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Abstract

One of the major health threats for European nations is the arrival and spread
of neglected and emerging tropical diseases, brought about through factors such
as climate change, environmental degradation and poverty. In this thesis, I take
data-driven holistic approaches to examine some of the macro-level drivers of three
emerging infectious diseases, dengue virus, West Nile virus, and SARS-CoV-2, mak-
ing use of the huge pools of publicly available demographic, socio-economic, envi-
ronmental and population health data. For each study, I constructed an analytical
framework that mapped out local level drivers of disease, which was then used as a
foundation to construct three unique spatial-temporal datasets for each study. Re-
lationships were tested using a Generalised Additive Models (GAM), which could
capture complex non-linear relationships and also account for spatial and temporal
auto-correlation. A joint analysis of chapters two, three and four reveals that cli-
mate and environmental factors are major drivers of disease, but also societal factors
such as poverty, occupation, and top-down political decision making also appears
to be moderators of disease transmission. This work is relevant as it adds to the
growing body of scientific literature focusing on infectious diseases since it tackles
some of the broader and less explored areas of public health and epidemiology, such
as analysing economic changes with environmental changes, examining the impacts
of factors such as austerity on health, along with other factors such as political
decision making and or lack of intervention by government authorities.
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Chapter 1

Introduction

Human civilisation is at a crossroads; continued economic growth at the expense
of the natural environment is jeopardising its very existence on the planet through
the deterioration of natural life-support systems such as clean water, a stable cli-
mate, fish stocks and the biodiversity of pollinating insects [2]. Humanity could be
considered a victim of its own success and needs to turn a corner and act to limit
its destructive influence on the natural world. However, this is no easy feat given
the global economy is entrenched in destructive practices such as forest clearance,
intensive animal rearing, and the burning of fossil fuels, that is also causing the
climate to warm [20].

In general, rising temperatures and extreme heatwaves are expected to have
direct consequences for human health through heat-related mortality and through
impacts on respiratory, cardiovascular, or neurological health [17]; and secondary
effects on ecological and agricultural systems which may lead to food shortages. We
may also expect climate change to affect human health indirectly, inducing stress
and mental health problems because of human displacement, failing economies, and
declines in output from agriculture which will exacerbate poverty [13]. One of the
current threats for European nations is the arrival of neglected tropical diseases,
since rising temperatures are likely to facilitate their spread and establishment, evi-
dence suggest that many pathogens and vectors are already making bio-geographic
adjustments due to increasingly warmer global temperatures [10, 22].

Although there have been significant -albeit unequal- global increases in life ex-
pectancy over the past century as a result of improvements in diet, medical practices,
improvements in public health measures to tackle diseases, and through the develop-
ment of new treatments including antibiotics and vaccines [3, 19, 4, 18, 8], in many
of the world’s poorer nations, high morbidity and mortality caused specifically by
infectious diseases remain a problem [4, 18, 8, 5]. Many of the diseases that plague
poorer nations, such as malaria and dengue are often neglected, meaning that until
they cause problems in richer nations, not enough money is spent on developing
treatments for such diseases [4, 18, 8]. The consequence is that, because of climate
change, neglected tropical diseases may spread to richer nations where conditions
were previously too cold for such pathogens to proliferate. As we have witnessed
during the COVID-19 pandemic, even when preventative treatments such as vac-
cines exist, they may not be fairly distributed and diseases are left to fester in poorer
nations, which poses a risk to richer nations as a result of pathogen evolution, which
may eventually render treatments ineffective [14].

4
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Novel Emerging infectious diseases (EIDs) also present a significant threat to
Europe, as we have recently witnessed with SARS-COV-2, pathogens can go un-
der the radar of public health authorities but can quickly emerge with devastating
consequences for global human health. It is estimated that around 631,000–827,000
zoonotic viruses remain undiscovered in the world today, most of which reside in
tropical forests [15]. The number of EID events has been on the rise over the past
century; around 335 diseases have emerged or re-emerged between the 1940s and
early 2000s [11]. Many of these spill-over events are believed to be instigated by
human activities that bring humans into close contact with wild infected animals,
for example, expansion and construction of new settlements, agricultural expansion,
or the harvesting and consumption of wild animals. Although such events have
always occurred throughout human history, many outbreaks would have remained
isolated reflecting the lifestyles of the communities in which they occurred. How-
ever, the world is now more connected than ever, and many of the global hotspots of
pathogen diversity are now under intense pressure from extractive industries, such
as mining, oil extraction, forestry, intensive animal rearing [1, 16, 6], such indus-
tries connect pathogens to the outside world through globalised transport networks,
meaning they can potentially spread around the world in a matter of days, if not
hours [21]. According to the United Nations, the human population will increase by
around 2 billion in the next 30 years, which equates to around 9.3 billion people liv-
ing on the planet by 2050. Given the current trajectory of human population growth
accompanied by a dominant pattern of development, based on continuous economic
growth coupled with resource extraction and depletion of natural forests, we are
likely to see a continuation of human-induced environmental and ecological changes
[7] which may signify continued growth in novel infectious disease emergence.

1.1 Motivation for study

Although research on emerging infectious diseases is extremely active, much of the
work has traditionally focused on local-level and system-specific questions that seek
to better understand fine-scale processes and mechanisms. However, recent initia-
tives such as One Health [12], Planetary Health [9], and EcoHealth [23] called for
more holistic and interdisciplinary approaches to study infectious diseases that can
provide critical insights into how human and natural systems are connected and can
help us to better understand the contribution of environmental, biological, social,
cultural, political, and economic factors on disease emergence, spread and the dis-
tribution at a global scale. Recent technological advances in modern computing,
both hardware and software, and the development of open source economic and en-
vironmental databases are conducive to this, since they allow us to gather, process,
merge and analyse vast amounts of heterogeneous data (which I will refer to as “big
data”) to investigate large-scale ecological questions related to infectious diseases.

In this thesis, I set out to examine some of the macro-level drivers of disease
spread and distribution of three emerging infectious diseases using “big data” ap-
proaches 1: Dengue virus (DENV), West Nile virus (WNV), and SARS-CoV-2.

1https://www.ecdc.europa.eu/en/dengue-fever/facts
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1) Dengue virus (DENV) is a vector-borne disease; its transmission cycle involves
humans and mosquitoes, that is, the virus is either transmitted or received by a
biting mosquito.

2) West Nile virus (WNV) is also a vector-borne disease but is transmitted
between mosquitoes and birds; humans are susceptible to the virus but are generally
considered dead-end hosts i.e., they cannot transmit the virus to the mosquito.

3) SARS-CoV-2 is a virus that is transmitted between people and mammals
mainly through respiratory particles (droplet and aerosols) and, to a lesser extent,
indirect contact through fomite transmission (contact with contaminated surfaces).

Each chapter examines how climate and anthropogenic forces influence disease at
the macro-level (chapters 2-4) in the hope of learning more about the diseases and the
populations they affect, eventually seeking to generalise findings across these three
studies by looking at the common factors that influence the health of communities
in the areas studied (chapter 5). The three primary research articles in chapters 2,
3 and 4 share a common statistical methodology and comparable data. For each
chapter, I constructed an analytical framework that mapped out local level drivers of
disease; these relationships were then used as a foundation to construct the spatial-
temporal datasets for each study, which merged heterogeneous data from several
different sources and data types. I could then assess the importance of individual
variables making up the study system and assess their contribution to the statistical
models, all else equal.

Overview of primary research articles

In chapter 2, I investigate the influence of socio-economic/demographic and climate
factors on the regional distribution of dengue in the United States and Mexico, by
analysing panel data on regional household income, education of the labour force, life
expectancy at birth, and housing overcrowding, population growth, inter-regional
migration, temperature and rainfall. Although this study focuses on dengue in re-
gions in the Americas, it has implications for Europe, given the presence of the two
vector mosquitoes (A. aegypti and A. albopictus). Indeed, over the past 10 years,
autochthonous transmission has occurred in Croatia, France, Italy, and Spain 2, so
the virus was likely imported to Europe from infected regions by humans. Whether
transmission can be sustained, and the virus becomes endemic in Europe is not yet
apparent. In the chapter 3, I examine the possible drivers of the West Nile virus
transmission in Europe by analysing time series data on land-use changes, temper-
ature, rainfall, and government spending and regional gross domestic product. This
disease is endemic to parts of central Africa and Asia and was until recently only
occasionally reported in Europe where it was believed to be imported by infected
migratory birds. However, it has recently emerged in Europe as a major health
concern because its prevalence is increasing and gradually spreading in Europe from
southerly regions to more northerly regions. This phenomenon also coincided with
the European financial crisis and subsequent austerity, along with land use and cli-
matic changes. In the chapter 4, I investigate the macro-level drivers of SARS-CoV-2
transmission during the first wave of the epidemic in the United States, analysing
cross-sectional data including data on the age structure of regions, poverty levels, the
health status of the population, climate factors, and population density. The reason

2https://www.ecdc.europa.eu/en/dengue-fever/facts
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for choosing the United States is that it provides us with a unique opportunity to
study this phenomenon at a macro-scale, since it encompasses a diverse range of
climate types over a vast geographical area, with a somewhat homogeneous political
system, allowing us to disentangle the effects of the environment from other demo-
graphic and socio-economic conditions. Furthermore, the study analyses data on the
implementation of public health measures, as captured by the Oxford COVID-19
Government Response Tracker (OxCGRT) ”Stringency Index”, to tackle spread and
factors that may influence case reporting.
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Abstract 

Background: This study examines the impact of climate, socio-economic and demographic factors on the incidence 
of dengue in regions of the United States and Mexico. We select factors shown to predict dengue at a local level and 
test whether the association can be generalized to the regional or state level. In addition, we assess how different indi-
cators perform compared to per capita gross domestic product (GDP), an indicator that is commonly used to predict 
the future distribution of dengue.

Methods: A unique spatial-temporal dataset was created by collating information from a variety of data sources to 
perform empirical analyses at the regional level. Relevant regions for the analysis were selected based on their recep-
tivity and vulnerability to dengue. A conceptual framework was elaborated to guide variable selection. The relation-
ship between the incidence of dengue and the climate, socio-economic and demographic factors was modelled via a 
Generalized Additive Model (GAM), which also accounted for the spatial and temporal auto-correlation.

Results: The socio-economic indicator (representing household income, education of the labour force, life expec-
tancy at birth, and housing overcrowding), as well as more extensive access to broadband are associated with a drop 
in the incidence of dengue; by contrast, population growth and inter-regional migration are associated with higher 
incidence, after taking climate into account. An ageing population is also a predictor of higher incidence, but the 
relationship is concave and flattens at high rates. The rate of active physicians is associated with higher incidence, 
most likely because of more accurate reporting. If focusing on Mexico only, results remain broadly similar, however, 
workforce education was a better predictor of a drop in the incidence of dengue than household income.

Conclusions: Two lessons can be drawn from this study: first, while higher GDP is generally associated with a drop 
in the incidence of dengue, a more granular analysis reveals that the crucial factors are a rise in education (with fewer 
jobs in the primary sector) and better access to information or technological infrastructure. Secondly, factors that 
were shown to have an impact of dengue at the local level are also good predictors at the regional level. These indi-
ces may help us better understand factors responsible for the global distribution of dengue and also, given a warming 
climate, may help us to better predict vulnerable populations on a larger scale.

Keywords: Dengue, Climate-change, Global-warming, Socio-economic, Mosquito-borne, Vector-borne-diseases, 
GDP, GAM
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2.1 Introduction

The dengue virus (DENV) is one of the most important mosquito-borne viral dis-
eases in the world today. Two main arthropod vectors are responsible for transmis-
sion of dengue viruses: Aedes aegypti (commonly known as yellow fever mosquito)
and Aedes albopictus (commonly known as tiger mosquito). A. aegypti mainly feeds
on humans and is highly adapted to human habitations and urban areas; A. al-
bopictus feeds on animals and humans and is more prevalent in rural and peri-urban
environments. While A. albopictus is also responsible for dengue transmission among
humans, it is a less likely vector than A. aegypti since it is adapted to a wider range
of environments and has less restrictive feeding habits [1]. Both Aedes mosquitoes
are highly adapted to breeding in aquatic habitats like ponds and lakes, but also
micro habitats, such as tree-holes, rock crevices and even leaf axils [2]. The latter
behaviour in recent times has benefited both species by allowing them to exploit a
range of man-made aquatic breeding habitats, where water can accumulate, like ur-
ban gardens, vases in cemeteries, discarded bottles and plant pots; therefore, both
species can survive in drier climates than expected, by exploiting artificial water
sources.

Dengue is a disease caused by any one of four closely related viruses: DENV 1,
DENV 2, DENV 3, or DENV 4. Currently, all four dengue serotypes are in circu-
lation in the Americas and can co-circulate within a region; the actual distribution
of each serotype is difficult to establish for a number of reasons, such as inadequate
surveillance, under reporting, high numbers of asymptomatic carriers, and so on, as
laid out by [4]. DENV causes an acute flu-like illness that affects people of all age
groups. Those who recover from a dengue infection can expect lifelong immunity
against that serotype and some partial, but temporary, cross-immunity to the other
serotypes, although secondary infections by other serotypes increase the risk of de-
veloping severe dengue, which may cause lethal complications, and sometimes death
[5].

There is currently no specific antiviral therapy for dengue fever; once the disease
is contracted, there is no way to combat it other than relying on the host’s immune
response. Several vaccines are currently in development; however, given the current
cost-effectiveness, efficacy, safety and estimated impact of vaccination, the WHO’s
present recommendation is to introduce it only in geographic settings (national or
sub national) where the disease is particularly problematic [6].

2.1.1 Motivation for study

Climate change, specifically rising temperatures, is likely playing a crucial role in
dengue transmission, potentially driving its expansion across the globe, as predicted
by several studies [8–12]. Socio-economic conditions in a given location can be
vital for a disease to persist once local transmission has occurred [13–18]; however,
research in this domain, generally, does not account for socio-economic factors other
than Gross domestic product (GDP), which is a standard measure of the market
value of all the final goods and services produced over a specific time period in
a given location. Some studies have looked at the interaction between climate,
socio-economic factors and demographics at a local level [19–23], focusing on factors
specific to local areas, which means that their findings cannot be easily extrapolated
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to the macro level. To get better estimates of where dengue may spread, there is
a need to understand how climate factors, socio-economic factors and demographic
factors interact over a greater geographic scale to reveal common global patterns.

The original contribution of this article is that it selects factors shown to predict
dengue at a local level and tests whether the association can be generalised to
the regional or state level. In addition, we propose a more comprehensive set of
socio-economic predictors of dengue transmission, to disentangle the role of GDP
from other measures. Although a useful and parsimonious indicator, GDP is a very
broad measure and it is not necessarily reflective of population health and well-
being, distribution of wealth, discrimination and spending on public welfare [24].
More importantly, GDP alone may not be able to capture cross-regional differences.
The predominance of using GDP as an indicator has been largely questioned [25–
28]; for some time now researchers in human health geography, critical public health,
and social epidemiology have requested more careful consideration of the contextual
social and economic conditions that shape diseases at the local level [29, 30].
To this end, this study investigates regional differences in the incidence of dengue by
evaluating the impact of socio-economic and demographic factors such as household
income, regional rates of education, housing overcrowding, life expectancy, medical
resources, migration flows, age structure of the population (the proportion of people
under 14 and over 65), and population density.

The study focuses on the occurrence and distribution of dengue in Mexico and
southern regions of the United States (US) where dengue has been reported, as
some US regions share very similar environmental conditions but have distinct socio-
economic conditions. [15]. This study takes advantage of time series data between
2011 and 2019 and it is, therefore, able to exploit cross sectional variation between
states, and variation over time for each state.

2.1.2 Conceptual framework

Dengue transmission is determined by interactions between host, vector and pathogen,
and modulated by ecological, climatic and geographic factors, including socio-economic
factors. Regions were selected for the empirical analysis if conditions were met in
terms of their receptivity and vulnerability, based on principles laid out in the WHO’s
framework for malaria elimination [31].
Receptivity is defined as the ability of an ecosystem to allow transmission of a virus
(dengue in this study). An ecosystem can be considered receptive if competent vec-
tors, a suitable climate and a susceptible population are present; in other words,
regions are selected if autochthonous virus transmission may occur because human
populations and vector populations overlap/interact. Vulnerability occurs when ei-
ther 1) a region was receptive and had regularly reported cases over the study period
(endemic) or 2) bordered an endemic region and occasionally reported cases which
(likely due to spread or importation from neighbouring regions). We defined modu-
lating factors as variables that influence the transmission dynamics of dengue such
as host population size, host density, climate factors and medical interventions.

Receptivity

Since dengue is a vector borne disease, understanding the key ecological requirements
of its vectors is crucial to assessing the receptivity of a region. As explained below,



Page 14 Chapter 2

some of the main factors determining the receptivity of a region to dengue (due to
the presence of its vectors) are: its physical environment (land use), the overlap
with the human population, and its climate.

Both types of Aedes mosquitoes that transmit the dengue virus are ectothermic
organisms and are highly sensitive to colder temperatures and extreme high tem-
peratures. A. albopictus adults can survive in temperatures from 15 to 35◦C and A.
aegypti from 10 to 35◦C [32], while their growth and development are severely inhib-
ited in ambient temperatures below 13◦C or above 35◦C. A. albopictus eggs though,
can go through diapause (suspended development) when exposed to extreme cold
(down to -10◦C). This adaptation allows them to inhabit environments with a wider
annual temperature range, with more distinct seasonal changes than in tropical cli-
mates, where climate is more homogeneous. A. aegypti can endure a wider range
of temperatures, but its survival at temperatures below 14-15◦C is limited to short
periods, since its mobility is severely restricted and its ability to imbibe blood im-
peded. A. aegypti is also highly sensitive to fluctuations in temperatures. As for
most mosquito species, availability of freshwater habitat, humidity and precipitation
are highly indicative of their distribution in the environment.
To account for this, we selected a range of humidity and temperature variables for
analysis which would capture mosquitoes’ living requirements.

Vulnerability

As direct measures of vulnerability we include spatial effects (neighbourhood struc-
tures) in our models in order to explicitly account for spill over effects with infected
neighbouring regions (for a more detailed description see the methods section). In-
direct measures of vulnerability can be derived from traditional patterns of travel
and population flow in the area; indeed, well connected areas, in terms of trade and
transport with considerable human movement, can benefit both mosquito species
and dengue, by facilitating their movement and spread [33–36].

Modulating factors

Modulating factors can either speed up or slow down transmission. The transmission
cycle of dengue is complex, since there are several key interactions at play between
the virus, host and vector. Density of both the vector and host are fundamental
factors in disease transmission, as contact between infected vectors and susceptible
hosts is the source of new infections [37]. Mosquito Breeding habitat can be increased
by precipitation and flooding [38], temperature heavily influences mosquito hatching
rate, development time [39-40] and optimal temperature can shorted the extrinsic
incubation period (EIP) [41]. While there are no datasets covering mosquito pop-
ulation abundance in all of our study regions, we selected meteorological variables
that predict mosquito abundance and therefore are related to dengue transmission.
Furthermore, there are several socio-economic risk factors of dengue including home
water storage (rather than receiving piped water), poor sanitation, and poor public
services (e.g. litter not collected) [15, 42–46]. Such factors can be responsible for
creating breeding habitat for mosquitoes and bringing them into closer contact with
humans, therefore increasing the risk of dengue. By contrast, use of mosquito nets,
insect screens, and air-conditioning, can limit the chance of being bitten. Similarly,
knowledge and education of mosquito ecology can also help people make personal in-
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terventions and reduce risk of being bitten [47]. Because there are no direct measures
of home water storage or the use of mosquito nets, we use a range of socio-economic
indicators as proxies, capturing a latent variable that would represent vector risk.
The rationale is that people living in locations with better socio-economic conditions
can avoid contact with mosquitoes and restrict virus transmission, either from the
bottom-up (e.g. personal interventions) or the top-down (e.g. Regional government
pest control). However, it is important to note that factors associated with higher
economic status can also bring humans into closer contact with mosquitoes, for ex-
ample home owners with gardens and potted plants and ponds or having good access
to recreational space where mosquitoes can breed [48]. In terms of post-infection
factors that influence dengue transmission, access to health care, risk perception
and access to information on dengue infection symptoms had positive effects on
people’s decision to seek medical help when presented with dengue infection symp-
toms [17, 47, 49]. To reflect this in the conceptual framework we selected variables
that would proxy access to health care and variables which would represent access
to information and personal knowledge. Finally, younger people are more likely to
be infected by dengue [50], so we selected variables that represent the age structure
of the population.

2.2 Materials and Methods

In this study, we compiled a spatial temporal data-set that would reflect the con-
ceptual framework. By predicting the distribution of A. albopictus and A. aegypti
in Mexico and the United States, we could determine which regions were receptive
i.e. there was there an overlap between the vector distribution and the human pop-
ulation at risk. By combing these results with reported cases of dengue, we could
determine which regions were vulnerable. We then went on to collect data on modu-
lating factors of dengue transmission in vulnerable regions. Furthermore, our vector
distribution maps allowed us to extract more accurate data on the host population
at risk and climatic factors that contribute to disease transmission.

2.2.1 Species distribution models to estimate regional sus-
ceptibility

Because the exact distribution of vectors in unknown, we estimated the likelihood
that a vector would occur in a region conditional on a set of covariates. More specif-
ically, we estimated the distribution of the Aedes mosquitoes using a generalized
additive logistic regression, with point location occurrence as dependent variable,
and annual temperature range, mean temperature of the coldest quarter, precipi-
tation during the driest quarter as covariates. Predictions were then used to select
susceptible regions.
Point location occurrence data for A. aegypti and A. albopictus were obtained from
a global geographic database of known occurrences between 1960 and 2014, com-
piled by members of the Institute of Biodiversity, Animal Health and Comparative
Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow
[51]. Point occurrence data represent spatial geo-coordinates of a location in which
a given individual organism was sampled or sighted. Many of the samples in this
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Figure 2.1: Aedes sample locations and SDM results: Top left: Aedes point locations.
Top right: Results of Aedes aegypti SDM. Bottom left: Results of Aedes albopictus
SDM. Bottom right: Receptive regions / data extraction locations.

data-set consists of museum records or unpublished studies including national ento-
mological surveys. Since the data-set contained sparse information relating to the
timings and frequency of each sample, we selected global observations from 1970 on-
ward to capture the entire range of climatic conditions that species can survive in,
and to limit potential sample bias caused through the selection of localised seasonal
collections. We also removed any duplicate observations i.e. replicate coordinates.
Climate data were extracted using R’s DISMO package in all point locations where
mosquitoes occurred. Climate data for the species distribution prediction modelling
were sourced from the MERRAclim, a database complied by members of the Depart-
ment of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos
University [52].This data-set was built using 2 metre above surface air temperature
(Kelvin degrees) and 2 meter above surface specific humidity (kg of water/kg of air)
satellite observations from the Modern Era Retrospective Analysis for Research and
Applications Reanalysis.

Figure 2.1 shows the results of the modelling and Aedes sample locations. Tables
providing summary statistics for the climate values at Aedes point locations can be
found in Appendix A. More specific information on statistical methods and results
from this analysis can also found in Appendix A.
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2.2.2 Data extraction and methods to assess the impact of
climate, demographic and socio-economic factors on
dengue

The Global Administrative Unit Layers [54] data-set along with our Aedes distri-
bution maps (results figure 2.1, bottom right) were combined using R’s Sf package
to create regional shape files that could spatially capture and process the human
population and climate data for the main analysis. The GAUL data set contains
geographic information in the form of shape files that lay out within country bound-
aries linked to a unique nomenclature. Countries are broken down into statistical
subdivisions e.g.,˜ADM0 representing data at country level (e.g.˜US), ADM1 at
regional level (e.g.˜California).

Climate data for the main analysis i.e. measuring the impact of the climate
variables on dengue transmission, were sourced from the Climate Prediction Cen-
ter (CPC) of the National Centers for Environmental Prediction (NCEP), see [53].
These data represent a global summary of daily weather data. The CPC extracts
surface synoptic weather observations from the Global Telecommunications System
(GTS), which collects global data from a combination of weather station and satel-
lite observations. Files were processed in R with the NetCDF, Raster and Dismo
packages in order to create annual bio-climatic variables. The bio-climatic vari-
ables in this study were derived from daily maximum temperatures, daily minimum
temperatures and total daily rainfall.

Population count data to predict the number of persons at risk in a region were
sourced from the Socioeconomic Data and Applications Center’s Gridded Population
of the World data set [57]. This data set estimates population count for the years
2000, 2005, 2010, 2015, and 2020, consistent with national censuses and population
registers. Data were extracted from areas where vector presence was predicted. R’s
Zoo package was used to replace values for missing years, by implementing a linear
interpolation method that would predict trends between years. This way increases
or decreases in human population were controlled for in the final model.
All spatial data was aggregated to the state level.

Dengue Case Data

Dengue case data for Mexico 2011-2019 were obtained from the Mexican Deputy
General of Epidemiology web-page, which provided reports on all positive serious
and non-serious cases of dengue (www.gob.mx). All data was provided at the re-
gional level (ADM1 level). Case data for the United States were extracted from
www.cdc.gov/arbonet, since data are provided at the county level (ADM2 level) we
needed to aggregate them to the state level (ADM1 level) in order to match them
with the main data-set.

OECD Socio-Economic and Demographic Data

Socio-economic and demographic data were extracted from the OECD’s Regional
Statistics and Indicators Database [56]. This database provides comparable statistics
and indicators and is presented in yearly time series. To capture factors determin-
ing the vulnerability of a region, we selected the variables “Inter-regional migration
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rate”, “Population density growth” and ”Gross domestic product (GDP)”. For fac-
tors representing the socio-economic position of residents in a region we selected:
“Household income”, “Life expectancy at birth”, and a measure of housing over-
crowding “Number of rooms per person”. Furthermore, we selected “Secondary
education” which would also help to capture areas where there is a higher propor-
tion of manual labourer, e.g. agricultural workers or people working outdoors who
may be more exposed to mosquitoes. We also selected “Perceived social network
support”, “Self-evaluation of life satisfaction”, and “Perception of corruption” to
try to capture additional features of a region, such as quality of life. Since these
three variables yield some indication of how people perceive their surroundings and
quality of life, we assume that poorer scores will capture poor infrastructure, poor
public services, lack of basic provisions and lack of beneficial government inter-
vention. To represent access to healthcare we selected “Active Physicians rate”,
and variables which would represent access to information and personal knowledge
i.e., “Broadband access” (however knowledge is also captured by “Secondary educa-
tion”). Finally, younger people are more likely to be infected by dengue [50], so we
selected variables that represent the age structure of the population i.e. “Percent-
age of Old Population Group (65+)” and “Percentage of Youth population group
(0-14)”. Missing values were filled based on values for previous years or subsequent
years, depending on their position in the data set.
All data were joined using the year of observation and region code, using R’s Dplyr
package.
Table 2.1 provides summary statistics of all the collected data for the final models.

Statistic Min Max Mean St. Dev.

Primary Income of Private Households (USD per head) 2,541.8 1,159,750.0 68,486.2 229,793.6
Regional Gross Domestic Product per Capita 2,883.4 1,044,310.0 64,153.2 206,614.7
Share of labour force with at least secondary education 26.9 89.5 42.1 13.0
Share of households with broadband access 7.3 85.2 41.5 18.9
Self-evaluation of life satisfaction 6 9 7.2 0.6
Perceived social network support 59 96 79.4 9.6
Perception of corruption 36.5 90.1 63.3 11.1
Active Physicians Rate (physicians for 1000 population) 0.7 4.8 1.6 0.6
Life Expectancy at Birth 70.5 79.4 75.1 1.4
Number of rooms per person 0.7 2.5 1.1 0.3
Inter-regional migration rate, (% migrants over population) 0.5 7.0 2.0 1.3
Population density growth 97.8 179.6 122.4 12.9
Percentage of Old Population Group (65+) 3.1 20.5 7.2 2.5
Percentage of Youth Population Group (0-14) 16.3 34.4 27.5 2.9
DGE Mexico confirmed serious dengue cases 0 5,041 259.3 606.0
DGE Mexico confirmed non-serious dengue cases 0 9,195 627.2 1,161.6
CDC US confirmed dengue cases 0 53 0.3 3.5
Population in aedes infected regions 335,728.3 28,145,145.0 4,710,557.0 5,484,386.0
Mean (C) temperature of warmest quarter 16.2 32.3 25.6 3.7
Mean (C) Temperature of Coldest Quarter 9.0 25.3 18.0 4.3
Precipitation of warmest quarter 0.0 8.3 1.1 1.3
Precipitation of Warmest Quarter 0.1 24.9 9.1 4.7

Table 2.1: Final dataset 2012-2019

2.2.3 Statistical Methods

Factor Analysis - Data Processing for Regional Analysis

A preliminary correlation analysis (see additional files S8-S9 - diagnostics) revealed
how some of the socio-economic variables are strongly correlated with each other,
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and if included in a regression would give rise to multi-collinearity issues. By over-
inflating the standard errors, multi-collinearity makes some variables statistically
insignificant when they should be significant. To address this issue, following similar
methods to [58], a factor analysis by maximum likelihood (VARIMAX rotation) was
performed on socio-economic variables.
Factor analysis is a method for investigating whether a number of variables of interest
Y1, Y2, ..., Yn, are linearly related to a smaller number of latent (i.e.˜not directly
measured) factors F1, F2, ...Fk. The basic concept of factor analysis is that multiple
observed variables have similar patterns because they are all associated with a latent
variable. The factors are constructed in such a way that they capture the maximum
amount of common variance (correlation) of the original items; the eigenvalue is a
measure of how much of the variance of the observed variables a factor explains.
The factor analysis can be formalized as follows:

Y1 = β10 + β11F1 + β12F2 + ...+ β1kFk + ε

Y2 = β20 + β21F1 + β22F2 + ...+ β2kFk + ε

YN = βn0 + βn1F1 + βn2F2 + ...+ βnkFk + ε

Before performing factor analysis, all variables had to be standardised to z-
scores (x− µ)/σ to ensure that they were on the same scale. After performing the
factor analysis, the predicted values for the factors for any individual region can
be estimated. These predictions, known as factor scores, are weighted sums of the
values of the observed items. Roughly, items with a stronger correlation with a
factor component (i.e.˜those with larger loadings) will receive higher weights in the
calculation of a score for that factor.

Quality of life index - Data Processing for Regional Analysis

We created a ’Quality of Life Index’ by combining 3 variables from the OECD re-
gional database: ’Self-evaluation of life satisfaction’, ’Perceived social network sup-
port’ and ’Perception of corruption’. The variables were standardised, harmonised
and combined into a composite indicator, capturing a latent quality of life measure,
because each element on its own is unlikely to have a direct relationship with dengue.

General additive regression model to assess impact of independent vari-
ables on dengue case data at regional level

One of the main issues with our data-set is that it did not meet some basic as-
sumptions for statistical inference, and specifically the data are not independent
and identically distributed random variables (iid). More specifically, the data-set
captured repeated measurements over the same regions, and observations were not
independent because of spill over effects from neighbouring regions, therefore we
needed to implement an appropriate statistical design to control for both tempo-
ral and spatial pseudo replication (lack of independence). We could deal with this
in two ways, 1) either using a generalized linear mixed model (GLMM) approach,
relaxing the assumption of independence and estimating the spatial/temporal cor-
relation between residuals, or 2) model the spatial and temporal dependence in the
systematic part of the model [59]. We opted to use a Generalized Additive Model
(GAM) using R’s Mgcv statistical package because of its versatility and ability to
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fit complex models that would converge even with low numbers of observations and
could capture potential complex non-linear relationships. One of the advantages of
GAMs is that we do not need to determine the functional form of the relationship
beforehand. In general, such models transform the mean response to an additive
form so that additive components are smooth functions (e.g., splines) of the covari-
ates, in which functions themselves are expressed as basis-function expansions. The
spatial auto-correlation in the GAM model was approximated by a Markov random
field (MRF) smoother, defined by the geographic areas and their neighbourhood
structure. We used R’s Spdep package to create a queen neighbours list (adjacency
matrix) based on regions with contiguous boundaries i.e. those sharing one or more
boundary point. We used a medium rank MRF, which represented roughly one
coefficient for two areas. The local Markov property assumes that a region is con-
ditionally independent of all other regions unless regions share a boundary. This
feature allowed us to model the correlation between geographical neighbours and
smooth over contiguous spatial areas, summarizing the trend of the response vari-
able as a function of the predictors, for further information see section 5.4.2 of [59].
In order to account for variation in the response variable over time, not attributed
to the other explanatory variables in our model, we used a saturated time effect for
years, where a separate effect per time point is estimated.
We first tried to fit our model using a Poisson distribution. However, the mean of
our dependent variable (dengue cases by region and year) was lower than its variance
- E(Y) <Var(Y), suggesting that the data are over-dispersed. We also tried to fit
our models using the negative binomial, quasi poisson and tweedie distribution, all
particularly suited when the variance is much larger than the mean. After several
tests, we concluded that the tweedie distribution worked well with our data and
allowed us to model the incident rate. Analysis of model diagnostic tests didn’t
reveal any major issues, in general residuals appeared to be randomly distributed
(see additional files S10-S19 - diagnostics).
Tweedie distributions are defined as subfamily of (reproductive) exponential disper-
sion models (ED), with a special mean-variance relationship.
A random variable Y is Tweedie distributed TWp(µ, σ

2) if Y ED(µ, σ2), with mean
= µ = E(Y ), positive dispersion parameter σ2 and V ar(Y ) = µσ2.

The empirical model can then be written as:

E(Y ) = f1(Xit) + fn(Yeart) + fm(Regioni)

Where the f(.) stands for smooth functions; E(Y )it is equal to dengue incidence
in region i at time t, which we assume to be Tweedie distributed; Xit - is a vector of
socio-economic, demographic and climate variables. Y eart is a function of the time
intercept and Regioni represents neighbourhood structure of region.
We run two separate sets of analyses: one comparing regions in the US and Mexico
and another one looking at Mexico only, to check for robustness.

2.3 Results

Figures 2.2 and 2.3 provide a descriptive overview of the study regions, a charac-
terisation of their environments and the reported disease incidence for those years.
As we can observe, the majority of dengue cases are reported in tropical and sub
tropical climates.
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Figure 2.2: Koppen-Geiger Climate Classification in study regions (Source:
koeppen-geiger.vu-wien.ac.at)
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Figure 2.3: Crude incidence rates of dengue per 100,0000 people
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Tables 2.2 and 2.3 provide the results of the factor analysis i.e. the weighting of
our socio-economic indicators.

Factor1
Primary Income of Private Households (USD per head) 0.91
Share of labour force with at least secondary education 0.95

Life Expectancy at Birth 0.78
Number of rooms per person 0.97

Table 2.2: Socio-economic Factor Analysis Results US/MEX

Factor1
Primary Income of Private Households (USD per head) 0.41
Share of labour force with at least secondary education 0.95

Life Expectancy at Birth 0.59
Number of rooms per person 0.65

Table 2.3: Socio-economic Factor Analysis Results Mexico

Table 2.4 shows the results for the regression model comparing confirmed dengue
cases in the US and Mexico for 2011-2019. Table 2.5 restricts the analysis to Mexico
only since we could exploit a better data-set in terms of case reporting, scale, and
we could explore the impact of the socio-economic variables individually since, there
was less correlation with this type of data between Mexican regions.

2.3.1 US/Mex analysis

Socio-economic and demographic indices Mexico/US

It was not possible to explore the individual impact of all of the variables in our
data-set because of collinearity issues. Population density was found to be positively
correlated with GDP and primary income. “Percentage of Old Population Group
(65+)” was negatively correlated with “Percentage of Youth Population Group (0-
14)” (see Appendix A1.3-4) diagnostics). For this reason, we performed a factor
analysis to reduce the number of variables, as explained in more detail in the section
on statistical methods. The Mexico/US factor analysis captured the variance in 4
highly correlated variables: higher share of labour force with at least secondary
education, more rooms per inhabitant, life expectancy at birth, primary income of
households, and yielded one composite indicator (see Table 2.2) , which we included
as a regressor. A priori, the socio-economic indicator is expected to have a negative
association with dengue.

We built our statistical model in a stepwise fashion so we could analyse it using
the lowest Akaike Information Criterion (AIC) which would help us validate the
quality of statistical models for our dataset. The first column of Table 2.4 (GDP
Model) shows the association between regional GDP and dengue cases across the re-
gions; the second column (SE Model) shows the association between regional dengue
cases and the socio-economic indicator derived through factor analysis, plus other
variables such as active physician rate, broadband access and the quality of life in-
dex. Column3 (Dem Model) includes demographic variables, such as inter-regional
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GDP Model SE Model Dem Model Clim Model GDP full model Full Model
Intercept 3.19∗∗∗ 2.44∗∗∗ 2.53∗∗∗ 2.46∗∗∗ 2.59∗∗∗ 2.22∗∗∗

(0.26) (0.22) (0.23) (0.23) (0.22) (0.20)
Per capita GDP −0.00∗∗∗ −0.00∗∗∗

(0.00) (0.00)
Socio-economic index 1.87∗∗∗ 1.78∗∗∗

(1.97) (1.92)
Active Physicians per 1000 1.72∗∗ 1.87∗∗∗ 1.88∗∗∗

(1.90) (1.97) (1.98)
Households (%) with broadband access 1.94∗∗∗ 1.95∗∗∗ 1.95∗∗∗

(1.99) (1.99) (1.99)
Quality of Life index 1.78∗ 1.00 1.00

(1.92) (1.00) (1.00)
Inter-regional migration rate 1.00∗∗∗ 1.65 1.61

(1.00) (1.85) (1.82)
Pop density growth 1.82 1.00∗∗∗ 1.00∗∗∗

(1.96) (1.00) (1.01)
Percentage of Population (65+) 1.97∗∗∗ 1.93∗∗∗ 1.79∗∗∗

(1.99) (1.96) (1.89)
Mean temp (C) of coldest quarter 1.90∗∗∗ 1.88∗∗∗ 1.83∗∗∗

(1.98) (1.97) (1.95)
Prec of warmest quarter 1.57∗ 1.63∗ 1.53∗∗

(1.81) (1.84) (1.76)
Year 7.27∗∗∗ 6.75∗∗∗ 6.99∗∗∗ 7.28∗∗∗ 6.61∗∗∗ 6.61∗∗∗

(8.00) (8.00) (8.00) (8.00) (8.00) (8.00)
Region 13.13∗∗∗ 12.76∗∗∗ 13.04∗∗∗ 12.72∗∗∗ 10.46∗∗∗ 10.45∗∗∗

(13.91) (13.72) (13.69) (13.81) (12.24) (12.19)
AIC 2339.82 2322.32 2332.83 2285.47 2233.10 2231.57
Deviance 1288.59 1205.43 1257.24 1143.83 967.55 962.59
Deviance explained 0.51 0.55 0.53 0.59 0.66 0.66
Dispersion 3.52 3.37 3.47 3.20 2.84 2.83

R2 0.36 0.42 0.40 0.40 0.51 0.51
Num. obs. 306 306 306 306 306 306
Num. smooth terms 2 6 5 4 10 11
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 2.4: Final Regression Models US/MEX: EDF value is reported as the coeffi-
cient, and DF is included in parentheses (not standard errors because a chi-square
test is used for the smooth terms).

migration rate, population density growth and the percentage of older population
(65+). Column 4 (Clim Model) includes the climate variables mean temperature
of the coldest quarter and precipitation in the warmest quarter. The “full model”
in column 5 shows the relationship between dengue incidence and all explanatory
variables in our final model. Table 2.1 also summarises the relevant statistics (AIC,
Deviance, Adjusted R squared and so on) to compare the different specifications;
the full model has the best fit (lower AIC and higher adjusted R squared), followed
by the one in which we control only for the climate variables (as well as the year,
regional effects); the first model, controlling for GDP alone, has the highest AIC
and has a worse fit than the specification including the socio-economic indicators.
When controlling for demographic and climate variables, the impact of the socio-
economic indicators still remains statistically significant, as well as the impact of
temperature.
Please note that as we are not estimating a standard regression model, the figures
reported should not be read as coefficients, but degrees of freedom of the smooth
terms. Given that we cannot interpret the coefficients to infer the sign and magni-
tude of the relationship, we visualise it by plot.

Figure 2.4 plots the partial effects - the relationship between a change in each
of the covariates and a change in the fitted values in the full model; the first plot
shows that the socio-economic index has linear negative impact, but the relationship
becomes weaker at very high scores; given the weight of each variable in the factor
analysis, the results can be interpreted as an increase higher share of labour force
with at least secondary education, more rooms per inhabitant, life expectancy at
birth, primary income of households are associated with fewer dengue cases. Regions
with better broadband access tend to be those with lower incidence rates of dengue,
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Figure 2.4: Partial effects of explanatory variables: GAM Mex/US model
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however in this case the relationship is flat at low levels of broadband penetration
(below 40 percent) and then turns negative and quadratic at higher levels of access.
These results could suggest residents are more likely to search for information on
dengue prevention measures consequently lowering transmission potential, or when
suffering with symptoms may be more likely to seek medical advice, therefore break-
ing the transmission cycle; these results are consistent with findings by [63–64]. This
result also could be an indicator of more advance and urbanised regions vs agricul-
tural and less developed regions. It is reported that dengue tends to affect more
those working in labour-intensive industries, such as agriculture or fishing [65–66].
The variable active physician rates has a positive impact on the incidence of dengue,
in that regions with more active physicians tend to have higher incidence; however,
this is likely due to more accurate reporting. Even in this case, the relationship is
concave - positive up to 3 percent rate and flat afterwards.
The impact of the demographic variables on the incidence of dengue also follows
the expected sign, with inter-regional migration rate and population density growth
being associated with a linear increase in the incidence of dengue; the presence of
an older population is associated with higher incidence of dengue up to a certain
level - it peaks at around 14 percent - and then a reduction, as can be seen from
Figure 2.4. One possible explanation for this is that a higher proportion of older
people means a more vulnerable population, however very high rates are also asso-
ciated with wealthier regions, which offset the main impact of age. Figure 2.4 also
show the impact of the Mean temperature (◦C) of coldest quarter variable is almost
linear. We can see that most cases occur in regions which have particularly mild
cold seasons. This is concurrent with the literature, we would expect to see more
cases of dengue in regions with tropical climates, where there is a distinct absence
of a cold season, during which low temperatures would kill the mosquitoes off or
cause mosquitoes to overwinter effectively inhibiting disease transmission, instead
such conditions allow the virus and mosquitoes to persist throughout the year.

The relationship between rainfall and dengue incidence in the full model is
slightly negative and significant; even though this finding could appear counter
intuitive, it is probably due to the fact that mosquito larvae can be washed away
during intense rainfall [67]. Furthermore, both Aedes mosquitoes can survive in
drier climates than expected, by exploiting artificial water sources and man-made
habitats, as already mentioned in the introduction.

2.3.2 Mex analysis

For our second analysis focusing on differential diffusion of dengue within Mexican
regions, we were able to analyse variables individually since there there is signifi-
cantly less correlation between the socio-economic variables. However, we could not
select ”population density” because of a correlation with ”primary income of house-
hold”s and ”GDP”. ”Percentage of Old Population Group (65+)” was negatively
correlated with ”population density growth” so was not included in the final model.
Furthermore, ”Percentage of population share (0-14)” was highly correlated with
”access to broadband” and ”workforce with secondary education” (and negatively
correlated with population 65+), so we didn’t include it in the study. We again built
our second statistical model in a stepwise fashion so we could analyse it using the
lowest Akaike Information Criterion (AIC) which would help us validate the quality
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Figure 2.5: Partial effects of explanatory variables: GAM Mexico model

of statistical models for our data set.
Figure 2.5 and Table 2.5 present the results of our second analysis focusing only

on Mexican regions.
Our findings for the second analysis are similar to the first: the most significant

variables are ”Share of households with internet access”, ”Active Physicians Rate
(1000 pop)” and ”Mean temperature (C) of coldest quarter”. Our socio-economic in-
dicator was a good predictor of dengue incidence, although when ”GDP” was paired
with other individual variables from the factor analysis (except primary income) it
helped to create a very useful model. The best fit model was our final specification
using our socio-economic variables individually; however, primary income of house-
holds is not a reliable predictor of dengue, since, by the concave relationship, it
would appear that gains in economic activity may increase the spread of the virus
(for instance because of movement of goods and people), but could also be correlated
with higher reporting. One of the strongest predictors of dengue in our final spec-
ification is ”Share of labour force with secondary education”. As previously noted,
this is consistent with other findings by [65–66] as dengue tends to affect more those
working in labour-intensive industries, such as agriculture or fishing.

2.4 Discussion and Conclusions

The study investigated the impact of socio-economic, demographic and climate vari-
ables on the distribution of dengue. Its original contribution is that it selected factors
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SE Model Dem Model Clim Model GDP full model SEindex model Full Model
Intercept 2.57∗∗∗ 2.89∗∗∗ 2.71∗∗∗ 2.20∗∗∗ 2.46∗∗∗ 2.44∗∗∗

(0.20) (0.21) (0.23) (0.24) (0.19) (0.18)
Per capita GDP 0.00∗

(0.00)
Socio-economic index 1.96∗∗∗

(1.99)
Income of Private Households 1.95∗∗∗ 1.83∗∗

(2.00) (1.96)
Share households with broadband 1.88∗∗∗ 1.93∗∗∗ 1.93∗∗∗ 1.92∗∗∗

(1.98) (1.99) (1.99) (1.99)
Active Physicians (1000 pop) 1.00∗∗∗ 1.81∗∗∗ 1.75∗∗∗ 1.81∗∗∗

(1.00) (1.95) (1.92) (1.95)
Number of rooms pp 1.95∗∗∗ 1.00 1.00

(1.99) (1.00) (1.00)
Labour force with secondary edu 1.97∗∗∗ 1.95∗∗∗ 1.95∗∗∗

(2.00) (1.99) (1.99)
Quality of Life index 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00)
Inter-regional migration rate 1.00∗∗∗ 1.00 1.00 1.00∗

(1.00) (1.00) (1.00) (1.00)
Pop density growth 1.51 1.00∗ 1.00 1.00∗

(1.74) (1.00) (1.00) (1.00)
Mean temp (C) of coldest quarter 1.83∗∗∗ 1.89∗∗∗ 1.94∗∗∗ 1.89∗∗∗

(1.96) (1.98) (1.99) (1.98)
Precip of warmest quarter 1.53 1.71∗ 1.68 1.71∗

(1.76) (1.90) (1.88) (1.90)
Year 6.72∗∗∗ 6.90∗∗∗ 7.27∗∗∗ 6.45∗∗∗ 6.53∗∗∗ 6.44∗∗∗

(8.00) (8.00) (8.00) (8.00) (8.00) (8.00)
Region 13.18∗∗∗ 13.17∗∗∗ 12.07∗∗∗ 12.19∗∗∗ 12.32∗∗∗ 12.13∗∗∗

(13.89) (13.90) (13.57) (13.52) (13.59) (13.47)
AIC 2251.33 2340.28 2270.07 2207.77 2212.08 2204.83
Deviance 978.13 1242.10 1071.46 871.99 886.18 859.68
Deviance explained 0.61 0.47 0.57 0.66 0.66 0.67
Dispersion 3.00 3.57 3.17 2.76 2.78 2.73

R2 0.47 0.38 0.40 0.52 0.51 0.51
Num. obs. 288 288 288 288 288 288
Num. smooth terms 8 4 4 11 10 12
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 2.5: Final Regression Models Mexico:EDF value is reported as the coefficient,
and DF is included in parentheses (not standard errors because a chi-square test is
used for the smooth terms).

shown to predict dengue at a local level and tested whether the association could
be generalised to the regional or state level. In addition, it showed the potential
development of more sophisticated socio-economic indicators using regional and in-
ternationally available data. The study identified which regions are most at risk, by
estimating where dengue vectors are likely to occur given their suitability to climate
conditions in terms of receptivity and vulnerability. By estimating the chance of
a vector occurring in a region, we could then assess the impact of socio-economic,
demographic and climate factors on the incidence of dengue. The results confirmed
a strong association between our novel indices of socio-economic factors and dengue
cases per region. Such results are consistent with the findings reported by [15, 17,
43–46, 49, 62]. Two main lessons can be drawn from this study: first, while higher
GDP is generally associated with a drop in the incidence of dengue, a more granular
analysis revealed that the crucial factors are a rise in education (with fewer jobs in
the primary sector) and better access to information or technological infrastructure.
For this reason, the use of more sophisticated measures, aside from GDP, should be
taken into account when building models that try to predict disease distribution.
The use of more granular socio-economic indicators can explain with greater accu-
racy the differences in the spread of disease in places with similar physical geography
and ecological characteristics. In addition, public health authorities should be aware
of the presence of non-linearities in relationships between dengue and income. Sec-
ondly, factors that were shown to have an impact of dengue at the local level are also
good predictors at the regional level. Given that data for these indicators are avail-
able at a sub-national scale for OECD countries and selected OECD non-member
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economies, these indices may help us better understand factors responsible for the
global distribution of dengue and also, given a warming climate, may help us to
better predict vulnerable populations. Although the variables used in this study do
not represent disease transmission mechanisms directly, understanding the relative
impact of socio-economic, demographic and climate factors on disease outcomes can
help risk assessors predict where diseases are likely to occur in the future, by iden-
tifying locations with vulnerabilities in public health systems and/or by identifying
impoverished areas that tend to be susceptible to disease. Our findings are not only
useful for public health, but also contribute to a wider scholarly debate on whether
and to what extent can economic growth (measured via GDP) contribute to better
outcomes of health and well-being. Finally, it is important to note that, with any
analysis dealing with regional data, results should be taken with caution because
of issues of scale and uncertainty introduced by the aggregation procedure. Fur-
ther studies seeking to test the robustness of the indicators examined in this study
should try to source data at a more refined scale, and test how these indicators can
generalise across the different scales.
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http://www.jstor.org/stable/j.ctt7t14n
https://reliefweb.int/report/mexico/acaps-briefing-note-mexico-dengue-fever-16-september-2019


Page 33 Chapter 2

global dataset of remotely sensed bioclimatic variables for ecological modelling. Sci-
entific Data. 2017;4:170078. doi:10.1038/sdata.2017.78 https://www.nature.com/articles/sdata201778#supplementary-
information.

53. CPC/NCEP. National center for atmospheric research. 1987. http://rda.

ucar.edu/datasets/ds512.0/.
54. FAO-UN. Global administrative unit layers (gaul). 2014. http://www.fao.

org/geonetwork/srv/en/metadata.show?id=12691.
55. Healthmap. Dengue case reports 2011-2017. 2017. http://www.healthmap.

org/en/.
56. OECD. Regional statistics and indicators database. 2018. http://stats.

oecd.org/Index.aspx?DataSetCode=REGION_DEMOGR.
57. SEDAC. Gridded population of the world, version 4 (gpwv4): Population

count, revision 11. 2018. https://doi.org/10.7927/H4JW8BX5.
58. GFC. Spatial data analysis and modeling with r. 2018;2018. http://

rspatial.org/index.html.
59. Aswi A, Cramb SM, Moraga P, Mengersen K. Bayesian spatial and spatio-

temporal approaches to modelling dengue fever: A systematic review. Epidemiology
and infection. 2018;147:1–14.

60. Wood SN. Generalized additive models: An introduction with r. Book. CRC
press; 2017.

61. Gomez-Dantes H. Dengue in the americas. A problem of regional health.
Salud publica de Mexico. 1991;33:347–55.

62. Brunkard JM, Cifuentes E, Rothenberg SJ. Assessing the roles of temper-
ature, precipitation, and enso in dengue re-emergence on the texas-mexico border
region. Salud Publica De Mexico. 2008;50:227–34.

63. Gluskin RT, Johansson MA, Santillana M, Brownstein JS. Evaluation of
internet-based dengue query data: Google dengue trends. Plos Neglected Tropical
Diseases. 2014;8.

64. Romero-Alvarez D, Parikh N, Osthus D, Martinez K, Generous N, Valle
S del, et al. Google health trends performance reflecting dengue incidence for the
brazilian states. BMC Infectious Diseases. 2020;20:252.

65. Nakano K. Future risk of dengue fever to workforce and industry through
global supply chain. Mitigation and adaptation strategies for global change. 2018;23:433–
49.

66. Jakobsen F, Nguyen-Tien T, Pham- Thanh L, Bui VN, Nguyen-Viet H,
Tran- Hai S, et al. Urban livestock-keeping and dengue in urban and peri-urban
hanoi, vietnam. PLOS Neglected Tropical Diseases. 2019;13:e0007774.

67. Cabrera M, Taylor G. Modelling spatio-temporal data of dengue fever us-
ing generalized additive mixed models. Spatial and Spatio-temporal Epidemiology.
2019;28:1–13.

https://doi.org/10.1038/sdata.2017.78%0Ahttps://www.nature.com/articles/sdata201778#supplementary-information
https://doi.org/10.1038/sdata.2017.78%0Ahttps://www.nature.com/articles/sdata201778#supplementary-information
http://rda.ucar.edu/datasets/ds512.0/
http://rda.ucar.edu/datasets/ds512.0/
http://www.fao.org/geonetwork/srv/en/metadata.show?id=12691
http://www.fao.org/geonetwork/srv/en/metadata.show?id=12691
http://www.healthmap.org/en/
http://www.healthmap.org/en/
http://stats.oecd.org/Index.aspx?DataSetCode=REGION_DEMOGR
http://stats.oecd.org/Index.aspx?DataSetCode=REGION_DEMOGR
https://doi.org/10.7927/H4JW8BX5
http://rspatial.org/index.html
http://rspatial.org/index.html


Chapter 3

The rise of West Nile Virus in
Southern and Southeastern
Europe: A spatial–temporal
analysis investigating the
combined effects of climate, land
use and economic changes

34



One Health 13 (2021) 100315

Available online 24 August 2021
2352-7714/© 2021 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

The rise of West Nile Virus in Southern and Southeastern Europe: A 
spatial–temporal analysis investigating the combined effects of climate, 
land use and economic changes 

Matthew J. Watts a,*, Victor Sarto i Monteys a,b, P. Graham Mortyn a,d, Panagiota Kotsila a,c 

a Institute of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), Bellaterra, Spain 
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A B S T R A C T   

West Nile Virus (WNV) has recently emerged as a major public health concern in Europe; its recent expansion 
also coincided with some remarkable socio-economic and environmental changes, including an economic crisis 
and some of the warmest temperatures on record. Here we empirically investigate the drivers of this phenom-
enon at a European wide scale by constructing and analyzing a unique spatial–temporal data-set, that includes 
data on climate, land-use, the economy, and government spending on environmental related sectors. Drivers and 
risk factors of WNV were identified by building a conceptual framework, and relationships were tested using a 
Generalized Additive Model (GAM), which could capture complex non-linear relationships and also account for 
spatial and temporal auto-correlation. Some of the key risk factors identified in our conceptual framework, such 
as a higher percentage of wetlands and arable land, climate factors (higher summer rainfall and higher summer 
temperatures) were positive predictors of WNV infections. Interestingly, winter temperatures of between 2 ◦C 
and 6 ◦C were among some of the strongest predictors of annual WNV infections; one possible explanation for 
this result is that successful overwintering of infected adult mosquitoes (likely Culex pipiens) is key to the in-
tensity of outbreaks for a given year. Furthermore, lower surface water extent over the summer is also associated 
with more intense outbreaks, suggesting that drought, which is known to induce positive changes in WNV 
prevalence in mosquitoes, is also contributing to the upward trend in WNV cases in affected regions. Our in-
dicators representing the economic crisis were also strong predictors of WNV infections, suggesting there is an 
association between austerity and cuts to key sectors, which could have benefited vector species and the virus 
during this crucial period. These results, taken in the context of recent winter warming due to climate change, 
and more frequent droughts, may offer an explanation of why the virus has become so prevalent in Europe.   

1. Introduction 

Over the past few decades, new health risks have been emerging in 
Europe, particularly with the recent appearance of vector borne diseases 
(VBDs) such as Chikungunya, West Nile Virus (WNV), Dengue (DENV-1) 
and Crimean-Congo haemorrhagic fever [1–3]. Rising temperatures are 
likely increasing the transmission potential of tropical VBDs in Europe, 
by affecting the geographic spread, abundance, survival and feeding 
activity of vector species and benefiting pathogen development in 
infected vectors [4–9]. This, combined with other factors such as human 

population growth, intensive animal rearing, global commerce, air 
travel, urbanization and land-use changes, is increasing the chances of 
novel diseases to enter and emerge in Europe [10–13]. 

In this study, we focus on WNV, a single-stranded RNA Flavivirus 
closely related to other Flaviviridae pathogens such as dengue, Japanese 
encephalitis and yellow fever viruses [14]. Although WNV is a zoonotic 
pathogen, infecting mammals, particularly humans and horses, the 
transmission cycle is believed to be driven mainly by mosquitoes and 
birds [15], although some wild mammals may serve as intermediate 
hosts for West Nile virus [16]. 
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3.1 Introduction

Over the past few decades, new health risks have been emerging in Europe, partic-
ularly with the recent appearance of vector borne diseases (VBDs) such as Chikun-
gunya, West Nile Virus (WNV), Dengue (DENV-1) and Crimean-Congo haemor-
rhagic fever [1, 2, 3]. Rising temperatures are likely increasing the transmission po-
tential of tropical VBDs in Europe, by affecting the geographic spread, abundance,
survival and feeding activity of vector species and benefiting pathogen development
in infected vectors [4, 5, 6, 7, 8, 9]. This, combined with other factors such as human
population growth, intensive animal rearing, global commerce, air travel, urbaniza-
tion and land-use changes, is increasing the chances of novel diseases to enter and
emerge in Europe [10, 11, 12, 13].

In this study, we focus on WNV, a single-stranded RNA Flavivirus closely re-
lated to other Flaviviridae pathogens such as dengue, Japanese encephalitis and
yellow fever viruses [14]. Although WNV is a zoonotic pathogen, infecting mam-
mals, particularly humans and horses, the transmission cycle is believed to be driven
mainly by mosquitoes and birds [15], although some wild mammals may serve as
intermediate hosts for West Nile virus [16].

West Nile Virus (WNV) has recently emerged as a major public health concern
in Europe, its recent expansion also coincided with some remarkable socio-economic
and environmental changes, including an economic crisis and some of the warmest
temperatures on record. To date, there has been very little research investigating
this phenomenon at a European wide scale and more work is required to reveal
the key drivers of the disease. A better understanding of this phenomenon can
help public health officials design health prevention measures and develop better
predictive models for public health risk management. More specifically, little work
has been done to explore the association between the rise of WNV in Europe and
the economic crisis unfolding from 2008 on-wards. Although the study of physical
factors is key in understanding disease transmission and distribution, few articles
have considered links among societal factors, like changes in the economy and in
policy making [17, 18], which we know can have wide and unintended effects on
natural ecosystems and, eventually, on disease [19]. Although examining such factors
presents certain challenges and uncertainties, given the scales involved and lack of
data, the continuation of abrupt socio-economic changes (brought by the COVID-
19 pandemic) and climate change impacts indicate an urgent need to examine such
statistical relationships more closely, at the very least to open up scholarly debate
and instigate further research on the topic.

Since 2010, WNV has been reported in 14 EU countries including Austria, Bul-
garia, Croatia, Cyprus, Czechia, France, Greece, Hungary, Italy, the Netherlands,
Portugal, Romania, Slovenia and Spain; and has also been reported in five neigh-
bouring EU candidate countries including Albania, Montenegro, Serbia, Turkey and
Kosovo [20, 21]. In 2010, major outbreaks hit Greece, Hungary, Romania, and
Turkey. Since then, outbreaks have occurred annually in multiple regions, including
more northerly regions that had not previously reported cases, like Germany and
the Czech Republic (see Figure 3.1). This culminated in another major outbreak in
2018, that affected more regions than had been recorded in previous years.

Generally, WNV distribution is determined by the presence of suitable mosquito
vectors and avian hosts, such as terrestrial and wetland birds. The spring migration
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of birds from infected regions of Sub-Saharan Africa to temperate regions of Europe
is considered to be one of the main drivers of the disease in Europe [22, 15]. In
Europe, the main vectors are Culex pipiens, Culex modestus, and Coquillettidia
richiardii, although Aedes species can also transmit the disease [15] (see [23, 24, 25]
for vector distribution maps).

Although WNV infections are more common of late, sporadic outbreaks have
occurred in humans and equines in southern and eastern European countries over
the last century; the majority of which have occurred in wetland areas and densely
inhabited urban areas [15].

To examine the recent rise of WNV infections in Europe in more depth, we empir-
ically investigate the combined effect of three sets of factors: (1) Climate/environmental
factors including temperature, rainfall and surface water; (2) land-use factors includ-
ing continuous / discontinuous urban fabric which represents physical characteristics
of urban areas e.g. densely populated areas like cities or less dense areas like vil-
lages, regional coverage of wetlands and arable land; (3) socio-economic factors that
capture the associations of the economic crisis and are proxied by GDP growth, cen-
tral government spending on areas of the environment including agriculture, forestry
and fisheries and waste water management. Our analysis focuses on regions in the
7 European countries where WNV has been regularly reported - Austria, Bulgaria,
Croatia, Greece, Hungary Italy, and Romania. The time series data set captures
the time period before and after the economic crisis (2007-2019).

3.1.1 Conceptual framework

WNV transmission requires the presence of competent vectors, a suitable climate
and a susceptible host population. Studying WNV transmission at a macro scale
presents significant challenges, since key data on the seasonal and annual abundance
of competent mosquitoes and birds are not available; this is further complicated
given the hundreds of potential host bird species in Europe [26]. To explain human
infections, we therefore use environmental risk factors known to attract vector, and
host. Furthermore, vector abundance for a given season is modulated by physical
and environmental factors, such as temperature, rainfall and water resource avail-
ability [15, 27, 14]. We therefore use proxies that can predict mosquito abundance.

Modulating Factors

Typically, with most tropical and temperate mosquito species, elevated temper-
atures allow vector populations to increase their growth and reproduction rates,
which in turn decreases blood meals intervals, accelerating transmission and virus
evolution rates [28]. Furthermore, increasingly warmer winters allow mosquito vec-
tors to expand their breeding seasons and survive during winter, either as eggs or as
overwintering female mosquitoes. Weather conditions and climatic factors can also
affect vector competence [14]. Viral replication rates and transmission of WNV are
modulated by ambient temperature, affecting the length of the extrinsic incubation
period (EIP), seasonal phenology of mosquito host populations and also times at
which humans and mosquitoes come into contact [29]. Generally, higher rainfall in
warmer weather can lead to higher mosquito abundance and disease transmission
by increasing the potential habitat suitable for mosquito reproduction, e.g. standing
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water [30, 15, 31]. Conversely, sometimes drought and shrinking water resources
can can also bring some species into closer contact, facilitating transmission and
amplification of WNV within these locations [14]. To represent these points in our
data-set / model, we selected mean winter temperature, mean summer temperature,
number of days of rainfall in summer and summer surface water extent (a count of
the number of satellite surface water observations per region represented as pixels
in a geographic raster layer).

Risk factors

West Nile virus circulation in Europe is usually confined to two different cycles and
ecosystems: the sylvatic and the urban synanthropic cycle. Rural locations, includ-
ing river deltas and floodplain areas, help create a sylvatic cycle, where wild, usually
nesting wetland birds and ornithophilic mosquitoes Culex pipiens, Culex modestus,
Coquillettidia richiardii) create the conditions for maintaining WNV transmission.
In urban synanthropic cycles, mosquitoes, such as Culex pipiens or Culex modestus,
feed on domestic birds and humans. However, these two cycles can overlap, so ar-
eas with wetlands close to human populations can be particularly vulnerable to the
disease [15]. Irrigation from agriculture is also heavily linked to a greater incidence
of human and veterinary WNV infections [32]. In order to represent these factors
in our data set and final models, we selected land use variables (% cover) represent-
ing urban areas (metro areas), semi urban areas (lower density human settlements),
wetlands and arable land.

Economic crisis

We would expect the repercussions of an economic crisis to affect WNV trans-
mission in several ways, at the individual level (bottom-up) and government level
(top-down). Previous studies have shown that socio-economic factors tend to in-
fluence the distribution and intensity of mosquito-borne diseases both pre-infection
and post-infection [33]. Poorer communities are less likely to have air-conditioned
homes, tap water and adequate drainage, and therefore may be more exposed to
biting mosquitoes. Several studies have demonstrated the link between WNV in-
fections and a range of local-level socio-economic and demographic factors such as
income, sanitation, and population density [22, 34, 35]. In general, we would expect
to see a drop in living standards in regions experiencing an economic shock followed
by sluggish economic growth. Those people most affected would find it more difficult
to prevent mosquito infections through direct measures i.e. sprays and repellents and
less likely to pay for things that indirectly influence WNV transmission, like the up-
keep of homes and use of air conditioning. Factors associated with higher economic
status can also bring humans into closer contact with mosquitoes, for example, home
owners with gardens and potted plants, swimming pools and ponds or having good
access to recreational space where mosquitoes can breed [36, 37]. However, neglect
of such things through economic decline can have further unintended effects, even
in wealthy neighborhoods [38, 39, 40].

Mosquito control (mosquito abatement) is regarded as an effective way to re-
duce the incidence of WNV in humans [14]. It is well documented, for example,
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that during the European debt crisis, the Greek government cut mosquito abate-
ment budgets, which may have led to a rise in vector borne disease outbreaks such as
malaria and WNV [41]. WNV transmission is most likely to occur in places that fa-
vor the larval development of Culex pipiens, such as poorly drained low-lying areas,
urban storm-water catch basins and manhole chambers, roadside ditches, sewage
treatment lagoons, and man-made containers around houses, or other aquatic envi-
ronments where mosquitoes deposit their eggs [14]. Additionally, during periods of
austerity, governments can neglect hazard prevention efforts, such as spending on
flood defences, as well as essential works like sanitation and up-keep and improve-
ment of infrastructure [42]. Such degradation can lead to the creation of mosquito
habitats [14, 15, 42]. Another critical component of preventing disease transmission
is through public education programs and health promotion, educating the public
on measures which can prevent being bitten can reduce risk of exposure. In gen-
eral, we would expect to see a general deterioration in a government ability to run
such programs during crisis and austerity. Other consequences of austerity can be
expected in decreased disease detection because of cuts in public health services,
prolonged periods between initial infection and treatment seeking due to dysfunc-
tional healthcare systems, and reduced treatment of disease, all of which can lead
to more intense outbreaks [43].

In order to represent the economic crisis in our model, we selected regional GDP
and central government spending on healthcare; agriculture, forest and fisheries
management; and wastewater management. Rather than using actual annual values,
or year on year growth, we look at increases or decreases in growth using 2007
baseline levels, just before the crisis hit Europe. As a priori, we would expect WNV
incidence to be associated with negative growth or very low growth in these sectors.

3.2 Materials and methods

In this study, we compiled a unique spatial-temporal data-set that captures the main
drivers and risk factors of WNV infections in Europe, based on findings from the
conceptual framework. Since WNV infection data is only available at the European
NUTS 3 level (aggregated areal health data), our empirical strategy relies on ag-
gregated areal health data. We selected regions for the study where autochthonous
virus transmission had occurred at least once over the reporting period in the se-
lected countries. By applying this criteria, we were left with 166 regions in total for
the analysis. We assumed that all regions included in the study could be influenced
by migratory birds that form part of the African and European flyways [44].

3.2.1 Data sources

The following subsection describes data sources for the study. For an extended
description of data extraction and processing techniques, see Appendix B.

All data were aggregated annually at the European NUTS 3 country subdivision
level (apart from central government spending data which was sourced at the coun-
try level), to produce a yearly panel data-set. The NUTS 3 classification represents
small regions with a population ranging from 150,000 to 800,000 and is part of the
Nomenclature of Territorial Units for Statistics (NUTS) classification system, used
to divide economic territories of the EU into three hierarchical sub categories for the
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purpose of data collection and statistical analysis (see [45] for further information).
WNV case data were provided on request by the European Centre for Disease Pre-
vention and Control (www.ecdc.europa.eu). Case data are collected weekly by EU
member states and affiliates. Positive cases were confirmed by at least one of the
following techniques: 1); isolating WNV or WNV nucleic acid from blood or cere-
brospinal fluid (CSF); 2) inducing a WNV-specific antibody response (either IgG /
IgM) in a serological test. We should also bear in mind that the actual number of
cases in Europe is likely to be much higher than reported, since most people infected
with WNV will not develop symptoms (are asymptomatic). Around 20% of those
infected with WNV will develop West Nile fever, a flu like illness, or severe West Nile
disease [14]. All cases were aggregated yearly to create the annual panel data-set.
Economic data were extracted from the Eurostat database (https://ec.europa.
eu/eurostat/data/database), which provides comparable statistics and indicators
and is presented in yearly time series. To capture factors determining the economic
crisis, austerity and cuts to public spending, we selected regional Gross Domestic
Product (GDP); country level agriculture, forestry, fisheries spending; country level
waste water spending, and country level health spending. The “Agriculture, forestry,
fisheries spending” variable captures spending in rural areas that help to improve
the environment and agricultural development, that can benefit agricultural work-
ers and/or mechanise production [46]. In order to represent spending before and
after the economic crisis, we created a baseline index for each variable set at 2007
levels, which represented negative or positive growth from the point just before the
economic crisis hit Europe.
Population count data to predict the number of people at risk in a region were
sourced from the Socio-economic Data and Applications Center’s Gridded Popu-
lation of the World data set [47]. This data-set estimates the population count,
consistent with national censuses and population registers.
Climate data were sourced from the E-OBS Gridded Data-set [48]. This data-set
was created using a series of daily temperature and rainfall observations at meteo-
rological stations throughout Europe.
Land use statistics i.e., “Continuous urban fabric”, “Discontinuous urban fabric’,
“Wetlands (fresh water)” and “Arable land” were captured sourced from the CORINE
Land Cover (CLC) database [49], which provides data on the biophysical character-
istics of the Earth’s surface.
Regional surface water data was sourced using the JRC Monthly Water History, v1.2
data set [50]. This data set contains maps of the location and temporal distribution
of surface water from 1984 to 2019 and provides statistics on the extent and change
of water surfaces.

3.2.2 Final data-set

Table 3.1 provides descriptive statistics of the final data-set. We did not include
“Mean temp spring (°C)” in our final data set as it was correlated with winter and
summer temperature variables; we concluded that we would capture more variation
using the winter and summer variables which were not highly correlated. Healthcare
spending was also not included in the final analysis as it was highly correlated with
GDP (see Appendix B for data and model diagnostics).

https://ec.europa.eu/eurostat/data/database
https://ec.europa.eu/eurostat/data/database
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Statistic Min Max Mean St. Dev.

WNV cases 0 100 1.649 6.012
Human population 6,254 10,534,640 443,384 513,000
Mean temp winter (C) −6.072 14.564 3.190 3.623
Mean temp spring (C) 4.092 18.684 12.433 2.157
Mean temp summer (C) 13.109 28.011 22.465 2.285
Days of rain in winter 0 68 30.156 12.546
Days of rain in spring 0 71 31.723 12.918
Days of rain in summer 0 65 26.021 14.374
Spring surface water extent Z-score (30m2) −2.876 2.404 0.000 0.958
Summer surface water extent Z-score (30m2) −3.301 3.080 −0.000 0.958
Continuous urban fabric % cover 0.000 45.056 1.336 6.754
Discontinuous urban fabric (% cover) 0.534 60.457 5.511 7.044
Wetlands (% cover) 0.000 25.460 0.569 2.026
Arable land (% cover) 0.000 86.307 33.893 22.172
Regional GDP growth (2007=100%) 57 217 106.752 24.587
Agri, forest + fish spending (2007=100%) 27 251 80.202 35.165
Waste water mngmnt spending (2007=100%) 5 352 93.476 53.933
Health spending (2007=100%) 60 212 114.802 33.307

Table 3.1: Summary statistics of variables selected for statistical analysis - 2007-2019

3.2.3 Statistical Methods

The relationship between the incidence of WNV infections (per 100,000) and the
climate, land-use, and economic factors was modelled via a Generalised Additive
Model (GAM), which also accounted for the spatial and temporal auto-correlation.
One of the main issues with our data-set is that it does not meet some basic as-
sumptions for statistical inference, and specifically the data are not independent
and identically distributed random variables (iid). More specifically, the data-set
captured repeated measurements over the same regions, and observations were not
independent because of spill over effects from neighbouring regions. Therefore, spa-
tial auto-correlation in the GAM model was approximated by a Markov random
field (MRF) smoother, defined by the geographic areas and their neighbourhood
structure. We used R’s Spdep package [51] to create a queen neighbours list (adja-
cency matrix) based on regions with contiguous boundaries i.e.˜those sharing one
or more boundary point. We used a full rank MRF, which represented roughly one
coefficient for each area. The local Markov property assumes that a region is con-
ditionally independent of all other regions unless regions share a boundary. This
feature allowed us to model the correlation between geographical neighbours and
smooth over contiguous spatial areas, summarising the trend of the response vari-
able as a function of the predictors (see section 5.4.2 of [52]. In order to account for
variation in the response variable over time, not attributed to the other explanatory
variables in our model, we used a saturated time effect for years, where a separate
effect per time point is estimated.

Since not all regions report cases every year, we fit the our main model using
the Tweedie distribution, which can handle excess zeros [53]. This distribution also
allowed us to model the non-negative, right-skewed integer case data as the incident
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rate per 100,000.
The empirical model can then be written as:

E(Y ) = f1(Xit) + fn(Yeart) + fm(Regioni)

Where the f(.) stands for smooth functions; E(Y )it is equal to the WNV infec-
tion incidence per 100,000 in region i at time t, which we assume to be Tweedie
distributed; Xit - is a vector of economic, demographic, environmental and climate
variables. Y eart is a function of the time intercept and Regioni represents neigh-
bourhood structure of region.

We built the statistical model in a step-wise fashion using the lowest Akaike
Information Criterion (AIC) to help us assess the different specifications. The AIC
allows us to measure model performance accounting for model complexity and re-
flects how well the model fits the data.

We selected relevant variables in each specification according to their category,
i.e. climate, land-use and economic. All variables were included in the final specifi-
cation to ascertain the contribution of each driver, all else equal.

3.3 Results

Figure 3.1 characterises the climate in the study regions. As we can observe, WNV
infections occur in regions with climates that can be described as “Hot-summer
Mediterranean”, “Humid subtropical”, “Temperature oceanic” and “Warm-summer
humid continental” or “Temperate oceanic”.

Figure 3.2 shows the WNV infection incidence rates over the study period. From
2007 to 2009, very few regions were affected by WNV, however, 2010 saw an out-
break that spread far and wide. Since 2010, the number of regions that have been
affected by WNV increased. In 2018, a massive outbreak affected almost all of the
regions in our study.

Table 3.2 shows the results of our statistical analysis and summarises the relevant
statistics (AIC, BIC and Deviance explained and so on) to compare the different
specifications. We find that our final model (Full model) has the best fit in terms of
the AIC, followed by the economic model, the climate model and land use model, as
shown in Table 3.2. Note that as we are not estimating a standard regression model,
the figures reported should not be read as coefficients, but degrees of freedom of the
smooth terms. Given that we cannot interpret the coefficients to infer the sign and
magnitude of the relationship, we visualise it by plot. Figures (3.3-3.5) plot the
partial effects—the relationship between a change in each of the covariates and a
change in the fitted values in the full model.
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Figure 3.1: Koppen-Geiger (CG) Climate Classification in study regions. Coloured
areas correspond to the overlap between the known WNV distribution and the CG
classification in those areas. Areas highlighted in white represent places where hu-
man WNV infections have not been reported. (Data source: koeppen-geiger.vu-
wien.ac.at).
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Figure 3.2: Distribution of regional West Nile virus infections per 100,000 in humans
from 2006 to 2019: (Data source: ECDC).
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Table 3.2: Generalized additive regression model for assessing associations between
climate, land use and socio-economic factors on regional WNV incidence per 100,000
people

Clim model Land-use model Econ model Full model
Intercept −2.21∗∗∗ −2.13∗∗∗ −2.25∗∗∗ −2.35∗∗∗

(0.47) (0.45) (0.33) (0.40)
Mean temp summer (C) 1.00∗∗∗ 1.00∗

(1.00) (1.00)
Mean temp winter (C) 1.96∗∗∗ 1.94∗∗∗

(1.99) (1.99)
Days of rain in summer 1.00∗∗ 1.00∗∗

(1.00) (1.00)
Summer surface water extent (30m2) 1.60∗∗ 1.02∗∗∗

(1.84) (1.03)
Continuous urban fabric % 1.00 1.00

(1.00) (1.00)
Discontinuous urban fabric % 1.00 1.00

(1.00) (1.00)
Wetlands % 1.00∗∗ 1.00

(1.00) (1.00)
Arable land % 1.81∗∗∗ 1.74∗∗

(1.89) (1.84)
Regional GDP index (2007=100%) 1.00∗ 1.00

(1.00) (1.00)
Agri, forest + fish spending (2007=100%) 1.95∗∗∗ 1.93∗∗∗

(1.99) (1.99)
Waste water management spending (2007=100%) 1.60∗∗∗ 1.10∗∗∗

(1.83) (1.19)
Spatial lag 78.44∗∗∗ 80.54∗∗∗ 88.90∗∗∗ 76.19∗∗∗

(109.60) (111.42) (121.08) (106.52)
Year 11.73∗∗∗ 11.75∗∗∗ 11.48∗∗∗ 11.56∗∗∗

(12.00) (12.00) (12.00) (12.00)
AIC 3952.99 3992.59 3931.25 3907.56
BIC 4526.68 4569.26 4560.01 4538.85
Log Likelihood −1875.44 −1894.71 −1854.87 −1842.57
Deviance 3747.15 3895.52 3592.25 3520.85
Deviance explained 0.63 0.62 0.64 0.65
Dispersion 2.85 2.95 2.76 2.73

R2 0.26 0.36 0.32 0.25
GCV score 1900.89 1927.27 1889.38 1871.90
Num. obs. 2158 2158 2158 2158
Num. smooth terms 6 6 5 13
∗∗∗∗p < 0.001; ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

All climate variables in both model specifications are statistically significant
(“Clim model” & “Full model”). Mean summer temperatures (Figure 3.3) of above
22°C are positively associated with WNV infections; the relationship is linear and
strong in the first specification, however, becomes less significant in the ”Full model”
specification after controlling for all other variables.

Mean winter temperature (Figure 3.3) has a quadratic relationship with WNV.
Temperatures of between 2 °C and 6°C have a positive association with WNV infec-
tions, whereas colder and warmer temperatures outside of this range are negatively
associated with WNV infections. The number of rain days per summer (Figure
3.3) is also a strong predictor of WNV infections and has a linear positive relation-
ship. Higher surface water (Figure 3.3) in the summer is negatively correlated with
WNV infections. The relationship is fairly strong considering its complexity i.e., the
variable complexity has been reduced to standard deviation scores to standardise it
across regions and seasons.

As for the land use variables (Figure 3.4), the percentage of arable land and
wetlands in a region (“Land-use model”) is positively correlated with the incidence
of WNV and highly significant. However, the wetlands variable loses significance in
the final model. The percentage of “Continuous” and “Discontinuous urban fabric”
variables, which represent metropolitan and built up areas (residential suburbs,
villages), are not statistically significant in any of the specifications. Although the
partial effect plot for “Continuous urban fabric” (Figure 3.5) reveals that it has a
slightly negative relationship with WNV infections and “Discontinuous urban fabric”
has a positive association with WNV infections.

The economic indicators (Figure 3.5) are negatively correlated with WNV infec-
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Figure 3.3: Generalised additive model (GAM) plots showing the partial effects of
the explanatory variables on the incidence of WNV per 100,000. The tick marks on
the x-axis are observed data points. The y-axis represents the partial effect of each
variable. The dots represent partial residuals. The shaded areas indicate the 95%
confidence intervals.
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Figure 3.4: Generalised additive model (GAM) plots showing the partial effects of
the explanatory variables on the incidence of WNV per 100,000. The tick marks on
the x-axis are observed data points. The y-axis represents the partial effect of each
variable. The dots represent partial residuals. The shaded areas indicate the 95%
confidence intervals.
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Figure 3.5: Generalised additive model (GAM) plots showing the partial effects of
the explanatory variables on the incidence of WNV per 100,000. The tick marks on
the x-axis are observed data points. The y-axis represents the partial effect of each
variable. The dots represent partial residuals. The shaded areas indicate the 95%
confidence intervals.
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tions. These variables represent 2007 baseline regional GDP and central government
spending growth. Regional GDP has a gentle negative association, but statistically
significant relationship with WNV infections in the ”Econ model specification”, but
loses significance in the final model. The two indicators that directly represent cen-
tral government spending on areas of the environment, such as agriculture, forest &
fisheries spending; and waste water management, have highly statistically significant
negative associations with WNV infections.

3.4 Discussion

To investigate the rise in WNV infections in Europe over the last 13 years (2007-
2019), we compiled a unique spatial-temporal data-set including variables identified
in the conceptual framework, following a thorough review of the literature. By taking
this approach, we were able to carefully evaluate and adjust for environmental and
economic factors that may have contributed to the recent rise in infections over
the past decade or so. This study focuses on geographical factors which tend to
influence the spread of the disease at the regional level, rather than trying to infer
the determinants of the disease at the individual level.

3.4.1 Meteorological factors

Over the past 70 years, the countries analysed in this study have been experiencing
increasingly warmer temperatures throughout the year and according to our initial
analysis, the last decade has been the warmest (see Appendix B: figures B1-4). The
results of our final model (figures 3.3-3.5) show that average summer temperatures
above 22 °C are positively associated with an increase in WNV incidence. This
finding is consistent with the literature, according to which warmer temperatures
influence the hatching rate and development time of mosquitoes, and shorten the
extrinsic incubation period (EIP) of WNV and related viruses, therefore representing
a key driver of WNV transmission (especially in summer months) [54, 55, 56, 57,
58, 29]. However, this variable lost significance in our final model specification,
suggesting it is not one of the main drivers associated with transmission in our
study locations and that other factors may be at play. In particular, average summer
temperatures lose their explanatory power once economic and land use factors are
taken into account.

Our analysis of the mean winter temperature (Dec-Feb) reveals a quadratic re-
lationship with WNV and is one of the main predictors of annual WNV infections
in the model. Temperatures below 2 °C and above 6 °C have a negative association
with WNV infections. These results are consistent with findings by Koenraadt et
al., 2019 [59], who found that diapausing Culex pipiens mosquitoes do not neces-
sarily do better under warmer conditions and there is a temperature range in which
they can successfully diapause. Furthermore, other authors suggest [60, 61, 20] that
outbreaks may be more intense following winters with optimal temperatures for di-
apausing mosquitoes. Since a larger number of mosquitoes can successfully survive
the winter, and those that are infected with WNV can transmit it earlier on in the
year, leading to increased disease prevalence in mosquitoes and reservoir bird species
than in years when winter conditions are not optimal. It is also important to note
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that it is not currently clear at what temperatures Culex modestus and Coquillettidia
richiardii overwinter as adults since our literature search did not yield any findings.

The number of rain days per summer is also positively correlated with WNV
infections. This result is consistent with the literature, i.e., a steady flow of aquatic
resources for mosquitoes has a positive association with their abundance, and there-
fore an increase in disease transmission [31, 30]. Rainfall patterns have also been
shifting since the 1950s (see Appendix B: Figures B1-B4) although unlike climate,
there is no a clear trend and results are more difficult to interpret. In general, Aus-
tria, Croatia, and Italy are seeing less intense rainfall in the summer months, but
higher in autumn, whereas Bulgaria, Greece, Hungary and Romania are receiving
more rainfall in summer months.

Our results also show that higher regional summer surface water extent for a
given year, is negatively associated with WNV and is one of the strongest predictors
of WNV incidence. This was not an expected finding, since we would expected higher
levels of surface water to be positively correlated with WNV incidence because of
the extra water resources available to mosquitoes. However, it may be explained by
the fact that sometimes desiccation of water resources can bring mosquito and bird
hosts closer together, increasing transmission potential and therefore the prevalence
of the virus [15, 14]. This was also a major finding in a recent study by Paull
et al., 2017 [62], who reported that drought was closely linked to the intensity of
outbreaks for a given year in the United States. Another explanation for this result
is that with higher surface water extent, there may be more flooding and fast water
movement, which may wash away mosquito eggs and larvae [63], and also may inhibit
contact between birds, mosquitoes and humans [15, 14]. It is important to note that
this variable probably does not capture the creation of short-term water resources
created by rainfall (e.g. pools, puddles), which can be used as breeding habitat by
mosquitoes. It rather captures long term and large water surface such as deltas,
lakes, and flood plains.

Land-use

As for the land-use variables, as expected, regions with a larger proportion of arable
land and wetlands are associated with higher WNV incidence. This is consistent
with other literature, according to which humans are particularly at risk in areas
close to rice paddies, irrigated agriculture and wetlands, since these areas tend to
attract susceptible mosquitoes and birds [15, 32]. The percentage of discontinuous
urban fabric, that represents populated areas of low to medium density that tend
to have gardens, parks, ponds, such as residential suburbs and villages [64], is not
statistically significant in our model, although it is often cited as a driver of WNV
infections in humans.

Economic-factors

In terms of economic factors associated with WNV infections, higher GDP growth,
higher spending, growth on environmental factors - such as agriculture, forest, fish-
eries - and waste water management are negatively associated with WNV incidence,
consistently with concepts laid out in the conceptual framework. In other words,
populations living in locations harder hit by economic slowdown and austerity could
have been more exposed to mosquitoes, for instance drops in income make it difficult



Page 51 Chapter 3

to afford mosquito repellents, air conditioning and upkeep of homes leading to the
creation of mosquito habitats. General cuts to waste water management and hazard
prevention efforts, such as spending on flood defences, essential works like sanitation
and upkeep of infrastructure, could have also led to the creation of mosquito breed-
ing habitats, e.g. potholes, blocked drains [14, 15, 42]. Furthermore, many studies
report strong associations between agriculture [65, 32, 66, 67] and WNV incidence.
In general, cuts and lower spending in this sector, may have led to degradation on
farms and the wider environment which may have benefited mosquitoes through the
creation of habitat or lack of measures to control their abundance. The literature is
scarce on this topic which makes it very difficult to compare our findings with other
sources of information, so our interpretations of such results can only be speculative.

Limitations

Some of the limitations of the study are as follows. Since we we were limited to us-
ing aggregated data at the NUTS-3 regional level, we cannot make inference about
individual-level associations and could not adjust for individual-level risk factors
e.g. age, gender, race, and occupation. However, that would be outside the scope of
this study, since we were interested in macro ecological and socio-economic trends
and drivers. Additionally, we cannot draw causal inference as the methodology we
applied only reveals adjusted correlations. Indeed, we would have also liked to in-
clude further explanatory variables on avian host and mosquito abundance but were
restricted by the availability of data. It is also important to note that data quality
issues arise owing to the under-reporting of cases through under-diagnosis, lack of
diagnostic tests and a lack of resources/time to carry out and implement mass test-
ing. Another factor we did not consider is bird immunity, which may influence WNV
incidence following a major outbreak, although this was not considered an important
factor in explaining the rise in WNV infections in Europe, but may have influenced
the results. Furthermore, a growing body of literature reports that mammals can
serve as intermediate hosts for West Nile virus [16] and more research needs to be
done to determine if wild mammals act as reservoirs and contribute significantly
to the transmission cycle. We also realise that the economic analysis is limited, in
part because of a lack of refined data and in part because of scale issues, i.e., the
amount of work required to look at individual local level policies and spending was
not feasible for 166 regions.

Conclusions

In this study, we set out to investigate why WNV outbreaks have become so frequent
in Europe over the past decade. If we consider the findings of this work together
with other important research in this area, we can start to build a picture of why
the virus has become so prevalent in Europe. We hypothesise that:

1) Rising winter temperatures, or rather the creation of optimal temperature
conditions allowed the virus to overwinter with Culex pipiens. Given current trends,
we can also expect to see regions that have previously been too cold for Culex pipiens
to survive over winter become viable locations and cause further havoc in regions
that are currently experiencing just a few annual cases. On the contrary, regions
which currently have optimal conditions for overwintering mosquitoes may become
too warm in the future.
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2) Warmer summer temperatures are benefiting mosquitoes, influencing their
hatching rate and development time, and shortening the extrinsic incubation period
(EIP) of WNV; and

3) Shrinking water resources are increasing WNV prevalence in birds and mosquitoes
during some seasons. It may be the case that this phenomenon is also acting at a
macro-scale in Europe and is a significant driver of recent outbreaks, especially given
that meteorological and hydrological droughts are becoming more frequent and ex-
treme [68]. These changes also occurred during an economic crisis and subsequent
austerity, where government institutions were severely weakened and had to limit
spending on key sectors, and segments of the human population were exposed to
increased financial hardship.

We hope this study will spur further research into this topic, especially in areas
less explored, such as the impacts of the European debt crisis on health, and the long-
term trade-offs and unintended consequences austerity can have on the environment
and human health. This is an especially important topic when considering we are
facing multiple threats brought about by global warming and other anthropogenic
induced changes that can benefit emerging diseases, i.e., global trade in wild animals,
intensive agriculture / animal rearing and land use conversion.
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J. Mendel, T. Bakonyi, F. Schaffner, N. Nowotny, and Z. Hubalek. West nile
virus in overwintering mosquitoes, central europe. Parasites & Vectors, 10,
2017.

[62] Sara H. Paull, Daniel E. Horton, Moetasim Ashfaq, Deeksha Rastogi, Laura D.
Kramer, Noah S. Diffenbaugh, and A. Marm Kilpatrick. Drought and immunity
determine the intensity of west nile virus epidemics and climate change impacts.
Proceedings of the Royal Society B: Biological Sciences, 284(1848):20162078, 02
2017.

[63] C J M Koenraadt and LC Harrington. Flushing effect of rain on container-
inhabiting mosquitoes aedes aegypti and culex pipiens (diptera: Culicidae).
Journal of medical entomology, 45(1):28—35, January 2008.

[64] ETC/ULS. Updated clc illustrated nomenclature guidelines. Report, European
Environment Agency, 2019.

[65] David W. Crowder, Elizabeth A. Dykstra, Jo Marie Brauner, Anne Duffy,
Caitlin Reed, Emily Martin, Wade Peterson, Yves Carrière, Pierre Dutilleul,
and Jeb P. Owen. West nile virus prevalence across landscapes is mediated
by local effects of agriculture on vector and host communities. PLoS ONE,
8(1):e55006, 01 2013.

[66] Lars Eisen, Christopher M. Barker, Chester G. Moore, W. John Pape, Anna
M. Winters, and Nicholas Cheronis. Irrigated agriculture is an important risk
factor for west nile virus disease in the hyperendemic larimer-boulder-weld area
of north central colorado. Journal of Medical Entomology, 47(5):939–951, 09
2010.

[67] Roque Miramontes, William E. Lafferty, Bonnie K. Lind, and Mark W. Oberle.
Is agricultural activity linked to the incidence of human west nile virus? Amer-
ican Journal of Preventive Medicine, 30(2):160–163, 02 2006.
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Abstract
Background: Many questions remain unanswered about how SARS-CoV-2
transmission is influenced by aspects of the economy, environment, and health. A
better understanding of how these factors interact can help us to design early
health prevention and control strategies, and develop better predictive models for
public health risk management of SARS-CoV-2. This study examines the
associations between COVID-19 epidemic growth and macro-level determinants
of transmission such as demographic factors, socio-economic factors, climate and
population health, during the first wave of outbreaks in the United States.
Methods: A spatial-temporal data-set was created from a variety of relevant
data sources. A unique data-driven study design was implemented to assess the
relationship between COVID-19 case and death epidemic doubling times and
explanatory variables using a Generalized Additive Model (GAM).
Results: The main factors associated with case doubling times are higher
population density, home overcrowding, manufacturing, and recreation industries.
Poverty was also an important predictor of faster epidemic growth perhaps
because of factors associated with in-work poverty-related conditions, although
poverty is also a predictor of poor population health which is likely driving case
and death reporting. Air pollution and diabetes were other important drivers of
case reporting. Warmer temperatures are associated with slower epidemic growth,
which is most likely explained by human behaviors associated with warmer
locations i.e. ventilating homes and workplaces. and socializing outdoors. The
main factors associated with death doubling times were population density,
poverty older age, diabetes, and air pollution. Temperature was also slightly
significant slowing death doubling times.
Conclusions: Such findings help underpin current understanding of the disease
epidemiology and also supports current policy and advice recommending
ventilation of homes, work-spaces, and schools, along with social distancing and
mask-wearing. Given the strong associations between doubling times and the
stringency index, it is likely that those states that responded to the virus more
quickly by implementing a range of measures such as school closing, workplace
closing, restrictions on gatherings, close public transport, restrictions on internal
movement, international travel controls, and public information campaigns, did
have some success slowing the spread of the virus.
Keywords: SARS-CoV-2; COVID-19; Epidemic-growth; Doubling-time; United
States
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4.1 Introduction

The current COVID-19 pandemic is posing severe challenges to health systems,
societies, and economies worldwide. At the time of writing, the The SARS-CoV-2
virus has already infected more than 175 million people globally and caused 3.7 M
deaths. In addition, the long-term health impacts on those who have recovered from
the SARS-CoV-2 infection are still unknown [1]. Approximately a sixth of the total
deaths - more than 600,000 - occurred in the United States (US), the country that
currently stands with the highest number of fatalities.

In the US and in other European countries like the the United Kingdom, govern-
ments and public health systems were initially caught off guard by the sudden and
rapid spread of the virus. This was partly due to a lack of political preparedness
and a coherent strategy; lack of public health resources after years of cuts to public
health budgets; or to the adoption of the wrong or no policy in terms of mask-
wearing, contact tracing, border controls, or lack of testing to detect community
transmission [2, 3, 4, 5, 6, 7]. Furthermore, the scientific community took some time
to reach a general consensus regarding the modes of transmission of the virus; in
particular, airborne dispersal was not considered a major pathway at the beginning
of the pandemic, and this inhibited control and containment strategies [8]. Even
though thousands of papers have been written on COVID-19 related topics in the
past year or so, many questions still remain unanswered, especially in terms of how
SARS-CoV-2 transmission is influenced by aspects of the economy, environment,
and health. A better understanding of how these factors interact can help us to
design timely health prevention and control strategies, and to develop better pre-
dictive models for public health risk management of SARS-CoV-2 and other novel
coronaviruses [9].
This study explores how some of the macro-level drivers of epidemic growth in the
United States are associated with COVID-19 case and death doubling times during
the first wave of the pandemic (in early 2020). The reason for selecting the United
States is not only that it is one of the hardest-hit countries, but also that it provides
us with a unique opportunity to study this phenomenon at a macro-scale, since it
encompasses a diverse range of climate types over a vast geographical area, with a
somewhat homogeneous political system, allowing us to disentangle the effects of the
environment from other demographic and socio-economic conditions. Furthermore,
the scientific institutions of the United States offer a vast quantity of high-quality
data which allows us to investigate our research question rigorously. By focusing
on the first wave of the pandemic, it is possible to better isolate the effects of the
environment and socio-economic and demographic factors, since it took some time
for the population to adopt self-protective behaviours like vaccination, social dis-
tancing and mask-wearing; it also took some time for state governments to apply
containment measures, like school closures, limits on gathering and non-essential
business closures [7, 10, 11].

The empirical strategy for this study relies on county-level morbidity and mor-
tality data as the main unit of analysis, which consists of counts of individual cases
and deaths, aggregated per county. The use of data aggregated at the county level
means we cannot make individual level inferences and adjust for individual-level
risk factors e.g. age, gender, and occupation. Nevertheless, this type of empirical
investigation maintains high merit, as it enables a quick exploration of geographic
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associations between the disease and the predictor variables, which can instigate
further debate on this topic and may trigger more refined channels of research. The
next subsection presents a short analytical framework, explaining how demographic
factors, socio-economic factors, climate and population health, as well as contain-
ment measures, are expected to influence the spread of the disease, and describes
the variables selected to measure such factors.

4.1.1 Analytical framework

SARS-CoV-2 transmission takes place through 4 major pathways including exchange
of saliva and mucus through human to human physical contact, indirect contact via
fomites, or inhalation of large droplets and fine aerosols [12, 8]. Social distancing
can be one of the most effective measures to limit transmission, but this can be
rendered ineffective in closed spaces with poor ventilation since the virus can trans-
mit through long-distance airborne dispersal [13, 14, 8]. This study emphasises
demographic factors, socio-economic factors and climate factors that can influence
human to human contact and proximity, and can therefore modulate SARS-CoV-2
transmission [15]. Data on government containment measures will also be analysed
since they can moderate SARS-CoV-2 transmission and morbidity and mortality
reporting.

Economic / demographic / health factors

Given the transmission pathways of SARS-CoV-2, as a priori, we would expect to see
more infections occur in locations with higher population densities (e.g., metropoli-
tan areas, cities) with high public transport usage, overcrowded living spaces, and
industries where business takes place indoors - all of which naturally bring people
into closer contact, allowing airborne transmission to take place. To represent this
in the models, variables were selected representing population density, public trans-
port usage and household overcrowding. We would also expect areas with a higher
number of new residents arriving from abroad or out of state, to have had a larger
number of outbreaks during the early stages of the pandemic through importation
of the virus from infected areas. To represent this in the model, a variable was built
that captured the annual rate of new residents arriving to a county from abroad or
a different state.
At the beginning of the pandemic, it took some time before a consensus was reached
about airborne transmission [13, 2, 12, 8, 16], which had major implications for
early policy and practice, like improving ventilation in workspaces and adoption
of behavioural changes like mask-wearing. We would expect the adoption of self-
protective health behaviours (e.g., social distancing, work from home) that can
reduce the chance of contracting and spreading the virus [10, 17, 18] to be harder
for low skilled workers or those working in specific economic sectors (like manufac-
turing). Moreover, the inability to self protect may be accentuated for those who
suffer from in-work poverty or precariousness since they may also be obliged to work,
even when suffering with symptoms, because of a lack of sick pay, fear of losing a
day’s salary and top-down pressures [19, 20, 21]. These factors are represented in
the empirical models using variables that capture unemployment rates, employment
levels in key economic sectors, education of the labour force, and poverty.
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Environmental factors

Meteorological factors may affect SARS-CoV-2 transmission by altering human be-
haviour; a basic assumption is people are likely to stay indoors on days with very low
or very high temperatures, and/or high rainfall. Furthermore, as a priori, we would
expect people to better ventilate their homes/workspaces in places with warmer
climates (e.g., leave their windows open, use wall and ceiling fans), which could
have an observable overall effect on disease transmission. To represent these factors
in the models, variables were selected representing average rainfall, temperate and
relative humidity. Meteorological factors can also change the transmission potential
and decay rate of the virus in air and on surfaces by altering its stability. [22, 23].
Strong UV light can also inactivate SARS-CoV-2; however, this was not considered a
significant predictor for COVID-19 infections and mortality since most transmission
takes place indoors [24].

Population health

Initial reports from the ECDC [25], the WHO [26] and the CDC [27] suggest that
those most at risk of serious morbidity and mortality are older people and people
with underlying health conditions such as diabetes, obesity, respiratory diseases,
cancer, and cardiovascular diseases; poverty is a major risk factor of poor population
health and is correlated with such conditions [28, 29, 30, 31, 32]. As a priori, we
would expect locations with higher proportions of residents with underlying health
conditions to report more infections and deaths. To represent this in the models,
variables were selected that capture the age structure of the population, poverty
rates, long term air pollution to proxy underlying pulmonary health conditions and
the prevalence of diabetes.

Containment measures

State governments implemented a wide range of measures to tackle COVID-19 out-
breaks such as school closures, workplace closures, restrictions on gatherings, close
public transport, stay at home requirements, restrictions on internal movement,
international travel controls and public information campaigns, all of which could
have had some success in suppressing the spread of the disease [33], such contain-
ment measures would moderate the effects of the risk factors and drivers of disease
transmission. To account for this in the models a “Stringency Index” measure was
selected that reflects the level of a state government’s response to COVID-19 out-
breaks, by quantifying how many measures were implemented and to what degree
they were applied. The equations used to construct the ”Stringency Index” will be
further explained in the next section. Compulsory stay at home orders (lock-downs)
were not included in the ”Stringency Index”, since they were used to determine the
temporal cut off points of the study window, this is also explained in the section.

4.2 Methods

All data were aggregated at the county level, apart from some data on containment
measures which are presented at state level. Below a detailed description of the data
sources.
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4.2.1 Data collection and processing

Morbidity and mortality data

SARS-CoV-2 morbidity and mortality data were sourced from Johns Hopkins Uni-
versity’s Centre for Systems Science and Engineering’s (CSSE) GitHub repository
[34]. In general, during the first wave of outbreaks in the US, testing was conducted
only on those reporting more serious symptoms (see Appendix 3 - COVID policy
tracker). Almost all diagnostic testing for COVID-19 was done with the PCR-based
methods, using nasopharyngeal or oropharyngeal specimens (nose or throat swabs).

Economic, demographic and population health data

Data on county population, public transport usage, population age structure, health
insurance coverage, immigration, disabilities, and household overcrowding were sourced
from the United States Census Bureau using 2015-2019 ACS 5-year estimates [35].
To standardise data across counties, all appropriate variables were converted to per-
centages/averages of the total county population. A household was considered over-
crowded if the number of rooms was less than the number of inhabitants (above 1.01
people per room), this figure included all rooms in a household (not just bedrooms).
The disabilities measure captured various health conditions such as difficulty seeing
or hearing, restricted movement, learning disabilities, cerebral palsy or other devel-
opmental disabilities, or intellectual or mental health disabilities [36].
Population density per km2 was calculated using R’s SF package and the United
States Census Bureau Cartographic county-level shape-files. Because the range of
population density values was very wide, all values above 2500 km2 were capped to
this value. This modification was tested in the final models and did not affect the
results and allowed for better interpretability of the results.
County-level data on unemployment (%), median household income ($), and poverty
% were sourced from the USDA Economic Research Service [37]. The ”Poverty
%” indicator represents the percentage of people/families whose earnings are less
than the threshold designated by the Census Bureau’s set of money income thresh-
olds. Data on diabetes prevalence were sourced from the CDC’s diabetes atlas
[38]. Economic dependence of a county was represented using the ERS county-level
typology data-set [37]; this breaks down a county into one of 6 major economic
typologies: farming, mining, manufacturing, federal/state government, recreation,
and non-specialized.

Environmental data

Temperature (°C), precipitation (1/100”), and relative humidity data were sourced
from the Global Surface Summary of the Day (GSOD) data provided by the US
National Climatic Data Center (NCDC)[39]. This data-set provides daily GPS ob-
servations from all weather stations situated in the US. To join county data with the
GSOD weather observations, centroids were created for each county using R’s SF
package and the United States Census Bureau’s county shape-files. The K-nearest
neighbor join function in R’s SF package was used to create a spatial join between
the weather stations (GPS coordinates) and the county centroids. Mean climate val-
ues were created for a county-based on data from a maximum of 10 nearest weather
stations within a 100km radius of each county centroid.
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Data on air quality was sourced from the United States Environmental Protec-
tion Agency [40]. Annual maximum reported Air Quality Index (AQI) values were
used, taken over a 20-year average. This indicator was derived from data from
EPA’s AQS (Air Quality System) database. The EPA establishes an AQI based on
five major air pollutants including ground-level ozone (O3), particle pollution (also
known as particulate matter, including PM2.5 and PM10), carbon monoxide (CO)
sulfur dioxide (SO2) and nitrogen dioxide (NO2). The U.S. AQI index runs from
0 to 500. The higher the AQI value, the greater the level of air pollution and the
greater the health concern. The AQI is divided into 6 categories, each corresponding
to a different level of health concern; generally, they represent 0 to 50 - good; 51 to
100 - moderate; 51 to 100 - unhealthy for sensitive groups; 151 to 200 - unhealthy;
201 to 300 - very unhealthy; 301 and higher - hazardous.

Containment measures

Data on county-level stay-at-home orders (lock-down) were extracted from the CDC’s
“U.S. State, Territorial, and County Stay-At-Home Orders’ ’ dataset [41]. This
dataset provides information on county-level executive orders, administrative orders,
resolutions, and proclamations and can be used to determine the date of county-level
stay-at-home orders (lock-down).
Data on state-level control measures were sourced from the Oxford COVID-19 Gov-
ernment Response Tracker (OxCGRT) data set [42]. The ”Stringency Index” vari-
able from this dataset was used to account for the application of state-level control
measures in our final models. The composite time-series measure, ranging from 0
to 100 (100 = strictest) is based on 9 response indicators including data on school
closing, workplace closing, restrictions on gatherings, close public transport, stay
at home requirements, restrictions on internal movement, international travel con-
trols, and public information campaigns. The indicator reflects the level of a state
government’s response to COVID-19 outbreaks and quantifies how many measures
were implemented, and to what degree they were implemented. The index cannot
ascertain whether a government’s policy has been implemented effectively nor the
effectiveness of an individual measure [33]. To get an estimate of a government’s
response leading up to the first lock-down (compulsory stay at home order), the av-
erage stringency index value was calculated using a time window: from the day the
first 5 cases were reported the day before the first lock-down. Arkansas, Iowa, Ne-
braska, North Dakota, and South Dakota did not implement state-wide lock-downs.
In these states, the average score was calculated from the day the first cases were
reported to the last lock-down date in our sample (2020-07-04) to make this value
comparable to other states.

4.2.2 Study design

The spread of the disease (epidemic growth) is modelled by calculating COVID-19
case and death doubling times; these measures were then used as dependent variables
to explore associations between epidemic growth, socio-economic, demographic, and
environmental factors, and population health. Doubling times capture exponential
growth, in this instance, the number of days taken for cases and deaths to double.
This measure has several advantages: first, it provides a way of standardising differ-
ences in sampling effort between different locations and health authorities; second,
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Figure 4.1: Study design: capturing epidemic growth

because it provides us with a time determinant measure to facilitate understanding
of the spread of the virus. In other words, this metric not only has the advantage of
accounting for population size but also incorporates a time dimension. Therefore,
COVID-19 transmission is measured by calculating doubling times for infections and
mortality, at the county level [43, 44, 45, 46].

Calculating case and death doubling times

Doubling times were calculated by capturing a window of infection opportunity,
which started on the date a minimum number of cases/deaths were detected in a
county, to the date of the first major state or county level intervention was imple-
mented i.e. compulsory stay-at-home orders, otherwise known as a lock-down (see
Figure 4-1). A time lag was also applied to the doubling times in order to account
for the time infection or mortality events took place, since there is a lag between the
date an event is reported (a case or death) and the date the transmission event took
place. Therefore all case and mortality data was lagged by a maximum incubation
period (onset of symptoms) or a maximum time from final infection to death; these
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are further described below.
For the calculation of the infection doubling times, the count was started when

the county reached a minimum of 50 confirmed cases, over a minimum 7 day report-
ing period. Any county that did not meet this requirement was excluded from the
study.

Since the mortality data-set contained fewer observations than the cases data set,
the count was set when the county reported a minimum of 20 deaths over a minimum
7 day reporting period. Although these values yielded enough observations to carry
out the study on mortality doubling times, the doubling times may be less stable
than that of the case data-set.
Again, any county that did not meet this requirement was excluded from the study.

To calculate the case and death doubling times for each county, the following
formulas were applied:

r =
Eend − Estart

Estart
× 100

Where:

r = growth rate;
Estart = Start of the event - when the 50 cases / 20 deaths are detected
Eend = End of the event - cumulative cases / deaths per county at the
lock-down date;
Next, the doubling time is calculated using the following formula:

Td = t
ln(2)

ln(1 + r
100

)

Where:

Td = doubling time in days
t = time in days (Estart to Eend)
r = growth rate

Arkansas, Iowa, Nebraska, North Dakota, and South Dakota did not implement
a state-wide lock-down (stay at home order), so an artificial date was set to calculate
doubling times, mirroring the latest lock-down date in our sample (2020-07-04).

Time lags - disease progression

Disease progression was also considered when calculating the doubling times; a time
lag was applied to account for the discrepancy between the date an event was re-
ported (a case or death) and the date the transmission event is likely to have took
place.

For data on confirmed COVID-19 cases, a lag of 21 days was set which considers
a maximum 14-day incubation period based on findings from cohort studies by Lauer
2020 [47], with an extra 7 days to account for any reporting delays. The implication
here is that case data for anything up to 21 days post lock-down was used to calculate
doubling times.

For the mortality data set, a lag of 42 days was set days which includes the
maximum 14-day incubation period based on findings from cohort studies by Lauer
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et al., 2020 [47] and a maximum of 21 days from the first onset of symptoms to death
based on findings from cohort studies by Verity et al., 2020 [48], plus an extra 7 days
to account for any reporting delays. The implication here is that mortality data for
anything up to 42 days post lock-down was used to calculate doubling times.

Data on environmental factors were also joined to the lagged county doubling
time variables, meaning that they were linked to the date when a disease event is
likely to have took place, rather than when reported.

General additive regression model to assess the impact of independent
variables on doubling times at the county level

One of the main issues with the data-set is that it did not meet some basic assump-
tions for statistical inference, that is the data are not independent and identically
distributed random variables (iid). More specifically, observations cannot be consid-
ered independent because of spillover effects from neighbouring counties, therefore
an appropriate statistical design was needed to control for a lack of independence
between neighbouring counties. A Generalised Additive Model (GAM) using R’s
Mgcv statistical package because of its versatility and ability to fit complex models
that would converge even with low numbers of observations and could capture po-
tential complex non-linear relationships. One of the advantages of GAMs is that we
do not need to determine the functional form of the relationship beforehand. In gen-
eral, such models transform the mean response to an additive form so that additive
components are smooth functions (e.g., splines) of the covariates, in which functions
themselves are expressed as basis-function expansions. The spatial auto-correlation
in the GAM was approximated by a Markov random field (MRF) smoother, which
represents the spatial dependence structure in the data. R’s Spdep package was used
to create a queen neighbours list (adjacency matrix) based on counties with contigu-
ous boundaries i.e., those sharing one or more boundary points. The local Markov
property assumes that a county is conditionally independent of all other counties un-
less they share a boundary. This feature allows us to model the correlation between
geographical neighbours and smooth over contiguous spatial areas, summarising the
trend of the response variable as a function of the predictors [49]. Models were fit
using a gamma distribution; after inspecting the data, it was concluded that the
a gamma distribution worked well with the shape of our response variable, which
was positively skewed (i.e., non-normal, with a long tail on the right). The gamma
distribution is a two-parameter distribution, where the parameters are traditionally
known as shape and rate. Its density function is:

f(x) =
1

βαΓ(α)
xα−1e−x/β,

where α is the shape parameter and β–1 is the rate parameter (alternatively, β is
known as the scale parameter).

The empirical model can then be written as:

E(Y ) = f1(Xi) + fm(Countyi)

Where the f(.) stands for smooth functions; E(Y )i is equal to infection or death
doubling time in county i, which we assume to be gamma-distributed; Xi - is a
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vector of economic, demographic, environmental and climate variables (as described
in the previous section). countyi represents neighbourhood structure of the county.

Analysis of model diagnostic tests didn’t reveal any major issues, in general
residuals appeared to be randomly distributed. For robustness, models were also fit
using the Gaussian and Tweedie distributions, and also fit using a non-additive-GLM
(see Appendix 3).

4.3 Results

To carry out the empirical analysis, a unique spatial data-set was compiled that
captured potential drivers of human-to-human SARS-CoV-2 transmission and risk
factors of serious infections and mortality due to COVID-19 in US counties.

Descriptive statistics

Two sources of information were analysed, data on confirmed cases and deaths.
Tables 4-1 and 4-2 provide summary statistics for our final data-sets.
To calculate doubling times, counties were only selected that had reported at least
50 cases or 20 deaths over a minimum 7-day period before the first lock-down.
Both sources of information were chosen as they allow us to explore and compare
different features and characteristics of the epidemic. Figures 4-2 and 4-3 map the
geographical distribution for case and death doubling times in counties that met
our inclusion criteria (coloured from red to yellow). Major cities with populations
> 250,000 people are highlighted on each map. The counties first affected by SARS-
CoV-2 during the first wave of the epidemic tended to be located around major cities
and metropolitan areas on the east coast, mid west, and south of the United States,
with high population density and presumably higher numbers of international and
domestic travellers.
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Figure 4.2: COVID-19 case doubling times in US Counties and major cities with
over 250,000 people. Counties highlighted in white not selected for study (Date
range: 2020-03-05 to 2020-04-29, data source: Johns Hopkins University)
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Figure 4.3: COVID-19 death doubling times in US Counties and major cities with
over 250,000 people. Counties highlighted in white not selected for study (Date
range: 2020-03-10 to 2020-05-19, data source: Johns Hopkins University)
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Table 4.1: Cases data-set - summary statistics. N = 640 (number of counties selected
for the study which met the inclusion criteria laid out in study design section)

Statistic Min Max Mean St. Dev.

Confirmed cases 54 35,571 950.9 2,953.7
Incidence per 100,000 15.8 5,611.3 277.5 434.1
Study period days 7 40 18.7 7.5
Growth rate (over period) 8 62,305 1,503.5 5,040.1
Case doubling times 2.5 72.0 11.6 8.4
County population 5,861 10,081,570 373,339.6 657,728.9
Population density per km2 2.0 2,500.0 245.3 415.8
Stringency index 11.0 64.1 34.1 10.5
Public transport usage (pop %) 0.0 32.0 1.3 3.1
Median household income ($) 26,348 151,806 65,642.1 18,915.3
Unemployment % 1.8 12.0 3.8 1.2
Population % 65+ 7.9 41.1 16.5 4.2
Poverty % 2.7 36.6 13.1 5.9
Health insurance coverage % 62.2 99.9 98.0 3.0
Annual new arrivals / by pop (%) 0.0 3.1 0.5 0.4
Population % with disabilities 5.0 25.7 13.1 3.3
Population % with diabetes 2.2 23.1 10.1 2.9
Household overcrowding % 0.1 7.0 1.3 1.0
Population % with degree or higher 3.6 29.0 12.6 4.6
Temperature (°C) −3.4 24.7 12.7 6.4
Precipitation (1/100”) 0.0 9.2 2.1 1.6
Relative humidity 30.7 86.1 67.0 8.6
Air quality index (AQI) 32.5 347.4 130.4 31.3
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Table 4.2: Mortality dataset - summary statistics. N = 263 (number of counties
selected for the study which met the inclusion criteria laid out in study design
section)

Statistic Min Max Mean St. Dev.

Confirmed cases 22 4,902 233.4 541.3
Incidence per 100,000 1.4 284.6 39.9 45.4
Study period days 7 56 24.4 10.2
Growth rate (over period) 9.5 24,410.0 906.5 2,346.6
Cases doubling time 5.7 80.0 18.5 12.5
County population 8,737 10,081,570 677,179.5 929,606.3
Population density per km2 2.9 2,500.0 442.2 570.3
Stringency index 11.0 64.1 32.4 11.6
Public transport usage (pop %) 0.0 32.0 2.4 4.5
Median household income ($) 36,894 151,806 71,804.3 20,582.3
Unemployment % 1.8 9.6 3.7 1.0
Population % 65+ 9.5 41.1 16.1 4.0
Poverty % 2.7 30.7 12.0 5.1
Health insurance coverage % 89.9 99.6 98.7 1.2
Annual new arrivals / by pop (%) 0.01 2.2 0.6 0.4
Population % with disabilities 5.8 23.5 12.1 2.9
Population % with diabetes 5.2 22.3 9.3 2.3
Household overcrowding % 0 6 1.4 1.0
Population % with degree or higher 3.9 27.6 14.2 4.4
Temperature (°C) 0.2 25.3 11.6 5.9
Precipitation (1/100”) 0.0 7.4 2.0 1.4
Relative humidity 25.5 81.6 64.9 8.8
Air quality index (AQI) 41.5 347.4 143.8 31.5

Regression results

It was not possible to explore the individual impact of all the variables in our data-
set because of collinearity issues (see Appendix C). Public transport was positively
correlated with population density so therefore removed from the analysis. Median
income was also removed from the analysis because it was positively correlated with
education, and negatively correlated with poverty, disabilities and diabetes.
Tables 4-3 and 4-4 show the results of the statistical analysis for both data sets and
summarise the relevant statistics (AIC, Deviance, Adjusted R squared (R2 and so
on) to compare the different specifications. Both statistical models were built in a
step-wise fashion using the lowest Akaike Information Criterion (AIC) and R2 to help
us assess the different specifications. Variables were included in each specification
according to their category i.e., spatial, socio-economic, and environmental. All
variables were included in the final specification to ascertain the contribution of
each driver or risk factor, all else equal. Note that, as we are not estimating a
standard regression model, the figures reported should not be read as coefficients,
but degrees of freedom of the smooth terms. Given that we cannot interpret the
coefficients to infer the sign and magnitude of the relationship, we visualise it by
plot. Figures 4-3 to 4-11 plot the partial effects—the relationship between a change
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Figure 4.4: Generalised additive model (GAM) plots showing the partial effects of
the explanatory variables on the doubling times of COVID-19 infections. The tick
marks on the x-axis are observed data points. The y-axis represents the partial effect
of each variable. The dots represent partial residuals. The shaded areas indicate the
95% confidence intervals. Higher values on the y-axis represent slower case doubling
times.

in each of the covariates and a change in the fitted values in the full model. Standard
errors on the plots show the 95% confidence interval for the mean shape of the effect.

Case data model

Table 4-3 and figures 4.4 to 4.7 show the results of the model fit using case data.
The “Spatial” model was fit first to estimate the contribution of the spatial lag
component against the other specifications. A high proportion of the variance is
explained just by controlling for spatial correlation between counties (R2 0.35). The
“Full model” has the best fit in terms of the AIC and adjusted R2, followed by the
socio-economic model, and finally the environmental model. The adjusted R2 in the
final model is 0.56, indicating that 56% of the variance in our model is explained by
the explanatory variables.

As for the contribution of individual variables on case doubling times, counties
with manufacturing and recreation as their predominant economic activity were as-
sociated with faster case doubling times although the confidence intervals are fairly
large so the sample does not provide a precise representation of the population mean.
The stringency index variable, which captures the number of containment measures
adopted by states, and the degree to which they were implemented, is also statisti-
cally significant (p < 0.05); and has a positive relationship with the case doubling
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Spatial Socio-econ Envir Full
Intercept 2.34∗∗∗ 2.45∗∗∗ 2.34∗∗∗ 2.48∗∗∗

(0.02) (0.12) (0.02) (0.12)
Industry: Manufacturing −0.27∗ −0.32∗

(0.13) (0.13)
Industry: Government −0.02 −0.04

(0.13) (0.12)
Industry: Recreational −0.22 −0.23·

(0.14) (0.13)
Industry: Non-specialised −0.13 −0.17

(0.12) (0.12)
Industry: Agricultural 0.09 0.04

(0.24) (0.23)
Stringency index 1.00∗ 1.00∗

(1.00) (1.00)
Pop density per km2 6.30∗∗∗ 5.81∗∗∗

(7.56) (7.01)
Unemployment % 1.61 1.31

(1.82) (1.50)
Population % 65+ 1.00∗ 1.00

(1.00) (1.00)
Poverty % 1.00∗ 1.00∗∗

(1.00) (1.00)
Health insurance coverage % 1.62 1.57

(1.83) (1.80)
New arrivals into county population % 1.40 1.55

(1.63) (1.78)
Population % with disabilities 1.00∗∗ 1.00∗∗

(1.00) (1.00)
Population % with diabetes 1.00∗ 1.00∗∗

(1.00) (1.00)
Population % living in overcrowded homes 1.00∗ 1.00∗∗

(1.00) (1.00)
Temperature °C 3.54∗∗ 3.71∗∗

(4.10) (4.25)
Precipitation 2.21 1.00

(2.75) (1.00)
Relative humidity 1.00 3.54·

(1.00) (4.15)
Air quality index (AQI) 1.00∗∗∗ 1.67∗∗

(1.00) (1.87)
County 137.13∗∗∗ 135.30∗∗∗ 132.98∗∗∗ 135.55∗∗∗

(169.51) (167.57) (165.05) (167.11)
AIC 3772.29 3499.61 3705.13 3459.43
BIC 4393.02 4210.00 4341.94 4212.15
Log Likelihood −1747.01 −1590.58 −1709.83 −1561.00
Deviance 91.15 56.41 81.36 51.50
Deviance explained 0.61 0.76 0.65 0.78
Dispersion 0.21 0.13 0.19 0.11
R2 0.35 0.54 0.41 0.56
GCV score 0.23 0.16 0.21 0.15
Num. obs. 640 640 640 640
Num. smooth terms 1 11 5 15
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 4.3: COVID-19 Infection model - Generalised additive regression model for
assessing associations between the demographic, socio-economic, climate and popu-
lation health factors on county level case doubling times. Note that as we are not
estimating a standard regression model, the figures reported should not be read as
coefficients, but degrees of freedom of the smooth terms. Given that we cannot
interpret the coefficients to infer the sign and magnitude of the relationship, we
visualise it by plot
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Figure 4.5: Generalised additive model (GAM) plots showing the partial effects of
the explanatory variables on the doubling times of COVID-19 infections. The tick
marks on the x-axis are observed data points. The y-axis represents the partial effect
of each variable. The dots represent partial residuals. The shaded areas indicate the
95% confidence intervals. Higher values on the y-axis represent slower case doubling
times.



Page 76 Chapter 4

Figure 4.6: Generalised additive model (GAM) plots showing the partial effects of
the explanatory variables on the doubling times of COVID-19 infections. The tick
marks on the x-axis are observed data points. The y-axis represents the partial effect
of each variable. The dots represent partial residuals. The shaded areas indicate the
95% confidence intervals. Higher values on the y-axis represent slower case doubling
times.
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times, suggesting that measures had some success in suppressing the virus. Human
population density per km2 is highly significant (p < 0.001), higher densities are as-
sociated with faster case doubling times, although the relationship is not linear and
flattens out at higher population densities. Although the slope is gentle, “Poverty
%” is a highly significant (p < 0.01) predictor of case doubling times, the relation-
ship is negative which means doubling times are faster with higher levels of poverty
(in other words, the infection spreads faster). On the contrary, the variable ”Pop
% with disabilities” (p < 0.01) has a positive relationship with case doubling times,
meaning it is a predictor of slower doubling times. The prevalence of diabetes (Pop
% with diabetes) in a county, an indicator that not only represents the disease itself,
but also a range of other conditions such as obesity, poor diet, lack of exercise was
also a significant (p < 0.01) predictor of faster case doubling times. “Population
% home overcrowding”, which represents the percentage of households in a county
where there is less than one room per inhabitant (> 1.01 people per room) is highly
significant (< 0.01) and is associated with faster case doubling times. Temperature
is also a good predictor of case doubling times; higher temperatures appear to slow
case doubling times. (p < 0.01), although this relationship breaks down at lower
temperatures given there are few observations, the confidence intervals are much
larger meaning the results are less accurate. “Max AQI”, which represents the max-
imum air quality index values averaged over 20 years, is also highly significant and
is associated with faster case doubling times in locations with poor air quality (p <
0.01).

Mortality model
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Spatial Socio-econ Envir Full
Intercept 2.83∗∗∗ 2.65∗∗∗ 2.81∗∗∗ 2.78∗∗∗

(0.03) (0.25) (0.03) (0.25)
Industry: Manufacturing 0.14 −0.02

(0.28) (0.28)
Industry: Government 0.18 0.03

(0.26) (0.26)
Industry: Recreational 0.18 0.13

(0.28) (0.28)
Industry: Non-specialised 0.13 −0.02

(0.26) (0.26)
Stringency index 1.00∗ 1.00∗

(1.00) (1.00)
Population density per km2 7.00∗∗∗ 5.84∗∗∗

(8.35) (7.05)
Unemployment % 1.00 1.00

(1.00) (1.00)
Population % 65+ 1.00∗ 1.00∗∗∗

(1.00) (1.00)
Poverty % 1.00∗ 1.00∗∗

(1.00) (1.00)
Health insurance coverage % 1.00 1.00

(1.00) (1.00)
New arrivals into county population % 1.00 1.00

(1.00) (1.00)
Population % with disabilities 1.00· 1.00∗∗

(1.00) (1.00)
Population % with diabetes 1.00 1.00∗

(1.00) (1.00)
Population % living in overcrowded homes 1.00 1.00

(1.00) (1.00)
Temperature °C 2.51 2.71·

(3.07) (3.28)
Precipitation 3.03· 4.61·

(3.66) (4.91)
Relative humidity 1.00 1.00

(1.00) (1.00)
Air quality index (AQI) 1.04∗∗ 1.00∗

(1.07) (1.00)
County 56.42∗∗∗ 56.15∗∗∗ 59.31∗ 57.32∗∗∗

(67.05) (66.65) (69.50) (67.52)
AIC 1854.52 1742.72 1824.06 1724.01
BIC 2063.22 2021.91 2070.15 2036.51
Log Likelihood −868.84 −793.20 −843.14 −774.52
Deviance 46.09 26.26 38.10 22.83
Deviance explained 0.50 0.72 0.59 0.75
Dispersion 0.27 0.15 0.22 0.13
R2 0.23 0.44 0.31 0.48
GCV score 0.29 0.20 0.26 0.19
Num. obs. 263 263 263 263
Num. smooth terms 1 11 5 15
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 4.4: COVID-19 mortality model- Generalised additive regression model for
assessing associations between the demographic, socio-economic, climate and pop-
ulation health factors on county level death doubling times. Note that as we are
not estimating a standard regression model, the figures reported should not be read
as coefficients, but degrees of freedom of the smooth terms. Given that we cannot
interpret the coefficients to infer the sign and magnitude of the relationship, we
visualise it by plot
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Figure 4.7: Generalised additive model (GAM) plots showing the partial effects of
the explanatory variables on the doubling times of COVID-19 infections. The tick
marks on the x-axis are observed data points. The y-axis represents the partial effect
of each variable. The dots represent partial residuals. The shaded areas indicate the
95% confidence intervals. Higher values on the y-axis represent slower case doubling
times. Bottom left: Categorical variables - dashed horizontal lines on the categorical
variables represent the confidence intervals and solid red lines represents the mean
value
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Figure 4.8: Generalised additive model (GAM) plots showing the partial effects
of the explanatory variables on the doubling times of COVID-19 deaths. The tick
marks on the x-axis are observed data points. The y-axis represents the partial effect
of each variable. The dots represent partial residuals. The shaded areas indicate
the 95% confidence intervals. Higher values on the y-axis represent slower death
doubling times.
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Figure 4.9: Generalised additive model (GAM) plots showing the partial effects
of the explanatory variables on the doubling times of COVID-19 deaths. The tick
marks on the x-axis are observed data points. The y-axis represents the partial effect
of each variable. The dots represent partial residuals. The shaded areas indicate
the 95% confidence intervals. Higher values on the y-axis represent slower death
doubling times.



Page 82 Chapter 4

Figure 4.10: Generalised additive model (GAM) plots showing the partial effects
of the explanatory variables on the doubling times of COVID-19 deaths. The tick
marks on the x-axis are observed data points. The y-axis represents the partial effect
of each variable. The dots represent partial residuals. The shaded areas indicate
the 95% confidence intervals. Higher values on the y-axis represent slower death
doubling times.
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Figure 4.11: Generalised additive model (GAM) plots showing the partial effects
of the explanatory variables on the doubling times of COVID-19 deaths. The tick
marks on the x-axis are observed data points. The y-axis represents the partial effect
of each variable. The dots represent partial residuals. The shaded areas indicate
the 95% confidence intervals. Higher values on the y-axis represent longer death
doubling times. Bottom left: Categorical variables - dashed horizontal lines on the
categorical variables represent the confidence intervals and solid red lines represents
the mean value.

Table 4-4 and figures 4-8 to 4-11 show the results of our model fit using mortality
data. A high proportion of the variance is explained just by controlling for spatial
correlation between counties (R2 0.22). The “Full model” has the best fit in terms
of the AIC and adjusted R2 0.48, followed by the socio-economic model (0.44) and
the environmental model (0.31). The “Stringency index” indicator is statistically
significant (p < 0.05) and is associated with slower death doubling times; that is
more stringent containment measures are associated with slower COVID-19 death
doubling times. “Population density per km2” (< 0.001) is also an important pre-
dictor: generally, higher population density is associated with faster death doubling
times, however, this trend reverses at around 1400 inhabitants per km2 and levels
off. “Population % 65+” (< 0.001) is highly significant; higher values are associated
with faster death doubling times. Again, as with the case data analysis, “Poverty
%” is also a highly significant predictor of death doubling times (< 0.001), that is
higher levels of poverty are associated with mortality. “Pop % with disabilities”
(< 0.01) is also highly significant; as with the case data model, this predictor is
associated with slower death doubling times. The prevalence of diabetes (Pop %
with diabetes) in a county is also a significant predictor (p < 0.05) of faster death
doubling times, as is the air quality index (“Max AQI”), which is highly statistically
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significant (p < 0.01). Temperature and precipitation are slightly significant (p <
0.1) and appear to slow down death doubling times at higher values.

4.4 Discussion

In this study, I examined which socio-economic, demographic, and environmental
factors are associated with SARS-CoV-2 epidemic growth. To explain biases in
reporting, I included health risk factors that can contribute to serious SARS CoV-2
infections and deaths. We would expect case reporting to be a function of all these
factors since testing policy during this phase of the epidemic was aimed at those
with symptoms (see Appendix 3 - COVID-19 policy tracker).

We can also assume that, during this wave of the epidemic in the US, only one
strain of SARS-CoV-2 (although always evolving) was in circulation and therefore
the variation in infection and death rates across space can be attributed to external
factors i.e., testing differences, aspects of the population and environment, rather
than variation in viral traits/strains. Furthermore, no vaccines were yet in circula-
tion.

4.4.1 Containment measures to reduce disease spread

During the first wave of the epidemic in the US, governments, and public health
systems were initially caught off guard by the rapid spread of the virus. Some of the
states did apply more rigorous control measures than others, attempting to suppress
the spread of the virus early on e.g., by restricting gatherings, closure of public
spaces, creating public awareness campaigns and contact tracing (see Appendix 3).
Stringency index scores in both our models are associated with slower doubling
times and can be interpreted as, the more stringent the measures applied by state
governments early on, the more success they had in suppressing the virus.

4.4.2 Socio-economic, economic, and demographic factors

Results show that human population density is one of the strongest predictors of
case and death doubling times, the relationship is negatively linear to a point, where
higher population densities are associated with faster doubling times, but this trend
tends to level off at population densities of above 400 people per km2, and reverses
slightly for death doubling times at densities above 1000 people per km2. Perhaps be-
cause of features relating to the built environment i.e. building types, age structures,
demographic or socio-economic conditions associated with wealthier city dwellers.
However, in general, the relationship between population density and COVID-19
transmission is logical given the virus mainly transmits when humans are in close
proximity to one another. Human population density also captures other important
features of the built environment; for example, locations with high population den-
sity are cities or metropolitan areas, usually with high public transport usage, more
recreational businesses like restaurants and bars , and indoor work-spaces like of-
fices. All of which naturally bring people into closer contact and encourages airborne
transmission of SARS-CoV-2.

Results also show that counties that rely on manufacturing or recreation as their
main economic activity, also tend to have faster case doubling times. Again, this
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is likely due to aspects of the work environment like the lack of proper physical
distancing and ventilation. These findings are corroborated by studies [50, 51] that
report many SARS-CoV-2 clusters were linked to a variety of indoor settings includ-
ing households, hospitals, elderly care homes, and food processing plants (classed
as factories). This concept is also further supported by our indicator representing
household overcrowding, which is another strong predictor of case reporting dou-
bling time. However, these variables are only significant in the infections model and
not the mortality model. One possible explanation is that they represent transmis-
sion among younger people of working age, students, and younger families, who are
less likely to die from COVID-19.

In terms of age population structure, having a higher proportion over 65-year-
old’s was also a significant predictor of faster death doubling times, concurrent with
the literature and common understanding about the disease; age is one of the major
risk factors. Major outbreaks have occurred in care homes [50] suggesting that some
of the counties most affected by COVID-19 in the first wave of the epidemic was in
locations with a higher proportion of retirees and care homes.

In terms of other socio-economic factors affecting the disease, poverty was also
a significant predictor of faster doubling times in both case and mortality models.
As mentioned in the conceptual framework, this can be explained since those who
suffer from in-work poverty are likely to be doing jobs where it is difficult to work
from home or adopt self-protective health behaviours such as social distancing [10].
Furthermore, even when suffering from symptoms, many low skilled workers and
precarious workers may have been obliged to work because of a lack of sick pay,
fear of losing a day’s salary and pressures from bosses [19, 20, 21]. Poverty is
also a risk factor of poor population health and is correlated with a multitude of
underlying health conditions believed to lead to adverse outcomes for those suffering
from COVID-19 [28]. This is further supported by the results of our final models;
higher diabetes prevalence is also associated with faster case and death doubling
times. Again, those suffering from diabetes are likely to suffer from comorbidities
such as obesity and heart problems [52]. These results are also concurrent with work
conducted by Williamson et al., 2020 [53], who found that greater age, deprivation,
diabetes, severe asthma, and various other medical conditions were at higher risk
of death due to COVID-19 infection. For both data-sets “Pop % with disabilities”
tended to be correlated with slower doubling times. Although this group may be
vulnerable to COVID-19 infections, they can often suffer from social isolation which
provides some explanation. Furthermore, these groups are more likely to self-isolate
[54, 55] to avoid infections.

Environmental factors

Although a broad measure, the air quality index (“Max AQI”) provides us with
a way to proxy for counties with poor air quality and population-level pulmonary
health conditions, caused by long-term exposure to harmful pollutants such as PM
2.5, PM10, NO2, SO2 and NOx. This indicator is strongly correlated with COVID-
19 infections and death doubling times, where higher AQI tends to speed up case
and death reporting. This result is consistent with other observational studies [56,
57]. Some authors propose that air pollution increases infectivity, as SARS-CoV-2
binds with airborne particulate matter [58, 59, 60] allowing the disease to persist for
longer in the air. Although this should not be ruled out, as mentioned, air quality
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indicators also tend to proxy poor pulmonary health, which may increase death
and case reporting, that is people with lung problems induced by air pollution
are more likely to have symptomatic infections. It is well documented that long
term exposure to certain pollutants has knock-on effects for people suffering from
pulmonary viral infections [61, 62, 63, 64]. For example, a study by Soukup et
al. [65] found that regulated inflammatory responses to viral infections are altered
by exposure to PM10, potentially increasing the spread of infection and therefore
increasing viral pneumonia-related hospital admissions.

In general, case and death reporting doubling times were negatively associated
with temperature. There is increasing evidence that COVID-19 is a seasonal disease
[66, 67], especially in temperate climates where there are distinct seasonal phases
i.e. summer and winter, with distinct temperature ranges, distinct levels of ultra-
violet radiation (UV) and seasonal differences in air moisture carrying capacity.
Although, it is important not to rule out physical factors influencing transmission,
especially for long-distance transmission, given the nature of the disease (trans-
mission mainly takes place over short distances in closed spaces), the influence of
weather on human behaviour is likely one of the major drivers of SARS-CoV-2
transmission. Weather is widely considered to influence people’s behaviour [68] but
research on this topic is surprisingly scant. According to Daniel et al., 2014 [69],
people living in warmer / hotter locations, or during periods of warmer weather
are more likely to employ a range of adaptive behaviours in response to warm and
hot conditions i.e., keeping windows and doors open, use of wall and ceiling fans,
air conditioning, which in turn may initiate a range of self-protective behaviours
against SARS-CoV-2 transmission. Furthermore, warmer weather is also associated
with recreational time spent outdoors [70] where SARS-CoV-2 transmission risk is
likely to be lower. Although temperature also exhibited similar patterns for the
death data model, it was only weakly statistically significant.

4.4.3 Limitations

Some of the limitations of the study are as follows. Since the study is limited to using
aggregated data at the county level, we cannot make inferences about individual-
level associations and cannot not adjust for individual-level risk factors e.g. age,
gender, race, and occupation. However, that would be outside the scope of this
study, since we were interested in macro ecological and socio-economic trends and
drivers. Additionally, we cannot draw causal inference as the methodology we ap-
plied only reveals adjusted correlations. Therefore, results were carefully evaluated
from individual-level and clinical-based studies to draw conclusions. The use of
further explanatory variables would have surely improved the study i.e. on home-
lessness, availability of Intensive Care Units (ICU), quality of medical facilities,
and ratio of medical staff per person, but these data were not available. It is also
important to note that given the unprecedented nature and scale of COVID-19 out-
breaks, data quality issues arise owing to the under-reporting of cases i.e., through
under-diagnosis, lack of diagnostic tests and a lack of resources/time to carry out
and implement mass testing. If data collection methods remained constant across
counties over the time frame of this study, the calculation of doubling times can
be a reliable measure. However, doubling times can be inflated by improving test-
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ing procedures i.e., better detection and reporting through the availability of bet-
ter diagnostic tests, better sampling techniques, resource allocation, and increased
awareness of the disease.

4.5 Conclusions

This paper investigated drivers of epidemic growth during the first wave of outbreaks
in US counties, by assessing the association between COVID-19 epidemic doubling
times with socio-economic, demographic, environmental factors, and government
containment measures. Results suggest that the main drivers of new infections are
higher population density, home overcrowding, manufacturing and recreation indus-
tries and poverty. By contrast, warmer temperatures slowed epidemic growth which
was likely to be the result of human behaviour responses to temperature. The main
factors associated with death doubling times were age, poverty, air pollution and di-
abetes prevalence. Such findings help underpin current understanding of the disease
epidemiology and also support current policy and advice recommending ventilation
of homes, work-spaces and schools, along with social distancing and mask-wearing.

The results also suggest that states which adopted more stringent containment
measures early on, did have some success at slowing the spread of the virus. There
are numerous reports that there were huge failures at local level i.e. in care homes and
business owners failing to protect residents and staff, by acting too slow or failing to
implement control measures such as mask wearing and creating better ventilation in
closed spaces [71, 72, 73]. The results also show that those counties with the highest
percentages of people with certain underlying health conditions, age, and poverty
were also those which had higher death doubling times. Protecting these groups
early on with income support schemes could have allowed the working vulnerable
to stay at home and avoid infection [74, 75]. Furthermore, home overcrowding was
also a very important factor in case doubling times and a policy of providing a
quarantine location for those infected with SAR-CoV-2 would have surely slowed
epidemic growth [76].

Finally, while it is not clear where the next threat will come from, anthropogenic
activity like deforestation, wildlife trade, and intensive animal rearing, that encour-
ages spillover from wild reservoirs, and influences the emergence and evolution of
novel coronaviruses [9, 77, 78] will continue to present risks globally until better
controls and regulations can be implemented [79]. If new coronaviruses emerge,
with similar modes of transmission, we should hope that governments can quickly
apply top-down measures to suppress the virus before more sophisticated measures
can be implemented i.e. rapid community testing to isolate the infected. I hope
this work will contribute to the scholarly debate and can shed light on some of the
environmental and socio-economic factors driving SAR-COV-2 transmission.

4.5.1 Abbreviations

GDP: Gross Domestic Product; US: United States of America.
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Chapter 5

Synthesis

In this thesis, I set out to investigate some of the broader questions in epidemiology,
which have only recently become possible because of advances in modern computing.
In particular, I examined how aspects of climate, environment, socio-demographic
conditions, and political factors act together to influence the spread and establish-
ment of infectious diseases on a macro-scale.

The research carried out for this thesis shows that climate is one of the main fac-
tors affecting disease distribution and intensity. However, the impact of increasing
temperatures differs across diseases: while warmer climates are positively associated
with the spread of the two tropical vector-borne diseases investigated in this thesis,
which is a fairly well established scientific fact and concurrent with studies such as
[10, 22], higher temperatures appear to act as a limiting factor when it comes to
the spread of SARS-CoV-2 [15, 21, 8]. More specifically, the work in Chapter 2,
examining the distribution of dengue in Mexico and the United States, shows how
the disease is most prevalent in tropical areas of Mexico, where temperatures are
generally milder during the coldest parts of the year compared to more temperate
regions, and there is less seasonal variation and more consistent rainfall. The results
also suggest that winter temperatures may be limiting the spread of dengue into
more northerly US states since the Aedes mosquito’s species, and the virus do not
overwinter in very cold temperatures. However, we could expect dengue to shift
further north with increasing winter temperatures due to climate change. In regions
where dengue is endemic in lower-lying areas (particularly in Mexico), increasingly
warmer weather at higher altitudes may also allow the virus and vectors to push up
into mountainous areas where the disease is not currently endemic. Results from
Chapter 3 also find that climate is also an important predictor of West Nile infec-
tions. Generally, warmer temperatures and more consistent rainfall in the summer
months affect the disease positively. Increasingly warmer temperatures can in part
explain why the virus has expanded in Europe, especially to more northerly regions.
Drought and the shrinking of freshwater sources, also influenced by global climate
change also appears to be affecting the intensity of summer outbreaks, by increas-
ing contact between wetland bird species and mosquitoes and therefore increasing
prevalence and potential spillover to the human population. This finding is also
corroborated by local-level studies [20, 5, 12], and one macro-scale [19] study. The
results from Chapter 4 also found that there is some temperature dependence in the
human-to-human transmission of SARS-CoV-2, although warmer appears to slow
down transmission. These results are supported by the findings from other empirical
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studies [15, 21, 8], although results there are studies that report little to no impact
of temperature on SARS-COV-2 transmission( [11], UJIIE2020301 ). Currently,
the predominant theory is that warmer temperatures allow humans to adopt inten-
tional or unintentional behaviours that protect them against SARS-C0V-2 infection,
through better ventilating buildings and carrying out certain activities outdoor, e.g.,
socialising, cultural events. Although evidence for this is scant and more mechanis-
tic and behavioural modelling (physical, human behaviour) needs to be conducted
to validate these theories along with the empirical findings just mentioned. When
focusing on the impact of socio-economic factors on the spread of the diseases in-
vestigated, results from chapters 2 and 4 suggest that poverty and social inequality,
along with demographic and human behavioural factors, may also influence the in-
tensity of transmission of dengue viruses (DENVs) and SARS-COV-2. For DENVs,
infections are more prevalent in poorer regions with low income and low education.
These findings are in line with studies such as [13, 2] which look at the relationship
between population health, income and government spending. Furthermore, areas
with higher population growth and more mobility were also predictors of a higher in-
cidence of dengue. Such findings are particularly relevant since dengue has recently
re-emerged in Europe and can help identify which communities may be most at risk,
for instance, those doing manual outdoor work such as agricultural workers. As for
socio-economic/demographic factors influencing SARS-COV-2, metropolitan areas
with major transport hubs were hit hardest by the virus during the first wave of the
epidemic in the US. This can be explained as the virus is likely to have first entered
the US via these locations which tend to attract international travellers and import
goods from abroad, as explored by [18]. The virus then tended to spread in areas
where work is carried out indoors, such as factories, hospitals, eateries, and where
the population is denser, especially in cities, which tends to attract more people for
work and pleasure, hence bringing them into close contact. Socio-economic factors
like poverty and social inequality created through job insecurity were also likely to
play a role in disease transmission. Certainly, those people in lower-skilled jobs such
as cleaners, bus drivers, shop keepers, factory workers may have been more exposed
to the virus since they were unable to work from home. Workers without proper
workers’ rights were also less likely to break the transmission cycle because of lack
of sick pay, therefore increasing the chance of transmitting the virus to colleagues
[16, 14, 6, 24, 17, 7]. However, it is important to note that all front-line workers,
even those in better socio-economic situations such as medical workers and teachers
would have been more exposed to the virus. Perhaps more importantly, as revealed
in Chapter 4, death doubling times in the poorest areas were much higher than in
more affluent areas, which is largely due to the health problems that occur in poorer
populations [3, 4, 9, 1, 23]. Housing overcrowding also appeared to be a driver of
new infections; those living in more cramped conditions may have found it difficult
to isolate when infected and raised the likelihood of spreading the virus to members
of their household. Another aspect considered is how political will and decisions (or
lack of them) can affect the spread of diseases, in this case, WNV and SARS-COV-2.
Results in Chapter 3 revealed strong associations between places hardest hit by the
economic crisis and those that had the highest prevalence of WNV infections. In-
deed, WNV became a serious public health issue in Europe during a period of severe
economic decline and cuts to specific sectors of government. Government spending
in areas, such as wastewater management, environment, and health, suffered se-
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vere budget cuts, and these political decisions are likely to be the drivers and/or
moderators of WNV infections. Similarly, I investigated whether control measures
implemented by state governments were able to reduce SARS-COV-2 transmission.
Although due to the rapidness and scale of outbreaks, public health systems were
initially overwhelmed, broke down and unable to function at an adequate capacity
to contain the virus; states that applied stricter measures early on had some success
in suppressing the virus. These results show how top-down measures can improve or
worsen disease outcomes, demonstrating the importance of how political decisions
made by a few can have serious impacts on the wider population.

5.0.1 Caveats and Limitations

Since all three studies relied on a similar study design, statistical methods and data,
the major limitations of each study are comparable:

• Sourcing, merging, and analysing of data at relevant scales: Although envi-
ronmental data drawn from satellite images are generally provided at spatial-
temporal resolutions suitable for studying disease transmission mechanisms,
health data are only provided as aggregated areal data, which represents the
number of infections and deaths per geographical (political) boundary. By us-
ing geographical boundaries as our unit of analysis we lose important location-
based information which would allow us to better assess the contribution of en-
vironmental factors (e.g. land use, housing type) to disease transmission risk.
Important information is also lost on individual variability such as health sta-
tus, age, or any genetic predispositions and we cannot make inferences about
individuals based on aggregated areal data.

• Variation in sampling effort across regions since data for each variable can be
collected from several sources. Knowledge gaps in the geographical range of
hosts, vectors and human cases of the disease can also overstate or understate
the real drivers of disease. Therefore, findings need to be carefully evaluated
with local-level studies, especially those that look at mechanisms and causa-
tion.

• Sourcing data that represented certain ecological, environmental, political,
and socio-demographic factors identified in the conceptual frameworks was
not possible, and therefore I had to use proxies to represent these factors in
the models, this meant making strong assumptions about certain relationships.
For example, for chapters 2 and 3 data, since regional mosquito population
abundance data was not available, I assumed that mosquito abundance di-
rectly influences disease transmission, I also consulted secondary literature to
define proxies that could be used to represent drivers of mosquito abundance.
Similarly, since no data was readily available on mosquito control policies at
the scales studied, I made the assumption that poorer regions or those regions
suffering some form of austerity would have had fewer control measures in place
and/or would have had the poor or declining infrastructure, such as potholes
and poor sanitation which would have thus benefited the spread of mosquitoes.
To gather such data on mosquito population abundance or regional mosquito
control measures would require an effort far beyond the object of this thesis.
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5.0.2 Future Outlook

One of the most effective ways to further this research would be to upscale the unit
of analysis for each study, by incorporating individually geo-referenced health out-
come data into the models. The level of aggregation in the studies makes it harder to
infer causation and elucidate diseases transmission mechanisms; similarly, the lack
of individual-level data does not allow to control for individual factors affecting the
likelihood to get the disease, such as age, and underlying health conditions. Such
datasets are not publicly available or are very difficult to obtain for researchers not
connected to universities that have access to governmental data. In my personal
experience, data requests were either denied or ignored. Given the potential social
and economic damage caused by infectious diseases (not to mention human suffer-
ing), foresight is needed by governments and health authorities to implement better
data collection strategies to help improve research. One initial solution would be
for science funders to create new initiatives and harmonise data collection protocols
and develop specialised global databases for important diseases, this would require
a closer integration between the academic sector and health and government au-
thorities. Data could easily be presented at more refined and biologically relevant
scales without revealing personal information about study subjects. For example,
geo-coordinates or postcodes could be obfuscated at a scale that does not identify
street names but provides more refined spatial information. The contact tracing
data collection initiatives that have been recently set up by governments and health
authorities to keep track of COVID-19 cases could be used as infrastructure to
build on and extended to other infectious diseases. In general, a focus on providing
more refined data would open up more useful lines of enquiry and could help us
understand how disease transmission is dynamically affected through interactions
between environmental and human socio-demographic and behavioural factors at
macro-scales.

5.0.3 Conclusions

This work is relevant as it adds to the growing body of scientific literature focusing
on infectious diseases, taking more holistic approaches and harnessing big data to
understand under which environmental and social conditions some populations be-
come more exposed and burdened by infectious diseases than others. The research
tackles some of the broader and less explored areas of public health and epidemi-
ology, such as analysing economic changes with environmental changes, examining
the impacts of factors such as austerity on health, along with other factors such
as political decision making and or lack of intervention by government authorities.
Such work is especially important when considering the multiple threats brought
about by climate change and other anthropogenic-induced changes that can benefit
emerging diseases, i.e., global trade in wild animals, intensive agriculture/animal
rearing, and land-use conversion.

General recommendations

To better tackle infectious diseases, we need to look more closely at how human ac-
tivity interacts with the natural environment, and how general neglect of the popula-
tion, environment and infrastructure at a political level can consequently jeopardise
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human health across the globe. Particular attention should be paid by governments
when making spending reductions to health and environmental protection, partic-
ularly during economic crises or economic downturns. More collaboration between
academic sectors and governments internationally needs to take place to provide
better databases for researchers, enabling them to investigate disease transmission
mechanisms and subsequently develop effective control measures and interventions
strategies. The public debate needs to take place on how to allocate more resources
to tackle infectious diseases in all parts of the world: there needs recognition that
infectious disease in one part of the world is potentially a problem for everyone.
Finally, we need to immediately act towards lowering carbon emissions to restrict
extreme changes in the climate given this may erode some of the gains we have
made over the past century in terms of poverty reduction, human health, welfare,
and food security. More work needs to go into educating the public on such issues,
showing the link between climate change, environmental degradation, and infectious
disease emergence, and spread. This could then push these issues up the political
agenda, which may lead to more inter-governmental investment in initiatives that
tackle neglected and emerging infectious diseases worldwide.
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Appendix A

Influence of socio-economic,
demographic and climate factors
on the regional distribution of
dengue in the United States and
Mexico

A.1 Data availability

Availability of data and materials The R project folder, main spatial dataset and R
code for the project is available from https://doi.org/10.5281/zenodo.887909.

A.2 Vector and Environmental Relationships: Re-

gression Analysis (Step 1)

To assess the relationships between vector and environment, techniques were adapted
from [58]. Since our species distribution data set only consisted of presence data,
absence data was substituted with background data. Background data points were
sampled randomly from the study area, matching roughly the number of observations
in the presence data. (Mex/US). Using background data allows us to characterise
environments in the study region, which establishes the environmental domain of
the study, whilst presence data should represent the conditions a species is more
likely to be present than on average. Since vector presence is indicated by a binary
variable equal to 1 and absence equal to 0, a relationship between environmental
and vector presence was estimated with a logit model by maximum likelihood. Logit
estimation techniques are based on the assumption that there is a latent variable
y and that this latent variable is a linear function of all the explanatory variables.
Climate data for the species distribution prediction modelling were sourced from
MERRAclim [52]. This data-set was built using 2m air temperature (Kelvin de-
grees) and 2 m specific humidity (kg of water/kg of air) hourly data derived from
satellite observations from the Modern Era Retrospective Analysis for Research and
Applications Reanalysis. Tables A1.1 and A1.2 provide summary statistics for these
data sets.
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In order to predict if a vector was present in a given location i, the following
equations were used

Pr(Aedes.aegypti = 1) = β1Tvar1i + β2Tvar2i + β3Pvar1i + ε

Pr(Aedes.albopictus = 1) = β1Tvar1i + β2Tvar2i + β3Pvar1i + ε

where Xi is a vector of regressors/independent variables (in this case: Tvar 1 repre-
sents temperature annual range; Tvar2 represents mean temperature of the coldest
quarter; Pvar1 represents precipitation of the driest month and epsilon is the error
term.

A.3 Vector and Environmental Relationships: re-

gression analysis results

The impact of climate on the probability of a vector being present was assessed
by running a GAM logit regression. Results are reported in Table A1.3 and model
diagnostics in figures A1.1 and A1.2 .

All three predictors were highly significant for both A. aegypti and A. albopictus.
The results from the GAM logistic regressions the study confirmed a positive and
highly significant association between some climatic factors and vector presence.

A. albopictus seems to be distributed in environments that are warmer and wetter
during the hotter months, A. aegypti seems to be sensitive to colder temperatures
and temperature range.

For both species minimum temperature is a major limiting factor affecting dis-
tribution and this is conclusive with our results.

The models were validated using an assessment of the residuals and using a 5-
fold cross-validation of the operating characteristic (ROC) curve, which compared
false and true positives (see figures A1.1-A1.2 ). The data set was divided into 5
(k-5) subsets, and the model run 5 times. For each run, one of the k subsets is used
as the test the rate of false positives and true positives. Both models demonstrated
high accuracy in terms of predicting true positives with values not falling under 0.87
for A. aegypti and 0.89 for A. albopictus.

Table A1.1: A. aegypti climate variable summary

Statistic N Min Max Mean St. Dev.

Temp.Annual.Range 8,584 4.600 55.200 23.880 8.032
Mean.Temp.Coldest.Quarter 8,584 −7.600 30.700 23.470 3.438
Precip.of.Driest.Month 8,584 348 2,493 1,488.795 321.253



Appendix A 105

Table A1.2: A. albopictus climate variable summary

Statistic N Min Max Mean St. Dev.

Temp.Annual.Range 7,425 46 588 289.262 96.656
Mean.Temp.Coldest.Quarter 7,425 −83 307 191.324 65.688
Precip.of.Driest.Month 7,425 267 2,493 1,326.908 317.151

A.aegypti A.albopictus

Intercept −2.14∗∗∗ −6.56∗∗∗

(0.51) (0.67)
Temperature annual range 2.04∗∗ 2.78∗∗∗

(2.26) (2.96)
Mean temperature of coldest quarter 2.12∗∗∗ 2.99∗∗∗

(2.32) (3.00)
Precipitation of driest month 2.83∗∗∗ 2.98∗∗∗

(2.97) (3.00)

AIC 13478.91 11510.16
BIC 13541.08 11584.66
Log Likelihood −6731.47 −5745.33
Deviance 13462.94 11490.65
Deviance explained 0.45 0.46
Dispersion 1.00 1.00
R2 0.52 0.52
GCV score −0.24 −0.25
Num. obs. 17798 15326
Num. smooth terms 3 3
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table A1.3: Aedes GAM SDM results
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NB US/Mex TW US/Mex QP US/Mex NB Mex TW Mex QP Mex
(Intercept) −9.44∗∗∗ 2.22∗∗∗ −9.12∗∗∗ −9.20∗∗∗ 2.44∗∗∗ −8.75∗∗∗

(0.26) (0.20) (0.26) (0.18) (0.18) (0.21)
EDF: s(socio economic index norm1) 1.65∗∗∗ 1.78∗∗ 1.92

(1.82) (1.92) (1.97)
EDF: s(BB ACC) 1.95∗∗∗ 1.95∗∗∗ 1.88∗∗ 1.92∗∗∗ 1.92∗∗∗ 1.80

(1.99) (1.99) (1.97) (1.99) (1.99) (1.94)
EDF: s(DOC RA) 1.68∗ 1.88∗∗∗ 1.95∗∗∗ 1.34∗∗ 1.81∗∗∗ 1.95∗∗∗

(1.88) (1.98) (1.99) (1.54) (1.95) (1.99)
EDF: s(FLOWMOB ALL RA) 1.00 1.61 1.57 1.00∗ 1.00 1.00

(1.00) (1.82) (1.77) (1.00) (1.00) (1.00)
EDF: s(QOL index) 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
EDF: s(POP DEN GR) 1.84∗∗∗ 1.00∗∗ 1.28∗ 1.00 1.00 1.01

(1.95) (1.01) (1.44) (1.00) (1.00) (1.02)
EDF: s(Y65 MAX) 1.92∗∗∗ 1.79∗∗ 1.15∗∗

(1.96) (1.89) (1.24)
EDF: s(bio11) 1.77∗∗∗ 1.83∗∗∗ 1.68∗∗∗ 1.87∗∗∗ 1.89∗∗∗ 1.00∗∗∗

(1.92) (1.95) (1.86) (1.97) (1.98) (1.00)
EDF: s(bio18) 1.65∗ 1.53∗ 1.00 1.86∗ 1.71 1.00

(1.86) (1.76) (1.00) (1.97) (1.90) (1.00)
EDF: s(fyear) 6.79∗∗∗ 6.61∗∗∗ 6.67∗∗∗ 5.97∗∗∗ 6.44∗∗∗ 6.46∗∗∗

(8.00) (8.00) (8.00) (8.00) (8.00) (8.00)
EDF: s(factor(ADM1 CODE)) 11.54∗∗∗ 10.45∗∗∗ 9.30∗∗∗ 12.35∗∗∗ 12.13∗∗∗ 10.32∗∗∗

(12.97) (12.19) (11.22) (13.56) (13.47) (12.31)
EDF: s(INCOME PRIM) 1.84∗ 1.83∗ 1.93∗∗

(1.96) (1.96) (1.99)
EDF: s(ROOMS PC) 1.00 1.00 1.00

(1.00) (1.00) (1.00)
EDF: s(EDU38 SH) 1.97∗∗∗ 1.95∗∗∗ 1.78

(2.00) (1.99) (1.92)
AIC 3989.14 2231.57 − 3866.02 2204.83 −
BIC 4130.53 2373.21 − 4006.05 2350.39 −
Log Likelihood −1956.60 −1077.75 − −1894.78 −1062.68 −
Deviance 332.45 962.59 179965.91 303.55 859.68 169568.80
Deviance explained 0.61 0.66 0.75 0.62 0.67 0.70
Dispersion 1.00 2.83 881.70 1.00 2.73 957.09

R2 0.09 0.51 0.57 0.09 0.51 0.58
GCV score 2011.57 1127.23 1180.27 1950.50 1119.74 1117.09
Num. obs. 306 306 306 288 288 288
Num. smooth terms 11 11 11 12 12 12
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table A1.4: Model diagnostics - distributions

A.4 Diagnostics
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Figure A1.1: ROC + residual check A.aegypti model
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Figure A1.2: ROC + residual check A.albopictus model
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Figure A1.3: Correlation matrix: US/Mex dataset
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Figure A1.4: Correlation matrix: US/Mex dataset
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Figure A1.5: Diagnostics: Mex/US main model
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Figure A1.6: Diagnostics (cont): Mex/US main model
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Figure A1.7: Plotted residuals: Mex/US main model
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Figure A1.8: Diagnostics: Mex main model
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Figure A1.9: Diagnostics(cont): Mex main model
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Figure A1.10: Diagnostics: Plotted residuals - Mex main model
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Figure A1.11: Diagnostics - Negbin Mex/US main model



Appendix A 118

Figure A1.12: Diagnostics: Mex main model

Figure A1.13: Diagnostics: Quasi-poisson Mex/US main model
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Figure A1.14: Diagnostics: Quasi-poisson Mex main model
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A.5 Data sources

VAR Unit Indicator Source
1 bio11 degrees C Mean Temperature of Coldest Quarter Climate Prediction Center
2 bio18 Precip mm Precipitation of Warmest Quarter Climate Prediction Center
3 FLOWMIG ALL RA Ratio Inter-regional migration rate, (% migrants over population) OECD regional database
4 GDP USD per head Regional GDP OECD regional database
5 POP DEN GR Index Population density growth index (2001=100) OECD regional database
6 ROOMS PC Average number of rooms per inhabitant (rooms per capita) OECD regional database
7 Y0 14 Persons Youth Population Group (0-14) OECD regional database
8 Y65 MAX Persons Old Population Group (65+) OECD regional database
9 DOC RA Active Physicians Rate (physicians for 1000 population) OECD regional database

10 LIFE EXP Years Life Expectancy at Birth OECD regional database
11 INCOME PRIM USD per head Primary Income of Private Households OECD regional database
12 BB ACC Percentage Share of households with internet broadband access OECD regional database
13 EDU38 SH Percentage Share of labour force with at least secondary education OECD regional database
14 INCOME DISP US Dollar Disposable income per capita OECD regional database
15 ROOMS PC Ratio Number of rooms per person OECD regional database
16 SUBJ LIFE SAT Index Self-evaluation of life satisfaction OECD regional database
17 SUBJ PERC CORR Percentage Perception of corrution OECD regional database
18 SUBJ SOC SUPP Percentage Perceived social network support OECD regional database
19 dengue non serious cases number of non-serious cases reported in mexico www.gob.mex
20 dengue serious cases number of non-serious cases reported in mexico www.gob.mex
21 dengue cdc cases number of cases reported in USA www.cdc.gov/arbonet
22 pop population human population in aedes infected areas https://sedac.ciesin.columbia.edu

Table A1.5: Main analysis variable description and codes
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Appendix B

The rise of West Nile Virus in
Southern and Southeastern
Europe: A spatial–temporal
analysis investigating the
combined effects of climate, land
use and economic changes

B.1 Data availability

An R project containing all data that supports the findings of this study are available
in .Rdata format from https://doi.org/10.5281/zenodo.4656902).

B.2 Code availability

An R project containing all code used to set-up the models is available here is
available from https://doi.org/10.5281/zenodo.4656902.

B.3 Extended data extraction and processing meth-

ods

B.3.1 Aggregation

All data were aggregated annually to produce the final yearly panel data-set and
aggregated at the NUTS 3 country subdivision level, apart from central government
spending data which was sourced at the country level. All spatial information was
captured at the NUTS 3 level using shapefiles (polygons) sourced from R’s ‘eurostat’
package [9].

The Nomenclature of territorial units for statistics (NUTS) is a classification
system used to divide economic territories of the EU into three hierarchical sub
categories for the purpose of data collection and and statistical analysis:

122

https://doi.org/10.5281/zenodo.4656902
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• NUTS 1: Major socio-economic regions with a population ranging from 3 to
7 million.

• NUTS 2: Basic regions are generally used for the application of regional poli-
cies with a population ranging from 800,000 to 3 million.

• NUTS 3: Small regions for specific diagnoses with a population ranging from
150,000 to 800,000.

For further details see https://ec.europa.eu/eurostat/web/nuts/background.

WNF Case Data

WNV case data were provided at request by the European Centre for Disease Pre-
vention and Control (www.ecdc.europa.eu). Case data are collected weekly by EU
member states and affiliates. Data were aggregated at NUTS 3 country subdivisions
[6]. Positive cases were confirmed by at least one of the following techniques: 1);
isolating WNV or WNV nucleic acid from blood or cerebrospinal fluid (CSF); 2)
inducing a WNV-specific antibody response (either IgG / IgM) in a serological test.
All cases were aggregated yearly to create the annual panel data-set.

B.3.2 Economic, Socio-Economic and Demographic Factors

Economic data were extracted from the Eurostat database (https://ec.europa.
eu/eurostat/data/database), which provides comparable statistics and indicators
and is presented in yearly time series. To capture factors determining the economic
crisis, austerity and cuts to public spending we selected NUTS3 regional level Gross
Domestic Product (GDP); and country level agriculture, forestry, fisheries spending,
waste water spending Health spending. The “Agriculture, forestry, fisheries spend-
ing” variable captures spending in rural areas that help to improve the environment
and agricultural development, that can benefit agricultural workers and/or mecha-
nize production [5]. In order to represent spending before and after the economic
crisis, we created a baseline index for each variable set at 2007 levels, which repre-
sented negative or positive growth from the point just before the economic crisis hit
Europe.

B.3.3 Climate Data

Climate data were sourced from the E-OBS Gridded Data-set [3]. This data-set was
created using a series of daily temperature and rainfall observations at meteorolog-
ical stations throughout Europe. R’s ”Raster Extract” function from the ”Raster”
package [7] was used to extract and aggregate cell values to each NUTS 3 region.
The subsequent regional values were then processed further to create regional sea-
sonal variables: “Mean temp winter (°C)”, “Mean temp spring (°C)”, “Mean temp
summer (°C)”, “Days of rain in winter, “Days of rain in spring” and ”Days of rain in
summer”. Winter was designated as December to March, Spring as March to June,
and summer June to September.

https://ec.europa.eu/eurostat/data/database
https://ec.europa.eu/eurostat/data/database
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B.3.4 Land-use data

Land use statistics were captured at the NUTS3 level using the CORINE Land Cover
(CLC) 2006, 2012 and 2018 data-sets [4]. These data-sets provide information on
the biophysical characteristics of the Earth’s surface in the form of categorical raster
data. For each region, we calculated percentage land cover for each of the land-use
risk factors identified in our conceptual framework, i.e., “Continuous urban fabric”,
“Discontinuous urban fabric’, “Wetlands (fresh water)” and “Arable land”. R’s SF
and Raster packages [10, 7] were used to extract information for each available year
(2006, 2012, 2018). R’s Zoo package [14] was used to calculate values for missing
years, by implementing a linear interpolation method that would predict trends
between years, apart from 2019 where 2018 values were used.

B.3.5 Surface Water data

Regional surface water data was sourced using the JRC Monthly Water History, v1.2
data set [11] via Google Earth Engine at a 30 meter pixel resolution. This data set
contains maps of the location and temporal distribution of surface water from 1984
to 2019 and provides statistics on the extent and change of water surfaces. Data
were generated using scenes from Landsat 5, 7, and 8. Each pixel was individually
classified into water / non-water using an expert system and the results were collated
into a monthly history. Water / non-water count observations were extracted and
aggregated by each NUTS 3 region. The sum of the Water / non-water observations
were then used to create a % water surface water indicator, which was averaged by
season and converted to Z-scores to standardise values. This would help determine
if the seasonal water extent was average, below the mean (low), or above the mean
(high) for a given year.

B.3.6 Extended Statistical methods

General additive regression model to assess associations of independent
variables on WNV case data at regional level

One of the main issues with our data-set is that it did not meet some basic as-
sumptions for statistical inference, and specifically the data are not independent
and identically distributed random variables (iid). More specifically, the data-set
captured repeated measurements over the same regions, and observations were not
independent because of spill over effects from neighbouring regions, therefore we
needed to implement an appropriate statistical design to control for both temporal
and spatial pseudo replication (lack of independence). We could deal with this in two
ways, 1) either using a generalised linear mixed model (GLMM) approach, relaxing
the assumption of independence and estimating the spatial/temporal correlation be-
tween residuals, or 2) model the spatial and temporal dependence in the systematic
part of the model [1]. We opted to use a Generalised Additive Model (GAM) using
R’s Mgcv statistical package [12] because of its versatility and ability to fit complex
models that would converge even with low numbers of observations, and could cap-
ture potential complex non-linear relationships. One of the advantages of GAMs
is that we do not need to determine the functional form of the relationship before-
hand. In general, such models transform the mean response to an additive form so
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that additive components are smooth functions (e.g., splines) of the covariates, in
which functions themselves are expressed as basis-function expansions. The spatial
auto-correlation in the GAM model was approximated by a Markov random field
(MRF) smoother, defined by the geographic areas and their neighborhood structure.
We used R’s Spdep package [2] to create a queen neighbors list (adjacency matrix)
based on regions with contiguous boundaries i.e.˜those sharing one or more bound-
ary point. We used a full rank MRF, which represented roughly one coefficient for
each area. The local Markov property assumes that a region is conditionally inde-
pendent of all other regions unless regions share a boundary. This feature allowed
us to model the correlation between geographical neighbors and smooth over con-
tiguous spatial areas, summarizing the trend of the response variable as a function
of the predictors (see section 5.4.2 of [13]. In order to account for variation in the
response variable over time, not attributed to the other explanatory variables in our
model, we used a saturated time effect for years, where a separate effect per time
point is estimated.

We first tried to fit our model using a Poisson distribution. However, the mean of
our dependent variable (WNV cases by region and year) was lower than its variance
- E(Y) <Var(Y), suggesting that the data are over-dispersed. We also tried to fit
our models using the negative binomial, quasi-Poisson and Tweedie distribution, all
particularly suited when the variance is much larger than the mean. After several
tests, we concluded that the Tweedie distribution worked well with our data since
it can handle excess zeros [8], and allows us to model the incident rate, although
results were comparative across all distributions (note that WNV infection count
data, offset by a log of population at risk was used for the neg bin and quasi-Poisson
models). Analysis of model diagnostic tests did not reveal any major issues; in
general residuals appeared to be randomly distributed (see additional information -
Figures S10-S11 and Table S1 for diagnostics).

Tweedie distributions are defined as subfamily of (reproductive) exponential dis-
persion models (ED), with a special mean-variance relationship . A random variable
Y is Tweedie distributed if:

TWp(µ, σ
2) if Y ED(µ, σ2), with mean = µ = E(Y ), positive dispersion param-

eter σ2 and V ar(Y ) = µσ2.
The empirical model can then be written as:

E(Y ) = f1(Xit) + fn(Yeart) + fm(Regioni)

Where the f(.) stands for smooth functions; E(Y )it is equal to the WNV infec-
tion incidence per 100,000 in region i at time t, which we assume to be Tweedie
distributed; Xit - is a vector of economic, demographic, environmental and climate
variables. Y eart is a function of the time intercept and Regioni represents neigh-
borhood structure of region.

B.4 Climate modeling

In order to model long term seasonal climate trends, we fit a GAM model using the
following equation.
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y = β0 + f(x1, x2) + ε

where y = is either the mean of the monthly regional temperatures (°C) or
regional sum precipitation (mm).

B0 is the intercept, month is represented by x1 and x2 is the series of years in
the entire time period i.e. within-year and between year.

f is a smooth function interaction that accounts for variation in, or interaction
between, the trend and seasonal features of the data.

Temperature models were fit using the Gaussian distribution and precipitation
models fit using the Tweedie distribution.
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Figure B1: Austria - seasonal climate trends (Data source: E-OBS version 22.0e).
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Figure B2: Bulgaria / Croatia - seasonal climate trends (Data source: E-OBS version
22.0e).
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Figure B3: Greece / Hungary- seasonal climate trends (Data source: E-OBS version
22.0e).
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Figure B4: Romania / Italy - seasonal climate trends (Data source: E-OBS version
22.0e).
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Figure B5: Land-use: 1 = Discontinuous Urban Fabric, 2-4 = Arable land break-
down (Source: CORINE Land Cover)
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Figure B6: Land-use: Fresh water bodies break-down (Source: CORINE Land
Cover)
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Figure B7: Government spending growth, GDP growth and unemployment 2007-
2019 (2007=100%) (Source: Eurostat)
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Figure B8: Variable correlation plot.
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Figure B9: Spatial Residuals Tweedie model.
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Figure B10: Diagnostics Tweedie model.
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Figure B11: Diagnostics 2 Tweedie model.
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Figure B12: Diagnostics negbin model.
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Figure B13: Diagnostics 2 negbin model.
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Figure B14: Diagnostics Quasipoisson model.
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Table B1: WNF Cases Per Country 2006-2019
Country 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Austria 0 0 2 1 0 0 0 2 6 5 6 20 4
Bulgaria 0 0 0 0 0 2 0 1 2 1 1 15 6
Croatia 0 0 0 0 0 6 20 1 1 2 5 57 1
Cyprus 0 0 0 0 0 0 0 0 0 1 0 1 24
Czechia 0 0 0 0 0 0 1 0 0 0 0 5 1
France 0 0 0 0 0 0 0 0 1 0 2 27 1
Germany 0 0 0 0 0 0 0 0 0 0 0 1 4
Greece 0 0 0 262 100 157 85 15 0 0 48 312 228
Hungary 4 19 7 18 4 17 35 10 18 44 20 216 72
Italy 0 0 0 4 18 45 80 24 61 76 53 610 54
Portugal 0 0 0 0 0 0 0 0 1 0 0 0 0
Romania 4 2 2 57 11 15 24 23 32 93 66 279 68
Slovakia 0 0 0 0 0 0 0 0 0 0 0 0 1
Slovenia 0 0 0 0 0 0 1 0 0 0 0 4 0
Spain 0 0 0 2 0 0 0 0 0 4 0 0 0
Turkey 0 0 0 47 5 0 0 0 0 1 7 26 10

Table B2: Final model specification comparisons by distribution
Tweedie model Negbin model Quasi Poisson model

Intercept −2.35∗∗∗ −13.82∗∗∗ −13.86∗∗∗

(0.40) (0.36) (0.45)
Mean temp summer (C) 1.00∗ 1.50∗ 2.00∗∗

(1.00) (1.70) (2.00)
Mean temp winter (C) 1.94∗∗∗ 1.96∗∗∗ 2.00∗∗∗

(1.99) (1.99) (2.00)
Days of rain in summer 1.00∗∗ 1.00∗∗ 1.00

(1.00) (1.00) (1.00)
Summer surface water extent (30m2) 1.02∗∗∗ 1.40∗ 1.62∗∗∗

(1.03) (1.64) (1.85)
Regional GDP index (2007=100%) 1.00 1.00 1.00

(1.00) (1.00) (1.00)
Agri, forest + fish spending (2007=100%) 1.93∗∗∗ 1.94∗∗∗ 2.00∗∗∗

(1.99) (1.99) (2.00)
Waste water managment spending (2007=100%) 1.10∗∗∗ 1.45∗∗∗ 1.75∗∗∗

(1.19) (1.69) (1.93)
Continuous urban fabric % 1.00 1.00 1.00

(1.00) (1.00) (1.00)
Discontinuous urban fabric % 1.00 1.00 1.00

(1.00) (1.00) (1.00)
Wetlands % 1.00 1.00 1.01

(1.00) (1.00) (1.01)
Arable land % 1.74∗∗ 1.83∗∗∗ 1.00∗∗

(1.84) (1.90) (1.00)
Year 11.56∗∗∗ 11.55∗∗∗ 11.62∗∗∗

(12.00) (12.00) (12.00)
Spatial lag 76.19∗∗∗ 83.79∗∗∗ 117.20∗∗∗

(106.52) (115.75) (141.05)
AIC 3907.56 4659.28 -
BIC 4538.85 5335.48 -
Log Likelihood −1842.57 −2210.53 -
Deviance 3520.85 1207.27 4607.49
Deviance explained 0.65 0.64 0.69
Dispersion 2.73 1.00 3.22
R2 0.25 −0.32 0.60
GCV score 1871.90 2367.22 2.45
Num. obs. 2158 2158 2158
Num. smooth terms 13 13 13
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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C.1 Covid policy tracker

See file

C.2 Data availability

C.3 Diagnostics: Infection mode
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Figure C1: Correlation plot - infection model data.
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Figure C2: Spatial residuals - infection model.
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Figure C3: Model diagnostics - infection model.
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Figure C4: Correlation plot - mortality model data.

C.4 Diagnostics: Mortality model
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Figure C5: Spatial residuals - mortality model.
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Figure C6: Model diagnostics - mortality model.
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