenará dinámicamente la secuencia de etiquetas en la anotación de
referencia de manera que se logre la mínima discrepancia con la predicción. Esto
da como resultado una mejora significativa de los modelos RNN en la clasificación
multi-etiqueta de imágenes con respecto a los métodos anteriores.

Sin embargo, las RNN sufren dependencias a largo plazo cuando la cardinalidad
del conjunto aumenta. El proceso de decodificación puede detenerse antes si el
estado interno actual no puede encontrar ningún objeto y genera el símbolo de
terminación. Esto provocaría que las clases restantes no se predijeran y una tasa
menor de identificación de conceptos. Los modelos transformer se pueden utilizar
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para evitar el problema de dependencia a largo plazo explotando sus módulos de
auto-atención que procesan secuencias completas de datos simultáneamente. En
consecuencia, proponemos un modelo de transformer novedoso para la clasifica-
ción multi-etiqueta de imágenes que supera los resultados del estado del arte por
un amplio margen.

En la segunda parte de la tesis, nos enfocamos en dos problemas específicos
de la moda. La detección de producto principal es la tarea de asociar partes de la
imagen con el producto de moda que se vende, generalmente utilizando metadatos
textuales asociados (título o descripción del producto). Normalmente, en los e-
commerces de moda, los productos están representados por varias imágenes en las
que una persona lleva el producto principal junto con otras prendas de ropa. Si todas
las prendas en las imágenes están anotadas con regiones de interés rectangulares,
podemos usar los metadatos textuales para decidir qué artículo es el producto
principal. El método que actualmente representa el estado del arte en este campo
trata cada una de estas imágenes de forma independiente, descartando que todas
pertenecen al mismo producto. En esta tesis, representamos las regiones de interés
rectangulares de todas las imágenes como vértices en un grafos completamente
conectado. Esto permite que el algoritmo aprenda las relaciones entre los vértices
durante el entrenamiento y tenga en cuenta todo el contexto para la decisión final.
Nuestro algoritmo da como resultado una mejora significativa respecto al estado
del arte.

Además, abordamos el problema del reconocimiento categórico de colores
para ropas multicolores, que es una tarea difícil debido a factores externos como
cambios de iluminación u oclusiones causadas por otros objetos. En el contexto
de la clasificación multi-etiqueta de imágenes, las fronteras difusas entre las clases
en el espacio de color causan ambigüedad. Por ejemplo, un tono de color azul que
es muy similar al color verde puede hacer que el modelo prediga incorrectamente
los colores azul y verde al mismo tiempo. Sin embargo, se espera que un modelo
inteligente de reconocimiento categórico de colores sea capaz ademas de acertar
el numero correcto de colores a predecir en ropa de uno o varios colores. Por ello,
en esta tesis proponemos una arquitectura novedosa con una salida adicional que
predice explícitamente el número de colores en ropas de moda. Esto elimina el
problema de la ambigüedad y mejora significativamente los resultados.

Palabras clave: clasificación de imágenes multi-etiqueta, modelos recurrentes
sin orden, transformers para clasificación de multi-etiqueta, detección de productos
principales, redes convolucionales de grafos, reconocimiento categórico de colores
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1 Introduction

Visual perception is a human cognitive ability that enables us to interpret our sur-
roundings. Light reflected from objects passes through our eyes and stimulates
light-sensitive neurons. These signals are transmitted to the visual cortex of the
brain where the signals are turned into images that we see. This ability makes us
recognize static and dynamic objects around us and helps us to avoid, engage or
interact with them. However, for computers, images are mathematical arrays that
consist of pixels which are represented by three values whose different combina-
tions form different colors. A simple computer can store, delete or visualize an
image. However, unlike humans, it cannot directly extract any semantically mean-
ingful information. Extracting these representations from images is the main focus
of the computer vision (CV) field. Computer vision is about converting images that
consist of scalar values into semantically meaningful representations. Thanks to
the advances in computer vision, today we have self-driving cars, intelligent secu-
rity systems that can recognize intruders, gaming console cameras that perform
real-time gesture recognition, etc. We can state that, in today’s world, CV-based
systems are widely spread and used.

One of the sectors that uses CV-based systems is the fashion industry, which
is a multi-billion dollar global enterprise. Due to the widespread use of online
shopping, e-commerce retailers try to provide a smoother experience for customers
who might look for a specific type of garment by displaying more content which
resembles the garment of interest in category, shape, color or, in other words, in
fashion attributes. Therefore, it is crucial to have fashion attribute information for
all items to recommend more relevant content to a potential buyer. It is possible
that, especially in case of large retailers, every day tens of thousands of new available
items are added to the catalog for customers. This makes the manual process of
obtaining fashion attribute information tedious. Therefore, e-commerce retailers
exploit CV-based systems to extract fashion attribute information from images
automatically, making the CV-based systems valuable labour-saving technology.
Apart from attribute recognition systems, visual search engines that search fashion
items similar to an input image or virtual dressing rooms that enable users to try on
clothes virtually are other examples of CV-based systems in fashion.

Despite the prevalence of CV-based systems in fashion, there is still a long way
to go. The performance of the CV-based systems still falls behind human vision.
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Chapter 1. Introduction

Moreover, there are still problems in the fashion industry that can be addressed by
recent advances in computer vision and machine learning techniques.

1.1 Computer Vision for Fashion

Convolutional neural networks (CNN) are a type of artificial neural networks that
exploit convolutional filters for the computation of features. Although the first
functional implementations were proposed in the 1990s [66, 67], due to the hard-
ware constraints and computation intensive nature of CNNs, the computer vision
community kept relying on hand crafted features for generic tasks. However, thanks
to the advances in GPU technology, fast implementations of CNNs became possible.
Krizhevsky et al. [62] proposed the AlexNet model which was the first GPU-based
deep CNN model evaluated on the Imagenet dataset [30] and it won the ILSVRC
challenge. This became a milestone and deep CNN models started to be widely
used by the computer vision research community.

Early computer vision works for fashion [8, 13, 33, 37, 123] mostly focused on
learning from hand crafted features such as histogram of pixels in various color
spaces or from feature descriptors such as SIFT [87], HOG [28], LBP [94] and etc. The
most common tasks were visual search [37, 123], fashion attribute recognition [9,
13, 132] and fashion item parsing [38]. Experiments were conducted on datasets
either collected by the authors or that were made public previously [9, 38, 79, 132].

After CNNs became the new normal for the computer vision community, the
number of fashion papers that tackled different computer vision tasks substantially
increased due to its potential profit-making implementations in the industry. Hadi
et al. [46] proposed a new task called street-to-shop which is about matching a
real-world example of a garment (i.e. street image) to the same garment in an
e-commerce image where the background is plain and white (i.e. shop image).
They collected a huge dataset from several online retailers and made it public
for the research community. Liang et al. [73] proposed a novel system for jointly
parsing fashion images given the image-level fashion tags. However, the first full
scale deep CNN model for fashion was proposed by [84]. The authors introduced
the DeepFashion dataset which is annotated with fashion attributes and clothing
landmarks. Moreover, they proposed a novel model, FashionNet, which jointly
learns to predict attributes and landmarks. Some of its authors introduced the
DeepFashion2 dataset [40] which is the enriched version of the first dataset with
richer annotations such as denser landmarks and per-pixel mask annotations.

The availability of large datasets propelled research on many fashion applica-
tions. We will here mention a small selection. Wu et al. [127] proposed a novel model
that leverages natural language feedback for interactive fashion item retrieving. Ru-
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Figure 1.1 – Usual steps of a fashion product processing pipeline: fashion item detection,
main product detection, attribute recognition and visual search.

bio et al. [99] introduced a unique fashion problem, main product detection, which
is the task of identifying the bounding boxes that contain the product being sold
in the gallery of images of the product. Li et al. [71] proposed the first end-to-end
trainable outfit recommender system based on deep CNN networks. Zu et al. [142]
proposed a novel model, called FashionGAN, which is a two-stage GAN framework
that generates fashion outfits given the textual descriptions. Consequently, CNN
based models are widely used to solve many vision based fashion problems some of
which can be seen in Figure 1.1. In the following, we identify three fashion problems
which will be investigated in depth in this thesis.

1.1.1 Multi-label Image Classification

In the first part of the thesis, we will focus on multi-label image classification.
Multi-label image classification is the task of assigning various concepts such as
object classes, attributes or tags to images. As can be seen in Figure 1.1, a fashion
item might be associated with a large number of tags (e.g. pants, black, orange,
pockets, long pants, cotton etc.) which makes multi-label image classification a
very challenging task in computer vision for fashion. It is also clear that there are
interdependencies between the labels: jeans usually have blue color or black bags
usually have leather texture. Therefore, it is crucial to have a model that is able
to label complex interdependencies and is robust to confusion caused by highly
similar fashion categories. In that context, traditional approaches like Binary Cross-
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Figure 1.2 – Traditional models for multi-label image classification might use the same
visual evidence for different predictions. In the example above, they might incorrectly predict
a bicycle and motorcycle at the same time using the visual evidence of hand grips and wheels.

Entropy (BCE) provide satisfactory performances, but might fail in case of high
similarities between the concepts, since they do not discount evidence already used
in support of another label (see Figure 1.2).

There are other types of machine learning models that do not suffer from the
same problem. For example, recurrent neural networks (RNN) keep an internal
state that factors in the previously predicted labels before every new one, which
can be used for learning label dependencies. Therefore, they were proposed to be
used for set prediction tasks like multi-label classification [107]. However, a critical
limitation is that the RNN loss would penalize correct predictions if they are not
generated in the same order as in the ground truth label sequence, which would
make training a very accurate model impossible in practice. Several works [56, 119]
tried to address this issue by imposing a fixed order. In that way, during training
RNN learns to make the predictions always in the same order and in theory avoids
the penalization caused by mismatched orders. Although imposing a fixed order
alleviates the problem, it is far from solving it. For example, if visual evidence of
an object in an image is large, the RNN may choose to predict that object in the
first step. However, if the object is not the first label in the imposed order, the loss
will penalize the prediction. Several works [15, 117] proposed novel methods to
make RNNs works with orderless data. Vinyals et al. [117] proposed to learn the
optimal order during the training without considering the predicted order. Chen
et al. [15] removed the order by predicting all the labels in each time step, but that
forced them to also introduce an additional module which prevents the model
from generating duplicate predictions. Although these new models obtain better
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results with respect to previous models, they are short of fully exploiting RNNs for
multi-label image classification. In this thesis, we propose a novel orderless loss for
recurrent models to improve multi-label image classification performance.

Although RNNs are good solutions for learning sequential data, they are known
to suffer from long term dependencies. LSTMs were proposed in order to tackle this
issue by [50]. Although LSTMs alleviate this issue with the proposed memory cell,
they do not remove it. Therefore, RNN models in general are known to still suffer
from long term dependencies especially in case of sets with high cardinalities (e.g.
long sequences). Typically, RNNs generate class predictions decoding the previous
hidden state and/or attention. If the decoding process is interrupted due to a bad
hidden state or attention, an RNN is forced to output the termination token which
causes that objects in not-yet attended regions are not predicted. Although this
problem was never addressed directly, there were several works that proposed to
replace the RNN with other models. Chen et al. [19] replaced the RNN with graph
convolutional networks (GCN) to explicitly learn label dependencies. By avoiding
the RNN decoding process and explicitly learning the label dependencies with
GCNs, they managed to surpass the previous methods by a large margin. On the
other hand, transformers have demonstrated excellent performance in sequence
prediction. The proposal of replacing RNNs with self-attention layers reduced
the computational complexity and path length between long term dependencies.
Consequently, in this thesis, we investigate models that prevent the pitfalls of sequence
prediction, and test methods that process all data in parallel. These models can
therefore perform a holistic prediction of the labels present in an image.

1.1.2 Deep Learning for Fashion Problems

In the second part of the thesis, we will investigate two important fashion problems.
Main product detection is one of the most important steps in the fashion product
parsing pipeline, which was introduced by [99]. In fashion, a product (e.g. sweater)
is represented by multiple images in a gallery, worn by a model who also happens to
wear a complete outfit (e.g. earrings, sweater, pants, shoes). Main product detection
is about associating correct parts of these multiple images (bounding boxes) with
the product that is being sold (sweater), usually using the textual metadata. In the
first step of the fashion product parsing pipeline, a fashion item detector is run
on images to obtain the bounding boxes. Then, using the given textual metadata
(product title or product description), the bounding box that bounds the main item
is selected. If this process fails at some point, all future queries about the item will
be wrong since the category information associated with the main product will be
defective. In Figure 1.3, an example product with the main product highlighted in
green can be seen.
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Product title: Skinny longline t-shirt in blue

Figure 1.3 – Main product detection consists of associating the correct bounding boxes
(green) with the main product given the textual metadata. If the context provided by all
images is used during training, the task becomes easier since the main product (t-shirt) is
more apparent and dominant than other items.

Rubio et al. [99] proposed a novel model to solve the main product detection
problem. However, their model treats each bounding box that belongs to the same
product independently, thus it does not take similarities and dissimilarities between
the bounding boxes into account. Therefore, the model does not have the full
context during training nor during evaluation which leads to inferior performance.
If the relation between the images that belong to the same product was learned
during training, the model would obtain better results. Therefore, we propose a
holistic main product detection method that takes into account all bounding boxes
simultaneously to make the final decision in this thesis.

As a second fashion application, we investigate color naming. Color naming is
one of the most challenging vision based tasks due to reasons such as discrepancies
between the physical nature of color and human perception, external factors like
varying illumination and objects that act as clutter. Existing research on color in
computer vision mostly focused on naming the 11 basic colors that were defined in
the pioneering work of [6]. Since then color naming was addressed by the computer
vision community and many novel datasets were introduced [78, 110, 111].

In fashion, the difficulty of color naming is significantly raised due to the es-
sential extra step of segmenting the fashion item from the background or other
hindrances such as human skin, hair or other fashion items (see Figure 1.4a). More-
over, most of the fashion items are multicolored which makes the task much more
challenging: in order to be useful for the fashion industry, the system must return
the right number of colors to describe it. Therefore, models trained for color naming
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(a)

Color

red
orange

yellow

green

blue

green

purple

(b)

Figure 1.4 – In the image on the left, predicting the color names in the cardigan is challenging
due to the background and overlapping fashion items (blue turtleneck top and blue jeans
pants). In the image on the right, if the model is not sure about labeling the item as red or
orange, both labels might have high probabilities. In the context of multi-label classification,
it can be deduced that the item is multicolored (red and orange), but actually the item is
single colored.

are expected to recognize the colors (and their importance) in both single colored
and multicolored fashion items. In this context, it is clear that classifying all the
color palette into a predefined set of classes is not an easy task. For example, a
lighter shade of the color green might look like the color blue due to the human
perception or the shade being very close to blue in the color space. The color mod-
els might suffer from the same phenomenon: if we consider the same example,
the model might be tricked into predicting both blue and green colors, although it
is obvious that only the green color is present. This is a prevalent problem in the
industry that the research community had not yet addressed. An example sample
that displays this problem can be seen in Figure 1.4b. In this thesis, we propose
a novel architecture with the additional auxiliary task of explicitly estimating the
number of color names for multicolored fashion items.

1.2 Objectives and Approach

In this thesis, we aim to improve the state of the art in three areas where conven-
tional computer vision methods fall short of providing the level of accuracy required
by the fashion industry. In Chapters 2 & 3, we focus on improving multi-label clas-

7



Chapter 1. Introduction

sification. In addition to the fashion industry, the proposed approaches benefit a
wider range of application domains that use multi-label classification. In Chapter 4,
we introduce a novel model for the main product detection task that improves the
state-of-the-art. Finally, in Chapter 5, we propose a novel architecture to improve
color naming for multicolored fashion items.

1.2.1 Multi-label Image Classification

In this part of the thesis, we introduce novel losses and models to improve the
performance of multi-label image classification models. First, we introduce a novel
way of exploiting RNN models for multi-label classification. Then, to avoid the
architectural limitations of RNN models, we introduce a novel visual transformer
model.

Recurrent models for multi-label image classification. Recurrent models are in-
strumental to learn label dependencies when the input data is sequential. If we
consider the multi-label classification problem as a set prediction problem, we can
treat a label set as an orderless sequential data. In order to avoid penalizations
caused by misalignment between the ground truth sequence and prediction se-
quence, several works proposed to impose a fixed order [56, 119]. The fixed order
approach does not take arrangement of labels in images into account. A dominant
object, which the RNN model can be inclined to predict in the first step, might be
the last label in the ground truth sequence due to the fixed order. However, in this
thesis, our objective is to propose a novel orderless loss which takes the natural
order of labels in the image into account. In Chapter 2, we show the limitations
of the fixed order approaches and common problems such as duplicate or missed
predictions caused by the fixed order approaches. Our proposed recurrent models
do not suffer from these limitations.

Visual transformers for multi-label image classification. Although we surpass
the limitations of the fixed order approaches and achieve state-of-the-art results
with orderless recurrent models, we still encounter some problems due to the re-
cursive nature. In Chapter 3, our objective is to avoid processing data recursively
to not suffer from long term dependencies and to employ a model that can han-
dle orderless sequential data. Therefore, we propose a novel visual transformer
model. We show how recurrent models fail when the cardinality of the predicted
set grows higher. We also include additional novelties to the model to improve the
performance.

8



1.3. Industrial PhD in Wide Eyes Technologies

1.2.2 Deep Learning for Fashion Problems

In this part of the thesis, we introduce novel architectures to tackle two fashion
problems: main product detection and color naming. Firstly, for main product
detection, we propose a novel architecture that exploits graph convolutional net-
works to represent all bounding boxes of a fashion product as nodes in a graph.
This graphical representation allows us to take all bounding boxes into account
when we make the final decision of classifying a node as positive (main product)
or negative (not main product) nodes. Secondly, for color naming of multicolored
fashion items, we propose a novel architecture with an additional classification
head that explicitly estimates the number of colors in a fashion item alleviating the
ambiguity caused by similar colors.

Main product detection. In Chapter 4, we show the limitations caused by the
model that was proposed by [99]. Our objective is to show that exploiting inter-
image relations between the bounding boxes that belong to the same product is
more beneficial for the main product detection task. We employ graph convolu-
tional networks to represent all bounding boxes as nodes in a fully connected graph.
We propose several setups where we treat the products differently and compare
them with the baselines. We display the superior results of our models on the
dataset by [99] and on our newly introduced datasets.

Color naming. In Chapter 5, we introduce the problem of color naming for multi-
colored fashion items which had not received much attention from the research
community. Our objective is to solve the problem of inaccurate multi-label pre-
dictions caused by the uncertainty of the color model. We show that explicitly
predicting the number of colors in an item alleviates this uncertainty and improves
the color naming performance for multicolored fashion items. We show that our
model performs almost as well as humans in this highly ambiguous and difficult
task.

1.3 Industrial PhD in Wide Eyes Technologies

In this section, we describe the work conducted in Wide Eyes Technologies which is
the industrial partner of this thesis. First, we briefly introduce the company. Then,
in the following paragraphs, we describe the works conducted over the last five
years.

Wide Eyes Technologies is a business-to-business company that uses computer
vision and machine learning techniques to offer solutions for fashion companies
to increase their sales. It was founded in 2013 and is based in Barcelona. The first
product of the company was a mobile application called Similify which was used
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for retrieving similar fashion products to a query item that was segmented with
a contour by users on a image. After the success of the application, the company
switched to developing APIs for businesses. Shop By Image was the first API that
was developed and had similar functionalities to those of Similify. It was followed
by the Similar Recommendation API, and finally the Auto-Tagging API which is used
for fashion attribute recognition.

The work conducted as a machine learning engineer at Wide Eyes Technologies
generally consisted of four responsibilities: data management, R&D, coding & code
management and model deployment. In the next paragraphs, we will explain each
of the responsibilities briefly.

Training deep CNN models requires large amounts of data. The performance
of CNN models on the ImageNet dataset over the years shows us that, if deeper
models (hence high computational expenses) are affordable, CNN models can
surpass even the human performance [101] with large amounts of data. In that
context, we can claim that data management is one of the the most important steps
of machine learning engineering considering the high expectations by customers in
the industry. In that context, Wide Eyes Technologies works with huge amounts of
data. Therefore, managing and annotating these huge amounts of data are critical
to the success of the deep CNN models.

Another aspect of data management is enriching the label space. When the
number of clients grows bigger over the years, it is normal that some clients start to
have more specific requests about the products. They might demand more classes
or even more attributes to have a better correspondence between the products
and their catalog. This requires the process of defining new classes or attributes
considering the existent taxonomy structure. Sometimes, the newly added classes
are subsets of the existing ones which requires coordinating a re-labelling of the
existing data. Therefore, it is crucial to consider potential demands by the clients
in the future in order to reduce the amount of work necessary for redefining the
attribute structure as much as possible.

Another important part of data management is data curation. When the dataset
grows bigger and gets richer with new samples and attributes, it also becomes
harder to preserve the quality of labels. Due to the human errors in the annotation
process, the percentage of noisy labels in the dataset might increase. Although deep
CNN networks are robust to noisy labels to a certain degree, it becomes harder to
maintain the performance considering complex dependencies between classes and
attributes. Moreover, assuring that each category has enough samples for training
(e.g. having a balanced dataset) is also essential. All of these steps have been part of
the work at Wide Eyes Technologies.

The conducted R&D at Wide Eyes Technologies over five years is the bulk of
the company work and this thesis. In that context, the most important part has
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been finding novel ideas, empirically validating them and comparing the results
with the state-of-the-art. It was essential to focus on problems that were closely
related to the company work to avoid divergence between the efforts invested in the
company and PhD as much as possible. Apart from that, many models with different
functionalities were trained continuously. Moreover, updating and enriching our
codebase with most supported libraries used in the research community was also
part of the work. After the training step, using the internal tools to visualize the
trained models was part of the evaluation process.

Continuously training and evaluating models with different functionalities re-
quired a considerable amount of time on programming. Every piece of code was
stored in a git repository which was accessible by the research team. It was common
that multiple members working on different parts of the same project at the same
time. Therefore, it was essential to have sound code development skills and team
coordination strategies to keep the code clean and clear for debugging. It is critical
to have a bug free code to avoid having to repeat the same experiment (which might
last a couple of weeks). In that context, making unit tests for our codebase was
important part of the work.

Finally, deploying the trained models for production was also a fair amount of
work. As expected, deploying and maintaining these models on the cloud is one of
the major expenses for an AI company. Therefore, it is crucial to reduce the com-
putation costs and memory usage as much as possible. This might require use of
different frameworks for more efficient computations or architectural modifications
of the models. After these improvements and modifications, it is also important
to verify that the output of the models does not deviate or is within the expected
output interval.
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2 Orderless Recurrent Models for Multi-label
Classification*

2.1 Introduction

RNNs have demonstrated good performance in many tasks that require processing
variable length sequential data. One of the most popular types of RNN is the Long-
Short Term Memory networks (LSTM) [50]. LSTMs improve over earlier RNNs,
especially addressing the vanishing gradient problem, and have advanced the state
of the art in machine translation [107] and speech recognition [43], among other
tasks. They have also been combined with deep Convolutional Neural Networks
(CNN) and used for computer vision tasks, such as image captioning [118], and
video representations [106]. Furthermore, LSTMs have been shown to be useful for
traditionally non-sequential tasks, like multi-label classification [15, 56, 76, 119].

Multi-label classification is the task of assigning a wide range of visual concepts
to images. These concepts could include object classes or actions, but also at-
tributes such as colors, textures, materials, or even more abstract notions like mood.
The large variety of concepts makes this a very challenging task and, to successfully
address it, methods should learn the dependencies between the many concepts:
boats are not common in office spaces, and penguins are seldom seen in deserts.
Another problem of multi-label classification is the fact that similarities between
classes may make the model uncertain about a particular object (e.g. it could be
either a bicycle or a motorcycle) while being sure that both are not simultaneously
present in the image. Consequently, it should choose one of the labels and not both,
but traditional approaches like Binary Cross-Entropy (BCE) do not discount evi-
dence already used in support of another label, and would predict both. In practice,
these dependencies between the labels turn the task of multi-label classification
into a structured labelling problem [76].

Image captioning, where the task is to generate a natural language sentence
describing the image, is highly related to multi-label classification. The main differ-
ence is that in image captioning the ordering constraint imposed by the recurrent

*This chapter is based on a publication in the Conference of Computer Vision and Pattern Recogni-
tion (CVPR, 2020) [133].
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Rare: dog
Freq: dog, frisbee
PLA: dog, frisbee

Rare: bus, car, person
Freq: car, bus
PLA: bus, car, person

Figure 2.1 – Estimated labels for various approaches. In the Rare (rare-first) approach bigger
and more frequent classes might cause other classes to be ignored (frisbee in the left figure),
meanwhile in the Freq (frequent-first) approach smaller frequent classes are ignored (person
in the right figure). Our approach PLA circumvents these problems and correctly assigns the
labels to both images.

neural network comes naturally, as sentences have a sequential nature, and RNNs
are considered the appropriate model to generate an ordered list of words [118, 129].
Recently, it was found that recurrent networks also obtain good results in (orderless)
structured labelling tasks like multi-label classification, and that they were good
at modelling the dependencies in label space. Typically this is implemented by
replacing the BCE “multi-head" of the network with an LSTM module, using it to
generate a variable length sequence of labels, plus a termination token. However,
this approach has a caveat: the LSTM loss will penalize otherwise correct predic-
tions if they are not generated in the same ordering as in the ground truth label
sequence. This seriously hinders convergence, complicates the training process,
and generally results in inferior models.

Several recent works have tried to address this issue by imposing an arbitrary,
but consistent, ordering to the ground truth label sequences [56, 119]. The rationale
is that if the labels are presented always in the same order, the network will, in
turn, predict them in the same order as well. Despite alleviating the problem, these
approaches are short of solving it, and many of the original issues are still present.
For example, in an image that features a clearly visible and prominent dog, the LSTM
may chose to predict that label first, as the evidence for it is very large. However, if
dog is not the label that happened to be first in the chosen ordering, the network
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will be penalized for that output, and then penalized again for not predicting dog in
the “correct" step according to the ground truth sequence. In this work, we observe
that this leads to more difficult convergence, as well as sub-optimal results, like a
label being predicted several times for the same image by the trained model.

In contrast with related works, we do not impose a predefined order to the
output sequence, since this does not respond to any real constraint that the model
should fulfill. Instead, we dynamically choose the ordering that minimizes the
loss during training by re-arranging the ground truth sequence to match as closely
as possible the sequence of predicted labels. We propose two ways of doing that:
predicted label alignment (PLA) and minimal loss alignment (MLA). We empirically
show that these approaches lead to faster training (see Figure 2.5), and also elimi-
nate other nuisances like repeated labels in the predicted sequence. Furthermore,
we obtain state-of-the-art results on the MS-COCO, WIDER Attribute and PA-100K
datasets.

2.2 Related Work

Deep recurrent networks. Recurrent neural networks [100], are neural networks
that include loops, and can process the same input (plus an internal state used for
passing messages between iterations) several times with the same weights. The
original formulation of RNNs is notoriously difficult to train because of the explod-
ing/vanishing gradient problems, which are exacerbated with long input sequences.
Later research found solutions to these problems, including the particularly suc-
cessful models Gated Recurrent Unit [22] and Long-Short Term Memory [50].

Despite originally being designed for sequential data, LSTM networks have
also been used for orderless data, or sets [15, 117]. Vinyals et al. [117] explores the
different types of orderless data that can be processed by an LSTM network, and
proposes different architectures and training procedures to deal with them. Chen et
al. [15] proposes a method for order-free usage of recurrent networks for multi-label
image annotation. Both these methods are discussed in more detail after we have
introduced our approach to the training of orderless recurrent networks (see Section
2.3.3).

Multi-label classification. Unlike in traditional (single-label) classification, in
multi-label classification each image can be associated with more than one concept.
Yet, initial approaches for multi-label classification in the literature treat each occur-
rence of a label independently from the others [42, 126], thus not taking advantage
of label correlations.

Earlier works that tried to leverage label correlations exploited graphical models
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such as Conditional Random Fields (CRFs) [41] or Dependency Networks [45]. Chen
et al. [14] combine CRFs with deep learning algorithms to explore dependencies
between the output variables. Read et al. [98] propose using a chain of binary
classifiers to do multi-label classification. Most of the approaches mentioned come
with relatively high computation costs since they need to model explicitly the
pairwise label correlations.

On the other hand, RNN-based multi-label classification does not incur these
high computation costs, since the low dimensional RNN layers work well to model
the label correlations [56, 119]. The idea to exploit RNN models to capture label
correlations was originally proposed in [56] and [119]. Wang et al. [119] combine
CNN and RNN architectures, and learn a joint image-label embedding space to
characterize the label semantic dependencies. Since LSTMs produce sequential
outputs, they use a frequent-first ordering approach. Jin et al. [56] use a CNN to
encode images and input them to an RNN that generates the predictions. They use
frequent-first, dictionary-order, rare-first and random order in their experiments
and compare the results of different methods. Liu et al. [76] use a similar architec-
ture, but they make the CNN and RNN models explicitly address the label prediction
and label correlation tasks respectively. Instead of using a fully connected layer
between the CNN and RNN models, they input class probabilities predicted by the
CNN model to the RNN. In that way, they supervise both models during the training.
They use rare-first ordering in their model to assign more importance to the less
common labels. Chen et al. [15] use a BCE loss to compute predictions in each time
step to remove the order of the labels. However, none of these approaches adapt
the order dynamically according to the predictions, and they only achieve marginal
improvements over CNN models. Concurrent to our work, Pineda et al. [97] present
a comprehensive comparison between CNN and CNN-RNN methods on various
datasets with different characteristics.

Image captioning. Earlier works on image captioning with deep learning have
adapted the encoder-decoder framework in which an RNN (usually an LSTM) is
used to “translate" image features into a sentence, one word at a time [17, 34, 36,
57, 59, 61, 88, 116, 128]. These image features are usually generated using a CNN
that encodes (or translates) the image into a higher-level representation, and next
an RNN decodes this representation back into natural language. An important part
of the success of this type of models is that the whole system is trained end-to-end,
and so both components can co-adapt to yield the best results. See [3, 51] for recent
surveys on image caption generation.

18



2.3. Method

⊕
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Figure 2.2 – CNN-RNN architecture used in this work, containing of an image CNN encoder,
an LSTM text decoder and an attention mechanism. We show that this simple architecture
can obtain state-of-the-art results by substituting the loss function by an orderless loss
function.

2.3 Method

2.3.1 Image-to-sequence Model

For the task of multi-label classification we consider a CNN-RNN architecture,
first proposed in [119]. This type of model consists of a CNN (encoder) part that
extracts a compact visual representation from the image, and of an RNN (decoder)
part that uses the encoding to generate a sequence of labels, modeling the label
dependencies. Different authors experimented with different choices of visual
representation to feed to the RNN: in [119], images and labels are projected to the
same low-dimensional space to model the image-text relationship, while [76] uses
the predicted class probabilities, and [56] experiments with different internal layers
of the CNN. In our approach, we use the final fully connected layer to initialize the
hidden state of the RNN. Once initialized, the RNN model predicts a new label every
time step until an end signal is generated.
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The choice of RNN typically used in CNN-RNN models is the Long-Short Term
Memory. Unlike prior RNN models, LSTM mitigates the vanishing gradient problem
by introducing a forget gate f , an input gate i and an output gate o to an RNN layer.
With these gates, it can learn long term dependencies in a sequential input. The
equations that govern the forward propagation through the LSTM at time step t
and with an input vector xt are the following:

ft =σ(W f xt +U f ht−1 +b f )

it =σ(Wi xt +Ui ht−1 +bi )

ot =σ(W0xt +U0ht−1 +b0)

ct = ft ¯ ct−1 + it ¯ t anh(Wc xt +Uc ht−1 +bc)

ht = ot ¯ t anh(ct )

(2.1)

where ct and ht are the model cell and hidden states, while it , ft , ot are the input,
forget and output gates’ activations respectively. W , U and b are the weights and
biases to be learned, and the σ and t anh are the sigmoid and hyperbolic tangent
functions respectively. At time step t , the model uses as input the predicted output
embedding from the previous time step. The predictions for the current time step t
are computed in the following way:

xt = E · l̂t−1

ht = LSTM(xt ,ht−1,ct−1)

pt =W ·ht +b

(2.2)

where E is a word embedding matrix and l̂t−1 is the predicted label index in the
previous time step. The prediction vector is denoted by pt , and W and b are the
weights and the bias of the fully connected layer.

We also include the attention module that was proposed in [129]. Linearized
activations from the fourth convolutional layer are used as input for the attention
module, along with the hidden state of the LSTM at each time step, thus the atten-
tion module focuses on different parts of the image every time. These attention
weighted features are then concatenated with the word embedding of the class
predicted in the previous time step, and given to the LSTM as input for the current
time step. As pointed out in [119], it is hard to represent small objects with global
features, so an attention module alleviates the problem of ignoring smaller objects
during the prediction step. A diagram of our model architecture is provided in
Figure 2.2.
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2.3.2 Training Recurrent Models

To train the model a dataset with pairs of images and sets of labels is used. Let (I ,L)
be one of the pairs containing an image I and its n labels L = {l1, l2, ..., ln}, li ∈ L,
with L the set of all labels with cardinality m = |L|, including the start and end
tokens.

The predictions pt of the LSTM are collected in the matrix P = [p1 p2 ... pn],
with P ∈ Rm×n . When the number of predicted labels k is larger than n, we only
select the first n prediction vectors. In case k is smaller than n we pad the matrix
with empty vectors to obtain the desired dimensionality. We can now define the
standard cross-entropy loss for recurrent models as:

L = tr
(
T l og (P )

)
with Tt j = 1 if lt = j

Tt j = 0 otherwise

(2.3)

where T ∈Rn×m contains the ground truth label for each time step†. The loss is com-
puted by comparing the prediction of the model at step t with the corresponding
label at the same step of the ground truth sequence.

As can be seen in Equation 2.3, the order of the ground truth labels is critical to
determine the loss a given prediction will receive (see Figure 2.3). For inherently
orderless tasks like multi-label classification, where labels often come in random
order, it becomes essential to minimize unnecessary penalization, and several
approaches have been proposed in the literature. The most popular solution to
improve the alignment between ground truth and predicted labels consists on defin-
ing an arbitrary criteria by which the labels will be sorted. Wang et al. [119] count
occurrences of labels in the dataset and sort the labels according to their occurrence
in descending order, and is consequently called the frequent-first approach. Jin et
al. [56] use a rare-first approach and dictionary-order in addition to the frequent-
first approach. Unlike the frequent-first approach, the rare-first promotes the rare
classes in the dataset, while dictionary-order sorts the labels in alphabetical order.
The rare-first approach was also adopted by Liu et al. [76].

Sorting the ground truth labels with a fixed, arbitrary, criteria is shown to im-
prove results with respect to using a random ordering, since the network can learn
to predict in the defined order, and avoid part of the loss. However, this will delay
convergence, as the network will have to learn the arbitrary ordering in addition
to predicting the correct labels given the image. Furthermore, any misalignment
between the predictions and the labels will still result in higher loss and mislead-

†Here we consider that l1 = {1, ...,m} is the class-index.
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Predicted labels: person, tie
Default order labels: tie, person
Loss with default order: 7.59
PLA order labels: person, tie
Loss with PLA: 0.04

Predicted labels: umbrella, person, surfboard
Default order labels: person, surfboard, umbrella
Loss with default order: 6.27
PLA order labels: umbrella, person, surfboard
Loss with PLA: 0.87

Figure 2.3 – Comparison of an ordered loss to our orderless PLA loss. Imposing any order
(default order in this example) leads to high losses even though the labels are correct. PLA
solves this problem by dynamically adapting the order.

ing updates to the network. Additionally, the frequency of a label in a dataset is
independent of the size of the object in a given image. Less frequent but bigger
objects can cause the LSTM prediction to stop earlier because of their dominance
in the image and their ranking in the prediction step. This issue can be observed in
Figure 2.1, both for the frequent-first and rare-first approaches.

2.3.3 Orderless Recurrent Models

To alleviate the problems caused by imposing a fixed order to the labels, we propose
to align them to the predictions of the network before computing the loss. We
consider two different strategies to achieve this.

The first strategy, called minimal loss alignment (MLA) is computed with:

L = min
T

tr
(
T log(P )

)
subject to Tt j ∈ {0,1},

∑
j Tt j = 1,∑

t Tt j = 1 ∀ j ∈ L,∑
t Tt j = 0 ∀ j ∉ L

(2.4)

where T ∈ Rn×m is a permutation matrix, which is constrained to have a ground
truth label for each time step:

∑
j Tt j = 1, and that each label in the ground truth

L should be assigned to a time step. The matrix T is chosen in such a way as
to minimize the summed cross entropy loss. This minimization problem is an
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assignment problem and can be solved with the Hungarian [64] algorithm.
We also consider the predicted label alignment (PLA) solution. If we predict a

label which is in the set of ground truth labels for the image, then we do not wish to
change it. That leads to the following optimization problem:

L = min
T

tr
(
T log(P )

)
subject to Tt j ∈ {0,1},

∑
j Tt j = 1,

Tt j = 1 if l̂t ∈ L and j = l̂t ,∑
t Tt j = 1 ∀ j ∈ L,∑
t Tt j = 0 ∀ j ∉ L

(2.5)

where l̂t is the label predicted by the model at step t . Here we first fix those elements
in the matrix T for which we know that the prediction is in the ground truth set
L, and apply the Hungarian algorithm to assign the remaining labels (with same
constraints as Eq. 2.4). This second approach results in higher losses than the first
one (Eq. 2.4), since there are more restrictions on matrix T . Nevertheless, this
method is more consistent with the labels which were actually predicted by the
LSTM.

To further illustrate our proposed approach to train orderless recurrent models
we consider an example image and its cost matrix (see Figure 2.4). The cost matrix
shows the cost of assigning each label to the different time steps. The cost is
computed as the negative logarithm of the probability at the corresponding time
step. Although the MLA approach achieves the order that yields the lowest loss,
in some cases this can cause misguided gradients as it does in the example in the
figure. The MLA approach puts the label chair in the time step t3, although the
network already predicts it in the time step t4. Therefore, the gradients force the
network to output chair instead of sports ball although sports ball is also one of the
labels.

Orderless training of recurrent models has been previously addressed in [15,
117]. Vinyals et al. [117] study the usage of recurrent models to represent sets for
which no apparent order of the elements exists. Their method considers two phases:
first a uniform prior over all orders is assumed for an initial number of iterations of
training, after which in the second phase ancestral sampling is used to sample an
ordering. Unlike our method, which proposes to adapt the label order according
to the predicted order, their method aims to find the optimal order of the labels
(without considering the predicted order). Their method has only been evaluated
on a toy problem. More related to our work is the research of Chen et al. [15],
which applies a recurrent model without imposing any ordering. This is done by
estimating all the labels in the image at every step of the recurrent model. They
replace the standard cross entropy loss of the LSTM by a binary cross entropy (BCE).
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PLA labels: person, baseball bat, sports ball, chair (loss 4.50)
MLA labels: person, baseball bat, chair, sports ball (loss 3.63)

sports b
all chair

person

baseball bat

baseball glove

t1

t2

t3

t4

12.1 10.9 0.0 12.0 11.0

8.8 9.1 12.7 0.0 8.3

3.0 1.4 7.4 5.4 0.9

1.8 1.0 7.5 5.5 9.1

Figure 2.4 – The cost matrix, image and different label orders decided by PLA and MLA (best
viewed in color). Predicted classes are made bold. See text for explanation.

A drawback of this approach is that the LSTM will repeat labels already predicted
before. Therefore an additional module needs to be introduced which prevents the
method from repeating already predicted labels. An additional drawback of this
method is that there is no end-token, so a threshold should be learned to stop the
sequence.

2.4 Experiments

2.4.1 Datasets and Setting

We evaluate our models on four datasets: MS-COCO [75], NUS-WIDE [23], WIDER
Attribute [70] and PA-100K [80]. MS-COCO is used for image segmentation, image
captioning, and object detection. It can be also used for multi-label classification
since it has labels for 80 objects. It consists of 82,081 training and 40,137 test images.
NUS-WIDE consists of 269,648 images with a total number of 5,018 unique labels.
However, annotations for 81 labels are more trustworthy and used for evaluation.
After removing the images that do not belong to any of the 81 labels, 209,347 images
remain. Following [58, 76], we use 150,000 of these images for training, and rest for
testing. For a fair comparison, we create 3 different splits and we pick the best scores
on each split and average them to get the final scores. WIDER Attribute is a dataset
which has 14 human attributes in 13,789 images with 57,524 annotated bounding
boxes (28,345 for training and 29,179 for test). PA-100K is built for evaluating a
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pedestrian attribute recognition task. It consists of 100,000 pedestrian images with
26 attributes. The size of the training, validation and test sets are 80,000, 10,000 and
10,000 respectively.

Evaluation metrics. We use per-class and overall precision, recall and F1 scores.
The per-class metric averages precision and recall scores for each class, and the
geometric mean of these averaged values gives the per-class F1 score. In the overall
metric, precision and recall scores are computed for all images, and the geometric
mean of precision and recall gives the overall F1 score. Only for PA-100K dataset,
instead of evaluating accuracy of each label independently, we evaluate accuracy of
image-wise class predictions to be able to compare the results with other models.
Next, we are interested to see if our method actually adapts dynamically the order
to the image, or just learns another (more optimal) fixed order of the classes. To
this end, we use an order-rigidness measure on the test set. For each pair of classes,
two possible orderings exist (e.g. for classes A and B that would be A-B or B-A);
to compute the order-rigidness, we add the number of occurrences of the most
frequent order for each pair of classes in the same image, and divide it by the total
number of co-occurrences of any pair. We remove all but one of every duplicate
prediction without penalization. We show order-rigidness and the percentage of
images with duplicate predictions in Table 2.1.

Network training. We implemented the architecture (see Figure 2.2) using the Py-
Torch framework [96]. For the encoder part and BCE models we use the VGG16 [105],
ResNet-50 (for PA-100K) and ResNet-101 [49] architectures, and the decoder part
is an LSTM with a 512 dimensional internal layer. The word embeddings learned
during the training have dimension 256, and the attention module, 512. To train
the BCE models, the SGD optimizer is used with learning rate 0.01 and momen-
tum 0.9. For the LSTM models the encoder and the decoder are trained with the
ADAM optimizer and Stochastic Weight Averaging [54] with a cyclical learning rate
scheduler, decreasing from 10−3 to 10−6 in 3 iterations. The BCE models are trained
for 40 epochs, and if no improvement is observed after 3 epochs, then we multiply
the current learning rate by 0.1. For the LSTM models, we fine-tune from the best
BCE model and train for 30 epochs more. All the BCE models are pretrained on
ImageNet [101]. Finally, we do not use the beam search algorithm; we just greedily
take the maximum predicted output. Random affine transformations and contrast
changes are applied as data augmentation‡.

‡Our code is available at https://github.com/voyazici/orderless-rnn-classification
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Figure 2.5 – Loss curves for different training strategies of CNN-RNN models on the MS-
COCO. The graph clearly shows that our strategies, MLA and PLA, obtain significantly lower
losses. PLA obtains a slightly better loss from 140,000 iterations onward. This is also reflected
in the better performance of PLA for multi-label classification.

Table 2.1 – Ratio of duplicates and order-rigidness of different ordering methods on the
MS-COCO validation dataset. Results show that our methods do not produce any duplicates
and manage to produce label predictions with varying orders (as measured by the order-
rigidness).

Algorithms Ratio of duplicates Order-rigidness
Random order 57.86% 67.00%
Freq. first 23.84% 100.00%
Rare-first 29.61% 100.00%
Dict. order 32.90% 100.00%
MLA 0.10% 82.87%
PLA 0.04% 80.25%

2.4.2 Comparison Ordering Approaches and Analysis

We first compare our method to other CNN-RNN optimization strategies such as
frequent-first and rare-first, and evaluate several properties of the different methods.
Next we compare it against the state-of-the-art on the MS-COCO, NUS-WIDE,
WIDER Attribute and PA-100K datasets.

26



2.4. Experiments

Evaluating training strategies. First, we compare the different strategies to train
CNN-RNN architectures presented in literature: frequent-first [119], rare-first [56]
and dictionary-order [56].

As can be seen in Figure 2.5, our proposed strategies MLA and PLA, which dy-
namically align the ground truth labels with the predicted labels, train faster and
obtain a lower overall loss. The rare and frequent-first approaches obtain substan-
tially higher losses. A significant part of the difference between our approaches and
these baselines is that they could potentially obtain a non-zero loss on images in
which the model perfectly predicts the correct classes but in the wrong order, as
can be seen in Figure 2.3. For these images, the backpropagated gradient will try
to force the prediction to be in the predefined order (a wasted effort in terms of
improving the accuracy) despite the sub-optimality of such order for the particular
image in some cases, like when the object that should be predicted first is much
smaller than the other objects (see Figure 2.1).

Next, we analyze the number of duplicate labels generated by the various learn-
ing strategies (see Table 2.1). To provide a baseline reference, we also include
random order in the table, which refers to a setting where during training the order
of the ground truth labels is randomly selected for each mini-batch. The results
show that our method manages to learn not to repeat labels that have already
been predicted for an image. In principle, one might think, this should be easy for
an LSTM to learn. However, because of the imposed order for the frequent and
rare-first approaches, and the resulting confusing backpropagated gradients, the
LSTM does not learn this and produces many duplicates. Note that duplicates are
not penalizing the overall accuracy of the system, since we remove them in a post-
processing step. We would also like to point out here that Chen et al. [15] require an
explicit module for the removal of duplicates generated by their approach, while we
train a model that does not generate duplicates in the first place.

In Table 2.1, we show the results for order-rigidness. They show that the methods
which impose a fixed order are actually always predicting labels in that order, as
indicated by a 100.00% score. Our methods obtain a 80.25% and a 82.87% score,
showing that we have no fixed order for the labels and that it is dynamically adjusted
to the image.

In Table 2.2, we show the efficiency of the proposed methods. They require one
forward pass and then we apply the Hungarian algorithm to align LSTM predictions
and labels (see Eqs. 2.4 and 2.5). PLA alignment is faster because it applies the
algorithm only to the wrongly predicted labels.
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Table 2.2 – Comparison of different ordering methods with average computation times
per-image on MS-COCO for ResNet-101.

Training Test
Forward Alignment Backward

Fixed Order
6.50 ms

0 ms
14.80 ms 5.90 msMLA 0.80 ms (Eq. 2.4)

PLA 0.25 ms (Eq. 2.5)

Table 2.3 – Results of different ordering methods on MS-COCO.

Algorithms C-P C-R C-F1 O-P O-R O-F1
BCE [119] 59.3 58.6 58.9 61.7 65.0 63.3
BCE 68.1 59.2 63.3 72.2 65.8 68.8
Freq. first 70.3 56.5 62.6 72.2 64.5 68.1
Rare-first 65.7 61.3 63.4 70.8 64.7 67.6
Dict. order 71.0 55.9 62.5 74.1 62.4 67.7
MLA 68.4 60.4 64.1 72.2 66.7 69.3
PLA 68.7 60.6 64.3 72.7 66.9 69.7
PLA (atten.) 70.2 62.0 65.8 73.8 67.7 70.6

2.4.3 Experimental Results

Comparison of different ordering methods. The results of different ordering
algorithms can be seen in Table 2.3. We observed that the BCE models that we
train yield much higher results than the ones cited in previous works, which were
originally reported by [119] and [52] for the MS-COCO and NUS-WIDE respectively.
Although it is not very clear from [119], we think that the difference between our
model and theirs is that, during the training, they freeze all the layers except the last
one, since when we impose the same restriction to our model, we obtain similar
results. Instead, when we allow for full training of the image encoder the results
improve significantly, as reported in Table 2.3. Interestingly, the fully trained BCE
models obtain results similar to those of the CNN-RNN models with the same CNN
module when they are trained using the rare-first or frequent-first strategies. We
would like to indicate that the results reported in Table 2.3 are lower than the results
that are in the other tables, since we do not exploit augmentations, train fewer
epochs and use a part of training set as validation to tune the hyperparameters in
these experiments.

When we compare the various strategies of alignment, we see that both our
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methods, MLA and PLA, clearly outperform the other strategies. Among the other
approaches frequent-first yields the best result, although rare-first gives better
results with the per-class metric since it assigns more weight to the less common
classes. In Figure 2.6, we display some qualitative results for the PLA and frequent-
first approaches. We can also see different orders yielded by these approaches.
The images are chosen to emphasize the problems with the approaches that use
predefined orders. As can be seen in the images, the frequent-first approach always
predicts the labels in the same order. This leads to confusion in case of dominant
but less frequent objects or minor but more frequent objects in an image. Then,
this confusion leads to duplicate predictions in different time steps.

The superior performance of PLA with respect to MLA is interesting: we have
empirically found that it is better to align with the actual predictions of the network
than to align to obtain the minimal loss, as done in MLA. This phenomenon can be
observed in Figure 2.5. Although MLA yields lower losses than PLA in the beginning,
PLA’s alignment with actual predictions of the network leads to a final lower loss and
better accuracies. We think that so many penalizations of correctly predicted labels
(see Figure 2.4) takes the optimization further away from the global minimum. In
fact, the penalization rate during training is as high as 8% for some classes (e.g.
baseball bat). For this reason, we select PLA as our default method instead of MLA
when we compare our results with the SOTA. Finally, the attention model improves
results with a significant gain.

To further investigate the advantages of the LSTM method over BCE, we compare
the co-occurrence matrices of the PLA and BCE method with the co-occurrence
matrix of the ground truth for the test set. The co-occurrence matrix is computed
with

∑
i l T

i li , where li are the ground truth labels for image i , and respectively

replacing the ground truth labels by the predicted labels l̂i . Next, the co-occurrence
matrix of the ground truth is subtracted to that of the predicted labels (the diagonals
are ignored, since the co-occurrences of elements with themselves are irrelevant
for our analysis). Figure 2.7 presents the co-occurrence matrices of the BCE and
LSTM (PLA) models on the sports supercategory of the MS-COCO dataset. We can
observe that BCE has higher co-occurrence values, and larger differences with the
ground truth. Given that BCE predicts all labels independently from each other,
it cannot prevent re-using evidence already used by another prediction. This can
be seen, for example, in the many extra co-occurrences of predictions for skis and
snowboards, as well as for sports ball and frisbee. Similar cases can be observed
on the co-occurrence matrices of other supercategories in Figure 2.8. The levels
of co-occurrence in BCE are noticeably higher than those on PLA, as it re-uses
the same parts of image for different predictions of similar objects (e.g. bike and
motorbike). This can be observed especially on the animals, food, vehicle and
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Labels (freq.first): person, skis 
Loss (freq. first): 0.54
Labels (PLA): person, skis 
Loss (PLA):  0.23
Preds. freq. first: person, skis, skis
Preds. PLA: person, skis

 
  

Labels (freq.first): dining table, pizza 
Loss (freq. first): 0.89
Labels (PLA): pizza, dining table 
Loss (PLA): 0.26
Preds. freq. first: pizza
Preds. PLA: pizza, dining table

 
  

Labels (freq.first): person, surfboard, 
kite 
Loss (freq. first): 0.82
Labels (PLA): person, kite, surfboard 
Loss (PLA):  0.37
Preds. freq. first: person, kite
Preds. PLA: person, kite, surfboard

 

  

Labels (freq.first): person, sports ball, 
tennis racket 
Loss (freq. first): 0.47
Labels (PLA): person, tennis racket, 
sports ball 
Loss (PLA):  0.10
Preds. freq. first: person, tennis racket
Preds. PLA: person, tennis racket, sports 

  

Labels (freq.first): person, couch, 
potted plant, remote 
Loss (freq. first): 1.07
Labels (PLA): person, remote, potted 
plant, couch 
Loss (PLA):  0.78
Preds. freq. first: person, couch, 
remote
Preds. PLA: person, remote, potted 
plant, couch

Labels (freq.first): person, car, frisbee 
Loss (freq. first): 0.85
Labels (PLA): person, frisbee, car 
Loss (PLA):  0.23
Preds. freq. first: person, frisbee, frisbee
Preds. PLA: person, frisbee, car

 
  

Labels (freq.first): person, dining table, 
knife, tie, cake 
Loss (freq. first): 0.94
Labels (PLA): person, tie, cake, dining 
table, knife 
Loss (PLA):  0.32
Preds. freq. first: person, knife, knife, 
cake
Preds. PLA: person, tie, cake, dining 
table, knife

 

Labels (freq.first): person, chair, sports 
ball, tennis racket 
Loss (freq. first): 0.36
Labels (PLA): person, tennis racket, 
sports ball, chair 
Loss (PLA):  0.16
Preds. freq. first: person, chair, tennis 
racket, tennis racket

  

Labels (freq.first): teddy bear 
Loss (freq. first): 1.02
Labels (PLA): teddy bear 
Loss (PLA):  0.09
Preds. freq. first: bear
Preds. PLA: teddy bear

 
  

Labels (freq.first): orange, apple 
Loss (freq. first): 0.57
Labels (PLA): orange, apple 
Loss (PLA):  0.37
Preds. freq. first: orange
Preds. PLA: orange, apple

 
  

Labels (freq.first): person, umbrella 
Loss (freq. first): 3.35
Labels (PLA): person, umbrella 
Loss (PLA):  2.13
Preds. freq. first: person, chair, bench
Preds. PLA: person, chair, umbrella

 
  

Labels (freq.first): cat 
Loss (freq. first): 8.66
Labels (PLA): cat 
Loss (PLA):  1.58
Preds. freq. first: person, cat
Preds. PLA: cat, bed

 
  

Figure 2.6 – Comparisons of orders yielded by the PLA and frequent-first approaches (wrong
or duplicate predictions are underlined).
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Figure 2.7 – Difference of BCE (left) and PLA model (right) co-occurrence matrices with
ground truth co-occurrence matrix on the sports super-category of MS-COCO.

kitchen super-categories. In the animals super-category the BCE model overshoots
co-occurrence of dogs-cats and horses-cows, while in the vehicles the confusion is
on the buses, trucks and cars. In the kitchen super-category the confusion is the
worst since most of the images are images of entire kitchens and the BCE model
uses the entire scene for different predictions. Recurrent models, instead, naturally
factor in previous predictions at every time step, which leads to a more realistic
co-occurrence in the predictions.

Comparison to state-of-the-art. We compare our results with several models,
grouped into two categories: models that use a CNN-RNN jointly and models that
use alternative approaches. CNN-RNN [119], SR CNN-RNN [76] and Chen et al. [15]
are directly related to our model (see Section 2.2 for details). Also in this category,
Chen et al. [16] use an LSTM to predict the next region to attend according to the
hidden state and the current region, after which they fuse the predictions of each
time step. Similarly, Li et al. [69] use a recurrent network to highlight image re-
gions to attend, but then employ reinforcement learning to select which regions
should be used for the actual prediction. Among the alternative approaches, MS-
CNN+LQP [92] tries to explicitly predict the number of tags in images, LSEP [72]
uses a pairwise ranking approach for training a CNN, and MLIC-KD-WSD [81] use
knowledge distillation from a teacher network which is trained on a weakly super-

§Input size of 224×224 (smaller than ResNet101) to compare with [15].
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Figure 2.8 – Co-occurence matrices for BCE (left) and PLA (right) models. BCE re-uses
evidence to predict different objects, and hence has higher co-occurence levels due to false
positives.
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Table 2.4 – Comparison with state-of-the-art on MS-COCO.

Algorithms Architectures C-P C-R C-F1 O-P O-R O-F1
CNN-RNN [119] VGG16 66.0 55.6 60.4 69.2 66.4 67.8
Chen et al. [15] ResNet152 71.6 54.8 62.1 74.2 62.2 67.7
SR CNN-RNN [76] VGG16 67.4 59.8 63.4 76.6 68.7 72.5
Chen et al. [16] VGG16 78.8 57.2 66.2 84.0 61.6 71.1
Li et al. [69] VGG16 71.9 59.6 65.2 74.3 69.7 71.8
MS-CNN+LQP [92] ResNet101 67.5 60.9 64.0 70.2 67.9 69.1
LSEP [72] VGG16 73.5 56.4 63.8 76.3 61.8 68.3
MLIC-KD-WSD [81] VGG16 - - 69.2 - - 74.0
SRN [141] ResNet101 81.6 65.4 71.2 82.7 69.9 75.8
ACfs [44] ResNet101 77.4 68.3 72.2 79.8 73.1 76.3
PLA VGG 16 73.7 63.2 68.1 78.3 68.8 73.2
PLA ResNet101 80.4 68.9 74.2 81.5 73.3 77.1
PLA ResNet152 § 75.3 69.6 72.4 76.9 74.0 75.4

Table 2.5 – Comparison with state-of-the-art on NUS-WIDE.

Algorithms C-P C-R C-F1 O-P O-R O-F1
CNN-RNN [119] 40.5 30.4 34.7 49.9 61.7 55.2
Chen et al. [15] 59.4 50.7 54.7 69.0 71.4 70.2
SR CNN-RNN [76] 55.7 50.2 52.8 70.6 71.4 71.0
Li et al. [69] 44.2 49.3 46.6 53.9 68.7 60.4
LSEP [72] 66.7 45.9 54.4 76.8 65.7 70.8
MLIC-KD-WSD [81] - - 58.7 - - 73.7
PLA 60.7 52.4 56.2 72.0 72.8 72.4

vised detection task. ACfs [44], proposes a two-branch network with an original
image and its transformed image as inputs and imposes an additional loss to ensure
the consistency between attention heatmaps of both versions. SRN [141] proposes
a Spatial Regularization Network that generates attention maps for all labels and
models the label correlations via learnable convolutions. HP-Net [80] proposes a
novel attention module to train multi-level and multi-scale attention-strengthened
features for pedestrian analysis. The results on the mentioned datasets can be seen
in Tables 2.4, 2.5, 2.6 and 2.7.¶

On the MS-COCO dataset, we get higher F1 scores than all other CNN-RNN
models. MLIC-KD-WSD [81] also achieves notable results by exploiting knowledge

¶Ge et al. [39] also evaluate on COCO, however they require additional semantic maps which makes
their model incomparable.
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Table 2.6 – Comparison with state-of-the-art on WIDER Attribute.

Algorithms C-P C-R C-F1 O-P O-R O-F1
SRN [141] - - 75.9 - - 81.3
ACfs [44] 81.3 74.8 77.6 84.1 80.7 82.4
PLA 81.7 75.9 78.7 85.0 81.4 83.1

Table 2.7 – Comparison with state-of-the-art on PA-100K.

Algorithms Precision Recall F1 Accuracy
DM [68] 82.2 80.4 81.3 70.4
HP-Net [80] 83.0 82.1 82.5 72.2
ACfs [44] 89.0 86.3 87.6 79.4
PLA 88.5 86.7 87.6 79.8

distillation from a teacher network. Only for MS-COCO, we resize input images to
288×288 to be able to compare PLA ResNet-101 model with the ACfs [44]. We also
show the results for the ResNet-152 architecture to compare with [15].

On the NUS-WIDE dataset, we surpass all other CNN-RNN models by a signifi-
cant margin. Our results are especially remarkable for per-class F1 score, a more
relevant metric for unbalanced datasets such as this. The globally best results are
achieved in terms of overall and per-class F1 score by MLIC-KD-WSD [81]. All the
models that are compared on NUS-WIDE dataset use the VGG16 as the backbone
network. We do not display the results of [92] since they use a different split of the
dataset.

To be comparable with other models, we use ResNet-101 and ResNet-50 archi-
tectures for WIDER Attribute and PA-100K respectively. These two datasets have
human attributes that are related to gender, appearance, clothing, etc. as labels.
Therefore, label correlations are not common among these two datasets, which is a
drawback for CNN-RNN models. In spite of that, our CNN-RNN model manages to
surpass the other models.

2.5 Conclusions

We proposed an approach for training orderless LSTM models applied to multi-label
classification task. Previous methods imposed an ordering on the labels to train
the LSTM model, Typically frequent-first or rare-first orderings were used. Instead,
we proposed two alternative losses which dynamically order the labels based on
the prediction of the LSTM model. Our approach is unique in that seldomly gener-
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ates any duplicate prediction, and that it minimizes the loss faster than the other
methods. Results show that a standard CNN-RNN architecture, when combined
with our proposed orderless loss, obtains the state-of-the-art results for multi-label
classification on several datasets.
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3 Visual Transformers with Primal Object
Queries for Multi-label Image Classification

3.1 Introduction

The task of predicting the presence of visual concepts in images is known as multi-
label classification. The visual concepts in general refer to a set of objects, but
could also refer to other visual concepts such as attributes. Multi-label classification
is difficult because of the wide range of classes that is typically considered, the
wide variety of scales in which these classes can occur, and the complex inter-
dependencies between classes [7, 125].

The field of multi-label image classification has seen much progress in recent
years. Earlier works exploited graphical models to model label relations explic-
itly [41, 45]. Then, CNN-RNN models were proposed [76, 119] to capture label
correlations, as we also investigated in Chapter 2. Later, to learn label dependencies
explicitly, graph convolutional networks were proposed [44]. Even though signif-
icant progress has been made in multi-label image classification in recent years,
systems still suffer from problems common to recursive methods (such as modeling
long-term dependencies) or fail to capture the complex relations between the many
visual concepts involved in multi-label classification.

Transformers were first proposed in [113]. Unlike recurrent models, transform-
ers process data simultaneously. In case of recurrent models, if the decoding process
is interrupted the decoder is forced to output a termination token, which will cause
the not-yet attended classes to be missed. Due to the non-sequential nature of
transformers, they do not suffer from this problem. Therefore, although they were
firstly used for various NLP tasks [25, 32, 143], they became also widely used for
other tasks. The first visual CNN-transformer model for a vision task was proposed
for object detection [11]. Recently, a novel and pure transformer model that uses a
sequence of image patches as input data was proposed for image classification [35].
Lanchantin et al. [65] proposed the first transformer model for multi-label image
classification.

Carion et al. [11] introduced the concept of object queries. As a set of learnable
positional encodings, they are added to query and key tensors in attention modules
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Self-attention

Add & Normalize

Cross attention

Primal object queries
O × D
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Figure 3.1 – Comparison between the primal object queries and object queries. Primal
object queries are given directly to the first decoder layer instead of being added as positional
encodings in every decoder layer. This leads to faster convergence and better performance.

of every decoder layer. However, using the same set of object queries in different
decoder layers is not optimal for training due to the different set of relations learned
by each of the layers. As we empirically demonstrate in the experimental section, it
leads to lower performance and slower convergence. Therefore, in this work, we
introduce primal object queries that differ from standard object queries in the way
that they are input to a transformer decoder stack (see Figure 3.1). Moreover, we
improve the mixup technique for multi-label classification to achieve significantly
better results.

The main contributions in this work are:

• We introduce primal object queries that obtain better results and yield faster
convergence than standard object queries by 79.0% and 38.6% on MS-COCO
and NUS-WIDE datasets respectively.

• We improve the mixup for multi-label classification and show that it results
in a significant improvement.

• Evaluation shows that we improve the state-of-the-art class wise F1 score by
2.1% and 1.8% on the MS-COCO and NUS-WIDE datasets respectively.

38



3.2. Related Work

3.2 Related Work

Transformers. Transformers were first proposed in [113], and since became the
state-of-the-art approach for sequence-to-sequence tasks such as machine transla-
tion and visual question answering. The transformer self-attention module attends
all the sequential data at once, hence handling the long sequences better than RNNs,
which struggle with long-term dependencies. A challenging aspect of transformers
is the large number of parameters they require, which require large amounts of
data to fit properly. Since such large-scale training datasets are scarce, and an
important limitation to use transformer models in many practical applications,
Devlin et al. [32] proposed a way of training transformers in an unsupervised man-
ner on readily available large unsupervised text corpus, and showed that with a
simple fine-tuning procedure state-of-the-art results could be achieved on various
tasks. This led to a wider popularization of transformer models, and usage in areas
different than the originally proposed ones, such as image captioning [25, 143]
and object detection [11]. Carion et al. [11] introduced the new concept of object
queries to be given input for the transformer through the training. These object
queries are learned through the training, and according to the analysis done by
the authors, each object query learns to focus on different areas of images and box
sizes. Dosovitskiy et al. [35] proposed the first pure transformer model for image
classification. They split an image into smaller patches and convert it to a sequen-
tial data (which also consists of tokens) to be processed by transformer encoder
layers. Although they showed that transformers can give promising results for pure
vision tasks, they still fell behind other convolutional models. Yuan et al. [136]
proposed a new tokenization system that reduced the number of parameters and
achieved comparable results with other convolutional models. Only very recently,
Lanchantin et al. [65] introduced the first transformer model for multi-label image
classification. They exploited self-attention modules to learn label dependencies
for the purpose of predicting a set of labels given a set of masked label embeddings
and image features.

Multi-label classification. Multi-label classification seeks to predict a variable
number of labels for every single image, ideally capturing all the relevant visual
concepts, such as objects or attributes, that appear on the image. Traditional meth-
ods for multi-label classification ignore label correlation, which can help boost the
performance of certain under-represented classes. The few early works that tried to
leverage label correlations for multi-label classification exploited graphical models
such as Conditional Random Fields (CRFs) [41] or Dependency Networks [45]. More
recently, the idea to exploit RNN models to capture label correlations was proposed
in [56] and [119], where the low dimensional internal state of the network was used
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to model label dependencies. Wang et al. [119] combined CNN and RNN architec-
tures, and learned a joint image-label embedding space to learn label dependencies.
However, since LSTMs produce sequential outputs, a fixed order was imposed to
the labels, and the model learned to predict the output in the same order. This
led to problems such as skipping predictions for classes that appear earlier in the
sequence but less relevant in the image. In the previous chapter, we proposed a
CNN-RNN model which was trained with an orderless loss function to avoid the
drawbacks of imposing a fixed label order in RNN. Finally, ML-GCN [19], exploited
graph convolutional networks to capture label dependencies.

Mixup. Zhang et al. [137] proposed to blend images and their associated labels
randomly to improve generalization of the models. It was shown that the mixup
was beneficial to avoid overconfident predictions in several tasks such as image
classification [108, 137], object detection [139], text classification [108] and semantic
segmentation [53]. Verma et al. [115] proposed to combine hidden states of paired
samples in addition to their images and labels. Islam et al. [53] conditioned the
mixup on the labels of paired samples. If the mixup is done without any constraints,
then the majority of the pairs will mostly include the most frequent classes. To avoid
the model to have a strong bias for frequent classes, they combined images based
on a uniform distribution across categories. Wang et al. [121] is the first work that
exploited the mixup technique for multi-label image classification. Although the
authors did not report any improvement over the baselines in case of single models,
they noted that an ensemble of models trained with mixup achieved better results.

3.3 Method

Our method for the multi-label classification is based on a transformer architecture.
We try different strategies to assign labels to the decoder output. In this section, we
briefly introduce some transformer concepts, explain our proposed architecture
with different losses and, finally, present our different adaptations of the mixup
technique.

3.3.1 Transformers

The main component of transformers is a self-attention module [113] which uses a
set of weights W to compute the query (Q), key (K ) and value (V ) vectors with the
input vector:

Q =WQ X , K =WK X , V =WV X (3.1)
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Then, these three vectors are combined to compute the output of the self-attention
layer:

A = softmax(
QK T

p
D

)V (3.2)

The result of the dot product between the query and the key is divided by the square
root of the dimensionality D to have smoother softmax values. Many encoder layers,
consisting of a self-attention and a feed-forward neural network are stacked in the
encoder part of the network, and the output of the final encoder layer (A) is passed
to the cross attention module in every decoder layer. The cross attention module
has the same structure as the self attention module, with the only difference that
the output of the final encoder layer is used as the key and value vectors for every
decoder layer during the forward pass, while the query is obtained from the input
of the decoder.

The input of the transformer decoder stack depends on the task and design
of the architecture. In case of an NLP task, it might be class embeddings [143]
or masked output embeddings [113]. In case of a vision-based task, it might be
a set of object queries [11]. In [11], the object queries are added to the query
input of each decoder layer (the query input of the first decoder layer consists of
zeros as can be seen in Figure 3.1). The fact that object queries are provided to all
decoder layers complicates their training: we conjecture that the requirement to
be useful at multiple hierarchical levels (and therefore at different semantic levels)
is hard to fulfill. In order to verify this, we conduct several experiments where we
compare the approach in [11] (denominated as DETR) with inputting unique sets
of object queries to each decoder layer (denominated as DETR*). The first two
rows of Table 3.1, show the performance of the two models with different number
of decoder layers. DETR* obtains significantly better results than DETR which
confirms our assumption that inputting the same set of object queries to different
decoder layers is not optimal. However, although learning a separate set of object
queries for each decoder layer improves the results, it might be computationally
redundant and not feasible when the number of decoder layers increases.

3.3.2 Overview of Architecture

Our architecture consists of two parts: a backbone that processes the input image,
and a transformer, which can be further divided into encoder and decoder (see
Figure 3.2).
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Table 3.1 – Comparison of the performances of DETR, DETR* and T-POQ models with
different number of decoder layers on MS-COCO.

# of decoder layers
2 3 4

C-P C-R C-F1 C-P C-R C-F1 C-P C-R C-F1
DETR 75.9 64.7 69.9 74.9 64.6 69.4 76.8 64.2 69.9
DETR* 75.9 65.9 70.5 75.9 66.1 70.7 76.5 65.4 70.5
T-POQ 76.6 66.0 70.9 76.5 66.1 70.9 73.8 67.1 70.3

Backbone features
H × W × C

Self-attention

Add & Normalize

Cross attention

Add & Normalize

Linear layer x 2

Add & Normalize

Linear layer

Self-attention

Add & Normalize

Linear layer x 2

Add & Normalize

m ×

 × n

Primal object queries
O × D

Output
O × c

Figure 3.2 – The overall transformer architecture used in this work.

Backbone. We use a convolutional neural network to obtain a feature represen-
tation of the input image, but since the transformer requires sequential data, we
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linearize the feature map of the last convolutional layer of the backbone network
along the spatial dimensions, and use them as the input sequence for the encoder.
More precisely, let the last convolutional layer of the CNN output a feature map
of size H ×W ×C , where H and W are the spatial dimensions, and C the number
of channels, we reshape it to HW ×C to obtain a sequence of feature vectors with
dimension C .

Transformer encoder and decoder. In the transformer encoder, the linearized
feature map is passed through the self-attention and linear layers, and then the
result is passed to the cross attention module of every decoder layer. The initial
linear layer reduces the dimension to D . We do not add learnable or fixed positional
encodings to encoder features since it does not give any improvements. We attribute
this to using semantically strong features that do not require additional spatial
information for the task of multi-label classification. We quantitatively verified that
adding positional encodings is only beneficial when features from earlier layers are
used, however, that also leads to lower results.

The input of the first decoder layer are primal object queries which differ from
the object queries proposed in [11] in the way that they are given to transformer
decoder stack. In our model, primal object queries are given directly to the first
decoder layer instead of being added as positional encodings in every decoder
layer. In this way, we avoid the drawbacks of the standard object queries which
were mentioned in the previous section. In Table 3.1, we also added the results
of our method (T-POQ) and it can be seen that without the overhead of learning
separate object queries for each decoder layer (as does DETR*) our method obtains
equal or better results. Interestingly, in the experimental section we will also show
that T-POQ obtains a significant speed-up in training when compared to the DETR
model. Finally, the number of primal object queries is O while the dimension of the
queries is D. Then, a linear layer outputs a tensor whose shape is O × c where c is
the number of classes.

Training losses. Using object queries for multi-label classification is a new con-
cept. Previously, e.g. in CNN-RNN models, the labels are ordered either dynamically,
as we do in Chapter 2, or an imposed fixed-order is applied [119]. The forward pass
is done in a recursive way, therefore the length of the output tensor of the RNN is
bounded by the number of labels of an image that has the most labels. However,
in case of transformers, the forward pass is not done recursively which gives the
flexibility of determining the size of the output tensor. We will consider two ways to
train transformers for multi-label classification.

Firstly, we consider the case where we align each object query with a specific
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class. In this case O = c and each object query will specialize in detecting a single
object class. In case of non-existent labels, empty tokens are assigned to the object
queries that are in charge of these labels. We call this the exhaustive model. Here is
the loss equation for the exhaustive model:

S j i = ex j i∑c
i=1 ex j i

, Lexh =− 1

O

O∑
j=1

c∑
i=1

y j i logS j i

subject to y j i ∈ {0,1},∑
j y j i = 1 ∀ i ∈ L,

∑
j y j i = 0 ∀ i ∉ L

(3.3)

where y j i ∈NO×c , x j i and L are the class labels, output tensor and set of class labels,
respectively. A drawback of the exhaustive approach is that it scales linearly with the
number of classes, and might be infeasible for datasets with many labels. However,
reducing the number of object queries requires one object query to be in charge of
multiple labels, which results in an assignment problem. Therefore, we employ an
orderless loss inspired by the one proposed in Equation 2.5. We call this model the
aligned model and it no longer requires to scale linearly with the number of classes
in the dataset:

Lal i g n = min
y

c∑
i=1

y j i logS j i

subject to y j i ∈ {0,1}, y j i = 1 if l̂ j ∈ L and i = l̂ j ,∑
j y j i ≥ 1 ∀ i ∈ L,

∑
j y j i = 0 ∀ i ∉ L

(3.4)

where l̂ j is the class predicted by the model at object query j . The order of the labels
in y is chosen in such a way that it gives the minimum cross entropy loss. This
label assignment problem can be solved with the Hungarian algorithm. In addition,
we impose the alignment constraint that assigns the class l̂ j to object query j if l̂ j

belongs to L. Therefore, same class may be assigned to several object queries.

3.3.3 Mixup

Mixup was proposed in [137] and was found to significantly improve results for
image classification, object detection and NLP tasks [108, 137, 139]. We consider
three ways of adapting the mixup technique to the training: soft, hard and restricted
hard.

To train the model, a dataset with pairs of images and sets of labels is used.
Let (I ,T ) be the pairs in a batch containing N images I = {i1, i2, ..., iN } and labels
T = {t1, t2, ..., tN }, ti ∈ {0,1}c where c is the number of classes in the dataset. For the
soft mixup, which is the original mixup as proposed in [137], we sample random
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Label1: bed, book, person
Label2: horse
Mixed up: bed, book ,person, 
horse

Label1: giraffe
Label2: person, surfboard
Mixed up: giraffe, person, 
surfboard

Label1: bus, car, traffic light
Label2: person, skis
Mixed up: bus, car, traffic light, 
person, skis

Figure 3.3 – Some mixuped images from MS-COCO dataset.

weights from a beta distribution λ ∼ Bet a(α,α),α ∈ (0,∞) to use them to mixup
images and their associated labels:

im =λii + (1−λ)i j

tm =λti + (1−λ)t j
(3.5)

where ii and i j are randomly selected images, and im is the mixed up version.
The soft mixup makes sense for single class image classification where the last

layer is typically a softmax. However, for multi-label image classification multiple
labels can be present in the image. Therefore, we use the mixup proposed in [121]
and denominate it as hard mixup where the union of labels is taken instead of
the average. As proposed by the author, we alternatively enable and disable the
application of mixup in every epoch and we use the ratio of 0.5 : 0.5 for images.
Some example images for hard mixup can be seen in Figure 3.3. In order to apply
the mixup in all epochs and have both mixed and non-mixed images in a batch we
consider the restricted hard mixup as a final setup, where we apply the mixup in
every epoch and restrict it by applying it only to half of the images in the batch. We
use the last half of the batch to mix with the first half. For instance, if we set the
batch size to 4, after the mixup the images and labels become I = {(i1 + i3)/2,(i2 +
i4)/2, i3, i4} and T = {t1 ∪ t3, t2 ∪ t4, t3, t4} respectively.
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3.4 Experiments

Datasets and setting. We evaluate our models on MS-COCO [75] and NUS-
WIDE[24] datasets. MS-COCO consists of 82,081 training and 40,137 test images,
with labels for image segmentation, image captioning, and object detection for
80 object categories. By ignoring the bounding box annotations, it can also be
used for multi-label classification. NUS-WIDE consists of 269,648 images with a
total number of 5,018 unique labels. However, annotations for 81 labels are more
trustworthy and used for evaluation. After removing the images that do not belong
to any of the 81 labels, 209,347 images remain.

Evaluation metrics. We use per-class and overall precision, recall and F1 scores.
The per-class metric averages precision and recall scores for each class, and the
geometric mean of these averaged values gives the per-class F1 score (C-F1). In
the overall metric, precision and recall scores are computed for all images, and the
geometric mean gives the overall F1 score (O-F1). For the MS-COCO, we also report
the mean average precision (mAP) score.

Network training. We implemented the architecture using the PyTorch frame-
work [96]. The number of object queries is set to 25 for all datasets. The internal
dimension of the transformer is 512. The backbone network, which is pre-trained
on ImageNet [101], uses an SGD optimizer with learning rate 0.001 and momentum
0.9. The rest of the model is trained with the ADAM optimizer with a learning rate
0.0001 for 40 epochs. The batch size is 32, and random affine transformations
and contrast changes are applied as data augmentation. The batch norm layers in
the backbone are frozen during the training. The experiments are run on a 12GB
GeForce GTX 1080 Ti, and it takes approximately 18 hours for both datasets when
the input image size is 448×448.

3.4.1 Ablation

All the ablation studies are done on MS-COCO dataset. All the experiments are
repeated three times and the final result is the average of the three experiments. For
validation we use 25% of the training data and the rest as train set. The snapshot
that gives the highest score on the validation set is evaluated on the test set. The
input image size is 288. Unless stated otherwise, the used transformer model is the
aligned model.

In Table 3.2, LSTM and transformer models with different encoder and decoder
layers are compared. The LSTM model is trained with an orderless loss (see Equa-
tion 2.5) and has the same backbone and hidden size as the transformer model.
From the results it can be seen that adding encoder layers does not yield any sig-
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nificant improvement. When we evaluate the attention maps generated by the
self-attention module in the encoder, unlike in [11], the encoder does not sepa-
rate instances which is not crucial for multi-label classification unlike for object-
detection. On the other hand, more decoder layers do lead to improvement in the
recall metric.

Table 3.2 – Comparison of LSTM and different transformer models

Model # of enc. # of dec. mAP C-P C-R C-F1 O-P O-R O-F1
LSTM - - 75.3 76.2 66.7 71.1 78.8 71.3 74.9
Trans. 0 1 78.0 79.6 67.9 73.3 81.8 71.9 76.5
Trans. 1 1 77.6 77.9 68.8 73.1 80.2 72.6 76.2
Trans. 1 2 78.3 79.6 68.2 73.5 80.8 72.4 76.3
Trans. 2 2 78.2 78.2 69.3 73.5 80.2 73.1 76.5
Trans. 2 3 77.9 77.4 69.6 73.3 79.3 73.6 76.4

Table 3.3 – Subtraction of LSTM scores from transformer scores on different number of
labels per image.

Number of labels per image
1 2 3 4 5 6 7 8 9 +10 Avg

precision 2.1 1.5 1.5 2.4 1.3 1.8 1 -0.5 0.7 0.0 0.8
recall 0.5 1 1.1 1.7 1.2 1.5 1.2 2 2.5 2.1 1.7

F1 1.5 1.3 1.3 2 1.3 1.6 1.1 1.1 1.9 1.5 1.5

In Table 3.3, we compare the performance of the LSTM and transformer model
(the one with one encoder and two decoder layers) on images that have different
number of labels. The values are the subtraction of average LSTM scores from
average transformer scores. When the number of labels increases, the transformer
model misses fewer classes that leads to fewer false negatives and higher recall. This
phenomenon can be observed in Figure 3.4.

In Table 3.4, aligned and exhaustive models (one encoder and two decoder
layers) are compared. The results of the models are comparable. However, for the
comparison with the state-of-the-art models, we will use the aligned model. It is
a more compact model and the overhead cost of the alignment step (0.9 ms per
image) is negligible.

In Table 3.4, different mixup setups are compared. The α value for the soft
mixup is 0.4. Mixup improves the results considerably. Among all the mixup setups,
the best result is obtained with the restricted hard mixup. Higher precision and mAP
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Figure 3.4 – Attention maps, predictions and their respective scores by our model and a
LSTM model respectively, from top to bottom. Top-2 predictions of the LSTM model are
displayed for each time step. The orange labels in the white box are false negatives, while the
red ones are the false positives. The LSTM model stops predicting after it outputs the end
(termination) token at the fourth time step. Although the model is not very confident about
the prediction (considering the relatively low score), the decoding process stops once the
end token is raised and the not-yet predicted classes remain unattended. Unlike the LSTM
model, our transformer-based model attends the image as a whole and is less likely to miss
classes, especially when the number of labels grows.

scores show that the restricted hard mixup model has more confident predictions.
We attribute the superiority of the restricted hard mixup over the soft mixup to soft
labels being detrimental for modelling label correlations; and the superiority over
the hard mixup to lower variance during the gradient update due to mixed and
non-mixed samples in the same batch.

3.4.2 Object Queries

In Figure 3.5, we compare the performance of our primal object queries with the
object queries in DETR [11]. We show the change of C-P, C-R and C-F1 metrics with
different number of decoder layers for both approaches. For simplicity, we do not
employ the mixup and the image size is 224×224. We set the learning rate of the
backbone to 0.0001 for the DETR model to make the model convergence during
training. It can be seen that our approach yields significantly higher C-F1 scores in
every setup. The more decoder layers the model has, it achieves higher recall. In
addition, the model with one decoder layer already performs comparable with the
models that have more decoder layers. On the other hand, the model with the DETR
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Table 3.4 – Comparison of exhaustive and aligned models and mixup methods.

mAP C-P C-R C-F1 O-P O-R O-F1
Exhaustive 78.3 77.5 69.5 73.2 79.8 73.3 76.4

Aligned 78.1 77.6 69.4 73.3 79.9 73.3 76.4
Aligned + soft mixup 78.6 79.1 69.8 74.2 80.9 73.7 77.1
Aligned + hard mixup 79.0 79.7 69.4 74.2 81.4 73.3 77.1

Aligned + restr. hard mixup 79.6 80.2 69.7 74.6 82.1 73.5 77.5

approach requires at least two decoder layers to achieve comparable performance.
We attribute this superiority to the residual connection after the cross attention
module which enables the propagation of our primal object queries to the next layer.
We empirically confirm this by disabling the residual connection and obtaining
the same results as the DETR model in the case that the number of decoder layers
is one. The same fact causes 79.0% and 38.6% faster convergence on MS-COCO
and NUS-WIDE datasets respectively. In order to calculate the convergence, we
determine the epochs that the C-F1 curves stop increasing and become steady
for both models. Then, we get the percentage increase of the epoch number for
setups that have up to three decoder layers. Finally, we average the percentages
from different setups to get the final percentage. In Figure 3.6, it can be seen that
the DETR model starts to converge much later than our model (the setup with
three decoder layers). Moreover, due to the lack of the propagation of the object
queries, DETR model starts from a significantly lower point compared to our model.
Consequently, when we compare the best models, we achieve improvements over
the DETR approach by 1.2%-1.5% in all metrics

Next, we analyze what the primal object queries of the aligned model learn
when they must account for multiple classes with the orderless loss. In Figure 3.7
(darker shades indicate higher values), we display the normalized counts of the
predicted classes for each object query. Each object query learns to recognize a
subset of classes. Since each of them can only make one prediction during one
forward pass, the subsets consist of classes that are not likely to exist together. For
example, the fourth object query learns to recognize bear, cow, suitcase, and wine
glass.

3.4.3 Comparison with the SOTA

We compare our results with several recent models: CNN-RNN [119], SR CNN-
RNN [76], Chen et al. [15], Li et al. [69] and PLA, our model proposed in Chapter 2,
are models that include RNNs either to model label relations or recursively generate
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Figure 3.5 – Comparison of the proposed and DETR approaches with different number of
decoder layers on MS-COCO.
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Figure 3.6 – Convergence of the proposed and DETR models on MS-COCO.
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Figure 3.7 – Normalized counts of predicted classes. Each object query recognizes a subset
of classes.

attention maps. SRN [141] proposes a Spatial Regularization Network that gener-
ates attention maps for all labels. ACfs [44], proposes a two-branch network with
an original image and its transformed image as inputs and imposes an additional
loss to ensure the consistency between attention maps of both versions. DER [20]
proposes to train a detection model in three steps in which it learns class-aware
attention maps, models label correlations explicitly and measures similarity be-
tween label embeddings. ML-GCN [19], exploits graph convolutional networks
to capture label dependencies. C-Tran [65] is the only transformer model that we
compare with. It exploits self-attention layers in a transformer encoder to learn
label correlations given image features and a set of masked label embeddings and
does not include any transformer decoder layer unlike our model. For MS-COCO
experiments ResNet-101 architecture is used for the backbone, and for NUS-WIDE
we run experiment with both ResNet101 and VGG16. For the comparison with SOTA
models, we use the aligned transformer model with one encoder and two decoder
layers. We also employ the restricted hard mixup.

The results on MS-COCO (see Table 3.5) show that we outperform all the state-
of-the-art models. The performance superiority is more apparent in the recall
metrics, since the transformer model is less likely to miss classes. The results on the
NUS-WIDE dataset can be seen in Table 3.6. The results on the top part of the table
use the split proposed by [58] with a VGG16 backbone, while the ones on the lower
part use the original split and a ResNet-101 backbone. For the T-POQ* model, we
resize the input image to 448×448 to make the comparison fair with the DER [20].
For the T-POQ model, we resize it to 224×224 to make the comparison fair with
SRN [141]. We surpass all the other models, especially in the class-wise metrics
which are more relevant, since NUS-WIDE is an unbalanced dataset.

51



Chapter 3. Visual Transformers with Primal Object Queries for Multi-label Image
Classification

Table 3.5 – Comparison with state-of-the-art on MS-COCO.

Methods
Image

size
mAP C-P C-R C-F1 O-P O-R O-F1

SRN [141] 224 77.1 81.6 65.4 71.2 82.7 69.9 75.8
ACFs [44] 288 77.5 77.4 68.3 72.2 79.8 73.1 76.3
PLA [133] 288 - 80.4 68.9 74.2 81.5 73.3 77.1

ML-GCN [19] 448 83.0 85.1 72.0 78.0 85.8 75.4 80.3
DER [20] 448 82.9 84.7 71.6 77.6 86.0 74.9 80.0

C-Tran [65] 576 85.1 86.3 74.3 79.9 87.7 76.5 81.7
T-POQ 224 77.9 79.5 67.4 73.0 81.5 71.3 76.1
T-POQ 288 80.6 80.9 70.9 75.6 82.5 74.4 78.2
T-POQ 448 84.5 82.9 75.8 79.2 84.4 78.4 81.3
T-POQ 576 86.2 84.1 77.9 80.9 85.0 80.6 82.8

Table 3.6 – Comparison with state-of-the-art on NUS-WIDE.

Methods C-P C-R C-F1 O-P O-R O-F1
CNN-RNN [119] 40.5 30.4 34.7 49.9 61.7 55.2
Chen et al. [15] 59.4 50.7 54.7 69.0 71.4 70.2
SR CNN-RNN [76] 55.7 50.2 52.8 70.6 71.4 71.0
Li et al. [69] 44.2 49.3 46.6 53.9 68.7 60.4
LSEP [72] 66.7 45.9 54.4 76.8 65.7 70.8
PLA [133] 60.7 52.4 56.2 72.0 72.8 72.4
T-POQ 66.0 52.7 58.6 74.7 71.8 73.2

SRN [141] 65.2 55.8 58.5 75.5 71.5 73.4
DER [20] 64.2 57.9 60.9 75.5 73.0 74.2
T-POQ 66.5 56.0 60.8 75.1 73.2 74.1
T-POQ* 66.8 57.8 62.0 75.6 74.3 74.9

52



3.5. Conclusions

3.5 Conclusions

We introduced the primal object queries that differ from the standard object queries
in the way that they are used. We achieved significantly better results and a large
speed-up of training convergence for both MS-COCO and NUS-WIDE datasets.
Our model is unique in that it achieves to learn long-term dependencies, adapts
and integrates the mixup technique for multi-label classification successfully, and
obtains state-of-the-art results for multi-label classification on the MS-COCO and
NUS-WIDE datasets by a large margin.
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4 Main Product Detection with Graph Net-
works for Fashion

4.1 Introduction

The e-commerce market is growing every year and it is estimated that by the end
of 2021 it will make for almost 18% of the total global retail sales [1]. As a conse-
quence, investment in AI technology for fashion that improves the online consumer
experience is also increasing [103]. A common problem that AI services companies
operating in the fashion industry have, is accurately parsing the feeds with hundreds
of thousands of products that the different clients provide as input. Although this
task may seem simple at first glance, different patterns of language usage and search
engine optimization (SEO) strategies by the merchants (each client can aggregate
tens or hundreds of different merchants), combined with visual ambiguity in the
images, make achieving industry-grade accuracy very hard. These product feeds
often contain fashion products with multiple images depicting a model wearing
a complete outfit, and the associated text data like product title, description or
category information.

More precisely, the task of main product detection consists in finding all bound-
ing boxes that contain the product being sold for an input which consists of possibly
multiple gallery images combined with a product title (see Figure 4.1). Finding
the main product is a crucial step in many computer vision-based fashion product
processing pipelines, as all information derived from the computer vision models
that analyze the images will be inaccurate otherwise. Two examples of downstream
consequences are wrong category inference and visual search mismatches (e.g.
showing a sweater product page when the query image is a skirt). The problem of
multi-modal main product detection was defined in [99], and is related to visual
grounding: a text query (i.e. product title) must be associated with corresponding
parts (i.e. bounding box) in a set of gallery images. In their work, they use a con-
trastive loss in order to learn the representation of positive and negative image-text
pairs and treat each bounding box independently, discarding the information of
other bounding boxes that belong to the same product. Therefore, the model does
not take similarities and dissimilarities between the bounding boxes into account
neither during training nor during evaluation. In addition, we introduce the more
challenging problem of gallery-only main product detection, where at inference time
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Figure 4.1 – Fashion e-commerce sites usually showcase products with a descriptive title
and a gallery of images. However, different merchants have different picture and title styles,
making it difficult to define generic rules to determine which of the items displayed in the
pictures is the one being sold. Therefore, algorithms that can learn this relation are of utmost
interest since they would greatly reduce annotation cost.

the system has no access to the product title and has to detect the main product
only based on the visual information. Although not very common, this setting arises
in cases of uninformative product titles, different languages or malformed product
feeds, and can lead to costly catastrophic failures if the model cannot recover from
it.

In our approach, we represent bounding boxes as nodes in a densely connected
graph, in which message propagation is realized between all neighbor nodes. In
that way, we learn the relation between the images that belong to the same prod-
uct, exploiting the context provided by all bounding boxes for the prediction (see
Figure 4.2). Our model is inspired by the one proposed in [93] for visual question
answering. In extensive experiments, we show that taking the context into account
leads to improved performance. Especially when considering cross-dataset evalua-
tion where we report a gain of 6-12 points and for the Gallery-only Main Product
Detection scenario where the text input is missing, where we show that using graphs
can result in a gain of up to 50 points when comparing to the same network without
graphs.

This Chapter is organized as follows, in Section 4.2, we introduce the related
works that focus on main product detection and incorporate graph convolutional
networks for fashion applications. In Section 4.3, we explain our approach and
the components of the proposed model in detail. In Section 4.4, we describe the
experiments that we conduct on the datasets and the results obtained. Finally, in
Section 4.5, we summarize our work and draw our main conclusions.
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Regular basic jeans

Input: product title and images Graph Neural Network Output: main product

Figure 4.2 – Bounding boxes detected in all images of a product are used as nodes in a
graph neural network. In this example, inter-image relations are considered for main product
detection (jeans).

4.2 Related Work

The irruption of computer vision and deep learning in the fashion industry has
led to many new tasks being proposed to the academic community, such as gar-
ment landmark detection [83, 122], fashion attribute recognition [40, 84], exact
product retrieval [2, 46, 63] and compatibility prediction [26, 112]. In this section
we review some of the works most related to ours, namely the ones that use graph
convolutional networks or multi-modal embedding learning for fashion-related
tasks.

Graph networks for fashion. The interest in combining convolutional networks
with graph structured data became popular with spectral graph networks proposed
in [10] and extended by [60] and [29]. Velivckovic et al. [114] proposed graph at-
tention networks to exploit masked self-attentional layers to improve the previous
methods. Therefore, after the graph networks became popular, new papers emerged
which exploit them for traditional computer vision tasks such as image classification
[19, 82], image segmentation [138], action recognition [18, 131], anomaly detec-
tion [140] etc. There are also several works using architectures that include graph
neural networks for fashion. Cucurull et al. [26] propose an apparel compatibility
prediction model where clothing items and their pairwise compatibility are repre-
sented as a graph, in which vertices are the clothing items and edges connect the
items that are compatible. They exploit a graph neural network to predict edge con-
nections in order to find out whether two items are compatible or not. Cui et al. [27]
also propose a model for compatibility prediction with an attention mechanism.
In another work [63], the authors use a graph neural network to learn similarities
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between a query and catalog image in multiple scales, and the similarities are rep-
resented by the nodes of a graph that is densely connected. To the best of our
knowledge graph neural networks have not been used for main product detection
before.

Visual-semantic joint embedding for fashion. Paired text-image data is very
common in the online fashion retail industry, and it has been naturally leveraged to
train visual-semantic joint embedding networks. Han et al. [47] propose a concept
discovery framework, which automatically identifies attributes derived by jointly
modeling image and text. Han et al. [48], employs a bi-LSTM model to jointly learn
compatibility relationships among fashion items and a visual-semantic embedding
in an end-to-end framework in order to predict compatibility of fashion items and
to recommend a fashion item that matches the style of an existing set. Li et al. [71],
propose a CNN-RNN model to predict the popularity of a fashion set by fusing
text and image features. Liao et al. [74], map fashion features and embeddings of
product titles into a joint space in order to obtain meaningful representations and
semantic affinities among fashion items. Transformer models have been shown to
achieve excellent results in Natural Language Processing, thanks to the abundance
of training data. In [4], a large dataset of product title-image pairs is used to train a
transformer-based visual semantic embedding, which achieves excellent results at
cross-modal retrieval.

Main product detection. As mentioned in the previous section, main product
detection is a new computer vision task, proposed in [99]. Their proposed model has
three main components which are the contrastive loss, the classification losses, and
the word2vec model [89] that extracts the product title embeddings. The contrastive
loss is used for positive and negative image-text pairs. Auxiliary classification losses
for image and text are used to improve training stability and performance. To train
a word2vec model, they concatenate all the available text fields in their feeds, then
compute 100-dimensional descriptors for each word appearing more than 5 times.
Finally, they average the descriptors to get the product title embeddings. They treat
each image independently during training and evaluation which means that they
do not take the relation between images that belong to a same product into account.
For the rest of the Chapter, we will denominate this work as Contrastive model.

4.3 Method

Main product detection deals with associating correct parts of images (bounding
boxes) with the given product title. As discussed before, prior work [99] considers
the bounding boxes separately to decide on which of them correspondent to the
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Figure 4.3 – The architecture of the model. The image features for bounding boxes from all
product images are concatenated with the product title embedding. These are then used as
nodes of the graph. The probability that they are the main product is estimated for each one.
We also display the other variants of our model in Figure 4.4.

product title. However, it is likely that a good view of the product in one gallery
image should be able to help the algorithm identify the main product in other
images where it is featured less prominently. Therefore, we take a more holistic view
to the problem and we want the algorithm to consider all parts in all the gallery
images simultaneously.

Figure 4.3 shows the architecture of our proposed model, which consists of
five parts: image model, BERT (text) model [31], context module, feature updater
and node classifier. The input for the BERT model are product titles, while the
input for the image model are image crops corresponding to the bounding boxes.
The graph in the context module is densely connected, and the nodes represent
the bounding boxes found in the product gallery images. Let G = {V ,E , A} be an
undirected graph with self-loops, where E and V ∈RN×d represent the edges and
nodes respectively, and A ∈RN×N the corresponding adjacency matrix. N and d are
number of nodes and dimension of node features respectively. The idea is to learn
the relations between the nodes (bounding boxes) given the title and help classify
them correctly.

Image model. The Image model is a ResNet-34 [49] convolutional neural network
that extracts features for each given bounding box. Activations from layer4 are
average pooled (512 dimensions) and fed to the next stage of the architecture. The
model is initialized with pre-trained ImageNet weights.

BERT model. In order to extract sentence embeddings for each title, we use a pre-
trained BERT model [31]. For the dataset with the product titles in English, we use
the bert-base-uncased BERT model, and for the one with the product titles in Turkish
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Figure 4.4 – The context modules of baseline and variants of our model. (a) In the no-
graph model (NG) there is no graph to represent the bounding boxes as nodes as there is
no interaction between the boxes. (b) In the ICFS (Instance Coupled Feature Similarity)
we represent each product image as a graph. (c) In the PCFS (Product Coupled Feature
Similarity) graph model, the same features are used to get the adjacency matrix and updated
features. (d) The PDFS (Product Decoupled Feature Similarity) graph model, decouples the
update of node feature and calculation of adjacency matrix.

we use the bert-multilingual-cased* model. We apply the BERT tokenizer which
splits strings in sub-word token strings that convert them to indexes according
to mappings in its vocabulary. The model outputs an embedding for each token.
To extract the sentence embeddings, we use the average max pooling method (i.e.
concatenation of average pooled and max pooled tokens into one vector). Since
the dimensionality of the BERT models is 768, after concatenation it doubles in
size and becomes 1536, so we add an extra fully connected layer to reduce the
dimensionality to 512.

Context module. The main novelty of our work is the introduction of the graph
network within the context module. The graph network models the interaction
between the various items shown in the image gallery and the product title (see

*https://github.com/google-research/bert
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Figure 4.4). Since the proposed graph topology is densely connected, the message
passing between the nodes cannot be a simple sum of neighbor node features, as
it will make all node features equal in the next layer. Therefore, we use the graph
learner architecture proposed in [93], that learns the adjacency matrix for the mes-
sage passing. As mentioned before, one node corresponds to each bounding box,
and the edges connect every pair of nodes. We build the node features by concate-
nating bounding box and title embeddings, represented as [ fn , t ] for bounding box
feature fn and the title embedding t , and input them to the graph learner F , which
consists of two fully connected layers with ReLU activation:

en = F ([ fn , t ]) (4.1)

The dimensionality of [ fn , t ] is 1024 (512 + 512), but it is reduced back to 512 after
the first layer. All N output features en are stacked into a matrix E ∈RN×P , where P
is the dimension of the concatenated features, we compute the adjacency matrix
with the following equation:

A = EE T (4.2)

which is defined as a fully connected adjacency matrix. This is not a problem
computationally since the number of nodes per product is low in our problem (we
will show the statistics in the datasets section). The adjacency matrix is then used
for message passing before the node feature update:

Ê = AE (4.3)

We denominate this model as Coupled Feature Similarity (CFS). In CFS, E is used for
obtaining the adjacency matrix and also as input features (Ê) for the graph. There-
fore, calculation of the adjacency and node feature update are coupled. However,
we observed that using the same features E for these two purposes (i.e. pairwise
similarity and node representation) may be limiting, so we propose to increase the
flexibility of the model by allowing it to decouple them and learn specific repre-
sentations for each of those purposes. Therefore, we test a variant of our model
in which, instead of obtaining the adjacency matrix as a product of E and E T , an
additional fully connected layer (head) after the context module is used to obtain
matrix D ∈RN×D (see Figure 4.3), which is subsequently used for message passing:

en ,dn = F ([ fn , t ])

A = DDT

Ê = AE

(4.4)
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As before, all output features dn are stacked into a matrix D . This formulation allows
us to directly learn the adjacency matrix instead of extracting it from the node
features. Since this model decouples the update of node feature and calculation of
adjacency matrix, we denominate it as Decoupled Feature Similarity (DFS).

The baseline and variants of our model are displayed in Figure 4.4. As can
be seen, we consider two setups for the CFS models: Instance Coupled Feature
Similarity (ICFS) and Product Coupled Feature Similarity (PCFS). In the ICFS, we
represent each product image as a graph. Because of this, and in contrast with
the baseline NG model, it is allowed to take into account the context provided by
the negative bounding boxes in the same image during training and evaluation.
However, it does not fully exploit the relation between all bounding boxes since they
are not densely connected as in the PCFS model. We do consider the connections
between all bounding boxes in all images in the PCFS model.

Feature updater. The feature updater part consists of one fully connected layer
and a leaky ReLU activation. We have also added these layers to the no-graph
baseline model (NG) to allow for a fair comparison with the graph-based models
(to ensure that they have a comparable capacity as our proposed methods).

Node classifier. The input of the node classifier is the concatenation of the orig-
inal BERT embeddings and the output node features. It consists of a single fully
connected layer to reduce the dimensionality to 2 (node active or inactive), and it is
followed by the binary cross entropy loss during training.

4.4 Experiments

4.4.1 Datasets

We evaluated the proposed methods on two datasets whose statistics can be seen
in Tables 4.1 & 4.2. We crawled each of the datasets from a different e-commerce
website. We collected information related to title, description, attribute information
and product images, on which we ran a fashion product detector to get bounding
boxes. Finally, we used human annotators to label the ground truth main bounding
boxes for each product gallery. We split the datasets and allocate 75%, 5%, 20% for
training, validation and test sets respectively. Some example products can be seen
in Figure 4.5. All the bounding boxes are computed with a fashion product detector
pre-training.

As an extra experiment, we evaluate our models on the main bounding box
detection dataset (MBBDD) which was made public by [99]. Due to the significant
amount of time has passed by since the dataset was first made public, we were
able to recover only a subset of the dataset. Out of total 458,700, we retrieved
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Figure 4.5 – Some multi-language example products from the dataset. The main bound-
ing boxes are drawn in green. The titles of the products are: Checked wrap skirt, Kadın
gömlek(Woman shirt) and Triko bere(Knit beanie) respectively. All the bounding boxes are
computed with a fashion product detector pre-training.
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Table 4.1 – Dataset statistics. BBs denotes bounding boxes.

Datasets Lang.
Categories

Images/product BBs/image

access
ory

bags
botto

m

sw
im

one-p
iece

oute
rw

ear

sh
oes

sw
eate

rs

to
p

1 English 236 440 4711 - 1820 2972 441 2474 6424 4.40 2.40
2 Turkish 2220 556 5183 811 1263 1190 1244 3521 6290 2.46 2.73

Table 4.2 – Number of images with M bounding boxes.

Datasets M =1 M =2 M =3 M =4 M =5 M =6 M=7 M =8 M =9 M =10 M >10

1
Per image 33747 17590 10945 16111 5750 1410 283 32 8 3 1

Per product 1118 992 1085 1578 977 790 738 878 974 1038 9350

2
Per image 17334 12170 6955 10360 4841 1985 660 264 92 44 92

Per product 1980 4849 1507 1439 591 1386 865 2052 1057 1263 5289

91,550 products. The number of images per product is 1 and the average number
of bounding boxes per image is 2.37. We use 77,820 products for the training
and validation and the rest of them as a test set. Instead of using bounding box
proposals, we use the same fashion product detector that we used for our datasets
to get bounding boxes. The rest of the details about the dataset can be found in [99].

4.4.2 Evaluation Metrics

We consider the product accuracy for a single product to be 1 if all positive (product
being sold) and negative (other parts of the outfit) bounding boxes are classified
correctly, and 0 otherwise. Then all scores for all test images are averaged to get
the final score. We deem the product accuracy metric to be the most important
indicator for a main product detection system. As we explained before, one wrong
bounding box classification might cause visual search mismatches in queries related
to the product. Therefore, it is crucial to classify all bounding boxes of a product
correctly to avoid such problems. We also consider the precision@1, recall@1 and
mAP metrics. For the graph based models, we use the classification scores to rank
the nodes of a product. For the contrastive model, we use the distances between
image features and title embeddings.

4.4.3 Network Training

We implemented our architecture using the PyTorch framework [95] and Deep
Graph Library [120]. The Adam optimizer is chosen for the training. We use learning
rate 10−4 and 3×10−6 for the image and BERT models respectively. For the remaining
parts of the model, the learning rate is 10−4. The batch size is 6 and each batch
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Figure 4.6 – The architecture of the contrastive model.

sample is a graph of nodes that represent the bounding boxes that belong to same
products. In all experiments, we train the models for 25 epochs, and the snapshot
that yields the best accuracy on the validation set is evaluated on the test set for
the reported results. For the contrastive model we use batch size of 32 and train for
35 epochs. This was done to obtain competitive results compared to our methods.
In the evaluation, we choose a node as a positive node if the probability of the
final score is higher than 0.5. For [99], we set the margin hyper-parameter of the
contrastive loss to 0.5 for training. During evaluation, we accept as main product
the detections that have a cosine distance lower than 0.1 with the product title
embedding. Both values were selected by cross-validation.

4.4.4 Comparison with the Baseline Models

In the initial experiments, we compare the proposed approach with a no-graph
(NG) model, which contains the same layers as the proposed model (see Figures 4.3
and 4.4). The only difference is that the adjacency matrix is not used, as there is
no node feature update step in the NG model. Therefore, bounding boxes cannot
interact, and each decision is computed independently from the others.

Our second baseline model is the Contrastive model [99], where the authors pro-
pose to map the image and text embeddings into a common space, and reduce the
distances between positive bounding boxes and their titles with a contrastive loss, as
well as including additional auxiliary losses for bounding box and text classification.
To make the models comparable, we make sure that the image and text branches
have the same architectures, we include the extra fully connected layers in the other

67



Chapter 4. Main Product Detection with Graph Networks for Fashion

Table 4.3 – Performance comparison of the baselines and graph-based approaches.

Train Test Models P@1 R@1 mAP Prod. acc.

1

1

Contrastive 98.7 32.2 99.1 81.0
NG 99.3 32.4 99.5 87.1

ICFS 99.3 32.4 99.5 88.1
PCFS 98.6 31.6 99.1 87.6
PDFS 99.1 32.1 99.4 89.1

2

Contrastive 97.1 44.8 98.1 84.3
NG 98.1 45.2 98.4 84.7

ICFS 97.7 45.0 98.1 87.8
PCFS 96.5 44.7 97.6 87.1
PDFS 97.7 45.1 98.5 90.3

2

1

Contrastive 92.7 30.5 93.4 41.1
NG 95.4 31.0 93.9 43.2

ICFS 96.0 31.1 94.7 53.7
PCFS 96.1 31.4 95.8 51.0
PDFS 93.1 30.4 94.5 55.7

2

Contrastive 99.2 45.8 99.4 92.0
NG 99.6 46.0 99.6 94.7

ICFS 99.7 46.1 99.6 94.5
PCFS 99.5 46.0 99.6 94.9
PDFS 99.5 46.0 99.6 95.6

parts of the model, and remove every loss apart from the contrastive loss. Since
we cannot concatenate features and embeddings as we do in our proposed model,
we create two branches for image features and text embeddings after the image
and BERT models (see Figure 4.6). Then, we compare our graph-based approaches:
ICFS, PCFS nad PDFS. To make the comparison fair with the other graph-based
models, we evaluate the ICFS model by checking the image score (which is 1 if all
bounding boxes of an image are classified correctly 0 otherwise) and assigning 1 to
product score if all image scores are 1.

The results are summarized in Table 4.3. We first focus on the in-dataset eval-
uation, referring to the results where train and test set originate form the same
dataset. As can be seen the graph-based methods outperform the baselines in
the product accuracy metric by a significant margin. Especially our PDFS model
manages to obtain good results in the product accuracy metric, outperforming
the other graph-based methods and the NG baseline. Since the average graph
size is bigger for dataset 1 (see Tables 4.1 and 4.2), the gain with the graph-based
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Figure 4.7 – Comparison of accuracies of different models with changing graph sizes on
the dataset 1. Our proposed method especially improves results when the gallery of images
contains many bounding boxes.

models is higher for the dataset 1. Precision@1 and recall@1 metrics yielded by the
graph-based and baseline models are comparable, because it is relatively easy task
to sort the bounding boxes by similarity since the number of nodes per product is
low. However, in most of the metrics, our graph-based models obtain better scores.
The change in performance with the graph size is further analyzed in Figure 4.7a.
All the graphs whose size is bigger than 20, are represented as their size is 20 in
the figure. As expected, graph-based approaches can handle larger graphs better
than the non-graph based approaches since it gets harder to classify all the nodes
correctly when the number of nodes increases in the absence of context.

We also do cross-dataset evaluation to assess the generalization ability of the
models. For the cross-dataset evaluation, we translate the titles from English to
Turkish and from Turkish to English by using a Google Translator API. In this case the
gains because of the graph-model are more pronounced, especially when evaluating
the model trained on dataset 2 on dataset 1, where results increase from 43.2% (NG)
to 55.7% (PDFS), showing that the graph-based methods generalize better to new
data.

In Figure 4.8, we display some qualitative results for the NG, PCFS and PDFS
models. Moreover, in Figure 4.9 it can be seen that after the node feature update
the cosine similarities of node features are getting higher.
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(a) Feather coat

(b) Chino bermuda shorts

Figure 4.8 – Qualitative evaluation of NG, PCFS and PDFS models respectively. The product
titles are written under the subfigure. The gray nodes in the middle are the title nodes which
are presented for demonstration purposes. The scores on the edges are the classification
scores of the connected nodes. The green and red edges represent positive and negative
nodes respectively. The nodes that are bounded by a red box are the wrong classifications.
The superiority of the graph based models are more apparent in case of larger graph sizes
(see also Figure 4.7b) (best viewed in color).

4.4.5 Gallery-only Main Product Detection

In Table 4.4, we evaluate the setup which we call gallery-only main product de-
tection. In this setup, we take the best models from previous experiments and
re-evaluate them while setting all input text embeddings to zero. This setup is an
important indicator to evaluate models when they are deployed in the wild where
product titles or descriptions will not always be available. It can be seen that the
failure rate of the baseline approaches is much higher than the graph-based ap-
proaches. PCFS and PDFS models also yield better results than the ICSF model.
This can be attributed to the fact that the graph-based models are able to enforce
consistency between the bounding boxes thanks to the graph formulation, whereas
the other methods show more dependency on the text, and fail in the case where no
text input is provided. We attribute the relative high performance of the contrastive
model to being biased to selecting the biggest bounding boxes as main products.
The margin between the proposed and baselines approaches gets larger when the
graph size increases, as can be seen in Figure 4.7b.

Finally, as an additional illustration, in Figure 4.10 we show that our method can
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Figure 4.9 – Cosine similarities between the features after the image model and the graph
network respectively. After the node feature update, the similar items get closer to each other
in the feature space, while the dissimilar items are pushed further away. The main bounding
boxes are connected to each other with green edges. (best viewed in color).

be used to detect the main product in videos, by considering several frames from
the video. The video frames are taken from products that are being sold in a website
of a fashion retailer. In this website, along with the images, titles and descriptions
of a product, a video of a model wearing the item is available to customers. We
evaluated our PDFS model by randomly sampling 3 frames of a video. After running
the fashion detector on these frames, the bounding boxes are input to the main
product detection model along with the product title. In the figure, it can be seen
that the main product detection model successfully assigns the highest scores to
the main items compared to other items. This example shows that the proposed
method here for product detection in gallery images can potentially also be used
for detection of main products in fashion videos.

4.4.6 MBBDD

We also train and evaluate the baselines and our models on MBBDD. We use the
same models and hyperparameters that we used for the previous experiments. The
results can be seen in Table 4.5. Since the average number of positive bounding
boxes per product is 1.02, the R@1 metric is much higher compared to results on
our datasets. Again, especially in the product accuracy metric, graph based models
achieve higher results than baselines. We do not display the results of the ICSF
model since the products of the dataset are represented by single images. It is also
interesting that although images are represented by single images, graph-based
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(a) Mom jeans in blue

(b) Dress with lace inserts in white

(c) Shacket in black

Figure 4.10 – Evaluation of the main product detection on video frames. The product titles
are written under the subfigure. In all frames, the bounding box that has the highest score is
the main bounding box.
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Table 4.4 – Performance comparison of the baselines and graph-based approaches in the
gallery-only setup, where no text input is provided.

Train Test Models P@1 R@1 mAP Prod. acc.

1

1

Contrastive 79.8 28.0 89.6 56.9
NG 89.1 27.4 83.4 21.2

ICFS 91.4 29.5 89.1 37.4
PCFS 88.6 28.1 91.2 65.1
PDFS 83.0 28.4 88.9 67.9

2

Contrastive 81.6 39.3 91.6 65.1
NG 80.5 38.3 84.2 37.8

ICFS 88.4 41.4 90.4 51.2
PCFS 81.3 39.0 89.3 67.6
PDFS 81.8 39.2 89.6 71.3

2

1

Contrastive 54.0 19.5 74.2 20.7
NG 84.1 26.1 78.5 21.8

ICFS 87.8 27.2 79.5 24.8
PCFS 77.4 24.5 73.4 21.3
PDFS 80.1 25.0 80.6 30.4

2

Contrastive 71.7 35.7 87.4 56.2
NG 89.9 42.0 91.8 57.1

ICFS 89.9 42.1 90.9 44.9
PCFS 84.4 39.5 83.0 54.3
PDFS 93.3 42.9 93.7 72.4

Table 4.5 – Performance comparison of the baselines and graph-based approaches on
MBBDD.

Models P@1 R@1 mAP Prod. acc.
Contrastive 95.5 94.5 97.7 88.4

NG 96.3 95.3 98.1 91.1
PCFS 96.5 95.5 98.2 94.8
PDFS 96.4 95.4 98.1 94.8

models surpass the baselines by a significant margin. This shows the importance
taking the context of negative images into account for the final decision on the
MBBDD dataset.
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4.5 Conclusions

In this work, we propose a new approach for main product detection that incorpo-
rates a graph neural network to capture the relationships between all the detected
products in a fashion product image gallery. We empirically demonstrate that the
graph-based approaches surpass the baselines which do not take the context of
product images into account with gains of 6-12 points. If we consider the more
challenging Gallery-only Main Product Detection we show that using graphs can
result in gains of up to 50 points when comparing to the same network without
graphs. Finally, we put a focus on the main product detection, a crucial but often
overlooked task, that has received less attention from the research community due
to its more application oriented structure.
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5 Color Naming for Multi-color Fashion Items*

5.1 Introduction

Computer vision offers great potential to develop tools to improve interaction
between buyers and sellers in the fashion industry [12, 104, 130]. Color attributes
(in this work referred to as color names) are among the essential properties of
fashion items and their understanding is therefore crucial for efficient interaction
with users. Therefore, in this work we focus on the automatic estimation of color
names of images of fashion items. We will focus on extracting the colors of the
fashion items in real-world images with background clutter and without available
segmentation masks or bounding boxes which indicate the exact location of the
fashion item. The task therefore is twofold, automatic detection of the fashion item,
and estimation of its colors.

Color naming is a challenging task due to several reasons, including discrep-
ancies between the physical nature of color and human perception (which is also
affected by the cultural context), or external factors like varying illumination and
complex backgrounds. Moreover complex background, human skin, or human hair
act as clutter that deteriorates the accuracy of models. It is important to minimize
the effects of this type of clutter in order to improve accuracy. A further difficulty of
color naming in fashion, which is the focus of this work, is that many of the objects
that we see in the real world have several colors, which complicates the decision
making process for algorithms.

Computational color naming has primarily focused on the 11 basic colors of the
English language [5, 111]. Those 11 basic colors are defined in the seminal work
of Berlin and Kay [6] in which they researched the usage of color names in various
different languages. Color names have been successfully used in a number of com-
puter vision applications, including action recognition, visual tracking and image
classification; see [109] for an overview. In the field of fashion image understanding,
Liu et al. [77] do color naming using Markov Random Fields to infer category and
color labels for each pixel in fashion images. To the best of our knowledge, all
existing work on color naming focuses either on single colored objects or pixel-wise

*This chapter is based on a publication in the World Conference on Information Systems and
Technologies (WorldCIST, 2018) [134]
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predictions.
Therefore, we address the problem of color name assignment to multi-color

fashion items. We design several neural network architectures and experiment with
various loss functions. We collect our own multi-label color dataset by crawling data
from Internet sources. We show that a network with an additional classification
head that explicitly estimates the number of color names improves performance.
In addition, we show in a human annotation experiment that multi-color naming
is an ambiguous task and human annotation results are only a few percent higher
than results obtained by our best network.

The rest of this Chapter is organized as follows. Related work is discussed
in Section 5.2. Section 5.3 describes details of the dataset that we use for the
experiments. Section 5.4 elaborates the proposed approach. Experiments are
presented in Section 5.5. Finally, we conclude the Chapter in Section 5.6.

5.2 Related Work

Research papers for fashion firstly focused on the segmentation of fashion products
in images. Yamaguchi et al. [130], propose the Fashionista dataset consisting of
158,235 fashion photos with associated text annotations. They use a Conditional
Random Field Model (CRF) in order to parse fashion clothes pixel-wise. However,
their algorithms require fashion tags during the test time to get good accuracies.
Simo-Serra et al. [104] address this issue and also propose a CRF model that exploits
different image features such as appearance, figure/ground segmentation, shape
and location priors for cloth parsing. They manage to obtain state-of-the-art per-
formance on the Fashionista dataset. Liu et al. [85] propose a novel dataset which
consists of 800,000 images with 50 categories, 1,000 descriptive attributes, bounding
boxes and clothing landmarks. Moreover, they also propose a novel neural network
architecture which is called FashionNet. The network learns clothing features by
jointly predicting clothing attributes and landmarks. They do pooling and gating of
feature maps upon estimated landmark locations to alleviate the effect of clothing
deformation and occlusion. Recently, Cervantes et al. [12] propose a hierarchical
method for the detection of fashion items in images.

For color, Cheng et al. [21] use a modified version of VGG for pixel-wise pre-
diction out of 11 color labels (which are blue, brown, gray, white, red, green, pink,
black, yellow, purple and orange) and a CRF to smooth the prediction. Although
their model is robust to background clutter, and can produce pixel-wise prediction,
it is not robust to other clutter such as skin and hair color. Van de Weijer et al. [111],
use probabilistic latent semantic analysis (PLSA) on Lab histograms to learn color
names. Benavente et al. [5], present a model for pixel-wise color name prediction
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Figure 5.1 – Sample images from the dataset with varying content and background clutter.
Note that we do not provide segmentation and therefore to estimate the colors, the algorithm
needs to implicitly segment the main fashion item.

by using chromaticity distribution. Wang et al. [124], propose an algorithm which
has two stages: in the first stage, which they name self supervised training, they
train a shallow network with color histograms of random patches from the dataset.
In the second stage, they fine-tune the same network to predict 11 basic colors.
Mylonas et al. [91], use a mixture of Gaussian distributions. Schuerte and Fink [102]
propose a randomized hue-saturation-lightness (HSL) transformation to get more
natural color distributions; secondly, they used probabilistic ranking to remove
the outliers. They claim that these steps helps color models accommodate to the
variances seen in real-world images. In none of the before mentioned works to task
of color naming multi-color objects is addressed.

5.3 Multi-color Name Dataset

There are several datasets for color name learning. Van de Weijer et al. [111] in-
troduced two datasets, constituted of images of objects retrieved from Google
and EBAY respectively, and labeled with the 11 basic color names. Liu et al. [77]
introduce another dataset which consists of 2682 images with pixel-level color an-
notations of the 11 basic colors plus a "background" class. However, almost every
image in the dataset has a single color. To the best of our knowledge there is no
dataset which explicitly considers multi-color objects.

We therefore collect a new dataset for this work, composed of images of fashion
objects with one to nine colors (see Table 5.1). Single colored fashion images are
crawled from various online shopping sites, and most of the multicolor labeled
images are obtained by querying the Google images search engine with a query
term containing a pair of color names and a fashion keyword (e.g. red and blue
skirt) and downloading the 100 first images. There are 67 fashion keywords that we
use and 55 color pairs that can be obtained with combinations of 11 basic colors. At
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Table 5.1 – The number of images for each color category.

1 2 3 4 5 6 7 8 9 Total
Train 5556 5431 2178 1203 476 131 19 4 3 15001
Test 50 50 50 50 0 0 0 0 0 200

the end, we remove irrelevant and noisy data and crop the fashion item to prepare
the dataset.

This process allows us to obtain images with two colors and more colors, as
sometimes the search engine also returns images with additional colors not in-
cluded in the query. Unfortunately, this leads to an imbalance between the number
of 2-colored images and multi-colored images. Directly crawling for products with
more than two colors using Google Images produces unsatisfactory results.

The dataset includes different types of images of varying complexity: catalog
shots with smooth or complex background, images with plain background without
any person or images taken by social media users; all labeled with the color names
of the main fashion item. Sample images from the dataset can be seen in Figure 5.1.
It should be noted that we do not use segmentation for the images, and naming
the multiple colors of the fashion items includes dealing with clutter from the
background, occlusions, and skin and hair of the person. However, if there is more
than one fashion item in an image, to avoid any confusion, we provide a bounding
box for the correspondent fashion item. In any case, the network has to implicitly
segment the fashion item from occlusions and clutters.

5.4 Networks for Multi-color Name Prediction

Methods on color naming focus on single colored objects. In this work we aim to
propose a method for multi-colored fashion items. We evaluate several network
architectures and losses for this task.

5.4.1 Network Design

In principle we believe the mapping from RGB to color names not to be highly com-
plicated and only several layers are required. However, differentiating background
from foreground is a highly complex process that requires many layers and should
be implicitly done by the network.

First, we propose a shallow network; the truncated version of Alexnet [62].
We keep the first five convolution layers of the architecture and remove the fully
connected layers of 4096 dimension. At the end we add a fully connected layer
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which maps features to the eleven basic color names. As a second network we use
the full Alexnet architecture. Both nets are initialized with pretrained weights from
ILSVRC 2012 dataset [30]. We think that finetuning from this model can alleviate
noise caused by clutter such as complex backgrounds, hair or skin.

5.4.2 Loss Functions

We consider two loss functions for the purpose of color naming for multi-color
fashion items. The first loss we consider to train the network is the softmax cross-
entropy loss (SCE). The softmax cross-entropy can be seen in Equation 5.1:

Lsce =− 1

N

N∑
i

P (i ) logQ(i ) (5.1)

where Q the predicted color distribution, P is the true color distribution, and N is
the number of images. Q is obtained by applying a softmax normalization to the
output of the last fully connected layer of the network, and the ground truth P is
computed by assigning a uniform probability to all color names annotated for the
fashion item (e.g. in case of three annotated color names, P would contain three
elements with value 0.33).

While the softmax cross-entropy loss teaches a network to compute color prob-
ability distributions for an input fashion item, no decision is made on the actual
number of colors. To remedy this, a threshold on the computed probabilities Q,
learned from an independent validation set, is used to discard the colors unlikely to
be really present.

The second loss we consider is the binary cross-entropy loss (BCE), which inher-
ently supports multi-label classification. This loss is commonly used for attribute
detection [85, 86] because it models the presence of multiple labels simultaneously.
Therefore it is expected to obtain better results than the softmax-cross entropy.
Unlike with the softmax cross-entropy loss, the computed probability for a color
name is independent of the others. For example the probability of both ’green’ and
’orange’ can be one simultaneously, something which is impossible for the softmax
cross-entropy loss. Therefore, the loss trains 11 binary classifiers for each color. In
Equation 5.2, the binary cross-entropy can be seen.

Lbce =− 1

N

N∑
i

Pi logQi + (1−Pi ) log(1−Qi ) (5.2)

Similarly as the softmax-cross entropy loss we determine a threshold on a validation
set to decide on the colors which are present in the fashion item. We found this to
yield better results than choosing the natural threshold of 0.5.
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Input Data Conv1 Conv2 Conv3 Conv4 Conv5 FC6 FC7

Color

naming loss

Color number

loss

227x227x3 55x55x96 27x27x256 13x13x384 13x13x384 13x13x256 40964096

11

4

Figure 5.2 – The architecture of the deep network with the extra head.

5.4.3 Extra Head to Explicitly Estimate Number of Colors

In the previous section we consider two losses to estimate the color names. In
principle the binary cross-entropy loss which implements the multi-label softmax
cross-entropy loss is more suitable for the estimation of multiple colors. However,
the probabilities which are the outcome of these networks both encode information
of the number of color names as well as the confidence of the network in its estima-
tion of the color names. Considering a single colored object which the system is
not sure to label with either ’orange’ or ’red’, the algorithm that is based on binary
cross-entropy might give both colors a probability of 0.6. Based on this we might
conclude that the object is a multi-color object which is both ’orange’ and ’red’.
However, looking at the object it might be obvious that it only has a single color.

Therefore, we experiment with adding an extra classification head to the net-
work, which explicitly estimates the number of colors in the main object. We model
this objective as a classification task, and define four possible classes: one, two,
three and four or more colors. A natural choice for this objective is the softmax
cross-entropy loss layer, typically used for classification. In the experiments, we
add this additional objective both to the networks which use softmax-cross entropy
loss and the binary cross-entropy loss. The architecture of the network can be seen
in Figure 5.2.
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5.4.4 Training Procedure

To train the network, we finetune from an Alexnet model which is trained on ILSVRC
2012 [30] using the Caffe framework [55]. The batch size is 64, the optimization
method is SGD with momentum, set to 0.99, and we decrease the learning rate
after every 5000 iterations. The initial learning rate is 0.0001 and the maximum
iteration number is 20000. We also use data augmentation techniques in order
to increase the accuracy of the models. The data augmentation techniques that
we use are changing contrast, rescaling image and cropping random parts from
images. Rescaling basically consists on changing the resolution of the image before
resizing to the required network input size. The probability that any augmentation
technique is applied to an image is 50%. We never keep both the original and the
augmented image in the same batch, as we have observed that it may negatively
impact the accuracy of the learned model. Finally, to avoid aspect ratio distortions
caused by the resizing process, we use a padding function in order to make all
images square.

5.5 Experiments

To evaluate the performance we use label based metric methods. We calculate
the micro-precision, micro-recall, micro-F1, macro-precision, macro-recall and
macro-F1. In the micro methods we sum up true positive, false positive and true
negative for each label in order to get micro-recall and micro-precision. In the
macro methods, we calculate precision and recall of each label and average them
in order to get the macro-recall and macro-precision. The main difference is that
the macro metrics do not take the label imbalance into account. To clarify the
difference between the micro and macro methods, here we give the micro-precision
and macro-precision:

Pmi cr o =

L∑
j=i

t p j

L∑
j=0

t p j +
L∑

j=0
f p j

Pmacr o =
L∑

j=0

t p j

t p j + f p j
(5.3)

L is the number of classes, t p j and f p j is the true positive and false positive of class
j. All of the results can be seen in Table 5.2. We focus on the F1-score which is a
fair metric to compare methods. We first evaluate the two network architectures,
namely the shallow and deep network. Both of the models have the extra head
which forces them to learn the number of colors on a fashion item. The deep model
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(a) GT:

DE:

SH:

(b) GT:

DE:

SH:

(c) GT:

DE:

SH:

Figure 5.3 – Qualitative results of the shallow and deep networks. GT, DE, SH denote the
ground truth, the predictions of the deep and shallow model respectively. Note
that the networks should estimate the colors of the fashion item while ignoring
the non-relevant colors present in the background.

Table 5.2 – Results of our models and the human annotators.

Shallow BCE
w/ extra head

SCE w/o
extra head

SCE w/
extra head

BCE w/o
extra head

BCE w/
extra head

Human
Score

micro
precision 77.2 85.6 80.3 82.3 83.6 81.4

recall 67.2 63.2 70.8 69.8 71.2 81.9
F1 71.9 72.7 75.2 75.5 76.9 81.3

macro
precision 78.4 84.7 79.8 81.4 83.1 81.6

recall 65.2 62.1 69.8 67.4 69.3 80.9
F1 69.3 69.4 73.5 72.5 74.2 80.2

clearly outperforms the shallow model. We attribute this to the fact that the shallow
model is not able to segment the fashion items implicitly, and therefore fails for the
more cluttered cases as can be seen in Figure 5.3.

Next we evaluate the different losses, and we verify if the additional head which
explicitly predicts the number of colors contributes to a performance gain. It can be
seen that adding the additional objective improves both the softmax cross-entropy
loss and the binary cross-entropy loss; it forces the network to learn the number
of colors on a fashion item, and also contributes to name them as can be seen
when comparing the columns 4-5 and 6-7 of Table 5.2. During the inference, the
extra head can predict maximum 4 colors. In case the networks without extra head
predicts more than 4 colors, we get the first 4 with the highest scores.

In the last column of Table 5.2, we show the average performance obtained
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(a) GT :

WH:

WO:

(b) GT :

WH:

WO:

(c) GT :

WH:

WO:

(d) GT :

WH:

WO:

Figure 5.4 – Qualitative results of the BCE model with (WH) and without (WO) the extra
head.

by humans for the same task. We asked seven annotators of different ages and
backgrounds to provide labels for the images in the test set. The obtained scores for
humans show that multi-color labelling is an ambiguous task, and for many objects
humans do not agree on the labels. This score can be considered to be an upper
bound for computational methods.

The contribution of adding an extra head is shown in Figure 5.4. From the
ground truth and prediction of the cross entropy models it can be seen that the
extra head provides robustness if the color distribution is not uniform in the image.
However, it makes the model more conservative and biases it towards predicting a
lower number of colors in the image (last two examples on the right).

5.6 Conclusions

In this work we address the problem of color name estimation in multi-colored
objects that, to the best of our knowledge, we are the first to address. We collect a
dataset of over 15.000 images with a varying number of colors per object and we
evaluate several network architectures for the purpose of multi-color estimation.
Preliminary results show that adding an additional objective to explicitly estimate
the number of colors in the object improves results. Following recent work we
are interested in extending the set of color names to include a wider range of
colors [90, 135]. We hope that this work further motivates researchers to investigate
the more realistic setting of color naming for multi-colored objects.
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6.1 Conclusions

The commercial impact of deep learning has been tremendous. Every year, com-
panies propose new computer vision problems to the research community. This
has led to significant advances in many industries, including autonomous driving,
robotics, visual search for online retailers, medical imaging, etc. Fashion is one
of the industries that has been eager to incorporate novel functionalities based
on the new possibilities offered by big data and machine learning. Thanks to the
close collaboration between the industry and academy, advances develop at a rapid
pace. This thesis has aimed to contribute to the development of smart fashion
applications. In doing so, we have also contributed to the more general application
of multi-label classification that is also used in many other industries.

In this thesis, we addressed several problems that are common in the fashion
industry. Firstly, in Chapter 2, we addressed the problem of imposing fixed orders
to recurrent models for multi-label image classification. In Chapter 3, we tackled
the problem of long term dependencies caused by recurrent models due to their
sequential nature for orderless set prediction problem. In Chapter 4, we addressed
the problem of main product detection for fashion product parsing. In Chapter 5,
we addressed the problem of color naming for multicolored fashion items.

The methods proposed and the results obtained in this thesis are:

• Chapter 2: Orderless Recurrent Models for Multi-label Classification:. We
showed that imposing fixed orders does not always correspond the natural
order of objects in images. We proposed novel orderless losses which align
the ground truth sequence with predicted labels in a way that the minimum
loss is achieved. We empirically showed that our models do not suffer from
duplicate predictions, something very common for recurrent models that are
trained with fixed order methods. We also surpassed the state-of-the-results
with our orderless recurrent models.

• Chapter 3: Visual Transformers with Primal Object Queries for Multi-label
Image Classification: We introduced the primal object queries that differ
from the standard object queries in the way that they are used. We achieved
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significant speed-up of training convergence and obtained state-of-the-art-
results on MS-COCO and NUS-WIDE datasets. We proposed a visual trans-
former model that is unique in that it manages to learn long-term depen-
dencies and integrates the mixup technique for multi-label classification
successfully.

• Chapter 4: Main Product Detection with Graph Networks for Fashion: We
collected a new dataset with fashion products represented by multiple images
and provided the main product annotations. We exploited graph convolu-
tional networks to represent bounding boxes of a fashion product as nodes
in a fully connected graph. We empirically showed that learning the relation
between the bounding boxes during the training and taking the entire con-
text into account for the final decision improve the main product detection
performance significantly, especially in harder setups such as when we miss
the title-input at inference time.

• Chapter 5: Color Naming for Multi-color Fashion Items: We proposed a
novel architecture with an additional head that explicitly estimates the num-
ber of colors in multicolored fashion items. We show that it alleviated the
problem of ambiguity caused by fine lines between the classes in color spaces
and resulted in better color naming performance.

6.2 Future Work

For multi-label image classification, we are interested in the idea of target-aware
data augmentations. For example, improving the hard mixup in a way that the
generated targets reflect the statistics of the training set or imposing more con-
straints such as restricting the mixup between pairs whose labels do not co-occur
in the training set. Moreover, we would like to tackle the order problem by employ-
ing different methods other than alignment with Hungarian algorithm, since the
complexity (O (n3)) increases significantly when the number of labels per image is
higher.

For main product detection, we would like to employ transformers instead
of graph convolutional networks for future training. Since our fashion graph is
fully connected, we can exploit self-attention layers in transformers to learn the
relation between the bounding boxes that belong to the same product. This would
also make the training faster since the parallelization is easier with transformers.
Moreover, the cross-attention module, which takes the keys and values from a
convolutional backbone or a stack of encoder layers, would act as natural visual
grounding (locating the most relevant object or region in an image) module which
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is very relevant for main product detection.
For color naming, features of colors that occupy lower number of pixels in

an image tend to disappear due to multiple pooling layers. Instead of increasing
the image size and computational cost due to larger features, we are interested in
imposing extra losses in intermediate features to improve the recognition of minor
colors in fashion items.
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