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Three cardinal rules: 

One, surround yourself with people whose eyes 

light up when they see you coming. 

Two, slowly is the fastest way to get to where you 

want to be. 

Three, the top of one mountain is the bottom of the 

next, so keep climbing. 

André De Shields 

“Life is short, enjoy the ride” 
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Summary 

The aim of this doctoral thesis is to study new sensor platforms combining 

electronic tongues principles and chemometric tools. To achieve this goal, the 

knowledge acquired in the Sensors and Biosensors group of the Universitat 

Autònoma de Barcelona has been applied.  

The main objective of this research is focused on the development of 

electrochemical sensors, using the concept of sensor arrays for applications in 

different fields of study. The type of sensor employed was printed, either by 

screen-printing or inkjet printing techniques. The use of these systems provides 

multicomponent information that needs to be treated with chemometric tools. 

The electrochemical measurements were obtained using different 

electroanalytical techniques based on the fundamentals of Voltammetry, namely 

Cyclic and Square Wave. The data processing part was treated using Principal 

Component Analysis and Silhouette Coefficient calculation for qualitative 

studies. In addition, learning algorithms commonly known as “Machine Learning 

Algorithms” were used for the identification of the mixtures under study. The use 

of these statistical criteria has served to optimise the composition of the sensor 

matrix. In contrast, quantitative studies were approached using more complex 

calculation algorithms such as Partial Least Squares Regression and Artificial 

Neural Networks as a simulation of the biomimetic systems. 

The application of these systems has been focused on two distinct fields of study. 

One is the quantification of different pharmaceutical compounds (ternary mixtures 

of acetaminophen, ascorbic acid and uric acid) as a proof of concept to validate 

the experimental procedure developed. In the second case, the study is focused 

on the identification and subsequent quantification of different drugs of abuse and 

their corresponding cutting agents. Specifically, mixtures of opiates such as 

heroin, morphine and codeine were identified and quantified. Moreover, 

commonly used concentrations of different cutting agents (paracetamol and 

caffeine) were added to the mixtures in order to simulate the detection of real 

samples found in the illicit drug market.  
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To conclude the study, an application was developed for the quantification of 

different cutting agents (ternary mixtures of benzocaine, phenacetin, and 

paracetamol) commonly found in cocaine samples. All these approaches are 

ultimately aimed at implementing new strategies for the rapid detection of illicit 

drugs at checkpoints led by the authorities. 
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Resumen 

La presente tesis doctoral tiene como fin el estudio de nuevas plataformas 

sensoras combinando principios de lengua electrónica y herramientas 

quimiométricas. Para lograr esta meta se han aplicado los conocimientos 

adquiridos en el grupo de Sensores y Biosensores de la Universidad Autónoma 

de Barcelona.  

El fundamento de esta investigación se centra como objetivo principal en el 

desarrollo de sensores electroquímicos, empleando el concepto de matrices de 

sensores para aplicaciones en diferentes campos de estudio. El tipo de sensor 

utilizado fue impreso, bien mediante la técnica de serigrafía o bien mediante 

inyección de tinta. El uso de estos sistemas proporciona información 

multicomponente que requiere ser tratada con herramientas de quimiometría. 

Las medidas electroquímicas fueron obtenidas a través de diferentes técnicas 

electroanalíticas basadas en el fundamento de la voltamperometría, 

concretamente la cíclica y la de onda cuadrada. La parte matemática y de 

procesamiento de datos fueron tratados utilizando el análisis de componentes 

principales y cálculo del coeficiente Silhouette para estudios cualitativos. 

Además, se utilizaron algoritmos de aprendizaje comúnmente conocidos como 

“Machine Learning Algorithms” para la identificación de las mezclas en estudio. 

El uso de estos criterios estadísticos ha servido para optimizar la composición 

de la matriz de sensores. Por otra parte, los estudios cuantitativos se abordaron 

empleando algoritmos de cálculo más complejos como pueden ser la regresión 

de mínimos cuadrados parciales y las redes neuronales artificiales como 

simulación de los sistemas biomiméticos. 

Las aplicaciones de estos sistemas se han realizado en dos campos de estudio 

bien diferenciados. Uno de ellos, es la cuantificación de diferentes compuestos 

farmacéuticos (mezclas ternarias de acetaminofeno, ácido ascórbico y ácido 

úrico) como prueba de concepto para validar el procedimiento experimental 

desarrollado.  
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En el segundo caso, el estudio está enfocado a la identificación y posterior 

cuantificación de diferentes drogas de abuso y sus agentes de corte 

correspondientes. En concreto, se identificaron y cuantificaron mezclas de 

opiáceos como son la heroína, la morfina y la codeína.  

Además, se añadieron a las mezclas concentraciones comúnmente empleadas 

de diferentes agentes de corte (paracetamol y cafeína) con la finalidad de simular 

la detección de muestras reales encontradas en el mercado ilícito de la droga. 

Para concluir el estudio, se desarrolló una aplicación para la cuantificación de 

diferentes agentes de corte (mezclas ternarias de benzocaína, fenacetina y 

paracetamol) halladas de forma común en muestras de cocaína. Todas estas 

aproximaciones tienen como objetivo final la implementación de nuevas 

estrategias para la rápida detección de drogas ilícitas en puntos de control 

liderados por las autoridades. 
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Resum 

La present tesi doctoral té com a fi l’estudi de noves plataformes sensores 

combinant principis de llengua electrònica i eines quimiomètriques. Per assolir 

aquest objectiu s'han aplicat els coneixements adquirits al grup de Sensors i 

Biosensors de la Universitat Autònoma de Barcelona. 

El fonament d'aquesta investigació té com a objectiu principal el 

desenvolupament de sensors electroquímics, emprant el concepte de matrius de 

sensors per a aplicacions en diferents camps d'estudi. El tipus de sensor utilitzat 

va ser imprès, bé mitjançant la tècnica de serigrafia o bé mitjançant injecció de 

tinta. L'ús d'aquests sistemes proporciona informació multicomponent que cal 

tractar amb eines de la quimiometria. 

Les mesures electroquímiques van ser obtingudes mitjançant diferents tècniques 

electroanalítiques basades en el fonament de la voltamperometria, concretament 

la cíclica i la d'ona quadrada. La part matemàtica i de processament de dades 

van ser tractades utilitzant l'anàlisi de components principals i càlcul del 

coeficient Silhouette per a estudis qualitatius. A més, es van utilitzar algoritmes 

d'aprenentatge coneguts com a “Machine Learning Algorithms” per a la 

identificació de les mescles en estudi. L’ús d’aquests criteris estadístics ha servit 

per optimitzar la composició de la matriu de sensors. D'altra banda, els estudis 

quantitatius es van abordar emprant algoritmes de càlcul més complexos com 

ara la regressió de mínims quadrats parcials i les xarxes neuronals artificials com 

a simulació dels sistemes biomimètics. 

Les aplicacions d’aquests sistemes s’han realitzat en dos camps d’estudi ben 

diferenciats. Un d'ells és la quantificació de diferents compostos farmacèutics 

(mescles ternàries de acetaminofè, àcid ascòrbic i àcid úric) com a prova de 

concepte per validar el procediment experimental desenvolupat. En el segon cas, 

l’estudi està enfocat a la identificació i posterior quantificació de diferents drogues 

d’abús i els seus agents de tall corresponents. En concret, es van identificar i 

quantificar mescles d'opiacis com són l'heroïna, la morfina i la codeïna.  
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A més, es van afegir a les mescles concentracions comunament emprades de 

diferents agents de tall (paracetamol i cafeïna) amb la finalitat de simular la 

detecció de mostres reals trobades al mercat il·lícit de la droga. Per concloure 

l'estudi, es va desenvolupar una aplicació per a la quantificació de diferents 

agents de tall (mescles ternàries de benzocaïna, fenacetina i paracetamol) 

trobades de manera comuna en mostres de cocaïna. Totes aquestes 

aproximacions tenen com a objectiu final la implementació de noves estratègies 

per a la ràpida detecció de drogues il·lícites en punts de control liderats per les 

autoritats. 
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Abbreviations and symbols 

Name Abbreviations and symbols 
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Acetaminophen PA 
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Concentration C 
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Name Abbreviations and symbols 

Controlled Substances Act CSA 

Copper (II) oxide CuO 

Counter electrode CE 

Cyclic Voltammetry CV 

Determination Coefficient R2 

Differential Pulse Voltammetry DPV 

Diffusion coefficient D 

Dimethylformamide DMF 

Dimethylsulfoxide DMSO 

Discrete Wavelet Transform DWT 

Disodium phosphate Na2HPO4 

Drop-on-demand DOD 

Dropping Carbon Electrode DCE 

Dropping Mercury Electrode DME 

Electronic eye EE 

Electronic nose EN 

Electronic tongue ET 

Energy Dispersive X-Ray 

Spectroscopy 
EDX 

Enzyme-Linked Immunosorbent 

Assay 
ELISA 

Fast Fourier Transform FFT 

Fourier Transform FT 

Fused Deposition Modeling FDM 

Genetic algorithms GAs 

Glassy Carbon GC 

Glassy Carbon Electrode GCE 

Gold Au 

Graphite screen-printed electrodes GSPE 
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Graphite-epoxy Composite 

Electrode 
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High-performance Liquid 

Chromatography 
HPLC 

Hydrochloric acid HCl 

Hydrogen peroxide H2O2 

Inkjet Printing IJP 

Inkjet-printed Electrode IPE 

International Chemometrics Society  ICS 

International Union of Pure and 

Applied Chemistry 
IUPAC 

Ion-selective sensors ISEs 

Iridium Ir 

K-nearest Neighbour kNN 

Latent Variables LVs 

Mercury Hg 

Methanol MeOH 

Monopotassium phosphate KH2PO4 

Multi Partial Least Squares nPLS 

Multi-Walled Carbon Nanotubes  MWCNT 

Nanoparticles Np 

Net current inet 

Nonlinear iterative partial least 

squares 
NIPALS 

Normalised Root Mean Square Error NRMSE 

Palladium Pd 

Partial Least Squares PLS 
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Phosphate buffer solution PBS 

Platinum Pt 
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Relative Standard Deviation RSD 
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Scanning Electron Microscopy SEM 

Screen-printed Electrode SPE 

Section § 

Selective Laser Melting SLM 

Silver Ag 

Single-Walled Carbon Nanotubes SWCNT 

Singular Value decomposition SVD 
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Standard Normal Variate SNV 
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Three-dimensional 3D 
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I. INTRODUCTION 

This introduction aims to present the main objectives of this dissertation and to 

string together the theoretical concepts involved in it. This introductory part will 

help the reader to visualize the puzzle from the assembly pieces that are 

employed in it: sensor array, electrochemistry, electrode modification and data 

processing strategies, all this focused on forensic and security applications. 
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1. Single Sensor vs. Sensor Array 

This doctoral thesis will be dealing with sophisticated systems based on the use 

of sensor arrays. For this reason, before moving through this part, it is important 

to start with the simple concept of individual sensor. 

According to the International Union of Pure and Applied Chemistry (IUPAC), “a 

chemical sensor is a device that transforms chemical information, into an 

analytically useful signal”. The chemical information can provide from a 

chemical reaction of the analyte or a physical property of the system 

investigated1. 

 

Figure I - 1. Schematic representation of the elements that composed a chemical sensor. 

Chemical sensors are composed of two units: a receptor and a transducer 

(Figure I - 1). In the receptor part of a sensor, the chemical information is 

transformed into a primary signal which may be measured by the transducer. The 

receptor part of chemical sensors may be classified as physical, chemical, and 

biochemical. With physical receptors, no chemical reaction occurs (i.e., 

absorbance, refractive index, mass change, etc.), meanwhile in the case of 

chemical one, a chemical reaction with the analyte leads to the analytical signal. 

Finally, in biochemical receptors, a biochemical process is the source of the 

analytical signal (immunosensors, microbial potentiometric sensors are some 

examples). The transducer part is a device capable of transforming the primary 

signal containing the chemical information about the samples into an analytical 

signal easily usable (e.g., electronic). The transducer as such does not show any 

selectivity. 
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Chemical sensors may be classified based on the nature of the primary signal. 

According to that, they can be classified in electrical, electrochemical, magnetic, 

mass sensitive, optical, and thermometric1. In this work, all the projects were 

performed using electrochemical transducers, so electrochemical sensors will 

gain relevance in the present dissertation. The principle of these devices is the 

conversion of the electrochemical interaction analyte-electrode into an useful 

signal. Within this group, the following categories may be distinguished as 

voltammetric sensors, potentiometric sensors, Chemically Sensitized Field-Effect 

Transistor (CHEMFET), and potentiometric solid electrolyte gas sensors. In the 

case of this study, all the works are based on voltammetric sensors. 

Academically, when an analytical chemist starts his research trying to develop an 

electrochemical sensor, his purpose is to evolve a powerful device that includes 

all the specifications of an ideal sensor2. However, the path has been evolving to 

a new perspective breaking the rules of this approach, because it is 

unmanageable and unnecessary for some applications. 

In some instances, samples are complex and present more than one component, 

which makes difficult the determination. Classical approaches to solving this 

problem are the application of pre-treatment steps to remove or to mask the 

interfering species. However, this idea breaks the principle of a sensor, which 

tries to reduce the maximum number of steps in the analytical procedure. In 

addition, this strategy presents drawbacks in terms of increasing analysis time, 

cost of analysis, and the requirement of skilled personnel. 

In other context, the problem is that the fingerprint of the molecules under study 

is practically identical. Therefore, when the signal is monitored, the response is 

translated into overlapped peaks on display. At this moment, this fact becomes 

an issue from an analytical point of view, hampering their quantification. 

In our research group, the tool commonly employed to overcome such restrictions 

is the use of sensor arrays. With this recent approach, it is possible to outgrow 

the disadvantage given by classical strategies. What is more, sensor arrays bring 

some advantages comprising more chemical information.  
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Hence, if the analyst can work in controlled conditions, the signal proportioned by 

each sensor can be treated separately from the other components present in the 

sample matrix, becoming not necessarily a specific response for each analyte. 

Contextualizing, the concept of sensor arrays had its previous development in 

past reviews by Diamond3 and Stefan et al.4. Recently, the concept was amplified 

by Ciosek and Wróblewski5. All these previous works demonstrated that sensor 

arrays are a clear example of integration in electroanalysis providing several 

advantages. Among others, the possibility to obtain multicomponent data without 

extra effort and the determination of many analytes in tandem using the same 

sample pre-processing. This fact can be acquired thanks to the use of 

multichannel electrochemical instrumentation, making easy storage, 

visualization, and processing of complex data. 

In the deployment of the sensor arrays systems to electroanalysis, the field is 

capable to classify them in three main categories taking into account the purpose 

and the type of response (redundant, completely independent, or 

cross-sensitive)6. In this work, the sensor array employed is based on the 

cross-sensitive response, which is considered the most important for electronic 

tongue applications. Concretely, this array consists of several non-specific 

sensors with low selectivity that present a cross-response with slightly different 

sensitivities towards the analytes under study. 

This combination provides the simultaneous determination of the substances 

present in a complex sample with the use of chemometrics tools to correct the 

interferences that occurs between them, which makes this approach interesting 

from an analytical point of view. 

Thus, if the main concept is to use a sensor array, different signals must need to 

get complementary analytical information. To achieve it, different strategies must 

be implemented. 

2. Chemically Modified Electrodes for Sensing 

The challenging topic of modifying electrodes for creating new electrochemical 

devices is one of the continuous goals in the electrochemistry field.  
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Additionally, the creation of these new surfaces allows researchers to solve 

problems about overlapping signals when mixtures of compounds are detected 

simultaneously. In this context, the replacement of simple electrodes with new 

surface materials with improving stability, sensitivity, and selectivity has become 

a hot topic nowadays, contributing benefits in terms of improving response over 

the unmodified electrode avoiding their limitations. 

Hence, the projects involved in this thesis are mainly focused on this concept, 

creating new surfaces for the resolution of mixtures of compounds. 

According to the IUPAC Compendium of Chemical Terminology, a Chemically 

Modified Electrode (CME) is “an electrode made of a conducting or 

semiconducting material that is coated with a selected monomolecular, 

multimolecular, ionic, or polymeric film of a chemical modifier and that 

using faradaic (charge-transfer) reactions or interfacial potential different 

(no net charge transfer) exhibits chemical, electrochemical, and/or optical 

properties of the film7”. 

Several aspects such as mass transfer, thermodynamics, and kinetics of electron 

transfer must be controlled to consider these devices a powerful tool for some 

applications. At the end, the most important point is the surface properties of the 

electrode. Hence, the good behaviour of these electrochemical sensors depends 

on the electrode materials. 

Before explaining extensively the different technologies for chemically modified 

working electrodes, it is important to consider the different materials commonly 

used for the fabrication of these devices, as well as the different types of sensor 

platforms usually available in the market. 

2.1. Sensor Platforms 

2.1.1. Materials 

Generally, the most common materials used in electroanalysis for unmodified 

electrodes are carbon, gold (Au), mercury (Hg), and platinum (Pt). These 

materials present several advantages, but at the same time some limitations due 

to their inherent properties8. 
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Some of them include the fouling effect or application of higher potentials. In the 

case of mercury, toxic effects can be also included as negative aspects, making 

at this moment its use as practically residual. 

The most conventional material used for electrochemical measurements is 

carbon. Carbon-based electrodes have an important role in electroanalysis 

because of their positive properties such as low background current, low price, 

chemical inertness, and broad potential window8, which make them appropriate 

for several sensing applications. 

 

Figure I - 2. Chemical structures of crystalline allotropic forms of carbon: A) graphite, B) 
graphene, C) fullerene, D) carbon nanotube, and E) diamond. 

Furthermore, this non-metallic element is one of the most abundant on Earth and 

is found uniformly distributed throughout the world. The singularity of this element 

is its concatenation property, which makes it attractive to form bonds with different 

or similar atoms. According to this property, it exists in two allotropic forms: 

amorphous and crystalline. The last commented has an ordered arrangement 

that includes diamond (sp3), graphite (sp2), carbine (sp1), and fullerenes 

(distorted sp2).  
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Among all, carbine and fullerenes are synthetic, meanwhile diamond and graphite 

are found in nature. Therefore, within this crystalline classification, it can be 

included two interesting materials, which play a relevant role for the construction 

of electrochemical sensors, which are graphene and carbon nanotubes (CNT). In 

the case of graphene, it is suitable as a carbon material because of its unique 

physical and chemical properties9. Moreover, the benefits of these physical and 

chemical properties are coupled with electrochemical advantages such as 

excellent electrochemical activity, low charge-transfer resistance, and wide 

potential windows, which make it a promising material for the electroanalytical 

area. In the case of CNT, they have been paid great attention since its discovery 

in 1991 by Iijima10. This structure offers several benefits such as anisotropic 

behaviour, biocompatibility, chemical stability, high surface to volume ratio, and 

high thermal and electrical conductivity11. The properties discussed above make 

it an interesting candidate for the development of sensor platforms. Depending 

on the synthesis conditions, either single or multi-walled carbon nanotubes are 

formed. Single-Walled Carbon Nanotubes (SWCNT) are single cylinders, 

meanwhile, Multi-Walled Carbon Nanotubes (MWCNT) are concentric cylinders 

of graphite sheets12. All the chemical structures can be represented in 

Figure I - 2. 

As a summary, the versatility of carbon in electrochemistry could be mainly 

demonstrated, making it interesting for several applications. 

2.1.2. Working Electrode Technologies 

In this framework, the most common carbon sensor platform used in 

electrochemistry are Glassy Carbon Electrode (GCE) or Carbon Paste Electrode 

(CPE). Furthermore, novelty variety emerge considering Screen-printed 

Electrode (SPE) and Inkjet-printed Electrode (IPE).  

In this thesis, all the research was performed by SPE and IPE. Hence, the last 

two mentioned technologies will be explained in more detail. 
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2.1.2.1. Glassy Carbon Electrode 

GCE is a type of electrode made by carbon prepared by the controlled 

carbonization of polymeric resins such as polyacrylonitrile or 

phenol/formaldehyde in an inert atmosphere at high temperature i.e., about 1000 

to 3000ºC. Its structure is similar to a ribbon wherein the graphitic sheets are 

cross-linked. This fact makes it harder and more robust in comparison with 

graphite13. This sensational carbon type is commonly used in electroanalytical 

chemistry because of the broad mechanical and electrical attributes along with 

its wide working potential window in anodic and cathodic procedures14,15. 

The most common procedure to regenerate the electrode surface is a simple 

mechanical polishing to obtain a shiny mirror-like appearance using an alumina 

slurry of different particles size followed by sonication in deionized water or 

cyclohexane. This pre-treatment generates improved electron transfer kinetics, 

which can be associated with the removal of impurities and exposure of the fresh 

surface16. In the literature, there are also several methods for pre-treatment. 

Some examples are electrochemical, chemical, heat, and laser irradiation17. 

2.1.2.2. Carbon Paste Electrodes 

CPEs were reported by Adams in 195818. Their discovery is related with 

Heyrovský polarography and Dropping Mercury Electrode (DME). The key point 

was to develop a “Dropping Carbon Electrode” (DCE), which simulate the DME 

performance for anodic oxidation of organic compounds, where the mercury-

based electrode could not be used19.  

CPEs consist on carbon powder (graphite) and organic solvents such as mineral 

oil, nujol, paraffin oil, silicone grease, and bromonaphthalene as binders (pasting 

liquid)20. The carbon paste electrodes offer a broad range of advantages such as 

easy renewable surfaces, low cost, and low background current within 

electroanalysis21–23. Furthermore, CPEs can be prepared to combine a modifier 

material with graphite powder and binder material, which further acts as modified 

electrodes for electrochemical measurements.  
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Nevertheless, this strategy is positive from the point of surface regeneration but 

presents problems of stability because of continuous leaching of modifier 

molecules during a large number of electrochemical measurements and also the 

presence of binder complicates the electrode kinetics, appearing inconvenients 

in operation stability, long term usage, and storage8. 

Within this group, it is possible to classify our Graphite-epoxy Composites 

Electrodes (GECs), based on the same philosophy as CPE. 

2.1.2.2.1. Graphite Epoxy Composite Electrodes 

GECs are a variety of sensors commonly used in our Sensors and Biosensors 

group at Universitat Autònoma de Barcelona (UAB)24. 

These hand-made sensors are constructed filled a mixture of epoxy resin with a 

hardener and graphite powder in polyvinyl chloride (PVC) tube with a welded 

copper disk. More details about their construction are shown in Figure I - 3. 

Furthermore, it is possible to add some modifiers into the paste changing slightly 

the proportion between the epoxy resin/hardener and graphite. 

 

Figure I - 3. Different steps of GEC construction. (1) Weld copper disk, (2) Introduction of the 
connector in the PVC tube, (3) Fill the cavity with the composite paste, (4) Stage of polishing, 
and (5) Final device ready to be used. 

In our laboratory, a battery of combinations is awarded depending on the final 

application. The most outstanding is the combination with metal nanoparticles 

(palladium (Pd)), metal oxides (copper (II) oxide (CuO)), conductive polymers 

(polyaniline o polypyrrole (PP)) and standard catalysts (prussian blue (PB), or 

cobalt (II) phthalocyanine (CoPc)), among others. The combination of the epoxy 

resin with graphite opens up some improvements as good mechanical properties, 

chemical resistance, low price stability, and adhesive strength25,26.  
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In addition, it is possible to reuse the device many times with the regeneration of 

the surface via polishing. This fact makes the devices attractive in economic 

terms. 

2.1.2.3. Printed Sensors 

Printed sensors can be classified according to the operation mode of the printing 

technique employed. As a general classification, printing techniques can be 

considered as analog and digital printing. The main difference between them is 

the requirement of an exclusive mask for a contact process (analog), instead of 

a mask-less non-contact method (digital). More in detail these techniques can be 

classified as offset printing, gravure printing, flexographic printing, screen 

printing, and inkjet printing27,28. In the work proposed, two main types of 

electrodes were explained in detail. One example employing analog printing 

technology is SPEs and one example of digital printing technique is IPEs. 

2.1.2.3.1. Screen-Printed Electrodes 

As the vast majority of technologic procedures, traditional techniques such as 

screen-printing technology has been adapted at the present time to the 

electroanalytical field with the main purpose of creating new sensors platforms to 

carry out fast and accurate analysis. 

Screen-printing technology fulfils all these requirements offering a massive 

production because of inexpensive, highly reproducible, and reliable single-use 

devices from the 1990s until now. This method allows the possibility of improving 

on-site monitoring. For these reasons, SPEs are currently undergoing 

widespread growth. 

The aforementioned technology consists of layer-by-layer depositions of ink upon 

a solid substrate, through the use of a screen or mesh, defining the geometry of 

the sensor. After this printing step, a thermal treatment is done after each ink 

layer to solidify it. The general fabrication process is outlined in Figure I - 4. 

During the printing stage of SPEs, the most used pastes are carbon and silver 

(Ag) inks. The working electrodes are mostly printed using graphite inks, whereas 

Ag ink is printed as a conductive track. Other materials such as Au and Pt based 

inks are also used in the construction of SPEs.  
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It is important to highlight the composition of the various inks used for printing on 

the electrodes determines the selectivity and sensitivity required for each 

analysis. 

 

Figure I - 4. Schematic representation of the three important steps in the fabrication process 
of SPEs. I) Printing of electrical contacts and the reference electrode using silver ink as an 
example. II) Printing of the auxiliary and working electrode with carbon ink, commonly used, 
and III) Contact protection with an insulating material named dielectric. 

SPEs generally includes a three-electrode configuration (working, counter, and 

reference electrodes) (Figure I - 5) printed on various types of plastic or ceramic 

substrates, which is easily modifiable with a great variety of commercial 

self-made inks.  

 

Figure I - 5. Different components of an SPE. 1) auxiliary electrode (AE), 2) reference 
electrode (RE), 3) working electrode (WE) and their respective connections. 
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The plastic materials were found to be cheaper, and the carbon ink adheres 

strongly with the plastic surface compared to the ceramic surface. However, a 

few years ago it was rediscovered an alternative material for substrate sensor, 

which is cellulose29. 

Paper has been present in the globe of analytical chemistry for centuries, but in 

recent years, the concept of considering themselves a substrate for sensing 

devices provoked a huge impact. This simple cellulosic substrate presents an 

extensive range of benefits, which makes it the former candidate for disposable 

sensors and integrated sensing platforms. Several examples are good 

mechanical properties, three-dimensional fibrous structure, biocompatibility and 

biodegradability, easiness of production and modification, reasonable price, and 

availability all over the earth30. Kubota et al. present in the literature some works 

using paper-based sensors, showing recently innovative applications31,32. 

Furthermore, the paper substrate material is gaining relevance in portable 

Enzyme-linked Immunosorbent Assay (ELISA), proportionating fast results 

around 40 min, in comparison with traditional methods consuming more time per 

assay (3 h)33. In addition, in the microfluidic field, this kind of substrate gives 

considerable profit in economic terms. The cellulosic substrate is 200 times less 

expensive than polyethylene terephthalate (PET) and 1000 less expensive than 

glass34,35. In summary, the rediscovery of such material has implemented some 

advantages for the sensing world. 

Hence, SPEs present some advantages, as well as drawbacks. Positive aspects 

include easy fabrication, low-cost production, and miniaturization. The principal 

benefit associated with the miniaturization is the reduction of sample volume 

required, which is interesting for some experiments wherein this volume is 

restricted in terms of connecting it to portable instrumentation for on-site analysis. 

Moreover, these devices are capable of providing good flexibility, automation, 

and acceptable reproducibility. Besides, the surface of SPEs can be easily 

modified to create a new surface with improved electrochemical aspects. In 

addition, SPEs have the advantage of being one-shot disposable sensors strips 

and require no polishing of the electrode surface, as is usually the case for more 

conventional solid electrodes commented previously36. 
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However, to be realistic of them, certain kind of limitations also appears. The use 

of aggressive media or organic solvents can produce some damage to the 

deposited inks on the substrate, generating problems such as a decrease in the 

limit of detection and sensitivity37. This negative aspect can be turned upside 

down, coupling this drawback with the green chemistry concept, trying to 

substitute aggressive media with sustainable solvents in electrochemical 

measurements. This idea is a challenge not only for electrochemistry but also for 

chemistry, which is on the way for developing ionic liquid solvents, for example, 

replacing the most comment employed organic solvents. 

The most common applications for the use of these SPEs38 are the development 

of biosensors, environmental monitoring assays39, and clinical trials, among 

others found in the literature. 

In the present dissertation, the most common sensor platforms used were based 

on screen-printed devices. For the first work, an integrated sensor of eight 

working electrodes was used. The substrate in this case was ceramic. 

Meanwhile, in the works based on the detection of opioids and their respective 

cutting agents, single sensors were used employing plastic as a substrate. 

2.1.2.4. Inkjet-printed Electrodes 

Before getting down to business with this kind of sensor platforms, a brief 

introduction must be done to understand how this technology is managed. IPEs 

are built using inkjet printing (IJP). IJP is a digital technique based on a mask-less 

procedures, which means that is a feasible switch from one design to another 

without the use of a mask. It is well known that the use of these masks makes it 

more expensive the stage. Furthermore, it is classified as a non-contact 

technique, in which materials are deposited onto the substrate in a drop-by-drop 

way using a micrometric nozzle head. 

According to that, the IJP technique can be classified into two main groups: 

continuous inkjet (CIJ) and drop-on-demand (DOD) (Figure I - 6). CIJ was the 

first inkjet technology used. It is based on a continuous ink ejection and by 

acoustic pressure waves, the stream is adapted into volume-regulated droplets 

(Figure I - 7A).  
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In DOD techniques, a single drop is ejected by the cartridge nozzle to get the final 

pattern. Within this group, three types can be classified, which are thermal inkjet, 

piezoelectric and electrostatic inkjet. The most commonly used techniques are 

thermal and piezoelectric inkjet. For this reason, slight details are shown about 

the different operation modes. 

 

Figure I - 6. Classification of the different strategies of the inkjet printing technique. DOD and 
piezoelectric inkjet were selected as applied techniques. 

Thermal inkjet nozzles are composed of two parts: a resistive heater and an ink 

reservoir. The operation mode is based on applying a pulse of current inserted 

on the resistive heater producing vaporization of the ink. After this procedure, a 

bubble is generated and with a pressure force, the ink (in a droplet form) is 

propelled. Then, the heater cools down generating a vacuum and the ink reservoir 

is refilled for a new injection (Figure I - 7 B.1). 

It is important to mention that this strategy presents drawbacks, basically in two 

aspects. Residues are accumulated on the resistive heater causing a short 

lifespan in nozzles. What is more, specific ink is required to support rapid thermal 

changes mentioned in the procedure. These negative aspects make this option 

not feasible in many cases, where inks used are not compatible with this heat 

treatment. 

Opposite to this option exists the piezoelectric systems (Figure I - 7 B.2). In this 

case, there are commonly used, and the operation mode is quite different.  
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In this case, a voltage is applied to the piezoelectric plate to cause a deflection, 

generating an acoustic wave that is propagated inside the chamber and ejects 

the droplets. This step is quite fast in comparison with the previous commented, 

which needs a cooling step. 

Figure I - 7. Schematic representation of the two of the most common inkjet printing 
techniques. A) CIJ and B) Drop-on-demand, remarking B.1) thermal and B.2) piezoelectric. 

The construction of the IPEs is quite similar to other printing techniques such as 

microfabrication or screen-printing. The idea is to deposit patterned and stacked 

layers of conducting and dielectric materials on a substrate. At the end, a drying 

and a sintering/curing step is required to fix the ink. Schematic representation of 

all the steps is represented in Figure I - 8. 

As the conductive material, focused on the electrochemical sensor field, the most 

employed are carbon nanomaterials40,41 (graphene), conducting polymers 

((poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) (PEDOT: PSS))42, 

polyaniline (PANI)43, Au44,45 and Ag46. The insulator materials (dielectric) used 

as protection of the conductive tracks are common polymers (poly(amic acid))47, 

or SU-848, among others. 
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Referring to substrates, the most common is polyethylene naphthalate (PEN)45, 

PET49, polyimide (Kapton)47, and paper50. But it is possible to consider rigid 

substrates as glass48 or silicon51. 

Eventually, to conclude with this section it is important to present advantages and 

disadvantages and to study whether it is worthwhile or not. 

 

Figure I - 8. Schematic procedure of all the steps of the fabrication of inkjet-printed devices. 
A) Design, B) Printing, and C) Printed prototype. The steps in detail of the printing process 
are shown in B.1 deposition, B.2 drying, and B.3 curing step. 

On the one hand, the waste of material and ink consumption is minimum and IJP 

can produce patterned thin films with resolutions around 100-500 nm. As 

mentioned previously, the technique allows the use of rigid substrates, an aspect 

not manageable for alternative printing techniques. 

On the other hand, to employ this printing technique, it is very important to 

characterize perfectly all the properties (viscosity, surface tension) of the used 

ink. In this sense, it presents a difficulty and extensive studies must be done 

before using them.  
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Furthermore, the high cost of research equipment is the main factor limiting this 

technology in the current years and commercial functional inks are expensive, 

scarce, and have very limited shelf-life. Thus, many researchers are working on 

the development of self-formulated inks to deal with this problem. 

In summary, IJP techniques have a relevant role in several fields of studies, 

gaining relevance in the environment, biomedical, and food safety applications, 

as well as research and prototyping goals, specifically in the electrochemical 

sensor field52. 

In the present dissertation, IJP techniques will be the focus of the use of an array 

of five electrodes to detect some cocaine cutting agents simultaneously. To 

achieve that inkjet sensors platforms were fabricated using DOD technology 

based on piezoelectric methods. 

2.1.3. General Overview of 3D Printed Sensors 

As a new trend in sensors platforms, additive manufacturing (AM), well known as 

three-dimensional (3D) printing has remerged as an alternative in the 

electrochemical sensors field since 201253. 

Favourable aspects such as low-cost production, variety of geometries, use of a 

wide range of materials are remarkable53,54. The most common fabrication 

techniques are classified into three main categories such as Stereolithography 

(SLA), Fused Deposition Modeling (FDM), and Selective Laser Melting (SLM). As 

literature showed, the most common technique employed is the first one for its 

simplicity.  

FDM was created by Scott Crum in 1989. The background of the technique is 

based on the use of thermoplastic materials. Some examples of them are 

polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). The main concept 

is that these materials are heated and extruded from a nozzle to be deposited in 

layers. The key point is to heat the material until the semi-molten state, then they 

are deposited as the material solidifies to generate a hardened layer after settling 

down of the previously made layer (Figure I - 9). These materials are mixed with 

carbon allotropes to get carbon composite filaments which are used as 

conductive printable materials.  
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What is more, the combination also can be done with noble metals (Pt, Au, iridium 

(Ir), or bismuth (Bi), as examples). In comparison, carbon-based electrodes gain 

much relevance in the 3D printing field in comparison with noble metals. Although 

their promising results, their use is expensive, and the variety of materials can 

restrict some applications. 

It is important to consider that using this strategy, it is possible to generate layer 

thickness in the range of 0.1 to 0.4 mm. Therefore, making a balance of all the 

factors, FDM represents the most selected 3D printing technology to its simple 

operation mode. Furthermore, materials and machines are considered affordable 

in economic terms. 

About the fabrication process, three important steps must be deemed, which are 

the single-step fabrication, the optimization of printing parameters, and 

depending on the situation, an electrochemical, chemical, or biological 

pre-treatment to improve the electrochemical behaviour of the sensors55. Main 

applications of this kind of technology can be found in biomedical science56, 

environmental monitoring as well as heavy metal determination57. 

 

Figure I - 9. Scheme of the operation mode of the most commonly used 3D printing 
technique (FDM). 
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2.2. Modification Approaches 

Modified electrodes have gained much interest within the area of electroanalysis 

from past decades, due to the ability to have direct control over the surface 

structure of the electrode58. 

Historically, the concept was first introduced by Royce Murray in 1970 from his 

work in the modification of tin (IV) oxide (SnO2) electrodes with amine groups. 

The amine-modified electrode surface has been used for functionalization with 

various electroactive organic moieties through coupling reactions59. 

The key point in the modification of the electrode is the electrode/solution 

interface because all electrochemical reactions occur there. Therefore, the 

surface structure of the electrode at the interface plays a distinct role in the 

electrode reaction and it promotes the pathway for the transfer of electrons at the 

interface which in turn gives the better electrode kinetics60. 

There are several strategies to modify the electrode surface in the literature7. All 

of these can be broadly grouped into five types namely (i) chemisorption, 

(ii) covalent bonding, (iii) polymer film coating, (iv) composite, and (v) entrapment 

through the formation of conductive ink, among others. The last option is more 

used in this research due to its benefits. The next section will be focused on 

showing details about its implementation.  

2.2.1. Entrapment through the Formation of a Self-formulated Conductive 

Ink Via Drop casting 

Since the beginning of the creation of the Sensors and Biosensors group, GECs24 

are a variety of sensors commonly used for their simplicity and low-cost 

construction. 

These hand-made sensors are constructed filled a mixture of epoxy resin with a 

hardener and graphite powder in PVC tube with a welded copper disk. More 

details about their construction are shown in §2.1.2.2.1. Furthermore, it is 

possible to add some modifiers into the paste changing slightly the proportion 

between the epoxy resin/hardener and graphite.  
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Because of this idea, a new concept emerged. In this case, the novelty has 

incorporated the modifiers (Figure I - 10) in the electrode surface, avoiding 

introducing it in the bulk paste previously explained. This approximation was 

applied for the first time by A. Cipri et al. in 201461. In the mentioned article, the 

ink-like composite was prepared with MWCNT/Pd, as a modifier, with the 

proportion proposed in the literature61. Therefore, a new approach will be 

assessed by combining different sensors platforms. 

 

Figure I - 10. A variety of modifiers can be included in the formulation of the ink-like 
composite ink. Metal nanoparticles, metal oxides, conductive polymers, and complexes as 
CoPc or PB are some examples. 

 

Figure I - 11. Graphical components of the modification ink. All the compounds were 
dissolved in mesitylene as a binder. The proportions were adapted from61. 
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In detail, this strategy is a chemical modification that consist on the formation of 

a conductive ink-composite. The mentioned nanomaterial is formed by graphite 

as a conductive material, a polymer, in this case, powdered polystyrene to 

perform the crosslink, mesitylene as a binder, and the incorporation of the 

corresponding modifier (Figure I - 11). 

 

Figure I - 12. Experimental setup of the modification of the electrode surface using a self-
formulated ink and drop-casting method. 

The mixture was thoroughly mixed and sonicated to obtain a medium-thick 

solution. The ink-like composite is dropped onto the electrode surface and dried 

at medium temperature to remove the solvent (Figure I - 12). 

When the electrode is completely dried, an activation step with hydrogen peroxide 

(H2O2)62,63 is done in some cases. This activation is sometimes needed 

depending on the sensor platform used and the material of the substrate. After 

activation, electrodes were rinsed with deionized water and dried in air. 

3. Analytical Electrochemistry 

Electrochemistry is the branch of chemistry concerned with the interrelation of 

electrical and chemical effects. This field deals with the study of chemical 

changes caused by the passage of an electric current and the production of 

electrical energy by chemical reactions64. The field of electrochemistry includes 

an assortment of different fields (e.g., corrosion electrophoresis), batteries, 

devices (electroanalytical sensors and electrochromic displays), and fuel cells. 

Techniques based on electroanalysis are associated with the interplay between 

chemistry and electricity, specifically, the measurements of electrical quantities 

(charge, current, or potential) and their relationship to chemical parameters.  
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The concept of using electrical measurement to perform analytical studies has 

found a wide range of applications, being the most remarkable biomedical 

analysis, environmental monitoring, or industrial quality control. 

Electrochemical processes take place at the electrode-solution interface, unlike 

many chemical measurements, which involve homogeneous bulk solutions. 

Electroanalytical techniques differ in the type of electrical signal used for the 

quantification. Therefore, electroanalytical measurements can be classified into 

two main groups, which are potentiometric and potentiostatic65. Either way 

requires at least two electrodes and an electrolyte, which constitute the 

electrochemical cell. The nature of electrochemical cells will be explained in more 

detail in future sections, but in general terms they are classified into electrolytic, 

which means they consume electricity from an external source or galvanic, which 

are used to generate electrical energy. 

Electroanalytical techniques can be distinguished also depending on if the 

parameter controlled is the potential or the intensity. The present dissertation will 

be dealing with controlled-potential methods. These types of techniques are 

based on the study of charge transfer processes at the electrode-solution 

interface. Specifically, the application of a potential makes chemical species loss 

or gain electrons, corresponding to the oxidation and reduction reactions. 

Consequently, the obtained current shows the rate at which electrons move 

across the electrode-solution interface. As a conclusion, potentiostatic 

techniques can measure any electroactive chemical species. Therefore, it is 

possible to determine the electroactivity for a given compound by knowing the 

reactivity of its functional group. When chemicals species are non-electroactive, 

there also are strategies to its determination based on indirect or derivatization 

procedures. 

Furthermore, they present positive aspects such as a huge linear range, high 

selectivity, and sensitivity toward electroactive species, low-cost instrumentation 

speciation capability, and portability. Summarizing the use of these strategies 

proportionate low detection limits and requirement of small sample volumes. 

Before explaining the different electroanalytic techniques used in this work, it is 

convenient to settle in basic concepts based on the electrochemical field. 
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3.1. Key Points to run Electrochemical Measurements 

3.1.1. Faradaic and Non-Faradaic: The Concept 

The electrochemical proceedings occurred at electrodes may be classified as 

faradaic and non-faradaic. The first type, which are named in this way for being 

events that follow the Faraday law (i.e., the reaction of 1 mol of substance 

involves a change o n x 96487 C), promotes reactions in which electrons are 

transferred across the metal-solution interface. This electronic transfer induces 

oxidation and reduction reactions. In addition, the faradaic current is a direct 

measure of the rate of the redox reaction. By contrast, the non-faradaic 

procedures are based on adsorption and desorption as examples. In this case, 

the structure of the electrode-solution interface is modified by changing potential 

or solution composition. In this project, the vast majority of the proceedings 

developed are faradaic.  

So, as it was commended previously, the main goal of controlled-potential 

electroanalytical assays is to get a current response that can be associated with 

the concentration of the target analyte. This fact can be done by monitoring the 

transfer of electron(s) during the redox process according to Equation I - 1, where 

A and B are the redox couple. 

𝐴 + 𝑛𝑒− ⇄ 𝐵 Equation I - 1 

This redox reaction happens in a potential zone that is favoured the electron 

transfer thermodynamics. The potential of the electrode can be used to obtain the 

concentration of electroactive species according to the Nernst equation 

(Equation I - 2): 

𝐸 = 𝐸0  =  
2.3 𝑅𝑇

𝑛𝐹
𝑙𝑜𝑔

𝐶𝐴 (0, 𝑡)

𝐶𝐵 (0, 𝑡)
 Equation I - 2 

Where E0 is the standard potential for the redox reaction, R is the universal gas 

constant (8.314 J·L-1·mol-1), T is the Kelvin temperature, n is the number of 

electrons transferred in the redox reaction, F is the Faraday constant (96487 C). 
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3.1.2. Electrochemical Cells, Solvents, and Supporting Electrolytes 

The instrumentation required to perform electrochemical measurements has a 

relatively low cost and is available commercially. It is formed by a cell (normally 

a three-electrode system), a potentiostat, and a laptop to monitor the signal 

(Figure I - 13). 

In controlled-potential experiments, the most common performance is formed by 

three electrodes66. Normally, the three electrodes (counter, reference, and 

working) are submerged between 5-50 mL, seeking to save the amount of 

solution.  

 

Figure I - 13. A) Experimental setup of an electrochemical cell. B) Scheme of the 
three- electrode electrochemical cell configuration. 

The counter electrode (CE) (or auxiliary electrode) is used to close the current 

circuit in the electrochemical cell. It is made by inert material (Glassy Carbon 

(GC), graphite, Pt, Au) and usually does not contribute to the redox phenomenon. 

The total surface area of the CE must be higher than the area of the WE so that 

it will not be a limiting factor in the kinetics of the electrochemical procedure under 

investigation because the current is flowing between the WE and the CE. 
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The RE has a stable and well-known electrode potential. It is commonly used as 

a point of reference in the electrochemical cell for potential control and 

measurement. Its high stability is usually reached by employing a redox system 

with constant (buffered or saturated) concentrations of each participant of the 

redox reaction.  

The WE is the electrode in which the reaction of interest takes place. Classical 

working electrodes are made of inert materials such as GC, Au, Ag, Pt. Variety 

of shapes and sizes can be found depending on the final application. 

Electrochemical measurements are performed in a medium of a solvent 

containing a supporting electrolyte. The key point is that the solvent does not 

react with the analyte and should not undergo electrochemical reactions over a 

wide potential range. All of these requirements promote MilliQ water such a 

proper candidate, being the most commonly used in electrochemistry. The use of 

non-aqueous solvents (dimethylformamide (DMF), dimethylsulfoxide (DMSO), 

acetonitrile (ACN), or methanol) (MeOH) has also been described. However, it is 

true that to protect the world everything is evolving towards green chemistry, 

avoiding the use of aggressive and toxic media67. 

The role of supporting electrolytes is also crucial in the electrochemical 

measurements because they decrease the resistance of the solution, erasing 

electromigration effects and maintaining a constant ionic strength. The most used 

are potassium chloride (KCl) or potassium nitrate (KNO3), ammonium chloride 

(NH4Cl), sodium hydroxide (NaOH), or hydrochloric acid (HCl) when water is 

employed as a solvent, tetraalkylammonium ((CH3)4NCl) salts are often 

employed in organic media. The use of buffer systems (such as acetate, 

phosphate, or citrate) remains important when pH control is essential. 

3.2. Electrochemical Techniques 

3.2.1. Voltammetry 

Voltammetry is classified within the group of electroanalytical methods where 

information about the analyte is provided by measuring a current as a function of 

an applied potential under conditions that promote polarization of a working 

electrode. 
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Historically, voltammetry’s field was developed from polarography, discovered by 

Czech chemist Jaroslav Heyrovský in the early 1920s. He was awarded the Nobel 

Prize in Chemistry in 1959 for his achievement. Polarography is different in 

comparison with other voltammetry types referring that the working 

microelectrode employed as the DME. 

Voltammetry was used by many inorganic chemists, physicists, and biologists to 

study oxidation and reduction processes in different media, electronic transfer 

mechanisms on chemically modified electrode surfaces, and adsorption 

processes. Some years ago, voltammetry, concretely classic polarography, was 

a relevant tool used by chemists to determine inorganic ions and chemical 

species in aqueous solutions. 

However, in the late 1950s and early 1960s, these applications were largely 

replaced by other spectroscopic methods, and voltammetry became less 

important in analysis, excluding applications such as the determination of 

molecular oxygen in solution. In the mid-1960s, certain important modifications 

were developed in classical voltammetry techniques, which significantly 

enhanced the sensitivity and selectivity of the methods and instrumentation. The 

result of this progress became a revival of interest in voltammetry techniques. 

Particularly, they were applied to detect species of pharmaceutical interest. 

Furthermore, voltammetry coupled with some chromatographic methods such as 

High-performance Liquid Chromatography (HPLC) has become a very useful tool 

for the analysis of a mixture of different analytes. 

Nowadays, current voltammetry persists to be a powerful technique used in many 

areas such as biochemistry, chemistry, the environmental sciences for studying 

oxidation, reduction and adsorption processes, materials science, and 

engineering. 

The response of the set of voltammetry techniques depends on the application of 

the employed excitation signal. This excitation signal (which is a variable 

potential) is applied and it causes a current intensity response with a 

characteristic form. The standard voltammetric excitation signal is the linear scan, 

where the voltage applied to the cell increases linearly as a function of time.  
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The range of a complete scan may be as small as a few hundred millivolts or as 

large as 2-3 V. 

 

Figure I - 14. Voltage versus time excitations signals used in voltammetry. (A) Linear scan, 
(B) Differential pulse, (C) Triangular, and (D) Square wave. 

Referring to the current in the cell, it is recorded as a function of time, and thus 

as a function of the applied voltage. Another type of excitation is a pulse. As it 

can be observed in Figure I - 14, two types can be observed, which correspond 

to differential pulse (Figure I - 14B) and square wave (Figure I - 14D). Lastly, 

another possibility is the triangular waveform shown in Figure I - 14C when the 

potential is cycled between two values. Firstly, there is an increasing linearly to a 

maximum and then decreasing linearly with the same slope to its original value. 

In the present thesis, the most common electrochemical techniques employed 

were based on a triangular (Cyclic Voltammetry (CV)) and square wave excitation 

signal (Square Wave Voltammetry (SWV)). Both will be commented in detail in 

the following sections. 
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3.2.1.1. Cyclic Voltammetry 

CV is classified within the electroanalytical techniques, specifically, controlled 

potential techniques. It is the most suitable technique employed for acquiring 

qualitative information about the electrochemical redox process. It offers a rapid 

visualization of redox potentials of the electroactive species and a convenient 

evaluation of the effect of the solvent in the redox reaction. In addition, this 

technique is also powerful to provide information about the kinetics of 

heterogeneous electrons transfer reactions and thermodynamics of redox 

processes. 

Theoretically, the technique is based on scanning linearly the potential of a 

stationary working electrode (without stirring) using a triangular potential 

waveform, as an excitation signal. Single or multiple cycles can be applied 

depending on the final application. The potentiostat measured the current 

resulting from the applied potential during the potential sweep. The obtained 

current-potential diagram is called cyclic voltammogram (Figure I - 15B). 

Therefore, the important parameter in a cyclic voltammogram is the cathodic peak 

potential (Epc), the anodic peak potential (Epa), the cathodic peak current (ipc), and 

the anodic peak current (ipa). In the case of the study, which is a reversible 

electron reaction system, anodic and cathodic peaks currents are approximately 

equal in absolute value but opposite in sign. For this kind of system, the difference 

in peak potential, ∆Ep, is expected to be: 

∆𝐸𝑝 = |𝐸𝑝𝑎 − 𝐸𝑝𝑐| =
0.0592

𝑛
 Equation I - 3 

Where n is the number of electrons involved in the half-reaction, in this case, n=1. 

The peak current for a reversible couple (at 25º) is described by the 

Randles-Sevcik equation64: 

𝑖𝑝 = (2.69 × 105)𝑛
3
2𝐴𝐶𝐷

1
2𝜈

1
2 Equation I - 4 

Where n is the number of electrons, A is the electrode area (in cm2), C the 

concentration (in mol/cm3), D the diffusion coefficient (in cm2/s), and 𝜈 the 

potential scan rate in V/s.  
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Accordingly, the current is directly proportional to concentration and increases 

with the square root of the scan rate. Hence, CV also allows the termination of 

diffusion coefficients if the rest of the parameters are known. 

 

Figure I - 15. A) Excitation signal of CV. B) Voltammogram obtained using CV technique. 

It can be occurred also that some of the systems studied are irreversible or quasi-

reversible. In this case, the problem is afforded differently by following the 

equations found in the literature64. 

In conclusion, CV is highly useful in specific situations because it is possible to 

obtain more information about the completed voltammogram. However, there are 

other scenarios where the use of more sensitive techniques such as SWV is 

necessary. 

3.2.1.2. Square Wave Voltammetry 

By the 1960-decade, linear sweep voltammetry and similar voltammetry 

techniques become less relevant in the analytical chemistry field. This fact can 

be explained because these techniques have some disadvantages such as slow 

response and poor detection limits. These limitations were solved by the 

development of pulse methods. The most employed are square wave SWV and 

Differential Pulse Voltammetry (DPV). Since SWV was more used in this thesis, 

it will be focused on its theoretical background. 



Biomimetic Systems 

61 

 

Figure I - 16. A) Excitation signal of SWV. B) Square wave voltammogram using SWV as 
technique. 

The excitation signal is based on a symmetrical square wave pulse of amplitude 

superimposed on staircase waveform of step height ΔE (Figure I - 16A). The 

forward pulse of the square wave matches with the staircase step. The net 

current, inet, is obtained by taking the difference between the forward and reverse 

currents (ifor – irev) and is centred on the redox potential. The peak height is directly 

proportional to the concentration of the electroactive species. The sensitivity of 

SWV is about two to three times higher than DPV showing detection limits for 

SWV are reported to be 10-7 to 10-8 M. What is more, it presents the rejection of 

background currents and excellent sensitivity. In addition, measurements are 

running very fast in comparison with other methods, which makes them 

interesting. 

Some applications are the study of electrode kinetics about preceding, following, 

or catalytic homogeneous chemical reactions, determination of some species at 

trace levels, and its use with electrochemical detection in HPLC. 

4. Biomimetic Systems 

Nowadays there has been a change in analytical chemistry referring to the 

strategy on handling information in the measurements process. As commented 

previously, the first approximation was based on getting information on 

quantitative analysis of specific compounds using specific sensors to measure 

single parameters (§1). Currently, the aim was slightly modified incorporating 

sensor arrays with low selectivity to resolve mixtures of compounds. 
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Thanks to the rich information given by these sensor array systems, the novelty 

in the analytical chemistry field is to draw a parallel from the natural world leading 

to the famous biomimetic systems. Simplifying, these systems are born from the 

fusion of sensors combination and mathematical treatment. These challenging 

systems are focused on mimicking different senses of mammals, a principle that 

together with a complex stage of information processed in the brain, allows the 

quantification or qualification of a great number of substances. 

In this way, these types of systems have a different approach in comparison with 

classical methods. In this case, low selective and/or cross-responsive sensors 

are required to obtain complementary and rich analytical information. After, this 

multi-dimensional information needs to be processed with data treatment 

strategies. This step requires the implementation of chemometrics science. The 

combination of both concepts has been declared one of the ways of progress in 

developing new sensing schemes.  

Therefore, two parts can be differentiated in this kind of system. At first instance, 

the matrix of sensors, which tries to simulate different senses and perceptions, 

and not least the chemometric tools, which allows the processing of the collected 

data obtaining a response as the brain would. 

In the current state of art, the main biomimetic systems developed are based on 

three mammal senses: sight, smell, and taste68. Using the same principle, are 

named electronic eye (EE), electronic nose (EN), and electronic tongue (ET).  

All the experimentations done in this dissertation will be focused on the last mode, 

for this reason, the next step is the centre of attention to the details using these 

electronic tongues systems type. 

4.1. Electronic Tongue Systems as Analytical Devices 

As previously commented, the strategy relies on approaching the human tongue 

and the electronic tongue system. To achieve it, it is important to know how 

human taste works. 
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4.1.1.  Analogy between the Human Taste and Electronic Tongue systems 

Mammals are believed to have five taste modalities that are bitter, salty, sour, 

sweet, and umami. Several studies in humans have reported that different zones 

of the tongue show different gustatory preferences, and numerous physiological 

studies in animals have shown that taste receptor cells can respond in a selective 

way to different tastants69. 

 

Figure I - 17. The analogy between the human taste (left) and the electronic tongue 
approach (right). 

In brief, the concept of ET is based on imitate the biological system. As it can be 

observed in Figure I - 17, taste buds in the tongue (A) when keep in contact with 

foodstuffs (B) send an electrical stimulus to the brain (C), which can group them 

into specific patterns to classify tastes (D). In parallel, a sensor array modified (E) 

in contact with liquids (F) creates a fingerprint of the analytes thanks to different 

electroanalytical responses. Multi-component information can be treated using 

chemometrics (G) to finally identify a taste or sample (H).  
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4.1.1.1. History, Types, and Applications 

According to IUPAC, an electronic tongue is defined as “a multisensor system, 

which consists of several low-selective sensors and uses advanced 

mathematical procedures for signal processing based on pattern 

recognition (PARC) and/or multivariate data analysis [artificial neural 

networks (ANNs), principal component analysis (PCA), etc.]”70. The use of 

this system applied to analysis in liquids provide multidimensional analytical 

information after the proper chemometric treatment, which can extract the 

maximum chemical information from convoluted data. 

The beginning of the ET was proposed in the late 1990s71 by a collaboration of 

two sensor groups in Europe, Prof. Vlasov group in Saint Petersburg University 

and D’Amico group in Tor Vergata University in Rome to describe an array of 

sensors using ion-selective sensors (ISEs)72,73. In 1989, Toko et al. presented the 

first electronic tongue, that later was made commercially available. The 

mentioned array was called “taste sensor” and it was formed by potentiometric 

electrodes modified with lipid polymeric membranes74,75. These works were 

supplemented by Prof. Winquist in Linköping from Sweden, who developed a 

system capable of classifying solutions using different metallic electrodes and 

voltammetry technique76. 

 

Figure I - 18. Publications from 2015 to 2021. A) sensor array. B) ET (in grey) and 
Chemometrics (black), as keywords. 
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As Figure I - 18 depicts, the concept of sensor arrays and ET have been growing 

in popularity, creating a considerable impact in the world of electroanalytical 

chemistry. The results collected in the Web of Science database show the growth 

of sensor arrays systems, showing 15328 publications in 2021. This result is 

followed by the impact of electronic tongues providing 1153 publications in the 

last year (2021). In black, it is possible to see the slower growth merging 

chemometrics, as a keyword. In all cases, it has been demonstrated this research 

is considered a hot topic nowadays. 

According to this technology, different sensors can be used to form the sensor 

array. In general, they can be classified as electrochemical (potentiometric, 

amperometric, voltammetric, impedimetric, conductometric) through gravimetric 

to optical (absorbance, luminescence, reflectance)5,77. In the present dissertation, 

all the projects were performed using voltammetric sensors. For this reason, 

special attention will be paid to electronic tongues employing voltammetric 

sensors. 

For many years, the Sensors and Biosensors group is a pioneer in the 

development and implementation of these chemical systems. Initial works were 

reported using potentiometric sensor78, but the vast majority were voltammetric 

applied to quantification of mixtures of oxidizing analytes or beverages79,80. 

Focusing on the voltammetric case, the signal is intrinsically linear, which means 

that the different concentration of oxidable/reducible compounds under study is 

proportional in a certain ratio to the current signal. Therefore, at the end, a 

currents vector is created per each sensor selected in the sensor array. 

𝑖𝑥(𝑉) = 𝑖𝑜 + 𝑥1 · 𝐶1 + 𝑥2 · 𝐶2 + 𝑥3 · 𝐶13 + · · ·, Equation I - 5 

In this equation, ix (V) is the vector of currents of electrode x and the 

concentrations of the different compounds present in a sample are indicated by 

C1, C2, C3, etc. 

More in detail, if each sensor contributes to a long vector, a sensor array can be 

done the system more complex, creating a huge amount of data with high 

dimensionality. This fact makes more difficult the data treatment of the raw data, 

which means that the analytical chemist must deal with an unforeseen difficulty. 
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To put into context, voltammograms obtained may be normally formed by many 

current intensities. What is more, the system is working with a three-way matrix 

formed by samples x current x sensors, so it is impossible to process the data 

with ordinary data treatments. To overcome this problem, there are different 

pathways to afford it. One option is the use of strategies to reduce the data, which 

can be PCA or Partial Least Squares (PLS), examples. Approaches based on the 

unfolding of the data, which means, combining the sensor singles into one single 

vector or some examples based on compressions like PCA, feature extraction, 

Wavelet, or Fourier transforms, among others81. Eventually, there are the 

multiway treatment strategies (PARAFAC of Multi Partial Least Squares (nPLS))6, 

which can treat the three-way data matrix directly. It is important to mention that 

they are rarely used in ET systems, probably because of their high complexity. 

Therefore, the raw data generated by this kind of analytical system must be 

treated with mathematical tools to simplify the information given by the analysis 

of the samples. 

There are many applications involved in the ET systems such as beverages, food 

industry (quality, origin, process monitoring or adulteration/contamination), 

biomedical (in vitro analysis), pharmaceuticals82 and security field. In the present 

work, the most field entailed is forensic, through the identification and 

quantification of some drugs of abuse in the presence of their most common 

cutting agents. 

5. Chemometrics 

In previous sections of this thesis, the advantage of using voltammetric array 

systems for the extraction of chemical information from mixtures of compounds 

has been presented. However, the use of these methods provides us with certain 

difficulties that we, as analytical chemists, must overcome. 

This problem refers to the fact of obtaining high complexity and dimensionality of 

the generated data, which means that traditional methods cannot deal with the 

huge amount of raw data obtained (sensor x intensities x samples). 

To afford this difficulty, there is a need to resort to chemometrics to be able to 

select relevant information from huge data amount.  



Chemometrics 

67 

Therefore, before getting into the subject, three questions should be clear: what 

is chemometrics, what are its beginning, and in which spheres of research can it 

be useful. 

Chemometrics is, according to the actual definition of the International 

Chemometrics Society (ICS), “the chemical discipline that uses mathematics, 

statistics, and formal logic to design or select optimum experimental and 

measurement procedures, to provide maximum relevant chemical 

information by analyzing chemical data and to obtain knowledge about 

chemical systems statistical and mathematical methods were first applied 

in psychology, biology, and agriculture at the beginning of the last 

century”. 

This discipline was born at the end of the 1960s and in the 1970s it became an 

independent working field. The name “chemometrics” was first coined by Svante 

Wold in the early 1970s83. His collaboration with Bruce R. Kowalski, the outcome 

in the foundation of the ICS in 1974. In 1984 the first German working group was 

founded followed by other chemometrics working groups in many countries. 

Therefore, its fast implementation led to the publication of two journals: 

Chemometrics and Intelligent Laboratory Systems (1986)84 and the Journal of 

Chemometrics (1987)85,86. Furthermore, networks teaching chemometrics and 

first monographs were published also in the 1980s, showing the impact of this 

discipline in many aspects. 

There are a lot of working fields83 for today’s chemometrics, but in this work, 

chemometrics strategies are mainly focused on calibration and multivariate data 

analysis to distinguish simultaneously mixtures of compounds. To summarize, 

chemometrics can be considered interdisciplinary to a great extent. 

Therefore, two pathways can be classified according to the final application 

(qualitative or quantitative). Before explaining the main differences between 

them, it is important to emphasize the three important steps to afford 

chemometrics analysis, which are weighting, signal compression, and modelling. 

Steps before modelling are not mandatory. However, their use shows significant 

benefits in the performance of the model. 
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5.1. Data Processing 

As previously mentioned, the complexity of the data makes hard the construction 

of the model. So, there are several data processing treatments87 that can be 

applied to the raw data before the multivariate analysis for improving their 

performance. 

One alternative is the use of the unfolding, which means to convert 

voltammograms into a two-dimension matrix, as shown in Figure I - 19. In other 

words, this strategy combines the sensors’ signals into one single vector. After 

this unfolding step, the corresponding chemometric multivariate method (linear or 

not) can be applied. Some works report that the combination of this pre-step with 

the compression proportionate improvements in terms of modelling88. 

 

Figure I - 19. A) Initially 3D matrix with the three dimensions (current x sensors x samples). 
B) Conversion to the 2D using the unfolding. 

Some strategies can also be used to verify the consistency of the raw data and 

observe the previous contribution of each sensor. Auto-scaling, centering, 

normalization, and standardization can be some examples commonly used. 

Once this previous step was checked, the next step is based on reducing the 

signal’s complexity, maintaining the useful information88. This process can be 

named data compression. 
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According to the literature, there is a variety of compression methods as 

windowed slicing integral method89, PCA, Legendre’s polynomials90, kernel 

functions91, Discrete Wavelet Transform (DWT)92 or Fast Fourier Transform 

(FFT)93 and feature selection (Genetic Algorithms (GAs)) and Causal Index 

(CI)94, among others. The application of these tools before the modelling is built 

provides some advantages such as avoiding redundancy in input data, 

saving time in terms of calculation (training step), and noise reduction. All 

these factors contribute to the obtention of simpler models with less risk of 

over-fitting. 

Once the raw data is collected and pre-processed it is needed to perform the 

last step of the procedure, which includes the building of the model. 

Depending on the final application (qualitative or quantitative) different 

operations may be done. 

Therefore, the next step in this way will be to present the different PARC 

methods, focusing on the most used in the present dissertation. Current 

approaches to PARC methods include the use of machine learning because 

of the increase availability of big data and the increasing availability of 

processing power. These methods can be classified into two main 

categories: unsupervised and supervised95, Figure I - 20. 

Figure I - 20. Machine learning types. Supervised methods incorporated classification and 
regression applications; meanwhile, unsupervised methods are focused mainly on clustering. 

Among the different methods available nowadays, PCA, k-nearest Neighbour 

(kNN), PLS, and ANNs are the most well-known for ET applications. Specifically, 

PCA is most used in qualitative applications to obtain better visualization, 

meanwhile, PLS and ANNs are more attractive for quantitative applications.  
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Machine learning algorithms such as kNN, Random Forest, and Naive 

Bayes, among others, are commonly used as classification methods, 

emphasizing Support Vector Machines (SVM), which is an enhanced alternative 

to some of the more classical approaches. 

5.1.1. Data Compression 

As previously commented before the last step, which corresponds to modelling, 

data compression pre-processing is recommended to reduce the dimensionally 

of the raw data obtained. Applying this tool is possible to avoid the overfitting of 

the models and to reduce the modelling time. Although there are methods which 

their use is not so critical (PLS), there are reports in the literature claiming that its 

application improves the performance of the created models96. There are several 

ways to manage the data compression step: in this sense, DWT and GAs will be 

explained in more detail. 

5.1.1.1. Discrete Wavelength Transform 

In the late 1980s, WT appeared as a signal processing technique, which is 

derived from Fourier transform (FT). The main difference between them is the 

type of function where the signal is projected. In the case of FT, the signal is 

projecting in a sinusoidal function, whereas WT is a wavelet function. This last 

option gains an advantage in this regard to FT because it captures not only the 

frequency but also the location (temporal) of the information. 

More in detail, the operation mode of WT is based on decomposing a signal into 

a set of basic functions. These functions are obtained from translations and 

dilations of a single function named the mother wavelet function92. There are 

several wavelets, but the most common use is the Daubechies. This process is 

done through Mallat's pyramid algorithm, which acts on a discrete signal of length 

M by decomposing it into orthogonal subspaces of length ca. M/2 in each step92,97 

(Figure I - 21). 

Thus, by increasing the degree of decomposition to a level X (which means 

repeating the decomposition process x times), the degree of compression can be 

increased.  
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However, this increase in the degree of compression is at the expense of the 

degree of reconstruction since the fidelity of signal reproduction degrades at each 

step. Finally, the transformation can be reversed, and the degree of 

reconstruction can be evaluated in this way, allowing the choice of the optimum 

number of coefficients to be used. 

As in the case of FT, WT also has the advantage that it can be used to remove 

the noise present in the signals. In addition, WT can be implemented as a data 

compression method if we use only the most relevant coefficients obtained in the 

signal decomposition. Therefore, it is a very efficient tool in these situations 

because it accomplishes, in a single step, data compression, feature extraction, 

and noise reduction. 

 

Figure I - 21. DWT operation mode based on Mallat's pyramid algorithm. 

5.1.1.2. Genetic Algorithms 

John Henry Holland was the father of GAs in the early 1970s. It is considered an 

advanced feature selection method simulating Darwin’s theory of evolution and 

the concept of natural selection98. To understand briefly how GAs is managed, 

five basic steps99 can be considered more in detail which are: 

i. Coding of variables: referring to the coding, each variable (gene) is binary 

coded into a vector (chromosome). 

ii. Initiation of population: in this step to generate many individuals, each one 

defined by a number of chromosomes, the original one is perturbed. 

iii. Evaluation of the response: the aim herein is to get a numeric value that 

describes the quality of the model. In this case, this process is done 

through the generation of a model contributed by each of the 

chromosomes. 
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iv. Reproduction: this step is based on a creation of a new population of 

chromosomes. They are creating making combination of the original 

chromosomes. 

v. Mutation: this mutation step must be added to avoid genes that would 

never be generated from the original chromosomes. 

Therefore, one question can be, when is the evolution process completed? It can 

be considered completed when a termination criterion is defined. In this case, 

steps (iii) to (iv) are then repeated until reaching this point. This point can be 

established by a maximum number of generations, otherwise when improvement 

on the modelling decreases below a limit. To clarify the process, which is difficult 

to imagine, the operation mode of GAs is represented in Figure I - 22. 

In a summary, GAs is considered sophisticated data feature selection method, 

very useful in the variable selection and optimization in calibration and modelling 

steps. 

 

Figure I - 22. Schematic representation of how GAs works. 
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5.2. Unsupervised Methods 

5.2.1. Principal Component Analysis 

As defined in the literature, PCA is described as a linear unsupervised pattern 

recognition method able to reduce the dimensionality of multivariate data. In this 

sense, it helps to visualize the different categories by remarking differences and 

similarities between sample clusters77. 

The purpose is to reduce the number of variables to new latent variables 

(orthogonal) called principal components (PCs) (Figure I - 23). To get the first 

axis those with maximum variance variation, a change of axis directions is 

required. In addition, this new visualization helps to simplify the elucidation of the 

variability contained in the information. In many situations, the complication is to 

understand these PCs depending on the sample composition.  

 

Figure I - 23. Simulation of the orthogonal projection done by PCA. On the left, data sets are 
represented in three variables. On the right, the representation of the two most important 
PCs shows the formation of six clusters. 

Thus, at this point it is could be interesting to analyse just a bit the math behind 

this pattern recognition method. As discussed above, PCA consists of a 

transformation of the original variables to a new orthogonal coordinate system, 

the principal components, which are described by Equation I - 6 and where X is 

the matrix of the original data, of dimension (s x v). 

𝑋 = 𝑇𝑃′ + 𝐸 Equation I - 6 
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Each of the s rows corresponds to an object (the samples), and each of the v 

columns contains one of the variables. In this thesis, it will be the voltammograms. 

T is the matrix of the scores, of dimension (s x a), where a is the number of PCs 

needed to contain the desired information. The scores contain the information of 

the samples. P is the matrix of the loadings, of dimension (v x a), containing the 

information about the variables of the original matrix. E is the residuals matrix, 

which contains the information from the original data that has not been explained 

by the principal components chosen in the models. All the parameters used in 

the PCA are clearly defined in Figure I - 24. 

 

Figure I - 24. Schematic representation of the different matrices involved in the 
transformation process done by PCA. 

There are several algorithms able to calculate T and P matrices. The most 

commonly used are singular value decomposition (SVD) or nonlinear iterative 

partial least squares (NIPALS). 

In conclusion, PCA is considered an excellent visualization tool. What is more, it 

can be also classified within the group of data compression methods, referring to 

the data reduction, showing its feasibility as a feature extraction tool.  

In the present dissertation, PCA is always the first option to visualize the different 

clustering and perform a previous optimization of the best selection for the future 

sensor array used 

5.2.1.1. Clustering Metrics: Silhouette Parameter 

As was commented in previous sections, PCA is an excellent alternative as a 

visualization tool for analyzing sample clusters. However, in all the cases, this 

visualization can be a bit subjective in mathematical terms, which means that 

sometimes it is difficult to analyse which transformation is better in comparison 

with another if we only make evidence of the clinical eye.  
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To overcome this problem, for the first time in our group a strategy was developed 

to afford the clustering metrics topic.  

In the literature, it can be found several methods to assess clustering process, 

i.e., how compact a cluster is and how well separated are different cluster. Some 

examples are the F-factor100, the silhouette parameter, and the sum of squared 

errors101. Due to its simplicity, in the present work, silhouette (s) was selected as 

a clustering degree metric. The calculations performed in getting the parameter 

will be shown in detail in the experimental section. In brief, this parameter 

calculation is a measure of how easy to distinguish between clusters associated 

with the different samples under study. This strategy coupled with PCA allows the 

interpretation and validation of consistency within clusters of data, providing a 

numerical criterion of how well each sample matches its cluster. In this case, if 

the value of s is close to +1, indicates that the sample is well matched to its 

cluster, verifying that the clustering configuration is suitable. In the opposite case, 

the reasoning is opposite. 

 

Figure I - 25. A) Scores plot of PCA showing 5 clusters as an example. B) Silhouette plot. 

In this context, in our case study, the combination of these two strategies allowed 

us having a quantitative metric for the proper selection of the working electrodes 

used in the array. This step was very useful because the redundant information 

of sensors that were not useful to improve the clustering were then removed.  
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Therefore, benefits in terms of computer calculations such as saving time are 

observed thanks to this pre-selection step. Figure I - 25 shows a typical silhouette 

diagram obtained in a classification approach of a number of samples. 

5.3. Supervised Methods 

5.3.1. Machine Learning Algorithms 

There are several supervised machine learning algorithms used in chemometrics 

nowadays. Random Forest, Naïve Bayes, and SVM are some examples102,103.  

• Random Forest: predict using an ensemble of decision trees.

• Naïve Bayes: a fast and simple probabilistic classifier based on Bayes’ 

theorem with the assumption of feature independence.

• SVM: this algorithm maps inputs to a higher dimensional feature to 

facilitate differentiation.

In the present work, the machine learning algorithm preferred in developing 

applications was kNN. For this reason, it will be explained more in detail.  

5.3.1.1. K-nearest Neighbour 

The kNN algorithm is a machine learning algorithm that belongs to the simple and 

easy-to-apply supervised learning algorithms that can be used to afford 

regression and classification problems104, focusing on the second cases as more 

commonly used. 

Using this algorithm, it is possible to keep all the data and classify a new data 

point (sample) based on the similarity103.  

What is more, it is considered as a lazy learner and non-parametric algorithm. It 

is not parametric because it does not make any supposition on subjacent data. A 

lazy character is referred to because it is learning from the training set is not 

immediate. 

To understand how this algorithm works, a schematic representation is shown in 

Figure I - 26, followed by a simple case as an example. 
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Figure I - 26. Schematic representation of how the kNN algorithm works. 

In this example, two categories A and B are first presented defining two clusters, 

and next, a new data point (x1) enters into the system and needs to be classified 

(Figure I - 27). To achieve it, kNN is applied to classify the new sample in some 

of the two categories previously defined. Therefore, following the below diagram 

six steps can be remarked. 

 

Figure I - 27. Comparison of results obtained before and after than applied kNN algorithm. 
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1. Selection of the number of k of the neighbours: this k value is normally 

between 3-5, but sometimes this selection is a key point during the process 

and there is no systematic way to determine the most appropriate value of 

this parameter. However, it is known that very low values can be noisy and 

introduction of outliers in the final model. In this case, it is possible to 

considerate k=5 as an example. 

2. Calculation of the Euclidean distance (Figure I - 28A). It is defined as the 

distance between two points, and it can be calculated as follow: 

 𝐴1 𝑎𝑛𝑑 𝐵2 = √(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑋1)2 Equation I - 7 

3. Define a pertinence to a class, taking the k nearest neighbours in 

consideration of the calculated Euclidean distance. 

4. Count the number of the data points in each class, among these k 

neighbours. 

5. Assign the new data points (samples) to that category for which the 

number of the neighbour is maximum (Figure I - 28B). In this example, the 

three nearest neighbours are from category A, meanwhile, two are 

selected from category B.  

6. The model is ready. In conclusion, the model verifies that the new sample 

belongs to category A. 

 

Figure I - 28. A) Calculation of the Euclidean distance. B) Classification of the new sample 
in the proper category after calculating k=5 distances. 
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As summarizing of this section, it is demonstrating the feasibility of the kNN model 

showing its simplicity of application and presenting its robustness in front of noisy 

training data. As negative aspects can be remarking the determination of k 

parameter, which can be complex in some cases. When the amount of data is 

huge, it can attribute high cost in computation since the multiple calculation of all 

the distances might be necessary. 

5.3.2. Partial Least Squares Regression 

Quantitative analytical determinations based on instrumental analysis require the 

use of calibration methods. When samples involve one analyte or several 

analytes if their responses do not interfere with each other, classical methods can 

be applied to deal with the calibration. In this case, typical methods are external 

calibration, internal standard (minimization of signal drifts), or standard addition 

to deal with matrix effects. In the commented situations, it is used univariate 

calibration methodologies. However, the way to afford the problem changes when 

there are interactions between species and/or overlapping signals that must be 

considered. In this sense, the application of these univariate methodologies 

becomes difficult, and the use of multivariate strategies is necessary. At this point, 

chemometrics plays an important role in terms of data treatment.  

 

Figure I - 29. Schematic representation of PLS. 
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In the present dissertation, the most common method applied to calibration was 

multivariate since most of the signals in these works were overlapping. In this 

case, PLS is selected as a multi-calibration method in some of the works 

reported. 

PLS is a linear method in which linear combinations of the original variables are 

used to reduce the number of variables105, Figure I - 29. Unlike PCA and principal 

component regression (PCR), where only the data matrix (X) is decomposed into 

scores and loadings, in this case, both the data matrix (X) and the matrix of the 

parameters to be predicted (Y) are decomposed and the new variables, called 

latent variables (LVs) are calculated to maximize the covariance between X and 

Y. This decomposition of the two matrices implies that the PLS assumes that the 

error is not focused on the X matrix but is equally present in the Y matrix. 

Depending on the number of variables to predict, we distinguish between PLS1 

(1 variable) and PLS2 (several variables)88. 

To finish with this PLS section is important also commenting on a more 

sophisticated variant which is nPLS. This method is used when the departure 

data has more than one dimension102. The advantages it provides are based on 

the avoidance of using some pre-treatments88. In the case of reduction of the 

dimensionality, the unfolding in the data is not needed, as an example. As main 

difference characteristic of PLS is that the loadings matrix is 2D. Therefore, it is 

considered a promising method for some applications. However, the model 

building, and interpretation indeed presents some complexity, and that is why it 

is not widely applied. 

5.3.3. Artificial Neural Networks 

In the past decades, ANNs have gained an important role in different knowledge 

areas because of their use as adaptive tools for processing data in many 

applications. ANNs attract attention because in opposite to classical statistical 

techniques they are powerful in nonlinear systems’ modelling87. 

The Sensors and Biosensors group is a pioneer in the development and 

application of these modelling tools with electroanalytical techniques, showing its 

applicability and feasibility in many reported works106–109. 
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Figure I - 30. The analogy between A) neuron and B) perceptron in an artificial neural 
network system. 

ANNs are defined as parallel information processing tools inspired in the animal 

nervous systems, whose maximum expression is the human brain. The basic unit 

of an ANN is what is called perceptron110, which approximates a neuron in the 

nervous system. The analogy between both concepts is shown in Figure I - 30. 

In short, ANNs are based on the combination of different neurons, which receive 

a series of inputs through their interconnections, and finally, the output is emitted. 

This output is determined by three different operations: propagation, activation, 

and transfer. 

ANNs are involved in the artificial intelligence world, which makes them attractive 

but at the same time, their mathematical interpretation is not evident. Therefore, 

a simple interpretation of the mathematical is attempted to allow the reader to 

dive a little deeper into these concepts. 

In math terms, the perceptron is the unit that has many input connections defined 

as Xn and a single output (ak). Each input can be attributed by a weigh (wi) and, 

in some cases, a bias (b)111.  
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The next question at this point is: when the perceptron is activated? The answer 

is related to the sum of the weighted inputs (Σ). If a certain threshold is reached, 

the perceptron is activated generating an output signal, meanwhile, this value has 

not reached the perceptron remains not activated. Equation I - 8 defines well the 

issue: 

𝑦𝑘 =∑𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

 Equation I - 8 

In a summary, the learning process consists of adjusting the values of the weights 

applied to each signal and the bias. What is more, the threshold value must be 

exceeded to transfer the information and the appropriate transfer function for it to 

produce the desired stimulus. These parameters are adjusted to minimize an 

error function, which compares the values obtained in the output with the values 

expected by a series of known patterns. 

 

Figure I - 31. Multi-layered ANNs representation shows the three important layers: input, 
hidden, and output. 

At this point, this will be the simplest situation considering only the actuation of 

one perceptron. To be more realistic, biological mechanisms are based on 

multi-layered structure as in the case of the brain. For this reason, parallelism 

based on the previous idea is performed using a multi-layered of ANNs. 

Therefore, three important layers composed by the multilayer model in the 

following are commented. One of them is the input layer, which is the first of the 

layers and the one in charge of introducing the information inside the network.  
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It contains as many neurons as inputs and receives the set of inputs (xi). The next 

one is the hidden layer, which tries to process the information, and finally, the 

output layer which has the role to receive the signals processed in the previous 

layers and provides useful information. Referring to the learning process the 

same concepts are applied than in the case of a single perceptron. 

An important remark must be done to the transfer functions, which allows the 

possibility to offer outputs signals not limited only to the binary response. The 

most used in the ANNs field are tansig, logsig, purelin, satlin, and satlins87. A fact 

that it is important to highlight is that working with this type of chemometric tools 

is not trivial, which means that to find the best configuration it is needed to 

evaluate centenars of them. 

In conclusion, ANNs are suitable chemometric tools to perform the modelling. As 

commented in the beginning, they are very useful when cases of nonlinear 

situations are presented. In this thesis, it could be interesting for the last work 

presented based on detection of some cutting agents, where analytes did not 

present a linear behaviour. 

6. Applications 

Thanks to the advantages provided by these machine learning systems 

mentioned in previous sections, many applications have been developed in the 

world today. However, this work is focused on very prominent applications based 

on forensic and security fields. 

6.1. Proof of Concept 

When a Ph.D. student begins his carrier in the research world it is important to 

know that he/she is using the proper tools and the measurement system is 

working under controlled conditions. This issue is not always trivial in all cases. 

Therefore, before starting with this research, it was verified the materials 

employed to modify the electrodes’ surface and the different sensing platforms. 

To achieve it, it is important to select a mixture of references, in which the 

behaviour of the analytes was observed previously, and it is well known.  
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In our group, this mixture is based on three compounds, two of them, very famous 

in the pharmaceutical field which are acetaminophen (PA), uric acid (UA), and 

ascorbic acid (AA) (Figure I - 32). Thus, it would be interesting to present the 

analytical problem involved in the following section. 

6.1.1.  Acetaminophen, Uric Acid, and Ascorbic Acid 

As it was commented previously, these three compounds have an important role 

in the life of humans, for this reason, their analytical interest is presented 

nowadays.  

As it is well known, PA, most common as paracetamol is used in society as an 

analgesic and antipyretic drug used against muscle aches, headache, fever, 

menstrual cramps, and arthritis, among others112. Abusive consumption of this 

drug provokes toxic metabolites, developing problems based on nephrotoxicity 

and hepatoxicity113. In the case of AA, also known as vitamin C it is commonly 

employed as an antioxidant and as a good component to control a good dietary 

intake114. Its excessive dose in the body can cause also some problems based 

on trouble sleeping, flushing of the skin, or gastrointestinal discomfort115, in some 

cases. Finally, the determination of UA in the body is essential because abnormal 

levels of this substance proportionate may be the cause of diseases such as gout 

and hyperuricemia116. What is more, pneumonia and leukemia are also related to 

the increase in urate levels. 

 

Figure I - 32. Chemical structures of (A) acetaminophen, (B) ascorbic acid, and (C) uric acid. 

For all these reasons, the analytical determination of the compounds is necessary 

in relation to the mentioned illnesses. In the literature, it is possible to find many 

analytical methods capable of determining them in an individual or simultaneous 

way. Capillary zone electrophoresis117,118, chromatography119,120, 

spectrophotometry121,122 and spectrofluorometry123,124 are some of the analytical 

techniques use for this purpose.  
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Normally, the main problem is that these methods need complex procedures and 

are high cost. To deal with that problem, our proposal is the application of 

electrochemical sensors125. Many works were reported in our group addressing 

the problem with different strategies100,126,127. 

Specifically, in this work, we proceeded to the simultaneous detection of these 

three compounds with CME using a self-formulated conductive ink. A multisensor 

platform and chemometric tools were used to afford the analytical problem. At the 

end, this work was used as proof of concept to validate the way of modifying and 

the sensor platform used. 

6.2. Illicit Drugs 

6.2.1. Opiates and Cutting Agents 

The following applications are based on the forensic and security field. Over the 

last years, society has been dealing with a problem of the trafficking of illicit drugs. 

This issue is damaging economy, health of people and creating an increase of 

criminality in the population128. The benefits are going to illicit drug markets, which 

are growing increasingly. Therefore, authorities try to disarticulate them as soon 

as possible to safeguard the public. 

To deal with this problem, the most common methods employed are colour and 

mass-spectrometric tests. These methods can be improved due to their low 

accuracy and in the case of spectroscopic, the high cost and low portability may 

be a handicap in their applications. For this reason, the implementation of new 

drug test systems is urgent. 

In this sense, this dissertation is framed in the Bordersens project129 which has 

the main aim of the development of a portable device able to perform on-site 

analysis to test different precursors, drugs, and cutting agents improving 

accuracy and reducing problems caused by classical methods. The project is 

ambitious; thus, these works are helping to reach the final objective. 

The Controlled Substances Act (CSA) classifies the drugs into five groups which 

are anabolic steroids, stimulants, hallucinogens, narcotics, and depressants130. 

Our interest is focused on the narcotic group also called opioids.  
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This category is responsible for 63% of deaths by overdose in the USA in 2015 

and 70% in 2018131. So, it is evident that consumption is creating an economic 

and health impact. 

More in detail, within this opioids group, exists an especial class which named 

opiates. They are coming naturally from poppy species (Papaver somniferum)132, 

Figure I - 33, and the most famous are codeine, heroin, and morphine 

(Figure I - 34). These drugs can be adulterated with different cutting agents to 

modify the effects produced by them, or to maximize profits the gangs make 

trafficking with them. In this case, two of these substances were studied which 

corresponds to paracetamol and caffeine. In the case of caffeine, it facilitates the 

smoking of heroin because allows to vaporize it at a lower temperature. 

Otherwise, paracetamol encourages heroin’s analgesic effect. For this reason, 

can be present in illicit samples composition. 

 

Figure I - 33. Papaver somniferum from poppy species. 

Again, classical methods are capable of distinguishing opiates individually and 

also simultaneously133–137. However, most of the techniques are not adapted to 

on-site drug monitoring, are time-consuming, and have high costs despite their 

power. To afford the limitation, electrochemical sensors were also selected. The 

advantages in terms of simple usage, high portability, the rapid response among 

others permit the selection of this method before classical approaches. 
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Figure I - 34. Chemical structure of (A) heroin, (B) morphine, (C) codeine, (D) paracetamol, 
and (E) caffeine. 

In brief, the works involved with determination of drugs of abuse can be divided 

into two parts. The first one was based on performing an accurate optimization of 

the best sensor array for the desired application. To achieve this proposal, the 

use of chemometrics, particularly, machine learning algorithms were applied. 

Once this step was completed the next goal was quantitative. For that, the system 

was analysed with the three opiates understudy and then, it was complemented 

with the two most common cutting agents. In this case, individual sensors were 

used as members of the array, and the optimized modification performed in 

previous works was applied. 

6.2.2. Cocaine and Cutting Agents 

Previous sections are based on opiates, but the stimulants group is also known 

for the same problem. The most famous is cocaine, which comes from the leaves 

of the coca plant (Erythroxylum coca), Figure I - 35, in South America. If statistics 

are shown, cocaine is defined as the second most consumed illicit drug in the 

European Union, reaching values of 9.1 billion Euros138 coming from the 

European cocaine market. Most countries involved in the European Union are 

Belgium, the Netherlands, and Spain139. Again, statistical numbers showed that 

in 2018 these countries were responsible for a total of 78% of the cocaine 

seizures139. 
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Figure I - 35. Erythroxylum coca plant. 

As in the previous case, cocaine is mixed with other compounds to modify its 

effects. In this case, prescription drugs such as acetylsalicylic acid, ibuprofen, 

paracetamol, and phenacetin are very common due to their low cost. In the past 

years, it was used as a drug to combat the pain but currently, it is forbidden in 

many countries. Finally, the group of local anaesthetics (procaine, lidocaine, 

tetracaine, and benzocaine) is also used in adulterating cocaine seizures 

samples, remarking benzocaine140 as the most encountered cutting agent. 

 

Figure I - 36. Chemical structure of (A) cocaine, (B) benzocaine, (C) paracetamol, and (D) 
phenacetin. 

Again, the motivation is to improve analytical systems by the implementation of 

fast and reliable methods.  

 



Applications 

89 

Therefore, in this case, the proposal was based on the simultaneous 

determination of three relevant cuttings agents (benzocaine, paracetamol, and 

phenacetin) present in cocaine seizure samples (Figure I - 36). The methodology 

was based on the previous works with the main innovation in the manufacturing 

technology employed. In this case, the sensor platform used was developed by 

inkjet printing, which is considered a relatively recent printing technique that tries 

to compete with screen printing or 3D printing52 nowadays. 

  



INTRODUCTION 

90 

7. References 

(1)  Hulanicki, A.; Glab, S.; Ingman, F. Chemical Sensors: Definitions and 
Classification. Pure Appl. Chem. 1991, 63 (9), 1247–1250. 
https://doi.org/10.1351/pac199163091247. 

(2)  Senesac, L.; Thundat, T. G. Nanosensors for Trace Explosive Detection. Mater. 
Today 2008, 11 (3), 28–36. https://doi.org/10.1016/S1369-7021(08)70017-8. 

(3)  Diamond, D. Progress in Sensor Array Research. Electroanalysis 1993, 5 (9–10), 
795–802. https://doi.org/10.1002/elan.1140050913. 

(4)  Stefan, R. I.; van Staden, J. F.; Aboul-Enein, H. Y. Estimation of Uncertainties for 
the Application of Electrochemical Sensors in Clinical Analysis. Accredit. Qual. 
Assur. 2003, 8 (2), 86–89. https://doi.org/10.1007/s00769-002-0560-1. 

(5)  Ciosek, P.; Wróblewski, W. Sensor Arrays for Liquid Sensing – Electronic Tongue 
Systems. Analyst 2007, 132 (10), 963. https://doi.org/10.1039/b705107g. 

(6)  del Valle, M. Electronic Tongues Employing Electrochemical Sensors. 
Electroanalysis 2010, 22 (14), 1539–1555. 
https://doi.org/10.1002/elan.201000013. 

(7)  Durst, R. A. Chemically Modified Electrodes: Recommended Terminology and 
Definitions (IUPAC Recommendations 1997). Pure Appl. Chem. 1997, 69 (6), 
1317–1324. https://doi.org/10.1351/pac199769061317. 

(8)  Adarakatti, P. S.; Baranova, E. A.; Dennany, L.; Kempahanumakkagari, S. K.; 
Mohamed, M. A.; Woo, T. K.; Monyoncho, E. A.; Randviir, E. Electrochemistry 
Volume 15; 2019; Vol. 15. 

(9)  Novoselov, K. S. Electric Field Effect in Atomically Thin Carbon Films. Science 
(80-. ). 2004, 306 (5696), 666–669. https://doi.org/10.1126/science.1102896. 

(10)  Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354 (6348), 56–
58. https://doi.org/10.1038/354056a0. 

(11)  Goyal, R. N.; Chatterjee, S.; Rana, A. R. S. The Effect of Modifying an Edge-Plane 
Pyrolytic Graphite Electrode with Single-Wall Carbon Nanotubes on Its Use for 
Sensing Diclofenac. Carbon N. Y. 2010, 48 (14), 4136–4144. 
https://doi.org/10.1016/j.carbon.2010.07.024. 

(12)  Varadan, V. K.; Pillai, A. S.; Mukherji, D.; Dwivedi, M.; Chen, L. Carbon 
Nanomaterials. In Nanoscience and Nanotechnology in Engineering; World 
Scientific, 2010; pp 107–152. https://doi.org/10.1142/9789814277938_0004. 

(13)  Bokros, J. C. Carbon Biomedical Devices. Carbon N. Y. 1977, 15 (6), 353–371. 
https://doi.org/10.1016/0008-6223(77)90324-4. 

(14)  Engstrom, R. C. Electrochemical Pretreatment of Glassy Carbon Electrodes. Anal. 
Chem. 1982, 54 (13), 2310–2314. https://doi.org/10.1021/ac00250a038. 

(15)  Fagan, D. T.; Hu, I. F.; Kuwana, T. Vacuum Heat-Treatment for Activation of 
Glassy Carbon Electrodes. Anal. Chem. 1985, 57 (14), 2759–2763. 
https://doi.org/10.1021/ac00291a006. 

(16)  Chen, P.; Fryling, M. A.; McCreery, R. L. Electron Transfer Kinetics at Modified 
Carbon Electrode Surfaces: The Role of Specific Surface Sites. Anal. Chem. 
1995, 67 (18), 3115–3122. https://doi.org/10.1021/ac00114a004. 

(17)  Van der Linden, W. E.; Dieker, J. W. Glassy Carbon as Electrode Material in 
Electro- Analytical Chemistry. Anal. Chim. Acta 1980, 119 (1), 1–24. 



References 

91 

https://doi.org/10.1016/S0003-2670(00)00025-8. 

(18)  Adams, R. N. Carbon Paste Electrodes. Anal. Chem. 1958, 30 (9), 1576–1576. 
https://doi.org/10.1021/ac60141a600. 
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II. OBJECTIVES 

In this chapter, the main goals of this dissertation will be described in detail.  
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1. Objectives 

In the present doctoral thesis, the main general goal is to develop electronic 

tongues using divers sensor platforms for applications in the forensic and security 

fields. To achieve this general purpose, several specific objectives were raised 

hereunder. 

1. To design, evaluate, and characterize of the different printed sensor 

platforms. 

1.1 To use an eight-sensor integrated array of screen-printed electrodes 

supplied by DropSens. In this case, working and auxiliary electrodes 

were based on carbon and pseudo reference was silver. Ceramic 

material is used as substrate. 

1.2 To use ItalSens graphite screen-printed electrodes containing a 

graphite working electrode, a carbon counter electrode and a 

(pseudo)silver reference electrode. Polyester material is used as 

substrate. 

1.3 To use a five-sensor inkjet printed platform array supplied by the 

Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), 

specifically with the Centro de Investigación Biomédica en Red, 

Biomateriales y Nanomedicina (CIBER-BBN). Working and 

(pseudo)reference electrodes were based on silver; meanwhile 

auxiliary electrode is fabricated with carbon ink. Polyethylene 

terephthalate is used as substrate. 

In all the works, electrochemical and morphology characterization were 

done using electrochemical techniques such as CV and SWV. To study 

the morphology, SEM studies were also performed. 

2. To optimize the polystyrene self-formulated inks to modify voltammetric 

sensors by the employment of several modifiers belonging to different 

groups regarding its chemical composition. 

2.1 To use some standard catalysts employed in electroanalysis, as are 

cobalt (II) phthalocyanine and prussian blue. 
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2.2 To use some metal oxides such as copper (II) oxide. 

2.3 To use some carbon material such as carbon nanotubes and graphite. 

2.4 To use some metal nanoparticles such as palladium. 

2.5 To use some conductive polymers such as polypyrrole. 

The ink-like composite was coated on the surface via drop-casting. In most of the 

cases, this deposition was carried out following an activation step to prepare the 

sensor for the measurements.  

3. To validate the technology employed using a mixture of compounds as

proof of concept (ascorbic acid, uric acid, and acetaminophen) with the

use of an integrated array of eight electrodes provided by DropSens, an

electronic tongue was performed considering the previous mixture of

previous studies by the protocol followed in our laboratory.

4. To develop a strategy to identify opioids in presence of cutting agents.

4.1 To achieve this objective, Principal Component Analysis was used as

a visualization tool. To perform a more complex study, clustering 

metrics were achieved using the Silhouette parameter. With this 

experiment, an optimization of the sensor array was achieved to lead 

to the final application with non-redundant information.  

4.2 Machine learning algorithms (k-nearest Neighbour, Random Forest, 

Naive Bayes and Support Vector Machines) were applied to verify the 

feasibility of the identification model. 

5. To evolve a strategy for opioids (heroin, morphine, and codeine)

quantification in presence of cutting agents (caffeine and paracetamol).

5.1 To perform two sets of experiments: firstly, the generation of a model

with the three opioids, and subsequently the addition of the cutting 

agents in order to ensure that the identification is accomplished. 
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5.2 To deal with this objective the multicomponent data must be processed 

with chemometric tools. Specifically, in the case of the study, Genetic 

Algorithms were used to feature selection coupled with Partial Least 

Squares Regression as modelling tool. 

6. To implement a strategy to quantify some cuttings agents (benzocaine, 

phenacetin, and paracetamol) present in some drugs of abuse using Inkjet 

Printing as emergent technology. Referring to chemometrics in this case, 

a Discrete Wavelength Transform for data compression was followed by 

the classical Artificial Neural Networks as modelling tool commonly used 

in the research group.



 

 

  



  

 

III. EXPERIMENTAL 

All the materials, instrumentation, and procedures listed in this chapter are related 

to the works presented in the following list. 
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1. Materials and Methods 

This section will pay attention to describing the materials and methods employed 

to run the experiments in the following works. In detail, reagents and samples, 

instrumentation, sensor platforms, chemical modification, electrochemical, 

characterization, experimental design, and sensor array selection and model 

validation were specified in this chapter. 

• ARTICLE 1 

Simultaneous Voltammetric Determination of Acetaminophen, 

Ascorbic Acid and Uric Acid by Use of Integrated Array of Screen-

Printed Electrodes and Chemometric Tools. 

Dionisia Ortiz-Aguayo, Marta Bonet-San-Emeterio and Manel del Valle 

Sensors, 2019, 3286. 

• ARTICLE 2 

Voltammetric sensing using an array of modified SPCE coupled with 

machine learning strategies for the improved identification of opioids 

in presence of cutting agents. 

Dionisia Ortiz-Aguayo, Karolien De Wael and Manel del Valle 

Journal of Electroanalytical Chemistry, 902, 115770 

•  ARTICLE 3 

Resolution of opiate illicit drugs signals in the presence of some 

cutting agents with use of a voltammetric sensor array and machine 

learning strategies. 

Dionisia Ortiz-Aguayo, Xavier Cetó, Karolien De Wael and Manel del Valle 

Sensors and Actuators B: Chemical, 357, 131345 
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• ARTICLE 4 

Novel Integrated Inkjet Sensor Array for Detecting Simultaneously 

some Adulterants present in Drug of Abuse Field using 

Chemometrics. 

Dionisia Ortiz-Aguayo, Xavier Cetó, Gemma Gabriel and Manel del Valle 

Sensors and Actuators B: Chemical, submitted 
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2. Reagents and Samples 

Potassium ferricyanide (K3[Fe(CN)6]), potassium ferrocyanide K4[Fe(CN)6], 

sodium chloride (NaCl), potassium chloride (KCl), disodium phosphate 

(Na2HPO4) were obtained from Merck (Darmstadt, Germany). Monopotassium 

phosphate (KH2PO4) was obtained from Sigma Aldrich (St. Louis, MO, USA).  

Cobalt (II) phthalocyanine (CoPc), Copper (II) oxide (CuO) nanopowder 

(<50 nm), Polypyrrole doped (PP) and Palladium, powder submicron 99.9+% 

(Pd), which were used as modifiers, were purchased from Sigma-Aldrich 

(St. Louis, MO, USA). Prussian blue (PB) was from Acros Organics (Geel, 

Belgium). The preparation of the ink composite was done using mesitylene and 

polystyrene, obtained from Sigma-Aldrich (St. Louis, MO, USA). Graphite powder 

(particle size <50 µm) was received from BDH (BDH Laboratory Supplies, Poole, 

UK).  

Acetaminophen (PA), ascorbic acid (AA), uric acid (UA), and hydrogen peroxide 

(H2O2) solutions were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Codeine (COD), caffeine (CAF), and heroin were provided by the National 

Institute of Criminalistics and Criminology (NICC) of Belgium. Morphine 

hydrochloride, potassium monophosphate (K2HPO4) and potassium hydroxide 

(KOH) were purchased from Sigma-Aldrich (Overijse, Belgium). Benzocaine and 

phenacetin were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Samples were prepared in buffers listed in Table III - 1. All aqueous solutions 

were prepared using Milli-Q water (Millipore, Billerica, MA, USA). The reagents 

were of analytical grade and used without supplementary purification. Fresh stock 

solutions were prepared the same day of the measurements, to avoid/reduce the 

day variability. 

Table III - 1. Names and chemical compositions of the different phosphate buffer solution 
(PBS) solutions employed. 

Buffer name pH Chemical composition 

PBS1 7.0 50 mM (K2HPO4/KH2PO4), 0.1 M KCl 

PBS2 7.0 20 mM (K2HPO4), 0.1 M KCl 
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3. lnstrumentation 

Cyclic Voltammetry (CV) measurements were performed at room temperature 

(25°C), using a portable Multi Potentiostat/Galvanostat µStat 8000 from 

DropSens controlled through its Dropview Multichannel 5.5 software package 

and Autolab PGStat 20 (Metrohm Autolab B.V, Utrecht, The Netherlands). GPES 

software was used for the acquisition of the data. 

Square Wave Voltammetry (SWV) measurements were performed using a 

Multi-channel Potentiostat/Galvanostat/Impedance Analyzer (MultiPalmSens4, 

The Netherlands) controlled by Multitrace software. 

AC impedance measurements were performed with an Autolab PGStat 20 

(Metrohm Autolab B.V, Utrecht, The Netherlands). FRA software was used for 

the acquisition of the data and the control of the experiments. Finally, Z-view 

(Scribner Associates Incorporated, Carolina, USA) software was used for data 

processing. A three-electrode cell was used to perform the impedance: a 

platinum-ring auxiliary electrode (Crison 4.75, Barcelona, Spain), an Ag/AgCl 

reference electrode, and a printed electrode as the working electrode.  

The morphological characterization of the modified screen-printed electrode was 

performed by a scanning electron microscope with field emission gun (FEG-SEM) 

of Zeiss, model MERLIN SM0087 and an Energy Dispersive X-Ray spectroscopy 

(EDX). Imaging was performed based on secondary (back-scattered) electrons. 

Furthermore, other instruments were used such as Eppendorf Thermomixer C to 

control temperature incubations, pH-meter GLP22 (Crison 52-67 1, Barcelona, 

Spain), Vortex shaker MS3 basic (IKA, Staufen, Germany), and rotary stirrer 

Trayster basic (IKA, Staufen, Germany) to shake the solutions. 

4. Sensor Platforms 

This section will be described the different sensor platforms employed to perform 

the different experimentation done in this thesis.  
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4.1. Commercial Screen-printed Electrodes 

The commercial screen-printed electrodes were provided by DropSens (Oviedo, 

Spain). The electrochemical cell consisted of: 8 working electrodes (carbon, 2.95 

mm diameter), ceramic substrate: 50 x 27 x 1 mm (Length x Width x Height), 

auxiliary electrode (carbon), and (pseudo) reference electrode (Ag)1, see 

Figure III - 1. 

 

Figure III - 1. Screen printed technology supplied by DropSens. (A) Computer to process the 
data, (B) Multi Potentiostat/Galvanostat µStat 8000 and connector and (C) Array of 8 working 
electrodes. 

ItalSens graphite screen-printed electrodes (GSPE) containing a graphite 

working electrode (3 mm diameter), a carbon counter electrode, and a 

(pseudo)silver reference electrode were supplied by PalmSens (The 

Netherlands, Holland), see Figure III - 2. 

 

Figure III - 2. Screen-printed technology supplied by Palmsens. (A) ItalSens working 
electrodes and (B) Multi-channel Potentiostat/Galvanostat/Impedance Analyzer 
(MultiPalmSens4, The Netherlands). 
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4.2. Inkjet Printed Electrodes Fabrication 

The fabrication of Inkjet Printed Electrodes (IPEs) (Figure III - 3) was done in 

collaboration with the Instituto de Microelectrónica de Barcelona (IMB-CNM, 

CSIC), specifically with the Centro de Investigación Biomédica en Red, 

Biomateriales y Nanomedicina (CIBER-BBN)2. In detail, silver microelectrodes 

were prepared by using a drop-on-demand inkjet printer (DMP-2831 Dimatix 

Fujifilm, Santa Clara, USA) and a disposable cartridge containing 16 individually 

addressable nozzles with nominal droplet volumes of 10 pL. The electrodes were 

printed over a flexible and transparent PET substrate using commercially 

available Ag and SU-8 inks. Optimization of the IJP process was done as 

previously reported3,4. The first step was the IJP of the Ag of the WE of 1 mm 

diameter (geometric surface area of 0.785 mm2), tracks and pads with a DS 

20 µm and dried at 80°C for 15 min. Then, it was thermally sintered in an oven at 

150°C for 30 min. Afterward, to define the microelectrode area and to insulate the 

tracks for the connections another cartridge with SU-8 ink was used to print this 

dielectric material with DS of 15 µm, and finally cured using a UV lamp for 30 s.  

 

Figure III - 3. Fabrication process of IPEs: from electrode design to final device. 
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Figure III - 4. Multi-sensor platform device printed by IJP techniques. In this case, the WE is 
composed by a silver ink, CE is based on graphite ink and RE is based on Ag/AgCl. 

5. Chemical Modification 

The chemical modification consists of the formation of a conductive 

ink-composite in order to obtain differentiated electrochemical response. The 

mentioned nanomaterial is formed by graphite (58%) as a conductive material, 

powdered polystyrene (32%) to perform the agglutination, mesitylene as a 

solvent, and the incorporation of the corresponding modifier (10%). The mixture 

was thoroughly mixed for 2 h using a magnetic stirrer. After that, 2 min of 

sonication was performed to obtain a medium-thick solution. The ink-like 

composite was dropped onto the electro surface. For DropSens SPEs 5 µL was 

used, meanwhile, Italsens SPEs and IPEs 1 µL was enough to cover the surface. 

In terms of temperature, some small differences are also remarked. SPEs were 

dried at 40°C instead of IPEs, room temperature is needed. In both cases, 1 h 

was required to remove the solvent. 

 

Figure III - 5. Drop casting method followed by soft heating and microscopy studies for the 
IPEs case. 
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Figure III - 6. Experimental procedure of electrode surface modification for SPCEs. 1. 
Preparation of the suspension, 2. Deposition of µL on the surface, 3. Heat at Tª for 1 h, 4. 
Activation with H2O2 if required and 5. Record the electrochemical signal. 

5.1. Electrode Surface Activation 

Once the sensor was prepared, the next step is an activation to enhance sensing 

performances of modified ink5,6. Figure III - 7 displays the typical gain achieved 

after activation. Electrochemical activation6 consisted of 10 repetitive 

voltammetric cycles at 50 mV·s-1 between 1.5 and -1.5 V using 10 mM H2O2 in 

phosphate buffer (pH 7). After activation, electrodes were rinsed with deionized 

water and dried in air. It is important to make clear that this activation was applied 

only for DropSens SPEs. In the rest of the cases, activation of the electrodes was 

done softer, measuring a stock solution with the desired analytes during repeated 

electrochemical measurements. 
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Figure III - 7. Activation using H2O2. Electrochemical activation consists of 10 repetitive 
voltammetric cycles at 50 mV·s-1 between 1.5 and -1.5 V using 10 mM H2O2 in phosphate 
buffer (pH 7). After activation, electrodes were rinsed with deionized water and dried in air. 

5.2. Electrochemical Characterization of the Electrode Surface 

After performing the surface modification of the WE, an electrochemical 

characterization was done to determine the active area. The effective surface 

area of bare and modified electrodes was evaluated according to the Randles–

Sevcik equation (Equation III - 1)7. 

𝐼𝑝 = 0.446 · 𝑛 · 𝐹 · 𝑐 · 𝐴 · √𝜈 · (
𝑛𝐷𝐹

𝑅𝑇
)

1
2
 Equation III - 1 

 

Figure III - 8. A) Cyclic voltammetry of 5 mM K3Fe(CN)6/K4Fe(CN)6 redox couple in 0.1 M 
KCl varying scan rate from 0.01 V/s to 0.5 V/s using Graphite/SPCE-Ink. The range potential 
was from -0.4 V to 0.4 V with a step potential of 0.005 V. (B) Regression line of v1/2 (V·s-1) 
vs. Ip·c- 1(A·cm3 mol-1). 

In this equation, n is the number of transferred electrons for the redox reaction (in 

this case 1), F is the Faraday’s constant (96485 C·mol-1) and C the concentration 

of an electroactive substance (mol·cm-3). 
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A is the effective area in cm2, v the scan rate (V·s-1), R the gas constant 

(8.314 J·mol-1·K-1), T the temperature in K and D is the diffusion coefficient for 

ferrocyanide (cm2·s-1). For that CV experiments using 20 mM KH2PO4 and 

100 mM KCl containing 5 mM [Fe(CN)6]3-/[Fe(CN)6]4- solution in the potential 

range of -0.4 to 0.8 V were performed. Applying 5 different scan rates (0.01, 

0.025, 0.05, 0.1, 0.2, 0.3, and 0.5 V·s-1) it could be calculated the active area of 

WE from the slope of the regression line of v1/2 (V·s-1) vs. Ip·c-1 (A·cm3·mol-1).  

6. Electrochemical Measurements Performance 

The electrochemical measurements in this thesis were performed using 

voltammetry techniques, concretely, CV and SWV. All the background 

corresponding to these techniques and the electrochemical cells employed for 

the different works are described in § 3.2 of introduction. 

The selection of the technique used depends on the final application. In the case 

of pharmaceutical compounds, it is more important to have the information 

corresponding to the oxidation and reductions signals, instead of working with 

more sensitivity. On the contrary, in the case of drugs of abuse, it is more relevant 

to work with a sensitive technique, capable of determining low detection limits. 

For this reason, the most suitable technique used in the first case is CV, 

meanwhile, SWV is more suitable for opioids and cutting agents electrochemical 

determination. 

Therefore, in the case of pharmaceuticals determination, the potential was cycled 

between -1.5 and 1.5 V with a step potential of 9 mV and a scan rate of 50 mV·s- 1. 

For the determination of the opiate substances, the potential range was -0.2 V to 

1.5 V using a step potential of 5 mV, an amplitude corresponding to 25 mV, and 

a frequency of 10 Hz. The last work, focusing on cutting agents from cocaine, 

SWV measurements were performed using a potential range from -0.1 V to 1.3 V, 

step potential of 5 mV, the amplitude of 25 mV, and frequency of 10 Hz. 

In all the cases, the solutions prepared for all the experimental work were 

dissolved in PBS1 and PBS2 containing 0.1 M KCl as support electrolyte. Typical 

voltammograms obtained are represented in Figure III - 9. 
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Figure III - 9. A) Cyclic voltammogram from the mixture of ascorbic acid, acetaminophen, 
and uric acid. B) Square wave voltammogram from the mixture heroin, morphine, and 
codeine and C) Square wave voltammogram from the mixture benzocaine, phenacetin, and 
paracetamol. All the results were measured using CoPc modified electrode. 

7. Experimental Design Selection 

One of the most disadvantages of the electronic tongues systems is the high 

number of samples required to construct the quantitative model and its validation. 

This fact can be explained because to build a robust model with good predictive 

capabilities, it will need to consider all the possible interactions between the 

analytes under study and the array of sensors employed. For this reason, the 

selection of the experimental design concerns a huge impact before preparing 

the samples. 

Hence, the first step to be considered to design an experiment is the definition of 

the experimental domain, which means the concentration range for each different 

analyte. It can be remarked that the different concentration ranges can be equal 

or different for the different studied compounds. Then, the type of design can be 

chosen, which will define the number of samples required by the construction of 

the model and the spatial distribution. 

Once the experimental domain and the number of samples are defined (train 

subset), it is needed the construction of a set of samples to evaluate the 

prediction capability of the model (test subset). The samples employed to validate 

the model are distributed along with the experimental domain. As a general rule, 

2/3 of the samples are used to train the model and 1/3 to validate it. 

In this thesis, it is used a modified factorial design, commonly used in the Sensors 

and Biosensors group8. 
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This model is a tilted factorial design, which consists of a factorial design with a 

45° rotation in each axis9. With this approach, it is possible to avoid the repetition 

of numeric values. To afford more complex cases, a Central Composite Face-

centered (CCF) experimental design was used (Figure III - 10) Both were used 

commonly to construct the training subset. In all the cases, the samples belonging 

to the test model were prepared randomly, as mentioned before. 

 

Figure III - 10. (A) Tilted factorial design (33) with a 45° rotation in each axis. The black dots 
correspond to the train and the red to the test samples. (B) CCF, in black the train and blue 
the test samples. 

Specifically, article 1 was done using a tilted factorial experimental design (33) 

(27 samples) for the training subset and to validate the model, 12 samples were 

distributed randomly along the experimental domain, in this case from 0 to 

500 µM. Article 4 was done with the same criteria, only narrowing the 

concentration range from 0 to 200 µM. 

In the drug of abuse case, article 3, two different sets of samples were prepared. 

Firstly, one for the ternary mixtures of heroin, codeine, and morphine. In this case, 

samples for the training subset (27 samples) were prepared based on the tilted 

design commented previously and 15 extra samples forming the test subset. The 

determined range was from 0 to 750 µM. Secondly, in the complex case, adding 

the cutting agents were prepared to employ a CCF with 3 levels of concentrations 

(27 samples) and 17 extra samples for the test subset maintaining the same 

range of concentrations. 

In all the cases, the samples were measured in random order to prevent periodic 

trends and alternating different cleanings stages to have control of the surface. 
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With SPEs, experiments were running with the same sensing units, meanwhile, 

in the case of IPEs, every 10 measurements electrodes were changed due to 

fouling effects detected. 

8. Data Analysis

Calculation of the peak heights and areas for stock solutions was done using 

MultiTrace software (PalmSens, Houten, The Netherlands). Graphics were 

plotted using SigmaPlot (Systat Software Inc., San Jose, CA, USA). Chemometric 

analysis was done in Matlab R2018b (Mathworks, Natick, MA, USA), making use 

of its Statistics and Machine Learning Toolbox, by specific routines written by the 

authors. The web page Clustvis10 (Figure III - 11) was the tool used for online 

PCA calculation in some cases. Orange open-source programming language11 

(University of Ljubljana, Slovenia) was used to perform some Silhouette 

calculations and to generate the identification models for which kNN, Random 

Forest, Naive Bayes, and SVM algorithms were employed and compared. 

Figure III - 11. Softwares employed to perform the data analysis. 

9. Sensor Array Selection

For more than a decade, our group is specialized in having many modifications 

adapted to electrochemical sensors. 
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Some examples are metallic nanoparticles, metal oxides, conductive 

polymers and standard catalysts, among others. In most cases, it is difficult to 

choose which of these modifications is the most suitable to apply to our final 

application. Therefore, it is necessary to resort to different tools that provide 

us with this information. According to established procedures, PCA is our first 

option followed by Silhouette calculation. 

9.1. Principal Component Analysis 

Briefly, PCA is a suitable linear visualization method of multivariate data, that 

allows the reduction of the dimensionality of a multivariate problem and facilitates 

the visualization of the groupings of the multivariate profiles by remarking 

similarities and differences between them, forming sample clusters. PCA is very 

useful to identify these clusters, but it is normally hard to interpret and validate 

the grouping. For this reason, the Silhouette calculation12 was introduced as a 

measure of clustering, i.e., how easy is to distinguish between the clusters 

associated with the different compounds. Therefore, the first strategy is to make 

a first interpretation with PCA and then use the Silhouette index as a metric to 

perform a more detailed optimization to select the most suitable working 

electrodes. 

Normally, there are two common representations of PCA, which are showed in 

Figure III - 12. In the right, the representation included the scores plot of different 

sensors employed, in the example, four, and is a procedure that helps in 

visualizing the contributions of each individual sensor. Furthermore, it is possible 

to distinguish between compounds if subgroups between a given electrode are 

found. In the left, the unfolding is processed, and the scores plot in this case, is 

represented through five clusters, corresponding to the different studied 

compounds. Although both representations are interesting, the most widely used 

is the second one, where the information given for each sensor is grouped into a 

single vector for each selected compound and is equivalent to the final procedure 

employed in an identification application. The intrinsic second representation in 

the standard PCA treatment, the loadings plot, is not so useful in this case, as it 

provides individual potentials from individuals electrodes, and interpreting their 

meaning is not straightforward. 
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Figure III - 12. A) Scores plot representing the different sensors (Sensor 1-Sensor 4) and 
compounds studied (C1-C5). B) Scores plot representing the different compounds (C1-C5) 
formed by the array selected from the unfolded information. 

9.2. Silhouette Calculation 

This strategy refers to a method of interpretation and validation of consistency 

within clusters of data, providing a numerical figure of how well each object 

matches its cluster (Figure III - 13). 

 

Figure III - 13. Schematic representation of the Silhouette calculation. 

The Silhouette is based on the calculation of two parameters: a and b. For each 

sample, I, a(i) is the average distance between i and all other samples within the 

same cluster. 
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In the case of b(i) is the smallest average distance of i to all samples in any other 

cluster, of which i is not a member. Silhouette parameter is calculated following 

Equation III - 2. 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖), 𝑏(𝑖)}
 Equation III - 2 

Which can be also written as Equation III - 3: 

𝑠(𝑖) =

{
 
 

 
 1 −

𝑎(𝑖)

𝑏(𝑖)
, 𝑖𝑓 𝑎(𝑖) < 𝑏(𝑖)

0, 𝑖𝑓 𝑎(𝑖) = 𝑏(𝑖) 

𝑏(𝑖)

𝑎(𝑖)
− 1;  𝑖𝑓 𝑎(𝑖) > 𝑏(𝑖)

 Equation III - 3 

The Silhouette value is a measure of how similar an object is to its own cluster 

(cohesion) compared to other clusters (separation). The Silhouette ranges from 

- 1 to +1, where a high value (close to +1) indicates that the object is well matched 

to its own cluster. If most samples have a high Silhouette value, then the 

clustering configuration is appropriate. If many points have a low or negative 

value, then the clustering configuration may have too many or too few clusters. 

The average of the Silhouette parameter for the whole set of samples can then 

be employed as an index to evaluate the overall clustering ability of the selected 

sensor configuration, as it will provided how well clusterized is a given PCA 

representation. 

 

Figure III - 14. Orange Script (https://orangedatamining.com/). 

https://orangedatamining.com/
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10. Model Assessment 

The procedure of model assessment will be divided into three stages: data 

pre-processing, model building and model validation. As discussed in previous 

sections, the aim of the first stage is to reduce the high dimensionality of data set. 

Even though it is not a mandatory step, it has been performed to obtain improved 

results. One common data pre-processing highly used in this doctoral thesis is 

the unfolding. Figure III - 15 represents the transformation from a 3D to a 2D 

matrix. 

 

Figure III - 15. Unfolding procedure from raw data employing a four-array sensor. 

The next step is the construction of the model, using as input the electrode 

responses or the coefficients obtained in the pre-processing stage.  

 

Figure III - 16. Operation mode of ANNs using the unfolded data. 
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To clarify this term, Figure III - 16 shows an example where the unfolded 

voltammogram is introduced into the neural network to obtain finally the 

concentrations as output variables of the different compounds under study. At the 

end, the predictive capability of the model is evaluated by carrying out the 

validation stage. This step will be explained in more detail in the next section. 

11. Model Validation 

One important step in the multivariate data analysis is the model validation. It is 

just as important to build the model as it is to validate it and to evaluate its 

capability of prediction. In general terms, the aim of the validation is to make a 

comparison between the expected real values and the predicted ones for an 

independent subset of samples. 

Therefore, to achieve the model validation it is needed to divide the samples in 

two subsets. One is the training subset, which is used to construct the model and 

then the testing subset, which is used to validate it and verify the predictive 

capability of the model. There are many types of validations methods: cross 

validation, external validation, k-fold, leave and out and repeated random 

sub- sampling validation, among others. 

Depending on the final application (qualitative or quantitative), some parameters 

are calculated to demonstrate the feasibility of the model. 

11.1. Qualitative Model 

Within this group, the main evaluation is done by the matrix confusion. 

Parameters such as classification accuracy, precision, sensitivity, and specificity 

are calculated. To explain in detail how all these calculations are done, 

previously, it is needed to understand how a confusion matrix works. 

Table III – 2. Confusion matrix example of a binary system. 

 
Predicted 

Positive Negative 

Expected 
Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 
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- Accuracy: accuracy is defined as the ratio of the total value of correctly 

classified samples, whether positive or negative, to the total number of 

samples. This parameter is calculated with Equation III - 4. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 Equation III - 4 

- Precision: precision is defined as the ratio of true positive outcomes to the 

positive outcomes designated by the model. It is calculated through 

Equation III - 5. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Equation III - 5 

- Sensitivity: this property refers to the ability of the model to recognise that 

a sample is truly positive (and not classify it as negative, generating false 

positives). Sensitivity would be the rate of true positives and is expressed 

as a ratio or percentage and is calculated according to Equation III - 6. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Equation III - 6 

- Specificity: specificity is defined as the ability of the model to recognise 

that a sample is negative (and not as positive, generating false positives). 

Specificity would be the rate of true negatives. Like sensitivity, it is 

expressed as a ratio or percentage and is calculated according to the 

Equation III - 7. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 Equation III - 7 

11.2. Quantitative Model 

To assess whether a model is good or not, it is necessary to analyse the 

goodness of fit. There are two methods for this. The first is based on the 

construction of the comparison graphs between the response predicted by the 

model and the expected concentration for each of the analytes, while the second 

is based on the calculation of the Root Mean Square Error (RMSE) and some 

variant such as the Normalised Root Mean Square Error (NRMSE). 
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11.2.1. Comparison Graphs Predicted vs. Expected 

As mentioned above, a plot of predicted vs. expected concentrations is 

constructed and a linear fit of the two data sets is performed by calculating the 

slope, the intercept, and the correlation coefficient. These three parameters are 

catalogued as evaluators of the predictive ability of the system by comparison 

with the ideal values (1, 0, 1), respectively. Figure III - 17 is an example of the 

typical graphs obtained. 

 

Figure III - 17. Modelling ability of the optimized GA-PLS model for the three compounds 
case. Comparison graphs of obtained vs. expected concentrations for (A) heroin, (B) 
morphine and (C) codeine, for both (•, solid line) and test subsets (○, dotted line). The dashed 
line corresponds to the ideal comparison line (y = x). 

It is important to consider that these calculations are applied in both the training 

subset, obtaining good results, and in the testing subset, showing worse results 

but providing an indicative about the model confidence.  

11.2.2. Root Mean Square and Normalised Root Mean Square Errors 

The RMSE is a measure of how close the fitted line is to the points of the original 

values (Equation III - 8). For each point, the error between the value extracted 

from the fit and the true value is calculated, i.e., the distance from the true point 

(𝑐𝑖𝑗) to the corresponding fitted value (𝑐𝑖̂), considered with respect to the ordinate 

axis. The sum of these values is squared, to avoid negative values offsetting 

positive values, divided by the number of points (𝑛) minus 1 and square-rooted 

to the corresponding units. In case of recalculating the total RMSE of the model, 

the total number of analytes to be determined (𝑘) must be also considered, since 

for each of the analytes we will have n points. 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑐𝑖𝑗 − 𝑐𝑖̂𝑗)2𝑖𝑗

𝑘 · 𝑛 − 1
 Equation III - 8 

In summary, the smaller the RMSE value, the closer the fitted line is to the data, 

and therefore the better fit and predictive ability of the model is obtained. 

Similarly, the NRMSE is used as an alternative to the above calculation. In this 

case the RMSE is normalised by dividing by the range of concentrations of each 

analyte (Equation III - 9) thus obtaining a new indicator between 0 and 1 which 

provides a measure of the error for each analyte (j=1) or the overall error for the 

set of analytes (j>1). 

𝑁𝑅𝑀𝑆𝐸 =
1

𝑗
∑

𝑅𝑀𝑆𝐸𝑖
𝑐𝑖,𝑚𝑎𝑥 − 𝑐𝑖,𝑚𝑖𝑛

 Equation III - 9 
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IV. RESULTS AND DISCUSSION 

In the present chapter, it will be explained the different articles published based 

on the main fields of this doctoral thesis: the pharmaceutical field as a proof of 

concept and the forensic and security field. 
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Contextualization 

The motivation of this work has been firstly the development of new sensor 

platforms based on screen-printed and inkjet techniques, and then the use of 

modifiers to change the electrode surface behaving as better sensing materials 

in comparison to the unmodified electrode. This fusion has been possible by 

combining an array of sensors and applying ET principles. In this direction, the 

resolution of mixtures of compounds in two discernible fields (pharmaceutical and 

forensic and security) was achieved. 

The first publication was applied to the pharmaceutical field. This work was 

focused on using a multi-sensor array platform (supplied by DropSens) to detect 

simultaneously three common pharmaceutical compounds like ascorbic acid, uric 

acid, and acetaminophen. The mentioned substances present overlapping 

signals in the electrochemical measurements, thus affecting their simultaneous 

detection. Because of this difficulty, the search for new strategies to distinguish 

the oxidation peaks is required. Our proposal was the surface modification, which 

allows their quantification by applying electronic tongue principles and 

chemometric tools. The chemical modification employed in this case was the 

deposition of a self-formulated graphite ink incorporating the desired modifier. 

The second and third publications are the result of my stay at the University of 

Antwerp (UA), specifically in the A-Sense group. A-Sense Lab is mainly focused 

on the performance of (electro)chemical analysis in a wide area of applications. 

Therefore, one of their applications implies the determination of some illicit drugs 

in the presence of some cutting agents using their corresponding electrochemical 

fingerprint. As a result, the work done was divided into a qualitative stage, where 

the main objective was the most suitable selection of the sensors for the 

determination of some derivatives opiates compounds in the presence of caffeine 

and paracetamol as cutting agents. Then, this previous work was followed by a 

third publication thinking in a quantitative application. For that, the optimized 

sensor array developed in the second publication was employed for the 

simultaneous determination of heroin, morphine, and codeine in the presence of 

paracetamol and caffeine. In this situation, ItalSens screen-printed electrodes 

were used as a sensor platform and the modification of the electrode surface was 

done applying the background developed in article 1. 
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Last work was based on the simultaneous detection of cocaine’s cuttings agents 

(benzocaine, phenacetin and paracetamol) considering as emergent 

manufacturing technology as IJP is. 

To summarise, this chapter of the manuscript will be organized into article 

sections, each one explaining the results obtained in each work. 

 



 

 

ARTICLE 1 

Simultaneous Voltammetric Determination of Acetaminophen, Ascorbic 

Acid, and Uric Acid by Use of Integrated Array of Screen-Printed Electrodes 

and Chemometric Tools 

Dionisia Ortiz-Aguayo, Marta Bonet-San-Emeterio and Manel del Valle 

Sensors, 2019, 19(15), 3286 
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1. Outline 

This work was used as a proof of concept to validate the material and methods 

employed during the present doctoral thesis. The aim was to resolve a mixture of 

acetaminophen, ascorbic and uric acid using the CV technique and ET principles 

(Figure IV - 1). The sensor platform used was screen printed formed by eight 

working electrodes and the modifiers employed, in this case, were, CoPc, CuO, 

graphite, and PB, which were integrated through an in-house self-formulated 

graphite polystyrene ink. Samples were prepared using a titled (33) factorial 

design ranging from 0 to 500 µM. PLS was used as a chemometric tool to 

construct the model and the validation was done using an external subset of 

samples with concentrations defined randomly along the working experimental 

domain. The goodness of fit was obtained demonstrating the feasibility of the 

modified sensor platform for the simultaneous determination of the mixture under 

study. 

 

Figure IV - 1. Schematic representation of the experimental setup done by the simultaneous 
determination of the mixture under study formed by PA, AA, and UA. Experimental design, 
sample preparation, sample measuring, chemometric processing, and quantification are all 
the steps involved in the experimental procedure. 
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2. Surface Characterization through Scanning Electron 

Microscopy Studies 

Scanning Electron Microscopy (SEM) studies were achieved to analyse the 

morphology of the modified surface. With these studies, the motivation was to 

observe if the modifiers selected were distributed in the inner layers or the 

external surface. As can be observed in Figure IV - 2, the modifier’s particles 

were homogeneously distributed between the graphite flakes. 

 

Figure IV - 2. SEM studies. A) graphite/SPCE-Ink, B) CoPc/SPCE-Ink, C) CuO/SPCE-Ink 
and D) PB/SPCE-Ink. 

3. Electrochemical Response 

In the Sensor and Biosensors group, a set of different modifiers were optimized 

over the years to select the best one with the most attractive properties from an 

electrochemical point of view. Within this group, metal nanoparticles, standard 

catalysts, conductive polymers, and metal oxides among others, are different 

examples. In this work, the starting modifiers were six to construct the sensor 

array: graphite, CoPc, CuO, PB, PP, and Pd.  
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Therefore, these modifications were coated on the surface to evaluate their 

behaviour in front of each substance individually.  

As a standard operation mode to work, the first step of the experimental setup is 

to collect the data and perform a preliminary PCA using the unfolded data to 

evaluate sensors complementarity. Results can be observed in Figure IV - 3. As 

a powerful visualization tool, in the scores plot it would be expected that 

redundant electrodes will appear superimposed, meanwhile different electrodes 

appear separated. As a general overview, each modified electrode showed 

different electrochemical performance in different regions. This conclusion is 

considered as a key factor when ET principles are applied.  

 

Figure IV - 3. Score plot of the two components obtained after PCA analysis. Five replicates 
for each sensor were done determining the three compounds of interest: acetaminophen, 
ascorbic acid, and uric acid. 

Another feature to comment is the role of PP and Pd in the sensor array. As it 

can be observed in Figure IV - 3, these two modifiers do not provide a clear 

distinction between the three analytes under study. This reasoning could be used 

to remove them from the array and reduce the number of sensors to four. The 

rest of the candidates present differentiable responses in front of the substances, 

contributing to the variability of response of the system. 
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Additionally, in all the cases, the obtained signals were far away from zero, giving 

valuable information to the system. 

Therefore, once this pre-selection step of the candidates is done, the second step 

is based on the evaluation of the cyclic voltammograms obtained. Currently, two 

scans were measured selecting the second one to make the representation of 

the voltammetric response. As it can be observed in Figure IV - 4, slightly 

different signals were analysed for the different analytes studied. This is a crucial 

requirement to carry out an electronic tongue. 

 

Figure IV - 4. Voltammetric response for PA, AA, and UA using the four finally selected inks. 
(A) Cobalt (II) phthalocyanine/SPCE-Ink; (B) Prussian blue/SPCE-Ink; 
(C) Graphite/SPCE-Ink; (D) Copper oxide (II)/SPCE-Ink. The range of potential was from 
−1.5 to 1.5 V. The scan rate was 50 mV·s−1 and step rate of 9 mV. A 300 µmol·L−1 individual 
solution was employed for the four modified screen-printed electrodes. 
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4. Modified Screen-printed Electrodes Characterization 

After the modification step, a characterization of the modified screen-printed 

electrodes is needed to evaluate the goodness of the drop deposition onto the 

surface. To achieve it, some experiments were carried out such as calibration 

curves, reproducibility, and stability studies. 

4.1. Calibration Curves 

Calibration curves were performed using the CV technique representing the peak 

height which corresponds to the maximum of the oxidation signal. The behaviour 

of each sensor for each analyte was evaluated separately. The determination of 

the linear ranges and the maximum concentration detectable by each sensor for 

each compound are valuable analytical information before the execution of the 

ET. As it can be shown in Figure IV - 5, the three compounds presented linear 

range from 0 to 500 µM. Analytical parameters were represented in Table IV - 1. 

 

Figure IV - 5. Calibration curves for three replicates (n=3) to determine the concentration 
working range for the three compounds under study for the four modified screen-printed 
electrodes. A) acetaminophen, B) ascorbic acid and C) uric acid. 

Table IV - 1. Calibration data (y vs. x) for the separate determination of acetaminophen, 
ascorbic acid, and uric acid employing the integrated sensor array chosen. 

Compounds Acetaminophen Ascorbic Acid Uric Acid 

Graphite 
y = 0.1234x + 2.6656 y = 0.0398x + 6.5307 y = 0.1298x + 4.6275  

R2 = 0.993 R2 = 0.997 R2 = 0.999 

CoPc 
y = 0.1057x + 2.7753 y = 0.0311x + 8.5678 y = 0.0534x + 9.3828 

R2 = 0.991 R2 = 0.993 R2 = 0.996 

CuO 
y = 0.1749x − 4.0453 y = 0.0372x + 3.8868 y = 0.1569x + 15.231 

R2 = 0.997 R2 = 0.992 R2 = 0.988 

PB 
y = 0.1696x + 7.5897 y = 0.0214x + 9.0457 y = 0.1074x + 7.6534 

R2 = 0.984 R2 = 0.992 R2 = 0.995 
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4.2. Reproducibility and Stability Studies 

When experiments about ETs are carried out, sensors are subjected to a large 

number of measurements. For that, reproducibility and stability studies need to 

be done to verify the number of measurements allowed and the electrode 

performance. 

In this case, experiments were done using a stock solution of acetaminophen 

165 µM measured thirty times. A blank, in PBS solution, was introduced between 

each measurement to evaluate if the system was presenting some fouling effect. 

In all the situations, the four modified sensors showed stable responses with 

Relative Standard Deviation (RSD) of 8.2%, 5.5%, 6.3%, and 3.9% for CoPc, PB, 

CuO, and graphite, respectively. When trends in the blanks were observed, no 

fouling effect was either detected in the measurements. 

As the electrodes are prepared by drop casting, it is important to check the 

reproducibility of the construction of electrodes as well. To achieve it, four sensors 

were modified by triplicate and measured consecutively with an acetaminophen 

stock solution. Afterward, results were calculated and summarized in 

Table IV - 2, showing outstanding results for PB with an RSD of 0.8%. 

Table IV - 2. Reproducibility of construction of each sensor with the results of the RSD (n=3). 

Sensor RSD (%) 

Graphite/SPCE-Ink 2.9 

Cobalt (II) phthalocyanine/SPCE-Ink 7.5 

Copper oxide (II)/SPCE-Ink 1.3 

Prussian blue/SPCE-Ink 0.8 

5. Principal Component Analysis 

Once the morphology and electrochemical characterization were done, further 

experiments were based on evaluating the power of discrimination of the working 

sensors. PCA calculation was used to deal with this aim. Different data can be 

collected to perform this calculation. In this case, the sensitivity of the calibration 

curves done previously was selected.  
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Results of the score plot are observed in Figure IV - 6, in which three 

differentiated clusters corresponding to the three compounds under study can be 

observed. In the case of acetaminophen and uric acid more dispersion is 

presented, for this reason, the ellipses stretched. In the case of ascorbic acid, 

better clustering is observed. 

 

Figure IV - 6. Score plot of the two components obtained after PCA analysis. PCA shows 
three clusters across the PC1 (94.3%). These clusters correspond to the studied compounds 
for n=3 replicates. These results were obtained using the sensor array chosen. 

6. Partial Least Squares Regression as a Modelling Tool 

The final step of this study is the construction of a model to be able to detect each 

compound individually. Because the data collected present high complexity, the 

need for pre-treatments steps facilitates the removal of noise interpreting data 

more homogeneous. Standard Normal Variate (SNV) was selected as a 

pre-treatment tool. It is based on a reduction of the scatter effect using easy 

mathematical treatment. In this case, the subtraction of the measurement mean 

to the measure divided the data by its standard deviation1. With this operation, it 

is possible to get a normalized baseline for all the samples. Referring to the 

construction of the model, PLS was used as a power to perform multivariate 

calibration analysis. In the case of the study, the variant was PLS1, in which one 

model with single output was used for each compound.  
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LVs2 were also optimized to avoid the overfitting of the model getting the lowest 

error. In the case of PA, eight LVs were selected, whereas seven LVs were 

chosen for AA and UA. 

In Figure IV - 7, the comparison between the obtained vs. expected results for 

the training subset is represented by dark dots for each analyte. In the same 

representation, the testing subset, in white dots, was projected, enabling the 

feasibility of the model. 

 

Figure IV - 7. Obtained vs expected concentrations results plots for the training set (black 
dots) and the testing set (white dots) for A) acetaminophen, B) ascorbic acid and C) uric acid. 

All the parameters related to the regression line are shown in Table IV - 3. As it 

can be observed the y-intercept and the slope of the training and testing 

regressions include zero and one, respectively for all the analytes studied. If the 

correlation coefficients are examined, in all the cases, they are close to one. 

Therefore, it can be concluded that the approach is working properly giving 

promising results. 

Table IV - 3. Results of the fitted regression curves for comparison graphs of obtained vs. 
expected concentrations, for the training and testing subsets of samples and the three 
considered compounds (intervals calculated at the 95% confidence level). 

Set Analyte R2 Slope Intercept (µM) NRMSE 

Training subset 

(n = 27) 

Acetaminophen 0.962 1.00 ± 0.09 0 ± 25 0.90 

Ascorbic acid 0.955 1.00 ± 0.09 0 ± 25 0.97 

Uric acid 0.940 1.00 ± 0.11 0 ± 31 1.12 

Testing subset 

(n = 12) 

Acetaminophen 0.915 1.02 ± 0.22 −13 ± 28 0.7 

Ascorbic acid 0.762 1.07 ± 0.42 −3 ± 54 1.41 

Uric acid 0.829 1.04 ± 0.33 −32 ± 36 0.85 
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NRMSE parameter was also calculated as a test of the fitting degree of the 

models. In practice, acetaminophen and uric acid presented the lowest NRMSE 

for the test subset, verifying the good predictive capabilities of the models. 

Concerning the correlation coefficients, the training subset presents better 

results, as expected. 

At this point, it could be interesting comparing the obtained results in front of the 

results obtained in the group in the previous work3. Previous works reported the 

simultaneous determination of the three compounds using the same modifiers 

but different technology such as bulk modification using GECs electrodes4. These 

results can be observed in Table IV - 4. 

Table IV - 4. Results of the fitted regression curves for comparison graphs of obtained vs. 
expected concentrations, for the training and testing subsets of samples and the three 
considered compounds (intervals calculated at the 95% confidence level) for antecedent 
work in the laboratory3. 

Set Analyte R2 Slope Intercept (µM) 

Training subset 

(n = 33) 

Acetaminophen 0.968 0.942 ± 0.031 32 ± 21 

Ascorbic acid 0.947 0.933 ± 0.040 36 ± 25 

Uric acid 0.923 0.873 ± 0.046 58 ± 25 

Testing subset 

(n = 15) 

Acetaminophen 0.848 0.895 ± 0.105 82 ± 71 

Ascorbic acid 0.908 0.919 ± 0.081 65 ± 41 

Uric acid 0.753 0.871 ± 0.138 −8 ± 86 

As the main conclusion, if both results are compared, it can affirm that the 

proposed methodology improved slightly the results in terms of slope and 

intercept for the comparison regressions lines. 

Therefore, the proposed work reports the powerful coupling between the 

combination of the screen-printed integrated array and the use of chemometrics 

to construct the model for the quantification of AA, PA, and UA simultaneously. 
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1. Outline 

This research depicts an intelligent sensor strategy, which combines the use of a 

modified screen-printed sensor array to extract the fingerprint of each compound 

on each sensor and the coupling with advanced data processing for its 

identification and subsequent classification. The analytes studied in this project 

were some opiates such as heroin, morphine, and codeine. Paracetamol and 

caffeine were used as common cutting agents present in these illicit samples. 

SWV was required as a voltammetry technique to elucidate the voltammogram. 

The work applied the use of the modification through a self-formulated graphite 

polystyrene ink. The sensor array was optimized by a systematic evaluation 

procedure combining PCA as a visualization tool and Silhouette calculation as a 

measurement of clustering metrics. The fusion of these two strategies allows an 

accurate optimization of the sensor array used to study a mixture of opiates. 

Finally, kNN was applied as a pattern recognition model to carry out automatic 

identification of the compounds analysed. 

 

Figure IV - 8. Steps involved in the experimental process: from the acquisition of the samples 
until its identification using chemometrics. 
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2. Scanning Electron Microscopy Studies 

The first step in this research was the characterization of the sensor platforms 

employed. This goal was achieved using electrochemical techniques and SEM 

characterization. 

 

Figure IV - 9. SEM images of the polystyrene inks over the Italsens SPCE electrodes. 
A) graphite/SPCE-Ink, B) CoPc/SPCE-Ink, C) CuO/SPCE-Ink, D) PB/SPCE-Ink and 
F) PP/SPCE-Ink. 

The first motivation was to study the distribution of the modifiers into the ink. For 

that, microscopy studies were achieved to observe if they were distributed on the 

external or internal layers. Figure IV - 9 represents its morphology structure 

showing a fairly homogeneous distribution. To complement the studies EDX was 

also done (Figure IV - 10), which verify the presence of the employed metals. 

Spectra of PP and unmodified electrodes are not represented due to their 

absence of metallic signals. 

Thereafter, the calculation of the active area before and after modifying is an 

interesting parameter to analyse to observe the improvement given by the 

modification selected. To make these calculations, the Randles–Sevcik equation5 

(Equation IV - 1) was used. All the parameters and constants employed are 

collected in Table IV - 5. 

𝐼𝑝 = 0.446 · 𝑛 · 𝐹 · 𝑐 · 𝐴 · √𝜈 · (
𝑛𝐷𝐹

𝑅𝑇
)

1
2
 Equation IV - 1 
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Figure IV - 10. EDX studies. A) CoPc/SPCE-Ink, (B) CuO/SPCE-Ink, C) PB/SPCE-Ink and 
D) PD/SPCE-Ink. 

CV experiments were using 0.02 M KH2PO4 and 0.1 M KCl containing 5 mM 

[Fe(CN)6]3-/[Fe(CN)6]4- solution. Potential range was defined from -0.4 to 0.8 V. 

Five scan rates (0.01, 0.025, 0.05, 0.1, 0.2, 0.3 and 0.5 V·s-1) were used. 

Table IV - 5. Parameters employed in the Randles–Sevcik equation. 

Symbol Parameter Value 

n Number of transferred electrons 1 

F Faraday’s constant 96485 C·mol-1 

c The concentration of electroactive substances Mol·cm-3 

A Effective area Cm2 

ν Scan rate V·s-1 

R Gas constant 8.314 J·mol-1·K-1 

T Temperature 298.15 K 

D The diffusion coefficient for ferrocyanide 6.32·10-6 cm2·s-1 
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Once the voltammetric data is collected, the calculation of the active area can be 

done representing the slope of the calibration curve of ν1/2 (V·s-1) in front of Ip·c-1 

(A·cm3·mol-1). Typical CV graphs and the corresponding calibration curves 

obtained are represented in Figure IV - 11. 

 

Figure IV - 11. A) CV obtained using 5 mM K3Fe(CN)6/K4Fe(CN)6 changing scan rate from 
0.01 to 0.5 V/s using CoPc/SPCE-Ink as an example. B) Calibration curve (Ip/c (mol·cm-3) vs 
v1/2 (V·s-1). 

Calculations of the active areas and comparisons with the geometric are shown 

in Table IV - 6. 

Table IV - 6. Comparison between the active area and the geometric ones for the six 
modified electrodes used. 

Modified sensor Active Area (mm2) Geometric Area (mm2) 

Bare 11.7 

7.1 (Ø=3 mm) 

Graphite/SPCE-Ink 8.2 

CuO/SPCE-Ink 8.5 

PB/SPCE-Ink 8.1 

CoPc/SPCE-Ink 9.3 

Pd/SPCE-Ink 9.4 

PP/SPCE-Ink 7.1 

Summarizing this section allows the study of the morphology of the modified inks, 

remarking the metals inside the graphite flakes and the calculation of the active 

area after modifying is also evaluated for an overview of the material used to 

perform modification surface. 
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3. Square Wave Voltammetric Response 

This work reports the study of three common drugs of abuse (codeine, heroin, 

and morphine) and two commonly used cutting agents (paracetamol and 

caffeine). This section has an aim to assure if the signals obtained for the different 

analytes are enough different to carry out further electronic tongue experiments.  

As a result, individual stock solutions of 300 µM of caffeine, codeine, heroin, 

morphine, and paracetamol were monitored using the SWV technique in PBS at 

pH 7. Some studies in the literature reported that morphine and heroin present 

some reactions of hydrolysis at alkaline pH6,7. This factor was considered crucial 

while electrochemical measurements were done, favouring the choice of neutral 

pH for working with the desired compounds. For each substance, four replicates 

were achieved measuring randomly to avoid any periodic trend in the signal. 

 

Figure IV - 12. Square wave voltammograms were obtained for the five compounds under 
study and a blank using the six modified sensor array. A) graphite/SPCE-Ink, 
B) CoPc/SPCE-Ink, C) Pd/SPCE-Ink, D) PP/SPCE-Ink, E) CuO/SPCE-Ink, F) PB/SPCE-Ink. 
50 µL were dropped on the electrode surface. Potential range: 0-1.2 V, step potential: 5 mV, 
scan rate: 50 mV·s-1, amplitude: 25 mV and frequency: 10 Hz. The concentration used of all 
the analytes was 300 µM. 
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Results about the responses obtained are shown in Figure IV - 12. In the case of 

heroin, an irreversible oxidation split peak located at +0.81 V can be observed 

coming from the oxidation of the amino group. This fact is in agreement with some 

works reported in the literature7–10. Oxidation of the phenol group of 

6-monoacetylmorphine (6-MAM) is observed at +0.40 V. This compound is an 

impurity coming from the synthesis of heroin, specifically, when the incomplete 

acetylation of morphine is done and/or a product of hydrolysis is originated11. 

Furthermore, the peak coming from the phenol group from 6-MAM is overlapped 

with morphine and paracetamol peaks. If the analysis is performed at a higher 

potential, difficult signal resolution can be observed between second oxidation 

peaks of morphine and heroin with codeine. 

Therefore, the whole voltammograms present a high degree of overlap between 

the signals, which can represent a restriction for the alone identification of the 

substances. Chemometric analysis was further done for better assessment. In 

this case, PCA was done to evaluate mathematically the complementarities and 

similarities between the fingerprint of each studied analyte. 

4. Principal Component Analysis as a Selection Tool 

Four replicates were measured for each sample in random order to discard any 

memory effect in the collected data. In this case, the whole voltammogram was 

selected per each electrode and each sample to perform PCA analysis. This 

strategy allows the search for differences and similarities in the different samples 

using the selected modified sensor array. According to the theoretical concepts, 

redundant electrodes will superimpose in the representation, meanwhile, different 

electrodes will be placed separately.  

As can be imagined, in our case, the most interesting is to find this commented 

distinction. This is the only way to ensure that non-redundant information is used 

to analyse the case under study. Furthermore, through PCA it will be possible to 

observe how the electrodes can discriminate the analytes, as well as to evaluate 

how similar the replicates of each sample are. Results are plotted in 

Figure IV - 13, where the two principal components are shown. If attention is 

focused on Figure IV - 13A, it can be seen how the maximum variability among 

the samples is explained by PC1 with a value of 81.1%. 
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In this case, the presence of PP distorts the system showing dispersion between 

replicates. For this reason, this argument was used to remove it from the sensor 

array. This information can be related to that shown in Figure IV - 12, where 

discrepancies in the voltammetric response are also observed, showing no 

different shapes are obtained for the different compounds under study. 

All these reasons make it necessary to reconsider repeating the calculation by 

eliminating the information given by this modified sensor. Results can be 

observed in Figure IV - 13B. 

 

Figure IV - 13. Score plot of the two components obtained. Four replicates for each sensor 
and compound using a 300 µM. 

In this case, relevant information can be explained through PC1 and PC2 adding 

up to a total of 60.7% of the total variability. Furthermore, the most relevant of the 

plot is the behaviour of the PB sensor (in purple). In detail, it looks different from 

the other sensors, shown apart in the diagram. However, large dispersion can be 

observed in comparison with the others. One explanation for this dispersion could 

be associated with a lack of stability in the voltammetric response. Due to these 

observations, it was decided to discard the purple sensor from the set. All of the 

above characteristics can be seen in Figure IV - 13B. Therefore, the next step 

was to calculate a new PCA with the four remaining modifiers: graphite, CoPc, 

CuO, and Pd (Figure IV - 14A). This graph was interpreted based on the same 

criteria as the previous graphs. Therefore, the CuO modifier was discarded from 

the group due to the drift and distortion of the pure analyte clusters.  
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However, if the aim of this work were not to meticulously optimize the array, the 

selection of these four sensors would be suitable for the identification of the 

present drugs of abuse and their corresponding cutting agents. Figure IV - 14B 

shows the final selection with the three selected candidates (graphite, CoPc, Pd). 

These three modifiers present a differentiated response for each compound, as 

well as a moderating dispersion, allowing each substance to be assigned to the 

corresponding class. 

 

Figure IV - 14. Scores plot of the two components after PCA. Four replicates for each sensor 
with the five analytes: heroin, morphine, codeine, paracetamol, and caffeine. A) four SPCE 
array: graphite/SPCE-ink, CoPc/SPCE-ink, Pd/SPCE-ink and CuO/SPCE-ink. B) three 
SPCE array: graphite/SPCE-ink, CoPc/SPCE-ink and Pd/SPCE-ink. 

5. Optimization through Silhouette Parameter 

A first criteria was achieved with the help of the PCA to choose the best set of 

sensors to form the array. However, a further step in the study was desired. For 

the first time in the group, a methodology was developed to refine the selection 

based on the calculation of the Silhouette parameter. This numeric criterion 

makes it possible to evaluate the degree of clustering to ensure the best 

selection. 

In this case, a different representation of the data collected was made. 

Specifically, it proceeded to the unfolding of the data. As discussed in previous 

sections of this thesis, this transformation of the data is based on grouping the 

different voltammograms of a sample into a single column or vector and using 

this information for processing. 
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Therefore, once the data was split, a PCA was performed as a first approximation 

to have an initial unsupervised clustering of the data according to their similarity 

in the multivariate space. Subsequently, the Silhouette parameter was calculated 

to assess the goodness of clustering. The better the clustering, the easier the 

identification of the desired sample. 

The Silhouette calculation is defined by two parameters a(i) and b(i) for each 

sample. These parameters reflect a comparison between intra and inter-cluster 

variability. This strategy allows the quantification of which cluster is better 

discriminated compared to the other clusters participating in the system. To 

perform these calculations, the first two principal components (PC1 and PC2) 

obtained in the PCA from the unfolding of the data were used. With this 

methodology it is possible to go from a 3D matrix to a 2D matrix by simplifying 

and condensing the information, thus reducing the dimensionality in the case of 

voltammetric data. 

To deal with the case study in detail, first of all, the calculation was carried out for 

each sensor individually, i.e., from the six initially prepared sensors. 

 

Figure IV - 15. Scores plot obtained after PCA analysis. Four replicates of 300 µM of each 
compound were analysed. A) graphite, B) CoPc, C) CuO, D) PB, E) Pd and F) PP. 

Figure IV - 15 clearly shows that the sensors that produce the worst clustering 

are PB, PP, and CuO. 
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These observations are supported by the Silhouette calculations obtained in 

Table IV - 7, when values of +0.328 for PB, +0.041 for PP, and +0.640 for CuO 

can be observed. In a conclusion, if each sensor is evaluated separately, the best 

option is graphite ink, showing an average of Silhouette parameter of +0.849. In 

the case of graphite, CoPc, and Pd. 

In the case of graphite, CoPc, and Pd, the silhouette parameter is considered 

acceptable. However, the main objective of this research focuses on 

complementing the information given by each sensor to improve its performance 

and thus have a better degree of clustering. Therefore, from the three selected 

candidates: C, CoPc, and Pd unfolded data of the binary combinatorics of the 

three sensors were made and the Silhouette was evaluated. Results can be 

observed in Figure IV - 16. 

 

Figure IV - 16. Score plots after PCA analysis. A) C-CoPc, B) C-Pd and C) CoPc-Pd. All the 
combinations were tested with the five compounds under study. 

Table IV - 7. Average of Silhouette parameter for the stepwise optimization of the sensor 
array. 

Number of SPCE Modified SPCE Silhouette parameter 

1 

C 

CoPc 

CuO 

PB 

Pd 

PP 

+0.849* 

+0.735 

+0.640 

+0.328 

+0.817 

+0.041 

2 

C-CoPc 

C-Pd 

CoPc-Pd 

+0.841 

+0.863* 

+0.848 

3 C-CoPc-Pd +0.877* 

*Optimal configuration obtained after systematic evaluation on each step. 
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In general trends, the three combinations show a clear visualization of the 

clusters for the different compounds. Therefore, the choice of the best 

combination was made based on the Silhouette parameter. As shown in 

Figure IV - 16, the degree of clustering in the three cases is similar, showing an 

improvement with the combination C+Pd (Figure IV - 16B) with a value of +0.863. 

At this point of the investigation, the last possible combination to evaluate is the 

one formed by the three sensors. PCA representation is shown in Figure IV - 17B, 

with a Silhouette calculation of +0.877. 

 

Figure IV - 17. A) Silhouette plot employing C, CoPc, and Pd sensors. B) Score plot after 
PCA analysis using the mentioned sensor array. 

When the study is finished, it can be determined that the combination of the three 

modifier inks (C, CoPc, and Pd) is the best for the individual determination of the 

analytes. Figure IV - 17B clearly shows how the sensors have different 

responses to the compounds resulting in five well-defined clusters with clear 

differentiation and a good degree of grouping between the replicates. In addition, 

a total variance value of 76.5% was obtained considering PC1 and PC2, which is 

more than appropriate for the case study. If Figure IV - 17A is analysed, the 

corresponding Silhouette shows a high value (+0.877) very close to the maximum 

value which is one. As a summary, this result leads to easy identification of the 

compounds studied.  

As a result of the study, it can also be concluded that the selected option of 

combining the three sensors gives similar results to the combination of graphite 

with Pd, with a Silhouette value of +0.863 using a simpler configuration of two 

working electrodes. 
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This fact can already be seen in Figure IV - 14B, where each compound is 

identified differently (grey dots in a separate region) compared to the other 

modifiers. CoPc sensor was ruled out as a stand-alone use due to the Silhouette 

global parameter of +0.735. Finally, the study concludes the optimization of the 

best working electrodes for the desired compounds, providing the benefit of using 

more than one electrode for their identification. 

6. Machine Learning Algorithms

To take the study a step further, different “Machine Learning Algorithms” were 

tested as classifier methods to achieve an automated and intelligent final 

operation. Random Forest, Naive Bayes, SVM, and kNN were some examples. 

Results can be collected in Table IV - 8, where indicators of precision, accuracy, 

specificity, and sensitivity can be shown. 

Table IV - 8. Results of the statistical calculation using some machine learning strategies 
such as kNN (k=4), Random Forest, Naive Bayes, and SVM employing leave-one-out 
cross-validation. 

Model Compound 
Classification 

accuracy 
Precision Sensitivity Specificity 

kNN 

Heroin 1.0 1.0 1.0 1.0 

Morphine 1.0 1.0 1.0 1.0 

Codeine 1.0 1.0 1.0 1.0 

Paracetamol 1.0 1.0 1.0 1.0 

Caffeine 1.0 1.0 1.0 1.0 

Random 

Forest 

Heroin 1.0 1.0 1.0 1.0 

Morphine 1.0 1.0 1.0 1.0 

Codeine 1.0 1.0 1.0 1.0 

Paracetamol 1.0 1.0 1.0 1.0 

Caffeine 1.0 1.0 1.0 1.0 

Naive 

Bayes 

Heroin 1.0 1.0 1.0 1.0 

Morphine 1.0 1.0 1.0 1.0 

Codeine 1.0 1.0 1.0 1.0 

Paracetamol 1.0 1.0 1.0 1.0 

Caffeine 1.0 1.0 1.0 1.0 
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Model Compound 
Classification 

accuracy 
Precision Sensitivity Specificity 

SVM 

Heroin 0.8 0.0 0.0 0.0 

Morphine 0.8 0.5 0.4 0.8 

Codeine 1.0 1.0 1.0 1.0 

Paracetamol 1.0 1.0 1.0 1.0 

Caffeine 1.0 1.0 1.0 1.0 

In general, all classification models gave good results, except for some 

misclassification in the case of the SVM, concretely in heroin and morphine 

samples. 

Finally, the study focused on kNN is considered a simple and fundamental 

unsupervised classification method12. It performs the classification of new data 

based on similarity measures. The only parameter to optimize is the variable k, 

which is related to the number of closest neighbours. The optimal value of k is 

obtained when the best performance is achieved. Specifically, in this case, the 

number of integrants in the cluster is known in advance, as it corresponds to the 

number of replicates of each substance tested, k=4. So, it is not needed to 

optimize this parameter. 

The parameter analysed, in this case, was the confusion matrix (Table IV - 9). 

Leave and out was used as cross-validation methods, due to the low number of 

samples in the data set. The goodness of identification performance was 

excellent with 100% in all the indicators (accuracy, precision, sensitivity, and 

specificity), Table IV - 8. 

Table IV - 9. Confusion matrix after applying the kNN algorithm, using leave-one-out cross-
validation and k=4. 

 PREDICTED 

A
C

T
U

A
L

 

 Heroin Morphine Codeine Paracetamol Caffeine Σ 

Heroin 4 0 0 0 0 4 

Morphine 0 4 0 0 0 4 

Codeine 0 0 4 0 0 4 

Paracetamol 0 0 0 4 0 4 

Caffeine 0 0 0 0 4 4 

Σ 4 4 4 4 4 20 
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Hence, the promising clustering of degrees observed in the PCA diagram allows 

the good performance of the classificatory models used. Summary, this work 

reports the accurate optimization of a modified sensor array to identify and 

classify some drugs of abuse and their corresponding cuttings agents using some 

machine learning algorithms. 
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1. Outline 

The present work is a continuation of the previous one in which a quantitative 

application is sought. For this purpose, the resolution of different opiates (heroin, 

morphine, and codeine) in the presence of common cutting agents (paracetamol 

and caffeine) was carried out using electronic tongue principles. The array used 

is based on the previous optimisation of article 2, where polystyrene inks with 

graphite modifiers such as bare, CoPc and Pd were chosen. The study was 

approached in two ways: first, a model involving mixtures of the opioids only was 

performed. Then, a second model was evaluated with all five compounds to 

assess their quantification in the presence of the cutting agents. In both cases, 

PLS was used as the chemometric modelling tool. The results were promising, 

showing low NRMSE errors, good detection limits and correct stability of the 

sensors.  

 

Figure IV - 18. Simulation of the analytical performance from sample preparation to sample 
evaluation.  
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2. Sensor Array Characterization 

In the literature there are different methodologies for the preparation of modified 

electrodes13,14. In this case, the procedure described in article 2 was followed, 

where the electrodes were modified using a composite material (with different 

modifiers) by forming a graphite and polystyrene ink. This ink was deposited on 

the sensor surface generating a new surface suitable for electrochemical 

measurements. The simplicity of this methodology, together with its low cost, 

makes it a good candidate for obtaining chemically modifying transducers. 

Throughout the group's career, different electrochemical modifiers were used in 

previous studies with electronic tongues15–19. This information, together with the 

work carried out in article 2, allowed us to select a three-sensor array using bare 

graphite, CoPc and Pd as the best option for the present case study20. 

 

Figure IV - 19. Scheme of the experimental procedure for the electrode surface modification. 
Firstly, an ink-like solution was prepared incorporating the corresponding modifier. Then, 
1 µL was dropped on the surface and dried at 40ºC. 

The use of graphite as bare allows a direct comparison with the introduced 

modifiers. In the case of Pd nanoparticles, this option is increasingly used 

compared to the use of bulk metals, providing a higher surface to mass ratio, and 

improving the electrochemical properties. In addition, Pd shows good 

electrocatalytic activity against different electrochemical reactions. 
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In the case of CoPc, this family of compounds presents an efficient 

electrocatalysis in the determination of many biological, inorganic, and organic 

compounds, which makes it an excellent candidate to improve the signals in 

electrochemistry. 

The present work is based on the resolution of mixtures including the cutting 

agents. However, prior physical and chemical characterisation of the modified 

electrodes is needed before the study can be undertaken. 

The electrodes were modified following the protocol described in § 5 of 

experimental (Figure III-6), and their characterisation was performed by SEM 

studies. Studies confirmed an acceptable distribution of the modifiers among the 

graphite flakes. EDX verified the presence of cobalt and palladium as metals in 

the ink. 

 

Figure IV - 20. EDX (top) and SEM (bottom) characterization of A) graphite/SPCE-Ink, 
B) CoPc/SPCE-Ink and C) Pd/SPCE-Ink. 

The next step was the identification and evaluation of the voltammetric signals 

obtained from each sensor for each compound individually. SWV was used due 

to its fast-scanning speed and high sensitivity and compact, low-cost 

instrumentation21,22. 
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Normally, in the standard working procedure, the aim is to look for different sensor 

response to the compound, without entering the electrochemical reaction 

mechanism, as this information is not relevant to carry out the chemometric 

treatment. However, due to the electrochemical interest of these drugs of abuse, 

an attempt was made to identify each peak and to superficially evaluate the 

reaction mechanism. All this information is shown in the following sections. 

 

Figure IV - 21. Electrochemical fingerprint of 300 µM solutions of the five substances under 
study using 1) graphite, 2) CoPc and 3) Pd. 

As can be seen in Figure IV - 21, different overlapped peaks can be highlighted. 

Regarding heroin’s case, an irreversible split peak is shown at around 0.97 V, 

which corresponds to the oxidation of the tertiary amine group, giving rise to a 

secondary amine that is subsequently oxidised23. The proposed mechanism can 

be observed in detail in Figure IV - 22. Furthermore, an additional smaller peak 

appeared at 0.40 V, which is observed more clearly in Figure IV - 27. This peak 

corresponds to the oxidation of the phenolic group of 6-MAM present at 3% wt/wt 

in the sample. This molecule is an impurity, commonly found in the synthesis of 

heroin, which comes from both the incomplete acetylation of morphine and the 

hydrolysis of heroin. 
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Likewise, morphine also shows an oxidation peak corresponding to the phenol 

group of 6-MAM at 0.40 V24 but being more notable in this case. The second peak 

corresponds to the oxidation of the tertiary amine group, which in this case is not 

further oxidised. 

 

Figure IV - 22. Electrochemical oxidation mechanism of heroin proposed by Garrido,J et al.9. 

 

Figure IV - 23. Electrochemical oxidation mechanism of morphine proposed by 
Garrido,J et al.24. 
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Figure IV - 24. Electrochemical oxidation mechanism of codeine proposed by 
Garrido, J et al.25. 

In codeine’s case, one broad peak is remarked associated to the oxidation of the 

tertiary amine again (Figure IV - 24). If Figure IV - 21 is analysed in detail a small 

shoulder can be observed, which is almost superimposed and that is attributed 

to the oxidation of the 6-hydroxy groups25. Finally, the case of the cutting agents, 

paracetamol, and caffeine, remains to be analysed. In the case of paracetamol, 

a single well-defined peak is observed at 0.40 V corresponding to the oxidation 

of the amide group. In the case of caffeine, there is also a single peak at 1.33 V 

corresponding to the oxidation of the C-8 to N-9 bond to give the substituted uric 

acid. Mechanisms found in the literature on the proposed electrochemical 

reactions are shown in Figure IV - 25 and Figure IV - 26. 

 

Figure IV - 25. Electrochemical oxidation mechanism of paracetamol proposed by 
Khairy, M et al.26 

 

Figure IV - 26. Electrochemical oxidation mechanism of caffeine proposed by 
Tadesse, Y et al.27 



Sensor Array Characterization 

171 

Therefore, the scenario is challenging as voltammograms present some 

overlapping peaks. For example, phenol group is overlapped with paracetamol 

and same situation occurs with the second oxidation peak of morphine and heroin 

with codeine. Nevertheless, this is not an obstacle for the study, as each analyte 

shows a different voltammetric profile as well as different sensitivities. 

Once the general behaviour of each analyte had been evaluated, calibration 

curves were constructed to identify the linear range of each substance. The 

concentrations ranged from 25 to 750 µM. This stage of identifying the working 

range is very important for further construction of the model. 

 

Figure IV - 27. Square wave voltammograms obtained for (A-C; top row) heroin, (D-F; middle 
row) morphine and (G-I; bottom row) codeine using (A, D, G; left column) graphite, (B, E, H; 
middle column) CoPc and (C, F, I; right column) Pd, respectively. Series of plots correspond 
to increasing concentrations from 10 to 1000 µM. Insets correspond to the linear regressions 
of peak height (at the observed potential maximum) vs. concentration, excluding the point 
1000 µM as saturation of the voltammetric signal was reached for certain compounds. 

Another important parameter for carrying out electrochemical measurements is 

the selection of the working pH.  
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In the present study, it was decided to work at neutral pH, because bibliographic 

sources6,7 show hydrolysis reactions of heroin and morphine at alkaline pH. 

The analytical parameter chosen to examine data were the peak’s height 

corresponding to the maximum of the oxidation response. Broadly, the responses 

obtained were linear for most cases with r>0.99 for the ranges studied. 

Depending on the compound, one or two peaks were found. Calibration curves 

were shown in Figure IV - 27. 

In heroin’s case, two peaks were observed. Graphite and CoPc inks showed two 

linear ranges for the peak one (black), associating the oxidation of the phenol 

group from 6-MAM. The high range is from 200 to 750 µM, whereas the lower 

range is defined from 25 to 200 µM. In the case of peak two (red), only one peak 

is visualized from 25 to 750 µM corresponding to the oxidation of the amide group 

(Figure IV - 27AB). Pd behaves differently from the others, showing two linear 

ranges for peak 1 and peak 2 (Figure IV - 27C). 

As could be expected, morphine had a similar behaviour than heroin. It can show 

two peaks and two linear ranges (Figure IV - 27D-F). The high came from 200 to 

750 µM and low from 25 to 200 µM. 

Paracetamol and codeine showed an individual peak over all the range (25 to 

750 µM) (Figure IV - 27G-I and Figure IV - 28J-L). In the case of caffeine, single 

peak is obtained with different linear range depending on the modified electrode. 

Graphite and CoPc came from 50 to 750 µM, meanwhile Pd the linear range is 

narrow from 200 to 750 µM. 

Finally, it can be concluded that the linear working range determined comes from 

0 to 750 µM for heroin, morphine, codeine, paracetamol, and caffeine. All 

analytical parameters from the calibration curves are listed in Table IV - 10. 
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Figure IV - 28. Square wave voltammograms obtained for (J-L; left column) paracetamol and 
(M-O; right column) caffeine using (J, M; top row) graphite, (K, N; middle row) CoPc and 
(L, O; bottom row) Pd modified sensors, respectively. Series of plots correspond to 
increasing concentrations from 10 to 1000 µM. Insets correspond to the linear regressions of 
peak height vs. concentration, excluding the point 1000 µM as saturation of the voltametric 
signal was reached for certain compounds.  
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Table IV - 10. Calibration data (y vs. x) for the separate determination of heroin, morphine, 
codeine, paracetamol, and caffeine employing the sensor array proposed. 

Sensor 1: Carbon 

Compound 
Potential 

(V)  
Sensitivity 
(nA·µM-1)  

Intercept 
(μM)  

r 
LOD 
(µM) 

Linear 
Range 
(µM) 

Heroin 
0.49 

6.1 

2.5 

0.28 

1.13 

0.986 

0.985 

3.33 25-200 

200-750 

1.16 4.7 0.21 0.997 31.8 25-750 

Morphine 

0.43 
3.3 

1.3 

0.10 

0.51 

0.996 

0.997 

5.33 25-200 

200-750 

0.99 
4.2 0.16 0.995 8.65 25-200 

1.4 0.76 0.994  200-750 

Codeine 1.11 21.7 0.72 0.998 1.80 25-750 

Paracetamol 0.39 22.3 0.12 0.999 0.82 25-750 

Caffeine 1.33 15.6 4.02 0.993 44.0 50-750 

Sensor 2: CoPc 

Compound 
Potential 

(V) 
Sensitivity 
(nA·µM-1)  

Intercept 
(μM)  

r 
LOD 
(µM) 

Linear 
Range 
(µM) 

Heroin 

0.43 
7.2 

3.1 

0.15 

1.03 

0.999 

0.996 

3.95 25-200 

200-750 

1.14 5.5 0.22 0.994 83.3 25-750 

Morphine 

0.40 
2.8 

1.5 

0.0709 

0.32 

0.994 

0.995 

2.88 25-200 

200-750 

1.11 
3.4 

1.5 

0.11 

0,53 

0.994 

0.994 

96.6 25-200 

200-750 

Codeine 1.09 18.9 0.21 0.999 4.29 25-750 

Paracetamol 0.40 17.4 -0.16 0.999 0.75 25-750 

Caffeine 1.36 10.8 0.0069 0.998 65.0 50-750 
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Sensor 3: Pd 

Compound 
Potential 

(V)  
Sensitivity 
(nA·µM-1)  

Intercept 
(μM) 

r 
LOD 
(µM) 

Linear 
Range 
(µM) 

Heroin 

0.27 
14.3 

3.5 

0.41 

1.59 

0.988 

0.991 

5.31 25-200 

200-750 

1.01 
34.8 

4.2 

0.12 

1.57 

0.975 

0.966 

14.8 25-200 

200-750 

Morphine 

0.46 
3.2 

1.5 

0.0858 

0.44 

0.985 

0.993 

25.9 25-200 

200-750 

1.01 
6.9 

1.7 

0.62 

1.68 

0.954 

0.961 

60.7 25-200 

200-750 

Codeine 1.11 19.8 2.31 0.997 11.7 25-750 

Paracetamol 0.38 19.0 -0.11 0.999 3.33 25-750 

Caffeine 1.35 11.6 17.2 0.983 104 200-750 

3. Repeatability and Reproducibility Studies 

Once the characterization stage was completed, a stability study was performed 

to assess the number of measurements supported by the working electrodes. 

The variation of the voltammetric response was carried out by measuring a 

codeine standard solution of 450 µM concentration for 25 consecutive times. The 

measurements were carried out with the same electrodes and exchanging a 

measurement of the blank (PBS) between each measurement to check the 

repeatability of the devices. Therefore, each sensor was subjected to 50 

consecutive measurements, a very meaningful number given the disposable 

nature of the screen-printed electrodes. All measurements made in the 

experiment are shown in Figure IV - 29. 
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Figure IV - 29. Evaluation of the stability studied for the three modified screen-printed 
sensors. A total of 25 measurements were performed inserting a black solution of PBS 
between each measure. A stock solution of 450 µM was used. The RSD (%) for Carbon, 
CoPc and Pd was 1.84%, 2.01% and 2.14%, respectively. 

Once the experimental part was finished, the results obtained through the 

calculation of the RSD (%) were evaluated. The values obtained for the present 

modified sensors were 1.84% (graphite), 2.01% (CoPc) and 2.14% (Pd). No 

fouling or drift effects were observed with the proposed sensors during the study. 

Therefore, it can be concluded that any possible adsorption of the oxidized form 

of the studied analytes did not considerably affect the stability of the sensors, as 

no differences were observed throughout the measurements. The same fact can 

be associated with the applied potentials, if there is any doubt about the high 

value used. 

To complete the study, the reproducibility of the construction of the ink-modified 

printed sensors was also evaluated. The experiment was performed by preparing 

each modified ink by triplicate and measuring consecutively with a heroin stock 

solution. The results for each sensor show good construction reproducibility with 

RSD (%) values of 3.97%, 6.95% and 5.67% for carbon, CoPc and Pd inks, 

respectively. 
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4. Quantitative Analysis of Drug Mixtures using Partial Least 

Squares Regression 

So far, voltammetric responses of the studied analytes have been analysed 

individually showing differences in their voltammetric profiles depending on the 

specific sensor used. However, the aim of this study is to quantify mixtures of the 

compounds. Therefore, it is evident that an overlapping of signals will be 

observed, which can be seen in Figure IV - 30 and Figure IV - 31. 

 

Figure IV - 30. Example of the voltammograms obtained for certain arbitrary mixtures of 
heroin, morphine, and codeine with concentrations for the three compounds of (A) 560 µM, 
239 µM, 28 µM, (B) 627 µM, 577 µM, 435 µM, (C) 180 µM, 617 µM, 626 µM and (D) 156 µM, 
531 µM, 156 µM. The samples were prepared in PBS pH 7. The three colours represent the 
sensor array: Graphite/SPCE-Ink (blue), Cobalt (II) phthalocyanine/SPCE-Ink (red) and 
Palladium/SPCE-Ink (green). 
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Figure IV - 31. Example of the voltammograms obtained for certain arbitrary mixtures of 
heroin, morphine, codeine, paracetamol, and caffeine with concentrations for the five 
compounds of. (A) 0 µM, 623 µM, 623 µM, 623 µM, 0 µM (B) 623 µM, 0 µM, 0 µM, 623 µM, 
623 µM, (C) 623 µM, 0 µM, 623 µM, 0 µM, 623 µM and (D) 438 µM, 82 µM, 384 µM, 384 µM, 
493 µM. The samples were prepared in PBS pH 7. The three colours represent the sensor 
array: Graphite/SPCE-Ink (blue), Cobalt (II) phthalocyanine/SPCE-Ink (red) and 
Palladium/SPCE-Ink (green). 

Therefore, to accomplish the single quantification of each compound, the 

application of chemometric methods is needed, due to the fact that quantification 

cannot be performed by univariate regression (peak height or peak area). 

In this sense, the ET strategy is based on the combination of an array of 

electrodes that show complementary responses to the substances of interest, 

with a multivariate calibration method that enables the construction of a model 

that associates the different sensors’ response to the concentration of each 

analyte28,29. 
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Next further step before building the quantitative model is the selection of the best 

chemometric tool. The model enables the identification and subsequently 

quantification of the individual compounds from the overlapped voltammograms. 

As mentioned in previous sections of this doctoral thesis, the reported works are 

involved in the Bordersens project, which has as a final aim, the development of 

a device capable of detect different illicit drugs. To achieve this goal, the simplest 

instrumentation and modelling tools must be selected. For this reason, PLS1 was 

selected as a modelling tool to attain multivariate calibration, due to its simplicity 

in comparison with other techniques such as ANNs30. As it well known in the 

literature29, PLS does not require a pre-processing reduction step based on 

number of input variables. However, the use of it gives an improvement in terms 

of generalization ability and model’s prediction. Once again, GAs was used as 

feature selection tool to simplify the model. This approach allows the identification 

of the most relevant feature selection, simplifying the calculation and no further 

computer processing shall be required for each new measurement taken. As 

summary, the relevant features were selected with GAs and then they were used 

as input into the PLS model. 

The results of the GAs optimisation are shown in Figure IV - 32, where the raw 

voltammetric responses for 300 µM solutions of each of the compounds 

considered are plotted, with cross marks underneath corresponding to the 

selected features. 

 

Figure IV - 32. Outcome of the feature selection step using GAs. Square wave 
voltammograms obtained using (A) graphite, (B) CoPc and (C) Pd sensor for pure solutions 
of the different compounds under study at 300 µM as well as for an arbitrary mixture of those 
are plotted, and underneath the features selected for the mixtures of the (x) 3 compounds 
and (x) 5 compounds. 
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As it can be observed in Figure IV - 32, the algorithm not only select the points 

corresponding to the maximum of the peaks but rather the points where less 

overlapping is observed. Concretely, points in back and front of the peak. 

Specifically, two different sets of samples were prepared as already indicated in 

the experimental section. The first is based on ternary mixtures of the drugs 

considered, while the second set also considered the presence of two different 

cutting agents. The goal of the first set was to confirm the capability of the chosen 

ET to perform individual quantification, while the second set aims to confirm that 

the ET is even able to counterbalance the interferences of the cutting agents and 

successfully perform quantification. 

In both situations, the coupling GA-PLS was employed to construct the model 

using the data from the training subset, and their performance was evaluated with 

respect to the samples from the test subset by selecting the number of LVs 

leading to the lowest RMSE value for the latter. 

4.1. Three Drugs’ Mixtures 

From the raw data, 318 current values for three sensors were obtained. A total of 

103 features were selected by using GA and PLS1 to construct the model. The 

optimized value of LVs for the different compounds were 7 for heroin, 8 for 

morphine and 15 for codeine. Then, predicted vs. expected comparison graphs 

were built (Figure IV - 33) with the corresponding linear regression of the 

comparison lines fitted (Table IV - 11) for the three drugs. 

 

Figure IV - 33. Modelling ability of the optimized GA-PLS model for the 3 compounds case. 
Comparison graphs of obtained vs. expected concentrations for (A) heroin, (B) morphine and 
(C) codeine, for both the train (●, solid line) and test subsets (○, dotted line). The dashed line 
corresponds to the ideal comparison line (y = x).  
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Table IV - 11. Fitted regression lines for the comparison between obtained vs. expected 
values for the different sets of samples and the three considered drugs. 

Compound Slope 
Intercept 

(μM) 
r 

RMSE 
(μM) 

NRMSE 
Total 

NRMSE 

train subset (n=27) 

Heroin 0.998±0.019 0.7±7.5 0.999 9.39 0.014 

0.014 Morphine 1.000±0.007 0.1±2.7 1.000 3.35 0.005 

Codeine 0.996±0.026 1.3±10.0 0.998 12.5 0.019 

test subset (n=15) 

Heroin 1.035±0.064 -22.5±24.3 0.995 20.6 0.030 

0.026 Morphine 1.020±0.026 -5.1±9.4 0.999 10.1 0.016 

Codeine 1.026±0.030 -11.3±11.5 0.999 11.1 0.016 

Intervals are calculated at the 95% confidence level. RMSE: root mean square error; NRMSE: 
normalized root mean square error. 

As can be observed in Figure IV - 33, satisfactory results were obtained showing 

regression lines close to the ideal one (y=x) in all the cases. What is more, results 

provided by Table IV - 11 showed values of slope and correlation coefficient of 

one, and intercept value of zero, values very close to the ideal ones, all of them 

being within the intervals calculated at the 95% confidence level. The information 

about the joint confidence intervals is showed in Figure IV - 34, which clearly 

demonstrate that the obtained values are within the expected behaviour. 

 

Figure IV - 34. Joint confidence intervals for (A) the three drugs, and (B) the three drugs and 
the two cutting agents: (black) heroin, (red) codeine, and (green) morphine, (yellow) 
paracetamol and (blue) caffeine, both for the training (●, solid line) and testing (▲, dashed 
line) subsets. Also, the ideal point (1,0) is plotted (x); intervals are calculated at the 95% 
confidence level. 
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Although the trend is satisfactory, it should be noted that a slightly higher 

performance is obtained for the train subset, because the data from the test 

subset is not used during the modelling phase, thus providing a realistic metric of 

the model's performance. However, if the RMSE values obtained for both subsets 

are compared, it can be noticed how the differences are not actually that high, 

confirming the ability of the proposed ET to achieve simultaneous quantification 

of all three drugs and the goodness of the model. Hence, the following step was 

to confirm whether using the same approach it is able not only to quantify the 

mixtures of the pure drugs, but also to quantify and to detect the considered 

cutting agents, which would provide a more realistic scenario of the proposed 

strategy. 

4.2. Three Drugs and the Two Cutting Agents’ Mixtures 

In this section, the same conditions as above were used only changing the 

experimental design due to the larger number of substances that needed to be in 

consideration. For that, a new set of samples was prepared and measured using 

the optimized array. 

As the previous situations, the construction of GA-PLS models were used to 

quantify the concentration of each of the substances present in the mixtures. In 

this case, 114 feature from the raw data were selected (Figure IV - 32). The 

optimized LVs were 13 for heroin, 10 for morphine and 18 for codeine, 12 for 

caffeine and 6 for paracetamol. 

Again, comparison plots of predicted versus expected concentrations were 

constructed for each of the substances (Figure IV - 35), and linear regression 

parameters were calculated (Table IV - 12). As in the previous case, an 

acceptable trend is observed for both subsets, having a better behaviour for the 

train subset as mentioned above, but with RMSE values comparable in terms of 

magnitude. 

It should be noted that the performance of the model metrics are slightly worse 

for the five compounds case than for the three compounds case (total NRMSE 

for the three drugs of 0.084 versus 0.026 for the test subset), but the higher 

complexity of the case has to be taken into account.  
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That is, on the one hand, the use of a fractional experimental design to keep the 

number of samples needed to build the model reasonable. On the other hand, as 

already reported, the scope of certain cutting agents can affect the voltammetric 

response, to the extent that the voltammetric peak observed for the pure analyte 

may not be seen in the presence of the adulterant31,32. 

 

Figure IV - 35. Modelling ability of the optimized GA-PLS model for the 5 Compounds case. 
Comparison graphs of obtained vs. expected concentrations for (A) heroin, (B) morphine, (C) 
codeine, (D) paracetamol and (E) caffeine, for both the train (●, solid line) and test subsets 
(○, dotted line). The dashed line corresponds to the ideal comparison line (y = x). 

Regarding the latter, this works demonstrates that with the use of an appropriate 

set of samples, the model can correctly quantify both drugs and cutting agents. 

In parallel, the same approach can be applied to the identification and 

quantification of other mixtures. Furthermore, multi-way processing methods 

allow the correction of interfering species not initially considered in the response 

model instead of PLS models. This gain can be done thanks to their “second 

order advantage”33,34. 
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Hence, considering all the points, results show the power of the proposed 

approach with the use of a voltammetric ET to identify and subsequently quantify 

seized drug samples, either in its pure form or mixed with other drugs or cutting 

agent. 

Table IV - 12. Fitted regression lines for the comparison between obtained vs. expected 
values for the different sets of samples and the five considered compounds. 

Compound Slope 
Intercept 

(μM) 
r 

RMSE 
(μM) 

NRMSE 
Total 

NRMSE 

train subset (n=27) 

Heroin 0.972±0.068 8.7±27.3 0.986 43.5 0.061 

0.053 

Morphine 0.990±0.041 3.1±16.6 0.995 26.2 0.037 

Codeine 0.990±0.040 3.0±16.2 0.995 25.5 0.036 

Paracetamol 0.969±0.071 9.7±28.8 0.984 45.9 0.065 

Caffeine 0.976±0.063 7.5±25.5 0.987 40.6 0.057 

test subset (n=17) 

Heroin 0.968±0.169 -0.7±69.3 0.953 76.3 0.107 

0.077 

Morphine 0.974±0.169 19.2±58.0 0.954 63.3 0.089 

Codeine 1.042±0.087 -5.9±28.5 0.989 30.1 0.043 

Paracetamol 0.997±0.124 -8.4±38.8 0.975 41.8 0.059 

Caffeine 0.981±0.130 -4.5±39.7 0.972 50.1 0.070 

Intervals are calculated at the 95% confidence level. RMSE: root mean square error; NRMSE: 
normalized root mean square error 

Finally, it was proceeded to assess whether the proposed model was over-fitted 

or not, highlighting that it has taken the precaution to use a separate validation 

data subset (test subset). To do so, a permutation test or “target shuffling 

process” was used to demonstrate that neither the high dimensionality of the data 

nor the coupling GAs-PLS1 were leading to overfitted models. The mentioned 

test permits the identification of incorrectly perceived cause and effect 

relationships in modelling, term which is called “chance correlation”. The process 

is done considering as null hypothesis that samples labels are exchangeable. 

In short, this test involves randomly reordering and repeatedly of the response 

variables (Y), continued by the construction of a new model by shuffling the labels 

of the data. This means that a new model is constructed from the assignment of 

an "incorrect" Y-value to each sample corresponding to that of another sample. 
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This procedure is repeated many times to ensure that the calculated statistics are 

significant, in our case up to 1000 times. For each of the permutations, the 

different performance metrics were calculated and compared to the real model 

with the appropriate labels. The results obtained for this test are shown in 

Figure IV - 36, where the RMSE values for the different models for the three 

drugs plus paracetamol and caffeine are observed. The results clearly show that 

the model is not overtrained. 

 

Figure IV - 36. Histogram comparing the success of PLS1 models with raw data (red) and 
GAs-PLS1 (green) to that of shuffled models (1000 iterations) for (A) codeine and (B) 
paracetamol, for the set of samples corresponding to mixtures of the 5 compounds. For the 
shuffled models, the data was fitted to a 3 parameter Gaussian curve and the RMSE values 
compared to the former. 

As summary, this work reports a quantitative application for the detection of 

heroin, morphine, and codeine in the presence of paracetamol and caffeine 

simultaneously. The fusion between chemometric tools (GAs-PLS1) and 

voltammetry allows its resolution and quantification, verifying the non-overfitting 

of the proposed model by “target shuffling process”. This work has made great 

progress for the Bordersens project. 
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1. Outline 

The last work of this dissertation is based on the use of a novel sensor array 

platform printed by inkjet printing technique. The goal in this case is the detection 

of three common adulterants found in cocaine seized samples, which are 

benzocaine, paracetamol, and phenacetin. In this case, the modification of the 

surface was done using previous knowledge acquired during the other works 

(article 1,2 and 3). In the reported case, CNT, CoPc, CuO, graphite and Pd was 

chosen as modifiers to incorporate in the ink. SWV was chosen as voltammetric 

technique. Since overlapping peaks needed chemometric tools to separate them, 

DWT was used as compression step, followed by ANNs, commonly used in the 

group to build the model. The results were promising showing their resolution and 

quantification of the analytes under study. This work was done in collaboration 

with the Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), specifically 

with the Centro de Investigación Biomédica en Red, Biomateriales y 

Nanomedicina (CIBER-BBN). 

 

Figure IV - 37. Experimental set up of all the steps involved in the analysis. From array’s 
modification to quantification of the desired substances. 
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2. Electrochemical Characterization 

2.1. Effective Area Calculation 

To compare the advantages of modify the surface of IPE in terms of effective 

area, an study with different scan rates were done following the Randles–Sevcik 

equation, where n is the number of transferred electrons for the redox reaction 

(in this case 1), F is the Faraday’s constant (96485 C·mol-1), c the concentration 

of electroactive substance (mol·cm-3), A is the effective area in cm2, v the scan 

rate (V·s-1), R the gas constant (8.314 J·mol-1·K-1), T the temperature in K and D 

is the diffusion coefficient for ferrocyanide (6.32·10-6 cm2·s-1). For that, cyclic 

voltammetry experiments using 50 mM phosphate buffer and 0.1 M KCl 

containing 5 mM [Fe(CN)6]3-/[Fe(CN)6]4- solution in the potential range of -0.4 to 

0.8 V were performed. Applying 7 different scan rates (0.01, 0.025, 0.05, 0.1, 0.2, 

0.3 and 0.5 V·s-1) it could be calculated the active area of each WE from the slope 

of the regression line of v1/2 (V·s-1) vs. Ip·c-1 (A·cm3·mol-1). One example dealing 

with the details of the performed voltammograms can be found in Figure IV - 38. 

Concerning the calculated active areas, these were: 2.9 mm2 for the bare 

electrode, 8.2 mm2 for Graphite/IPE-Ink, 3.3 mm2 for CNT/IPE-Ink, 3.2 mm2 for 

CoPc/IPE-Ink, 3.9 mm2 for CuO/IPE-Ink and 2.9 mm2 for Pd/IPE-Ink, whereas the 

geometric area was 0.8 mm2 (Ø=1 mm). 

 

Figure IV - 38. G) Cyclic voltammetry of 5 mM K3Fe(CN)6/K4Fe(CN)6 redox couple in 0.1 M 
KCl varying scan rate from 0.01 V/s to 0.5 V/s using CuO/IPE-Ink. The range potencial was 
from -0.4 V to 0.4 V with a step potential of 0.005 V. (H) Regression line of v1/2 (V·s- 1) vs. 
Ip·c- 1(A·mol-1·cm3). 
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Summarizing, the results show a significant increase of the effective area 

responsible of the application of the modified ink on the surface of the electrode. 

The most remarkable case is shown in the case of CuO-ink, giving an increase 

of almost four times compared to the geometric area of the sensor. Also, it is 

interesting to evaluate the improvement of our material in comparison with the 

bare surface. In the case of our ink of reference, which is carbon, a notable 

increment of area is done, demonstrating the suitable use of our material in the 

modification of the IPE surface. 

3. Evaluation of the Linear Response 

In the proposed work, there is a problem of similarities in the fingerprint of 

benzocaine and phenacetin, key point which make them attractive to analyse in 

the case of study. Chemometrics helps to us to separate them, but it is needed 

slightly different responses between sensors to discriminate them. One solution 

that we propose is the modification of the electrodes with the use of a composite 

material which contains different modifiers. With this proposal, it is quick simple 

to obtain new suitable surfaces for electrochemical detection methods. What it is 

more, an optimized way to create new chemically modified transducer is 

developed gaining advantages such as simplicity and low-cost approach. Many 

works in the group reported the benefits given by these self-formulated carbon 

inks 20,35,36. For many previous works in studies with ETs 37,38, remarkable results 

were obtained with the use of phthalocyanines, metal nanoparticles, metal 

oxides, and a current material very commonly used nowadays such as carbon 

nanotubes. All of them were considered good candidates as modifiers in the case 

of study. For this reason, the fifth proposed sensor array in the current work was 

composed by CoPc, CuO, Pd and CNT. It is decided also include a carbon ink 

formulation, as control, to compare with the positive aspects given by the rest of 

modifiers. 

Once the array was defined, the evaluation of the square wave voltammograms 

responses of each the modified towards the different compounds individually was 

done to observed differentiated signals generated by them. 
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As can be observed in Figure IV - 39, two overlapping peaks can be remarked 

corresponding to the oxidation of amines presents in the skeleton of benzocaine 

and phenacetin. In the case of benzocaine, an irreversible oxidation peak is 

shown around 0.9 V, corresponding to the oxidation of the primary aniline group 

to a secondary amine. In the redox reaction, two electrons and two protons are 

released. Similarly, phenacetin also shows the oxidation peak ca. 0.9 V. Finally, 

in the case of paracetamol, only a well-defined Gaussian peak corresponding to 

the oxidation of the amide group is observed ca. 0.40 V. 

After analysing this first general overview of the square wave responses, the 

calibration curves for the three adulterants were constructed by performing 

measurements from 10 to 750 µM in the case of phenacetin and paracetamol for 

all the modified IPEs. However, the concentration range is narrower in the case 

of benzocaine because of its saturation problems. For graphite and CoPc, the 

linear range was from 10 to 200 µM, for CNT and CuO from 10 to 300 µM and for 

Pd from 10 to 400 µM (Figure IV - 40). Analytical parameters of the calibration 

curves for each sensor are presented in Table IV - 13. 

 

Figure IV - 39. On the right side: electrochemical fingerprint of 200 µM corresponding to the 
three substances under studied (benzocaine, paracetamol, and phenacetin) using the fifth 
sensor array selected: A) Graphite, B) CNT, C) CoPc, D) CuO and E) Pd. On the left side: 
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the skeleton of the adulterant studied remarking the oxidable functional group of the 
molecule. 

 

Figure IV - 40. Calibration curves of benzocaine, paracetamol and phenacetin of peak height 
(at the observed maximum potential) vs. concentration using the selected sensor array. 

Table IV - 13. Calibration data (y vs. x) for the separate determination of benzocaine, 
paracetamol, and phenacetin. 

Graphite 

Compound 
Potential 

(V) 
Sensitivity 
(nA·µM-1) 

Intercept 
(μM) 

r 
LOD 
(µM) 

Linear 
Range (µM) 

Benzocaine 0.94 5.70·10-3 0.62 0.95 5.5 10-200 

Paracetamol 0.45 2.7310-2 0.05 0.99 4.6 10-750 

Phenacetin 0.91 9.10·10-3 0.36 0.99 10.6 10-750 

CNT 

Compound 
Potential 

(V) 
Sensitivity 
(nA·µM-1) 

Intercept 
(μM) 

r 
LOD 
(µM) 

Linear 
Range (µM) 

Benzocaine 0.85 1.00·10-2 0.46 0.99 5.5 10-300 

Paracetamol 0.44 1.19·10-2 0.03 0.99 14.1 10-750 

Phenacetin 0.83 2.01·10-2 0.39 0.99 14.1 10-750 
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CoPc 

Compound 
Potential 

(V) 
Sensitivity 
(nA·µM-1) 

Intercept 
(μM) 

r 
LOD 
(µM) 

Linear 
Range (µM) 

Benzocaine 0.89 8.90·10-3 0.55 0.97 5.4 10-200 

Paracetamol 0.52 1.47·10-2 0.06 0.99 3.3 10-750 

Phenacetin 0.96 1.38·10-2 0.00 0.99 1.0 10-750 

CuO 

Compound 
Potential 

(V) 
Sensitivity 
(nA·µM-1) 

Intercept 
(μM) 

r 
LOD 
(µM) 

Linear 
Range (µM) 

Benzocaine 0.84 1.02·10-2 0.52 0.99 5.3 10-300 

Paracetamol 0.44 1.52·10-2 0.11 0.99 5.5 10-750 

Phenacetin 0.83 1.28·10-2 0.22 1.00 6.3 10-750 

Pd 

Compound 
Potential 

(V) 
Sensitivity 
(nA·µM-1) 

Intercept 
(μM) 

r 
LOD 
(µM) 

Linear 
Range (µM) 

Benzocaine 0.85 1.21·10-2 0.71 0.99 6.9 10-400 

Paracetamol 0.43 2.25·10-2 0.29 0.99 3.5 10-750 

Phenacetin 0.86 1.69·10-2 0.09 0.99 2.1 10-750 

4. Repeatability and Reproducibility Studies 

Once the calibration curves were completed, a stability study was done in order 

to verify that sensors can support many consecutive measurements, requirement 

needed when electronic tongues approach is done. To deal with this issue, 

benzocaine was chosen for the study, assuming comparable results for the rest 

of adulterants.  

It is important to analyse the electrochemical behaviour of benzocaine because 

it provokes peak suppression signal, among others, in the fingerprint of cocaine 

electrochemical profile changing experimental conditions39. Furthermore, this 

adulterant presents some fouling effect when the concentration increases, 

verifying their adsorption on the surface.  

Specifically, a stock solution of benzocaine of 150 µM was measured for 10 

consecutive measurements without changing the electrode. The results obtained 
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displayed an impressive decrease of the signal, suggesting that sensor surface 

is being blocked. At this point, some cleanings must be performed to improve the 

stability of the signal. Experiments with electrochemical cleaning using acid and 

alkaline media were incorporated between each measurement, without showing 

any improvement. Finally, an electrochemical cleaning (+1.35 V) for 30 s using 

phosphate buffer with 0.1 M KCl was tested. This soft cleaning allows to maintain 

the surface most stable and achieve to perform 10 consecutive measurements 

with relative standard deviation (RSD (%)) of 4.3%, which attempt promising 

results for next applying the electronic tongue approach. Results of these 

experiments can be found Figure IV - 41. 

 

Figure IV - 41. A) Evaluation of the stability studied for the five modified IPE sensor array. A 
total of 10 measurements were performed inserting a blank solution of PBS between each 
measure. A paracetamol stock solution of 200 µM was used. B) Cyclic voltammogram using 
5 mM K3Fe(CN)6/K4Fe(CN)6 redox couple in 0.1 M KCl. 

IPEs sensors are mainly focused to be used with a single use or a few numbers 

of measurements, because its easy way to manufacture once the set-up is 

optimized40. 

This issue is in contrast with the philosophy of electronic tongue, which try to 

always use the same sensor to avoid drifts and/or periodic trends. Therefore, it 

was challenging to couple these two concepts to finally get consistent results 

maintaining the principles of both strategies. 
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Figure IV - 42. Construction reproducibility of sensors with the fifth modified ink under study 
using a stock solution of paracetamol 150 µM. Graphite (ink 1), CoPc (ink 2), CuO (ink 3), 
Pd (ink 4) and CNT (ink 5). 

Next, as sensors must be changed during the final experiment, the reproducibility 

of construction of the ink-modified IPE was also evaluated. The experiment was 

carried out preparing each modified ink by triplicate (n=3) (Figure IV - 42) and 

measuring consecutively with a paracetamol stock solution. All the sensors 

present good fabrication reproducibility with RSD (%) values of 3.9% for Graphite, 

5.1% for CoPc, 4.0% for CuO, 2.9% for Pd and 3.0% for CNT, highlighting the 

best result for Pd ink, respectively. 

5. Surface Electrode Characterization 

5.1. Morphology Studies 

The morphology of the modified electrodes was observed by SEM. The different 

electrochemical behaviour of the studied modified can be justified accordingly to 

the morphology. As it can be observed in Figure IV - 43, different shapes can be 

observed depending on the modified employed. Furthermore, microscopy studies 

show clearly the different modifiers distributed quasi homogenously through the 

graphite flakes. 



Surface Electrode Characterization 

197 

 

Figure IV - 43. SEM images. A) Graphite/IPE-Ink, B) CNT/IPE-Ink, C) Pd/IPE-Ink, D) 
CuO/IPE-Ink and E) CNT/IPE-Ink. 

More in detail, a cross-section was done to the CNT modified electrode to show 

the different zones. This information is summarized in Figure IV - 44. Indeed, two 

remarkable zones can be observed in the picture. The first corresponds to the 

cross-section zone, in which the silver material that forms the working electrode 

can observed clearly, whereas the enlarged area, the modified graphite ink, which 

shows uplift due to the cross-section produced. 

 

Figure IV - 44. Cross-section of the CNT modified electrode to observe the remarkable 
zones. 
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5.2. Impedance Measurements 

Impedimetric measurements were carried out to analyse the morphology of the 

IPE modified electrode surface. To achieve that, measurements in 

K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) mixture solution were done. Firstly, the unmodified 

electrode was checked it, following by the fifth modified inks. As it can be 

observed in Figure IV - 45, Nyquist Plot shows that the charge-transfer resistance 

(Rct) increased in all the cases, showing the smallest value for the case of the 

unmodified electrode, as expected. 

 

Figure IV - 45. Nyquist Plot of the fifth modified inks including the bare electrode. 
Measurements were carried out in PBS buffer containing 0.01 M K3[Fe(CN)6]/K4[Fe(CN)6] 
(1:1) mixture as redox marker.  

More in detail, there are not many significances differences between all the 

modified inks. Specifically, the highest value of Rct corresponds to carbon ink very 

close to CoPc. Lower values of resistance can be observed in the case of CNT 

and Pd nanoparticles. 

6. Chemometric Analysis 

Voltammetric responses for each compound were analysed individually, showing 

different response for the different compounds under study. However, the profiles 

shows clearly that there will be an overlap on the square wave voltammograms 

when mixtures of those are to be analysed. Therefore, to achieve the individual 

quantification of each of the substance, the use of chemometric techniques is 

required.  
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Depending on the final application (qualitative or quantitative), it is possible to 

choose the best chemometric method to afford the problem. In this work, both 

approximations were done, which will be discussed in the detail in the following 

sections. 

6.1. Qualitative Analysis: Principal Component Analysis 

PCA is a chemometric tool which allows the search of similarities between 

samples. In this case, this tool was used to verify the good performance of the 

sensors in front of the studied substances. With PCA it is expected that redundant 

sensors (sensors than contribute with the same information) would appear 

superimposed in the scores space, meanwhile sensors with different responses 

will manifest in distinction in it. As it can be observed in Figure IV - 46, the 

relevant information of the samples using the two first PCs made 58.3% of the 

total variability. In general trends, the proposed modified inks showed different 

response towards the studied molecules, and with limited dispersion in some 

cases, facilitating the assignment of substances to its class. Previous 

representation showed the information divided by sensor and substance. 

However, there is another kind of representation, where voltammetric responses 

of the fifth electrodes were combined into a single vector. Figure IV - 47 displays 

this content. As it can be observed three clusters can be remarked corresponding 

to the three compounds under study. In this case, three PCs represents 86.4% 

of the total variability. This value is more than acceptable because it was reduced 

from a large number de variables to only PC1, PC2 and PC3. 
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Figure IV - 46. Score plot of the three components obtained after PCA analysis. 4 replicates 
for each sensor were done determining the three compounds of interest: benzocaine, 
phenacetin, and paracetamol of 200 µM. The array used was CoPc/IPE-Ink, CuO/IPE-Ink, 
Pd/IPE-Ink, CNT/IPE-Ink, and graphite/IPE-ink. 

 

Figure IV - 47. Scores plot for the three first principal components for the analytes 
benzocaine, paracetamol and phenacetin, common adulterants present in cocaine seizures 
samples. 

As conclusion, the proposed array is suitable to study the mixtures under study, 

showing differentiated response in front of the three studied adulterants. 
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7. Quantification Analysis 

A DWT pre-processing stage was performed employing Daubechies wavelet and 

a fourth decomposition level, the best choice from preliminary tests and previous 

experience. 

The DWT allowed compressing the original data set information up to 91.4% 

without any loss of relevant information. From the proposed 5-sensor array, the 

corresponding voltammograms were compressed, and the obtained coefficients 

were fed into. 

An ANN model was used to achieve the simultaneous determination of the three 

cutting agents studied. The model was built employing the data of the train 

subset, using the data of the test subset to assess its performance. 

After a systematic evaluation of topologies, the final DWT-ANN architecture 

model had 120 input neurons (corresponding to the 24 wavelet approximation 

coefficients obtained from wavelet analysis of each of the 5 sensor signals, 8 

neurons and logsig function in the hidden layer and 2 output neurons and satlins 

function in the output layer. 

To visualize the performance of the model, the comparison graphs of obtained 

vs. expected concentrations were built for each of the analytes demonstrating the 

feasibility of the model obtained (Figure IV - 48). 

 

Figure IV - 48. Comparison graphs obtained vs. expected for benzocaine, phenacetin, and 
paracetamol. 
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V.  CONCLUSIONS 

Once the end of the road is reached, it is necessary to draw conclusions, applying 

all the knowledge acquired along the way. 
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1. Conclusions 

The present doctoral thesis has led to the following conclusions. Overall, the 

general objective of the development of electronic tongues for forensic and 

security applications has been completed. For this purpose, different printed 

sensor platforms have been tested for different fields of application showing good 

results. In more detail, it can be concluded that: 

1. The design, evaluation and characterization of the different printed sensor 

platforms were successfully achieved. For that, techniques based on 

serigraphy and inkjet printing were selected. 

1.1. After evaluating and characterizing the integrated array of screen-printed 

electrodes provided by DropSens, it could be demonstrated the feasibility 

of the device showing enhanced results in comparison with previous 

studies in the group. 

1.2. In addition, ItalSens single electrodes showed proper results and for this 

it could be considered as an approach to afford the problematic that imply 

the opioids case study. 

1.3. The inkjet printed platform array tested in this work provides promising 

results to consider this new emergent technology as a candidate to be 

applied in the cocaine cutting agents determination. 

In all cases, an electrochemical and morphological characterisation have been 

carried out. Calculations on the effective area of the working electrodes and their 

analytical parameters were also determined. 

2. The development of a composite based on a polystyrene/graphite ink was 

successfully carried out as a first approach for the modification of 

electrochemical sensors. The methodology proposed for the modification has 

been a good strategy to solve the problem of overlapping of the mixtures 

studied throughout the doctoral thesis. 
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Moreover, it is a simple, economical, and stable approach that allows many 

measurements thanks to the polystyrene matrix. Therefore, the method has 

been validated due to its application in different sensor platforms. 

3. A validation of the materials and methods was carried out using a reference 

mixture, commonly known in the laboratory. The work from article 1 provided 

for the first time in our group the simultaneous detection of the reference 

mixture: AA, UA and PA using a multi screen-printed electrodes integrated 

array. This project provided improved results thanks to the applicability of 

electronic tongues and chemometrics. In this case, PCA and PLS were used 

as data processing and modelling tools. Therefore, this work not only 

validated the surface modification technology, but also demonstrated the 

advantages of screen-printed electrodes for on-site analysis as an alternative 

to classical methods. 

4. A strategy to identify heroin, morphine, and codeine in the presence of 

cuttings agents such as caffeine and paracetamol was developed with 

surprising results. This work is drawn from article 2. 

4.1.  For a first time, the qualitative analysis of the presented drugs of abuse 

in the presence of the cutting agents were achieved successfully thanks 

to the use of modified screen-printed electrodes. The work was also a 

progress in our research group. For the first time, a methodology was 

developed to optimize the selection of the number of sensors to be used. 

This strategy would not have been possible without the use of PCA as a 

visualisation tool and Silhouette calculation as a clustering metrics. 

Regarding the results obtained, the best candidate array was based on 

graphite, CoPc and Pd. 

4.2. In addition, the study was completed with the creation of a classification 

model. Among all the algorithms checked, it can be concluded that kNN 

allows the simplest identification of the samples with excellent results 

thanks to the clear distinction of the samples with the selected array. 
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5. The promising results obtained in article 2 led to the development of a 

quantitative application (article 3). Two works are represented in the article: 

on the one hand, the generation of a chemometric model allowing the 

distinction of the three drugs of abuse heroin, morphine, and codeine. For this 

purpose, a tilted factorial model was used for the design of the electronic 

tongue. On the other hand, the generation of a five-compound chemometric 

model, which allowed the incorporation of two cutting agents commonly 

present in illicit heroin samples such as paracetamol and caffeine. The 

preparation of this electronic tongue was carried out using a CCF design, due 

to the large number of samples. 

5.1. The two models showed satisfactory performance demonstrating the 

power of the proposed voltammetric tongue for identification of seized 

drug street samples, both in their pure form and mixed with different 

cutting agents. 

5.2. Data processing was aided using GAs to reduce the number of inputs and 

PLS as a multivariate calibration model. As a summary of this work, the 

combination of the ET with the modification employed and the 

chemometric tools demonstrate the potential of these strategies to be 

used as analytical tools for the detection of illicit drugs from street samples 

offering cheap measurement systems with rapid response, simple use 

and high portability, important topic for law-enforcement applications or 

point-of-use forensic. 

6. A strategy to quantify benzocaine, phenacetin and paracetamol were 

developed successfully using IJP as emergent technology. The design and 

printing of the sensor platform was done properly. The electrochemical part 

coupled with the chemometrics, in this case, DWT+ANNs showed promising 

results for the simultaneous determination of these cuttings agents from 

cocaine seizures samples. 
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2. Futures Perspectives 

In a research work, such as a doctoral thesis, it is always difficult to put an end to 

the topic under study. That is why there are always new ideas and improvements 

that can be implemented in the processes. The key points I would address are 

as follows: 

1. To explore new, more environmentally friendly substrates. Different 

studies referenced in the introduction of this thesis demonstrate the 

potential of this material and the good results obtained from the 

electrochemical point of view. 

2. To develop more aqueous inks that comply with the current term of "Green 

Chemistry". The use of organic solvents is far from this purpose. For this 

reason and taking advantage of the fact that electrochemical processes 

are relatively clean, the formulation of more aqueous inks would solve the 

problem under study. In addition, alternatives to drop casting, such as 

electro-polymerisation techniques, could be tested. 

3. To generate more complex models for the identification of more analytes 

in the sample. This would be very useful in the forensic field for the 

detection of more than one drug of abuse. 

4. Taking advantage of the recent purchase of a 3D printer in the group, try 

to find different filaments combining materials for printing electrochemical 

sensors to develop in the field of electronic tongues. 

 

Figure V - 1. Some key ideas as a starting point for future works.



ANNEX 1: PUBLICATIONS



 

 

 



  

 

ARTICLE 1 

Simultaneous Voltammetric Determination of Acetaminophen, Ascorbic 

Acid, and Uric Acid by Use of Integrated Array of Screen-Printed Electrodes 

and Chemometric Tools 

Dionisia Ortiz-Aguayo, Marta Bonet-San-Emeterio and Manel del Valle 

Sensors, 2019, 19(15), 3286 



 

 

  



sensors

Article

Simultaneous Voltammetric Determination of
Acetaminophen, Ascorbic Acid and Uric Acid by Use
of Integrated Array of Screen-Printed Electrodes and
Chemometric Tools

Dionisia Ortiz-Aguayo , Marta Bonet-San-Emeterio and Manel del Valle *

Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona,
08193 Bellaterra, Spain
* Correspondence: manel.delvalle@uab.es; Tel.: +34-93-581-3235

Received: 28 June 2019; Accepted: 24 July 2019; Published: 26 July 2019
����������
�������

Abstract: In the present work, ternary mixtures of Acetaminophen, Ascorbic acid and Uric acid
were resolved using the Electronic tongue (ET) principle and Cyclic voltammetry (CV) technique.
The screen-printed integrated electrode array having differentiated response for the three oxidizable
compounds was formed by Graphite, Prussian blue (PB), Cobalt (II) phthalocyanine (CoPc) and
Copper oxide (II) (CuO) ink-modified carbon electrodes. A set of samples, ranging from 0 to
500 µmol·L−1, was prepared, using a tilted (33) factorial design in order to build the quantitative
response model. Subsequently, the model performance was evaluated with an external subset of
samples defined randomly along the experimental domain. Partial Least Squares Regression (PLS)
was employed to construct the quantitative model. Finally, the model successfully predicted the
concentration of the three compounds with a normalized root mean square error (NRMSE) of 1.00
and 0.99 for the training and test subsets, respectively, and R2

≥ 0.762 for the obtained vs. expected
comparison graphs. In this way, a screen-printed integrated electrode platform can be successfully
used for voltammetric ET applications.

Keywords: electronic tongue; modifiers; acetaminophen; ascorbic acid; uric acid; partial least
squares regression

1. Introduction

Acetaminophen, Ascorbic acid and Uric acid (Figure 1) play an important role in humans’ life.
Acetaminophen (N-acetyl-p-aminophenol or paracetamol (PA)) is an antipyretic and analgesic drug
commonly used against arthritis, headache, muscle aches, menstrual cramps and fevers [1]. A high
amount of PA can cause the accumulation of toxic metabolites, leading to severe and sometimes fatal
hepatotoxicity and nephrotoxicity [2]. Ascorbic acid (AA) is a vitamin commonly present in many
biological systems and in multivitamin formulations. It is widely employed to provide an adequate
dietary intake and as an antioxidant [3]. Its excessive dose may cause headache, trouble sleeping,
gastrointestinal discomfort and flushing of the skin [4]. Uric acid (UA) is the primary product of
purine metabolism [5]. Continuous monitoring of UA in the body fluid is essential since its abnormal
concentration levels lead to several diseases, such as hyperuricemia and gout [6]. Other diseases,
such as leukemia and pneumonia are also associated with enhanced urate levels.

Sensors 2019, 19, 3286; doi:10.3390/s19153286 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5637-8120
https://orcid.org/0000-0002-5076-8136
https://orcid.org/0000-0002-1032-8611
http://www.mdpi.com/1424-8220/19/15/3286?type=check_update&version=1
http://dx.doi.org/10.3390/s19153286
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 3286 2 of 13

Sensors 2019, 19, x FOR PEER REVIEW 2 of 13 

 

 
Figure 1. Chemical structure of three studied compounds in this report (Acetaminophen, Ascorbic 
acid and Uric acid). 

Several analytical methods for individual or simultaneous determination of PA, AA and UA 
have been reported in the literature such as spectrofluorometry [7,8], spectrophotometry [9,10], 
chromatography [11,12], and capillary zone electrophoresis [13,14]. The problem is that these 
methods can be expensive and need complex procedures. For these reasons, the development of 
rapid, cheap and effective determination procedures is needed. One proposal to overcome this can 
be the development of electrochemical sensors [15]. This kind of devices provide some advantages, 
such as, low detection limits, wide linear response range, good stability and reproducibility. 

However, certain difficulties arise when the simultaneous determination of these three 
compounds is attempted. The oxidation peaks of PA, AA and UA are almost overlapping on 
traditional electrodes [16], which make their simultaneous determination highly difficult. One 
solution to solve the main drawback is the use of methods based on modified electrodes, which have 
fascinated many researchers due to their simplicity, high sensitivity, and low cost. In addition, this 
strategy allows some improvement based on electrocatalysis, liberation from surface fouling and 
prevention of undesirable reactions competing kinetically with the desired electrode process [17].  

Modified electrodes [18] can be prepared by several different techniques based on adsorbing, 
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with broad selectivity pattern, instead of a single, highly selective sensor. The use of this number of 
receptors in a combinatorial way is what permits to the animal senses to be effective in detecting 
thousands of different compounds or situations. In the field of chemical analysis, the main 
bioinspired systems take after three mammal senses: smell, taste and sight. Therefore, there have 
been reported electronic noses (EN) [26], eyes (EE) and tongues (ET) [27]. From these principles, the 
EN, formed by an array of sensors with slightly different response to generic compounds has been 
used for analysis in the gas phase and stands out its closeness to artificial olfaction. In the case of EE, 
there are also interesting advances reported in the literature. An example is the development of a 
bioinspired electronic white cane for blind people using whiskers multiple sensor principle for short-
range navigation and exploration [28]. 

Similar to the EN is the ET that, according to IUPAC [29], is defined as is a multisensor system, 
which consists of a number of low-selective sensors and uses advanced mathematical procedures for 
signal processing based on pattern recognition and/or multivariate data analysis. This analytical 
system applied to liquid analysis allows the generation of multidimensional information in 
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Several analytical methods for individual or simultaneous determination of PA, AA and UA
have been reported in the literature such as spectrofluorometry [7,8], spectrophotometry [9,10],
chromatography [11,12], and capillary zone electrophoresis [13,14]. The problem is that these methods
can be expensive and need complex procedures. For these reasons, the development of rapid, cheap and
effective determination procedures is needed. One proposal to overcome this can be the development
of electrochemical sensors [15]. This kind of devices provide some advantages, such as, low detection
limits, wide linear response range, good stability and reproducibility.

However, certain difficulties arise when the simultaneous determination of these three compounds
is attempted. The oxidation peaks of PA, AA and UA are almost overlapping on traditional
electrodes [16], which make their simultaneous determination highly difficult. One solution to
solve the main drawback is the use of methods based on modified electrodes, which have fascinated
many researchers due to their simplicity, high sensitivity, and low cost. In addition, this strategy
allows some improvement based on electrocatalysis, liberation from surface fouling and prevention of
undesirable reactions competing kinetically with the desired electrode process [17].

Modified electrodes [18] can be prepared by several different techniques based on adsorbing,
attaching specific molecules (e.g., peptides [19] or complexing agents [20,21]) to the surface by
self-assembled monolayer [22], coating and entrapment, e.g., is the form of conductive ink [23].
The last strategy has become interesting for electrochemists in recent times, because this deliberate and
controlled modification of the electrode surface can produce new surfaces with interesting properties
employed for new devices and applications in electrochemistry.

Nature has developed and optimized an impressive variety of sensing systems used for navigation,
spatial orientation, prey detection, object inspection, peer interaction, etc. which provide technologist
with inspiring ideas for new concepts for sensors or improvements within the field [24,25]. Illustrating
examples in chemical sensing is the development of electronic noses (EN) and electronic tongues (ET),
both sharing the concept of preferring a number of sensors (a sensor array) with broad selectivity pattern,
instead of a single, highly selective sensor. The use of this number of receptors in a combinatorial way
is what permits to the animal senses to be effective in detecting thousands of different compounds or
situations. In the field of chemical analysis, the main bioinspired systems take after three mammal
senses: smell, taste and sight. Therefore, there have been reported electronic noses (EN) [26], eyes (EE)
and tongues (ET) [27]. From these principles, the EN, formed by an array of sensors with slightly
different response to generic compounds has been used for analysis in the gas phase and stands out
its closeness to artificial olfaction. In the case of EE, there are also interesting advances reported in
the literature. An example is the development of a bioinspired electronic white cane for blind people
using whiskers multiple sensor principle for short-range navigation and exploration [28].

Similar to the EN is the ET that, according to IUPAC [29], is defined as is a multisensor system,
which consists of a number of low-selective sensors and uses advanced mathematical procedures for
signal processing based on pattern recognition and/or multivariate data analysis. This analytical system
applied to liquid analysis allows the generation of multidimensional information in combination with
chemometric processing, which allows extracting the maximum chemical information from these
complex data.
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In this way, biomimetic systems, in opposition of classical approaches, use the combination of low
selective and/or cross-responsive sensors to obtain rich and complementary analytical information.
Next, this complex, multi-dimensional information needs to be processed with proper data treatment
tools, which is accomplished with chemometrics. This coupling has been declared one of the ways of
progress in developing new sensing schemes [30]. There are different data processing tools depending
on the final application needed. If this is a qualitative goal, PCA is a suitable linear visualization/pattern
recognition method. This tool allows the reduction of the dimensionality of a multivariate problem and
facilitates the visualization of different categories of the multivariate profiles by remarking similarities
and differences between sample clusters. When the purpose is quantitative, different tools are available,
given the numeric information is the end result. Some of these are Principal Component Regression
(PCR), which departs from a first PCA transformation to build a multivariate regression, Partial Least
Squares Regression (PLS), or Artificial Neural Networks (ANNs) [31].

In the present work, an eight sensor integrated array of screen-printed electrodes has been
developed in base of a multiple screen-printed carbon electrode (SPCE) platform. The voltammetric
array, consisting of Graphite/SPCE-Ink, Prussian blue/SPCE-Ink, Cobalt (II) phthalocyanine/SPCE-Ink
and Copper oxide (II)/SPCE-Ink was employed for the simultaneous determination of the three
aforementioned compounds (PA, AA and UA) by using the Cyclic voltammetry (CV) technique.
This represents an example of resolving a mixture where heavily interfering signals are generated and
resolving its components is difficulted. In other words, it is shown how to detect simultaneously the
different analytes in presence of their interferents, which redox signals overlap. For showing these
aspects, firstly, the behavior of the sensors was evaluated separately for each compound; secondly,
peak current responses showed that all sensors had differentiated response for the three oxidizable
compounds of clinical interest. Finally, a response model was developed to determine mixtures of PA,
AA and UA at the µmol·L−1 level.

2. Materials and Methods

2.1. Chemicals and Reagents

All solutions were made up using sterilized Milli-Q water (Millipore, Billerica, MA, USA).
Cobalt (II) phthalocyanine (CoPc), Copper (II) oxide (CuO) nanopowder (<50 nm), Polypyrrole
doped (PP) and Palladium, powder submicron 99.9+% (Pd), which were used as modifiers, were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Prussian blue was from Acros Organics (Geel,
Belgium). The preparation of the ink composite was done using mesitylene and polystyrene, obtained
from Sigma-Aldrich (St. Louis, MO, USA). Graphite powder (particle size < 50 µm) was received
from BDH (BDH Laboratory Supplies, Poole, UK). Potassium chloride was purchased from Merck
(Darmstadt, Germany).

Acetaminophen (PA), Ascorbic acid (AA), Uric acid (UA) and hydrogen peroxide (H2O2) solution
were purchased from Sigma-Aldrich (St. Louis, MO, USA).

All the measurements were carried out using 50 mM phosphate buffer (PBS) solution and 0.1 M
KCl solution at pH 7.

2.2. Electronic Tongue

The voltammetric ET was formed by an integrated array of eight screen-printed electrodes as
working electrodes (8W110 Electrodes, ceramic substrate: 50 × 27 × 1 mm. and electric contacts
composed of silver) from DropSens (Oviedo, Spain). The electrochemical cell consisted on: 8 working
electrode (carbon, 2.95 mm diameter), auxiliary electrode (carbon) and pseudo reference electrode
(Silver) [32].

Electrochemical measurements were performed at room temperature (25 ◦C), using a portable
Multi Potentiostat/GalvanostatµStat 8000 from DropSens controlled through its Dropview Multichannel
5.5 software package. A complete Cyclic voltammogram was recorded for each sample and for each
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electrode by cyclic the potential between −1.5 and +1.5 V with a step potential of 9 mV and a scan rate
of 50 mV·s−1.

2.3. Modification of the Electrode Surface

The nanomaterial SPCE/modifier was produced in the form of a conductive ink-like composite.
The corresponding modifier, graphite and polystyrene were thoroughly mixed with mesitylene for 2 h
(Figure 2) using a magnetic stirrer. After that, 2 min of sonication was performed in order to obtain a
medium thick solution. The ink-like composite was dropped 5 µL onto the surface of a screen-printed
carbon electrodes (SPCE) and dried at 40 ◦C for at least 1 h in order to remove the solvent. Once the
sensor was prepared, the next step is an activation [33,34] in order to enhance sensing performances of
modified ink (Figure 3 displays the typical gain achieved after activation). Electrochemical activation
consisted of 10 repetitive voltammetric cycles at 50 mV·s−1 between 1.5 and −1.5 V using 10 mM H2O2

in phosphate buffer (pH 7). After activation, electrodes were rinsed with deionized water and dried
in air.
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Figure 3. Comparison of the Cobalt (II) phthalocyanine/SPCE-Ink before (scan 1) and after (scan 10)
the activation. Electrochemical activation consists of 10 repetitive voltammetric cycles at 50 mV·s−1

between 1.5 and −1.5 V using 10 mM H2O2 in phosphate buffer (pH 7). After activation, electrodes
were rinsed with deionized water and dried in air.



Sensors 2019, 19, 3286 5 of 13

2.4. Characterization by Scanning Electron Microscopy

The morphological characterization of the modified screen-printed electrode was performed
by Scanning Electron Microscopy (SEM). A scanning electron microscope with field emission gun
(FEG-SEM) of Zeiss, model MERLIN SM0087 was used.

2.5. Sample Preparation

According to the European Pharmacopoeia [35] the size of the data set needed for building the
calibration is dependent on interfering properties and the number of analytes that needs to be handled
in the model. In the majority of the cases, the size of the learning data set for calibration needs to be
large when the interfering variations are acquired randomly. However, when the major interferences
can be controlled they can be varied according to a statistical experimental design.

In this case, the second option was accomplished using a tilted factorial experimental design [36]
33 (27 samples) for the train subset. This tilted model consisted of a factorial design with a 45◦ rotation
in each axis. With this approach it is possible to avoid the repetition of numeric values. Meanwhile,
the validation of the constructed model was done with an external test set (12 samples), these were
distributed randomly within the experimental domain (0 to 500µmol·L−1) for each compound (Figure 4).
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(in black).

Samples were prepared in buffer solution (50 mM phosphate buffer solution at pH 7 containing
0.1 M KCl). Fresh stock solutions of pharmaceutical compounds were prepared the same day of the
measurements, in order to avoid/reduce the day-to-day variability.

2.6. Data Processing

The statistical treatment and data analysis were performed using routines developed by the
authors using MATLAB R2017a (MathWorks, Natick, MA, USA); in particular, the functionalities
“plsregress” from the Statistics and Machine Learning Toolbox, was the one employed for the response
model; the web page Clustvis [37] was the one used for PCA calculation; Sigmaplot (Systat Software
Inc., San Jose, CA, USA) was used to graphically represent and analyze the results.
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3. Results and Discussion

3.1. Characterization of the Surface

A SEM characterization was performed in order to investigate the spatial distribution of the
ink-nanoparticles and to verify if the particles were all on the external surface or in the inner layers.
As can be observed in Figure 5, the different modifiers are distributed quasi-homogeneous between the
graphite layers. The size of the nanoparticles is below 1 µm.
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3.2. Voltammetric Array Response

The four aforementioned modifications used to perform this work, were selected among six
modifications candidates (Graphite, Cobalt(II) phthalocyanine, Copper oxide (II), Prussian blue,
Polypyrrole doped and Palladium) to construct the sensor array. This selection facilitates the
modification in form of an ink. In addition, these nanomaterials are the ones with extended
experience in the laboratory (although used in a different electrode format, the epoxy-graphite
composites [38]). The behaviors of these sensors for each compound were evaluated individually.
Once the voltammograms were collected, a preliminary qualitative analysis was performed in order to
evaluate the complementary of the sensors. The chemometric tool used was PCA. The information
collected in this case to perform the PCA calculation was the unfolded data. If electrodes are redundant
they would appear superimposed in the PCA graph, while a different response will manifest in their
separation. As can be seen in Figure 6, each sensor showed performance in different regions. This fact
accomplishes a relevant role in the execution of the electronic tongue, justifying the good contribution
of the four prepared electrodes in the sensor array. In addition, this analysis made us discard from the
sensor array system the Palladium and Polypyrrole sensors, because they were not able to provide
distinction between the different substances (Figure 6). According to these criteria, the other modifiers
could be classified as good candidates because they provided a wide range of variability between
the substances. In addition, the vast majority of the signals were far away from zero, meaning they
provide useful information to the system.
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Figure 6. Score plot of the two components obtained after Principal Component Analysis (PCA)
analysis. Five replicates for each sensor were done determining the three compounds of interest:
Acetaminophen, Ascorbic acid and Uric acid.

After this pre-selection step, voltammograms for each of the selected electrodes towards individual
compounds were secondly evaluated. Two scans were performed choosing the second one to represent
the voltammetric response.

Therefore, following the conditions described in Section 2.1, a stock solution of 300 µmol·L−1

of these compounds was evaluated. As can be observed in Figure 7, slightly different signals were
obtained for the different compounds of interest, a necessary requirement for the performance of the
electronic tongue.
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Figure 7. Voltammetric response for Acetaminophen (PA), Ascorbic acid (AA) and Uric acid (UA) using
the four finally selected inks. (A) Cobalt (II) phthalocyanine/SPCE-Ink; (B) Prussian blue/SPCE-Ink;
(C) Graphite/SPCE-Ink; (D) Copper oxide (II)/SPCE-Ink. The range of potential was from −1.5 to 1.5 V.
The scan rate was 50 mV·s−1 and step rate of 9 mV. A 300 µmol·L−1 individual solution was employed
for the four modified screen-printed electrodes.
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3.3. Characterization of the Modified Integrated Screen-Printed Electrodes

3.3.1. Calibration Curves

To evaluate the behavior of each sensor for each compound separately, some calibrations curves
were performed using Cyclic voltammetry (CV) technique representing the peak height which
corresponds to the maximum of the oxidation signal. This kind of experiment is important to
determine the linear range and the maximum concentration of each compound for the final experiment
(electronic tongue).

As can be observed in Figure 8, the studied ranges were linear for all the compounds. Therefore,
for the ET development the concentration working range was from 0 to 500µmol·L−1 for Acetaminophen,
Ascorbic acid and Uric acid. The linear relationship and the calibration equations for each sensor are
represented in Table 1.
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Figure 8. Calibration curves for three replicates (n = 3) to determine the concentration working range for
the three compounds under study for the four modified screen-printed electrodes. (A) Acetaminophen,
(B) Ascorbic acid, (C) Uric acid.

Table 1. Calibration data (y vs. x) for the separate determination of Acetaminophen, Ascorbic acid and
Uric acid employing the integrated sensor array chosen.

Compounds Graphite Cobalt (II)
Phthalocyanine Copper Oxide (II) Prussian Blue

Acetaminophen y = 0.1234x +
2.6656 R2 = 0.993

y = 0.1057x + 2.7753
R2 = 0.991

y = 0.1749x −
4.0453 R2 = 0.997

y = 0.1696x +
7.5897 R2 = 0.984

Ascorbic Acid y = 0.0398x +
6.5307 R2 = 0.997

y = 0.0311x + 8.5678
R2 = 0.993

y = 0.0372x +
3.8868 R2 = 0.992

y = 0.0214x +
9.0457 R2 = 0.992

Uric Acid y = 0.1298x +
4.6275 R2 = 0.999

y = 0.0534x + 9.3828
R2 = 0.996

y = 0.1569x +
15.231 R2 = 0.988

y = 0.1074x +
7.6534 R2 = 0.995

3.3.2. Stability and Reproducibility Studies

After the calibration characterization, a stability and reproducibility study was done in order to
verify that the sensors were capable of supporting the number of measurements necessary for the
Electronic tongue (ET) development. The procedure used to analyze the durability/stability of the
sensors consisted on measuring a stock solution of Acetaminophen (165 µmol·L−1) 30 times. A blank,
in PBS solution, was inserted between each measurement to evaluate if the system was presenting
fouling effect.

In all cases, the four sensors showed stable responses with Relative Standard Deviation (%RSD) of
3.9%, 6.3%, 5.5% and 8.2% for Graphite, Copper oxide (II), Prussian blue and Cobalt (II) phthalocyanine
electrodes, respectively. No fouling effect was either observed in this study, when examining any trend
among the blanks.



Sensors 2019, 19, 3286 9 of 13

The next step was to study the reproducibility of construction of the ink-modified SPCE sensor.
The experiment was done preparing four sensors by triplicate (n = 3) and measuring consecutively
with an acetaminophen stock solution. The results for each sensor present a good reproducibility,
showing the best for the Prussian blue with a relative standard deviation (RSD) of 0.8% (Table 2).

Table 2. Reproducibility of construction of each sensor with the results of the relative standard
deviation (RSD).

Sensor RSD%

Graphite/SPCE-Ink 2.9
Cobalt (II) phthalocyanine/SPCE-Ink 7.5

Copper oxide (II)/SPCE-Ink 1.3
Prussian blue/SPCE-Ink 0.8

3.4. Qualitative Analysis: Principal Component Analysis (PCA)

Once the characterization was accomplished, a PCA was performed in order to evaluate the
discrimination power of the sensors (Figure 9). The information collected in this case to perform the
PCA calculation was the sensitivity of the calibration curves. Once it was confirmed that the different
electrodes presented a differentiated electrochemical behavior towards the different compounds under
study, allowing the detection for the three compounds, the next step was the characterization of the
sensor array chosen.
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results were obtained using the sensor array chosen.

3.5. Quantitative Analysis: Partial Least Squares (PLS) Regression

Once the qualitative analysis was completed, the data was processed in order to build a model
able to quantify each compound individually. As results of the high complexity of the data, it was
mandatory to use pretreatments that leads to less noisy and more homogeneous data interpretation.
Eventually, the Standard Normal Variate (SNV) [39] method was used as a pretreatment tool and the
Partial Least Squares (PLS) technique for the model building. SNV method allowed to reduce the
scatter effect of the measurements applying an easy mathematical process; it consists on the subtraction
of the measurement mean to the measure and followed by dividing the data by its standard deviation,
obtaining in this way a normalized base line for all the samples. A PLS1 approach was next employed,
in which one model with single output was built for each compound. The number of the latent
variables (LVs) [40] for each model were also optimized to achieve the lowest error possible and to
avoid the overfitting. The final PLS models were defined for eight components or latent variables (LVs)
for Acetaminophen and 7 LVs for the other two.
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In Figure 10 it can be observed the comparison of the obtained vs. expected results for training
sample set (dark dots), for each compound. In the same graph for each compound the testing sample
set (white dots) were projected, allowing the visualization of the feasibility of each model.
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The comparison general trend was expressed as the linear regression of the comparison line. As it
can be observed in Table 3, for all the studied compounds, the y-intercept and slope of the training
and testing test regressions include 0 and 1 respectively, taking into account their confidence interval
(95%). Regarding the correlation coefficients for all the regressions, they are close to 1. Therefore,
this satisfactory trend confirms the potential of the proposed approach.

Table 3. Results of the fitted regression curves for obtained vs. expected values, for the training
and testing subsets of samples and the three considered compounds (intervals calculated at the 95%
confidence level). NRMSE: normalized root mean square error.

Set Analyte R2 Slope Intercept
(µmol·L−1)

NRMSE

Acetaminophen 0.962 1.00 ± 0.09 0 ± 25 0.90
Training Set Ascorbic acid 0.955 1.00 ± 0.09 0 ± 25 0.97

(n = 27) Uric acid 0.940 1.00 ± 0.11 0 ± 31 1.12

Acetaminophen 0.915 1.02 ± 0.22 −13 ± 28 0.7
Testing Set Ascorbic acid 0.762 1.07 ± 0.42 −3 ± 54 1.41

(n = 12) Uric acid 0.829 1.04 ± 0.33 −32 ± 36 0.85

To evaluate also the fitting degree of the models the NRMSE parameter, Normalized Root Mean
Square Error, was calculated according to Equation (1).

NRMSE =

√∑
i(xexpected−xpredicted)

2

j·N−1

cmax − cmin
(1)

where xexpected is the theoretical concentration of the sample, xpredicted is the predicted concentration, j is
the number of analytes considered, N the number of samples, cmax is the maximum concentration and
cmin is the minimum concentration. All the information about the models are summarized in Table 3.

As can be observed, in practice, the test sample subset had the lowest NRMSE for the
Acetaminophen and Uric acid compound, so the predictive capabilities of the models performed in
satisfactory way. However, for the Ascorbic acid compound slightly larger values were obtained.
Regarding to the correlation coefficients, the better values were observed for the training sample set.
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Comparing these results with previous work [41] done in our group employing the same modifiers
but with different technology, in this case, the bulk modification of a graphite-epoxy composite electrode
(Table 4), we can highlight as a main conclusion that the results obtained are similar, showing a slight
improvement in the present report in terms of slope and intercept of the comparison lines. Accordingly,
the combination of the screen-printed integrated voltammetry array sensors and chemometric tools
allows the possibility to determine and quantify simultaneously a substance in the presence of other
ones with overlapping redox potential.

Table 4. Results of the fitted regression curves for obtained vs. expected values, for the training
and testing subsets of samples and the three considered compounds (intervals calculated at the 95%
confidence level) for the previous works [41].

Set Analyte R2 Slope Intercept
(µmol·L−1)

Acetaminophen 0.968 0.942 ± 0.031 32 ± 21
Training Set Ascorbic acid 0.947 0.933 ± 0.040 36 ± 25

(n = 33) Uric acid 0.923 0.873 ± 0.046 58 ± 25

Acetaminophen 0.848 0.895 ± 0.105 82 ± 71
Testing Set Ascorbic acid 0.908 0.919 ± 0.081 65 ± 41

(n = 15) Uric acid 0.753 0.871 ± 0.138 −8 ± 86

4. Conclusions

The presented work reported for a first time in our group the simultaneous voltammetric detection
of Acetaminophen, Ascorbic acid and Uric acid combining a multi screen-printed electrode integrated
array with advanced chemometrics. This study clearly illustrates one of the capabilities of the
biomimetc systems, concretely, ET. The ET strategy allowed the possibility, first to differentiate the
compounds, next, to determine and quantify simultaneously a substance in the presence of other ones
with overlapping redox potentials.

The samples were analyzed by combining the Cyclic voltammetry (CV) technique for extracting
the fingerprint of the individual substances and mixtures, coupled with chemometrics strategies, which
permitted the resolution of the overlapping signal and its identification.

The use of Principal Component Analysis (PCA) as qualitative tool was useful to determine
the capability of the sensors to distinguish the different compounds under study, while in a further
purpose resolution and quantification of ternary mixtures was achieved employing Partial Least
Squares Regression (PLS) model.

Therefore, this work demonstrates the advantages of screen-printed integrated electrochemical
sensors for on-field analysis results in a promising methodology that could substitute the classical
time-consuming, methods. Future works will try to detect these analytes in real pharmaceutical
study case.
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This work reports the use of modified screen-printed carbon electrodes (SPCEs) for the identification of three
drugs of abuse and two habitual cutting agents, caffeine and paracetamol, combining voltammetric sensing and
chemometrics. In order to achieve this goal, codeine, heroin and morphine were subjected to Square Wave
Voltammetry (SWV) at pH 7, in order to elucidate their electrochemical fingerprints. The optimized SPCEs elec-
trode array, which have a differentiated response for the three oxidizable compounds, was derived from
Carbon, Prussian blue, Cobalt (II) phthalocyanine, Copper (II) oxide, Polypyrrole and Palladium nanoparticles
ink-modified carbon electrodes. Finally, Principal Component Analysis (PCA) coupled with Silhouette param-
eter assessment was used to select the most suitable combination of sensors for identification of drugs of abuse
in presence of cutting agents.
1. Introduction

Heroin (3,6-diacetylmorphine, diamorphine, Fig. 1) is a potent syn-
thetic opiate drug synthesized by acetylation of morphine, typically
obtained from poppy seeds. The appearance of this illicit drug changes
from white (pure form) to dark brown due to impurities formed during
the manufacturing process or adulterants and cutting agents. The com-
mon impurities come from opium alkaloids or by-products from the
fabrication process (morphine, monoacetylmorphine, codeine, acetyl-
codeine, noscapine, papaverine or lead) [1–2]. Apart from impurities,
it is frequent in illegal commerce to adulterate the narcotic with some
cuttings agents; these can be pharmacologically inactive, just like sug-
ars or starch or, otherwise, with pharmacological activity such as
paracetamol, caffeine, phenobarbital, quinine, clenbuterol, procaine
or levamisole, among others [3]. In this work, two mentioned exam-
ples were used as cutting agents, paracetamol and caffeine, as certain
side-effects are considered for their choice. In the case of paracetamol,
it simulates the analgesic effect of heroin; in the case of caffeine, it
helps vaporizing heroin at lower temperature, facilitating its smoking.

Morphine (Fig. 1) is the opiate alkaloid which effectively causes
disruption in the central nervous system, that is why it is pharmacolog-
ically used to relieve pain in patients [4]. The interest of analysis of
this compound relies, first, in the monitoring of therapeutic levels in
patients. Secondly, the analysis of morphine is relevant for epidemio-
logical purposes of drug abuse control and also in forensic cases; in this
field it can be an evidence of heroin usage and can help identifying
causes of intoxication or death in situations of clinical and pathological
interest. Codeine (3-methylmorphine, Fig. 1) is a second main alkaloid
separated from opium. This drug is extensively used to treat mild to
moderate pain and for cough suppression in clinical practice. Despite
its medical applications, the abuse of this narcotic can also create
health risks.

The widespread use of illicit drugs has led to an increase effort
toward developing and improving methods for their detection per
example in a seizure of a smuggled consignment, or in biological sam-
ples, which is still a very challenging task from an analytical point of
view. Several analytical methods have been developed for individual
determination of these compounds such as capillary electrophoresis
[5–6] chemiluminescence [7–8], diffuse reflectance near-infrared
spectroscopy [9], high-performance liquid chromatography, gas chro-
matography [10] and surface plasmon resonance based on
immunosensors [11]. Drawbacks associated are the high costs and
time-consuming nature of these methods, accompanied by a need of
complex procedures such as sample pre-treatment step to obtain satis-
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Fig. 1. Chemical structure of the three drugs of abuse considered in this study (heroin, morphine and codeine) and their corresponding cutting agents
(paracetamol and caffeine).
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factory results. For these reasons, the development of cheap, effective,
rapid and simultaneous determination procedures in pharmaceutical
and illicit samples is still a big challenge in analytical chemistry.
One approach to overcome the above shortcomings can be the use of
electrochemical sensors, as most of these drugs of abuse are electroac-
tive substances. Electrochemical sensors may provide some advan-
tages, such as a cheap and simple use, low detection limits, wide
linear response ranges, good stability and reproducibility.

Electrochemical methods, in special voltammetry, have been
already used for individual determination of opiate alkaloids, because
of their advantages in applicability. However, certain difficulties arise
when the simultaneous determination of these three compounds is
attempted, due to the overlapping of the different voltammograms
obtained at traditional electrodes.

In this work, the alternative proposed to tackle the problem is the
use of modified electrodes [12], which have fascinated many research-
ers due to their simplicity, high sensitivity and low cost. This kind of
devices provides improvement based on electrocatalysis, avoiding
fouling effect and preventing undesirable reactions which can compete
kinetically with the desired electrode process [13]. Modified elec-
trodes can be prepared by different techniques based on adsorbing
or attaching specific molecules (e.g. peptides [14] or complexing
agents [15] to the surface; this may be achieved by self-assembled
monolayers [16], chemical grafting, coating and entrapment, e.g. in
the form of conductive ink [17]. The last strategy has become interest-
ing in recent times, because the deliberate and controlled modification
of the electrode surface can produce new surfaces with interesting
properties employed for new devices and applications in electrochem-
istry. As a further step in electrochemical sensing, a newly, nature-
inspired way to proceed, intended to enrich the usable departure infor-
mation has become popularized: in this, different electrodes may be
used in array form, work with them in parallel, and produce advanced
applications at insignificant increase of effort or cost [18]. This
approach will employ then a set of cross-sensitive, chemical sensors
that will provide a complex information-rich response from a sample.
This set of complex electrochemical signals generated are next pro-
cessed using intelligent chemometric algorithms (e.g., machine learn-
ing strategies) to allow for the qualitative identification or the
quantitative determination of the compounds [19]. As the main char-
acter of this work here is the qualitative identification of the com-
pounds considered, firstly, the multivariate data generated was
examined using Principal Component Analysis (PCA) [20]; this is nor-
mally the first strategy used to visualize similarity between samples.
From this PCA analysis, a first grouping of samples could be estab-
lished and a measure of clustering could be calculated using the Sil-
houette parameter [21].

The set of SPCE sensors to form the array considered the ensuing
six modifiers: Graphite-Ink, Prussian blue-Ink, Cobalt (II) phthalocya-
nine-Ink, Copper (II) oxide-Ink, Palladium nanoparticles-Ink and Poly-
pyrrole-Ink. In the procedure, these were incorporated one at a time in
the array in a step way manner, for which after PCA analysis and cal-
culation of the Silhouette parameter, the improvement of the latter
determined the benefits of including the contemplated sensor. In this
2

way, the best combination of electrodes to form the sensor array could
be defined from their actual performance in the identification of the
opioids and cutting agents. Eventually, some machine learning strate-
gies were tested and their performance examined, choosing finally a
K-nearest neighbor classifier (kNN) as the preferred algorithm.
2. Experimental

2.1. Chemical and reagents

Codeine and heroin were provided by the National Institute of
Criminalistics and Criminology (NICC, Belgium). Morphine hydrochlo-
ride, potassium monophosphate, potassium chloride and potassium
hydroxide were purchased from Sigma-Aldrich (Overijse, Belgium).
Cobalt (II) phthalocyanine (CoPc), Copper (II) oxide (CuO) nanopow-
der (<50 nm), Polypyrrole doped (PP) and Palladium, powder submi-
cron 99.9+% (Pd), which were used as modifiers, were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Prussian blue (PB) was
obtained from Acros Organics (Geel, Belgium). The preparation of
the ink composite was done using mesitylene and polystyrene,
obtained from Sigma-Aldrich (St. Louis, MO, USA). Graphite powder
(particle size < 50 µm) was received from BDH (BDH Laboratory Sup-
plies, Poole, UK). Potassium chloride was purchased from Merck
(Darmstadt, Germany).

All aqueous solutions were prepared using MilliQ water (R > 18
MΩ·cm-1). The reagents were of analytical reagent grade and used
without further purification. Fresh stock solutions were prepared the
same day of the measurements, to reduce day to day variability.
2.2. Instrumentation and apparatus

SWV measurements were performed using a Multi-channel Poten-
tiostat/Galvanostat/Impedance Analyzer (MultiPalmSens4, The
Netherlands) controlled by Multitrace software. ItalSens graphite
screen-printed electrodes containing a graphite working electrode
(3 mm diameter), a carbon counter electrode and a (pseudo)silver ref-
erence electrode (PalmSens, The Netherlands) were used for the mea-
surements, as received or after modification.
2.3. Modification of the electrode surface

The material used for the modification of the SPCE is a graphite-
based ink-like composite. The corresponding modifier, graphite and
polystyrene were thoroughly dispersed with mesitylene for 2 hours
[17]. After that, 2 minutes of sonication was performed in order to
obtain a medium thick solution. The ink-like composite was dropped
(1 μL) onto the surface (Fig. 2) of a graphite SPCE and dried at 40 °
C for at least 1 hour in order to remove the solvent and let the SPCE
operative.



Fig. 2. Scheme of the experimental procedure for the electrode surface modification. Firstly, an ink-like solution was prepared incorporating the corresponding
modifier. Then, 1 µL of ink was dropped on the electrode surface and dried a 40 °C.
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2.4. Characterization of the electrodes by scanning electron microscopy

The morphological characterization of the modified SPCE elec-
trodes was performed by Field Emission Gun-Scanning Electron Micro-
scope (FEG-SEM) of Zeiss, model MERLIN SM0087 and Energy
Dispersive X-Ray Analysis (EDX). Imaging was performed based on
secondary, back-scattered electrons.

2.5. Procedure

Samples were prepared in phosphate buffer 20 mM containing
100 mM KCl (PBS). This media was used as supporting electrolyte
for electrochemical measurements; its pH was adjusted to desired
value using a 100 mM KOH solution using a CyberScan 510 pH-meter
from Eutech Instruments (Landsmeer, The Netherlands) equipped with
a HI-1131 glass bodied pH electrode from Hanna Instruments (Bed-
fordshire, United Kingdom). SWV measurements were performed by
placing a volume of 50 µL of sample solution onto the printed part
of the SPCE, which was maintained in horizontal position. The tech-
nique employed for the determination of the considered substances
was Square Wave Voltammetry (SWV). The single scan SWV parame-
ters were as follows: potential range 0 V to 1.2 V, step potential
5 mV, amplitude 25 mV and frequency 10 Hz, as employed in former
studies in the laboratory [22].

2.6. Calculation of Silhouette parameter

PCA is a suitable linear visualization method of multivariate data,
that allows the reduction of the dimensionality of a multivariate prob-
lem and facilitates the visualization of the groupings of the multivari-
ate profiles by remarking similarities and differences between them,
forming sample clusters. PCA is very useful to identify these clusters,
but it is normally hard to interpret and to validate the grouping. For
this reason, the Silhouette calculation [21] was introduced as a mea-
sure of clustering, i.e. how easy is to distinguish between the clusters
associated to the different compounds. This strategy refers to a method
of interpretation and validation of consistency within clusters of data,
providing a numerical figure of how well each object matches its
cluster.

The Silhouette is based on the calculation of two parameters: a and
b. For each sample i, a(i) is the average distance between i and all
other samples within the same cluster. In the case of b(i) is the smallest
average distance of i to all samples in any other cluster, of which i is
not a member. Silhouette parameter is calculated then as:

s ið Þ ¼ b ið Þ � aðiÞ
max a ið Þ; bðiÞf g ð1Þ
3

Which can be also written as:

s ið Þ ¼
1� a ið Þ

b ið Þ ; if a ið Þ < bðiÞ
0; if a ið Þ ¼ bðiÞ

b ið Þ
a ið Þ � 1; if a ið Þ > bðiÞ

8>><
>>:

ð2Þ

The Silhouette value is a measure of how similar an object to its
own cluster (cohesion) compared to other clusters (separation). The
Silhouette ranges from −1 to +1, where a high value (close to +1)
indicates that the object is well matched to its own cluster. If most
samples have a high Silhouette value, then the clustering configuration
is appropriate. If many points have a low or negative value, then the
clustering configuration may have too many or too few clusters. The
average of the Silhouette parameter for the whole set of samples can
then be employed as an index to evaluate the overall clustering ability
of the selected sensor configuration, in a procedure to obtain the best
identification ability.

2.7. Data treatment

The web page Clustvis [23] was the tool used for online PCA calcu-
lation; Sigmaplot (Systat Software Inc., San Jose, CA, USA) was used to
graphically represent and analyze the results. Microsoft Excel 2016
and Orange open source programming language (University of Ljubl-
jana, Slovenia) [24–25] were used to perform some Silhouette calcula-
tions and to generate the identification models for which K-nearest
neighbor classifier (kNN), Random Forest, Naive Bayes and Support
Vector Machine (SVM) algorithms were employed and compared [26].

3. Results and discussion

This research depicts an intelligent sensor strategy, in which a
given opioid is identified, with the possibility of being confounded
by a cutting agent, and where the involved technique used is voltam-
metry. In short, the strategy combines the use of multiple sensor elec-
trochemistry to extract the fingerprint of each compound on each
sensor, followed by advanced data processing for interpreting the
multi-dimensional generated data.

The study started defining a procedure for the ink modification of
the SPCE with their initial characterization and operation. Next, the
sensor array was optimized by step by step systematic evaluation of
the incorporation of an additional sensor electrode, till maximum iden-
tification ability was achieved. To evaluate this, it was used PCA to
visualize clustering of target substances and how easily these could
be distinguished, together with calculation of a clustering metrics,
the Silhouette parameter, to provide a numeric criterion for the
optimization of the best sensor array configuration. Finally, kNN and
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additional classifiers were used as pattern recognition model to per-
form automatic identification of the substances considered in our
study case.
3.1. Characterization of the electrode surface

Characterization of the ink-modified working electrodes (WE)
employed in this work was done using microscopy studies and electro-
chemical techniques.

A SEM characterization was performed in order to investigate the
spatial distribution of the ink-nanoparticles and to verify if the
nanoparticles were all on the external surface or in the inner layers.
As can be observed in Fig. 3, the different modifiers are distributed
quasi-homogeneously between the graphite layers verifying the pres-
ence of the expected metals, on their respective inks through their
EDX spectra (Fig. 4); electrodes modified with Polypyrrole or unmod-
ified are not shown in the manuscript because of absence of distinctive
metallic signals. However, their spectra can be checked in the supple-
mentary material.

After microscopy studies, the effective surface area of bare and
modified electrodes was evaluated according to the Randles–Sevcik
equation (eq (3)) [27], where n is the number of transferred electrons
for the redox reaction (in this case 1), F is the Faraday’s constant
(96485 C·mol−1), c the concentration of electroactive substance
(mol·cm−3), A is the effective area in cm2, v the scan rate (V·s−1), R
the gas constant (8.314 J·mol−1·K−1), T the temperature in K and D
is the diffusion coefficient for ferrocyanide (6.32·10−6 cm2·s−1). For
that, CV experiments using 20 mM KH2PO4 and 100 mM KCl contain-
ing 5 mM [Fe(CN)6]3−/[Fe(CN)6]4− solution in the potential range of
−0.4 to 0.8 V were performed. Applying 7 different scan rates (0.01,
0.025, 0.05, 0.1, 0.2, 0.3 and 0.5 V·s−1) it could be calculated the
active area of each WE from the slope of the regression line of v1/2
(V·s−1) vs. Ip·c−1 (A·cm3·mol−1). The details of the performed voltam-
mograms can be found in Supplementary Info. Concerning the calcu-
lated active areas, these were: 11.7 mm2 for the bare electrode,
8.2 mm2 for Graphite/SPCE-Ink, 8.5 mm2 for Copper (II) oxide/
SPCE-Ink and 8.1 mm2 for Prussian blue/SPCE-Ink. 9.3 mm2 for Cobalt
(II) phthalocyanine/SPCE-Ink, 9.4 mm2 for Pd nanoparticles/SPCE-Ink
and 6.1 mm2 for Polypyrrole/SPCE-Ink, whereas the geometric area
was 7.1 mm2 (Ø=3 mm).
Fig. 3. SEM characterization of (A) Graphite/SPCE-Ink, (B) Cobalt (II) phthalocyan
Pd nanoparticles/SPCE-Ink and (F) Polypyrrole/SPCE-Ink.
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Summarizing, this section verifies the proper modification of the
electrodes via ink-deposit, showing a quasi-homogeneous distribution
of the metal nanoparticles between the graphite particles, and yielding
the different prepared electrodes comparable active surfaces.
3.2. Electrochemical response

The voltammetric responses for each of the modified screen-printed
electrodes were first evaluated towards the five individual compounds
(three drugs and two cutting agents), to assure that the generated sig-
nals were different enough for the desired application.

As a result, and as described under conditions in Section 2.5, indi-
vidual stock solutions of 300 µmol·L−1 of heroin, morphine, codeine,
paracetamol and caffeine in PBS at pH 7 were determined using
SWV. It was decided to perform the electrochemical measurements
at neutral pH because heroin and morphine undergo some hydrolysis
reactions at alkaline pH [3,28]. Measurements were done in random
sequence to avoid any structure in the signals.

Heroin gives rise to an irreversible oxidation split peak at +0.81 V
on SPCE at pH 7 due to the oxidation of the amino group, which is in
concordance with the literature [4,28–30]. An additional oxidation
peak was observed at a lower potential +0.40 V due to the oxidation
of the phenol group of 6-monoacetylmorphine (6-MAM) a trace con-
stituent present in the sample (typical content, 3 wt%). In detail, 6-
MAM is an impurity from heroin synthesis, resulting in the incomplete
acetylation of morphine and also a product of hydrolysis of the alka-
loid present in most heroin samples [1]. As can be seen in Fig. 5, the
peak corresponding to the oxidation of the phenol group of 6-MAM
and morphine is overlapped with the oxidation peak of paracetamol.
The same situation occurs between the second oxidation peaks of her-
oin and morphine with codeine, foreseeing a case with difficult signal
resolution.

As shown in Fig. 5, complex and highly overlapped signals are
obtained along the whole voltammograms and with the different sen-
sors considered. The fingerprint of each compound from a single sen-
sor is not enough information, which can represent a limitation for the
identification of the considered substances alone. For better assess-
ine/SPCE-Ink, (C) Copper (II) oxide/SPCE- Ink, (D) Prussian blue/SPCE-Ink (E)



Fig. 4. EDX analysis of (A) Cobalt (II) phthalocyanine/SPCE-Ink, (B) Copper oxide (II)/SPCE-Ink, (C) Prussian blue/SPCE-Ink and (D) Pd nanoparticles/SPCE-Ink.
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ment, a chemometric assay was further done: PCA was carried out to
better evaluate mathematically the similarities and the complementar-
ities between the voltammetric responses of the compounds of interest.

3.3. Selection of the working electrodes using Principal ComponentAnalysis
strategies

Once the voltammograms of the five compounds of interest under
study were collected with the six modified screen-printed electrodes,
a PCA was performed. Each sample was measured in four replicates
to check any drift or memory effect in electrodes. The complete set
of samples were measured in random order, to roll out any structure
in the data. The information gathered in this case to perform the math-
ematical calculation was one voltammogram per each sample, and per
each electrode, and strategy was to check for similarities and differ-
ences among these. With PCA strategy it is expected that the redun-
dant electrodes (electrodes that contribute with the same
information) would appear superimposed in the scores space, while
electrodes with different responses will manifest in distinction in it.
Moreover, this strategy may allow to detect if electrodes can discrim-
inate the studied compounds and how similar are the replicates of one
sample.

The scores of samples corresponding to the two first principal com-
ponents (PC) (the coordinates of each sample/electrode combination
in the new space defined by the transformation defined for the PCA)
for the five compounds of interest are represented in Fig. 6. In
5

Fig. 6A, it can be seen that the major part of the variability among
the samples, the most relevant information is explained for PC1
(81.1%). In this plot, it is clear to observe that Polypyrrole (PP) dom-
inated the response in comparison with the other modifiers, also with
a high dispersion for the replicas, distorting all the system. This argu-
ment was applied to discard it from the set of modified electrodes. The
discrepancies in the voltammograms for this electrode can be also
observed in Fig. 5D. In there, the voltammogram from the PP modified
ink did not show very different shapes for the different compounds
under study, on the contrary, a high non-specific variability, e.g. the
baseline was observed. For all the mentioned reasons, a refinement
of the calculation was performed removing the PP modified electrode
to evaluate the rest of candidates. The results are shown in Fig. 6B. As
it can be seen, the relevant information of the samples using the two
first PCs made 60.7% of the total variability. Regarding to this plot,
it is possible to notice that the purple sensor samples, which corre-
spond to the Prussian blue (PB) modifier, presented large dispersion
in comparison with the others, mainly a lack of stability in the voltam-
metric responses. Because of this inconsistence, the Prussian blue mod-
ifier was also discarded from the system. These undesired features can
be observed in the different elongated purple clusters (symbol shape
replicas) shown in Fig. 6B.

At this point, a new PCA was calculated with the remaining four
modifier inks: Carbon, Cobalt phthalocyanine (II), Copper (II) oxide
and Pd nanoparticles (Fig. 7A). Applying the previous criteria
commented for the PP and PB modifiers, it was decided to remove



Fig. 5. Voltammetric response for Heroin (pink), Morphine (purple), Codeine (blue), Paracetamol (black) and Caffeine (red) using the six modified electrodes. (A)
Graphite/SPCE-Ink; (B) Cobalt (II) phthalocyanine/SPCE-Ink; (C) Pd nanoparticles/SPCE-Ink; (D) Polypyrrole/SPCE-Ink; (E) Copper (II) oxide/SPCE-Ink; (F)
Prussian blue/SPCE-Ink. SWV measurements were performed by placing 50 µL solution onto SPCE. The single scan SWV parameters were as follows: potential
range 0 V to 1.2 V, step potential 5 mV, amplitude 25 mV and frequency 10 Hz. The scan rate was 50 mV·s−1. A 300 µmol·L−1 individual solution was employed
for the six modified screen-printed electrodes.

Fig. 6. Score plot of the two components obtained after PCA analysis. 4 replicates for each sensor were done determining the five compounds of interest: heroin,
morphine, codeine, paracetamol and caffeine with a concentration of 300 µmol·L−1. (A) Use of an array with six SPCEs: Graphite/SPCE-Ink; Cobalt (II)
phthalocyanine/SPCE-Ink; Copper oxide (II)/SPCE-Ink; Prussian blue/SPCE-Ink; Pd nanoparticles/SPCE-Ink and Polypyrrole/SPCE-Ink. (B) Use of the optimized
sensor array: Graphite/SPCE-Ink; Cobalt (II) phthalocyanine/SPCE-Ink; Copper oxide (II)/SPCE-Ink; Prussian blue/SPCE-Ink and Pd nanoparticles/SPCE-Ink.
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the Copper (II) oxide electrode from the sensor array. This sensor pre-
sented some drift among the four replicates of almost all the studied
compounds (like PP and PB), causing a distortion in the clusters of
the pure compounds. But at this point, the PCA strategy was able to
differentiate clearly the cutting agents and the drugs of abuse (see
how the symbols group together in Fig. 7A and 7B. Finally, the last
PCA with the three modifiers selected is shown in Fig. 7B. As it can
be observed, these candidates showed different response towards the
studied molecules, and with limited dispersion, facilitating the assign-
ment of substances to its class.
6

3.4. Optimization of the sensor array from the Silhouette parameter

Once a first assessment of sensors was done, the final optimization
was developed, in this case with use of an objective numeric criteria.
This second part consisted to determine which combination of the
selected sensors is more suited to obtain the best performance in the
identification of the studied compounds. To reply this question, a
new strategy, which was the calculation of the Silhouette parameter
as a measure of the clustering degree was applied for the first time
in our group to deal with the problem. And from this point here, the



Fig. 7. Score plot of the two components obtained after PCA analysis. 4 replicates for each sensor were done determining the five compounds of interest: heroin,
morphine, codeine, paracetamol and caffeine with a concentration of 300 µmol·L−1. (A) With the 4 SPCE array: Graphite/SPCE-Ink; Cobalt (II) phthalocyanine/
SPCE-Ink; Pd nanoparticles/SPCE-Ink; Copper (II) oxide/SPCE-Ink. (B) With the 3 SPCE array: Graphite/SPCE-Ink; Cobalt (II) phthalocyanine/SPCE-Ink and Pd
nanoparticles/SPCE-Ink.

Fig. 8. Score plot of the two first components obtained after PCA analysis of information provided by each single SPCE electrode. A total of 20 samples were
analyzed corresponding to quadruplicate determination of 300 µmol·L−1 of heroin, morphine, codeine, paracetamol and caffeine, using: (A)Graphite/SPCE-Ink,
(B) Cobalt (II) phthalocyanine/SPCE-Ink, (C) Copper (II) oxide/SPCE-Ink, (D) Prussian blue/SPCE-Ink, (E) Pd nanoparticles/SPCE-Ink and (F) Polypyrrole/SPCE-
Ink.
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complete set of voltammograms from a given sample, as determined
by the specific sensors forming the array, was used for the data pro-
cessing. The first step for this was to do the unfolding of the data,
i.e. the different voltammograms corresponding to a sample were con-
catenated in a unique column and used as available information for the
processing. This is the usual way to cope with this limitation of PCA,
which works vectorially, not matrix-like [31]. Alternatively, there
are N-way alternatives to this treatment, but are much less spread in
the field, and are of more difficult use [32].
7

With this multiple information approach, a first PCA analysis was
done, which performed an initial, unsupervised clustering of the data
according to their similarity in the multivariate space. Next, the Sil-
houette parameter was calculated to assess the goodness of the accom-
plished clustering, whereas a better clustering will embrace an easier
identification of a given sample. In fact, the Silhouette calculation pro-
vides a parameter for each sample, based on a(i) and b(i), which shows
the intra-cluster compared with the inter-cluster variability. In this
way, it is possible to quantify numerically which cluster is better



Table 1
Average of Silhouette parameter for the stepwise optimization of the sensor
array.

Number of SPCE in the array Modified SPCE in the array Silhouette parameter
1 C

CoPc
CuO
PB
Pd
PP

+0.849*
+0.735
+0.640
+0.328
+0.817
+0.041

2 C-CoPc
C-Pd
CoPc-Pd

+0.841
+0.863*
+0.848

3 C-CoPc-Pd +0.877*

* Optimal configuration obtained after systematic evaluation on each step.
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discriminated in comparison with all the clusters involved in the sys-
tem. It is important to highlight that the data collected to perform this
kind of analysis were the scores of the two first principal components
(PC1 and PC2) obtained previously in the PCA score graphs from the
unfolded voltammograms data. This treatment is useful to reduce the
dimensionality in the case of voltammetric data; essentially it just
transforms the voltammograms from a multidimensional matrix to a
2D matrix with condensed and simplified info.

Therefore, the procedure to afford this case was the calculation of
the Silhouette parameter for different situations, in the stepwise strat-
egy for the optimization of the sensor array. Firstly, the calculation
was done for each sensor individually, that is, from the six sensors pre-
pared initially.

As it can be observed in PCA score plots on Fig. 8, the sensors
which produced worst clustering were CuO, PB and PP. This fact can
be verified with the calculation of the Silhouette parameter, as summa-
rized in Table 1. In this case, the three electrodes mentioned presented
the worst Silhouette parameter with values of +0.640 for CuO,
+0.328 for PB and +0.041 for PP. This first assessment, showing that
best option with a single sensor is using the SPCE with graphite ink,
yielded an average Silhouette parameter of +0.849. With this infor-
mation, it is important to remark that with any of the three sensors
alone (C, CoPc and Pd) the identification application could be carried
out, since the Silhouette parameter can be considered acceptable.
However, our primary objective is to complement the information
from different sensors in an electronic tongue approach to improve
final performance and reach a better degree of clustering. This may
be of help in scenarios with unfavorable S/N ratio, as would be the
case with lower concentration of the species sought, or with additional
interference effects. Therefore, in the stepwise process, a second elec-
trode is incorporated in the array, and the Silhouette parameter is cal-
culated to provide the best combination of sensors from the set C, CoPc
and Pd.
Fig. 9. Score plot of the two first components obtained after PCA analysis. A total
300 µmol·L−1 of heroin, morphine, codeine, paracetamol and caffeine, with pair o
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The results of these combinations are collected in Fig. 9 . Appar-
ently, the visualization of the clusters for the different compounds in
the three cases is quite good, so the crucial argument to decide which
combination is the most suitable for the case of study is the Silhouette
parameter. As it can be observed in Fig. 9, the global clustering for the
three cases is largely similar, showing the best combination for the
couple C + Pd with a calculated s of +0.863 (Fig. 9B). To finally take
the decision, the last possibility combining the three modified sensors
was evaluated. The PCA obtained for the combination using three
SPCE sensors, and s=+0.877 is shown in Fig. 10B.

As a result, it can be concluded that the use of the combination of
the modifying inks with these three modifiers allowed the optimal
individual determination of the compounds under study. As it can be
observed in Fig. 10B, the different sensors proportionated the particu-
lar response toward the individual compounds, showing five clusters,
with close grouping, and clear differentiation. The PCA obtained is
appropriate, representing the relevant information between PC1 and
PC2 with a variance of 76.5%. The average Silhouette parameter
finally obtained, +0.877 is a high value, and close to the highest
attainable value, +1.00, forecasting an easy identification in the final
‘intelligent’ identification of the selected compounds. It is also clear
that the information provided by the combination of the three modi-
fiers previously commented is very similar to the combination of gra-
phite and Pd nanoparticles with a Silhouette global parameter
of +0.863, and a simpler setup of only two sensors in the array. For
future applications, it was decided to maintain Pd in the sensor array
in order to collect the information it provided. As it can be seen in
Fig. 7B, the electrochemical response proportionated by this modifier
sensor supplied differentiated response (grey points in a rather sepa-
rate region) in comparison with the remaining working electrodes.
The performed analysis would be also a base criterion to ascertain if
the application can be performed with just a single sensor (the one
with graphite ink, in this case), or the complexity involved in the
use of a sensor array balances the obtained gains. Lastly, the use of
CoPc alone was completely discarded exhibiting a value of Silhouette
global parameter of +0.735.
3.5. K-nearest neighbor classifier

To conclude the final section of this study, a kNN classifier method
was used to perform the final automated and intelligent operation.
KNN [33] is one of the most fundamental and simple unsupervised
classification methods and should be one of the first choices for a clas-
sification study when there is little or no prior knowledge about the
distribution of the data. KNN just stores all the available cases and
classifies the new data or case based on a similarity measure. The only
parameter to tune is the number of closest neighbors to consider (the
variable k) which can be obtained examining which is the best perfor-
of 20 samples were analyzed corresponding to quadruplicate determination of
f SPCE electrodes: (A) C-CoPc, (B) C-Pd (C) CoPc-Pd.



Fig. 10. (A) Silhouette plot for the different samples considered using the best combination of three SPCE sensors (C-CoPc-Pd). (B) Score plot of the two
components obtained after PCA analysis. A total of 20 samples were analysed corresponding to quadruplicate determination of 300 µmol·L−1 of heroin, morphine,
codeine, paracetamol and caffeine using the three SPCE sensors.

Table 2
Confusion matrix after applying the kNN algorithm, using leave-one-out cross-validation and k = 4.

Predicted

Actual Heroin Morphine Codeine Paracetamol Caffeine Σ
Heroin 4 0 0 0 0 4
Morphine 0 4 0 0 0 4
Codeine 0 0 4 0 0 4
Paracetamol 0 0 0 4 0 4
Caffeine 0 0 0 0 4 4
Σ 4 4 4 4 4 20

Table 3
Results of the statistical calculation using some machine learning strategies as kNN (k = 4), Forest, Naive Bayes and SVM employing leave-one-out cross-validation.

Model Compound Classification accuracy Precision Sensitivity Specificity

kNN Heroin 1.0 1.0 1.0 1.0
Morphine 1.0 1.0 1.0 1.0
Codeine 1.0 1.0 1.0 1.0
Paracetamol 1.0 1.0 1.0 1.0
Caffeine 1.0 1.0 1.0 1.0

Random Forest Heroin 1.0 1.0 1.0 1.0
Morphine 1.0 1.0 1.0 1.0
Codeine 1.0 1.0 1.0 1.0
Paracetamol 1.0 1.0 1.0 1.0
Caffeine 1.0 1.0 1.0 1.0

Naive Bayes Heroin 1.0 1.0 1.0 1.0
Morphine 1.0 1.0 1.0 1.0
Codeine 1.0 1.0 1.0 1.0
Paracetamol 1.0 1.0 1.0 1.0
Caffeine 1.0 1.0 1.0 1.0
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mance when k is varied. In this particular case, the number of inte-
grands in the cluster is known beforehand, as it corresponds to the
number of replicas of each substance tested, k = 4.

Table 2 shows the confusion matrix of the identification accom-
plished. Cross validation of the identification model was done with
the leave one out variant, as there were not many samples in the data
set. With these excellent identification performance, statistic indica-
tors of goodness of identification were also excellent in all instances,
with indicators of classification accuracy, precision, sensitivity and
specificity, all 100%. Additional machine learning strategies were
tested in order to compare the obtained results. The identification
algorithms tested were Random Forest, Naive Bayes and Support Vec-
tor Machines (SVM). As it can be observed in Table 3, Random Forest
9

and Naive Bayes produce proper results in all the indicators previously
mentioned. In the case of SVM, certain degree of misclassification of
particular samples is observed, specifically heroin and horphine. In
other words, the vast majority of algorithms employed demonstrated
a correct identification of the samples, thanks to the excellent degree
of clustering achieved by the optimized sensor system.
4. Conclusions

The presented work reports for a first time the qualitative analysis
for the determination of the following drugs of abuse: heroin, mor-
phine and codeine and their corresponding cutting agents (caffeine
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and paracetamol) combining the use of modified screen-printed elec-
trodes with chemometrics tools, in what has been named a multisen-
sory analysis system or electronic tongue approach.

The samples were analyzed by SWV technique for extracting the
fingerprint of the individual substances, coupled with advanced data
treatment such as PCA and Silhouette parameter calculation. The use
of PCA allowed firstly the pre-selection of the best sensors to define
the candidates for the sensor array and secondly, after calculation
of the Silhouette parameter, permitted its accurate optimization,
showing the most suitable combination of working electrodes. Thanks
to the application of both tools, the final combination selected was
with electrodes modified with Graphite, Cobalt (II) phthalocyanine
and Pd nanoparticle inks. With the optimized sensor array, different
identification models were tested demonstrating that kNN could be
easily developed, and showing performance among the best.

The reported work demonstrates the advantages of the modifica-
tion through an ink-like solution composite of screen-printed electro-
chemical sensors for on-field analysis results in a promising
methodology that could substitute the classical time-consuming meth-
ods. Future works are directed to equivalent case studies, but with
quantification purposes of arbitrary mixtures of opioids and cutting
agents.
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Figure S 1. (A) Cyclic voltammetry of 5 mM K3Fe(CN)6/K4Fe(CN)6 redox couple in 0.1 

M KCl varying scan rate from 0.01 V/s to 0.5 V/s using Graphite/SPCE-Ink. The range 

potencial was from -0.4 V to 0.4 V with a step potential of 0.005 V. (B) Regression line of 

v1/2 (V·s-1) vs. Ip·c-1(mol·cm3). 

 

 

Figure S 2. (C) Cyclic voltammetry of 5 mM K3Fe(CN)6/K4Fe(CN)6 redox couple in 0.1 

M KCl varying scan rate from 0.01 V/s to 0.5 V/s using Copper oxide (II)/SPCE- Ink. The 

range potencial was from -0.4 V to 0.4 V with a step potential of 0.005 V. (D) Regression 

line of v1/2 (V·s-1) vs. Ip·c-1(mol·cm3). 
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Figure S 3. (E) Cyclic voltammetry of 5 mM K3Fe(CN)6/K4Fe(CN)6 redox couple in 0.1 

M KCl varying scan rate from 0.01 V/s to 0.5 V/s using Prussian blue/SPCE-Ink. The range 

potencial was from -0.4 V to 0.4 V with a step potential of 0.005 V. (F) Regression line of 

v1/2 (V·s-1) vs. Ip·c-1(mol·cm3).  

 

Figure S 4. (G) Cyclic voltammetry of 5 mM K3Fe(CN)6/K4Fe(CN)6 redox couple in 0.1 

M KCl varying scan rate from 0.01 V/s to 0.5 V/s using Cobalt (II) phthalocyanine/SPCE-

Ink. The range potencial was from -0.4 V to 0.4 V with a step potential of 0.005 V. (H) 

Regression line of v1/2 (V·s-1) vs. Ip·c-1(mol·cm3). 
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Figure S 5. (I) Cyclic voltammetry of 5 mM K3Fe(CN)6/K4Fe(CN)6 redox couple in 0.1 

M KCl varying scan rate from 0.01 V/s to 0.5 V/s using Pd nanoparticles/SPCE-Ink. The 

range potencial was from -0.4 V to 0.4 V with a step potential of 0.005 V. (J) Regression line 

of v1/2 (V·s-1) vs. Ip·c-1(mol·cm3).  

 

Figure S 6. (K) Cyclic voltammetry of 5 mM K3Fe(CN)6/K4Fe(CN)6 redox couple in 0.1 

M KCl varying scan rate from 0.01 V/s to 0.5 V/s using Polypyrrole/SPCE-Ink. The range 

potencial was from -0.4 V to 0.4 V with a step potential of 0.005 V. (L) Regression line of 

v1/2 (V·s-1) vs. Ip·c-1(mol·cm3). 
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Table 1. Composition of A 

Element App Intensity Weight% Weight% Atomic%  

    Conc. Corrn.   Sigma    

C K 99.84 2.0878 77.10 1.50 84.05  

N K 4.17 0.4414 15.25 1.28 14.25  

Co L 3.07 0.6480 7.65 1.13 1.70  

       

Totals   100.00    

 

Table 2. Composition of B 

Element App Intensity Weight% Weight% Atomic%  

    Conc. Corrn.   Sigma    

C K 35.10 1.7012 38.89 1.06 67.91  

O K 15.02 2.3300 12.15 0.67 15.93  

Cu L 20.20 0.7779 48.96 1.13 16.16  

       

Totals   100.00    

 

Table 3. Composition of C 

Element App Intensity Weight% Weight% Atomic%  

    Conc. Corrn.   Sigma    

C K 71.40 1.9474 41.90 1.06 60.62  

N K 11.43 0.6381 20.48 0.95 25.41  

O K 5.01 1.9559 2.93 0.35 3.18  

Fe L 21.59 0.7112 34.70 1.34 10.80  

       

Totals   100.00    

 

Table 4. Composition of D 

Element App Intensity Weight% Weight% Atomic%  

    Conc. Corrn.   Sigma    

C K 3.27 2.2516 58.12 1.50 92.48  

Pd L 0.80 0.7701 41.88 1.50 7.52  

       

Totals   100.00    



6 

 

 

 
Figure S 8. EDX for polypyrrole. 
 

Table 5. Composition of polypyrrole. 

Element App Intensity Weight% Weight% Atomic%  

    Conc. Corrn.   Sigma    

C K 105.87 2.1568 97.99 0.37 98.49  

O K 1.56 1.5539 2.01 0.37 1.51  

       

Totals   100.00    
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Figure S 9. EDX for unmodified electrode. 

 

Table 6. Composition of unmodified electrode. 

Element App Intensity Weight% Weight% Atomic%  

    Conc. Corrn.   Sigma    

C K 141.10 2.1528 96.81 0.44 97.59  

O K 3.38 1.5638 3.19 0.44 2.41  

       

Totals   100.00    
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A R T I C L E  I N F O   

Keywords: 
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Voltammetric sensors 
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Partial-least squares regression 

A B S T R A C T   

In the present work, the resolution and quantification of mixtures of different opiate compounds in the presence 
of common cutting agents using an electronic tongue (ET) is evaluated. More specifically, ternary mixtures of 
heroin, morphine and codeine were resolved in the presence of caffeine and paracetamol. To this aim, an array of 
three carbon screen-printed electrodes were modified with different ink-like solutions of graphite, cobalt (II) 
phthalocyanine and palladium, and their responses towards the different drugs were characterized by means of 
square wave voltammetry (SWV). Developed sensors showed a good performance with good linearity at the µM 
level, LODs between 1.8 and 5.3 µM for the 3 actual drugs, and relative standard deviation (RSD) ca. 2% for over 
50 consecutive measurements. Next, a quantitative model that allowed the identification and quantification of 
the individual substances from the overlapped voltammograms was built using partial least squares regression 
(PLS) as the modeling tool. With this approach, quantification of the different drugs was achieved at the μM level, 
with a total normalized root mean square error (NRMSE) of 0.084 for the test subset.   

1. Introduction 

The consumption and trafficking of illicit drugs have increased 
significantly over the last years, creating a negative impact in people’s 
health and in the economy, while contributing to an increase of crimi
nality [1]. The increase in consumption and trafficking has also enriched 
the illicit drug markets, which are powerful systems of production and 
distribution that generate large amount of unwanted activities [2]. In 
this direction, the rapid detection of illicit drugs to disarticulate such 
markets and safeguard the public still remains a challenge for 
authorities. 

The main drawbacks posed by currently used on-site methods for the 
detection of illicit drugs and their precursors are the low accuracy of 
color tests, or the high cost and low portability of spectroscopic tests. In 
the light of the pressing need for better drug test systems at border 
controls, BorderSens project [3] aims to establish the basis for the 
development of a portable device capable to quickly test for different 
drugs, precursors and cutting agents, with outstanding accuracy and 
reduced false positives and false negatives. However, given the chal
lenge that such a task represents, the quantitative analysis of opiates 

mixtures is investigated herein as a proof-of-concept of what can be 
achieved. 

In the USA, the Controlled Substances Act (CSA) defines five classes 
of drugs: narcotics, depressants, stimulants, hallucinogens and anabolic 
steroids [4]. Among those, narcotics (also known as “opioids”) represent 
one of the biggest health and economic burden, accounting 63% of 
deaths by drug overdose in the USA in 2015 and nearly 70% in 2018 [5, 
6]. A particular class of opioids are opiates, which originate or are 
derived from naturally occurring alkaloids found in certain poppy spe
cies, specifically Papaver somniferum [7]. Common opiates include 
opium, heroin, morphine and codeine. 

Several alternate methods for the individual and simultaneous 
determination of opiates have been reported in the literature. Those are 
based on common analytical techniques such as chromatography [8,9], 
capillary electrophoresis [10,11], chemiluminescence [12,13], diffuse 
reflectance near-infrared spectroscopy [14] or surface plasmon reso
nance (SPR) based immunosensors [15]. Despite being powerful, these 
techniques present some disadvantages that hinder their application for 
the on-site drug monitoring, like requiring a sample pre-treatment step 
and/or laboratory facilities (low portability), being time-consuming and 
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quite costly (both from the equipment and reagents side). 
In this regard, the use of electrochemical sensors represents a 

promising alternative which may allow to overcome these limitations. 
These devices can be used as powerful analytical tools for the analysis of 
illicit substances from street and biological samples as they offer low- 
cost measurement systems with rapid response, simple usage and high 
portability; all of them required characteristics for point-of-use forensic 
applications. Despite the advantages that electrochemical methods may 
offer, the simultaneous determination of the aforementioned com
pounds can be challenging given their similar electrochemical response 
and the complexity of the samples [16]. Precisely, the main drawback is 
that, when using bare electrodes, there might be some overlapping be
tween peaks, or even peak suppression [17]. Actually, the most 
complicated situation is the discrimination between heroin and 
morphine, since both molecules present the same functional groups in 
their skeleton and consequently, their corresponding fingerprint is quite 
similar. To overcome this difficulty, modification of the electrochemical 
sensors may be required, but it might also be necessary to couple these 
techniques with other strategies such as the use of chemometrics; a 
combination that is known as electronic tongue (ET) [18,19]. 

According to the IUPAC [20], an ET is defined as “a multisensor 
system, which consists of a number of low selective sensors and uses 
advanced mathematical procedures for signal processing based on 
pattern recognition and/or multivariate data analysis”. These bio
mimetic systems, in opposition to classical approaches, are based on the 
combination of low selective and/or cross-responsive sensors to obtain 
rich and complementary analytical information. Next, the coupling with 
chemometric tools to analyse the data allows to deconvolute complex 
overlapping electrochemical responses and achieve the simultaneous 
quantitative determination of several analytes. Thus, such an approach 
allows to extract meaningful chemical information from these complex 
data. 

In the present work, the capabilities of ET-based systems in forensic 
applications will be demonstrated by attempting the simultaneous 
determination of three opiates (heroin, morphine and codeine) in the 
presence of two common cutting agents (paracetamol and caffeine). The 
chosen voltammetric sensor array consisted of three screen-printed 
carbon electrodes (SPCE) modified with graphite, cobalt (II) phthalo
cyanine and palladium inks, and square wave voltammetry (SWV) was 
the measuring technique. Firstly, the behavior of the sensors towards 
each of the compounds was evaluated individually, characterizing its 
analytical response . Secondly, a partial least square regression (PLS) 
model for their simultaneous quantification at the µM level was built 

from the measured voltammograms. 

2. Experimental 

2.1. Reagents and samples 

Standards of heroin hydrochloride and codeine were purchased from 
Chiron Chemicals, Australia. Morphine hydrochloride, potassium 
monophosphate, potassium chloride and potassium hydroxide were 
purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Cobalt(II) phthalocyanine (CoPc) and palladium powder (< 1 µm, ≥
99.9%; Pd), which were used as modifiers, as well as mesitylene and 
polystyrene, which were used for the preparation of the ink composite, 
were also obtained from Sigma-Aldrich (St. Louis, MO, USA). Graphite 
powder (particle size < 50 µm) was received from BDH (BDH Laboratory 
Supplies, Poole, UK). 

Samples were prepared in 20 mM phosphate buffer (PBS) at pH 7.0 
containing 100 mM KCl as supporting electrolyte for the electrochemical 
measurements. All aqueous solutions were prepared using MilliQ water 
(ρ > 18.2 MΩ cm). All reagents were of analytical grade and used 
without further purification. Fresh stock solutions were prepared daily 
in order to prevent its degradation. 

2.2. Apparatus and voltammetric measurements 

SWV measurements were performed using a multi-channel poten
tiostat/galvanostat/impedance analyzer MultiPalmSens4 (PalmSens, 
Houten, The Netherlands) controlled by MultiTrace software. ItalSens 
screen-printed carbon electrodes (SPCE) containing a graphite working 
electrode (3 mm diameter), a carbon counter electrode and a pseudo- 
silver reference electrode (PalmSens, The Netherlands) were used for 
the measurements. SWV measurements were performed by placing 50 
µL of the sample onto the SPCE. The single scan SWV parameters were as 
follows: potential range from − 0.2 to 1.5 V, step potential of 5 mV, 
amplitude of 25 mV and frequency of 10 Hz. 

2.3. Modification of the electrode surface 

SPCE were modified with standard catalysts employed in electro
analysis, as are CoPc and Pd [21,22], incorporated using a 
self-formulated graphite-polystyrene ink. More in detail, the mixture 
contained the following mass fractions: 58% of graphite, 32% of 
powdered polystyrene and 10% of modifier, in this case graphite, cobalt 

Fig. 1. Scheme of the experimental procedure for the electrode surface modification. Firstly, an ink-like solution was prepared incorporating the corresponding 
modifier. Then, 1 µL was dropped on the surface and dried at 40 ◦C. 
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(II) phthalocyanine or palladium. 
The corresponding modifier, graphite and polystyrene were thor

oughly mixed with 250 µL of mesitylene for 2 h. After that, the mixture 
was sonicated for 2 min in order to obtain a medium thick solution. 
Finally, 1 µL of the ink-like composite was dropped onto the working 
electrode surface of a SPCE and dried at 40 ◦C for at least 1 h in order to 
remove the solvent (Fig. 1). After that, the electrodes were ready to use, 
not requiring the usage of any activation step. 

2.4. Characterization of the electrode by scanning electron microscopy 

The morphological characterization of the modified SPCE electrodes 
was performed by Field Emission Gun-Scanning Electron Microscope 
(FEG-SEM) of Zeiss, model MERLIN SM0087 and Energy Dispersive X- 
Ray Analysis (EDX). Imaging was performed based on secondary, back- 
scattered electrons. 

2.5. Samples under study 

In the present work, two different scenarios were evaluated with the 
proposed ET. Firstly, the analysis of ternary mixtures of heroin, codeine 
and morphine was considered to assess the potential of the ET to achieve 
their individual quantification. Secondly, the quantification of the same 
drugs in the presence of two common cutting agents (viz. paracetamol 
and caffeine) was attempted to assess the potential of the ET in a more 
realistic scenario. 

To this aim, two different sets of samples were prepared (one for each 
of the above-mentioned scenarios). Each set of samples consisted of a 
train subset, which is used to build the model, and a test subset, which is 
used to assess its performance. The concentrations of the compounds 
mixtures of the train subset were defined by an experimental design, 
while for the test subset, some extra samples with concentrations for 
each of the compounds randomly distributed along the experimental 
domain were also prepared. Besides, in order to keep the number of 
samples required down to a reasonable level, two different experimental 
designs were employed as the number of samples required increases 
exponentially with the number of compounds considered. 

In the first case (mixtures of the three drugs), samples for the train 

subset were prepared based on a tilted factorial experimental design 33 

(27 samples) [23]. With this approach it is possible to get a better dis
tribution of the samples that avoids the repetition of concentrations as 
per the selected levels. The concentrations ranges considered for each of 
the compounds were in the range 0–750 µM, with 15 extra samples 
forming the test subset. 

In the second case (mixtures of the three drugs plus the two cutting 
agents), samples for the train subset were prepared based on a central 
composite face-centered (CCF) experimental design with 3 levels of 
concentration (27 samples). As already stated, this was preferred as the 
number of samples required to complete a full factorial design would be 
just too high (35 = 243 samples). In this case the concentrations for each 
of the compounds ranged from 0 to 750 µM, with 17 extra samples 
forming the test subset. 

As an extra precaution to control drifts or periodic trends as the same 
sensing units were used for the whole series, all this samples were 
analysed in random order and alternating their measurement with the 
measurement of a blank solution (PBS), which served as cleaning stage 
of the electrode surfaces, but also as control. 

2.6. Data analysis 

Initial analysis of the voltammetric signals was done with MultiTrace 
software (PalmSens, Houten, The Netherlands), which allowed to 
calculate the peak heights and areas for the different stock samples. 
From those, the calibration plots were build using the data of the 
replicate measurements (n = 4) with the aid of Sigmaplot (Systat Soft
ware Inc., San Jose, CA, USA), and analytical parameters such as 
sensitivity, linear range, LOD, etc. were calculated. 

Chemometric analysis was done in Matlab R2018b (MathWorks, 
Natick, MA, USA), making use of its Statistics and Machine Learning 
Toolbox, by specific routines written by the authors. Briefly, upon 
measurement of the set of samples described in Section 2.5 with the 
sensor array, voltammetric responses of the three electrodes were 
combined into a single vector. Genetic algorithms (GAs) were then used 
as feature selection tool to reduce the number of inputs to be fed to the 
chemometric model given the large dimensionality of the voltammetric 
data [24]. Next, quantitative models to individually quantify each of the 
analytes were built by partial least squares regression (PLS-1) [25], and 
their performance was then assessed towards the samples that formed 
the test subset to obtain more realistic performance indicators. 

3. Results and discussion 

3.1. Characterization of the sensor array 

Modified electrodes can be prepared by several different techniques 
[23,26]. In the present work, the approach used for the modification of 
the electrodes is based on the use of a composite material (containing the 
different modifiers) through the formation of an ink-like paste, which is 
then casted onto the electrode, generating a new surface highly suitable 
to carry out electrochemical measurements. Besides, the preparation 
and modification with these inks is extremely easy and has a very 
low-cost, making this methodology an interesting approach for the 
fabrication of chemically-modified transducers. 

In our case, after an initial screening of different electrochemical 
modifiers considered in prior studies involving ETs [27–31], an array of 
three electrodes was prepared using bare graphite, Pd and CoPc as the 
modifiers. The selection was based on the suitability of the different 
electrodes to obtain the discrimination of the different drugs (data not 
shown) [32]. The inclusion of graphite provided somehow a control 
point that allowed to actually evaluate the advantages derived from the 
incorporation of the other modifiers. Pd is well-known for its good 
(electro)catalytic activity towards a wide range of reactions and com
pounds, while the usage of nanoparticles has demonstrated to be an 
attractive alternative to the respective bulk metals given its higher 

Fig. 2. Electrochemical fingerprint of 300 µM solutions of the five substances 
under study: 1) caffeine, 2) codeine, 3) heroin, 4) morphine and 5) paracetamol 
with the proposed array in this work: Carbon (red), CoPc (black) and Pd (blue). 
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surface/mass ratio and improved electrochemical properties. Lastly, 
phthalocyanines are reported to be efficient electrocatalysts in the 
determination of many important inorganic, organic, or biological 
compounds. 

Before tackling the resolution of the mixtures with their corre
sponding cutting agents, which is the main goal of this work, the 
modified electrodes were first physically and electrochemically 
characterized. 

Upon modification of the SPCE as described in Section 2.3, those 
were characterized by SEM imaging. Microscopy studies show that the 
two modifiers are distributed quasi-homogeneously along the graphite 

layers (Fig. S1, supplementary material), and more importantly, confirm 
the presence of the modifiers inside the ink-like composite. 

Next, the evaluation of the voltammetric responses of each of the 
modified sensors towards each of the compounds individually was car
ried out to assure that distinguished signals are generated . That is, to 
ensure that the electrodes respond to the different analytes, and that 
differentiated responses are also obtained between them. To carry out 
the measurements, SWV was chosen given its high sensitivity and fast 
scan rates, which in combination with the compact low-power instru
mentation required for electrochemical measurements, offers particular 
promise for decentralized security screening applications [33,34]. 

As can be observed in Fig. 2, different overlapping peaks can be 
remarked. In the case of heroin, an irreversible oxidation split peak is 
shown around 0.97 V, corresponding to the oxidation of the tertiary 
amine group (Fig. 3A), resulting in a secondary amine which is then 
further oxidized (Figs. 3 and S2) [35]. In addition, a smaller extra peak 
appeared at a lower potential (ca. 0.40 V, which is more evident in  
Fig. 4), corresponding to the oxidation of the phenol group of 6-mono
acetylmorphine (6-MAM, Fig. 3C) present in a 3% w/t in the sample. 
6-MAM is an impurity, commonly found in heroin synthesis, that comes 
both from the incomplete acetylation of morphine as well as from the 
hydrolysis of heroin (as it is a product of its hydrolysis). 

Similarly, morphine also shows the oxidation peak ca. 0.40 V 

Fig. 3. Chemical structure of (A) heroin, (B) morphine and (C) 6-MAM (a 
heroin metabolite). 

Fig. 4. Square wave voltammograms obtained for (A-C; top row) heroin, (D-F; middle row) morphine and (G-I; bottom row) codeine using (A,D,G; left column) 
graphite, (B,E,H; middle column) CoPc and (C,F,I; right column) Pd, respectively. Series of plots correspond to increasing concentrations from 10 to 1000 µM. Insets 
correspond to the linear regressions of peak height (at the observed potential maximum) vs. concentration, excluding the point 1000 µM as saturation of the vol
tammetric signal was reached for certain compounds. 
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corresponding to the phenol group of 6-MAM [36], but being more 
prominent in this case. The second peak corresponds to the oxidation of 
the tertiary amine group (Fig. 3B), which in this case is not further 
oxidized (Fig. S3). In the case of codeine, only one broad peak can be 
observed, which again corresponds to the oxidation of the tertiary amine 
(Fig. S4), but also showing a small shoulder, which is almost super
imposed and that is attributed to the oxidation of the 6-hydroxy groups 
[37]. Finally, in the case of paracetamol, only a well-defined Gaussian 
peak corresponding to the oxidation of the amide group (Fig. S5) is 
observed ca. 0.40 V [38,39], while in the case of caffeine, also a single 
peak (Fig. S6) is obtained, which corresponds to the oxidation of the C-8 
to N-9 bond to give the substituted uric acid [39,40]. In this direction, 
the proposed mechanisms for the electrochemical oxidation of the 
different evaluated substances are provided in Figs. S7 and Figs. S2 to 
S6. 

It can also be seen that the oxidation of the phenol group is over
lapped with the oxidation peak of paracetamol. Similarly, the same 
situation occurs with the second oxidation peak of heroin and morphine, 
which also will overlap with the one from codeine. However, this is not 
an issue given distinguishable voltammetric profiles are obtained; i.e. 
different peak shapes and sensitivities are still obtained for each of the 
compounds. Lastly, in the case of caffeine, a single oxidation peak at 
higher potential is obtained (ca. 1.33 V). 

After this first general overview of the voltammetric responses, the 
calibration curves for the five compounds under study were constructed 
by measuring solutions of increasing concentration from 25 to 750 µM. 
This step is relevant for further quantification models as it is important 
to identify the proper working ranges. All of the electrochemical mea
surements were performed in PBS at pH 7.0. The selection of this neutral 
pH is due to the fact that heroin and morphine suffer hydrolysis re
actions at basic pH, as is described in the literature [41,42]. 

In all cases, the peak height which corresponds to the maximum of 
the oxidation signal was taken. This characterization is essential not 

only to evaluate the response of the sensors, but also to determine the 
concentration ranges which they can operate and that will be used to do 
the analysis with the electronic tongue approach. As can be observed in 
Fig. 4s and S7, the responses obtained were linear for the vast majority 
of cases in the studied ranges (r > 0.99), showing one peak or two 
depending on the compound evaluated. 

In the case of heroin, two peaks were shown. C and CoPc modified 
inks presented two linear ranges for the peak 1 (black), corresponding to 
the oxidation of the phenol group of 6-MAM. The lower linear range 
goes from 25 to 200 µM and the high range from 200 to 750 µM. For 
peak 2 (red), one linear range is presented (from 25 to 750 µM), corre
sponding to the oxidation of the amine group (Fig. 4AB). Pd modified ink 
showed a different performance displaying two linear ranges for peak 1 
and peak 2 (Fig. 4C). 

The next compound analysed was morphine. In this occasion, a 
similar response was given for the three sensors of the array. Two peaks 
were observed, with two linear ranges for each of them (Fig. 4D–F). The 
low range goes from 25 to 200 µM and the high from 200 to 750 µM, 
similar to heroin as could be expected. 

Codeine and paracetamol showed a single peak with good linearity 
over the whole range (from 25 to 750 µM) with the three modifiers 
tested (Fig. 4G–I and Fig. S7J–L). Lastly also a single peak is obtained for 
caffeine, but with different linear range based on the electrode consid
ered. Employing C and CoP, the linear range goes from 50 to 750 µM, 
whereas with Pd modified ink, the linear range narrows from 
200–750 µM (Fig. S7M–O). 

Based on the previous results, for the multi-determination of the 
drugs mixtures, the concentration working ranges were streamlined 
from 0 to 750 µM for heroin, morphine, codeine, paracetamol and 
caffeine. The analytical parameters derived from the calibration curves 
for each sensor are summarized in Table 1. 

Table 1 
Calibration data (y vs. x) for the separate determination of heroin, morphine, codeine, paracetamol and caffeine employing the proposed sensor array.  

Compound Potential (V) Sensitivity (nA µM-1) Intercept (μM) r LOD (µM) Linear Range (µM) 
Sensor 1: Carbon 
Heroin  0.49  6.1 

2.5 
0.28 
1.13  

0.986 
0.985  

3.33 25–200 
200–750   

1.16  4.7 0.21  0.997  31.8 25–750 
Morphine  0.43  3.3 

1.3 
0.10 
0.51  

0.996 
0.997  

5.33 25–200 
200–750   

0.99  4.2 0.16  0.995  8.65 25–200     
1.4 0.76  0.994   200–750 

Codeine  1.11  21.7 0.72  0.998  1.80 25–750 
Paracetamol  0.39  22.3 0.12  0.999  0.82 25–750 
Caffeine  1.33  15.6 4.02  0.993  44.0 50–750 
Sensor 2: CoPc 
Heroin  0.43  7.2 

3.1 
0.15 
1.03  

0.999 
0.996  

3.95 25–200 
200–750   

1.14  5.5 0.22  0.994  83.3 25–750 
Morphine  0.40  2.8 

1.5 
0.071 
0.32  

0.994 
0.995  

2.88 25–200 
200–750   

1.11  3.4 0.11  0.994  96.6 25–200     
1.5 0.53  0.991   200–750 

Codeine  1.09  18.9 0.21  0.999  4.29 25–750 
Paracetamol  0.40  17.4 -0.16  0.999  0.75 25–750 
Caffeine  1.36  10.8 0.0069  0.998  65.0 50–750 
Sensor 3: Pd 
Heroin  0.27  14.3 

3.5 
0.41 
1.59  

0.988 
0.991  

5.31 25–200 
200–750   

1.01  34.8 0.12  0.975  14.8 25–200     
4.2 1.57  0.966   200–750 

Morphine  0.46  3.2 
1.5 

0.086 
0.44  

0.985 
0.993  

25.9 25–200 
200–750   

1.01  6.9 0.62  0.954  60.7 25–200     
1.7 1.68  0.961   200–750 

Codeine  1.11  19.8 2.31  0.997  11.7 25–750 
Paracetamol  0.38  19.0 -0.11  0.999  3.33 25–750 
Caffeine  1.35  11.6 17.2  0.983  104 200–750  
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3.2. Repeatability and reproducibility studies 

Upon completing the calibration, a stability study was done in order 
to demonstrate that the sensors were capable to withstand the large 
number of measurements necessary when developing ET applications. 

To this aim, codeine was selected as the substance to evaluate the 
variation on its voltammetric response upon successive measurements, 
assuming a similar behavior for the rest of the drugs. More specifically, a 
stock solution of codeine of 450 µM was measured for 25 consecutive 
times employing the same electrodes and measuring also a blank (PBS 
solution) in between each measurement to evaluate the repeatability of 
the sensors. Thus, each sensor was used for 50 consecutive measure
ments; a significant number given the disposable nature of SPEs. 

Voltammetric data were collected and analyzed, from which the 
relative standard deviation (% RSD) was calculated. The values for 
carbon, CoPc and Pd modified ink-sensors were 1.84%, 2.01% and 
2.14%, respectively. Significantly, the three modified sensors presented 
better stability than the unmodified sensor, which showed a RSD value 
of 9.87%. Thus, from this study it was concluded that no fouling or drift 
effects are observed with the proposed sensor array. This, in essence, 
means that any possible adsorption of the oxidized forms of the studied 
compounds did not affect appreciably the electrodes’ performance or 
stability, given no differences were observed along consecutive mea
surements; equivalently, the same could be said for the applied poten
tials, if there is any doubt on the relatively high values used. 

Complementary to the previous study, the reproducibility of con
struction of the ink-modified SPCE was also assessed. The experiment 
was done preparing each modified ink by triplicate (n = 3) and 
measuring consecutively with a heroin stock solution. The results for 
each sensor present a good construction reproducibility with RSD values 
of 3.97%, 6.95% and 5.67% for carbon, CoPc and Pd inks, respectively. 

3.3. Quantitative analysis of drug mixtures using PLS regression 

Despite different voltammetric profiles are obtained for each of the 
compounds when analysed individually (Fig. 4), even with different 
response for the different considered electrodes, it is clear that there will 
be an overlap on the voltammetric responses when mixtures of those are 
to be analysed at pH 7 (Figs. S8 and S9). Thus, in order to achieve the 
individual quantification of each of the compounds, the use of chemo
metric methods is required as such quantification cannot be achieved via 
univariate regression (taking either the peak height or area). In this 
direction, ET approach relies on the combination of an array of sensors 
that show complimentary responses towards the compounds of interest, 
with a multivariate calibration method that allows to build a model that 
relates the responses of the different sensors with the concentration of 
each of these compounds [19,43]. 

In the previous section, the sensitivities of each of the electrodes 
towards each of the compounds have been shown different (Table 1), a 
situation highly desirable when developing an ET application. Thus, the 
next step prior to build the quantitative model that allows to dete
termine the individual substances from the overlapped voltammograms 
was the selection of the chemometric tool to be used. In this case, given 
the ultimate goal of this research project is developinga device to detect 
different illicit drugs, PLS-1 was chosen as the modeling tool given it is 
one of the simplest (e.g. in comparison to artificial neural networks, 
ANNs) and widely used multivariate calibration techniques to choose 
[44]. 

Lastly, although the use of a pre-processing stage to reduce the 
number of input variables is not required when PLS is being used, it has 
demonstrated that even in such cases this data reduction stage improves 
the model’s prediction and generalization ability [43]. Again, as the aim 
is to develop the simplest model possible, the use of GAs as feature se
lection tool was chosen given upon identification of the most relevant 
features, no further computing processing will be required for each new 
measurement that is being performed. Thus, in this manner, the most 
relevant features from each of the voltammograms were selected with 
the aid of GAs and used as input into the PLS model. The outcome of GAs 
optimization is shown in Fig. S10, where the raw voltammetric re
sponses for 300 µM solutions of each of the considered compounds is 
plotted with cross marks underneath corresponding to the selected 
features. On the contrary to the straighforward idea that the algorithm 
will select essentially the points corresponding to the peaks’ maxima, it 
finally uses regions with less overlap and where the differences between 
signals are more pronounced. (that is, the points corresponding to the 
front and back of the peaks). 

As already stated in Section 2.5, two different sets of samples were 
prepared: the first one in which ternary mixtures of the three considered 
drugs were considered, while in the second one also the presence of two 
different cutting agents was examined. The aim of the first set was to 
confirm the potential of the proposed ET to carry out the individual 
quantification of the opiates, whereas the second one aims to confirm 
that the ET is able to counterbalance the interferences of the cutting 
agents and successfully carry out the quantification of the drugs. In both 
cases, GA-PLS models were built using the data for the train subset, and 
its performance assessed towards the samples of the test subset, selecting 
the number of latent variables (LVs) that lead to the lowest root mean 
square error (RMSE). 

3.3.1. Mixtures of the three drugs 
From the raw voltammetric responses of the three electrodes (318 

current values x 3 sensors), a total of 103 features were selected by use of 
GAs and used to build the PLS-1 models (Fig. S10). The selected number 
of LVs were 7 for heroin, 15 for codeine and 8 for morphine. Next, the 

Fig. 5. Modeling ability of the optimized GA-PLS model for the 3 compounds case. Comparison graphs of obtained vs. expected concentrations for (A) heroin, (B) 
morphine and (C) codeine, for both the train (•, solid line) and test subsets (○, dotted line). The dashed line corresponds to the ideal comparison line (y = x). 
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Fig. 6. Modeling ability of the optimized GA-PLS model for the 5 Compounds case. Comparison graphs of obtained vs. expected concentrations for (A) heroin, (B) 
morphine, (C) codeine, (D) paracetamol and (E) caffeine, for both the train (•, solid line) and test subsets (○, dotted line). The dashed line corresponds to the ideal 
comparison line (y = x). 

Table 2 
Fitted regression lines for the comparison between obtained vs. expected values for the different sets of samples and the three considered APIs.  

Compound Slope Intercept (μM) r RMSE (μM) NRMSE Total NRMSE 

train subset (n = 27) 
Heroin 0.998 ± 0.019 0.7 ± 7.5 0.999 9.39 0.014 0.014 
Codeine 1.000 ± 0.007 0.1 ± 2.7 1.000 3.35 0.005 
Morphine 0.996 ± 0.026 1.3 ± 10.0 0.998 12.5 0.019 
test subset (n = 15) 
Heroin 1.035 ± 0.064 -22.5 ± 24.3 0.995 20.6 0.030 0.026 
Codeine 1.020 ± 0.026 -5.1 ± 9.4  0.999  10.1  0.016 
Morphine 1.026 ± 0.030 -11.3 ± 11.5  0.999  11.1  0.016 

Intervals are calculated at the 95% confidence level. RMSE: root mean square error; NRMSE: normalized root mean square error. 

Table 3 
Fitted regression lines for the comparison between obtained vs. expected values for the different sets of samples and the five considered compounds.  

Compound Slope Intercept (μM) r RMSE (μM) NRMSE Total NRMSE 

train subset (n = 27) 
Heroin 0.972 ± 0.068 8.7 ± 27.3  0.986  43.5  0.061  0.053 
Codeine 0.990 ± 0.041 3.1 ± 16.6  0.995  26.2  0.037 
Morphine 0.990 ± 0.040 3.0 ± 16.2  0.995  25.5  0.036 
Paracetamol 0.969 ± 0.071 9.7 ± 28.8  0.984  45.9  0.065 
Caffeine 0.976 ± 0.063 7.5 ± 25.5  0.987  40.6  0.057 
test subset (n = 17) 
Heroin 0.968 ± 0.169 -0.7 ± 69.3  0.953  76.3  0.107  0.077 
Codeine 0.974 ± 0.169 19.2 ± 58.0  0.954  63.3  0.089 
Morphine 1.042 ± 0.087 -5.9 ± 28.5  0.989  30.1  0.043 
Paracetamol 0.997 ± 0.124 -8.4 ± 38.8  0.975  41.8  0.059 
Caffeine 0.981 ± 0.130 -4.5 ± 39.7  0.972  50.1  0.070 

Intervals are calculated at the 95% confidence level. RMSE: root mean square error; NRMSE: normalized root mean square error. 
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comparison graphs of predicted vs. expected concentrations were built 
(Fig. 5) and the linear regressions of the comparison lines fitted (Table 2) 
for the three drugs. As can be seen from the plot, a satisfactory trend is 
obtained in all the cases, with regression lines close to the ideal one 
(y = x). Moreover, from the regression parameters in the table we see 
these are very close to the ideal ones (i.e. 1 slope and correlation coef
ficient, and 0 intercept), being all of them within the intervals calculated 
at the 95% confidence level. Fig. S11 displays how obtained values are 
within the expected joint confidence intervals for all cases. 

Despite the satisfactory trend, it has to be reckoned that slightly 
better performance is obtained for the train subset, but this is due to the 
fact that the data of the test subset is not used at all during the modeling 
stage, and thus it provides a more realistic metric of the model perfor
mance. However, if comparing the RMSE values obtained for both 
subsets, it can be seen how the differences are actually not that high, 
which confirms the goodness of the model and the capability of the 
proposed ET to achieve the simultaneous quantification of the three 
drugs. Thus, the next step was to confirm whether using the same 
approach we are able not to only quantify mixtures of the pure drugs, 
but also to detect and quantify the cutting agents considered, which 
would provide a more realistic use of the developed strategy. 

3.3.2. Mixtures of the three drugs and the two cutting agents 
Under the same conditions as above, but making use of a different 

experimental design given the larger number of analytes to be consid
ered, a new set of samples was prepared as described in Section 2.5 and 
measured employing the sensor array. As before, GA-PLS models were 
built to determine each analyte in the mixture, but in this case selecting 
a total of 114 features from the raw voltammetric responses (Fig. S10). 
The selected number of LVs were 13 for heroin, 18 for codeine, 10 for 
morphine, 6 for paracetamol and 12 for caffeine. Again, the comparison 
graphs of predicted vs. expected concentrations were built for each of 
the analytes (Fig. 6), and the linear regression parameters calculated 
(Table 3). Again, a satisfactory trend is obtained for both subsets, with 
slightly better behavior for the train subset as already discussed, but 
with RMSE values of the same order of magnitude. 

Although the model performance metrics are slightly worst for the 5 
compounds case than for the 3 compounds one (total NRMSE for the 
three drugs of 0.084 vs. 0.026 for the test subset), it has to be considered 
the higher complexity of the case. That is, on the one side, the use of a 
fractional experimental design (as is the CCF) to keep the number of 
samples required to build the model reasonable. On the other side, and 
as already reported, the presence of certain cutting agents can influence 
the voltammetric response, up to the point that the observed peak for the 
pure compound might not be seen in the presence of the adulterant [16, 
17]. 

In regards to the latter, herein we have demonstrated how making 
use of a proper set of samples, the model is able to correctly quantify 
both the drugs and cutting agents. Thus, the same approach can be 
applied to the identification and quantification of others mixtures. 
Moreover, if multi-way processing methods are to be used instead of 
two-way PLS models, the correction of the presence of an interfering 
species, even if not initially considered in the response model, might be 
possible thanks to their “second order advantage” [45,46]. 

Therefore, taking all this into account, it’s clear that the use of the 
herein proposed voltammetric ET shows huge potential to carry the 
identification and quantification of seized drug samples, either those 
being pure or already mixed with other drugs and/or cutting agents. 

Lastly, despite already taking the precaution of using a separate 
validation subset of data (the test subset), a permutation test or “target 
shuffling process” was carried out to demonstrate that neither the high 
dimensionality of the data nor the use of GAs and PLS-1 is resulting in 
over-fitted models. Such test allows the identification of incorrectly 
perceived cause-and-effect relationships in modeling (“chance correla
tion”) by taking as null hypothesis that samples labels are exchangeable. 
Briefly, this test involves repeatedly and randomly reordering of the 
responses variables (Y), followed by the building of a new model upon 
shuffling of the data labels. In other words, a new model is built upon 
assignment of an “incorrect” y-value to each sample corresponding to 
the one from another sample. This process is repeated several times to 
ensure that the statistics calculated are significant (up to 1000 times in 
our case). For each of the permutations, the different performance 
metrics were calculated and compared to the actual model with the 
proper labels. As an example, a histogram summarizing the RMSE values 
of the different models for the three drugs plus codeine and paracetamol 
are shown in Fig. 7, from which the significance of the obtained results is 
evident. 

4. Conclusions 

The potential of ETs for the simultaneous determination and quan
tification of different opiates in the presence of common cutting agents 
has been demonstrated. More specifically, a voltammetric sensor array 
consisting in three SPCE modified with graphite, cobalt (II) phthalocy
anine and palladium inks were employed to extract the electrochemical 
fingerprints of heroin, morphine, codeine, caffeine and paracetamol by 
means of SWV. Despite the advantages that electrochemical methods 
may offer, the simultaneous determination of the aforementioned 
compounds can also be challenging given their similar electrochemical 
response; especially when attempting the discrimination between heroin 
and morphine, since both molecules present the same functional groups 
in their skeleton. Thus, a partial least square regression (PLS) model for 

Fig. 7. Histogram comparing the success of PLS models with raw data (red) and GAs-PLS (green) to that of shuffled models (1000 iterations) for (A) codeine and (B) 
paracetamol, for the set of samples corresponding to mixtures of the 5 compounds. For the shuffled models, the data was fitted to a 3 parameter Gaussian curve and 
the RMSE values compared to the former. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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the quantification of heroin, morphine, codeine, caffeine and paraceta
mol mixtures at the µM level was built employing a central composite 
face-centered (CCF) experimental design. A very satisfactory perfor
mance was obtained, demonstrating that the use of the herein proposed 
voltammetric ET shows huge potential to carry the identification and 
quantification of seized drug street samples, either those being pure or 
already mixed with other drugs and/or cutting agents. 

Overall, the advantages of ETs to deconvolute complex overlapping 
electrochemical responses and achieve the simultaneous quantitative 
determination of several analytes have been shown. Moreover, the use of 
a properly formulated graphite-polystyrene ink has been demonstrated 
as a simple approach to obtain an array of modified electrodes with 
different responses towards the compounds under study. 

As for the data processing, GAs allowed to reduce the number of 
inputs fed to the model through the identification of its most relevant 
features, what in turn reduced its complexity , and at the same time 
improved its performance. Lastly, by conducting a permutation test or 
“target shuffling process”, it was also demonstrated that neither the high 
dimensionality of the data or the use of GAs and PLS resulted in over- 
fitted models. In fact, this verification provided a high significance for 
the obtained RMSE values, higher than 99.99%, both for train and test 
subsets (P value lower than 3⋅10-5), as illustrated in Fig. 7. 

In conclusion, the results presented herein suggest the potential of 
these devices to be used as analytical tools for the detection of illicit 
substances from street samples offering low-cost measurement systems 
with rapid response, simple usage and high portability; all of them ideal 
characteristics for point-of-use forensic or law-enforcement 
applications. 
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lona through a PIF fellowship. M. del Valle thanks the support from the 
program ICREA Academia. 

Appendix A. Supplementary material 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.snb.2021.131345. 

References 

[1] A. Florea, M. de Jong, K. De Wael, Electrochemical strategies for the detection of 
forensic drugs, Curr. Opin. Electrochem. 11 (2018) 34–40. 

[2] C. Guiney, EU drug markets report 2019, Drugnet Ireland (2020) 18–20. 

[3] Bordersens: Border Detection of Illicit Drugs and Precursors by Highly Accurate 
Electrosensors, 2021. 〈https://bordersens.eu/〉. 

[4] Drug Enforcement Administration. Drugs of abuse: A DEA resource guide, Drug 
Enforcement Administration. US Department of Justice, 2017. 

[5] N.E. Hagemeier, Introduction to the opioid epidemic: the economic burden on the 
healthcare system and impact on quality of life, Am. J. Manag. Care 24 (10) (2018) 
S200. 

[6] J.K. O’Donnell, R.M. Gladden, P. Seth, Trends in deaths involving heroin and 
synthetic opioids excluding methadone, and law enforcement drug product reports, 
by census region — United States, 2006–2015, MMWR Morb. Mortal. Wkly. Rep. 
66 (34) (2017) 897–903. 

[7] J.M.P.J. Garrido, C. Delerue-Matos, F. Borges, T.R.A. Macedo, A.M. Oliveira-Brett, 
Electrochemical analysis of opiates – an overview, Anal. Lett. 37 (5) (2004) 
831–844. 

[8] M.Y. Salem, S.A. Ross, T.P. Murphy, M.A. ElSohly, GC-MS determination of heroin 
metabolites in meconium: evaluation of four solid-phase extraction cartridges, 
J. Anal. Toxicol. 25 (2) (2001) 93–98. 

[9] C. Meadway, S. George, R. Braithwaite, A rapid GC–MS method for the 
determination of dihydrocodeine, codeine, norcodeine, morphine, normorphine 
and 6-MAM in urine, Forensic Sci. Int. 127 (1–2) (2002) 136–141. 

[10] Z. Zhang, B. Yan, K. Liu, Y. Liao, H. Liu, CE-MS analysis of heroin and its basic 
impurities using a charged polymer-protected gold nanoparticle-coated capillary, 
Electrophoresis 30 (2) (2009) 379–387. 

[11] R.B. Taylor, A.S. Low, R.G. Reid, Determination of opiates in urine by capillary 
electrophoresis, J. Chromatogr. B Biomed. Appl. 675 (2) (1996) 213–223. 

[12] Y. Zhuang, X. Cai, J. Yu, H. Ju, Flow injection chemiluminescene analysis for 
highly sensitive determination of noscapine, J. Photochem. Photobiol. A Chem. 
162 (2–3) (2004) 457–462. 

[13] Y. Zhuang, D. Zhang, H. Ju, Sensitive determination of heroin based on 
electrogenerated chemiluminescence of tris(2,2′-bipyridyl)ruthenium(II) 
immobilized in zeolite Y modified carbon paste electrode, Analyst 130 (4) (2005) 
534–540. 

[14] J. Moros, N. Galipienso, R. Vilches, S. Garrigues, M. De La Guardia, Nondestructive 
direct determination of heroin in seized illicit street drugs by diffuse reflectance 
near-infrared spectroscopy, Anal. Chem. 80 (19) (2008) 7257–7265. 

[15] G. Sakai, K. Ogata, T. Uda, N. Miura, N. Yamazoe, A surface plasmon resonance- 
based immunosensor for highly sensitive detection of morphine, Sens. Actuators B 
Chem. 49 (1–2) (1998) 5. 

[16] A. Florea, J. Schram, M. De Jong, J. Eliaerts, F. Van Durme, B. Kaur, N. Samyn, 
K. De Wael, Electrochemical strategies for adulterated heroin samples, Anal. Chem. 
91 (12) (2019) 7920–7928. 

[17] M. de Jong, A. Florea, J. Eliaerts, F. Van Durme, N. Samyn, K. De Wael, Tackling 
poor specificity of cocaine color tests by electrochemical strategies, Anal. Chem. 90 
(11) (2018) 6811–6819. 
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SIA system employing the transient response from a potentiometric sensor 
array—correction of a saline matrix effect, Talanta 82 (3) (2010) 931–938. 

Dionisia Ortiz-Aguayo received her M.Sc. degree in Chemistry in 2015 from the Uni
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Supplementary Material 
 

 
Figure S1. EDX (top) and SEM (bottom)  characterization of (A) Graphite/SPCE-Ink, (B) Cobalt (II) 
phthalocyanine/SPCE-Ink, (C) Palladium/SPCE-Ink. 
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Figure S2. Electrochemical oxidation mechanism of heroin proposed by Garrido et al [1]. 

Figure S3. Electrochemical oxidation mechanism of morphine proposed by Garrido et al [2]. 
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Figure S4. Electrochemical oxidation mechanism of codeine proposed by Garrido et al. [3]. 

 

 

 

 
Figure S5. Electrochemical oxidation mechanism of paracetamol proposed by Khairy et al [4]. 

 

 

 

 
Figure S6. Electrochemical oxidation mechanism of caffeine proposed by Tadesse et al. [5]. 
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Figure S7. Square wave voltammograms obtained for (J-L; lect column) paracetamol and (M-O; right 
column) caffeine using (J,M; top row) graphite, (K,N; middle row) CoPc and (L,O; bottom row) Pd 
modified sensors, respectively. Series of plots correspond to increasing concentrations from 10 to 1000 µM. 
Insets correspond to the linear regressions of peak height vs. concentration, excluding the point 1000 µM 
as saturation of the voltammetric signal was reached for certain compounds. 
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Figure S8. Example of the voltammograms obtained for certain arbitrary mixtures of heroin, morphine and 
codeine with concentrations for the three compounds of (A) 560 µM, 239 µM, 28 µM, (B) 627 µM, 577 
µM, 435 µM, (C) 180 µM, 617 µM, 626 µM and (D) 156 µM, 531 µM, 156 µM. The samples were prepared 
in PBS pH 7. The three colours represent the sensor array: Graphite/SPCE-Ink (blue), Cobalt (II) 
phthalocyanine/SPCE-Ink (red) and Palladium/SPCE-Ink (green). 
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Figure S9. Example of the voltammograms obtained for certain arbitrary mixtures of heroin, morphine, 
codeine, paracetamol and caffeine with concentrations for the five compounds of. (A) 0 µM, 623 µM, 623 
µM, 623 µM, 0 µM (B) 623 µM, 0 µM, 0 µM, 623 µM, 623 µM, (C) 623 µM, 0 µM, 623 µM, 0 µM, 623 
µM and (D) 438 µM, 82 µM, 384 µM, 384 µM, 493 µM. The samples were prepared in PBS pH 7. The 
three colours represent the sensor array: Graphite/SPCE-Ink (blue), Cobalt (II) phthalocyanine/SPCE-Ink 
(red) and Palladium/SPCE-Ink (green). 
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Figure S10. Outcome of the feature selection step using GAs. Square wave voltammograms obtained using 
(A) graphite, (B) CoPc and (C) Pd sensor for pure solutions of the different compounds under study at 300
µM as well as for an arbitrary mixture of those are plotted, and underneath the features selected for the
mixtures of the (x) 3 compounds and (x) 5 compounds.

Figure S11. Joint confidence intervals for (A) the three drugs, and (B) the three drugs and the two cutting 
agents: (black) heroin, (red) codeine, (green) morphine, (yellow) paracetamol and (blue) caffeine, both for 
the training (●, solid line) and testing (▲, dashed line) subsets. Also, the ideal point (1,0) is plotted (x); 
intervals are calculated at the 95% confidence level. 
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