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1. SUMMARY 

1.1 Abstract 

Background 

Decision analysis models are mathematical frameworks representing variables and their 

interrelationships, to describe observed phenomena or predicting events. Models may 

improve decision making, by projecting interventions to life-time horizon or predicting the 

effect of alternative ways of delivering an intervention. Although there are a few relevant 

examples of incorporating models in clinical practice guidelines (CPGs), the methods are still 

underdeveloped in areas, such as the assessment of the certainty of evidence or how to 

integrate this type of evidence within the CPG development process.  

Objectives 

To develop methods for incorporating models into CPG development. The design of each 

study addresses different relevant aspects such as: 1) the integration of empirical and 

modelling evidence to inform the effectiveness of a public health intervention, 2) the use of a 

model in a guideline panel to assist the recommendation formulation process, 3) the 

development of guidance to assess the certainty of evidence of models within the context of 

systematic reviews and CPG.  

Methods  

The thesis contains three studies with different methodological designs:  

1) A systematic review of effects: We searched PubMed, EMBASE, and the Cochrane Library 

to identify RCTs, observational or modelling studies, comparing desirable (i.e. deaths 

averted) and undesirable (i.e. overdiagnosis) effects from annual, biennial, or triennial 

breast cancer (BC) mammography screening. We assessed the certainty of the evidence 

adapting the GRADE approach. 

2) A systematic review of effects and use of a model by a guideline panel: we search for RCTs 

or cohort studies to assess the value of multigene tests to assist adjuvant chemotherapy 

decisions in early BC. Then, we develop a decision tree model to estimate the downstream 

consequences of testing patients with multigene tests. A multidisciplinary guideline panel 

developed recommendations informed by the model estimations.  
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iii) Development of a GRADE guidance: a workshop with experts from different fields who 

participated in specific tasks and in a large group discussion session to inform the 

development of an approach to assess the certainty of evidence.  

Results 

The first study identified one RCT, 11 modelling and 13 observational studies. The balance of 

effects probably favours biennial screening in women 50–69. In younger women, annual 

screening may have a less favourable balance, in women aged 70–74 years longer screening 

intervals may be more favourable. The overall certainty of the evidence was very low. We 

included models to complement the gaps in the empirical evidence and presented this work 

on the workshop during the third study of this thesis. 

The second study included five studies for two types of multigene tests (four RCTs and one 

pooled analysis of observational studies). We showed that modelling on different treatment 

scenarios the number of chemotherapies avoided by using the 21-RS test would be from 

more than 600 to about 200, while using the 70-GS test would result in an avoidance of 

chemotherapy in about 230 women out of 1,000. The guideline panel issued 

recommendations using this evidence. 

In the third study, participants agreed that the GRADE approach to assess the certainty of 

evidence also applies when assessing the certainty of evidence from models. Guidance to 

use the GRADE approach to modelling evidence was developed, along with a framework to 

consider this type of evidence over the CPG development process. 

Conclusion 

This thesis provides new knowledge on how to incorporate evidence from models in health 

decision-making, including real examples, a framework, and guidance on how to assess the 

certainty of evidence of this type of evidence. Future areas of research include the 

developing of more detailed methods for assessing specific GRADE domains, and improve 

the presentation formats to adequality display modelling evidence research.  

 

  

  



Incorporating decision analysis models in the development of health recommendations 

 

8 

 

1.2 Resumen 

Introducción 

Los modelos de análisis de decisión son marcos matemáticos que representan variables y 

sus interrelaciones para describir fenómenos observados o predecir eventos. Los modelos 

pueden mejorar la toma de decisiones proyectando una intervención a un horizonte de 

tiempo de vida o prediciendo el efecto de formas alternativas de brindar una intervención. 

Aunque hay algunos ejemplos en la literatura sobre la incorporación de modelos en guías de 

práctica clínicas (GPC), los métodos están aún poco desarrollados en áreas como la 

evaluación de la certeza de evidencia o cómo integrarlos en el desarrollo de GPC. 

Objetivos 

Desarrollar métodos para incorporar modelos en el desarrollo de GPC. El diseño de cada 

estudio aborda diferentes aspectos: 1) integrar evidencia empírica y de modelos para 

informar la efectividad de una intervención de salud pública, 2) el uso de un modelo en un 

panel de GPC durante el proceso de formulación de recomendaciones, 3) desarrollar una 

guía para evaluar la certeza de evidencia de modelos en el contexto de revisiones 

sistemáticas o GPC.  

Métodos 

La tesis contiene tres estudios con diferentes diseños: 

1) Una revisión sistemática de efectividad: se buscó en PubMed, EMBASE y la Biblioteca 

Cochrane para identificar ECA, estudios observacionales o modelos, que compararan los 

efectos deseables (ej. muertes evitadas) e indeseables (ej. sobrediagnóstico) del cribado 

anual, bienal o trienal de cáncer de mama (CM) con mamografía. Evaluamos la certeza de la 

evidencia adaptando el sistema GRADE 

2) Una revisión sistemática de efectividad y uso de un modelo en un panel de guías: 

buscamos ECA o estudios de cohortes para evaluar pruebas multigénicas para informar las 

decisiones de quimioterapia adyuvante en el CM temprano. Desarrollamos un modelo de 

árbol de decisión para estimar las consecuencias de evaluar a pacientes con pruebas 

multigénicas. Un panel multidisciplinario formulo recomendaciones basadas en estimaciones 

del modelo. 

iii) Desarrollo de una guía GRADE: un taller con expertos de diferentes campos que 

participaron en tareas específicas y en una sesión general de discusión informo el desarrollo 

de una guía para evaluar la certeza de la evidencia. 
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Resultados 

El primer estudio identificó un ECA, 11 modelos y 13 estudios observacionales. El balance de 

efectos favorecería el cribado bienal en mujeres de 50-69 años. En mujeres más jóvenes, el 

cribado anual tendría un balance menos favorable, en mujeres de 70-74 años intervalos de 

cribado más largos sería más favorables. La certeza de la evidencia fue muy baja. Incluimos 

modelos para complementar los vacíos en la evidencia empírica y presentamos este trabajo 

en el taller del tercer estudio. 

El segundo estudio incluyó cinco estudios para dos tipos de pruebas multigénicas (cuatro 

ECA y un análisis de estudios observacionales). En el modelo con diferentes escenarios de 

tratamiento, la cantidad de quimioterapias evitadas con la prueba 21-RS seria de más de 600 

a aproximadamente 200, mientras con la prueba 70-GS se evitaría la quimioterapia en 

aproximadamente 230 mujeres por 1.000. El panel de la guía emitió recomendaciones 

usando esta evidencia. 

En el tercer estudio, los participantes consideraron que el enfoque GRADE para evaluar la 

certeza de la evidencia es aplicable a la evidencia de modelos. Se desarrolló una guía para 

usar el sistema GRADE en modelos, y un marco para considerar este tipo de evidencia 

durante el desarrollo de GPC. 

Conclusión 

Esta tesis proporciona nuevos conocimientos sobre cómo incorporar evidencia de modelos 

en la toma de decisiones en salud, incluidos ejemplos reales, un marco y una guía sobre 

cómo evaluar la certeza de este tipo de evidencia. Futuras áreas de investigación incluyen el 

desarrollo de métodos detallados para evaluar dominios específicos de GRADE y mejorar los 

formatos para presentar la evidencia proveniente de modelos.  
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1.3 Resumeixen 

Introducció 

Els models d'anàlisis de decisió són marcs matemàtics que representen variables i les seves 

interrelacions per a descriure fenòmens observats o predir esdeveniments. Els models 

poden millorar la presa de decisions projectant una intervenció a un horitzó de temps de 

vida o predient l'efecte de formes alternatives de brindar una intervenció. Encara que hi ha 

alguns exemples en la literatura sobre la incorporació de models en guies de pràctica 

clíniques (GPC), els mètodes estan encara poc desenvolupats en àrees com l'avaluació de la 

certesa d'evidència o com integrar-los en el desenvolupament de GPC. 

Objectius 

Desenvolupar mètodes per a incorporar models en el desenvolupament de GPC. El disseny 

de cada estudi aborda diferents aspectes: 1) integrar evidència empírica i de models per a 

informar l'efectivitat d'una intervenció de salut pública, 2) l'ús d'un model en un panell de 

GPC durant el procés de formulació de recomanacions, 3) desenvolupar una guia per a 

avaluar la certesa d'evidència de models en el context de revisions sistemàtiques o GPC. 

Mètodes 

La tesi conté tres estudis amb diferents dissenys: 

1) Una revisió sistemàtica d'efectivitat: es va buscar en PubMed, EMBASE i la Biblioteca 

Cochrane per a identificar ECA, estudis observacionals o models, que comparessin els 

efectes desitjables (ex. morts evitades) i indesitjables (ex. sobrediagnóstico) del garbellat 

anual, biennal o triennal de càncer de mama (CM) amb mamografia. Avaluem la certesa de 

l'evidència adaptant el sistema GRADE 

2) Una revisió sistemàtica d'efectivitat i ús d'un model en un panell de guies: busquem ECA o 

estudis de cohorts per a avaluar proves multigèniques per a informar les decisions de 

quimioteràpia adjuvant en el CM primerenc. Desenvolupem un model d'arbre de decisió per 

a estimar les conseqüències d'avaluar a pacients amb proves multigèniques. Un panell 

multidisciplinari formulo recomanacions basades en estimacions del model. 

iii) Desenvolupament d'una guia GRADE: un taller amb experts de diferents camps que van 

participar en tasques específiques i en una sessió general de discussió informo el 

desenvolupament d'una guia per a avaluar la certesa de l'evidència. 

Resultats 
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El primer estudi va identificar un ECA, 11 models i 13 estudis observacionals. El balanç 

d'efectes afavoriria el garbellat biennal en dones de 50-69 anys. En dones més joves, el 

garbellat anual tindria un balanç menys favorable, en dones de 70-74 anys intervals de 

garbellat més llargs seria més favorables. La certesa de l'evidència va ser molt baixa. Incloem 

models per a complementar els buits en l'evidència empírica i presentem aquest treball en 

el taller del tercer estudi. 

El segon estudi va incloure cinc estudis per a dos tipus de proves multigèniques (quatre ECA i 

una anàlisi d'estudis observacionals). En el model amb diferents escenaris de tractament, la 

quantitat de quimioteràpies evitades amb la prova 21-RS seriosa de més de 600 a 

aproximadament 200, mentre amb la prova 70-GS s'evitaria la quimioteràpia en 

aproximadament 230 dones per 1.000. El panell de la guia va emetre recomanacions usant 

aquesta evidència.  

En el tercer estudi, els participants van considerar que l'enfocament GRADE per a avaluar la 

certesa de l'evidència és aplicable a l'evidència de models. Es va desenvolupar una guia per a 

usar el sistema GRADE en models, i un marc per a considerar aquest tipus d'evidència durant 

el desenvolupament de GPC. 

Conclusió 

Aquesta tesi proporciona nous coneixements sobre com incorporar evidència de models en 

la presa de decisions en salut, inclosos exemples reals, un marc i una guia sobre com avaluar 

la certesa d'aquesta mena d'evidència. Futures àrees de recerca inclouen el 

desenvolupament de mètodes detallats per a avaluar dominis específics de GRADE i millorar 

els formats per a presentar l'evidència provinent de models. 
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2. INTRODUCTION 

Decision analytical models (aka. mathematical models) have been used in public health to 

assist decision making for a long time ago. First description dates back to 1760, when Daniel 

Bernoulli developed a model simulate smallpox transmission and the potential impact of 

control measures.1 Subsequently, in 1906, William Hamer developed a measles transmission 

model1 and two years later Ronald Ross presented a model of malaria transmission.2 

In recent years, the number of mathematical modelling publications has increased steeply, 

along with the complexity of clinical and public health interventions, and the needs for 

timely decisions by policy makers. Noteworthy, mathematical modelling studies are not 

restricted to infectious diseases field, they address a wide range of questions as exemplified 

by recent clinical guidelines in the field of cancer screening, issued by important 

international institutions.  

Below, I will describe the “state of the art” of clinical practice guidelines (CPG) and the use of 

decision analytical models (hereafter “models”) in the context of decision making and 

formulation of recommendations during CPG development; the role of modelling in 

economic evaluation is well recognized in guideline development, and will therefore not be 

covered throughout this work. 

2.1 Clinical Practice Guidelines 

The constant grow of health literature makes unfeasible for clinicians or healthcare policy 

makers to keep themselves updated. For example, the number of randomized controlled 

trials (RCT) published in MEDLINE grew from 5,000 during the period from 1978-19853 to 

around 45,000 registered RCTs only in the year 2021.4 In addition, the identified literature 

may have methodological limitations, or be not applicable to the target populations or 

setting of interest. Thus, clinicians may become increasingly overwhelmed by a vast volume 

of evidence of uncertain value, without the required skills to appraise credibility. 

Clinical Practice Guidelines (CPG) are statements intended to provide a systematic aid to 

clinicians, through the complex process of medical decisions.3 When rigorously developed, 

using a transparent process that combines scientific evidence, clinician experiential 

knowledge, and patient values, CPGs have the potential to improve healthcare decision 

making, and enhance healthcare quality and outcomes.5 

In 2011, the Institute of Medicine (IoM), now the National Academy of Medicine, defined 

clinical practice guidelines as, “statements that include recommendations intended to 
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optimize patient care that are informed by a systematic review of evidence and an 

assessment of the benefits and harms of alternative care options”.3 Following this definition, 

a trustworthy guideline should fulfil the following requirements: 

- Be based on a systematic review of the existing evidence;  

- Be developed by a knowledgeable, multidisciplinary panel of experts and 

representatives from key affected groups;  

- Consider important patient subgroups and patient preferences, as appropriate;  

- Be based on an explicit and transparent process that minimizes distortions, biases, and 

conflicts of interest;  

- Provide a clear explanation of the logical relationships between alternative care options 

and health outcomes, and provide ratings of both the quality of evidence and the 

strength of the recommendations; and  

- Be reconsidered and revised as appropriate when important new evidence warrants 

modifications of recommendations.3 

Since the publication of the IoM report, the number of associations dedicated to CPG 

initiatives have undergone a remarkable expansion globally. Initially, large guideline 

development organizations at a national level appeared, such as the National Institute for 

Health (NICE), the Scottish Intercollegiate Guidelines Network (SIGN) in the United Kingdom. 

Subsequently, several of those organizations agreed to create the Guidelines International 

Network (GIN), a worldwide scientific association, whose member (individuals or 

institutions) are involved in development or implementation of evidence-based guidelines. 

This network nowadays, comprises 115 organizations, representing about 47 countries from 

all continents.6 

Alongside the expansion of CPG dedicated organization, the methods for developing 

recommendations have also made relevant progress over time. In 2011, the Grading of 

Recommendation, Assessment, Development, and Evaluation (GRADE) working group 

described the GRADE approach, which proposed an structured system for rating quality 

(certainty) of evidence in systematic reviews and guidelines, and for grading the strength of 

recommendations in CPGs.7 Later in 2016, the GRADE Working Group, in the context of a 

European funded project called DECIDE (Developing and Evaluating Communication 

Strategies to Support Informed Decisions and Practice Based on Evidence) developed the 

Evidence to Decision (EtD) frameworks, to support the process of moving from evidence to 

recommendations. This process includes, considering aspects such as the magnitude of 
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desirable and undesirable effects, the balance of effects, values and preferences, use of 

resources, or equity.8, 9 The GRADE working group has also outlined the main stages in the 

process of developing CPG (Table 1).10 

Other approaches under development include, methods to use resources efficiently, such as 

adaptation and updating of CPG, building on existing guidelines or provide more local 

recommendations. Approaches like ADAPTE provide detailed guidance on how to modify 

guidelines produced in one setting for use in a different setting.11 The GRADE working group 

developed the “ADOLOPMENT” approach, combining advantages of adoption, adaptation, 

and de novo guideline development, building on the EtD framework to allow formulation of 

recommendations for a specific setting.12 The updating of CPGs in the context of emergence 

of new evidence has also made significant progress, noteworthy efforts are the 

development of tools like UpPriority, to prioritise clinical questions for updating13, and 

CheckUp, to evaluate the completeness of reporting in updated guidelines14 

Table 1. Steps to develop a clinical practice guideline 

• Establish the guideline panel 

• Define the scope of the guidelines 

• Prioritize the problems 

• Formulate the clinical questions 

• Value the relative importance of outcomes 

• Identify the existing evidence for every clinical question 

• Grade the quality of existing evidence for each outcome separately 

• Determine the overall quality of available evidence across outcomes 

• Decide on the balance between desirable and undesirable consequences 

• Decide on the strength of recommendation 

• Formulate the recommendation reflecting its strength 

Adapted from: Brozek et al. (2009)10 

 

The final aim of implementation of CPGs is to promote high-value interventions most 

relevant to practitioners, patients, and the society as a whole after consideration of the 

desirable and undesirable effects. However, in practice, findings from systematic reviews 

may not directly apply, being sparse or not available to the scenarios of interest due to 

factors such as the complexity of interventions or the horizon time.15 For example, cancer 

screening guideline panels may need to assess not only whether they should or not 

recommend screening, but also the age at which to start or stop screening, the intervals of 

testing, and the confirmation methods.16 Thus, evidence directly addressing these types of 

scenarios might be unfeasible or even unethical to produce. 
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Another example of complex scenarios for CPG development is, how to account for patients 

who have multiple medical conditions. Boyd et al, assessed the applicability of guidelines to 

a hypothetical 79 year old woman with five chronic conditions: osteoporosis, osteoarthritis, 

diabetes, hypertension, and chronic obstructive pulmonary disease, and noted that most did 

not discuss recommendations for management in patients with comorbidities.17 One 

strategy to cover complex scenarios is the incorporation of decision analysis models 

evidence (modelling evidence). This approach has been implemented during the COVID-19 

pandemic to develop timely evaluate non-pharmaceutical interventions, which underlines 

the need to develop methods for the incorporation of this type of evidence.18, 19  

2.2 Decision analysis models  

Researchers have used the term model to describe a variety of concepts, but most agree 

that given the complexity of healthcare, decision makers often rely on some sort of a 

modelling to answer health-related questions.20 Overall, models might vary in their structure 

and degree of complexity. A very simple model may be any calculation to estimate a single 

variable not directly measured. For example, the population impact of an intervention, 

estimated as the product of their relative effect (informed by a trial), multiplied by the 

baseline risk of the population of interest (informed by a cohort study).21 On the other end 

of the spectrum, we may find more complex models, such as system dynamics models, used 

to predict infectious disease transmission, which might require considerable computing.  

This thesis will focus on decision models defined as “mathematical framework representing 

variables and their interrelationships, to describe observed phenomena or predict future 

events”,22 excluding statistical models used to estimate the associations between measured 

variables and their outcomes (e.g., logistic regression models). Practically, all problems can 

be represented by any model, although some methods are preferable for particular 

scenarios; for example, a Markov model for chronic diseases over a lifetime horizon, or 

dynamic models to evaluate vaccine effectiveness.  

The modelling process should start by the problem and model conceptualization (Figure 1). 

Problem conceptualization includes consultation with experts to ensure that the model 

adequately addresses the decision problem and perspective of analysis, and reflects the 

strategies of interest, the target population, the time horizon and the relevant resources and 

health outcomes.23 The availability of data may constrain the model development, but 

should not limit the initial discussion of the problem, which must incorporate features of the 

disease and its outcomes for even though data may be poor or unavailable.23 In such the 
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latter scenarios, sensitivity analyses should be conducted on model parameters for which no 

data exists, to explore their influence on the results. 

Figure 1. Model and problem conceptualization* 

 
*Adapted from: Roberts et al (2012)23 

 

During model conceptualization, the components of the problem are represented using a 

particular analytic method. The conceptual representation will usually influence the decision 

of which type of modelling approach would best represent the phenomenon or decision 

problem, under consideration. The choice of a modelling approach is crucial since it can 

affect the validity of the results.23 Among the characteristics that should be taken into 

consideration, to decide which method is most appropriate are: whether it should represent 

individuals or groups, whether there will be interactions among individuals, the time 

horizon, whether time will be continuous or discrete, or if the events would occur more than 

once per individual.24  

The most common model types among the several techniques available are decision trees, 

state-transition models, discrete event simulation (DES), agent-based simulation, and 

dynamic transmission models.24, 25 Decision trees are useful for problems with short time 

horizons where estimation of outcomes is straightforward. State-transition models are 

useful for problems with longer time frames, or when probabilities vary over time.24 DES are 

useful for representing what happens to individuals, particularly when there are resource 

constraints or interactions among individuals.24 Dynamic transmission models are useful 

when interactions occurring between groups may have an impact on the results (Table 2).24  

 

 

 

1) conceptualization of both the problem and 
the model;  
2 to 4) represent modeling techniques (i.e. 
state transition model, discrete event and 
agent-based models, dynamic transmission 
models) 
5) parameter used as input for the model, and 
to calibrate the models 
6) transparency and validation of a model 
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Table 2. Types of modelling approaches  

Approaches Description Areas of application 

Decision tree 
Decision trees arrange events from left to right through 
three components in a chronological order: 
. A decision node which indicates competing alternatives 
. A chance node representing consequences of a given 
decision (mutually exclusive) 
. A terminal node, showing value of a branch 
Branches connect the nodes and represent the pathways 
through the tree  
The expected costs and/or effects associated with each 
strategy are estimated by weighted averaging of the 
values of all branches emanating from a decision node 

Decision trees are 
easy to interpret, if the 
number of branches is 
kept low 
 
A common usage is 
when the disease is 
acute and events are 
not recurrent 

Markov cohort 
model 

Markov cohort models simulates the movement of 
patients through health states over time according to 
specific transition probabilities 
The basic Markov cohort model relies on the Markovian 
assumption that transition probabilities depend only on 
the current state and not on any previous health states 
Typically, the entire cohort will enter the model at the 
same time, although it can be distributed among various 
states  
Costs and health outcomes are determined by health 
states, and overall costs and QALYs are estimated by 
adding the cycle sums over the time horizon 

Markov models 
provide a more 
manageable 
representation if the 
time horizon is long or 
if events recur  
 

 

Markov 

microsimulation 

Markov microsimulation simulates individual patients 
over time. This approach is capable of storing the history 
of each individual patient over the course of the model, 
thus transition rates may be conditional on previous and 
existing risk factors or events  
Transitions occur only once per cycle, similar to the 
Markov cohort model 
Following the simulation, each patient has their own 
respective costs and outcomes. Overall costs and QALYs 
can then be calculated as the average from a large 
number of simulated patients 

Markov 
microsimulations 
model are preferred 
when the 
representation 
of all aspects of the 
decision problem 
would lead to an 
unmanageable number 
of health states  

Discrete event 
simulation 

 

Discrete event simulation describes the progression of 
entities (individuals), rather than a fixed time, time is 
continuous with patient progression sampled according to 
parametric or empirical time-to-event distributions.  
Individuals may either be simulated one-by-one or 
simultaneously  
Consequences, such as costs and effects, can be 
attributed to anything that is sensible, such as events, 
time with a particular condition or simply having a 
particular patient attribute within the model  
 

Discrete event 
simulation has greater 
flexibility due to 
incorporating time a as 
continuous instead of 
fixed intervals. it is 
useful for settings of 
constrained resources 
(e.g., number of 
hospital beds) 
or process-driven 
situations (e.g., 
waitlists)  
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System 

dynamics 

System dynamics describes a system through feedback 
loops and flows. The causal loop diagram provides a 
qualitative visualization of a system. Its basic building 
block is the feedback 
loop, describing movement (i.e., flow) from one pool 
eventually returning in some form to its origin.  
Movement between stocks is defined by the rate of flow, 
dictated by differential equation, and time changes 
continuously 
Costs and outcomes may be linked to the time spent in a 
particular stock or by the flow between stocks 

Application on 
infectious diseases 
where differential 
equations are taken 
from mathematical 
models of infectious 
disease epidemiology 

 

Compartmental 

models 

The population is divided into various compartments, 
representing their average state. Individuals within a 
single compartment are considered homogeneous. Most 
commonly, it contains compartments of the population 
whom are at different stages of the illness 

Models the 
transmission and 
epidemiology of 
infectious disease (e.g., 
susceptible-infectious- 
recovered) 

Adapted from: Tsoi et al. (2015)25 

The development of a decision model requires the synthesis all of the relevant literature 

that pertains to the question, and that is included in the structure of the model, including 

parameters for the natural history of (or risk of) a disease, effectiveness and risks of 

alternative interventions, and health-related quality of life.20, 23 Thus, modelling 

development often relies on much of the same information typically provided by systematic 

reviews, but it usually needs to be supplemented by clinically reasonable assumptions, 

where data may be limited or non-existent.20 

Decision models are an important tool for assessing complex public health or clinical 

policies, and may improve the quality of health care decision making. Authors have 

identified areas where models can be specially relevant, such as: i) projecting out beyond 

the observed time horizon of an interventions, ii) extrapolate the effects to population 

subgroups not addressed in the available research evidence, iii) incorporate data from 

multiple sources, iv) evaluate relevant comparators that have not been assessed in empirical 

studies, and v) extrapolate intermediate outcome measures (e.g., disease free survival) to 

long-term or patient-centred outcomes (i.e. quality-adjusted life) (Table 3).15, 16, 20  
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Table 3. Potential application of models 

Scenarios Examples of modelling studies 

The long-term effectiveness of an 
intervention is unclear 

Life time effect on decompensated cirrhosis of obeticholic 
acid (a selective farnesoid X receptor agonist) as second 
line treatment in primary biliary cholangitis26 

The outcomes of an intervention in 
routine care settings are unclear 

Outcomes of medical management of asymptomatic 
patients with carotid artery stenosis typically excluded 
from clinical trials27  

The comparative effectiveness of 
different interventions overall or in 
subgroups of patients is unclear 

Comparative effectiveness of different statins and statin 
doses in patient groups with varying baseline 
cardiovascular risk28 

The overall effect of an intervention 
at the population level, including 
direct and indirect effects is 
unknown 

Effects of different vaccination strategies with serogroup C 
meningococcal conjugate vaccines on meningococcal 
carriage and disease29 

Adapted from: Egger et al. (2018)30  

As a summary, models, when developed in a transparent and rigorous way, may provide a 

systematic and explicit way to examine a decision process when there are limitations in the 

evidence or when there are multiple sources of evidence that require synthesis. Previous 

publications and task forces have described and provided guidance on good practice during 

modelling development, to ensure it is done appropriately including domains such as: 

structure, disease states, or cycle length (Table 4).24, 31  

Table 4. Minimal criteria for a high-quality decision model 

Dimensions of Quality Attributes of “Good Practice” 

Structure Model structure should be consistent with the decision problem. 
The structure should be dictated by theory of disease, and not by data 
availability 

Disease states Model should reflect the time dependence of the disease process. 
States should reflect the underlying biological process of the disease and the 
impact of intervention. 
The number of states should be manageable, reflect all important aspects of 
disease, and not be omitted on the basis of lack of data 

Options Options and strategies should not be limited by constraints of currently accepted 
clinical practice 
A balance is needed between full range of options and keeping decision problem 
manageable 

Time horizon The time horizon should be sufficient to capture all important health outcomes. 
Lifetime time horizons will be appropriate for many models; shorter time 
horizons can be justified according to the disease process and effect of 
interventions 

Cycle length (if 
relevant) 

The length of a cycle should be the minimum interval over which pathology 
and/or symptoms in patients is expected to alter 
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Data identification  “Best available” data should be referred to as “optimal available” data as it is an 
empirical question whether acquiring all existing evidence is a good use of 
resources 
Models can be used to undertake formal value of information analysis to 
determine the optimal data to incorporate. 
Analyst should make clear all low-cost sources have been searched for the 
appropriate parameter values 
Methods used for parameter identification when no data are identified should 
be fully detailed 

Data incorporation The process of data incorporation should follow accepted methods of 
epidemiology and statistics 
Different sources of uncertainty should be distinguished (uncertainty, 
heterogeneity, first- and second-order uncertainty). 
Interval rates should be translated into transition probabilities using appropriate 
formula 
Models should use half-cycle correction 

Internal consistency The model should be checked and tested by the analyst (debugging) 

External consistency If possible, the model outputs should be compared to the results from relevant 
primary research studies (not used to inform model inputs) 

Adapted from Sculpher et al. (2000)31 

2.3 Decision models and synthesis of evidence  

The use of decision models for has increased over time in the medical literature. Petitti et al 

reported from MEDLINE search an increase, from approximately 20 decision models’ studies 

published in 1980, to approximately 250 in 1997.32 Another overview between 2005 and 

2009 identified 1,773 articles, published between 2005 to 2009 that included the use of a 

decision model to assess clinical outcomes, comparing two or more strategies; 70% of them 

were related to treatment (pharmaceutical of procedures), 12% related to prevention and 

evaluation of vaccines, and 18% assessed either screening or diagnostic interventions.20  

Regarding systematic reviews and health technology assessment reports. In 2009, the 

Agency for Healthcare Research and Quality (AHRQ) have published 11 reports (from a total 

of 193) that used models to support their conclusions, most of them modelled diagnostic 

tests or screening strategies along with subsequent treatments.33 Luhnen et al, searched 

systematic reviews of complete health economic evaluations, published between 2015 to 

2017 in Medline and other economic databases, identifying 202 reviews; among them 181 

included trial and model base evaluations, while 10 reviews included only model base 

evaluation.34  

To evaluate the “state of the art” of systematic reviews (SRs) including modelling evidence, 

we conducted an overview of SRs (non-published data).35 We identified reviews that 

included only modelling studies (i.e. the reviews excluded empirical studies), to inform 
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either the effectiveness or cost-effectiveness of any type of interventions (i.e. 

pharmacological, screening), published between 2018 to 2021. We identified 17 reviews, the 

majority from US and Europe; 35% of reviews addressed screening or prevention 

intervention, and 29% were related to cancer diseases (Table 5).35  

The introduction of models in the field of CPG has been relatively slowly, although some 

relevant examples are described in the literature. For example, Egger et al reviewed 185 

WHO guidelines approved from 2007 to 2015, 42 (23%) referred to modelling studies, but 

were rarely formally assessed as part of the body of evidence, and there was no description 

of quality criteria for this type of evidence.30 The U.S. Preventive Services Task Force 

(USPSTF) has informed their screening recommendations with model results, usually 

involving several models, such as two models for colorectal cancer screening, five for lung 

cancer screening, and six for breast cancer screening.16  Some of this examples are described 

below: 

- Colorectal Cancer (CRC) Screening: the USPSTF recommendations on CRC screening were 

informed by 2 models, to calculate the number of life-years gained (measure of 

benefits), and the number of diagnostic colonoscopies (measure of harms and resource 

use).36 CRC screening using faecal occult blood tests (FOBTs) reduces colorectal cancer 

deaths, but new FOBT tests such as Hemoccult SENSA and immunochemical tests are  

available. There are no clinical trials for these newer tests although estimates of their 

diagnostic performance have been published. The model evidence supported a 10-year 

screening interval for colonoscopy and a 1-year interval for high-sensitivity FOBTs.37  

- Tuberculosis (TB) prevention: the WHO guideline development group for TB infection 

control, assessed systematic reviews, which included mathematical modelling studies.38 

One modelling study, estimated the effects of several control measures on the spread of 

extensively drug resistant (XDR) TB in a community in South Africa (which are ethically 

unfeasible to assess through RCTs). Compared with natural ventilation, the mechanical 

ventilatory systems would reduce XDR‐TB cases by 12% (range 10%‐25%), the use of 

respiratory masks by health workers would prevent 2% of all TB cases, and two‐thirds of 

XDR cases in hospital staff.39 The guideline development group considered the evidence 

for the use of ventilation systems and particulate respirators as of low quality, but 

suggested that these interventions are favourable for TB infection control.38 



Table 5. Systematic reviews including only decision models from 2018 to 2021 (n=17) 

Author Year Country Disease Age population Type or interventation 
# Model 

type 
List of model type Time Horizon 

Castro 2018 Brasil Hepatitis C 
More and equal 

than 50 years 
Pharmacologic 3 

Markov, discrete event simulation, and Monte 
Carlo simulation model 

3 months to 
lifetime 

Leal 2018 UK Prediabetes NR Preventions  4 
Markov model, microsimulation, decision tree, 
and other 

3 years to 
lifetime 

Anothainsintawe
e 

2019 Thailand Rabies NR Preventions  3 
Decision tree model, dynamic transmission 
model, and simulation model 

1 to 12 years 

Chen 2019 China 
Cardiovascular 

disease 
NR Digital health  2 Markov model and decision tree 

0 years to 
lifetime 

Kibret 2019 Italy Prostate cancer NR External beam radiation  2 Markov and discrete event simulation 
10 years to 

lifetime 

Szilberhom 2019 Hungary Hepatitis C NR 
Direct acting antiviral 

agents 
6 

Markov model, deterministic sensitivity analysis, 
decision tree, individual sampling model, discrete 
individual simulation – discrete event simulation 
in discrete time, and discrete time individual 
event history model 

5 years to 
lifetime 

Abreha  2019 Italy Prostate cancer 
More and equal 

tan 65 years 
External beam radiation  2 

Markov model and discrete event simulation 
model 

10 years to 
lifetime 

Mendivil 2019 
Switzerla

nd  
Colorectal cancer  NR Screening 4 

State-transition modelling, microsimulation 
modelling, decision analytic model, and 
Archimedes model  

20 years to 
lifetime 

Jiang 2019 China 
Cardiovascular 

disease 
NR 

Treatment or 
management 

2 Markov model and decision tree 
90 days to 

lifetime 

Ran  2019 Germany Colorectal cancer 
More and equal 

tan 50 years 
Screening 2 Markov and microsimulation model 

20 years to 
lifetime 

Canakis 2020 USA Gastric cancer 
More than 30 

years 
Upper endoscopy 1 Markov model  

7 years to 
lifetime 

Henrique 2020 Brazil Schizophrenia NR 
Treatment or 
management  

4 
Markov model, decision tree, discrete event 
simulation, and Monte Carlo micro simulation  

NR 
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Kemmak 2020 Iran 
Venous 

Thromboembolis
m 

NR 
Treatment or 
management  

3 
Decision tree model, markov model, and decision 
analytical model 

3 months to 5 
years 

Yao  2020 China 
Inflammatory 
Bowel Disease 

NR 
Treatment or 
management  

3 
Markov model, discrete event model, and 
decision tree model 

1 to 10 years 

Trieu 2021 Australia Osteoarthitis 
More and equal 

tan 65 years 
Computer navigation 1 Markov model 

120 months to 20 
years 

Hodkinson  2021 Austalia 
Herpes zoster 

infection 
NR Preventions  1 Dynamic transmission model 

25 years to 
lifetime 

Khan 2021 Germany Breast cancer 
More and equal 

tan 40 years 
Screening  4 

Markov model, microsimulation, discrete event 
simulation model, and life table model 

40 years to 
lifetime 

From Canelo-Aybar et al (2022, unpublished data).35 NR: not reported 



 

- Cervical cancer screening: a WHO guideline for cervical cancer screening developed a 

model to inform their recommendations. The model estimated the proportions of TP, 

TN, FP and FN findings for each of the screening tests (VIA, HPV and cytology) based on 

the test-accuracy estimates and the pre-test probability of having cervical intraepithelial 

neoplasia.40 Then, they calculated the probability of developing any of the critical 

outcomes for decision-making based on the treatment they may receive and the 

estimates of efficacy and potential complications of the different treatments 

(cryotherapy, CKC and LEEP).40 Finally, they suggested to screen (test and treat) with an 

HPV strategy over cytology followed by colposcopy. 

As those examples’ underlines, findings from systematic reviews may not apply directly to 

the guideline development setting. Habbema et al based in the experience by the USPSTF 

described some scenarios where models can bridge the gap between empirical evidence and 

the guideline setting (Table 6).16 The WHO conducted a workshop with experts in the CPG 

and modelling field and proposing similar scenarios of how to use models appropriately: 1) 

in the absence of empirical data directly addressing the question of interest, for example in 

the context of public health programmes where RCTs are rarely available. 2) where 

immediate action is needed but little direct empirical evidence is available, for example in 

the Ebola, or Zika epidemics. 3) with a systematic and transparent approach to identifying 

existing models that may be relevant, and careful consideration of commissioning new 

models.30  

Table 6. Areas where models can bridge the gap between primary evidence and guideline 
development 

• Applying new information on disease risk, prognosis, medical technologies, and treatments to 
estimate changes in health outcomes. 

• Exploring the full array of alternative intervention strategies. 

• Assessing important benefits and harms over the lifetime of the population. 

• Making appropriate assumptions about attributes of the target population and health care 
setting for the guideline conditions. 

Adapted from Habbema et al. (2014)16  

 

2.4 The GRADE approach and certainty of modelling evidence 

The GRADE Working Group was established in the year 2000 and continues as a community 

striving to create systematic and transparent approach for assessing and communicating the 

certainty of the available evidence used in making recommendations in health care—related 
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disciplines.7 The GRADE Working Group now includes over 600 members from 40 countries. 

GRADE is widely used internationally by over 110 organizations to address topics related to 

clinical medicine, public health, coverage decisions, health policy, and environmental health, 

examples include the Cochrane Collaboration, the World Health Organization (WHO) and 

international societies such as the European Respiratory Society (ERS) or Infectious Disease 

Society of America (IDSA).21 

The GRADE approach offers a transparent and structured process for developing and 

presenting evidence summaries for systematic reviews and guidelines in health care and for 

carrying out the steps involved in developing recommendations (Figure 2).7, 10 Some of the 

steps the GRADE approach specifies includes: framing questions, choosing outcomes of 

interest and rating their importance, evaluating the certainty of evidence, and incorporating 

evidence on aspects such as the balance of effects, values and preferences, resource use tor 

equity when developing recommendations.9 To support guideline developers, the GRADE 

working group has also develop a check list to guide the overall development process.41 

 
Figure 2. Outlined of the process of reviewing the evidence and developing recommendations using 
the GRADE approach 

 

 
Adapted from: Schünemann et al. (2013)42 

 
The GRADE approach considers four levels for the certainty of evidence (Table 7) from very 

low to high, each of them have a different implication for our confidence on the estimates of 
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effect.43 The domains to evaluate and rating the certainty of evidence includes: the risk of 

bias, directness of evidence, precision of an estimate, consistency of estimates across 

studies, risk of bias related to selective reporting and factor to increase our confidence. 

Specific approaches to the concepts may differ depending on the nature of the body of 

evidence, but they usually follow the concepts described below: 

- Risk of bias: the certainty is lower in the estimated effect if the studies had inherent 

limitations in the design or conduct of the study.  

- Imprecision: the certainty would be lower if the clinical decision is likely to be different if 

the true effect was at the upper versus the lower end of the confidence interval. The 

certainty may be rated down if the effect estimate comes from only one or two small 

studies or if there are few events.  

- Inconsistency the certainty would be higher when several studies show consistent 

effects; when assessing whether or not rated down for inconsistency, reviewers should 

inspect the similarity of point estimates and the overlap of their confidence intervals.  

- Indirectness: the certainty would be higher when studies directly compare the 

interventions of interest in the population of interest, and report the outcome(s) critical 

for decision-making.  

- Publication bias: this domain requires making inferences about missing evidence, some 

statistical methods are helpful in detecting publication bias. Publication bias is typically 

more common with observational data and when most studies are funded by industry.  

- increases confidence in the evidence: in rare circumstances, certainty in the evidence 

can be rated up (Table 2) for example: i) when there is a very large magnitude of effect, 

ii) when there is a clear dose-response gradient, or iii) when residual confounding is 

likely to decrease rather than increase the magnitude of effect.  
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 Table 7. GRADE certainty of evidence levels and meaning 

 
 
Certainty Definition  

Very low We have very little confidence in the effect estimate: The true 
effect is likely to be substantially different from the estimate of 
effect 

Low Our confidence in the effect estimate is limited: The true effect 
may be substantially different from the estimate of the effect 

Moderate We are moderately confident in the effect estimate: The true 
effect is likely to be close to the estimate of the effect, but there 
is a possibility that it is substantially different 

High We are very confident that the true effect lies close to that of 
the estimate of the effect 

Adapted from: Balshem et al. (2011)43 

 

The strength of a recommendation reflects the extent to which a guideline panel is confident 

that desirable effects of an intervention outweigh undesirable effects (or vice versa) in the 

patients for whom the recommendation is intended. The GRADE approach defines two 

categories of the strength of a recommendation (strong and weak).8 A guideline panel would 

issue a strong recommendation if they are certain about the various factors that influence 

the strength of a recommendation such as a clear balance towards either the desirable (to 

recommend an action) or undesirable effects (to recommend against an action).7-9 

Otherwise, if a guideline panel is uncertain whether the balance of effects or the various 

factors that influence the strength of a recommendation (Table 8), a guideline panel would 

like to make a weak recommendation. 

Table 8. Criteria that contribute to the strength of a recommendation 

Factors 

Is the problem a priority? 

How substantial are the desirable anticipated effects? 

How substantial are the undesirable anticipated effects? 

What is the overall certainty of the evidence of effects? 

Is there important uncertainty about or variability in how much people value the main outcomes? 

Does the balance between desirable and undesirable effects favour the intervention or the 
comparison?  

How large are the resource requirements (costs)? 

What is the certainty of the evidence of resource requirements (costs)? 

Does the cost effectiveness of the intervention favour the intervention or the comparison? 
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What would be the impact on health equity?  

Is the intervention acceptable to key stakeholders?  

Is the intervention feasible to implement?  

Adapted from: Alonso-Coello et al. (2016)8, 9  

 
A major barrier for the incorporation of evidence from modelling studies into guidelines 

development is the perceived complexity of the methods to construct and analyse these 

studies, that there are no widely agreed approaches to the evaluation of the certainty of 

estimates from modelling studies, and their integration with primary data to inform 

guidelines recommendations.30 These statements are also reflected on our findings 

(unpublished data) on the quality of SRs including only modelling studies from 2018 to 2021, 

as only two reviews (12%) assessed the quality of studies with an appropriate tool (i.e. 

Philips44 or Jaime Caro tools45) while most reviews did not assess the quality or used 

inappropriate tools (Table 8) and none of them assessed or made statement about the 

certainty of evidences of the estimates.46  

Table 9. Characteristics of included systematic reviews (N=17) 

Characteristics N (%) 

Protocol registration   

No 13 (76.47) 

Yes 4 (23.53) 

Use of method review guidelines  

Not reported 13 (76.47) 

Cochrane guideline 1 (5.88) 

Other 3 (17.65) 

Use of reporting guideline  

No or it was done with an inappropriate tool 7 (41.18) 

PRISMA 8 (47.06) 

CHEERS 2 (11.76) 

Use of quality assessment method  

No or it was done with an inappropriate tool 15 (88.24) 

Yes, with an appropriate tool 2 (11.76) 

Use of certainty of evidence assessment  

No or it was done with an inappropriate tool 17 (100.00) 

Yes, with an appropriate tool 0 (0.00) 

Number of databases included 5.06  2.36 

Language restriction  

No 7 (41.18) 

Yes 10 (58.82) 

Duplicate screening  

No 13 (76.47) 

Yes 4 (23.53) 

Duplicate full-text selection  

No 13 (76.47) 
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Yes 4 (23.53) 

Disagreement  

Not reported 7 (41.18) 

Third reviser 6 (35.29) 

Consensus 4 (23.53) 

PRISMA flowchart  

No 5 (29.41) 

Yes 12 (70.59) 

Number of model studies included 18.29  15.32  

Type of data synthesis  

Quantitative 2 (5.88) 

Qualitative 16 (94.12) 

Number of types of models included 2.82  1.43  

From Canelo-Aybar et al (unpublished data)46 

 

International organization have also recognized the need for developing standard methods 

to incorporate modelling evidence to guidelines and in particular to assess the certainty of 

evidence.15, 16, 20, 30 The WHO after a workshop and survey to experts in the field, proposed 

that guidelines groups might include modelling studies as an additional study category, in 

addition to RCTs and observational studies currently defined in GRADE approach domains 

for rating the certainty of evidence should be tailored to modelling studies by adding or 

omitting questions and developing specific guidance (Table 10).30  

 

Table 10. WHO recommendation on how to adapt the GRADE approach to modelling evidence 

• The certainty of the evidence for modelling studies should be assessed and presented 
separately in summaries of the evidence (GRADE evidence profiles), and classified as high, 
moderate, low, or very low certainty. 

• GRADE dimensions of certainty (imprecision, indirectness, inconsistency and publication bias) 
and the criteria defined for their assessment are also relevant to modelling studies. 

• For modelling studies, the concept of the ‘credibility’ of the model, which takes the structure 
of the model, input data, dimensions of uncertainty, as well as transparency and validation 
into account, is more appropriate than ‘study limitations’ or ‘risk of bias’. 

• When summarizing the evidence, a distinction should be made between observed and 
modelled outcomes. 

Adapted from: Egger et al. (2018)30 

 

 

  



Incorporating decision analysis models in the development of health recommendations 

 

31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JUSTIFICATION 

  



Incorporating decision analysis models in the development of health recommendations 

 

32 

 

3. JUSTIFICATION 

Decision analysis models can be broadly defined as “mathematical framework representing 

variables and their interrelationships to describe observed phenomena or predict future 

events”.22 In general, models might vary in their structure and degree of complexity. For 

example, a simple model may be any calculation to estimate a single variable not directly 

measured, as when we are interested on the population impact of an intervention which are 

usually estimated as the product of their relative effect (informed by a trial), multiplied by the 

baseline risk of the population of interest (informed by a cohort study).21 

Decision models are important tools for assessing clinical policies and may improve the quality 

of health decision making.20 Some areas where models can be specially relevant includes: i) 

projecting out beyond the observed time horizon of an interventions, ii) extrapolate the 

effects to population subgroups not included within a study, iii) incorporate data from 

multiple sources, iv) evaluate relevant comparators that have not been assessed in empirical 

studies, v) extrapolate intermediate outcome measures (e.g., disease free survival) to long-

term or patient-centred outcomes (i.e. quality-adjusted life).16, 20, 30 

Although the relevance of modelling studies to bridge the gap between evidence and 

guideline settings,16 they are not routinely incorporated in CPG development. Egger et al 

reviewed 185 WHO guidelines approved from 2007 to 2015, 42 (23%) referred to modelling 

studies, but these studies were rarely formally assessed as part of the body of evidence and 

there was no description of quality criteria for this type of evidence.30 Thus, a major barrier 

for the incorporation of evidence from modelling studies into guidelines development is the 

perceived complexity of the methods to analyse these studies as there are no widely agreed 

approaches for evaluation of the certainty of estimates from modelling studies, and their 

integration with primary data to inform guidelines recommendations.30 

The GRADE approach offers a transparent and structured process for developing and 

presenting evidence summaries for systematic reviews and guidelines in health care and for 

carrying out the steps involved in developing recommendations.7, 10 Some of the steps the 

GRADE approach specifies includes: framing questions, choosing outcomes of interest and 

rating their importance, evaluating the certainty of evidence, and incorporating evidence 

with considerations of the balance of effects, values and preferences of patients and society 

or resource use to arrive at recommendations.10  

In general, the GRADE approach may be applicable irrespective of health discipline as It has 

been applied (with specific guidance and modifications) to rating the certainty of evidence 
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for management interventions, diagnostic tests,47, 48 prognosis studies,49 animal studies,50 

use of resources and cost-effectiveness evaluations,51 and values and preferences.52, 53 

Institutions like the WHO have underlined the urgent need for developing methodologies on 

how the results of modelling studies should be included in the process of developing 

recommendations, the evaluation of certainty of modelling estimates, and on their 

integration to inform guidelines and recommendations.30 
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4. OBJECTIVES 

General objectives 

To develop methods to improve the use of modelling evidence during the development of 

health care decision making. 

Specific objectives 

i) To provide insights in how to integrate empirical and modelling evidence to inform 

the effectiveness of a public health intervention in the context of clinical guideline 

development.  

ii) To describe how a model can be developed and used to complement the evidence 

from empirical studies and assist a guideline panel in the recommendation 

formulation process. 

iii) To provide guidance on how to assess the certainty of evidence of models estimates 

using the GRADE approach and describe a framework of how to incorporate the 

modelling evidence in the guideline development process. 
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5. METHODS 

This doctoral thesis is organized in the form of a compendium of publications. Therefore, the 

methods described are those corresponding to each of the studies carried out. The design of 

each study was determined in order to provide experiences in the incorporation of the results 

(evidence) from models for the formulation of health recommendations, as well as the 

development of methods for the evaluation of the certainty in the evidence of this type of 

studies.  

5.1 First study: Benefits and harms of annual, biennial, or triennial breast cancer 

mammography screening for women at average risk of breast cancer: a systematic review 

for the European Commission Initiative on Breast Cancer (ECIBC) 

Design  

A systematic review, integrating empirical studies (randomized clinical trials and 

observational studies) along with modelling studies to inform clinicals outcome from 

multiple strategies of population mammography screening for breast cancer (BC).  

This systematic review informed the recommendations about mammography screening 

intervals for women of average breast cancer risk54, 55  of the European Guidelines on Breast 

Cancer Screening and Diagnosis launched by European Commission Initiative on Breast 

Cancer (ECIBC) (the publication containing all recommendation available in the appendix 1) 

Structured question and outcome prioritization 

The Guideline Development Group, including multidisciplinary experts on BC screening, 

framed the clinical question as “Should an annual, biennial or triennial screening frequency 

be used for screening asymptomatic women?”. The review focused on the three age 

subgroups for which the European Guidelines previously issued recommendations for 

screening (45 to 49, 50 to 69, and 70 to 74 years old).  

Data sources and searches 

We searched MEDLINE (via PubMed), EMBASE (via Ovid) and CENTRAL (via The Cochrane 

Library) databases using pre-defined algorithms for individual studies up to April 2020.  

Study selection 

We included studies of the following designs:  

I. Randomized clinical trials (RCTs), 
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II. Observational studies such as cohorts, time trend (before-after), or analysis of 

population surveillance registries, and  

III. Decision analytic models including at least two screening intervals in one of the age 

groups of interest  

We excluded studies of women at high risk for BC, i.e. having known susceptibility gene 

mutations (BRCA1/BRCA2), a history of previous BC, exposure to chest irradiation or having a 

direct family member with breast cancer.  

Data extraction and risk of bias assessment 

We extracted the study´s details on design, patient population (simulated), setting, screening 

method, follow-up, mammography intervals and results. We assessed the risk of bias (or 

credibility for modelling studies) with the following tools:  

(I) Cochrane Risk of Bias Assessment tool for RCTs 56  

(II) The Risk of Bias in Non-randomised Studies of Intervention (ROBINS-I) for 

observational studies 57  

(III) The Questionnaire to Assess Relevance and Credibility of Modelling Studies (the 

ISPOR-AMCP-NPC Good Practice Task Force) for modelling studies45  

Data analysis 

We summarized the results narratively, and we did not attempt to conduct a meta-analysis 

for empirical studies because there were not enough studies across age groups to be 

meaningful or because several publications reported the same population data at 

overlapping time periods. 

Modelling studies reported the incremental number of events for each screening interval 

compared to a non-screening scenario. For some studies, we calculated the number of 

events by subtracting overlapping age groups (i.e. to obtain events in annual screening in 

women 45 to 49 years old, we subtracted the estimates in women 50 to 69 from the larger 

group of 45 to 69). Across the different studies, we presented the range of the absolute 

difference of events per each pairwise screening interval comparison.  

Certainty of the evidence 

We rated the certainty of the evidence, as high, moderate, low or very low, for each 

outcome based on the standard GRADE approach for RCTs and observational studies.58, 59  
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To apply the GRADE approach to modelling studies, we considered the certainty would 

depart from the lowest certainty of the bodies of evidence that informed the main inputs in 

the model. We used the credibility and relevance items from the ISPOR-AMCP-NPC tool to 

inform the judgments for the risk of bias and indirectness domains.45  

5.2 Second study: Recommendations from the European Commission Initiative on Breast 

Cancer for multigene testing to guide the use of adjuvant chemotherapy in patients with 

early breast cancer, hormone receptor positive, HER-2 negative 

Design 

A systematic review of the clinical impact of using of multigene tests to guide the decision to 

provide adjuvant chemotherapy on women with early breast cancer. After, we identified 

relevant gaps in the available evidence for relevant outcomes, the panel member of the 

Guideline Development Group decided to develop a decision-tree model to estimate the 

downstream consequences of the multigene test (also described in the publication).  

This systematic review and the decision tree model informed the discussion on the guideline 

panel for issuing the recommendations about multigene testing for women early breast 

cancer at diagnosis, 54, 55  from the European Guidelines on Breast Cancer Screening and 

Diagnosis launched by European Commission Initiative on Breast Cancer (ECIBC). 

Structured question and outcome prioritization  

The clinical question was framed as: “Should multigene tests be used in patients who have 

HoR-positive, HER-2 negative, lymph node-negative or up to 3 lymph nodes-positive invasive 

breast cancer to guide the use of adjuvant chemotherapy”.  

Data sources and searches  

We searched MEDLINE (via PubMed), EMBASE (via Ovid) and CENTRAL (via The Cochrane 

Library) databases using pre-defined algorithms for individual studies up to April 2020 up to 

October 2018.  

Study selection  

We included studies of the following designs:  

(I) Randomized controlled trials (RCT) and, 

(II)  cohort studies (including pooled analyses of studies), either from prospective or 

retrospective analysis, of stored specimen samples  
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Studies must have applied any of the four tests as predictive markers for guiding the use of 

adjuvant chemotherapy (Supplementary Fig. 1). A predictive marker identifies the 

differential benefit of a treatment based on the marker status. Thus, we included the 

following assessment approaches: a) Marker-based strategy design: patients are assigned to 

a treatment arm depending on whether they received treatment, b) Treatment interaction 

design: patients are divided into groups based on the marker status (i.e. high and low 

marker status), the predictive value is assessed by observing the relative efficacy of 

treatment differences between marker status and treatment assignments. 

Data extraction and risk of bias assessment  

Two reviewers independently assessed risk of bias and extracted the following information: 

study design, inclusion and exclusion criteria, number of patients, age, participants’ 

characteristics and prioritized outcomes. 

The risk of bias of the included RCTs was assessed using the Cochrane Risk of Bias tool for 

randomized trials.56 Cohort studies were assessed with the “Risk Of Bias In Non-randomized 

Studies - of Interventions-I” (ROBINS-I) tool.57  

Data analysis  

Descriptive statistics were used to summarize the characteristics of the included patients 

across studies. The effect measures for prioritized outcomes and their corresponding 95% 

confidence intervals (CIs) were reported as presented in individual studies. 

Development of a de novo model 

We develop a deterministic decision tree model to estimate the downstream consequences 

of testing patients with the multigene tests versus different scenarios of usual care. The 

model complemented the empirical evidence for only the two multigene tests for which 

predictive evidence was identified. We provided different scenarios (as sensitivity analysis), 

and did not include discounting to the clinical effects. 

Certainty of the evidence  

The certainty of evidence per outcome and overall certainty was rated using the GRADE 

approach. For each recommendation, the GDG received a Summary of Findings (SoF) table 

and a first draft of an evidence to decision framework (EtD).9 We did not assess the certainty 

from the model developed for the panel meeting.  

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076250/#MOESM1
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5.3 Third study: GRADE Guidelines 30: the GRADE approach to assessing the certainty of 

modeled evidence—An overview in the context of health decision-making 

Design 

Development of a methodological guideline based on an iterative consultation process to 

expert in multiple fields related to modelling evidence (decision analysis models as well as 

other types of mathematical models like toxicology or environmental models).  

Development process 

On May 15 and 16, 2017, the GRADE modelling project group lead a workshop in Hamilton, 

Ontario, Canada, to develop common principles for the application of the GRADE 

assessment of certainty of evidence to modelled outputs. The National Toxicology Program 

of the Department of Health and Human Services in the United States of America and the 

MacGRADE Center in the Department of Health Research Methods, Evidence, and Impact at 

McMaster University sponsored the workshop which was co-organized by MacGRADE 

Center and ICF International. 

Workshop participants were selected to ensure a broad representation of all modelling 

related fields. Participants had expertise in modelling in the context of clinical practice 

guidelines, public health, environmental health, dose—response modelling, physiologically 

based pharmacokinetic (PBPK) modelling, environmental chemistry, physical/chemical 

property prediction, evidence integration, infectious disease, computational toxicology, 

exposure modelling, prognostic modelling, diagnostic modelling, cost-effectiveness 

modelling, biostatistics, and health ethics. 

Participants addressed specific tasks in small groups and large group discussion sessions and 

agreed on key principles both during the workshop and through written documents. In 

summary, the workshop participants suggested an approach to incorporate model outputs 

in health-related decision-making and the principles to assess the certainty of evidence for 

modelling evidence.  
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6. RESULTS 

The results for this thesis are those corresponding to each study published on peer-reviews 

journal of high impact. In brief, our findings are organized in the following thematic 

sequence.  

First study.  

• Reference: Canelo-Aybar C, Posso M, Montero N, Solà I, Saz-Parkinson Z, Duffy SW, 

Follmann M, Gräwingholt A, Giorgi Rossi P, Alonso-Coello P. Benefits and harms of 

annual, biennial, or triennial breast cancer mammography screening for women at 

average risk of breast cancer: a systematic review for the European Commission Initiative 

on Breast Cancer (ECIBC). Br J Cancer. 2022 Mar;126(4):673-688 

• Author position: First author and co-corresponding  

• Journal: British Journal of Cancer 

• Scimago Journal Ranking: Q1 

• 5-year impact factor: 7.57 

Second study 

• Reference: Giorgi Rossi P*, Lebeau A*, Canelo-Aybar C, Saz-Parkinson Z, Quinn C, 

Langendam M, Mcgarrigle H, Warman S, Rigau D, Alonso-Coello P, Broeders M, 

Graewingholt A, Posso M, Duffy S, Schünemann HJ; ECIBC Contributor Group. 

Recommendations from the European Commission Initiative on Breast Cancer for 

multigene testing to guide the use of adjuvant chemotherapy in patients with early 

breast cancer, hormone receptor positive, HER-2 negative. Br J Cancer. 2021 

Apr;124(9):1503-1512. *Co-first author 

• Author position: Second author  

• Journal: British Journal of Cancer 

• Scimago Journal Ranking: Q1 

• 5-year impact factor: 7.57 

Third Study.  

• Reference: Brozek JL*, Canelo-Aybar C*, Akl EA, Bowen JM, Bucher J, Chiu WA, Cronin 

M, Djulbegovic B, Falavigna M, Guyatt GH, Gordon AA, Hilton Boon M, Hutubessy RCW, 

Joore MA, Katikireddi V, LaKind J, Langendam M, Manja V, Magnuson K, Mathioudakis 

AG, Meerpohl J, Mertz D, Mezencev R, Morgan R, Morgano GP, Mustafa R, O'Flaherty M, 

Patlewicz G, Riva JJ, Posso M, Rooney A, Schlosser PM, Schwartz L, Shemilt I, Tarride JE, 
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Thayer KA, Tsaioun K, Vale L, Wambaugh J, Wignall J, Williams A, Xie F, Zhang Y, 

Schünemann HJ; GRADE Working Group. GRADE Guidelines 30: the GRADE approach to 

assessing the certainty of modeled evidence-An overview in the context of 

health decision-making. J Clin Epidemiol. 2021 Jan;129:138-150. *Co-first author 

• Author position: First author  

• Journal: Journal of Clinical Epidemiology 

• Scimago Journal Ranking: Q1 

• 5-year impact factor: 7.30 
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6.1 First study: Benefits and harms of annual, biennial, or triennial breast cancer 

mammography screening for women at average risk of breast cancer: a systematic review 

for the European Commission Initiative on Breast Cancer (ECIBC)46 

We included evidence from 25 studies (27 publications) comprising one RCT,60, 61 13 

observational studies62-75 and 11 modelling studies.76-86 Our finding suggested that in women 

of average BC risk, screening intervals may have different trade-offs between benefits and 

harms across age group. For example, among women 50 to 69 years old, compared to 

biennial screening, annual screening may have additional benefits which should be balanced 

against an important increase in false-positive results; whereas among women aged 70 to 74 

longer screening intervals (i.e. triennial) probably obtain a more favourable overall balance 

of benefits and harms than in other age groups.  

Studies´ characteristics 

We identified only one RCT conducted between 1989 and 1996 in the United Kingdom which 

randomly allocated 99,389 women aged 50 to 62 to either annual or triennial screening.61 

From the 11 observational studies, nine studies performed a secondary analysis from 

surveillance mammography registries which were linked to the Surveillance, Epidemiology, 

and End Results (SEER) pathology registries;62, 64, 66, 68, 70, 71, 73 one quasi-experimental study 

included women aged 40-49 invited for mammography screening every year or every 3 

years;72 one study compared two time periods, before and after a change from annual to 

biennial mammography for women aged 50 to 79;63 and two studies included women from 

screening programs provided through medical centres from the US.  

Six of studies implemented microsimulation models developed within the Cancer 

Intervention and Surveillance Modelling Network (CISNET) collaboration varying in the 

structures and assumptions.87  (Model D: Dana-Farbe,88 Model E: Erasmus,89 Model GE: 

Georgetown-Einstein,90 Model M: MD Anderson,91 Model S: Stanford,92 and Model W: 

Wisconsin-Harvard).93 The remaining four modelling studies implemented non-individual 

models. One transition model evaluated annual versus biennial screening intervals in 

Japan.80 One Markov model assessed breast cancer deaths averted and overdiagnosis due to 

screening for women in the United Kingdom,77 and another study applied the model 

developed by Preston to estimate radiation related events82. We obtained non-publicly 

available data of a transition modelling study simulating an Spanish cohort of women.84, 94 

Benefits and harms in women aged 45 to 49  

Observational studies 
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Evidence was available only for women 40 to 49 years. One study suggested an increase in 

the risk of BC mortality in annual versus triennial screening (RR 1.14; 95%CI 0.59 to 2.19)72 

while the odds of advanced BC stage (IIB-IV) at diagnosis may be higher in women exposed 

to biennial screening compared to annual screening (OR 1.17; 95%CI 0.93 to 1.46) 70 The 10-

year probability of false positive biopsy recommendation was 11.4% (95%CI 10.5%-12.4%) 

with annual screening, 5.9% (95%CI 5.6%-6.2%) with biennial screening, and 3.9% (95%CI 

3.7%-4.1%) with triennial screening.71 

Modelling studies 

One study implementing six models, estimated a median of 30 more deaths averted and 480 

additional QALYs per 100,000 women undergoing annual screening compared to biennial 

screening in the US population;76 overdiagnosis was higher with annual screening compared 

to biennial screening.76 Another modelling study assessed the risk of radiation induced 

adverse events, estimating 14 more induced BC and 2 more deaths per 100,000 women with 

annual screening compared to biennial screening.78  

Benefits and harms in women aged 50 to 69  

Randomized Clinical Trials 

In the UKCCR study, over a median of 162 months of follow-up, annual screening may 

decrease the risk of BC mortality compared to triennial screening (RR = 0.89, 95% CI 

0.73−1.07).60  

Observational Studies 

One study comparing the period before and after mammography screening changed from 

annual to biennial found there may be little to no difference in mortality (MR 1.06; 95%CI 

0.76, 1.46) or interval cancer (RR 0.98; 95%CI 0.90-1.06) between the two-time periods.63 

Miglioretti et al. found there may be no difference in the risk of advanced BC stage (IIB-IV) in 

the age groups 50-69 and 60-69 with annual versus biennial screening.70  

The 10-year probability of a false positive result was 55.2% (95%CI 54.8%-55.7%) with annual 

screening, 35.4% (95%CI 35.0%-35.7%) with biennial screening, and 24.8% (95%CI 24.5%-

25.2%) with triennial screening.71 The cumulative 10-year probability of having a false 

positive biopsy recommendation was 9.7% (95%CI 9.3%-10.1%) with annual screening, 5.4% 

(95%CI 5.2%-5.6%) with biennial screening, and 3.7% (95%CI 3.6%-3.9%) with triennial 

screening.71  

Modelling studies 
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One Canadian modelling study estimated that the BC deaths averted for annually, biennially 

or triennially screening compared to no screening would be 740, 520 and 400, respectively.83 

In another study, the number of BC deaths averted per 100,000 screened women with 

scattered fibroglandular breast density, was 690, 520 and 400 for annual, biennial and 

triennial screening79 and the number of QALYs gained was 6,000, 4,700 and 3,600, 

respectively.79 A microsimulation model for the German population found consistent result 

to the aforementioned studies.86 

The estimated overdiagnosis was greater with more frequent screening intervals, a 

microsimulation model study estimated 2,900, 2,000 and 1,600 for annual, biennial and 

triennial screening compared to no screening per 100,000 women.79 A microsimulation 

model estimated 27 radiation induced BC cases with biennial screening and 49 with annual 

screening.78 The attributed number of radiation related deaths was four with biennial 

screening and seven with annual screening.78  

Benefits and harms in women aged 70 to 74  

Observational studies 

Three studies provided data on advanced BC stage (IIB-IV) at diagnosis but for different age 

ranges (i.e. 66 to 89,62 70 to 8570 and 70 to 89 years73). For women 70 to 85 the odds of stage 

IIB-IV were no different among those exposed to biennial or annual screening (OR 0.98 

95%CI 0.76-1.27).70 The 10-year cumulative probability of false positive results for women 

between the ages of 75 to 89 may be higher with annual screening (47%, 95%CI 44.9% to 

49.5%) compared to biennial screening (26.6%, 95%CI 25.7% to 27.5%),62 a similar trend for 

false positive biopsy recommendations was reported.62 

Modelling studies 

The estimated difference for BC deaths between the different intervals might be small. A 

microsimulation model estimated the number of BC deaths averted for annual, biennial and 

triennial screening to be 100, 90 and 80, respectively, compared to no screening per 100,000 

screened Canadian women.83 Only one non-individual based model estimated overdiagnosis 

for this age group and it showed a small increasing trend with shorter screening intervals 

from 193 for triennial screening to 269 for annual screening.94 

Risk of bias and certainty of the evidence 

Our GRADE assessment for modelling studies departed from low certainty after considering 

some methodological limitations from the input evidence (i.e. indirectness due 
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mammography sensitivity estimated from BCSC registries including women from wider age 

groups than our clinical question95) and the credibility assessment of the development of the 

included models which was limited due to suboptimal reporting. We had concerns about 

indirectness given that most models used observational data from the US to inform their 

input parameters (i.e. radiation induced BC), and because in one modelling study, data was 

only available by levels of breast density (i.e. scattered fibro glandular density.79  
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6.2 Second study: Recommendations from the European Commission Initiative on Breast 

Cancer for multigene testing to guide the use of adjuvant chemotherapy in patients with 

early breast cancer, hormone receptor positive, HER-2 negative 96 

Systematic review of effectiveness  

We included two RCTs,97, 98 two secondary analyses from former clinical trials99, 100 and one 

pooled analysis of observational studies.101  

21 gene recurrence score 

-Treatment interaction design: One RCTs compared adding chemotherapy to endocrine 

therapy vs endocrine therapy alone showing a different effect across 21-RS recurrence 

groups with a hazard ratio (HR) of 1.31 (95% CI 0.46–3.78), 0.61 (95% CI 0.24–1.59) and 0.26 

(95% CI 0.13–0.53) in low, intermediate and high-risk groups respectively.100 Another RCT 

included stored tumour specimens, reporting adjusted by number of positive nodes no 

benefit for chemotherapy on disease free survival (DFS) in the low genomic risk group 

(HR = 1.02; 95% CI 0.54–1.93) and a potential advantage in the high genomic risk (HR = 0.59, 

95% CI 0.35–1.01).99 

-Marker-based strategy: One RCT allocated women with intermediate genomic risk (11 to 26 

risk score) to either endocrine therapy alone or chemotherapy plus endocrine therapy. They 

result suggested little to no difference in the risk of recurrence with chemotherapy plus 

endocrine therapy for invasive DFS (HR 1.14; 95% CI 0.99–1.31).98  

70-GS 

-Treatment interaction design: One pooled database analysis suggested patients with a low 

and high genomic risk who received chemotherapy may have a different risk of recurrence 

compared to endocrine therapy alone (HR 0.26; 95% CI 0.03–2.02 and HR 0.35; 95% CI 0.17–

0.71, respectively).101 

-Marker-based strategy One RCT allocated patients with clinical/genomic discordant-risk 

groups to receive either chemotherapy in addition to endocrine therapy or endocrine 

therapy alone. Women with high clinical risk and low genomic risk may have an increase of 

DFS (HR 0.64; 95% CI 0.43–0.95), and on distant metastases free survival (HR 0.65; 95% CI 

0.38–1.10) and of overall survival (OS) (HR 0.63; 95% CI 0.29–1.37). The group of low clinical 

risk and high genomic risk showed more imprecise effects and lower uncertainty for distant 

metastases free survival and OS.97  

Decision tree model  
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Depending on the different treatment scenarios (all women or only women with high clinical 

risk are treated with chemotherapy) and genetic testing strategies (all women or only 

women with high clinical risk are tested), the number of chemotherapies avoided by using 

the 21-RS would change from more than 600 to about 200 per 1000 women tested. Survival 

outcomes did not change substantially but may prevent 37 distant metastases compared to 

a scenario in which only women with high clinical risk were treated with chemotherapy 

depending on the assumption and inputs used. For the 70-GS, the only scenario considered 

was one in which only high-risk women would receive chemotherapy leading result to 

avoidance of about 230 chemotherapies per 1000 women but with small increase of 

recurrences. 

Systematic review of economic evidence  

We did not identify economic evaluations models applicable to the clinical question of 

interest. Therefore, we considered the benefits and harms estimated using our ad-hoc 

model described above, and unitary costs reported by the studies included in the literature 

review.  

Certainty of evidence  

The overall certainty of the evidence of effects was rated as low to very low due to 

indirectness and risk of bias. Economic evidence was not formally assessed as did not 

comply with the relevant assumption made by the guideline panel.  
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6.3 Third study: GRADE Guidelines 30: the GRADE approach to assessing the certainty of 
modeled evidence—An overview in the context of health decision-making21  
 

Researchers should start by conceptualizing the problem and the ideal target model that 

would best represent the actual phenomenon or decision problem they are considering. 23 

This conceptualization would either guide the development of a new model or serve as a 

reference against which existing models could be compared. The ideal target model should 

reflect the following: 1) the relevant population, 2) the exposures or health interventions 

being considered, 3) the outcomes of interest in that context, and 4) their relationships.23 

Conceptualizing the model will also reduce the risk of intentional or unintentional 

development of data-driven models, in which inputs and structure would be determined 

only by what is feasible to develop given the available data at hand. 

Outline of an approach to using model outputs for decision-making 

Workshop participant identified three options in which users may incorporate model 

outputs in health decision-making: 

1. Develop a model de novo designed specifically to answer the very question at hand. 

Workshop participants agreed that in an ideal situation, such an approach would almost 

always be the most appropriate. Following this approach, however, requires suitable skills, 

ample resources, and time being available.  

2. Search for an existing model describing the same or a very similar problem and use it “off-

the-shelf” or adapt it appropriately to answer the current question. In practice, many 

researchers initially use this approach because of the aforementioned limitations of 

developing a new model. However, it is often not possible to find an existing model that 

would be directly relevant to the problem at hand and/or it is not feasible to adapt an 

existing model when found. Any adaptation of a model requires availability of input data 

relevant for current problem, appropriate expertise and resources, and access to the original 

model. The latter is often not available or the structure of the original model is not being 

transparent enough to allow adaptation. 

3. Use the results from multiple existing models found in the literature. This approach may be 

useful when a limited knowledge about the phenomenon being modeled makes it 

impossible to decide which of the available models are more relevant, or when many 

alternative models are relevant but use different input parameters. In such situations, one 

may be compelled to rely on the results of several models because selection of the single, 
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seemingly “best” model may provide incorrect estimates of outputs and lead to incorrect 

decisions. 

If a systematic search revealed one or more models meeting the eligibility criteria, then 

researchers would assess the certainty of outputs from each model. Depending on this 

assessment, researchers may be able to use the results of a single most direct and lowest 

risk of bias model “off-the-shelf” or proceed to adapt that model. If researchers failed to find 

an existing model that would be sufficiently direct and low risk of bias, then they would 

ideally develop their own model de novo. 

Assessing the certainty of outputs  

When researchers develop their own model or when they identify a single model that is 

considered sufficiently direct to the problem at hand, they should assess the certainty of its 

outputs (i.e., evidence generated from that model). Note that if a model estimates multiple 

outputs, researchers need to assess the certainty of each output separately. Workshop 

participants agreed that all GRADE domains are applicable to assess the certainty of model 

outputs, but further work is needed to identify examples and develop specific criteria to be 

assessed. 

Risk of bias in a single model 

The risk of bias of model outputs is determined by the credibility of a model itself and the 

certainty of evidence for each of model inputs. 

The credibility of a model, also referred to as the quality of a model, is influenced by its 

conceptualization, structure, calibration, validation, and other factors. There are some 

discipline-specific guidelines or checklists developed for the assessment of credibility of a 

model and other factor affecting the certainty of model outputs. Workshop participants 

agreed that there is a need for comprehensive tools developed specifically to assess 

credibility of various types of models in different modelling disciplines. 

The certainty of evidence in each of the model inputs is another critical determinant of the 

risk of bias in a model. A model has several types of input data, when researchers develop a 

model de novo, to minimize the risk of bias, they need to specify those input parameters to 

which the model outputs are the most sensitive. Model inputs should reflect the entire body 

of relevant evidence satisfying clear prespecified criteria rather than an arbitrarily selected 

evidence that is based on convenience (“any available evidence”) or picked in any other non-

systematic way. 
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The appropriate approach will depend on the type of data and may require performing a 

systematic review of evidence on each important or crucial input variable.102, 103 Some inputs 

may have very narrow inclusion criteria, and therefore, evidence from single epidemiological 

survey or population surveillance may provide all relevant data for the population of interest 

(e.g., baseline population incidence or prevalence). 

The certainty of evidence for each input needs to be assessed following the established 

GRADE approach specific to that type of evidence (e.g., estimates of intervention effects or 

baseline risk of outcomes).7, 10, 104  

Indirectness in a single model 

By directness or relevance, we mean the extent to which model outputs directly represent 

the phenomenon being modeled. To evaluate the relevance of a model, one needs to 

compare it against the conceptual ideal target model. Determining the directness of model 

outputs includes assessing to what extent the modeled population, the assumed 

interventions and comparators, the time horizon, the analytic perspective, as well as the 

outcomes being modeled reflect those that are current interest.  

Assessing indirectness in a single model also requires evaluating two separate sources of 

indirectness: 

• Indirectness of input data with respect to the ideal target model’s inputs. 

• Indirectness of model outputs with respect to the decision problem at hand. 

This conceptual distinction is important because, one needs to address each type of 

indirectness separately. Even if the outputs might be direct to the problem of interest, the 

final assessment should consider if the inputs used were also direct for the target model. 

Inconsistency in a single model 

A single model may yield inconsistent outputs owing to unexplained variability in the results 

of individual studies informing the pooled estimates of input variables. For instance, when 

developing a health economic model, a systematic review may yield several credible, but 

discrepant, utility estimates in the population of interest. If there is no plausible explanation 

for that difference in utility estimates, outputs of a model based on those inputs may also be 

qualitatively inconsistent. Again, sensitivity analysis may help to make a judgment to what 

extent such inconsistency of model inputs would translate into a meaningful inconsistency in 

model outputs with respect to the decision problem at hand. 

Imprecision in a single model 



Incorporating decision analysis models in the development of health recommendations 

 

80 

 

Sensitivity analysis characterizes the response of model outputs to parameter variation and 

helps to determine the robustness of model’s qualitative conclusions.105 The overall 

certainty of model outputs may also be lower when estimated imprecisely. For quantitative 

outputs, one should examine not only the point estimate (e.g., average predicted event) but 

also the variability of that estimate (e.g., results of the probabilistic sensitivity analysis based 

in the distribution of the input parameters). It is essential that a report from a modelling 

study always includes information about output variability. Further guidance on how to 

assess imprecision in model outputs will need to take into account if the conclusions change 

in accordance with that specific parameter.  

Risk of publication bias in the context of a single model 

Risk of publication bias may not be relevant when assessing the certainty of outputs of a 

single model constructed de novo. However, when one intends to reuse an existing model 

but is aware or strongly suspects that similar models had been developed but are not 

available, then one may be inclined to think that their outputs might have systematically 

differed from the model that is available. In such a case, one may have lower confidence in 

the outputs of the identified model if there is no reasonable explanation for the inability to 

obtain those other models. 

Domains that increase the certainty of outputs from a single model 

Workshop participants agreed that presence of a dose—response gradient in model outputs 

may be applicable in some modelling disciplines (e.g., environmental health). Similarly, 

whether or not a large magnitude of an effect in model outputs increases the certainty of 

the evidence may depend on the modelling discipline. The effect of an opposite direction of 

plausible residual confounding seems theoretically also applicable in assessing the certainty 

of model outputs (i.e., a conservative model not incorporating input data parameter in favor 

of an intervention but still finding favorable outputs), but an actual example of this 

phenomenon in modelling studies is still under discussion. 
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7. DISCUSSION 

7.1 Main findings 

In this doctoral thesis, we provide new knowledge in the methods of developing CPGs 

recommendations when findings from systematic reviews of RCTs or observational studies 

may not apply directly to the guideline development setting. This may include the 

assessment of multiple ways to deliver an intervention (i.e. age to start or stop screening), 

projecting benefits and harms to a lifetime horizon, to estimate the impact of interventions 

for underrepresented populations (i.e. with comorbidities), or applying results to different 

health care conditions from where studies have been conducted.  

Our first publication integrates modelling evidence to inform the benefits and harms of a 

screening programme; we adapted standard GRADE evidence profiles to be capable of 

combining modelled and empirical evidence, across outcomes, and tailored the GRADE 

domains (i.e. risk of bias or imprecision) to the characteristics of modelling research 

evidence. In the second publication, we describe the procedures of how a European 

guideline panel developed a decision tree model, to assist their assessment of the 

downstream clinical consequences of diagnostic test interventions, and used it for 

formulating recommendations. Finally, partially informed by the previous studies, our third 

publication proposes a framework on how to incorporate modelling evidence for 

development of clinical guidelines, and provides guidance on using the GRADE approach to 

assess the certainty of this type of evidence.  

Breast cancer (BC) is the second most prevalent cancer in the world and the most frequent 

among women [1]. BC mortality has decreased over the last decades due to improvements 

in treatment, services quality, and the implementation of population-based screening 

programmes [3]. However, there is debate on how to best implement with diverse 

recommendations on mammography screening frequencies. Thus, we conducted a 

systematic review that informed the recommendations of the European Guidelines for 

Breast Cancer Screening and Diagnosis. Our approach of including modelling evidence 

allowed us to inform outcomes (i.e. overdiagnosis, radiation induced breast cancer, life years 

saved) for which the evidence was sparse or not available. Modelling evidence also made 

possible to estimate the impact of different screening intervals in younger age groups, such 

as 45 to 49 years old; given that observational evidence from population registries provides 

evidence only for a larger age range (40 to 49 years old) the effects may be different to the 

age group of interest. 
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To inform the European guideline panel, we adapted the standard GRADE evidence profile, 

including modelling evidence only when other type of studies was not available and 

specifying the type of evidence and our judgments over its certainty (Table 11). We later 

used this evidence profile during the discussion with the EBCI guideline panel meeting to 

issue the recommendations on mammography intervals. Noteworthy, during the 

development of this review, we started the work of adapting the GRADE approach to assess 

the certainty of modelling evidence. As it was described in the methods section our first 

article, after discussion with other experts in the field, we decided to apply the GRADE rating 

of certainty, departing from the lowest certainty of the input evidence (this was 

subsequently modified during the development of the final guidance – see article three -). In 

most instance, the certainty of studies included in the systematic review on screening 

intervals was very low due to indirectness, since data for input parameters mostly come 

from opportunistic screening settings. 

In some situations, decision makers may prefer developing a new model specifically 

designed to answer their question of interest. Although this approach would be the most 

appropriate, it requires suitable skills, considerable resources, and time. In our case, we first 

developed a systematic review of multigene tests to decide the provision of adjuvant 

chemotherapy in women with early BC; however, as the available evidence did not inform all 

downstream consequences of interest, a decision tree model without discounting was built 

by the guideline development group, to assist the panel on the assessment of benefits and 

harms of multigene testing. We presented the model, in conjunction with the evidence from 

our systematic review, in the Evidence to Decision frameworks to conduct the discussion 

and recommendation process by the ECIBC guideline (Table 12).  

This process was similar to another guideline developed by the WHO for screening of 

cervical cancer, which projected long term consequences of different testing strategies (ref). 

Both experiences underline that for some clinical questions (i.e. diagnostic tests), guidelines 

developers should consider in advance, the need and type of modelling needed (pragmatic 

or more “sophisticated”) depending of the requirements, complexity of interventions, and 

resources available. 

 



Table 11. Evidence profile presented at the ECIBC guideline meeting (age group: women 45 to 49 years)46  

Certainty assessment № of patients Effect 

Certainty 
№ of 

studies 
Study design 

Risk of 
bias 

Inconsistency Indirectness Imprecision 
Other 

considerations 

annual 
mammography 

screening 

biennial 
mammography 

screening 

Relative 
(95% CI) 

Absolute 
(95% CI) 

Breast cancer death averted  

2 1,2,e modelling 
studies 

serious 
f,g 

not serious very serious 
h,i,j 

not serious none 70 to 90 39 to 40 Ratio 
1.75 to 2.31 

from 30 more to 
51 more per 

100.000  

⨁◯◯◯ 
VERY LOW 

Stage of breast cancer (IIB-IV) 

1 3 observational 
studies 

serious k not serious very serious 
c,l 

not serious none 2052 cases 3573 controls OR 0.85 
(0.75 to 0.96) 

- ⨁◯◯◯ 
VERY LOW 

-  0.0%  --  

QALYs  

2 1,5, m modelling 
studies 

not 
serious 

not serious very serious 
h,i,j 

not serious none 727 to 1,540 665 to 1,060 Ratio 
1.09 to 1.45 

62 more to 480 
more per 100.000  

⨁◯◯◯ 
VERY LOW 

Interval cancer  

1 4,n observational 
studies 

serious k serious very serious 
o 

not serious none 10/14285 
(0.1%) 

5/3333 (0.2%) RR 0.46 
(0.16 to 1.36) 

81 fewer per 
100.000 

(from 126 fewer 
to 54 more) 

⨁◯◯◯ 
VERY LOW 

Overdiagnosis  

2 1,5,m modelling 
studies 

not 
serious 

not serious serious h,i,j not serious none 143 to 200 0 to 119 Ratio :Not 
estimable to 

1.2 

24 more to 200 
more per 100.000  

⨁◯◯◯ 
VERY LOW 

False positive results -10 year cumulative probability 

1 6 observational 
studies 

serious q not serious very serious 
c,l 

not serious none Annual screening 67% (95%CI 65% to 68%) Biennial screening 45% 
(95%CI 44% to 46%) Difference: 22,000 more per 100,000. 

⨁◯◯◯ 
VERY LOW 
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False positive biopsy recommendation -10 year cumulative probability 

1 6 observational 
studies 

serious q not serious very serious 
c,l 

not serious none Annual screening 11% (10% to 13%) Biennial screening 6% (5% to 7%) 
Difference: 5,000 more per 100,000. 

⨁◯◯◯ 
VERY LOW 

Radiation induce breast cancer  

1 7,s modelling 
studies 

serious 
f,g 

not serious very serious 
h,i,j,t 

not serious none 32 18 Ratio: 1.78  14 more per 
100.000  

⨁◯◯◯ 
VERY LOW 

Death by radiation induced breast cancer  

1 7,s modelling 
studies 

serious 
f,g 

not serious very serious 
h,i,j,t 

not serious none 6 4 Ratio:1.5  2 more per 
100.000  

⨁◯◯◯ 
VERY LOW 

CI: Confidence interval; RR: Risk ratio; OR: Odds ratio. For modelling studies, certainty of evidence starts from low certainty and when there is more than one study informing an outcome, the number represents the 
range of point estimates reported across studies.  
 
Explanations 
a. Rate ratio comparing annual screening relative to biennial screening was estimated by an indirect meta-analysis. Absolute effects were calculated taken as basal risk the proportion of breast cancer mortality in 
intervention arms of the trials of annual screening.  
b. Comparison was done by performing indirect meta-analysis of RCT (n=3) of annual mammography interval versus no screening against RCT of biennial mammography interval versus no screening.  
c. Estimations based on studies that included women from 40 to 49 years old  
d. Wide confidence interval based in indirect comparison  
e. Modelling studies used different number of women screened for calculations: 1,000 in 2 studies, and 100,000 in 2 studies. One modelling study (Vilaprinyo 2017) gave inconsistent results in this year period (less 
deaths averted for annual interval) and then it was not included in the results of breast cancer deaths averted.  
f. One or more studies did not report information about external validation for the estimated parameters of the models.  
g. One or more studies did not report sensitivity analysis information for the estimated parameters of the models.  
h. The comparison for any interval in the models was a no screening scenario. No direct comparisons were reported.  
i. Modelling studies with data available for the 45 to 49 age period. Results were calculated by subtracting the absolute number of events from overlapping periods of screening i.e. 45 to 74 minus 50 to 74.  
j. Most models were constructed using data of surveillance registries from United States.  
k. Intervals were classified based on the month ranges elapsed between two screening mammograms prior to diagnosis. Potential high risk of misclassification.  
l. Results were extracted from groups of women with selected characteristics (e.g. normal weight, fatty or scattered fribroglandular breast density, or white race).  
m. Modelling study, used 1,000 women screened for calculations.  
n. From the In the Swedish two county trial with an average screening interval of 24 months, the calculated interval cancers for >0 to <12 months was 38%, and for 12 to <24 months was 68% (Tabar 1987).  
o. Estimations based on one study that included women from 40 to 79 years old  
p. Two modelling studies estimated the number of false positive results in annual screening of 9,150 to 56,700 and for biennial of 6,301 to 26,700 per 100,000 screened women from 45 to 49 years old (difference 
2,849 to 30,000 more events).  
q. No clear information of how the intervals were estimated for the false positive cohorts or the number of individuals per interval.  
r. Two modelling studies estimated the number of benign biopsy results in annual screening of 409 to 5,600 and for biennial of 208 to 3,000 per 100,000 screened women from 45 to 49 years old (difference 201to 
2,600 more events).  
s. Modelling study, used 100,000 women screened for estimates.  
t. Incremental effects were estimated for a screening program starting at 50 and ending at 74.



 

Table 12. Evidence to Decision presented for discussion at ECIBC panel meeting (only desirable and 
undesirable effects are shown) 

 
Sparano (lymph node negative –intermediate risk only)  

Outcomes № of 
participants 
(studies) 
Follow up 

Certainty of 
the evidence 
(GRADE) 

Relative 
effect 
(95% CI) 

Anticipated absolute effects* (95% CI) 

Risk with endocrine 
therapy plus 
chemotherapy 

Risk difference with 
endocrine therapy 

Invasive disease-free 
survival 

6712 
(1 RCT)1,a,b 

⨁⨁◯◯ 
LOWc,d,e,f 

HR 1.14 
(0.99 to 
1.31) 

Study population 

153 per 1,000 19 more per 1,000 
(1 fewer to 43 more) 

Freedom from 
recurrence at a distant 
site 

6712 
(1 RCT)1,a,b 

⨁⨁◯◯ 
LOWc,d,e,f 

HR 1.03 
(0.80 to 
1.33) 

Study population 

71 per 1,000 2 more per 1,000 
(14 fewer to 22 more) 

Freedom from 
recurrence at a distant or 
local-regional site 

6712 
(1 RCT)1,a,b 

⨁⨁◯◯ 
LOWc,d,e,f 

HR 1.12 
(0.91 to 
1.38) 

Study population 

50 per 1,000 6 more per 1,000 
(4 fewer to 18 more) 

Overall survival 6712 
(1 RCT)1,a,b 

⨁⨁◯◯ 
LOWc,d,e,f 

HR 0.97 
(0.78 to 
1.21) 

Study population 

62 per 1,000 2 fewer per 1,000 
(13 fewer to 12 more) 

1. Sparano JA, Gray RJ Makower DF Pritchard KI Albain KS Hayes DF et al. Adjuvant Chemotherapy Guided by a 21-
Gene Expression Assay in Breast Cancer.. N Engl J Med.; 2018. 

 
The PRU members developed a "back of the envelope" model to estimate the downstream consequences of testing 
patients with the 21-gene recurrence score versus using clinical risk scores (treating only those at high risk). Four 
different scenarios were hypothesized  
 
(only two scenarios presented here).  
 

Scenario 1: 
In this scenario, the GDG made the extreme assumption 
that almost all women would be treated with 
chemotherapy if the multigene test would not be used 
(only 18,4% proportion of women would not be treated, 
i.e. the proportion of non-treated women among those 
assigned to the treatment arm in the Sparano trial). 

Scenario 2 
In this scenario, the GDG made the assumption that, 
without multigene testing, women would be treated only if 
the clinical risk is high. The model also assumes that women 
with low clinical and high genomic risk have no advantage 
from chemotherapy. 
Distribution of the clinical risk within the multigene risk 
strata are those reported by Sparano et al 2018. 

 

 

The general model assumptions were: 
1) Results are based on a fixed observation time of 10 years. 
2) Distribution according to multigene test is low 14%; intermediate 68%; high 18%, as reported by the authors of the 
TAILORx trial at recruitment in 2008 before the protocol was modified in order to increase the intermediate risk group 
recruitment. 
3) The observed rate of events at 5 years in the MINDACT trial (Cardoso 2016) will remain constant at 10 years.  
4) Rates of events observed in the RCTs were applied to the simulated clinical score arms. It was assumed that basal risk 
of events for clinical score groups was homogenous between the low and the high clinical risk groups within a given 
genomic risk group. 
An approximately 40% reduction in the women receiving chemotherapy was considered as a desirable effect. 
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Finally, and partially based in the previous work, our third publication contributed over two 

fundamental aspects. First it presents a common framework to incorporate model outputs 

in health decision-making, including three options: a) developing a model de novo designed 

specifically to answer the very question at hand, b) searching for an existing model 

describing the same or a very similar problem and use it “off-the-shelf” or adapt it 

appropriately to answer the current question, and c) using the results from multiple existing 

models found in the literature. 

We also provide guidance on how to assess the certainty of evidence of modelling evidence 

using the GRADE approach for either an individual model or across multiple models in the 

context of a systematic review. We considered that for modelling studies, the certainty of 

evidence departed from high certainty which could be then downgraded after considering 

methodological limitations on the GRADE domains. This approach fairly similar to what we 

used for our first publication which departed from the certainty level pertaining to the input 

evidence that informed the model parameters.  

One distinctive feature of our proposed GRADE approach for modelling studies is how it 

define the assessment of risk of bias compared to the approach for other type of evidence 

(i.e. prognosis, diagnostic test). The risk of bias for modelling evidence results from both the 

credibility of model development and the certainty of evidence for each of model inputs 

(Figure 3). The credibility of a model development is determined by its structure, calibration, 

validation, and other factors. While we should assess the certainty of the several types of 

input data (bodies of evidence) used to populate the model, an efficient alternative to 

consider is to assess only the input parameters to which the model outputs are the most 

sensitive. 

Figure 3. Risk of bias for modelling studies using the GRADE approach
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7.2 Our results in the context of previous research 

Previous initiative has also underlined the relevance of considering modelling evidence 

when developing clinical practice guidelines. Habbema et al identified areas where 

modelling evidence might be relevant to guideline development (see introduction section) 

based on the experience of the USPSTF on issuing recommendations for screening 

interventions.16 Additionally, the authors provide advice for the incorporation of modelling 

evidence. To obtain more robust results, they developed multiple models (5 to 6 per 

condition) for the same questions in collaboration with the Cancer Intervention and 

Surveillance Modelling Network (CISNET) for lung, colorectal and breast cancer screening.16 

To compare candidate policies, they consider the outcomes that best capture benefits and 

harms and used their ratio as a common metric (i.e. number of colonoscopies per life-year 

gained). Finally, models may lead to different recommendations when used by another 

guideline groups, for example the USPSTF recommended annual screening for colorectal 

cancer,36 whereas the Health Council of the Netherlands recommended a biennial interval 

based on the similar model evidence.16  

Regarding our systematic review (empirical and modelling studies) for intervals of 

mammography screening. The results were consistent with the evidence than informed 

previous guidelines. The USPFTF, as described above, based their assessment on several 

models for the US population, concluding that when moving from biennial to annual 

mammography, there is a small increase in averted deaths but with a large increase of 

harms.76 The American Cancer Society included in their review of the evidence an indirect 

comparison between RCTs and a model study from the CISNET collaboration, concluded that 

beginning screening with more frequent intervals likely results in a greater mortality 

reduction but the magnitude is uncertain.106 In comparison, we included modelling studies 

for different populations (i.e. US, Canada and European countries) thus we could assess how 

robust where the results under different assumptions.46  

The ECIBC guideline issued recommendations on multigene testing to guide adjuvant 

chemotherapy consistent with other guidelines. NICE issued a conditional recommendation 

on the use of 21-RS limited to those patients in which the risk of distant recurrence is 

intermediate using a validated tool such as PREDICT or the Nottingham Prognostic Index and 

recommended against the use of the 70- signature.107 The American Society of Clinical 

Oncology (ASCO) also provided similar recommendations (but with a different strength) 

using a different methodological approach.108, 109 Previous guidelines incorporated modelling 
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studies but limited to health economic evaluation, sharing important methodological 

limitations.110 Our model was intended to be an exploratory tool to help guidelines panellist 

on their assessment of potential impact of diagnostic tests, and thus there is still a need for 

more robust modelling analysis for this condition.  

Our approach for incorporating modelling evidence into the decision-making process for 

clinical guidelines is also consistent with some previous proposals but limited to systematic 

reviews. Kuntz et al, considered decision models as a supportive tool for systematic reviews, 

and included three basic approaches: a synthesis of previous modelling studies, adaptation 

of an existing model(s) to complement a systematic review, and the development of a de 

novo model.20 They also consider as an ideal scenario to develop a de novo model, but 

acknowledging that it would be time consuming and costly.20 Beside of describing similar 

main scenarios, we suggested a framework to assist guideline developers when considering 

building a new model, adapting an existing model or using existing models for development 

of clinical recommendations (Figure 4). This process should be guided by a systematic 

assessment of the certainty of any identified models as well as the resources available.  

The need for development of a GRADE approach for modelling evidence has been previously 

recognized. The WHO conducted on 2016 a survey on 151 experts from 28 countries (half of 

them modelers and the other half users of model evidence); around 95% of respondents 

consider that modelling evidence should inform guidance for public health interventions, 

and 60% that findings of modelling studies can sometimes provide the same certainty of 

evidence as empirical studies.30 This study also provided some initial insights on how to 

adapt the GRADE approach to modelling studies (see introduction section), that were 

further developed by our GRADE guidance on the third study of this doctoral thesis. 
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Figure 4. Framework to guide the incorporation of modelling evidence into clinical guideline 

development.  

 

From: Brozek & Canelo-Aybar et al. (2021)21 
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7.3 Limitations and strengths 

Among the common cited limitations regarding modelling includes that requires 

quantification of all input parameters, that some outcomes are not actually quantifiable, 

that to use ‘‘evidence’’ generated by a model is incongruent with the concept of evidence 

based in empirical data,33 or that it is unclear the place of modelling evidence in “hierarchy 

of evidence”.33 This criticism shows a misunderstanding about the aim of models which is to 

offer transparent approach to assist decisionmakers with complex decision in the context of 

spare or uncertain empirical evidence.20 Besides, decisions have to be made eve with limited 

data, and implicit values are always placed on qualitative outcomes;20 decision analysis 

provides the tool to assist this process in a transparent manner.16  

However, to develop a model require substantial skills, time and logistical resources. Even 

adaptation of models might require model availability of input data relevant expertise and 

access to the original model. One strength of the framework is that the incorporation of 

models is a way to use resources more efficiently, relying on a initial systematic search 

which may identify one or more models meeting pre-specified eligibility criteria, then 

researchers would assess the certainty of outputs from each model.21 Depending on this 

assessment, researchers may be able to use the results of the most direct and lowest risk of 

bias model or proceed to adapt it. Researchers may consider developing their own model, 

only when they fail to find a sufficiently direct and low risk of bias model. 

Our review for intervals of mammography screening was limited by incomplete reporting of 

model development in particular regarding the validation process and sensitivity analysis, 

however the scope was considerable exhaustive and we observed consistent results 

thorough several modelling studies on different settings. For the decision tree model 

developed to assess the multigene test downstream consequences we used a fairly 

pragmatic approach, and despite some assumptions being potentially questionable (i.e. 

negligible effects in low clinical risk, same effects in studies with different duration of follow-

up);96 we acknowledge these limitations during the panel meetings, and used the model only 

as a supportive tool to better understand the potential downstream consequences of 

recommending the multigene test. 

Finally, our guidance for the GRADE approach to assess the certainty of modelling evidence 

will require further efforts to provide detailed guidance on how to apply each of its domain, 

after testing it on real examples of both systematic reviews as on clinical guidelines. 

Nevertheless, it builds on the GRADE approach, which is a systematic, transparent, and 
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widely used method to assess the certainty of evidence across multiple types of bodies of 

evidence. We have developed it with the participation of experts in the field of modelling in 

the context of clinical practice guidelines, public health, infectious disease, cost-

effectiveness modelling among other disciplines.  

 
7.4 Implications for practice and research 

The adoption of the GRADE approach and the progressive development of the methods to 

assess the certainty of evidence of model outputs have relevant implications for practice. 

First, having a systematic approach to ascertain the modelling evidence will improve the 

rigor of research and transparency, reducing the risk of systematic error with an overall 

increase in the trustworthiness on systematic reviews and clinical guideline development.21 

Currently several systematic reviews on the impact of control measures for the SARS-COVID-

19 pandemic18, 19, 111, 112 and well as for model based cost effectiveness studies113, 114 have 

implemented the GRADE approach for modelling evidence. Additionally, adopting the 

GRADE approach during the model development has the potential to reduce unnecessary 

complexity and workload by careful consideration of the most direct evidence as model 

inputs, optimizing the use of different streams of evidence as model inputs.21  

Our results from the systematic review of intervals of mammography screening may have 

different implications for practice depending on the age group, the balance between 

benefits and harms, and how women value the different outcomes. In the case of multigene 

testing, the benefits use of 21-RS in lymph node-negative women are probably larger, while 

the 70-GS seems acceptable only for women at high clinical risk, however there was 

important uncertainty on the evidence. Given both questions had a very low to low certainty 

of evidence and the variability of how women value outcomes at stake, guideline panellists 

would be likely to formulate conditional recommendations, thus a shared decision-making 

process to carefully explain the pros and cons of each decision is warranted. The European 

Guidelines on Breast Cancer Screening and Diagnosis issued the following recommendations 

based on those findings (Table 13 and appendix section).55  

  



Incorporating decision analysis models in the development of health recommendations 

 

119 

 

 
Table 13. Recommendations issued by the European Breast Cancer Guideline for Screening and 
Diagnosis based in the results of the studies included in the thesis. 

Mammography intervals55 Multigene testing96 

For women aged 45 to 49 years: 

• Suggests either biennial or triennial 
mammography over annual screening 
(conditional recommendation, very low 
certainty of evidence) 

• suggests the use of the 21-RS for lymph 
node-negative women (conditional 
recommendation, very low certainty of 
evidence) 

For women aged 50 to 69 years: 

• recommends against annual 
mammography screening (strong 
recommendation, very low certainty of 
evidence) 

• suggests biennial mammography screening 
over triennial mammography screening 
(conditional recommendation, very low 
certainty of evidence 

• suggests the use of the 70-GS for women at 
high clinical risk (conditional 
recommendation, low certainty of 
evidence) 

• recommends not using 70-GS in women at 
low clinical risk (strong recommendation, 
low certainty of evidence) 

For women aged 70 to 74 years:  

• recommends against annual 
mammography screening (strong 
recommendation, very low certainty of 
evidence) 

• suggests triennial mammography screening 
over biennial mammography screening 
(conditional recommendation, very low 
certainty of evidence) 

 

 

Along the studies included in this doctoral thesis several priorities of research were 

identified, many of them pertains to the gaps on the evidence which also lead to the 

incorporation of modelling evidence while others are related to the refinement of the 

GRADE approach for this type of evidence (Table 14). Further empirical research on the 

effectiveness of the different screening intervals would be ideal, although it may require 

substantial resources. Better evidence for other imagen modalities for breast cancer 

screening or personalized risk stratification for BC would allow research to conduct more 

robust modelling studies. For multigene tests longer observation time is required to inform 

end-clinical outcomes. With respect to the GRADE approach the priorities include 

refinement of the guidance for each domain based in real examples, adaptation of evidence 

profiles and summary of findings format to modelling studies, and development of an 

specific tool to assess the credibility of models that reflects the conceptual GRADE approach.  
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Table 14. Research priorities identified across the thesis´s articles 

Review on mammography intervals (study 1)46 

• Empirical research on the effectiveness of the different screening intervals due to the current 
very low certainty of evidence 

• Cost-effectiveness studies using unitary costs from different settings, and in particular for 
women aged 45 to 49  

• Assessment of alternative imaging modalities to mammography 

• Tailored screening according to personalised risk assessment 

Review and denovo model for multigene testing (study 2)96 

• Exploring in what subgroups the use of 21-RS would have larger anticipated benefits. 

• Carrying out longer follow-up studies for 70-GS 

GRADE guidance for modelling evidence (study 3)21 

• Developing methods and guidance for using model outputs in health-related decision-making.  

• Provide more detailed guidance about choosing the “best” model when multiple models are 
found 

• Integrating the certainty of evidence from various bodies of evidence with credibility of the 
model and arriving at the overall certainty in model outputs 
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8. CONCLUSIONS 

 

1. This doctoral thesis provided real examples on how to integrate modelling evidence into 

the guideline development process (either from a systematic review or developing de-

novo model) and a guidance to assess the certainty of evidence of modelling studies.  

 

2. In women of average BC risk, screening intervals have different trade-offs for each age 

group. The balance probably favours biennial screening in women 50–69. In younger 

women, annual screening may have a less favourable balance, while in women aged 70–

74 years longer screening intervals may be more favourable (from the systematic review 

of empirical and modelling studies). 

 

3. Testing women with early BC with 21-RS to guide the decision of providing adjuvant 

chemotherapy would lead to large desirable effects and trivial undesirable effects. For 

the 70 gene signature test, in women at low clinical risk, there will be no benefits and a 

very large cost; in high clinical risk population there will be moderate desirable effect 

and large savings.  

 

4. Modelling evidence is relevant to assist guidelines panel on developing clinical 

recommendations for settings where the evidence from empirical evidence is limited or 

unfeasible to develop such as: projecting to a lifetime horizon, assessing complex 

interventions, or extrapolating results to underrepresented populations. 

 

5. The GRADE evidence profiles formats can be adapted to incorporate modelling 

evidence. For example, adding modelling evidence as a separate type of studies or 

considering their inclusion only when empirical evidence is largely indirect or uncertain.  

 

6. During the guideline development process there are three options of how to incorporate 

modelling evidence: i) to develop a model de novo to specifically to answer the clinical 

question ii) to search for an existing model describing the same or a very similar problem 

and use it “off-the-shelf” or adapt it appropriately. and iii) to use the results from 

multiple existing models identified in the literature. 
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7. A GRADE guidance is presented to assess the certainty of evidence of modelling 

evidence is now available and represent a relevant progress in the methods to 

incorporate this type of evidence on systematic reviews, health technology assessment, 

CPG, and overall heath decision making.  

 

8. Future research areas include developing further methods and guidance for applying 

each of the GRADE domains, testing the approach in additional real examples and refine 

the guidance accordingly, and improve the presentation formats to adequality display 

modelling evidence research.  
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