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The field of Flavour Physics has been actively challenging the Standard Model in recent
years, in particular in transitions involving a b quark. These are the so-called B-anomalies, and
discrepancies between experimental measurements and theoretical predictions have been found in
different channels related to a B-meson decay: semileptonic currents, both charged and neutral,
fully leptonic and also nonleptonic processes. Concerning the former, global analyses including
all available experimental data on b → sℓ+ℓ− observables reach global tensions of more than
7σ. In other channels, individual observables already show discrepancies at the level of 2 − 3σ.
While this alone could make a compelling case for the need of New Physics to explain the current
experimental data, what is most remarkable is the fact that one can establish coherent patterns
linking all these apparently independent deviations.

In this Thesis we present an introduction to the different theoretical elements needed to
describe the aforementioned B-anomalies within the framework of an Effective Field Theory, as
well as the state-of-the-art results of our Global Fit to b → sℓ+ℓ− observables. We also discuss
individual tensions in observables of the charged semileptonic current B → D∗ℓν and also the
nonleptonic Bd,s → K∗0K̄∗0 transition. On top of that, we also propose possible New Physics
models that could bridge the gap between these different kinds of processes.
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Introduction

The Standard Model of particle physics (SM) is considered the most complete theory of particle
physics to the present day. It successfully unifies three of the four fundamental interactions
in nature, namely the Electromagnetic, the Weak and the Strong interactions, within a rather
simple framework. All elemental constituents of matter and their interactions are described in
terms of a Quantum Field Theory and the symmetries derived from that. However, despite the
enormous success that the SM represents, there exist several reasons to be certain that it cannot
be the final answer. For once, and maybe this could be considered the main problematic issue, it
is unable to reconcile the fourth fundamental force, i.e. Gravity, with a Quantum Field Theory.
More examples of phenomena that cannot be explained within the framework of the SM are
the existence of neutrino masses, the origin of the matter-antimatter asymmetry, or the mass
hierarchy among the quark and the lepton families, among others.

For that reason, for many years the physics community expected to keep unfolding continually
new particles and interactions embedded in the SM, with the use of the plethora of accelerators
and colliders built along the second half of the 20th century and until the present day. However,
since the discovery of the Higgs boson in 2012 at the Large Hadron Collider (LHC), no new par-
ticles have been found by direct searches, leading us to declare the SM “complete”. This indicates
that the masses/energy of the possible new particles that could be behind the phenomena that
the SM cannot account for are too large to be observed at present-day colliders. Alternatively,
it can also imply that the interactions between these undiscovered particles and SM constituents
are too weak to be detected by current experiments. Fortunately, this technological impediment
is not the end of the road. We know that these heavy new particles might generate indirect
effects through higher order quantum corrections to several processes that can be effectively
described within the SM. Therefore, it is worth exploring decays and transitions that currently
show tensions with respect to the SM predictions.

In recent years, the paradigm of such promising processes are the so-called flavour anomalies,
or b-anomalies, since several deviations from the SM have been consistently popping up in both
the Flavour Charged Current (FCC) transitions b → cℓν̄ and the Flavour Changing Neutral
Current (FCNC) modes b → sℓ+ℓ−. Since the former involve a quark flavour change through
a charged interaction, they are thus processes that take place at tree-level. Instead, the latter
consist of a quark flavour change via a neutral current, hence they are CKM-suppressed transi-
tions and therefore occur at loop-level in the SM. This allows possible new particles to generate
contributions through quantum corrections that are on the same footing as the SM corrections,
making these b→ sℓ+ℓ− transitions highly sensitive to potential NP effects.

Nowadays, a good deal of observables related to this type of transitions have been measured by
different experiments and collaborations such as the LHCb, Belle, ATLAS or CMS. Remarkably,
deviations with respect to what the SM predicts have been found in independent analyses from
different experiments. Even more outstanding is the fact that all these phenomenological global
analyses find coherent patterns behind the observed anomalies. Here a pattern of NP refers to
a rather simple explanation that reduces the tensions between theory and experiment in many
different observables at the same time. In principle, there is no apparently evident reason for
this to happen, as observables measuring different properties of a b → s transition could need
different kinds and structures of NP contributions to alleviate their tension. However, it turns
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out that once the SM is treated as an Effective Field Theory (EFT) of a more general framework,
which allows us to include possible NP contributions in a very surgical way, only a handful of
extra degrees of freedom are needed to drastically reduce the tensions across the many different
observables studied.

Thereby, assessing the type and nature of the NP contributions that successfully adjust
the theoretical predictions to match the experimental results in the B-meson sector of Flavour
Physics is of paramount importance in order to set the next steps in our ultimate goal of building
a Beyond the Standard Model (BSM) theory.

In this Thesis we will discuss and detail the methodology followed in the Global Analyses of
the B-anomalies. We aim at providing a general framework with the tools needed to understand
how these global analyses are performed and how they should be interpreted, as well as the
implications that their results may have in terms of building models of NP with particles and
interactions currently not present in the SM. To this end, it is structured in three parts.

First, in Part I, we focus on the semileptonic B transitions. In Chapter 1 we review the
tools and elements required to perform a Global analysis of the different anomalies measured
concerning the b → sℓ+ℓ− transition. Starting from the EFT that allows us to treat these
processes as local interactions, we introduce the key ingredients to understand the theoretical
computation of the observables included in the so-called Global Fits, following a top-bottom
approach. We then define the whole set of quantities and give their expressions in terms of NP
contributions. Later on we present one of the most important outcomes of the present Thesis:
the state-of-the-art of our Global Analyses, including the most updated results and a discussion
of the implications for preferred scenarios of New Physics. We also establish a model-independent
connection between the neutral anomalies and the ones seen in the charged b→ cℓν transition.

Chapter 2 is devoted to the study of the impact of including higher partial waves in the
B → K∗0(→ K+π−)ℓ+ℓ− decay, in particular the S-wave pollution from the B → K∗

0 system.
From the symmetries of the angular distribution we find relations between the angular coefficients
of the decay, which in turn give us access to new observables that were not considered until
now. We also place bounds on these new observables, which can be used as crosschecks for the
experimental analyses. On top of that, we define two new quantities that allow us to extract
information on the S-wave contribution to the decay without having to rely on poorly known
S-wave form factors.

We conclude the first part of this Thesis in Chapter 3, dedicated to the analysis of the charged
current b→ cℓν process. There we schematically provide the theoretical framework needed. Fol-
lowing an analogous methodology to the one in Chapter 2, we make use of the symmetries of the
decay distribution of these processes to establish the exact number of independent degrees of free-
dom of the distribution and subsequently define an alternative way of measuring the longitudinal
polarisation FD∗

L , which shows an interesting tension with respect to the SM prediction. Conse-
quently, this alternative strategy could potentially confirm or dismiss the deviation measured in
the polarization observable.

Next, in Part II we shift our attention to a different kind of B decays with no leptons
in the final state. Chapter 4 serves as a study of the Bd,s → K̄∗0K∗0 transition, which has
not undergone as much scrutiny as the partner semileptonic decays. Nonetheless, these decays
exhibit a striking tension with respect to the SM in one particular observable. Moreover, following
the coherent pattern behind the many different b → s anomalies, we tried also to establish a
parallelism between the semileptonic and nonleptonic anomalies and explored the possibility of
a link among them.

Finally, Part III consists in a study of possible connections between different sectors of Flavour
Physics through simple models of NP. In particular, in Chapter 5 we discuss the implications of
the existence of an additional vector gauge boson Z ′ for the b→ sℓ+ℓ− anomalies and the shift
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that would induce on the mass of the SM W boson. This turns out to be particularly relevant
after the recent analysis of the mass of the W boson by the CDF collaboration.
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Part I

Semileptonic B decays
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Chapter 1

Global analysis of semileptonic
b→ sℓ+ℓ− Decays

In recent years, indirect searches at the LHC and at B-factories have led to a large set of devi-
ations with respect to the SM (or anomalies) in both b → cℓν̄ and in b → sℓ+ℓ− decays [1–3].
We can classify the latter (which we focus on in this chapter) in two sets: b→ sµ+µ− anomalies
related to observables testing only muonic transitions, which we call Lepton Flavour Depen-
dent (LFD), and Lepton-Flavour Universality Violating (LFUV) anomalies that correspond to
deviations in observables comparing muonic and electronic transitions.

This chapter is organized in three main sections. In Section 1.1, we will discuss the basic
features of the theoretical framework needed to study the flavour anomalies in the neutral B
sector. We will detail in Section 1.2 the different observables and quantities included in the
analyses. Finally, we will review in Section 1.3 the most up to date results of the global fits to
b→ sℓ+ℓ− data presented in [4].

1.1 Theoretical Framework

1.1.1 The Weak Effective Hamiltonian

The b→ sℓ+ℓ− processes can be described in the context of an Effective Field Theory approach,
namely the Weak Effective Hamiltonian (WEH) [5–7], by virtue of the existing scale hierarchy for
weak decays of B mesons, ΛQCD ≪ mQ ≪ MW . In this effective framework, the heavy degrees
of freedom (the top quark, the W and Z bosons, the Higgs boson and any potential heavy new
particles) have been integrated out in short-distance Wilson coefficients Ci, leaving only a set of
local effective operators Oi describing the physics at long distances1:

Heff = −4GF√
2

∑
i

Ci(µ)Oi (1.1)

Here µ is a renormalization scale to run down the Wilson coefficients from the heavy scale
(typically the Electroweak scale, MW ) where they are matched to the computation from the
whole theory, to the low scale µ, which is generally chosen to be of the order of the b quark mass,
µ = µb = mb. More specifically, the structure of the WEH for a b→ s transition is:

Heff = −4GF√
2

(
λ
(s)
t H

(t)
eff + λ(s)u H(u)

eff

)
+ h.c. (1.2)

1Formally, the Weak Effective Hamiltonian has the structure of an Operator Product Expansion (OPE),
encoding the perturbatively calculable elements inside the Wilson coefficients Ci(µ) and all the non-perturbative
pieces are written in terms of the matrix elements of the effective operators Oi.
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where λ(s)q ≡ VqbV ∗
qs are combinations of CKM parameters. One would also expect a contribution

proportional to λ
(s)
c , but assuming that the CKM matrix remains unitary even in presence of

NP, one can always reexpress this contribution by absorbing it inside the other two. The two
structures H(u)

eff and H(t)
eff read [8–10]

H(t)
eff = C1(µ)Oc

1 + C2(µ)Oc
2 +

6∑
i=3

Ci(µ)Oi +
10∑
i=7

(
Ci(µ)Oi + Ci′(µ)Oi′

)
+

∑
i=S,PS

(
Ci(µ)Oi + Ci′(µ)Oi′

)
+

∑
i=T,PT

Ci(µ)Oi, (1.3)

H(u)
eff = C1(µ)(Oc

1 −Ou
1 ) + C2(µ)(Oc

2 −Ou
2 ). (1.4)

Notice that even if λ(s)u is doubly Cabibbo-suppressed relative to λ(s)t , we will keep the con-
tributions from H(u)

eff as they are an important source of weak phases in the SM and are included
in our analysis.

In the SM, the Hamiltonian in Eq. (1.2) contains 10 main operators with specific chiralities
due to the V − A structure of the weak interactions. This basis of operators constitutes an
irreducible set of all dimension-six operators with the quantum numbers associated to a b →
sℓ+ℓ− transition that fulfill Lorentz invariance and respect the gauge symmetries of the SM:

Ou
1 =(s̄γµT

aPLu) (ūγ
µT aPLb) O5 =(s̄γµγνγρPLb)

∑
q

(q̄γµγνγρq)

Ou
2 =(s̄γµPLu) (ūγ

µPLb) O6 =(s̄γµγνγρT
aPLb)

∑
q

(q̄γµγνγρT aq)

Oc
1 =(s̄γµT

aPLc) (c̄γ
µT aPLb) O7 =

e

16π2
mb(s̄σµνPRb)F

µν

Oc
2 =(s̄γµPLc) (c̄γ

µPLb) O8 =
gs

16π2
mb(s̄ T

aσµνPRb)G
aµν

O3 =(s̄γµPLb)
∑
q

(q̄γµq) O9 =
e2

16π2
(s̄γµPLb)(ℓ̄γ

µℓ)

O4 =(s̄γµT
aPLb)

∑
q

(q̄γµT aq) O10 =
e2

16π2
(s̄γµPLb)(ℓ̄γ

µγ5ℓ) (1.5)

where PL,R = 1
2(1∓γ5) are the chirality projection operators (γ5 is taken as fully anticommuting),

Fµν is the electromagnetic-field strength tensor, Gaµν is the gluon-field strength tensor (with the
color index a, omitted in the rest of operators) and σµν = i

2 [γµ, γν ].
In presence of NP, additional operators may become important, either with opposite chirality

(the so-called chirally-flipped operators or Right-Handed Currents):
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O7′ =
e

16π2
mb(s̄σµνPLb)F

µν O8′ =
gs

16π2
mb(s̄T

aσµνPLb)G
a
µν

O9′ =
e2

16π2
(s̄γµPRb)(ℓ̄γ

µℓ) O10′ =
e2

16π2
(s̄γµPRb)(ℓ̄γ

µγ5ℓ) (1.6)

or with different structures, such as the Scalar, Pseudoscalar or Tensor operators:

OS =
e2

16π2
mb(s̄PRb)(ℓ̄ℓ) OS′ =

e2

16π2
mb(s̄PLb)(ℓ̄ℓ)

OPS =
e2

16π2
mb(s̄PRb)(ℓ̄γ5ℓ) OPS′ =

e2

16π2
mb(s̄PLb)(ℓ̄γ5ℓ)

OT =
e

16π2
(s̄σµνb)(ℓ̄σ

µνℓ) OPT =
e2

16π2
ϵµνρσ(s̄σµνb)(ℓ̄σρσℓ) (1.7)

From the expressions above, it follows that the observables for exclusive decays can be writ-
ten in terms of helicity amplitudes given as Wilson coefficients multiplying hadronic matrix
elements [9, 11, 12]:

A(M1 →M2) = ⟨M2|Heff|M1⟩ =
GF√
2

∑
i

Ci(µ)⟨M2|Oi|M1⟩(µ) ≡
GF√
2

∑
i

Ci(µ)⟨Oi(µ)⟩ (1.8)

Notice that since the square of the amplitude of a physical process is an observable quantity,
it has to be independent of the renormalization scale, thus the matrix elements of the operators
have a dependence on the scale µ such that it cancels with the scale dependence of the Wilson
coefficients.

The relevant operators for the processes considered here, that is b→ sℓ+ℓ−, are the operators
O7(′),9(′)ℓ,10(′)ℓ and their associated Wilson coefficients C7(′) , C9(′)ℓ, C10(′)ℓ where ℓ = e or µ. C7(′)
describe the interaction strength of bottom (b) and strange (s) quarks with the photon while
C9ℓ,10ℓ and C9′ℓ,10′ℓ encode the interaction strength of b and s quarks with charged leptons.
C9ℓ,10ℓ and C9′ℓ,10′ℓ2 are equal for muons and electrons in the SM but NP can add different

contributions to muon operators compared to the electron ones. For C7 and C9ℓ,10ℓ we split SM
and NP contributions like

Ciℓ = CSMiℓ + CNP
iℓ (1.9)

One can use the fact that mb is significantly larger than the typical QCD scale (ΛQCD ∼
0.2GeV) in order to isolate, in Eq. (1.8), perturbatively computable contributions to the hadronic
matrix elements (using effective approaches like QCD factorization [13]). These perturbative con-
tributions of hadronic origin can be lumped together with the purely short-distance contribution
into effective Wilson coefficients (that will multiply non-perturbative hadronic form factors) with
the following structure in the case of B → K(∗)ℓ+ℓ− [14]:

C9ℓ(q2) = CSM9pert(q2) + Ccc̄9 (q2) + CNP
9ℓ (1.10)

2The Wilson coefficients of the chirally-flipped operators are zero in the SM, apart from C7′ which features a
small SM contribution of O(ms/mb), C7′ =

ms
mb

C7 + CNP
7′ .
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where ℓ = e, µ. Concerning the different elements in C9ℓ(q2), we have CSM9pert = CSM9 + Y (q2),
where the function Y (q2) stems from one-loop matrix elements of four-quark operators O1−6,
corresponding to the cc̄ continuum. It can be evaluated within perturbation theory at LO, and
corrections at O(αs) to C9ℓ to this function are known [14–16]. In addition to this continuum,
there is a long-distance contribution, which corresponds in particular to charmonium resonances
Ccc̄9 and depends on the external hadron state. Moreover, this long-distance contribution is both
q2- and helicity-dependent. Several approaches are available to estimate this contribution [17–
19], all with similar outcomes [20, 21]. We follow here [20, 22], using the light-cone sum rule
computation with one soft-gluon exchange [23] to get an order of magnitude estimate of this
contribution, without making any assumption about its sign and thus allowing for constructive
or destructive interference with the other contributions to C9µ, as we will show below.

Including electromagnetic corrections introduces mixing among the operators in Eq. (1.5)
that share the same quantum numbers. Therefore, since the Wilson coefficients C7 and C8 always
appear in matrix elements in certain combinations, it is useful to define the following effective
coefficients [24]:

Ceff7 ≡ C7 −
1

3
C3 −

4

9
C4 −

20

3
C5 −

80

9
C6 (1.11)

Ceff8 ≡ C8 −
1

6
C4 + 20C5 −

10

3
C6 (1.12)

The next-to-next-to-leading logarithmic order value of the Wilson coefficients in the SM at
the scale µb = 4.8GeV [25] can be found in Table 1.1.

C1(µb) C2(µb) C3(µb) C4(µb) C5(µb) C6(µb) Ceff
7 (µb) Ceff

8 (µb) C9(µb) C10(µb)
-0.2632 1.0111 -0.0055 -0.0806 0.0004 0.0009 -0.2923 -0.1663 4.0749 -4.3085

Table 1.1: NNLO Wilson coefficients in the SM and at the scale µb = 4.8GeV [25].

1.1.2 B → K∗(Kπ)ℓ+ℓ− angular distribution

The full angular distribution of the B → K∗(Kπ)ℓ+ℓ− decay is obtained by squaring the matrix
element of the Hamiltonian in Eq. (1.2):

M =
GFα√
2π
λ
(s)
t

{[
⟨Kπ|s̄γµ(Ceff

9 PL + Ceff
9′ PR)b|B̄⟩

− 2mb

q2
⟨Kπ|s̄i σµνqν

[(
Ceff
7 +

ms

mb
Ceff
7′

)
PR +

(
ms

mb
Ceff
7 + Ceff

7′

)
PL

]
b|B̄⟩

]
⟨ℓ+ℓ−|ℓ̄γµℓ|0⟩

+ ⟨Kπ|s̄γµ(C10PL + C10′PR)b|B̄⟩⟨ℓ+ℓ−|ℓ̄γµγ5ℓ|0⟩
+ ⟨Kπ|s̄ (CSPR + CS′PL) b|B̄⟩⟨ℓ+ℓ−|ℓ̄ℓ|0⟩
+ ⟨Kπ|s̄ (CPSPR + CPS′PL) b|B̄⟩⟨ℓ+ℓ−|ℓ̄γ5ℓ|0⟩+ CT ⟨Kπ|s̄σµνb|B̄⟩⟨ℓ+ℓ−|ℓ̄σµνℓ|0⟩

+ iCPT ϵ
µνρσ⟨Kπ|s̄σµνb|B̄⟩⟨ℓ+ℓ−|ℓ̄σρσℓ|0⟩

}
+Mu (1.13)

whereMu corresponds to the analogous contributions fromH(u)
eff . Notice that the matrix elements

above are expressed in terms of a B → Kπ transition. However, by virtue of the narrow width
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approximation assuming the K∗ to be produced resonantly, one can rewrite them in terms of the
B → V form factors that we will show below3.

After summing over spins of the final states and making use of some kinematical identities,
one arrives at the following expression in terms of only four independent kinematical variables
that suffice to describe all the quantities in the decay, namely the dilepton invariant mass q2 and
the three angles θK∗ , θℓ and ϕ (see Appendix A for our angle definitions [12], which differs from
the usual LHCb convention [26, 27]):

d4Γ

dq2d cos θℓd cos θK∗dϕ
=

9

32π
J(q2, θℓ, θK∗ , ϕ) (1.14)

where the function J(q2, θℓ, θK∗ , ϕ) can be factorized in such a way that the q2 dependence is
encoded inside the angular coefficients Ji:

J(q2, θℓ, θK∗ , ϕ) = J1s sin
2 θK∗ + J1c cos

2 θK∗ + (J2s sin
2 θK∗ + J2c cos

2 θK∗) cos 2θℓ

+ J3 sin
2 θK∗ sin2 θℓ cos 2ϕ+ J4 sin 2θK∗ sin 2θℓ cosϕ

+ J5 sin 2θK∗ sin θℓ cosϕ

+ (J6s sin
2 θK∗ + J6c cos

2 θK∗) cos θℓ + J7 sin 2θK∗ sin θℓ sinϕ

+ J8 sin 2θK∗ sin 2θℓ sinϕ+ J9 sin
2 θK∗ sin2 θℓ sin 2ϕ (1.15)

For the CP-conjugated mode one obtains a similar expression, but with the following replace-
ments due to the angle convention:

J1s,1c,2s,2c,3,4,7 → J̄1s,1c,2s,2c,3,4,7 , J5,6s,6c,8,9 → −J̄5,6s,6c,8,9 (1.16)

where the J̄i equal Ji but with all weak phases conjugated.
The angular coefficients Ji(q2) are in turn expressed in terms of eight transversity amplitudes

by contracting the matrix element associated to the amplitude of the process with the different
possible polarizations of the K∗ and the vector boson mediating the transition. If one neglects
(pseudo)tensor contributions, the angular coefficients have the following expressions [11, 28]:

J1s =
(2 + β2ℓ )

4

[
|AL

⊥|2 + |AL
∥ |2 + (L→ R)

]
+

4m2
ℓ

q2
Re
(
AL

⊥A
R∗
⊥ +AL

∥A
R∗
∥

)
(1.17)

J1c =|AL
0 |2 + |AR

0 |2 +
4m2

ℓ

q2

[
|At|2 + 2Re(AL

0A
R∗
0 )
]
+ β2ℓ |AS |2 (1.18)

J2s =
β2ℓ
4

[
|AL

⊥|2 + |AL
∥ |2 + (L→ R)

]
J2c = −β2ℓ

[
|AL

0 |2 + |AR
0 |2
]

(1.19)

3Later on, in Chapter 2, we will review in more detail the implications of considering the full amplitude of the
Kπ system and the contributions of higher partial waves to the total decay rate of the B0 → K∗0(K+π−)ℓ+ℓ−

transition.
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J3 =
β2ℓ
2

[
|AL

⊥|2 − |AL
∥ |2 + |AR

⊥|2 − |AR
∥ |2
]

J4 =
1√
2
β2ℓ

[
Re(AL

0A
L∗
∥ +AR

0 A
R∗
∥ )
]

(1.20)

J5 =
√
2βℓ

[
Re(AL

0A
L∗
⊥ −AR

0 A
R∗
⊥ )− mℓ√

q2
Re(AL

∥A
∗
S +AR∗

∥ AS)
]

(1.21)

J6s =2βℓ

[
Re(AL

∥A
L∗
⊥ −AR

∥ A
R∗
⊥ )
]

J6c = 4βℓ
mℓ√
q2

Re(AL
0A

∗
S +AR∗

∥ ) (1.22)

J7 =
√
2βℓ

[
Im(AL

0A
L∗
∥ −AR

0 A
R∗
∥ ) +

mℓ√
q2

Im(AL
⊥A

∗
S −AR∗

⊥ AS)
]

(1.23)

J8 =
β2ℓ√
2

[
Im(AL

0A
L∗
⊥ +AR

0 A
R∗
⊥ )
]

J9 = β2ℓ

[
Im(AL∗

∥ AL
⊥ +AR∗

∥ AR
⊥)
]

(1.24)

with

βℓ =

√
1− 4

m2
ℓ

q2
(1.25)

The amplitudes AL,R
0 (AL,R

⊥,∥ ) account for a longitudinal (transverse) polarization of the K∗

meson, with L,R referring to the chirality of the leptonic current, and At is obtained by contract-
ing the hadronic tensor associated to the matrix element of the decay with a K∗ longitudinal
polarization in the K∗ rest frame and the extra timelike polarization (the gauge boson being
virtual) of the gauge boson in its own rest frame. Since At can only couple to an axial-vector
current [9], there is no separate left/right-handed part. Pseudoscalar contributions can always
be absorbed into At for the same reason, while if scalar operators are included, an additional
scalar amplitude AS is required.

1.1.3 Transversity amplitudes and B → K∗ form factors

The transversity amplitudes AL,R
0,⊥,∥, At, AS in Eqs. (1.17)-(1.24) contain both factorizable and

non-factorizable corrections of order O(αs) and O(ΛQCD/mb), which can be computed within
the framework of QCD factorization (QCDf) [13]:

AL,R
⊥ = N

√
2λ1/2

{
2mb

q2

[ (
Ceff7 + C7′

)
T1(q

2) +
(
1 + r1(q

2)
)
T⊥(q2)

]

+

[
(C9 + C9′)∓ (C10 + C10′) +

(
1 + r1(q

2)
)
Yt(q

2) +
λu
λt
Yu(q

2) + clong⊥ (q2)s⊥

]
V (q2)

mB +mK∗

}
(1.26)

AL,R
∥ = −N

√
2(m2

B −m2
K∗)

{
2mb

q2

[(
Ceff7 − C7′

)
T2(q

2) +
(
1 + r2(q

2)
)
T⊥(q2)

(
m2

B − q2
)

m2
B

]

+

[
(C9 − C9′)∓ (C10 − C10′) +

(
1 + r2(q

2)
)
Yt(q

2) +
λu
λt
Yu(q

2) + clong∥ (q2)s∥

]
A1(q

2)

mB −mK∗

}
(1.27)
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AL,R
0 = − N

2mK∗
√
q2

{
2mb

[((
Ceff7 − C7′

)
T2(q

2) +
(
1 + r2(s)

)
T⊥(q2)

(
m2

B − q2
)

m2
B

)(
m2

B + 3m2
K∗ − q2

)
−
((
Ceff7 − C7′

)
T3(q

2) +
(
1 + r3(q

2)
)
T∥(q2) + T⊥(q2)

)
λ

m2
B −m2

K∗

]

+

[
(C9 − C9′)∓ (C10 − C10′) +

(
1 + r3(q

2)
)
Yt(q

2) +
λu
λt
Yu(q

2) + clong0 (q2)s0

]
×

×
[
(m2

B −m2
K∗ − q2)(mB +mK∗)A1(q

2)− λA2(q
2)

mB +mK∗

]}
(1.28)

At =
N√
q2
λ1/2

[
2(C10 − C10′) +

q2

mℓ
(CPS − CPS′)

]
A0(q

2) (1.29)

AS = −2Nλ1/2(CS − CS′)A0(q
2) (1.30)

with the normalization

N =

√√√√ G2
Fα

2

3 · 210π5m3
B

λ2t q
2λ1/2

√
1− 4

m2
ℓ

q2
(1.31)

and λ is the Källén function:

λ = m4
B +m4

K∗ + q4 − 2(m2
Bm

2
K∗ + q2m2

K∗ + q2m2
B) (1.32)

The hadronic amplitudes T∥,⊥(q2) are functions containing all contributions calculable in
QCDf, both factorizable and non-factorizable (see Refs. [14, 29] for explicit definitions). r1,2,3(q2)
correspond to the different types of non-factorizable power corrections and serve to single out the
hadronic contribution that is not related to the radiative Wilson coefficients, which is included
in T∥,⊥(q2). The parametrisation in terms of q2 of such non-factorizable power corrections is the
following [30]:

ri(q
2) = rai e

iϕa
i + rbi e

iϕb
i
q2

m2
B

+ rci e
iϕc

i

(
q2

m2
B

)2

(1.33)

with i = 1, 2, 34.
On the other hand, the parameters si and also clongi (q2), with i =⊥, ∥, 0 correspond to long-

distance charm-loop contributions to B → K∗ at the Large-Recoil region, parametrised in the
following way (see Refs. [20, 31] for the definition of the parameters):

clong⊥,∥ (q
2) =

(
acc̄⊥,∥ + bcc̄⊥,∥(c

cc̄
⊥,∥ − q2)q2

)
1

(ccc̄⊥,∥ − q2)q2

clong0 (q2) =
(
acc̄0 + bcc̄0 (ccc̄0 − q2)(q2 + 1)

) 1

(ccc̄0 − q2)(q2 + 1)

(1.34)

4The two contributions T⊥, T∥ that appear in the expressions of the transversity amplitudes are related to the
Ti form factors (with i = 1, 2, 3) as in Ref. [14]. Since the non-factorizable power corrections need to be considered
at the level of the matrix elements of the radiative decay, we include three independent power corrections ri(q

2),
one for each form factor Ti.
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Part of these cc̄-loop contributions have been already included in the non-factorizable contribu-
tions from hard-gluon exchange. Here we parametrise the remaining long-distance contributions
in a manner that it matches the non-perturbative computation from Ref. [23]. The contributions
to the transverse amplitudes have the same structure and input values, being slightly different
for the longitudinal amplitude. In Table 1.2 we provide the numerical values of the different the-
oretical inputs accounting for the different types of non-factorizable contributions that appear
in Eqs. (1.33)-(1.34).

Non-factorizable Power Corrections
ra1 ϕa1 rb1 ϕb1 rc1 ϕc1 ra2 ϕa2 rb2

0± 0.10 0± π 0± 0.10 0± π 0± 0.10 0± π 0± 0.10 0± π 0± 0.10
ϕb2 rc2 ϕc2 ra3 ϕa3 rb3 ϕb3 rc3 ϕc3

0± π 0± 0.10 0± π 0± 0.10 0± π 0± 0.10 0± π 0± 0.10 0± π
Long-distance charm loop

s⊥ s∥ s0 acc̄⊥ bcc̄⊥ ccc̄⊥
0± 1 0± 1 0± 1 9.25± 2.25 −0.5± 0.3 9.35± 0.25
acc̄∥ bcc̄∥ ccc̄∥ acc̄0 bcc̄0 ccc̄0

9.25± 2.25 −0.5± 0.3 9.35± 0.25 33± 7 −0.9± 0.5 10.35± 0.55

Table 1.2: Numerical value of the theoretical parameters accounting for the different non-factorizable
contributions included in our analysis.

On top of that, one can see in Eqs. (1.28)-(1.30) the seven form factors V,A0,1,2, T1,2,3 that
describe a B → K∗ transition [29], defined through the matrix elements:

⟨K∗(p′, ε∗)|s̄γµb|B̄(p)⟩ = 2iV (q2)

mB +mK∗
ϵµνρσε

∗νp′ρpσ (1.35)

⟨K∗(p′, ε∗)|s̄γµγ5b|B̄(p)⟩ = 2mK∗A0(q
2)
ε∗ · q
q2

qµ + (mB +mK∗)A1(q
2)

[
ε∗µ −

ε∗ · q
q2

qµ

]
−A2(q

2)
ε∗ · q

mB +mK∗

[
(p+ p′)µ −

m2
B −m2

K∗

q2
qµ

]
(1.36)

⟨K∗(p′, ε∗)|s̄σµνqνb|B̄(p)⟩ =− 2T1(q
2)ϵµνρσε

∗νp′ρpσ (1.37)

⟨K∗(p′, ε∗)|s̄σµνqνγ5b|B̄(p)⟩ =− iT2(q2)
[
(m2

B −m2
K∗)ε∗µ − (ε∗ · q)(p+ p′)µ

]
− iT3(q2)(ε∗ · q)

[
qµ −

q2

m2
B −m2

K∗
(p+ p′)µ

]
(1.38)

where p′µ and εµ are the 4-momentum and polarization of the K∗ in the final state, pµ is the
4-momentum of the B meson, and qµ = pµ − p′µ is the momentum transfer q2.

One can always combine Eqs. (1.35)-(1.38) to obtain expressions that can be directly related
to the matrix elements of the usual bilinear quark currents:
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⟨K∗(p′, ε∗)|s̄γµPL,R b|B̄(p)⟩ = ε∗ν

{
− iϵνµρσp′ρqσ

V (q2)

mB +mK∗
∓ 1

2

[
2mK∗

q2
qνqµA0(q

2)

+ (mB +mK∗)

(
gνµ −

qνqµ
q2

)
A1(q

2)

− qν
mB +mK∗

(
(2p′ + q)µ −

m2
B −m2

K∗

q2
qµ

)
A2(q

2)

]}
(1.39)

⟨K∗(p′, ε∗)|s̄ iσµνqνPL,R b|B̄(p)⟩ = ε∗ν

{
iϵνµρσp

′ρqσT1(q
2)

± 1

2

[(
(m2

B −m2
K∗)gνµ − qν(2p′ + q)µ

)
T2(q

2)

+ qν

(
qµ −

q2

m2
B −m2

K∗
(2p′ + q)µ

)
T3(q

2)

]}
(1.40)

These hadronic quantities require a non-perturbative calculation. At present, there are two
main methods to achieve such computation, namely:

• Light-Cone Sum Rules (LCSRs): at the Large Recoil Region, that is for small values of
the invariant dilepton mass q2, this method combines standard QCD sum rules techniques
with the information on light-cone hadron distribution amplitudes (DAs). One can choose
between relying on light-meson DAs [32, 33] or B meson DAs [23, 34] to describe the
interpolating current of the transition. Our approach follows the latter prescription [23],
as the error estimate is more conservative.

• Lattice calculations: at the Low Recoil Region, i.e. q2 ≳ 15GeV2, QCD lattice techniques
can be safely applied, such as the computations in Ref. [35], which we include in our
analysis. Moreover, in this region one has to use a model to estimate duality violations due
to the resonances of partner channels such as B+ → K+µ+µ−. To account for possible
duality violations effects, we add a contribution of order O(10%) with an arbitrary phase
to Ceff9 for each transversity amplitude, including NNLL corrections following Ref. [16].

Finally, let us introduce the so-called soft form factors (SFF), which are essential in order
to define observables that have reduced sensitivity to the main source of theoretical uncertainty,
that is hadronic contributions. Since the s quark is light with respect to the b quark, the
interactions between the initial/final state quarks with the spectator quark inside the B meson
occur mainly via soft-gluon exchanges. Therefore, one can apply the Heavy Quark Effective
Theory (HQET) [36, 37] formalism to describe the b quark and the Large Energy Effective Theory
(LEET) [38, 39] for the light energetic quark s. Then, in the Large Recoil Limit (q2 ≪ m2

B), the
seven form factors in Eqs. (1.35)-(1.38) reduce to only two soft form factors5:

5Here we focus on a B → K∗ decay, but in the case of a B → P transition, the three form factors reduce to
only one Isgur-Wise function in an analogous way [29, 39]. A discussion on this can be found later in Section 1.2.3
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⟨K∗(p′, ε∗)|s̄γµb|B̄(p)⟩ = 2iE ξ⊥(E)ϵµνρσε∗ν nρvσ (1.41)

⟨K∗(p′, ε∗)|s̄γµγ5b|B̄(p)⟩ = 2E [ξ⊥(E)(ε∗µ − ε∗ · v nµ) + ξ∥(E)ε∗ · v nµ], (1.42)

⟨K∗(p′, ε∗)|s̄σµνqνb|B̄(p)⟩ = 2EmB ξ⊥(E)ϵµνρσε∗ν vρ nσ (1.43)

⟨K∗(p′, ε∗)|s̄σµνγ5qνb|B̄(p)⟩ =− 2iE
{
ξ⊥(E)(ε∗µ − ε∗ · v nµ) (1.44)

+ ξ∥(E) ε∗ · v[(mB − E)nµ −mBv
µ]
}

Therefore, neglecting corrections of orderO(αs) andO(ΛQCD/mb) and comparing Eqs. (1.35)-
(1.38) with Eqs. (1.41)-(1.44) one finds the following symmetry relations between the B → K∗

form factors at large recoil:

mB

mB +mK∗
V (q2) =

mB +mK∗

2E
A1(q

2) = T1(q
2) =

mB

2E
T2(q

2) = ξ⊥(E) (1.45)

mK∗

E
A0(q

2) =
mB +mK∗

2E
A1(q

2)− mB −mK∗

mB
A2(q

2) =
mB

2E
T2(q

2)− T3(q2) = ξ∥(E) (1.46)

1.2 Semileptonic, purely leptonic and radiative b→ s observables

With all the elements needed at hand, we can proceed now to define observables that give us
access to interesting information of the different channels available for b → sℓ+ℓ− transitions
and, specially, that can be effective probes of NP contributions. In this section we will describe
the whole set of observables included in the global fits discussed in Section 1.3, that is, angular
observables of the semileptonic vector decays B → K∗ℓ+ℓ− and Bs → ϕℓ+ℓ−, as well as the
corresponding ones for the pseudoscalar channel B → Kℓ+ℓ−. We will also review the branching
ratio of the purely leptonic transition Bs → µ+µ− and discuss separately the crucial LFUV
observables. Finally, we will introduce several observables providing information and constraints
on different radiative b→ sγ modes.

1.2.1 B → K∗ℓ+ℓ−

We will first list down the observables related to the semileptonic B-meson decay to a light vector
meson K∗. For that we will follow the work in Refs. [11, 28], where symmetries of the angular
distribution were identified and used to establish the precise number of independent degrees of
freedom of the distribution, which in turn lead to define the minimal number of observables
needed to extract all the information encoded in the angular distribution. Subsequently, it
was shown that this subset of observables constitutes a complete basis, that is, any angular
observable can be written in terms of linear combinations of observables of the basis. Additionally,
in Ref. [11] the seed of what would later become known as the optimized observables6 was
introduced. By choosing adequate ratios of angular coefficients, one could define theoretically
clean observables, that is observables with cancellation of form factor dependence at LO in

6Indeed, the first observable proposed following this philosophy of building suitable ratios that minimize the
sensitivity to hadronic uncertainties was already introduced in Ref. [40], where the first ratio A

(2)
T was defined.
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the HQET/LEET limit7. In Ref. [41], the final version of the basis was introduced, replacing
P4,5,6 → P ′

4,5,6.
The complete set of optimized observables constitutes a central piece in our analysis of the

flavour anomalies. We can define CP-averaged and CP-violating optimized observables in terms
of the angular coefficients Ji, J̄i [12] :

⟨P1⟩bin =
1

2

∫
bin dq

2[J3 + J̄3]∫
bin dq

2[J2s + J̄2s]
, ⟨PCP

1 ⟩bin =
1

2

∫
bin dq

2[J3 − J̄3]∫
bin dq

2[J2s + J̄2s]
, (1.47)

⟨P2⟩bin =
1

8

∫
bin dq

2[J6s + J̄6s]∫
bin dq

2[J2s + J̄2s]
, ⟨PCP

2 ⟩bin =
1

8

∫
bin dq

2[J6s − J̄6s]∫
bin dq

2[J2s + J̄2s]
, (1.48)

⟨P3⟩bin =− 1

4

∫
bin dq

2[J9 + J̄9]∫
bin dq

2[J2s + J̄2s]
, ⟨PCP

3 ⟩bin =− 1

4

∫
bin dq

2[J9 − J̄9]∫
bin dq

2[J2s + J̄2s]
, (1.49)

⟨P ′
4⟩bin =

1

N ′
bin

∫
bin
dq2[J4 + J̄4], ⟨P ′

4
CP⟩bin =

1

N ′
bin

∫
bin
dq2[J4 − J̄4], (1.50)

⟨P ′
5⟩bin =

1

2N ′
bin

∫
bin
dq2[J5 + J̄5], ⟨P ′

5
CP⟩bin =

1

2N ′
bin

∫
bin
dq2[J5 − J̄5], (1.51)

⟨P ′
6⟩bin =

−1
2N ′

bin

∫
bin
dq2[J7 + J̄7] , ⟨P ′

6
CP⟩bin =

−1
2N ′

bin

∫
bin
dq2[J7 − J̄7], (1.52)

⟨P ′
8⟩bin =

−1
N ′

bin

∫
bin
dq2[J8 + J̄8] , ⟨P ′

8
CP⟩bin =

−1
N ′

bin

∫
bin
dq2[J8 − J̄8] , (1.53)

where the ⟨Pi⟩bin notation stands for the integration over the q2 range of the given bin. Since
experimental measurements are performed by fitting q2-binned angular distributions, we need to
integrate the theoretical predictions over the corresponding kinematic range determined by the
experimental q2 bins in order to compare theory/experiment. The normalization N ′

bin is defined
as:

N ′
bin =

√
−
∫

bin
dq2[J2s + J̄2s]

∫
bin
dq2[J2c + J̄2c]. (1.54)

Besides the Pi observables above, there are other important observables included in our
analysis:

⟨AFB⟩bin =− 3

4

∫
dq2[J6s + J̄6s]

4⟨dΓ/dq2⟩+ ⟨dΓ̄/dq2⟩ , ⟨ACP
FB⟩bin =− 3

4

∫
dq2[J6s − J̄6s]

4⟨dΓ/dq2⟩+ ⟨dΓ̄/dq2⟩ (1.55)

⟨FL⟩bin =

∫
dq2[J2c + J̄2c]

⟨dΓ/dq2⟩+ ⟨dΓ̄/dq2⟩ , ⟨FCP
L ⟩bin =

∫
dq2[J2c − J̄2c]

⟨dΓ/dq2⟩+ ⟨dΓ̄/dq2⟩ (1.56)

7In other words, the optimized observables are built in such a way that there is an exact cancellation of the
soft form factors, which is only valid at LO in αs and ΛQCD/mb, as we discussed previously in Section 1.1.3 (see
Eqs. (1.41)-(1.46)).
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⟨ dB
dq2
⟩bin =τB

⟨dΓ/dq2⟩+ ⟨dΓ̄/dq2⟩
2

, ⟨ACP ⟩bin =
⟨dΓ/dq2⟩ − ⟨dΓ̄/dq2⟩
⟨dΓ/dq2⟩+ ⟨dΓ̄/dq2⟩ (1.57)

where A(CP)
FB corresponds to the CP-averaged(violating) Forward-Backward asymmetry, F (CP)

L is
the longitudinal polarisation fraction of the K∗ meson, and dB/dq2 and ACP are the differential
branching ratio8 and the CP-asymmetry of the given decay respectively, with τB denoting the
lifetime of the B meson.

1.2.2 Bs → ϕℓ+ℓ−

The main difference between the two vector decays B → K∗ℓ+ℓ− and Bs → ϕℓ+ℓ− is that
the latter are not self-tagging processes, that is, the final state cannot discriminate between the
parent meson Bs or its CP-conjugate B̄s. Therefore, the only measurements available for this
decay are the following combinations of angular coefficients Ji (which are equivalent to the Ji
from Eqs. (1.17)-(1.24)):

⟨Ji + J̄i⟩ i = 1s, 1c, 2s, 2c, 3, 4, 7 (1.58)

⟨Ji − J̄i⟩ i = 5, 6s, 6c, 8, 9 (1.59)

Since we do not consider CP-violating processes in our analysis, we will only include the
CP-average quantities above in the form of the optimized observables P1, P ′

4 and P ′
6, and also

the longitudinal polarisation fraction FL. However, the fact that the final state ϕ meson cannot
distinguish between a Bs or a B̄s decay introduces an interference from Bs− B̄s mixing. This in
turn induces a time-dependent contribution to the amplitude of the decay and in consequence to
the angular distribution as well. Therefore, one has to make the following replacement [42, 43]
to account for this time-dependence:

Ji(t) = Ji(AX → AX(t)) , J̃i(t) = J̃i(AX → ÃX(t)) (1.60)

where X includes all possible combinations of polarisations and chiralities and J̃i are related to
the J̄i coefficients by J̃i = ζiJ̄i, with ζi = ±1 for i = 1s, 1c, 2s, 2c, 3, 4, 7(5, 6s, 6c, 8, 9). Then the
combinations appearing in the time-dependent decay rates can be written as:

Ji(t) + J̃i(t) = e−Γt
[
(Ji + J̃i) cosh(yΓt)− hi sinh(yΓt)

]
, (1.61)

Ji(t)− J̃i(t) = e−Γt
[
(Ji − J̃i) cosh(xΓt)− si sinh(xΓt)

]
, (1.62)

where Γ ≡ (ΓL + ΓH), x ≡ (mH − mL)Γ and y ≡ ∆Γ/(2Γ), being ΓL(ΓH) the width of the
lighter (heavier) mass eigenstate. The coefficients Ji and J̃i can be determined from flavour-
specific decays, and si and hi are defined as a new set of angular coefficients related to the
time-dependent angular distribution (we refer the reader to Ref. [42] for their explicit definitions
in terms of transversity amplitudes).

Following this formalism, we can therefore account for measurements of time-integrated ob-
servables by including O(∆Γ/Γ) corrections to the analogous B → K∗ℓ+ℓ− expressions [42]

8We usually write ⟨dB/dq2⟩ simply as B(B → K∗ℓ+ℓ−) in order not to overload the notation.
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⟨Ji(t) + J̃i(t)⟩t =
1

Γ

[
1

1− y2 (Ji + J̃i)−
y

1− y2hi
]
, (1.63)

⟨Ji(t)− J̃i(t)⟩t =
1

Γ

[
1

1 + x2
(Ji − J̃i)−

x

1 + x2
si

]
, (1.64)

where following a similar notation as in Eqs. (1.47)-(1.53) we define ⟨A⟩t as the integration over
time of a given quantity A.

Finally, we can construct the same complete basis of optimized observables discussed for
B → K∗ℓ+ℓ− for the Bs → ϕℓ+ℓ− decay by making the following replacements in Eqs. (1.47)-
(1.53):

Ji + J̃i −→ ⟨Ji(t) + J̃i(t)⟩t, (1.65)

Ji − J̃i −→ ⟨Ji(t)− J̃i(t)⟩t. (1.66)

1.2.3 B → Kℓ+ℓ−

Another b → s process that presents good sensitivity to possible NP contributions is the pseu-
doscalar B → Kℓ+ℓ− decay channel. Since it is governed by the same quark transition reviewed
in Section 1.1.1, observables related to this decay can be described by means of the same effective
Hamiltonian. The only difference will appear at the level of the form factors needed, as in this
case we are dealing with a pseudoscalar structure.

Therefore, the matrix element of a B → Kℓ+ℓ− transition reads [44]

M(B̄ → Kℓℓ̄) =
GFα√
2π
V ∗
tsVtb

[
FS(ℓ̄ℓ) + FP (ℓ̄γ5ℓ) + FV pµ(ℓ̄γ

µℓ) + FApµ(ℓ̄γ
µγ5ℓ)

]
(1.67)

where pµ is the 4-momentum of the B meson. The terms FS,P,V,A
9 are functions of Lorentz-

invariant quantities that depend on the Wilson coefficients and also the form factors associated
to this decay. They have the following expression [44]:

FS =
1

2
(m2

B −m2
K)f0(q

2)

(CSmb + CS′ms

mb −ms

)
, (1.68)

FP =−mℓ(C10 + C10′)
{
f+(q

2)− m2
B −m2

K

q2
(
f0(q

2)− f+(q2)
)}

+
1

2
(m2

B −m2
K)f0(q

2)

(CPmb + CP ′ms

mb −ms

)
, (1.69)

FA = (C10 + C10′)f+(q2), (1.70)

FV = (Ceff
9 + Ceff

9′ )f+(q
2) + 2(Ceff

7 + Ceff
7′ )mb

fT (q
2)

mB +mK
, (1.71)

where the three B → P form factors f0,+,T (q
2) are defined through the matrix elements

9In general, these transitions could also receive contributions from tensor operators, but since we do not explore
this possibility in our analysis, we choose not include them here.
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⟨K(k)|s̄γµb|B̄(p)⟩ =(2p− q)µf+(q2) +
m2

B −m2
K

q2
qµ
[
f0(q

2)− f+(q2)
]
, (1.72)

⟨K(k)|s̄iσµνqνb|B̄(p)⟩ =−
[
(2p− q)µq2 − (m2

B −m2
K)qµ

] fT (q
2)

mB +mK
(1.73)

with qµ = (p − k)µ being the transfer four-momentum. Moreover, by means of the equation of
motion for the b and s quarks we can obtain from Eq. (1.72)

⟨K(k)|s̄b|B̄(p)⟩ = m2
B −m2

K

mb −ms
f0(q

2) (1.74)

Let us note in passing that the three B → P form factors reduce to one single Isgur-Wise
function ξP (q

2) due to the existing symmetry relations in the large energy limit of QCD (in an
analogous way as the seven form factors for a B → K∗ transition reduce to two soft form factors
as discussed in Section 1.1.3) [29, 39].

By squaring the matrix element in Eq. (1.67) we can compute the decay distribution of a
B → Kℓ+ℓ− process in terms of the dilepton invariant mass q2 and the angle θℓ between the B
meson and the ℓ− with respect to the dilepton rest frame [45]:

d2Γℓ

dq2d cos θℓ
= aℓ(q

2) + bℓ(q
2) cos θℓ + cℓ(q

2) cos2 θℓ, (1.75)

where aℓ(q2), bℓ(q2) and cℓ(q2) are defined as [45]

aℓ(q
2)

Γ0λ1/2βℓ
= q2

(
β2ℓ |FS |2 + |FP |2

)
+
λ

4

(
|FA|2 + |FV |2

)
+ (m2

B −m2
K + q2)Re [FPF

∗
A] + 4m2

ℓm
2
B|FA|2, (1.76)

bℓ(q
2)

Γ0λ1/2βℓ
= 2mℓλ

1/2βℓRe [FSF
∗
V ] , (1.77)

cℓ(q
2)

Γ0λ1/2βℓ
=− λ

4
β2ℓ
(
|FA|2 + |FV |2

)
, (1.78)

with βℓ and λ defined in Eq. (1.25) and Eq. (1.32) respectively, and

Γ0 =
G2

Fα
2
em|VtbV ∗

ts|
512π5m3

B

(1.79)

We are now ready to define the observables of interest that we consider in our analysis.
Since they are experimentally measured in integrated q2 bins, we already write their theoretical
definitions as q2 averaged expressions. By combining the q2-integrated version of the coefficients
aℓ(q

2), bℓ(q2) and cℓ(q2)

⟨aℓ⟩bin =

∫
bin
aℓ(q

2)dq2 , ⟨bℓ⟩bin =

∫
bin
bℓ(q

2)dq2 , ⟨cℓ⟩bin =

∫
bin
cℓ(q

2)dq2 , (1.80)

we can define the decay rate Γℓ and the forward-backward asymmetry AFB [45]:
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〈dΓℓ

dq2

〉
bin

=2

(
⟨aℓ⟩bin +

1

3
⟨cℓ⟩bin

)
, (1.81)

⟨Aℓ
FB⟩bin =

⟨bℓ⟩bin
⟨dΓℓ/dq2⟩bin

(1.82)

Easily enough, we can transform Eq. (1.81) into the usual branching ratio by multiplying by the
corresponding B-meson lifetime τB:

B(B → Kℓ+ℓ−) = τB

〈dΓℓ

dq2

〉
bin

(1.83)

Finally, we can further define the observable [45]

⟨F ℓ
H⟩bin =

2

⟨dΓℓ/dq2⟩bin
(⟨aℓ⟩bin + ⟨cℓ⟩bin) (1.84)

Since the observable F ℓ
H is normalized with respect to the total decay rate Γℓ, it shows a

reduced sensitivity to uncertainties due to cancellations between numerator and denominator.
Notice that Aℓ

FB is exactly zero in the SM10. Also, in the limit of massless leptons (mℓ → 0)
F ℓ
H vanishes in the SM due to a cancellation between aℓ and cℓ as can be seen in Eqs. (1.76)

and (1.78).

1.2.4 Bs → µ+µ−

We include in our analysis the branching ratio of the process B(Bs → µµ). This is an important
observable to place constraints on axial, scalar and pseudoscalar structures of NP. The expression
of such branching ratio at leading order is given by [46]:

B(Bs → µµ) =
λ2tG

2
Fm

3
Bs
α2
emτBsf

2
Bs

64π3

√
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4m2
µ

m2
Bs

{
m2

Bs

m2
b

(CS − CS′ )2

(
1− 4

m2
µ

m2
Bs

)

+

(
mBs

mb
(CP − CP ′ ) + 2

mµ

mBs

(C10µ − C10′µ)
)2
}

(1.85)

where τBs is the Bs lifetime and C10µ = CSM10µ + CNP
10µ. Here C10′µ accounts for possible right-

handed current NP contributions, and CS(′) , CP (′) correspond to LH (RH) scalar and pseudoscalar
contributions.

The most recent theoretical prediction for B(Bs → µµ) is presented in Ref. [47]. In this
work, the authors compute a set of electromagnetic corrections from scales below mb that are
dynamically enhanced by a power of mb/ΛQCD and by large logarithms. The size of such correc-
tions is found to be 1%, which is larger than previous estimates of next-to-leading order QED
effects, assessed to be ±0.3%. Despite that, these corrections are well within the estimated
±1.5% non-parametric uncertainty. To account for these new corrections in our prediction, we
use as a reference the value in Ref. [48], where the effect of these QED corrections is introduced
as a global factor ηQED = 0.993 to the previous theoretical prediction from Ref. [46]

Bsµµ = ηQED(3.65± 0.23) = (3.64± 0.14) (1.86)

10This can be seen from Eq. (1.77). Since Aℓ
FB ∝ bℓ, which is different from zero only in presence of scalar

contributions, this observable automatically vanishes if there is no scalar NP.
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In our analyses, we decided to rescale our theoretical prediction using our own set of input
parameters in order to agree with the SM value in Eq. (1.86). This allows us to leave the NP
terms in Eq. (1.85) untouched.

1.2.5 Lepton Flavour Universality Violating observables

Even though we have discussed observables for the pseudoscalar (vector) channel B → K(∗)ℓ+ℓ−

in previous sections, there is a type of observable related to these transitions that deserves special
attention due to the remarkable properties they show. The so-called Lepton Flavour Universality
Violating observables, or LFUV observables, are a subset of observables built in such a way that
they allow to directly test the amount of LFU breaking that data seems to point to.

Up to lepton masses effects, the SM predicts the same decay rate for LFUV observables,
regardless of the lepton flavour in the final state. In other words, one expects the same amount
of electrons and muons (and tau) in a B → K(∗) decay at the region q2 ≳ 1GeV2.

Therefore, by comparing observables that are equal except for the final lepton flavour, we
can assess by how much the universality of the leptonic flavour in the SM is broken by possible
contributions of NP. On top of that, since they are built from ratios or differences of the same
observable, they show a very reduced sensitivity to hadronic uncertainties, making them very
effective probes of the presence of LFUV NP.

First we consider the LFUV ratios RK(∗) [45], both for the neutral and charged B0,+ meson
decay:

RK(∗)0,+ =
B(B0,+ → K(∗)0,+µ+µ−)

B(B0,+ → K(∗)0,+e+e−)
(1.87)

where RK(∗)0,+ has to be understood as the q2-integrated version of the observable, which we do
not display here as it is customary to write the observable without the usual ⟨.⟩ brackets. Any
RX ratio constructed following Eq. (1.87), with X being any final state meson of a semileptonic
B decay, will be 1 in the SM up to kinematic corrections of order O(mℓ/

√
q2).

Later on another type of LFUV observable, called Qi, was introduced in Ref. [49]:

⟨Qi⟩bin = ⟨Pµ
i ⟩bin − ⟨P e

i ⟩bin (1.88)

with i = 4, 5, 6, 8. Since they are differences of optimized angular observables, which already have
a limited sensitivity to hadronic uncertainties, they also constitute clean probes of the violation
of LFU given that they cancel completely in the SM up to corrections of order O(mℓ/

√
q2) and

exhibit a high sensitivity to the short-distance part of C9µ. A measurement of Qi deviating from
zero would necessarily imply the existence of physics beyond the SM, with different implications
that we will discuss in the following section. Currently, only experimental measurements of Q4

and Q5 are available [50], and therefore we only include those two in our analysis.

1.2.6 B → Xsℓ
+ℓ−

In our analysis we include the inclusive decays B → Xse
+e− and B → Xsµ

+µ−, as they
have a limited sensitivity to non-perturbative contributions while at the same time allow us to
place important constraints on the electromagnetic and semileptonic coefficients C7(′),9(′),10(′)11.
Following the parametrisation in Ref. [25], their branching ratio have the following expression

11These observables can in principle also test other kinds of NP operators such as scalars or tensors. However,
since we do not usually include those in our analysis we will not consider them here.
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b(0,0) = 15.86 δb = 1.51

b(0,7) = −0.517 b(0,9) = 2.663 b(0,10) = −4.679

b(0,7′) = −0.680 b(0,9′) = −0.049 b(0,10′) = 0.061

b(7,7) = b(7′,7′) = 27.776 b(9,9) = b(9′,9′) = 0.534 b(10,10) = b(10′,10′) = 0.543

b(7,7′) = −0.399 b(9,9′) = −0.014 b(10,10′) = −0.014

b(7,9) = b(7′,9′) = 4.920 b(7,9′) = b(7′,9) = −0.113

Table 1.3: Coefficients of the parametrisation of B(B → Xsℓ
+ℓ−) in terms of the Wilson coefficients

C7(′),9(′),10(′) [25].

B(B̄ → Xsℓ
+ℓ−)[1,6] = 10−7 ×

 ∑
i,j=0,7(′),9(′),10(′)

b(i,j) δCiδCj ± δb

 , (1.89)

Here δCi = Ci − CSMi , with δC0 = 1. The non-zero parameters b(i,j) can be found in Table 1.3.
Notice that, since we are only considering the branching ratio in the bin q2 ∈ [1, 6]GeV2 (due to
the fact that its theoretical prediction suffers from larger theoretical uncertainties in the high-q2

region), lepton mass effects are small enough to be considered negligible, and therefore Eq. (1.89)
applies to both muons and electrons, with only small differences in the SM prediction.

1.2.7 Radiative modes

Last, but not least, we list in this section several observables related to B decays with a photon
in the final state. They are interesting quantities to constrain the space for NP contributions to
the electromagnetic operators O7 and O7′ , due to the fact that they are only sensitive to this
kind of structure in the WEH.

• B(B̄ → Xsγ): First, we consider the branching ratio of the inclusive decay B → Xsγ,
which we parametrise as [25]

B(B̄ → Xsγ)Eγ≥1.6GeV =
[
a(0,0) ± δa + a(0,7)δC7 + a(0,7′)δC7′

+ a(7,7)
(
δC27 + δC27′

) ]
× 10−4, (1.90)

with the coefficients ai in Table 1.4.

a(0,0) = 3.36 δa = 0.23 a(0,7) = −14.81 a(7,7) = 16.68 a(0,7′) = −0.23

Table 1.4: Coefficients describing the dependence of B(B → Xsγ) on C7(′) [22, 25]

• AI(B → K∗γ): The isospin asymmetry AI(B → K∗γ) vanishes within the SM in naive
factorization [25], but receives non-negligible SM contributions once topologies with photon
emission from the spectator quark line are calculated in the framework of QCD factoriza-
tion. It is defined as
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AI ≡
Γ(B̄0 → K̄∗0γ)− Γ(B− → K∗−γ)

Γ(B̄0 → K̄∗0γ) + Γ(B− → K∗−γ)
(1.91)

Even though this observable is expected to be very sensitive to hadronic uncertainties, it
gives direct access to the electromagnetic coefficients C7(′) , and therefore we include it in
our analysis, following the numerical expression [25]:

AI(B → K∗γ) = c×
∑

k dk δCk7∑
k,l e(k,l) δCk7 δCl7′

± δc, (1.92)

with the corresponding non-zero coefficients collected in Table 1.5.

c = 4.11% δc = 2.52%

d0 = 1 d1 = −2.51757

e(0,0) = 1 e(1,0) = −5.0165

e(0,1) = −0.0919061 e(2,0) = 6.30856

e(0,2) = 7.49847

Table 1.5: Coefficients describing the dependence of AI(B → K∗γ) on C7(′) [25].

• SK∗γ : Finally, another radiative observable related to b→ s processes is the time-dependent
CP asymmetry in B0 → K∗0γ, which allows an indirect probe of the photon helicity:

ACP (B
0 → K∗0γ) =

Γ(B̄0(t)→ K̄∗0γ)− Γ(B0(t)→ K∗0γ)

Γ(B̄0(t)→ K̄∗0γ) + Γ(B0(t)→ K∗0γ)

= SK∗γ sin(∆mBt)− CK∗γ cos(∆mBt) (1.93)

where K∗0, K̄∗0 further decay into the CP eigenstate KSπ
0 and thus are observed, and

we assume SM-like B0 mixing. Due to the helicity suppression of right-handed photons,
ACP is dominated by B mixing in the SM, making it a good candidate for a null-test of
the SM. Since we are interested in constraining contributions into C7(′) , we only consider
the SK∗γ term in Eq. (1.93), as it contains intereference effects of photons with different
polarisations. We parametrise it as [25]:

SK∗γ = f
+δuf
−δdf

+

∑
k,l g(k,l)δCk7 δCl7′∑
k,l h(k,l)δCk7 δCl7′

, (1.94)

with f being the central value of its SM prediction and δu,df corresponds to the upper
(lower) error bar. The non-vanishing g, h coefficients can be found in Table 1.6.

1.3 Global Fits after RKS
and RK∗+

In this section, based on Ref. [4], we present the results corresponding to our state-of-the-art
global analysis of b → sℓ+ℓ− data after the recent LHCb updates of quantities assessing the
violation of lepton-flavour universality (LFU). On the one hand, we have the ratio RK [51]:



1.3. Global Fits after RKS
and RK∗+ 25

f = −0.0297336
δuf = 0.0089893

δdf = 0.0089767

g(0,1) = +152.774 h(0,0) = +39.9999

g(1,0) = −3.17764 h(0,1) = −4.51218

g(1,1) = −415.441 h(1,0) = −214.866

g(0,2) = +8.63917 h(0,2) = +290.553

g(2,0) = +8.63917 h(2,0) = +290.553

Table 1.6: Coefficients describing the dependence of SK∗γ on C7(′) [25].

R
[1.1,6]
K,LHCb = 0.846+0.042+0.013

−0.039−0.012 (1.95)

with an extended statistics corresponding to 9 fb−1, reaching the level of statistical evidence
(above 3 standard deviations). On the other hand, similar quantities have been recently measured
for the experimentally challenging modes [52]

RKS
=
B(B0 → KSµ

+µ−)

B(B0 → KSe+e−)
RK∗+ =

B(B+ → K∗+µ+µ−)

B(B+ → K∗+e+e−)
(1.96)

with the results

R
[1.1,6]
KS ,LHCb = 0.66+0.20+0.02

−0.14−0.04 R
[0.045,6]
K∗+,LHCb

= 0.70+0.18+0.03
−0.13−0.04 (1.97)

in agreement each with the SM below the 2σ level but consistent with the downward trend
compared to the predictions of the SM. Indeed, in the SM, these ratios are protected from
hadronic contributions and are known to be 1 up to (tiny) electromagnetic corrections and
(simple) kinematic mass effects.

As discussed in Section 1.1, the deviations observed in these modes can be efficiently and con-
sistently analyzed in a model-independent EFT (WEH) framework (see, for instance, Refs. [22,
53–62]) 12.

This tool has proven particularly helpful in identifying NP scenarios (or patterns of NP)
that could explain the data at the level of the EFT, providing guidelines for the construction of
phenomenologically viable NP models.

This section represents the most updated version of the previous works in Refs. [53–55]
to serve as an accurate guideline for model building, as well as an overview of observables
relevant for the near future. We follow the same theoretical and statistical approach as in our
previous works [53–55], updating and adding new experimental inputs and their corresponding
SM predictions. It is important at this point to check if the inclusion of this new data alters
some of our earlier conclusions, in particular concerning best-fit-points and confidence intervals
that are required for model building as well as the hierarchy of the various NP scenarios that are

12It is interesting to point out that the results in Ref. [58] are very similar to the ones found in the analysis
presented in this Thesis. Although they use a similar set of observables (with the addition of baryon decays), the
analyses differ through the treatment of hadronic uncertainties (form factors, charm-loop contributions). This
similarity illustrates the robustness of the results with respect to different assumptions on hadronic uncertainties.
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favoured by the current global fits. It turns out that our conclusions remain unchanged and are
thus very robust. We will therefore discuss the outcome of our updated global fits but we refer
the interested reader to Ref. [56–58, 60] to see the different results obtained by groups following
other approaches. A more detailed interpretation of our results can be found in Ref. [55].

1.3.1 Observables

We consider the same observables and theoretical inputs as in Ref. [55], taking into account the
following updated measurements (replacing the previous ones):

• The experimental values of RK , RKS
and RK∗+ from the LHCb collaboration already

discussed [51, 52]. We also take into account their update of RK [63] as well as the
branching ratios for B0,+ → K0,+µ+µ− updated by the Belle collaboration [64] (the Belle
measurements of RK(∗) correspond to a combination of the charged and neutral channels
B0,+ → K(∗)0,+ℓ+ℓ−).

• The experimental value of the branching ratio B(Bs → µ+µ−) from the LHCb collabora-
tion [65], which is combined with the results from CMS [66] and ATLAS [67], leading to
the average B(Bs → µ+µ−) = 2.85+0.34

−0.31× 10−9 [68]. This is to be compared with the most
updated theoretical computation [48].

• The angular distribution of B+ → K∗+µ+µ− [69] using the optimized observables Pi [12]
measured by LHCb, as well as the longitudinal polarisation and forward-backward asym-
metry measured by the CMS collaboration [70]. Compared to the neutral case, our com-
putation for the charged case takes into account the different spectator quark not only by
modifying the mass and lifetime, but also the annihilation and hard-spectator interactions
following Ref. [10].

• The angular distribution of B+ → K+µ+µ− from the CMS collaboration [71].

• The angular analysis of B → K∗e+e− at low q2 from the LHCb collaboration [72]. The
bins of this analysis are different from the previous ones [73], but the measurements are
correlated since the latter analysis includes the data of the former, leading us to discard
Ref. [73].

• The new angular analysis and branching ratio of Bs → ϕµ+µ− from the LHCb collab-
oration [74, 75] superseding the previous LHCb analysis [76]. We focus on CP-averaged
quantities, as we will consider only CP-conserving NP.

We do not consider here the baryon mode Λb → Λµ+µ− [77], as there is a known issue
with the normalization provided by the Λb production fraction which may distort the results [3,
78]. We think that it is important that LHCb reanalyses this normalization without relying
on combinations of LEP and Tevatron studies performed at different energies, so that corrected
results of this mode could be included in future global analyses of b → sℓ+ℓ− transitions in a
completely safe way.

The full composition in terms of observables of the different kind of fits can be found in
Appendix B, where we provide their theoretical prediction in the SM as well as the corresponding
experimental measurement, which we include in our analysis.

1.3.2 Fit approach

Our evaluation of the various observables follows the same approach as in Ref. [22] with the
updates of the theoretical inputs discussed in Refs. [53, 55]. As we already stated throughout
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section 1.1, attention must naturally be paid to hadronic uncertainties [18, 20, 21, 30, 79–81],
which stem from two different sources in exclusive b→ sℓ+ℓ− decays such as B → K(∗)ℓ+ℓ− and
Bs → ϕℓ+ℓ−. First, form factors must be determined through different methods at large recoil
of the final hadron (light-cone sum rules involving either light-meson [33, 82] or B-meson [23,
34, 83, 84] distribution amplitudes) or low recoil (lattice QCD [35, 85]). Second, the non-
local contribution from cc̄ loops can be tackled similarly either at low recoil, through quark-
hadron duality arguments for observables averaged over a large dilepton invariant mass [86–
89], or large recoil, using various approaches (order-of-magnitude estimates, light-cone sum rule
computations [23, 83], interpolation from the unphysical region below the photon pole up to
the lowest charmonium resonances [19, 84], . . . ). Obviously, the uncertainties of the theoretical
predictions for these observables (within the SM or any NP scenario) are partly dependent
on these assumptions. However, it is quite striking to notice that different analyses based on
different underlying assumptions for these hadronic uncertainties may yield different numerical
values for statistical quantities (significances, pulls, . . . ) but they have repeatedly led to very
similar patterns of favoured scenarios, best-fit points and confidence regions for NP contributions
to Wilson coefficients (see for instance Refs. [56–58, 68, 90]).

In practice, we perform fits to obtain information on the values of the parameters collectively
denoted here as θ, which represent the unknown NP contributions from the different scenarios
that we estimate (e.g. CNP

9µ , CNP
9µ = −CNP

10µ, etc). We work within a frequentist framework based
on a gaussian approximation for the likelihood function L(θ) where theoretical and experimental
uncertainties are treated on the same footing:

−2 lnL(θ) = χ2(θ)

=

Nobs∑
i,j=1

(
Oth(θ)−Oexp

)
i

(
V th(θ) + V exp

)
ij

(
Oth(θ)−Oexp

)
j
,

(1.98)

with Nobs the total number of observables in the fit, Oth
i (θ) the central value of the theory

prediction for the i-th observable, Oexp
i the experimental measurement (i.e. the central value

quoted by experiments) of the same observable and V th
ij and V exp

ij the theoretical and experimental
covariance matrices respectively.

On the one hand, the experimental covariance matrix contains all the available information
on the errors and correlations among the measurements of the relevant observables released by
the different experiments. Whenever the correlations are not available, we take those measure-
ments as uncorrelated. In the case of asymmetric uncertainties (such as RK), in order to be
consistent with the gaussian approximation of the likelihood function, we symmetrise the errors
by taking the largest uncertainty, with no change in the central value. On the other hand, the
theoretical covariance matrix is estimated by performing a multivariate gaussian scan over all the
nuisance parameters entering the calculation of theory predictions which we do not fit through
the minimisation procedure.

The central values of the unknown parameters in our analysis are estimated by means of the
method of maximum likelihood (ML). By construction of the likelihood, the ML estimators θ̂
coincide with the best-fit points obtained by minimising the χ2 function:

∂χ2

∂θi

∣∣∣∣
θ̂

= 0 such that χmin = χ2(θ̂), (1.99)

for i = 1, ..., n, with n being the number of parameters. The minimisation is performed numer-
ically using MIGRAD from the Python package iMinuit [91]. For computational reasons, the
theoretical covariance is assumed to depend mildly on the NP parameters, hence we take V th(θ)
in Eq. (1.98) at the SM point. We checked that our results remain unchanged if we repeat the fits
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with the V th(θ) evaluated at different NP points, confirming the validity of our approximation.
This is in agreement with the results of Refs. [22, 57, 92], where the impact of accounting for the
correlated theoretical uncertainties at each point in the Wilson coefficient parameter space was
analyzed in full detail.

In order to provide a complete description of the parameters, we also assess their errors and
correlations. This information is encoded in the likelihood function and can be accessed through
the Rao-Cramér-Fréchet formula for the inverse V −1 of the covariance matrix Vij = cov(θ̂i, θ̂j)
of the estimators (

V −1
)
ij
= − ∂2 lnL

∂θi∂θj

∣∣∣∣
θ̂

=
1

2

∂2χ2

∂θi∂θj

∣∣∣∣
θ̂

. (1.100)

In practice, the likelihood’s Hessian matrix is numerically computed by MIGRAD as one of the
outputs of the minimisation routine. Instead, for the computation of confidence intervals we use
iMinuit’s MINOS algorithm [91].

To quantify the level of agreement between a given hypothesis and the data, we compute the
corresponding p-value of goodness-of-fit :

p =

∫ ∞

χ2
min

dχ2 f(χ2;ndof), (1.101)

where ndof = Nobs − n. Finally, to compare the descriptions offered by two different nested
hypotheses H0 and H1 (with nH0 , nH1 the respective number of degrees of freedom and nH0 <
nH1), we compute their relative Pull, measured in units of Gaussian standard deviations (σ):

PullH0H1 =
√
2Erf−1

[
F (∆χ2

H0H1
;nH0H1)

]
, (1.102)

with ∆χ2
H0H1

= χ2
H0,min−χ2

H1,min, nH0H1 = nH1−nH0 , F the χ2 cumulative distribution function
and Erf−1 the inverse error function. Most of the time, we compare a given NP scenario with
the SM case, denoting the result as PullSM unless there is a risk of ambiguity. Our statistical
interpretation, based on Wilks’ theorem [93], assumes that the large number of observables leads
to a statistical question where the linear/Gaussian approximation holds and that all observables
have a similar sensitivity to all Wilson coefficients, so that the number of degrees of freedom can
be computed as described above. This issue has been recently discussed in Refs. [94, 95] (see also
earlier discussions on this topic in Refs. [21, 96]). These studies suggest that the effective number
of degrees of freedom to be actually considered could be lower than what a naive computation
would indicate, due to a weak sensitivity of the χ2 function to some of the Wilson coefficients.
In that case, our interpretation would be conservative, since it yields higher p-values and lower
pulls than with the smaller effective number of degree of freedom advocated in these references.

1.3.3 Fit Results

We start by considering the fits to NP scenarios which affect muon modes only. Tabs. 1.7-1.9
and Fig. 1.1 update the corresponding tables and figures of Ref. [55] based on fits to the full
set of data (“All”, 254 observables13) or restricted to quantities assessing LFUV (“LFUV”, 24
observables). The results are similar to those in Ref. [55].

From the results in Tables 1.7-1.9, on can see that the combination of anomalies in some LFD
(b → sµ+µ−) angular observables and in LFUV ratios RK and RK∗ mainly prefers hypotheses
with a large NP contribution to the Wilson coefficient C9µ (of order 25% of the SM), or NP
contributions to both C9µ and C10µ.

13We detail the full list of the observables present in our fits in the appendix, where we also provide their
theoretical predictions within the SM, as well as the individual tension with respect to the experimental value.
In the LFUV fits we include the observables Q4 and Q5 (measured by Belle) instead of P ′

4e,µ, P ′
5e,µ.
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All LFUV
1D Hyp. Best fit 1 σ/2 σ PullSM p-value Best fit 1 σ/ 2 σ PullSM p-value

CNP
9µ -1.01 [−1.15,−0.87] 7.0 24.0 % -0.87 [−1.11,−0.65] 4.4 40.7 %

[−1.29,−0.72] [−1.37,−0.45]
CNP
9µ = −CNP

10µ -0.45 [−0.52,−0.37] 6.5 16.9 % -0.39 [−0.48,−0.31] 5.0 73.5 %
[−0.59,−0.30] [−0.56,−0.23]

CNP
9µ = −C9′µ -0.92 [−1.07,−0.75] 5.7 8.2 % -1.60 [−2.10,−0.98] 3.2 8.4 %

[−1.22,−0.59] [−2.49,−0.46]

Table 1.7: Most prominent 1D patterns of NP in b → sµ+µ−. PullSM is quoted in units of standard
deviation. The p-value of the SM hypothesis is 0.44% for the fit “All” and 0.91% for the fit LFUV.

All LFUV
2D Hyp. Best fit PullSM p-value Best fit PullSM p-value

(CNP
9µ , CNP

10µ) (−0.92,+0.17) 6.8 25.6 % (−0.16,+0.55) 4.7 71.2 %
(CNP

9µ , C7′) (−1.02,+0.01) 6.7 22.8 % (−0.88,−0.04) 4.1 37.5 %
(CNP

9µ , C9′µ) (−1.12,+0.36) 6.9 27.4 % (−1.82,+1.09) 4.5 60.2 %
(CNP

9µ , C10′µ) (−1.15,−0.26) 7.1 31.8 % (−1.88,−0.59) 5.0 88.1 %
(CNP

9µ , CNP
9e ) (−1.11,−0.26) 6.7 23.8 % (−0.52,+0.34) 4.0 35.3 %

Hyp. 1 (−1.01,+0.31) 6.7 24.0 % (−1.60,+0.32) 4.5 62.5 %
Hyp. 2 (−0.89,+0.06) 5.4 8.0 % (−1.95,+0.25) 3.6 20.4 %
Hyp. 3 (−0.45,+0.04) 6.2 15.9 % (−0.39,−0.14) 4.7 70.2 %
Hyp. 4 (−0.47,+0.07) 6.3 16.8 % (−0.48,+0.15) 4.8 79.6 %
Hyp. 5 (−1.15,+0.17) 7.1 31.1 % (−2.13,+0.50) 5.0 89.4 %

Table 1.8: Most prominent 2D patterns of NP in b→ sµ+µ−. The last five rows correspond to Hypothesis
1: (CNP

9µ = −C9′µ, CNP
10µ = C10′µ), 2: (CNP

9µ = −C9′µ, CNP
10µ = −C10′µ), 3: (CNP

9µ = −CNP
10µ, C9′µ = C10′µ), 4:

(CNP
9µ = −CNP

10µ, C9′µ = −C10′µ) and 5: (CNP
9µ , C9′µ = −C10′µ).

CNP
7 CNP

9µ CNP
10µ C7′ C9′µ C10′µ

Best fit +0.00 -1.08 +0.15 +0.00 +0.16 -0.18
1 σ [−0.02,+0.01] [−1.25,−0.90] [+0.02,+0.28] [−0.01,+0.02] [−0.20,+0.53] [−0.36,+0.02]
2 σ [−0.04,+0.03] [−1.41,−0.72] [−0.10,+0.42] [−0.03,+0.03] [−0.56,+0.92] [−0.54,+0.22]

Table 1.9: 1 and 2 σ confidence intervals for the NP contributions to Wilson coefficients in the 6D
hypothesis allowing for NP in b → sµ+µ− operators dominant in the SM and their chirally-flipped
counterparts, for the fit “All”. The PullSM is 6.3σ and the p-value is 27.8%.

Following this perspective we ought to be more precise on what goes under the “New Physics”
landscape. For that reason, recalling Eq. (1.9), we consider that the short-distance Wilson
coefficients Ciℓ can contain two types of NP contribution

CNP
iℓ = CViℓ + CUi (1.103)

with ℓ = e, µ and i = 9(′), 10(′) (the extension to τ is trivial, assuming true universality among
e, µ and τ) where CViℓ stands for Lepton Flavour Universality Violating NP and CUi for Lepton
Flavour Universal-NP contributions. These short-distance contributions are all independent
of the external hadronic states and their kinematics; they differ therefore from long-distance
hadronic contributions which are LFU, but dependent on q2 and on the nature and kinematics
of the hadronic states. We will define the separation between the two types of contributions by
imposing that LFUV contributions affect only muons

CVie = 0 (1.104)
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Figure 1.1: From left to right: Allowed regions in the (CNP
9µ , CNP

10µ), (CNP
9µ , C9′µ = −C10′µ) and (CNP

9µ , CNP
9e )

planes for the corresponding 2D hypotheses, using all available data (fit “All”) upper row or LFUV fit
lower row. Dashed lines represent the 3 σ regions while the solid lines represent 1, 2 and 3 σ regions.

There is no loss of generality here, since this term can always be absorbed in such a way that
CViµ can be interpreted as the difference of NP contributions to muons and electrons. Following
the parametrisation described in Eqs. (1.103),(1.104), we turn now to scenarios that allow for
the presence of lepton flavour universal NP [54, 97] in addition to LFUV contributions to muons
only,

We update the scenarios considered in Ref. [55] in Tab. 1.10 and Fig. 1.2. Interestingly,
when we perform the 10-dimensional fit allowing for NP in both muon and electron coefficients
(i.e. C7, C9ℓ, C10ℓ and C7′ , C9′ℓ, C10′ℓ for both ℓ = e and µ), we obtain almost the same results
as in Tab. 1.9 for the muon coefficients, whereas the electron coefficients are only very loosely
constrained, indicating the need for more data on electronic modes. We obtain a PullSM of 6.0σ
(p-value of 28.3%) for this 10-dimensional fit.

1.3.4 Favoured scenarios and connection with other observables

Several scenarios exhibit a significant improvement in the description of the data compared to
the SM. Fig. 1.3 shows the predictions for the observables Q5, RK and RK∗ in several of these
scenarios. The large uncertainties for RK∗ in most NP scenarios come from the presence of three
different helicity amplitudes involving different combinations of form factors: if the SU(2)L
symmetry of the SM is respected, one amplitude dominates leading to reduced uncertainties for
the prediction of RK∗ , but in other cases, the presence of several helicity amplitudes leads to
larger uncertainties. One can also notice that Q5 is able to separate three cases of interest: the
SM, scenario 8 (CV9µ = −CV10µ, CU9 ), and the scenarios with right-handed couplings and a large
negative contribution to C9µ (Fig. 1.4a illustrates the importance of RK and P ′

5 in highlighting
these scenarios compared to others considered in the previous section).
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Scenario Best-fit point 1 σ 2 σ PullSM p-value

Scenario 5
CV9µ −0.55 [−1.02,−0.11] [−1.56,+0.32]

6.6 25.2 %CV10µ +0.49 [+0.08,+0.84] [−0.44,+1.15]

CU9 = CU10 −0.35 [−0.73,+0.07] [−1.06,+0.60]

Scenario 6 CV9µ = −CV10µ −0.52 [−0.59,−0.44] [−0.67,−0.37] 6.9 26.6 %CU9 = CU10 −0.38 [−0.50,−0.26] [−0.60,−0.13]
Scenario 7 CV9µ −0.85 [−1.07,−0.63] [−1.30,−0.42] 6.7 23.8 %CU9 −0.26 [−0.52,+0.01] [−0.79,+0.30]

Scenario 8 CV9µ = −CV10µ −0.34 [−0.41,−0.27] [−0.49,−0.20]
7.2 34.5 %CU9 −0.82 [−0.99,−0.63] [−1.16,−0.42]

Scenario 9 CV9µ = −CV10µ −0.53 [−0.63,−0.43] [−0.74,−0.33] 6.3 17.5 %CU10 −0.24 [−0.44,−0.05] [−0.63,+0.15]

Scenario 10 CV9µ −0.98 [−1.13,−0.84] [−1.27,−0.69] 6.9 27.9 %CU10 +0.27 [+0.13,+0.42] [−0.01,+0.56]

Scenario 11 CV9µ −1.06 [−1.20,−0.91] [−1.34,−0.76] 6.9 27.4 %CU10′ −0.23 [−0.35,−0.10] [−0.47,+0.02]

Scenario 12 CV9′µ +0.49 [+0.34,+0.65] [+0.19,+0.81] 3.2 1.4 %CU10 −0.25 [−0.38,−0.13] [−0.50,−0.00]

Scenario 13

CV9µ −1.11 [−1.27,−0.96] [−1.41,−0.79]
6.7 29.6 %CV9′µ +0.37 [+0.13,+0.60] [−0.11,+0.84]

CU10 +0.28 [+0.10,+0.47] [−0.08,+0.66]
CU10′ +0.03 [−0.15,+0.21] [−0.33,+0.40]

Table 1.10: Most prominent patterns for LFU and LFUV NP contributions from Fit “All”. Scenarios 5
to 8 were introduced in Ref. [54]. Scenarios 9 (motivated by 2HDMs [98]) and 10 to 13 (motivated by Z ′
models with vector-like quarks [99]) were introduced in Ref. [55].

As discussed in Ref. [55], scenario 8 allows for a model-independent connection between the
anomalies in b → sℓ+ℓ− decays and those in b → cτν transitions [100]. This connection arises
in the SMEFT scenario where C(1) = C(3) expressed in terms of the following SU(2)L-invariant
dimension-6 operators [101, 102]:

O(1)
ijkl = [Q̄iγµQj ][L̄kγ

µLl], (1.105)

O(3)
ijkl = [Q̄iγµσ

IQj ][L̄kγ
µσILl], (1.106)

where the Pauli matrices σI act on the weak-isospin component of the quark (lepton) doubles
Q(L).

The operator involving third-generation leptons explains RD(∗) and the one involving the
second generation gives a LFUV effect in b → sµ+µ− processes. The constraint from b → cτν
and SU(2)L invariance leads to large contributions enhancing b→ sτ+τ− processes [102], whereas
the mixing into O9 generates CU9 at µ = mb [103]. Therefore, the SMEFT scenario described
above reproduces scenario 8 with an additional correlation between CU9 and RD(∗) [102, 103]:

CU9 ≈7.5

(
1−

√
RD(∗)

RD(∗)SM

)(
1 +

log(Λ2/(1TeV2))

10.5

)
, (1.107)

where Λ is the typical scale of NP involved. We show the global fit of scenario 8 without and
with the additional input on RD(∗) from Ref. [100] in Fig. 1.4b, taking the scale Λ = 2 TeV.
The best-fit point for (CV9µ = −CV10µ, CU9 ) is (−0.36,−0.68), with 1 σ intervals [−0.43,−0.29] and
[−0.80,−0.55] respectively. The agreement among all data is very good, shown by the fact that
scenario 8 supplemented with RD(∗) exhibits a pull with respect to the SM of 8.0 σ and a p-value
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Figure 1.2: From left to right: Allowed regions for the 2D scenarios presented in Tab. 1.10. Scenarios 6
and 7 on the upper row, 8 and 9 in the middle row and 10 to 12 in the bottom row using all available
data (fit “All”). Dashed lines represent the 3 σ regions while the solid lines represent 1, 2 and 3 σ regions.

of 33.1%. Interestingly, the agreement between scenario 8 and the allowed region for RD(∗) has
increased with the addition of RKS

, RK∗+ and Bs → ϕµ+µ− into the global analysis, with a
fit favouring less negative values for CU9 . An even better agreement could be reached if RD(∗) is
slightly further away from the SM expectations, or if the scale of NP is increased.

1.4 Summary and Conclusions

We have presented in this chapter our most complete and updated results of the global fit to
b → sℓ+ℓ− data including 254 observables. We see that the recent measurements of LFUV
observables RK , RKS

, RK∗+ by the LHCb collaboration together with the Bs → ϕµ+µ− update
confirm the main conclusions of the previous update of RK and Bs → µ+µ− with only marginal
changes. Indeed, the slight reduction of significances in most scenarios is mostly driven by the
inclusion of more SM-like observables coming from the update of Bs → ϕµ+µ− (new bins) with
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Figure 1.3: Values of ⟨Q5⟩[1.1,6], ⟨RK⟩[1.1,6], ⟨RK∗⟩[1.1,6] in the SM and nine different scenarios: SM
(black), CNP

9µ (orange), (CNP
9µ , C9′µ) (yellow), (CNP

9µ , C10′µ) (light green), (CNP
9µ = −C9′µ, CNP

10µ = C10′µ) (dark
green), (CNP

9µ , C9′µ = −C10′µ) (light blue), (CV9µ = −CV10µ, CU9 ) (dark blue), (CV9µ, CU10) (purple), (CV9µ, CU10′)
(pink), (CV9µ, CV9′µ, CU10, CU10′) (red). The boxes correspond to the predictions of the 1 σ regions at the b.f.p.
value of the Wilson coefficients in each of the scenarios for the fit to the “All” data set.

little sensitivity to C9µ and higher experimental precision. On the other side, even if the scenario
C9µ = −C9′µ can explain neither RK nor RKS

, it yields an acceptable solution for RK∗ and RK∗+

leading to a marginal increase of its significance in the LFUV fit.
The overall hierarchy of preferences for specific scenarios remains unchanged. In our previous

update [55] we observed an increase in the consistency among the data analyzed in the framework
of the favoured scenarios. More specifically, we saw that the most favoured 1D scenario remains
the case of a vector coupling to muons encoded in C9µ. The LHCb update of the Bs → µ+µ−

branching ratio, in better agreement with the SM expectation, reduced marginally the room
available for NP in C10µ for the scenarios considered here, which do not feature NP contributions
from (pseudo)scalar operators.

Finally, the two classes of favoured scenarios of Ref. [55] find their status strengthened, namely

• The purely muonic hypotheses with right handed currents (CNP
9µ , C10′µ) and (CNP

9µ , C9′µ =
−C10′µ). The latter scenario (called Hypothesis 5 in Table 1.8) features a right-handed con-
tribution which becomes compatible with zero once the 2σ confidence region is considered.
Such right-handed currents tend to counterbalance the impact on RK of a large negative
C9µ which is preferred by many observables considered in the global fit.

• Scenario 8 (CV9µ = −CV10µ, CU9 ) with a universal component CU9 together with a muonic
component obeying SU(2)L invariance. As illustrated in Fig. 1.4b, this scenario reaches
8.0 σ once combined with RD and RD∗ in an EFT framework explaining b → cℓν and
b → sℓ+ℓ− through correlated singlet and triplet dimension-6 operators combining quark
and lepton bilinears.
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Figure 1.4: Left: ⟨RK⟩[1.1,6] versus ⟨P ′5⟩[4,6] in five different scenarios: CNP
9µ (blue), CNP

9µ = −CNP
10µ (orange),

and (CV9µ = −CV10µ, CU9 ) (red), (CNP
9µ , C9′µ = −C10′µ) (black), and CNP

10µ (purple). The curves correspond
only to the predictions for central values. In the 2D scenarios (red and black) the Wilson coefficient not
shown is set to its b.f.p. value. The current experimental values from the LHCb collaboration are also
indicated (orange horizontal and green vertical bands respectively). The dots correspond to the b.f.p.
values of the corresponding scenario for the fit to the “All” data set. Right: Preferred regions at the 1, 2
and 3σ level (green) in the (CV9µ = −CV10µ, CU9 ) plane from b → sℓ+ℓ− data. The red contour lines show
the corresponding regions once RD(∗) is included in the fit (for Λ = 2 TeV). The horizontal blue (vertical
yellow) band is consistent with RD(∗) (RK) at the 2σ level and the contour lines show the predicted
values for these ratios.

As an outlook for the future, besides the importance of updating the LFU ratios RK(∗) and
the angular distributions of B → K∗ℓ+ℓ− and Bs → ϕℓ+ℓ− modes, two experimental inputs
can help guiding future analyses. First, the observation of enhanced b → sτ+τ− transitions
would favour naturally a scenario with a LFU contribution in CU9 . Second, the measurement
of a large Q5 would favour a scenario with a large negative vector coupling C9µ, possibly with
additional right-handed currents. Indeed, as illustrated by Fig. 1.3, the observable Q5 [49] can
distinguish between the purely muonic hypotheses with right handed currents (e.g. Hypothesis
5) and scenario 8 with a universal component in CU9 , with a higher value in the former case and
a slightly lower value in the latter [97].

Further progress may also be achieved through a better understanding of the theoretical
uncertainties involved [34, 84, 104], more data on other modes and with other experimental
setups (in particular Belle II [105]), but also the determination of additional observables [106–
108]. This supplementary information should help us to corner the actual NP pattern hinted
at by the b → sℓ+ℓ− anomalies currently observed and confirmed as an evidence in RK by the
LHCb collaboration.

Such identification at the EFT level is the first and mandatory step to build viable phe-
nomenological models for NP, to be probed and confirmed through decays involving other families
of quarks and leptons, as well as direct production experiments.
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Chapter 2

P- and S-wave contributions to the
B0→ K∗0(→ K+π−)ℓ+ℓ− decay

As reviewed in Chapter 1, different observables constructed upon the B0 → K∗0(→ K+π−)ℓ+ℓ−

decay with the K+π− system in a P-wave configuration give rise to some of the anomalies
observed in semileptonic B-decays, therefore an improved understanding of these transitions
is essential to distinguish between the SM and possible NP scenarios. In their experimental
analyses, the LHCb collaboration has observed the presence of a large K+π− S-wave component
in B0 → K∗0(→ K+π−)ℓ+ℓ− decay [109, 110]. Unfortunately, the lack of reliable B0 → K+π−

S-wave form factors implies that the physics potential of this component remains untapped.
In this chapter, based off of Ref. [108], we present the potential of B0 → K∗0(→ K+π−)ℓ+ℓ−

transitions to search for physics beyond the SM, considering both P- and S-wave contributions to
the K+π− system. Other works studying the impact of the S-wave contribution are Refs. [111–
118]. A key aspect of our analysis is the identification of the symmetries of the five dimensional
decay rate that underpins the complete set of B0 → K∗0(→ K+π−)ℓ+ℓ− observables and the
relations between them. In particular, we identify new observables related to the interference
between the S- and P-wave amplitudes of the B0 → K+π− system, and use the symmetry
relations to investigate the potential of S-wave observables as precision probes of NP. We work
under the hypothesis of no scalar or tensor NP contributions in our study of the symmetries.
In addition, we present a new and robust way to extract information on both NP scenarios
and non-perturbative hadronic contributions by studying the common position in dilepton mass
squared at which a subset of P- and S-wave observables cross zero.

This chapter is organised as follows. In Section 2.1, we discuss the structure of the differential
angular distribution including P- and S-wave contributions. In the case of P-wave observables
with massive leptons, we study the sensitivity of previously identified observables to new scalar
and pseudoscalar contributions. In the case of the S wave, we define new observables. In
Section 2.2 we first perform an analysis of the degrees of freedom required to fully describe
the angular distribution, identify the symmetries of the angular distributions and derive a set
of relations between P- and S-wave observables that are a consequence of the transformation
symmetries of the angular distribution. These relations offer control tests for both experimental
and theoretical analyses. Significantly, given the lack of knowledge of S-wave form factors, these
relations also enable predictions for some combinations of S-wave observables in terms of P-wave
observables. In Section 2.3, the relations are used to obtain the first bounds on the complete
set of S-wave observables and the potential to observe NP with some of these observables is
discussed. In Section 2.4, a set of P- and S-wave observables that share a zero at the same
position in dilepton invariant mass q2 is highlighted and the resulting information on both NP
scenarios and on hadronic effects is discussed. A brief discussion on the precision expected to
be achieved experimentally for some of the P- and S-wave observables in the future is presented
in Section 2.5. Finally, a summary and conclusions are presented in Section 2.6. Appendix C
provides the necessary steps to derive one particularly lengthy relation in the massive case.
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2.1 Structure of the differential decay rate: P and S waves

The differential decay rate of the four-body transition B0 → K+π−ℓ+ℓ− receives contributions
from the amplitude of the P-wave decay B0 → K∗0(→ K+π−)ℓ+ℓ−, as well as from the amplitude
of the S-wave decay B0 → K∗

0 (→ K+π−)ℓ+ℓ−, with K∗
0 being a broad scalar resonance. The

rate can then be decomposed into:

d5Γ

dq2 dm2
Kπ dΩ

=
d5ΓP

dq2 dm2
Kπ dΩ

+
d5ΓS

dq2 dm2
Kπ dΩ

(2.1)

where dΩ = d cos θℓd cos θKdϕ and ΓP contains the pure P-wave contribution and ΓS contains
the contributions from pure S-wave exchange, as well as from S-P interference. Here, q2 denotes
the square of the invariant mass of the lepton pair and mKπ the invariant mass of the Kπ system.
The angles θℓ, θK describe the relative directions of flight of the final-state particles, while ϕ
is the angle between the dilepton and the dimeson plane (see Ref. [28] for definitions). The
differential rate for a B̄0 decay to a final state in the P-wave configuration is

d5ΓP

dq2 dm2
Kπ dΩ

=
9

32π

[
J1s sin

2 θK + J1c cos
2 θK + J2s sin

2 θK cos 2θℓ

+J2c cos
2 θK cos 2θℓ + J3 sin

2 θK sin2 θℓ cos 2ϕ

+J4 sin 2θK sin 2θℓ cosϕ+ J5 sin 2θK sin θℓ cosϕ

+J6s sin
2 θK cos θℓ + J6c cos

2 θK cos θℓ

+J7 sin 2θK sin θℓ sinϕ+ J8 sin 2θK sin 2θℓ sinϕ

+J9 sin
2 θK sin2 θℓ sin 2ϕ

]
× |BWP (mKπ)|2, (2.2)

with a similar form for the B0 rate. The mKπ dependence, denoted by BWP (mKπ), can be
modelled by a relativistic Breit-Wigner amplitude describing the K∗0 resonance, including the
apposite angular momentum and phase-space factors. The Breit-Wigner amplitude is normalized
such that the integral of the modulus squared of the amplitude over themKπ region of the analysis
is one. For the exact form of the Breit-Wigner functions BWi(mKπ) for i = P, S we refer the
reader to Ref. [111]. Notice that Eq. (2.2) differs from the angular distribution in Eq. (1.14)
by this factor BWP (mKπ), which was not present in the discussion in Chapter 1 since there we
considered the narrow-width approximation approach for the Kπ system.

The differential rate of the S-wave final state configuration is

d5ΓS

dq2 dm2
Kπ dΩ

= +
1

4π

[
(J̃c

1a + J̃c
2a cos 2θℓ)|BWS(mKπ)|2

+ J̃c
1b cos θK + J̃c

2b cos 2θℓ cos θK

+ J̃4 sin 2θl sin θK cosϕ+ J̃5 sin θl sin θK cosϕ

+ J̃7 sin θl sin θK sinϕ +J̃8 sin 2θl sin θK sinϕ
]
.

(2.3)

The coefficients Ji, J̃c
1a and J̃c

2a are functions of q2. Those for the S-P interference, J̃c
1b, J̃

c
2b

and J̃4−8 depend on both q2 and mKπ. The mKπ amplitude for the S wave, BWS(mKπ) may
be described with the LASS parameterisation [119, 120]. Similarly to the P wave, the S-wave
mKπ-amplitude is normalized such that the integral of the modulus squared of the amplitude
over the analyzed mKπ range is one.

If not explicitly stated otherwise, we will not consider the presence of scalar or tensor contri-
butions in the following (this implies, in particular, that J6c in Eq. (2.2) is taken to be zero). The
decays B0 → K∗0ℓ+ℓ− and B0 → K∗

0ℓ
+ℓ− are described by seven complex amplitudes AL,R

∥,⊥,0, At
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and three complex amplitudes A′L,R
0 , A′

t, respectively, where the upper index L,R refers to the
chirality of the outgoing lepton current, while in the case of the P-wave the lower index ∥,⊥, 0
indicates the transversity amplitude of the K∗-meson.

Since the distribution is summed over the spins of the leptons, the observables Ji and J̃i
are described in terms of spin-summed squared amplitudes of the form AL∗

i AL
j ± AR∗

i AR
j . This

structure suggests that the amplitudes can be arranged in a set of two-component complex
vectors:

n∥ =

(
AL

∥

AR∗
∥

)
, n⊥ =

(
AL

⊥
−AR∗

⊥

)
, n0 =

(
AL

0

AR∗
0

)
, nS =

(
A′L

0

A′R∗
0

)
, n′S =

(
A′L

0

−A′R∗
0

)
. (2.4)

Two vectors are needed to parametrize the L and R components of the A′
0 amplitude, and the At

and A′
t amplitudes are not expressed in terms of two-complex vectors. Except for the lepton mass

terms that mix the L and R components and include the At (or A′
t) amplitudes, one can express

the coefficients of the distribution in terms of these vectors. The expression for the coefficients
in the P-wave terms can be found in Eqs. (1.17)-(1.24). For the S-wave terms we find

J̃c
1a =

3

8

[
|A′L

0 |2 + |A′R
0 |2 + (1− β2)

(
|A′

t|2 + 2Re
[
A′L

0 A
′R∗
0

])]
(2.5)

J̃c
2a = −3

8
β2
(
|A′L

0 |2 + |A′R
0 |2
)
= −3

8
β2|nS |2. (2.6)

Similarly for the P-S (real) interference terms

J̃c
1b =

3

4

√
3Re

[(
A′L

0 A
L∗
0 +A′R

0 A
R∗
0 + (1− β2)

(
A′L

0 A
R∗
0 +AL

0A
′R∗
0 +A′

tA
∗
t

))
BWSBW

∗
P

]
= J̃c, r

1b Re(BWSBW
∗
P )− J̃c, i

1b Im(BWSBW
∗
P ) (2.7)

J̃c
2b = −

3

4

√
3β2Re

[(
A′L

0 A
L∗
0 +A′R

0 A
R∗
0

)
BWSBW

∗
P

]
= J̃c, r

2b Re(BWSBW
∗
P )− J̃c, i

2b Im(BWSBW
∗
P ) (2.8)

J̃4 =
3

4

√
3

2
β2Re

[
(A′L

0 A
L∗
∥ +A′R

0 A
R∗
∥ )BWSBW

∗
P

]
= J̃r

4Re(BWSBW
∗
P )− J̃ i

4Im(BWSBW
∗
P ) (2.9)

J̃5 =
3

2

√
3

2
βRe

[
(A′L

0 A
L∗
⊥ −A′R

0 A
R∗
⊥ )BWSBW

∗
P

]
= J̃r

5Re(BWSBW
∗
P )− J̃ i

5Im(BWSBW
∗
P ) (2.10)

and finally for the P-S (imaginary) interference terms

J̃7 =
3

2

√
3

2
βIm

[
(A′L

0 A
L∗
∥ −A′R

0 A
R∗
∥ )BWSBW

∗
P

]
= J̃r

7 Im(BWSBW
∗
P ) + J̃ i

7Re(BWSBW
∗
P ) (2.11)

J̃8 =
3

4

√
3

2
β2Im

[
(A′L

0 A
L∗
⊥ +A′R

0 A
R∗
⊥ )BWSBW

∗
P

]
= J̃r

8 Im(BWSBW
∗
P ) + J̃ i

8Re(BWSBW
∗
P ), (2.12)
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where β =
√

1− 4m2
ℓ/q

2 and the superscript indices r and i (here and for the rest of the chapter)
refer to the real and imaginary parts of the bilinears, respectively.

The form of the differential decay rate given through Eqs. (2.2), (2.3), (2.9), (2.11) assumes
that the q2 and mKπ dependence of the B0 → K+π− form factor can be factorized [111, 112,
121]. The breaking of this factorization, as presented for instance in the analysis of generalized S-
wave B0 → K+π− form factors in Ref. [116], may be tested through the validity of the symmetry
relations between the observables derived in Section 2.2.

The study of the S-wave observables presented here is the first to consider the complete set
of observables that arise when the decay rate is written differentially with respect to mKπ. As
a consequence, the interference between the S-P-wave mKπ lineshapes projects out additional
bilinear combinations of S- and P-wave amplitudes, giving rise to the 12 new observables J̃r, i

i in
Eqs. (2.9) and (2.11). Previous studies, such as those of Ref. [122], only considered the differential
decay rate integrated over mKπ. In this case one obtains the six well-known S-P interference
observables J̃i that can be described by a single two-dimensional S-wave amplitude vector nS ,
without the need for n′S . Concerning possible contributions from D- and higher partial waves, in
Ref. [113] the authors considered the role of such terms and concluded that S+P+D contributions
correct S+P at the few permille level, beyond the expected precision at any near-future facility.

2.1.1 P-wave massive observables

The so-called optimized observables are designed to reduce form factor uncertainties. The set of
such observables that describes the P-wave Kπ system has been discussed at length in a series
of papers [11, 12, 22] and quoted in Eq. (1.47). However, due to improvements in experimental
precision, there is increasingly sensitivity to observables that are suppressed by factors of the
lepton mass. For the optimized observables, Pi, the impact that lepton masses have in the very
low q2 region via the kinematical prefactor β is well known.

Our interest here is to explore two further optimized observables M1 and M2, introduced in
Ref. [11], that can be neglected in the massless limit. These observables are defined in terms of
the coefficients of the distribution as follows1:

M1 =
J1s
3J2s

M2 = −
J1c
J2c

. (2.13)

For this specific type of observable it makes sense to explore the impact from NP scalar and
pseudoscalar contributions. Therefore, we will relax in this section the hypothesis of no scalar
or pseudoscalar contributions.

Even considering a large set of NP scenarios, the observable M1 is found to be practically
insensitive to NP and is not analyzed further. By contrast, M2 can potentially provide infor-
mation on scalar and/or pseudoscalar NP scenarios. In order to explore reasonable values of
(pseudo)scalar contributions, we constrain the range for the coefficients CP,S by considering only
those values allowed by the experimental measurement of B(Bs → µµ). Thus, we write the
following ratio [123], which is used to define the 1σ region from Bexp(Bs → µµ):

RBs→µµ =
Bexp(Bs → µµ)

BSM(Bs → µµ)
= |S|2 + |P |2 , (2.14)

1In order to make the comparison with experimental prospects easier, in this work we have slightly changed
the definition of M1,2 by removing the constant terms appearing in Ref. [11].
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where the quantities S, P 2 contain the different NP contributions and are given by:

S =

√
1− 4

m2
µ

m2
Bs

m2
Bs

2mbmµ

(
CS − CS′

CSM10µ

)
, (2.15)

P =
CSM10µ + CNP

10µ − C10′µ
CSM10µ

+
m2

Bs

2mbmµ

(
CP − CP ′

CSM10µ

)
. (2.16)

Fig. 2.1 shows the allowed region for S and P once the latest experimental value for B(Bs →
µµ) = (2.85 ± 0.34) [68] is included, corresponding to RBs→µµ = (0.78 ± 0.10). In this analysis
we have not allowed for the presence of right-handed currents.

Figure 2.1: Region of allowed values for S, P that fulfill the condition |RSM
Bs→µµ − RNP

Bs→µµ| ≤ 0.10. In
order to illustrate the sensitivity of this observable to NP contributions, we display its value in the SM
(black star) and in one of the favoured scenario from Ref. [4] (blue dot): {CV9µ = −CV10µ = −0.34, CU9 =
−0.82}. Only the dependence on C10µ is displayed in the plot. The tiny difference of this scenario with the
SM illustrates that M2 is an observable with low sensitivity to the preferred scenarios of present global
fits. For this reason we explore its sensitivity under other types of NP, namely scalars and pseudoscalars.

We perform an analysis of the behaviour of the observable M2 under different hypotheses
for (pseudo)scalar NP contributions that are compatible with Fig. 2.1. The case S = 0, P = 1
corresponds to the SM, as can be seen from Eqs. (2.15) and (2.16). We consider three other
possible scenarios, corresponding to maximal values of S, P :

i) S = ±0.94, P = 0,

ii) S = P = 0.66,

iii) S = 0, P = −0.94.
2Not to be confused with the P- and S-wave components of the decay, this S, P refer to Scalar and Pseudoscalar

NP contributions entering RBs→µµ. The latter includes the SM axial-vector contribution.
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These three benchmark cases are: i) only a scalar contribution (with two possible signs) and
no pseudoscalar NP, ii) both S and P contributions present and equal in magnitude and iii)
the opposite sign of the SM case with a negative pseudoscalar contribution. Fig. 2.2 shows the
theoretical prediction of the large- and low-recoil bins of M2 in the four scenarios mentioned
above.
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Figure 2.2: Binned theoretical predictions for M2 in the SM and in selected NP scenarios including
pseudoscalar and scalar contributions.

It is evident from Fig. 2.2 that the rather small sensitivity of M2 to (pseudo)scalar contri-
butions makes it difficult to get a significant distinction between the different scenarios. This
is especially the case in the very low q2 region, where the uncertainties associated with the
theoretical prediction of this observable are larger. Only for the S = 0, P = −0.94 scenario
in the large-recoil region is a clean separation between hypotheses possible, given suitably high
precision measurements. The situation is somewhat better in the low-recoil q2 region, where the
theoretical errors are smaller but an even higher experimental resolution will be required. The
experimental prospects for such a separation of NP hypotheses is outlined in Section 2.5.

2.1.2 Definition of S-wave observables: massless and massive case

In this section we define the list of S-wave observables that can be constructed using the coef-
ficients of the distribution. They follow from the previous section including P and S waves in
the massless case but also taking into account lepton mass terms. The S-wave observables that
were mostly treated as nuisance parameters thus far will become an interesting target for future
experimental analyses.

Our goal here will be to define the S-wave observables but it is beyond the scope of this
thesis to provide SM predictions and enter into a discussion of the form factors or other hadronic
uncertainties. Our first interest is to determine how many of the observables are genuinely
independent. The question of the number of degrees of freedom is critical for the stability of
experimental fits and is discussed further in Section 2.2.
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As discussed in Section 2.1, the new S-P interference observables defined in Eqs. (2.9) and
(2.11), can be defined in terms of the vectors in Eq. (2.4) as follows:

Sr
S1 = −3

4

√
3
1

Γ′β
2Re(n†0 nS) + CP, Si

S1 = −
3

4

√
3
1

Γ′β
2Im(n†0 n

′
S) + CP,

Sr
S2 =

3

4

√
3

2

1

Γ′β
2Re(n†∥ nS) + CP, Si

S2 =
3

4

√
3

2

1

Γ′β
2Im(n†∥n

′
S) + CP,

Sr
S3 =

3

2

√
3

2

1

Γ′βRe(n
†
⊥ nS) + CP, Si

S3 =
3

2

√
3

2

1

Γ′βIm(n†⊥n
′
S) + CP,

Sr
S4 =

3

2

√
3

2

1

Γ′βRe(n
†
∥n

′
S) + CP, Si

S4 =
3

2

√
3

2

1

Γ′βIm(n†∥nS) + CP,

Sr
S5 =

3

4

√
3

2

1

Γ′β
2Re(n†⊥n

′
S) + CP, Si

S5 =
3

4

√
3

2

1

Γ′β
2Im(n†⊥nS) + CP, (2.17)

where

Γ′ = Γ′
P + Γ′

S + CP

Γ′
P =

3

4
(2J1s + J1c)−

1

4
(2J2s + J2c) + CP

Γ′
S = 2J̃c

1a −
2

3
J̃c
2a + CP. (2.18)

Here the prime stands for the differential distribution. Note that once we include lepton mass
terms, FS should be extracted from J̃c

2a and not from the combination with J̃c
1a such that:

FS =
|n†SnS |
Γ′ = − 8

3β2
J̃c
2a

Γ′ . (2.19)

In order not to overload excessively the notation it should be understood that in Eqs.(2.19-
2.28) each explicit J or J̃ is accompanied by its CP -conjugate partner. In the case that B0 and
B̄0 decays were experimentally separated, a set of CP -asymmetries corresponding to each J and
J̃ observable would also become accessible.

In terms of these observables, the angular distribution in the massless limit (taking β → 1 in
Eq. (2.17)) is given by:

1

d(Γ + Γ̄)/dq2
d4(Γ + Γ̄)

dq2 dΩ⃗

∣∣∣∣
S+P

= (1− FS)|BWP |2
1

d(Γ + Γ̄)/dq2
d4(Γ + Γ̄)

dq2 dΩ⃗

∣∣∣∣
P

+

+
1

4π

[
3

4
FS|BWS |2 sin2 θℓ

−2[Sr
S1Re(BWSBW

∗
P )− Si

S1Im(BWSBW
∗
P )] sin

2 θℓ cos θK

+ [Sr
S2Re(BWSBW

∗
P )− Si

S2Im(BWSBW
∗
P )] sin 2θℓ sin θK cosϕ

+ [Sr
S3Re(BWSBW

∗
P )− Si

S3Im(BWSBW
∗
P )] sin θℓ sin θK cosϕ

+ [Sr
S4Im(BWSBW

∗
P ) + Si

S4Re(BWSBW
∗
P )] sin θℓ sin θK sinϕ

+[Sr
S5Im(BWSBW

∗
P ) + Si

S5Re(BWSBW
∗
P )] sin 2θℓ sin θK sinϕ

]
.

(2.20)
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The corresponding angular distribution in the massive case can be obtained from Eq. (2.3)
using optimized S-wave observables and mass terms defined by:

M ′
3 =
−β2J̃c

1a − J̃c
2a

J̃c
2a

, (2.21)

together with the extra S-P interference massive optimized terms:

M ′
4 =
−β2J̃c,r

1b − J̃
c,r
2b√

J2cJ̃c
2a

,

M ′
5 =
−β2J̃c,i

1b − J̃
c,i
2b√

J2cJ̃c
2a

. (2.22)

Then the massive distribution becomes:

1

d(Γ + Γ̄)/dq2
d4(Γ + Γ̄)

dq2 dΩ⃗

∣∣∣∣
S+P

= (1− F ′
S)|BWP |2

1

d(Γ + Γ̄)/dq2
d4(Γ + Γ̄)

dq2 dΩ⃗

∣∣∣∣
P

+

+
1

4π

[(
3

8
FS(1 +M ′

3)−
3

8
β2FS cos 2θl

)
|BWS |2

+

(
− 1

β2
(Sr

S1 +M ′
4NL)Re(BWSBW

∗
P )

+
1

β2
(Si

S1 +M ′
5NL)Im(BWSBW

∗
P )

)
cos θK

+ [Sr
S1Re(BWSBW

∗
P )− Si

S1Im(BWSBW
∗
P )] cos 2θl cos θK

+ [Sr
S2Re(BWSBW

∗
P )− Si

S2Im(BWSBW
∗
P )] sin 2θl sin θK cosϕ

+ [Sr
S3Re(BWSBW

∗
P )− Si

S3Im(BWSBW
∗
P )] sin θl sin θK cosϕ

+ [Sr
S4Im(BWSBW

∗
P ) + Si

S4Re(BWSBW
∗
P )] sin θl sin θK sinϕ

+[Sr
S5Im(BWSBW

∗
P ) + Si

S5Re(BWSBW
∗
P )] sin 2θl sin θK sinϕ

]
.

(2.23)

We define

NL =

√
J2cJ̃c

2a =
1

2

√
3

2
β2Γ′

√
(1− F ′

S)FSFL

NT =

√
−J2sJ̃c

2a =
1

4

√
3

2
β2Γ′

√
(1− F ′

S)FSFT (2.24)

and

F ′
S =

Γ′
S

Γ′ = FS − ϵS ϵS =
1

4
FS(1− β2 − 3M ′

3). (2.25)

Notice that in the massless limit (M (′)
i → 0, β → 1) Eq. (2.23) reduces to Eq. (2.20).

Finally, in order to write the whole distribution with massive terms and optimized observables,
the substitution:
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S
r/i
S1 → PS

r/i
1

NL

Γ′ S
r/i
S2−S5 → PS

r/i
2−5

NT

Γ′ (2.26)

is needed, where the optimized observables for the interference terms in all q2 bins are

PS
r/i
1 =

J̃
c,r/i
2b√
J2cJ̃c

2a

, PS
r/i
2−5 =

J̃
r/i
4−8√
−J2sJ̃c

2a

. (2.27)

Using the expressions3

J2s =
1

4
N1, J2c = −N2, J3 =

1

2
P1N1, J4 =

1

2
P ′
4N3, J5 = P ′

5N3,

J6s = 2P2N1, J7 = −P ′
6N3, J8 = −

1

2
P ′
8N3, J9 = −P3N1, (2.28)

where N1,2 = β2FT,LΓ
′
P , N3 = β2

√
FTFLΓ

′
P (and the addition of the CP conjugate in Γ′

P is
implicit) and including the definitions of M1,2, one finds:

1

d(Γ + Γ̄)/dq2
d4(Γ + Γ̄)

dq2 dΩ⃗

∣∣∣∣
P

=
9

32π

[
3

4
F̂TM1 sin

2 θK + F̂LM2 cos
2 θK +

(
1

4
F̂T sin2 θK − F̂L cos2 θK

)
cos 2θl

+
1

2
P1F̂T sin2 θK sin2 θl cos 2ϕ+

√
F̂T F̂L

(
1

2
P ′4 sin 2θK sin 2θl cosϕ

+ P ′5 sin 2θK sin θl cosϕ

)
+ 2P2F̂T sin2 θK cos θl

−
√
F̂T F̂L

(
P ′6 sin 2θK sin θl sinϕ+

1

2
P ′8 sin 2θK sin 2θl sinϕ

)
− P3F̂T sin2 θK sin2 θl sin 2ϕ

]
. (2.29)

where a global pre-factor β2 has been absorbed inside the re-definition F̂T,L = β2FT,L.

2.2 Symmetries of the distribution
In this section we present the explicit form of the symmetry transformations of the amplitudes that leave
the full distribution (including P and S wave) invariant, and obtain explicitly the relations among the
observables. The massless and the massive cases are discussed separately.

The number of symmetries of the distribution is determined by performing an infinitesimal transfor-
mation A⃗′ = A⃗ + δ⃗, where A⃗ is a vector collecting the real and imaginary parts of all the amplitudes
entering the distribution (the vector A⃗ depends on whether the massless or massive hypothesis is taken),
and the condition to be a symmetry is that the vector δ⃗ is perpendicular to the hyperplane spanned by
the set of gradient vectors:

∀i ∈ Ji, J̃i : ∇⃗i ⊥ δ⃗ . (2.30)

The gradients are defined then by the derivatives of the coefficients with respect to the real and imaginary
parts of all the amplitudes. The difference between the dimension of the hyperplane that the gradient
vectors span if they are all independent (equal to the number of coefficients of the distribution) and

3One may add to this list another observable, related to the presence of scalars, associated with the coefficient
J6c. Given that in the present paper we only allow for scalars when analyzing the observable M2, we direct the
reader to Ref. [11], where this case is discussed.
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the dimension of the hyperplane that they effectively span tells us the number of relations among the
coefficients that exist. By relations we will refer only to non-trivial relations. We will discuss these
relations in the following subsections. For completeness, we first find explicitly the form of the continuous
symmetries.

In Ref. [11], the massless and massive symmetries were discussed for the P wave. There it was found
that, in the massless case, four symmetries (two phase transformations for the left and right components
and two “angle rotations”) leave the P-wave part of the distribution invariant. Alternatively, using the
vectors ni we can implement the four symmetry transformations by means of a 2× 2 unitary matrix, i.e,
n′i = Uni with i =⊥, ∥, 0. However, the inclusion of the S wave that requires two different vectors nS and
n′S breaks two of the symmetries4 and only the two independent phase transformations survive, i.e.,

AL
i → eiϕLAL

i , A′L0 → eiϕLA′L0 , AR
i → eiϕRAR

i , A′R0 → eiϕRA′R0 (2.31)

with i = 0,⊥, ∥.
The massive case is relatively similar and again only two phase transformations survive. However,

the existence of interference terms between left and right components fixes ϕL = ϕR = ϕ, but this is
compensated by the independent transformation of the extra amplitudes A(′)

t :

AL
i → eiϕAL

i , AR
i → eiϕAR

i ,

A′L0 → eiϕA′L0 , A′R0 → eiϕA′R0

At → eiφAt, A′t → eiφA′t (2.32)

with i = 0,⊥, ∥5 .

2.2.1 Counting degrees of freedom: massive and massless cases
One important question is how many degrees of freedom there are or, in other words, how many observ-
ables in the set discussed in Section 2.1.2 are independent. The number of independent observables to
fully describe the distribution depends on whether massless or massive leptons are considered. We again
work under the hypothesis that there are no scalar contributions but pseudoscalar ones are allowed in
the massive case.

The number of observables that can be constructed out of the complex amplitudes is given by:

nobs = 2nA − nsym . (2.33)

Each symmetry transformation of the amplitudes that leaves the distribution invariant reduces the number
of independent observables.

In the following, we determine the number of relations for the massless and massive case and conse-
quently the number of independent observables required to have a full description of the corresponding
distribution.

Massless case:

Assuming the absence of scalars, we have 11 coefficients for the P-wave and 14 coefficients for the
S-wave distribution. Under the approximation of negligible lepton masses, there are two trivial relations
for the P-wave coefficients:

J1s = 3J2s J1c = −J2c (2.34)

and three trivial relations for the S-wave coefficients:

J̃c
1a = −J̃c

2a J̃c r
1b = −J̃c r

2b J̃c i
1b = −J̃c i

2b , (2.35)

reducing the number of coefficients to nc = 20. The vector A⃗ in the massless case is given by:

4This is easily shown by simply transforming the sum nS + n′
S

5Another example of the convenience of using symmetries but in the semileptonic charged-current b → cℓν
transition can be found in Chapter 3, based on Ref. [124].
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A⃗ =
(
Re(AL

⊥), Im(AL
⊥),Re(A

L
∥ ), Im(AL

∥ ),Re(A
L
0 ), Im(AL

0 ),Re(A
L
0

′
), Im(AL

0

′
),

Re(AR
⊥), Im(AR

⊥),Re(A
R
∥ ), Im(AR

∥ ),Re(A
R
0 ), Im(AR

0 ),Re(A
R
0

′
), Im(AR

0

′
)
)

(2.36)

Using Eq. (2.30), we find that the dimension of the space spanned by the gradient vectors (given by the
rank of the matrix Mij = ∇iXj with X = J, J̃ and i being the elements of A⃗ in Eq. (2.36)) is nrank = 14.
This rank gives the number of independent observables nobs. According to the discussion above, the
number of relations fulfills:

nrel = nc − nrank . (2.37)

Therefore for the massless case nrel = 6. There is one well-known relation among the coefficients for the
P wave (see Ref. [28, 125]) and five, previously unknown, relations for the S wave. An independent cross
check of the rank of the matrix is provided by the fact that the number of degrees of freedom counting
amplitudes minus symmetries, or coefficients minus relations should agree. This implies the equation:

2nA − nsym = nrank = nc − nrel . (2.38)

The number of complex amplitudes nA = 8 and the number of symmetries of the full distribution (P and
S wave) is nsym = 2 (see Eq. (2.31)).

The set of 14 independent observables consists of 8 (9 coefficients minus one relation) independent
observables for the P wave and 6 (11 coefficients minus 5 relations) independent observables for the S
wave. This implies that in the massless case the basis of 20 observables,

Omℓ=0 = {Γ′, FL, P1, P2, P3, P
′
4, P

′
5, P

′
6, P

′
8,

FS , S
r
S1, S

r
S2, S

r
S3, S

r
S4, S

r
S5, S

i
S1, S

i
S2, S

i
S3, S

i
S4, S

i
S5}, (2.39)

has some redundancy. Among these 20 observables there are 6 relations leading to only 14 independent
observables. The set of 6 massless relations can be obtained from the 6 massive expressions given below,
after taking the massless limit. Notice that the seventh relation, given in Appendix C, is exactly zero in
the massless limit.

Massive case:

The counting in this case, following the same steps as in the massless case, goes as follows. Our
starting point is the same number of coefficients 11 (14) for the P wave (S wave), but now there are no
trivial relations, i.e., nc = 25. Here the vector A⃗ is:

A⃗ =
(
Re(AL

⊥), Im(AL
⊥),Re(A

L
∥ ), Im(AL

∥ ),Re(A
L
0 ), Im(AL

0 ),Re(A
L
0

′
), Im(AL

0

′
),ReAt, ImAt,

Re(AR
⊥), Im(AR

⊥),Re(A
R
∥ ), Im(AR

∥ ),Re(A
R
0 ), Im(AR

0 ),Re(A
R
0

′
), Im(AR

0

′
),ReA′t, ImA

′
t

)
.

Notice that pseudoscalar contributions are included in the amplitude At. Evaluating the rank of the
corresponding matrix Mij , one finds nrank = 18, indicating that in the massive case the number of
independent observables is nobs = 18. Following Eq. (2.37), one immediately finds that the number of
relations should be 7. These relations are discussed and presented in the next subsection.

As in the previous case, we can repeat the counting using the amplitudes that build the observables.
The number of complex amplitudes is nA = 10 with the same number of symmetries nsym = 2 (see
Eq. (2.32)) as in the massless case, such that we confirm that there are 18 independent observables.

The set of 18 independent observables in the massive case consists of 10 (11 coefficients minus one
relation) independent observables for the P wave and 8 (14 coefficients minus 6 relations) independent
observables for the S wave. The corresponding basis of 25 observables is:
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Omℓ ̸=0 = {Γ′, FL,M1,M2, P1, P2, P3, P
′
4, P

′
5, P

′
6, P

′
8,

FS ,M
′
3,M

′
4,M

′
5, S

r
S1, S

r
S2, S

r
S3, S

r
S4, S

r
S5, S

i
S1, S

i
S2, S

i
S3, S

i
S4, S

i
S5} . (2.40)

Therefore, among this set of 25 observables there are 7 relations and only 18 observables are independent.

2.2.2 P-wave and S-wave symmetry relations among observables
In this subsection we present for the first time the full set of symmetry relations of the P and S wave
in the massive case. These complete the previous partial results given in Refs. [11, 28, 122, 125]. It is
helpful to express the observables Ji and J̃i in terms of scalar products n†inj , as shown in Eq. (2.17).
All the relations found in this section are functions of Ji and J̃i and an equivalent set of relations in
terms of the CP -conjugate partners J̄i and ¯̃Ji can be written. However, the observables are functions
of the coefficients and their CP partners. This means that when writing one of these relations in terms
of observables the substitution Jj → aPi is strictly speaking Jj → a(Pi + PCP

i )/2 (with a being some
normalization factor). The observable PCP

i is the CP asymmetry associated with the observable Pi,
defined in Ref. [12, 125], and similarly for J̃i. For the following analysis and for simplicity, we will neglect
the CP asymmetries for both the P and S wave. This is a very good approximation, given that such
asymmetries are tiny both in the SM and in presence of NP models that do not have large NP phases.

Following the strategy in Ref. [122], we exploit the fact that a couple of ni vectors (with i =⊥, ∥, 0, S
or i =⊥, ∥, 0, S′) span the space of complex 2-component vectors. We therefore express the other vectors
as linear combinations of these vectors. For instance,

ni = ain∥ + bin⊥, i = 0, S. (2.41)

Contracting with the vectors n∥ and n⊥, we obtain a system of linear equations [122]

n†∥ni = ai|n∥|2 + bi(n
†
∥n⊥),

n†⊥ni = ai(n
†
⊥n∥) + bi|n⊥|2, (2.42)

which can be solved for ai, bi:

ai =
|n⊥|2(n†∥ni)− (n†∥n⊥)(n

†
⊥ni)

|n∥|2|n⊥|2 − |n†⊥n∥|2
, bi =

|n∥|2(n†⊥ni)− (n†⊥n∥)(n
†
∥ni)

|n∥|2|n⊥|2 − |n†⊥n∥|2
. (2.43)

Using the decomposition of n0, nS in terms of n∥, n⊥ (Eq. (2.41)) to calculate the scalar products
|n0|2, |nS |2, n†0nS , the first three relations are obtained. We leave the expressions explicitly in terms
of Ji to let the reader choose between different bases or conventions to write the P-wave observables.

I. From i = 0 in Eq. (2.41) one finds |n0|2 = a0(n
†
0n∥) + b0(n

†
0n⊥) yielding the first relation:

0 = + J2c(16J
2
2s − 4J2

3 − β2J2
6s − 4J2

9 ) + 2(J3(4J
2
4 + β2(−J2

5 + J2
7 )− 4J2

8 ) (2.44)
+ 2J2s(4J

2
4 + β2(J2

5 + J2
7 ) + 4J2

8 )− 2(β2(J4J5J6s + J6sJ7J8 + J5J7J9)− 4J4J8J9)) .

This first relation was found in the massless case in Ref. [28] and in the massive case in Ref. [12] and
its consequences discussed in Ref. [125] once re-expressed in terms of optimized observables:

P2 =
(P ′4P

′
5 + δ1)

2k1
+

1

2k1β

√
(−1 + P1 + P ′24 )(−1− P1 + β2P ′25 ) + δ2 + δ3P1 + δ4P1

2 (2.45)

where the parameters k1 and δi (with i = 1, ...4) are defined in Ref. [125].
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II. Similarly for i = S in Eq. (2.41) one finds |nS |2 = aS(n
†
Sn∥) + bS(n

†
Sn⊥) and this translates to:

0 = −27

16
β4FSJ

2
6s + Γ′[−8(2J2s + J3)S

r 2
S2 − 16J9S

r
S2S

i
S5 + 8(−2J2s + J3)S

i 2
S5]

+2β2(
27

8
FS(4J

2
2s − J2

3 − J2
9 ) + Γ′[(−2J2s + J3)S

r 2
S3 + 2J9S

r
S3S

i
S4

−(2J2s + J3)S
i 2
S4 + 2J6s(S

r
S2S

r
S3 + Si

S4S
i
S5)]), (2.46)

once expressed in terms of S-wave observables.

III. Finally, the scalar product n†0nS leads to the third relation:

0 = 2 [−16J2
2s + 4J2

3 + β2J2
6s + 4J2

9 ]S
r
S1 + 4[β2J5J6s − 4J8J9 − 8J2sJ4 − 4J3J4]S

r
S2

+4β2[J4J6s + J7J9 − 2J2sJ5 + J3J5]S
r
S3 + 4β2[J6sJ8 + J5J9

−2J2sJ7 − J3J7]Si
S4 + 4[β2J6sJ7 − 4J4J9 − 8J2sJ8 + 4J3J8]S

i
S5. (2.47)

Eq. (2.46) and Eq. (2.47) are the generalizations of the massless limit (β → 1) expressions found in
Ref. [122].

Following the same methodology but using instead the vector n′S yields three new relations. Express-
ing n′S in terms of n⊥ and n∥:

n′S = a′Sn∥ + b′Sn⊥, (2.48)

and contracting with n∥ and n⊥ we get a system of linear equations

n†⊥n
′
S = a′S(n

†
⊥n∥) + b′S |n⊥|2,

n†∥n
′
S = a′S |n∥|2 + b′S(n

†
∥n⊥). (2.49)

We can determine a′S and b′S :

a′S =
(n†∥n

′
S)|n⊥|2 − (n†⊥n

′
S)(n

†
∥n⊥)

|n∥|2|n⊥|2 − |n†⊥n∥|2
, b′S =

(n†∥n
′
S)(n

†
⊥n∥)− (n†⊥n

′
S)|n∥|2

|n†⊥n∥|2 − |n∥|2|n⊥|2
. (2.50)

Using the properties of the vector n′S we then obtain the following three relations:

IV. From the equality of the modulus of both vectors nS and n′S one obtains

|n′S |2 = |nS |2 = a′S(n
′†
Sn∥) + b′S(n

′†
Sn⊥) , (2.51)

which implies the following relation:

0 = +
27

16
β2FS(16J

2
2s − 4J2

3 − β2J2
6s − 4J2

9 )− 2Γ′[−2(β2J6sS
i
S2S

i
S3 − β2J9S

i
S3S

r
S4

+4J9S
i
S2S

r
S5 + β2J6sS

r
S4S

r
S5) + 4Si 2

S2(J3 + 2J2s) + β2Si 2
S3(2J2s − J3)

+β2Sr 2
S4(J3 + 2J2s) + 4Sr 2

S5(2J2s − J3)]. (2.52)

V. Above we focus on relations constructed from the real part of the product of vectors. The imaginary
parts provide additional new relations:

Im[n†0n
′
S ] = Im[a′S(n

†
0n∥) + b′S(n

†
0n⊥)] , (2.53)

which leads to:

0 = 2 [−16J2
2s + 4J2

3 + β2J2
6s + 4J2

9 ]S
i
S1 + [4β2J5J6s − 16J8J9 − 16J3J4 − 32J2sJ4]S

i
S2

+4β2[J4J6s + J7J9 + J3J5 − 2J2sJ5]S
i
S3 + 4β2[−J6sJ8 − J5J9 + J3J7 + 2J2sJ7]S

r
S4

+[−4β2J6sJ7 + 16J4J9 − 16J3J8 + 32J2sJ8]S
r
S5. (2.54)

VI. Finally, combining the vectors nS and n′S one finds:
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Im[n†Sn
′
S ] = 0 = a′S(n

†
Sn∥) + b′S(n

†
Sn⊥) , (2.55)

which corresponds to

0 = β2J6s[−Sr
S2S

i
S3 − Si

S2S
r
S3 + Sr

S4S
i
S5 + Si

S4S
r
S5] + J9[−β2Si

S3S
i
S4 + β2Sr

S3S
r
S4 + 4Si

S2S
i
S5

−4Sr
S2S

r
S5] + 2J2s[4S

i
S2S

r
S2 + β2(Si

S3S
r
S3 − Si

S4S
r
S4)− 4Si

S5S
r
S5] + J3[4S

i
S2S

r
S2

−β2(Si
S3S

r
S3 + Si

S4S
r
S4) + 4Si

S5S
r
S5]. (2.56)

These six relations are common to the massive and massless cases, and they reduce to the massless
case when taking the limit β → 1. There is a cumbersome seventh relation that applies only to the
massive case, i.e. it is zero in the limit of massless leptons. For this reason and given that it is difficult to
extract information from such a long relation, we refrain from writing it explicitly and, instead, provide
only the main steps to obtain this relation in Appendix C.

2.3 Bounds on S-wave observables and W1,2 observables
Following the strategy of Ref. [122], the relations found in the previous section enable bounds to be placed
on the Sr

Si observables and the newly defined Si
Si observables. For instance, solving for Sr

S2 and imposing
a real solution in relation II gives:

0 ≤ ∆(Sr
S2) = − β2x(Sr

S3)
2 − 4x(Si

S5)
2 − β2(2P3S

r
S3 + (1 + P1)S

i
S4 − 4P2S

i
S5)

2

+
27

16
β4xFS(1− F ′S)FT (1 + P1) , (2.57)

where

x = 1− P 2
1 − 4β2P 2

2 − 4P 2
3 ≥ 0 (2.58)

(see Ref. [122]) and ∆ stands for the discriminant of Sr
S2 when solved from relation II (Eq. (2.46)). The

first three terms are negative definite and each of them separately has to be smaller than the last positive
definite term. In a similar way but solving for Sr

S3 and imposing a real solution one finds:

0≤∆(Sr
S3) = − β2x(Si

S4)
2 − 4x(Sr

S2)
2 − 4(2P3S

r
S2 − (1− P1)S

i
S5 + β2P2S

i
S4)

2

+
27

16
β4xFS(1− F ′S)FT (1− P1) . (2.59)

This implies the following constraints for Sr
S2,3:

|Sr
S2| ≤ β2 3

4

√
3

4
FS(1− F ′S)FT (1− P1) |Sr

S3| ≤ β
3

4

√
3FS(1− F ′S)FT (1 + P1), (2.60)

and for Si
S4,5:

|Si
S4| ≤ β

3

4

√
3FS(1− F ′S)FT (1− P1) |Si

S5| ≤ β2 3

4

√
3

4
FS(1− F ′S)FT (1 + P1) . (2.61)

Similarly using relation IV, one finds

0 ≤ ∆(Sr
S4) = − β2x(Si

S3)
2 − 4x(Sr

S5)
2 − 4(2P3S

r
S5 + (1 + P1)S

i
S2 − β2P2S

i
S3)

2

+
27

16
β4xFS(1− F ′S)FT (1 + P1) , (2.62)
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Figure 2.3: Bounds for Sr,i
Si binned observables with i = 1, 2, 3, 4, 5. The dashed line corresponds to the

central value of the bound in the SM, while the green regions include the uncertainty of the observables
that define the bound in the SM.

and

0 ≤ ∆(Sr
S5) = − β2x(Sr

S4)
2 − 4x(Si

S2)
2 − β2(4P2S

i
S2 − (1− P1)S

i
S3 + 2P3S

r
S4)

2

+
27

16
β4xFS(1− F ′S)FT (1− P1) , (2.63)

which leads to the following bounds:

|Sr
S4| ≤ β

3

4

√
3FS(1− F ′S)FT (1− P1) , |Sr

S5| ≤ β2 3

4

√
3

4
FS(1− F ′S)FT (1 + P1) , (2.64)
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Figure 2.4: Illustration of the sensitivity of the central value of the bound to the preferred NP scenarios
for two observables Sr,i

S2 and Sr,i
S3. We have checked explicitly that the variation of the bound in the most

significant NP scenarios amounts to at most a 20-25% enhancement.

and

|Si
S2| ≤ β2 3

4

√
3

4
FS(1− F ′S)FT (1− P1) , |Si

S3| ≤ β
3

4

√
3FS(1− F ′S)FT (1 + P1) . (2.65)

In summary,

|Sr,i
S2| ≤ β2 k1

2
, |Sr,i

S3| ≤ βk2, |Sr,i
S4| ≤ βk1, |Sr,i

S5| ≤ β2 k2
2
, (2.66)

with k1 = 3
4

√
3FS(1− F ′S)FT (1− P1) and k2 = 3

4

√
3FS(1− F ′S)FT (1 + P1). All the bounds above can

alternatively be obtained using the Cauchy-Schwarz inequalities. For the observables Sr,i
S1 this is the only

way to obtain the bounds. For instance, from |n†0nS |2 ≤ |n0|2|nS |2 and a corresponding inequality with
n′S using the properties of the vectors Eq. (2.4) one arrives at

|Sr,i
S1| ≤ β2 3

4

√
3
√
FS(1− F ′S)FL . (2.67)

All the bounds on the other observables can be re-derived using the four inequalities:

|n†∥n
(′)
S |2 ≤ |n∥|2|nS |2 , |n†⊥n

(′)
S |2 ≤ |n⊥|2|nS |2 . (2.68)

We have computed explicitly the bounds of the Sr,i
Si observables in the SM in Fig. 2.3. The relatively

low sensitivity of the central value of the bound for Sr,i
S2,3 on the dominant NP scenarios is illustrated

in Fig. 2.4. We work under the approximation of substituting q2 dependent observables by their binned
equivalents, where we denote the latter using angular brackets. This introduces some uncertainty but,
as shown in Ref. [125], this uncertainty is negligible, especially for slowly varying observables like those
involved in the bounds. To compute the binned form of the bounds from Eq. (2.66) we consider the theo-
retical prediction for the observables ⟨FL,T ⟩, ⟨P1⟩, taking into account the 1σ ranges of such observables.
Therefore Fig. 2.3 shows the maximum value allowed for such constraints. For ⟨FS⟩ we extract the value
from a reduced mKπ resonance window, 0.795 < mKπ < 0.995GeV. In Fig. 2.4 we evaluate ⟨FL,T ⟩ and
⟨P1⟩ in the corresponding NP scenarios, while taking the SM prediction for ⟨FS⟩. The computation of
⟨FS⟩ is the only place where we use S-wave form factors. If ⟨FS⟩ is taken as an experimental input, then
no S-wave form factors are required. Finally, notice that the bounds include a term (1− F ′S). However,
in evaluating these bounds we have neglected a small lepton mass dependent term (see Eq. (2.25)) taking
FS instead of F ′S .

The third term in Eqs. (2.57),(2.59),(2.62),(2.63) should tend to zero when x(q21) → 0, in order not
to violate the condition of a real solution. Indeed, if we repeat the same procedure using relation II but
impose a real solution for ∆(Si

S4) and ∆(Si
S5) and for relation IV impose a real solution for ∆(Si

S2) and
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∆(Si
S3), we find respectively:(

(1 + P1)S
r
S2 − β2P2S

r
S3 − 2P3S

i
S5

)
q21

= 0,(
4P2S

r
S2 − (1− P1)S

r
S3 − 2P3S

i
S4

)
q21

= 0,(
4P2S

r
S5 − (1 + P1)S

r
S4 + 2P3S

i
S3

)
q21

= 0,(
(1− P1)S

r
S5 − β2P2S

r
S4 + 2P3S

i
S2

)
q21

= 0. (2.69)

Neglecting quadratically suppressed terms, P3S
i
Sj ≪ P2S

r
Sj with j = 2...5, the previous equations

can be combined to obtain:

Sr
S2|q21 =

[
β

2

√
1− P1

1 + P1
Sr
S3

]
q21

,

Sr
S5|q21 =

[
β

2

√
1 + P1

1− P1
Sr
S4

]
q21

, (2.70)

and from x(q21) = 0, neglecting P 2
3 , one finds at q21 that P2 =

√
1− P 2

1 /(2β).
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Figure 2.5: SM and NP predictions for the observables W1 and W2 as continuous functions of q2 and
binned in q2.
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Another example of the information that can be extracted from the relations, neglecting quadratic
terms of the type O(P3S

i
Sj , P

2
3 ), are the following expressions. These are valid for all q2 and derive from

relations II and IV, respectively. They can be tested as a cross-check of the experimental analyses:

W1 = (2Ŝr
S2)

2 + p(βŜr
S3)

2 + qŜr
S2Ŝ

r
S3 = 3β4 1

1 + P1
x , (2.71)

where

Ŝr
Si =

4

3

Sr
Si√

(1− F ′S)FSFT

=
β2

√
6
PSr

i , (2.72)

with i = 2...5, p = (1− P1)/(1 + P1) and q = −8β2P2/(1 + P1). Similarly,

W2 = (2Ŝr
S5)

2 + p′(βŜr
S4)

2 + q′Ŝr
S4Ŝ

r
S5 = 3β4 1

1− P1
x, (2.73)

where p′ = (1 + P1)/(1− P1) and q′ = −8β2P2/(1− P1), and x is defined in Eq. (2.58).

Eq. (2.71) is particularly interesting because at the zero of Ŝr
S3 (or equivalently PSr

3) one can predict
the absolute value of Ŝr

S2 (or PSr
2) as a function of P-wave observables with no need to rely on any S-wave

form factors. In the case of Eq. (2.73), at the zero of Ŝr
S4 one can predict the absolute value of Ŝr

S5 at
this particular value of q2. These are valuable tests to compare with future predictions using calculations
of the form factors.

Given that Eq. (2.71) and Eq. (2.73) are functions of P- and S-wave optimized observables (PSr
i

and P1,2), W1,2 are also optimized observables. We can compute SM and NP predictions for these two
observables using the right hand side of Eq. (2.71) and Eq. (2.73), respectively. These relations then give
access to the n⊥,∥,0 components inside the new S-wave observables, cancelling the dependence on nS and
n′S and hence their predictions do not require the S-wave form factors. The W1,2 observables bring new
information that can help to disentangle the SM from different NP scenarios, as illustrated in Fig. 2.5.
From W1 in the region above 4 GeV2, the SM and CNP

9µ = −CNP
10µ are not distinguishable but all the other

scenarios shown can in principle be distinguished from the SM. The expected experimental precision for
such measurements is detailed in Section 2.5.

Finally we can use relation III, again neglecting all terms including quadratic products of observables
sensitive to imaginary parts of bilinears (P3, P6′,8′ and Si

S3,5), to find:

Sr
S1 = − 1

x

FL√
FLFT

(
2(P ′4(1 + P1)− 2β2P2P

′
5)S

r
S2 + β2(P ′5(1− P1)− 2P2P

′
4)S

r
S3

)
, (2.74)

however, this does not give any additional experimental insight.

2.4 Common zeroes of P- and S-wave observables
The optimized observable P2 can be rewritten in terms of the q2-dependent complex-vectors n⊥ and n∥
in the following way:

P2 =
1

2β

(
1− (n⊥ − n∥)†(n⊥ − n∥) + CP

|n⊥|2 + |n∥|2 + CP

)
. (2.75)

In the absence of right-handed currents, the maximum of P2, denoted Pmax
2 , occurs at a certain value

of q2, which we denote q21 . At the maximum, Pmax
2 (q21) ≃ 1/(2β). To a very good approximation, this

maximum occurs when
n⊥(q

2
0) ≃ n∥(q20) , (2.76)

where in principle a different q2 is involved. This is because this expression is in fact four equations (two
for the real and two for the imaginary part) and, moreover, they have to be combined with their CP
conjugated equivalents. Strictly speaking this would require that real and imaginary parts and left and
right handed parts have the zero at the same point in q2, which is not the case. If we restrict ourselves
to only Re(AL

⊥(q
2
0)) = Re(AL

∥ (q
2
0)) the obtained position of the zero q20 is in very good agreement with

the position of the maximum given by q21 , as illustrated in Table 2.1.
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Hypotheses q20 q21 q22
SM 2.03 2.02 2.02
CNP
9µ 2.31 2.30 2.30

Hypothesis V: (CNP
9µ , C9′µ = −C10′µ) 2.37 2.37 2.36

LFU Scenario 8: (CV9µ = −CV10µ, CU9 ) 2.43 2.46 2.45
Hypothesis I: (CNP

9µ = −C9′µ, CNP
10µ = C10′µ) 2.45 2.34 2.18

Table 2.1: Position of the zero evaluated from: a) Re(A⊥(q20)) = Re(A∥(q
2
0)), b) position of Pmax

2 (q21) and
c) the exact position given by X2(q

2
2). This shows that only in the presence of right handed currents that

do not fulfill conditionR, as in Hypothesis I [4], do the zero points differ significantly from one another.

In the presence of right-handed currents the condition n⊥(q20) ≃ n∥(q20) can only be fulfilled if a very
concrete combination of Wilson coefficients is realized in Nature:

C7′ ≃ −
Ceff7

C10µ − Ceff9µ
(C10′µ + C9′µ). (2.77)

One of the NP scenarios that presently has the highest pull with respect to the SM, (C7′ = 0, CNP
9µ , C9′µ =

−C10′µ) indeed fulfills this condition. From now on we will refer to this combination (Eq. (2.77)) as
conditionR.

In the SM, in the absence of right-handed currents, or in the presence of right-handed currents that
fulfill conditionR, Table 2.1 illustrates that q20 and q21 are within 1% of each other. This can be understood
due to the small phases entering, but also because the equation:

Re(AR
⊥(q

2
0)) = −Re(AR

∥ (q
2
0)), (2.78)

is exactly fulfilled in the large recoil limit in the absence of right handed currents, or if such currents are
present but obey conditionR. Under these conditions, deviations from this relation then owe to departures
from the large recoil limit. We can parametrise these tiny deviations and the effect of imaginary terms
in the following form6:

1

N

(
n⊥ − n∥

)
=

1

N

(
AL
⊥(q

2
0)−AL

∥ (q
2
0)

−AR∗
⊥ (q20)−AR∗

∥ (q20)

)
=

(
iϵL

δ + iϵR

)
, (2.81)

where N is the normalization factor for the helicity amplitudes defined in Eq. (1.31).
For NP scenarios with right handed currents that satisfy conditionR or in the absence of right handed

currents, a number of other observables are zero at the same point in q2 at which P2 is maximal. The
relevant observables are formed from pairs of P- and S-wave angular observables:

X1 = Pmax
2 (q21), X2 = βP ′5 − P ′4, X3 = βSr

S4 − 2Sr
S5, X4 = βSr

S3 − 2Sr
S2. (2.82)

In Fig. 2.6 the dependence of the position of the zero for several P-wave observables is shown for different
NP scenarios. The observables P3 and P ′6,8 would also in principle give a further zero. However, given that
they are numerically small over the entire low-q2 region, they are difficult to determine experimentally.

6Besides the fact that we can compute δ, ϵL and ϵR, these quantities can be bounded experimentally using
Eq. (2.75) and Eq. (2.81) and rewriting P2 at the point of its maximum (again, for NP scenarios with right-handed
currents that satisfy conditionR, or in the absence of right handed currents) as:

P2(q
2
0) =

1

2β

(
1−N2 |δ|2 + |ϵL|2 + |ϵR|2 + CP

|n⊥|2 + |n∥|2 + CP

)
. (2.79)

This implies that the tiny difference between 1/(2β) and the maximum imposes a bound on each term |δ|, |ϵL|
and |ϵR| separately:

|δ|2, |ϵL|2, |ϵR|2 ≤ (1/(2β)− Pmeasured
2 (q20))FT (dΓ/dq

2)/N2. (2.80)

However, measuring the difference 1/(2β)−Pmeasured
2 (q20) would require an experimental precision that is presently

unattainable.
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Moreover, the small contribution coming from the λu = VubV
∗
us piece of the Hamiltonian distorts the

position of the zero for such observables, which motivates their omission from the list above. For the
same reason, the Si

Si observables and P1 in the absence of right handed currents are also not included.
TheX2,3,4 observables then offer the possibility of looking at the compatibility of multiple zeros, rather

than just the zero of single variables such as AFB. In the presence of sizeable right handed currents that
do not fulfill conditionR, P2 does not reach the maximal value 1/(2β), and a small difference between the
Xi observables should be observed. Misalignment between the zeroes of the Xi observables could then
help confirm a right handed current scenario, although another possible reason for a tiny misalignment is
the presence of scalar or pseudoscalar contributions. The observable X1 is not included in the list above
because it is difficult to identify precisely the position of the maximum experimentally.

The point where P ′5 and P ′4 cross gives the zero of X2, as shown in Fig. 2.6. Unfortunately, when
including theory uncertainties using the KMPW computation [23] of the form factors V,A0,1,2, T1,2,3 and
long-distance charm, the overlap between the zeroes of different NP scenarios is as shown in Fig. 2.7.
This implies that further efforts are required to improve on the theoretical uncertainty of the observables.

We use the complete longitudinal and transverse (perpendicular and parallel) amplitudes defined in
Eqs. (1.28)-(1.27) to determine the corresponding theoretical position of the zero, which is the solution
of the following implicit equation:

q20
2mb

=
Ceff7

[
T1(1 +

ms

mb
)λ

1
2 + T2(1− ms

mb
)(m2

B −m2
K∗)
]
+ T⊥

[
λ

1
2 + (m2

B −m2
K∗)

m2
B−q

2
0

m2
B

]
(C10 − Ceff9 (q20))(

λ
1
2

mB+mK∗ V + (mB +mK∗)A1)
,

(2.83)

where Ceff9 (q2) collects all pieces and, in order to simplify the expression, we take all non-factorizable
power corrections at their central values but keep long distance charm (see Eq. (1.34)) explicit inside Ceff9
(taking clong⊥ = clong∥ = clong):

Ceff9⊥,∥(q2) = C9 + Yt +
λu
λt
Yu + clong⊥,∥ (s)s⊥,∥. (2.84)

The form factors T1,2 include soft form factors, αs and power corrections and T⊥ also includes the
non-factorizable QCDf contribution. Eq. (2.83) offers an interesting combined test of form factors, Wilson
coefficients and long-distance charm at a specific point in q2.

2.4.1 A closer look at the observable X2: from New Physics to hadronic
contributions

In this section the properties of the observable X2 = βP ′5 − P ′4 are analyzed in detail, focusing on the
q2 bin where the zeroes fall both in the SM and in the NP scenarios considered [4, 55]. While all the
relevant observable information is already included inside global fits, analyzing particular observables like
X2 can provide guidance on how to disentangle NP effects in the longer term. This observable has a
simple structure in terms of Wilson coefficients when evaluated in the q2 bin [1.8,2.5]:

⟨X2⟩[1.8,2.5] ∼ −0.14 + 0.22 (CNP
10µ − CNP

9µ ) + ϵ , (2.85)

where ϵ in this equation refers to a tiny contribution that is non-zero only in the presence of right
handed currents, in particular contributing to C9′µ, that can be cast as −0.02 C9′µ(1 + 2(C9′µ − CNP

9µ )).
As can be seen immediately from this equation, ⟨X2⟩SM[1.8,2.5] ∼ −0.14. Independent of the details of
the physics model, almost all NP scenarios with CNP

9µ ̸= 0 yield 0.88 < CNP
10µ − CNP

9µ < 1.26, implying
0.05 ≤ ⟨X2⟩[1.8,2.5] ≤ 0.14. One relevant exception is Scenario 8, corresponding to ⟨X2⟩[1.8,2.5] = 0.19.
This scenario contains a LFU contribution in C9, which would imply a contribution to the electronic mode
too, ⟨X2e⟩[1.8,2.5] = ⟨βP ′5,e − P ′4,e⟩[1.8,2.5] ≃ 0.07.

In summary, given that ⟨X2⟩[1.8,2.5] is predicted to be approximately −0.1 in the SM and up to +0.2
in some relevant NP scenarios, an experimental precision of ±0.1 would allow some of the NP scenarios to
be disentangled from the SM. However, as shown above, with the present theoretical accuracy the theory
predictions in q2 bins yield a large overlap, preventing any clear discrimination. This is not surprising,



2.4. Common zeroes of P- and S-wave observables 55

� � � �
-���

-���

���

���

���

� � � �

-���

���

���

���

� � � �

-���

���

���

���

� � � �

-���

���

���

���

Figure 2.6: Predictions for different Pi observables in (top left) the SM, (top right) Scenario 8, (bottom
left) Hypothesis V and (bottom right) Hypothesis I.

because the deviation of P ′5 in the [1.8, 2.5] bin is not so large compared to the anomalies in the bins [4,6]
or [6,8]. Moreover, given that P ′4 is quite SM-like (see discussion below), it is expected that the largest
deviation for this observable will occur in the [4,6] and [6,8] bins. This is confirmed in Fig. 2.8.

Due to the stability of X2 under most NP scenarios, it is essential to improve on its theoretical
uncertainties. In parallel we can explore the sensitivity that P ′5 and P ′4 may offer individually in the
[1.8, 2.5] bin. For completeness, we provide the relevant expressions here:

⟨P ′4⟩[1.8,2.5] ≃ 0.13− 0.22(CNP
10µ − C10′µ) + 0.03(CNP

9µ − C9′µ)2 , (2.86)

⟨P ′5⟩[1.8,2.5] ≃ −0.01 + 0.22C10′µ − 0.26CNP
9µ + 0.06CNP

10µC10′µ .

For the most prominent NP scenarios, we find the ranges 0.04 < ⟨P ′4⟩[1.8,2.5] < 0.33 and 0.10 <
⟨P ′5⟩[1.8,2.5] < 0.38, with theory uncertainties of ±0.20 and ±0.13 for ⟨P ′4⟩[1.8,2.5] and ⟨P ′5⟩[1.8,2.5], respec-
tively. These show that ⟨P ′4⟩[1.8,2.5] exhibits a SM-like behaviour (in the absence of right handed currents)
and gets a wider range only if right handed currents are rather large, as in Hypothesis I (see Table 2.1
and Refs. [4, 55]). This is different in the case of ⟨P ′5⟩[1.8,2.5], which exhibits an enhanced sensitivity
to CNP

9µ that drives the wider range. Moreover, the current size of the theory uncertainty of ⟨P ′4⟩[1.8,2.5]
erases any possibility of discrimination between the SM and NP scenarios, but in the case of ⟨P ′5⟩[1.8,2.5]
the smaller size of the error leaves some discrimination power.

In order to discern hadronic contributions, the following strategy can be employed. The best fit point
from a global fit that excludes P ′5 and P ′4 can be used to predict the NP contributions entering ⟨X2⟩[1.8,2.5],
as well as P ′5 and P ′4 individually. These predictions can be contrasted with the experimental results in
order to assess the SM contributions to P ′5 and P ′4. As noted above, the SM predicts ⟨X2⟩[1.8,2.5] = −0.14,
but ⟨P ′5⟩[1.8,2.5] = −0.01 and ⟨P ′4⟩[1.8,2.5] = 0.13. Such values arise from a complex interplay between
several SM sources, among them the hadronic form factors, non-factorizable power corrections inside
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Figure 2.7: X2 predictions for the SM, Hypothesis V and Scenario 8, including theory uncertainties.

T⊥, T∥ (see Ref. [14, 29] for their explicit definitions), the value of the Wilson coefficients in the SM but
also perturbative charm-loop contributions. Here we parametrise the remaining charm loop long-distance
contributions in a manner that matches the non-perturbative computation from Ref. [23]. In practice,
when quoting long-distance charm loops we refer to Eq. (1.34) for the transverse and perpendicular
components and for the longitudinal one.

Using Eqs. (1.28-1.27) we can write the observables as follows7:

⟨P ′4⟩SM[1.8,2.5] = 0.35 + 10.63ReT⊥ + 1.43ReT∥ + 49.30 (ReT⊥)2 + 0.01s⊥ − 0.05s0 ,

⟨P ′5⟩SM[1.8,2.5] = −0.34− 11.71ReT⊥ + 1.57ReT∥ − 55.32Re(T⊥)2 − 0.01s∥ − 0.05s0 , (2.87)

⟨X2⟩SM[1.8,2.5] = −0.68− 22.33ReT⊥ + 0.13ReT∥ − 104.62 (ReT⊥)2 − 0.01s∥ − 0.01s⊥ ,

where in the SM in this particular bin one expects: ReT⊥ ∼ −0.028, ReT∥ ∼ +0.025, and in Refs. [4,
53, 55] s⊥,∥,0 is taken as a nuisance parameter allowed to vary in the range si ∈ [−1, 1] . The constant
coefficients in these equations are intricate combinations of Wilson coefficients and form factors in the
SM.

The first point to notice is that both ⟨P ′4⟩[1.8,2.5] and ⟨P ′5⟩[1.8,2.5] are dominated by ReT⊥ and the
dominant long distance comes from s0, in both cases with a very similar magnitude. Subleading contri-
butions arise from T∥ and s⊥,∥. Secondly, ⟨X2⟩[1.8,2.5] has a negligible sensitivity to T∥ and s0, and the
first long-distance piece enters via subleading contributions from s⊥,∥. Thus this observable is basically
dominated by ReT⊥ and proves to be quite robust against long-distance charm loop contributions in this
bin.

7We neglect tiny contributions from ImT⊥
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Figure 2.8: SM and NP predictions for X2 binned in q2.

Finally, recalling the stability of ⟨X2⟩[1.8,2.5] under different NP scenarios, we can parametrise this
observable to a very good approximation as:

⟨X2⟩[1.8,2.5] = −0.68− 22.33ReT⊥ − 104.62 (ReT⊥)2 + 0.22(CNP
10µ − CNP

9µ ) , (2.88)

where the interplay between NP and the non-factorizable QCDf hadronic contributions is clearly en-
coded. This implies that a measurement of ⟨X2⟩[1.8,2.5] could provide an experimental constraint on
ReT⊥ in [1.8, 2.5], correlated with the NP scenario used, to be confronted with the SM prediction. The
determination of ReT⊥ can be seen as a non-trivial test of QCDf. Notice also that, as discussed at the
beginning of this section, ReT⊥ has a significant impact on the position of the zero of X2. As soon as
T⊥ is experimentally determined, the correlated measurement of the individual observables ⟨P ′4⟩[1.8,2.5]
and ⟨P ′5⟩[1.8,2.5] will provide a handle on s0, the dominant long-distance charm loop in this bin (see
Eqs. (2.87)). The size of such effects should be clearly seen with the precision that should be attained
during Run 4 of the LHC.

2.5 Experimental prospects and precision
Finally, in this section we provide a brief comparison of the theoretical predictions of the observables
described in the previous sections with the corresponding projected experimental measurements in future
runs at the LHC. For the experimental study, data sets are generated with the expected sample sizes
collected by the LCHb collaboration at various points in time. The data the experiment currently has
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in hand, referred to as the Run 2 data set, is the combination of the Run 1 and Run 2 data with
integrated luminosity of 9 fb−1. Projections are made for future LHCb runs: Run 3 with 23 fb−1, Run 4
with 50 fb−1 [126], and Run 5 representing the total data collected by the proposed Upgrade II with
300 fb−1 [127].

The SM values of the angular observables are used in the generation of the pseudo-data. For the
P-wave observables (and only for the experimental sensitivity study), the B0 → K∗0 form factors are
taken from Ref. [128] and rely on a combination of Light Cone Sum Rules and Lattice QCD calculations.
For the S-wave observables, the B0 → K∗0 form factors are taken from Ref. [116]. For all observables the
non-local charm contribution is taken from Ref. [17], with the longitudinal and S-wave phase difference
for all JPC = 1−− dimuon resonances relative to the rare mode set to zero. The exact choice of these
parameters has no impact on the conclusions of this study. The stability of the fit and the experimental
precision on the P-wave observables is largely independent of the details of the model.

2.5.1 Experimental test of symmetry relations
The six symmetry relations may be applied to the results of the binned fits as an independent check of
the robustness of the experimental methodology. As the fitted observables are averaged over a q2 bin
the relations are not exact in this experimental context. This is particularly apparent in the lowest q2
bin, where the changes in the variables with q2 are most notable. Furthermore, as only the bins for
q2 < 1GeV2 are treated as having massive leptons8 there is some small imprecision in the symmetry
relations for the bins immediately above 1GeV2 albeit rather marginal effects of the massless lepton
treatment. Example distributions of the relations are shown in Fig. 2.9.

These distributions of the symmetry relations may be used for a ready check by an experimenter
of their fit to real data. If the relation calculated from the data lies outside these distributions the fit
can be discounted and the experimenter invited to check their method. Care must be taken however
as the experimental relations are calculated with q2 averaged observables. This introduces some model
dependence in the distributions of the pseudo-experiments.

2.5.2 S wave in the global fits
Equations (2.71) and (2.73) allow us to include S-wave interference observables in Wilson coefficient fits
for NP without having to calculate the S-wave form-factors. The expected precision for W1 and W2

with only the P-wave observables, with the interference observables, and the combination of the two
has been assessed. Pseudo-experiments are run with the SM hypothesis and using the new optimized
interference observables, PSr/i

i introduced in Section 2.1.2. For each of the 1000 pseudo experiments
used, W1 and W2 are calculated along with their uncertainties, accounting for the correlations between
the fitted parameters. The correlation between the expressions involving only P-wave observables and
that including the interference observables is assessed for each of W1 and W2. Subsequently the average
and statistical uncertainty when combining the P wave only part with the interference part is found for
each observable.

For the Run 2 data set the narrow bins cannot reliably be used to extract the optimized observables.
Therefore here the wider q2 bins are used. The expected precision of W1 and W2 is shown in Fig. 2.10. It
can be seen that the combination of P-wave only with the P- and S-wave observables is only marginally
more precise than for the P-wave only alone. This is to be expected due to the small contribution of the
S wave that is simulated and the presence of P-wave parameters in the combination with the interference
observables such that the contribution of the S wave is not statistically independent.

In the future the size of the data sets will become sufficient for the narrower bins to be readily used.
An example is shown in Fig. 2.11 of the putative LHCb Run 4 data set with 50 fb−1.

8Results corresponding to binned quantities in the region q2 > 1.1GeV2 are assumed to be massless, since
lepton mass effects are small enough so that they can be safely neglected in this range.
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Figure 2.9: Example distributions of the six symmetry relations for the various q2 bins. The red line is
a reference at 0 for the case when the relations are exact. The spread of the distributions is a reflection
of the statistical precision of the fit.
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Figure 2.10: Pseudo-experiment results for (left) W1 and (right) W2 with the LHCb Run 2 data set.
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Figure 2.11: Pseudo-expriment results for (left) W1 and (right) W2 with the expected LHCb Run 4 data
set of 50 fb−1.

2.6 Summary and Conclusions
This chapter presents a study of the B0 → K∗0(→ K+π−)ℓ+ℓ− decay once the fully differential decay
rate, including contributions of the K+π− system in a P- or S-wave configuration, is considered. This
can be used to analyze such decays in current and future experiments, paving the way for the next step in
the analysis of this decay, going beyond previous analyses by identifying and exploring the experimental
prospects of massive and S-wave observables that were previously neglected or treated as nuisance param-
eters. Our analysis relies on a complete description of the symmetries that apply to the full distribution.
This enables us to define the complete set of observables that describe the decay and the relations between
them, excluding only the presence of scalar or tensor NP contributions.

Our study shows, in particular, that the symmetries of the B0→ K+π−ℓ+ℓ− decay rate give rise
to relations that allow a combination of S-wave observables, W1,2, to be expressed in terms of P-wave
only observables. These combined observables then have no dependence on the poorly known S-wave
form factors and therefore offer genuine probes of physics beyond the SM. This opens a new seam in the
phenomenology and, for the first time, will allow S-wave events in the data to contribute to global fits
for the underlying physics coefficients.

We also present strong bounds on the set of new S-wave observables using two different methods, the
relations themselves and Cauchy-Schwartz inequalities relying only on the structure of the observables in
terms of 2D complex vectors. They serve as important experimental cross-checks.

Finally, concerning the comparison between the theoretical and the experimental status, we have
shown that the exploitation of the symmetry relations for the observables will allow an immediate test
of the robustness of the experimental fits to data without resorting to theoretical predictions.
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Chapter 3

Symmetries in B → D∗ℓν angular
observables

Following the hints of a growing tension with respect to SM expectations concerning b-quark decays, we
have reviewed in previous chapters the state-of-the-art analysis of the anomalies in the neutral-current
b → sℓ+ℓ− transition. However, those are not the only type of semileptonic B decays that currently
exhibit discrepancies with respect to the SM. While observables related to the neutral channel b→ sℓ+ℓ−

show tensions in global significances at the level of ∼ 7σ, charged-current b→ cℓν transitions also exhibit
deviations from the SM predictions, mainly in LFUV observables comparing ℓ = τ and lighter leptons.
First measured as deviating significantly from the SM in 2012 [129, 130], the relevant ratios RD and
RD∗ have been updated regularly, leading to a recent decrease of the tension with respect to the SM
down to 3.1σ [131–135]. Additional observables have been considered for B → D∗τν concerning the
polarisation of both the D∗ meson [136] and the τ lepton [137, 138]. If the latter agrees with the SM
within large uncertainties, the precise Belle measurement of the integrated FD∗

L yields a relatively high
value compared to the SM prediction, which appears difficult to accommodate with NP scenarios, as can
be seen in Refs. [139–144] that considered a wide set of NP benchmark points.

While neutral-current anomalies observed in a large set of channels and observables can be caused
by NP contributions competing with the SM ones generated at the loop level, charged-current anomalies
seen in two LFUV ratios require a much larger NP contribution able to compete with tree-level SM
processes. In this sense, the latter were much more unexpected and should be scrutinised in more detail,
in order to confirm their existence.

In this chapter, based upon Ref. [124], we pay close attention to the decay B → D∗ℓν governed by the
quark level transition b→ cℓν̄ with ℓ = τ and ℓ = e, µ, and more specifically to its angular distribution.
Depending on the NP hypotheses chosen, we will identify a set of symmetries for the massless (electron
and muon) and massive (tau) distributions that will lead us to find a set of dependencies or relations
among the angular coefficients of the distribution. A similar exercise was done in Refs. [28, 122, 125] for
the case of the decay mode B → K∗µ+µ−. Here we will follow closely the detailed work in Ref. [28] (in a
very similar way to the one described in Chapter 2) to use the symmetries of the distribution in order to
show that depending on the assumptions of the type of NP at work and the mass of the leptons, not all
angular coefficients are independent. These relations can be used in the case of the B → D∗ℓν decay as
a way of cross-checking the consistency of the measurements of angular observables1, but also to provide
hints on which kind of NP can be responsible for deviations with respect to the SM observed in these
observables.

These relations among the observables, based on the symmetries of the angular distribution, lead to
a new way of measuring FD∗

L for B → D∗τν, relying on different coefficients of the distribution compared
to the direct measurement performed by the Belle experiment. This can provide a different handle for
experimentalists to cross-check the polarisation fraction and confirm or not its unexpectedly high value.
Such an alternative extraction of the longitudinal D∗ polarisation can also be useful if instabilities occur
when extracting the p.d.f. of angular observables due to values of FD∗

L beyond physical boundaries for

1An alternative approach is illustrated in Ref. [145] in the case of B → ρ(a1)ℓν semileptonic decays where the
study of specific NP operators extending the SM effective hamiltonian and the large-energy limit of form factors
allows one to disentangle the role of the possible new structures in the differential 4-body distribution.
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instance2. We will provide general expressions for the relations among observables but we will focus
mainly on a baseline case without tensor contributions3 (for the benchmark points analyzed in Ref. [141],
the presence of tensor operators decreases the value of FD∗

L for B → D∗τν substantially, increasing
the discrepancy with the measured value). On the other hand, we will consider the contribution of the
pseudoscalar operator that can help to increase FD∗

L and bring it closer to the Belle measurement, as
found in Ref. [141]. We will also discuss the simplified case where there are no large NP phases in the
Wilson coefficients, i.e. we assume the coefficients are real or the NP phases are small.

This chapter is structured as follows. First, in Section 3.1 we recall the structure of the angular
distribution and define the most relevant observables following Ref. [141]. In Section 3.2 we describe
the formalism and explain how to count the number of symmetries and dependencies for each particular
case and we work out the dependencies in the massless and massive cases, paying special attention to
the presence of pseudoscalar operators. In Section 3.3 these dependencies are used to determine FD∗

L (or
equivalently FD∗

T ) in terms of the other observables in various ways and we discuss the impact of binning
when using these relations. In Section 3.4 we discuss a possible signature of the presence of light right-
handed neutrinos in the absence of tensors and imaginary contributions using the different determinations
of FD∗

L , and in Section 3.5 the expected experimental sensitivity of forthcoming experiments is discussed.
We summarize our conclusions in Section 3.6. In Appendix D.1 some details on the derivation of the
exact massive dependencies are provided. Finally, illustrations of the binning effects for the relations
discussed in this chapter are given in Appendix D.2.

3.1 B̄ → D∗ℓν̄ angular distribution

3.1.1 Effective Hamiltonian and angular observables
The angular distribution for B → D∗ℓν has been extensively studied in the literature [148–154]. We will
base our studies on the approach described in Ref. [141]. Assuming that there are no light right-handed
neutrinos, the distribution can be computed using the effective Hamiltonian:

Heff =
√
2GFVcb

[
(1 + gV )(c̄γµb)(ℓ̄Lγ

µνL) + (−1 + gA)(c̄γµγ5b)(ℓ̄Lγ
µνL)

+ gS(c̄b)(ℓ̄RνL) + gP (c̄γ5b)(ℓ̄RνL) (3.1)

+ gT (c̄σµνb)(ℓ̄Rσ
µννL) + gT5(c̄σµνγ5b)(ℓ̄Rσ

µννL)
]
+ h.c.

As it can be seen, we do not include right-handed neutrinos at this stage, which will be discussed
later on. One may also use the equivalent notation of Refs. [139, 140] (for instance)

Heff = 4
GF√
2
Vcb
[
(1 + gVL

)(c̄LγµbL)(ℓ̄Lγ
µνL) + gVR

(c̄RγµbR)(ℓ̄Lγ
µνL)

+ gSL
(c̄RbL)(ℓ̄RνL) + gSR

(c̄LbR)(ℓ̄RνL) + gTL
(c̄RσµνbL)(ℓ̄Rσ

µννL)
]
+ h.c. (3.2)

with the corresponding effective coefficients

gV,A = gVR
± gVL

, gS, P = gSR
± gSL

, gT = −gT5 = gTL
. (3.3)

The resulting angular distribution is

2This kind of problem was already found in the analysis of the angular distribution of B → K∗µ+µ− by CMS:
the fit to data [146] used to extract P1, P ′

5 and FL altogether from the data exhibited instabilities that forced the
authors of Ref. [146] to include additional information on FL rather than leave it free in the fit.

3See Ref. [147] for the impact of tensor operators on RD∗ and other observables.
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d4Γ

dq2d cos θDd cos θℓdχ
=

9

32π

{
I1c cos

2 θD + I1s sin
2 θD +

[
I2c cos

2 θD + I2s sin
2 θD

]
cos 2θℓ

+
[
I6c cos

2 θD + I6s sin
2 θD

]
cos θℓ +

[
I3 cos 2χ+ I9 sin 2χ

]
sin2 θℓ sin

2 θD (3.4)

+
[
I4 cosχ+ I8 sinχ

]
sin 2θℓ sin 2θD +

[
I5 cosχ+ I7 sinχ

]
sin θℓ sin 2θD

}
,

where the angular coefficients Ii ≡ Ii(q2) are given in Ref. [141]:

I1c = 2N

[
|H̃−0 |2 +

m2
ℓ

q2
|H̃+

0 |2 + 2
m2

ℓ

q2
|H̃t|2

]
, (3.5)

I1s =
N

2

[
3
(
|H̃−+ |2 + |H̃−− |2

)
+
m2

ℓ

q2
(
|H̃+

+ |2 + |H̃+
− |2
)]
, (3.6)

I2c = 2N

[
−|H̃−0 |2 +

m2
ℓ

q2
|H̃+

0 |2
]
, (3.7)

I2s =
N

2

[
|H̃−+ |2 + |H̃−− |2 −

m2
ℓ

q2
(
|H̃+

+ |2 + |H̃+
− |2
)]
, (3.8)

I3 = −2N Re

[
H̃−+ H̃

−∗
− −

m2
ℓ

q2
H̃+

+ H̃
+∗
−

]
(3.9)

I4 = N Re

[
(H̃−+ + H̃−− )H̃

−∗
0 − m2

ℓ

q2
(H̃+

+ + H̃+
− )H̃

+∗
0

]
(3.10)

I5 = 2N Re

[
(H̃−+ − H̃−− )H̃−∗0 − m2

ℓ

q2
(H̃+

+ + H̃+
− )H̃

∗
t

]
, (3.11)

I6c = 8N
m2

ℓ

q2
Re
[
H̃+

0 H̃
∗
t

]
, (3.12)

I6s = 2N
(
|H̃−+ |2 − |H̃−− |2

)
, (3.13)

I7 = 2N Im

[
(H̃−+ + H̃−− )H̃

−∗
0 − m2

ℓ

q2
(H̃+

+ − H̃+
− )H̃

∗
t

]
, (3.14)

I8 = N Im

[
(H̃−+ − H̃−− )H̃−∗0 − m2

ℓ

q2
(H̃+

+ − H̃+
− )H̃

+∗
0

]
(3.15)

I9 = −2N Im

[
H̃−+ H̃

−∗
− −

m2
ℓ

q2
H̃+

+ H̃
+∗
−

]
, (3.16)

where N is a normalization

N = BD∗→Dπ
G2

F |Vcb|2
48(2π)3m3

B

q2λ
1/2
BD∗(q

2)

(
1− m2

ℓ

q2

)2

, (3.17)

with λBD∗(q2) = m4
B +m4

D∗ + q4 − 2(m2
Bm

2
D∗ +m2

Bq
2 +m2

D∗q2) and the amplitudes H̃ correspond to
linear combinations of transversity amplitudes for various currents. We can write them in the following
way to make the dependence on mℓ explicit:

H̃+
i = Hi − 2

√
q2

mℓ
HT,i H̃−i = Hi − 2

mℓ√
q2
HT,i H̃t =

√
q2

mℓ
H̃P (3.18)

where i = 0,+,− and Hi correspond to vector and axial currents whereas HT,i correspond to tensor
currents, and H̃P combines two amplitudes Ht and HP :

H̃P =
mℓ√
q2
Ht +HP (3.19)

The Hi amplitudes depend on form factors and on q2, but not on the lepton mass. In particular,
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the presence of 1/mℓ in H̃+
i means that the discussion of the limit mℓ → 0 should be considered after

expressing all the angular coefficients in terms of Hi.

3.1.2 Observables
Contrary to B → K∗ℓ+ℓ− [11, 12], in the B → D∗ transition any ratio of angular observables is appro-
priate to reduce uncertainties from form factors. We thus take almost the same list as Ref. [141] for the
12 observables that form a basis4:

Oi =
{
A0, A3, A4, A5, A6s, A7, A8, A9, AFB, RA,B , F

D∗

L , dΓ/dq2
}

(3.20)

Compared to Ref. [141], we do not include the observable Aλℓ
in this list because it is related to

the τ polarisation and requires one coefficient not included in the angular distribution. Instead we must
introduce an additional observable (not included in Ref. [141]) so that the numbers of angular coefficients
and observables match. We may choose for instance:

A0 =
1

dΓ/dq2
(I1c + I1s) (3.21)

We recall here the definition of the observables defined in Ref. [141] that will play an important role in
this chapter:

• The differential decay rate
dΓ

dq2
=

1

4
(3I1c + 6I1s − I2c − 2I2s) (3.22)

• The longitudinal and transverse D∗ polarisation decay rates:

FD∗

L =
dΓL/dq

2

dΓ/dq2
=

1

dΓ/dq2
1

4
(3I1c − I2c) (3.23)

FD∗

T = 1− FD∗

L =
dΓT /dq

2

dΓ/dq2
=

1

dΓ/dq2
1

2
(3I1s − I2s) (3.24)

In order to make a more explicit contact with the integrated longitudinal polarisation we also
introduce F̃D∗

L = (dΓL/dq
2)/Γ and F̃D∗

T = (dΓT /dq
2)/Γ, where Γ = Γ(B → D∗ℓν) with ℓ = τ, µ, e.

• The ratio RA,B describing the relative weight of the various angular coefficients in the partial
differential decay rate with respect to θℓ, in analogy with the longitudinal polarisation fraction

RA,B(q
2) =

dΓA/dq
2

dΓB/dq2
=

1

2

(I1c + 2I1s − 3I2c − 6I2s)

(I1c + 2I1s + I2c + 2I2s)
(3.25)

Eqs. (3.22), (3.23) and (3.24) are the “standard definitions” of dΓ/dq2, FD∗

L and FD∗

T respectively, and
they are used to determine these observables with this particular functional dependence of the angular
coefficients I.

Similarly to the discussion in Ref. [157], the definition of observables integrated over a bin (or over the
whole phase space) requires some care. Experimentally, the measurement yields the integrated angular
coefficients ⟨Ik⟩ℓ with the definition5

⟨X⟩ℓ =
∫ (mB−mD∗ )2

m2
ℓ

dq2X (3.26)

where the subscripts ℓ and 0 indicate the massive case (with mℓ) and the massless case respectively. We
can then define the “standard” integrated longitudinal and transverse polarisations

4Further discussions of this differential decay rate can be found in Ref. [155] including CP-violating observables
and in Ref. [156] when D∗ subsequently decays either to Dπ or to Dγ.

5Notice that the definition of ⟨Ii⟩ in Ref. [141] is normalized with Γ(B → D∗ℓν), while we prefer to keep the
dependence on Γ(B → D∗ℓν) explicit.
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⟨F̃D∗

L ⟩ℓ =
1

4Γ
(3⟨I1c⟩ℓ − ⟨I2c⟩ℓ) (3.27)

⟨F̃D∗

T ⟩ℓ =
1

2Γ
(3⟨I1s⟩ℓ − ⟨I2s⟩ℓ) (3.28)

The Belle measurement is actually ⟨F̃D∗

L ⟩Belle
τ = 0.60± 0.09.

3.1.3 Global fits
At this stage, a brief overview of our current understanding of the possible NP contributions is use-
ful. Global fits to b → cτν favour overwhelmingly a NP contribution through a real gVL

for b → cτν,
as it allows one to modify the tauonic branching ratios involved in RD and RD∗ by the same amount
without altering the angular observables, in agreement with the current data (apart from FD∗

L already
discussed) [139–141]. For real contributions, scenarios based purely on scalar and pseudoscalar contri-
butions exhibit some tension with the Bc lifetime, depending on the relative size of the contribution
allowed for Bc → τν in the total lifetime, which requires the pseudoscalar contribution to be somewhat
small [158–160]. Similarly, real tensor contributions are disfavoured, as they tend to decrease the longitu-
dinal polarisation of the D∗ meson compared to the SM [141], when the first measurement from the Belle
experiment indicated a value higher than SM expectations [136]. If gVL

is allowed as well as contributions
of other operators, the former is dominant and the other operators (scalar, pseudoscalar, tensors) are
subleading. Other constraints on b→ cτν come from direct searches at LHC involving mono-τ jets [161].
The corresponding bounds are again much tighter on tensor operators than on vector or scalar operators.

Some of these scenarios allow large imaginary parts [139–141], with a similar hierarchy of scenarios
as in the real case. However, one must take into account that such large imaginary parts are allowed due
to the limited number of observables. Additional observables could bring a dramatic modification of the
landscape of the allowed scenarios, restricting the possible size of imaginary parts and the applicability
of scenarios currently viable severely. Indeed some of the NP scenarios favour large imaginary parts so
that there are no interferences between the SM and NP contributions, which add up in quadrature only
(see for instance the scenario of a purely imaginary gSL

discussed in Ref. [162]). Restricting the size of
these imaginary parts would enhance the interferences between SM and NP parts and would restrict the
viability of the NP models where these interferences are negative.

This trend is confirmed by model-dependent analyses. Most of the models with a single-particle
exchange aiming at reproducing the data in b→ cℓν do not generate tensor contributions, apart from the
scalar SU(2)L-doublet leptoquark R2 (as illustrated, for instance, in Ref. [163]) which however generates
much larger contributions to gSL

(i.e. gS and gP ) than to gTL
(i.e. gT and gT5). This effect is enhanced

by the running from the NP scale (1 TeV) down to the mb scale (reducing the tensor contribution by
∼ 20% and increasing the scalar contribution by ∼ 80%), so that scalar contributions are likely to be
larger than the tensor contributions if the latter are present [139]. In Ref. [139, 140], a model with a
single R2 leptoquark with complex couplings was shown to have a lower SM-pull than other NP scenarios
once the constraint from the Bc lifetime was taken into account. In Ref. [162], a viable model with the R2

leptoquark was proposed in combination with the S1 leptoquark, leading to (large real) vector couplings
as well as (large imaginary) scalar and (smaller imaginary) tensor couplings.

We will thus consider as a baseline scenario that tensor contributions are subleading compared to
other operators. We will also consider that the imaginary parts of the amplitudes can be neglected.
In the SM as well as in the case of real NP, the only phase comes from the CKM matrix element,
and it is actually the same for all the amplitudes. Under our baseline scenario, for instance, the angular
coefficients corresponding to imaginary parts (I7,8,9) are either small or vanishing, as well as any imaginary
contribution. For completeness we will provide full expressions for the relations among the coefficients
including these terms (see Appendix D.1 for the general expressions in the massive case).
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mℓ Tensor ops. Pseudoscalar op. Coefficients Dependencies Amplitudes Symmetries
0 No No 11 6 3 1
0 No Yes 11 5 4 2
0 Yes No 11 0 6 1
0 Yes Yes 12 0 7 2
̸= 0 No No 12 5 4 1
̸= 0 No Yes 12 5 4 1
̸= 0 Yes No 12 0 7 2
̸= 0 Yes Yes 12 0 7 2

Table 3.1: Symmetries and dependencies among the B → D∗ℓν angular observables depending on the
mass of the lepton and the contribution of tensor and pseudoscalar operators.

3.2 Relations among angular coefficients

3.2.1 Symmetries and dependencies
The decay B → D∗ℓν has a rich angular structure, and it is interesting to investigate whether all
the angular observables defined in the previous section are independent, following the same steps as in
Refs. [11, 28, 122, 125] for B → K∗ℓ+ℓ−6. We can consider the angular coefficients as being bilinears in

A⃗ =
(
Re(H0), Im(H0),Re(H+), Im(H+),Re(H−), Im(H−),

Re(HT,0), Im(HT,0),Re(HT,+), Im(HT,+),Re(HT,−), Im(HT,−),Re(H̃P ), Im(H̃P )
)

(3.29)

Recalling the discussion in Section 2.2, an infinitesimal transformation will be given by

A⃗′ = A⃗+ δ⃗ (3.30)

For the infinitesimal transformation to leave the coefficients I unchanged, the vector δ⃗ has to be perpen-
dicular to the hyperplane spanned by the set of gradient vectors ∇⃗Ii (with the derivatives taken with
respect to the various elements of A⃗). If the Ii are all independent, the gradient vectors should span the
whole space available for the coefficients, i.e. the dimension of the space for the gradient vectors should
be identical to the number of angular coefficients.

One can define:

• The number of coefficients nc, given directly by the angular distribution

• The number of dependencies nd, given by the difference between the number of angular coefficients
Ii and the dimension of the space given by the gradient vectors (provided by the rank of the matrix
Mij = ∇iIj)

• The number of helicity/transversity amplitudes nA, leading to 2nA real degrees of freedom

• The number of continuous symmetries ns explaining the degeneracies among angular coefficients

One has the following relation

nc − nd = 2nA − ns (3.31)

which we can investigate in various cases for B → D∗ℓν summarised in Table 3.1.
As discussed above, the assumption of no tensor contributions seems favoured by the current global

fits and we will stick to this assumption. In this case it is expected according to Table 3.1 the existence
of 5 or 6 relations. The presence or absence of the pseudoscalar operator does not modify the outcome
of the analysis and the number of dependencies in the massive case due to Eq. (3.19). However, we

6See also Section 2.2 in Chapter 2 of this thesis for a review on the strategy to determine the number of
independent coefficients and existing symmetries in the case of B → K∗ℓ+ℓ−.
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find interesting to discuss its effect separately as it was found in Ref. [141] that such a pseudoscalar
contribution can help to alleviate the tension in FD∗

L for B → D∗τν.
We can now explore the dependence relations between angular coefficients, depending on the lepton

mass, the presence of pseudoscalar and tensor operators. These relations can be used as a consistency
test among the observables if all of these observables are measured in order to check the very general
assumptions made to derive them. If these relations are not fulfilled, it means that there is an issue with
one or more of the measurements or some of the underlying assumptions (negligible NP in tensor operator,
negligible imaginary parts) are not correct. Such tests are completely independent on the details of the
NP model or the hadronic inputs.

3.2.2 Massless case with no pseudoscalar operator and no tensor operators
The expressions for the angular observables become in terms of the amplitudes themselves

I1c = 2N × |H0|2 (3.32)

I1s =
N

2
× 3

[
|H+|2 + |H−|2

]
(3.33)

I2c = 2N × (−1)|H0|2 (3.34)

I2s =
N

2

[
|H+|2 + |H−|2

]
(3.35)

I3 = −2N × Re[H+H
∗
−] (3.36)

I4 = N
[
Re[H0H

∗
+ +Re[H0H

∗
−]
]

(3.37)

I5 = 2N
[
Re[H0H

∗
+ − Re[H0H

∗
−]
]

(3.38)
I6c = 0 (3.39)
I6s = 2N

[
|H+|2 − |H−|2

]
(3.40)

I7 = 2N
[
−Im[H0H

∗
+]− Im[H0H

∗
−]
]

(3.41)

I8 = N
[
−Im[H0H

∗
+] + Im[H0H

∗
−]
]

(3.42)
I9 = −2N × Im[H+H

∗
−] (3.43)

In this case, the only continuous symmetry that can be found is simply

H0 → eiαH0 , H− → eiαH− , H+ → eiαH+ (3.44)

and only 5 of the 11 observables7 are independent and 6 dependencies are found. Consequently, one can
invert the system to determine the value of the real and imaginary parts of the amplitudes in terms of
some of the angular coefficients, and re-express the other ones in terms of the same angular coefficients
leading to the following relations:

I1c = −I2c (3.45)
I1s = 3I2s (3.46)

−4I3I2c = −4I24 + I25 − I27 + 4I28 (3.47)
−2I9I2c = I5I7 − 4I4I8 (3.48)

−4I2c
(
1

2
I6s +

2

3
I1s

)
= (2I4 + I5)

2 + (I7 + 2I8)
2 (3.49)

−4I2c
(
−1

2
I6s +

2

3
I1s

)
= (−2I4 + I5)

2 + (I7 − 2I8)
2 (3.50)

These relations can be used as a consistency test among the observables if all of these observables are
measured, under the hypothesis that we have outlined (negligible lepton mass, negligible pseudoscalar
and tensor operators).

Another way of exploiting these equations consists in combining the non-trivial relations Eqs. (3.47)-
(3.50) under the assumption that I7,8,9 = 0 (taking all imaginary parts to be zero). For future use under

7Notice that there are 11 coefficients in this case: I6c = 0 and consequently there are 11 observables since AFB

and A6s are proportional.



68 Chapter 3. Symmetries in B → D∗ℓν angular observables

this assumption we reorganise these equations, allowing us to make contact with the massive ones later
on:

I23 =
4

9
I21s −

1

4
I26s (3.51)

I24 = −1

3
I1sI2c +

1

2
I2cI3 (3.52)

I25 = −2

3
I2c(2I1s + 3I3) (3.53)

One of the dependencies disappears once I7,8,9 = 0 is taken.

3.2.3 Massless case with pseudoscalar operator but no tensor operators
The same relations between angular observables and amplitudes hold as in the previous case, apart from

I1c = 2N
[
|H0|2 + 2|HP |2

]
(3.54)

One can see that the two symmetries are

H0 → eiαH0 , H− → eiαH− , H+ → eiαH+ , HP → eiβHP , (3.55)

Again, by inverting the system one can obtain the same relations as in the massless case without
pseudoscalar contributions, see Eqs. (3.46)-(3.50), except for Eq. (3.45) which is not fulfilled.

Like in the previous case, these relations can be used as a consistency test among the observables
if all of these observables are measured, under the hypothesis that we have outlined (negligible lepton
mass, negligible tensor operators).

3.2.4 Massive case with pseudoscalar operator but no tensor operators
The symmetries in the massive case with pseudoscalar operator but no tensors are in principle a simple
extension of the analogous massless case. However, obtaining the expression of the dependencies in the
massive case is a rather non-trivial task. The absence of tensors implies that there is no distinction
between “+” and “-” components of H̃+

i and H̃−i (see Eq. (3.18)) and the only surviving symmetry in this
case is

H0 → eiαH0 , H− → eiαH− , H+ → eiαH+ , Ht → eiαHt , HP → eiαHP (3.56)

One finds five dependencies in this case, which are identified by solving the system of non-linear equations.
The first one is trivial:

0 = I1s

(
1− m2

ℓ

q2

)
− I2s

(
3 +

m2
ℓ

q2

)
(3.57)

and the other exact four non-trivial dependencies are detailed in Appendix D.1.
We will consider the simplifying case where all Wilson coefficients are real so that I7,8,9 and all imag-

inary contributions can be neglected (see Appendix D.1 for the general case without these assumptions).
The remaining four dependencies are then simplified substantially

I23 =

(
1− m2

ℓ

q2

)2
[(

2I1s
3 +m2

ℓ/q
2

)2

− I26s
4

]
(3.58)

I24 =
I2c(2I1s(m

2
ℓ − q2) + I3(m

2
ℓ + 3q2))

2(m2
ℓ + 3q2)

(3.59)

I25 =
[
−4I2cI6cI6s(m2

ℓ − q2)2(m2
ℓ + 3q2) + I26c(m

2
ℓ − q2)2

[
2I1s(m

2
ℓ − q2) + I3(m

2
ℓ + 3q2)

]
−16I22cq4

[
2I1s(−m2

ℓ + q2) + I3(m
2
ℓ + 3q2)

]]
/
[
8I2c(m

2
ℓ − q2)2(m2

ℓ + 3q2)
]

(3.60)

I26c = −8m2
ℓ

[
I1cI2c(−m2

ℓ + q2) + I22c(m
2
ℓ + q2)

]
/
[
(m2

ℓ − q2)2
]

(3.61)
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The first three equations above are the generalisation of Eqs. (3.51)-(3.53) in the massive case while the
last equation is new: it would vanish in the massless limit with no tensors. These relations can be used
as a consistency test among the observables if all of these observables are measured, under the hypothesis
that we have outlined (no tensor operators, imaginary contributions negligible).

The last two equations can be combined to get rid of the I26c term and obtain the massive counterpart
of Eq. (3.53):

I25 =
[
4(m2

ℓ − q2)2I1s(m2
ℓ(I1c − I2c)− 2q2I2c) + 2(m2

ℓ + 3q2)(m4
ℓ(I1c − I2c)− 2q4I2c

−m2
ℓq

2(I1c + I2c))I3 − (m2
ℓ − q2)2(m2

ℓ + 3q2)I6cI6s
]
/
[
2(m2

ℓ − q2)2 (m2
ℓ + 3q2)

]
(3.62)

Eq. (3.61) has obviously no counterpart in the massless case, as it vanishes then8.

3.2.5 Cases with tensor operators
In the massive case with tensors the degeneracy between the H̃+

i and H̃−i is broken and two symmetries
are identified. The symmetries are better described in terms of the tilde-fields:

H̃−i → eiαH̃−i , H̃+
i → eiβH̃+

i , H̃t → eiβH̃t . (3.63)

Unfortunately there are no dependencies in this case. The same is true in the massless case.

3.3 Expressions of the D∗ polarisation
In the previous section, we have obtained several relationships between the angular coefficients under
various hypotheses, assuming that tensor contributions are negligible. We can use these relations in
order to obtain alternative determinations of the longitudinal polarisation FD∗

L . From Section 3.3.2
to Section 3.3.4, we will provide these exact relationships in their binned form, but the corresponding
unbinned versions have exactly the same form.

3.3.1 Massless case without pseudoscalar operator
For completeness we discuss the case with zero mass and no pseudoscalar operator, but still including all
imaginary terms. Eqs. (3.45)-(3.46) are trivial. Eqs. (3.47)-(3.50) can be rewritten in terms of observables
providing different determinations of FD∗

L :

πA3F
D∗

L =
2

9
(A2

5 −A2
7)−

1

8
π2(A2

4 −A2
8) (3.64)

πA9F
D∗

L =
4

9
A5A7 +

1

4
π2A4A8 (3.65)

(FD∗

L )2 =

[
8

9
(A2

5 +A2
7) +

1

2
π2
(
A2

4 +A2
8

)]
RA,B (3.66)

AFBF
D∗

L = π (A4A5 −A7A8) (3.67)

We recall that Ai are defined from the angular observables up to a numerical normalization given in
Ref. [141]. A similar set of expressions can be written for F̃D∗

L , Ãi and ÃFB rather than FD∗

L , Ai

and AFB , respectively, by substituting the normalization in terms of dΓ/dq2 by the integrated decay
rate Γ. These expressions can then be binned trivially, however they are rather cumbersome to use.
In the following two subsections we will restrict to the case of removing any imaginary contribution
corresponding to our baseline scenario that will be relevant to the extraction of FD∗

L .

8In the massive case, this relation provides access to a sum of two related observables A6s and AFB :

2⟨A6s⟩ℓ + 9⟨AFB⟩ℓ =
27

2
√
2

1

Γ
mℓ

〈
1

q2 −m2
ℓ

√
I1cI2c(m2

ℓ − q2)− I22c(m
2
ℓ + q2)

〉
ℓ
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3.3.2 Massless case without imaginary contributions
Using Eqs. (3.46) and (3.51) we obtain one of the most relevant results of this chapter:

⟨F̃D∗

T ⟩0 =
1

Γ

〈
2

√
I23 +

1

4
I26s

〉
0

where ⟨F̃D∗

T ⟩0 = 1− ⟨F̃D∗

L ⟩0 (3.68)

This expression can be used as an alternative way to determine the integrated FD∗

L in the massless
case (without imaginary contributions but allowing for the presence of pseudoscalars) from experiment
instead of the traditional determination in terms of I1s and I2s in Eq. (3.27) and Eq. (3.28).

This expression can be generalised to the case of smaller bins spanning only part of the whole kinematic
range, leading to

⟨F̃D∗

T ⟩i0 =
1

Γ

〈
2

√
I23 +

1

4
I26s

〉i
0

(3.69)

where i means that the integral in Eq. (3.26) is taken over the bin i with a narrower [q2i,min, q
2
i,max] range9.

If we restrict further to the case without pseudoscalars (in this case I1c = −I2c is fulfilled), we obtain
further expressions using Eqs. (3.52) and (3.53):

⟨F̃D∗

L ⟩0 =
1

Γ

〈I25 − 4I24
4I3

〉
0

(3.70)

=
1

Γ

〈
RA,B

(
I3 +

√
4
I24

RA,B
+ I23

)〉
0
=

1

Γ

〈
RA,B

(
−I3 +

√
I25

RA,B
+ I23

)〉
0

(3.71)

where RA,B is positive and non-vanishing by construction.

3.3.3 Massive case with pseudoscalar operator but without imaginary con-
tributions

In this case, we focus on Eqs. (3.57), (3.58) and (3.59) to derive new descriptions of FD∗

L since Eq. (3.60)
is too involved to provide a useful alternative approach to FD∗

L . Eqs. (3.57) and (3.58) yield:

⟨F̃D∗

T ⟩ℓ =
1

Γ

〈√
(AI3)

2
+

1

4
(B I6s)

2
〉
ℓ

where ⟨F̃D∗

T ⟩ℓ = 1− ⟨F̃D∗

L ⟩ℓ (3.72)

where we define the auxiliary kinematic quantities (whose value in the massless case is two)

A =
m2

ℓ + 2q2

q2 −m2
ℓ

B = 2 +
m2

ℓ

q2
(3.73)

One can write an equivalent equation to Eq. (3.72) for narrower q2 bins similary to the previous section.
In the case of Eq. (3.59) we do not substitute I2c, leading to:

⟨F̃D∗

T ⟩ℓ = 1− ⟨F̃D∗

L ⟩ℓ =
1

Γ

〈
A

(
I3 − 2

I4
2

I2c

)〉
ℓ

(3.74)

Relating this equation with the massless case is not straightforward given that in the massless case I2c
was substituted (before integrating) in terms of FD∗

L and RA,B .

9Notice that ⟨F̃D∗
L ⟩0 + ⟨F̃D∗

T ⟩0 = 1 holds because the integration is performed over the whole kinematic range.
For the observables ⟨F̃D∗

L ⟩i0 and ⟨F̃D∗
T ⟩i0 shown in Figs. 3.1-3.3 and also in Figs. D.1-D.6, this is no longer the

case due to the normalization of F̃D∗
L and F̃D∗

T : ⟨F̃D∗
L ⟩i0 + ⟨F̃D∗

T ⟩i0 = ⟨dΓ/dq2⟩i0/Γ < 1. It is trivial to check
that a different normalization for F̃D∗

L and F̃D∗
T would only affect the normalization 1/Γ appearing in the binned

expressions.
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3.3.4 Cases with pseudoscalar operator and imaginary contributions
This corresponds to the most complete expression allowing for the presence of pseudoscalars and also
imaginary parts, but no tensors. This can be achieved, as in the previous section, by using I1s and I2s
instead of I1c and I2c as a starting point. The corresponding expression in the massless case is:

⟨F̃D∗

T ⟩0 =
1

Γ

〈
2

√
I23 + I29 +

1

4
I26s

〉
0

where ⟨F̃D∗

T ⟩0 = 1− ⟨F̃D∗

L ⟩0 (3.75)

and in the massive case

⟨F̃D∗

T ⟩ℓ =
1

Γ

〈√
(AI3)

2
+ (AI9)

2
+

1

4
(B I6s)

2
〉
ℓ

where ⟨F̃D∗

T ⟩ℓ = 1− ⟨F̃D∗

L ⟩ℓ (3.76)

Similar expressions can be written for ⟨F̃D∗

T ⟩iℓ defined for narrower q2 bins. These expressions rep-
resent the most general alternative ways to determine the massless and massive polarisation fractions.
Compared to the previous case, one can see that the presence of imaginary contributions comes simply
from the additional I9 term in Eqs. (3.75) and (3.76), see also Eq. (D.10) in Appendix D.1.

Within this more general framework, Eqs. (3.57) and (D.10) yield the following simple relation among
the observables defined in Section 3.1.2:

⟨x1(F̃D∗

T )2⟩ℓ = ⟨x2
(
Ã2

3 + Ã2
9

)
+ x3

(
Ã6s

)2
⟩ℓ (3.77)

where Ãi stands for the observables Ai normalized to Γ rather than dΓ/dq2, x1 = (m2
ℓ − q2)2, x2 =

4π2(m2
ℓ +2q2)2 and x3 = 4x1x2/(729π

2q4) (A9 vanishes in the absence of large imaginary contributions).
This relation implies that the large (small) value of FD∗

L (FD∗

T ) requires a corresponding suppression in
A2

3+A
2
9, in A6s or both. For this reason it would be particularly interesting to have available predictions in

specific models for this couple of observables in case that the unexpectedly large value of this polarisation
fraction remains.

3.3.5 Binning
We have obtained these alternative expressions for ⟨F̃D∗

L ⟩ℓ (or ⟨F̃D∗

T ⟩ℓ) assuming that there are no tensors
and (in some cases) no large imaginary contributions at short distances. From now on we introduce the
notation ⟨F̃D∗ alt

T ⟩ℓ (or ⟨F̃D∗ alt
L ⟩ℓ) to refer to Eq. (3.76) as the alternative way to extract FD∗

T (or FD∗

L ). In
the absence of imaginary contributions we will use the notation ⟨F̃D∗ alt

T ⟩I9=0
ℓ corresponding to Eq. (3.72).

In the massless case we denote ⟨F̃D∗ alt
T ⟩0 for Eq. (3.75) and ⟨F̃D∗ alt

T ⟩I9=0
0 for Eq. (3.68).

Experimentally we have to consider binned versions of these expressions, which are nonlinear functions
of the angular coefficients. Since the binned angular coefficients are the only quantities measured, we
should be careful that f(⟨Ik⟩ℓ) ̸= ⟨f(Ik)⟩ℓ when f is non-linear. From an experimental perspective there
are two ways to proceed: i) measure the coefficients I3 and I6s of the massless or massive distribution in
very small bins in order to reconstruct a q2 dependence of these functions, so that we can perform the
integration in Eq. (3.68) for the massless case or in Eq. (3.72) in the massive case (or their counterparts
including imaginary parts Eq. (3.75) and Eq. (3.76)); ii) use an unbinned measurement method (as was
done for B → K∗µ+µ− [164]) to determine the q2 dependence of the coefficients and introduce the
obtained expressions inside Eq. (3.68) or Eq. (3.72) as explained above.

Both approaches are however difficult to implement when statistics are low, and one has to choose
between the extraction of the whole angular distribution and the study of the q2 dependence of simpler
observables like the decay rate. Currently, the measurements are integrated over the whole kinematic
range, which constitutes a single bin for the analysis.

By comparing with our exact results, we will thus investigate the accuracy of the approximation
f(⟨Ik⟩ℓ) = ⟨f(Ik)⟩ℓ, which requires the following transformation on the unbinned expressions:

dΓX/dq
2 → ⟨dΓX/dq

2⟩ Ii → ⟨Ii⟩ wIi → ⟨wIi⟩ wI2i → ⟨
√
|w|Ii⟩2 (3.78)

where w stands for any positive weight depending on m and q2. This leads to the following “approximate
formulae” in the massless case, starting from Eq. (3.75):
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⟨F̃D∗ alt
T ⟩0 ≃

1

Γ
2

√
⟨I3⟩20 + ⟨I9⟩20 +

1

4
⟨I6s⟩20 (3.79)

and in the massive case, starting from Eq. (3.76):

⟨F̃D∗ alt
T ⟩ℓ ≃

1

Γ

√
⟨AI3⟩2ℓ + ⟨AI9⟩2ℓ +

1

4
⟨B I6s⟩2ℓ (3.80)

In the massive case, one should measure the Ii and multiply each event by a numerical factor A for I3,
I9 and B for I6s.

Similarly, in the absence of imaginary parts, we obtain the approximate binned expression, starting
from Eq. (3.72):

⟨F̃D∗ alt
T ⟩I9=0

ℓ ≃ 1

Γ

√
⟨AI3⟩2ℓ +

1

4
⟨B I6s⟩2ℓ (3.81)

and the approximate expression for ⟨F̃D∗

T ⟩ℓ starting from Eq. (3.74)

1

Γ

〈
A

(
I3 − 2

I4
2

I2c

)〉
ℓ
≃ 1

Γ

[
⟨AI3⟩ℓ − 2

⟨AI4⟩2ℓ
⟨AI2c⟩ℓ

]
(3.82)

All these expressions have a corresponding expression for ⟨F̃D∗

T ⟩iℓ for narrower bins where ⟨⟩ℓ is trans-
formed into ⟨⟩iℓ corresponding to the integration over the narrow bin i.

In order to get an idea of the accuracy of these approximate relations, we perform the following
numerical exercise. We consider a set of benchmark points corresponding to the best-fit-points of the 1D
and 2D NP hypotheses in Ref. [139, 140]. Among the 1D hypotheses, the most favoured one is assuming
NP in gVL

, followed by NP in gSR
. Specifically we will take for this numerical analysis as benchmark points

the best-fit-points of the following four different NP hypotheses (in each case, the remaining couplings
are set to zero):

(R1) : gVL
= 0.07 (3.83)

(R2) : gSR
= 0.09 (3.84)

(R3) : gSL
= 0.07 (3.85)

(R4) : gSL
= 4gT = −0.03 (3.86)

where the values are given at the scale µ = 1TeV, and we run them down to the scale µ = mb [139,
140, 165]. For 2D hypotheses, there is a wider range of relevant possibilities, and we select the following
ones10:

(R5) : (gVL
, gSL

= −4gT ) = (0.10,−0.04) (3.87)
(R6)− (R7) : (gSR

, gSL
) = (0.21,−0.15) or (−0.26,−0.61) (3.88)

(R8) : (gVL
, gSR

) = (0.08,−0.01) (3.89)
(C0)− (C0)∗ : gSL

= 4gT = −0.06± i 0.31 (3.90)

where once again we run these coefficients down to µ = mb.
In Ref. [141], a set of benchmark points is determined by considering the best-fit points of different

scenarios with one free complex parameter. The resulting 2D benchmark points (in each case, the
remaining couplings are set to zero) at the scale µ = mb are:

10Even though (C0) and (C0)∗ are formally different scenarios corresponding to opposite imaginary parts, they
yield the same results for our observables which are not sensitive to the sign of the imaginary part.
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(C1) : gVL
= 0.07− i0.16 (3.91)

(C2) : gVR
= −0.01− i0.39 (3.92)

(C3) : gSL
= 0.29− i0.67 (3.93)

(C4) : gSR
= 0.19 + i0.08 (3.94)

(C5) : gT = 0.11− i0.18 (3.95)

Using a different operator basis, alternative benchmark points are found to be11:

(C6) : gV = 0.20 + i0.19 (3.96)
(C7) : gA = 0.69 + i1.04 (3.97)
(C8) : gS = 0.17− i0.16 (3.98)
(C9) : gP = 0.58 + i0.21 (3.99)

In the following we will check the relations given in the previous sections against these benchmark
scenarios. We have used the binned approximation of the relations using 6 bins of equal length as shown
in Fig. 3.1. On the one hand, this allows us to test the quality of the binned approximation. On the
other hand, we can check the impact of the assumptions used in order to derive the various relations:
for instance, checking the expressions obtained for real NP contributions in Section 3.3.3 in the case of
the scenarios (C0) − (C9) with complex parameters provides an estimate of the impact of realistic NP
imaginary contributions on these expressions.

We need to choose a set of form factors to evaluate the hadronic contributions and to be able to
test how accurate the relations remain within the binned approximation discussed above, taking into
account possible unexpected NP contributions (imaginary parts, tensor contributions). Since our goal is
only to check the accuracy of this approximation for the various NP benchmark points it is enough to
work using a simplified setting. For this reason, we refrain from using form factors obtained by elaborate
combinations of heavy-quark effective theory [166–169] sum rules and lattice simulations [34, 139, 141,
170–177] and we stick to the simpler quark model in Ref. [178] without attempting to assign uncertainties
to these computations.

A sample of the results is shown in Figs. 3.1, 3.2 and 3.3 to illustrate the accuracy of the determina-
tions from Eqs. (3.80) (taking into account the contribution from imaginary parts) and (3.81) or (3.82)
(neglecting this contribution). Additional scenarios are considered in Appendix D.2. In order to be more
precise, the relative errors of the approximate binned expression for F̃D∗alt

T with respect to F̃D∗

T are given
in Tabs. D.1 and D.2. Let us add that the Ii are integrated with the kinematical weight A or B defined
in Eq. (3.73) for the evaluation of the massive expressions whenever needed. We obtain the following
results for the benchmark points considered:

• The binned approximation works very well in all cases when testing the relations in the case of
scenarios where they are expected to hold. Conversely, when one considers a NP scenario with
significant tensor contributions (like (C0) or (C5)), the expressions are off by ∼ 70% in the worst
cases. Only when the NP contribution to the tensor coefficients is very small (|gT | ≪ 1), the
expressions work quite well, for example ∼ 5% for (R4).

• When we consider NP scenarios for the τ lepton with complex values for the Wilson Coefficients
but without tensor contributions, i.e. (C1)−(C4) and (C6)−(C9), the expressions hold with errors
at the percent level. This occurs even when we consider the expressions meant for real coefficients
(Section 3.3.3). We stress again that this does not apply to scenarios with tensor contributions
such as (C0) and (C5).

• We also tested the massless expressions in the case of NP scenarios affecting light leptons at the
same level as the τ lepton. Such scenarios are ruled out by the current data, but they provide
a further check of the robustness of our expressions. In these cases, the expressions that do not
contain the angular coefficients containing imaginary parts of the amplitudes (I7,8,9) (Section 3.3.2)

11For completeness, we quote (C8) although this NP scenario has no impact on B → D∗ℓν and is thus equivalent
to the SM for our purposes.
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Figure 3.1: Illustration of the errors induced by binning on the relation in Eq. (3.80). The orange dashed
curve corresponds to the standard definition of F̃D∗

T , whereas the blue one corresponds to F̃D∗ alt
T . The

orange bins in this plot are obtained using the binning form of the “standard” expression for F̃D∗

T while
the blue ones are obtained using the approximate binned expression of F̃D∗ alt

T in Eq. (3.80). The plots
labelled SM correspond to the case mℓ = me and mℓ = mτ in the SM and the other plots correspond
to F̃D∗

T in B → D∗τν in different NP scenarios described in the text. The differences come from the
presence of tensor currents for (C0) or from binning effects for the SM case.

are off by ∼ 20% at worst. The agreement can be restored once we generalise the corresponding
expressions so that they include these angular coefficients (Section 3.3.4), where we find a perfect
agreement.

• In the first bin of most of the massless expressions, the relations are not completely fulfilled, with a
difference up to 10% due to binning effects enhanced at the endpoint of the massless distribution.

This study shows that the expressions derived above under the assumption of no imaginary NP
contributions and no tensor contributions in Sections 3.3.2 and 3.3.3 work very well even in the binned
approximation. They are very accurate even in the presence of imaginary NP contributions. Their simple
generalization including imaginary parts in Section 3.3.4 are as expected to be even more accurate also
in the binned approximation. Finally, all relations fail in the presence of large tensor contributions.

3.3.6 Decision Tree
We have proposed different ways of determining FD∗

L (or FD∗

T ) which can be compared to the usual
definition, based on the existing symmetries if additional assumptions are made about the nature of



3.3. Expressions of the D∗ polarisation 75

0 2 4 6 8 10

0.00

0.01

0.02

0.03

0.04

0.05

0.06

3 4 5 6 7 8 9 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

3 4 5 6 7 8 9 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

3 4 5 6 7 8 9 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

3 4 5 6 7 8 9 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Figure 3.2: Same as Fig. 3.1 for Eq. (3.82).
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Figure 3.3: Same as Fig. 3.1 for Eq. (3.81).



3.4. Impact of the presence of light right-handed neutrinos 77

NP (no tensors, real contributions). One may then wonder how to interpret the situation when the
determination of FD∗

T in a narrow bin in the case of the tau lepton yields different results from Eq. (3.72)
and from the traditional determination. While we have provided different possible determinations we
will focus on Eq. (3.72) because it includes pseudoscalar contributions and it is easily generalised in the
presence of phases, see Eq. (3.76). There are three possible conclusions:

1) Our first hypothesis is the absence (or negligible size) of tensors. In the presence of tensors, there are
no dependencies among the angular observables, and we cannot use Eq. (3.72) to determine FD∗

T .
This first possibility seems to be in disagreement with the study in [141] that shows that tensors
tend to substantially worsen the situation reducing even further the value of FD∗

L (or increasing
FD∗

T ). If needed, this question can be tested by probing the relationships shown in Section 3.2
among the angular coefficients.

2) The second hypothesis is the absence of large imaginary parts. In this case one can generalise the
expression Eq. (3.72) to the presence of imaginary parts to get Eq. (3.76), simply substituting:

(AI3)
2 → (AI3)

2
+ (AI9)

2 (3.100)

and similarly for the massless case. This simple substitution covers the presence of large phases
but of course at the cost of measuring also I9. Alternatively one can also measure I7,8,9 which are
sensitive to large imaginary parts and determine if they differ from zero in a significant way.

3) The third option is the presence of an experimental issue in the determination of FD∗

L in the tra-
ditional way for B → D∗τν. The alternative determination proposed here could help to determine
the problem to be fixed and whether this second determination is also in disagreement not only
with the SM but also with NP models.

3.4 Impact of the presence of light right-handed neutrinos
We turn now to the analysis of a case beyond the framework considered up to now, namely, the presence of
light right-handed neutrinos (RHN) entering the decay b→ cτ ν̄. The inclusion of light RHN was discussed
in Refs. [152, 179–188] as a way to obey all phenomenological constraints as well as cosmological and
astrophysical limits. Here we will follow closely the recent discussion in Ref. [188] and we will use the
results presented there to generalise our expressions.

If one neglects neutrino masses, the b → cτ ν̄ decay probability is given by an incoherent sum of the
contributions from left- and right-handed neutrinos. This introduces a substantial change in the structure
of the angular distribution, requiring a separate discussion.

The inclusion of RHN leads to a more general dimension-six effective Hamiltonian (see Ref. [188] for
the definitions of the operators):

Heff =
4GFVcb√

2

OV
LL +

A,B=L,R∑
X=S,V,T

CX
ABOX

AB

 (3.101)

The Wilson coefficients are defined in such a way that CXAB = 0 in the SM. Eq. (17) of Ref. [188] provides
a translation table between our helicity basis and the transversity basis used in that reference.

The inclusion of RHN requires us to consider left and right chiralities of the leptonic current, while the
hadronic current is not modified. Consequently the coefficients of the angular distribution get modified
(see Ref. [188]):

Ij → Ij(L)± Ij(R) (3.102)

where the relative sign depends on the angular observable considered, and Ij(L) and Ij(R) involve different
helicity amplitudes including CL and CR Wilson coefficients respectively. The total number of amplitudes
entering the distribution gets thus enlarged from 7 to 14 (two of the helicity amplitudes always come in
the same combination).

We can now discuss the impact of RHN on our previous discussion. Let us assume that there are
neither tensor nor imaginary contributions, but that RHN are indeed present. We can compare the
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two determinations of F̃D∗

T : the standard definition in Eq. (3.28) and the alternative determination in
Eq. (3.72). The following relation holds:

⟨(F̃D∗

T )
2 − (F̃D∗ alt, I9=0

T )
2⟩τ

⟨ ˜(BA6s)2⟩τ
=∆F ≡ 64

729

(CV
LR(1 + CV

LL)− CV
RLC

V
RR)

2

((1 + CV
LL)

2 − CV
LR

2 − CV
RL

2
+ CV

RR
2
)2

(3.103)

where Ã6s refers to the observable including left and right components defined by

⟨Ã6s⟩τ = −27

8

1

Γ
⟨I6s⟩τ (3.104)

In order that the previous expression becomes useful we have checked that Eq. (3.103) still holds in the
following binned form12:

(⟨F̃D∗

T ⟩τ )
2 − (⟨F̃D∗ alt

T ⟩I9=0
τ )

2

⟨ ˜BA6s⟩2τ
≃∆F (3.105)

Notice that given that ∆F is always positive, Eq. (3.105) implies that an experimental determination
using ⟨F̃D∗ alt

T ⟩I9=0
τ should always be found equal or smaller than the “standard” ⟨F̃D∗

T ⟩τ in absence of
tensors and imaginary contributions.

We derived this expression assuming the hypotheses above and using the fact that Eq. (3.57) is valid
in presence of RHN while Eq. (3.58) holds if the constraint

CV
LR(1 + CV

LL)− CV
RLC

V
RR = 0 (3.106)

is imposed. In other words, only if this constraint is fulfilled, ⟨F̃D∗ alt
T ⟩τ can be interpreted as the physical

transverse polarization fraction.
In Ref. [188] several interesting scenarios are identified which are able to fulfill the constraints from

BBc→τν̄ , RD,D∗ , FD∗

L and PD∗

τ :

1) The scenario with the highest pullSM corresponds to scenario 3 (Vµ) with NP only in CV
RR. Since

CV
LL = CV

LR = CV
RL = 0 in this scenario, Eq. (3.106) is fulfilled and ∆F = 0. However, in this

scenario the NP contributions to FD∗

L cancel exactly and the tension with the experimental value
is not relaxed.

2) A second interesting scenario is called 4b (Φb) in Ref. [188]. This scenario can be generated by a two
Higgs doublet model and it yields non-zero values for CS

X with X = LL,LR,RL,RR. Assuming
BBc→τν̄ < 30%, this scenario is able to relax the tensions of all observables including FD∗

L . Since
this scenario yields NP contributions only in CS

i it fulfills automatically the constraint, leading to
∆F = 0.

3) In scenario 1 of Ref. [188], there are two solutions with non-vanishing values for CV
LL,LR,RR as well

as CS
LR,RR and CT

RR. One of the two solutions has a tensor contribution compatible with zero
at 1σ. If we take this solution to remain under our initial hypothesis of the absence of tensor
contributions we obtain ∆F ∼ 10−3 (central value of b.f.p) if CV

RL = 0, which, obviously, cannot
be detected. In Ref. [188] the coefficient CV

RL is neglected because it is lepton-flavour universal
within SMEFT and it cannot help to accommodate any of the deviations observed with LFUV
observables. However, assuming the best-fit point of this scenario does not change when non-
vanishing values of CV

RL are allowed, we find that ∆F can be much larger when CV
RL approaches

±
√
(1 + CV

LL)
2 − CV

LR
2
+ CV

RR
2, leading to a rather visible effect.

In summary, a difference between the two measurements of FD∗

T (or FD∗

L ) in absence of tensors and
imaginary contributions could be attributed, barring experimental issues, to contributions coming from
RHN. For some RHN scenarios, this would generate a non-zero value for ∆F .

12We have scanned over a range of values of the RHN coefficients CV
LL,LR,RL,RR to compare Eq. (3.103) and

Eq. (3.105). The result of this test clearly indicates that for combinations of RHN resulting in reasonably small
values of ∆F < 1, the two expressions agree up to O(10−3) corrections in all bins.
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3.5 Experimental sensitivity
Our analysis is based on the possibility of performing a full angular analysis of the B → D∗ℓν with
a reasonable accuracy to check the relationships derived among angular observables. There is a major
experimental challenge associated to the difficulty of measuring angular distributions of semitauonic
decays due to the loss of the two neutrinos, one from the B decay and the other from the subsequent
τ decay, making it difficult to reconstruct the τ direction. This problem arises both when the τ decays
into a pion or a lepton [151, 152]. A novel approach [153] has been proposed using the three-prong
τ+ → π+π+π−ν̄τ decay instead of the muonic τ decay and a multidimensional template fit able to
measure the coefficients of the angular distribution. We can use the numerical results from Ref. [153] to
compare the expected experimental sensitivity of FD∗

L using the standard definition in Eq. (3.28) with
the one using the alternative determination in Eq. (3.72)13.

Taking the results of the template fit for the 50 fb−1 collider scenario given in Tab. 11 and Fig. 10
of Ref. [153] and applying the transformation described in Eq. (3.78) we can obtain a rough estimate of
the sensitivity of ⟨F̃D∗ alt

L ⟩I9=0
τ . Obtaining this estimate is not straightforward since ⟨F̃D∗ alt

L ⟩I9=0
τ includes

not only the angular observables I3 and I6s but also the kinematic factors A and B. As mentioned in
Section 3.3.5, experimentalists can measure directly AI3, and B I6s following the same binning as the
angular observables arising in the differential branching ratio. In order to get a rough idea of these
quantities in the absence of a dedicated experimental study including estimates of AI3 and BI6s, we
study the ratios ⟨AI3⟩/⟨I3⟩ and ⟨B I6s⟩/⟨I6s⟩ and how they change in the presence of NP. Scanning
the parameter space, we find these ratios to be rather independent of the NP considered. We find
that ⟨AI3⟩/⟨I3⟩ ≈ 4.1 and ⟨BI6s⟩/⟨I6s⟩ ≈ 2.4, leading to our approximate determination of the binned
observables

⟨AI3⟩exp ≈ 4.1⟨I3⟩exp ⟨B I6s⟩exp ≈ 2.4 ⟨I6s⟩exp (3.107)

It is important to emphasise that this approximation would not be needed for future experimental mea-
surements as long as AI3, AI9 and B I6s are measured directly.

Under these approximations and considering the uncertainties and correlations given for the 50 fb−1

collider scenario in Ref. [153], we obtain the following rough estimate for the alternative determination
for the SM case considered in this reference

⟨F̃D∗ alt
L ⟩I9=0

50 fb−1 = 0.47± 0.12 (3.108)

to be compared with the standard determination

⟨F̃D∗
L ⟩50 fb−1 = 0.45± 0.01 (3.109)

The alternative determination suffers from the larger errors of the angular observables involved in its
definition, in comparison with the standard determination which is dominated by I1s with a smaller
uncertainty than the other angular observables, as shown in Fig. 10 of Ref. [153].

These uncertainties would be enough to identify discrepancies coming from tensor contributions,
such as our scenario C5. The smaller differences between the two determinations coming from other
types of scenarios (such as Wilson coefficients with imaginary parts) could not be distinguished and the
two determinations should yield similar results. Conversely, it means that our relations will provide a
non-trivial experimental cross-check of the angular analyses projected in Ref. [153], unless large tensor
contributions are present.

3.6 Summary and Conclusions
The charged-current B → D∗ℓν transition has been under scrutiny recently, as it exhibited a deviation
from the SM in the LFUV ratio RD∗ comparing the branching ratios ℓ = τ and lighter leptons. Moreover,
the polarisation of both the D∗ meson and the τ lepton have been measured for B → D∗τν. If the latter
agrees with the SM within large uncertainties, the Belle measurement of FD∗

L yields a rather high value
compared to the SM prediction, which appears difficult to accommodate with NP scenarios.

13We refrain from using the more complete alternative definition in Eq (3.76) because the ratio ⟨AI9⟩/⟨I9⟩
necessary to get the rough estimate described in the text is not properly defined in the SM.
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We could understand better this situation by considering in more detail the angular observables that
can be extracted from the differential decay rate, as described in Ref. [141]. We applied the formalism of
amplitude symmetries of the angular distribution of the decays B → D∗ℓν for ℓ = e, µ, τ . We showed that
the set of angular observables used to describe the distribution of this class of decays are not independent
in absence of NP contributing to tensor operators. We derived sets of relations among the angular
coefficients of the decay distribution for the massless and massive lepton cases. These relations can be
used to probe in a very general way the consistency among the angular observables and the underlying
NP at work, and in particular whether it involves tensor operators or not.

We used these relations to access the integrated longitudinal polarisation fraction of the D∗ using
different angular coefficients from the ones used by Belle experiment. This in the near future can provide
an alternative strategy to measure FD∗

L for B → D∗τν and to understand the relatively high value
measured by Belle. We presented expressions in Eqs. (3.75) and (3.76) for the massless and massive case
that cover the most general NP scenario including also pseudoscalars and imaginary contributions, with
the only exception of tensor contributions.

We then studied the accuracy of these expressions if only binned observables are available, or if
they are used in the case of scenarios beyond the assumptions made in their derivation (imaginary
contributions, tensor contributions). We used several benchmark points corresponding to best-fit points
from global fits to b→ cτν observables, relying on a simple quark model for the hadronic form factors for
this exploratory study. The expressions derived under the assumption of no imaginary NP contributions
and no tensor contributions work very well even in the binned approximation. They are very accurate
even in the presence of imaginary NP contributions. As expected, their generalisations, derived assuming
the presence of imaginary contributions, are very well behaved also in the binned approximation. All
relations fail in the presence of large tensor contributions, where no dependencies can be found among
the angular observables.

Besides presenting the most general expressions for FD∗

L in the massless and massive case, we also
derived a relation among observables (Ã3,9,6s and FD∗

L ) that are potentially interesting from the NP
point of view if the deviation in FD∗

L is confirmed. Having specific model building predictions for these
observables would be highly interesting. We also discussed the impact of the presence of light right-handed
neutrinos. We showed that we could test their presence in some specific cases under the hypothesis that
there are no tensor nor imaginary contributions, by comparing our two determinations of FD∗

L . Moreover,
under this hypothesis, the sign of the difference between the two determinations is fixed.

In addition, these alternative determinations of FD∗

L provide an important cross check for the exper-
imental measurements: if our relations are not fulfilled by the experimental measurements, this would
imply either a problem on the experimental side or the presence of large tensor contributions. Using
recent projections on the experimental prospects for the measurements of angular observables, we find
that these relations could be checked with an accuracy of 0.1 in the scenario of a 50 fb−1 hadron collider,
which would be enough to spot a scenario with tensor contributions and would provide an interesting
cross-check of the determination of the angular observables.

These additional measurements needed for this extraction make obviously this determination more
challenging experimentally, but they can help to corner the kind of NP responsible for this high value
or to understand if there exists an experimental problem responsible for this unexpected value of the
D∗ polarisation. We hope that our results will be of particular interest once the LHCb and Belle II
experiments are able to analyze the B → D∗ℓν decays in more detail and thus to provide us with a more
detailed picture of the intriguing deviations currently observed in b→ cℓν transitions.
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Part II

Nonleptonic B decays
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Chapter 4

A new B-flavour anomaly in
Bd,s→ K∗0K̄∗0: anatomy and
interpretation

If NP is indeed at the origin of the anomalies in semileptonic B decays, it is natural to expect signals
in other observables involving b→ s transitions, possibly with different realisations though sharing some
common features. A natural place to explore the possible existence of these signals are nonleptonic B
decays. This type of decays suffer from larger uncertainties compared to semileptonic B decays and are
therefore more difficult to compute with a high accuracy. In particular, branching ratios and polarisation
fractions receive contributions from transverse amplitudes that suffer from large uncertainties due to
power-suppressed but infrared-divergent weak annihilation and hard-spectator scattering [189, 190]. In
this sense a deviation with respect to the SM prediction in nonleptonic B decays requires to be much
more conservative regarding these uncertainties than in the case of semileptonic B decays.

In this chapter, based on Ref. [191], we will follow a similar strategy to the one we used in Refs. [11, 12]
for semileptonic rare B decays and we will establish a parallelism constructing observables in nonleptonic
B decays with a limited sensitivity to hadronic uncertainties. As described in Chapter 1, in b→ sℓℓ decays
one can build two different kinds of observables with a reduced sensitivity to hadronic uncertainties: on
the one hand, angular observables from decays involving muons in the final state [12, 157] constructed
exploiting heavy quark symmetry. On the other hand, ratios of branching ratios with muons versus
electrons in the final state that test LFUV and where the dependence on the form factors cancels almost
exactly in the SM [192]. We observe tensions with respect to the SM predictions in observables involving
leptons of the second family (for the former) and between the second and the first family of leptons (for
the latter).

For that reason, we explore the parallel approach of using nonleptonic B decays rather than semilep-
tonic ones, comparing quark transitions involving quarks of the second and first families instead of muons
and electrons, through the use of the Rsd observable defined in [193]. More specifically, we compare
transitions involving s-quarks and d-quarks to benefit from the approximate U -spin symmetry of the
SM in analogy with Lepton-Flavour Universality used to build the LFUV ratios in b → sℓ+ℓ+ decays.
The analogy has evident limitations: since both symmetries are broken by fermion mass effects, the size
of the corrections is easier to compute or estimate for LFU (involving mainly QED) than for U -spin
(involving QCD). However, even in the nonleptonic case it is well known that ratios of this type offer
many advantages in reducing hadronic uncertainties, explaining the popularity of the ratio ξ to describe
neutral-meson mixing in lattice QCD and phenomenological studies. We may reach an even better con-
trol of hadronic uncertainties by combining several approaches. In Refs. [193–195] it was shown that the
specific structure of penguin-mediated nonleptonic B-decays could lead to a better theoretical control on
combinations of hadronic matrix elements within factorization approaches. In the case of vector final
states, it is also known that the decays into longitudinally polarised light mesons can be described more
precisely than the transverse ones within these factorization approaches, providing a further guide to
build optimized observables (in analogy with the angular observables in semileptonic decays). Finally, if
the Bd-meson decays have been studied at B-factories extensively, LHCb is now able to provide accurate
measurements for many Bs-meson decays with the possibility to assess the correlation between Bd and
Bs mesons decaying into the same final state.

We will thus focus on a type of observables for penguin-mediated nonleptonic decays of B mesons
into two vector particles, that we will refer as L-observables. These correspond essentially to the Rsd
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observable from Ref. [193] in the case of Bd,s → K∗0K̄∗0 (up to a phase space). We present here a
detailed and complete anatomy of this observable in the SM, updating the SM prediction and observing
an increase in the tension with the experimental measurement compared to Ref. [193]. We then discuss
NP explanations for the tension observed. We also point out possible improvements of the theoretical
prediction of this observable.

In Section 4.1 we develop the theoretical framework that will be used to compute the L observable.
We put particular emphasis on the sources of hadronic uncertainties coming from infrared divergences
that affect mostly branching ratios and polarisations. In Section 4.2 we construct this observable and
we compute it. Then, using the data of the previous section, we determine its experimental value and
the pull. In Section 4.3 we explore possible solutions in terms of NP shifts to Wilson coefficients in
a model-independent EFT approach, before considering particular models illustrating the difficulty to
explain this nonleptonic anomaly together with the b→ sℓℓ anomalies in Section 4.4. We finally conclude
in Section 4.5. In Appendix E.1 we discuss the framework used, providing the expressions of the set of
operators of the Weak Effective Hamiltonian as well as the parametrisation based on QCD factorization.
Appendix E.2 consists of the semi-analyical expressions of the relevant hadronic matrix elements, and in
Appendix E.3 we show complementary details of the sensitivity of L to different sources of NP.

4.1 Theoretical framework

4.1.1 Helicity amplitudes
We start by considering the theoretical description of a generic transition BQ → V V with Q = d, s. Since
the initial state has spin 0, the two vector mesons must have the same helicity, leading to a description
of the decay in terms of three helicity amplitudes A0, A+ and A−. A naive factorization analysis [190]
indicates a hierarchy of the type: Ā0 > Ā− > Ā+ for a B̄ → V V decay and A0 > A+ > A− for a
B → V V decay. This hierarchy with a dominance of longitudinal amplitudes is easy to understand by
means of the V-A structure of the SM [196] together with the fact that high energy QCD interactions
conserve helicity [39]. Each amplitude is suppressed with respect to the previous one by O(Λ/mb) due
to helicity suppression [189]. The longitudinal amplitude in a b→ s transition is dominant as compared
to the positive helicity: the s quark is produced with an helicity −1/2 by weak interactions (in the limit
ms → 0), which is not affected by the strong interactions, then the strange quark combines with the light
spectator quark to form a V with a helicity which can reach 0 or −1 but not +1. In Ā−, a light-quark
helicity flip is required to obtain both vector mesons with a negative helicity, whereas in Ā+, two helicity
flips are required to reach a positive helicity for both vector mesons. Each of these helicity flips yields a
suppression by a factor O(Λ/mb), as expected in naive factorization.

4.1.2 Hadronic matrix elements
For a B̄Q meson decaying through a b → q penguin-mediated process into a V1V2 state with a definite
polarisation, the decomposition

Āf ≡ A(B̄Q → V1V2) = λ(q)u Tq + λ(q)c Pq , (4.1)

is always possible, with the CKM factors λ(q)U = VUbV
∗
Uq. We denote by Tq and Pq the matrix elements

accompanying the λ(q)u and λ(q)c CKM factors respectively. In the SM, Pq is usually associated to penguin
topologies, whereas Tq receives contributions from tree topologies (but it can also contain only penguin
topologies in some decays). As discussed above, if we consider the longitudinal polarisation, Tq and Pq

can be computed using factorization approaches based on a 1/mb expansion (see Appendix E.1). In QCD
factorization [197], Tq and Pq are affected by possibly large long-distance 1/mb-suppressed effects that
will be discussed in the next section. In the case of penguin mediated decays like B(d,s) → K∗0K̄∗0 the
same type of (long-distance) infrared divergences affect both Pq and Tq, so one can construct [194, 195]

∆q = Tq − Pq , (4.2)

free from these next-to-leading-order infrared divergences.



4.2. The L-observable for BQ → K∗0K̄∗0 85

Using the unitarity relation λ(q)u + λ
(q)
c + λ

(q)
t = 0, we can write Eq. (4.1) in terms of λ(q)u and λ(q)t

Āf = λ(q)u ∆q − λ(q)t Pq . (4.3)

The weak phase in λ(q)t is the angle βq, defined as

βq ≡ arg

(
− VtbV

∗
tq

VcbV ∗cq

)
= arg

(
−λ

(q)
t

λ
(q)
c

)
, (4.4)

whereas λ(q)c is real to a very good approximation for both q = d, s, and λ
(q)
u = −λ(q)c − λ

(q)
t . The

CP-conjugate amplitude is given by

Af̄ = (λ(q)u )∗Tq + (λ(q)c )∗Pq = (λ(q)u )∗∆q − (λ
(q)
t )∗Pq . (4.5)

If f = V1V2 is a CP-eigenstate, note that Af̄ is different from A = A(B → V1V2), even though the two
types of amplitudes are related:

Ā = Āf A = ηfAf̄ , (4.6)

where ηf is the CP-parity of the final state, given for j = 0, ||,⊥ respectively as η, η,−η where η = 1 if
V1 is the charge conjugate of V2 (this is the case for K∗0K̄∗0).

4.2 The L-observable for BQ → K∗0K̄∗0

4.2.1 Definition and experimental determination
The 2019 LHCb analysis with 3fb−1 data measured the ratio of the untagged and time integrated decay
rates [198]

BBd→K∗0K̄∗0

BBs→K∗0K̄∗0
= 0.0758 ± 0.0057(stat)± 0.0025(syst)

± 0.0016

(
fs
fd

)
, (4.7)

The longitudinal polarisation of both modes has been measured as well. The average of Bd → K∗0K̄∗0

from LHCb [198] and Babar [199]:

fLHCb
L (Bd → K∗0K̄∗0) = 0.724± 0.051± 0.016, (4.8)
fBabar
L (Bd → K∗0K̄∗0) = 0.80+0.10

−0.12 ± 0.06, (4.9)

yields

fL(Bd → K∗0K̄∗0) = 0.73± 0.05, (4.10)

whereas the polarisation for the Bs → K∗0K̄∗0 mode is [198]:

fL(Bs → K∗0K̄∗0) = 0.240± 0.031(stat)± 0.025(syst) .

Most of the experimental determinations are made assuming no direct CP-violation; however, the ones
searching for CP violation found no hint in these decays [200].

One can notice already that the longitudinal polarisations are very different for these two modes,
although they are related by U -spin symmetry in its most obvious form, i.e. the d↔ s exchange. In the
SM, U -spin is broken only by the quark masses, and it is thus expected to be fairly well obeyed (up to
a 20-30% correction). We propose to define an observable that will be sensitive to this effect but with a
cleaner theoretical prediction:
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LV1V2
=
Bb→s

Bb→d

gb→df
b→s
L

gb→sf b→d
L

=
|As

0|2 + |Ās
0|2

|Ad
0|2 + |Ād

0|2
, (4.11)

where Bb→q (f b→q
L ) refers to the branching ratio (longitudinal polarisation) of the B̄Q → V1V2 decay

governed by a b → q transition. Aq
0 and Āq

0 are the amplitudes for the BQ and B̄Q decays governed by
b→ q with final vector mesons being polarised longitudinally and

gb→q = ω

√[
M2

BQ
− ΣV1V2

] [
M2

BQ
−∆V1V2

]
, (4.12)

stands for the phase space factor involved in the corresponding branching ratio, with

ω =
τBQ

16πM3
BQ

, Σab = (ma +mb)
2 , ∆ab = (ma −mb)

2 (4.13)

and all quantities are CP-averaged.
This observable is defined such that the dependence on the troublesome transverse (parallel and

perpendicular) amplitudes entering the branching ratio and longitudinal polarisation fraction cancel and
it is close to the observable Rsd for the case of Bd,s → K∗0K̄∗0 up to a phase space factor [193].

Being purely sensitive to the longitudinal amplitudes, L is less affected by the hadronic uncertainties
which impact the transverse polarisation amplitudes significantly and which are difficult to estimate
within QCD factorization (QCDF) or other approaches based on a 1/mb expansion. The choice of this
observable thus avoids the difficulties encountered in the interpretation of low longitudinal polarisation
fractions observed in some nonleptonic modes [189]. In this article we will focus on:

LK∗K̄∗ =
BBs→K∗0K̄∗0

BBd→K∗0K̄∗0

gb→df
Bs

L

gb→sf
Bd

L

=
|As

0|2 + |Ās
0|2

|Ad
0|2 + |Ād

0|2
, (4.14)

where the spectator quark Q of the initial b-flavoured meson and the quark q from the b → q transition
coincide.

In the definition of LK∗K̄∗ and its connection with the longitudinal amplitudes |Aq
0|2 in Eq. (4.14), we

have not included the effect of Bs-meson mixing that arises in branching ratios when measured at hadronic
machines. This effect of time integration at hadronic machines generates a correction of O(∆Γ/(2Γ)), as
discussed in Refs. [193, 201], which would multiply the last term in Eq. (4.14) by:

1 +As
∆Γys

1 +Ad
∆Γyd

1− y2d
1− y2s

, (4.15)

where yq = ∆ΓBq
/(2ΓBq

) is well measured (yd is negligible and ys ≃ 0.065) and the asymmetries −1 ≤
Aq

∆Γ ≤ 1 combining CP violation in mixing and decay are difficult to estimate theoretically, leading to a
correction of at most 7%.

Since we use the LHCb measurement Eq. (4.7) and since there are other sources of (theoretical and
experimental) uncertainties, we treat Eq. (4.15) as a systematic uncertainty of 7% combined in quadrature
with the other uncertainties, leading to the experimental value:

Exp : LK∗K̄∗ = 4.43± 0.92. (4.16)

4.2.2 Theoretical prediction in the SM and comparison with data
On the theory side, we have

Aq
0 = (λ(q)∗c + λ(q)∗u ) [Pq + (αq)∗∆q] , (4.17)

Āq
0 = (λ(q)c + λ(q)u ) [Pq + αq∆q] , (4.18)

where αq = λqu/(λ
q
c + λqu). We thus get
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LK∗K̄∗ = κ

∣∣∣∣Ps

Pd

∣∣∣∣2
 1 + |αs|2

∣∣∣∆s

Ps

∣∣∣2 + 2Re
(

∆s

Ps

)
Re(αs)

1 + |αd|2
∣∣∣∆d

Pd

∣∣∣2 + 2Re
(

∆d

Pd

)
Re(αd)

 , (4.19)

with the combinations of CKM factors (estimated using the summer 2019 CKMfitter update [202–204]
(see Table E.1):

αd = (−0.0136+0.0095
−0.0096) + i(0.4181+0.0085

−0.0064), (4.20)

αs = (0.00863+0.00040
−0.00036) + i(−0.01829+0.00037

−0.00042), (4.21)

κ =

∣∣∣∣λsc + λsu
λdc + λdu

∣∣∣∣2 = 22.92+0.52
−0.30. (4.22)

From QCD factorization and the discussion in Section 4.1, we have

∆d

Pd
= (−0.16± 0.15) + (0.23± 0.20)i,

∆s

Ps
= (−0.15± 0.22) + (0.23± 0.25)i, (4.23)

so that the brackets in Eq. (4.19) are very close to 1, with the main uncertainty of 1% from the term
proportional to |αd|2 (which will be included in the theoretical uncertainties below). The leading uncer-
tainty in the theoretical evaluation of LK∗K̄∗ comes thus from the ratio |Ps/Pd|, which we can attempt
to estimate in different ways. A naive SU(3) approach would consist in assuming

naive SU(3) :

∣∣∣∣Ps

Pd

∣∣∣∣ = 1± 0.3 , (4.24)

while a naive factorization approach would rather yield

fact SU(3) :

∣∣∣∣Ps

Pd

∣∣∣∣ = f = 0.91+0.20
−0.17 , (4.25)

where the SU(3)-breaking ratio related to the form factors of interest is given by

f =
As

K∗K̄∗

Ad
K∗K̄∗

=
m2

Bs
ABs→K∗

0 (0)

m2
Bd
ABd→K∗

0 (0)
, (4.26)

and we used the values of Ref. [128] for the form factors to estimate f . A last possibility amounts to
using QCD factorization. Using the same inputs as before, we obtain

QCD fact :

∣∣∣∣Ps

Pd

∣∣∣∣ = 0.92+0.20
−0.18 . (4.27)

The QCD factorization-based prediction follows the theoretical computations of the different contri-
butions to the amplitudes from Refs. [190, 205]. The numerical values of the input parameters used are
updated with respect to the ones in Ref. [205] and can be found in Table E.1 of Appendix E.1.

Observable 1σ 2σ
LK∗K̄∗ [12.7, 28.8] [7.5, 43]

Table 4.1: 1σ and 2σ confidence intervals for the SM prediction of LK∗K̄∗ within QCD factorization.

Hard-gluon exchanges with the spectator quark and weak annihilation feature 1/mb suppressed con-
tributions exhibiting infrared divergences related to the endpoint of the meson light-cone distribution
amplitudes. These divergences are parametrised in the same manner as in Ref. [205], involving two
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contributions XH and XA treated as universal for all channels:

XH,A = (1 + ρH,Ae
iφH,A) ln

(
mB

Λh

)
. (4.28)

We take ρH,A ∈ [0, 1] and φH,A ∈ [0, 2π] with flat distributions. This translates into assigning a 100%
uncertainty to the magnitude of such corrections.

We propagate the uncertainties by varying each input (given in Tab. E.1) entering the penguin
ratios in Eqs. (4.24), (4.25) and (4.27) and the CKM contribution κ following Eq. (4.22), using Gaussian
distributions. We determine then the distribution of L in each case, leading to the 1σ ranges:

naive SU(3) : LK∗K̄∗ = 23+16
−12 1.9σ , (4.29)

fact SU(3) : LK∗K̄∗ = 19.2+9.3
−6.5 3.0σ , (4.30)

QCD fact : LK∗K̄∗ = 19.5+9.3
−6.8 2.6σ , (4.31)

where we put the level of discrepancy with experiment, in units of σ. We stress that these discrepancies
are obtained using the whole distribution for L and not just the 1σ confidence intervals in the Gaussian
approximation (see Tab. 4.1 for the 1 and 2σ confidence intervals). In Tab. 4.2 we present the error budget
for LK∗K̄∗ in the SM. The comparison with the error budget of |Pd,s|2 shows that the impact of XA (XH)
is reduced from 18% (2%) in |Pd,s|2 to 4% (0.2%) in LK∗K̄∗ . A similar reduction is observed for other
inputs such as fK∗ , showing the benefit of defining the ratio LK∗K̄∗ . It also indicates that the accuracy
of the theoretical prediction of LK∗K̄∗ could be improved significantly by determining the correlations
among the relevant B → K∗ form factors in order to compute the associated SU(3) breaking. Moreover,
the impact of the weak annihilation and hard-scattering divergences on the uncertainty is subdominant
and would not be affected strongly by using a different approach for these power-suppressed infrared
divergences.

From the comparison of the SM predictions in Eqs. (4.29)-(4.31) with the experimental result in
Eq. (4.16), we see that all our theoretical estimates point towards a deficit in the b → s transition
compared to the b → d one for these penguin-mediated modes, in analogy with the deficit observed in
semileptonic decays to muons versus the decay to electrons in b→ sℓ+ℓ+ decays.

Relative Error
Input LK∗K̄∗ |Ps|2 |Pd|2
fK∗ (−0.1%,+0.1%) (−6.8%,+7.1%) (−6.8%,+7%)

ABd
0 (−22%,+32%) − (−24%,+28%)

ABs
0 (−28%,+33%) (−28%,+33%) −

λBd
(−0.6%,+0.2%) (−4.6%,+2.1%) (−4.1%,+1.9%)

αK∗
2 (−0.1%,+0.1%) (−3.6%,+3.7%) (−3.6%,+3.6%)

XH (−0.2%,+0.2%) (−1.8%,+1.8%) (−1.6%,+1.6%)

XA (−4.3%,+4.4%) (−17%,+19%) (−13%,+14%)

κ (−1.4%,+2.2%) − −
Others (−1.3%,+1.1%) (−2.7%,+2.5%) (−1.6%,+1.6%)

Table 4.2: Error budget of LK∗K̄∗ and |Pd,s|2. The relative error of each theoretical input is obtained
by varying them individually. The main sources of uncertainty are the form factors, followed by weak
annihilation at a significantly smaller level.



4.3. Model-independent NP analysis 89

4.3 Model-independent NP analysis
Even though the deviation in LK∗K̄∗ is not yet at the level of a troublesome discrepancy with the SM,
its potential connection with other B-flavour anomalies makes it interesting to investigate it further in
terms of possible SU(3)-breaking NP contributions. We may explore in a model-independent way how
to explain this anomaly via contributions only to the Wilson coefficients of the b → s transition, while
keeping the corresponding b→ d SM-like (or with opposite NP contributions).

This can be performed by using the weak effective theory, whose basis within the SM we recall in
Eq. (E.1) of Appendix E.1. Note that in the presence of generic NP, the basis of operators must be
extended since we expect this NP contribution to couple with different strength to different flavours (and
in particular to d and s quarks), there is no a priori reason for it to yield “strong” and “electroweak”
penguin operators with sums over all quark flavours following the same pattern as in the SM [206].

However, for simplicity, and in parallel with the results of the global fits for NP in b→ sℓ+ℓ− decays
favouring SM operators or chirally-flipped versions of it, we consider here NP only entering the Wilson
coefficients associated with the SM operators Qi or the chirally-flipped ones Q̃i as defined in Ref. [196]
by exchanging V − A and V + A in all quark bilinears constituting the operators. These right-handed
currents would modify the longitudinal amplitude by adding contributions that are functions of CNP

i − C̃i
(where C̃i is the coefficient of the chirally-flipped operator) leading to the structure A0[CSMi ]+A0[CNP

i −C̃i].
In practice this means that the NP contribution to each coefficient entering the longitudinal amplitude
should be interpreted as stemming not only from the standard operators but also from the chirally flipped
ones (with opposite sign).

We consider the sensitivity of LK∗K̄∗ on each Wilson coefficient. We want to determine if there is
a dominant operator that can naturally explain the low experimental value of LK∗K̄∗ , as it happens
for b → sℓℓ with O9. We assume that NP enters as described above with the further requirement that
there are no additional NP phases, leading to real-valued Wilson coefficients. We can then compute the
hadronic matrix elements within QCD factorization exactly like in the SM. In Appendix E.2 we provide
semi-analytical expressions for Pd and Ps, needed to compute LK∗K̄∗ in terms of Wilson coefficients.
We provide the explicit dependence on the infrared divergences XA and XH although their numerical
impact on the uncertainty is limited. Let us note in passing that the quantity ∆q is still protected from
infrared divergences in this NP extension: the structure of the longitudinal hadronic amplitudes T and P
is unchanged, and only the numerical values of Wilson coefficients are modified compared to the SM (the
protection of ∆ from infrared divergences would not necessarily hold in more general NP extensions).

Considering the sensitivity of LK∗K̄∗ on each Wilson coefficient of the weak effective theory individ-
ually, we can determine the coefficients where a limited NP contribution would be sufficient to explain
the discrepancy observed. We thus identify three dominant coefficients: Cc1q, C4q and Ceff8gq (see Fig. 4.1
and Fig. E.2 in Appendix E.3). The strong dependence on these coefficients with respect to the others
can be seen already in the explicit form of Pd,s:

Ps = (1.98− 5.04i) + (2.37− 1.65i)Cc,NP
1s + (9.98 + 148.76i)CNP

4s − 7.98iCeff,NP
8gs + . . .

Pd = (2.17− 5.49i) + (2.60− 1.80i)Cc,NP
1d + (10.95 + 161.74i)CNP

4d − 8.76iCeff,NP
8gd + . . .

which translates into a dominant contribution for LK∗K̄∗ as well.
The reason behind this strong dependence on these coefficients can be understood in the following

way. Let us consider a penguin-mediated decay, so that the SM tree-level operator Cc1s contributes through
a closed cc̄ loop to the decay, putting its contribution at the same level as the “strong” penguin operators
i = 3 . . . 6 in the SM. A very similar contribution at the level of the underlying SM diagrams comes thus
from both Cc1s and C4s, as can be seen from the V −A structure of the operators (this is also the case for Ceff8gs
with the emission of a gluon coupling to a qq̄ pair). The effect of the diagrams is similar in the SM, but the
separation between long and short distances in the weak effective theory yields C4s and Ceff8gs much smaller
than Cc1s, which must be compensated by larger weights in Eqs. (4.32) and (4.32). The other penguin
operators are suppressed either because of color suppression (C3, thus associated with 1/Nc factors in the
QCD factorization formula) or helicity suppression (C5 and C6, which yield a vanishing contribution in
the naive factorization approach as they must be Fierzed into (pseudo)scalar operators with vanishing
matrix elements). In the SM, the “electroweak” penguins i = 7 . . . 10 are suppressed. Their contributions
might be very significantly enhanced by NP which would not require such an electromagnetic suppression,
although it would be difficult to obtain then “electroweak” operators at the mb-scale since they involve
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explicitly the quark electric charges. If we nevertheless allowed for such very large contributions for the
electroweak part (which we will discard in the following), the same argument would apply as in the case
of the “strong” penguins, so that the leading contribution from the “electroweak” penguins would be C10q.

As can be seen in Fig. E.2, the coefficient Cc1s requires a very large NP contribution w.r.t. the SM
of order 60% to reduce this discrepancy at 1σ. We will not pursue the possibility of a contribution to
Cc1q, as the size of the effect being so large at an absolute scale is in conflict with recent analyses of the
global constraints on this coefficient [207] that suggest that the room for NP contributions is of O(10%)
of the SM. Dijet angular distributions [208], together with flavour bounds following from SU(2)L gauge
invariance, suggest bounds which are even tighter.

The penguin coefficient C4s requires a NP contribution of order 25% (which is incidentally similar
to the NP contribution needed in C9 for b → sµµ) in order to reduce the discrepancy in LK∗K̄∗ at 1σ.
The NP contribution needed is thus quite large but not significantly constrained from other nonleptonic
decays where many other coefficients enter [197].

Finally, Ceff8gs would require a NP contribution of order 100% of the SM in order to obtain a similar
reduction of the discrepancy. Although it might seem a large contribution, it is actually very difficult
to obtain a precise bound on this effective coefficient which combines C8gs with some Wilson coefficients
of four-quark operators (see Appendix E.1). Due to QCD loop effects, the constraint from b → sγ is
actually on a linear combination of the Wilson coefficients Ceff7γs and Ceff8gs at the scale µb [209]. Therefore,
an effect in Ceff8gs can always be cancelled by an effect in Ceff7γs so that the experimental bound from b→ sγ

is obeyed (the same is also true for b → dγ [210]). Even without such a cancellation from Ceff7γs, the
current measurements can accommodate a NP contribution to Ceff8gs of the order of the SM. Another more
direct bound on Ceff8gs is provided by the b → sg contribution to inclusive nonleptonic charmless decays.
The current bound on the b → sg branching ratio in Ref. [211] is at the level of 6.8%, whereas the SM
contribution [212] is estimated at the level of 0.5%, leaving room for a NP contribution to Ceff8gs up to
three times as large as the SM one.

Naturally, in each case, if we allow for NP in both Cis and Cid, we may get the same reduction of
the discrepancy by assigning half of the NP contribution (with opposite signs) to both coefficients, as
illustrated for C4 in Fig. 4.2. Thus, allowing NP in b → d transitions in addition to b → s transitions
requires smaller NP contributions in each type of transition, and allows one to evade some of the bounds
discussed above as they applied only to b→ s transitions (e.g. C8gs). C8gd is constrained from b→ dγ.

4.4 Simplified NP models
Our model-independent analysis showed that LK∗K̄∗ is mostly sensitive to color-octet operators and to
a lesser extent to the chromomagnetic operator. In the following, we will consider NP models able to
generate such contributions, and for concreteness, present the formula for the case of b→ s transitions.
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Figure 4.1: The tension between the theoretical prediction (blue) and the experimental value (orange)
is reduced below 1σ for CNP

4s ≃ 0.25CSM4s (upper plot) or Ceff,NP
8gs ≃ −Ceff,SM

8gs (lower plot). The predictions
are given for CNP

4s and Ceff,NP
8gs for a range corresponding to 100% of their respective SM values. The plots

for the remaining Wilson coefficients can be found in Appendix E.3.
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Figure 4.2: 1σ and 2σ CL regions from LK∗K̄∗ allowing NP contributions to both C4s and C4d.

Concerning C4s, it is natural to search for a tree-level explanation in terms of NP and a massive
SU(3)c octet vector particle, i.e. a Kaluza-Klein (KK) gluon, also called axi-gluon, comes naturally to
mind. We parametrise its couplings to down quarks of different flavours as

L = ∆L
sbs̄γ

µPLT
abGa

µ +∆R
sbs̄γ

µPRT
abGa

µ . (4.32)

with ∆L,R
sb assumed real. We also define from Eq. (4.32) analogous flavour diagonal couplings which we

will denote as ∆L,R
qq .

We may consider the constraints from neutral-meson mixing through the effective Hamiltonian of
Ref. [213]

H∆F=2
eff =

5∑
j=1

CBsB̄s
j OBsB̄s

j +

3∑
j=1

C̃BsB̄s
j ÕBsB̄s

j ,

OBsB̄s
1 = [s̄αγ

µPLbα] [s̄βγµPLbβ ] , (4.33)

OBsB̄s
4 = [s̄αPLbα] [s̄βPRbβ ] , (4.34)

OBsB̄s
5 = [s̄αPLbβ ] [s̄βPRbα] , (4.35)

where only the operators relevant for the discussion are displayed and where the operators with a tilde
are obtained by exchanging the chirality projectors PL and PR. We get the matching contributions

CBsB̄s
1 =

1

2m2
KK

(
∆L

sb

)2 1

2

(
1− 1

NC

)
, (4.36)

C̃BsB̄s
1 =

1

2m2
KK

(
∆R

sb

)2 1
2

(
1− 1

NC

)
, (4.37)

CBsB̄s
4 = − 1

m2
KK

∆L
sb∆

R
sb , (4.38)

CBsB̄s
5 =

1

NCm2
KK

∆L
sb∆

R
sb , (4.39)

where mKK is the mass of the KK gluon. Using the two-loop Renormalization Group Equations of
Refs. [214, 215] and the bag factors of Ref. [216] this translates to



92 Chapter 4. A new B-flavour anomaly in Bd,s → K∗0K̄∗0: anatomy and interpretation

∆MNP
Bs

∆MSM
Bs

× 10−10 =
(
1.1(CBsB̄s

1 + C̃BsB̄s
1 ) + 8.4CBsB̄s

4 + 3.1CBsB̄s
5

)
GeV2 , (4.40)

for a NP scale around 5 TeV. This has to be compared with the outcome of global fits allowing for NP
in mixing [217, 218], favouring a value slightly above 1 for the ratio ∆M exp

Bs
/∆MSM

Bs
. Encompassing the

results obtained from these recent fits in a conservative manner, we consider here

∆M exp
Bs

∆MSM
Bs

= 1.11± 0.09 . (4.41)

We obtain the allowed region shown in blue in Fig. 4.3 for real values of the Wilson coefficients and
neglecting the bag factor uncertainties related to CBsB̄s

4,5 .
Assuming that the KK gluon has universal flavour-diagonal coupling to the first two generations of

quarks, which is also needed to avoid unacceptably large effects in K− K̄ and/or D0− D̄0 mixings [219],
our model generates 1 a NP contribution to C4s given at the matching scale by

C4s = −
1

4

∆L
sb∆

L
qq√

2GFVtbV ∗tsm
2
KK

, (4.42)

(and similarly for C̃4s with L replaced by R). The couplings ∆L,R
sb are defined in Eq. (4.32) while ∆L,R

qq

stand for the corresponding flavour-diagonal couplings to up and down quarks of the first two generations.
However, couplings of first generation quarks to KK gluons are strongly constrained by di-jet searches

[220]: (∆L
qq/mKK)2 < (2.2/(10TeV))2. Allowing for NP also in b→ d transitions could increase the effect

in LK∗K̄∗ , but since here the effect is bounded by Bd−B̄d mixing, whose constraints are of the same order
as Bs − B̄s mixing, one can only gain a factor ≈ 2. Using this maximal coupling for the ∆L

qq couplings
and setting the ∆R

qq couplings to zero, we can see from Fig. 4.3 that a significant amount of fine-tuning
is needed to account for LK∗K̄∗ .

Alternatively, one could try to explain LK∗K̄∗ with a NP contribution in the chirally-flipped coefficient
C̃4s, given by Eq. (4.42) with the ∆L

sb and ∆L
qq couplings replaced by ∆R

sb and ∆R
qq, respectively. In

principle, one could exploit the fact that the couplings do not have to respect a U(2) flavour symmetry
(since up- and down-type quark couplings are not related via SU(2)L), so that couplings to first-generation
quarks could be avoided, which would relax LHC bounds and reduce the fine-tuning needed in Bs − B̄s

mixing. However, as in the previous case, flavour universality for diagonal couplings to quarks is needed
to be able to make use of our expressions for LK∗K̄∗ . Moreover, according to QCD factorization, the
dominant LO effect in LK∗K̄∗ originates from the term in Q4s with down quarks in the bilinear summed
over flavours. Therefore, (dominant) right-handed couplings cannot be used to evade LHC bounds and
still fine-tuning in Bs − B̄s mixing, like in the case of left-handed couplings, is needed.

As indicated earlier, one could also try to explain LK∗K̄∗ with the Wilson coefficient of the chromo-
magnetic operator O8gs. Here an effect of the order of the SM contribution is required. C8gs can only be
generated at the loop level and involves necessarily colored particles for which strong LHC limits exist.
Therefore, a value of the order of the SM contribution can only be obtained thanks to chiral enhancement.

A simplified model fulfilling these requirements features two vector-like quarks, one SU(2)L doublet
and one SU(2)L singlet (with a large coupling λ to the SM Higgs doublet) and an additional neutral
scalar particle [221]. In this setup, C8gs receives a contribution which scales like λ/(mb/v)× v2/M2 w.r.t.
the SM, where M is the NP scale. Inevitably an effect in C7γs is generated at the matching scale M which
however has free sign and magnitude as it depends on the (not necessarily quantized) electric charges of
the new fermions and scalar inside the loop. Therefore, the electric charges of the new particles can be
chosen in such a way that in C7γs (at the mb scale) the NP contributions to C7γs and C8gs (taken at the
matching scale) cancel. As we need a NP contribution to C8gs of the order of the SM one, and C7γs at
the low scale is known at the 5% level, a tuning of the order of 1/20 is necessary here.

1Note that our model is only flavour universal with respect to four but not five flavours and does not fulfill
the requirements of Section 4.3. However, the effect of bottom quarks within the Q4s operator in LK∗K̄∗ is
O(αs)-suppressed within QCD factorization and thus the impact of our model on LK∗K̄∗ can be mimicked by a
shift in C4s to a good approximation.
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Figure 4.3: Preferred regions from Bs−B̄s mixing (red) and LK∗K̄∗ (blue) for ∆R
qq = 0 and the maximal

value of ∆L
qq compatible with LHC searches assuming real couplings. Note that explaining LK∗K̄∗ requires

some fine-tuning in ∆L
sb vs ∆R

sb.

Both simplified models allow for the possibility of a connection with the b→ sℓ+ℓ− anomalies. On the
one hand, the KK gluon may be part of the particle spectrum of a composite/extra-dimensional model
and is then accompanied by a Z ′ boson. This could explain b→ sℓ+ℓ− without violating LHC di-lepton
bounds [222] due to the large sb coupling of the Z ′ needed to explain LK∗K̄∗ , leading to NP contributions
with the correct sign in both types of anomalies. On the other hand, the model generating a large effect
in C8g could easily be extended by a vector-like lepton in order to account for b→ sℓ+ℓ− [221].

4.5 Summary and Conclusions
In this chapter we have analyzed the nonleptonic penguin decays Bd → K∗0K̄∗0 and Bs → K∗0K̄∗0,
where recent LHCb results indicate striking differences in the longitudinal polarisation of these two
modes. This is unexpected since they are related by U -spin and should thus have a similar QCD and
EW dynamics (up to tiny corrections due to the down and strange quark masses).

We introduced the L-observable as a combination of polarisation fractions and branching ratios in
order to compare the longitudinal amplitudes in both modes, as they can be computed with better
theoretical control in a 1/mb expansion such as QCD factorization. We exploited the fact that these
penguin-mediated decays exhibit very similar hadronic matrix elements for the “tree” and “penguin”
contributions in the usual decomposition based on CKM factors, so that these contributions are very
strongly correlated. This means that the L-observable is a measure of U -spin breaking between the
penguin contributions to Bd and Bs decays, with a deviation from the SM expectation between 2σ and
3σ depending on the specific theoretical framework considered. This observation reinforces and puts on
a firmer ground the hint for NP already suspected by considering the difference between the longitudinal
polarisation fractions in these two modes. We performed a detailed error budget analysis for LK∗K̄∗

and we found a relatively small impact of infrared divergences coming from weak annihilation and hard-
spectator scattering, compared to observables like branching ratios or polarisation fractions involving
troublesome transverse amplitudes.

We then interpreted this deviation in a model-independent approach using the weak effective theory.
For simplicity, we allowed NP only in SM Wilson coefficients or their chirally-flipped counterparts. We
identified three operators which could accommodate the deviation with NP contributions at most as
large as the SM. While C1q is already very significantly constrained by other nonleptonic modes and
LHCb bounds (up to the point of excluding this solution), the situation is less constrained for the strong
penguin coefficient C4q and the chromomagnetic one Ceff8gq where NP contributions of a similar size to the
SM one are allowed and could explain the deviation in LK∗K̄∗ . We discussed examples of simplified NP
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models that could provide large contributions, at the price of accepting fine tuning to accommodate the
bounds on Bs − B̄s mixing and b → sγ. Interestingly, within a general composite or extra-dimensional
model [223], the Kaluza-Klein gluon contribution to the b→ s amplitude in Bs → K∗0K̄∗0 has the same
sign as the Z ′ contribution to b→ sℓ+ℓ− w.r.t the SM. Therefore, if one accepts the fine-tuning in Bs−B̄s

mixing, such models can provide a common explanation of LK∗K̄∗ and b→ sℓ+ℓ− data.
This hint of NP in LK∗K̄∗ could be sharpened with a precise estimate of U -spin breaking in the form

factors involved, as they drive the theoretical uncertainty of the SM prediction and their correlation is
not known precisely. A comparison of the theoretical and experimental information on the polarisations
in Bs → K∗ϕ and Bd → K∗ϕ could also be valuable to check whether a similar tension arises. Com-
plementary information could be obtained also from PV and PP penguin-mediated modes (K0K̄∗0 and
K0K̄0). Moreover, if the same source of NP is responsible for the suppression of b→ sqq̄ versus b→ dqq̄
and b → sµ+µ− versus b → se+e−, it would be certainly interesting to perform a thorough study of
b → dℓ+ℓ− modes compared to b → sℓ+ℓ− ones, which should be accessible with more data from the
LHCb and Belle II experiments. This interplay between nonleptonic and semileptonic rare decays could
prove highly beneficial in the coming years to identify new B-flavour anomalies and understand their
actual origin in terms of physics beyond the SM.
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Chapter 5

Importance of Z − Z ′ Mixing in
b→ sℓ+ℓ− and the W mass

We have seen in previous chapters that simple patterns where NP couples solely to muons can in fact
explain the discrepancies between the SM and experiment very well. However, it turns out that structures
with additional Lepton Flavour Universal (LFU) contributions can describe data even better [54]. This
means that allowing simultaneously for presence of Lepton Flavour Universality Violating (LFUV) and
LFU NP effects, one can further improve the goodness of the global fits. Indeed, some of these hypotheses
exhibit the highest significance among all studied scenarios [4, 53, 55, 57], showing preferences of more
than 7σ compared to the SM hypothesis1. However, in such a model-independent approach it is difficult
to be certain that the most optimal and/or minimal NP hypothesis have been found due to the large
number of possibilities. One way to make progress is to use UV complete (or simplified) models where the
number of generated scenarios is usually smaller. In this context several models giving rise simultaneously
to LFUV and LFU effects have been proposed in the literature, including 2HDMs [98], leptoquarks [103,
226], SU(2)L triplets vector bosons [227] and models with vector-like quarks [99, 228].

In this chapter, based off of Ref. [229], we will focus on SM extensions by new heavy neutral gauge
bosons (Z ′) which are very popular NP solutions of the b→ sℓ+ℓ− anomalies [228, 230–281]. While the
Z ′ at tree-level preferably gives LFUV effects in b → sℓ+ℓ−, LFU effects can be generated via Z − Z ′
mixing. In fact, because both bosons have the same quantum numbers, this mixing cannot be avoided by
any symmetry. Furthermore, in the case that electroweak (EW) symmetry breaking and the breaking of
the symmetry giving rise to the Z ′ mass are connected, one even expects a mixing of the order of m2

Z/m
2
Z′ .

Importantly, Z − Z ′ mixing has also an impact on the global EW fit, in particular on Zℓ+ℓ− and Zνν
couplings and if the Z ′ is an SU(2)L singlet (i.e. not the neutral component of an SU(2)L multiplet),
also the prediction of the W mass is altered compared to the SM. The latter is very important since the
current global EW fit displays a tension of 1.8σ [282] (before adding the new CDF measurement [283])
and, as we will see, the effect of Z − Z ′ mixing has the right sign to account for this.

Therefore, in Z ′ models an interesting interplay between b → sℓ+ℓ− processes and the global EW
fit arises if the Z − Z ′ mixing angle is non-zero. While this mixing has usually been assumed to be
negligibly small2 in the literature, this is not at all given for granted. Therefore, the goal of this chapter
is to assess the possibility and size of Z − Z ′ mixing via a combined analysis of flavour and EW data.
For this purpose, the chapter is structured as follows: in the next section we will define our setup, then
consider the relevant observables in Section 5.2 and discuss the impact of Z − Z ′ mixing on the EW
fit and b → sℓ+ℓ− data in Section 5.3. We reassess our results in light of the new measurement of the
mass of the W boson in Section 5.4 and eventually we conclude in Section 5.5. Relevant details on the
observables are provided in Appendix F.

1Very close results and pulls were found in the analysis of Ref. [68] using also a complete set of observables but
a different treatment of hadronic uncertainties and form factors. See also results in Ref. [57] for an analysis using
a smaller subset of the available data as well as Ref. [56, 78, 224, 225] (see Ref. [3] for a detailed comparison).

2Note that the effect of Z −Z′ mixing in the W mass in the context of b → sℓ+ℓ− was already pointed out in
Ref. [278].
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5.1 Setup
We extend the SM by adding a heavy neutral SU(2)L singlet gauge boson3. Following the notation of
Ref. [284, 285] the kinetic term and the mass term of this new boson, before EW symmetry breaking, are

LZ′
0
= −1

4
Z ′0,µνZ

′µν
0 +

µ′2Z
2
Z ′0µZ

′µ
0 + gZ′Z ′0µZ

′µ
0 ϕ
†ϕ− igϕZ′Z

′µ
0 ϕ
†←→D µϕ , (5.1)

where Z ′0,µν ≡ ∂µZ ′0ν − ∂νZ ′0µ is the field strength tensor,
↔
Dµ =

→
Dµ − (

←
Dµ)

†, ϕ is the SM Higgs SU(2)L
doublet and we use

Dµ = ∂µ + ig2W
a
µT

a + ig1Y Bµ , (5.2)

as the definition of the SM part of the covariant derivative and gϕZ′ is real by hermicity. The physical Z
and Z ′ masses are obtained from diagonalizing the mass matrix

M2 =

(
m2

Z0
− y

cW
− y

cW
m2

Z′
0

)
, y ≡ v2

2
g2 g

ϕ
Z′ , (5.3)

in the Z0, Z
′
0 basis, where Z0 coincides with the SM Z for gϕZ′ = 0 withm2

Z0
= v2

4

(
g21 + g22

)
, v√

2
≈ 174GeV

and cW is the cosine of the Weinberg angle. At leading order in v/mZ′
0

we have

m2
Z ≃ m2

Z0
− y2

c2Wm2
Z′

0

≡ m2
Z0

(
1 + δm2

Z

)
. (5.4)

Note that the corrections to the mass of the Z with respect to the SM value mZ0 can only be negative.
The mass eigenstates Z(′) can then be expressed as(

Z
Z ′

)
=

(
Z ′0 sin ξ + Z0 cos ξ
Z ′0 cos ξ − Z0 sin ξ

)
, (5.5)

where

sin ξ ≃ y

cWm2
Z′

0

, (5.6)

describes the Z − Z ′ mixing.
The interactions with the SM fields are given by

Lfermions
Z′

0
=ūjγµ(g

uL
ji PL + guRji PR)ui Z

′µ
0 + d̄jγµ(g

dL
ji PL + gdRji PR)di Z

′µ
0

+ gℓLji (ν̄jγµPLνi)Z
′µ
0 + ℓ̄jγµ(g

ℓL
ji PL + gℓRji PR)ℓi Z

′µ
0 ,

(5.7)

where, in the down basis, guLji = Vjkg
dL
kk′V ∗ik′ . Note that the couplings to left-handed charged leptons

and neutrinos (up and down quarks) are the same (up to a CKM rotation), due to SU(2)L invariance
and that only the relative phase between sin ξ and gL,R

ij is physical, such that one can assume sin ξ to be
positive without loss of generality. In the following, we will assume flavour diagonal coupling to leptons
and in the quark sector disregard all couplings except left-handed b− s couplings.

3We do not consider the case in which the Z′ is the neutral component of a triplet because then no effect in
the W mass would be generated and the necessarily purely left-handed lepton couplings could not explain the P ′

5

anomaly.
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5.2 Observables

5.2.1 b→ sℓ+ℓ−

In Z ′ models without Z − Z ′ mixing, the simple one dimensional scenario with the best fit to data is
obtained from a left-handed b − s coupling and a vectorial muon coupling, i.e. the CV9µ scenario [4].
Allowing in addition for Z − Z ′ mixing we have

CV9µ = −π
2

e2
4
√
2gdL23 g

ℓV
22

GFm2
Z′VtbV ∗ts

,

CU10 = −kCU9 =

√
2π2

e2
g2 g

dL
23 sin ξ

cWGFm2
ZVtbV

∗
ts

,

(5.8)

where gℓV22 = (gℓL22 + gℓR22 )/2. This corresponds to the scenario

{CV9µ , CU10 = −kCU9 } , (5.9)

with k = 1/(1 − 4s2w) (see Eq. (1.5) and Eq. (1.6) for the definitions of the operators associated to the
Wilson coefficients in Eq. (5.9)). The superscript V (U) in the Wilson coefficient stands for a LFUV
(LFU) contribution.

We perform the most recent fit [4] to the scenario in Eq. (5.9), including 254 observables as described
in Section 1.3 (see Appendix B for SM predictions of the whole set of observables included in the fit).
We obtain the best fit point and confidence level regions in Table 5.1 and the corresponding confidence
level regions in Fig. 5.1. Note that this scenario is preferred over the SM hypothesis by 6.9σ.

Best-fit point 1 σ CI 2 σ CI
CV9µ −0.96 [−1.11,−0.80] [−1.25,−0.64]

CU10 = −kCU9 +0.30 [+0.15,+0.45] [+0.00,+0.61]

Table 5.1: 1σ and 2σ confidence intervals for the NP scenario in Eq. (5.9) with a PullSM of 6.9σ and
p-value=28.3%.
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Figure 5.1: Preferred 1σ, 2σ and 3σ regions in the (CV9µ, CU10 = −kCU9 ) plane for the scenario in Eq. (5.9),
including all available b → sℓ+ℓ− data and using the most updated version of ACDMN code [4]. Note
that the SM case corresponds to the (0,0) point.
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5.2.2 Bs − B̄s Mixing
The most important constraint on Z ′ − b− s couplings, i.e. gdL23 , comes from Bs − B̄s mixing where the
contribution to the Hamiltonian Heff = C1O1, with O1 =

(
b̄γµPLs

)
×
(
b̄γµPLs

)
, is given by

C1 =
1

2

(
gdL23
mZ′

)2(
1 +

αs

4π

11

3

)
, (5.10)

including the NLO matching corrections of Ref. [286]. Note that the effect of the mixing induced Z −
b− s couplings can be neglected as it corresponds to a dimension 8 contribution. Employing the 2-loop
renormalization group evolution [214, 215], this leads to an effect, normalized to the SM one, of(

gdL23
0.52

10TeV

mZ′

)2

= 0.110± 0.090 , (5.11)

using the bag factor of Ref. [216] and the global fit to NP in ∆F = 2 observables of Ref. [217].

5.2.3 LFUV in tau decays
Assuming lepton flavour conservation, Z ′ −W boxes contribute to τ → µ ντνµ as [233]

A(τ → µ ντνµ)

A(τ → µ ντνµ)SM
=1− 3

8π2
gℓL22 g

ℓL
33

ln
(

m2
W

m2
Z′

)
1− m2

Z′
m2

W

, (5.12)

and analogously for τ → e ντνe and µ→ e νµνe. This has to be compared to the experimental results [135]

A [τ → µνν̄]

A [µ→ eνν̄]

∣∣∣∣
EXP

= 1.0029± 0.0014 ,

A [τ → µνν̄]

A [τ → eνν̄]

∣∣∣∣
EXP

= 1.0018± 0.0014 ,

A [τ → eνν̄]

A [µ→ eνν̄]

∣∣∣∣
EXP

= 1.0010± 0.0014 ,

(5.13)

with the correlation matrix given in Ref. [135]4.

5.2.4 Electroweak fit
The EW sector of the SM has been tested with a very high precision at LEP [288, 289] but also at
the Tevatron [290] and the LHC [291–293]. Since it can be parametrized by only three Lagrangian
parameters, we choose as usual the set with the smallest experimental error consisting of the Fermi
constant (GF = 1.1663787(6)×10−5 GeV−2 [211]), the mass of the Z boson (mZ = 91.1875(21) GeV [289])
and the fine structure constant αem = 7.2973525664(17)× 10−3 [211, 294–296].

In our model, the relation between the Lagrangian values and the measurements of GF and mZ is
shifted with respect to the SM. While the effect in µ→ eνν̄ is analogous to the one in τ → µνν̄ discussed
above we have for the Z mass

m2
Z

m2
Z0

≈ 1− sin ξ2
m2

Z′
0

m2
Z0

, (5.14)

from Eqs. (5.4) and (5.6). However, since the Z mass is used as in input, this translates into a shift in
the W mass prediction of approximately

4Here we neglected semileptonic tau decays as well as other probes of LFUV in the charged current which are
not affected in the absence of quark coupling (see Ref. [287] for a recent review).
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m2
W

m2
W0

≈ 1 + sin ξ2
m2

Z′
0

m2
Z0

. (5.15)

Furthermore, both the Z −Z ′ mixing and Z ′ vertex corrections lead to modified Zℓℓ and Zνν couplings
(see Appendix F for details) which are included in the global EW fit.

The set of observables given in Appendix F are implemented in HEPfit [297] taking into account the
modifications induced by Eq. (5.14) and Eq. (F.4). In addition, the Higgs mass (mH = 125.16 ± 0.13
GeV [298, 299]), the top mass (mt = 172.80 ± 0.40 GeV [300–302]), the strong coupling constant
(αs(mZ) = 0.1181 ± 0.0011 [211]) and the hadronic contribution to the running of αem (∆αhad =
276.1(11)× 10−4 [211]) have been used as input parameters, since they enter EW observables indirectly
via loop effects.

5.2.5 Neutrino Trident Production
The production of a µ+µ− pair from the scattering of a muon-neutrino off the Coulomb field of a nucleus,
known as neutrino trident production, constitutes a sensitive probe of new neutral current interactions
in the lepton sector [233, 303]. Generalizing the formula of Ref. [303] we find

σSM+NP

σSM
= 1 + 8

gℓL22
g22

m2
W

m2
Z′

(
1 + 4s2W

) (
gℓL22 + gℓR22

)
+
(
gℓL22 − gℓR22

)
(1 + 4s2W )

2
+ 1

. (5.16)

This ratio is bounded by the weighted average

σexp
σSM

= 0.83± 0.18 , (5.17)

obtained from averaging the CHARM-II [304], CCFR [305] and NuTeV results [306].

5.2.6 Direct searches
LEP-II sets stringent bounds on 4-lepton operators from e+e− → ℓ+ℓ− (with ℓ = e, µ, τ) [288] for specific
chiralities. A general approach to derive the constraints for any Z ′ model is discussed in Refs. [307, 308]
which provides the formula used in our analysis. In the limit in which the only quark couplings of the
Z ′ are to b − s, LHC searches are not very constraining and assuming a lower limit of 2TeV is not in
conflict with ATLAS and CMS searches.

5.3 Phenomenology
Let us now study the combined phenomenological consequences of Z − Z ′ mixing in b→ sℓ+ℓ− and the
global EW fit. For this purpose we will focus on an illustrative simplified scenario for an SU(2)L singlet
Z ′. As discussed in the previous section, b → sℓ+ℓ− data motivates vectorial couplings to leptons, i.e.
gℓLii = gℓRii = gℓVii which also allow for simple configurations without gauge anomalies such as Lµ−Lτ [233,
242] or B3 − L2 [274]. We consider in this illustrative scenario only left-handed Z ′ − b− s couplings but
assume absence of sizable couplings to light quarks in order to avoid direct LHC searches. Note that such
a scenario could be generated in models with vector-like quarks [99, 233],. While these assumptions are
justified by the b→ sℓ+ℓ− fit, we will assume in addition gℓV11 = 0 and gℓV22 = −gℓV33 = g′, i.e. a Lµ = −Lτ

symmetry [309–311]. This does not only avoid the LEP II bounds on 4-lepton contact interactions but
also the effect of Z−Z ′ mixing in the total Z width will cancel to leading order such that in this scenario
the largest lepton couplings are possible (see Fig. 5.2) and τ → µνν receives the desired constructive
contribution via W − Z ′ box diagrams5.

Let us now consider the impact of Z − Z ′ mixing in this scenario. Notably, as discussed in the
introduction, the current experimental average for the mass of the W boson, mW = 80.379(12) GeV [312],
shows a 1.8σ discrepancy with the value predicted from the EW fit within the SM [282], before considering
the impact of the new CDF measurement discussed in Section 5.4. This prediction is changed in our

5Note, that our analysis would to a good approximation also apply to other scenarios, such as B3 − L2.
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Figure 5.2: Global fit to EW data, neutrino trident production, LEP bounds on 4-lepton contact inter-
actions and τ → µνν data with vectorial flavour diagonal couplings gLii = gRii = gVi . Here we marginalized
over the Z − Z ′ mixing angle ξ. The 68% and 95% confidence level regions are shown for a Z ′ mass of
2TeV. Note that a preference for the Lµ − Lτ scenario emerges.

model according to Eq. (5.15) such that one accounts for data with a non-zero mixing angle of | sin ξ| ≃
2.5× 10−3 1TeV

mZ′
, i.e. solving this tension.

Moving to the complete EW fit (including also LFUV in tau decays, LEP bounds on 4-lepton oper-
ators and neutrino trident production) we have mZ′ , g′ and sin ξ as free parameters. However, since all
expressions depend on g′2/m2

Z′ despite logarithmic terms we set mZ′ = 2TeV. The resulting preferred
regions from the EW fit and LFUV in tau decays are shown in Fig. 5.3. Now we include b → sℓ+ℓ−,
corresponding to the scenario {CV9µ, CU10 = −kCU9 }, as well as Bs− B̄s mixing. This introduces in addition
gdL23 as a free parameter. Marginalizing over gdL23 we find the 1σ and 2σ regions shown in blue in Fig. 5.3.
Note that all 1σ regions nicely overlap, showing that there is a preference for a non-zero Z − Z ′ mixing
angle which can account for the tension in the W mass prediction of the EW fit.

Observable Scenario 1 Experiment Pull
R

[1.1,6]
K+ +0.79± 0.01 +0.85± 0.04 −1.3

R
[1.1,6]

K0
S

+0.79± 0.01 +0.66± 0.20 +0.7

R
[1.1,6]
K∗0 +0.87± 0.08 +0.69± 0.12 +1.3

R
[0.045,6]
K∗+ +0.84± 0.04 +0.70± 0.18 +0.8

Q
[1.1,6]
5 +0.28± 0.02 +0.66± 0.50 −0.8
⟨P ′

5⟩[4,6] −0.57± 0.11 −0.44± 0.12 −0.8
⟨P ′

5⟩[6,8] −0.79± 0.11 −0.58± 0.09 −1.4
107 × B[4,6]

Bs→ϕµ+µ− +0.78± 0.15 +0.62± 0.06 +1.0

109 × BBs→µ+µ− +3.08± 0.14 +2.85± 0.34 +0.6

Table 5.2: Predictions for some of the most relevant observables in the b→ sℓ+ℓ− fit within the scenario
of Eq. (5.9). The pulls are given in units of standard deviations.
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Figure 5.3: Global fit EW precision observables, neutrino trident production, LEP bounds on 4-lepton
contact interactions and τ → µνν data (red) and b → sℓ+ℓ− data (blue) in the g′ - sin ξ plane for
mZ′

0
= 2TeV. One can see that both regions overlap nicely and that a non-zero value of the mixing angle

is preferred.

5.4 Implications of the new measurement of mW

Intriguingly, the CDF collaboration just released results [283] which point towards a W mass above the
SM expectation [312] with a significance of ≈ 7σ. Combining this new measurement with the existing ones
from the LHC [291–293, 313], one finds mW = (80.4133± 0.0080)GeV and mW = (80.413± 0.015)GeV,
where in the second formula the error has been inflated to reflect the tensions between the different
measurements. The SM prediction is given by mSM

W = (80.3499 ± 0.0056)GeV, and mSM
W = (80.3505 ±

0.0077) GeV for a conservative error estimate [314]. This corresponds to a 6.5σ and 3.7σ tension for the
standard and the conservative scenario, respectively.

In our model, the prediction for the W mass is modified according to Eq. (5.15).6 We updated
the phenomenological analysis for our SU(2)L singlet Z ′ with vectorial Lµ − Lτ [309–311] couplings to
leptons [233, 242] and left-handed Z ′ − b − s couplings to quarks while we assume absence of sizable
couplings to light quarks in order to avoid direct LHC searches.

Since the new experimental average for the mass of the W boson deviates from the SM prediction, a
non-zero Z − Z ′ mixing angle is now clearly preferred according to Eq. (5.15), i.e. | sin ξ| ≃ 3.5× 10−3 ×
1TeV/mZ′ . Once all EW data and LFUV in tau decays are included the central value of | sin ξ| gets
reduced to ≃ 1.0×10−3 and ≃ 0.85×10−3 for the 2 TeV and 3 TeV scenarios, respectively, as can be seen
in Fig. 5.4. The resulting confidence level regions from the EW fit and LFUV in tau decays are shown
in orange in Fig. 5.4. Importantly, the region preferred by the b → sℓ+ℓ− fit (blue), including Bs − B̄s

mixing, overlaps significantly with this region when marginalizing over gdL23 for mZ′ ≈ 2− 3 TeV.
In conclusion, the new measurement of the W mass by the CDF collaboration is consistent with

the expectations from a Z ′ explanation of the b → sℓ+ℓ− anomalies and strongly suggests that SU(2)L
breaking and the breaking of the new U(1)′ symmetry are linked. In this case, one predicts, in addition
to the direct LFUV contribution CV9µ, a sizable mixing induced lepton flavour universal contribution to
b → sℓ+ℓ− data with the structure CU10 = −CU9 /(1 − 4s2w). This pattern can be tested by forthcoming
measurement of LHCb, CMS and Belle II.

6In this context, Refs. [315–320] pointed out that a Z′ mixing with the SM Z can explain the CDF measurement.
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Figure 5.4: Global fit to EW precision observables, neutrino trident production, LEP bounds on 4-lepton
contact interactions and τ → µνν data (orange) and b → sℓ+ℓ− data (blue) in the g′ - sin ξ plane for
mZ′ = 2 TeV (left) and mZ′ = 3 TeV (right). One can see that both regions (nearly) overlap at the 1σ
level and that a non-zero Z −Z ′ value of the mixing angle, as preferred by the new world average for the
W mass, is compatible with b→ sℓ+ℓ− data.

5.5 Summary and Conclusions
In this chapter we systematically studied the impact of Z − Z ′ mixing on the global fit to b → sℓ+ℓ−

data and EW precision observables. Concerning the former, we observe that a LFU effect, mainly in C10,
is generated while in the latter the mixing leads to modified Z couplings and to an enhancement in the
predicted W mass w.r.t. the SM which improves the agreement with data. Therefore, while in previous
analyses in the literature the effect of Z − Z ′ mixing was usually assumed to be small and was therefore
neglected, we stress that the fit even prefers a small but non-zero value of the order of 10−3. Note that
this is in agreement with the expectation sin ξ ≈ g2g′m2

Z/M
2
Z′ for a TeV scale Z ′ with order one couplings

in case U(1)′ and EW symmetry breaking are related.
If b → sℓ+ℓ− data is in fact explained by a Z ′ with non-vanishing Z − Z ′ mixing, giving rise to a

scenario like {CV9µ , CU10 = −kCU9 }, one predicts a pattern for the main observables driving the anomaly as
shown in Table 5.2. We observe that all tensions with experiment reduce significantly below the 1.5σ level
in the scenario analyzed. Because b→ sℓ+ℓ− ratios testing LFUV depend naturally (and almost entirely)
on CV9µ and thus do not carry information on sin ξ, angular observables are necessary for a distinctive
study of Z ′ models. It will therefore be important to verify with more precise LHCb data together with
future Belle II analysis if this scenario gets reinforced.

Furthermore, the new measurement of the W mass by the CDF collaboration is consistent with the
expectations from a Z ′ explanation of the b→ sℓ+ℓ− anomalies and strongly suggests, through the need of
a non-zero Z−Z ′ mixing, that SU(2)L breaking and the breaking of the new U(1)′ symmetry are linked,
implying the existence of a field charged under both symmetries, which has important consequences for
model building.
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Conclusions and Outlook

In this Thesis we explored one of the most promising areas in Flavour Physics in regards to the possibility
of unveiling physics beyond the SM. After several years of experimental measurements indicating clear
tensions with respect to the SM predictions in different decays involving a b quark, it is of common belief
that the B sector offers a great window of insight into the properties of a new theory that supersedes
the SM. We mainly focused on the current status of the global analyses of the semileptonic b → sℓ+ℓ−

transitions but also the charged partner current b → cℓν. Furthermore, we provided interpretations for
the directions in the NP Wilson coefficient space that the experimental data seems to point to, which
may help setting the next steps in determining the underlying structure of NP.

For that reason, the goal of this Thesis is to provide the reader with the basic tools needed to
understand the whole framework that describes the B-anomalies, specially for the case of semileptonic
b → sℓ+ℓ− transitions as they are the channel showing the largest set of coherent deviations w.r.t. the
SM. Consequently, we devoted Chapter 1 to discuss the EFT framework used to describe the b→ sℓ+ℓ−

transitions and to present the latest, most updated global analysis concerning this type of B decays.
We found that some NP hypotheses reach high levels of significance of ∼ 7σ when compared to the
SM hypothesis. While this is a remarkable achievement in terms of building consensus towards the
need of a new, more general theory, it is clear that still more data is needed. For instance, there are
several NP scenarios with different implications for model building that can explain data with a very
similar statistical importance. Therefore, we need new modes and new observables to help us disentangle
between those preferred scenarios and hence further constrain the NP parameter space. In this direction,
the measurement of interesting observables that can act as a discriminator of models is fundamental,
as we showed with the key observable Q5, which together with more and more precise measurements of
other essential observables such as RK and RK∗ can ultimately provide us with a clear path towards the
right NP scenario.

Another important aspect that can supply new information is the inclusion of S-wave observables in
the analyses of the B → K∗(K+π−)ℓ+ℓ− decay. So far, given the poor theoretical knowledge on the
form factors of the Kπ system, this is treated as background in experimental analyses, and therefore
not included in phenomenological studies. We showed in Chapter 2 that using the symmetries of the
angular distribution of the decay we can define new P- and S-wave interference observables W1,2 that
give us access to additional information without having to rely on poorly known hadronic quantities by
expressing S-wave observables in terms of P-wave quantities. Moreover, the relations found between the
newly defined S-wave observables can be used as a crosscheck to validate the experimental methodology
applied in fits to data.

To close the first part of this Thesis, devoted to semileptonic B decays, we turned our focus to
the charged transition B → D∗ℓν in Chapter 3. Starting from the symmetries existing in the angular
distribution of this process, we established a set of robust relations between the angular coefficients.
These relations allowed us to define an alternative way of measuring the longitudinal polarisation FD∗

L

involving different angular coefficients, which can be useful in future measurements to better understand
the tension showed by the latest results from the Belle collaboration. On top of that, we also checked
that the binned version of the observables fulfill the symmetry relations to a good degree of accuracy and
tested their behaviour under the most relevant NP hypotheses from global fits.

The second main part of this Thesis shifted the attention towards a different mode of a b→ s decay
which does not involve leptons of any kind. Chapter 4 presents a study of the nonleptonic Bd,s →
K̄∗0K∗0 decays which exhibit a remarkable 2.6σ tension between the SM prediction and data on the
observable from a naive SU(3) estimate concerning the observable LK̄∗0K∗0 that compares the longitudinal
polarisation fractions involving a spectator s quark over a d quark in the parent B meson. We explored
the possibility to reduce the observed tension with a simplified NP model, even if the conclusion turned
out to be that a significant amount of fine tuning is required. However, we firmly believe that one should
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pursue the enterprise of determining the interplay between different b → s modes, as it is somewhat
natural to expect a common origin for the different anomalies involving a b-quark flavour.

In Part III we discussed a possible extension of the SM based on adding an extra gauge boson Z ′ that
mixes with the usual Z boson as a source for the NP contributions with the goal to explain the b→ sℓ+ℓ−

data as well as the EW precision observables. While the former see the tension with experiment reduced
below 1.5σ once contributions to CV9µ and CU10 are generated by the modified Z couplings, the latter
predicts an enhancement in the W mass compared to the SM value, which goes exactly in the direction
of the recent measurements of mW by the CDF collaboration, strengthening the hypothesis of a non-zero
Z − Z ′ mixing. If confirmed, this would imply, for instance, the breaking of the SU(2)L and U(1)′

symmetries, which has relevant consequences for model building.
In summary, we have discussed in this Thesis different sources of tensions with the Standard Model, as

well as novel ways to establish connections among them. However, we are certainly not at the end of the
road, as there are still issues that need a better understanding in order to set up a rock solid foundation
for future endeavours in the field of Flavour Physics. For instance, under the current criterium to claim a
discovery, we need to further refine the experimental precision, besides of course adding more statistics,
in order to reach the standard 5σ deviation in a single measurement. The one observable closest to this
milestone is RK , at 3.1σ, so there is still a gap to bridge in this regard. On the other hand, one could
argue that this particular indicator should be revised, given that we are studying a global set of indirect
measurements instead of a single one (like in the case of a resonance), and therefore we may already be
reaching a level of statistical significance to clearly discard the SM as a functional hypothesis to describe
the data collected.

On a different note, increased precision in experimental measurements should be matched by in-
creased precision in theoretical uncertainties. To achieve that, we can expect more precise theoretical
computations of the main source of uncertainties, the hadronic form factors. At a certain point Lattice
QCD techniques will be applied to extend ranges beyond the natural region of application (the low-recoil
region) thanks to more powerful computational tools. Moreover, new and improved computations of the
hadronic contributions that appear in the form of Light Cone Sum Rules and the parametrisation of the
challenging charm loop contributions will reduce the space for uncontrolled uncertainties, allowing us to
be even more certain of the underlying NP structure.

Finally, new analyses extending the scope to include CP-violating observables to constrain possi-
ble complex NP contributions should bring forth information that can provide a better handle on the
plethora of existing anomalies. Furthermore, we should expect that more attention is paid to the study
of potential connections between the B-anomalies and other flavour anomalies such as the anomalous
magnetic moment of the muon (g−2)µ or the Cabbibo Angle Anomaly, among others. Establishing links
between apparently unrelated tensions w.r.t. the SM can only help us further confirm the existence of a
coherent pattern of deviations and set up future guidelines to chase the ultimate goal we face as a physics
community, which is none other than to determine the essence of what lies beyond the Standard Model.
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Appendix A

Angular conventions

In this appendix we provide a dictionary between the different definitions of the angles θK∗ , θℓ and ϕ
used to describe the B → K∗ℓ+ℓ− decay distribution, as the standard theory conventions [9, 11, 12] differ
from the ones used by the experimental collaborations, in particular by LHCb [27].

The connection between LHCb convention and our definitions for the three angles θK∗ , θℓ and ϕ is
the following:

θLHCb
K∗ = θK∗ , θLHCb

ℓ = π − θℓ , ϕLHCb = −ϕ (A.1)

Therefore, concerning the definition of the optimized observables Pi in Eqs. (1.47), taking into ac-
count the different numerical factors LHCb uses to define these quantities from the whole differential
distribution, we obtain the following dictionary:

PLHCb
1 = P1, PLHCb

2 =− P2, PLHCb
3 = P3,

P ′LHCb
4 =− 1

2
P4, P ′LHCb

5 = P ′5, P ′LHCb
6 = P ′6, P ′LHCb

8 =− 1

2
P ′8.

(A.2)
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Appendix B

Predictions for the observables in the
Standard Model

We provide here the observables included in our Fits “All” (254 observables) and “LFUV” (24 observables,
replacing P ′4e,µ, P ′5e,µ by Q4, Q5, measured by Belle). In the following table, we provide all the observables
considered in both types of fits with the corresponding legend: no mark for observables for the fit “All”
only, ‡ for the fit “LFUV” only, and † for both fits “LFUV” and “All”. The theoretical predictions of the
observables in the SM as well as the individual tension with respect to the experimental value are also
provided.

Our angle convention and definition of the angular observables for the B → K∗ℓ+ℓ− decay differs
from the usual LHCb convention [26, 27]. We follow the conventions given in Ref. [22] and explicitly
detailed in Appendix A.

Standard Model Predictions

107 ×BR(B+ → K+µ+µ−)[LHCb] Standard Model Experiment [321] Pull

[0.1, 0.98] 0.32± 0.10 0.29± 0.02 +0.3
[1.1, 2] 0.33± 0.10 0.21± 0.02 +1.2
[2, 3] 0.37± 0.11 0.28± 0.02 +0.7
[3, 4] 0.36± 0.12 0.25± 0.02 +0.9
[4, 5] 0.36± 0.12 0.22± 0.02 +1.2
[5, 6] 0.36± 0.12 0.23± 0.02 +1.0
[6, 7] 0.36± 0.13 0.25± 0.02 +0.9
[7, 8] 0.36± 0.13 0.23± 0.02 +0.9
[15, 22] 1.02± 0.14 0.85± 0.05 +1.2

107 ×BR(B0 → K0µ+µ−)[LHCb] Standard Model Experiment [321] Pull

[0.1, 2] 0.65± 0.20 0.23± 0.11 +1.9
[2, 4] 0.68± 0.21 0.37± 0.11 +1.3
[4, 6] 0.67± 0.22 0.35± 0.10 +1.3
[6, 8] 0.66± 0.24 0.54± 0.12 +0.5

[15, 22] 0.94± 0.13 0.67± 0.12 +1.6

107 ×BR(B0 → K∗0µ+µ−)[LHCb] Standard Model Experiment [109] Pull

[0.1, 0.98] 0.92± 0.80 0.89± 0.09 +0.0
[1.1, 2.5] 0.56± 0.35 0.46± 0.06 +0.3
[2.5, 4] 0.58± 0.40 0.50± 0.06 +0.2
[4, 6] 0.91± 0.66 0.71± 0.07 +0.3
[6, 8] 1.12± 0.89 0.86± 0.08 +0.3

[15, 19] 2.50± 0.21 1.74± 0.14 +3.0

107 ×BR(B+ → K∗+µ+µ−)[LHCb] Standard Model Experiment [321] Pull

[0.1, 2] 1.40± 1.08 1.12± 0.27 +0.3
[2, 4] 0.84± 0.56 1.12± 0.32 −0.4
[4, 6] 0.99± 0.72 0.50± 0.20 +0.7
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[6, 8] 1.22± 0.96 0.66± 0.22 +0.6
[15, 19] 2.69± 0.23 1.60± 0.32 +2.8

107 ×BR(Bs → ϕµ+µ−)[LHCb] Standard Model Experiment [75] Pull

[0.1, 0.98] 1.06± 0.23 0.68± 0.06 +1.6
[1.1, 2.5] 0.71± 0.15 0.44± 0.05 +1.7
[2.5, 4] 0.71± 0.15 0.35± 0.04 +2.3
[4, 6] 1.04± 0.21 0.62± 0.06 +1.9
[6, 8] 1.21± 0.25 0.63± 0.06 +2.2
[15, 19] 2.29± 0.15 1.85± 0.13 +1.9

FL(B
0 → K∗0µ+µ−)[LHCb] Standard Model Experiment [110] Pull

[0.1, 0.98] 0.23± 0.24 0.26± 0.03 −0.1
[1.1, 2.5] 0.68± 0.26 0.66± 0.05 +0.1
[2.5, 4] 0.77± 0.23 0.76± 0.05 +0.0
[4, 6] 0.71± 0.28 0.68± 0.04 +0.1
[6, 8] 0.63± 0.32 0.65± 0.03 −0.0
[15, 19] 0.34± 0.03 0.35± 0.02 −0.1

P1(B
0 → K∗0µ+µ−)[LHCb] Standard Model Experiment [110] Pull

[0.1, 0.98] 0.03± 0.08 0.09± 0.12 −0.4
[1.1, 2.5] −0.00± 0.05 −0.62± 0.30 +2.0
[2.5, 4] 0.00± 0.06 0.17± 0.37 −0.4
[4, 6] 0.02± 0.12 0.09± 0.24 −0.2
[6, 8] 0.02± 0.13 −0.07± 0.21 +0.4
[15, 19] −0.64± 0.06 −0.58± 0.10 −0.6

P2(B
0 → K∗0µ+µ−)[LHCb] Standard Model Experiment [110] Pull

[0.1, 0.98] 0.12± 0.02 0.00± 0.04 +2.8
[1.1, 2.5] 0.44± 0.03 0.44± 0.10 −0.0
[2.5, 4] 0.23± 0.13 0.19± 0.12 +0.2
[4, 6] −0.19± 0.11 −0.11± 0.07 −0.6
[6, 8] −0.38± 0.07 −0.21± 0.05 −2.1
[15, 19] −0.36± 0.02 −0.36± 0.02 −0.1

P3(B
0 → K∗0µ+µ−)[LHCb] Standard Model Experiment [110] Pull

[0.1, 0.98] −0.00± 0.00 −0.07± 0.06 +1.3
[1.1, 2.5] 0.00± 0.00 −0.32± 0.15 +2.2
[2.5, 4] 0.00± 0.01 −0.05± 0.20 +0.3
[4, 6] 0.00± 0.01 0.09± 0.14 −0.6
[6, 8] 0.00± 0.00 0.07± 0.10 −0.6
[15, 19] 0.00± 0.02 −0.05± 0.05 +1.0

P ′4(B
0 → K∗0µ+µ−)[LHCb] Standard Model Experiment [110] Pull

[0.1, 0.98] −0.50± 0.16 −0.27± 0.24 −0.8
[1.1, 2.5] −0.07± 0.16 0.16± 0.29 −0.7
[2.5, 4] 0.53± 0.21 0.87± 0.35 −0.9
[4, 6] 0.82± 0.15 0.62± 0.23 +0.7
[6, 8] 0.93± 0.11 1.15± 0.19 −1.0
[15, 19] 1.28± 0.02 1.28± 0.12 +0.0

P ′5(B
0 → K∗0µ+µ−)[LHCb] Standard Model Experiment [110] Pull

[0.1, 0.98] 0.67± 0.13 0.52± 0.10 +0.9
[1.1, 2.5] 0.19± 0.11 0.37± 0.12 −1.0
[2.5, 4] −0.47± 0.12 −0.15± 0.15 −1.7
[4, 6] −0.82± 0.08 −0.44± 0.12 −2.7
[6, 8] −0.94± 0.08 −0.58± 0.09 −2.9
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[15, 19] −0.57± 0.05 −0.67± 0.06 +1.2

P ′6(B
0 → K∗0µ+µ−)[LHCb] Standard Model Experiment [110] Pull

[0.1, 0.98] −0.06± 0.02 0.02± 0.09 −0.7
[1.1, 2.5] −0.07± 0.03 −0.23± 0.13 +1.2
[2.5, 4] −0.06± 0.03 −0.16± 0.15 +0.6
[4, 6] −0.04± 0.02 −0.29± 0.12 +2.2
[6, 8] −0.02± 0.01 −0.16± 0.10 +1.4

[15, 19] −0.00± 0.07 0.07± 0.07 −0.8
P ′8(B

0 → K∗0µ+µ−)[LHCb] Standard Model Experiment [110] Pull

[0.1, 0.98] 0.02± 0.02 0.01± 0.24 +0.0
[1.1, 2.5] 0.04± 0.03 0.73± 0.32 −2.2
[2.5, 4] 0.05± 0.03 −0.07± 0.34 +0.4
[4, 6] 0.03± 0.02 −0.33± 0.25 +1.4
[6, 8] 0.02± 0.01 0.26± 0.20 −1.2

[15, 19] −0.00± 0.03 −0.02± 0.14 +0.2

FL(B
+ → K∗+µ+µ−)[LHCb] Standard Model Experiment [69] Pull

[0.1, 0.98] 0.23± 0.24 0.34± 0.12 −0.4
[1.1, 2.5] 0.68± 0.26 0.54± 0.19 +0.5
[2.5, 4] 0.77± 0.23 0.17± 0.24 +1.8
[4, 6] 0.71± 0.28 0.67± 0.14 +0.1
[6, 8] 0.63± 0.32 0.39± 0.21 +0.6

[15, 19] 0.34± 0.03 0.40± 0.13 −0.4
P1(B

+ → K∗+µ+µ−)[LHCb] Standard Model Experiment [69] Pull

[0.1, 0.98] 0.03± 0.08 0.44± 0.41 −1.0
[1.1, 2.5] −0.00± 0.05 1.60± 4.93 −0.3
[2.5, 4] 0.00± 0.06 −0.29± 1.45 +0.2
[4, 6] 0.02± 0.12 −1.24± 1.21 +1.0
[6, 8] 0.02± 0.13 −0.78± 0.70 +1.1

[15, 19] −0.64± 0.06 −0.70± 0.44 +0.1

P2(B
+ → K∗+µ+µ−)[LHCb] Standard Model Experiment [69] Pull

[0.1, 0.98] 0.12± 0.02 0.05± 0.12 +0.6
[1.1, 2.5] 0.44± 0.03 0.28± 0.45 +0.4
[2.5, 4] 0.23± 0.13 −0.03± 0.28 +0.8
[4, 6] −0.19± 0.11 0.15± 0.21 −1.5
[6, 8] −0.38± 0.07 0.06± 0.14 −2.9

[15, 19] −0.36± 0.02 −0.34± 0.10 −0.2
P3(B

+ → K∗+µ+µ−)[LHCb] Standard Model Experiment [69] Pull

[0.1, 0.98] −0.00± 0.00 0.42± 0.22 −2.0
[1.1, 2.5] 0.00± 0.00 0.09± 1.01 −0.1
[2.5, 4] 0.00± 0.01 0.45± 0.65 −0.7
[4, 6] 0.00± 0.01 0.52± 0.83 −0.6
[6, 8] 0.00± 0.00 −0.17± 0.34 +0.5
[15, 19] 0.00± 0.02 0.07± 0.13 −0.5

P ′4(B
+ → K∗+µ+µ−)[LHCb] Standard Model Experiment [69] Pull

[0.1, 0.98] −0.50± 0.16 0.18± 0.76 −0.8
[1.1, 2.5] −0.07± 0.16 −1.16± 1.26 +0.9
[2.5, 4] 0.53± 0.21 1.62± 2.20 −0.5
[4, 6] 0.82± 0.15 1.58± 0.96 −0.8
[6, 8] 0.93± 0.11 0.86± 0.91 +0.1
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[15, 19] 1.28± 0.02 0.78± 0.47 +1.1

P ′5(B
+ → K∗+µ+µ−)[LHCb] Standard Model Experiment [69] Pull

[0.1, 0.98] 0.67± 0.13 0.51± 0.32 +0.5
[1.1, 2.5] 0.19± 0.11 0.88± 0.72 −1.0
[2.5, 4] −0.47± 0.12 −0.87± 1.68 +0.2
[4, 6] −0.82± 0.08 −0.25± 0.41 −1.4
[6, 8] −0.94± 0.08 −0.15± 0.41 −1.9
[15, 19] −0.57± 0.05 −0.24± 0.17 −1.9

P ′6(B
+ → K∗+µ+µ−)[LHCb] Standard Model Experiment [69] Pull

[0.1, 0.98] −0.06± 0.02 −0.02± 0.40 −0.1
[1.1, 2.5] −0.07± 0.03 0.25± 1.32 −0.2
[2.5, 4] −0.06± 0.03 −0.37± 3.91 +0.1
[4, 6] −0.04± 0.02 −0.09± 0.41 +0.1
[6, 8] −0.02± 0.01 −0.74± 0.40 +1.8
[15, 19] −0.00± 0.07 −0.28± 0.19 +1.4

P ′8(B
+ → K∗+µ+µ−)[LHCb] Standard Model Experiment [69] Pull

[0.1, 0.98] 0.02± 0.02 −0.90± 1.02 +1.0
[1.1, 2.5] 0.04± 0.03 −0.24± 1.52 +0.2
[2.5, 4] 0.05± 0.03 −0.24± 15.80 +0.0
[4, 6] 0.03± 0.02 0.30± 0.97 −0.3
[6, 8] 0.02± 0.01 0.78± 0.78 −1.0
[15, 19] −0.00± 0.03 0.22± 0.38 −0.6

P1(Bs → ϕµ+µ−)[LHCb] Standard Model Experiment [74] Pull

[0.1, 0.98] 0.11± 0.08 −0.01± 0.19 +0.6
[1.1, 4] 0.01± 0.06 −0.22± 0.42 +0.5
[4, 6] −0.17± 0.11 −1.09± 0.47 +1.9
[6, 8] −0.21± 0.11 0.07± 0.43 −0.6

[15, 18.9] −0.69± 0.03 −0.77± 0.14 +0.6

P ′4(Bs → ϕµ+µ−)[LHCb] Standard Model Experiment [74] Pull

[0.1, 0.98] −0.45± 0.15 −0.98± 0.38 +1.3
[1.1, 4] 0.44± 0.15 0.49± 0.35 −0.1
[4, 6] 1.01± 0.08 0.97± 0.41 +0.1
[6, 8] 1.08± 0.06 0.73± 0.32 +1.1

[15, 18.9] 1.30± 0.01 0.87± 0.20 +2.2

P ′6(Bs → ϕµ+µ−)[LHCb] Standard Model Experiment [74] Pull

[0.1, 0.98] −0.07± 0.02 −0.41± 0.16 +2.1
[1.1, 4] −0.07± 0.02 −0.23± 0.17 +0.9
[4, 6] −0.03± 0.01 0.38± 0.20 −2.1
[6, 8] −0.02± 0.01 0.07± 0.17 −0.5

[15, 18.9] −0.00± 0.07 0.01± 0.10 −0.1
FL(Bs → ϕµ+µ−)[LHCb] Standard Model Experiment [74] Pull

[0.1, 0.98] 0.28± 0.09 0.25± 0.05 +0.3
[1.1, 4] 0.77± 0.05 0.72± 0.06 +0.6
[4, 6] 0.71± 0.05 0.70± 0.05 +0.1
[6, 8] 0.60± 0.06 0.62± 0.05 −0.3

[15, 18.9] 0.36± 0.02 0.36± 0.04 −0.1
B0 → K∗0e+e−[LHCb] Standard Model Experiment [322] Pull

FL[0.008, 0.257] 0.03± 0.06 0.04± 0.03 −0.2
P1[0.008, 0.257] 0.03± 0.08 0.11± 0.10 −0.6
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P2[0.008, 0.257] 0.01± 0.00 0.03± 0.04 −0.5

RK+ [LHCb]† Standard Model Experiment [63] Pull

[1.1, 6.0] 1.00± 0.01 0.85± 0.04 +3.4

RK0 [LHCb]† Standard Model Experiment [52] Pull

[1.1, 6.0] 1.00± 0.01 0.66± 0.20 +1.7

RK [Belle]† Standard Model Experiment [323] Pull

[1.0, 6.0] 1.00± 0.01 1.03± 0.28 −0.1
[14.18, 22.90] 1.00± 0.01 1.16± 0.30 −0.6

RK∗0 [LHCb]† Standard Model Experiment [324] Pull

[0.045, 1.1] 0.91± 0.02 0.66± 0.11 +2.2
[1.1, 6.0] 1.00± 0.01 0.69± 0.12 +2.6

RK∗+ [LHCb]† Standard Model Experiment [52] Pull

[0.045, 6.0] 0.93± 0.05 0.70± 0.18 +1.2

RK∗ [Belle]† Standard Model Experiment [325] Pull

[0.045, 1.1] 0.92± 0.02 0.52± 0.36 +1.1
[1.1, 6.0] 1.00± 0.01 0.96± 0.46 +0.1
[15, 19] 1.00± 0.00 1.18± 0.53 −0.5

P ′4(B → K∗e+e−)[Belle] Standard Model Experiment [50] Pull

[0.1, 4] −0.09± 0.15 −0.68± 0.93 +0.6
[4, 8] 0.88± 0.13 1.04± 0.48 −0.3

[14.18, 19] 1.26± 0.03 0.30± 0.82 +1.2

P ′4(B → K∗µ+µ−)[Belle] Standard Model Experiment [50] Pull

[0.1, 4] −0.06± 0.16 0.76± 1.03 −0.8
[4, 8] 0.88± 0.13 0.14± 0.66 +1.1

[14.18, 19] 1.26± 0.03 0.20± 0.79 +1.3

P ′5(B → K∗e+e−)[Belle] Standard Model Experiment [50] Pull

[0.1, 4] 0.18± 0.09 0.51± 0.47 −0.7
[4, 8] −0.88± 0.07 −0.52± 0.28 −1.3

[14.18, 19] −0.60± 0.05 −0.91± 0.36 +0.9

P ′5(B → K∗µ+µ−)[Belle] Standard Model Experiment [50] Pull

[0.1, 4] 0.17± 0.10 0.42± 0.41 −0.6
[4, 8] −0.89± 0.07 −0.03± 0.32 −2.7

[14.18, 19] −0.60± 0.05 −0.13± 0.39 −1.3

Q4(B → K∗)[Belle]‡ Standard Model Experiment [50] Pull

[0.1, 4] 0.03± 0.01 1.45± 1.39 −1.0
[4, 8] 0.00± 0.01 −0.90± 0.80 +1.1

[14.18, 19] 0.00± 0.01 −0.08± 1.14 +0.1

Q5(B → K∗)[Belle]‡ Standard Model Experiment [50] Pull

[0.1, 4] −0.02± 0.01 −0.10± 0.62 +0.1
[4, 8] −0.00± 0.01 0.50± 0.42 −1.2

[14.18, 19] −0.00± 0.01 0.78± 0.51 −1.5
107 ×BR(B+ → K+µ+µ−)[Belle] Standard Model Experiment [323] Pull

[1, 6] 1.82± 0.58 2.30± 0.40 −0.7
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[14.18, 22.9] 1.23± 0.17 1.34± 0.23 −0.4
107 ×BR(B0 → K0µ+µ−)[Belle] Standard Model Experiment [323] Pull

[1, 6] 1.69± 0.54 0.62± 0.38 +1.6
[14.18, 22.9] 1.14± 0.15 0.98± 0.40 +0.4

FL(B
0 → K∗0µ+µ−)[ATLAS] Standard Model Experiment [326] Pull

[0.04, 2] 0.36± 0.30 0.44± 0.11 −0.3
[2, 4] 0.76± 0.23 0.64± 0.12 +0.5
[4, 6] 0.71± 0.28 0.42± 0.18 +0.9

P1(B
0 → K∗0µ+µ−)[ATLAS] Standard Model Experiment [326] Pull

[0.04, 2] 0.02± 0.07 −0.05± 0.31 +0.2
[2, 4] −0.00± 0.05 −0.78± 0.61 +1.3
[4, 6] 0.02± 0.12 0.14± 0.50 −0.2

P ′4(B
0 → K∗0µ+µ−)[ATLAS] Standard Model Experiment [326] Pull

[0.04, 2] −0.35± 0.14 −0.62± 0.89 +0.3
[2, 4] 0.43± 0.21 1.52± 0.75 −1.4
[4, 6] 0.82± 0.15 −1.28± 0.75 +2.7

P ′5(B
0 → K∗0µ+µ−)[ATLAS] Standard Model Experiment [326] Pull

[0.04, 2] 0.50± 0.10 0.67± 0.31 −0.5
[2, 4] −0.36± 0.12 −0.33± 0.34 −0.1
[4, 6] −0.82± 0.08 0.26± 0.39 −2.7

P ′6(B
0 → K∗0µ+µ−)[ATLAS] Standard Model Experiment [326] Pull

[0.04, 2] −0.06± 0.02 −0.18± 0.21 +0.6
[2, 4] −0.06± 0.03 0.31± 0.34 −1.1
[4, 6] −0.04± 0.02 0.06± 0.30 −0.3

P ′8(B
0 → K∗0µ+µ−)[ATLAS] Standard Model Experiment [326] Pull

[0.04, 2] 0.03± 0.02 0.58± 1.03 −0.5
[2, 4] 0.05± 0.03 −2.14± 1.13 +1.9
[4, 6] 0.03± 0.02 0.48± 0.86 −0.5

P1(B
0 → K∗0µ+µ−)[CMS 8 TeV] Standard Model Experiment [327] Pull

[1, 2] 0.00± 0.06 0.12± 0.48 −0.2
[2, 4.3] 0.00± 0.05 −0.69± 0.62 +1.1
[4.3, 6] 0.03± 0.12 0.53± 0.38 −1.3
[6, 8.68] 0.02± 0.14 −0.47± 0.31 +1.4
[16, 19] −0.70± 0.05 −0.53± 0.25 −0.7

P ′5(B
0 → K∗0µ+µ−)[CMS 8 TeV] Standard Model Experiment [327] Pull

[1, 2] 0.33± 0.11 0.10± 0.33 +0.7
[2, 4.3] −0.41± 0.12 −0.57± 0.38 +0.4
[4.3, 6] −0.84± 0.08 −0.96± 0.33 +0.4
[6, 8.68] −0.95± 0.08 −0.64± 0.23 −1.3
[16, 19] −0.53± 0.04 −0.56± 0.14 +0.2

FL(B
0 → K∗0µ+µ−)[CMS 8 TeV] Standard Model Experiment [328] Pull

[1, 2] 0.63± 0.28 0.64± 0.12 −0.0
[2, 4.3] 0.76± 0.23 0.80± 0.10 −0.2
[4.3, 6] 0.71± 0.28 0.62± 0.12 +0.3
[6, 8.68] 0.62± 0.32 0.50± 0.08 +0.3
[16, 19] 0.34± 0.03 0.38± 0.07 −0.6
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AFB(B
0 → K∗0µ+µ−)[CMS 8 TeV] Standard Model Experiment [328] Pull

[1, 2] −0.20± 0.18 −0.27± 0.41 +0.3
[2, 4.3] −0.08± 0.08 −0.12± 0.18 +0.2
[4.3, 6] 0.09± 0.11 0.01± 0.15 +0.4
[6, 8.68] 0.22± 0.21 0.03± 0.10 +0.8
[16, 19] 0.34± 0.03 0.35± 0.07 −0.2

107 ×BR(B0 → K∗0µ+µ−)[CMS 8 TeV] Standard Model Experiment [328] Pull

[1, 2] 0.42± 0.26 0.46± 0.08 −0.1
[2, 4.3] 0.89± 0.61 0.76± 0.12 +0.2
[4.3, 6] 0.78± 0.58 0.58± 0.10 +0.4
[6, 8.68] 1.57± 1.25 1.26± 0.13 +0.2
[16, 19] 1.73± 0.14 1.26± 0.13 +2.5

FH(B+ → K+µ+µ−)[CMS 8 TeV] Standard Model Experiment [329] Pull

[1, 2] 0.05± 0.00 0.21± 0.49 −0.4
[2, 4.3] 0.02± 0.00 0.85± 0.37 −2.4

[4.3, 8.68] 0.01± 0.00 0.01± 0.04 +0.0
[16, 18] 0.01± 0.00 0.07± 0.10 −0.6
[18, 22] 0.01± 0.00 0.10± 0.13 −0.7

AFB(B
+ → K+µ+µ−)[CMS 8 TeV] Standard Model Experiment [329] Pull

[1, 2] 0± 0.00 0.08± 0.23 −0.4
[2, 4.3] 0± 0.00 −0.04± 0.14 +0.3

[4.3, 8.68] 0± 0.00 0.00± 0.04 +0.0
[16, 18] 0± 0.00 0.04± 0.06 −0.8
[18, 22] 0± 0.00 0.05± 0.05 −1.1

FL(B
+ → K∗+µ+µ−)[CMS 8 TeV] Standard Model Experiment [70] Pull

[1, 8.68] 0.67± 0.29 0.60± 0.34 +0.2
[14.18, 19] 0.35± 0.04 0.55± 0.14 −1.7

AFB(B
+ → K∗+µ+µ−)[CMS 8 TeV] Standard Model Experiment [70] Pull

[1, 8.68] 0.08± 0.09 −0.14± 0.39 +0.6
[14.18, 19] 0.37± 0.03 0.33± 0.12 +0.3

FL(B
0 → K∗0µ+µ−)[CMS 7 TeV] Standard Model Experiment [330] Pull

[1, 2] 0.63± 0.28 0.60± 0.34 +0.1
[2, 4.3] 0.76± 0.23 0.65± 0.17 +0.4

[4.3, 8.68] 0.65± 0.31 0.81± 0.14 −0.5
[16, 19] 0.34± 0.03 0.44± 0.08 −1.3

AFB(B
0 → K∗0µ+µ−)[CMS 7 TeV] Standard Model Experiment [330] Pull

[1, 2] −0.20± 0.18 −0.29± 0.41 +0.2
[2, 4.3] −0.08± 0.08 −0.07± 0.20 −0.0

[4.3, 8.68] 0.18± 0.18 −0.01± 0.11 +0.9
[16, 19] 0.34± 0.03 0.41± 0.06 −1.1

107 ×BR(B0 → K∗0µ+µ−)[CMS 7 TeV] Standard Model Experiment [330] Pull

[1, 2] 0.42± 0.26 0.48± 0.15 −0.2
[2, 4.3] 0.89± 0.61 0.87± 0.18 +0.0

[4.3, 8.68] 2.35± 1.82 1.62± 0.35 +0.4
[16, 19] 1.73± 0.14 1.56± 0.23 +0.6

105 ×BR(B0 → K∗0γ)[PDG]† Standard Model Experiment [312] Pull
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4.57± 5.27 4.18± 0.25 +0.1

105 ×BR(B+ → K∗+γ)[PDG]† Standard Model Experiment [312] Pull

4.61± 5.49 3.92± 0.22 +0.1

105 ×BR(Bs → ϕγ)[PDG]† Standard Model Experiment [312] Pull

4.86± 1.35 3.40± 0.40 +1.0

104 ×BR(B → Xsγ)[HFLAV]† Standard Model [209] Experiment [100] Pull

3.32± 0.15 3.40± 0.17 −0.4

S(B → K∗γ)[BaBar+Belle]† Standard Model [25] Experiment [100] Pull

−0.03± 0.01 −0.16± 0.22 +0.6

AI(B → K∗γ)[BaBar+Belle]† Standard Model [25] Experiment [100] Pull

0.041± 0.025 0.063± 0.017 −0.7

109 ×BR(Bs → µ+µ−)[LHCb+CMS+ATLAS]† Standard Model [48] Experiment [68] Pull

3.64± 0.14 2.85± 0.34 +2.2

106 ×BR(B → Xsµ
+µ−)[BaBar]† Standard Model [331] Experiment [332] Pull

[1, 6] 1.73± 0.13 0.66± 0.88 +1.2

106 ×BR(B → Xse
+e−)[BaBar]† Standard Model [331] Experiment [332] Pull

[1, 6] 1.78± 0.13 1.93± 0.55 −0.3
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Appendix C

The 7th massive relation

In this Appendix we will provide the necessary steps to determine the last of the relations described in
Chapter 2. This relation vanishes in the massless limit and is particularly lengthy. For both reasons,
specially the latter, is of limited practical use. Therefore we will present here the steps to derive this
relation but will not write it out explicitly. The derivation is based on five steps:

Step 1: Our starting point will be a particular combination of the 2D vectors that will allow us to
introduce the structure of the observable M1 for the first time.

(n†∥nS + n†∥n
′
S)× (n†∥nS − n

†
∥n
′
S)

+ (n†⊥nS + n†⊥n
′
S)× (n†⊥n

′
S − n†⊥nS) = +4(AL∗

∥ A
R
∥ +AL∗

⊥ A
R
⊥)A

′L
0 A
′R∗
0 (C.1)

In order to avoid repeating the coefficient 4m2
ℓ/q

2 of M1, we introduce a reduced version, that we
will call m1 defined by

m1 =
q2

4m2
ℓβ

2
ℓ

(β2
ℓ J1s − (2 + β2

ℓ )J2s) = Re(AL
⊥A

R∗
⊥ +AL

∥A
R∗
∥ ) . (C.2)

We will use the freedom given by the symmetry (see section 2.2) to choose the phase such that A′L0
has only a real component. Then we solve Eq. (C.1) for m1 and its imaginary counterpart:

m1 =
−b Im[A′R0 ] + aRe[A′R0 ]

4|A′R0 |2Re[A′L0 ]
(C.3)

Im[AL∗
∥ A

R
∥ +AL∗

⊥ A
R
⊥] =

a Im[A′R0 ] + bRe[A′R0 ]

4|A′R0 |2Re[A′L0 ]
(C.4)

where

a = +
1

6β4

(
4Γ′

3

)2 (
−β2[(Si

S3)
2
+ (Sr

S3)
2
+ (Si

S4)
2
+ (Sr

S4)
2
]

+ 4[(Si
S2)

2
+ (Sr

S2)
2
+ (Si

S5)
2
+ (Sr

S5)
2
]
)

b = +
2

3β3

(
4Γ′

3

)2 (
Sr
S2S

i
S4 − Si

S2S
r
S4 − Sr

S3S
i
S5 + Si

S3S
r
S5

)
(C.5)

Step 2: Using n0 = enS + fn′S and multiplying this equation by σ.nS , σ.n′S and σ.n0, where σ =

((0, 1), (1, 0)) one can show that all terms A(′)L
0 A

(′)R
0 can be written in terms of A′L0 A′R∗0 .

AL
0A
′R∗
0 +A′L0 A

R∗
0 = 2eA′L0 A

′R∗
0

−AL
0A
′R∗
0 +A′L0 A

R∗
0 = −2fA′L0 A′R∗0

AL
0A

R∗
0 = (e2 − f2)A′L0 A′R∗0 (C.6)
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where

e =
(n†∥n

′
S)(n

†
⊥n0)− (n†∥n0)(n

†
⊥n
′
S)

(n†∥n
′
S)(n

†
⊥nS)− (n†∥nS)(n

†
⊥n
′
S)

f =
(n†∥nS)(n

†
⊥n0)− (n†∥n0)(n

†
⊥nS)

(n†∥nS)(n
†
⊥n
′
S)− (n†∥n

′
S)(n

†
⊥nS)

(C.7)

Both coefficients e and f can be trivially rewritten in terms of P- and S-wave observables, as in Eq. (C.5).
Step 3: We define a set of reduced observables related to the corresponding remaining massive

observables:

m2 = |At|2 + 2Re(AL
0A

R∗
0 )

m′3 = |A′t|2 + 2Re(A′L0 A
′R∗
0 )

m′4 = Re(A′tA
∗
t ) + Re(A′L0 A

R∗
0 +AL

0A
′R∗
0 )

m′5 = Im(A′tA
∗
t ) + Im(A′L0 A

R∗
0 +AL

0A
′R∗
0 ) (C.8)

We can combine them in one single equation cancelling the dependence on A(′)
t :

(m2 − 2Re[AL
0A

R∗
0 ])(m′3 − 2Re[A′L0 A

′R∗
0 ]) = + (m′4 − Re[AL

0A
′R∗
0 +A′L0 A

R∗
0 ])2

+ (m′5 − Im[AL
0A
′R∗
0 +A′L0 A

R∗
0 ])2 (C.9)

and using Eqs.(C.6) we can rewrite this equation in terms of only A′L0 A′R∗0 :

(m2 − 2Re[(e2 − f2)A′L0 A′R∗0 ])(m′3 − 2Re[A′L0 A
′R∗
0 ]) = + (m′4 − Re[2eA′L0 A

′R∗
0 ])2

+ (m′5 − Im[2eA′L0 A
′R∗
0 ])2 , (C.10)

giving the desired relation but involving A′L0 and A′R0 amplitudes that still need to be expressed in terms
of observables.

Step 4: Using the decomposition n⊥ = gnS + hn′S and after determining g and h by multiplying by
n⊥ and n∥, we find the following relation:

(h∗2 − g∗2)n′S
†
nS = h∗n†⊥nS − g∗n

†
⊥n
′
S , (C.11)

where

g =
|n⊥|2(n†∥n′S)− (n†∥n⊥)(n

†
⊥n
′
S)

(n†∥n
′
S)(n

†
⊥nS)− (n†∥nS)(n

†
⊥n
′
S)
,

h =
|n⊥|2(n†∥nS)− (n†∥n⊥)(n

†
⊥nS)

(n†∥nS)(n
†
⊥n
′
S)− (n†∥n

′
S)(n

†
⊥nS)

. (C.12)

Then combining the previous equation with the observable FS , one can determine |A′L0 |2 and |A′R0 |2
(remember that AL′

0 is taken to be real using the symmetry properties) by solving the system:

|A′L0 |2 − |A′R0 |2 =
h∗n†⊥nS − g∗n

†
⊥n
′
S

h∗2 − g∗2 = ∆ , (C.13)

|A′L0 |2 + |A′R0 |2 ≡ FSΓ
′. (C.14)

Now we have all the necessary ingredients to arrive at the relation. If we define

x = Re[A′L0 ]Re[A′R0 ] ,

y = Re[A′L0 ]Im[A′R0 ] , (C.15)
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we have two equations in terms of x and y (using Eq. (C.3) and Eqs. (C.13) and (C.14)):

m1 =
−by + ax

4(x2 + y2)

x2 + y2 =
1

4

(
(FSΓ

′)2 −∆2
)

(C.16)

These two equations can be solved to determine x and y in terms of observables.
Step 5: Finally, the last step consists of trivially expressing A′L0 , A′R0 in Eq. (C.10) in terms of x and

y (all other quantities like the mi and the coefficients e and f are already direct functions of observables).
Then after solving the system for x and y using Eq. (C.16) insert the result in Eq. (C.10) to get a final
lengthly expression written entirely in terms of observables.

Notice that in order to relate the reduced observables to the measured massive observables M1,2,3′,4′,5′

one needs to multiply the previous relations involving the mi’s on both sides by factors of 4m2
ℓ/q

2. For
this reason in particular Eq. (C.10) vanishes exactly in the massless limit.
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Appendix D

A hitchhiker’s guide to the symmetry
relations in B → D∗ℓν

This appendix details the steps needed to derive the relations among observables of the transition B →
D∗ℓν discussed in Chapter 3, as well as the effect of binning the polarisation fraction F̃D∗

T under different
relevant NP scenarios.

D.1 Massive relations among angular coefficients of B → D∗ℓν

Below we describe the methodology followed and the full expressions of the dependencies among the
angular coefficients in the massive case with no tensor contributions. It is useful to define the following
four combinations in order to obtain compact expressions:

Rs,d = Re(H+)± Re(H−) , Is,d = Im(H+)± Im(H−) (D.1)

One can solve the system of equations in terms of the variables defined above and find a twofold
solution:

Rs =
1

H0

I4q
2

q2 −m2
ℓ

(D.2)

Id =
1

H0

I8q
2

q2 −m2
ℓ

(D.3)

Rd = (−1)n q2
(
I4I8q

2 +H2
0I9(q

2 −m2
ℓ)
)√

H2
0 (q

2 −m2
ℓ)

2
√
−I24q4 +H2

0 (m
2
ℓ − q2)

[
(|H−|2 + |H+|2)(m2

ℓ − q2) + I3q2)
] (D.4)

Is = (−1)n
√
−I24q4 +H2

0 (m
2
ℓ − q2)

[
(|H−|2 + |H+|2)(m2

ℓ − q2) + I3q2)
]√

H2
0 (q

2 −m2
ℓ)

2
(D.5)

with n = 0, 1. However, this sign ambiguity product of the twofold nature of the solution can be fixed,
since physical combinations prevent interference terms that could be problematic. This set of solutions
can be used to determine the square of the four amplitudes once H0 is fixed to be real and positive
through the symmetry of the angular distribution. One can also rewrite the real and imaginary parts of
Ht in terms of the variables in Eq. (D.1) and H0:

Re(Ht) = −q
2
[
I7 Is + I5Rd − 2H0(I

2
s +R2

d)
]

2m2
ℓ (IdIs +RsRd)

(D.6)

Im(Ht) =
q2 [−I5Id + I7Rs + 2H0(IdRd −RsIs)]

2m2
ℓ (IdIs +RsRd)

(D.7)

With these definitions, one can find the whole set of dependencies among angular coefficients. Besides the
trivial dependency Eq. (3.57), there are four more relations which are obtained by taking combinations
of the modulus of H+, H− and Re(Ht), Im(Ht).
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The first non-trivial relation can be derived from the sum |H+|2 + |H−|2:

0 =
m2

ℓ − q2
2a

{
− 4I21sI2c(m

2
ℓ − q2)2 + 4I1s(I

2
4 + I28 )(m

2
ℓ − q2)(m2

ℓ + 3q2)

+
[
−2I3I24 + 2I3I

2
8 − 4I4I8I9 + I2c(I

2
3 + I29 )

]
(m2

ℓ + 3q2)2
}

(D.8)

where
a = (m2

ℓ − q2)2(m2
ℓ + 3q2)

[
2I1sI2c(m

2
ℓ − q2) + (I2cI3 − 2I24 )(m

2
ℓ + 3q2)

]
(D.9)

From |H+|2|H−|2 one can obtain the second dependency:

0 = −I23 − I29 +

(
1− m2

ℓ

q2

)2
[(

2I1s
3 +m2

ℓ/q
2

)2

− I26s
4

]
(D.10)

The third one follows from [Re(Ht)]
2:

0 =
8q4

a

[
2I1sI2cI7(m

2
ℓ − q2) + (I2cI3I7 − 2I24I7 + 2I4I5I8 − I2cI5I9)(m2

ℓ + 3q2)

]2
−

[
I6sI6c

2
− 4q4

a

(
4I21sI

2
2c(m

2
ℓ − q2)2 + 4I1sI2c(I2cI3 − 2I24 )(m

2
ℓ − q2)(m2

ℓ + 3q2)

+ (4I24 (I
2
4 + I28 )− 4I2cI4(I3I4 + I8I9) + I22c(I

2
3 + I29 ))(m

2
ℓ + 3q2)2

)]2
(D.11)

with a defined in Eq. (D.9).
Finally, the last dependency is related to [Im(Ht)]

2:

0 = 256I26s(I4I7 − I5I8)2(m2
ℓ − q2)4q12

×
[
I26c(m

2
ℓ − q2)2 + 8I1cI2cm

2
ℓ(−m2

ℓ + q2) + 8I22cm
2
ℓ(m

2
ℓ + q2)

]
+
[
64b− 64(I4I7 − I5I8)2(m2

ℓ − q2)2q8 + I26s(m
2
ℓ − q2)2q4(I26c(m2

ℓ − q2)2

+8I1cI2cm
2
ℓ(−m2

ℓ + q2) + 8I22cm
2
ℓ(m

2
ℓ + q2))

]2 (D.12)

with

b =
2q12(2I1sI2cI4(m

2
ℓ − q2) + (−2I4(I24 + I28 ) + I2c(I3I4 + I8I9))(m

2
ℓ + 3q2))2

(m2
ℓ + 3q2)(2I1sI2c(m2

ℓ − q2) + (I2cI3 − 2I24 )(m
2
ℓ + 3q2))

(D.13)

As a final comment, notice that these dependencies among angular coefficients yield Eqs. (3.58)-(3.61)
when one considers only real Wilson coefficients, so that all imaginary contributions and I7,8,9 can be
neglected.

D.2 Comparison of binned expressions for F̃D∗

T in benchmark NP
scenarios

Following the setup of Section 3.3.5, we illustrate in Fig. D.1 to Fig. D.6 the errors induced on the
binning by the approximation Eq. (3.78) on relations derived using the amplitude symmetries under
various assumptions on the NP scenario in the τ lepton case. We follow same convention as in Fig. 3.1.

We provide the relative errors for selected scenarios in Tables D.1 and D.2.
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Figure D.1: Study of binning effects for Eq. (3.81) for benchmark NP scenarios with real contributions.
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Figure D.2: Study of binning effects for Eq. (3.81) for benchmark NP scenarios with complex contribu-
tions.



D.2. Comparison of binned expressions for F̃D∗
T in benchmark NP scenarios 125

3 4 5 6 7 8 9 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

3 4 5 6 7 8 9 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

3 4 5 6 7 8 9 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

3 4 5 6 7 8 9 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

3 4 5 6 7 8 9 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

3 4 5 6 7 8 9 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

3 4 5 6 7 8 9 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

3 4 5 6 7 8 9 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure D.3: Study of binning effects for Eq. (3.82) for benchmark NP scenarios with real contributions.
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Figure D.4: Study of binning effects for Eq. (3.82) for benchmark NP scenarios with complex contribu-
tions.
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Figure D.5: Study of binning effects for Eq. (3.80) for benchmark NP scenarios with real contributions.
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Figure D.6: Study of binning effects for Eq. (3.80) for benchmark NP scenarios with complex contribu-
tions.
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Appendix E

Theoretical framework for
Bd,s→ K∗0K̄∗0 decays

In this appendix we present some additional definitions and discussion concerning the observable related
to the non-leptonic B decay discussed in Chapter 4. We will first detail the structure of the Weak Effective
Hamiltonian used to describe such transitions, as well as the elements needed to obtain a semi-analytical
expressions of the observable LK∗K̄∗ in Eq. (4.14). In the following section we show the sensitivity of the
observable LK∗K̄∗ to NP contributions from different Wilson coefficients.

E.1 Weak effective theory and QCD factorization framework
The separation between short and long distances at the scale µb = mb is performed in the weak effective
theory to compute b-quark decays within the SM:

Heff =
GF√
2

∑
p=c,u

λ(q)p

(
Cp1sQp

1s + Cp2sQp
2s +

∑
i=3...10

CisQis + C7γsQ7γs + C8gsQ8gs

)
. (E.1)

This effective Hamiltonian describes the quark transitions b → uūs, b → cc̄s, b → sq′q̄′ with q′ =
u, d, s, c, b, and b → sg, b → sγ. Qp

1s,2s are the left-handed current-current operators arising from W -
boson exchange, Q3s...6s and Q7s...10s are QCD and electroweak penguin operators, and Q7γs and Q8gs

are the electromagnetic and chromomagnetic dipole operators. They are given by [197]:

Qp
1s = (p̄b)V−A(s̄p)V−A , Q7s = (s̄b)V−A

∑
q

3

2
eq(q̄q)V+A ,

Qp
2s = (p̄ibj)V−A(s̄jpi)V−A , Q8s = (s̄ibj)V−A

∑
q

3

2
eq(q̄jqi)V+A ,

Q3s = (s̄b)V−A
∑
q

(q̄q)V−A , Q9s = (s̄b)V−A
∑
q

3

2
eq(q̄q)V−A ,

Q4s = (s̄ibj)V−A
∑
q

(q̄jqi)V−A , Q10s = (s̄ibj)V−A
∑
q

3

2
eq(q̄jqi)V−A ,

Q5s = (s̄b)V−A
∑
q

(q̄q)V+A , Q7γs =
−e
8π2

mbs̄σµν(1 + γ5)F
µνb ,

Q6s = (s̄ibj)V−A
∑
q

(q̄jqi)V+A , Q8gs =
−gs
8π2

mb s̄σµν(1 + γ5)G
µνb , (E.2)

where (q̄1q2)V±A = q̄1γµ(1± γ5)q2, i, j are color indices, eq are the electric charges of the quarks in units
of |e|, and a summation over q = u, d, s, c, b is implied. The NLO Wilson coefficients at the scale µ = 4.2
GeV are given in Table E.1.

A similar weak effective theory can be written for the b → d transition by performing the trivial
replacement s→ d. Neglecting the difference of mass between the d and s quarks, the SM values of the
Wilson coefficients are identical in both cases, and we omit the d or s subscript in Table E.1.
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In the SM, Cc1 = Cu1 is the largest coefficient and it corresponds to the color-allowed tree-level contribu-
tion from the W exchange, whereas Cc2 = Cu2 is color suppressed. QCD-penguin operators are numerically
suppressed, and the electroweak operators even more so. It proves convenient to define the effective
coefficients Ceff7γ and Ceff8g which are given in the scheme of Ref. [197] as

Ceff7γ = C7γ −
1

3
C5 − C6 , (E.3)

Ceff8g = C8g + C5 . (E.4)

QCD factorization relies on this weak effective theory to compute non-leptonic B-decay hadronic
matrix elements, by performing a further separation of scales between mb and the typical QCD scale,
later reinterpreted in terms of a Soft-Collinear Effective Theory (SCET). Following Refs. [190, 205] and
using the same notation as in this reference, we have for the vector modes for a given polarisation:

T (B̄d → K̄∗0K∗0) = AK̄∗K∗ [αu
4 −

1

2
αu
4,EW + βu

3 + βu
4 −

1

2
βu
3,EW −

1

2
βu
4,EW ]

+AK∗K̄∗ [βu
4 −

1

2
βu
4,EW ] ,

P (B̄d → K̄∗0K∗0) = AK̄∗K∗ [αc
4 −

1

2
αc
4,EW + βc

3 + βc
4 −

1

2
βc
3,EW −

1

2
βc
4,EW ]

+AK∗K̄∗ [βc
4 −

1

2
βc
4,EW ] ,

T (B̄s → K̄∗0K∗0) = AK̄∗K∗ [βu
4 −

1

2
βu
4,EW ]

+AK∗K̄∗ [αu
4 −

1

2
αu
4,EW + βu

3 + βu
4 −

1

2
βu
3,EW −

1

2
βu
4,EW ] ,

P (B̄s → K̄∗0K∗0) = AK̄∗K∗ [βc
4 −

1

2
βc
4,EW ]

+AK∗K̄∗ [αc
4 −

1

2
αc
4,EW + βc

3 + βc
4 −

1

2
βc
3,EW −

1

2
βc
4,EW ] .

(E.5)

The coefficients α and β involve form factors and convolutions of perturbative kernels with light-cone
distribution amplitudes multiplied by the Wilson coefficients of the weak effective Hamiltonian. The
difference between αu

i and αc
i occurs from the O(αs) penguin contractions in P p

4 and P p
6 , and specifically

from the loops with u or c quarks and a W exchange (so that these contributions come with factors
αs/(4π) and Cc1). This comes from the fact that the effective Hamiltonian has a specific structure in
the SM: only two types of four-fermion operators Op

1 and Op
2 (p = u, c) involve explicitly different λ(q)p ,

whereas the other operators treat all quarks on the same footing, they come from top loops and are
accompanied with a CKM term λ

(q)
t = −λ(q)u − λ(q)c leading to an identical contribution to T and P .

As discussed in Refs. [193–195], this explains why the quantity ∆ defined in Eq. (4.2) can be computed
safely within QCD factorization for penguin mediated decays because of the cancellation of long-distance
contributions. As a consequence of this cancellation, only penguin contractions contribute to ∆, as can
be seen by inspection of the formulae above, leading to the following very simple expression within QCD
factorization:

∆ = AQ
M1M2

CFαs

4πN
C1[ḠM2

(m2
c/m

2
b)− ḠM2

(0)] , (E.6)

where the normalization AQ
M1M2

is defined as:

AQ
M1M2

=
GF√
2
m2

Bq
fM2

ABq→M1(0) , (E.7)

and ḠM2
is the penguin function defined in Ref. [194].
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Bd,s Distribution Amplitudes (at µ = 1 GeV) [32, 333]
λBd

[GeV] λBs/λBd
σB

0.383± 0.153 1.19± 0.14 1.4± 0.4

K∗ Distribution Amplitudes (at µ = 2 GeV) [334]
αK∗
1 αK∗

1,⊥ αK∗
2 αK∗

2,⊥
0.02± 0.02 0.03± 0.03 0.08± 0.06 0.08± 0.06

Decay Constants (at µ = 2 GeV) [128, 216, 335]
fBd

fBs/fBd
fK∗ f⊥K∗/fK∗

0.190± 0.0013 1.209± 0.005 0.204± 0.007 0.712± 0.012

Bd,s → K∗ form factors [128] and B-meson lifetimes (ps)
ABs

0 (q2 = 0) ABd
0 (q2 = 0) τBd

τBs

0.314± 0.048 0.356± 0.046 1.519± 0.004 1.515± 0.004

Wolfenstein parameters [202]
A λ ρ̄ η̄

0.8235+0.0056
−0.0145 0.22484+0.00025

−0.00006 0.1569+0.0102
−0.0061 0.3499+0.0079

−0.0065

QCD scale and masses [GeV]
m̄b(m̄b) mb/mc mBd

mBs mK∗ ΛQCD

4.2 4.577± 0.008 5.280 5.367 0.892 0.225

SM Wilson Coefficients (at µ = 4.2 GeV)
C1 C2 C3 C4 C5 C6

1.082 -0.191 0.013 -0.036 0.009 -0.042
C7/αem C8/αem C9/αem C10/αem Ceff7γ Ceff8g
-0.011 0.058 -1.254 0.223 -0.318 -0.151

Table E.1: Input parameters used to determine the SM predictions.

E.2 Semi-analytical expressions
In the following we provide the key elements to construct a semi-analytical expression of LK∗K̄∗ . Specif-
ically we give Ps and Pd in terms of Wilson coefficients and the parameters XH and XA. κ is given in
Eq. (4.22) and the last bracket in Eq. (4.19) has a negligible impact and can be taken to be conserva-
tive 0.99 ± 0.01. We have followed the corrected expression of Ref. [336] for the modelling of the weak
annihilation in terms of XA.
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107 × Pd = i0.076Ceff7γ − i8.8Ceff8g + ((2.6− i1.8) + i0.13XA − i0.041X2
A − i0.025XH)Cc1

+ ((−0.045 + i0.39)− i0.61XA + i0.16X2
A + i0.035XH)Cc2

+ ((15.5 + i38.9) + i0.31XA + i0.25X2
A + i3.8XH)C3

+ ((11.0 + i156.9) + i0.25XA + i0.96X2
A − i0.54XH)C4

+ ((−7.4− i7.2) + i9.2XA − i3.3X2
A + i0.11XH)C5

+ ((11.0− i19.9) + i27.7XA − 8.9X2
A + i0.24XH)C6

+ ((3.7 + i3.8)− i4.7XA + i1.7X2
A + i0.00042XH)C7

+ ((i6.9)− i15.7XA + i5.0X2
A − i0.008XH)C8

+ ((−6.4− i19.4)− i0.55XA − i0.041X2
A − i1.9XH)C9

+ (−i81.9− 1.4XA − i0.15X2
A + i0.32XH)C10 , (E.8)

107 × Ps = i0.069Ceff7γ − i8.0Ceff8g + ((2.4− i1.7) + i0.16XA − i0.049X2
A − i0.026XH)Cc1

+ ((−0.041 + i0.45)− i0.74XA + i0.1X2
A + i0.037XH)Cc2

+ ((14.2 + i36.4) + i0.37XA + i0.3X2
A + i3.9XH)C3

+ ((10.0 + i142.7) + i0.31XA + i1.2X2
A − i0.56XH)C4

+ ((−6.7− i7.7) + i11.1XA − i3.9X2
A + i0.11XH)C5

+ ((10.0− i21.7) + i33.5XA − 10.8X2
A + i0.25XH)C6

+ ((3.4 + i4.0)− i5.7XA + i2.0X2
A + i0.00043XH)C7

+ ((i8.3)− i19.0XA + i6.0X2
A − i0.008XH)C8

+ ((−5.8− i18.1)− i0.66XA − i0.049X2
A − i2.0XH)C9

+ (−i74.3− 1.7XA − i0.18X2
A + i0.33XH)C10 . (E.9)

E.3 Sensitivity to New Physics
We show how NP contributions can help to reduce the tension between theory and experiment for LK∗K̄∗ ,
completing the results shown in Fig. 4.1 discussed in Section 4.3. In Fig. E.1 we show the 1σ-range for
the NP contribution to each Wilson coefficient that is able to explain the experimental value of LK∗K̄∗ ,
normalized to its SM value.

-2 0 2 4 6 8 10

Figure E.1: 1σ intervals for the NP contribution to Wilson coefficients needed to explain LK∗K̄∗ ,
normalized to their SM value.
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Figure E.2: Sensitivity of LK∗K̄∗ to individual contributions of NP in all different CNP
is . For each

coefficient, the range of variation considered for the NP contribution corresponds to 100% of its SM
value.
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Appendix F

Electroweak observables and
interaction Lagrangian

This appendix provides the list of Electroweak observables included in the fit described in Chapter 5, as
well as the detailed expressions of the interactions between the Z boson and fermions.

Observable Experimental value
mW [GeV] 80.379(12)
ΓW [GeV] 2.085(42)
B(W → had) 0.6741(27)
B(W → lep) 0.1086(9)
sin2θCDF

eff, e 0.23248(52)

sin2θD0
eff, e 0.23146(47)

sin2θCDF
eff, µ 0.2315(10)

sin2θCMS
eff, µ 0.2287(32)

sin2θLHCb
eff, µ 0.2314(11)

P pol
τ 0.1465(33)
Ae 0.1516(21)
Aµ 0.142(15)
Aτ 0.136(15)
ΓZ [GeV] 2.4952(23)
σ0h [nb] 41.541(37)
R0

e 20.804(50)
R0

µ 20.785(33)

R0
τ 20.764(45)

A0,e
FB 0.0145(25)

A0,µ
FB 0.0169(13)

A0,τ
FB 0.0188(17)

R0
b 0.21629(66)

R0
c 0.1721(30)

A0,b
FB 0.0992(16)

A0,c
FB 0.0707(35)

Ab 0.923(20)
Ac 0.670(27)

Table F.1: Electroweak observables [211, 289] used in our fit performed using HEPfit [297] with mZ0
, α

and GF as input.



138 Appendix F. Electroweak observables and interaction Lagrangian

We write the interactions of the SM Z with fermions as

LZff = ℓjγµ
(
∆ℓL

ji PL +∆ℓR
ji PR

)
ℓiZ

µ + νjγµ∆
νL
ji PLνiZ

µ

+ uj γµ
(
∆uL

ji PL +∆uR
ji PR

)
ui Z

µ

+ dj γµ
(
∆dL

ji PL +∆dR
ji PR

)
di Z

µ ,

(F.1)

with i, j = 1, 2, 3 and

∆
ℓL(R)
ji ≃ sin ξ g

ℓL(R)
ji + g

ℓL(R)
SM δji ,

∆νL
ji ≃ sin ξ gℓLji + gνLSMδji ,

∆uL
ji ≃ sin ξ Vjkg

q
kk′V

∗
ik′ + guLSMδji ,

∆uR
ji ≃ sin ξ guji + guRSMδji ,

∆
dL(R)
ji ≃ sin ξ g

q(d)
ji + g

dL(R)
SM δji ,

(F.2)

where giL(R)
SM are the SM couplings given by

gνLSM = − e

2sW cW
,

gℓLSM =
e

2sW cW

(
1− 2s2W

)
, gℓRSM = −e sW

cW
,

guLSM = − e

sW cW

(
1

2
− 2

3
s2W

)
, guRSM =

2

3

e sW
cW

,

gdLSM =
e

sW cW

(
1

2
− 1

3
s2W

)
, gdRSM = −1

3

e sW
cW

,

(F.3)

with e = g1g2/
√
g21 + g22 = g1cW = g2sW being the electric charge. Moreover, taking into account the

Z − Z ′ mixing in Eq. (F.2) and the vertex corrections [233, 337], we have the following modified Z
couplings to leptons

∆ℓL
ij = gℓLSM

(
δij + sin ξ

gℓLij
gℓLSM

+
∑
k

gℓLik g
ℓL
kj

(4π)2
KF

(
m2

Z

m2
Z′

))
,

∆νL
ij = gνLSM

(
δij + sin ξ

gℓLij
gνLSM

+
∑
k

gℓLik g
ℓL
kj

(4π)
2 KF

(
m2

Z

m2
Z′

))
,

∆ℓR
ij = gℓRSM

(
δij + sin ξ

gℓRij
gℓRSM

+
∑
k

gℓRik g
ℓR
kj

(4π)
2 KF

(
m2

Z

m2
Z′

))
,

(F.4)

at the Z pole with

KF (x) =− 2(x+ 1)
2
(Li2(−x) + ln(x) ln(x+ 1))

x2

− 7x+ 4

2x
+

(3x+ 2) ln(x)

x
.

(F.5)
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