
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

Reconfigurable HOG/SVM
Implementations for Pedestrian

Detection

QUANG-VINH NGO

Thesis Advisors:
Professor Jordi Carrabina-Bordoll
Dr. David Castells-Rufas

Ph.D. program:
Electronic and Telecommunication Engineering

Department: Microelectronics and Electronic Systems, School of
Engineering

This dissertation is submitted for the degree of

Doctor of Philosophy

April 2022

Declaration

I hereby declare that, except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part for
consideration for any other degree or qualification in this, or any other University.

QUANG-VINH NGO
April 2022

Acknowledgements

First and foremost, I would like to express my deepest appreciation to my directors,
Professor Jordi Carrabina and Dr. David Castells-Rufas. You not only taught me the
scientific way of thinking and working but also an industrial approach. In addition, your
encouragement and patience have given me the positive energy to fulfill both projects and
thesis.

The research is sponsored by a Personal Investigador en Formación (PIF) Ph.D. grant
from the Universitat Autònoma de Barcelona (420-2017). The completion of my Ph.D.
program would not have been possible without this sponsor.

I would also like to extend my sincere thanks to my colleagues in UAB: Marc Codina,
Arnau Casadevall, and Juan Borrego. Your collaboration has been consistently professional
and productive.

To my beloved friends in Spain, Marco, Jesus, Jordi Caballero, and Simon, you have
always been there for me, both to talk and teach me social skills. Thanks to you, I was able
to establish work-life balance and improve my performance.

Finally, I am extremely grateful to my family, my wife, daughter, and son. Dad, you have
been waiting for this for several years. Thank you for your endless love.

Abstract

Pedestrian detection is one of the most safety-critical applications in autonomous cars.
The requirement of this application is not only accuracy but also speed and energy efficiency.
In the literature, there are two main approaches to solve the problem: deep neural network
based algorithms, that achieve high accuracy yet require large amount of computing resource
and power; and handcrafted features based classifications, more suitable for embedded
platforms with limited amount of computing and memory resources.

Embedded platforms implemented using FPGAs and ASICs consume less power than
GPU/CPU based systems to achieve similar results. On the other side, in terms of energy
efficiency, GPUs is 10 times better than FPGAs in running CNN-based applications. However,
FPGA-based implementations with low-level optimization techniques can beat GPU-based
ones. Compared to ASICs, the advantage of FPGA device is that it is their re-configurability
for later updates and time-to-market.

This thesis presents the implementation of pedestrian detection systems on FPGAs
using Histogram of Gradient feature extractor and SVM classifier. First, the pipeline of
the algorithm is implemented in Verilog HDL to achieve a high-throughput and low power
consumption system. Second, the same algorithm is realized using OpenCL programming
model, a high-level synthesis approach. To compare to the state-of-the-art, since different
implementations have different working frequencies and input image resolution, I calculate
the number of pixels per clock cycle for fair comparison. The implementation in this thesis
achieves second to the best with 0,068 pixels per clock even though it uses equal or less FPGA
resources than the rest. The system consumes the least power at only 9 W. In terms of energy
efficiency, our result achieves the third best at 1,22 FPS per Watt. However, the working
frequency of this design is only half as high as the frequencies of the other implementations.
If the pixel clock is doubled to be 100 MHz, the energy efficiency of this design would
become the best.

Table of contents

List of figures xv

List of tables xix

1 Motivation 1
1.1 Problem statement . 3
1.2 Hypothesis . 3
1.3 Objective . 4
1.4 Methodology . 4
1.5 Structure of the dissertation . 5

2 FPGA technology for autonomous cars 7
2.1 Overview of autonomous cars . 7
2.2 History of autonomous cars . 11
2.3 Vision-based applications on autonomous cars 14

2.3.1 Image sensors . 14
2.3.2 Evaluation metrics . 16
2.3.3 Applications . 18
2.3.4 Depth sensing . 19
2.3.5 Semantic segmentation . 20
2.3.6 Object detection . 23
2.3.7 Lane detection . 25
2.3.8 Traffic signs recognition . 27
2.3.9 Traffic lights recognition . 27
2.3.10 Obstacle detection . 28

2.4 Hardware platforms for autonomous cars 31
2.5 FPGA technology . 31

2.5.1 Design methodologies . 32

x Table of contents

2.6 FPGAs for vision-based algorithms . 33
2.6.1 FPGA common techniques . 38

3 Pedestrian detection on autonomous cars 41
3.1 Pedestrian detection . 41
3.2 Evaluation methodology . 45
3.3 State of the Art . 49
3.4 HOG/SVM Pedestrian Detection . 52

3.4.1 Gamma normalization . 53
3.4.2 Gradient computation . 53
3.4.3 Orientation bin voting . 54
3.4.4 Block Normalization . 55
3.4.5 Support Vector Machine . 56

3.5 Summary . 60

4 HOG/SVM pedestrian detection implementation 61
4.1 System architecture . 61
4.2 HOG extractor pipeline design . 64

4.2.1 The pipeline design . 64
4.3 SVM Classifier pipeline design . 73
4.4 Results . 78

4.4.1 Accuracy . 78
4.4.2 Latency . 79
4.4.3 Throughput . 80
4.4.4 Comparison with existing implementations 80

4.5 Summary . 83

5 HOG/SVM pedestrian detection implementation using OpenCL 85
5.1 OpenCL programming model . 85

5.1.1 Optimization techniques . 88
5.2 OpenCL implementation . 92
5.3 Results and comparison . 105

5.3.1 Comparison with multicore CPU 105
5.3.2 Comparison between FPGA platforms 106
5.3.3 FPGA-based pedestrian detection comparison 109
5.3.4 Comparison with other OpenCL-based design 110

5.4 Summary . 110

Table of contents xi

6 Conclusions and Future Directions 113
6.1 Conclusions . 113
6.2 Future directions . 114

References 115

Appendix A Calculate the FPS of output images from the sensor 129
A.1 Camera settings . 129
A.2 Frame rate calculation . 130

Acronyms

ACC Adaptive Cruise Control. 11

ADAS Advanced Driver Assistance Systems. 1

API Application Programming Interface. 88

CV Computer vision. 19

DARPA Defense Advanced Research Projects Agency. 11

DNN Deep Neural Network. 23

DSP Digital Singal Processing. 109

FPGA Field Programmable Gate Array. 4

FPPI False Positive Per Image. 46, 78

GPU Graphics processing unit. 2

HDL Hardware Description Language. 109

II Initiation interval. 90

IoU Intersection over Union. 16, 17

LiDAR Light Detection and Ranging. 1

NMS Non-Maximum Suppression. 46

PCIe Peripheral Component Interconnect Express. 33, 85

PDS pedestrian detection system. 3

xiv Acronyms

QPI QuickPath Interconnect. 33

SDRAM Synchoronous Dynamic Random Access Memory. 88

SoA State of the art. 27

TFLOPs Tera Floating-point Operations. 1

TLR Traffic Lights Recognition. 23, 27

TSR Traffic Signs Recognition. 23, 27

List of figures

2.1 Typical sensors on an autonomous car . 7

2.2 Typical functions of a self-driving car . 8

2.3 Five levels of autonomy . 10

2.4 Example of the Intersection of a detected area with a ground-truth recording
(left) and the area of their union (right). 17

2.5 Precision Recall curve example . 17

2.6 Typical vision-based algorithms of a self-driving car 18

2.7 Example of the disparity map computed using SGM from stereo images
provided in [23] . 21

2.8 Semantic segmentation example Cityscapes dataset [26]. Objects in the same
class have the same annotation color. 22

2.9 Instance segmentation example from the Synthia synthetic dataset [27]. Each
person has a unique annotation color. 23

2.10 Detection result example on COCO dataset done in [40]. The ground truth
objects at pixel granularity and the predictions are bounding boxes 24

2.11 Typical processing steps of a CNN-based object detection algorithm. 25

2.12 Fragment of a challenging scenario for lane detection with a corresponding
pixel level ground-truth for visible lane marks (center), and partially ocluded
road lanes (right). 26

2.13 Multiple signs on both sides at the far sight including information, warning,
and prohibitory signs. b) Two attaching prohibitory signs and an information
sign with a secondary sign attached. 28

2.14 Traffic lights detection example in Germany [67]. 29

2.15 Example of obstacles on a road. 30

2.16 Main replicated FPGA components interconnected by a configurable inter-
connect. 32

2.17 Typical structures of an FPGA-based accelerator 34

xvi List of figures

2.18 CV generic pipeline . 35
2.19 Neural network accelerator platforms [6]. 36
2.20 An illustration of line buffer. 39
2.21 Example of task parallelism at the fine-grain (left) and a coarse grain (right)

levels . 39

3.1 Example images from Caltech Dataset with annotations. 42
3.2 Calculation the distance from the height of a pedestrian 47
3.3 Sliding a 7x15 window over a 79x59 image 49
3.4 Block diagram of a conventional pedestrian detection system. 49
3.5 Top detectors on Caltech Pedestrian detection benchmark [116] 50
3.6 Block diagram of a HOG+SVM pedestrian detection algorithm 52
3.7 HOG feature extractor block diagram . 52
3.8 An illustration of how HOG features are generated. a) Image is divided

in 8x8 cells. The pixels’ value of a cell are randomly created to plot the
histogram in the subfigure 3.8c. The gradient vector is also illustrated; each
cell has 8x8 pixels. b) A pixel has a magnitude gradient G, and orientation
gradient φ ranged from 0 to 180°; these gradients are calculated from Gx and
Gy. c) All 64 pixels’ values in subfigure 3.8a vote their magnitude gradient
to the appropriate orientation bin among 9 bins to create the cell 's vector. . 55

3.9 Illustration of cell, block, and detection window in an image. The detection
window will slide all over the image to detect object of interest. Each window
has a size of 7x15 blocks, each block is 2x2 cell, and each cell is 8x8 pixel. 56

3.10 Illustration of 1) Circled data points which are also called support vectors,
2) The bold line f (⃗x) which separates the two types of data points: positive
symbol and negative symbol, 3) Data points in rectangular shape which are
on the wrong side of the bold line, 4) Data points belong to two classes,
represented by positive symbols and negative symbols, are separated cor-
rectly, 5) The margin corresponding to the bold line that separates data points.
SVM selects the bold line so that the margin is biggest while the number of
rectangular points is the smallest. 58

4.1 System diagram of the RTL-based pedestrian detection system on DE1-SoC. 62
4.2 Bayer pattern illustration. 63
4.3 HOG extractor block diagram . 64
4.4 Pixel line buffers . 65
4.5 CORDIC IP functionality settings . 67

List of figures xvii

4.6 CORDIC IP performance setting . 68
4.7 Illustration of an 8x8 cell in a 640x480 image 68
4.8 AGGREGATE module block diagram . 69
4.9 Blocks and cells in an 640x480 image . 70
4.10 Normalization finite state machine . 72
4.11 Normalization pipeline . 73
4.12 Sliding-window and convolution illustration. 74
4.13 Illustration of a block being part of different windows 76
4.14 SVM classifier hardware block diagram 77
4.15 Comparison of our model with the standard HOG on Caltech pedestrian dataset 79
4.16 Latency of the whole pipeline . 80

5.1 OpenCL programming model . 86
5.2 OpenCL memory model . 87
5.3 Pipelined loop latency: L iterations . 90
5.4 Hardware-software inter-operation based on OpenCL 93
5.5 Latency comparison between modules on different FPGAs 109

List of tables

2.1 Stereo depth estimation datasets . 20
2.2 Semantic segmentation datasets . 23
2.3 Lane detection datasets . 26
2.4 Best traffic sign recognition implementations on GTSDB and STSD 27
2.5 Traffic light recognition datasets and their best implementations 29
2.6 Automakers and their computing hardware platforms 31
2.7 Comparison of different hardware platforms for autonomous cars 36
2.8 Energy efficiency of algorithms on FPGAs and GPUs 37

3.1 Popular pedestrian datasets . 44
3.2 Scaled image sizes . 48
3.3 Performance results of detectors on Caltech dataset (the information on the

Table is extracted from Caltech pedestrian dataset website [116]). 51
3.4 Some popular datasets and the best implementations on them. 52
3.5 Different masks for gradient computation 53

4.1 Image resolution from the camera to the HOG Extractor 63
4.2 Comparison with the state of the art . 82

5.1 Gradient kernel’s resource and performance on different FPGAs 104
5.2 Resources usage and performance of the Histogram kernel. The first is the

version with fixed-point and line buffer. The second version removes the line
buffer. The other versions use float data type. The last version in the Table
implements shift registers to reduce loop-carried data dependency. 104

5.3 Histogram kernel’s resource and performance on different FPGAs 104
5.4 Resources usage and performance of the Normalization kernels. One version

is L1 normalization with nested loops. The other version is L1-sqrt without
nested loops. 104

5.5 Normalization kernel’s resource and performance on different FPGAs . . . 105

xx List of tables

5.6 Resources usage and performance of the SVM classifier kernels: version
with no shift registers and with shift registers 105

5.7 SVM classifier kernel’s resource and performance on different FPGAs . . . 105
5.8 Latency comparison with multicore CPU 107
5.9 Resources usage and performance on different FPGA platforms 107
5.10 Throughput comparison with other heterogeneous platforms 108
5.11 Lines of code comparison between HDL-based and OpenCL-based approach 110

A.1 Pixel clock settings . 129
A.2 Frame rate calculation . 131

Listings

3.1 NMS pseudo-code . 45
5.1 Example of constant keyword [1] . 88
5.2 Example of restrict keyword [1] . 89
5.3 Implementation of a line buffer . 89
5.4 Floating-point adder without shift registers 91
5.5 Floating-point adder with shift registers 91
5.6 OpenCL code for the Gradient kernel . 94
5.7 OpenCL code for the Histogram kernel . 96
5.8 OpenCL code for the Normalization kernel 101
5.9 OpenCL code for the SVM kernel . 102

Chapter 1

Motivation

Safety is of paramount important for road users, whether they be drivers (cars, trucks,
buses, trainways), or bikers, cyclists, and pedestrians. Most road accidents are linked to
drivers. Governments have therefore strengthened legislation - such as speed limit, alcohol
testing, etc. - to mitigate key risk factors; however, the number of fatalities due to road traffic
crashes continues to climb. In 2016, this number was estimated at 1.35 million worldwide,
which is nearly 3,700 mortalities each day [2].

One of the solutions to this problem comes from Advanced Driver Assistance Systems
(ADAS) technology, the aim of which is to help reduce human errors while driving. The
technology senses the surrounding environment using sensors like cameras, sonars, radars,
LiDARs, etc. Advanced Driving Assistance Systems (ADAS) consists of a computing system
which generates a perception model from the sensors’ data, analyzes the situation, and thus
provides appropriate decisions. These decisions are then realized on the actuators of the car.
The safety-critical ones are the throttle pedal, the braking pedal, the gearbox, and the steering
wheel. However, the ADAS system also controls lights, screen wipers, and other functions of
the car.

The computing system in ADAS needs to perform any required task in real-time with
low energy consumption. However, most state-of-the-art algorithms for ADAS are based on
machine learning algorithms that are computationally complex to implement. For instance,
an object detection system based on Yolo3 neural network already requires a processing
capability of 1.457 TFLOPs per second to achieve a throughput of 78 FPS on a limited
256x256 resolution [3]. This number of operations per second is very high, especially when
several algorithms must be executed concurrently for the different ADAS tasks and sensors in
the same computing system. The ADAS includes but is not limited to traffic light recognition,
traffic sign recognition, lane detection, and pedestrian detection [4]. Besides the processing
speed requirement, the computing system needs to consume low levels of energy since energy

2 Motivation

efficiency is crucial to achieve longer autonomy which is one of the most important factors
considered by users when selecting between a fuel car or an electric car. To achieve those
requirements, the algorithms need to be implemented on an appropriate hardware platform.

There are different hardware platforms which are used to implement such computing
systems such as: (i) ASICs, (ii) FPGAs; (iii) CPUs, (iv) GPUs; or (v) combinations of them in
homogeneous or heterogeneous multi-processing platforms. However, each of them provides
a different balance between throughput and energy efficiency.

In the hardware implementations side, ASICs are the most energy efficient implementa-
tions, but they are not as flexible as FPGAs, since their HW architecture cannot be updated.
By contrast, when using FPGAs, new hardware features can be reprogrammed with flexibly –
such as those related to new sensors or actuators. Furthermore, ASICs usually have higher
Non-Recurring Engineering (NRE) costs, especially when using similar technology nodes.

Comparing to software implementations in CPUs and GPUs, FPGAs are known to be
more energy efficient in some applications [5]. In the case of neural network inference acceler-
ators, FPGAs can be at least 10 times better than GPUs as a main implementation competitor
[6]. One reason is that FPGA-based implementations are strongly tailored for a specific
application, while software (SW) platforms usually have software and hardware designed
independently. Thus, designers have more flexibility to optimize FPGA implementations of
specific applications, for speed and energy efficiency. For instance, the working-frequency
on FPGAs can be selected such that it is, at the same time, sufficient to achieve required
speed for real-time conditions while minimal to save energy consumption.

In terms of latency, FPGAs also have advantages over CPUs and GPUs. One of the most
distinct capabilities of an FPGA is that it can to a great extent parallelize computational
tasks, from hardware parallelization (spatial concurrency) to hardware pipelining (temporal
concurrency) and their combinations. Moreover, FPGA devices can be connected directly to
other sensors or devices, which helps reducing the total latency compared to that of CPUs
and GPUs.

Additionally, the latency of FPGA-based designs can be made deterministic [7], [8],
which is often a requirement for the car control system, especially for safety-critical functions.
In [8], researchers evaluate image acquisition and processing system for automated driving
systems. The paper shows that latency deviation with a host CPU in the input data path is up
to 77.4 milliseconds; however, without the host CPU, the latency deviation of the FPGA-only
design is reduced to 115.5 nanoseconds.

Therefore, when efficiency, latency, and flexibility are taken into consideration, FPGAs
represent the most suitable hardware option to compensate their usually higher costs.

1.1 Problem statement 3

1.1 Problem statement

This research addresses the pedestrian detection system (PDS) for ADAS, one of the most
safety-critical applications of autonomous cars. This is a sub-problem of obstacle detection;
however, because of its ethical and legal importance, it is usually considered separately.

The challenge for this technology is to detect both stationary and moving people in the
area in front of the car (pedestrians are mostly found here in car-to-pedestrian accidents) [9].
Detecting the presence and the position of pedestrians helps to warn the driver, brake, and/or
deploy external airbags.

However, despite the high stakes, the key challenges for a pedestrian detection system on
autonomous cars are like other ADAS algorithms: real-time processing speed, low power-
consumption, and high detection accuracy. Besides, pedestrians come in many forms – in
different poses, wearing different clothes, possessing different heights. This high variability
challenges the detection algorithm. In some cases, pedestrians can be occluded. The outdoor
environment poses another difficulty for the algorithm, since variations in light and weather
conditions can affect both the sensor and algorithmic performance.

1.2 Hypothesis

In the literature, pedestrian detection systems are typically based on vision processing
algorithms. Machine learning techniques such as deep neural networks provide very high
accuracy but also demand high computing resources and power consumption. Classical
machine learning methods (hand-crafted features based), such as Histogram of gradients
(HOG) plus Support Vector Machines (SVM), are less computing-intensive and more suitable
for embedded platforms such as FPGAs. HOG is the most accurate feature for pedestrian
detection and SVM as their classifier.

The hypothesis which guides this thesis is that the implementation of pedestrian detection
systems on FPGAs using HOG and SVM can achieve high processing speed while being
energy efficient with an acceptable detection accuracy. The hypothesis can be posed in the
following research questions:

• What trade-off can be achieved by a HOG PDS between processing speed and detection
accuracy in FPGA platforms?

• Are FPGAs more energy efficient than other implementations on different platforms
for an equivalent processing speed and detection accuracy?

4 Motivation

1.3 Objective

The thesis targets the implementation of a high performance and energy efficient PDS for
ADAS, based on FPGA technology. The objective is to tailor the parameters and architecture
of the hardware implementation of pedestrian detection algorithms in real-time on FPGAs to
obtain an optimal trade-off of accuracy, speed, area, and energy efficiency.

I will use HOG as the feature detection and SVM to classify pedestrians due to its demon-
strated validity at algorithmic level and popularity. The system should detect pedestrians at
least at a real-time throughput of 30 FPS (@640x480) as commonly accepted as real-time
image processing speed. The accuracy of the system is evaluated using the Caltech dataset,
which is considered suitable for autonomous cars since its image data derive from real street
views.

In order to find the near optimal implementations, architectural space exploration will be
addressed using an OpenCL-based framework to quickly generate and test a customizable
PDS deployed on FPGAs.

1.4 Methodology

Many modern FPGAs system-on-chips (SoCs) combine an ARM processor with some
FPGA fabric. HOG and SVM are both in the critical path of the pedestrian detection system
and therefore the architecture and detailed implementation of these two modules need to be
optimized on the FPGA’s logic part while software-friendly functions such as labelling or
drawing detection boxes can be implemented on FPGA’s embedded processor (e.g. ARM).

The research includes two stages of development. At first, HOG and SVM are described
at RTL level to describe the algorithm in HW. RTL is often used in creating FPGA designs.
It can describe the microarchitecture of the design at the lowest abstraction level, as a set
of registers, memories, and combinational logic. RTL flow allows hardware engineers to
optimize the implementation down to the finest level of granularity. However, it usually
requires a long period of coding and testing. In this research, to verify the correctness of
every hardware block, a reference model is written in C/C++, which has the same functional
blocks as in the hardware RTL.

In the second stage, the pedestrian detection system is described in OpenCL to explore
different configurations. OpenCL (Open Computing Language) is a framework for writing
code that execute across heterogeneous platforms including FPGAs. OpenCL language is
similar to C and it can be written and tested within a shorter time than RTL code. The code
under test can be emulated in CPUs for testing and debugging. Therefore, designers can

1.5 Structure of the dissertation 5

explore architectural space efficiently. OpenCL-based implementations are scalable and
flexible, and allow accelerating different parts of the code using different technologies such
as GPUs and FPGAs.

1.5 Structure of the dissertation

Chapter 2 provides an overview of ADAS and how FPGA technology can be used in the
system. Chapter 3 provides an in-depth exploration of the pedestrian detection problem and
the state-of-the-art technology for addressing it. In chapter 4, the HDL design of the system
is described in detail, implemented and tested and then compared with the state-of-the-art
implementations. Chapter 5 addresses the architectural space exploration of the pedestrian
detection system using the OpenCL approach. Achieved performance is also discussed and
compared with the RTL design. Finally, Chapter 6 gives the conclusion.

Chapter 2

FPGA technology for autonomous cars

2.1 Overview of autonomous cars

Autonomous cars are referred to by different names: self-driving car, robotic car, robo-car,
driverless car, or autonomous vehicle. Any of these names imply that the vehicle employs
electronic technology to sense the surrounding environment and drive safely, with -depending
on the degree of autonomy - little to no human input. From a technology perspective, an
autonomous system needs to cover three main tasks: perceiving, processing, and actuating.
The corresponding hardware components are the sensors, the computing system, and the
actuators. The most common sensors are image sensors, radar, lidar, ultrasonic, GNSS, and
inertial measurement units. Figure 2.1 illustrates these sensors on an autonomous car.

Fig. 2.1 Typical sensors on an autonomous car

8 FPGA technology for autonomous cars

Depth sensing

Semantic
segmentation

Lane detection

Tra�c lights
recognition

Tra�c signs
recognition

Pedestrian
detection

Obstacle
detection

Surrounding
model

Law
enforcement

Parking

Trajectory
planning

Maneuver
planning

Motion
control

Steering

Throttle

Braking

Tra�c
information

Proximity
sensing

HD map

Speed

Light
activation

Satelite
position

Positioning

Route
planning

Light
control

Fatige
sensingLight

sensing

Rain
detection

Key
detection

Energy
level

Vehicle
condition

Light control

Swiper control

Lock control

Energy
monitoring

Condition
monitoring

Ambient
model

User
interaction

Windscreen
swiper

Door
locking

User
information

Odometry

Visual

Driver
monitoring

Fig. 2.2 Typical functions of a self-driving car

Based on data received from the sensors, processing algorithms in the central computing
system analyze the scene to provide decisions. The decision feeds through to actuators to
safely navigate the car. The typical algorithms of an autonomous car are presented in Fig.
2.2 as rounded rectangles. The shaded boxes are the vision-based ones. The input to the
algorithms comes from sensors (on the left side of the figure). The right side illustrates
actuators taking the output from the algorithms.

In Fig. 2.2, the top half describes safety-critical functions which control the steering,
the throttle, the brake, and the car’s lights. The motion control module manipulates the
steering wheel, the throttle, and the brake pedals. It operates with instructions from the
maneuver planning module. This module defines the final and specific path that the car
will traverse. The path can be determined by the parking module or the trajectory planning
module depending on the context. The output of these two modules should contain concrete
instructions on how to move. They both get the input data from the two modules: (1) obstacle
detection and (2) law enforcement, described as follows:

• Obstacle detection: in this context, this could be pedestrians, vehicles, barriers, walls
or other objects. Obstacles are detected by analyzing the surrounding environment
provided by the surrounding model module that is built upon the fusing data from high-

2.1 Overview of autonomous cars 9

definition (HD) map and proximity sensors. Additionally, the surrounding model takes
outputs information from the depth sensing module, semantic segmentation module,
and the lane, traffic signs, traffic lights, pedestrian detection modules. Depending
on the specific approach for detection, lane, traffic signs, and traffic lights detection
modules can either take the visual data only as input or fuse with the segmentation
information from the semantic segmentation module.

• Law enforcement: in addition to obstacle avoidance, traffic law must be calculated
to determine the most appropriate path and the suitable speed. The law enforcement
module obtains data from the output of the surrounding model module.

The trajectory planning module also requires information from the route planning and
position module. The route planning module outputs possible routes, based on the current
position and traffic information, to the trajectory planning module. The current position can
be calculated from the GNSS (Global Navigation Satellite System), odometry, and speed
information.

The bottom half of Figure 2.2 describes other autonomous functions which are considered
less safety critical. The ambient model module perceives the outside environment regarding
light intensity and other special weather conditions such as rain, fog, or others. The light
control module will activate the appropriate car light for each brightness or weather condition.
This module also controls the turning lights or stop light depending on the output of the
Maneuver planning module. Similarly, the wiper control module uses rain sensor information
to activate the windscreen wiper. The lock control module will lock the doors when it
detects a certain condition for safety. Finally, the user interaction module can warn the driver
regarding energy level and vehicle condition, by graphic displaying or even alarming. Fatigue
sensing also helps to detect the drowsiness of a driver, based on a camera in front of him/her
mounted inside the car.

Having established these basics, it is now necessary to address the different levels of
autonomy standardized. To support the legislation of autonomous cars, the US Department
of Transportation classified them into 5 levels of autonomy [10]. Figure 2.3 details the key
difference between levels.

The lowest level of autonomy is Level 1, in which the driver is assisted by functions
such as a braking or steering system, one function at a time. The vehicle can achieve lane
centering or adaptive cruise control (ACC). At this level, the driver needs to fully control the
vehicle. Level 2, named Partial Automation, also requires the driver to be in place and to
monitor the environment at all times. The car simultaneously supports steering wheel and
brake control. At this level upward, vehicles sense the surrounding environment. Advance

10 FPGA technology for autonomous cars

Driver
Assistance

Everything On

Level 1

Cruise control
Brake assistance

Lane keeping
Park assistance

Partial
Automation

Feet o�

Level 2

Cruise control
Steering assist
Lane changing

Overtaking assist

Conditional
Automation

Hands o�

Level 3

Tra�c Jam
Chau�er

Require driver’s
intervention

High
Automation

Eyes o�

Level 4

No human input
Require driver

only in bad
weather (rain,

snow)

Full
Automation

Mind o�

Level 5

No human input
All driving
conditions

2000 2013 2018 2024 2027-2030

ADAS Autonomous

Fig. 2.3 Five levels of autonomy

features in Level 2 (also known as Level 2+) include lane changing, lane merging, and
highway exiting and entering. Typical Level 2 systems in industry are General Motors Super
Cruise, Mercedes-Benz Drive Plot, Tesla Autopilot, Volvo Pilot Assist, and Nissan ProPilot
Assist 2.0. Specifically, Mercedes S Class 2014 and Tesla Autopilot 2014 are autonomous
(with the driver always monitoring the system) in steering, lane keeping, acceleration, and
braking on the high-way [11]. At Level 3, a driver is needed but is not required to monitor
the environment under certain conditions; the car can pass other slow-moving cars and drive
in traffic jams and specific highways. The driver, however, must always be ready to take
control of the vehicle. For this reason, some car manufacturers, such as Ford, Google, and
Volvo, skip this level and proceed with Level 4. In 2021, Honda became the first carmaker to
sell Level 3 car with their Honda Sensing Elite.

Level 4 pertains to high-level automation in which the vehicle can perform all driving
functions under certain conditions or areas. The key difference from Level 3 is that the cars
at this level can manage when something goes wrong without the intervention of the driver.
Due to current legislation and infrastructure, Level 4 cars can only work in limited areas
and in certain weather conditions. However, companies are currently targeting Level 4 cars
for driverless taxis or public transportation services. Such services have specific geographic
boundaries which cars learn in advance. Waymo, originated as a project of Google, has been
testing their Level 4 driverless cars in Arizona, US, since 2017.

Finally, Level 5 vehicles can perform all functions under all conditions, meaning full
automation. This means that the vehicle can perform multiple tasks such as adaptive cruise
control, traffic sign recognition, traffic light recognition, lane departure warning, emergency

2.2 History of autonomous cars 11

braking, pedestrian detection, collision avoidance, cross traffic alert, surround view, park
assist, rear collision warning or park assistance.

2.2 History of autonomous cars

The history of autonomous cars is comprehensively represented in [11]. Due to the
scope of this thesis, I here summarize this history from 1986 onward. In this year, the first
self-driving car was introduced by the Navlab team at Carnegie Mellon University (CMU) 1.
The project was funded by DARPA Strategic Computing Initiative. In 1989, CMU pioneered
neural networks for autonomous vehicles, which is now considered state-of-the-art. The team
demonstrated its prototype with a 5,000 km journey crossing the country in 1995, in which
98% was autonomous.

In Europe, project PROMETHEUS was initiated in 1986, which incorporated more than
13 carmakers and numerous research units from European governments and universities.
Nine years later, the car prototype, 95% self-controlled, navigated from Munich, Germany, to
Odense, Denmark. However, the car only travelled on highways. Instead, Franke et al. [12]
presented the algorithms to control an autonomous car in urban streets, where the authors
used stereo-vision for detecting and tracking the vehicles in front of the car and other objects,
such as pedestrians, traffic signs and traffic lights were detected and recognized by a general
monocular-based framework including detection and classification stages.

In addition to autonomous design and test efforts, commercial cars have gradually been
equipped with a driver assistance system. In 1992, Mitsubishi was the first to implement
distance-warning using Lidars on the Japanese market. In 1995, they upgraded the warning-
system to distance control, whereby the algorithm controls the gear and the throttle to keep
an appropriate distance. In 1999, Mercedes introduced the first radar-based ACC. In the same
year, Subaru announced the world’s first camera-based ACC.

To foster the autonomous cars innovation, the DARPA held the first Grand Challenge in
2004. The participant cars were required to complete a 240 km course in the Mojave desert;
in the event, no team was able to finish. In 2005, the challenge was again held again in a
desert environment. There were five vehicles that could complete the race. The Stanford team
arrived in first position, while the CMU team finished second. The latest DARPA challenge
was organized in 2007. This time, the course was 96 km long and in an urban area with
traffic lights, signs, and obstacles. The CMU team won the first prize, and the Stanford team
obtained the second position. A notable point is that most vehicles that completed the route
used Velodyne’s multi-beam LiDAR technology. This multi-beam LiDAR is essential for

1https://www.youtube.com/watch?v=ntIczNQKfjQ

12 FPGA technology for autonomous cars

self-driving cars in urban areas because it can scan 360-degree and provide depth information
with obstacles around the car.

Google began their autonomous car program in 2009. They targeted the building of a
new driving platform and a multi-beam LiDAR at a reasonable cost. During that time, many
big carmakers were testing their self-driving cars; BMW had been testing theirs since 2005.
Audi showcased their car’s ability to go to the top of Pikes Peak - which is 4,300 meter high -
at close to race speeds. General Motors created an autonomous electric vehicle for urban
areas in 2011. In 2012, Volkswagen started to test their ADAS system which targeted the
ability for a car to drive 130 km/h on the highway.

In 2010, Vislab at University of Parma, Italy, held the 15,900 km test run from Parma
to Shanghai Expo in China. In the same year, the Technical University of Braunschweig
demonstrated its car’s ability to self-drive in a restricted city area. The car was equipped
with LiDAR, cameras, and HD maps. It was the first car that had a license for autonomous
driving on the streets and highways in Germany.

In 2012, the KITTI benchmark was introduced. It helped researchers evaluate their
vision-based algorithms’ performance and compare with others’. The specific tasks that can
be benchmarked using KITTI is 3D reconstruction, motion estimation, and object recognition.
KITTI also released their new benchmark version in 2015.

Since 2012, neural networks for vision processing have been extensively developed and
have achieved very high accuracy. Up to now, most state-of-the-art vision-based algorithms
on autonomous cars are based on neural networks.

In 2013, the collaboration between Daimler and the Karlsruhe Institute of Technology cre-
ated the S5000 Intelligent Drive system on Mercedes Benz. The car can fully autonomously
drive for about 100 kilometers on the historic Bertha Benz route from Mannheim to Pforzheim,
Germany. The car used radar and stereo cameras for object and free-space detection. Traffic
lights detection and object classification were processed by monocular vision. Moreover,
point-feature-based and lane-marking-based were used for high accuracy localization. In the
same year, Nissan demonstrated their autonomous Leaf car for the first time in on the Sagami
Expressway in Kanagawa, Japan.

In 2014, SAE International, a society of automotive engineers, published a classification
system with six levels for autonomous systems. The levels range from 0 to 5, corresponding
to autonomy from fully manual to fully automated. Within this year, Mercedes S Class and
Tesla Autoplot introduced their Level 2 models, in which the ADAS system controlled the
steering wheel, the throttle, and the brake on the highways. The driver at this level is required
to monitor the system at all times.

2.2 History of autonomous cars 13

In 2015, the ridesharing company, Uber, started its program to develop self-driving cars.
Also in this year, Delphi Automotive’s autonomous car became the first vehicle to finish a
coast-to-coast trip from San Francisco to New York. The ADAS system controlled the car
99% of the route.

After six years of developing and testing, Google announced that their self-driving
vehicles had been involved in 14 minor accidents. The company was nevertheless optimistic
about the project, since the cars have passed nearly 2 million miles on road and all the
accidents were caused by humans driving other cars. The project team then became Waymo.
Nowadays, Waymo operates a commercial self-driving taxi service in Phoenix, Arizona. It is
to date the only self-driving commercial service that self-drive without safety backup drivers
in the vehicle.

In 2016, the Tesla model S electric car was involved in a fatal accident while driving in
Autopilot mode. It is reported that the car failed to apply the brakes. It is not clear whether
the person in car was aware of the situation. Later, in October 2016, the company said that all
its vehicles are built with necessary sensors to enable fully autonomous capability, including
eight cameras, twelve ultrasonic sensors, and a forward-facing radar. The system will work
in the background to collect street scene information for the company to improve its ADAS
software. They planned to release their fully autonomous cars by 2017 after millions of miles
of testing. However, at this point, their fully autonomous car is not available; in 2020, the
company only released a beta version of its fully self-driving software to a small group of
testers in the US. In the same year, NVIDIA leveraged a single convolutional network to
showcase the ability to self-drive 99% of the route from Holmdel to Atlantic Highlands in
Monmouth County, New Jersey.

In 2017, Audi announced their plan to produce their Level 3 autonomous car using 3D
LiDAR in addition to cameras and ultrasonic sensors. But in 2020, the company said that
this system will not be activated.

In 2018, there was another fatal accident related to autonomous cars. The car is from
Uber and it seems that the pedestrian detection system was not working properly.

In 2019, Bosch and Daimler opened shuttle service with their autonomous cars on limited
routes in California. In the same year, the European Union defined the regulation 2019/2144
for automated vehicles and fully automated vehicles, applying from 2022. One year later,
Japan approved the Automate Lane Keeping System regulation which will be applied in
2021.

In March 2021, Honda started leasing Legend Hybrid Ex cars, installed with the Sensing
Elite safety system. The system has the Traffic Jam Pilot function, which was granted the
safety certification by the Japanese government. That means drivers in these cars can legally

14 FPGA technology for autonomous cars

take their eyes off the roads. The car determines its location and road conditions using 3D
high-definition maps and a global navigation satellite system. External sensors include 2
front cameras, 5 radar sensors, and 5 LiDAR sensors.

2.3 Vision-based applications on autonomous cars

2.3.1 Image sensors

Vision is the key input for car navigation. Visual input comes from cameras, which
are cheap and easy to install in cars. Key vision-based algorithms consist of semantic
segmentation, lane detection, traffic signs detection, traffic lights detection, pedestrian
detection, and obstacle detection. Image sensors provide higher spatial resolution for these
applications. Moreover, traffic signs and traffic lights recognition require color information,
which is only supported by image sensors. Therefore, cameras are the preferable choice for
autonomous cars.

There are different technologies for building image sensors. Regarding the semiconductor
process, the first image sensors used Charged Coupled Devices (CCD). This technology
provides very high image quality, but its manufacturing cost is also high. Nowadays, CMOS
is the most commonly used technology to create pixels, arrays (or frames), and imagers.
CMOS sensors are cheaper and consumes less power than CCD sensors and also profit from
the resolution evolution (Moore’s Law) attached to the general CMOS fabrication processes.

Image sensors can be classified based on their acquisition process. For frame-based
sensors, all pixels of a frame are captured in a given period of time. The electric charge
produced by the light is integrated on a capacitor during the exposure time. There are two
exposure modes to sense the light. For the global shutter mode, all pixels are exposed to
light at once and integrated simultaneously at that point in time. The second mode is rolling
shutter, where pixels are integrated sequentially, row by row and, thus, different rows of
pixels are exposed at different time slots, sequentially. Global shutter mode imposes higher
latency while rolling shutter is more sensitive to fast motion scenes. On the other hand,
Dynamic Vision sensors or event-based cameras do not use the shutter for their acquisition
process. Pixels are captured independently and asynchronously. Each pixel keeps monitoring
its current intensity and compares it with its intensity in the previous event. If the difference
is above a specific threshold, an event is sent out, including the new intensity value and the
occurrence time information. When compared to frame-based sensors, they have higher
temporal resolution, higher dynamic range, and no motion blur. An event-based camera is

2.3 Vision-based applications on autonomous cars 15

preferable for scenes with minor changes over time, because high event rates consume high
power. The vast majority of computer vision research is based on frame-based sensors.

Classification of image sensors can be conducted according to the wavelength of the light
they acquire. Consumer sensors typically work in the visible light range (e.g 400-700nm),
capturing red, green, and blue bands - the frequencies detected by human eye. Each pixel
acquires a single color component by the corresponding color filter placed on top of it.
Different pixels get different colors, and they are usually arranged in a Bayer Pattern (2x2
array of adjacent pixels are: 1 green + 1 red and 1 blue + 1 green).

Color information of an image can be represented by tuples of numbers using various
color models or spaces. In computer vision, the most used color models are RGB and
HSV/HSI. The RGB model produces a specific color by mixing three primary colors red,
green, and blue. This model is based on the way human eyes respond to light. However, it is
difficult for a human to understand a color from a tuple of RGB values.

HSV and HSI are the models that remap the RGB color model into other dimensions that
make more sense to human perception. The names of the models indicate their components.
They share two dimensions, H (hue) and S (saturation). Hue is the only dimension indicating
color. Hue value ranges from 0° to 360° - with 0°, 120°, and 360° being red, green, and blue
respectively. The saturation value indicates the purity of the hue color, in which 100% is
the purest and 0% is grayscale. Finally, both V (value) and I (intensity) indicate the level of
brightness or luminosity of the hue color.

Some sensors sense intensity only (i.e., monochrome or grayscale sensors being visible,
infrared, or X-ray). Despite its limitation in identifying colors, monochrome is installed in
real autonomous cars because it helps the car’s processor mitigate workload. The opposite
approach is used by the sensors that can capture wider wavelength bands, such as Infra-Red
or hyperspectral imagers. InfraRed sensors (near, short and long wave length infrared),
also known as FLIR, are used by some researchers to detect pedestrians at night time [13].
Hyperspectral data is the fusion of RGB image data and near field and/or far-field infrared
data. However, Infrared or Multi-spectral imagers are rarely used in autonomous cars.

Another important factor is the dynamic range. Autonomous vehicles face extreme
light conditions, ranging from a very sunny day to night conditions. Most automotive
image sensors are designed to work with a high dynamic range (HDR) or wide dynamic
range (WDR) that include specific implementations both in hardware (imager) and software
(image signal processor), to increase dynamic range by using different technologies such as
logarithmic sensors, using higher number of bits per pixel (which required better signal to
noise ratio), or combining consecutive images obtained by multiple exposures.

16 FPGA technology for autonomous cars

In addition to these common types of camera sensors, there are less common models
such as 360-degree or 3D cameras such as stereo, structured light, or time of flight (ToF). A
stereo camera system tries to mimic the human eye to obtain depth information from a scene.
Similarly, a structured light system is also based on the stereo vision and the triangulation to
calculate the depth information. The difference is that the structured light system replaces
one camera by a projector that projects known and special patterns onto the observing scene.
The frames captured by the camera sensor and the projecting patterns are used to determine
the depth. The idea behind structured light is to introduce levels of texture into the scene,
to improve the accuracy of a stereo vision system. The ToF camera works in a different
mechanism, which generates a modulated light source, usually in the near-infrared range,
onto the scene to obtain the reflected light through an image sensor. Images are later analyzed
by specific algorithms to understand reality.

2.3.2 Evaluation metrics

Computer vision algorithms extract high-level information from images. That information
can range from sequences of images, to a single frame, to regions of an image, or even
individual pixels of the image. These different scopes require different computational
methods to evaluate their accuracy, so that an objective comparison among them is possible.

Image classification algorithms deal with binary-class or multi-class classification prob-
lems. Binary classification problems are typically measured with precision TPR (Eq. 2.1) and
recall FPR (Eq. 2.2). Detection algorithms usually result in a confidence value. A detection
is considered positive if the confidence value is bigger than a given threshold. In the scope
of this thesis, this threshold is referred as classification threshold. However, a positive is
only a true positive (TP) if the intersection over union (IoU) between the prediction box and
the ground truth is higher than a chosen threshold (e.g. 50%). Otherwise, the detection is
a false positive (FP). In this thesis, this threshold is referred to as the IoU threshold. Fig.
2.4 illustrates the IoU between the bounding box (e.g. the prediction) and the ground truth.
Ground truth annotations can be provided as a collection of pixel coordinates or a simpler
description of an area such as a bounding box.

T PR =
T P

T P+FP
(2.1)

FPR =
T P

T P+FN
(2.2)

The performance of a binary classifier is often represented by the precision-recall curve.
The curve is drawn by varying the classification threshold and achieving corresponding

2.3 Vision-based applications on autonomous cars 17

Detected

GT
Int. Union

Fig. 2.4 Example of the Intersection of a detected area with a ground-truth recording (left)
and the area of their union (right).

Fig. 2.5 Precision Recall curve example

precision (TPR) and recall (FPR) values. Figure 2.5 illustrates one example of this precision
recall curve. A smaller classification threshold would result in more positives and therefore
higher FPR and higher TPR. Classifiers can be compared by their precision at a specific
recall. However, this precision is only for a specific recall and it does not represent all
possible recalls. Average precision (AP) is a better evaluation metric for binary classifier.
It is calculated as the Area Under the precision recall curve. The larger the AP, the better
classifier.

For multi-class classification, the detection performance is commonly measured by mean
Average Precision (mAP). It is the mean of the average precision (AP) of different classes.
In the recent well-known dataset, MS-COCO [14], AP is defined differently from the one in
binary classifier. It is the average AP over multiple IoUs, from 0.5 to 0.95 with a step size of
0.05.

18 FPGA technology for autonomous cars

Another common accuracy metric is F-Measure. This metric combines both the precision
and the recall value of a binary of multi-class classifier. Because the precision alone does not
reflect the recall value and vice versa. F-measure is calculated as in Eq. 2.3. The parameter
β can be chosen to weigh the importance of the recall value. F1 measure corresponds to the
case β = 1, which means the recall and the precision value are equally important.

Fβ = (1+β
2)

precision · recall
(β 2 · precision)+ recall

(2.3)

In depth sensing, accuracy is measured at pixel level. In KITTI dataset [15], a pixel is
counted as wrong prediction if its disparity is different from the ground truth more than 3.
The percent of these outlier pixels over the left image is the key performance metric in the
KITTI dataset.

2.3.3 Applications

The vision-based applications in the scope of this thesis are the ones that take input from
image sensors. These algorithms are the shaded boxes in Fig. 2.2. The figure is redrawn as in
Fig. 2.6 to include only the vision-based functions paths, except for fatigue sensing module
(since its input scene is from inside the car and is independent from the street scene, which is
out of the scope of this thesis). They can be classified into three different kinds of algorithms,
based on the approaches they use to solve the problems. These are depth sensing, semantic
segmentation, and object detection. These algorithms are described in the following sections.

Depth sensing

Semantic
segmentation

Lane detection

Tra�c lights
recognition

Tra�c signs
recognition

Pedestrian
detection

Obstacle
detection

Surrounding
model

Law
enforcement

Parking

Trajectory
planning

Maneuver
planning

Motion
control

Steering

Throttle

Braking

Fig. 2.6 Typical vision-based algorithms of a self-driving car

2.3 Vision-based applications on autonomous cars 19

2.3.4 Depth sensing

The general purpose of stereo matching methods is to infer 3D information (like 3D point
reconstruction or depth maps) from two images of a stereo camera that collects images from
two viewpoints of the same scenario. In particular, the depth Z(i, j) of each pixel, (i, j), can
be calculated as the inverse of the disparity (distance) between image pixels, corresponding
to the projection of the same 3D point:

Z(i, j) =
B f

d(i, j)
(2.4)

where B is the distance between the two cameras, f is the focal length of the cameras and
d(i, j) is the disparity value of the pixel. The computation of disparity maps [16] can be
split in 4 main stages: 1) computation of the matching cost,2) cost aggregation, 3) disparity
computation/optimization, and 4) disparity refinement.

Matching pixels are usually obtained by searching horizontally in a disparity range and
comparing image features of rectified (i.e., aligned) images [17]. Image features can be either
the same image intensity or visual features like edges, Hough or SIFT [18]. Cost aggregation
and disparity computation/optimization are closely linked since they involve the computation
of the disparity map from the matching cost. Finally, disparity refinement aims to regularize
the disparity map, while handling object occlusion where matching cannot be defined. The
largest differences across methods concern the implementation of the later steps. In this
context, existing approaches can be categorized into local, global and semi-local methods.

Local methods aggregate the matching costs in support regions surrounding each pixel
(usually using a weighted average) [18]. The disparity value that gives the lowest difference
between support regions is set as the disparity value of the center pixel of the support region
in a winner-takes-all approach (WTA).

Global approaches formulate aggregation and disparity computation as a global optimiza-
tion problem [18]. The disparity map is computed as the minimum of a functional defined
as a weighted sum of the matching cost of all pixels and a regularizing penalty term that
encourages neighboring pixels to have similar disparities.

Local algorithms prioritize speed over accuracy, while global algorithms are time consum-
ing but very accurate. Semi-local approaches [19] have recently become the best compromise
between accuracy and speed. Semi-global approaches efficiently compute a global map from
the initial local costs by simplifying the smoothness costs so that it can be optimized along
different directions separately.

Generation of depth-maps could be considered low level CV applications that are required
for more complex subsequent functions like obstacle detection. CV methods compete with

20 FPGA technology for autonomous cars

LIDAR as a more economical method to build depth-maps. In vision-based depth sensing,
depth-maps can be created by combining the information from multiple cameras. In the most
typical case, two cameras are combined, and depth-maps are created by stereo-matching,
i.e., for each region in one image from a camera, its corresponding area is found in the same
epipolar plane of the image acquired by the other camera. The distance between these related
areas is known as disparity and can be used to infer the distance of the area. An example is
illustrated in Fig. 2.7, where the left image is on top, the right image is in the middle, and the
depth-map is at the bottom.

Depth maps can also be inferred from monocular cameras. However, the accuracy of
monocular depth sensing is still not comparable to that achieved by stereo vision [20].

KITTI benchmark [21] is the most popular benchmark for depth sensing algorithms on
autonomous cars. Benchmarks are typically annotated with labels coming from LiDAR,
which has better accuracy. The metric used in KITTI is D1-all which means the percentage
of disparity outliers in the first image (e.g. left image) over all the ground truth pixels. A
disparity is considered an outlier when its error is equal, or more than 3 pixels compared
to the ground truth. With respect to this metric, the state-of-the-art method is presented in
[22], with code. The authors use a neural architecture search to obtain a feature net and
matching net for the stereo matching pipeline. It achieves 1.65% of D1-all and a throughput
of 3 FPS. Table 2.1 presents the common datasets for stereo matching algorithms and their
SoA implementations.

Table 2.1 Stereo depth estimation datasets

Dataset Year Best Result Metric Score
KITTI 2012 [24] 2012 LEAStereo [22] Out-Noc 1.13%
Middlebury 2014 2014 LocalExp [25] Avg 5.43

KITTI 2015 2015 LEAStereo [22] D1-all 1.65 %

2.3.5 Semantic segmentation

Semantic segmentation is the algorithm that assigns every pixel in the input image a label
among a known set of class labels. The classes can be, for example, pedestrian, cyclist, road,
sidewalk, traffic sign, traffic light. Multiple objects of the same class are considered a single
entity and annotated by the same color as shown in Fig. 2.8. The algorithm that separates not
only the classes but also the objects of the same class is instance segmentation. An example
of instance segmentation is illustrated in Fig. 2.9. It is similar to object detection because it
requires both classification and localization. The difference is that object detection locates

2.3 Vision-based applications on autonomous cars 21

Fig. 2.7 Example of the disparity map computed using SGM from stereo images provided in
[23]

22 FPGA technology for autonomous cars

and recognizes instances in bounding boxes while semantic segmentation separates classes
of object at pixel-level granularity.

Fig. 2.8 Semantic segmentation example Cityscapes dataset [26]. Objects in the same class
have the same annotation color.

Surveys on the algorithm targeting autonomous driving application are published in [28],
[29]. There are different strategies to build a semantic segmentation system. The input is
the images from cameras. A high definition (HD) map, such as semantic point cloud map,
can be fused to improve the system’s accuracy. Moreover, Lidar sensors can be integrated to
provide depth information which helps to localize objects and segment the scene. The two
common dataset for semantic segmentation are Citiscapes [30] and Camvid [31]. Mean IoU
is commonly used to indicate the accuracy of a semantic segmentation system. It is the mean
IOU of all the classes of the dataset. The higher mIoU, the more accurate. The SoA methods
on available benchmarks are listed in Table 2.2.

The best implementations in accuracy are based on CNNs. The CNN models for semantic
segmentation are variants of Unet [32], Fully Convolutional Network (FCN) [33], Segnet
[34], and Pyramid Scene Parsing Network (PSPNet) [35]. The SoA model uses DeepLabv3
network [36], which combines the advantages of Unet and Segnet. It achieves the highest
mIoUs of 82.9% on Camvid and 72.8 on KITTI.

2.3 Vision-based applications on autonomous cars 23

Fig. 2.9 Instance segmentation example from the Synthia synthetic dataset [27]. Each person
has a unique annotation color.

Table 2.2 Semantic segmentation datasets

Dataset Year Best Result Metric Score

Pascal VOC2012 2012 EfficientNet-L2+NAS-FPN [37] mIoU 90.5 %
Camvid [38] 2009 DeepLabV3Plus + SDCNetAug [36] mIoU 82.9 %

Cityscapes [26] 2016 HRNet-OCR [39] mIoU 85.1 %
Kitti [15] 2018 DeepLabV3Plus + SDCNetAug [36] mIoU 72.8

2.3.6 Object detection

The detection algorithm recognizes objects of certain predefined classes (pedestrians,
vehicles, road objects such as lane, traffic lights, traffic signs, buildings, animals, etc.) in
an image and locates their positions (e.g. using bounding boxes). Due to safety-critical
reasons, lane detection, TSR, TLR and pedestrian detection are often implemented as stand-
alone applications. Obstacles can be other vehicles, cyclists, road structures - such as roud
boundaries, trees, walls, buildings. Fig 2.10 presents an example of object detection on a street
scene. It comes from the detection result published in [40]. The COCO dataset provides
ground truth at pixel-level granularity, which benefits instance segmentation algorithms.
However, the object detector usually uses bounding boxes to locate the prediction.

Popular dataset are: KITTI [21], PASCAL VOC [41], and MS-COCO [14]. The state-
of-the-art methods for implementing vision-based object detection are mostly based on
DNNs. In [42], Girshick et al. are the firsts to show that CNN-based object detector provides
higher detection performance than HOG-based detector on PASCAL VOC dataset. The
authors propose regions that potentially contain objects and then classify all the regions by

24 FPGA technology for autonomous cars

Fig. 2.10 Detection result example on COCO dataset done in [40]. The ground truth objects
at pixel granularity and the predictions are bounding boxes

category-specific classifiers. This method is categorized as two-stage object detection [43],
[44]. On the MS-COCO dataset, the state of the art two-stage algorithm is Mask R-CNN
[40].

The typical steps of a two-stage method are generalized in Fig. 2.11. The pre-processing
step can be image scaling since image resolution used by the algorithms depends both on
available computation and real time-constrains. The first stage proposes the regions that
might contain objects. The second stage is a CNN that extracts features from the regions
of interest (RoI). The features are used for classification and bounding box regression. The
Mask R-CNN also uses the features for instance segmentation. This method provides the
highest accuracy on the MS-COCO [14], a well-recognized dataset.

Regarding real-time efficiency, a one-stage approach is more suitable. It does not have
the region proposal step [45]. The state-of-the-art method is YOLOv3 [3] with a throughput
of 19 FPS (input image is 608x608). It uses Darknet-53 to extract features from the full
image. YOLOv3 is 3.8x faster than the RetinaNet model but its accuracy is slightly lower.

2.3 Vision-based applications on autonomous cars 25

The RetainaNet model incorporates ResNeXt and Feature Pyramid Network [46] to achieve
the state-of-the-art one-stage method in terms of accuracy on MS-COCO dataset.

Region Proposals
Network

BB RegressionPre-processingAcquisition

Classi�cation

Segmentation

Convolutional
Network

Fig. 2.11 Typical processing steps of a CNN-based object detection algorithm.

In the next sections, sub-problems of object detection on autonomous cars are described.
They are lane detection, TSR, TLR, and obstacles detection. Pedestrian detection, the
research goal of this thesis, will be the focus of the next chapter.

2.3.7 Lane detection

Lane detection (LD) is an algorithm that detects and extracts lanes on roads at a distance
of several tens of meters ahead [47]. It is the key algorithm in many other applications such
as lane departure warning systems (LDWS), advanced cruise control (ACC), lane keeping
assist (LKA), lane centering assist (LCA), lane change assist, and turning assist. Vision
sensors are likely used in lane detection systems, since lane marks are created for human
vision. Lane detection systems must be able to detect lane marks on the road surface, infer
the drivable lanes, and determine the current lane (ego lane).

Datasets for LD are available, with some focusing on the recognizing of lane marks and
others focusing on the recognition of the whole lane area. For most, the ground truth is
provided at pixel level, but in some cases the ground truth is provided as a mathematical
function that describes the lane lines. Fig. 2.12 gives an example of a challenging lane
detection scenario.

The problem can be presented as a binary class segmentation if only lane marks are
considered, or multi-class segmentation if other road marks are considered; or even instance
segmentation if different lane marks are considered. Table 2.3 lists some available datasets
for lane detection, together with current best performing designs.

State-of-the-art methods to implement lane detection are based on CNNs. In [51], Spatial
CNN (SCNN) is proposed to tackle the long, continuous structure of lane markings. The

26 FPGA technology for autonomous cars

Fig. 2.12 Fragment of a challenging scenario for lane detection with a corresponding pixel
level ground-truth for visible lane marks (center), and partially ocluded road lanes (right).

Table 2.3 Lane detection datasets

Dataset Year Best Result Metric Score
Caltech [48] 2008 HT+FCN F1

a 96.29 %
TuSimple [49] 2017 FOLOLane [50] TPRb 96.92 %
CULane [51] 2018 CondLaneNet [52] F1 79.48 %

LLAMAS [53] 2019 LaneAF F1 96.0 %
BDD100K [54] 2019 ERFNet+ESA [55] TPR 60.24 %

a Metric for pixel-based evaluation calculated from precision and
recall values, as described in section 2.3.2.
b It is the ratio of true positives above true positives plus false nega-
tives, described in section 2.3.2.

rule of thumb is to reinforce spatial information via inter-layer propagation of the CNN.
The implementation achieves an accuracy of 96.53% with the TuSimple dataset [49]. The
state-of-the-art accuracy on TuSimple dataset is reported in [50], with an accuracy of 96.92%.
The authors propose FOLOLane, which uses CNN to predict the key points in the local range
and correlates ones of the same lane line.

Regarding Caltech dataset, the state-of-the-art accuracy is 96.29%, published in [48].
The authors combine HT and a deep convolutional network based on the Fully Connected
Network on GTX 1070.

Another approach for lane detection is presented in [56]. The authors perform instance
segmentation using LaneNet, and the resulting pixels from each instance are used for polyno-
mial curve fitting.

2.3 Vision-based applications on autonomous cars 27

2.3.8 Traffic signs recognition

Traffic sign recognition (TSR) is the process of detecting traffic signs in an image and
recognizing their meaning. Like LD, TSR is one of the applications that tend to employ
image sensors, because colors are very important to sign meaning; for instance, red is
typically associated with prohibitory signs. There are many challenges to achieve a high
recognition rate, such as the effect of lighting conditions, motion blur, fading of signs due to
environmental conditions, rotation, and occlusion [57]. Fig. 2.13 illustrates some cases in
which TSR needs to detect and recognize traffic signs.

Surveys on vision-based TSR are presented in [58], [59]. The authors in [59] point out
that different countries still have different designs for the same traffic signs, which imposes
greater computational load into the TSR system. Some datasets for TSR systems are The
Belgian Traffic Sign Dataset [60], The German Traffic Sign Recognition [61] and Detection
Benchmark [62], Swedish Traffic Sign Dataset (STSD).

The detection performance is commonly measured by mean Average Precision (mAP),
as described in Section 2.3.2. The state-of-the-art implementations on GTSDB and STSD
datasets are shown in Table 2.4. The TSR system in [63] is only for inventory management
applications. It achieves the SoA miss rate of 3.5% on Swedish Traffic Sign Dataset (STSD)
using Mask R-CNN [40].

On GTSDB dataset, the SoA model [64] achieves 97.71% mAP. The detection module
uses Mask R-CNN network and a CNN architecture is proposed to classify the signs.

Table 2.4 Best traffic sign recognition implementations on GTSDB and STSD

Dataset Best Result Year Metric Score
GTSDB MASK_R-CNN + Class_CNN [64] 2020 mAP 99.71 %
STSD Mask R-CNN [63] 2019 mAP 96.5 %

2.3.9 Traffic lights recognition

Vision-based TLR detects traffic lights in the input images and recognizes the state of the
light signal. Fig. 2.14 illustrates a case of traffic lights detection. Surveys on this application
can be found in [65], [66]. One popular approach is to extract features from the input images,
like colors and shapes, and classify the objects based on the features. Recently, most of the
best algorithms use DNNs. Table 2.5 presents the most accurate implementations on some
popular datasets for TLR. The authors are evaluating TLR with different accuracy metrics.

28 FPGA technology for autonomous cars

Fig. 2.13 Multiple signs on both sides at the far sight including information, warning,
and prohibitory signs. b) Two attaching prohibitory signs and an information sign with a
secondary sign attached.

2.3.10 Obstacle detection

Obstacle detection is the application that segments on-road generic obstacles from free-
space in the front area of the vehicle. Obstacle detection is the foundation from which to
implement more complex systems, such as collision avoidance, situation analysis, cruise-
control, and path planning. A camera-based system could bring higher spatial resolution than
other active sensor systems such as laser, radar, and ultrasonic. Fig. 2.15 shows an example
of obstacles in a street scene. There are two vehicles on the left lane and one inexplicable
object on the ego-lane.

The most common approach when using vision sensors is to construct a 3D model of
the scene. A survey on real-time obstacle detection has categorized these systems into four
different models based on the clustering strategy [75]. All the models employ stereo images

2.3 Vision-based applications on autonomous cars 29

Fig. 2.14 Traffic lights detection example in Germany [67].

Table 2.5 Traffic light recognition datasets and their best implementations

Dataset Year Best Result Metric Score
LaRA [68] 2010 Feature learning - Fusion detection [69] AUC 88.61%a

LaRA [68] 2010 2D CNN [70] mean F1 99.96%
LISA [71] 2015 2D CNN [70] mean F1 99.92%
Bosch [72] 2017 2D CNN [70] mean F1 89.44%
DriveU [73] 2018 Single Shot Detection [74] LAMR 1.5%b

DriveU [73] 2018 Fast-RCNN + ResNet [67] AP50 92%c

a The highest average between AUCs of red and green lights is chosen.
b Log average miss rate.
c Ignoring all the less than or equal 8 pixels bounding boxes.

and disparity maps. The accuracy of a stereo-vision system highly depends on the camera
calibration. In [76], four different configurations regarding the focal length and the distance
between cameras are explored to achieve a detection range from 10 to 140m.

Based on the assumption that the disparity should be equal or smaller while going from
bottom to top in any specific column of an image, an obstacle can be detected only by
analyzing the disparity map. Nevertheless, this simple approach could not handle noisy data
from disparity maps. In [77], the authors proposed the detection of free space on road scenes
based on occupancy maps [78]. In an occupancy map, each cell represents the likelihood
of occupancy at its coordinate and, ideally, only objects lying above the road are registered
as obstacles. For global optimum, the dynamic programming technique has been used to
obtain the line separating free space and obstacles on a road. The heights of obstacles are
also determined by the same dynamic programming.

30 FPGA technology for autonomous cars

A popular technique to detect moving objects is optical flow, also known as scene flow
[75]. The algorithm tracks movement by comparing temporally continuous images. The
optical flow algorithm has a higher computational cost than stereo matching, since it searches
for corresponding points both horizontally and vertically. It is usually fused with stereo
matching to improve the robustness of the obstacle detection algorithm. This combined
technique is referred as 6D-vision [79], in which velocities of moving pixels are tracked.
Because of the high computational complexity of tracking 3D pixels, [80] proposed to
represent an image using stixels instead of pixels. Stixels are rectangular sticks representing
the objects on the street, which are usually vertical. Stixel offers a significant reduction of
data volume.

Obstacle detection is also a perfect application for deep-learning based models. It can be
considered a sub-problem of object detection, since obstacles can be some certain classes of
objects. Best object detectors are based on CNNs. YOLOv3 [3] is the SoA approach which
has both good accuracy and high processing speed. RetinaNet [81] and Single Shot MultiBox
Detector (SSD) [82] are competitive in accuracy (MS-COCO dataset [14]) but they are three
to four times slower.

Fig. 2.15 Example of obstacles on a road.

Obstacle detection can be incorporated with semantic segmentation, like in [83]. The
authors use Cityscapes [26] and Lost and Found [84] datasets for evaluation. Cityscapes
is mainly for semantic segmentation applications. The Lost and Found dataset focuses on

2.4 Hardware platforms for autonomous cars 31

obstacle detection, with fine-grained annotations of small obstacles on roads. The evaluation
method of the paper is similar to that of the semantic segmentation problem. The paper
achieves 72.5% mIoU on Cityscapes and 72.2 mIoU on the blended dataset.

2.4 Hardware platforms for autonomous cars

Computing hardware platforms for autonomous cars use ASICs, GPUS, CPUs, and
FPGAs as accelerators. A range of automakers and their computing hardware platforms are
presented in Table 2.6. Some companies have their own ASICs for the computing on the edge.
These ASICS are specialized hardware for vision processing algorithms. Waymo seems to
use Intel’s CPU. Daimler and Uber use a GPU platform from Nvidia. With the increasing
demand of workload and real-time processing speed, FPGAs provide an acceleration solution.
The technology supports high speed processing with low power consumption in comparison
to CPUs and GPUs.

Table 2.6 Automakers and their computing hardware platforms

Announced Year Company Computing hardware platform
2017 Waymo Intel CPU
2018 Daimler and Bosch Nvidia Drive Pegasus GPU
2018 Mobileye EyeQ5 ASIC + Intel Atom
2018 Uber Nvidia Drive PX GPU
2019 Baidu Baidu BIE-AI-Board, BIE-AI-Box
2019 Tesla Tesla FSD computer

2.5 FPGA technology

Despite their humble beginnings as a method to implement glue logic to connect more
important chips on a PCB, nowadays FPGAs are considered fully-fledged computing plat-
forms and a valid implementing option for high-end cars - despite their currently high device
costs. The spatial computing paradigm can profit from FPGA architectures for many highly
parallel applications that have an important dataflow component, or high memory locality
[85].

Not all applications can benefit from full FPGA implementations but, even in many of
these cases, FPGAs can still offer some advantages when used in conjunction with host CPUs
as accelerators. The speedup provided by such accelerators is often limited by the sequential
part of the algorithms running in the CPU, as reflected by Amdahl’s law [86].

32 FPGA technology for autonomous cars

Device density is a determinantal factor of the performance and energy efficiency achieved
in FPGA design [87]. FPGA manufacturers are early adopters of new technology nodes;
therefore, benefiting from their latest advances in higher transistor densities and lower power
consumption.

FPGAs are built by replicating many simple basic logic elements (LEs) and some more
complex IPs, such as dual-port memories and digital signal processing (DSP) modules.
The main components of LEs are Look Up Tables (LUTs) and registers, while the main
components of DSPs are adders and multipliers (see Figure 2.16).

LUT
FF

RST

Conf Conf

DP
Mem

WR A

RD A

WR B

RD B ×
±

Conf

Fig. 2.16 Main replicated FPGA components interconnected by a configurable interconnect.

In the late nineties, FPGAs already had thousands of LEs. To put this in perspective, a
simple 32 bits Reduced Instruction Set Computing (RISC) processor needs a few thousand
LEs to be implemented. With the new millennium, it became possible to configure a subset
of logic blocs to work as a processor and use the rest of the available logic to implement
other processing units or system interfaces that could communicate among them and with
the processor using buses or other simple mechanisms (directly, dual-port memories, etc.).
Nowadays, the logic density is high enough to implement hundreds of simple processors
in the same device. Internal memory can exceed the order of several dozens of MB [6].
The availability of low-latency local memories is very important for many computer vision
applications. The theoretical peak performance of latest FPGAs can be up to several TFLOP/s.
Although these estimations are based on assuming a full usage of all available computing
resources, some works have successfully reached the TFLOP/s range [88].

2.5.1 Design methodologies

Applications on autonomous cars usually require high-speed processing. Vision-based
applications usually require hardware-software co-design methodology because some tasks
are computationally intensive and need to be accelerated using dedicated hardware.

Typical structures of an FPGA-based accelerator are shown in Fig. 2.17. With the
structure in Fig. 2.17a, the FPGA and the CPU have separated dedicated memory. The host
memory can only be accessed by the host CPU. However, the device memory is accessible to

2.6 FPGAs for vision-based algorithms 33

both the FPGA device and the host CPU. Another structure is illustrated in Fig. 2.17b, in
which the host memory is shared between the host CPU and the FPGA device. This structure
avoids copying data between the host and the device memory. However, it requires high
speed communication bus between the host and the FPGA. For example, Intel packages their
Xeon and FPGA die in the same package and the two dies transfer data using two PCIe
Gen3 x8 and one QPI physical links. Finally, the structure in Fig. 2.17c describes the case
where the host CPU is a soft-core CPU mapped on FPGA fabric. In this structure, the device
memory is the only external memory for the whole system.

The HDL design flow involves specifying the hardware microarchitecture; describing
finite state machines (FSM), pipeline stages, defining registers or bits, etc. This flow requires
multiple years of experience on hardware design and, more importantly, huge efforts to verify
the hardware function. Writing HDL is sometimes a tedious and error-prone process.

High-level synthesis (HLS) and System-level Synthesis (SLS) offer designers an alter-
native way to implement their designs onto FPGAs, which helps shortening design and
verification time. From a software perspective, this design flow abstracts most of the above
mentioned details which require hardware design experience. Hardware designers could also
take advantage of using HLS, especially at system level design for design space exploration
and verification. Outputs of HLS/SLS tools are the design described in hardware description
language (HDL) or System C ready for further steps (back-end or Low-level synthesis).
The input specification of an HLS tool depends on the specific compiler. In the case of
VivadoHLS, a Xilinx’s tool, the input design could be written in C/C++ or SystemC. On the
other hand, OpenCL compiler from IntelFPGA accepts OpenCL language as the input. Many
other industrial and academic HLS tools could also be found in [89].

2.6 FPGAs for vision-based algorithms

Computer vision techniques commonly relied on feature extraction, either feature classi-
fication or regression and, optionally, model verification - as depicted in Fig. 2.18. Images
are pre-processed after acquisition. The pre-processing steps can be Bayern pattern filter,
noise removing, resizing. The Region of Interest Selection, Feature Extraction, and Clas-
sification/Regression blocks can be implemented as modular-based method using classical
machine learning techniques. These techniques are suitable for small data and battery-
powered problems. It leverages image features such as color, shape, HOG, SIFT, etc.

However, this approach usually gives less accuracy than the SoA approaches using neural
networks [90]. Two-stage networks R-CNN [40] include the Region Proposal network which
is the same as Region of Interest Selection module. On the other hand, one-stage networks

34 FPGA technology for autonomous cars

reconfigurable
fabric

Core

CPU

Memory
Controller

Host
Memory

Bus
Controller

Bus
Controller

FPGA

Memory
Controller

Device
Memory

MMU
/Cache

I/OI/O

(a) Dedicated memories for host and FPGA

reconfigurable
fabric

Cache
Coherency

CPU

Memory
Controller

Host
Memory

Bus
Controller

Bus
Controller

FPGA

Cache+
Coherency

MMU
/Cache

Core

I/O I/O

(b) Host memory only

reconfigurable
fabric

Soft-Core

FPGA

Memory
Controller

Device
Memory

I/O

(c) FPGA device memory only

Fig. 2.17 Typical structures of an FPGA-based accelerator

exclude the Region Proposal module and use a single neural architecture (e.g., CNN) to
accomplish both feature extraction and classification/regression [3]. A survey of computer
vision algorithms and related hardware implementations is presented in [43] with a special
focus on CNNs.

CNN-based implementations typically require both high computing resources and mem-
ory bandwidth. This also means they consume high amounts of power. However, energy is a
precious resource on autonomous cars. Therefore, the implementations of the algorithms

2.6 FPGAs for vision-based algorithms 35

Image
Acquisition

Preprocessing

Feature
Extraction

Classification /
Regression

Region of
Interest

Selection

Model
Verification

Fig. 2.18 CV generic pipeline

should be energy efficient, in terms of performance per watt. According to [91], an ideal
ADAS system should be able to offer a computing speed of over 200 GOPS with no more
than 40 W, which is 5 GOPS/W. Matsubara et al. [92] sets an even smaller power budget
for the SoC of the system. They proposed that Level 3 cars should achieve 120 TOPS at 12
W, which is 10 TOPS/W. Table 2.7 presents the performance of some hardware platforms
for autonomous cars. From the table, we can see that FPGAs achieves several hundreds
of GOPS/W power efficiency. GPU platforms give more than 1 TOPS/W, and ASICs can
provide up to 10 TOPS/W.

Figure 2.19 reports the performance of these platforms based on several implementations.
The power efficiency is represented by the diagonal lines. CPU platform is below 1 GOPS/W.
FPGAs are better, in the range of 100 GOPS/W. GPUs achieve around 1 TOPS/W. Finally,
ASIC performance spreads in a broad range from 0.1 TOPS/W to 10 TOPS/W.

These are based on the peak power efficiency on neural network computations. According
to those numbers, GPUs are 10 times more efficient than FPGAs. However, the experiment
results from research papers shown in Table 2.8 indicate another perspective. The papers
compare the performance between FPGAs and GPUs using the same algorithm. Based on
the reported results, the energy efficiency is extracted and compared between FPGAs and
GPUs. In particular, the energy efficiency is measured by the energy to process one frame. It
is ratio between power consumption and throughput (FPS).

36 FPGA technology for autonomous cars

Table 2.7 Comparison of different hardware platforms for autonomous cars

Platforms Architecture Performance Power Power eff.
(TOPS) (W) (TOPS/W)

NVIDIA Jetson Xavier NX GPU 21 10 2.1
NVIDIA Jetson AGX Xavier GPU 32 10 3.2

Renesas SoC [92] ASIC 60.4 TOPS 4.4 13.8
Google TPU v3 ASIC 4 2 2
Xilinx ZCU102 FPGA 3.69 23 a 0.16

Intel® Stratix® 10 NX FPGA 183 225 0.63
a https://developer.xilinx.com/en/articles/accurate-design-power-measurement.html

Fig. 2.19 Neural network accelerator platforms [6].

2.6 FPGAs for vision-based algorithms 37
Ta

bl
e

2.
8

E
ne

rg
y

ef
fic

ie
nc

y
of

al
go

ri
th

m
s

on
FP

G
A

s
an

d
G

PU
s

R
ef

.
[9

3]
[9

4]
[9

5]
[9

6]
[9

7]

Y
ea

r
20

17
20

18
20

15
20

18
20

20
A

lg
or

ith
m

Si
gn

re
co

gn
iti

on
St

er
eo

m
at

ch
in

g
H

O
G

Y
O

L
O

V
2

B
N

N
St

er
eo

m
at

.
R

es
ol

ut
io

n
19

20
x1

08
0

12
42

x3
75

64
0x

48
0

22
4x

22
4

12
42

x3
75

Pl
at

fo
rm

FP
G

A
G

PU
FP

G
A

G
PU

FP
G

A
G

PU
FP

G
A

G
PU

FP
G

A
G

PU
Z

C
70

6
G

ri
d

K
52

0
Z

C
70

6
G

T
X

Ti
ta

n
X

V
ir

te
x-

6
Te

sl
a

K
20

Z
C

U
10

2
PA

SC
A

L
St

ra
tix

V
X

av
ie

r
FP

S
(M

H
z)

12
6

41
72

16
7

68
13

.4
40

.8
1

1.
48

11
4.

08
8.

53
Po

w
er

(W
)

5.
5

72
3

25
0

37
22

5
4.

5
7

3
12

.9
1

E
ne

rg
y

ef
f.

0.
04

1.
76

0.
04

1.
5

0.
54

17
0.

11
4.

73
0.

03
1.

51
(J

/f
ra

m
e)

(F
PG

A
/G

PU
)a

43
36

31
43

58
a

R
at

io
be

tw
ee

n
en

er
gy

ef
fic

ie
nc

y
(J

/f
ra

m
e)

of
G

PU
an

d
FP

G
A

38 FPGA technology for autonomous cars

From the Table 2.8, we see that the energy efficiency of FPGAs is from 31x to 58x better
than GPUs. It is worth noting that the applications are different and the platforms used are
selected independently by the authors. Two out of five papers use CNN-based methods. The
other papers use classical machine learning algorithms.

The numbers from Table 2.8 suggest that the energy efficiency is not only dependent
on the power efficiency that the hardware platform provides but also on how efficient the
hardware platform is being used. The following section describe some common techniques
used on FPGAs for vision-based algorithms.

2.6.1 FPGA common techniques

To determine what have been accomplished in the literature, I have conducted a survey on
FPGA implementations for vision-based algorithms. The common ways to boost a design’s
performance is to parallelize its tasks. This can be done by a single or multiple pipelines.
Secondly, FPGA on-chip memories are flexible and can be implemented as different types of
memory - such as registers, FIFOs, line buffers, and Look-up Tables. Dual port memory on
FPGAs helps to simultaneously read and write at the same clock cycle, which partly mitigates
memory dependency due to multiple memory access at the memory location at the same
time. Finally, fixed-point representation is an advantage of FPGAs in some algorithms when
fixed-point numbers provide comparable accuracy to floating-point numbers. Computation
of fixed-point numbers is simpler and requires lower latency than that of floating-point
calculations.

Custom Memory Buffers

The flexibility of FPGA allows for the implementation of memory buffers addressing
the needs of applications. For in line buffers, the goal is to act as a custom cache memory;
the memory access pattern is regular, with high data locality. The trick is that, in long shift
register we can predict the exact positions where the recently accessed data is located. This
therefore avoids many costly external memory accesses since the values are already available
in the buffer. The line buffers are depicted in Fig. 2.20 as an illustration.

Task parallelism

The aim of task parallelism is to divide a function into small taks and devote an indepen-
dent computing system to each.

Since each computing system could be devoted to a single task, this supposes a great
opportunity to optimize the performance and the resource for each task.

2.6 FPGAs for vision-based algorithms 39

Memory

FF

Reader

FF FF FF FF FF

FF FF FF FF FF FF

FF FFFF

f

Fig. 2.20 An illustration of line buffer.

Pipelining is a form of task parallelism. It can be applied at several granularities in
FPGAs. Pipelining requires storage between the computing elements.

Fig. 2.21 illustrates task parallelism. At fine-grain level, the nature of FPGA LEs (see Fig.
2.16, which already contain registers for storage, makes it highly adequate for implementing
pipelines.

At the coarse grain level, dual-port memories also help to store the intermediate values of
task level pipelining.

× FF
A

B

C FF

+ FF
in0

t0
in1

... t1 ...

Fig. 2.21 Example of task parallelism at the fine-grain (left) and a coarse grain (right) levels

Data parallelism

When working with independent data, there is the chance of creating multiple computing
units that work with several independent sets of the data simultaneously.

If the data storage is centralized, it makes sense if the cost of computing is high enough
that the data non concurrent access represents a tiny fraction of the computing time; otherwise,

40 FPGA technology for autonomous cars

the speedup of replicating hardware is not worth the cost. A way to minimize this problem is
to work with intermediate independent memories (when part of a pipeline).

Number Representation

Floating point numbers are generally used in algorithms because they offer a flexible
way to background the valid number range of numbers. The flexibility is balanced against a
higher latency. This is an important drawback for iterative algorithms. On the other hand,
basic fixed point numbers operations (add, sub, mult) are commonly implemented in single
cycle designs. FPGAs support DSP blocks which help to speed up integer multiplication
and addition. Fixed-point operations can benefit these DSP blocks, since they are mostly all
integer operations. Therefore, moving an algorithm to a fixed-point has two benefits: better
performance and less resource usage.

Lookup tables

Many complex mathematical functions can be optimized by having pre-computed values
that are stored in on-chip ROM or block RAMs. Therefore, the pipeline just needs to look up
instead of computing complex mathematical operations. ROM is sufficient for implementing
small lookup tables and it returns result asynchronously and immediately. Larger lookup
tables can be implemented in block RAMs, which typically require one clock cycle latency.
CORDIC is one algorithm based on Lookup tables.

Chapter 3

Pedestrian detection on autonomous cars

3.1 Pedestrian detection

Pedestrian detection is a safety-critical application on autonomous cars. Only in the US,
in 2019, there are more than six thousands pedestrian fatalities, which is 17% of the total
traffic deaths [98]. The algorithm can be implemented as a part of object detection. But
because of its importance, it is usually considered separately.

SoA approaches for pedestrian detection are based on monocular vision. The algorithm
detects pedestrians in images and draws bounding boxes surrounding them. Fig. 3.1 presents
some examples of annotated pedestrians, derived from Caltech Pedestrian dataset.

The key challenges of this algorithm are the occlusion, which is usually the case on
streets, and the difference in pedestrian’s posture. For example, in the top left image of Fig.
3.1, the pedestrians are partly occluded by the trolleys.

Popular datasets for pedestrian detection algorithms are Caltech [99], INRIA [100],
Daimler [101], ETH [102], TUD-Brussels [103], CityPersons [104], and EuroCity Persons
[105]. They are listed in Table 3.1.

• The INRIA dataset contains a total of 1774 (64x128) images of humans cropped from
personal photos. These are used as positive samples for training and testing process.
All the annotations are at least 100-pixel height. The negative samples are extracted
from 1671 person-free photos. The photos of this dataset are usually high resolution
(e.g. 2592x1944). However, the photos are not taken from street scenes.

• In ETH dataset, the photos are obtained from a pair of cameras mounted on a children’s
stroller. The resolution, after Bayer filter, is 640x480.

42 Pedestrian detection on autonomous cars

Fig. 3.1 Example images from Caltech Dataset with annotations [99]. Pedestrians can be
detected as a single person or as a group of people. The solid green boxes indicate full
person or people detected. The yellow dashed boxes indicate the visible part of a pedestrian
detected.

• TUD-Brussels dataset is more realistic for autonomous car applications because the
images are captured from a driving car. The annotated pedestrians are not only in
up-right but also in side-view position. The dataset annotates pedestrians whose sizes
are higher than 48 pixels.

• Another popular dataset is from Daimler, presented in [101]. Its training set contains
15,560 (48x96) positive images and 6,744 person-free full images for extracting
negative samples. The test set is a 27-minutes video of urban traffic taken from a
vehicle. It contains more than 21,790 (640x480) images with 56,492 pedestrian (fully
visible or partly occluded) labels. The minimum height of a label is 72 pixels.

• Caltech datset includes almost 10 hours of 640x480 30Hz video taken from street
view in urban areas. It annotates 2,300 pedestrians with 350,000 bounding boxes. The
annotations are grouped into three different scales: near (80 or more pixels), medium
(from 30 to 80 pixels), and far (30 pixels or less). The medium scale is the most
appropriate height to be detected because far pedestrians are too distant and it is too
late to detect near scale ones.

3.1 Pedestrian detection 43

• CityPersons is built based on Cityscapes dataset, which has instance-level labels for 30
visual classes including persons. The videos are captured from a stereo camera record-
ing streets from 50 different cities. The total number of instance segmentation images
is 5000. CityPersons also creates fine-grained category specifically for pedestrians to
separate it from riders, sitting person, or others.

• EuroCity Persons is a new dataset targeting autonomous driving applications. It
includes street scenes from 31 cities across 12 countries in Europe. Fifteen percent of
the images are captured at night time.

44 Pedestrian detection on autonomous cars
Ta

bl
e

3.
1

Po
pu

la
rp

ed
es

tr
ia

n
da

ta
se

ts

D
at

as
et

IN
R

IA
E

T
H

T
U

D
-B

ru
ss

el
s

D
ai

m
le

r
C

al
te

ch
C

ity
Pe

rs
on

s
E

ur
oC

ity
Pe

rs
on

s
Y

ea
r

20
05

20
07

20
09

20
09

20
09

20
17

20
19

Tr
ai

ni
ng

Im
ag

e
si

ze
64

x1
28

64
0x

48
0

72
0x

57
6

48
x9

6
64

0x
48

0
20

48
x1

02
4

19
20

x1
02

4
#

pe
de

st
ri

an
s

12
08

15
78

17
76

15
.6

k
19

2k
20

kd
15

3k
#

po
si

tiv
e

im
ag

es
12

08
N

A
a

10
92

N
A

67
k

N
A

33
k

#
ne

ga
tiv

e
im

ag
es

12
18

N
A

a
19

2
6.

7k
c

61
k

N
A

Te
st

in
g

Im
ag

e
si

ze
64

x1
28

64
0x

48
0

64
0x

48
0

64
0x

48
0

64
0x

48
0

20
48

x1
02

4
19

20
x1

02
4

#
pe

de
st

ri
an

s
56

6
93

80
13

26
56

.5
k

15
5k

11
k

65
k

#
po

si
tiv

e
im

ag
es

56
6

N
A

b
50

8
21

.8
k

65
k

N
A

14
k

#
ne

ga
tiv

e
im

ag
es

45
3

N
A

b
N

A
N

A
56

k
N

A
a

T
he

to
ta

ln
um

be
ro

fp
os

iti
ve

an
d

ne
ga

tiv
e

im
ag

es
ar

e
49

0.
b

T
he

to
ta

ln
um

be
ro

fp
os

iti
ve

an
d

ne
ga

tiv
e

im
ag

es
ar

e
18

03
.

c
T

he
re

so
lu

tio
n

of
th

es
e

ne
ga

tiv
e

im
ag

es
is

64
0x

48
0.

d
T

he
to

ta
ln

um
be

ro
fa

nn
ot

at
io

n
fr

am
es

ar
e

50
00

.

3.2 Evaluation methodology 45

3.2 Evaluation methodology

Pedestrian detection algorithm results in detected bounding boxes which can be either true
positives or false positives. Each detected bounding box has a confidence value, predicted
by a classifier, which indicates the degree of certainty that a pedestrian is in the box. The
confidence value must be greater than a given classification threshold.

There might be the case in which multiple detected boxes refer to a single pedestrian.
One reason for this is the multi-scale detection. Non-maximal suppression (NMS) helps to
mitigate this problem. The idea of NMS is to select the best candidate out of the nearby
bounding boxes that potentially refer to a single pedestrian. The input of the algorithm is
a list of bounding boxes, which actually is a list of coordinates, and a list of scores, e.g.
confidence values, corresponding to those bounding boxes. The output of the algorithm is a
subset list of the input bounding boxes since overlapping boxes are removed based on a given
threshold. In other words, the algorithm effectively reduces the number of false positives.
The pseudo-code for the algorithm is presented in Listing 3.1. The comments are added after
the semicolon to make the code clearer.

1 I n p u t : BB = {bb1,bb2, ...,bbN}, S = {s1,s2, ...,sN}, TNMS

2 BB i s t h e l i s t o f bounding boxes
3 S i s t h e l i s t o f t h e s c o r e s o f t h e bounding boxes
4 TNMS i s t h e o v e r l a p t h r e s h o l d
5 Outpu t : BBNMS , a s u b s e t o f BB
6 b e g i n
7 BBNMS = {} ; BBNMS i s empty i n i t i a l l y
8 w h i l e (BB i s n o t /0) do :
9 m← argmax S ; p i c k t h e i n d e x of t h e h i g h e s t s c o r e

10 M← bbm ; p u t t h e bounding box wi th t h e h i g h e s t s c o r e i n t o M
11 BBNMS← BBNMS∪M ; p u t t h e bounding box i n t o BBNMS

12 BB← BB−M ; remove t h e bounding box from BB
13 f o r bbi in BB do :
14 i f (iou(M,bbi)≥ TNMS) t h e n
15 BB← BB−bbi ; remove t h e box t h a t o v e r l a p s t h a n t h r e s h o l d
16 S← S− si

17 end
18 end
19 end
20 r e t u r n BBNMS, S
21 end

Listing 3.1 NMS pseudo-code

46 Pedestrian detection on autonomous cars

Having the list of detected boxes after NMS, IoU threshold is used to decide if each
bounding box is a true positive (TP) or a false positive (FP). The common used IoU threshold
is 50%, proposed by the PASCAL object detection challenges [106]. The IoU of a detected
bounding box and a ground-truth is calculated as in Fig. 2.4. A detected box is a TP if its
IoU with the ground truth is greater than the IoU threshold. Otherwise, the detected box is
considered as a FP. A ground-truth that is not matched with any bounding box is counted as
a false negative (FN).

Binary classifiers usually use the precision-recall curve to measure the performance as
presented in Section 2.3.2. Pedestrian detection is also an application of binary classifier
because the algorithm only needs to detect whether there is a pedestrian or not. However, since
pedestrian detection for autonomous cars requires a low threshold of FPPI, it is preferable to
evaluate its detection performance using the miss rate versus FPPI curve [99], [100].

Miss rate is calculated following Equation 3.1, based on a specific classification threshold;
the higher threshold, the higher miss rate. Because a high threshold would create more FN
and less FP.

FPPI is calculated following Equation 3.2. Higher classification threshold creates less
false positives and thus smaller FPPI. In this work, I use the curve miss rate versus FFPI to
indicate the performance of the algorithm. It is shown in Fig. 4.15. Instead, some works
prefer to draw the curve recall versus FFPI [102], [103]. It is basically the same curve
because miss rate = 1− recall.

miss rate =
FN

T P+FN
(3.1)

FFPI =
Total number of false positives

Total number of images
(3.2)

Per-window detection does the classification task for fixed window-size images. In [100],
the authors used window-size images of 64x128 for the classification. The pedestrians’ height
in the testing dataset must be smaller than 128 pixels.

In contrast, per-image approach detects pedestrians on a full image, such as 640x480.
It composes of locating the position and classifying if a pedestrian is presented in that
position. In addition to classification task as in per-window approach, the detector also
needs to (1) scale the image to detect small size (or far distance) pedestrians, (2) slide the
detection window all over the scaled images to search for pedestrians, and (3) suppress the
non-maximal bounding boxes to reduce false positives. Although the per-image approach
contains more computational load, it is more practical for autonomous cars. In this work, I
use the per-image approach.

3.2 Evaluation methodology 47

Multiscale

Pedestrians can have different sizes depending on the distance from the camera as in
3.1. It is crucial to detect pedestrians from medium distance, corresponding to pedestrians’
height from 30 to 80 pixels. Too close pedestrians (>80 pixels) are too late to be detected
and less than 30 pixels pedestrians are too far. The distance between a pedestrian and the car
can be inferred from the height of the pedestrian, measured in pixels, in the image as in Fig.
3.2. It can be approximately determined by Equation 3.3, in which f is the focal length of
the camera, H is the height of the pedestrian, and h is the height in number of pixels of the
pedestrian in the image.

Fig. 3.2 Calculation the distance from the height of a pedestrian

h
H

=
f
d

(3.3)

According to the calculation in [107], assuming a pedestrian height is 1.8m, the height
from 30 to 80 pixels corresponds to a distance from 20 to 60 meters. The algorithm should
detect pedestrians at this distance before the car get closer. If the car runs at a speed of
55km/h (15m/s), it takes only 1.5s to get to the 80-pixel height pedestrian.

To detect at multiscales, each input image is scaled by a factor. Intuitively, input images
need to be enlarged so that the algorithm can detect small size or far side pedestrians. Table
3.2 lists the sizes of scaled images with common scale factors. The input image size is
640x480 as in the Caltech and Daimler dataset. In [100], the window size is 64x128. In
the experiments, to reduce the scanning time, the size of the detection window is 96x160.
The height, 160, includes 32 pixels for top and bottom margins, as recommended in [100].
Therefore, the maximum height of a person can be detected is 128 pixels. Thus, to detect a
30-pixel height person, the input image should be scaled up approximately 4 times. From

48 Pedestrian detection on autonomous cars

Table 3.2, to achieve 4x higher resolution, with a scale factor of 1.2, the image needs to
be scaled 7 times and the total number of scaled images is 8. If the scale factor is 1.1,
the total number of scaled images would be 16. A smaller scale factor would give better
detection performance with the cost of computing power due to the increasing number of
scaled images.

Table 3.2 Scaled image sizes

Scale Factor=1.05 Factor=1.1 Factor=1.2
Width Height Width Height Width Height
1 640 480 640 480 640 480
2 672 504 704 528 768 576
3 706 529 774 581 922 691
4 741 556 852 639 1106 829
5 778 583 937 703 1327 995
6 817 613 1031 773 1593 1194
7 858 643 1134 850 1911 1433
8 901 675 1247 935 2293 1720
9 946 709 1372 1029 2752 2064
10 993 745 1509 1132 3302 2477
11 1042 782 1660 1245 3963 2972
12 1095 821 1826 1369 4755 3566
13 1149 862 2009 1506 5706 4280
14 1207 905 2209 1657 6848 5136
15 1267 950 2430 1823 8217 6163
16 1331 998 2673 2005 9860 7395
17 1397 1048 2941 2206 11833 8874
18 1467 1100 3235 2426 14199 10649

Sliding window

The sliding window is the task that scans all over the image to detect for pedestrians. The
stride between windows affects the detector’s performance. Bigger stride would help to scan
faster but it might hurt the detection accuracy. Figure 3.3 illustrates the sliding process of a
7x15 window over a 79x59 image. The Figure shows two detection windows drawn by dash
lines with one pixel stride in the horizontal direction. Similarly, in the vertical direction, the
stride is also one pixel.

3.3 State of the Art 49

......

......

0
0 78

58

14

6

Fig. 3.3 Sliding a 7x15 window over a 79x59 image

3.3 State of the Art

Pedestrian detection methods were classified into two categories: hand-crafted features
based approaches and deep features based approaches [108]. Popular hand-crafted features
are SIFT [109], LBP [110], SURF [111], HOG [100], and Haar [112]. Handcrafted-features
could be color, texture, or edge. A classifier will make predictions based on extracted features
from input images. The most common used classifiers in these approaches are SVM and
AdaBoost. The pipeline of hand-crafted features based approaches usually includes image
scaling, feature extraction, classification, and non-maximal suppression. The block diagram
for this approach is illustrated in Fig. 3.4.

Fig. 3.4 Block diagram of a conventional pedestrian detection system.

50 Pedestrian detection on autonomous cars

The detector proposed in [113] is considered the first pedestrian detection system. It
pioneered in combining motion feature with intensity feature to train the classifiers. The
authors design a cascade system with multiple classifiers from simple to complex ones. The
algorithm of the training process is Adaboost [114], [115]. The throughput of the system is 4
FPS for 360x240 frame size. However, the miss rate of the system is up to 95% on Caltech
Pedestrian benchmark as shown in Fig. 3.5. This detection rate is measured at 10−1 FPPI
and at reasonable setting on Caltech pedestrian dataset.

HOG+SVM, introduced in 2005 [100], achieved much higher accuracy on Caltech dataset.
The approach uses HOG feature and SVM classifier. Its miss rate is 68% on Caltech dataset
as in Fig. 3.5.

Fig. 3.5 Top detectors on Caltech Pedestrian detection benchmark [116]
.

Deep features based approaches are applying deep neural networks. In Fig. 3.5, top 13
detectors on Caltech pedestrian dataset are presented with the two baseline algorithms: VJ
and HOG. The Figure is updated from the research result published in [99]. The top detectors,

3.3 State of the Art 51

starting from MS-CNN, have the accuracy of at least 10% miss rate. Table 3.3 lists out the
classifiers for those detectors. All top algorithms are using deep neural networks. The block
diagram of this approach for object detection is presented in Fig. 2.11.

AR-Ped achieves the best accuracy among these detectors. It has an accuracy of up to 6%
miss rate and a throughput of 11 FPS, which is close to real time processing. The authors
proposed autoregressive network, which aims to combine advantages of recurrent network
(refining features) and ensemble network (diversifying features).

Deep neural network approaches usually have to deal with overfitting problem. It is
the problem when the network performs very well on the training dataset but its accuracy
degrades significantly on different and unseen dataset. The reason for this is the biasness
towards the train/test dataset. Recently, Hasan et al. investigated this problem and proposed
a generalizable pedestrian detector [117]. The authors prove that general object detectors can
generalize better and thus improve accuracy on new datasets. Their model, based on general
object detection network Cascade R-CNN, is trained on a merged dataset and achieved 2.5%
miss rate on Caltech dataset.

Table 3.3 Performance results of detectors on Caltech dataset (the information on the Table is
extracted from Caltech pedestrian dataset website [116]).

Algorithm Year Features Classifier Training FPS
VJ [118] 2004 Haar AdaBoost INRIA NA

HOG [100] 2005 HOG Linear SVM INRIA NA
MS-CNN [119] 2016 pixels deep net Caltech+ImageNet 15

SA-FastRCNN [120] 2016 pixels deep net Caltech+ImageNet 1.7
RPN-BF [121] 2016 pixels deep net+ Caltech+ImageNet 2

AdaBoost
AdaptFasterRCNN [104] 2017 pixels deep net Caltech+ NA

F-DNN [122] 2016 pixels deep net Caltech+ 6
ADM [123] 2018 pixels deep net Caltech+ImageNet NA
PCN [124] 2017 pixels deep net Caltech+ImageNet NA

F-DNN+SS [122] 2016 pixels deep net Caltech+ 0.4
GDFL [125] 2018 pixels deep net Caltech+ 20

F-DNN2+SS [126] 2018 pixels deep net Caltech+ 0.4
TLL-TFA [127] 2018 pixels deep net Caltech+ NA

SDS-RCNN [128] 2017 pixels deep net Caltech+ImageNet 4.8
AR-Ped [129] 2019 pixels deep net Caltech+ImageNet 11

Table 3.4 gives the SoA implementations on some popular pedestrian dataset for au-
tonomous driving applications.

52 Pedestrian detection on autonomous cars

Table 3.4 Some popular datasets and the best implementations on them.

Dataset Year Best Result Metric Score Speed
(FPS)

Caltech [99] 2022 F2DNet [130] Reasonable MR 2.2 % 7
CityPersons [104] 2019 CSP [131] Reasonable MR 9.4 % 3
CityPersons [104] 2020 Pedestron [132] Reasonable MR 7.5 % NA

EuroCity Persons [105] 2020 Pedestron [132] Reasonable MR 6.9 % NA

3.4 HOG/SVM Pedestrian Detection

Even though it achieves high accuracy, DNN-based approach usually requires huge
computing and memory resource. Its inference speed on CPUs/GPUs hardly achieves
real-time processing. Porting DNN-based algorithms onto embedded platforms for power
saving is a challenging task. The common strategy for porting is to trade-off accuracy for
performance and resource constraints.

The conventional approach using a feature extractor and a binary classifier is more
friendly to embedded platforms. This technique requires less computing resource and saves
power consumption. HOG (Histogram of Gradients) feature [100] has proven to have good
accuracy in human detection.

A typical block diagram for HOG+SVM pedestrian detection system is presented in
Figure 3.6. A multiscale module is required so that the algorithm can detect pedestrians from
different distance or sizes. Then, the HOG features of each scaled image are extracted and
passed to the SVM classifier. Section 3.4.5 describes more detail about the SVM algorithm.
NMS module helps to reduce false positives. Its pseudo-code is presented in Listing 3.1.

Fig. 3.6 Block diagram of a HOG+SVM pedestrian detection algorithm

A HOG feature extractor includes the processing steps shown in Fig. 3.7. The next
sections describe the function of every module in this pipeline.

Fig. 3.7 HOG feature extractor block diagram

3.4 HOG/SVM Pedestrian Detection 53

3.4.1 Gamma normalization

Gamma normalization is the first processing step of the chain. It helps to reduce the
influence of illumination effects. The output of this block is the power law transformation of
input pixels. Dalal et. al. has tried with log and square root functions [133]. The authors
showed that square root transformation improves the detection performance for most of
the object classes. Since photon noise in CCD sensors is proportional to the square root of
intensity, taking square root of input pixels makes the effective noise approximately uniform.
Therefore, the noise can be reduced after the gradient computation step. This transformation
improves the performance, in the case of pedestrian detection, by 1% at 10−4 false positives
per window (FPPW).

3.4.2 Gradient computation

Gradient computation is potentially affected by noise. A Gaussian filter can reduce the
noise, but it also blurs the edges which are essential to later processing steps in the pipeline.
Dalal et. al. [133] has shown that adding this filter will decrease the detector’s performance.
Therefore, the implementation of the HOG algorithm can exclude this step to save computing
resources.

To compute image gradients, a mask is slid and convoluted over all the image. An ideal
mask is the one that provides good detection performance. Table 3.5 is derived from [133].
The simple mask 1-D centred is simple and gives the best performance of 11% miss rate at
10−4 FPPW.

Table 3.5 Different masks for gradient computation

Mask 1-D 1-D 1-D 2x2 3x3
type centred uncentred cubic-corrected diagonal sobel

Operator [−1,0,1] [−1,1] [1,−8,0,8,−1]
[

0 1
−1 0

] −1 0 1
−2 0 2
−1 0 1

[
−1 0
0 1

] −1 −2 −1
0 0 0
1 2 1

Miss rate 11% 12.5% 12% 12.5% 14%

54 Pedestrian detection on autonomous cars

Applying 1-D centred mask, gradients of a pixel (x,y) are calculated in horizontal and
vertical directions following Equation 3.4 and 3.5 respectively.

Gx(x,y) = I(x+1,y)− I(x−1,y) (3.4)

Gy(x,y) = I(x,y+1)− I(x,y−1) (3.5)

Then, the magnitude and the orientation gradient at pixel (x,y) are computed by Equation
3.6 and 3.7.

G(x,y) =
√

Gx(x,y)2 +Gy(x,y)2 (3.6)

φ(x,y) = arctan
Gy(x,y)
Gx(x,y)

(3.7)

The output of the Gradient computation stage is the magnitude and orientation gradients
of all input pixels.

3.4.3 Orientation bin voting

HOG feature is extracted over local spatial regions called cell. Typically, a cell has a size
of 8x8 pixels. Each cell consists of 64 pairs of magnitude and orientation gradients. Depend-
ing on its associated orientations, magnitude gradients are accumulated to the corresponding
bins. A cell histogram with nine bins is illustrated in Fig. 3.8. Figure 3.8b describes in
detail how the orientation of the gradient is voted into a range of 9 bins using the scale from
0 to 180°. The magnitude G, in this example, should be accumulated to bin 2 because its
orientation is approximately 30°. This simple method, voting the whole magnitude to the
nearest orientation bin, would create aliasing effects.

A more accurate way to vote is linear interpolation, which accumulates the magnitude to
two neighbour orientation bins. The percent of magnitude voted to each bin depends on the
distance from the orientation gradient to the center of the bin. For example, if the center of
the neighbour bins are bin1 and bin2, there corresponding weights, named w1 and w2, are
calculated as in Equation 3.8.

w1 =
bin2−φ(x,y)
bin2−bin1

w2 =
φ(x,y)−bin1
bin2−bin1

(3.8)

3.4 HOG/SVM Pedestrian Detection 55

Input image

cell 8x8 pixels gradient vector

(a)

0o

20o

40o

60o
80o

100
o

120
o

140
o

160
o

180
o

G x

G y G

Bin 1

Bin 3
Bin 4

Bin 5
Bin 6

Bin 7

Bin 2
Bin 8

Bin 9

(b) (c)

Fig. 3.8 An illustration of how HOG features are generated. a) Image is divided in 8x8 cells.
The pixels’ value of a cell are randomly created to plot the histogram in the subfigure 3.8c.
The gradient vector is also illustrated; each cell has 8x8 pixels. b) A pixel has a magnitude
gradient G, and orientation gradient φ ranged from 0 to 180°; these gradients are calculated
from Gx and Gy. c) All 64 pixels’ values in subfigure 3.8a vote their magnitude gradient to
the appropriate orientation bin among 9 bins to create the cell 's vector.

The magnitude gradients of the pixel at (x,y) to be accumulated to bin1 and bin2 are
w1×G(x,y) and w2×G(x,y) respectively. The final HOG feature of a cell is a 9-dimensional
vector, corresponding to 9 bins. Reducing the number of bins would decrease the detection
performance while increasing it makes no significant improvement [133].

3.4.4 Block Normalization

Block normalization is an important step, it helps to improve the detection performance. It
aims at normalizing contrast caused by illumination difference. There are different schemes
of normalization. The two best schemes are L1 square root and L2; they provide equal
performance for person detection.

Block is a spatial region which encompasses proximity cells. A block typically has a
size of 2x2 cells, which equals to 16x16 pixels. Overlapping 75% and 50% between blocks
improves the detection performance by 4% and 2% respectively [133]. The L1 square root

56 Pedestrian detection on autonomous cars

and L2 normalization can be done following the equations in 3.9 and 3.10. In the equation,
the v at the left of the arrow is the cell HOG features after normalizing. The v at the right
side of the arrow is the features before normalizing. L1 and L2 norm in those equations are
calculated for the whole block.

v←
√

v
∥v∥1 + ε

(3.9)

v← v√
∥v∥2

2 + ε2
(3.10)

The output of the normalization stage is the final HOG feature. Concatenating all the
HOG features of all blocks provides the final HOG feature of the image. To do detection,
input images are divided into spatial local areas named detection windows. Figure 3.9
describes the detection window, the block, and the cell with respect to the image to be
detected.

A block

A cell
A detection window

7 blocks

15
 b

lo
ck

s

2 cells
2

ce
lls

8 pixels

8
pi

xe
ls

An input image

Detection
window

sliding

sliding

Fig. 3.9 Illustration of cell, block, and detection window in an image. The detection window
will slide all over the image to detect object of interest. Each window has a size of 7x15
blocks, each block is 2x2 cell, and each cell is 8x8 pixel.

3.4.5 Support Vector Machine

SVM is known as Support Vector Networks [134]; it is a type of machine learning. SVM
bases on supervised learning model, the model learns from a set of labelled training data.
After learning, the model can predict the correct label for previously unseen data. It is usually
used as a binary classifier in pedestrian detection system (Fig. 3.6).

3.4 HOG/SVM Pedestrian Detection 57

If labelled training data pairs (xi,yi) are given, where i = 1, ..., l and l is the number of
pairs, xi ∈ Rn, and yi ∈ {−1,1}, SVM model is obtained by solving the optimization problem
which minimizes the expression 3.11 with the constraint in expression 3.12.

1
2

W TW +C
l

∑
i=1

ξi (3.11)

yi(W T xi +b)≥ 1−ξi,

ξi ≥ 0
(3.12)

The three variables to be found in this problem are: W,b, and ξ . The solution to this
optimization problem is illustrated in Figure 3.10. The problem is reduced into 2 dimensions
for easy explanation. The key idea is to find a line that separates the data points from the two
different classes, shown in positive symbol and negative symbol. The line should not only
separate all training data points correctly but also create a bigger margin because it will help
to classify testing data better. Constant C, in 3.11, is given by user. It is used to trade-off
between a bigger margin and a smaller number of training data points that fall into the wrong
side of the line. For instance, data points x⃗1, x⃗2,andx⃗3 are separated wrongly in Figure 3.10.
The variables ξ1, ξ2, and ξ3 represent how big the errors are.

The second operand in 3.11 expresses the penalty of training errors to obtain a maximum
margin in the first operand. If C is big enough, the separating line, if it is found, completely
classifies training data points, without any training error. The training data, in this case, is
linear separable.

If the training data is non-separable, the separating line is allowed to have some wrong
classified training data points. This solution is called soft margin hyperplane. Nevertheless, it
would be good to have a separable training data. Therefore, function φ in 3.13 is introduced
to transform the training data x⃗i into a higher dimensional space that would potentially make
it linear separable.

yi(W T φ(xi)+b)≥ 1−ξi,

ξi ≥ 0
(3.13)

What we have seen is the graphical illustration of the soft margin hyperplane problem.
To solve it, one way is to use the Lagrange dual problem. The problem becomes finding the

58 Pedestrian detection on autonomous cars

margin

__

+

__

__

__

__

__

__

__

+

+

+
+

++

+

+

+

Fig. 3.10 Illustration of 1) Circled data points which are also called support vectors, 2) The
bold line f (⃗x) which separates the two types of data points: positive symbol and negative
symbol, 3) Data points in rectangular shape which are on the wrong side of the bold line, 4)
Data points belong to two classes, represented by positive symbols and negative symbols, are
separated correctly, 5) The margin corresponding to the bold line that separates data points.
SVM selects the bold line so that the margin is biggest while the number of rectangular
points is the smallest.

maximum of the expression in 3.14 subject to 3.15.

l

∑
n=1

λn−
1
2

l

∑
n=1

l

∑
m=1

λnλmynymφ(xn)
T

φ(xm) (3.14)

∑
l
n=1 λnyn = 0

0≤ λn ≤C,∀n = 1,2, ..., l
(3.15)

Solving problem 3.14 gives us λ , which is Lagrange multiplier. It is used to calculate W
and b. It is proven that w and b can be rewritten as in Equation 3.16 and 3.17, where M and
S are the set of n and m index, M = {n : 0 < λn <C} and S = {m : 0 < λm ≤C}.

w = ∑
m∈S

λmymφ(xm) (3.16)

b =
1

NM
∑

n∈M
(yn−W T

φ(xn)) =
1

NM
∑

n∈M
(yn− ∑

m∈S
λmymφ(xm)

T
φ(xn)) (3.17)

3.4 HOG/SVM Pedestrian Detection 59

Having W and b, the prediction is done by evaluating the expression 3.18.

wT
φ(x)+b = ∑

m∈S
λmymφ(xm)

T
φ(x)+

1
NM

∑
n∈M

(yn− ∑
m∈S

λmymφ(xm)
T

φ(xn)) (3.18)

However, it is costly to compute φ(x) because it has a big number of dimensions. The
kernel trick allows us not to evaluate φ(x) for every data x. Instead, it is only necessary to
calculate φ(x)T φ(z) based on any x and z in the data set.

Defining kernel function k(x,z) = φ(x)T φ(z), expression 3.18 is rewritten as in 3.19.

wT
φ(x)+b = ∑

m∈S
λmymk(xm,x)+

1
NM

∑
n∈M

(yn− ∑
m∈S

λmymk(xm,xn) (3.19)

The four popular kernels are:

• linear: K(xi,x j) = xT
i x j.

• polinomial: K(xi,x j) = (γxT
i x j + r)d,γ > 0.

• radial basic function (RBF): K(xi,x j) = exp(−γ∥xi− x j∥2),γ > 0.

• sigmoid: K(xi,x j) = tanh(γxT
i x j + r).

Where γ,r,d are kernel parameters.
In this thesis, SVM is used to train and classify pedestrians in images. The process consists

of two phases: training and classifying. Because of the high computational complexity, the
training phase is not usually used in a real-time embedded system. Instead, it is done offline
and generates a model. The classification phase will then use that model to infer predictions.

Training phase

The input of a training phase is training data, which, in this case, is the set of HOG
feature vector of every training image and their corresponding labels. Every training image
includes a fixed number of detection windows, which depends on the size of the image
and the detection window. A label, corresponding to a detection window, indicates either a
pedestrian or non-pedestrian. It depends on whether a pedestrian is present in the detection
window or not. Mathematically, training is the process of solving the Equation 3.20 [135],
where x⃗i is the HOG feature vector of the window number ith of the input training image,
yi is its corresponding label which could be either 1 or −1, and N is the number of input
training image including both positive and negative samples.

yi(W⃗ · x⃗i +b)≥ 0, i = 1, ...,N (3.20)

60 Pedestrian detection on autonomous cars

By solving equation 3.20, vector W⃗ and b are determined. In this thesis, open source LIBSVM
with linear kernel [136] is used for the training phase and thus obtaining W⃗ and b.

Classification phase

The classification phase uses the trained model to infer prediction. The confidence value
y(⃗x) of a detection window, which will be compared to a threshold to determine an object as
a pedestrian or not, is calculated from Equation 3.21. Weight vector W⃗ and the bias b are
provided by the model while x⃗ is the HOG feature vector of the window that needs to be
detected.

y(⃗x) = W⃗ T · x⃗+b (3.21)

3.5 Summary

This chapter focuses on the pedestrian detection problem. It defines the scope of the
problem under investigation. Different databases are available for developing and evaluating
pedestrian detection systems. In this thesis, Caltech database is selected because its data
is real street scene and from a viewpoint of a car. Evaluation methodology might also be
different among implementations. In this thesis, the FPPI method is used to measure the
detection accuracy. This method is more complicated and practical for autonomous cars. The
detection window needs to slide all over the input images. The sliding method potentially
creates false positives. Besides, to detect pedestrians at different distance using a fixed
detection window size, input images are scaled up at different steps. This is another source
that creates false positives. Therefore, a NMS algorithm is in place to filter out false positives.

The mainstream approaches to tackle the problem are applying deep neural networks.
Top accurate detectors on Caltech dataset are based on these approaches. Nevertheless, deep
neural networks usually require huge computing and memory resource. Their inference
speed hardly achieves real-time processing on CPUs/GPUs.

Conventional approaches are more friendly to embedded platforms which are usually
resource-constrained and consume less power. These approaches are based on handcrafted-
features and binary classifiers.

In this thesis, I choose the second approach and implement the system on FPGAs to
see the trade-off between processing speed and detection accuracy. Specifically, HOG is
selected as the feature for detection and SVM is the classifier. In this chapter, HOG and SVM
algorithm are investigated so that they will be implemented in hardware in the next chapters.

Chapter 4

HOG/SVM pedestrian detection
implementation

4.1 System architecture

This chapter details the micro-architecture of the designed RTL-based pedestrian detec-
tion system. The system targets, including a HOG feature extractor and an SVM classifier,
are high throughput and energy efficiency. System architecture is depicted in Fig. 4.1 and it
is mapped onto the low-cost educational DE1-Soc development board [137]. The system
includes hardware accelerators mapped into the programmable logic (PL) part and software
running on the Hard Processor System (HPS) part. The input to the system are pixels from
D5M image sensor kit [138].

To achieve real-time performance, the critical paths (HoG and SVM highlighted as
custom in the system) are accelerated on FPGA programmable logic part of the Cyclone V
SoC chip. The micro-architecture detail of these two modules is presented in section 4.2 and
4.3.

Other functions such as input images display and drawing bounding boxes are more
software friendly and are running on ARM processor integrated in the Cyclone V SoC.

Figure 4.1 shows that the HOG+SVM design does not access external DDR3 memory
at any pipeline stage. Accessing external memory requires higher latency and energy
consumption than using internal/on-chip memory. This implementation only uses external
memory to store input images pixels from the sensor and positions of bounding boxes
surrounding predicted pedestrians.

62 HOG/SVM pedestrian detection implementation

DDR3 SDRAM

Avalon Master

HPS
ARM Dual Core SDRAM Controller

h2f_lw_axi_master f2h_axi_slave

Pixel FIFO

HOG Extractor

Frame Read

VGA Controller

PL

f2h_axi_slave

Avalon Master

Image Sensor

SVM Classi�er

h2f_lw_axi_master

Avalon Slave

I2C Master

Raw2RGB

Grayscale
Legend:

Camera’s code
IntelFPGA code
OpenCores code
Custom code

Clock Video
Output

Fig. 4.1 System diagram of the RTL-based pedestrian detection system on DE1-SoC.

The camera settings can be configured by the software code through I2C interface. For
that purpose, an open source I2C master IP core is instantiated in PL to communicate with
the I2C slave in the image sensor.

The image sensor interface requires some Verilog code for capturing raw pixels (Bayer
pattern) and generating RGB pixels. Grayscale pixels are then created from the R, G, and B
pixel values by the RAW2RGB module in Fig. 4.1. Table 4.1 shows the resolution of the
images while traversing through different modules.

With the settings detailed in Appendix A, I restrict the image size to 1280x960 pixels at
the output of the image sensor. The RAW2RGB module uses Bayer pattern to generate RGB
images which are 4x smaller. Therefore, RGB images are at VGA size (640x480).

The Bayer pattern is illustrated in Fig. 4.2. Every group of four raw pixels includes two
green pixels, one red pixel, and one blue pixel. Each group will generate one RGB pixel, in
which the green component is the average of the two green raw pixels.

Finally, the Grayscale module generates grayscale images to be fed into the HOG extractor
engine. This module only converts pixels and keeps the image resolution unchanged.

4.1 System architecture 63

It is worth noting that the frame rate at the output of the image sensor is only 11 FPS as
calculated in Appendix A according to the sensor specification provided by the producer.
The maximum frame rate of the sensor can be up to 150 FPS at VGA resolution and 96 MHz
pixel clock. For capturing and visualizing real input images from the camera and prediction
results, the frame rate of 11 FPS is selected.

Grayscale images are buffered in a FIFO to be sent to the external memory for visualizing.
The external memory also stores prediction results from the SVM Classifier. Particularly,
the coordinates of the bounding boxes of every input image are stored. Consequentially, the
images from the camera, together with the prediction bounding boxes (if any), are visualized
on a VGA monitor through the VGA Controller module.

The green boxes in Fig. 4.1 (provided by the chip maker) are: (i) the Avalon master bus
interface wrapper to send pixels and prediction results to the HPS memory; (ii) Avalon slave
bus interface to write register configurations for the I2C Master module; and (iii) Avalon
slave bus interface to write pixel data from the HPS to the Frame Read module and later
to the display through the VGA controller. All these boxes are available in the library IP
provided by the chip maker.

Table 4.1 Image resolution from the camera to the HOG Extractor

Module Resolution
Max. sensor resolution 2560x1920

Max. RAW2RGB image size 1280x960
RAW2RGB Bayer image size 640x480

Grayscale image size 640x480

Fig. 4.2 Bayer pattern illustration.

64 HOG/SVM pedestrian detection implementation

In conclusion, the key parts of the pedestrian detection system are the HOG Extractor
and the SVM Classifier modules. These are latency critical paths of the system that need HW
acceleration for real time detection. The input images to the HOG+SVM engine are 640x480
grayscale images with a frame rate of 11 FPS. The next two sections will present the detail
implementation of HOG and SVM modules.

4.2 HOG extractor pipeline design

4.2.1 The pipeline design

HOG algorithm is already presented in section 3.4. Here, an RTL implementation of the
algorithm on FPGA is proposed. The detailed architecture of the HOG pipeline is shown in
Figure 4.3.

SENSOR
BAYER
FILTER

VOTE AGGREGATE NORMALIZE

raw_pixel[11:0] graypixel[7:0] DELTAX,
DELTAY

delta_x[8:0]

delta_y[8:0]

mag[14:0]

orien[15:0]
CORDIC

IP

mag[14:0]

orien[15:0]

bin0[8:0]

bin8[8:0]

...

cell_bin0[14:0]

cell_bin8[14:0]

...

cell0_bin0[31:0]

cell3_bin8[31:0]

...
cell0_bin8[31:0]

...
cell2_bin8[31:0]

cell1_bin8[31:0]
...

...

Fig. 4.3 HOG extractor block diagram

The pipeline starts with the Bayer Filter which converts raw pixels into RGB pixels
and grayscale pixels. Grayscale image is based on component Y of the YUV color space.
This component is calculated from RGB components as in Equation 4.1. The equation is
implemented approximately using logic shift operations as in Equation 4.2. Finally it is
implemented in hardware to generate grayscale images.

Y = 0.299×R+0.587×G+0.114×B (4.1)

4.2 HOG extractor pipeline design 65

Y = (R >> 2)+(R >> 5)+(G >> 1)+(G >> 4)+(B >> 4)+(B >> 5) (4.2)

The next stage in the pipeline computes the intensity difference of neighbor pixels as
in Equation 3.4 and 3.5 for horizontal and vertical directions respectively. The objective
of the pipeline is to process every input pixel effectively so that pixels do not need to be
stored in any external memory and do not block the following pixels. This also means that
helps reduce both total latency and power consumption. It also means that the throughput of
the pipeline would be higher if pixels are fed in faster. To do that, line buffers are used to
temporarily store pixels as shown in Fig 4.4.

pixel[7:0]
Line 1

Line 0

pixel_00[7:0]

P_00P_01

P_02

pixel_01[7:0]

pixel_02[7:0]

P_12

P_11 P_10

P_20P_21

pixel_10[7:0]

P_10P_11

pixel_11[7:0]

pixel_12[7:0]

pixel_20[7:0]

P_20P_21

pixel_21[7:0]
pixel_22[7:0]

P_0639

P_1639

.....

.....

Fig. 4.4 Pixel line buffers

The length of the line buffer is double the width of input images. In Fig. 4.4, the line
buffer includes line 0 and line 1, each stores 640x8 bits. The output of the line buffer, as
illustrated in Fig. 4.4, are at position P_12 and P_02, which refer to the second pixel of row
1 and row 0 of input images respectively. At every pixel clock, a new pixel is shifted into the
line buffer and, thus, all the pixels in the buffer are also shifted with new values (in Fig. 4.4,
pixels are shifted to the right).

Line buffer helps to effectively store the required window on a memory size of two
rows. This design is scalable because its size only depends on the row’s size of the image.

66 HOG/SVM pedestrian detection implementation

More importantly, there is no latency cost in accessing pixels’ values. The throughput of the
pipeline only depends on the clock that feeds pixels in.

At the right side of the line buffer, there is a window buffer with six 8-bit registers. These
registers together with the outputs from the line buffer and the newly input pixel value form
the 3x3 window used to implement Equation 3.4 and 3.5. For instance, according to Fig.
4.4, delta_x of pixel P11 (pixel 1 in row 1) is calculated using P10 and P12 as in Equation 4.3.
Similarly, delta_y is calculated using P01 and P21 as in Equation 4.4. Delta values can be
negative numbers, so i use nine bits to represent signed integers from −256 to 255.

delta_x(1,1) = P10−P12 (4.3)

delta_y(1,1) = P01−P21 (4.4)

The CORDIC IP in Intel-Altera FPGA library is used to compute the magnitude (signals
gra[14:0]) and the orientation (signals orien[15:0]) of the gradients. The specific algorithm for
this task is vector translate, which converts an input vector defined by its x and y coordinates
into magnitude and angle of the vector. This algorithm essentially implements Equations
3.6 and 3.7 with the difference that atan2 function is done instead of atan. At this stage,
fixed-point representations are required to represent results since integer numbers would end
in low precision results. The functional settings for the IP are shown in Fig. 4.5. Input data
width is set to be sixteen, in which there are seven fractional bits and a sign bit. Therefore,
the delta values, which is nine-bit width, need to be appended with 7 fractional bits.

For the output configuration, the fraction part of angle output value is configured to 13
bits, which has an accuracy of up to 0.000061. Based on this selection, all other settings are
derived automatically by the IP. In particular, the fraction part of magnitude output is 6-bit
depth, corresponding to an accuracy of 0.008. This accuracy is acceptable since magnitude
output is in the range from 0 to 360.

CORDIC IP has also parameters related to speed performance as shown in Fig. 4.6.
The target working frequency is set to 100 MHz although it can be set higher because the
frequency of the whole pipeline is 50 Mhz (the pixel clock).

The next stage of the pipeline is the voting module. Its input are the outputs from
CORDIC IP: magnitude and orientation gradient. The magnitude gradient is an unsigned
15-bit fixed point number, and the orientation gradient is a 16-bit signed fixed-point number.
Depending on the orientation gradient, the magnitude gradient of each pixel will be voted to
appropriate bins. In the implementation of this thesis, there are 9 bins covering the range
from 0 to π as illustrated in Fig. 3.8b. Since the range of the orientation gradient is [−π,π],

4.2 HOG extractor pipeline design 67

Fig. 4.5 CORDIC IP functionality settings

negative orientation input will be added an amount of π to make it in the range of the nine
bins.

VOTE module uses bilinear interpolation method to vote a magnitude gradient to appro-
priate bins. The magnitude will be distributed to two bins nearest to its orientation gradient
value. Bilinear interpolation is done with 16-bit fixed point numbers and final output bins are
rounded to be 9-bit unsigned integers. This technique is described in detail in section 3.4.3.

The 9-bin output from VOTE module is the value calculated for every pixel. The pipeline
shifts one pixel in every clock cycle since the horizontal blank setting is zero. Therefore,
VOTE module provides 9-bin output at every clock cycle. This set of 9 bins is the histogram of
a pixel. Each bin is a magnitude gradient, represented by 9-bit unsigned integers. Fractional
part can be truncated because it is very small compared to the integer part.

Next, the AGGREGATE module accumulates 64 histograms of 64 pixels of a cell to
obtain cell histogram. In this implementation, the cell size is 8x8 as in HOG’s original paper
[100]. Figure 4.7 illustrates an 8x8 cell in a 640x480 image.

68 HOG/SVM pedestrian detection implementation

Fig. 4.6 CORDIC IP performance setting

A cell
.....

row 0

640 pixels

col 0

480 pixels

...
..

row 1

row 7

col 7

Fig. 4.7 Illustration of an 8x8 cell in a 640x480 image

With a 640x480 image size, the total number of cells in an image is 80x60 and HOG
feature is a vector of 80x60x9 dimension since each cell is represented by 9 bins. Because
pixels are streaming in sequentially, the AGGREGATE module cannot have all gradient
information from 64 pixels at one time. As shown in Fig. 4.9, after having 8 pixels of row 0
of cell 0, the module needs to wait for other pixels of row 0 of the image to come in before
the pixels of row 1. Therefore, the module can only generates a partial HOG vector for cell 0.
This partial vector aggregates 8 pixels in a row of a cell. A cell needs to accumulate a total of
8 partial vectors. Similarly, the next 8 pixels will form the partial vector for cell 1 and so on.
There are 80 cells in a row. Hence, a line buffer with 80 elements is created to store these
partial vectors. The logic design for the line buffer is presented in Fig. 4.8.

4.2 HOG extractor pipeline design 69

Line bu�er
ps_0ps_79 ps_78

partial_sum[134:0]BIN-WISE
ADDER

bin8[8:0]

........

bin7[8:0]

bin0[8:0]

BIN-WISE
 Adder cell_hog[134:0]

cell_hog_valid

Fig. 4.8 AGGREGATE module block diagram

To generate the full HOG feature of a cell, it is necessary to aggregate 8 partial cell
vectors from 8 rows. The name of the partial vector of a row is partial_sum[134 : 0] and
it is the output of the left Bin-Wise Adder of Fig. 4.8. The width of this result is 135 bits,
representing 9 bins, 15-bit width each. The reason why each bin needs 15 bits is that the
maximum value of a magnitude gradient is 360 and if all 64 pixels vote to only one bin, that
bin would take the value of 64 times 360, which is 23,040. The Bin-Wise Adder on the
right of Fig. 4.8 is used to add the accumulated sum of a cell in the line buffer and a new
partial sum of a new row of the same cell. When the final row of a cell is generated and
added to the accumulated sum stored in the buffer, the cell_hog_valid signal is set and the
cell_hog[134 : 0] output becomes the hog vector of the cell. This value goes into the next
stage of the pipeline: normalization. The line buffer will not store this value and it will clear
that buffer to zero to reuse it for another cell. This is an optimized way of using the on-chip
memory resource. Only a line buffer of 80 elements is used for buffering and calculating up
to 80x60 cells’ hog vector. Besides, with this line buffer, the full feature vector of the next
cell is available 8 cycles later.

Finally, cell features are block-wise contrast normalized. In this design, each block has
four cells and L2 normalization [100] is chosen for the sake of accuracy and simplicity. Fig.
4.9 shows the first two blocks of a 640x480 input image. Block 0 includes the four cells: cell
0, cell 1, cell 80, and cell 81. Block 1 shares cell 1 and cell 81 with block 0.

At this normalization stage, the four cells’ vectors are required for every block so that it
can evaluate Equation 4.5. In the equation, vc is the cell hog features of a cell, ∥v∥2 is the
L2-normalization of the four cell hog features in the block, and vcL2 is the normalized feature
of a cell in the block. A small constant, ε , is added to avoid dividing by zero. In this design,
it is set as 1 for simplicity.

70 HOG/SVM pedestrian detection implementation

cell 0
.....

row 0

640 pixels

col 0

480 pixels

...
..

row 1

row 7

col 7

cell 1

cell 80 cell 81

cell 2

cell 82

Block 0 Block 1

Fig. 4.9 Blocks and cells in an 640x480 image

The calculation of L2-normalization is presented in Equation 4.6, in which vc represents
feature value at cell c. The sum is calculated bin-wise. Therefore, the result of Equation 4.6
is a vector of 9 bins.

The numerator of Eq. 4.5 is the hog vector of a cell, including 9 bins. Therefore, to
implement Eq. 4.5 in hardware, it is required to have 9 different dividers.

vcL2 =
vc√

∥v∥2
2 + ε2

(4.5)

∥v∥2 =

√√√√c=3

∑
c=0

v2
c (4.6)

From Equation 4.5 and 4.6, the final normalized HOG is calculated in Equation 4.7.

vcL2 =
vc√

∑
c=3
c=0 v2

c +1
(4.7)

4.2 HOG extractor pipeline design 71

The pipeline for implementing Eq. 4.7 is shown in Fig. 4.11. The input to the pipeline
are the thirty-six bins of the four cells. A valid signal (f our_cell_valid) is required to
indicate when the bins’ values are available. This signal is controlled by a finite state machine
illustrated in Fig. 4.10. The state machine collects four valid cell vectors, which are the
outputs from the AGGREGATE stage. For example, the four cells of block 0 are cell 0, cell
1, cell 80, and cell 81. It is worth noting that they are not coming at a time. Cell 80 needs to
wait until the first pixels of the rows from seventh to fifteenth to be available.

At first, the machine is in IDLE state. It changes to WAIT state when it detects the first
valid cell vector and it stays eighty valid cell vectors in this state. As illustrated in Fig. 4.9,
these are the vectors from 0 to 79. When the state detects the eightieth valid cell vector, it
goes into NORM state. At this state, every cell vector valid comes would lead to a valid
block, meaning f our_cells_valid signal is set to logic one. It is worth noting that a block
encompasses four cells which locate at two different cell rows (means sixteen different pixel
rows). For the first row of blocks, it is expected to have 79 valid blocks. Then, the FSM goes
to the SKIP state, that is required to avoid asserting f our_cells_valid signal when a new cell
valid comes. For example, in Fig. 4.9, cell 80 is the first cell of a new line of cells and the
state machine must not asserting the block valid signal at this point. From cell 81 onward,
every valid cell comes would lead to a block valid.

To support this operation, the cell vectors are stored in a line buffer with 80+1 elements.
Line buffer helps to save the memory resource because it only stores 81 out of 4800 cell
vectors to calculate the normalization for 4661 blocks. Another advantage is that the pipeline
can access cell vector immediately without requiring any external memory access. Finally,
the pixels are calculated on the fly to avoid the latency cost of buffering them in the external
memory as it is usually done in SW-only implementations.

Having asserted the signal f our_cells_valid, the SQ stage calculates the square of
all thirty-six bins separately (Fig. 4.11). Each input bin is a 15-bit width integer and
cell_binxx[14 : 0] signal represents bin x of cell x. As illustrated at the top of the Fig. 4.11,
these bins are buffered in the pipeline using flip-flops until the MULTIPLY stage. The
maximum square value for each bin can be stored in 30 bits.

At the ADD stage, all square values are added bin-wise as in Equation 4.8. It means
that sum_binx represents the sum for bin0, bin1, bin2, bin3, bin4, bin5, bin6, bin7, and bin8.
Since there is constant 1 in the Equation, the number of bits to represent the sum is 33.

sum_binx =
c=3

∑
c=0

sq_cx+1 (4.8)

72 HOG/SVM pedestrian detection implementation

IDLE WAIT

NORM

cell_valid=1
Output:
- four_cells_valid = 0

SKIP

count2=1

count79=79
block_counter<4661

block_counter=4661
cell_valid_counter=80

count2=0 count79<79
block_counter<4661

Output:
- four_cells_valid = 0

Output:
if (cell_valid ==1)
 four_cells_valid <= 1
else
 four_cells_valid <= 0

Output:
- four_cells_valid = 0
Registers:
count79=0
if (cell_valid ==1)
 count2++

Fig. 4.10 Normalization finite state machine

Next, SQRT stage calculates the square root of these sums and generates the denominator
of Eq. 4.7. It is necessary to instantiate nine square root modules to calculate the nine bins in
parallel. The Integer Square Root IP from the library of IntelFPGA is used for this purpose.
The output result is a 16-bit width integer.

Instead of dividing, Eq. 4.7 can alternatively be done by inverting and multiplying. The
INVERSE stage efficiently does two tasks: converting integer to fixed-point and inverting.
This is done by Eq. 4.9, where the numerator is shifted left by 16 bits. Therefore, the result
of this stage is not the inversion, but the inversion which is shifted left by 16 bits. It equals to
the inversion multiply by 216. The result, which is 17-bit width, can also be interpreted as a
fixed-point number with 16 fractional bits.

inv_binx_ f ixed =
1 << 16
sqrt_binx

(4.9)

The final stage carries out thirty six multiplications in parallel between 15-bit width
hog bin and its corresponding inv_bin_ f ixed. This stage implements Equation 4.10, where
norm_xx_ f ixed represents normalized feature of cell x and bin x. The output of this stage

4.3 SVM Classifier pipeline design 73

........

sq_cell0_bin0

sq_cell3_bin8

sq_valid

sq_cell0_bin8

........

sq_cell3_bin0

........

sq_00[29:0]

sq_08[29:0]

sq_30[29:0]

sq_38[29:0]

ADD bin0s sum_bin0[32:0]

add_valid sqrt_valid

norm00_�xed[31:0]

norm_�xed_valid

norm08_�xed[31:0]

norm38_�xed[31:0]

SQRT sqrt_bin0[15:0]

sqrt_cell_binxx[14:0]add_cell_binxx[14:0]sq_cell_binxx[14:0]

four_cells_valid
FSM

inverse_valid

MULTIPLYINVERSESQRT

inv_cell_binxx[14:0]

ADDSQINPUT OUTPUT

........

........

........

cell_binxx[14:0]
FFs FFs FFs FFs

ADD bin8s sum_bin0[32:0]

........

SQRT sqrt_bin8[15:0]

........

INVERSE inv_bin0_�xed[16:0]

inv_bin8_�xed[16:0]

........

INVERSE
norm30_�xed[31:0]

Fig. 4.11 Normalization pipeline

are 32-bit width fixed-point numbers with 16 fractional bits. The final normalized hog vector
of a block is a vector of 36 fixed-point numbers.

norm_xx_ f ixed = inv_cell_binxx× inv_binx_ f ixed (4.10)

4.3 SVM Classifier pipeline design

The classifier pipeline essentially implements Equation 3.21. Therefore, the input to the
pipeline are the SVM weights W⃗ , the bias value b, and the HOG vector of a window x⃗. The
size of a window is chosen to be 96x128 pixels which equals to 7x15 blocks. This size is
sufficient to detect pedestrians with 80-pixel height as analyzed in 3.2. The windows are
illustrated in Fig. 4.13. The output of the pipeline is the score of each window. This score is
then compared against a given threshold to determine the final prediction if a pedestrian is
present or not. This process is repeated for every window in the input image.

The key factor making an SVM classifier a long latency path in software is the sliding
window task. This concept is illustrated in Fig. 4.12. The window buffer contains 7x15
blocks of hog vectors that is used to convolve with the SVM weights stored in ROM memory.
These 105 blocks consist of 3780 fixed-point numbers The convolution output is added with
the bias b, provided by the trained model, to generate prediction score or confidence value.

74 HOG/SVM pedestrian detection implementation

CONV

SVM weights (7x15)

Window bu�er

Prediction score

Line bu�er

+ b

.....

...
..

Row 0

Row 58
Col 78Col 0

.....

Fig. 4.12 Sliding-window and convolution illustration.

4.3 SVM Classifier pipeline design 75

While the SVM weights are unchanged once the model is trained, content in the window
buffer changes every time the line buffer shifts in a new block. The window buffer will be
right shifted one column at a time until the end of the row. In this configuration, since the
window buffer’s width is 7, there are a total of 73 positions to be shifted in a row. After that,
the line buffer in the Figure will be shifted down one row and the same shifting process of
the window buffer will be executed. Within this specific configuration, there are a total of 45
rows that the line buffer needs to scan through.

The detail accelerator of the classifier is presented in Fig. 4.14. From the hardware point
of view, there are two main problems to tackle to speed up the execution time compared to
software implementation.

First, since blocks are generated sequentially, it is more efficient to process every block
immediately after it is ready instead of waiting for the whole set of 105 blocks. Therefore, i
will use the line buffer as described in Fig. 4.12. Its advantage is two-fold. On one hand, it
saves memory resources because it only needs to store fourteen rows (+ 7 vectors) instead of
all the blocks of an image. On the other hand, its access latency will be only one clock cycle.

Second, since a block is part of several window buffers, every block will be multiplied
with different weights depending on the position of the window under calculation. Figure
4.13 shows that the black block belongs to several windows and it has different relative
positions in those windows. Therefore, in this design, each block will be multiplied with all
the corresponding weights and the resulting products will be accumulated to the appropriate
windows.

The microarchitecture of the classifier is described in Fig. 4.14. The pipeline registers
are not shown for the sake of clarity. Each hardware component will be described in the
following paragraphs.

• MAIN CONTROLLER: FSM that controls the whole classifier. First, the FSM will
check if a new block is available before fetching it to the pipeline. Knowing the block
position (because blocks come in raster scan order), the FSM generates appropriate
addresses to access ROM and RAM memory for the multiplication to the weights. The
multiplication result is stored at different RAM positions depending on which window
the block belongs to.

• ROM: Stores all the weights. The size of this ROM is 3780x10 bits. Each element
of the weight vector is represented by a 10-bit fixed-point, with 8 fractional bits. To
generate the weight vector, several models have been trained and tested with different
configurations using Caltech dataset. If the pre-trained model is changed, ROM must
be reloaded with the new weight vector set.

76 HOG/SVM pedestrian detection implementation

Window 0

Line bu�er

.....
...

..

Row 0

Row 58
Col 78Col 0

.....

Window 1 Window 6

Fig. 4.13 Illustration of a block being part of different windows

• RAM: there are two RAM instances (shown in Fig. 4.14) to distinguish between
reading and writing. Physically, only one dual-port RAM module is instantiated in the
design since read and write access to same address will never happen. The memory,
with a size of 30x73x19 bits, stores temporary sums for final confidence values. Each
resulting confidence value of a detection window is a sum of 105 partial sums. Each
word stored in RAM is 19-bit width, 12-bit for the partial sum and a 7-bit for the
counter. The counter is used to signify that the detection window’s confidence value is
valid. The win_done signal is active when 105 partial sums of a detection window are
fully accumulated. To optimize on-chip memory usage, the memory location storing
that window’s value will be reused for other detection windows. Then, the design

4.3 SVM Classifier pipeline design 77

MAIN
CONTROLLER

blk_available

blk_req

MULTIPLY ADD

rom_addr

ram_addr
ram_we

win_done

BIAS
conf_value

conf_valid

ram_data_out

blk_feature

ROM

RAM

RAM

....

ACC.

win_done

0
ram_data_in

win_done

FIX2FLOAT

window_position

Fig. 4.14 SVM classifier hardware block diagram

uses only 30x73 RAM locations to store the temporary sums of the 45x73 detection
windows.

• MULTIPLY: This module takes a HOG block and multiplies it with appropriate
elements of the weight vectors stored in the ROM memory. One-cycle multiplication
will generate 36 products because a block contains 36 elements. Depending on the
position of the block, it might belong to multiple detection windows. The complete
processing of any specific block (if that block belongs to 105 detection windows) takes
105 clock cycles.

• ADD: This module simply sums up 36 products from the MULTIPLY module.

• ACC.: Since a detection window’s confidence value is the sum of 105 partial values,
this module adds the accumulated value stored in the RAM memory with new partial
sums coming from the ADD module.

• BIAS: This module adds the bias value (from the SVM trained model) to generate the
final confidence value in fixed-point representation.

• FIX2FLOAT: Fixed-point confidence values are converted to 32-bit floating-point
numbers by this block.

From the right side of Fig. 4.14, we can see that each confidence value is accompanied
by a valid signal and an address indicating the position of that detection window in
the image. The window position is used by the HPS software to draw the rectangular

78 HOG/SVM pedestrian detection implementation

if the confidence value is higher than the threshold or, in other words, a pedestrian is
detected.

4.4 Results

This sections presents the main results achieved concerning functional accuracy and
computational performance that are later compared to the state-of-the-art implementations.

4.4.1 Accuracy

In the literature, there are two methods for counting the number of false positives. One is
false positives per image (FPPI), based on the entire image. Since the detection window slides
through the whole image to convolve and obtain detection results, this method creates more
false positives. To reduce those, it requires a Non-Maximal Suppression (NMS) algorithm
(section 3.2. The NMS algorithm picks the highest IOU detection result and considers the
remaining results, which relate to the same pedestrian, as false positives.

Another way of counting false positives relates to non-sliding detectors. In this case,
a false positive only occurs when the detector finds a pedestrian in a window that has no
pedestrian. This is called false positive per window (FFPW). One can infer that the FFPW
potentially has less false positives than FFPI while FFPI is more suitable for real-world
scenarios.

In this thesis, the accuracy of the implementation is measured with FFPI using a golden
model written in C/C++. It can be found at the link [139]. The software model achieves
almost the same performance as the original HOG’s performance testing with Caltech dataset
as shown in Figure 4.15. The lower the curve, the better the accuracy. In autonomous car
applications, the number of false positive per image should be equal or less than 0.1. At the
right side of the curve, where the number of false positive per image is equal or bigger than
1, even though our model provides better miss rate, it is not applicable for autonomous cars
because the number of false positive per image is too high. The evaluation is carried out with
the reasonable setting where the detector only looks for higher than 50 pixels and partially or
non-occluded pedestrians [116].

The hardware implementation is then compared against the golden model for functional
verification and accuracy testing. The checking points are delta_x and delta_y, the gradients
(magnitude and orientation), bin values, cell HOG vector, and block HOG vector. Based on
the testing results, the similarity between the hardware’s block HOG vector output and that
of the software model is up to two digits after the decimal point. It is worth noting that the

4.4 Results 79

0.001 0.01 0.1 1 10

0.05

0.1

0.2

0.4
0.5

0.64
0.8

1

False positive per image

M
is

s
ra

te

HOG
Our model

Fig. 4.15 Comparison of our model with the standard HOG on Caltech pedestrian dataset

software model uses floating-point numbers while the hardware design works with integers
and fixed-point numbers.

4.4.2 Latency

Latency of the system is defined as the sum of two components: (1) the delay time to
get a full frame and (2) the latency to process the ending pixel to have the prediction score
for the last detection window in the image. The first component is exactly the Frame time
parameter which can be found in appendix A. The Frame time for the configuration in this
design is 89 ms.

The second part of the latency is broken down in Fig. 4.16. The delay of each stage in the
pipeline is shown below every functional block. This delay is specific for the case when the
pipeline processes the ending pixel of the input frame. The total latency is 122 cycles, which
is 2,440ns, for the final pixel of any frame. This part of latency is very small (compared to
the first part). The reason for this is that the latency of the HOG+SVM pipeline is hidden
in the latency of receiving pixels from the sensor. This is inherently a good result since it
depends on the sensor acquisition speed rather than in the computation.

80 HOG/SVM pedestrian detection implementation

pixel BAYER
FILTER VOTE AGGREGATE NORMALIZEDELTAX,

DELTAY
CORDIC

IP
CLASSIFIER

score

1 cycle 1 cycle 20 cycles 40 cycles 1 cycles 58 cycles 1 cycle

Fig. 4.16 Latency of the whole pipeline

Therefore, the latency of the HOG+SVM system is 89 ms at the working frequency of 50
MHz. It is less than 1/10 second. There should be enough time margin to give appropriate
control on the car if pedestrian is detected.

4.4.3 Throughput

The throughput of the system concerning frame throughput is the inverse of the latency.
Therefore, at 50 MHz, the system achieves a throughput of 11 FPS. This throughput is not
as high as the real-time throughput target of the thesis. However, both the camera’s pixel
clock and the pipeline working clock can be upscale. For instance, if the pixel clock is 140
MHz, the throughput of the system would achieve approximately 31 FPS. The HOG+SVM
pipeline can also work at 140 MHz since its maximum frequency is up to 162 MHz.

4.4.4 Comparison with existing implementations

Table 4.2 compares our implementation to the existing implementations. Regarding
FPGA resources, the two most critical resource on FPGAs are on-chip memory and LUTs.
Even though the design in this thesis does not use external memory, it consumes the least
on-chip memory resource except for the one in [140], which reports zero memory usage.
Since input resolution is different among the implementations, the memory bit per pixel
information is extracted for fairly comparison. Accordingly, our design achieves one on-chip
memory bit per pixel, which is among the top four best designs. The reason for this is that
every input pixel or intermediate result is processed on the fly using line buffers and there is
not any buffer for input frames or intermediate result. Moreover, line buffers help the design
to be scalable with higher resolution input because the size of the line buffers only depend on
the width of input images.

Regarding the number of LUTs, the implementation in [141] is the most efficient, fol-
lowed by the one in [142] and then the design presented in this thesis. The reason is that both
implementations ([141], [142]) target low resource utilization by simplifying some computa-

4.4 Results 81

tional operations. In their voting part, magnitudes are voted to only one unique bin without
interpolation. To ensure the accuracy, the design in this thesis used linear interpolation to
split a magnitude into two bins as presented in section 3.4.3. Furthermore, in [141], all the
calculations use integer numbers.

About DSPs usage, this implementation uses 38 DSPs which is the third in the ranking.
The best one only uses four DSP blocks [140].

In terms of processing speed, this design takes 89 ms to detect a frame, which corresponds
to a throughput of 11 FPS. It is worth noting that this latency is also the time to receive a
frame from the image sensor. The pixel clock from the image sensor in this configuration is
50 MHz and it can be boosted to run at higher frequency such as 100 MHz or 150 MHz. The
HOG+SVM engine in this design can work at a maximum frequency of 162 MHz.

Since working frequency is different among implementations, the pixel per clock period
information is extracted to compare the efficiency of the hardware pipelines. This design
achieves the second to the best efficiency with 0,068 pixels per clock.

With respect to power consumption, this design consumes the lowest power in the Table.
The key reason for this is that the design only uses on-chip memory and avoids external
memory access. A second reason is that the design uses less resource compared to other
designs, which leads to lower power consumption. There are also differences concerning
the measurement method. The authors in [143] used Xilinx Xpower Analyzer software to
estimate the power consumption (which can avoid technologically dependent contributions)
while we obtain the result from an energy meter model FHT-999. Anyway, the design works
at 50 MHz and its throughput is only 11 FPS.

In terms of energy efficiency, measured by the number of FPS per watt, our implementa-
tion is the third-best after [95], [143].

82 HOG/SVM pedestrian detection implementation
Ta

bl
e

4.
2

C
om

pa
ri

so
n

w
ith

th
e

st
at

e
of

th
e

ar
t

Im
pl

em
en

ta
tio

n
[1

44
]

[1
41

]
[9

5]
[1

40
]

[1
43

]
[1

45
]

[1
46

]
th

is
w

or
k

Y
ea

r
20

13
20

13
20

15
20

15
20

15
20

18
20

20
20

19
H

ar
dw

ar
e

V
ir

te
x

6
V

ir
te

x
5

V
ir

te
x

6
X

C
7Z

02
0

V
ir

te
x

7
C

yc
lo

.I
V

K
in

te
x

U
ltr

aS
ca

le
C

yc
lo

ne
V

N
od

e
40

nm
65

nm
40

nm
28

nm
28

nm
60

nm
20

nm
28

nm
Fr

eq
.(M

H
z)

N
A

26
6

15
0

82
,2

26
6

15
0

15
0

50
Fr

am
e

si
ze

10
24

x7
68

19
20

x1
08

0
64

0x
48

0
19

20
x1

08
0

19
20

x1
08

0
80

0x
60

0
80

0x
60

0
64

0x
48

0
L

at
en

cy
4,

88
m

s
<1

50
µ

s
44

m
s

25
,2

m
s

N
A

N
A

9
m

s
89

m
s

Po
w

er
(W

)
18

2
N

A
37

N
A

19
N

A
N

A
9

E
ne

rg
y

(J
/f

ra
m

e)
14

N
A

0,
54

N
A

0,
45

N
A

N
A

0,
8

FP
S

13
64

68
,2

40
42

,7
16

2
11

5
11

M
em

or
y

(K
b)

3.
74

4
1.

18
8

13
.7

38
0

4.
07

9
34

4
75

6
31

7
L

U
T

s
10

8.
51

8
5.

18
8

18
4.

95
3

21
.2

97
30

.3
60

16
.0

60
7.

80
4

13
.4

64
D

SP
s

13
8

49
19

0
4

36
4

69
36

38
FF

s
12

0.
57

6
5.

17
6

20
8.

66
6

N
A

48
.5

76
7.

22
0

N
A

17
.1

17
Pi

xe
ls

/c
lo

ck
N

A
0,

00
05

0,
00

03
0,

00
09

0,
00

03
0,

00
09

0,
37

0,
06

8
FP

S
pe

rw
at

t
0,

07
N

A
1,

84
N

A
2,

25
N

A
N

A
1,

22
M

em
or

y/
pi

xe
l

5
0,

6
46

0
2

0,
7

1,
6

1
(b

it)

4.5 Summary 83

4.5 Summary

In conclusion, a low power pedestrian detection has been implemented and tested on
Cyclon V FPGA. The design achieves the lowest power consumption in the SOA. Its
throughput is only 11 FPS due to the long latency of getting a frame from the image sensor.
Boosting the pixel clock can increase the throughput of the system. The design is optimized
to use low resource to save the power and resource for future integration with other algorithms
on autonomous cars.

However, the optimization in the design process makes it difficult to adapt to different
configurations. Therefore, in the next chapter, a more flexible design is introduced for the
same system using OpenCL.

Chapter 5

HOG/SVM pedestrian detection
implementation using OpenCL

5.1 OpenCL programming model

OpenCL is a framework for parallel programming on heterogeneous systems like CPUs,
GPUs, DSPs, FPGAs, and other hardware accelerators. It was initiated by Apple and later
standardized and released in 2008 by Khronos Group. For FPGAs, it supports generating HDL
code from OpenCL code and creating communication channels between FPGA accelerators
and the host processor. This section introduces the design flow of this framework for FPGAs.

The OpenCL programming model in this thesis is illustrated in Fig. 5.1. This model is
specific to the configuration that is used in this study. The host is an Intel Core i7 CPU. It
has 8 cores, running at 3.5 GHz. The FPGA board is DE5Net with Stratix V chip. The board
communicates with the CPU through PCIe interface.

In this programming model, the host code and the accelerator code are developed in the
same environment. These source codes are independent of hardware platforms. The host
code will be compiled and executed in the host, in which there are invocations to the run-time
library functions to interact with the accelerators and the memory on the FPGA side. The
run-time library is developed by FPGA vendors.

The acceleration code is written in accel.cpp (Fig. 5.1). The OpenCL framework uses
High Level Synthesis (HLS) to generate hardware from C/C++ source code. It is compiled
into hardware kernels on FPGA fabric which will be invoked by the host code. The host
interacts with the hardware kernels and the FPGA’s memory through the PCIe interface.
First, the accelerator code is compiled into Verilog code. Then, the FPGA bitstream will be
generated by synthesis and place & route tools.

86 HOG/SVM pedestrian detection implementation using OpenCL

HOST

Host memory FPGA o�-chip global memory

runtime
library

Software development environment

FPGA

interfaces accelerators

host.cpp accel.cpp

OpenCL programming model

invoke

compile AOC compile

on-chip memory

pcie

Verilog HDL

Synthesis+Place&Route

Fig. 5.1 OpenCL programming model

A standard OpenCL memory model is described in Fig. 5.2. A host might connect to one
or more compute devices, FPGAs in this context. The connection interface is usually PCIe.
Within a compute device, there might be one or more work groups executing in parallel.

5.1 OpenCL programming model 87

Private Memory Private Memory

Work-Item Work-Item

.....

.....

Local Memory

Work Group

Private Memory Private Memory

Work-Item Work-Item

.....

.....

Local Memory

Work Group

Global Memory and Constant Memory

Compute Device

Host Memory

PCIe (usually)

Host

.....

.....

Fig. 5.2 OpenCL memory model

A work group is formed from one ore more work items. The work items are the hardware
kernels and they usually implement same function but on different data. A kernel has the
capability to access to four disjoint address spaces. They are described as follows:

• Private memory: It is private to a work item. It is fast (one clock cycle) and small
size. It is usually implemented by registers or on-chip memory. Size of this memory is
usually thousands of words (32 bits) per work item. A variable can be declared with
private qualifier to be allocated in this memory region. Function arguments or local
variables of functions shall also be allocated in private address space. Too much private
variables declared in a kernel would make some of them to be located in other address
spaces such as local or global memory even thought they are still private.

• Local memory: This memory region is private to a work group. It is shared across
all work items in the work group. A variable can be explicitly defined to be in local
memory by local qualifier. This memory space is implemented by registers or on-chip
memory of FPGAs. This memory region is not visible from the host. Hardware kernels
are responsible to transfer data between local and global/constant memory. Accessing

88 HOG/SVM pedestrian detection implementation using OpenCL

this space is still very fast but it is slower than private space because it is shared for
multiple work items.

• Constant memory: This is the address space that stores variables defined at global scope
and accessed as read-only variables inside kernels. This address space is accessible to
all kernels.

• The global memory, residing in the FPGA side, can be accessed by both the host and
the accelerators. It is implemented by both off-chip memory, usually SDRAM chips,
and on chip memory. The global memory region is shared across all work items in all
work groups. Global variables can be declared using global qualifier.

On the host side, the host memory can only be accessed by the host. Basically, the host
first allocates the necessary data from host memory into global/constant memory using the
API functions. Then, OpenCL kernels, invoked by the host code, access the FPGA’s memory
for input and output data. Finally, output data are transferred to the host memory.

5.1.1 Optimization techniques

The Intel OpenCL offline compiler recommends users to structure OpenCL kernels as
single work items. The compiler optimizes a single work item kernel by pipelining its loops.
The document IntelFPGA SDK for OpenCL Best Practice Guide [147] presents good design
practice for a single work-item kernel. All the kernels in this thesis follow this guidance. In
this section, the optimization techniques used in the kernels for memory and computation
operations are described.

Memory operations

Accessing on-chip memory is much faster than external global memory. One way to
achieve on-chip memory latency is to make variables private.

One way to achieve this is to put constant keyword for appropriate variables so that an
on-chip cached memory is created. For example, in Listing 5.1, the constant my_array with
preinitialized value will be stored in on-chip ROM.

1 _ _ c o n s t a n t i n t my_array [8] = {0x0 , 0x1 , 0x2 , 0x3 , 0x4 , 0x5 , 0x6 , 0x7 } ;
2 _ _ k e r n e l vo id my_kerne l (_ _ g l o b a l i n t * my_buf fe r)
3 {
4 s i z e _ t g i d = g e t _ g l o b a l _ i d (0) ;
5 my_buf fe r [g i d] += my_array [g i d % 8] ;

5.1 OpenCL programming model 89

6 }

Listing 5.1 Example of constant keyword [1]

Another technique that avoids memory dependencies is to define restrict keyword in
memory pointers that point to separated memory regions. For example, in Listing 5.2, A and
B are two pointers pointing to non-overlapping regions in global memory.

1 _ _ k e r n e l vo id myKernel (_ _ g l o b a l i n t * r e s t r i c t A,
2 _ _ g l o b a l i n t * r e s t r i c t B)

Listing 5.2 Example of restrict keyword [1]

Those are compiler-based optimizations. Architecturally, the design uses on-chip memory
to implement line buffers mentioned in Chapter 4. With line buffers, kernels are optimized
to minimize the number of external memory accesses. An implementation of a line buffer
is shown as an example in Listing 5.3. This code example implements a line buffer of two
consecutive rows plus three elements of the next row. The length of a row is the number of
pixels in a row of an input image. This length is parameterized as COLS

1 _ _ k e r n e l
2 vo id c a m e r a _ g r a d i e n t (g l o b a l u n s i g n e d s h o r t * r e s t r i c t f r ame_ in ,
3 c o n s t i n t i t e r a t i o n s , g l o b a l f l o a t * r e s t r i c t mag_out , g l o b a l

f l o a t * r e s t r i c t o r i e n _ o u t)
4 {
5 / / P i x e l b u f f e r o f 2 rows and 3 e x t r a p i x e l s
6 u n s i g n e d s h o r t rows [2 * COLS + 3] ;
7

8 / / The i n i t i a l i t e r a t i o n s a r e used t o i n i t i a l i z e t h e p i x e l b u f f e r .
9 i n t c o u n t = −(2 * COLS + 3) ;

10

11 w h i l e (c o u n t != i t e r a t i o n s) {
12 / / Each c y c l e , s h i f t a new p i x e l i n t o t h e b u f f e r .
13 f o r (i n t i = COLS * 2 + 2 ; i > 0 ; −− i) {
14 rows [i] = rows [i − 1] ;
15 }
16 / / O the r l i n e s o f code
17 rows [0] = c o u n t >= 0 ? f r a m e _ i n [c o u n t] : 0 ;
18 c o u n t ++;
19 }
20 }

Listing 5.3 Implementation of a line buffer

90 HOG/SVM pedestrian detection implementation using OpenCL

Computation operations

The key parts in OpenCL code where HLS finds opportunities to increase design’s
performance are loops. There are two approaches to optimize loop execution latency. One
method is to fully unroll them so that all iterations are executed in parallel when possible.
This reduces the loop latency and improves the performance yet consumes more resources.
Xilinx’s compiler automatically unroll loops that have number of iterations equal to or less
than 64 [148].

The second method, which not only accelerates the loop execution but also consumes
resource effectively, is to pipeline the loop. The latency of a loop, formulated by Zohouri et
al. [149], is represented in Equation 5.1, where P is the number of pipeline stages, L is the
number of iterations, II is the initiation interval, and f is the clock frequency.

t =
P+ II(L−1)

f
(5.1)

Fig. 5.3 Pipelined loop latency: L iterations

Initiation interval (II) is the number of clock cycles that the pipeline needs to wait before
it can proceed to the next iteration. An optimal loop in OpenCL should have an II of 1.
Figure 5.3 presents the execution order of a loop with L iterations, in which a new iteration
is only executed II cycles after the previous iteration gets started.

Floating-point operations are usually found in loops; they usually traverse through
multiple clock cycles and create data dependency. Data dependency makes the II greater than
1. To avoid this data dependency and achieve the lowest II, kernels are implemented in such
a way that shift registers are inferred. The technique is described in [147].

For example, an unoptimized kernel is shown in Listing 5.4. The kernel accumulates all
double-precision FP elements in the array arr. The size of the array is an input parameter.
According to [147], every loop iteration takes 11 cycles to execute the adding operation. The
current iteration requires the temp_sum value of the previous iteration. Therefore, there is a
data dependency on the variable temp_sum.

5.1 OpenCL programming model 91

1 _ _ k e r n e l vo id doub le_add_1 (_ _ g l o b a l d ou b l e * a r r ,
2 i n t N,
3 _ _ g l o b a l d oub l e * r e s u l t)
4 {
5 do ub l e temp_sum = 0 ;
6 f o r (i n t i = 0 ; i < N; ++ i)
7 {
8 temp_sum += a r r [i] ;
9 }

10

11 * r e s u l t = temp_sum ;
12 }

Listing 5.4 Floating-point adder without shift registers

To relax that data dependency between loop iterations, a shift register is inferred using
the source code in Listing 5.5. The shift register shi f t_reg removes the data dependency on
temp_sum. The size of the shift register should be bigger than the latency of the adder. Since
the latency of the adder is 11 clock cycles, the length of the shift register is set to 12.

1 / / S h i f t r e g i s t e r s i z e must be s t a t i c a l l y d e t e r m i n a b l e
2 # d e f i n e II_CYCLES 12
3

4 _ _ k e r n e l vo id doub le_add_2 (_ _ g l o b a l d oub l e * a r r ,
5 i n t N,
6 _ _ g l o b a l do ub l e * r e s u l t)
7 {
8 / / C r e a t e s h i f t r e g i s t e r w i th II_CYCLE+1 e l e m e n t s
9 do ub l e s h i f t _ r e g [II_CYCLES + 1] ;

10

11 / / I n i t i a l i z e a l l e l e m e n t s o f t h e r e g i s t e r t o 0
12 f o r (i n t i = 0 ; i < II_CYCLES + 1 ; i ++)
13 {
14 s h i f t _ r e g [i] = 0 ;
15 }
16

17 / / I t e r a t e t h r o u g h e v e r y e l e m e n t o f i n p u t a r r a y
18 f o r (i n t i = 0 ; i < N; ++ i)
19 {
20 / / Load i t h e l e m e n t i n t o end of s h i f t r e g i s t e r
21 / / i f N > II_CYCLE , add t o s h i f t _ r e g [0] t o p r e s e r v e v a l u e s
22 s h i f t _ r e g [II_CYCLES] = s h i f t _ r e g [0] + a r r [i] ;
23

24 # pragma u n r o l l
25 / / S h i f t e v e r y e l e m e n t o f s h i f t r e g i s t e r

92 HOG/SVM pedestrian detection implementation using OpenCL

26 f o r (i n t j = 0 ; j < II_CYCLES ; ++ j)
27 {
28 s h i f t _ r e g [j] = s h i f t _ r e g [j + 1] ;
29 }
30 }
31

32 / / Sum e v e r y e l e m e n t o f s h i f t r e g i s t e r
33 do ub l e temp_sum = 0 ;
34

35 # pragma u n r o l l
36 f o r (i n t i = 0 ; i < II_CYCLES ; ++ i)
37 {
38 temp_sum += s h i f t _ r e g [i] ;
39 }
40

41 * r e s u l t = temp_sum ;
42 }

Listing 5.5 Floating-point adder with shift registers

5.2 OpenCL implementation

The OpenCL-based implementation for HOG+SVM is described in Figure 5.4. The key
parts of the system are the host and the coprocessor which consists of the global memory
and the FPGA configurable logic. The accelerated modules are implemented on FPGA logic
and they are invoked by the main software running on the host. The global memory is the
memory on the FPGA board. It stores images, gradients, HOG features, detection scores,
and other intermediate data. The kernels read and write data from and to this memory as
illustrated by the thick arrows between the global memory and the FPGA device.

The host software also accesses the global memory to prepare data for hardware acceler-
ators. The access from software is shown as thick arrows between the host and the global
memory.

First, the software writes input images into the global memory. Second, the histogram
function in the host reads HOG features from the global memory which are generated by the
histogram kernel. After that, the function re-arranges them in blocks and writes them back
to the global memory. At the end of the pipeline, the classification function reads detection
scores from the global memory to visualize detection results. The visualization task draws
rectangulares at positions where pedestrians are predicted with corresponding confidence
values.

5.2 OpenCL implementation 93

In this thesis, the four hardware kernels are shown in the FPGA device portion of Figure
5.4. These kernels are implemented and tested on five different FPGA platforms, which are
OpenVino Starter Kit, DE5Net, DevCloud PACS10, DevCloud PAC10, and HARP+Arria10.
OpenVino Starter Kit is the board with the smallest resource; HARP Xeon+Arria has the
biggest resource. The pattern we saw is that the bigger board spends more resource and
achieves better latency. This is correct for all the kernels except for the histogram kernel.
The implementation of the kernels are presented in the following sections.

Gradient Image

Gradient
kernel

Magnitude &
Orientation

Histogram
kernel

HOG Features

Block HOG
Features Normalization

kernel

Normalized
Block HOG
Features

Histogram

Normalization

SVM classifier
kernel

Pedestrian
Detection

Scores

Classification

HOST FPGA Coprocessor

Global Memory FPGA Device

Fig. 5.4 Hardware-software inter-operation based on OpenCL

Gradient kernel

Gradient kernel loads pixels from global memory, calculates the magnitude and orienta-
tion gradients, and stores back into global memory. The number of pixels for each frame

94 HOG/SVM pedestrian detection implementation using OpenCL

is 640x480. The 1D-centred mask, shown in Table 3.5, is chosen as the convolution mask
because it is both simple and effective.

The OpenCL code for Gradient kernel is shown in Listing 5.6. The number of iteration
is set by the host code through the constant parameter iterations and it is equal to the input
frame’s size 640x480. The kernel writes back magnitude and orientation gradients of every
pixel into global memory. Since these two memory regions and the input frame region are
totally separated, the pointers to them are defined with restrict keyword. Shift registers
are inferred in this kernels for variable rows. Floating-point numbers are used to represent
gradients to ensure the equivalence with the software model. The kernel’s initiation interval
is reported to be 1, which is an optimal number.

1 # i n c l u d e " . . / h o s t / i n c / d e f i n e s . h "
2 / / G r a d i e n t f i l t e r k e r n e l
3 / / f r a m e _ i n and f r a m e _ o u t a r e d i f f e r e n t b u f f e r s . S p e c i f y r e s t r i c t on
4 / / them so t h a t t h e c o m p i l e r knows t h e y do n o t a l i a s each o t h e r .
5 _ _ k e r n e l
6 vo id c a m e r a _ g r a d i e n t (g l o b a l u n s i g n e d s h o r t * r e s t r i c t f r ame_ in ,
7 c o n s t i n t i t e r a t i o n s , g l o b a l f l o a t * r e s t r i c t mag_out , g l o b a l

f l o a t * r e s t r i c t o r i e n _ o u t)
8 {
9 do ub l e p i = 3 .14159265359 ;

10 / / P i x e l b u f f e r o f 2 rows and 3 e x t r a p i x e l s
11 u n s i g n e d s h o r t rows [2 * COLS + 3] ;
12

13 / / The i n i t i a l i t e r a t i o n s a r e used t o i n i t i a l i z e t h e p i x e l b u f f e r .
14 i n t c o u n t = −(2 * COLS + 3) ;
15

16 w h i l e (c o u n t != i t e r a t i o n s) {
17 / / Each c y c l e , s h i f t a new p i x e l i n t o t h e b u f f e r .
18 / / U n r o l l i n g t h i s l oop a l l o w s t h e compi l e t o i n f e r a s h i f t

r e g i s t e r .
19 # pragma u n r o l l
20 f o r (i n t i = COLS * 2 + 2 ; i > 0 ; −− i) {
21 rows [i] = rows [i − 1] ;
22 }
23 rows [0] = c o u n t >= 0 ? f r a m e _ i n [c o u n t] : 0 ;
24 i n t x _ d i r = 0 ;
25 i n t y _ d i r = 0 ;
26 u n s i g n e d i n t x_p1 , x_m1 , y_p1 , y_m1 ;
27 u n s i g n e d i n t c u r r e n t _ r o w = (count−COLS−1) / COLS ;
28 u n s i g n e d i n t c u r r e n t _ c o l = (count−COLS−1)%COLS ;
29

30 x_p1 = (c u r r e n t _ c o l <(COLS−1)) ? rows [COLS] : rows [COLS+1] ;

5.2 OpenCL implementation 95

31 x_m1 = (c u r r e n t _ c o l >0) ? rows [COLS+ 2] : rows [COLS+ 1] ;
32 y_p1 = (c u r r e n t _ r o w <(ROWS−1)) ? rows [1] : rows [COLS+ 1] ;
33 y_m1 = (c u r r e n t _ r o w >0) ? rows [2*COLS+ 1] : rows [COLS+ 1] ;
34 x _ d i r = (x_p1&0 x f f)−(x_m1&0 x f f) ;
35 y _ d i r = (y_p1&0 x f f)−(y_m1&0 x f f) ;
36

37 f l o a t g r ad = (f l o a t) s q r t (x _ d i r * x _ d i r + y _ d i r * y _ d i r) ;
38 f l o a t o r i e n = a t a n 2 ((f l o a t) y _ d i r , (f l o a t) x _ d i r) ; / / v a l u e from −

p i d i v 2 t o p i d i v 2
39 i f (o r i e n <0)
40 o r i e n = o r i e n + p i ; / / a l l o r i e n t a t i o n s a r e from 0 t o PI
41

42 i f (c o u n t >= COLS+1) {
43 mag_out [count−COLS−1] = grad ;
44 o r i e n _ o u t [count−COLS−1] = o r i e n ;
45 }
46 c o u n t ++;
47 }
48 }

Listing 5.6 OpenCL code for the Gradient kernel

The kernel is tested on different FPGA platforms for performance comparison. The result
is shown in Table 5.1. The HARP Xeon+Arria 10 platform has the smallest execution and
transfer time.

Histogram kernel

Having the magnitude and orientation in global memory, the histogram kernel reads
these values and writes out HOG feature vector of every cell. Therefore, the number of
iteration in this kernel is the number of cells. A HOG vector of a cell consists of 9 float
values, corresponding to 9 bins. In the first place, a 7x8 line buffer is implemented to read
in the gradients serially. The input gradients are float numbers, but they are converted into
fixed-point numbers to save hardware resource. The initiation interval, however, is up to 31,
which imposes very high latency.

Next, the line buffer is removed from the kernel to reduce the II. This kernel reads the
gradients directly from the global memory. From Table 5.2, ALUT and FF resource are
reduced almost a half; the RAM and DSP resource are the same. The initiation interval,
however, is still very high.

The third version of this kernel uses float data type as it is more accurate than a fixed-point.
The hardware resource overhead is 5%, 3%, and 2% of the total available ALUTs, FFs, and

96 HOG/SVM pedestrian detection implementation using OpenCL

RAMs, respectively. The initiation interval of this float-based version is reduced to 24. The
reason for this improvement is the removal of the converters from float-point to fixed-point
number and vice versa.

Based on the floating-point version, shift registers inference is added to further reduce
the initiation interval to 1 and increase the throughput of the kernel. The ALUTs and FFs
resource usage increases accordingly. The overhead, as shown in Table 5.2, is acceptable
since the minimum initiation interval is achieved. The code of the kernel is presented in
Listing 5.7. In this kernel, I write the source code so that nine different shift registers are
inferred for the nine bins.

The best version of the histogram kernel in terms of II is compiled and compared with
different FPGA platforms as in Table 5.3. With this kernel, the DE5Net board provides the
lowest latency.

1 # d e f i n e FLOAT_ADD_CYCLES 6
2 # i n c l u d e " . . / h o s t / i n c / d e f i n e s . h "
3

4 _ _ k e r n e l
5 vo id h o g _ v e c t o r (g l o b a l v o l a t i l e f l o a t * r e s t r i c t mag_in , g l o b a l v o l a t i l e

f l o a t * r e s t r i c t o r i e n _ i n ,
6 c o n s t i n t i t e r a t i o n s , g l o b a l f l o a t * r e s t r i c t h o g _ v e c t o r _ o u t)

{
7 c o n s t f l o a t p i 9 _ i n v = 2 .86478897565 ;
8 c o n s t f l o a t p i18 = 0 .17453292520 ;
9 c o n s t f l o a t p i 9 = 0 .34906585040 ;

10 i n t c o u n t =0 ;
11 w h i l e (c o u n t != i t e r a t i o n s) {
12 f l o a t b i n s [9] = { 0 } ;
13 f l o a t grad_mag ;
14 f l o a t g r a d _ o r i e n ;
15 f l o a t s h i f t _ b i n 1 [FLOAT_ADD_CYCLES+ 1] ;
16 f l o a t s h i f t _ b i n 2 [FLOAT_ADD_CYCLES+ 1] ;
17 f l o a t s h i f t _ b i n 3 [FLOAT_ADD_CYCLES+ 1] ;
18 f l o a t s h i f t _ b i n 4 [FLOAT_ADD_CYCLES+ 1] ;
19 f l o a t s h i f t _ b i n 5 [FLOAT_ADD_CYCLES+ 1] ;
20 f l o a t s h i f t _ b i n 6 [FLOAT_ADD_CYCLES+ 1] ;
21 f l o a t s h i f t _ b i n 7 [FLOAT_ADD_CYCLES+ 1] ;
22 f l o a t s h i f t _ b i n 8 [FLOAT_ADD_CYCLES+ 1] ;
23 f l o a t s h i f t _ b i n 9 [FLOAT_ADD_CYCLES+ 1] ;
24

25 / / i n i t i t a l i z e a l l e l e m e n t s o f t h e s h i f f t r e g i s t e r s t o 0
26 # pragma u n r o l l
27 f o r (i n t i =0 ; i <FLOAT_ADD_CYCLES+1; i ++)

5.2 OpenCL implementation 97

28 {
29 s h i f t _ b i n 1 [i] = 0 ;
30 s h i f t _ b i n 2 [i] = 0 ;
31 s h i f t _ b i n 3 [i] = 0 ;
32 s h i f t _ b i n 4 [i] = 0 ;
33 s h i f t _ b i n 5 [i] = 0 ;
34 s h i f t _ b i n 6 [i] = 0 ;
35 s h i f t _ b i n 7 [i] = 0 ;
36 s h i f t _ b i n 8 [i] = 0 ;
37 s h i f t _ b i n 9 [i] = 0 ;
38 }
39

40 i n t c e l l _ r o w = c o u n t /NUM_CELLS_X;
41 i n t c e l l _ c o l = c o u n t%NUM_CELLS_X;
42 i n t f rame_row = c e l l _ r o w *CELL_H ;
43 i n t f r a m e _ c o l = c e l l _ c o l *CELL_W;
44 / / # pragma u n r o l l
45 f o r (i n t i = frame_row ; i < frame_row +8; ++ i) {
46 / / # pragma u n r o l l
47 f o r (i n t j = f r a m e _ c o l ; j < f r a m e _ c o l + 8 ; ++ j) {
48 / / Pu t magni tude i n t o b i n s based on i t s c o r r e s p o n d i n g o r i e n t a t i o n

49 grad_mag=mag_in [i *COLS+ j] ;
50 g r a d _ o r i e n = o r i e n _ i n [i *COLS+ j] ;
51 c h a r b in0 ;
52 c h a r b in1 ;
53 b in0 = (g r a d _ o r i e n − p i18) * p i 9 _ i n v ;
54 i f (g r a d _ o r i e n < p i18) / / b in0 w i l l be 0 f o r o r i e n t a t i o n < p i18
55 b in0 = −1;
56 b in1 = b in0 + 1 ;
57 f l o a t b i n 0 c e n t e r = (b in0 * p i 9) + p i18 ;
58 f l o a t b i n 1 c e n t e r = (b in1 * p i 9) + p i18 ;
59 i f (b in1 >8)
60 b in1 =−1;
61 / / we ig h t 0 i s computed as t h e f a c t o r o f t h e d i s t a n c e from b in1

c e n t e r w i th t h e b i n wid th
62 f l o a t w0 = (b i n 1 c e n t e r − g r a d _ o r i e n) * p i 9 _ i n v ;
63 / / we ig h t 1 i s computed as t h e f a c t o r o f t h e d i s t a n c e from b in0

c e n t e r w i th t h e b i n wid th
64 f l o a t w1 = (g r a d _ o r i e n−b i n 0 c e n t e r) * p i 9 _ i n v ;
65

66 f l o a t temp [9] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
67

68 s w i t c h (b in0)

98 HOG/SVM pedestrian detection implementation using OpenCL

69 {
70 c a s e −1:
71 temp [0] = grad_mag *w1 ;
72 b r e a k ;
73 c a s e 0 :
74 temp [0] = grad_mag *w0 ;
75 temp [1] = grad_mag *w1 ;
76 b r e a k ;
77 c a s e 1 :
78 temp [1] = grad_mag *w0 ;
79 temp [2] = grad_mag *w1 ;
80 b r e a k ;
81 c a s e 2 :
82 temp [2] = grad_mag *w0 ;
83 temp [3] = grad_mag *w1 ;
84 b r e a k ;
85 c a s e 3 :
86 temp [3] = grad_mag *w0 ;
87 temp [4] = grad_mag *w1 ;
88 b r e a k ;
89 c a s e 4 :
90 temp [4] = grad_mag *w0 ;
91 temp [5] = grad_mag *w1 ;
92 b r e a k ;
93 c a s e 5 :
94 temp [5] = grad_mag *w0 ;
95 temp [6] = grad_mag *w1 ;
96 b r e a k ;
97 c a s e 6 :
98 temp [6] = grad_mag *w0 ;
99 temp [7] = grad_mag *w1 ;

100 b r e a k ;
101 c a s e 7 :
102 temp [7] = grad_mag *w0 ;
103 temp [8] = grad_mag *w1 ;
104 b r e a k ;
105 c a s e 8 :
106 temp [8] = grad_mag *w0 ;
107 b r e a k ;
108 d e f a u l t :
109 b r e a k ;
110 }
111

112 s h i f t _ b i n 1 [FLOAT_ADD_CYCLES]= s h i f t _ b i n 1 [0] + temp [0] ;

5.2 OpenCL implementation 99

113 s h i f t _ b i n 2 [FLOAT_ADD_CYCLES]= s h i f t _ b i n 2 [0] + temp [1] ;
114 s h i f t _ b i n 3 [FLOAT_ADD_CYCLES]= s h i f t _ b i n 3 [0] + temp [2] ;
115 s h i f t _ b i n 4 [FLOAT_ADD_CYCLES]= s h i f t _ b i n 4 [0] + temp [3] ;
116 s h i f t _ b i n 5 [FLOAT_ADD_CYCLES]= s h i f t _ b i n 5 [0] + temp [4] ;
117 s h i f t _ b i n 6 [FLOAT_ADD_CYCLES]= s h i f t _ b i n 6 [0] + temp [5] ;
118 s h i f t _ b i n 7 [FLOAT_ADD_CYCLES]= s h i f t _ b i n 7 [0] + temp [6] ;
119 s h i f t _ b i n 8 [FLOAT_ADD_CYCLES]= s h i f t _ b i n 8 [0] + temp [7] ;
120 s h i f t _ b i n 9 [FLOAT_ADD_CYCLES]= s h i f t _ b i n 9 [0] + temp [8] ;
121 # pragma u n r o l l
122 f o r (i n t i =0 ; i <FLOAT_ADD_CYCLES; i ++)
123 {
124 s h i f t _ b i n 1 [i]= s h i f t _ b i n 1 [i + 1] ;
125 s h i f t _ b i n 2 [i]= s h i f t _ b i n 2 [i + 1] ;
126 s h i f t _ b i n 3 [i]= s h i f t _ b i n 3 [i + 1] ;
127 s h i f t _ b i n 4 [i]= s h i f t _ b i n 4 [i + 1] ;
128 s h i f t _ b i n 5 [i]= s h i f t _ b i n 5 [i + 1] ;
129 s h i f t _ b i n 6 [i]= s h i f t _ b i n 6 [i + 1] ;
130 s h i f t _ b i n 7 [i]= s h i f t _ b i n 7 [i + 1] ;
131 s h i f t _ b i n 8 [i]= s h i f t _ b i n 8 [i + 1] ;
132 s h i f t _ b i n 9 [i]= s h i f t _ b i n 9 [i + 1] ;
133 }
134 }
135 }
136

137 # pragma u n r o l l
138 f o r (i n t i =0 ; i <FLOAT_ADD_CYCLES; i ++)
139 {
140 b i n s [0] += s h i f t _ b i n 1 [i] ;
141 }
142 # pragma u n r o l l
143 f o r (i n t i =0 ; i <FLOAT_ADD_CYCLES; i ++)
144 {
145 b i n s [1] += s h i f t _ b i n 2 [i] ;
146 }
147 # pragma u n r o l l
148 f o r (i n t i =0 ; i <FLOAT_ADD_CYCLES; i ++)
149 {
150 b i n s [2] += s h i f t _ b i n 3 [i] ;
151 }
152 # pragma u n r o l l
153 f o r (i n t i =0 ; i <FLOAT_ADD_CYCLES; i ++)
154 {
155 b i n s [3] += s h i f t _ b i n 4 [i] ;
156 }

100 HOG/SVM pedestrian detection implementation using OpenCL

157

158 # pragma u n r o l l
159 f o r (i n t i =0 ; i <FLOAT_ADD_CYCLES; i ++)
160 {
161 b i n s [4] += s h i f t _ b i n 5 [i] ;
162 }
163 # pragma u n r o l l
164 f o r (i n t i =0 ; i <FLOAT_ADD_CYCLES; i ++)
165 {
166 b i n s [5] += s h i f t _ b i n 6 [i] ;
167 }
168 # pragma u n r o l l
169 f o r (i n t i =0 ; i <FLOAT_ADD_CYCLES; i ++)
170 {
171 b i n s [6] += s h i f t _ b i n 7 [i] ;
172 }
173 # pragma u n r o l l
174 f o r (i n t i =0 ; i <FLOAT_ADD_CYCLES; i ++)
175 {
176 b i n s [7] += s h i f t _ b i n 8 [i] ;
177 }
178 # pragma u n r o l l
179 f o r (i n t i =0 ; i <FLOAT_ADD_CYCLES; i ++)
180 {
181 b i n s [8] += s h i f t _ b i n 9 [i] ;
182 }
183

184 # pragma u n r o l l
185 f o r (i n t i =0 ; i < 9 ; i ++) {
186 h o g _ v e c t o r _ o u t [c o u n t *9+ i] = b i n s [i] ;
187 }
188

189 c o u n t ++;
190 }
191 }

Listing 5.7 OpenCL code for the Histogram kernel

Normalization kernel

This kernel accesses the global memory to read HOG features, organized in blocks,
and write out normalized features. There are different schemes for normalization. L1-sqrt,

5.2 OpenCL implementation 101

calculated by Equation 3.9, is proven to perform equally well compared to L2-norm even
though its computation is simpler.

First, a simple version of L1 normalization without square root is implemented. However,
the resource usage of this version is too big to fit in the resource available on DE5Net when
it is integrated with the other three kernels.

Second, the kernel is optimized by replacing nested loops in the kernel with simple
loops as shown in Listing 5.8. The kernel is also implemented with square root function.
The comparison between the two version is shown in Table 5.4. Both versions achieve the
optimal II. The second version uses less RAM and DSP resource. The number of DSPs is
also reduced by 90%.

The kernel’s performance is then compared between several platforms. HARP+Arria 10
provides the lowest transfer latency and PACS10 gives the best execution time for this kernel
as in Table 5.5.

1 # i n c l u d e " . . / h o s t / i n c / d e f i n e s . h "
2 / / N o r m a l i z a t i o n k e r n e l
3 / / i n p u t : p o i n t e r t o t h e hog v e c t o r o r g a n i z e d i n b l o c k s
4 / / o u t p u t : n o r m a l i z e d hog v e c t o r
5 _ _ k e r n e l
6 vo id n o r m a l i z a t i o n (g l o b a l c o n s t f l o a t * r e s t r i c t h o g _ v e c t o r _ i n _ b l o c k s ,

c o n s t i n t block_num , g l o b a l f l o a t * r e s t r i c t h o g _ v e c t o r _ n o r m a l i z e d)
7 {
8 i n t c o u n t = 0 ;
9 w h i l e (c o u n t != block_num)

10 {
11 f l o a t L 1 _ s q r t =0 ;
12 f l o a t norm1 =0;
13 / / do t h e sum
14 # pragma u n r o l l
15 f o r (i n t j =0 ; j <NUM_BINS*CELLS_PER_BLOCK ; j ++)
16 {
17 norm1+= h o g _ v e c t o r _ i n _ b l o c k s [c o u n t *NUM_BINS*CELLS_PER_BLOCK+ j] ;
18 }
19

20 / / p l u s an e p s i l o n
21 norm1 +=1;
22 / / do t h e d i v i s i o n
23 f o r (i n t j =0 ; j <NUM_BINS*CELLS_PER_BLOCK ; j ++) {
24 f l o a t tmp= h o g _ v e c t o r _ i n _ b l o c k s [c o u n t *NUM_BINS*CELLS_PER_BLOCK+ j] /

norm1 ;
25 h o g _ v e c t o r _ n o r m a l i z e d [c o u n t *NUM_BINS*CELLS_PER_BLOCK+ j]= s q r t (tmp) ;
26 }

102 HOG/SVM pedestrian detection implementation using OpenCL

27 c o u n t ++;
28 }
29 }

Listing 5.8 OpenCL code for the Normalization kernel

SVM kernel

The SVM kernel reads the normalized features from global memory and the weight vector
obtained by the Support Vectors of the learned model from on-chip memory to generate
prediction scores for all windows. The scores are stored back into global memory. This
kernel uses on-chip memory to store the weight vector.

This kernel is a latency-critical path of the whole system. The first version, without
shift registers, has an initiation interval of up to 289. With shift registers inference, the II of
the kernel is just 21. The optimal length of the shift registers is 65. Increasing this length
does not improve the initiation interval. The resource overhead is small compared to the
improvement of the initiation interval.

1 # d e f i n e FLOAT_ADD_CYCLES_SVM 65
2 # i n c l u d e " . . / h o s t / i n c / d e f i n e s . h "
3

4 / /SVM p r e d i c t i o n k e r n e l
5 / / i n p u t : a hog v e c t o r window and a we ig h t v e c t o r (s i z e 7524)
6 / / o u t p u t : t h e p r e d i c t i o n v a l u e i n d e c i m a l
7 _ _ k e r n e l
8 vo id s v m _ p r e d i c t _ v a l u e s (g l o b a l c o n s t f l o a t * r e s t r i c t w e i g h t _ v e c t o r ,

g l o b a l c o n s t f l o a t * r e s t r i c t ho g_vec to r , c o n s t i n t windows_num ,
g l o b a l f l o a t * r e s t r i c t d e c _ v a l u e s)

9 {
10 f l o a t sum =0;
11 l o c a l f l o a t w e i g h t _ v e c t o r _ l o c a l [FEATURE_LEN] ;
12 / / copy t h e model i n t o t h e l o c a l v a r i a b l e s
13 f o r (i n t i =0 ; i <FEATURE_LEN ; i ++)
14 {
15 w e i g h t _ v e c t o r _ l o c a l [i]= w e i g h t _ v e c t o r [i] ;
16 }
17

18 i n t c o u n t = 0 ;
19 w h i l e (c o u n t != windows_num)
20 {
21 i n t win_row= c o u n t /NUM_WINDOWS_X;
22 i n t w in_co l = c o u n t%NUM_WINDOWS_X;
23 f l o a t s h i f t _ r e g [FLOAT_ADD_CYCLES_SVM+ 1] ;

5.2 OpenCL implementation 103

24 # pragma u n r o l l
25 f o r (i n t i =0 ; i <FLOAT_ADD_CYCLES_SVM+1; i ++)
26 {
27 s h i f t _ r e g [i] = 0 ;
28 }
29 # pragma u n r o l l
30 f o r (i n t i =win_row ; i <win_row+WINDOW_H−1; i ++)
31 f o r (i n t k= win_co l ; k< win_co l +WINDOW_W−1; k ++)
32 {
33 i n t b l k _ i d = i *NUM_BLOCKS_X+k ;
34 i n t row_in_win= i−win_row ;
35 i n t c o l _ i n _ w i n =k−win_co l ;
36 i n t b l k _ i d _ i n _ w i n =row_in_win *(WINDOW_W−1)+ c o l _ i n _ w i n ;
37

38 f o r (i n t j =0 ; j <NUM_BINS*CELLS_PER_BLOCK_W*CELLS_PER_BLOCK_H ; j
++)

39 {
40 s h i f t _ r e g [FLOAT_ADD_CYCLES_SVM]= s h i f t _ r e g [0] + h o g _ v e c t o r [

b l k _ i d *CELLS_PER_BLOCK*NUM_BINS+ j] * w e i g h t _ v e c t o r _ l o c a l [
b l k _ i d _ i n _ w i n *CELLS_PER_BLOCK*NUM_BINS+ j] ;

41

42 / / s h i f t e v e r y e l e m e n t o f s h i f t r e g i s t e r
43 f o r (i n t l =0 ; l <FLOAT_ADD_CYCLES_SVM; l ++)
44 {
45 s h i f t _ r e g [l] = s h i f t _ r e g [l + 1] ;
46 }
47 }
48 }
49

50 f o r (i n t i =0 ; i <FLOAT_ADD_CYCLES_SVM; i ++)
51 {
52 sum+= s h i f t _ r e g [i] ;
53 }
54 d e c _ v a l u e s [c o u n t ++]= sum ;
55 sum= 0 ;
56 }
57

58 }

Listing 5.9 OpenCL code for the SVM kernel

Again, the kernel is tested on five platforms. The best execution time is realized on Harp
platform but DE5Net gives the best memory transfer time.

104 HOG/SVM pedestrian detection implementation using OpenCL

Table 5.1 Gradient kernel’s resource and performance on different FPGAs

Platform Fmax ALUTs1 FFs RAMs DSPs II Execution Transfer
(MHz) (20 Kb) time (ms) time (ms)

OpenVino 142 44,946 40K 46 15 1 21.315 1.857
DE5Net 276 94,160 72K 121 13 1 14.7 0.278
PACS10 323 255,824 270K 173 12 1 1.015 0.002
PAC10 233 128,372 100K 114 15 1 12.088 0.866
HARP 261 214,612 165K 174 14 1 1.377 0.001

1 Two ALUTs correspond to one ALM..

Table 5.2 Resources usage and performance of the Histogram kernel. The first is the version
with fixed-point and line buffer. The second version removes the line buffer. The other
versions use float data type. The last version in the Table implements shift registers to reduce
loop-carried data dependency.

Version Fmax ALUTs FFs RAMs DSPs II Execution
(MHz) (20 Kb) time (ms)

Fixed-point type, 240 46,878 49K 111 7 31 NA
line buffer

Fixed-point type 240 25,646 28K 111 7 31 NA
Float type 240 52,075 49K 162 7 24 NA
Float type, 246 172,008 152K 176 7 1 16.7

shift registers

Table 5.3 Histogram kernel’s resource and performance on different FPGAs

Platform Fmax ALUTs FFs RAMs DSPs II Execution Transfer
(MHz) (20 Kb) time (ms) time (ms)

OpenVino 122 127,474 137K 80 7 1 32.646 2.184
DE5Net 246 172,008 152K 176 7 1 16.7 1.168
PACS10 317.35 272,384 300K 188 74 1 65.018 0.761
PAC10 234.08 208,998 163K 152 64 1 16.838 1.536
HARP 222 294,520 278K 285 64 1 27.780 0.937

Table 5.4 Resources usage and performance of the Normalization kernels. One version is L1
normalization with nested loops. The other version is L1-sqrt without nested loops.

Version Fmax ALUTs FFs RAMs DSPs II Execution
(MHz) time (ms)

L1 (nested) 240 75,701 68,496 254 126 1 NA
L1-sqrt 251 136,070 101,378 181 13 1 5.5

5.3 Results and comparison 105

Table 5.5 Normalization kernel’s resource and performance on different FPGAs

Platform Fmax ALUTs FFs RAMs DSPs II Execution Transfer
(MHz) (20 Kb) time (ms) time (ms)

OpenVino 121 81,576 72K 90 7 1 11.270 2.106
DE5Net 251 136,070 101K 181 13 1 5.5 0.526
PACS10 298.5 269,054 275K 277 43 1 0.733 1.140
PAC10 249 178,472 124K 157 43 1 6.042 0.967
HARP 227 245,134 178K 431 44 1 1.046 0.425

Table 5.6 Resources usage and performance of the SVM classifier kernels: version with no
shift registers and with shift registers

Version Fmax ALUTs FFs RAMs DSPs II Execution
(MHz) (20 Kb) time (ms)

No shift registers 240 68,791 54,833 308 37 289 NA
With shift registers 256 174,752 133,770 335 13 21 53.5

Table 5.7 SVM classifier kernel’s resource and performance on different FPGAs

Platform Fmax ALUTs FFs RAMs DSPs II Execution Transfer
(MHz) (20 Kb) time (ms) time (ms)

OpenVino 112 125,986 130K 267 36 21 193.661 1.093
DE5Net 256 174,752 134K 335 13 21 53.5 0.211
PACS10 268.02 286,798 315K 411 51 21 17.251 0.342
PAC10 240 197,280 140K 315 50 21 24.702 0.546
HARP 221 264,998 204K 436 73 21 23.081 0.386

5.3 Results and comparison

5.3.1 Comparison with multicore CPU

First,the four kernels are compared with their equivalence C/C++ functions running on
the host. The host CPU is Intel Core i7. It has 8 cores and runs at 3.5 GHz. Its memory
size is 16 GB. Table 5.8 presents the latency of the four functions. The transfer time is not
reported in the table because it ranges from 2% to 8% of the execution time, which is small
compared to the computation time.

On Intel Core i7 platform, the longest latency components are the gradient and the SVM
classifier. Their latency is 10x compared to that of the histogram and the normalization
functions. Both these long latency functions are sliding-window tasks. It is confirmed that the
sliding-window should be accelerated because it is not software-friendly. FPGAs accelerate
the gradient kernel from 124 to 2,363 times depending on the specific platform. The SVM

106 HOG/SVM pedestrian detection implementation using OpenCL

classifier kernel speeds up from 51 to 163 times. The total latency of the four hardware
kernels is from 57x to 102x smaller than that of their corresponding software functions.

5.3.2 Comparison between FPGA platforms

Unlike software functions, the longest latency kernels are the Histogram and the SVM
classifier. This is shown in Fig. 5.5. The HARP Xeon+Arria 10 provides the best total latency
among the platforms. However, the difference with other platforms is small. Compared to
DE5Net and DevCloud PAC10, the HARP Xeon+Arria 10 is slower in the histogram task.
Compared to DevCloud PACS10, it is slower in the SVM classifier task.

5.3 Results and comparison 107
Ta

bl
e

5.
8

L
at

en
cy

co
m

pa
ri

so
n

w
ith

m
ul

tic
or

e
C

PU

Pl
at

fo
rm

G
ra

di
en

t(
s)

H
is

to
gr

am
(s

)
N

or
m

al
iz

at
io

n
(s

)
SV

M
cl

as
si

fie
r(

s)
To

ta
l(

s)
In

te
lC

or
e

i7
2.

36
3

0.
11

6
0.

16
9

2.
76

9
5.

41
7

D
E

5N
et

(S
tr

at
ix

V
)

0.
01

9
0.

01
7

0.
00

5
0.

05
4

0.
09

5
D

ev
C

lo
ud

PA
C

S1
0

(S
tr

at
ix

10
)

0.
00

1
0.

06
5

0.
00

1
0.

01
7

0.
08

4
D

ev
C

lo
ud

PA
C

10
(A

rr
ia

10
)

0.
01

2
0.

01
7

0.
00

6
0.

02
5

0.
06

H
A

R
P

X
eo

n+
A

rr
ia

10
0.

00
1

0.
02

8
0.

00
1

0.
02

3
0.

05
3

Ta
bl

e
5.

9
R

es
ou

rc
es

us
ag

e
an

d
pe

rf
or

m
an

ce
on

di
ff

er
en

tF
PG

A
pl

at
fo

rm
s

R
ef

er
en

ce
Pl

at
fo

rm
Fr

eq
ue

nc
(M

H
z)

Im
ag

e
si

ze
L

U
T

s
FF

s
R

A
M

s
(K

bi
t)

D
SP

s
FP

S
[1

50
]

C
yc

lo
ne

IV
40

80
0x

60
0

34
,4

03
23

,2
47

33
4

68
72

[9
5]

V
ir

te
x-

6
15

0
64

0x
48

0
18

4,
95

3
20

8,
66

6
13

,7
38

19
0

68
.2

[1
51

]
C

yc
lo

ne
IV

50
64

0x
48

0
6,

55
1

4,
37

5
10

3
10

72
[1

46
]

K
in

te
x

U
la

tr
as

ca
le

N
A

80
0x

60
0

7,
80

4
N

A
43

7
36

11
5

O
ur

s
(H

D
L

)
C

yc
lo

ne
V

50
64

0x
48

0
13

,4
64

17
,1

17
31

7
38

11
O

ur
s

(H
D

L
)

A
rr

ia
10

14
9

64
0x

48
0

5,
38

6
2,

25
4

18
4

2
N

A
O

ur
s

D
E

5N
et

24
1

64
0x

48
0

31
1,

91
0

28
8,

82
9

12
,1

33
65

19
O

ur
s

D
ev

C
lo

ud
PA

C
S1

0
(S

tr
at

ix
10

)
23

0.
84

64
0x

48
0

41
5,

72
8

46
6,

12
3

65
6

18
0

15
O

ur
s

D
ev

C
lo

ud
PA

C
10

(A
rr

ia
10

)
22

5.
52

64
0x

48
0

32
0,

02
6

23
6,

85
7

11
,1

21
17

2
40

O
ur

s
H

A
R

P
X

eo
n+

A
rr

ia
10

22
7.

27
64

0x
48

0
41

4,
76

0
38

4,
65

2
16

,5
53

19
5

36

108 HOG/SVM pedestrian detection implementation using OpenCL
Ta

bl
e

5.
10

T
hr

ou
gh

pu
tc

om
pa

ri
so

n
w

ith
ot

he
rh

et
er

og
en

eo
us

pl
at

fo
rm

s

R
ef

er
en

ce
Pl

at
fo

rm
C

op
ro

ce
so

r
Pr

og
ra

m
m

in
g

m
od

el
Fr

eq
ue

nc
y

(M
H

z)
R

es
ol

ut
io

n
FP

S
[1

52
]

N
V

ID
IA

Q
ua

dr
o

50
00

G
PU

O
pe

nC
L

1,
02

6
76

8x
57

6
36

[1
53

]
G

T
X

96
0

G
PU

C
U

D
A

1,
17

8
1,

24
2x

37
5

17
5

[1
53

]
Te

gr
a

X
1

G
PU

C
U

D
A

1,
00

0
1,

24
2x

37
5

27
O

ur
s

In
te

lc
or

e
i7

+
D

E
5N

et
FP

G
A

O
pe

nC
L

24
1

64
0x

48
0

19
O

ur
s

D
ev

C
lo

ud
PA

C
S1

0
(S

tr
at

ix
10

)
FP

G
A

O
pe

nC
L

23
0.

84
64

0x
48

0
15

O
ur

s
D

ev
C

lo
ud

PA
C

10
(A

rr
ia

10
)

FP
G

A
O

pe
nC

L
22

5.
52

64
0x

48
0

40
O

ur
s

H
A

R
P

X
eo

n+
A

rr
ia

10
FP

G
A

O
pe

nC
L

22
7.

27
64

0x
48

0
36

5.3 Results and comparison 109

Fig. 5.5 Latency comparison between modules on different FPGAs

5.3.3 FPGA-based pedestrian detection comparison

In the literature, there is not any similar implementation that uses OpenCL to implement
HOG+SVM on FPGAs. Therefore, the implementation is compared against HDL-based
designs, including our HDL-based design in Chapter 4. Besides, it is compiled onto different
FPGA platforms to compare and demonstrate its portability.

From Table 5.9, the OpenCL-based implementations have better FPS than our HDL-
based version in Chapter 4. The best performance is on DevCloud PAC10 (Arria 10) with
40 FPS. It is nearly 4× faster than the Verilog-based implementation running at a clock
frequency of 50 MHz on Cyclon V. To have a fair comparison, our HDL-based design is also
synthesized on Arria 10. It achieves a maximum frequency of 149 MHz which is slower
than all the OpenCL-based implementations in Table 5.9. Its throughput is expected to be 33
FPS because the same design is proven to work at 11 FPS with 50 MHz clock frequency on
Cyclon V. This throughput is suitable for real-time applications and it is 10 to 20% less than
the OpenCL-based implementations on Arria 10 (the last two rows of the Table). The highest
FPS is achieved in [146].

Regarding resource usage, OpenCL-based implementations use 10x more than HDL-
based ones, except for the DSPs (4.5x). Particularly, in the case of OpenVino Starter Kit,
which features a Cyclone V, similar to the DE1-SOC in [154], the combined of the four
kernels exceeds the board’s available resource. Another comparison is on Arria 10. The
HDL-based design uses at least 60x less resource than the OpenCL-based implementation on
DevCloud PAC10 (Arria 10).

Finally, it is worth mentioning that OpenCL-based development time is significantly
shorter than that of HDL-based approach. The total lines of OpenCL code is 9x smaller as in
Table 5.11. The number of Verilog code lines is much bigger in practice because the code

110 HOG/SVM pedestrian detection implementation using OpenCL

for module instantiation at the top level and the code for communications (I2C, Avalon bus
master and slave interfaces) are not taken into account.

Table 5.11 Lines of code comparison between HDL-based and OpenCL-based approach

Module Gradient Histogram Normalization SVM classifier Total
HDL 200 789 741 1,305 3,035

OpenCL 48 191 29 58 326

5.3.4 Comparison with other OpenCL-based design

In this section, the implementation is compared with other OpenCL-based designs on
GPUs. In [153], the HOG+SVM algorithm is implemented with CUDA. It achieves the
state-of-the-art throughput of up to 175 FPS. Using the same implementation, the embedded
platform Tegra X1 achieves a real-time speed of 27 FPS. The implementation of this thesis
on DevCloud PAC10 is the second to the best with 40 FPS. It is worth noting that DEVCloud
PAC10 is not the best platform in terms of latency for separate kernels as shown in Table
5.8. When the kernels are invoked as a pipeline, its throughput is better than the HARP
Xeon+Arria10 platform.

5.4 Summary

The chapter presents a HOG+SVM algorithm using OpenCL as a case study of FPGA
co-design for ADAS. The design is verified against a golden C model and achieves the
equivalent accuracy. Using this approach, the time for implementation and test is greatly
reduced. The lines of OpenCL code is only about 10% HDL-based code. It also helps to
evaluate and determine the latency bottleneck in the system so that designers can choose
which functional module needs to be accelerated. In this case, the latency bottlenecks are in
the gradient computing and the SVM classifier module.

Shifting register is the main technique implemented to optimize the latency of the kernels.
The target is to minimize the initiation interval of the design as much as possible. The
most optimized implementation has a total latency that is from 57 to 102 times smaller
compared to that of the software implementation depending on the targeted FPGA platform.
The implementation on DevCloud PAC10 achieves the best throughput at 40 FPS, 3 times
faster than the Verilog-based implementation in Chapter 4. This comes at a cost of on chip
resource. Our experiment result shows that OpenCL implementations on FPGAs work at
a higher frequency and throughput yet consumes up to more than 10x amount of resource

5.4 Summary 111

compared to HDL-based implementations. Since there is no similar OpenCL implemntation
for HOG+SVM on FPGAs, I compare the implementation with OpenCL-based HOG+SVM
designs on GPUs. The result show that the GPU-based implementation using CUDA on GTX
960 is up to 4x faster than my current design. In future, it is interesting to port my design
onto the same GPU platform to have a closer look at this gap.

Chapter 6

Conclusions and Future Directions

6.1 Conclusions

This thesis presents my research on the pedestrian detection problem for autonomous cars.
Top accurate algorithms are based on deep neural networks. However, they also demand big
amount of computing resources and power consumption. Therefore, I choose to implement
a HOG+SVM pipeline to save the resources and power. The pipeline is implemented on
FPGAs using two design approaches: RTL and OpenCL coding.

According to my survey in section 2.6, power efficiency of FPGAs is approximately 100
GOPS/W for neural network applications. This number in the case of GPUs and ASICs is 1
TOPS/W and 10 TOPS/W, respectively. However, Table 2.8 shows that FPGA is more energy
efficient in some algorithms, including HOG. The reason for this might be the optimization
techniques applied for FPGA architecture.

The RTL implementation only uses on-chip memory to store image pixels and intermedi-
ate results. It helps avoid accessing external memory which costs more latency and power. In
comparison to existing designs on FPGAs, it is the second to the best in terms of number
of pixels processed per clock. The design consumes the lowest power. However, in terms
of power efficiency measured in FPS per watt, the design is only the third to the best. The
design works at a throughput of only 11 FPS, which is exactly the output throughput of the
image sensor in the demonstration.

The second implementation of the same system is done using OpenCL programming
framework. Using this approach, the design can be synthesized on to different heterogeneous
platforms. First, the design is synthesized and compared between different FPGA platforms:
DE5Net, DevCloud PACS10, DevCloud PAC10, Harp Xeon. The design is partitioned into
four different kernels: gradient, histogram, normalization, and SVM. These kernels on FPGAs
speed up the system from 57 to 102 times compared to their software functions. Second, this

114 Conclusions and Future Directions

implementation is compared against the RTL version. The throughput of OpenCL version is
4x better, yet it uses up to 10x more resources. Finally, it is compared with other OpenCL-
based design. To the best of my knowledge, there is not any similar implementation of FPGAs.
However, a similar implementation on GPU using CUDA achieves better performance.

6.2 Future directions

One of the experiments for further works is to increase the FPS for the RTL implementa-
tion. This is achievable since the current pixel clock frequency for the camera is only 50 Mhz
which limits the output pixel throughput of the sensor. Secondly, the design can work at up
to 162 MHz frequency, three times of the current setting. Therefore a configuration setting
for both the camera and the pipeline to work at 140 MHz is potentially good performance
check. The expected throughput for the whole system would be 31 FPS.

Besides, thanks to the OpenCL implementation, the system can be ported to GPU-based
systems to see compare the same system on different heterogeneous platforms.

References

[1] Intel® FPGA SDK for OpenCL™ Pro Edition Programming Guide, Intel. [Online].
Available: https://www.intel.com/content/www/us/en/docs/programmable/683846/
21-4/overview.html.

[2] “WHO | Global status report on road safety 2018,” Tech. Rep., 2018. [Online].
Available: http://www.who.int/violence_injury_prevention/road_safety_status/2018/
en/.

[3] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint
arXiv:1804.02767, 2018.

[4] J. Borrego-Carazo, D. Castells-Rufas, E. Biempica, and J. Carrabina, “Resource-
constrained machine learning for adas: A systematic review,” IEEE Access, vol. 8,
pp. 40 573–40 598, 2020. DOI: 10.1109/ACCESS.2020.2976513.

[5] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Understanding the limitations of existing
energy-efficient design approaches for deep neural networks,” SysML Conference
(SYSML’18), vol. 2, no. L1, p. L3, 2018.

[6] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A Survey of FPGA-Based Neural
Network Accelerator,” arXiv preprint arXiv:1712.08934, vol. 9, no. 4, pp. 1–26,
2017. arXiv: 1712.08934. [Online]. Available: http://arxiv.org/abs/1712.08934.

[7] S. Shreejith, K. Vipin, S. A. Fahmy, and M. Lukasiewycz, “An approach for redun-
dancy in flex ray networks using FPGA partial reconfiguration,” Proceedings -Design,
Automation and Test in Europe, DATE, pp. 721–724, 2013, ISSN: 15301591.

[8] J. Ahmad and A. Warren, “FPGA based Deterministic Latency Image Acquisition
and Processing System for Automated Driving Systems,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5, ISBN: 9781538648810.

[9] A. M. Lo, A. D. Sappa, and T. Graf, “Survey of Pedestrian Detection for Advanced
Driver Assistance Systems,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 32, no. 7, pp. 1239–1258, 2010.

[10] NHTSA, Automated Vehicles for Safety. [Online]. Available: https://www.nhtsa.gov/
technology-innovation/automated-vehicles-safety.

[11] J. Janai, F. Güney, A. Behl, A. Geiger, et al., “Computer vision for autonomous
vehicles: Problems, datasets and state of the art,” Foundations and Trends® in
Computer Graphics and Vision, vol. 12, no. 1–3, pp. 1–308, 2020.

[12] U. Franke, D. Gavrila, S. Gorzig, F. Lindner, F. Paetzslld, and C. Wohler, “Au-
tonomous driving goes downtown,” IEEE Intelligent Systems and Their Applications,
vol. 13, no. 6, pp. 40–48, 1998.

https://www.intel.com/content/www/us/en/docs/programmable/683846/21-4/overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/21-4/overview.html
http://www.who.int/violence_injury_prevention/road_safety_status/2018/en/
http://www.who.int/violence_injury_prevention/road_safety_status/2018/en/
https://doi.org/10.1109/ACCESS.2020.2976513
https://arxiv.org/abs/1712.08934
http://arxiv.org/abs/1712.08934
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety

116 References

[13] P. Hurney, “Rmeraeal-time Detection of Pedestrians in Night-time Conditions Using
a Vehicle Mounted Infrared Ca,” PhD thesis, National University of Ireland, Galway,
2016.

[14] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D.
Ramanan, C. L. Zitnick, and P. Dolí, “Microsoft COCO: Common Objects in Context,”
in European conference on computer vision, 2014, pp. 740–755. arXiv: 1405.0312v3.

[15] H. Alhaija, S. Mustikovela, L. Mescheder, A. Geiger, and C. Rother, “Augmented
reality meets computer vision: Efficient data generation for urban driving scenes,”
International Journal of Computer Vision (IJCV), 2018.

[16] D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation of Dense Two-Frame
Stereo Correspondence Algorithms,” International journal of computer vision, vol. 47,
no. 1-3, pp. 7–42, 2002. [Online]. Available: www.middlebury.edu/stereo..

[17] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cam-
bridge University Press, Mar. 2003. DOI: 10.1017/cbo9780511811685. [Online].
Available: https://www.cambridge.org/core/books/multiple-view-geometry- in-
computer-vision/0B6F289C78B2B23F596CAA76D3D43F7A.

[18] R. A. Hamzah and H. Ibrahim, “Literature survey on stereo vision disparity map
algorithms,” Journal of Sensors, vol. 2016, pp. 1–23, 2016, ISSN: 16877268. DOI:
10.1155/2016/8742920.

[19] H. Hirschmuller and S. Gehrig, “Stereo matching in the presence of sub-pixel cali-
bration errors,” in IEEE Conference on Computer Vision and Pattern Recognition,
Institute of Electrical and Electronics Engineers (IEEE), Mar. 2009, pp. 437–444.
DOI: 10.1109/cvpr.2009.5206493.

[20] N. Smolyanskiy, A. Kamenev, and S. Birchfield, “On the importance of stereo
for accurate depth estimation: An efficient semi-supervised deep neural network
approach,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2018, pp. 1007–1015.

[21] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the
KITTI vision benchmark suite,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2012, pp. 3354–3361,
ISBN: 9781467312264. DOI: 10.1109/CVPR.2012.6248074.

[22] X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, T. Drummond, H. Li, and Z. Ge,
“Hierarchical Neural Architecture Search for Deep Stereo Matching,” Advances in
Neural Information Processing Systems, pp. 1–12, 2020. arXiv: 2010.13501. [Online].
Available: http://arxiv.org/abs/2010.13501.

[23] D. Hernandez-Juarez, A. Chacón, A. Espinosa, D. Vázquez, J. C. Moure, and A. M.
López, “Embedded real-time stereo estimation via semi-global matching on the gpu,”
Procedia Computer Science, vol. 80, pp. 143–153, 2016.

[24] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti
vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and Pattern
Recognition, IEEE, 2012, pp. 3354–3361.

[25] T. Taniai, Y. Matsushita, Y. Sato, and T. Naemura, “Continuous 3d label stereo
matching using local expansion moves,” IEEE transactions on pattern analysis and
machine intelligence, vol. 40, no. 11, pp. 2725–2739, 2017.

https://arxiv.org/abs/1405.0312v3
www.middlebury.edu/stereo.
https://doi.org/10.1017/cbo9780511811685
https://www.cambridge.org/core/books/multiple-view-geometry-in-computer-vision/0B6F289C78B2B23F596CAA76D3D43F7A
https://www.cambridge.org/core/books/multiple-view-geometry-in-computer-vision/0B6F289C78B2B23F596CAA76D3D43F7A
https://doi.org/10.1155/2016/8742920
https://doi.org/10.1109/cvpr.2009.5206493
https://doi.org/10.1109/CVPR.2012.6248074
https://arxiv.org/abs/2010.13501
http://arxiv.org/abs/2010.13501

References 117

[26] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The Cityscapes Dataset for Semantic Urban Scene Under-
standing,” in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 2016-Decem, 2016, pp. 3213–3223, ISBN:
9781467388504. DOI: 10.1109/CVPR.2016.350. arXiv: 1604.01685.

[27] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The synthia
dataset: A large collection of synthetic images for semantic segmentation of urban
scenes,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 3234–3243.

[28] M. Siam, S. Elkerdawy, M. Jagersand, and S. Yogamani, “Deep Semantic Segmenta-
tion for Automated Driving : Taxonomy , Roadmap and Challenges,” in 2017 IEEE
20th international conference on intelligent transportation systems (ITSC), 2017,
pp. 1–8. arXiv: arXiv:1707.02432v2.

[29] Ç. Kaymak and A. Uçar, “A Brief Survey and an Application of Semantic Image
Segmentation for Autonomous Driving,” in Handbook of Deep Learning Applications,
Springer, 2019, pp. 161–200.

[30] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene under-
standin,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 3213–3223. DOI: 10.1080/17843286.1974.11735726.

[31] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes in video: A
high-definition ground truth database,” Pattern Recognition Letters, vol. 30, no. 2,
pp. 88–97, 2009, ISSN: 01678655. DOI: 10.1016/j.patrec.2008.04.005.

[32] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomed-
ical image segmentation,” in International Conference on Medical image computing
and computer-assisted intervention, 2015, pp. 234–241.

[33] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Adaptation Networks
for Semantic Segmentation,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 3431–3440, ISBN: 9781538664209. DOI: 10.1109/CVPR.
2018.00712. arXiv: 1804.08286.

[34] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEEE transactions on pattern
analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[35] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 2881–2890, ISBN: 978-1-5386-0457-1. DOI: 10.1109/CVPR.2017.660.
arXiv: arXiv:1606.00915. [Online]. Available: https://github.com/hszhao/PSPNet.

[36] Y. Zhu, K. Sapra, F. A. Reda, K. J. Shih, S. Newsam, A. Tao, and B. Catanzaro,
“Improving semantic segmentation via video propagation and label relaxation,” Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2019-June, pp. 8848–8857, 2019, ISSN: 10636919. DOI: 10.1109/
CVPR.2019.00906. arXiv: 1812.01593.

[37] B. Zoph, G. Ghiasi, T.-Y. Lin, Y. Cui, H. Liu, E. D. Cubuk, and Q. V. Le, “Rethinking
pre-training and self-training,” arXiv preprint arXiv:2006.06882, 2020.

https://doi.org/10.1109/CVPR.2016.350
https://arxiv.org/abs/1604.01685
https://arxiv.org/abs/arXiv:1707.02432v2
https://doi.org/10.1080/17843286.1974.11735726
https://doi.org/10.1016/j.patrec.2008.04.005
https://doi.org/10.1109/CVPR.2018.00712
https://doi.org/10.1109/CVPR.2018.00712
https://arxiv.org/abs/1804.08286
https://doi.org/10.1109/CVPR.2017.660
https://arxiv.org/abs/arXiv:1606.00915
https://github.com/hszhao/PSPNet
https://doi.org/10.1109/CVPR.2019.00906
https://doi.org/10.1109/CVPR.2019.00906
https://arxiv.org/abs/1812.01593

118 References

[38] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes in video: A
high-definition ground truth database,” Pattern Recognition Letters, vol. 30, no. 2,
pp. 88–97, 2009.

[39] A. Tao, K. Sapra, and B. Catanzaro, “Hierarchical Multi-Scale Attention for Semantic
Segmentation,” pp. 1–11, 2020. arXiv: 2005.10821. [Online]. Available: http://arxiv.
org/abs/2005.10821.

[40] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in IEEE international
conference on computer vision, 2017, pp. 2961–2969. arXiv: 1703.06870v3. [Online].
Available: https://github.com/.

[41] M. Everingham, S. M. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The Pascal Visual Object Classes Challenge: A Retrospective,” International
Journal of Computer Vision, vol. 111, no. 1, pp. 98–136, 2015, ISSN: 15731405. DOI:
10.1007/s11263-014-0733-5.

[42] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2014,
pp. 580–587, ISBN: 9781479951178. DOI: 10.1109/CVPR.2014.81. arXiv: 1311.
2524.

[43] X. Feng, Y. Jiang, X. Yang, M. Du, and X. Li, “Computer vision algorithms and
hardware implementations: A survey,” Integration, vol. 69, no. July, pp. 309–320,
2019, ISSN: 01679260. DOI: 10 .1016 / j .vlsi . 2019 .07 .005. [Online]. Available:
https://doi.org/10.1016/j.vlsi.2019.07.005.

[44] L. Jiao, F. Zhang, F. Liu, S. Member, S. Yang, L. Li, Z. Feng, and R. Qu, “A Survey of
Deep Learning-based Object Detection,” IEEE Access, vol. 7, pp. 128 837–128 868,
2019. arXiv: 1907.09408v2.

[45] H. Wang, Y. Yu, Y. Cai, X. Chen, L. Chen, and Q. Liu, “A Comparative Study of
State-of-the-Art Deep Learning Algorithms for Vehicle Detection,” IEEE Intelligent
Transportation Systems Magazine, vol. 11, no. 2, pp. 82–95, 2019, ISSN: 19411197.
DOI: 10.1109/MITS.2019.2903518.

[46] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
Pyramid Networks for Object Detection,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 2117–2125.

[47] A. Bar Hillel, R. Lerner, D. Levi, and G. Raz, “Recent progress in road and lane
detection: A survey,” Machine Vision and Applications, vol. 25, no. 3, pp. 727–745,
2014, ISSN: 14321769. DOI: 10.1007/s00138-011-0404-2.

[48] Chao Fan, Y.-P. Song, and J. Ya-Jie, “Multi-Lane Detection Based on Deep Convolu-
tional Neural Network,” IEEE Access, vol. 7, pp. 150 833–150 841, 2019.

[49] TuSimple dataset. [Online]. Available: https : / / github.com/TuSimple / tusimple -
benchmark/wiki.

[50] Z. Qu, H. Jin, Y. Zhou, Z. Yang, and W. Zhang, “Focus on Local: Detecting Lane
Marker from Bottom Up via Key Point,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 14 122–14 130. arXiv: 2105.
13680. [Online]. Available: http://arxiv.org/abs/2105.13680.

https://arxiv.org/abs/2005.10821
http://arxiv.org/abs/2005.10821
http://arxiv.org/abs/2005.10821
https://arxiv.org/abs/1703.06870v3
https://github.com/
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1109/CVPR.2014.81
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1311.2524
https://doi.org/10.1016/j.vlsi.2019.07.005
https://doi.org/10.1016/j.vlsi.2019.07.005
https://arxiv.org/abs/1907.09408v2
https://doi.org/10.1109/MITS.2019.2903518
https://doi.org/10.1007/s00138-011-0404-2
https://github.com/TuSimple/tusimple-benchmark/wiki
https://github.com/TuSimple/tusimple-benchmark/wiki
https://arxiv.org/abs/2105.13680
https://arxiv.org/abs/2105.13680
http://arxiv.org/abs/2105.13680

References 119

[51] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, “Spatial as deep: Spatial CNN for traffic
scene understanding,” Procedings of the AAAI Conference on Artificial Intelligence,
vol. 32, no. 1, 2018. arXiv: 1712.06080.

[52] L. Liu, X. Chen, S. Zhu, and P. Tan, “Condlanenet: A top-to-down lane detection
framework based on conditional convolution,” arXiv preprint arXiv:2105.05003,
2021.

[53] K. Behrendt and R. Soussan, “Unsupervised labeled lane markers using maps,”
in Proceedings of the IEEE/CVF International Conference on Computer Vision
Workshops, 2019.

[54] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell,
“Bdd100k: A diverse driving dataset for heterogeneous multitask learning,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 2636–2645.

[55] M. Lee, J. Lee, D. Lee, W. Kim, S. Hwang, and S. Lee, “Robust Lane Detection
via Expanded Self Attention,” 2021. arXiv: 2102.07037. [Online]. Available: http:
//arxiv.org/abs/2102.07037.

[56] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and L. Van Gool, “To-
wards End-to-End Lane Detection: An Instance Segmentation Approach,” IEEE
Intelligent Vehicles Symposium, Proceedings, vol. 2018-June, pp. 286–291, 2018.
DOI: 10.1109/IVS.2018.8500547. arXiv: 1802.05591.

[57] P. Phalguni, K. Ganapathi, V. Madumbu, R. Rajendran, and S. David, “Design and
implementation of an automatic traffic sign recognition system on TI OMAP-L138,”
2013 IEEE International Conference on Industrial Technology (ICIT), pp. 1104–
1109, 2013. DOI: 10.1109/ICIT.2013.6505826.

[58] A. Mogelmose, M. M. Trivedi, and T. B. Moeslund, “Vision based Traffic Sign
Detection and Analysis for Intelligent Driver Assistance Systems: Perspectives and
Survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 4,
pp. 1484–1497, 2012.

[59] S. B. Wali, M. A. Abdullah, M. A. Hannan, A. Hussain, S. A. Samad, P. J. Ker, and
M. B. Mansor, Vision-based traffic sign detection and recognition systems: Current
trends and challenges, May 2019. DOI: 10.3390/s19092093.

[60] M. Mathias, R. Timofte, R. Benenson, and L. Van Gool, “Traffic sign recognition
- How far are we from the solution?” In Proceedings of the International Joint
Conference on Neural Networks, 2013, ISBN: 9781467361293. DOI: 10.1109/IJCNN.
2013.6707049.

[61] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer: Bench-
marking machine learning algorithms for traffic sign recognition,” Neural Networks,
vol. 32, pp. 323–332, Aug. 2012, ISSN: 08936080. DOI: 10.1016/j.neunet.2012.02.
016.

[62] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel, “Detection of
traffic signs in real-world images: The German traffic sign detection benchmark,” in
Proceedings of the International Joint Conference on Neural Networks, 2013, ISBN:
9781467361293. DOI: 10.1109/IJCNN.2013.6706807.

https://arxiv.org/abs/1712.06080
https://arxiv.org/abs/2102.07037
http://arxiv.org/abs/2102.07037
http://arxiv.org/abs/2102.07037
https://doi.org/10.1109/IVS.2018.8500547
https://arxiv.org/abs/1802.05591
https://doi.org/10.1109/ICIT.2013.6505826
https://doi.org/10.3390/s19092093
https://doi.org/10.1109/IJCNN.2013.6707049
https://doi.org/10.1109/IJCNN.2013.6707049
https://doi.org/10.1016/j.neunet.2012.02.016
https://doi.org/10.1016/j.neunet.2012.02.016
https://doi.org/10.1109/IJCNN.2013.6706807

120 References

[63] D. Tabernik and D. Skocaj, “Deep Learning for Large-Scale Traffic-Sign Detection
and Recognition,” IEEE Transactions on Intelligent Transportation Systems, vol. PP,
pp. 1–14, 2019, ISSN: 1524-9050. DOI: 10.1109/tits.2019.2913588. arXiv: 1904.
00649.

[64] C. Gamez Serna and Y. Ruichek, “Traffic Signs Detection and Classification for
European Urban Environments,” IEEE Transactions on Intelligent Transportation
Systems, vol. 21, no. 10, pp. 4388–4399, 2020, ISSN: 15580016. DOI: 10.1109/TITS.
2019.2941081.

[65] M. B. Jensen, M. P. Philipsen, A. Møgelmose, T. B. Moeslund, and M. M. Trivedi,
“Vision for Looking at Traffic Lights: Issues, Survey, and Perspectives,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 17, no. 7, pp. 1800–1815, Jul.
2016, ISSN: 15249050. DOI: 10.1109/TITS.2015.2509509.

[66] M. Diaz, P. Cerri, G. Pirlo, M. A. Ferrer, and D. Impedovo, “A survey on traffic light
detection,” in International Conference on Image Analysis and Processing, 2015,
pp. 201–208, ISBN: 9783319232218. DOI: 10.1007/978-3-319-23222-5_25.

[67] M. Bach, D. Stumper, and K. Dietmayer, “Deep Convolutional Traffic Light Recog-
nition for Automated Driving,” in IEEE Conference on Intelligent Transportation
Systems, Proceedings, ITSC, Institute of Electrical and Electronics Engineers Inc.,
Dec. 2018, pp. 851–858, ISBN: 9781728103235. DOI: 10.1109/ITSC.2018.8569522.

[68] Lara dataset, Accessed: 2021-06-03, 2010. [Online]. Available: http://www.lara.prd.
fr/benchmarks/trafficlightsrecognition.

[69] S.-c. Lin, Y. Zhang, C.-h. Hsu, M. Skach, E. Haque, L. Tang, and J. Mars, “The
Architectural Implications of Autonomous Driving : Constraints and Acceleration,”
Proce. ASPLOS’18, pp. 751–766, 2018. DOI: 10.1145/3173162.3173191.

[70] H. K. Kim, K. Y. Yoo, J. H. Park, and H. Y. Jung, “Traffic light recognition based
on binary semantic segmentation network,” Sensors (Switzerland), vol. 19, no. 7,
pp. 1–15, 2019, ISSN: 14248220. DOI: 10.3390/s19071700.

[71] M. P. Philipsen, M. B. Jensen, A. Mogelmose, T. Moseslund, and M. M. Trivedi,
“Learning based traffic light detection: Evaluation on challenging dataset,” in 18th
IEEE Intelligent Transportation Systems Conference, 2015.

[72] K. Behrendt and L. Novak, “A deep learning approach to traffic lights: Detection,
tracking, and classification,” in Robotics and Automation (ICRA), 2017 IEEE Inter-
national Conference on, IEEE.

[73] A. Fregin, J. Muller, U. Krebel, and K. Dietmayer, “The driveu traffic light dataset:
Introduction and comparison with existing datasets,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), 2018, pp. 3376–3383. DOI: 10.
1109/ICRA.2018.8460737.

[74] J. Muller and K. Dietmayer, “Detecting Traffic Lights by Single Shot Detection,”
IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, vol. 2018-
Novem, pp. 266–273, 2018. DOI: 10.1109/ITSC.2018.8569683. arXiv: 1805.02523.

https://doi.org/10.1109/tits.2019.2913588
https://arxiv.org/abs/1904.00649
https://arxiv.org/abs/1904.00649
https://doi.org/10.1109/TITS.2019.2941081
https://doi.org/10.1109/TITS.2019.2941081
https://doi.org/10.1109/TITS.2015.2509509
https://doi.org/10.1007/978-3-319-23222-5_25
https://doi.org/10.1109/ITSC.2018.8569522
http://www.lara.prd.fr/benchmarks/trafficlightsrecognition
http://www.lara.prd.fr/benchmarks/trafficlightsrecognition
https://doi.org/10.1145/3173162.3173191
https://doi.org/10.3390/s19071700
https://doi.org/10.1109/ICRA.2018.8460737
https://doi.org/10.1109/ICRA.2018.8460737
https://doi.org/10.1109/ITSC.2018.8569683
https://arxiv.org/abs/1805.02523

References 121

[75] N. Bernini, M. Bertozzi, L. Castangia, M. Patander, and M. Sabbatelli, “Real-time
obstacle detection using stereo vision for autonomous ground vehicles: A survey,”
in 17th IEEE International Conference on Intelligent Transportation Systems, ITSC
2014, 2014, pp. 873–878, ISBN: 9781479960781. DOI: 10.1109/ITSC.2014.6957799.
arXiv: 1204.3968.

[76] V. D. Nguyen, T. T. Nguyen, D. D. Nguyen, S. J. Lee, and J. W. Jeon, “A fast
evolutionary algorithm for real-time vehicle detection,” IEEE Transactions on Ve-
hicular Technology, vol. 62, no. 6, pp. 2453–2468, 2013, ISSN: 00189545. DOI:
10.1109/TVT.2013.2242910.

[77] Hernan Badino, Uwe Franke and D. Pfeiffer, “The Stixel World - A Compact Medium
Level Representation of the 3D-World,” in Pattern recognition 31st DAGM sympo-
sium, 2009, pp. 51–60, ISBN: 978-3-540-22945-2. DOI: 10.1088/0305-4624/8/5/I01.
arXiv: arXiv:1011.1669v3.

[78] R. M. Hernan Badino, Uwe Franke, “Free Space Computation Using Stochastic Occu-
pancy Grids and Dynamic Programming,” in International conference on Computer
Vision, Workshop Dynamical Vision, 2007.

[79] F. U., R. C., B. H., and G. S., “6D-Vision: Fusion of Stereo and Motion for Robust
Environment Perception,” in Joint Pattern Recognition Symposium. Springer, Berlin,
Heidelberg,, 2005, pp. 216–223, ISBN: 3540287035. DOI: 10.1007/11550518_27.

[80] D. Pfeiffer and U. Franke, “Efficient representation of traffic scenes by means of
dynamic stixels,” IEEE Intelligent Vehicles Symposium, Proceedings, pp. 217–224,
2010, ISSN: 1931-0587. DOI: 10.1109/IVS.2010.5548114.

[81] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense Object
Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42,
no. 2, pp. 318–327, Aug. 2017. arXiv: 1708.02002. [Online]. Available: http://arxiv.
org/abs/1708.02002.

[82] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg,
“SSD: Single shot multibox detector,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 9905 LNCS, pp. 21–37, 2016, ISSN: 16113349. DOI: 10.1007/978-3-319-46448-
0_2. arXiv: 1512.02325.

[83] L. Sun, K. Yang, X. Hu, W. Hu, and K. Wang, “Real-Time fusion network for rgb-d
sementic segmentation incorporating unexpected obstacle detection,” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 5558–5565, 2020, ISSN: 23773766. DOI:
10.1109/LRA.2020.3007457. arXiv: arXiv:2002.10570v2.

[84] P. Pinggera, S. Ramos, S. Gehrig, U. Franke, C. Rother, and R. Mester, “Lost and
found: Detecting small road hazards for self-driving vehicles,” in IEEE International
Conference on Intelligent Robots and Systems, vol. 2016-Novem, 2016, pp. 1099–
1106, ISBN: 9781509037629. DOI: 10.1109/IROS.2016.7759186. arXiv: 1609.04653.

[85] A. DeHon, “Trends toward spatial computing architectures,” in 1999 IEEE Interna-
tional Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edi-
tion (Cat. No.99CH36278), 1999, pp. 362–363. DOI: 10.1109/ISSCC.1999.759296.

[86] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint com-
puter conference, 1967, pp. 483–485.

https://doi.org/10.1109/ITSC.2014.6957799
https://arxiv.org/abs/1204.3968
https://doi.org/10.1109/TVT.2013.2242910
https://doi.org/10.1088/0305-4624/8/5/I01
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1007/11550518_27
https://doi.org/10.1109/IVS.2010.5548114
https://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://arxiv.org/abs/1512.02325
https://doi.org/10.1109/LRA.2020.3007457
https://arxiv.org/abs/arXiv:2002.10570v2
https://doi.org/10.1109/IROS.2016.7759186
https://arxiv.org/abs/1609.04653
https://doi.org/10.1109/ISSCC.1999.759296

122 References

[87] D. Castells-Rufas, A. Saa-Garriga, and J. Carrabina, “Energy efficiency of many-
soft-core processors,” arXiv preprint arXiv:1601.07133, 2016.

[88] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock, Y. T.
Liew, K. Srivatsan, D. Moss, S. Subhaschandra, and G. Boudoukh, “Can fpgas beat
gpus in accelerating next-generation deep neural networks?” In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
ser. FPGA ’17, Monterey, California, USA: Association for Computing Machinery,
2017, pp. 5–14, ISBN: 9781450343541. DOI: 10.1145/3020078.3021740. [Online].
Available: https://doi.org/10.1145/3020078.3021740.

[89] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao,
S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A Survey and Evaluation of
FPGA High-Level Synthesis Tools,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 35, no. 10, pp. 1591–1604, 2016. DOI:
10.1109/TCAD.2015.2513673.

[90] V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer, “Efficient Processing of Deep
Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE, vol. 105, no. 12,
pp. 2295–2329, 2017, ISSN: 00189219. DOI: 10.1109/JPROC.2017.2761740. arXiv:
1703.09039.

[91] Y. Wang, S. Liang, S. Yao, Y. Shan, S. Han, J. Peng, and H. Luo, “RECONFIG-
URABLE PROCESSOR FOR DEEP LEARNING IN AUTONOMOUS VEHICLES,”
Tech. Rep. [Online]. Available: https://www.itu.int/en/journal/001/Pages/default.
aspx.

[92] K. Matsubara, L. Hanno, M. Kimura, A. Nakamura, M. Koike, K. Terashima, S.
Morikawa, Y. Hotta, T. Irita, S. Mochizuki, H. Hamasaki, and T. Kamei, “4.2 A
12nm Autonomous-Driving Processor with 60.4TOPS, 13.8TOPS/W CNN Executed
by Task-Separated ASIL D Control,” in IEEE International Solid- State Circuits
Conference (ISSCC), vol. 64, 2021, pp. 56–58, ISBN: 9781728195490. DOI: 10.1109/
ISSCC42613.2021.9365745.

[93] W. Shi, X. Li, Z. Yu, and G. Overett, “An FPGA-Based Hardware Accelerator for
Traffic Sign Detection,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 4, pp. 1362–1372, 2017, ISSN: 10638210. DOI: 10.1109/TVLSI.
2016.2631428.

[94] O. Rahnama, T. Cavalleri, S. Golodetz, S. Walker, and P. Torr, “R3SGM : Real-
time Raster-Respecting Semi-Global Matching for Power-Constrained Systems,” in
International Conference on Field-Programmable Technology (FPT), 2018, pp. 102–
109, ISBN: 9781728102146. DOI: 10.1109/FPT.2018.00025.

[95] X. Ma, W. A. Najjar, and A. K. Roy-Chowdhury, “Evaluation and acceleration of
high-throughput fixed-point object detection on FPGAS,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 25, no. 6, pp. 1051–1062, 2015,
ISSN: 10518215. DOI: 10.1109/TCSVT.2014.2360030.

[96] H. Nakahara, H. Yonekawa, T. Fujii, and S. Sato, “A Lightweight YOLOv2: A Bina-
rized CNN with A Parallel Support Vector Regression for an FPGA,” Proceedings
of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA ’18), pp. 31–40, 2018. DOI: 10.1145/3174243.3174266. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3174243.3174266.

https://doi.org/10.1145/3020078.3021740
https://doi.org/10.1145/3020078.3021740
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/JPROC.2017.2761740
https://arxiv.org/abs/1703.09039
https://www.itu.int/en/journal/001/Pages/default.aspx
https://www.itu.int/en/journal/001/Pages/default.aspx
https://doi.org/10.1109/ISSCC42613.2021.9365745
https://doi.org/10.1109/ISSCC42613.2021.9365745
https://doi.org/10.1109/TVLSI.2016.2631428
https://doi.org/10.1109/TVLSI.2016.2631428
https://doi.org/10.1109/FPT.2018.00025
https://doi.org/10.1109/TCSVT.2014.2360030
https://doi.org/10.1145/3174243.3174266
http://dl.acm.org/citation.cfm?doid=3174243.3174266

References 123

[97] G. Chen, Y. Ling, T. He, H. Meng, S. He, Y. Zhang, and K. Huang, “StereoEngine:
An FPGA-Based Accelerator for Real-Time High-Quality Stereo Estimation with
Binary Neural Network,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 11, pp. 4179–4190, Nov. 2020, ISSN: 19374151.
DOI: 10.1109/TCAD.2020.3012864. [Online]. Available: https://ieeexplore.ieee.org/
document/9211569/.

[98] R. Retting, “Traffic Fatalities by State,” Governors Highway Safety Association,
Tech. Rep., 2020.

[99] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian Detection: A Benchmark,”
in Proc. CVPR, 2009, pp. 304–311, ISBN: 9781424439911. DOI: 10.1109/CVPR.
2009.5206631.

[100] N. Dalal and W. Triggs, “Histograms of Oriented Gradients for Human Detection,”
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion CVPR05, vol. 1, no. 3, pp. 886–893, 2004. DOI: 10.1109/CVPR.2005.177.

[101] M. Enzweiler and D. M. Gavrila, “Monocular pedestrian detection: Survey and
experiments,” in IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, 2009, pp. 2179–2195. DOI: 10.1109/TPAMI.2008.260.

[102] A. Ess, B. Leibe, and L. Van Gool, “Depth and appearance for mobile scene analysis,”
in 2007 IEEE 11th international conference on computer vision, IEEE, 2007, pp. 1–8.

[103] S. W. C. Wojek and B. Schiele, “Multi-Cue Onboard Pedestrian Detection,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2009, pp. 794–
801.

[104] S. Zhang, R. Benenson, and B. Schiele, “CityPersons: A Diverse Dataset for Pedes-
trian Detection,” in IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 3213–3221. arXiv: arXiv:1702.05693v1.

[105] M. Braun, S. Krebs, F. Flohr, and D. M. Gavrila, “Eurocity persons: A novel bench-
mark for person detection in traffic scenes,” IEEE transactions on pattern analysis
and machine intelligence, vol. 41, no. 8, pp. 1844–1861, 2019.

[106] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes (voc) challenge,” International journal of computer
vision, vol. 88, no. 2, pp. 303–338, 2010.

[107] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An evaluation of
the state of the art,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, no. 4, pp. 743–761, 2012, ISSN: 01628828. DOI: 10.1109/TPAMI.2011.155.

[108] J. Cao, Y. Pang, J. Xie, F. S. Khan, and L. Shao, “From handcrafted to deep features
for pedestrian detection: A survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–1, 2021. DOI: 10.1109/TPAMI.2021.3076733.

[109] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-
tional Journal of Computer Vision, vol. 60, pp. 91–110, 2004. DOI: 10.1023/B:
VISI.0000029664.99615.94.

[110] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987, 2002. DOI:
10.1109/TPAMI.2002.1017623.

https://doi.org/10.1109/TCAD.2020.3012864
https://ieeexplore.ieee.org/document/9211569/
https://ieeexplore.ieee.org/document/9211569/
https://doi.org/10.1109/CVPR.2009.5206631
https://doi.org/10.1109/CVPR.2009.5206631
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/TPAMI.2008.260
https://arxiv.org/abs/arXiv:1702.05693v1
https://doi.org/10.1109/TPAMI.2011.155
https://doi.org/10.1109/TPAMI.2021.3076733
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1109/TPAMI.2002.1017623

124 References

[111] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in
Computer Vision – ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 404–417, ISBN: 978-3-540-33833-
8.

[112] P. Viola and M. J. Jones, “Robust real-time face detection,” International Journal of
Computer Vision, vol. 57, pp. 137–154, 2004. DOI: 10.1023/B:VISI.0000013087.
49260.fb.

[113] ——, “Detecting Pedestrians Using Patterns of Motion and Appearance,” Interna-
tional Journal of Computer Vision, vol. 63, no. 2, pp. 153–161, 2005.

[114] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning
and an application to boosting,” Journal of computer and system sciences, vol. 55,
no. 1, pp. 119–139, 1997.

[115] R. E. Schapire and Y. Singer, “Improved boosting algorithms using confidence-rated
predictions,” Machine learning, vol. 37, no. 3, pp. 297–336, 1999.

[116] Caltech Pedestrian Detection Benchmark, 2018. [Online]. Available: http://www.
vision.caltech.edu/Image_Datasets/CaltechPedestrians/.

[117] I. Hasan, S. Liao, J. Li, S. U. Akram, and L. Shao, “Generalizable pedestrian detection:
The elephant in the room,” arXiv preprint arXiv:2003.08799, vol. 1, no. 2, 2020.

[118] P. Viola and M. J. Jones, “Robust real-time face detection,” International journal of
computer vision, vol. 57, no. 2, pp. 137–154, 2004.

[119] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified multi-scale deep convolu-
tional neural network for fast object detection,” in European conference on computer
vision, Springer, 2016, pp. 354–370.

[120] J. Li, X. Liang, S. Shen, T. Xu, J. Feng, and S. Yan, “Scale-aware fast r-cnn for
pedestrian detection,” IEEE transactions on Multimedia, vol. 20, no. 4, pp. 985–996,
2017.

[121] L. Zhang, L. Lin, X. Liang, and K. He, “Is faster r-cnn doing well for pedestrian
detection?” In European conference on computer vision, Springer, 2016, pp. 443–
457.

[122] X. Du, M. El-Khamy, J. Lee, and L. Davis, “Fused DNN: A deep neural network
fusion approach to fast and robust pedestrian detection,” Proceedings - 2017 IEEE
Winter Conference on Applications of Computer Vision, WACV 2017, pp. 953–961,
2017. DOI: 10.1109/WACV.2017.111. arXiv: 1610.03466.

[123] X. Zhang, L. Cheng, B. Li, and H.-M. Hu, “Too far to see? not really!—pedestrian de-
tection with scale-aware localization policy,” IEEE transactions on image processing,
vol. 27, no. 8, pp. 3703–3715, 2018.

[124] S. Wang, J. Cheng, H. Liu, and M. Tang, “Pcn: Part and context information for
pedestrian detection with cnns,” arXiv preprint arXiv:1804.04483, 2018.

[125] C. Lin, J. Lu, G. Wang, and J. Zhou, “Graininess-aware deep feature learning for
pedestrian detection,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 732–747.

https://doi.org/10.1023/B:VISI.0000013087.49260.fb
https://doi.org/10.1023/B:VISI.0000013087.49260.fb
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
https://doi.org/10.1109/WACV.2017.111
https://arxiv.org/abs/1610.03466

References 125

[126] X. Du, M. El-Khamy, V. I. Morariu, J. Lee, and L. Davis, “Fused Deep Neural
Networks for Efficient Pedestrian Detection,” pp. 1–11, 2018. arXiv: 1805.08688.
[Online]. Available: http://arxiv.org/abs/1805.08688.

[127] T. Song, L. Sun, D. Xie, H. Sun, and S. Pu, “Small-scale pedestrian detection based
on somatic topology localization and temporal feature aggregation,” arXiv preprint
arXiv:1807.01438, 2018.

[128] G. Brazil, X. Yin, and X. Liu, “Illuminating Pedestrians via Simultaneous Detection
and Segmentation,” Proceedings of the IEEE International Conference on Computer
Vision, vol. 2017-Octob, pp. 4960–4969, 2017, ISSN: 15505499. DOI: 10.1109/ICCV.
2017.530. arXiv: 1706.08564.

[129] G. Brazil and X. Liu, “Pedestrian detection with autoregressive network phases,”
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2019-June, pp. 7224–7233, 2019, ISSN: 10636919. DOI:
10.1109/CVPR.2019.00740. arXiv: 1812.00440.

[130] A. H. Khan, M. Munir, L. van Elst, and A. Dengel, F2dnet: Fast focal detection
network for pedestrian detection, 2022. DOI: 10.48550/ARXIV.2203.02331. [Online].
Available: https://arxiv.org/abs/2203.02331.

[131] W. Liu, S. Liao, W. Ren, W. Hu, and Y. Yu, “High-level semantic feature detec-
tion: A new perspective for pedestrian detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 5187–5196.

[132] I. Hasan, S. Liao, J. Li, S. U. Akram, and L. Shao, “Pedestrian detection: The elephant
in the room,” arXiv preprint arXiv:2003.08799, 2020.

[133] N. Dalal, F. People, and V. H.-c. Interaction, “Finding People in Images and Videos
Navneet Dalal To cite this version : HAL Id : tel-00390303,” 2009.

[134] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
no. 3, pp. 273–297, Sep. 1995, ISSN: 0885-6125. DOI: 10.1007/bf00994018.

[135] T. Joachims, “Text Classification,” in Learning to Classify Text Using Support Vector
Machines, Springer US, 2002, pp. 7–33. DOI: 10.1007/978-1-4615-0907-3_2.

[136] C.-J. Chang, Chih-Chung and Lin, “{LIBSVM}: A library for support vector ma-
chines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3,
27:1–27:27, 2011.

[137] DE1-SoC Board. [Online]. Available: https://www.terasic.com.tw/cgi-bin/page/
archive.pl?Language=English&No=836.

[138] The 5 Mega Pixel Digital Camera Development Package. [Online]. Available: https:
//www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=
68&No=281.

[139] D. Castells, PedestrianDetectionBenchmark, 2019. [Online]. Available: https://github.
com/vinhphuong1501/hog%7B%5C_%7Dbenchmark.

[140] J. Rettkowski, A. Boutros, and D. Göhringer, “Real-time pedestrian detection on
a xilinx zynq using the HOG algorithm,” in 2015 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), IEEE, Dec. 2015, pp. 1–
8, ISBN: 978-1-4673-9406-2. DOI: 10.1109/ReConFig.2015.7393339. [Online].
Available: http://ieeexplore.ieee.org/document/7393339/.

https://arxiv.org/abs/1805.08688
http://arxiv.org/abs/1805.08688
https://doi.org/10.1109/ICCV.2017.530
https://doi.org/10.1109/ICCV.2017.530
https://arxiv.org/abs/1706.08564
https://doi.org/10.1109/CVPR.2019.00740
https://arxiv.org/abs/1812.00440
https://doi.org/10.48550/ARXIV.2203.02331
https://arxiv.org/abs/2203.02331
https://doi.org/10.1007/bf00994018
https://doi.org/10.1007/978-1-4615-0907-3_2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=836
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=836
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=68&No=281
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=68&No=281
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=68&No=281
https://github.com/vinhphuong1501/hog%7B%5C_%7Dbenchmark
https://github.com/vinhphuong1501/hog%7B%5C_%7Dbenchmark
https://doi.org/10.1109/ReConFig.2015.7393339
http://ieeexplore.ieee.org/document/7393339/

126 References

[141] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, and K. Doll, “FPGA-Based real-time
pedestrian detection on high-resolution images,” IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops, pp. 629–635, 2013, ISSN:
21607508. DOI: 10.1109/CVPRW.2013.95.

[142] S. Ghaffari, P. Soleimani, K. F. Li, and D. W. Capson, “A Novel Hardware–Software
Co-Design and Implementation of the HOG Algorithm,” Sensors, vol. 20, no. 19,
p. 5655, Oct. 2020, ISSN: 1424-8220. DOI: 10.3390/s20195655. [Online]. Available:
https://www.mdpi.com/1424-8220/20/19/5655.

[143] A. Khan, M. U. K. Khan, M. Bilal, and C. M. Kyung, “Hardware architecture
and optimization of sliding window based pedestrian detection on FPGA for high
resolution images by varying local features,” IEEE/IFIP International Conference
on VLSI and System-on-Chip, VLSI-SoC, vol. 2015-Octob, pp. 142–148, 2015, ISSN:
23248440. DOI: 10.1109/VLSI-SoC.2015.7314406.

[144] C. Blair, N. M. Robertson, and D. Hume, “Characterising a Heterogeneous System
for Person Detection in Video using Histograms of Oriented Gradients: Power vs.
Speed vs. Accuracy,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 3, no. 2, pp. 236–247, 2013, ISSN: 2156-3357. DOI: 10.1109/JETCAS.
2013.2256821.

[145] J. H. Luo and C. H. Lin, “Pure FPGA Implementation of an HOG Based Real-
Time Pedestrian Detection System,” Sensors, vol. 18, no. 4, 2018, ISSN: 1424-8220.
DOI: 10 .3390 / s18041174. [Online]. Available: https : / /www.mdpi . com/1424-
8220/18/4/1174.

[146] S. Ghaffari, P. Soleimani, K. F. Li, and D. W. Capson, “A Novel Hardware–Software
Co-Design and Implementation of the HOG Algorithm,” Sensors, vol. 20, no. 19,
p. 5655, Oct. 2020, ISSN: 1424-8220. DOI: 10.3390/s20195655. [Online]. Available:
https://www.mdpi.com/1424-8220/20/19/5655.

[147] IntelFPGA SDK for OpenCL Pro edition: Best Practice Guide, English, Intel, 194 pp.
[148] SDAccel environment profiling and optimization guide, English, version V2017.4,

Xilinx, 99 pp.
[149] H. R. Zohouri, High performance computing with fpgas and opencl, 2019. arXiv:

1810.09773 [cs.DC].
[150] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and M. Yoshimoto, “Ar-

chitectural study of HOG feature extraction processor for real-time object detection,”
IEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation,
pp. 197–202, 2012, ISSN: 15206130. DOI: 10.1109/SiPS.2012.57.

[151] M. Bilal, A. Khan, M. Umar, K. Khan, and C.-m. Kyung, “A Low-Complexity
Pedestrian Detection Framework for Smart Video Surveillance Systems,” vol. 27,
no. 10, pp. 2260–2273, 2017.

[152] R. Sun, X. Wang, and X. Ye, “Real-time pedestrian detection Using OpenCL,” in
ICALIP 2014 - 2014 International Conference on Audio, Language and Image
Processing, Proceedings, Institute of Electrical and Electronics Engineers Inc., Jan.
2015, pp. 401–404, ISBN: 9781479939022. DOI: 10.1109/ICALIP.2014.7009824.

https://doi.org/10.1109/CVPRW.2013.95
https://doi.org/10.3390/s20195655
https://www.mdpi.com/1424-8220/20/19/5655
https://doi.org/10.1109/VLSI-SoC.2015.7314406
https://doi.org/10.1109/JETCAS.2013.2256821
https://doi.org/10.1109/JETCAS.2013.2256821
https://doi.org/10.3390/s18041174
https://www.mdpi.com/1424-8220/18/4/1174
https://www.mdpi.com/1424-8220/18/4/1174
https://doi.org/10.3390/s20195655
https://www.mdpi.com/1424-8220/20/19/5655
https://arxiv.org/abs/1810.09773
https://doi.org/10.1109/SiPS.2012.57
https://doi.org/10.1109/ICALIP.2014.7009824

References 127

[153] V. Campmany, S. Silva, A. Espinosa, J. C. Moure, D. Vázquez, and A. M. López,
“GPU-based pedestrian detection for autonomous driving,” in Procedia Computer
Science, vol. 80, Elsevier B.V., 2016, pp. 2377–2381. DOI: 10.1016/j.procs.2016.05.
455. arXiv: 1611.01642.

[154] V. Ngo, D. Castells-Rufas, A. Casadevall, M. Codina, and J. Carrabina, “Low-Power
Pedestrian Detection System on FPGA,” in Multidisciplinary Digital Publishing In-
stitute Proceedings, vol. 31, Nov. 2019, p. 35. DOI: 10.3390/proceedings2019031035.
[Online]. Available: https://www.mdpi.com/2504-3900/31/1/35.

https://doi.org/10.1016/j.procs.2016.05.455
https://doi.org/10.1016/j.procs.2016.05.455
https://arxiv.org/abs/1611.01642
https://doi.org/10.3390/proceedings2019031035
https://www.mdpi.com/2504-3900/31/1/35

Appendix A

Calculate the FPS of output images from
the sensor

A.1 Camera settings

Some key configurations for the image sensor [138] used in this thesis are listed in Table
A.1.

Table A.1 Pixel clock settings

Parameter Value Comments

XCLKIN 25 MHz
Clock input to the sensor,

must be in the range from 6 Mhz to 27 MHz
PLL_m_Factor 24 M = PLL_m_Factor
PLL_n_Divider 5 N = PLL_n_Divider + 1

PLL_p1_Divider 1 P1 = PLL_p1_Divider + 1
Column size 2559 The width of the field of view in pixels

Row size 1919 The height of the field of view in pixels
Column Skip 1 The width of the field of view is reduced 2X
Column Bin 1 Set in conjunction with skipping. One neighbor

pixel in the same row is averaged with each output
Row Skip 1 The height of the field of view is reduced 2X
Row Bin 1 Set in conjunction with skipping. One neighbor

pixel in the same col. is averaged with each output
Shutter Width Upper 0 Exposure time (in number of row time) upper bytes
Shutter Width Lower 1984 Exposure time (in number of row time) lower bytes

Horizontal Blank 0 Horizontal blanking in pixel clocks
Vertical Blank 25 Vertical blanking in pixel clocks

130 Calculate the FPS of output images from the sensor

The pixel clock output of the camera is calculated as in Equation A.1. Accordingly, the
camera outputs raw pixels at 50 MHz.

PIXCLK = (XCLKIN×M)/(N×P1) (A.1)

A.2 Frame rate calculation

The Table A.2 presents the parameters and their corresponding values to calculate the
frame rate at the input of the pedestrian detection system. The pixel clock, which is 50
MHz, is calculated from section A.1. According to [138], the WDC (Dark columns after
binning) parameter is 40 because the Column Bin is set to 1 as in Table A.1. According to
the calculations in Table A.2, the frame rate at the output of the image sensor is 11 FPS.

A.2 Frame rate calculation 131
Ta

bl
e

A
.2

Fr
am

e
ra

te
ca

lc
ul

at
io

n

Pa
ra

m
et

er
N

am
e

E
qu

at
io

n
R

es
ul

t
FP

S
Fr

am
e

ra
te

1/
tF

ra
m

e
11

tF
ra

m
e

Fr
am

e
tim

e
(H

+
m

ax
(V

B
,V

B
M

IN
))
×

tR
O

W
89

m
s

tR
O

W
R

ow
tim

e
2
×

tP
IX

C
LK
×

m
ax
((
(W

/2
)
+

m
ax
(H

B
,H

B
M

IN
))
,

45
m

s
(4

1
+

20
8
×
(R

ow
_B

in
+

1)
+

99
))

W
Im

ag
e

W
id

th
2
×

ce
il
((

C
ol

um
n_

Si
ze
+

1)
/
(2
×
(C

ol
um

n_
Sk

ip
+

1)
))

12
80

H
Im

ag
e

H
ei

gh
t

2
×

ce
il
((

R
ow

_S
iz

e+
1)
/
(2
×
(R

ow
_S

ki
p
+

1)
))

96
0

SW
Sh

ut
te

rW
id

th
m

ax
(1
,(

216
×

Sh
ut

te
r_

W
id

th
_U

pp
er
)

19
84

+
Sh

ut
te

r_
W

id
th

_L
ow

er
)

H
B

H
or

iz
on

ta
lB

la
nk

in
g

H
or

iz
on

ta
l_

B
la

nk
+

1
1

V
B

V
er

tic
al

B
la

nk
in

g
V

er
ti

ca
l_

B
la

nk
+

1
26

H
B

M
IN

M
in

im
um

20
8
×
(R

ow
_B

in
+

1)
+

64
+
(W

D
C
/2

)
50

0
H

or
iz

on
ta

lB
la

nk
in

g

V
B

M
IN

M
in

im
um

m
ax
(8
,S

W
−

H
)
+

1
10

25
V

er
tic

al
B

la
nk

in
g

tP
IX

C
L

K
Pi

xe
lC

lo
ck

1/
fP

IX
C

LK
20

ns

	Table of contents
	List of figures
	List of tables
	1 Motivation
	1.1 Problem statement
	1.2 Hypothesis
	1.3 Objective
	1.4 Methodology
	1.5 Structure of the dissertation

	2 FPGA technology for autonomous cars
	2.1 Overview of autonomous cars
	2.2 History of autonomous cars
	2.3 Vision-based applications on autonomous cars
	2.3.1 Image sensors
	2.3.2 Evaluation metrics
	2.3.3 Applications
	2.3.4 Depth sensing
	2.3.5 Semantic segmentation
	2.3.6 Object detection
	2.3.7 Lane detection
	2.3.8 Traffic signs recognition
	2.3.9 Traffic lights recognition
	2.3.10 Obstacle detection

	2.4 Hardware platforms for autonomous cars
	2.5 FPGA technology
	2.5.1 Design methodologies

	2.6 FPGAs for vision-based algorithms
	2.6.1 FPGA common techniques

	3 Pedestrian detection on autonomous cars
	3.1 Pedestrian detection
	3.2 Evaluation methodology
	3.3 State of the Art
	3.4 HOG/SVM Pedestrian Detection
	3.4.1 Gamma normalization
	3.4.2 Gradient computation
	3.4.3 Orientation bin voting
	3.4.4 Block Normalization
	3.4.5 Support Vector Machine

	3.5 Summary

	4 HOG/SVM pedestrian detection implementation
	4.1 System architecture
	4.2 HOG extractor pipeline design
	4.2.1 The pipeline design

	4.3 SVM Classifier pipeline design
	4.4 Results
	4.4.1 Accuracy
	4.4.2 Latency
	4.4.3 Throughput
	4.4.4 Comparison with existing implementations

	4.5 Summary

	5 HOG/SVM pedestrian detection implementation using OpenCL
	5.1 OpenCL programming model
	5.1.1 Optimization techniques

	5.2 OpenCL implementation
	5.3 Results and comparison
	5.3.1 Comparison with multicore CPU
	5.3.2 Comparison between FPGA platforms
	5.3.3 FPGA-based pedestrian detection comparison
	5.3.4 Comparison with other OpenCL-based design

	5.4 Summary

	6 Conclusions and Future Directions
	6.1 Conclusions
	6.2 Future directions

	References
	Appendix A Calculate the FPS of output images from the sensor
	A.1 Camera settings
	A.2 Frame rate calculation

	Títol de la tesi: Reconfigurable HOG/SVMImplementations for PedestrianDetection
	Nom autor/a: QUANG-VINH NGO

