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Abstract

This Ph.D. manuscript is divided into two chapters, related to two different scientific
scopes, but with the common point of exploring entanglement phenomena in complex
matter or lattices. In the first part of my Ph.D., I did exploratory research studying
the origin and formation of intra-particle entanglement, specifically spin-pseudospin
bipartite degree of freedoms, in some graphene-based platforms. The intra-particle
entanglement is one of the signatures of the quantum spin transport in Dirac matter
in the presence of Rashba spin-orbit coupling (pseudo-magnetic field) term and
other spin-orbit terms, in the case of the graphene on substract of heterostructures.
The second part is a study about effective ways to perform partial quantum state
tomography for many-body physics. We adapted an original method of quantum
overlapping tomography for qubits and fermions for finite lattices. The main goal
of our adaptation is to provide k-particles reduced density matrix to recover the
physical observables via local measurements for being applied to quantum simulation
in real quantum devices. Consequently, we bridged two research areas usually
studied separated, graphene physics and quantum tomography in lattices. Each
chapter derives from already published or preprint papers and can be considered
self-contained.

Keywords: Intra-particle Entanglement, Quantum Spin Transport, Random Ma-
trices, Dirac Matter, Reduced Density Matrix, Partial Quantum State Tomography,
Local Quantum Overlapping Tomography, Finite and Periodic Lattices, Quantum
Computing.
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Part I.

Quantum entanglement in
graphene-based platforms.
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1. Intra-particle entanglement as
a hidden variable in spin
dynamics for graphene-based
systems.

Most part of the sections 1.1, 1.3 and 1.5 are based in the collaborative work:
“Emergence of Intra-Particle Entanglement and Time-Varying Violation
of Bell’s Inequality in Dirac Matter ”, published in Phys. Rev. B 102, 041403
(2020) , by Bruna Gabrielly de Moraes, Aron W. Cummings, Stephan Roche. The
first part of PhD was of purely exploratory research, and section 1.4 is related to
some unpublished outcomes.

1.1. Introduction

The importance of quantum entanglement was sparked by the seminal gedanken
experiment proposed in 1935 by Einstein, Podolsky and Rosen [1], who in an attempt
to demonstrate the incompleteness of quantum mechanics actually inspired the study
of nonlocal correlations between distant particles [1, 2, 3].
Beyond the fascinating fundamental debate, which found its resolution in the

violation of Bell’s inequality [4, 5], quantum entanglement between internal degrees
of freedom of particles has become key for understanding emerging topological phases
in many-body physics [6, 7], as well as for controlling quantum states in the quest to
realize quantum computing applications [8, 9, 10].

Spin is a quantity that can be entangled to create nonlocal quantum correlations,
and there have been many proposals to generate spin-entangled electrons [11, 12, 13]
or electron-hole pairs [14, 15, 16] in solid state systems.
These have stimulated a variety of experimental studies, including attempts to

generate entanglement through the splitting of Cooper pairs [17, 18, 19, 20]. To date
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however, the verification of nonlocal quantum correlations between fermions, via a
violation of Bell’s inequality, remains challenging [21, 22, 23].

In contrast, by taking advantage of intra-particle entanglement between the spatial
and spin degrees of freedom of a single neutron, the violation of Bell’s inequality has
been demonstrated in neutron interferometry experiments [24, 25]. Finally, there are
many other potential combinations of intra- and inter-particle entanglement, as well
as proposals to swap between them [26, 27, 28, 29].

Two-dimensional Dirac materials offer true novelty in this context. In addition to
spin, electrons in Dirac materials such as graphene carry other degrees of freedom,
including sublattice (aka pseudospin), valley, and layer (in bilayer graphene) [30,
31, 32], which opens new possibilities for intra-particle entanglement. Sharing the
mathematical structure of spin, these degrees of freedom can become entangled with
one another and with spin in the presence of proximity effects [33].
Entanglement of this kind means that manipulating one degree of freedom will

result in an effect on another. For example, when graphene is on a substrate, Rashba
spin-orbit coupling (SOC) leads to entanglement between the spin and pseudospin
[34]. Identified as a source of spin dephasing in pristine graphene [35, 36, 37], this
is a clear example of the effect of intra-particle entanglement on a measurable spin
transport property.
Finally, the eigenstates of bilayer graphene also exhibit strong sublattice-layer

entanglement near the charge neutrality point [38]. However, there are currently no
studies of the formation and dynamics of intra-particle entanglement in 2D Dirac
materials.

As the main result of this chapter, we explore the origin, dynamics, and magnitude
of intra-particle entanglement between the spin and pseudospin degrees of freedom of
electrons propagating in graphene. We show that Rashba SOC drives the generation
and time evolution of this entanglement, which emerges regardless of the initial
quantum state.

It is primarily shown that the emergence of an intra-particle entanglement is thus a
general feature of graphene on a substrate, opening the possibility of its measurement
or exploitation for quantum information processing.
This chapter is structured as follows:

• In Sec. 1.2, we present the state of art and some concepts to understand the
main results of this chapter.

• In Sec. 1.3 we present our main results for Rashba spin-orbit coupling graphene
monolayer.
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• In Sec. 1.4 we present some non-published results about Rashba SOC graphene
on a substract and how some spin-orbit terms act suppressing the entanglement
of these systems.

• In Sec. 1.5 we make our concluding remarks.

1.2. Preliminaries

1.2.1. Dirac matter

Recently, a new class of materials has emerged with the discovery of graphene, a
stable crystal formed only by a single layer of carbon. The “honeycomb” hexagonal
crystal lattice (with the atoms distributed on the vertices of each hexagon) and its
single atom thickness result in exceptional electronic properties, such as the quantum
Hall effect with unusual quantization [39, 40] .
Graphene is a transparent conductor [41], mathematically described from the

analogy with particle physics that includes an exotic type of tunneling, initially
predicted by Oscar Klein, when massless relativistic particles tunnel without backscat-
tering through arbitrarily high and wide potential barrier [42]. Low energy states
in graphene have been shown to give birth to massless quasi-relativistic particles
which behave similarly, and become unimpeded in presence of long range disorder
potentials. Klein tunneling was theoretically discussed [43], and experimentally
proven in Graphene [44] and as a result, electronic transport in graphene can be
ballistic over unprecedented distances.

The 2010 Nobel Prize in Physics was awarded the two scientists who first isolated
graphene. They are Andre K. Geim and Konstantin S. Novoselov, both from the
University of Manchester in the United Kingdom. Let us direct our gaze to the
incredible variety of carbon in nature. This element is of crucial importance for life,
it is present from DNA and in all life on earth.
Furthermore, carbon can exist in many forms, the most common being graphite

which has a hexagonal structure. Under high pressures diamond is formed, which is
the metastable form of carbon. A new form of molecular carbon is fullerene. The
most common is the C-60 composed of 60 carbon atoms, its topology resembles
a football bag. The discovery of fullerene was awarded the 1996 Nobel prize in
chemistry. An almost one-dimensional form of carbon has been known for several
decades [45] and walled nanotubes since 1993 [46, 47]. These can be formed from
sheets of graphene, which are rolled up to form tubes, and their ends are half spherical
in the same way as fullerenes.
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The electronic and mechanical properties of a single metallic nanotube have many
similarities with graphene. Graphite is known to consist of hexagonal carbon sheets
that are stacked on top of each other, but it was believed for many years that a
single sheet would not be stable under ambient conditions.

It therefore came as a great surprise to the physics community when in October
2004, Konstantin Novoselov, Andre Geim and their collaborators [48] showed that
a single layer can be isolated and transferred to another substrate. In July 2005
they published electrical measurements in a single layer [49]. This single layer of
carbon is what we call graphene. Graphene, a two dimensional carbon allotrope,
has proven over the last decade to be a truly wonder material. Despite its simple
structure and chemical composition, its use in a variety of fields such as coatings,
sensors, energy, biomedicine, photonics, and optoelectronics has demonstrated the
richness of its properties and its potential industrial impact [50].

1.2.2. Dirac equation: from profound to applied

Surprisingly, Dirac materials have built a bridge between high-energy and condensed
matter physics, enabling the exploration of relativistic phenomena at low energy and
in a conventional experimental laboratory.

We start by introducing the Dirac’s relativistic equation for the electron, brought
from its original formulation in quantum field theory in the (3+1) - dimension, and
we will demonstrate how an low-energy quasiparticle in graphene can be described
effectively by massless Dirac Hamiltonian (2+1) - dimensions.

We will also describe briefly the topological nature of the intriguing Dirac points,
which are related in the momentum space to topological winding numbers. We
will unveil the symmetries that stabilize their existence. We are concern about them
because our intraparticle entanglement arises from these electronic features.

Then we will proceed to demonstrate how symmetry breaking elements induce
intriguing phenomena such as the generation of pseudo-magnetic fields, which can
be connected to the presence of Rashba SOC term, for instance, responsible to
emergence of the intraparticle quantum correlations.

Quantum field theory results from the unification of quantum mechanics and
relativity, and its fundamental equation for single electron has been derived by
Paul M. Dirac in 1928 [51]. The Dirac equation has profound consequences such
as the prediction of antimatter and the explanation of the origin of the spin degree
of freedom. To capture its essential derivation, it is instructive to start with the
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Schrödinger equation:

i~
∂

∂t
ψS (−→r , t) =

−~2

2m
∇2ψS (−→r , t) . (1.1)

This expression can be built from non-relativistic energy-momentum relation
dispersion E = |−→p |2 /2m, converting the classical variables to operators such as −→p →
−i~∇ and E → i~∂t. These operators act on a complex scalar wave function which
is interpreted as a probability amplitude, and its square modulo as an probability
density.

As we know, in the relativistic theory, space and time are linked, thus, a relativistic
version for the Schrödinger equation requires that exists a symmetry between the
the first derivates of the space and time.

Klein and Gordon were the first to proposed a tentative solution for a relativistic
quantum mechanics equation, by inserting the Einstein’s energy-momentum relation
E2 = c2 |−→p |2 +m2c4 into a wave equation, such that:

1

c2

∂2

∂t2
ψKG (−→r , t) =

(
∇2 − m2c2

~2

)
ψKG (−→r , t) , (1.2)

where c is the speed of light. Unfortunately, while the Klein-Gordon equation
is Lorentz-invariant, it presented a serious problem, the probability density was
no longer positive definite. In other words, the relativistic scalar ψKG cannot be
described describe as a probability amplitude as in the Schrödinger’s equation.

To solve this issue, Dirac thought in a equation that was in first order in the space
and time, keeping the Lorentz-invariance and providing a positive-definite probability
density. He took the square-root of the Klein- Gordon formulation by conjecturing a
first-order wave equation of the form:

i~
∂

∂t
ψD (−→r , t) =

(
−i~cγ·

−→
∇ + γ0m

2c2
)
ψD (−→r , t) (1.3)

Considering γ = [γ1, γ2, γ3] and γi (i = 0, 1, 2, 3) are mathematical objects, which
must obey stringent. The algebraic properties which must be obeyed by γi, include
that they must anti commute with one another

γ2
i = 1, {γi, γj} = 2δij1, (1.4)
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where 1 is the identity and δij is the kronecker delta function. Dirac found that
ordinary number fail to obey this requirement, but 2× 2 Pauli matrices can make
his equation consistent

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (1.5)

Thus, with this set of matrices we can start to glimpse a connection between
relativity and quantum mechanics to describe the electron with intrinsic spin 1/2
angular momentum. But, to satisfy all conditions for (3 + 1) dimensions we need
four matrices instead of the sole Pauli’s matrices. To obtain the full description in
this dimension, we need 4× 4 matrices that can be built from Pauli matrices and
identity operator, such as

γx =

(
0 σx

σx 0

)
, γy =

(
0 σy

σy 0

)
, γz =

(
0 σz

σz 0

)
, (1.6)

γ0 =

(
12 0

0 12

)
. (1.7)

where 12 is the 2× 2 identity matrix, and which implies that the electron wave-
function ψD can no longer be a scalar, but a 4- component spinor. Surprisingly,
the low-energy limit of Dirac’s relativistic equation recovered the phenomenological
Pauli’s theory of the electron, defined by a 2-components wavefunction capturing
the 1/2 spin degree of freedom, and which was shown to explain the anomalous
gyromagnetic ratio.

Regarding the full relativistic theory, what happens with the other two components of
the 4 component spinor?

These components predicted by the Dirac theory embed additional solutions for
negative energies. These negative energies in the classical theory are dropped out as
unphysical.

But, inspired by the ideas of condensed matter from that time about hole - particle
symmetry, Dirac also posed that quantum theory with small perturbation could
induce transitions from the positive-energy to negative-energy states.
Remarkably, he proposed that this “empty” space that is part of the 4-spinor
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solution, it is not empty at all, it is filled by electrons with negative-energy states,
also called Dirac sea, which ones are stabilized by Pauli’s exclusion principle. Thus,
he presented a physical solutions for the problem [51]. From this, he conjectured the
existence of the anti-electron which he viewed as a hole in the Dirac sea.

This was a dare prediction because there was no empirical evidence to suggest the
existence of anti-particle, a couple of years latter (1932), Carl Anderson observed
anomalous cosmic-ray tracks via a cloud chamber that matched the mass to charge
ratio of an electron, but being in opposite direction, he called this anti-particle,
positron due to their positive charge.

1.2.3. Graphene

It was quite natural to expect that the Dirac’s relativistic equation, described in
the previous section, will not play any important role to describe condensed matter
physics. However, as already shown for non-relativistic quantum mechanic, particles
propagating in a crystal may acquire emerging properties (such as an effective mass)
different from their free space characteristics.

Indeed, conventional band theory allows to describe particles moving in a crystal
through a Schrödinger equation with a renormalized effective. In Dirac materials,
we can find a much more exotic scenario, where quasi-particles are governed by a
pseudo-relativistic Dirac equation and a straightforward way to show this is to derive
an effective model from a tight-binding model [52]

Two-band model for graphene:

To describe the low-energy properties of particles in graphene, let us observe first
that the crystallographic structure of the graphene is not a Bravais lattice. The
carbon atoms are located at periodic positions

−→
RA =

−→
R +

−→
d A and

−→
RB =

−→
R +

−→
d B,

which form two inequivalent hexagonal sublattices that we label A and B, respectivelly.
Thus, the basis vector are

−→
d A =

acc
2

[0,−1] ,
−→
d B =

acc
2

[0, 1] , (1.8)

located at the positions of the carbon atoms within the unit cell, where acc ≈ 1.42
o

A

is the carbon-carbon distance. Furthermore,
−→
R = l1

−→a 1 + l2
−→a 2 represent the set of
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Figure 1.1.: Crystallographic structure (real and reciprocal space) of a
monolayer graphene. Left (a) and b)): Sketch of the monolayer
graphene which is composed of two inequivalent hexagonal sub-lattices
of carbon atoms which is called A and B respectivelly. The primitive
lattice vectors are −→a 1 and −→a 2. The essential electronic properties of
graphene can be extracted with a simple tight-binding model where t
is the nearest-neighbor hopping parameter. Right ( c) and d)): The
corresponding first Brillouin zone (FBZ ) in momentum space where
the high-symmetry points are labelled

−→
b 1 and

−→
b 2 form the primitive

reciprocal lattice vectors.
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lattice translation vectors describing the underlying hexagonal Bravais lattice, where
l1, l2 ε Z are integers and

−→a 1 =

√
3

2
acc

[
−1,
√

3
]
, −→a 2 =

√
3

2
acc

[
1,
√

3
]
, (1.9)

are the primitive reciprocal lattice vectors which define the Brillouin zone shown
in the figure 1.1b). The basic electronic properties of graphene are captured by a
single-orbital, spinless tight-binding which in the language of second quantization,
reads

H = −t
∑
RB

3∑
n=1

b†RBaRB+en + h.c. (1.10)

Where a†RA and a†RBcreate electron in the 2pz orbitals located at
−→
RA and

−→
RB

on the A and B sublattices. In this approach all onsite energies of the 2pz orbital
as equals (to zero) and defining the reference energy. Taking t ≈ 2.7 eV is the
nearest-neighbor hopping parameter which dictates the energy scale of the bands,
and

−→e 1 = acc [0,−1] , −→e 2 = acc

[√
3, 1
]
, −→e 3 = acc

[
−
√

3, 1
]
, (1.11)

are the nearest-neighbor vectors that connect the inequivalent sublattices. We can
exploit the discrete translational symmetry of the lattice by introducing the Fourier
transform of the operators

a† (k) =

√
w̃

2π

∑
RA

a†RAe
i
−→
k �
−→
RA , b† (k) =

√
w̃

2π

∑
RB

b†RBe
i
−→
k �
−→
RB , (1.12)

which create Bloch functions that extend over the A and B sublattices. Consider
−→
k = [kx, ky] is the 2D Bloch wave-vector that is restricted to the FBZ shown (Fig.
1.1, right panel), and w̃ = 3

√
3a2

cc/2 is the area of the unit cell shown in the Fig.
1.1 (left panel). Using the Eq. 1.12 we can easily diagonalize the tight-binding
Hamiltonian described in the momentum space which can be written in matrix form
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as

H =

ˆ ˆ
FBZ

d2kψ† (k)H (k)ψ (k) , (1.13)

where ψ† (k) =
[
a† (k) , b† (k)

]
is a spinor operator. The 2× 2 single-particle Bloch

Hamiltonian in the sublattice space is

H (k) =

(
0 f (k)

f ∗ (k) 0

)
, (1.14)

where the off-diagonal matrix elements are given by

f (k) = −t
3∑

n=1

e−i
−→
k ·→en . (1.15)

Eq. (1.14) can be diagonalized to obtain the spectrum of the electronic bands

Eλ (k) = λ |f (k)| , (1.16)

being λ = ±1 , regarding the valence bands we have λ = −1 and to the conduction
bands λ = 1. Corresponding spinor eigenstates:

|ψλ (k)〉 =
1√
2

(
1

λeiϕ(k)

)
, (1.17)

the above eigenvector encodes the pseudospin degree of freedom, where the
two components of the vector describe the relative amplitude and phase of the
eigenvector on the two inequivalent sublattices. Representing the spinor eigenstate
of the pseudo-spin vector on the Bloch sphere, we have:

Sλ (k) = 〈ψλ (k) |σ|ψλ (k)〉 = λ [cosϕ (k) , sinϕ (k) , 0] . (1.18)

Being −→σ = [σx, σy, σz] is the vector of the Pauli matrices and the azimutal angle
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Figure 1.2.: Graphene band structure and Dirac cone and its symmetry electron-hole.
In this approach the bands are symmetric with respect to the valence and
conduction bands. The linear dispersion relation close to the K+ and
K− in the FBZ in 2D that originate the “Dirac cones” as shown in the
right. Close to these cones kx and ky are used to denote the shift from
the corresponding K(K’) point.

is given by

ϕ (k) = arg [f ∗ (k)] . (1.19)

Fig. 1.2 presents the electronic band structure within the nearest-neighbor ap-
proximation. The most notable fact is that the conduction and valence bands are
degenerate at the corners of the FBZ, specifically at the so-called Dirac points, and
it seems like we have six Dirac points, but only two of them are inequivalents while
the others are regarding the same states - related to the reciprocal lattice vectors. In
our work for graphene clean and graphene/TMDC’s heterostructures we will focus
in the Dirac points located at

K (K ′) =

[
± 2π

3
√

3acc
,

2π

3acc

]
(1.20)

1.2.4. Effective Dirac physics

In pristine graphene the two bands are half filled and the Fermi Energy is located
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at the charge neutrality point (Dirac point-zero energy reference). As in most of
problems of condensed matter emerging from a quantum field theory formulation we
usually derive a mapping to an a effective field theory.

Thus to access in a very simple way the electronic quasi-particles near Fermi energy
zero, we will derive an effective Hamiltonian to obtain proper knowledge of physics
in this region. For this we expand the Eq. (1.15) around K/K’ points as k̃ = k+ τK:

fτ

(
k̃
)
' ~νF (τkx − iky) , (1.21)

where νF = 3ta/2~ is the Fermi velocity. Therefore, we can write the effective
Hamiltonian near the Fermi energy as:

Heff =
∑
τ=±1

ˆ ˆ
d2kψ†τ

(
k̃
)
Hτ

(
k̃
)
ψτ

(
k̃
)
, (1.22)

being ψ†τ
(
k̃
)

=
[
a†τ (k) , b†τ (k)

]
is the spinor operator in each valley. Therefore,

the effective single-particle Hamiltonian for a unique K valleys reads

H+

(
k̃
)

= ~νF

(
0 kx − iky

kx + iky 0

)
= ~νF−→σ ·

−→
k , (1.23)

while the effective single-particle Hamiltonian regarding the K’ point is

H−

(
k̃
)

= ~νF

(
0 −kx − iky

−kx + iky 0

)
= −~νF−→σ ·

−→
k . (1.24)

thus, via this effective model, the low-energy quasiparticles within each valley are
effectively described by a pseudo-relativistic Dirac Hamiltonian. Knowing that the
fermions in graphene exist in a 2+1 dimensional space, the effective Hamiltonians
described above are generated by 2×2 Pauli matrices also described in Dirac equation
formulation in previous section.
Besides, we must point out that the matrix structure of the Hamiltonian does

not originate from real spin of the electron, when we are considering this kind of
graphene system. However, the physics of this effective Hamiltonian emerges from
the presence of the two inequivalent sublattices, precisely the pseudo-spin degree of
freedom. Thus the Pauli matrices act in the sublattice space.
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Figure 1.3.: Pseudospin and momentum. The two inequivalent Dirac cones at K+

and K− points of the first Brillouin zone, together with direction of
the pseudospin parallel or antiparallel to the momentum p of selected
energies in conduction and valence bands.

As we can realize, the Pauli matrix σz does not appear in the Hamiltonian of the
graphene. This means that the electronic quasi-particles behave like massless Dirac
fermions, described by a pseudo-relativistic linear spectrum near their Dirac points
K(K’) as

Eλ

(
k̃
)

= λ~νF
∣∣∣k̃∣∣∣ , (1.25)

this dispersion relation clearly determines massless Dirac cones. Consequently,
the massless Dirac fermions exhibit a kind of chirality where the pseudo-spin is
intrinsically locked to momentum.

Thus, the spinor eigenstate of an effective Hamiltonian for each valley to be
considered is described by

∣∣∣ψτλ (k̃
)〉

=
1√
2

(
1

τλeiτϕ(k̃)

)
, (1.26)

with the pseudo-vector described by the same expression of the Eq. (1.18) just
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including the proper sign regarding the Dirac point to be considered and ϕ (k) =

arctan
(
kx
ky

)
. For the K valley, the energy eigenstates are simultaneous eigenstates of

the chirality operator

−→σ · k̂
∣∣∣ψ+λ

(
k̃
)〉

= λ
∣∣∣ψ+λ

(
k̃
)〉

(1.27)

where the pesudospin is pointing out in the opposite direction to the momentum
as presented in the Fig. 1.3. This chiral nature of these particles are responsible for
many intriguing properties in graphene Klein tunneling, anomalous weak an-
tilocalization effects, zero energy Landau level and half-integer Quantum
Hall effect, and so forth [52].
These features will not be explored here in more details, but are important its

understanding for creating protocols of detection of entanglement or use these
intra-particle quantum correlation as usefull resource in these 2D physical platforms.

1.2.5. Topological features of the Dirac points

In the prior section, we have described how to derive the continuous (effective)
massless Dirac Hamiltonian for graphene, starting from a tight-binding model, and
introducing the pseudopsin degree of freedom, which will become the resource for a
new kind on intraparticle entanglement.
Indeed, importantly, in addition to the exotic low-energy electronic properties of

graphene, the Dirac points are also unique in the sense that they are the natural
habitat of the spin-pseudospin entanglement under the action of a pseudo-magnetic
field like the one associated to a Rashba spin-orbit coupling field.
Therefore, it is essential to understand how stable are these Dirac points to

perturbations and to understand the symmetries which protect their existence.
In this way, we will extract important lessons about how we must proceed in

the future regarding the study quantum computing protocols or simulations based
on the real and artificial graphene and Dirac-like, for example. With this goal, it
is important to understand how robust are the properties of the massless Dirac
fermions.

What will happen if we try to change the features of the pristine graphene? Like if
we consider long-range hopping between distant neighbors, change the on-site

energies of the sublattices A, B, or even consider anisotropic hopping parameters?
Will graphene’s chirality be fixed, or the Dirac fermions be massless?

To analyze in-depth those questions we can come back to the effective Hamiltonian
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described in previous section.

H (k) =

(
%o (k) + %z (k) %x (k)− i%y (k)

%x (k) + i%y (k) %0 (k)− %z (k)

)
, (1.28)

= %o (k) 12 +−→σ · −→% (k) . (1.29)

Being −→% (k) = [%x (k) , %y (k) , %z (k)], and %i (k) ε < the spectrum of the Hamilto-
nians is

Eλ (k) = %o (k) + λ |% (k)| = %o (k) + λ
√
%2
x (k) + %2

y (k) + %2
z (k), (1.30)

representing the spinor eigenstates via pseudo-spin vector on the Bloch sphere
which is described by

Sλ (k) = λ%̂ (k) =
λ

|%̂ (k)|
[%x (k) , %y (k) , %z (k)] . (1.31)

By inspecting the last two expressions above, we can say that the diagonal term
%o (k) modifies the spectrum and consequently can modify suddenly the properties
of the system. However this term does not affect the spinor eigenstate and plays no
role in determining the stability of the Dirac points.
Invoking the Von Neumann-Wigner theorem [53], in order to have an accidental

degeneracy that is not by virtue of any symmetries, we need to tune all parameters
of the vector −→% (k). The degeneracy criterium requires that all coefficients of the
anticommuting Pauli matrices disappear, thus

%x (k) = 0, %y (k) = 0, %z (k) = 0. (1.32)

But in Dirac matter we just have a 2D system where the momentum k = [kx, ky]

varied along the FBZ in two directions. As consequence of this, the band degeneracies
are unstable in 2D systems, which means that is required a sensitive tuning of
parameters of these systems is required.

We will in this section, try to understand this instability from the topological point
of view. Consider a closed contour Γ in the FBZ where the bands are gapped and
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taking k → −→% (k) defines a map from a circle S1 → S2 to the Bloch sphere. Since
all points of sphere can be continuously deformed to a unique point (trivial group)
Π1 (S2) = 0.
Therefore, there is no exists topological invariants, in such 2D systems,

that can protect the band crossing. Here we need to point out that this conclusion
is regarding short-range perturbations, which disrupt sublattice symmetry and
consequently leads to gap opening.

Differently, for long-range perturbations such topological protection is maintained.
We will see, in our results presented here, with the additions of the SOC terms in
graphene-based Hamiltonians, will profoundly affect the electronic structures, spin
textures and spin dynamics of particles.
In the absence of interacting terms like SOC, we can consider some symmetries

which can add constraints that stabilize the Dirac points in graphene.

In general, 2D systems has no crossing points. The reason that
graphene has crossing points is because the σz term is not present in the

Hamiltonian without SOC.

In what follows, we will explain a bit the role of the time-reversal Γ : t→ −t,
and spatial inversion Θ : [x, y]→ [−x,−y] symmetries on the low-energy electronic
properties (following Ref. [54]).

Spatial inversion symmetry:

The hexagonal lattice has a spatial symmetry Θ, regarding the center of the
carbon-carbon bonds and hexagons. This operation swaps the sublattices A and
B, and can be represented by the unity operator: UΘ = σx. The Θ operation also
transforms k → −k, inducing a constraint on the Bloch Hamiltonian:

Θ : UΘH (k)U−1
Θ = σxH (k)σx = H (−k) , (1.33)

which is satisfied if

%0 (k) = %0 (−k) , %x (k) = %x (−k) , −%y (k) = %y (−k) , −%z (k) = %z (−k) .

Time - reversal symmetry:

As the time-reversal symmetry Γ does not affect the sublattices (A,B), it will
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be represented by an anti-unitary operator UΓ = Υ which is related the complex
conjugation operation. Furthermore, Γ also transforms k → −k, thus, the constraint
on Hamiltonian regarding this operation reads

Γ : UΓH (k)U−1
Γ = H∗ (k) = H (−k) , (1.34)

which is satisfied if

%0 (k) = %0 (−k) , %x (k) = %x (−k) , −%y (k) = %y (−k) , %z (k) = %z (−k) . (1.35)

From this, we can conclude that the application of a unique operation being Γ

or Θ, is not sufficient to provide a condition of stability at Dirac point, given the
operations acting on the Bloch Hamiltonian at k or −k, these operations does not
impose a constraint in the general momentum of the Hamiltonian. However, if we
apply the product of these two operations, we have

ΘΓ : (UΘUΓ)H (k) (UΘUΓ)−1 = σxH
∗ (k)σx = H (k) , (1.36)

which is satisfied if

%0 (k) = %0 (k) , % (k) = %x (k) , %y (k) = %y (k) , −%z (k) = %z (k) . (1.37)

Therefore, this ΘΓ symmetry requires that the σz term of the Hamiltonian vanish,
thus

%z (k) = 0, (1.38)

with this, we showed that is possible to have stable Dirac points in 2D in the presence
of the ΘΓ symmetry. We just have to fulfill two conditions regarding the momentum
variables which vary along the FBZ. Also, from the viewpoint of topology, in the
presence of the ΘΓ symmetry, the pseudo-vector is localized at the equatorial region
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of the Bloch sphere, thus we can write

Sλ (k) = λ%̂ (k) = λ [cosϕ (k) , sinϕ (k) , 0] , (1.39)

the azimutal angle being given by

ϕ (k) = arg [%x (k) + i%y (k)] . (1.40)

Considering the same closed contour Γ in the FBZ where the bands are gapped,
thus k → %̂ (k) we have a map from a circle S1 to the equatorial plane of the Bloch
sphere S1. The fundamental group of this circle is non-trivial Πi (S

1) = Z, and the
symmetry-protected topological invariant is the pseudo-spin winding number

.

w =

‰
Γ

dk

2π
· ∇kϕ (k) ε Z, (1.41)

with ∇k =
[
∂kx , ∂ky

]
. This number counts the number of rotations that the

pseudo-spin vector does in the transverse closed path Γ in the anticlockwise direction
- it does not depend on the contour and change by an integer whenever the contour is
a closed loop in k-space. It is worth observing that, for a general path, the winding
number cannot tell you how many Dirac points are contained on the contour. It is
only possible to access the information related the total sum of topological charges
associated the enclosed Dirac points.

The above figure, show us that the Dirac points correspond to vortices in the
pseudo-spin field, which can be viewed as “topological defects” in the momentum
space. The topological charge of the two inequivalent Dirac points K(K’), can be
obtained via the calculation along small contour Γτ enclosing each one of the Dirac
points in the FBZ. Using the effective Hamiltonian for each valley, we have

w (τK) =

‰
Γτ

d
−→
k

2π
· ∇−→

k
arg (τkx + iky) =

‰
Γτ

d
−→
k

2π
· ∇−→

k
[τφk] = τ. (1.42)

We conclude that the Dirac point in the K - valley corresponds to a vortex with
topological charge +1, where the pseudo-spin point in the anti-clock wise direction,
while the K ′ valley correspond to an anti-vortice with topological charge -1, where
the pseudo-spin point in the clockwise direction.
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Figure 1.4.: Topology of Dirac points. Blue negative charge and red positive charge.

21



This vorticity associated to the Dirac points provides local stability in this region.
Thus, under any perturbation which preserve the ΘΓ symmetry, it is not possible to
open a gap, but it remains possible to locally shift the location of the Dirac points.
It is worth highlighting that despite the fact that the two Dirac points have

opposite topological charges, they are not globally stable and the symmetry of the
system can be broken when strong enough long range perturbations is applied (for
instance using strain fields), leading to annihilation of the Dirac points by merging
[55].
Besides, if we break the spatial or time-reversal symmetries, we can gap out the

Dirac points and generate (as in the case of hexagonal boron-nitride) an insulator,
with other rich topological and geometrical features.

1.2.6. Opening a gap in graphene

In the prior subsections, we discussed the role played by the time-reversal and
spatial symmetries to protect topologically the graphene without SOC, which has
the effective Hamiltonian presented in the Eq. (1.28), with the element of matrices:
h11 (k), h12 (k), h21 (k), h22 (k). Being, with h11 (k) = 0 and h22 = h11 (k)∗.
In that case, graphene is gapless, h11 (k) = 0. But, when we break one of the

symmetries presented which protect topologically the Dirac points, %z (k) is no longer
is null and arises a gap. Therefore, the term which breaks the spatial symmetry is:

h11 (k)σz = ±mσz (1.43)

which put inequivalent on-site potential on the two atoms in the primitive cell.
This is precisely the situation of hexagonal boron-nitride lattice. Basically, the term
that we can add to break the time-reversal symmetry is added as a next-neighbor
hopping term of complex nature, such as: t′eiϕ. This term is quite known because
Haldane (see Ref. [56]) used it to start his studies in the field of topological materials.

Spin orbit interaction (SOC)

The usefulness of graphene for spintronics has early on been recognized, owing to its
high electron mobility [57, 58, 59], small spin-orbit coupling (SOC) [60, 61, 62, 63] and
negligible hyperfine interaction [64, 65]. All together these factors result in coherent
spin propagation over unprecedented microscopic distances [66, 67, 68, 69, 70], proving
graphene to be a suitable enabling material for passive spin components [71][72, 73,
74, 75, 76, 77]. Additionally, an increasing body of evidence shows that SOC in
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graphene can be enhanced through interaction with a substrate or with adatoms
[72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82], opening a path for the implementation
of active graphene-based spintronic devices. Between these two approaches, high-
SOC substrates are preferred [83, 78, 79, 80] because they are chemically inert and
electrically insulating, and thus will have little impact on graphene’s electronic
properties. Meanwhile, weak hybridization with the substrate can enhance the SOC
in the graphene layer, potentially leading to predicted phenomena such as the spin
Hall effect (SHE) [84, 85] or the quantum spin Hall effect [86].
Experiments carried out over the past few years have reported strong evidence

of such proximity-induced SOC enhancement in graphene when interfaced with
transition metal dichalcogenides (TMDCs), and new spin device functionalities have
been proposed [75, 74, 83, 78, 79, 80]. Therefore, an in-depth understanding and
characterization of the properties of graphene/TMDC heterostructures appears to be
fundamental for the field of spintronics. The materials used in spintronics applications
can be characterized by three fundamental figures of merit: the spin relaxation time
τs, the spin diffusion length λs, and the spin Hall angle γsH.
The relaxation time dictates the upper time limit within which spin information

can be transmitted and manipulated, hence large τs is desired. The spin diffusion
length denotes the distance over which spin currents can propagate without losing
information, and must also be maximized. Both quantities are related by the spin
diffusion coefficient Ds, which depends on the sample mobility and the transport
regime, and is given in the diffusive regime by λs =

√
Dsτs.

Finally, the spin Hall angle, which is the figure of merit of the spin Hall Effect
[87], measures the efficiency of charge-to-spin conversion and vice versa. This
quantity must be maximized for practical use in data storage or future non-charge-
based information processing technologies. These parameters are usually evaluated
through three different types of experiments: (i) measurements of Hanle precession
in lateral spin valves, (ii) measurements of the weak antilocalization effect, and (iii)
measurements of magnetic-field-modulated nonlocal resistance in Hall bar geometries.
Each of these approaches yields some combination of τs, λs, and γ, but the obtained
values can differ depending on the measurement technique. This has led to some
apparent contradictions when compared to the available theoretical framework, and
calls for a better understanding of these phenomena and the relationship between
them in order to move forward into practical applications.

Rashba SOC

We will first present the essential aspects of spin-orbit coupling (SOC) properties
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in graphene, including the derivation of the SOC from the Dirac equation, as well
as the implementation of such interaction in tight-binding and continuous models.

Spin-orbit coupling in graphene

Understanding the origin and nature of SOC in graphene is fundamental to further
study the main spin transport properties. In a nutshell, SOC is a relativistic effect,
which can be derived from the Dirac equation, between electrons and a local electric
field either due to internal or external electric fields, and which has the general form
Hso = µB

2mc2
~E.(~σ × ~p).

Indeed fast moving electrons sense an effective magnetic field in their rest frame,
which by virtue of the Zeeman effect affects their spin degree of freedom through a
generic term writting Hso = gµB

2
~BR.~σ. The corresponding effective magnetic field

~BR ∼ ~E.(~p × ẑ) (usually named a Rashba field) is parallel to the graphene plane,
and induces a precession of the electron spin with a frequency (Larmor frequency)
given by Ω = µB | ~BR|

~ .

A more complete derivation, from the relativistic Dirac Hamiltonian, is both
instructive and necessary to further elaborate realistic tight-binding parameters in
complex interface geometries. It starts with the definition of the Hamiltonian as [88]

H =

(
0 cp.σ

cp.σ 0

)
+

(
mc2 0

0 −mc2

)
+ V. (1.44)

The solution of the Dirac equationH|ψ〉 = E|ψ〉 is a two-components wave function
(spinor) |ψ〉 = (ψA, ψB)T which satisfies

ψB =
cp.σ

E − V +mc2
ψA (1.45)

p.σ
c2

E − V +mc2
p.σψA = (E − V −mc2)ψA (1.46)

In the non-relativistic limit, ψB becomes negligible compared to ψA, since from
E = mc2 + ε and V � mc2, Eq. (1.45) is rewritten as

ψB =
p.σ

2mc
ψA � ψA (1.47)
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and at the lowest order in (v/c), Eq. (1.45) reduces to the Schrödinger equation. 1

(
p2

2m
+ V

)
ψA = εψA (1.48)

Here ψA is solution of the Schrödinger wave function ψ. At higher orders of (v/c),
the normalization condition of the wave function implies

ˆ (
ψ+
AψA + ψ+

BψB
)

= 1 (1.49)

and by using Eq. (1.45), one founds

ˆ
ψ+
A

(
1 +

p2

4m2c2

)
ψA = 1 (1.50)

A normalized wave function is obtained when ψ =
(

1 + p2

8m2c2

)
ψA. Substituting it

into the Dirac equation, and using for c2

E−V+mc2
the expansion

1

2m

(
1− ε− V

2mc2
+ ...

)
, (1.51)

one derives after some rearrangement the Pauli equation

(
p2

2m
+ V − p4

8m3c2
− ~

4m2c2
σ.p×∇V +

~2

8m2c2
∇2V

)
ψ = εψ, (1.52)

where the first and second terms are usual parts of the non-relativistic Hamiltonian,
while the third term denotes the relativistic correction to the kinetic energy, the
fourth term is the SOC term and the final part is a potential-induced energy shift.
The SOC term can be actually derived in a more intuitive manner, assuming that an
electron is moving with a velocity v under the action of an electric field −eE = −∇V .
Such electric field is generated by an external potential V stemming either from the
presence of adatoms or due to the interaction and symmetry breaking induced by an
underlying substrate. The electron is equivalently submitted in its rest frame to an

1using (σ.A)(σ.B) = A.B + iσ.(A×B)
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effective magnetic field B = −v × E/c, leading to an interaction energy as

Vµs = −µsB = −gsµB
2ec

σ.v ×∇V = − gs~
4m2c2

σ.p×∇V = − ~
2m2c2

σ.p×∇V

(1.53)

This result turns out to double the SOC term appearing in the Pauli equation, a
difference explained by Thomas [89]. Fundamentally, the electron moves in a rotating
frame of reference, which leads to its spin precession under the action of

B = −v × E

2c
(1.54)

which yields the full SOC term

VSOC = − ~
4m2c2

σ.p×∇V (1.55)

where j is the nearest-neighbor of i and γ1 and VR are material and interface-
dependent parameters. The full SOC-TB Hamiltonian finally reads :

HSOC = −γ0

∑
〈ij〉

c+
i cj+

2i√
3
VI
∑
〈〈ij〉〉

c+
i s.(d̂kj×d̂ik)cj+iVR

∑
〈ij〉

c+
i ẑ.(s×d̂ij)cj (1.56)

Close to the Dirac point, a low energy Hamitonian approximation h(k) can be
easily derived in the basis {|A〉, |B〉} ⊗ {| ↑〉, | ↓〉}, with

h(k) = h0(k) + hR(k) + hI(k) (1.57)

and where

h0(k) = ~vF (ησxkx + σyky)⊗ 1s

hR(k) = λR (η [σx ⊗ sy]− [σy ⊗ sx])

hI(k) = λIη [σz ⊗ sz] (1.58)

with Fermi velocity vF = 3
2
γ0, Rashba SOC λR = 3

2
VR and intrinsic SOC λI = 3

√
3VI

[90], all SOC terms being momentum-independent. The spin directly couples with
the pseudospin instead of momentum as in conventional metals or semiconductors,
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while the usual SOC term (k× s) is small and usually neglected. By diagonalizing
the Hamiltonian given in Eq. (1.57), the low-energy electronic bands are derived
[62, 91]:

εµν(k) = µλR + ν
√

(~vFk)2 + (λR − λI)2 (1.59)

where µ and ν = ±1 are band indexes. In absence of Rashba-SOC, the electronic
system is gapped with ∆ = 2λI (See Fig. 1.5(c) left panel). In presence of a Rashba
SOC, the competition between Rashba and intrinsic SOC determines the existence
or not of a finite ∆ value. The gap remains finite ∆ = 2(λI − λR) for 0 < λR < λI

(Fig. 1.5(c)), whereas it closes when λR > λI , and the electronic structure then
becomes a zero gap semiconductor with quadratically dispersing bands (Fig. 1.5(c)
right panel). The spin branch µ = 1 is shown in solid and µ = −1 in dashed,
corresponding to the different Dirac cones in (a). Fermi velocity is vF = 0.833× 106

m/s (Fermi level is at zero). The analytical form of the eigenfunctions writes

ψµν(k) =

(
χ−|ηe−iηϕ

[
.nµν − λI
ν~vFk

]η
, 1〉+ µχ+|−iηe−i(1+η)ϕ, ie−iϕ

[
λI − .nµν
ν~vFk

]η
〉
)
/Cµν

with tanϕ = ky/kx and the normalization constant Cµν =
√

2

(
1 +

[
λI−εµν
~vF k

]2η
)2

.

The expectation value of the spin polarization of electronic states is further derived
as [62, 91],

sµν(k) =
~vF (k× ẑ)√

(~vFk)2 + (λI − µλR)2
=

~vFk√
(~vFk)2 + (λI − µλR)2

n(k) (1.60)

where n(k) = (sinϕ,− cosϕ, 0) is the unit vector along the spin direction, called
spin vector. As seen from Eq. (1.60), the remarkable characteristic of the spin
polarization is that it remains in-plane and perpendicular to the electron momentum
k, while its magnitude vanishes when k → 0.

As a result near the Dirac point, the spin and the pseudospin are strongly coupled, a
fact which generates strong entanglement between the spin and pseudopsin dynamics
and gives rise to an hitherto unknown source for spin relaxation, especially dominating
in the ultra clean graphene limit (see Sect. 1.2.8 and [35, 92, 37]).

Importantly, one notes that at high energies ~vFk � λR + λI , the pseudospin
becomes fully controlled by the momentum dynamics via h0(k) and thus aligns in
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Figure 1.5.: (a): Two of the possible nnn hopping paths through the s, p orbitals. (b):
A representative leading hopping path, arrows, which is responsible for
the Rashba SOC effect, by coupling states of different spins. (c) Band
structures of graphene with SOC in a external transverse electric field.
Touching Dirac cones exist only when spin–orbit coupling is neglected
(first from left). When SOC is switched on, the orbital degeneracy at the
Dirac point is lifted and the spin–orbit gap appears (second from left).
In an external electric field perpendicular to graphene, due to a gate
or a substrate, the Rashba effect lifts the remaining spin degeneracy of
the bands (third, fourth and fifth from left). If the intrinsic and Rashba
couplings are equal, at a certain value of the electric field, two bands form
touching Dirac cones again (fourth from left). If the Rashba coupling
dominates (fifth from left), the spin–orbit gap closes. (d) Ab initio
band structures of graphene are represented by circles and fitted with an
analytical model. ((a) and (b) are reproduced with permission from [63].
Copyright (2010) by the American Physical Society. (c) is reproduced by
permission from Macmillan Publishers Ltd: Nature Nanotechnology [65],
copyright (2014). (d) is reproduced with permission from [62]. Copyright
(2009) by the American Physical Society.
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the same direction (in plane). The spin dynamics is then dictated by its coupling
with pseudospin via hR(k), which leads to a saturation (to 1) of the spin polarization
for a certain momentum in Eq. (1.60).

By successive unitary rotations of h(k) first into the eigenbasis of h0(k) and then
into the spin basis with respect to the direction n(k), an effective Bychkov-Rashba-
type 2× 2 Hamiltonian is obtained for both holes and electrons [93],

h̃(k) = ν(~vFk − λI)− νλRn(k).s (1.61)

The second term in Eq.(1.61) ressembles the Bychkov-Rashba Hamiltonian in semi-
conductor heterostructures Hk = ~Ω(k).s/2, evidencing that the SOC also acts on
the electrons spin as an in-plane magnetic field, of constant amplitude but perpen-
dicular to k. In this effective magnetic field the spin precesses with a frequency and
a period of [93]

Ω =
2λR
~
, TΩ =

π~
λR

(1.62)

All such results have been confirmed quantitatively by numerical simulations using
real-space order N method implemented for spin dynamics [35, 36, 37] .

1.2.7. Theoretical estimation of the SOC terms magnitude

SOC in graphene is clearly expected to be weak owing to the low atomic number
of carbon (Z = 6, while spin-orbit interaction scales as Z4). Moreover, the natural
occurrence of zero nuclear spin isotope C12 is close to 99% and makes hyperfine
interaction a vanishingly small decoherence mechanism. The precise magnitude of
SOC is actually a highly complicate question, but concurrently a critical information
to determine the spin lifetime and the dominant spin relaxation mechanism.
A theoretical estimate for intrinsic SOC λI ∼ 100µeV has been first proposed

by Kane and Mele [86]. This value was reduced by Min et al. [94] to 0.5µeV by
using microscopic TB model and second-order perturbation theory, a result later
supported by Huertas-Hernando et al. [61] with a TB model and by Yao et al. [95]
using first-principles calculations.
Another DFT calculation of Boettger and Trickey [96], using a Gaussian-type

orbital fitting function methodology finally provided 25µeV . The studies published
in Ref. [61, 95, 94] gave similarly small values for λI , but these calculations only
involved the SOC induced by the coupling between pz (forming the π bands) and
s orbitals (forming the σ band) orbitals. However, as pointed out in Ref. [63], the
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coupling of the pz orbitals to the d orbitals (See Fig. 1.5 (a) and (b)) dictates the
spin orbit effects near the K(K ′)-points.

Indeed, owing to a finite overlap between the neighboring pz and dxz, dyz orbitals,
the intrinsic splitting λI is linearly proportional to the spin-orbit splitting of the
d states, ξd (orbitals higher than d have a smaller overlap and contribute less).
Differently, due to the absence of the direct overlap between the pz and σ-band orbitals,
the spin-orbit splitting induced by the σ − π mixing depends only quadratically
on the spin-orbit splitting of the pz orbital, ξp, yielding a negligible contribution
[61, 95, 94] (Fig. 1.5(a)).

λI '
2(εp − εs)

9V 2
spσ

ξ2
p +

9V 2
pdπ

2(εd − εp)2
ξd, (1.63)

where εs,p,d are the energies of s, p, d orbitals, respectively and Vspσ and Vpdπ

are hopping parameters of the p orbital to the s and d orbital, respectively. This
TB calculation leads to an intrinsic SOC of λI = 12µeV [63], agreeing with DFT
simulations [62]. Such results also suggest that the Rashba term (absent for zero
electric field) is tunable with an external electric field E (which is perpendicular to
graphene plane)

λR '
2eEzsp
3Vspσ

ξp +
√

3
eEzsp

(εd − εp)
3Vpdπ

(εd − εp)
ξd, (1.64)

where zsp and zpd are the expectation values 〈s|ẑ|pz〉 and 〈pz|ẑ|dz2〉, respectively,
of the operator ẑ (Fig.1.5(b)). All these calculations predicted that the Rashba SOC
is directly proportional to the electric field E, but the estimated values vary by about
one order of magnitude from 5µeV in Ref. [62] to 40− 50µeV in Ref. [61, 97] and
to 67µeV in Ref. [94], for a typical electric field of E = 1V/nm.

Four-band model for graphene

For further studying intra-particle entanglement, the most convenient starting
model is the total Hamiltonian in the continuous approximation. The graphene with
Rashba SOC Hamiltonian in the continuous model that is equivalent to the full
tight-binding version presented previously, is given by (assuming the K valley):

H = ~υF (σxkx + σyky) � 1s + λR (σx � sy − σy � sx) +

+λRacc
2

[kx (σx � sy + σy � sx) + ky (σx � sx + σy � sy)] .
(1.65)
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The second-order term Rashba SOC just promotes a simple dephasing regarding
the curve of concurrence for each direction kx, ky at very high-energy, similar to what
happens with the anisotropic spin- lifetime in high-energy. The kronecker products
of the spin and pseudospin Pauli matrices are:

σx⊗1s =

(
0 1

1 0

)
⊗

(
1 0

0 1

)
=


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 2⇔3→


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 . (1.66)

σy⊗1s =

(
0 −i
i 0

)
⊗

(
1 0

0 1

)
=


0 0 −i 0

0 0 0 −i
i 0 0 0

0 i 0 0

 2⇔3→


0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0

 .

(1.67)

σx⊗sy =

(
0 1

1 0

)
⊗

(
0 −i
i 0

)
=


0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

 2⇔3→


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 .

(1.68)

σy⊗sx =

(
0 −i
i 0

)
⊗

(
0 1

1 0

)
=


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 2⇔3→


0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

 .

(1.69)

We did some permutations regarding the second and third rows in each kro-
necker products in ordering of obtaining a Hamiltonian in the spin-pseudospin basis.
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Therefore, the higher-order Rashba continuous Hamiltonian is gives by

Ĥ =


0 ε0e

−iθ 0 0

ε0e
iθ 0 −2iλR 0

0 2iλR 0 ε0e
−iθ

0 0 ε0e
iθ 0

 (1.70)

where ε0 = ~νFk and θ = tan−1 (ky/kx). The representation of the relevant
bipartite degree of freedom can be described as
- Spin:

sx =

(
0 1

1 0

)
, sy =

(
0 −i
i 0

)
, sz =

(
1 0

0 −1

)
(1.71)

- Pseudospin:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
(1.72)

1.2.8. Spin-pseudopsin entanglement and spin relaxation

Pseudospin-related effects (and the associated Berry phase) are known to drive most
of the unique transport signatures of graphene (Klein tunneling, weak antilocalization,
anomalous quantum Hall effect), but the role of such extra degree of freedom on
spin relaxation has been discovered only recently. Pseudospin and spin dynamics are
usually perceived as decoupled from one another, with pseudospin dynamics much
faster when compared to spin rotation.
However, this picture collapses in the vicinity of the Dirac point, a region that

is out of reach for semi-classical and perturbative approaches, but is particularly
relevant for experiments. In the presence of SOC, spin couples to orbital motion,
and therefore to pseudospin [98], so that spin and pseudospin dynamics cannot be
treated independently.
Here we present the main ideas underpinning a new relaxation mechanism and

driven by a spin-pseudospin entanglement effect. To capture the unusual behavior
of the spin lifetime at low energies, it is first instructive to investigate the Kane-
Mele-Rashba (KMR) Hamiltonian in the vicinity of both valleys K and K ′. At low
energy (when |~k| → 0) the term which couples pseudospin and momentum (h0(~k))
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Figure 1.6.: Band structure calculated using the Kane-Mele-Rashba model for 8%
adatom concentration generating an overall Rashba SOC . The inset
shows the typical Rashba-like spin texture for the conduction bands.
(Reprinted by permission from Macmillan Publishers Ltd: Nature Physics
[35], copyright (2014).)

vanishes, in contrast to the Rashba term (hR(~k)) which connects spin and pseudospin.
Hence close to the Dirac point, the term hR(~k) dictates the spin and pseudospin
precession motion and leads to a spin-pseudospin locking feature.

On the contrary, for high energies (|~k| > 0) the term h0(~k) exceeds the Rashba
term and disrupts the locking effect. Fig.1.6 gives the computed band structure
of the Kane-Mele-Rashba Hamiltonian assuming 8% impurity coverage [35]. The
Rashba term generates a counter-propagating spin texture in the kx, ky plane that
tends to vanish close to the Dirac point as [98]:

~Sνµ(~k) =
µ~vF (~k × ~z)√
λ2
R + ~2v2

Fk
2

(1.73)

We further calculate the modulus of the spin polarization vector |~S| = |(〈sx〉, 〈sy〉, 〈sz〉)|
from the eigenstates of the full Hamiltonian in Eq.(1.57) with both intrinsic and
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Rashba SOC

Ψ~k,± =

[(
cA,↑

cB,↑

)
⊗ | ↑〉 ± i

(
cA,↓

cB,↓

)
⊗ | ↓〉

]
ei
~k~r, (1.74)

where, in presence of the Rashba SOC term, the Bloch states with well-defined
spin polarization are no longer eigenstates of the complete Hamiltonian [99]. The
clear signature of spin-pseudospin entanglement is actually evidenced at low energies
(~k → 0) since the electronic states write

ΨI
~k,± =

(
0

1

)
⊗ | ↑〉 ±

(
i

0

)
⊗ | ↓〉 (1.75)

ΨII
~k,± =

(
1

0

)
⊗ | ↑〉 ±

(
0

i

)
⊗ | ↓〉. (1.76)

In both cases, a change in sublattice (pseudospin) index entails a change in
spin index. This means that at low energy spin and pseudospin are completely
locked and |~S| ≈ 0. The situation is different for high energies (|~k| > 0), when
pseudospin-momentum coupling comes into play, all coefficients become equally
weighted (|cσ,s| ≈ 0.5) and spin and pseudospin are unlocked leading to |~S| ≈ 1.

It is also instructive to explore the spin propagation in graphene using more
general quantum dynamics methods, and taking into account the specificity of the
graphene band structure in the presence of SOC and disorder (energy broadening
and electron-hole puddles).

Studies have been realized using an exact calculation of spin dynamics through
time dependent evolution methods [35, 92, 37, 88]. The advantage of such approaches
is to capture the effect of both disorder of any kind and strong SOC regimes, beyond
the reach of perturbation theory.

Concerning the nature of disorder in (clean) exfoliated graphene samples, it is
known that the strength and size of electron-hole puddles can vary significantly for
different substrates (such as SiO2 or hBN), and in the situation of clean supported
graphene it is generally assumed that a weak Rashba-SOC field is always present
because of mirror symmetry breaking and surrounding electric fields.

When the disorder is strong enough to yield τp � TΩ (case of electron-hole puddles
for graphene/SiO2), then the numerical simulations [92] confirm a scaling for the
spin lifetime as τs ∼ 1/ni where ni is the puddle density, and a ratio τ⊥s /τ

‖
s = 1/2 in
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Figure 1.7.: (a) Convolution of the spin precession frequency (right axis) with a
Lorentzian energy broadening (left axis). The η parameter gives the
HWHM of the Lorentzian, while α denotes the variation of the spin
precession frequency. (b) Exponentially decaying cosine, with frequency
ω0 and decay time 1/αη. By courtesy of A.W. Cummings, reproduced
from [100].

full agreement with the conditions required for the DP regime [101] (see also Fig.
1.8).

However, for cleaner graphene samples and flat substrates (e.g. electron-hole
puddles for hBN) the regime τp � TΩ can be eventually reached; a regime where
DP regime ceases to apply, as well as the conventional EY regime. In such a
(quasi)-ballistic transport regime in graphene, τp is no longer a relevant timescale for
understanding spin relaxation.

It has been actually found that in this limit, the spin relaxation is dictated by
the presence of energy broadening and, more importantly a non-uniform precession
frequency, a fundamental ingredient which has been neglected in prior studies [93].

The presence of SOC generates the effective magnetic field Beff which monitors
the spin rotation. When the magnitude of Beff (or its direction) depends on the
electron energy (or momentum) distribution (defined by temperature or effective
disorder-induced broadening), then the total spin signal derives from interference
and dephasing between different precession frequencies.

As a matter of illustration, let us focus on the case illustrated in Fig.1.7, where
the spin precession frequency varies linearly with ω(E) = ω0 + αE, while the energy
occupation for electrons is given by a Lorentzian distribution L(E) = η/[π(E2 + η2)]

(η as the half-width at half-maximum (HWHM)). From simple considerations, the
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total spin signal s(t) is obtained from [37]

L(E) cos(ω(E)t) =

ˆ +∞

−∞
(η/π)/(E2 + η2) cos((αE + ω0)t)dE, (1.77)

= e−αηt cos(ω0t). (1.78)

Eq. (1.77) indicates that the combination of energy broadening and nonuniform spin
precession leads to a dephasing of the spin signal which is eventually lost at a rate
proportional to both the broadening η and the precession variation. This decay (not
necessarily exponential) occurs even in the ballistic regime provided the existence of
a frequency mixing in energy or momentum.

Indeed, when replacing the Lorentzian with a Gaussian distribution, Eq.(1.77)
gives e−(ασt)2/2, with σ the standard deviation, whereas a Fermi distribution produces
Ξt/ sinh(Ξt) ( Ξ = απkT and kT is the thermal energy) [37].

In conclusion if DP dominates for dirty graphene with low mobility, in the limit
of clean (and even ballistic) limit, a new spin dephasing mechanism, driven by strong
coupling between spin and pseudospin, gives rise to an intricated mixing of precession
frequencies which dictate the energy variation of the spin lifetime, as well as its
upper value [35, 92, 37].

Actually, the approximation of an energy-independent spin precession frequency
made in Ref. [93] was demonstrated to be the origin of the astonishing discrepancy
of such earlier calculations compared with experimental data [37].

To get the full picture, Fig. 1.8 shows the τs(1/τp) for both numerical and
experimental data taken from [67]. In the main frame the simulation for the SiO2

substrate, the scaling matches well with the DP relation, τs = (TΩ/2π)2/τp , where
TΩ = 2π~/(3VR), whereas for the hBN substrate the opposite scaling trend is seen,
with τs proportional to τp, reminiscent of the EY mechanism.

The crossover is related to the ratio τp/TΩ. For SiO2, one clearly obtains a regime
where τp � TΩ meaning that momentum scattering frequently interrupts the spin
dynamics, inducing motional narrowing of the precession as described in the DP
relaxation mechanism.

Differently, for the hBN substrate, numerical simulations show that τp ≥ TΩ,
allowing for spin precession between scattering events. In this case, the momentum
scattering acts as an effective broadening of states, leading to increased dephasing
and relaxation.
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Figure 1.8.: Spin lifetime vs. 1/τp for graphene in the presence of SOC and e-h
puddles. Squares (circles) are for graphene on hBN (SiO2) substrate.
Closed (open) symbols are for spin relaxation at the Dirac point (at
E = −200 meV). The blue dashed line shows the spin lifetime assuming
only energy broadening (top axis). Inset: experimental results for spin
lifetime vs. electron mobility on hBN and SiO2 substrates.(The main
panel is reprinted from [92]. The inset is Reprinted with permission from
([67]). Copyright (2014) American Chemical Society.)
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This behaviour can be qualitatively reproduced by tuning the broadening parameter
in the case of clean graphene (blue dashed line). Similar trends have been obtained
in experiments that compare spin relaxation on SiO2 and hBN substrates [67].

As shown in the inset of Fig. 1.8, these measurements indicate an inverse relation-
ship between τs and the sample mobility for SiO2 substrates in agreement with DP
[101].

Meanwhile, spin lifetimes of single-layer graphene on hBN substrates appear to
show a positive correlation between τs and the mobility, therefore supported with
the new theoretical picture.

1.2.9. Graphene/TMDC’s heterostructures.

1.2.9.1. Enhancement of SOC in graphene

Additionally, we give an overview of the most relevant evidence of spin-orbit
coupling enhancement in graphene and how it was determined. Both of these
discussions will serve as a baseline for understanding our motivation to try to explore
how eletronic properties in these systems are connected with intraparticle bipartite
entanglement which we have studied in the previous section.

Recently, a three-order-of-magnitude enhancement of SOC was reported in weakly
hydrogenated graphene [72]. Subsequently, a large number of experiments have
also reported evidence of SOC enhancement in graphene, opening a new era for
graphene-based spintronics [102, 72, 73, 74, 75, 78, 103, 83, 80, 79, 104, 105, 106].

The presence of spin-orbit coupling in a material can be detected by measuring
weak antilocalization or the spin Hall effect, as in general these phenomena will not
exist without SOC. In this regard, graphene is a special case because there can be
weak antilocalizaton due to the presence of pseudospin [107]. However, this happens
under very special experimental conditions which are not the general situation.

The first experimental measurements were focused on detecting the spin Hall effect
through measurements of nonlocal resistance in a Hall bar geometry. Such measure-
ments indeed found large nonlocal signals, and these were attributed to enhancement
of the SOC in graphene by adatoms [72, 73, 74]. However, using this approach can
be complicated given that a variety of phenomena unrelated to spin may also lead to
large nonlocal signals [108, 81, 82, 109, 110].In graphene/TMDC heterostructures,
the initial measurements were centered on detecting weak antilocalization, which is
then fitted to WAL theory [111] to obtain the corresponding spin relaxation rates.
Following this approach, a variety of groups have confirmed the undeniable presence
of proximity-induced SOC [112, 75, 78, 83, 103, 80, 102, 106].
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SOC parameters can be indirectly evaluated from WAL measurements by con-
necting spin-orbit relaxation rates to spin relaxation mechanisms. However, all but
the most recent analyses have ignored the impact of valley-Zeeman SOC, despite
simulations based on density functional theory (DFT) showing it to be the dominant
term [112, 113, 103, 114].

Finally, it was recently proposed that a giant spin lifetime anisotropy is a signature
of proximity-induced SOC in graphene/TMDC heterostructures [115]. This effect
was subsequently confirmed by two independent groups using variations of the Hanle
precession measurement [104, 105].

These measurements make it clear that TMDCs induce a strong SOC in graphene,
and that the nature of this SOC leads to unusual features in the spin transport. In
the following section we provide the theoretical framework to understand the nature
of spin transport in these systems.

1.2.9.2. Tight-binding model for graphene/TMDC’s

To capture the main features of the ab initio calculations, a tight-binding (TB)
model was developed using group theory by Gmitra and coworkers [113, 116]. Thus,
here we will follow up on these seminal works and focus on the effective hamiltonian
for spin and pseudospin degree of freedom only, for a given K(K’). We consider
the tight-binding Hamiltonian of graphene on a TMDC, with all orders of Rashba,
intrinsic and PIA SOC, such as

H = t
∑
〈〈i,j〉〉

c†iσcjσ + ∆
∑
i

ξcic
†
iσciσ + 2i

3
λR
∑
〈i,j〉

c†iσcjσ′
[
(~s× dij)z

]
σσ′

+

+ i
3

∑
〈〈i,j〉〉

c†iσcjσ′
[
λ
ci
I√
3
νijsz + 2λciPIA (~s×Dij)z

]
σσ′

,
(1.79)

where c†iσ =
(
a†iσ, b

†
iσ,
)
and ciσ = (aiσ, biσ, ), describe the creation and annihilation

operators for an electron on a lattice site i that belongs to the sublattice A or B,
respectively, and hosts spin σ. The two first terms in Eq. (1.79) are responsible
for governing the dynamics of these systems on the orbital scale, where the nearest-
neighbor hopping (sum over 〈i, j〉) is parametrized by a hybridization t, and the
staggered on-site potential ∆ is an effective energy difference experienced by the
sublattices A (ξai = 1) and B (ξbi = −1) .
The other three terms of the above equation represent the spin-orbit coupling

(SOC) regarding the nearest (sum over 〈i, j〉) and next-nearest (sum 〈〈i, j〉〉) neighbor
hoppings. Between the SOC terms, the first one is regarding the Rashba SOC with
its parameter given by λR . It arises when the monolayer graphene is placed on top
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of any XY2 TMDC. The last two terms of the above equation are the next-neighbor
terms that arises from sublattice (pseudospin) symmetry breaking. Pseudospin
inversion asymmetry (PIA) induced term parametrized by λciPIA = λAPIA

(
λBPIA

)
,

being ci the sublattice A(B). also arises from sublattice (pseudospin) symmetry
breaking mechanism.

In Eq. (1.79), ŝ is a vector of Pauli matrices acting on the spin subspace and the
spin factor νij = 1 (−1) means the clockwise (counterclockwise) hopping path from
the site j to i, which is described by dij for the nearest neighbors, and by

−→
D ij for the

next-nearest neighbors.

As we know to obtain the energy spectrum from the tight-binding model, we need
to rewrite Eq. (1.79) in form of the Bloch state operators c†σ

(−→
k
)
and cσ

(−→
k
)
which

can be described as

c†σ

(−→
k
)

=
1√
N

∑
m

ei
−→q ·
−→
Rmc†m,σ, (1.80)

cσ

(−→
k
)

=
1√
N

∑
m

e−i
−→q ·
−→
Rmcm,σ, (1.81)

where
−→
Rm is the lattice vector of an atomic site m, for a give sublattice and m

runs over all N sites, forming a macroscopic system. After a Fourier transform, the
Bloch Hamiltonian H (k), which one is expressed in the spin-pseudospin entangled
basis {|A ↑〉 , |B ↑〉 , |A ↓〉 , |B ↓〉} is

H (k) =


∆− λAI fI (k) tforb (k) λAPIAfPIA (k) iλRfR (k)

tf∗orb (k) −∆ + λBI fI (k) −iλRfR (−k) −λBPIAfPIA (k)

λAPIAf
∗
PIA (k) iλRf

∗
R (−k) ∆ + λAI fI (k) tforb (k)

−iλRf∗R (k) −λBPIAf∗PIA (k) tf∗orb (k) −∆− λBI fI (k)

 . (1.82)

Considering a =
√

3
2 acc, b = 3

2acc, the spin-orbital tight-binding functions forb (k), fR (k),
fI (k), fPIA (k) are described by

forb (k) = exp (−ikya) [1 + 2 exp (ikyb) cos (kxa)] , (1.83)
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fR (k) =
2

3
exp (−ikya)

[
1 + 2 exp (ikyb) cos

(
kxa−

2π

3

)]
, (1.84)

fI (k) =
4

3
√

3
sin (kxa) [cos (kyb)− cos (kxa)] , (1.85)

fPIA (k) =

(
4i

3

)[
cos (kyb) sin (kxa) + sin (2kxa)− i

√
3 cos (kxa) sin (kyb)

]
, (1.86)

where kx and ky are the cartesian components of the center of the FBZ (Γ).

1.2.9.3. Continuous model for graphene/TMDC’s

In the continuous model, the Hamiltonian from Eq. (1.82) is expanded for small
momenta around the K and K’ point of the first Brillouin zone (FBZ), and by
fitting the electronic structure and spin texture to the ab initio results, the strength
of the various SOC parameters can be estimated. The model is given as

H = Horb +HSOC , (1.87)

where the first term

Horb = ~νF (κσxkx + σyky) + ∆σz, (1.88)

represents the orbital part of the Hamiltonian, described by the Dirac equation
with vF the Fermi velocity, σi the Pauli matrices acting on the pseudospin subspace,
κ = 1(−1) for the K (K′) valley, and ∆ a mass term arising from a weak superlattice
effect induced by the TMDC [113, 116]. Being HSOC composed by

HSOC = HR +HPIA +HI +HV Z +H∆PIA, (1.89)
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with:

HR = λR(σxsy − σysx),

HPIA = aλPIAσz(kxsy − kysx),

HI = λIκσzsz,

HV Z = λV Zκsz,

H∆PIA = aλ∆PIA(kxsy − kysx), (1.90)

• The first element is a Rashba SOC with strength λR, arising from a perpendic-
ular electric field.

• HPIA is a SOC that appears due to the absence of horizontal reflection symmetry
and which renormalizes the Fermi velocity.

• HI is the intrinsic SOC in graphene, which opens a topological gap 2λI at the
Dirac point [86].

• HV Z is a valley-Zeeman term, which spin polarizes the bands out of the
graphene plane with opposite orientation in the K and K′ valleys, also known
as spin-valley locking.

• H∆PIA is a second-order Rashba term that causes a k-linear splitting of the
bands, as in traditional 2D electron gases (2DEGs) with Rashba SOC [117].
Except for the PIA terms, this Hamiltonian is the same as that considered in
other works [76, 103, 78, 114].

The values of these parameters are on the order of ∼1 meV except for the intrinsic
SOC, which remains on the order of a few tens of µeV, similar to pristine graphene
[113]. In the spin-pseudospin basis, the continuum full Hamiltonian, including the
valley index (τ = ±1), is described in Ref. [118] by

Heff =


∆ + τλAI Ek w∗EAPIA E+

R

E∗k −∆− τλBI E−R w∗EBPIA
wEAPIA

(
E−R
)∗

∆− τλAI Ek(
E+
R

)∗
wEBPIA E∗k −∆ + τλBI

 , (1.91)

where E∗k = (τ exp (iτθ)) ~νFk, E±R = i(τ ± 1)λR, EA,B
PIA = akλAPIA, and

w∗ = i exp (iθ).
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Figure 1.9.: Many-body physics vs. single-particle physics.

1.2.10. Entanglement in condensed matter

An entanglement measure quantifies how much entanglement is contained in a
quantum state. Formally it is any non-negative real function of a state which cannot
increase under local operations and classical communication (LOCC) - this is due
to the monotonicity of this function.

This quantify goes to zero for separable states. In our work presented here, for
exploring bipartite intra-particle entanglement in a closed system, we introduce the
concurrence as the main quantity for this specific case for convenience.

In general, the problem of quantifying the entanglement in condensed matter is
not trivial. Still, in our case, we are working on the simplest case that consists of a
bipartite system within the a single particle approximation.

Let us point out the main differences between two huge classes of systems in
condensed matter to understand the complexity of studying entanglement on the
hardest platforms and in comparison with our platform that naively could look simple
in the computational point of view but not trivial from the complex physics of the
weakly correlated system known as graphene.

We choose to point out this difference because many materials regarding this topic
are not explicitly explained. Those unfamiliar with this subject can confuse different
regimes to tackle entanglement in condensed matter. Thus, we can visualize the
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main difference between single particles in many-body physics in the Fig. 1.9

Thus, we can imagine that tackling bipartite entanglement is a pretty straightforward
question at first glance. However, connecting entanglement and quantum transport in
Dirac matter sometimes could be a bumpy road due to the physical interpretation...

1.2.11. Correlations

The search for non-local correlations in experiments is key to understand the ulti-
mate nature of quantum phenomena, and technically demands for analysing large
set of experimental data of correlated physical events. After many repetitions of
similar experimental events, distribution probabilities of correlations between events
are extracted and allow to determine the presence and strength of entanglement.
Experiments of correlations are excellent to invalidate classical concepts to describe
quantum phenomena, because they does not depend of any particular model, just of
the statistic outcomes obtained in the experiment [119, 120].

Simplest case: scenario (2,2,2)

Consider the simplest scenario for studying correlations composed by two partsA and
B (Alice and Bob), where each of the parts can perform two possible measurements
with two possible outcomes, as we can see in the Fig. 1.10

Figure 1.10.: Bipartite correlation: Alice can choose to perform the measurements
A0 and A1, each with two possible outcomes: 0 or 1. The same happens
to Bob part.
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Clauser-Horner-Shimony-Holt inequality

The CHSH inequalities were proposed in 1969 by J. Clauser, M. Horne, A. Shimony
and R. Holt [121]. They are one of the famous versions of the Bell inequalities because
they could allow direct experimental check . According to the scheme presented in
the Fig. 1.10, consider the expression

βCHSH = pa=b|A0,B0 − pa6=b|A0,B0 + pa=b|A0,B1 − pa6=b|A0,B1+ (1.92)

+pa=b|A1,B0 − pa6=b|A1,B0 − pa=b|A1,B1 + pa6=b|A1,B1 ,

where

pa=b|Ax,By = p0,0|Ax,By + p1,1|Ax,By , (1.93)

pa6=b|Ax,By = p1,0|Ax,By + p0,1|Ax,By , (1.94)

we can also define the correlator in terms of these probabilities such as

E (Ax, By) ≡ pa=b|Ax,By − pa6=b|Ax,By (1.95)

Thus, we have

βCHSH = E (A0, B0) + E (A0, B1) + E (A1, B0)− E (A1, B1) . (1.96)

Defining the operators:

Ax = Π0
AX
− Π1

AX
, (1.97)

By = Π0
By − Π1

By , (1.98)

where
{

Π0
AX
,Π1

AX

}
are elements of the POVM ( projective measurements which
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will be defined in the Chapter 2) of the measurement Ax. Consider
{

Π0
By
,Π1

By

}
elements of the POVM of the measurement By. Being ‖�‖the norm defined as the
singular value of an operator and knowing the

∑
Π0
AX

= 1, Π0
AX
≥ 0, one obtains

that ‖Ax‖ ≤ 1 . The same conditions are valid for the B part. Therefore, we can
relate these observables to the CHSH inequality, such as

BCHSH ≡ A0 ⊗B0 + A0 ⊗B1 + A1 ⊗B0 −A1 ⊗B1, (1.99)

thus, we have

〈BCHSH〉 = βCHSH . (1.100)

Knowing the 〈BCHSH〉 , we can check if the correlations generated by the quantum
mechanics are local, i.e. obeys |βCHSH | ≤ 2.
Proof:
Being CHSH expression given by:

CHSH = A0B0 + A0B1 + A1B0 − A1B1, (1.101)

where Ai and Bj are variables that can take the value +1 and −1. Now, let’s
compute its maximum absolute value:

maxAi=±1,Bj=±1|CHSH| (1.102)

Rewriting the CHSH expression as follows:

max|A0(B0 +B1) + A1(B0 −B1)| (1.103)

Now, since B0 and B1 are +1 or −1, you have two possibilities:

1. B0 = B1 = B and then max|CHSH| = 2|A0B| = 2, because they are signs;

2. B0 = −B1 = B and then max|CHSH| = 2|A1B| = 2, because they are signs.

Therefore |CHSH| ≤ 2. Next, consider as an example that the quantum mechanics
violates the restrictions imposed by non-locality. Suppose that Alice and Bob share
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the entangled state:

|ψ〉 =
1√
2

(|01〉 − |10〉) , (1.104)

and they can perform the measurements of the observables

A0 = σz, A1 = σx; (1.105)

B0 =
1√
2

(σz + σx) , B1 =
1√
2

(σz − σx) . (1.106)

Thus, calculating the expectation value of BCHSH for the state of the Eq. (1.104),
the violation of the CHSH inequality can be expressed by

〈ψ| BCHSH |ψ〉 = 〈ψ|A0 ⊗ B0 + A0 ⊗ B1 + A1 ⊗ B0 − A1 ⊗ B1 |ψ〉 (1.107)

= −2
√

2.

Here we will not enter into more details about the foundations of the non-locality.
However, it is worth mentioning a famous result obtained by Boris Tsirelson, which
establishes a maximum value for the violation of CHSH inequality for quantum
mechanics.

Theorem 1: ‖BCHSH‖ ≤ 2
√

2.

Proof:

(BCHSH)2 = (A0 ⊗ B0 + A0 ⊗ B1 + A1 ⊗ B0 − A1 ⊗ B1)2 (1.108)

≤ 4 · 1− [A0, A1]⊗ [B0, B1],

where [X, Y ] = XY − Y X is the commutator. Given the arbitrary operators X
and Y we have

‖[X, Y ]‖ = ‖XY − Y X‖ ≤ 2 ‖X‖ ‖Y ‖ , (1.109)
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‖[X ⊗ Y ]‖ = ‖X‖ ‖Y ‖ ,

‖X2‖ = ‖X‖2 .

Therefore, from Eq. (1.108), we have

‖BCHSH‖2 ≤ 4 + 4 ‖A0‖ ‖A1‖ ‖B0‖ ‖B1‖ , (1.110)

≤ 8,

≤ 2
√

2.

In conclusion, according to quantum mechanics, the value of βCHSH is limited by
βCHSH ≤ 2

√
2, this result is also known as the Tsirelson bound.

With this inequality in mind, one can wondering:

Is the entanglement the unique condition to have non-local correlations?

Entanglement it is necessary condition for non-locality, but is not sufficient. There
exist entangled states for which the correlations admit a description by hidden local
variable models. But, this kind of investigation is not the topic of this thesis.

1.2.11.1. Separable states

Consider a separable state of a system composed by n parts, such as

ρ =
∑
i

piρ
i
1 ⊗ ρi2 ⊗ · · · ⊗ ρin, pi ≥ 0,

∑
i

pi = 1. (1.111)

For all local measurements {ΠAX1
⊗ ΠAX2

⊗ · · · ⊗ ΠAXn} performed in this state,
the correlations obtained can be described as

p (a1, · · · , an|Ax1, · · · , Axn) = tr
[
ρ
(
Πa1
AX1
⊗ Πa2

AX2
⊗ · · · ⊗ Πan

AXn

)]
, (1.112)

= tr

[(∑
i

piρ
i
1 ⊗ ρi2 ⊗ · · · ⊗ ρin

)(
Πa1
AX1
⊗ Πa2

AX2
⊗ · · · ⊗ Πan

AXn

)]
,

=
∑
i

pitr
(
ρi1Πa1

AX1

)
tr
(
ρi1Πa2

AX2

)
· · · tr

(
ρinΠan

AXn

)
,
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=
∑
i

pip
i
a1|Ax1p

i
a2|Ax2···p

i
an|Axn ,

which consists in a classically correlated probability distribution, which can be
associated with hidden local variable theory. In conclusion, all separable states give
to local correlations.

1.2.11.2. Bipartite entanglement

It was showed that all pure bipartite entanglement violate some Bell inequalities,
result which has been generalized by Popescu and Rohrlich [120] for n entangled
particles.

Theorem 2 (Two-qubit case): All bipartite pure entangled states violates the
CHSH inequality for some choice of observables A0, A1, B0, B1.
Proof:
A two-qubit pure state can be described in its Schmidt decomposition in the form:

|ψ〉 = µ1 |0〉 |0〉+ µ2 |1〉 |1〉 , (1.113)

where µ1, µ2 are real positive numbers being µ2
1 + µ2

2 = 1. Consider {|0〉 , |1〉} the
bases of the HA and HB that can represent different directions of the spin in each
system. Assuming that a state is entangled µ1, µ2 > 0, for this bipartite system, the
observables can be described by

A0 = −→a 0.
−→σ , A1 = −→a 1.

−→σ , B0 =
−→
b 0.
−→σ , B1 =

−→
b 1.
−→σ , (1.114)

where the axis are chosen in the way that {|0〉 , |1〉} are eigenvectors of σz for
both parts (A,B), and −→a 0,

−→a 1,
−→
b 0,
−→
b 1 are unit vectors in R3. To demonstrate this

theorem, we need to choose these set of vectors in a way that the CHSH be violated.
Thus, consider the Eq. (1.99), for our choice of observables, we have

〈BCHSH〉 =
〈−→a 0.

−→σ ⊗
−→
b 0.
−→σ
〉

+
〈−→a 0.

−→σ ⊗
−→
b 1.
−→σ
〉

+ (1.115)

+
〈−→a 1.

−→σ ⊗
−→
b 0.
−→σ
〉
−
〈−→a 1.

−→σ ⊗
−→
b 1.
−→σ
〉
, (1.116)
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considering the unitary vectors as

−→a 0 = (0, 0, 1) , (1.117)

−→a 1 = (1, 0, 1) , (1.118)

−→
b 0 = (sinω, 0, cosω) , (1.119)

−→
b 1 =

(
sinω

′
, 0, cosω

′
)
. (1.120)

Thus, the expectation value of each term for a given state is

〈−→a .−→σ ⊗−→b .−→σ 〉
ψ

= azbz + 2λ1λ2 (axbx − ayby) , (1.121)

Replacing the vectors in the equation above, we have

〈BCHSH〉ψ = cosω − cosω
′
+ 2µ1µ2

(
sinω + sinω

′
)
, (1.122)

choosing

cosω = − cosω
′
=

1√
1 + 4 (µ1µ2)2

(1.123)

sinω = sinω
′
=

2µ1µ2√
1 + 4 (µ1µ2)2

(1.124)
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Consequently for these measurements, we have

〈BCHSH〉ψ = 2

√
1 + 4 (µ1µ2)2 > 2 if µ1 6= µ2 6= 0. (1.125)

In summary, for some sets of measurements, all two-qubit pure states, there
are correlations that realistic local theories cannot simulate. It is essential to
highlight that the measures are chosen to violate the CHSH inequality. They
depend on ψ through its basis and Schmidt coefficients. Thus, for evaluating the
correlations between different states, a different set of observables needs to be
measured. Generalizing these results, we can say:

All bipartite pure entangled state has non-local correlations for a specific set of
measurements.

1.2.12. Density matrices and entanglement

Usually, in quantum theory, accessing the full physically relevant information of a
given physical quantum state is not a trivial task since only probabilities are accessible
to computation. One can further ask how to extract meaningful information from a
subpart of a quantum system when its full physical information is out of reach? To
perform such a task, the density operator ρ gives a proper mathematical quantity,
which derives from the combined postulates of quantum mechanics and statistical
mechanics.

As an illustration of the construction of density matrix as a product of these two
branches of physics, one can outline the use of probability distribution. For example,
we consider the case where the initial state of a system is not known, and we need to
use a probability distribution as an initial state.
We learned in classical statistics mechanics that the probability distribution is

useful to construct a partial description of a certain system. The density matrix
plays a similar role in quantum statistical mechanics in this scenario. In general, the
density matrices very often function as pre-probabilities that can be used to generate
averages of the different observables. In some cases, the quantum wave function |ψ〉
need not denote the physical properties of a quantum system [ψ].
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In other words, it can be used as a mathematical function, e.g., to calculate
probability amplitudes. Thus, in most cases, the density matrices are used as
per-probability sense it will provide useful information about the system.

However, we should not think of that as a true physical property of a quantum
system because it does not represent a “quantum reality”. Therefore, referring to a
density operator as a “state” of the system can be misleading in some cases. Although
in classical statistical mechanics, it is common to refer to probability distribution
as the “state” of the system, even if the distributions are not describing a physical
property.

In our work, we use the density matrices because they play the role of state vectors.
To access the entanglement structure, we need this “figure of merit”, the density
operator, to encode the available information about our state |ψ〉. Depending on if
we use the full density matrix or the reduced density matrix, we can have different
ways to analyze the entanglement of the Hamiltonian.

Regarding the properties of our most important tool to quantify the entanglement,
we should consider some important details. First, the density matrix is a positive
operator whose spectrum of eigenenergies is non-negative and whose trace is 1. Being
A > 0 is a positive operator, its trace is greater than 0, and one can define a density
matrix by the following expression:

ρ =
A

tr(A)
. (1.126)

The eigenvalues of a density matrix ρ must be between 0 and 1. If one of the
eigenvalues is 1, the other must be 0, and for the projector ρ = ρ2 all these conditions
define a pure state. Otherwise, if we have at least two nonzero eigenvalues, the
density matrix is called a mixed state.

Mixed states can mainly model usual experimental studies. To conclude this brief
description of the density matrix, we summarize some mathematical properties of
this projector. The general representation of ρ can be defined as

ρ =
∑
i

pi |ψi〉 〈ψi| , (1.127)

where pi is the probability that the system of |ψi〉 state with
∑

i pi = 1, where the
eigenstates must be orthogonal and its decomposition is not unique. Finally, we have
the basic assumptions regarding this operator
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• ρ2 = ρ projector;

• ρ† = ρ hermicity;

• tr(ρ) = 1 normalization;

• ρ ≥ 0 positivity.

1.2.12.1. Pure and mixed state

A pure quantum state defines as a vector |ψi〉 in Hilbert space and density matrix
for such a state is

ρ = |ψi〉 〈ψi| , (1.128)

and

tr(ρ2) = 1. (1.129)

A mixed quantum state define as a probabilistic mixture of a pure state:

ρ =
∑
i

piρi =
∑
i

pi |ψi〉 〈ψi| , (1.130)

and

tr(ρ2) < 1. (1.131)

The purity of a normalized quantum state is defined as:

γ = tr
(
ρ2
)
. (1.132)

The purity provides the information on how much a state is mixed. The purity
satisfies the relation:

1

d
≤ γ ≤ 1, (1.133)
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where d is the dimension of the Hilbert space upon which the state is defined. The
upper bound is given by tr (ρ) = 1 and tr (ρ2) ≤ tr (ρ). If ρ is a projection which
describe a pure state we have the known relation tr (ρ2) = tr (ρ) = 1. The lower
bound is obtained by the completely mixed state, represented by matrix Id

d
.

Considering the Bloch sphere, pure states are represented by a point on the sphere’s
surface, whereas an interior point represents mixed states. Therefore, the purity of a
state can be interpreted as its spatial proximity to the surface of the sphere.

If we have a density matrix, how can we visualize it to know if it describes a mixed
or a pure state?

Consists in a coherent superposition of states |↑〉,|↓〉. In this case the off-diagonal
elements that are responsible of coherence do exist and contain the phase information
of the system. Example:

ρpure =
1

2

(
1 1

1 1

)
. (1.134)

Consists in a incoherent superposition between the vectors of the basis. In this
case, the off-diagonal elements are zero, thus the phase information is lost. Example:

ρmixed =
1

2

(
1 0

0 1

)
. (1.135)

Where we have ρ2
mixed 6= ρmixed.

As we already reinforce in this text, the physical prediction about a certain system
depends on the density matrix. We cannot distinguish the different processes that
result in a certain mixed state. It is possible to understand that different statistical
mixture compositions carry the same incomplete information.

Therefore, we can introduce the concept of entropy for these quantum states. Thus,
entropy is a measure of the degree of uncertainty of a quantum system. We have
only partial information about a quantum system in a mixed system. The entropy
measures how much is missing from the maximal information.
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1.2.13. Quantifying the entanglement for bipartite systems

This section is based on the Whootters’s seminal work Ref. (([122])), which
introduced the concurrence as quantified of bipartite entanglement. Considering the
simplest case, where we have a pure state, we get the concurrence from this:

C(φ) =
∣∣∣〈Ψ |Ψ̃〉∣∣∣ ; (1.136)

Where
∣∣∣Ψ̃〉 is:

∣∣∣Ψ̃〉 = (σ1y ⊗ σ2y) |Ψ ∗〉 ; (1.137)

and the bit-flip operator that is described by kronecker product :

I = (σ1y ⊗ σ2y)⇒


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 . (1.138)

This is a bit-flip operator which acts on quantum state as a two-qubit gate, in
other words it is a inverter operator. This means that it rotates in 180º the quantum
state in the Bloch sphere. Let us visualize this through the map bellow, considering
|Ψ〉 a quantum system:

|Ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 ; (1.139)

then,

|Ψ ∗〉 = α∗ |00〉+ β∗ |01〉+ γ∗ |10〉+ δ∗ |11〉 . (1.140)
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Appliyng this “inversor” to a quantum state with amplitudes conjugated, we get:

∣∣∣Ψ̃〉 = (σ1y ⊗ σ2y) |Ψ ∗〉 =⇒


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0




α∗

β∗

γ∗

δ∗

 =⇒
(1.141)

=⇒ −δ∗ |00〉+ γ∗ |01〉+ β∗ |10〉 − α∗ |11〉 .

Thus, we can think in a map for the “Inversor” operator as:

|00〉 → − |11〉 (1.142)

|01〉 → |10〉 (1.143)

|10〉 → |01〉 (1.144)

|11〉 → − |00〉 (1.145)

Returning to Concurrence formula for pure state (simplest case), we have:

C(φ) =
∣∣∣〈Ψ |Ψ̃〉∣∣∣ =⇒ |−α∗δ∗+β∗γ∗+ γ∗β∗− δ∗α∗| ⇒ 2|−α∗δ∗+β∗γ∗| (1.146)

Clearly, if α, β, γ, δ are real, we have the module of the distance between αδ and
βγ

C(φ) = | − 2αδ + 2βγ|; (1.147)
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When, we have a separable state, this condition is required:

αδ = βγ =⇒ C(φ) = 0 (1.148)

The concurrence can be calculated even for mixed states of a bipartite system.
This quantifier’s equivalent and more general definition can be constructed for mixed
qubits following the procedure developed in Ref. [123, 124]. Initially, we can consider
a pair of qubits of a pure state. We define a “magic basis” consisting of the following
states (they are the Bell states with a determined phase):

|e1〉 =
1

2
(|↑↑〉+ |↓↓〉) (1.149)

|e2〉 =
i

2
(|↑↑〉 − |↓↓〉) (1.150)

|e3〉 =
i

2
(|↑↓〉+ |↓↑〉) (1.151)

|e4〉 =
1

2
(|↑↓〉 − |↓↑〉) (1.152)

When a pure state |ψ〉 can be described in this particular basis, as |ψ〉 =
∑
i

αi |ei〉,

its entanglement can be obtained in terms of its αi components. Where C is defined
by:

C (ψ) =

∣∣∣∣∣∑
i

α2
i

∣∣∣∣∣ (1.153)

Thus, we can look for a pure-state ensemble with minimum average entanglement
for a given mixed state, our plan will be to look for a set of states that all have the
same entanglement or concurrence. Thus, the “magic basis” has the properties:

1. The set of states which the density matrices are real when described in magic
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basis is the same of the set of the mixtures of Bell state generalized.

2. The set of the unitary transformations are real when expressed in the magic
basis and consist the same set the act independently over 2 qubits.

The Concurrence and Entropy of formation is described from R matrix, which is a
function defined by:

R (ρ) =
√√

ρρ∗
√
ρ (1.154)

Where ρ∗ is a complex conjugated of ρ when described in the magic basis of
following way ρ∗ =

∑
ij

|ei〉 〈ej| ρ |ei〉 〈ej|. The concurrence in general is not a measure

that provides a clear physical meaning. But, with this construction from the magic
basis we can get some physical interpretation. If we take the trace of the R function,
we have a measure of “degree of equality” between ρ and ρ∗that assumes the value in
the range of 0 to 1. In other words, the R function returns a measure about how
close is ρ to generalized Bell mixture.

It worth pointing out that the eigenvalues of the R function are invariant under local
unitary transformations of the separated qubits; this fact makes these eigenvalues
particularly eligible for being part of a formula to quantify entanglement, because
the entanglement is invariant under that kind of transformation (see Ref. [125]).

A simple example about the invariance of the entangled states can be described as
follows. Initially, let us considering four Bell states are maximally entangled states.
They correspond to the triplet and singlet states, thus:

∣∣ϕ+
〉

= (|00〉+ |11〉) /2;
∣∣ϕ−〉 = (|00〉 − |11〉) /2 (1.155)

∣∣ψ+
〉

= (|01〉+ |10〉) /2;
∣∣ψ+

〉
= (|01〉 − |10〉) /2 (1.156)

By local operation we can go from one Bell state to another just acting under one
qubit like this:

σx
∣∣ϕ+
〉

=
∣∣ψ+

〉
. (1.157)
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We can see a general case for a bipartite system, where we don’t have a pure state.
Thus, we can start by considering a density matrix ρ1,2 that is needed to build the
operator “R” should have the same dimensionality as the original density matrix. We
want to repeat in Eq. (1.147) generalized for the case where we have our quantum
system described by a density matrix.

With this, we need to apply the inverse operator (bit -flip) to the left and the
right of the density matrix and take the square of this operator obtained to keep the
dimensionality of the physics system, thus:

R =
√
ρ1,2(σ1y ⊗ σ2y)ρ∗1,2(σ1y ⊗ σ2y). (1.158)

Where, the inversion operation can be described by

ρ̃ = (σ1y ⊗ σ2y)ρ
∗
1,2(σ1y ⊗ σ2y). (1.159)

This inversor operator is equivalent to describing our density matrix on a magic
basis. With this, we have a density matrix “R”, which undergoes a transformation on
the Bloch sphere, similarly to the case of computing the Von Neuman Entropy. We
need to diagonalize the reduced density matrix and use the eigenvalues to express
the entanglement entropy.

Here, we need to follow a similar approach. Reminding that both Von Neuman
entropy as Concurrence are bipartite quantities to measure the entanglement in
certain regions of Hilbert space.

Thus, the “R” matrix diagonalized (4x4) will have four nonzero system-dependent
eigenvalues, so we have to solve a minimization problem. We know that the measure
of entanglement adapts the Shannon Entropy in classical information theory. The
measure needs to range from 0 (separable state) to 1 (maximally entanglement state).

Thus, mathematically we need to minimize the eigenvalues obtained through the
diagonalization of the “R” operator. At the same time, from a physical perspective, we
will have to scrutinize the properties of some average of the concurrence, an important
study when we have a Hamiltonian that depends on parameters as in condensed
matter systems. Therefore, the most important formulation of the concurrence is
summarized as

C(φ) = max{ ˜0, λ1 − λ̃2 − λ̃3 − λ̃4}, (1.160)
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where these eigenvalues are in descending order of the matrix product.

1.3. Results I: entanglement in Rashba SOC

graphene

Hamiltonian and entanglement of eigenstates

We consider a continuum model of graphene with Rashba SOC, which is induced
by a perpendicular electric field or a substrate. The Hamiltonian is

Ĥ = ~vF (τ σ̂xkx + σ̂yky)⊗ ŝ0

+ λR (τ σ̂x ⊗ ŝy − σ̂y ⊗ ŝx) , (1.161)

where vF is the Fermi velocity, τ = ±1 is the valley index, ~k is the electron
momentum, λR is the Rashba SOC strength, and ŝ (σ̂) are the Pauli matrices for
the spin (pseudospin) degree of freedom. The eigenenergies of Ĥ are εe,h± = νε±,
where ν = ±1 for electrons/holes, ε± =

√
ε2 + λ2

R ± λR, and ε = ~vF|k|. A typical
bandstructure is shown in the left inset of Fig. 1.13, with the conduction and valence
bands split by 2λR.
We limit ourselves to a single valley (τ = 1) and express the Hamiltonian in the

basis {|A ↑〉 , |B ↑〉 , |A ↓〉 , |B ↓〉}. The first index refers to the pseudospin and the
second index refers to the spin, with ↑ (↓) denoting spin pointing along +z (−z),
perpendicular to the graphene plane. Like the spin, the pseudospin can point in an
arbitrary direction on the Bloch sphere, given the proper distribution of the wave
function between the A and B sublattices. For example, the state

1√
2

[
1 1 0 0

]T
=

1√
2

(|A〉+ |B〉)⊗ |↑〉 (1.162)

has pseudospin pointing along +x and spin along +z, while

1

2

[
1 −i −1 i

]T
=

1√
2

(|A〉 − i |B〉)⊗ 1√
2

(|↑〉 − |↓〉) (1.163)

has pseudospin along −y and spin along −x. In this basis the eigenstates of the
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Hamiltonian are

∣∣∣φe,h± 〉 =
1√
N±

[
e−iθ νγ± ±iγ± ±νieiθ

]T
, (1.164)

where θ = arctan(ky/kx) is the direction of electron momentum, γ± = ε±/ε, and
N± = 2(1 + γ2

±).
To quantify entanglement between the spin and pseudospin, we use the concurrence

Cψ of a given state |ψ〉 [122]. The concurrence has a 1-to-1 relationship with the
von Neumann entropy, equals 0 for completely separable states, and equals 1 for
maximally entangled states.
This entanglement measure was originally defined for mixed two-qubit systems,

and has been extended to systems of many qubits [126]. Here we study pure states

of the form |ψ〉 =
[
a b c d

]T
, where the two qubits are the spin and pseudospin

of the electron. In this case the concurrence is Cψ = 2|ad− bc|. Before we present
the concurrence regarding the four bands of Rashba SOC monolayer graphene, we
must compare it with the spectrum of energy of these bands (see Fig. 1.11 ). We
can check that at Dirac points. We have the minimum of energy, such as

In the following figure 1.12 , we have the degenerate behaviour of the concurrence
for the four-band system described by Rashba SOC graphene.

The expression that describe the behaviour of concurrence in the simpelst case is
expressed by

Cφe,h
±

= λR/
√
ε2 + λ2

R. (1.165)

The eigenstates of the graphene-Rashba system are thus maximally entangled near
the charge neutrality point, such as (Cφ → 1 as ε→ 0), and the entanglement decays
as 1/ε at finite doping. This is shown in Fig. 1.13 for different values of λR = nλ,
with λ = 37.5 eV typical of graphene on SiO2 or hBN [127]. The total spin and
pseudospin of the eigenstates, |s| = |σ| = ε/

√
ε2 + λ2

R, are shown in the right inset.
Both disappear as ε→ 0, a result of their becoming maximally entangled.

Entanglement dynamics

We now examine the entanglement of an arbitrary electron injected into graphene.

This electron will be in an initial state |ψ〉 =
[
a b c d

]T
and will evolve in time

as |ψ(t)〉 = Û(t) |ψ〉, where Û(t) =
∑

j exp(−iεjt/~) |φj〉 〈φj| is the time evolution

61



Figure 1.11.: Energy spectrum for the four band Rashba SOC graphene monolayer.
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Figure 1.12.: Concurrence computed for the four-band graphene with Rashba SOC.
As we see, in this case we have same amount of entanglement in each
of the four bands.

63



Figure 1.13.: Concurrence of the eigenstates of the graphene-Rashba system near
the charge neutrality point for different strengths of Rashba SOC. The
left inset shows a typical band structure and the right inset shows the
magnitude of the spin and pseudospin of the eigenstates. This figure
was reprinted from Ref. [128], copyright (2020) by American Physical
Society.

operator, with εj and |φj〉 the eigenenergies and eigenstates of Ĥ, described above.
The concurrence of this state will thus evolve in time as Cψ(t) = 2|a(t)d(t)− b(t)c(t)|.

We first highlight the entanglement dynamics of some specific initial states. With-
out loss of generality, we assume transport along the x-axis such that θ = 0. Four
states are considered :

∣∣ψ↑x〉 =
1√
2

[
1 1 0 0

]T
, (1.166)

with pseudospin pointing along +x, parallel to the transport direction, and spin
along +z;

∣∣ψ↑y〉 =
1√
2

[
1 i 0 0

]T
, (1.167)

with pseudospin along +y, perpendicular to the transport direction, and spin along
+z;

∣∣ψ1
Bell

〉
=

1√
2

[
1 0 0 1

]T
, (1.168)
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a Bell state with maximal spin-pseudospin entanglement; and

∣∣ψ2
Bell

〉
=

1√
2

[
0 1 1 0

]T
, (1.169)

another Bell state with maximal entanglement. The entanglement dynamics of these
states are shown in Fig. 1.14 at three different energies ε = 0, λR, and 10λR, with
λR = 37.5 eV, depicted in the top three panels.

We first analyze the concurrence dynamics at the charge neutrality point, ε =

0. The Bell state |ψ1
Bell〉 maintains perfect entanglement while |ψ2

Bell〉 oscillates
between perfect and zero entanglement. Interestingly,

∣∣ψ↑x,y〉 both develop nonzero
entanglement despite being initially un-entangled, periodically reaching a maximum
concurrence of 0.5. These behaviors can be understood by examining the eigenenergies
and eigenstates of Ĥ at ε = 0,

∣∣∣φe,h+

〉
=

1√
2

[
0 ν i 0

]T
, with εe,h+ = ±2λR,∣∣∣φe,h− 〉 =

1√
2

[
1 0 0 −iν

]T
, with εe,h− = 0. (1.170)

The eigenstates are maximally entangled, but their linear combinations can yield
different behavior. The first Bell state can be written as

∣∣ψ1
Bell

〉
=

(
1− i√

2

) ∣∣φe−〉+
1 + i√

2

∣∣φh−〉 . (1.171)

These eigenstates are degenerate (εe,h− = 0) and |ψ1
Bell〉 thus remains static with its

initial Cψ1
Bell

= 1. Meanwhile, the second Bell state can be written as

∣∣ψ2
Bell

〉
=

1− i√
2

∣∣φe+〉+
1 + i√

2

∣∣φh+〉 . (1.172)

These eigenstates are separated in energy by εe+ − εh+ = 4λR, and |ψ2
Bell〉 oscillates

with Cψ2
Bell

(t) = | cos(4λRt/~)|. The separable states can be written as

∣∣ψ↑x〉 =
1

2

(∣∣φe+〉− ∣∣φh+〉)+
1

2

(∣∣φe−〉+
∣∣φh−〉) , (1.173)

65



and

∣∣ψ↑y〉 =
i
2

(∣∣φe+〉− ∣∣φh+〉)+
1

2

(∣∣φe−〉+
∣∣φh−〉) . (1.174)

The first term contributes an oscillatory component while the second term is static.
The static component has zero concurrence

∣∣φe−〉+
∣∣φh−〉 ∝ [ 1 0 0 0

]T
, (1.175)

limiting the maximum concurrence that is reached, with Cψ↑x,y(t) = 1
2
| sin(4λRt/~)|.

General expressions

To obtain the Concurrence considering as initial state a general state-ket |ψ〉 =[
a, b, c, d

]T
, the general expression for this quantified was obtained using

Mathematica as:

C (t) u 2
ε20+λ2R

∣∣∣(sin
(
ωRt

2

) (
c
(√

ε20 + λ2
R

)
cos
(

(ω++ω−)
4 t

)
+ (−idε0 − bλR) sin

(
(ω++ω−)

4 t
))

+

+ cos
(
ωRt

2

) (
b
(√

ε20 + λ2
R

)
cos
(

(ω++ω−)
4 t

)
+ (−iaε0 + cλR) sin

(
(ω++ω−)

4 t
)))
·

·
(

cos
(
ωRt

2

) (
c
(√

ε20 + λ2
R

)
cos
(

(ω++ω−)
4 t

)
+ (−idε0 − bλR) sin

(
(ω++ω−)

4 t
))
−

− sin
(
ωRt

2

) (
b
(√

ε20 + λ2
R

)
cos
(

(ω++ω−)
4 t

)
+ (−iaε0 + cλR) sin

(
(ω++ω−)

4 t
)))
−

−
(

sin
(
ωRt

2

) (
d
(√

ε20 + λ2
R

)
cos
(

(ω++ω−)
4 t

)
+ (−icε0 + aλR) sin

(
(ω++ω−)

4 t
))

+

+ cos
(
ωRt

2

) (
a
(√

ε20 + λ2
R

)
cos
(

(ω++ω−)
4 t

)
+ (−ibε0 − dλR) sin

(
(ω++ω−)

4 t
)))
·

·
(

cos
(
ωRt

2

) (
d
(√

ε20 + λ2
R

)
cos
(

(ω++ω−)
4 t

)
+ (−icε0 + aλR) sin

(
(ω++ω−)

4 t
))

+

+ sin
(
ωRt

2

) (
−a
(√

ε20 + λ2
R

)
cos
(

(ω++ω−)
4 t

)
+ (ibε0 + dλR) sin

(
(ω++ω−)

4 t
)))∣∣∣ .

where,

ωR =
2λR
~
,

ω+ =
2
(√

ε2 + λ2
R + λR

)
~

,
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ω− =
2
(√

ε2 + λ2
R − λR

)
~

.

Note, as this expression already is simplified if we choose as initial state a random
state, the result is not exact, what is natural because is a simplified expression. But,
in case we use a initial Haar random pure state (see Ref. [129] ), this expression
match perfectly.

Low-energy limit

In the low-energy limit, limε→0C (t), the general expression simplifies to

C (t) =

∣∣∣∣(2ad− 2bc cos

(
4λRt

~

)
+
(
b2 − c2

)
sin

(
4λRt

~

)∣∣∣∣
Thus, for the all initial states that we can initialize the dynamic, our concurrence
will be in terms of cosine or sine function or constant function.

Next we analyze the concurrence dynamics when approaching the high-energy
limit (third row in Fig. 1.14). Here the concurrence of both Bell states oscillates as

Cψ1,2
Bell

(t) ≈ | cos(2λRt/~)|. (1.176)

Meanwhile, the concurrence of
∣∣ψ↑x〉 is small, approaching zero as ε→∞. In contrast,

the concurrence of
∣∣ψ↑y〉 is Cψ↑y(t) ≈ | sin(2λRt/~)|, and periodically reaches maximal

entanglement.

Remarkably, in graphene with Rashba SOC, an electron that initially has no
intra-particle entanglement can become maximally entangled, and has the same
average entanglement as the maximally-entangled Bell states.

To understand the origin of this, we now look at the problem from the perspective
of spin and pseudospin dynamics. In the graphene-Rashba system, the spin and
pseudospin will precess around effective magnetic and pseudomagnetic fields. By
examining the Hamiltonian in Eq. (1.161) and considering transport along x, these
effective fields are [35]
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Figure 1.14.: Entanglement dynamics in the graphene-Rashba system. The top three
panels show the concurrence dynamics of the initial states

∣∣ψ↑x,y〉 and∣∣ψ1,2
Bell

〉
at energies ε = 0, λR, and 10λR, with λR = 37.5 eV. The bottom

panel shows the time-dependent violation of the CHSH inequality for
|ψ1

Bell〉, one instance of |ψr
n〉, and one instance of |ψr0

n 〉 at ε = 25 meV.
This figure was reprinted from Ref. [128], copyright (2020) by American
Physical Society.
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Beff
s (t) = λR (−〈σ̂y〉(t) , 〈σ̂x〉(t) , 0) ,

Beff
σ (t) = λR (〈ŝy〉(t) , −〈ŝx〉(t) , 0) (1.177)

+ ε (1 , 0 , 0) ,

where 〈ô〉(t) ≡ 〈ψ(t)| ô |ψ(t)〉. In the presence of Rashba SOC, the spin and pseu-
dospin precess around one another with a frequency ωR = 2λR/~. The pseudospin
also precesses around a component of Beff

σ that is parallel to the momentum and
has magnitude ε. In the high-energy limit (ε � λR), this term dominates the
pseudomagnetic field.
Thus, when the initial pseudospin points along the momentum direction, as for∣∣ψ↑x, 〉 the pseudospin remains fixed along x and only the spin precesses, in the x-z

plane. The spin and pseudospin thus remain well-defined and separable at all times,
and the entanglement is negligible.

On the other hand, when the initial pseudospin is perpendicular to the momentum
direction, as for

∣∣ψ↑y〉, the pseudospin precesses rapidly in the y-z plane with frequency
ωε = 2ε/~. This then enables mutual precession between spin and pseudospin driven
by Rashba SOC, and the development of entanglement on the time scale ω−1

R . In this
way, a separable state whose pseudospin is not parallel to the direction of transport
will develop finite intra-particle entanglement.

At intermediate energies where neither ε nor λR are dominant, more complex
dynamics can emerge. This can be seen in second row of Fig. 1.14, where ε = λR.
Here, multiple precession processes all coexist with similar weight and frequency,
giving rise to more complex dynamics.
We finally note that this behavior may be connected to the concept of quantum

synchronization. Recent work has found that synchronization between pairs of
spins certifies the presence of entanglement [130], which resembles the situation at
ε = 0, while the absence of synchronization does not preclude the development of
entanglement, as we see in the high-energy limit.

Time-averaged entanglement

Figure 1.14 shows that the entanglement can vary significantly with energy while
exhibiting complex dynamics. To quantify the overall degree of entanglement of a
given state at a given energy, we consider the time-averaged concurrence 〈Cψ(t)〉.
This is shown in Fig. 1.15, with panel (a) corresponding to the initial states

∣∣ψ↑x,y〉
and panel (b) to

∣∣ψ1,2
Bell

〉
. For each state there are three curves, corresponding to
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λR = λ, 10λ, and 100λ.

Figure 1.15.: Time-averaged concurrence as a function of energy for the initial states
(a)

∣∣ψ↑x,y〉 and (b)
∣∣ψ1,2

Bell

〉
. For each state there are three curves, cor-

responding to Rashba SOC strengths of λR = λ, 10λ, and 100λ, with
λ = 37.5 eV. Panel (c) shows the time- and state-averaged concurrence,
averaged over 1000 initial states |ψr

n〉 and |ψr0
n 〉. The dashed line shows

the average concurrence of the initial states |ψr
n〉at t = 0. This figure

was reprinted from Ref. [128], copyright (2020) by American Physical
Society.

At low energies, the average concurrences of
∣∣ψ↑x,y〉 exhibit a local minimum,

increasing away from ε = 0 as more complex dynamics come into play, as seen by
comparing the top two panels of Fig. 1.14. At higher energies the average concurrence
of
∣∣ψ↑y〉 continues to grow, approaching 〈Cψ(t)〉max = 〈| sin(ωRt)|〉 = 2/π. Meanwhile,

for
∣∣ψ↑x〉 the pseudomagnetic field dominates at higher energies, fixing the pseudospin

and leading to a 1/ε decay of 〈Cψ(t)〉.
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This crossover occurs at |ε| = (2/3)λR, marked by the vertical dashed lines in
panel (a). In Fig. 1.15(b), both Bell states have the same energy dependence (except
exactly at ε = 0, see below). Around ε = 0, 〈Cψ(t)〉 approaches 2/π and decays
with increasing energy. This can be seen in the top two rows of Fig. 1.14, where the
complex spin-pseudospin dynamics at finite ε lead to an average reduction of the
concurrence from its maximal behavior. The minimal average concurrence of the
Bell states is reached at |ε| = λR, shown by the vertical dashed lines. Above this
energy, the Bell states converge back to 〈Cψ(t)〉max = 〈| cos(ωRt)|〉 = 2/π.

Here we note that |ψ1
Bell〉 has a constant Cψ = 1 at ε = 0 (top row of Fig. 1.14).

However, this occurs only exactly at ε = 0, and we have left this data point out of
Fig. 1.15. For any ε 6= 0, the spin-pseudospin dynamics limit the average concurrence
to 〈Cψ(t)〉 < 2/π. We also note that the Rashba SOC strength has no impact on the
magnitude of 〈Cψ(t)〉; its only effect is to rescale the energy dependence, as shown
by the different curves in Fig. 1.15(a,b).

Entanglement dynamics for initially random states

We have studied four specific states and found they all exhibit dynamic spin-
pseudospin entanglement. Particularly interesting is that the initially separable state∣∣ψ↑y〉 exhibits as much time-averaged intra-particle entanglement as the maximally-
entangled Bell states.

This suggests that in order to generate intra-particle entanglement in graphene, it
is not necessary to prepare entangled states. Instead, injecting appropriate “normal”
states is sufficient. However, injecting an initial state with well-defined spin and
pseudospin is also challenging.

The spin can be controlled to some degree with ferromagnetic contacts, but precise
control of the pseudospin, determined by the weight and phase of the wave function
on each sublattice, is more difficult. Given these issues, it is useful to consider
a simpler situation, where a bulk metal contact injects an electrical current into
graphene.

This current will consist of electrons with random initial states, which raises the
question: what is the entanglement of an arbitrary state in graphene?

This can be quantified by averaging over many random initial states |ψn〉, such
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that

〈〈Cψn(t)〉〉 ≡ 1

N

N∑
n=1

〈Cψn(t)〉 (1.178)

is the average intra-particle entanglement in graphene. We consider two sets of
random initial states,

|ψr
n〉 =

[
an bn cn dn

]T
,∣∣ψr0

n

〉
=
{

cos(θpn/2) |A〉+ sin(θpn/2)eiφ
p
n |B〉

}
⊗
{

cos(θsn/2) |↑〉+ sin(θsn/2)eiφ
s
n |↓〉

}
. (1.179)

Each element of |ψr
n〉 is a random complex number chosen from the normal

distribution. This generates states that are equivalent to the action of a random
unitary matrix on some reference state, which are uniform over the four-dimensional
Hilbert space [131], with average initial concurrence 〈Cψr

n
(0)〉 ≈ 0.59.

Meanwhile, |ψr0
n 〉 is a separable state, with (θpn, φ

p
n) and (θsn, φ

s
n) random spherical

angles defining the orientations of the pseudospin and spin on the Bloch sphere. The
set {|ψr0

n 〉} thus represents all two-qubit states with zero initial entanglement.
The averages over these initial states are shown in Fig. 1.15(c). For all possible

initial states, the average concurrence is independent of energy and equal to its
initial value, 〈〈Cψr

n
(t)〉〉 = 〈Cψr

n
(0)〉 ≈ 0.59, shown by the magenta and the dashed

black lines. Meanwhile, the average over unentangled initial states has an energy
dependence similar to 〈Cψ↑x(t)〉 in Fig. 1.15(a), but with a slower decay. Importantly,
〈〈Cψr0

n
(t)〉〉 remains large over the entire energy range, around 0.5.

This indicates that large intra-particle entanglement is a general feature of graphene
in the presence of spin-orbit coupling, even for states that are initially separable in
spin and pseudospin.

Time-dependent Bell inequality violation

As shown above, intra-particle entanglement between spin and pseudospin is
generally large in graphene with Rashba SOC. We have used intra-particle concurrence
to quantify entanglement, but experimentally this is not directly measurable. Rather,
entanglement is demonstrated through a violation of a Bell inequality [4, 5]. For pure
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states there is a direct connection between the concurrence and maximal violation of
the Clauser-Horne-Shimony-Holt (CHSH) variant of Bell’s inequality [132], given
by β =

√
1 + C2

ψ [133].

Thus, because the concurrence of a particular electron is time-dependent, its
violation of the CHSH inequality also varies in time. We show this explicitly in Fig.
1.14 (Bottom panel), where we plot the time dependence of β for |ψ1

Bell〉, one instance
of |ψr

n〉, and one instance of |ψr0
n 〉 at ε = 25 meV. In all cases, β oscillates with

frequency ωR, highlighting the point that the Bell inequality violation is a dynamic
and periodic quantity in the graphene-Rashba system.

1.4. Results II: entanglement in graphene/TMDC’s

The full Hamiltonian corresponding to the continuous model for Graphene/TMDC
(see Section 1.2.9) cannot be solve analytically.

This Hamiltonian above we cannot solve analytically. Thus, we will work with
the approximation graphene - valley - Zeeman - Rashba SOC. The low energy
approximation, restricted to an unique valley τ = 1 or τ = 1, leads to the following
Hamiltonian:

Heff(τK+k)
= ~νF (τσxkx+σyky)⊗1s+λR(τ(σx⊗sy)−σy⊗sx)+λV Zτ(1s⊗sz), (1.180)

or equivalently for τ = 1 valley,

Heff((+1)K+k)
=


λV Z 0 (kx − iky)~νF 0

0 −λV Z 2iλR (kx − iky)~νF
(kx + iky)~νF −2iλR λV Z 0

0 (kx + iky)~νF 0 −λV Z

 ,

(1.181)

with the energy spectrum

E1 = −
√

(~νF )2 (k2
x + k2

y

)
+ 2λ2

R + λ2
V Z − 2

√
λ4
R +

(
k2
x + k2

y

)
(~νF )2 (λ2

R + λ2
V Z

)
,

(1.182)
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E2 =

√
(~νF )2 (k2

x + k2
y

)
+ 2λ2

R + λ2
V Z − 2

√
λ4
R +

(
k2
x + k2

y

)
(~νF )2 (λ2

R + λ2
V Z

)
, (1.183)

E3 = −
√

(~νF )2 (k2
x + k2

y

)
+ 2λ2

R + λ2
V Z + 2

√
λ4
R +

(
k2
x + k2

y

)
(~νF )2 (λ2

R + λ2
V Z

)
,

(1.184)

E4 =

√
(~νF )2 (k2

x + k2
y

)
+ 2λ2

R + λ2
V Z + 2

√
λ4
R +

(
k2
x + k2

y

)
(~νF )2 (λ2

R + λ2
V Z

)
. (1.185)

All parameters considered in our simulations for graphene/TMDC’s are given in
the Table 1.1 below

Table 1.1.: Relevant parameters for graphene on different TMDCs. These values are
taken from Ref. [113] and along this section we are called them “standard
parameters” which means that we are including all orbitals and SOC
terms presented here.

In Fig. 1.16, we present the maximum entanglement contained in one of the
four bands for each graphene/TMDC system here considered, using the parameters
presented in Table 1.1.
As we see, in Fig. 1.16, all cases of graphene/TMDC’s appear to show maximal

entanglement around the K/K’ points of the FBZ. However, a close look shows
differences between the case. We also will play with some SOC terms and we will
summarize some conclusions from this.
In all cases studied for us and considered here, the entanglement quantities from

standard parameters presented in the table of parameters, are not affected by the
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Figure 1.16.: Concurrence for Graphene/TMDC’s platform considering the concur-
rence C (|ψ1〉) for each system considered.
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Figure 1.17.: Zoom at Dirac point of each value of concurrence for the four band in
graphene/MoS2for standard parameters.

condition of valley-Zeeman approximation, but another condition where we consider
λAI = λBI , and λAPIA = λBPIA, we have a significant change in the concurrences values
for each band. We can check this in the following tables of data.

Next, we will present some outcomes regarding the intra-particle entanglement for
Graphene/TMDC platforms, and in the end, we will summarize what we learned
about these systems.

a) Standard parameters considering all terms presented in Table 1.1:

Concurrence K− K+

C (|ψ1〉) 0.32 0.32
C (|ψ2〉) 0.01 0.01
C (|ψ3〉) 0.01 0.01
C (|ψ4〉) 0.32 0.32

Table 1.2.: Graphene/MoS2 standard parameters. Concurrence at the two nonequiv-
alent Dirac points for each of the four eigenstates, where can be present
in some degree a entanglement between spin-and pseudospin.

b) Second condition λAI = λBI , and λAPIA = λBPIA:
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Concurrence K− K+

C (|ψ1〉) 0.45 0.45
C (|ψ2〉) 0.10 0.10
C (|ψ3〉) 0.45 0.45
C (|ψ4〉) 0.10 0.10

Table 1.3.: Graphene/MoS2 second condition. Concurrence at the two nonequivalent
Dirac points for each of the four eigenstates, where can be present in some
degree a entanglement between spin-and pseudospin.

a) Standard parameters considering all terms presented in Table 1.1:

Figure 1.18.: Zoom at Dirac point of each value of concurrence for the four band
graphene/MoSe2for standard parameters.

Concurrence K− K+

C (|ψ1〉) 0.65 0.65
C (|ψ2〉) 0.01 0.01
C (|ψ3〉) 0.01 0.01
C (|ψ4〉) 0.65 0.65

Table 1.4.: Graphene/MoSe2 standard parameters. Concurrence at the two nonequiv-
alent Dirac points for each of the four eigenstates, where can be present
in some degree a entanglement between spin-and pseudospin.

b) Second condition λAI = λBI , and λAPIA = λBPIA:
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Concurrence K− K+

C (|ψ1〉) 0.78 0.78
C (|ψ2〉) 0.10 0.10
C (|ψ3〉) 0.78 0.78
C (|ψ4〉) 0.13 0.13

Table 1.5.: Graphene/MoSe2 second condition. Concurrence vs. k-path, where is
point outed the two inequivalent Dirac points where can be present in
some degree a entanglement between spin-and pseudospin.

a) Standard parameters considering all terms presented in Table 1.1:

Figure 1.19.: Zoom at Dirac point of each value of concurrence for the four band
graphene/WS2for standard parameters.

Concurrence K− K+

C (|ψ1〉) 0.27 0.27
C (|ψ2〉) 0.16 0.16
C (|ψ3〉) 0.16 0.16
C (|ψ4〉) 0.27 0.27

Table 1.6.: Graphene/WS2 standard parameters. Concurrence at the two nonequiva-
lent Dirac points for each of the four eigenstates, where can be present in
some degree a entanglement between spin-and pseudospin.

b) Second condition λAI = λBI , and λAPIA = λBPIA:
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Concurrence K− K+

C (|ψ1〉) 0.49 0.49
C (|ψ2〉) 0.20 0.20
C (|ψ3〉) 0.49 0.49
C (|ψ4〉) 0.10 0.10

Table 1.7.: Graphene/WS2 second condition. Concurrence at the two nonequivalent
Dirac points for each of the four eigenstates, where can be present in some
degree a entanglement between spin-and pseudospin.

a) Standard parameters considering all terms presented in Table 1.1:

Figure 1.20.: Zoom at Dirac point of each value of concurrence for the four band
graphene/WSe2for standard parameters.

Concurrence K− K+

C (|ψ1〉) 0.88 0.88
C (|ψ2〉) 0.88 0.88
C (|ψ3〉) 0.58 0.58
C (|ψ4〉) 0.58 0.58

Table 1.8.: Graphene/WSe2 standard parameters. Concurrence at the two nonequiv-
alent Dirac points for each of the four eigenstates, where can be present
in some degree a entanglement between spin-and pseudospin.

b) Second condition λAI = λBI , and λAPIA = λBPIA:
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Concurrence K− K+

C (|ψ1〉) 0.88 0.88
C (|ψ2〉) 0.88 0.88
C (|ψ3〉) 0.58 0.58
C (|ψ4〉) 0.18 0.18

Table 1.9.: Graphene/WSe2 second condition. Concurrence at the two nonequivalent
Dirac points for each of the four eigenstates, where can be present in some
degree a entanglement between spin-and pseudospin.

Analyzing the data available for the concurrence for each band structure of the
graphene/tmdc’s platforms, we can conclude:

• By setting λAI = λBI , we turning off valley - Zeeman, and this results in a change
of the concurrence values.

• For standard values of valley-Zeeman presented in the first table of this sec-
tion, we can conclude that the amount of entanglement in these systems are
graphene/WSe2 >graphene/MoSe2 > graphene/MoS2 > graphene/WS2.

• Considering the second condition where we have λAI = λBI , and λAPIA = λBPIA,
the amount of entanglement increase in all the cases,as presented in the
data in the respective tables above, thus, graphene/WSe2 >graphene/MoSe2

>graphene/WS2 > graphene/MoS2 .

• The previous sentence implies that valley-Zeeman (VZ) tends to suppress the
overall concurrence of the eigenstates. It suggest that only Rashba SOC is
responsible for maximize the concurrence, but not VZ.

• In general, we also can generate a reasonable amount from entanglement if we
inject an Haar pure initial state to any of these systems studied in this section.
With this, we have similar results that we obtained in the section 1.3 regarding
the generation of entanglement from an non-entangled initial state.

1.5. Discussions

In this chapter, we have presented the main results which are publishes regarding
the origin and formation of spin-pseudospin intra-particle entanglement in graphene
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clean, see section 1.3. Also we presented some other outcomes in the section 1.4,
considering graphene on a substract, we can have the same good results regarding
the generation of Bell pairs without a initial entangled state, when we are considering
the dynamics of entanglement.
We have shown in our work (see Ref. [128]) that:

1. Intra-particle entanglement in graphene is a complex dynamic quantity, gov-
erned by the mutual precession of spin and pseudospin.

2. For an arbitrary initial state the average entanglement is large, with a concur-
rence of 0.5–0.6 that corresponds to a 10–16% maximal violation of the CHSH
inequality.

3. Spin-pseudospin dynamics enable the generation of entanglement in electrons
that are initially separable. This suggests that intra-particle entanglement in
graphene may be robust to disorder and dephasing; after an entanglement-
destroying interaction, spin and pseudospin dynamics will lead to re-generation
of the intra-particle entanglement of a particular electron.

4. Going beyond the single-particle picture, these results may also have impor-
tant implications for inter-particle entanglement between pairs of electrons in
graphene. For example, it was shown that the dynamics of intra-particle entan-
glement can have a significant impact on inter-particle entanglement, including
transfer from one type of entanglement to another [26]. Such behavior is also
expected to occur in the graphene-Rashba system, and is an interesting path
for future exploration.

5. In graphene/TMDC’s systems, there are some SOC terms that suppressing the
entanglement.
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Part II.

Local measurements in finite
lattices
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2. Local quantum overlapping
tomography (LQOT)

Most of the content of this chapter is presented in the collaborative paper: “Local
quantum overlapping tomography”, available as preprint: 2112.03924 [quant-
ph], by Bruna G. M. Araújo, Márcio M. Taddei, Daniel Cavalcanti and Antonio
Acín, and “Adiabatic quantum algorithm for artificial graphene”, available
as preprint: 2204.03013 [quant-ph], by Axel Pérez-Obiol, Adrián Pérez-Salinas,
Sergio Sánchez-Ramírez, Bruna G. M. Araújo, Artur Garcia-Saez.

2.1. Introduction

There have been great advances in the construction of quantum devices, with systems
composed of tens of individually addressable qubits [134, 135, 136, 137, 138], more
than a hundred bosonic modes [139, 140], or intermediate-scale systems of up to
thousands of entangled qubits [141, 142], with further advances clearly on the way.
These are based on several different physical systems, such as trapped-ion spins,
superconductors or photons. These developments bring to the fore the problem of
efficiently measuring a quantum system. A full description of a system of size n
requires an amount of parameters exponential in n, and likewise full quantum state
tomography requires an exponential amount of resources (e.g. measurement settings,
outcomes), a feat that has been achieved so far for a maximum of 10 qubits [143].

Several approaches have been presented to circumvent the problem and reconstruct
the quantum state with fewer measurements, hence fewer produced copies of the state
to be measured. Some assume an a priori structure of the measured states, such as
classes including matrix-product states [144, 145], or require certain structures for
efficient measurement [146, 147, 148]. The “shadow tomography” technique [149, 150]
is not at its most efficient when reconstructing quantum states, and additionally
requires a quantum memory to store several copies of the state and act collectively
on them [151], or else its advantage is lost [152].
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A less ambitious, but possibly more realistic approach is to focus not on the entire
quantum state but on some of its properties of interest. A natural example is that
where one is interested in estimating its k-body reduced density matrices (k-RDMs).
It is not uncommon for there to be interest in k-body operators, e.g. to detect the
entanglement [153, 154] or Bell non-locality [155] of the many-body state from the
expectation values of 2-body operators. A direct approach consists of measuring each
k-RDM independently. Therefore, qubits or fermions come from various quantum
systems that cover interacting electronic spins, quantize fluxes, spatial modes, and
quantum chemistry electronic systems. We can start our definition of the main topic
of this chapter with this simple question:

How can we extract the information from these systems and organize the data about
the entanglement?

Thus, starting from an unknown state formed by n-qubits or n-fermions, we must
do many measurements that grow with the system’s size to characterize them via
quantum tomography fully. This exponential growth becomes the quantum tomogra-
phy for many-body states non-feasible in practical terms, even for simple techniques
in terms of complexity. We have a massive gap between the production of entangled
states in controlled conditions and our capability to characterize entanglement quan-
titatively. One way to try to mitigate this issue is to address individually the qubits
or fermions of a system taking advantage of the parallelism.

Let’s start with our discussion about qubits. Initially, we need to measure all
k-qubits contained in a system of n-qubits, being n > k. If we have access to these
reduced matrices by chance, we could characterize the entanglement of our n-qubit

system. Supposing that we have

(
n

k

)
where k � n we have that

(
n

k

)
∼ nk,

and eO(k) measurements, thus, are required approximately eO(k)nk measurements
to obtain all k-qubit reduced matrices. This way, even if we consider a two-point
correlation function with a relatively small number of qubits, we will need hundreds
of measurements, which is not practical. This estimation ignores the parallelism
resource. If we measure these non-overlapping qubits in parallel, the number of
measurements is reduced by the n/k rate. However, the measurement scaling is
still high, so we will use the strategy to estimate the reduced matrices of the
overlapping qubits. Therefore, we must obtain an efficient strategy to perform partial
quantum tomography. Thus, combining the parallelism and highly overlapping qubits
gives a technique for performing partial quantum tomography called “quantum
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overlapping tomography” (QOT). Which will be the central merit figure in this
chapter.

Using QOT principles, we can organize the data via 1D partition, which is a bit
less efficient and by 2-D partition, properly building harsh functions for n and k. The
QOT protocol for free qubits only requires measuring each entity in parallel and on a
distinct basis denominated X, Y, or Z, which form a product of measurements. The
measurements could be post-processed to reconstruct all k-qubit reduced matrices
required to get the local physical observable [156, 157]. Target obtaining every
k-RDM of an n-partite system. However, there are often cases where specific subsets
are especially relevant and others less so. The most typical example is when there
is a spatial distribution (e.g., a lattice) with local interactions expected to play an
important role: RDMs containing neighboring subsystems are much more critical
than those having faraway ones.

The main goal of this chapter is to provide efficient strategies to measure these
reduced states by means of products of local measurements, as in overlapping tomog-
raphy. Our first result is to show that this form of local overlapping tomography
produces a much more dramatic reduction in complexity: while the naive approach in
which full tomography is performed for all reduced states of interest requires a number
of measurements that grows with the number of reduced states, and hence with the
system size, an efficient parallelization can do away with the system-size dependence.
After presenting this general result, we provide finer measurement strategies for
finite-dimensional and fermionic systems in well-known lattice geometries.

This chapter is structured as follows:

• In Sec. 2.2, we present existing results and set the notation.

• In Sec. 2.3 we present our main results, first in the form of a general argument
valid for systems of arbitrary finite dimension, then for qubits (Subsec. 2.3.1)
and lastly for fermions (Subsec. 2.3.2).

• In Sec. 2.4 we present an application of the methodologies studied in this
chapter as a building block of an algorithm to simulate a model of artificial
graphene.

• In Sec. 2.5 we make our concluding remarks and future prospects.
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2.2. Preliminaries

2.2.1. Introduction to quantum measurements

The scope of this section is to explain how measurement processes are described in
quantum theory. Thus, we need to point out that there are two kinds of measurements
that would be useful to understand the main results, they are:

1. Projective measurements: described by a orthogonal basis |u1〉 , · · · , |ud〉 ε
Cd which correspond to the measurement outcomes. When the measurement is
performed on a pure state |ψ〉 ε Cd, outcome i ε [d] is obtained with probability
|〈ui| ψ〉|2, and |ψ〉 collapses to the state |ui〉. If the inital state is mixed
described by ρ ε B(d), them outcome i is observed with probability 〈ui| ρ |ui〉
and state ρ collapses to |ui〉 〈ui|. Give us a set of orthogonal projectors matrices
Πi, · · · ,Πm ε B(d) which obey the “completeness condition” Π1 + · · ·+ Πm = I.
If a measurement is performed on a pure state |ψ〉, outcome i ε [m] is observed
with probability 〈ψ|Πi |ψ〉, in which case |ψ〉 collapses to

Πi |ψ〉
|Πi |ψ〉|

, (2.1)

where |Πi |ψ〉| denotes the norm of the state Πi |ψ〉. If we consider the same
process on a mixed state ρ, outcome i ε [m] is observed with probability tr(Πiρ),
in which case ρ collapses to

ΠiρΠi

tr (Πiρ)
, (2.2)

2. General quantum measurements are described by positive-operator
value measures (POVM), defined by a set of positive matrices E1, · · · , Em
such that E1 + · · · + Em = I. In the pure state case |ψ〉, outcome i ε [m] is
observed with probability tr (Ei |ψ〉 〈ψ|). For the case of the mixed state ρ,
the probability of observation is tr (Ei |ψ〉 〈ψ|). Projective measurements are
a subset of general measurements in which POVM elements are defined by
projectors, Ei = Πi.

A pragmatic example of POVM is a symmetric, informationally complete,
positive operator-value measure (SIC-POVMs). If a POVM has d2 operators
which span the space of self-adjoint operators L (H), it is said to be informationally
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complete POVM (IC - POVM). IC-POVMs consisting of at least d2 minimal elements.
A set of d2 rank-1 projectors, such as

Π =
{

Πi | i ε
{

1, · · · , d2
}
∧ Π2

i = Πi

}
, (2.3)

which has inner product

tr (ΠiΠj) =
dδij + 1

d+ 1
, (2.4)

defines a minimal IC-POVM

F =

{
Fi | i ε

{
1, · · · , d2

}
∧ Fi =

1

d
Πi ∧ Πi ε Π

}
, (2.5)

called a SIC-POVM.

- Definition: For a system of N particles, there are three main classes of mea-
surements with increasing complexity:

1. Non-adaptative measurements: We apply local measurements on each
particle at once, the resulting measurement operators being the tensor product
of the measurement operators on each particle.

2. Adaptative measurement:The measurements still act at a single-particle
level, but measurements on the different particles are implemented in a se-
quential way, so that measurements on particle i may depend on the results of
previous measurements implemented on particle 1, . . . , i− 1.

3. Entangled measurement: We make a single joint (possibly entangled) mea-
surement on all particles. It covers all previous cases.

We can also have hybrid situations. For instance, you measure half of the particles
with local measurements (non-adaptative), and, depending on the results (adaptative),
you perform a joint measurement (entangled) on the remaining half. In any case,
the most general situation is given by definition 3 and cover all possible cases. That
means that entangled measurements generalize adaptative measurements, which
generalize non-adaptative measurements, in which one grows in complexity. For our
methodology of local overlapping tomography, we are considering non-adaptative
measurements.
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2.2.2. Concentration of measure

2.2.2.1. A general phenomenon

We can start illustrating the concept of concentration of measure through the most
straightforward example from probability theory: coin tossing. Consider a fair coin.
If we toss it once, the result is entirely unpredictable. It can be “tails” or “heads,”
each with 1/2 probability. If you throw the same fair coin a thousand times, the
number of heads is “sharply predictable,” probably around 500 for each face of the
coin.
Although there are many possible outcomes, those that can be observed are

restricted to a small range set. This phenomenon shows up in vast forms in nature
and is responsible for us having a successful prediction about our physical world. As
we know in quantum mechanics, the dynamics of the particles follows probabilistic
laws.

Due to the great importance of this phenomenon for modern probability theory, a
considerable part of this field is devoted to its study. The laws of large numbers and
the central limit theorem are well-known examples.
On the other hand, our motivation is to study the problem: Suppose we have a

random variable X with mean E[X]. Usually, we want to know how close X is to its
mean E[X] with accurate probability. The results regarding this simple question are
called concentration inequalities.
We need uniform bounds that a set of random variables are close to their mean

and with a high probability value. In other words, we want to understand under
what conditions the random variable X has large deviations from the mean unlikely.

Besides the simple example of coin tossing, this phenomenon is quite common in
our physical world, including in the object of interest of this chapter. Here, we can
enumerate some reasons why classical results are unsuitable to describe these kinds
of phenomena aforementioned that would be useful for our problem.

• Usually probability theory consider the asymptotic limit, but for infinite systems,
and in most cases in nature, we need to consider finite systems .

• Knowing that classical probability theory has a qualitative approach deal with
the problems considering a convergence limit but does not provide its rate.
Thus, for our class of problems, we need to treat them quantitatively, providing
a rate of convergences or even very good bounds.

In the following subsection, we will formalize the primary tool describing the concen-
tration of measure for our system.
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2.2.2.2. Relevant bounds

Chernoff-Hoeffding bound

This tool is a simple and powerful technique frequently used to establish bounds in
the probability functions whose sum of the random variables is considered bounded.
Usually, this happens when we are dealing with a considerable amount of data.

Thus, the easier way to tackle this is by reducing it in the sets via a random
process. In other words, we must execute many repeated simple estimations of the
entire data. We can obtain an accurate and small representation of this large amount
of data through this simple estimation. Thus, the main goal in using this tool is to
know how many of these estimations are required for a given accuracy [158, 159].

Theorem 1: Suppose we have a set r of independent random variables {X1, · · · , Xr},
with ai 6 Xi ≤ bi, being ∆i = bi − ai, we consider M =

r∑
i=0

Xi.

For any α ε (0, 1/2), we have:

Pr [|M − E [M ]| > α] ≤ 2 exp

 −2α2

r∑
i=1

∆2
i

 . (2.6)

Thus, we need to connect this to the concept of the union bound.

Union bound

As showed in Fig. 2.1, consider n = 2 events. We have

P (A ∪B) = P (A) + P (B)− P (A ∩B) , (2.7)

≤ P (A) + P (B) ,

because P (A ∩B) ≥ 0. By inductive hypothesis, we suppose it is true that for n
random events X1, · · · , Xn,

P (X1 ∪ · · · ∪Xn) ≤
n∑
i=1

P (Xi) (2.8)
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For n+ 1, we have:

P (X1 ∪ · · · ∪Xn ∪Xn+1) = P ((X1 ∪ · · · ∪Xn) ∪Xn+1) (2.9)

=P (X1 ∪ · · · ∪Xn) + P (Xn+1)

≤
n∑
i=1

P (Xi) + P (Xn+1)

=
n+1∑
i=1

P (Xi) .

Figure 2.1.: Events A and B, expression of the union bound.

With this induction proof, we have a bound that applied to union of various events
can provide a robust tool for many applications whenever the individual probability
is smaller to the probabilities of the number of events. Applying basic rules of
probability theory, we can rewrite the expression for union bound in the Eq. (2.8)
for the case that the probability of the intersection of the events does not occurs,
thus, we have

1− P
(

n
∩
i=1

Xi

)
≤

n∑
i=1

P (Xi) . (2.10)

2.2.2.3. Number of repetitions

Here we prove some relations on the number of repetitions M needed for statistical
purposes based on the Chernoff-Hoefding bound, as in [156]. Consider that M
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measurements are made, and that each measurement has ±1 as possible outcomes.
Then the Chernoff-Hoefding bound states that the probability of error obeys

P (errori > ε) 6 2e−Mε2/2 , (2.11)

where errori is defined as the difference in modulus between the expectation value
of the i-th variable and its estimate (arithmetic mean of M measured values). In
other words, it states that the probability of error greater than ε is exponentially
suppressed. The union bound can then be used to bound the probability of high
error in any of the variables:

P (errori > ε for any i) 6
∑
i

2e−Mε2/2 , (2.12)

where the sum in i runs over all measured variables.

2.2.3. Quantum State tomography

This section describes the quantum state tomography (QST) protocol based on
the standard experimental approach where the protocols require the product of
measurements where each qubit is measured independently. To start to discuss QST,
we will focus our discussion on a single qubit state and with a simple question:

How can we experimentally characterize a quantum state ρ?

Following what we have discussed about the concentration of measurements and
the bounds, it is evident that with a single copy of a quantum state ρ is impossible
to have reliable information about a state because no quantum measurement can
distinguish two different non-orthogonal states such as |1〉 and (|0〉+ |1〉) /

√
2 with

certainty. But, if we have many copies of ρ, we can build enough statistics. In other
words, we need to repeat a quantum experiment many times to estimate the state ρ.

In this scenario, consider we have many copies of a single quantum state, knowing
that tr (Oρ) can be interpreted by the average of an observable O, and being σαi
describing a Pauli operator on the i-th site, i = 1, ..., N and α = 0, 1, 2, 3 where
σ0 = 1, σ1 = σx,σ2 = σy and σ3 = σz , at the moment we are considering only one
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site. We can expand the representation of the single state as

ρ =
tr (1ρ) 1 + tr (σxρ)σx + tr (σyρ)σy + tr (σzρ)σz

2
. (2.13)

Now, to estimate the expectation value tr (σxρ) of the σx observable, we measure
it M times, obtaining the outcomes x1, x2, · · · , xm, the empirical average of σx is
given by

tr (σxρ) ≈ 1

M

N∑
i=1

xi, (2.14)

with standard deviation ∆ (x) /
√
M . Therefore, we can estimate the quantities

tr (σyρ), tr (σzρ) in similar way with high degree of confidence in the large number
limit. We can generalize this protocol to N qubits, using that any n-qubit state can
be written as

ρ
′
=

3∑
i1,...,ik=0

tr
{(
σi11 ⊗ ...⊗ σinn

)
ρ
′
}
σi11 ⊗ ...⊗ σinn , (2.15)

For full quantum tomography, we need to estimate M
(
4N − 1

)
expectation values

for obtaining an N qubits density matrix. For partial quantum state tomography,
where we consider a k-qubits subset contained in the N qubits set, we need to
measure 3kM product of measurements to obtain a k-qubits reduced density matrix.

2.2.4. Overlapping quantum tomography

The goal of this section is to introduce overlapping quantum tomography, a mea-
surement strategy to estimate the k - RDM of many - body quantum systems. To
enhance our motivation, we can start with the question:

Why do we need to get k-RDMs?

In many physical systems k-RDMs contain enough information for reconstructing
relevant physical quantities. For instance, in quantum chemistry, fermionic k-RDM
allow one to estimate the energy, change density and energy gradients observables
of electronic systems. For example, the qubit k- RDMs are suitable for obtaining
information about spatial correlations in magnetic systems.
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If we restrict our considerations to measurements consisting of products of single-
particle projective measurements for their experimental feasibility, this already
produces a significant reduction of measurements compared to full tomography: the
latter requires O(en) measurements, while each k-RDM requires O(ek) measurements,
hence the complete set of k-RDMs, O(ek

(
n
k

)
) ∼ O(nk/kk) measurements.

However, existing techniques [160, 157, 161, 156, 162, 163, 164, 165] based on
parallelization can reduce that amount substantially. These techniques make use of
the fact that from single N -body measurements one can extract different parameters
relevant for the computation of more than one k-RDM. The simplest example is
given by the situation in which a single measurement, say X, is implemented on all
particles, from which all two-body < XiXj > and one-body < Xi > can be obtained.
These measurement strategies are sometimes known as overlapping tomography. For
a system of n qubits, the technique in [157] uses at most O(ek logk−1 n) measurements
to obtain all k-RDMs, and the one in [161] obtains a constant-factor reduction of
the latter for k = 2; in [156] it is shown that eO(k) log n unique measurements suffice;
from [162] it follows that O(3k) log n total measurements suffice.
For systems of fermions, the

(
2n
2k

)
operators needed can be measured [157, 163]

with O(n2) measurements if k = 2, and for any k there are schemes [164] with O(nk)

or, even better, O(
(
n
k

)
) measurements [165]. It is noticeable that restrictions to

parallelism from fermionic anticommutation relations negatively impact the reduction
of complexity. To the best of our understanding, none of these results is known to
be tight.

2.2.4.1. Qubits

If ρ is an n-qubit state, any state obtained by taking the partial trace with respect
to a set of n− k qubits is a k-RDM of ρ. It is possible to reconstruct such k-RDMs
from the expectation values of products of Pauli matrices. Consider as an example
the k-RDM of the first k qubits, [n]\[k](ρ), where we define [j] := {0, 1, · · · , j − 1}.
The set of expectation values of the form 〈σ(0)

a0 ⊗ · · · ⊗ σ
(j)
aj ⊗ · · · ⊗ σ

(k−1)
ak−1 〉 clearly

suffices to characterize this k-RDM if σ(j)
aj can be either the identity or one of the

Pauli matrices σx, σy, σz of the j-th qubit.
However, this can be simplified by the fact that the algorithms in question are

based on making local measurements with access to each local outcome. In this
setting, any measurement that includes an identity can be simulated by taking the
suitable marginal of a measurement with a Pauli matrix in its place.
For a system of n qubits, several works have tackled the issue of obtaining

all
(
n
k

)
existing k-RDMs with as few different measurements as possible through
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parallelization. For 2-RDM, Refs. [156, 157, 161] have obtained 〈σ(i)
a ⊗ σ(j)

b 〉 for all
pairs of qubits (i, j) and a, b covering all combinations of σx, σy, σz. Refs. [157] and
[156] present schemes with N = 3 + 6dlog2 ne measurements based on partitioning
and a family of hash functions (n, 2), respectively; [161] reduces that scaling to
N = 3 + 6dlog3 ne.
The first two allow for generalizations to k > 2: [157] presents a scheme based

on recursive partitioning with N = O(3k logk−1
2 n) measurements; [156] reduces the

problem to finding hash functions (n, k), yielding N = eO(k) log2 n measurements
(see Section 2.2.5 for a further result).

All these results target the obtention of all k-RDMs, regardless of any structure.
As mentioned, we follow here a different approach, where the RDMs of interest are
those of neighboring sites on a lattice. Many relevant systems, such as ion traps
[141, 166], quantum-dot lattices [167], semiconductor lattices [168], among others,
work based on local interactions with neighbors (first or beyond), and would benefit
from a measurement scheme focused on them.

2.2.4.2. Fermions

In addition to qubits, we also tackle the efficient measurement of systems composed
of fermions. Fermionic systems present a much greater challenge than qubits. Be-
cause of their anticommutation relations, operators on different lattice sites may no
longer commute, hence one cannot rely on tensor-product relations to ensure jointly
measurability, as in qubits.

In a fermionic system of n modes with m particles (n > m), the k-RDM is given
by tracing out (m− k) particles, [m−k](ρ), with the difference that any set of (m− k)

particles is equivalent, due to symmetry. Each mode i has an annihilation (ai)
and a creation (a†i) operator, and to obtain [m−k](ρ) it suffices [169] to obtain the
expectation values of operators composed of k creation and k annihilation operators.

For the 1-RDM, for instance, the values of 〈a†iaj〉 for all modes i, j suffice. It will
be convenient, however, to work with Majorana operators [170, 171, 172], which offer
an equivalent description of fermionic systems,

γ2j := a†j + aj , γ2j+1 := i(a†j − aj) . (2.16)

Majorana operators (Majoranas, for short) are Hermitian with ±1 eigenvalues
and have an important role in the (partial) equivalence between fermions and qubits
[173, 170, 174]. The k-RDM of a given system requires all expectation values
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〈γpγq · · · γrγs〉 composed of 2k Majoranas, e.g. 〈γpγq〉 for all p, q for the 1-RDM.

Of utmost relevance for parallelization is that different Majoranas all anticommute,
a marked difference to qubits. Once again, the existing literature tackles the obtention
of all 〈γpγq · · · γrγs〉 for a given value k.

By appropriately pairing Majoranas, Ref. [157] obtains the so-called “cliques”
composed of commuting multiple-Majorana operators. As all operators in a clique
are Hermitian and commute, they can be determined by a single measurement, hence
only one measurement is required per clique.

There are established routines to perform such measurements, typically with
fermion-to-qubit mappings [164, 165].

For the 1-RDM, the authors of [157] present a scheme to cover all needed Majorana
operators with 2n− 1 commuting cliques (N = 2n− 1) and for the 2-RDM, with
(10/3)n2 +O(n) commuting cliques.

A general lower bound of N =
(

2n
2k

)
/
(
n
k

)
on the needed number of cliques (hence, of

measurements) is also shown in [157]; for the 1-RDM it is saturated by their scheme,(
2n
2

)
/
(
n
1

)
= 2n − 1, whereas for the 2-RDM the bound is below their scheme by a

prefactor in the leading-order term,
(

2n
4

)
/
(
n
2

)
= (4/3)n2 +O(n).

In contrast, here we consider fermions in a lattice [175, 176, 168, 167, 177]; to each
lattice site j belong two Majorana operators, as in Eq. (2.16). Given the spatial
structure of the lattice, we tackle measurements of neighbors only, e.g. terms such as
〈γiγj〉 where γi, γj belong to neighbor sites.

Even though this is not sufficient to fully obtain a k-RDM, there is a great interest
in efficiently obtaining such expectation values, which are relevant to survey quantities
that hinge on groups of close neighbors, like coupling energies. Naturally, by focusing
on a smaller subset of modes, the scaling of the number of measurements drastically
reduces.

In table 2.1, we resume the main existing results on partial tomography together
with the corresponding reference.

97



Table 2.1.: Some efficient methods for partial quantum tomography. First row:
partial quantum tomography for qubits based in pairwise networks see Ref.
[161]. Second row: quantum overlapping tomography (partial quantum
tomography) based in Hash function for qubits. Explicit construction
for k= 2 and for any k* was estimated the scaling but not explicitly
obtained a quantum tomography. See Ref. [156] . Third row: quantum
overlapping tomography explicity contruction for any k, N qubits and for 1
and 2- fermionic RDMs via 1D partition. More details in the Ref. [157].
Fourth row: fermionic partial tomography via classical shadow for k
and N fermions, being N very large. While the three first methods are
deterministic this uses randomized measurement schemes. See Ref. [165].

2.2.5. Total number of repetitions

The results summarized above concern the count N of unique measurements, e.g. the
count of on how many different Pauli bases one must measure. The actual number of
measurement rounds is NM , M being the number of repetitions needed for accurate
statistics. The full k-RDM considered in [156] requires measuring 4k − 1 variables of
each of the

(
n
k

)
sets of k qubits, or (4k − 1)

(
n
k

)
variables total. So for the full k-RDM,

P (errori > ε for any i) 6 2(4k − 1)

(
n

k

)
e−Mε2/2 , (2.17)

where errori is defined as the difference in modulus between the expectation value of
the i-th variable and its estimate (arithmetic mean of M measured values). For that
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probability to be smaller than a small value δ we can set

M ∼ 2

ε2

(
k log n+ log

1

δ

)
(full k-RDM). (2.18)

In our case, we do not measure all
(
n
k

)
sets of k qubits, only O(n) of them. We

can then set

M ∼ 2

ε2

(
k + log n+ log

1

δ

)
(neighbors only). (2.19)

For fermions, there are instead
(

2n
2k

)
variables total in the full k-RDM, and still O(n)

for our local k-RDMs, and the last two equations still stand. Using the Chernoff-
Hoefding bound, the reasoning from [156] can show thatM ∼ 2

ε2
[k log n+log(1/δ)]

repetitions suffice to measure a full set of k-RDMs such that, with probability at least
1− δ, the error in every local measurement is at most ε. Adapting that calculation
to our localized k-RDMs, we see that the number of repetitions M can be set at
M ∼ 2

ε2
[k + log n+ log(1/δ)] .

In light of this distinction, the result in [Theorem 3] [162] can be properly appreci-
ated. Applied to a k-RDM, it states that the total number of measurements NM
scales as NM ∼ 2

ε2
3k log(3k

(
n
k

)
) ∼ 2

ε2
O(3k) log n, lower than the literature results

mentioned above, for which NM ∼ log2 n or higher.
For the remainder of this chapter, we will discuss the number N of unique mea-

surements (referred to simply as “measurements”), with the number of repetitions M
implicitly assumed.

2.3. Local quantum overlapping tomography:

main result

Our main goal is to find descriptions of k-body subsystems with as few measure-
ments as possible. Because we want to obtain practical schemes with experimental
feasibility, we only consider measurements corresponding to products of projective
local measurements.
This excludes entangling measurements, notably harder to perform, as well

as constructions defined by SIC-POVMs (symmetric, informationally complete pos-
itive operator-valued measures), which reduce the number of different measurements
at the cost of a markedly higher complexity of the experimental setup [178, 179, 180].
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Let us first review some existing results, and with it fix some relevant definitions
and notation. In what follows, when considering finite-dimensional systems, we
restrict our considerations to qubits, although most of our results can easily be
generalised to arbitrary dimension.

As mentioned, we are interested in many-particle systems with a natural notion
of locality or distance. The standard way of encapsulating this notion is through
lattices, where each particle is located in a node of the lattice.

Therefore, the general question of efficient local overlapping tomography is to, out
of an n-site lattice, obtain the RDMs of all sets of k neighboring sites arranged in a
given shape (k-sets). As shown in previous results, full k-RDMs require a number N
of measurements that grows with system size n.

However, when the target are the k-RDMs of neighboring lattice sites, there are
efficient parallelization schemes that significantly reduce N to the point of removing
the n-dependence altogether. Let us see how this can happen.

The amount of k-sets is O(n), as can be seen as follows. Firstly, it cannot be
greater than n, since each k-set is defined by its first site (“first” according to any
ordering, e.g., top to bottom, left to right, etc); with n sites total, the amount of
k-sets can be no more than n. Secondly, there are cases where not every site is the
“first site” of a k-set.

This is better seen with an example on the honeycomb lattice (Fig. 2.2) where
the k-sets are its hexagons (k = 6): taking the topmost site of each hexagon as its
“first”, we see that half the sites are not the topmost site of any hexagon, and indeed
there are only n/2 hexagons in this case. However, because of the repeating nature
inherent of a lattice, this may only occur with a given fraction of all sites (1/2 in the
example), and the O(n) amount of k-sets holds in general.

A brute-force approach would be to measure these sets independently. Complete
information on one k-set requires O(ek) measurements, to reach all O(n) k-sets,
N = O(nek) measurements are needed. An appropriate tiling, however, reduces N .
Any lattice presents an intrinsic tiling of its sites into minimal cells, but can also be
tiled into larger cells each composed of several minimal cells. As such, it is always
possible to embed each k-set shape in a cell.

A suitable form of tiling for our measurements is precisely one where each k-set
shape fits in one cell, see Fig. 2.3 a). All such k-sets belonging to different cells can
be measured simultaneously, consuming O(ek) measurements. To cover the k-sets
that overlap with the ones in the first measurements, one must displace the cells in
the symmetry directions of the lattice, as in Fig. 2.3 b). This procedure will require
at most O(k3) displacements [see Figs. 2.3c) and 2.3 d); for surface lattices, at most
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O(k2); for linear ones, at most O(k)], hence a total of N = O(k3ek) measurements.

In conclusion, an appropriate tiling of the n-lattice allows to reduce the number
of measurements to obtain its k-sets from N = O(nek) to at most N = O(ek),
independent of n. If a fixed number of rotations of the k-set is targeted, this simply
incurs in constant-prefactor increase in the number of k-sets and of necessary cells
[e.g. if rotations of the shape in Fig. 2.3 a) in 0º 90º, 180º, and 270º are targeted,
this prefactor is 4].

Figure 2.2.: In an n-site honeycomb lattice there are n/2 hexagons, which can be
identified by their topmost site (red circles). Half of all lattice sites are
not the topmost site of any hexagon (blue squares). This figure was
preprinted in Ref. [181].
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Figure 2.3.: a) Tiling of an arbitrary shape by embedding in (non-minimal) lattice
cells. The cells (dashed lines) are chosen as the smallest that contain
the desired k-set (here k = 13). b) Example of displacement needed to
cover k-sets overlapping with the ones on the original tiling. Here a
displacement of 2 down and 4 to the right is shown; in total 8× 3 = 24
displacements are needed [including the original tiling in a)]. At most
k displacements in each direction are needed, so at most k2 total for a
planar lattice like above, k3 for a three-dimensional lattice. c) Example
of a k-set shape (here, k = 10) requiring O(k3/3) displacements in the
cubic lattice. d) Illustration of one cell for the scenario of c). e) Tiling
of an L-shaped k-set with k = 9 by embedding in k+1

2
-wide square cells.

In red, the sets that fit the drawn cells; in gray some of the displaced
L-shapes, k+1

2
down and k+1

2
to the right, a total of (k + 1)2/4 = 25

displacements (including the original). f) More efficient tiling of the
same L-shapes. In this case only k = 9 displacements are necessary in
total: a (k+1)-th displacement takes the pattern back to itself, as seen
best by the black contoured shape on the left being displaced exactly onto
the one on the right after k + 1 steps. This figure was preprinted in Ref.
[181].

Given that the number of repetitions M in our case scales as M ∼ 2
ε2

[k + log n+

log(1/δ)] (Section 2.2.5), a comparison with the result in [Theorem 3] [162] is in
order. That theorem offers an algorithm to estimate the expectation value of m
strings of k Pauli operators with N ∼ O(ek) logm independent, randomly selected
measurements, and without repetitions for statistics (effectively M = 1).

Applying it to a k-RDM on n qubits, one has m = 3k
(
n
k

)
, hence NM ∼ O(ek) log n.

We also obtain such scaling of NM , but with one difference: we have a lower number
of different measurements N ∼ O(ek) (system-size independent), and a higher number
M ∼ log n of repetitions of those for statistics.
Notice that the form of embedding presented above is not necessarily optimal.

Consider the L-shaped k-set in Fig. 2.3 e), with (k + 1)/2-long arms. The tiling by

102



embedding described above would require (k + 1)/2 displacements to the left and
(k + 1)/2 down, totaling (k + 1)2/4 = O(k2) displacements of the original tiling.

A more efficient tiling is shown in Fig. 2.3 f), and requires only k displacements
total. This tiling procedure demonstrates that the number of measurements in local
overlapping tomography is independent of the system size. However, and because
of its generality, it is typically sub-optimal for a given lattice. So we now turn to
specific scenarios that are usually encountered in existing setups, and show more
efficient measurement strategies for each of them.

2.3.1. Local qubit k-RDMs

The simplest case to consider is that of the 2-RDM for first neighbors. We need that,
whenever i, j are neighbors, 〈σ(i)

a ⊗σ(j)
b 〉 cover all combinations of (a, b). This reduces

to the problem of vertex coloring of a graph: neighboring sites must be assigned
different labels (colors), and from the number c of colors one obtains the number of
measurements N = 3c (since each color has to cycle through x, y, z). Graph theory
shows [182, 183] that for a graph of degree ∆ (i.e. where a site has at most ∆ first
neighbors), it is always possible to color it with ∆ + 1 colors.

This gives an upper bound of N 6 3∆+1. Importantly, this graph-theory bound
on c can be far from tight [182, eq. (1.2)], hence the same holds for the bound on
N ; better bounds can be written in terms of minimum degrees [183, Theorem 2.2].
Let us now focus on relevant geometries, in which we can obtain bounds that are
tighter and hold beyond k = 2.

2.3.1.1. Strings, squares, cubes

We begin by the simplest lattice, a string of n qubits, whose results will serve as
a building block for the others. The k-RDM of neighboring sites on a string are
recovered from expectation values of the form

〈σ(i)
ai
⊗ σ(i+1)

ai+1
⊗ · · · ⊗ σ(i+k−1)

ai+k−1
〉 . (2.20)

The measurement scheme is defined using a single labeling a that cycles through
a k-alphabet, or

ai = i mod k (2.21)
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[see Fig.2.4a)]. It assigns measurements in each label that run independently
through x, y, z, totaling N = 3k measurements. It is straightforward to see that in
this scheme any k consecutive qubits have k different labels, and hence are measured
in all combinations of the bases.

It is also clear that, for this or any other k-RDM, k is the minimum amount of
labels needed: if k − 1 or less labels were used, any group of k qubits would have
coinciding labels, and the qubits assigned the same label would always be measured
in the same basis, amounting to an incomplete measurement. Importantly, N = 3k

does not scale with the system size n.

Figure 2.4.: a) Labelings for string lattice [a)] and ring lattice [a) and b)] for n = 9,
k = 4. For clarity, the numerical labels in the text have been converted
to letters with the standard mapping 0 → A, 1 → B, · · · , and also
color-coded. This figure was preprinted in Ref. [181].

Another one-dimensional lattice is the ring. A ring here is simply a string whose
endpoints are considered first neighbors. A ring of qubits requires extra measurements,
compared to the open string, when n is not divisible by k. A single extra labeling b
is needed (assuming n > 2k − 2); it labels the first k − 1 qubits as before, the last
k − 1 qubits with the last k − 1 letters of the k-alphabet, and the remaining qubits
are not labeled (i.e. not measured). Formally,

bi =


ai , for i ∈ [k − 1]

ai−n , for i ∈ lastk−1[n]

no label otherwise ,

(2.22)

where lastk−1[n] := [n]\[n − (k − 1)] and ai obeys Eq. (2.21). This labeling is
exemplified in Fig. 2.4 b). Notice that it correctly covers any set of k neighbors
across the edge. With two labelings, the number of measurements rises to N = 2×3k.
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Figure 2.5.: Labeling to measure star RDM on the planar square lattice, given by Eq.
(2.23). For clarity, the numerical labels in the text have been converted to
letters with the standard mapping 0→ A, 1→ B, · · · , and color-coded.
This figure was preprinted in Ref. [181].

We now move on to two-dimensional geometries, starting by the square lattice.
The first RDM tackled here is the star, composed of one qubit and all its neighbors,
a k = 5-RDM in this geometry. A single labeling a covers all possibilities with the
minimum of k = 5 labels. It labels rows cycling through a 5- alphabet like the string
above, but adding an offset of 2 for each row (see Fig. 2.5). With lattice sites now
denoted by the pair (i1, i2), its elements read

ai1,i2 = (i1 + 2i2) b mod 5 . (2.23)

Since 5 labels are used, N = 35 measurements are needed.
An (`1, `2)- plaquette is defined as an (`1×`2)- qubit rectangle aligned to the lattice

(see Fig. 2.6). A measurement scheme for the k-RDMs of all (`1, `2)-plaquettes (with
k = `1`2) can be made by composing the previous string scheme. The first row
is labeled with an `1- alphabet as in the string, the second row is labeled with a
different `1- alphabet, and the same goes for the first `2 rows, each with their different
`1-alphabets. Row labelings repeat cyclically from the (`2 + 1)- th row onwards, in a
total of `1`2 labels (Fig. 2.6). Formally, the labeling reads

ai1,i2 = (i1 mod `1) + `1(i2 mod `2) , (2.24)

and appropriately covers all (`1, `2)- plaquettes with the minimal number k = `1`2
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Figure 2.6.: a) Labeling a for (`1, `2)-plaquettes in the planar square qubit lattice,
from Eq. (2.24), with (`1, `2) = (3, 2). b) Additional labelings needed for
the cylinder and torus geometries, with n1 = 8, n2 = 5. The cylinder
geometry requires b from Eq. (2.26) (in parentheses); the torus geometry
requires b and also c from Eq. (2.26) [in square brackets]. Plaquettes
crossing each edge are illustrated. For clarity, the numerical labels in
the text have been converted to letters with the standard mapping 0→ A,
1→ B, · · · , and color-coded. This figure was preprinted in Ref. [181].
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of labels, hence N = 3k = 3`1`2 . We call cylinder a square lattice where sites on the
last column are first neighbors to same-row sites on the first column. Let the total
lattice have dimension n1 × n2, where n = n1n2. To measure all (`1, `2)- plaquettes
in the cylinder when n2 mod `2 6= 0, it takes an additional labeling as in the ring
case. The additional labeling is b, with elements

bi1,i2 =


ai1,i2 , for i1 ∈ [`1 − 1]

ai1−n1,i2 , for i1 ∈ last`1−1[n1]

no label otherwise ,

(2.25)

with ai1,i2 from Eq. (2.24). It labels only the leftmost and rightmost (`1 − 1)

columns and, analogously to the ring, covers all (`1, `2)- plaquettes across the vertical
edges. With two labelings, the number of measurements is N = 2 × 3k. When
the first and last rows of a cylinder are also taken as first neighbors (column-wise),
we obtain a torus. If both n1 mod `1 6= 0 and n2 mod `2 6= 0, a third labeling c is
needed, analogous to Eq. (2.25), but switching horizontal and vertical directions.
With ai1,i2 from Eq. (2.24), c is given by

ci1,i2 =


ai1,i2 , for i2 ∈ [`2 − 1]

ai1,i2−n2 , for i2 ∈ last`2−1[n2]

no label otherwise ,

(2.26)

and labels the topmost and bottommost (`2 − 1) rows. With three labelings, the
number of measurements is N = 3× 3k = 3k+1. Notably, the torus topology makes
a third labeling necessary in general (4.1). In fact, any labeling a of the square
lattice can be patched for the cylinder and torus geometries with the strategy above,
as long as the maximal dimensions of the desired RDM are `1 × `2. Applying this
to the star-RDM labeling --- i.e. substituting Eq. (2.26) in Eqs. (2.36, 2.26) with
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`1 = `2 = 3 ---, one finds

bi1,i2 =


(i1 + 2i2) mod 5 , for i1 ∈ [2]

(i1 − n1 + 2i2) mod 5 , for i1 ∈ last2[n1]

no label otherwise

(2.27)

ci1,i2 =


(i1 + 2i2) mod 5 , for i2 ∈ [2]

(i1 + 2i2 − 2n2) mod 5 , for i2 ∈ last2[n2]

no label otherwise

(2.28)

and the number of measurements is N = 2 × 35 for the cylinder (a and b) and
N = 3 × 35 = 36 for the torus geometry (a, b and c). We now move on to a
three-dimensional, cubic lattice. We begin by the star RDM, which includes a qubit
and all its (six) first neighbors. This k = 7-RDM can be realized with one labeling a
composed of k = 7 labels; it labels each plane as in the 2D star configuration (but
with a 7-alphabet), with an offset of 3 between successive planes. With each site
labeled by (i1, i2, i3), a reads

ai1,i2,i3 = (i1 + 2i2 + 3i3) mod 7 (2.29)

and implies N = 37 measurements.

An (`1, `2, `3)-block is an (`1, `2, `3)-qubit parallelepiped aligned to the lattice.
Analogously to the plaquette, all such blocks can be labeled by

ai1,i2,i3 = (i1 mod `1) + `1(i2 mod `2) + `1`2(i3 mod `3) , (2.30)

with N = 3k = 3`1`2`3 measurements. If the rightmost face of the cubic lattice is
considered first neighbor of the leftmost face, we then have a “thick” ring. With the
lattice having dimensions n1× n2× n3, and taking the i1 = 0 face as neighbor to the
i1 = (n1− 1) face, this thick ring has a cross section of dimension n2× n3 qubits. As
in the original one-dimensional ring, this geometry requires one additional labeling,
given by

bi1,i2 =


ai1,i2,i3 , for i1 ∈ [`1 − 1]

ai1−n1,i2,i3 , for i1 ∈ last`1−1[n1]

no label otherwise ,

(2.31)
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Geometry Labelings
N (No. of
measmts) Eqs.

String 1 3k (2.21)
Ring (1D) 2 2× 3k (2.21),(2.22)
Star (plane) 1 35 (2.23)

(`1, `2)-plaquette 1 3k = 3`1`2 (2.24)
Cylinder 2×(planar) 2×(planar) (2.24),(2.25)
Torus 3×(planar) 3×(planar) (2.24),(2.25),(2.26)

Star (cubic) 1 37 (2.29)
(`1, `2, `3)-block 1 3k = 3`1`2`3 (2.30)
Thick ring (3D) 2×(cubic) 2×(cubic) (2.30),(2.31)

Table 2.2.: Summary of the number of labelings and unique measurements for k-
RDMs on the geometries considered in Subsection 2.3.1.1. For comparison,
previous methods in the literature require at least N ∼ eO(k) log n different
measurements. The values of the cyclic geometries (ring, cylinder, torus,
thick ring) are upper bounds, saturated when the dimensions of the lattice
are not divisible by those of the RDM. This table was preprinted in Ref.
[181].

totaling 2× 3`1`2`3 measurements. As was done for the cylinder and torus in the
two-dimensional lattice, one can consider the other faces of the three-dimensional
lattice to be first neighbors, and the additional labelings follow analogously. We
summarize the results of this Subsection in Table 2.2.

2.3.1.2. Triangle and honeycomb

In this Subsection we treat different geometries, namely the triangle and the honey-
comb lattices.

109



Figure 2.7.: Labeling of the triangle lattice. a) Numbering scheme used in Eqs. 2.32,
2.33. b) Three-label scheme for the (triangular) plaquette. c) Seven-label
scheme for the star RDM (qubit and its neighbors). This figure was
preprinted in Ref. [181].

110



For the triangle geometry, we begin with a labeling scheme that covers triangle
RDMs. With three labels, it is also the minimal scheme for 2-RDMs. With the
numbering defined in Fig. 2.7a), this labeling reads

ai1,i2 = (i2 mod 2 + i1) mod 3 (2.32)

and is illustrated in Fig.2.7 b). Additionally, we present a scheme for the star RDM
on this geometry, composed of a qubit and all its six neighbors (hence a 7-RDM):

ai1,i2 =

(i1 − i2) mod 7 , for i2 even

(i1 − i2 + 3) mod 7 , for i2 odd
(2.33)

which is illustrated in Fig.2.7c).

Figure 2.8.: Labeling of the honeycomb lattice for different RDMs. a) Explicit illus-
tration of the numbering used in Eqs. (2.34, 2.35, 2.36). b) Two-label
scheme for first-neighbor 2-RDMs, Eq. (2.34). c) Four-label scheme,
suitable for 3-RDMs and any 4-RDM where the four qubits are con-
tiguous, but not in the same hexagon, given by Eq. (2.35). d) Six-label
scheme, suitable for 4-,5-, 6-RDMs where all qubits of the RDM belong to
same hexagon, given by Eq. (2.36). For clarity, the numerical labels in
the text have been converted to letters with the standard mapping 0→ A,
1→ B, · · · , and color-coded. This figure was preprinted in Ref. [181].

We now deal with qubits on a honeycomb lattice. A first-neighbor 2-RDM can
be achieved with two labels, simply assigning neighbors different labels. With the
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numbering exemplified in Fig. 2.8a), this labeling reads

ai1,i2 = i1 + i2 mod 2 , (2.34)

and is shown in Fig. 2.8b). Now we show a labeling that is useful for different
sets of neighbors. It contains 4 different labels, as seen in Fig. 2.8c), and covers
any 3-RDM, as well as any 4-RDM where the four qubits do not all belong to same
hexagon. This includes the star configuration (a qubit and its three neighbors), as
well as 4 qubits along the rows, among others:

ai1,i2 =

(−1)i2 i1 for i2 mod 4 = 0, 3 ,

(−1)i2 i1 + 2 for i2 mod 4 = 1, 2 ,
(2.35)

equivalently, ai1,i2 =
(

(−1)i2i1+ 2
⌊

(i2+1) mod 4
2

⌋)
mod 4. It is perhaps clearer to

describe this labeling with the following algorithm: for the first row, assign labels
sequentially (ai1,0 = i1 mod 4). For the remaining sites, assign them the same color
as the site diametrically opposite to it in any given hexagon, as in Fig. 2.8 c). This
is evidently the minimal labeling for the 4-RDMs, and is also the minimal for the
3-RDMs, which cannot be covered with 3 labels only.

Lastly, we present a final labeling for the honeycomb, composed of 6 labels. It
covers hexagon RDMs (containing all qubits in a hexagon), as well as 4-RDMs and
5-RDMs with all qubits in the same hexagon. It is depicted in Fig. 2.8 d) and is
given by

ai1,i2 = [3(i2 mod 2) + i1] mod 6 . (2.36)

Interestingly, this labeling also covers (non-optimally) all previously mentioned
honeycomb RDMs.
We summarize the results of this Section in Table 2.3.

2.3.2. Local fermionic k- RDMs

For fermions in a lattice, k - RDMs provide information on arbitrarily distant lattice
sites, which is not the purpose of this work. We are interested in 〈γi0γi1 · · · γi2k−1

〉,
where all γi belong to a subset of lattice sites. We call these expectation values, then,
elements of a lattice-restricted matrix of size k, or k- LRM, for short. An entire
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No. of qubits Labels
N (No. of
measmts) Eq.

Triangle
3 (plaquette) 3 33 (2.32)
7 (star RDM) 7 37 (2.33)

Honeycomb
2 2 32 (2.34)

3, or 4 not in same hexagon 4 34 (2.35)
up to 6 in single hexagon 6 36 (2.36)

Table 2.3.: Summary of the number of labels and unique measurements for neighbor
k-RDMs on the sets and geometries considered in Subsection 2.3.1.2.
For comparison, previous methods in the literature require at least N ∼
eO(k) log n different measurements.This table was preprinted in Ref. [181].

k-LRM will contain such expectation values for all lattice subsets of a certain class,
e.g. all neighboring pairs of lattice sites. A k-LRM contains less information than
a k-RDM, unless the subset is taken to be the entire lattice, for which the k-LRM
coincides with the k-RDM.

Additionally, for fermions one cannot simply rely on the tensor-product structure
of operators acting on different sites to ensure commutativity (hence joint measura-
bility). As such, measuring a given element no longer assumes access to individual
measurements on each site.

Different Majoranas always anticommute, and they can be compounded to form
commuting operators — e.g. two pairs of Majoranas commute as long as all four
Majoranas involved are different. We call j-Majorana string a product γp · · · γq of
j Majoranas, and the overlap of two Majorana strings is the set of Majoranas the
two have in common. In general, two Majorana strings commute when the length of
their overlap has the same parity as the product of their lengths.

1 - LRMs:

The 1-LRMs for neighbor fermions on a lattice present a simplified structure: since two
different pairs of Majorana operators can only overlap in a single γi, any overlapping
pairs anticommute and are incompatible. The 1-LRM then reduces to the problem
of covering all relevant pairs of Majoranas without using any overlap. Interestingly,
the problem reduces to that of edge-coloring a graph [184, 185]: how to color the
edges of a graph such that any two edges that share a vertex have different colors.
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Figure 2.9.: Fermionic 1-LRMs, edge-coloring of a graph and Vizing’s theorem. Each
lattice site (black circle) has ∆ = 2 neighbors and the graph can be
colored with only c = 2 colors. The scheme shows the N = 2c + 1 = 5
measurements needed on the Majorana operators (white losanges). a)
Same-site measurement; b) two measurements made on the red (dark)
edges, the first for equal-parity γj (solid lines) and the second for opposite-
parity γj (dashed lines); c) two measurements on the tan (light) edges,
analogous to b). This figure was preprinted in Ref. [181].

To see this, consider that a graph G defines the lattice, with each fermion site
being a vertex and an edge connecting first neighbors. To each site i correspond two
Majoranas γ2i, γ2i+1. Since the pairs γ2iγ2i+1 for different values of i all commute,
they can all be measured at once in a first measurement [same-site measurement, see
Fig. 2.9 a)].

If an edge connects vertices i and j, the pairs composed of the elements in
{γ2i, γ2i+1, γ2j, γ2j+1} must be measured. This requires two measurements (besides
the same-site one): first the equal-parity measurement {γ2iγ2j, γ2i+1γ2j+1} [Fig. 2.9
b)], and second the opposite-parity measurement {γ2iγ2j+1, γ2i+1γ2j} [Fig. 2.9 c)].
To measure the entire LRM one could, in principle, make two measurements for each
edge of G, but the total amount of measurements would be unnecessarily high.

A more efficient approach is to make as many of those measurements in parallel as
possible. The restrictions to parallelization are that edges connected to the same
vertex cannot be measured at the same step: if (i, j) and (i, j′) are edges of G, their
measurements cannot be made in parallel for they would overlap in γ2i or γ2i+1. This
restriction is precisely described by the edge-coloring of G. To each color correspond
two measurements, on top of the same-site one. For a total of c colors, this scheme
takes N = 2c + 1 measurements (see Fig. 2.9). Importantly, Vizing’s theorem
[184, 185] bounds the amount of colors needed to edge-color a given graph: for a
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Figure 2.10.: Measurements of a three-lattice-site tile of a Fermionic 2-LRM. Illus-
tration of the string lattice [black circles, in a)] and of the Majorana
operators, two per lattice site [white losanges, in b)]. In c), the five
measurements to be performed in each tile are shown, each obtains three
(compatible) elements of the 2-LRM. In d), tiling for the string lattice
with three displacements total. This figure was preprinted in Ref. [181].

graph of degree ∆, the amount of colors needed is either c = ∆ or c = ∆ + 1. As
such, this scheme makes use of, at most, N = 2∆ + 3 measurements.
Finally, this scheme can be extended to 1-LRMs that include next-to-nearest

neighbors. One need only create an auxiliary graph G′ that has all vertices and
edges of the original graph G, plus edges that connect next-to-nearest neighbors.
Edge-coloring of G′ indicates a suitable measurement scheme that requires at most
N = 2∆′ + 3 measurements, where ∆′ is the degree of G′.

2 - LRMs:

The 2-LRM for pairs of first neighbors presents, surprisingly, an even simpler structure.
For any neighboring pair of lattice sites (i, j), the first-neighbor 2-LRM has a single
element 〈γ2iγ2i+1γ2jγ2j+1〉. For any other pair (i′, j′) of lattice sites, the overlap is
either of two or zero Majoranas, so all such elements commute. Hence all pertinent
Majorana strings are jointly measurable, i.e. a single measurement N = 1 can be
made to provide the 2-LRM for pairs of first neighbors.
Let us now go beyond first neighbors in specific geometries, beginning with the

string lattice. For the 2-LRM for three contiguous sites in the string lattice, i,
i+ 1, i+ 2, we will use a tiling strategy. Each tile will be composed of three sites
[six Majoranas; see Fig. 2.10 a) and b)]. Five measurements, with three LRM
elements each, suffice to cover a tile; these are shown in Fig. 2.10 c). A total of
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three displacements of the original tiling is needed [see Fig. 2.11 d)], which leads to
N = 15 measurements total.

Figure 2.11.: Illustration of the tiling for triangle 2-RLM. For a given letter, e.g.
A, each tile comprises the three lattice sites of the triangles assigned
that letter. In each tile, measurements made as in Fig. 2.10c), with
all same-letter tiles measured simultaneously. Six tilings, one for each
letter, are needed. This figure was preprinted in Ref. [181].

In fact, these measurements remain useful for three-site 2-LRMs of any geometry.
Consider, e.g., the triangular lattice from Fig. 2.11 and in it the fermionic 2-LRM
for sites arranged in a triangle. The lattice needs to be tiled into triangles, and
for each triangle, the five measurements in Fig.2.10 are used (with a simple change
of geometry). The tiling must be such that tiles do not overlap, and a total of six
displacements are needed, as shown in Fig.2.11. This leads to N = 30 measurements
total for this 2-RLM.

2.4. Application

2.4.1. Motivation and posing the problem

Quantum computing is a celebrated emergent technology witnessing a surge of
new developments both in theoretical and experimental sides during recent years
[186, 187]. It has been used to address particular classical problems [188, 189, 190],
or more recently general optimization [191, 192, 193, 194, 195] or Machine Learning
[196, 197, 198, 199, 200, 201, 202]. However, quantum computing is particularly well
suited for simulating quantum properties of nature [203, 204, 205], while doing so in
classical computers is extremely inefficient [206]. Some examples include quantum
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chemistry [207, 208, 209, 210, 211], condensed matter systems [212, 213], or analysis
of quantum data [214, 215]. Despite this advantage, current capabilities of quantum
hardware are still far from simulating systems of practical interest.

Adiabatic evolution processes are among the strategies that can be followed to
perform computations on quantum devices. Adiabatic evolution, based on the
adiabatic theorem [216], is implementable both in quantum-annealing and quantum
gate-based [217] hardware. In the adiabatic process, a time-dependent Hamiltonian
interpolates from an initial well-controlled Hamiltonian to a final one encoding the
problem of interest. Starting from the initial ground state, the system is gradually
evolved according to the time-dependent Hamiltonian. For gapped systems and
a slow enough transition, the final state approximates to the ground state of the
problem Hamiltonian.

An interesting problem to solve with quantum computing is the simulation and
analysis of materials down to the atomic level. In particular, single layer crystalline
solids allow to study interesting physical phenomena without the computational
burden of full 3D material simulations. Among these, graphene stands out as a
novel material with exciting mechanical, thermal, optical, and electronic properties
[218], including superconductivity [219]. Graphene is composed of a bidimensional
lattice of carbon atoms displayed in a honeycomb structure. Its isolation and
characterization in 2004 [220], together with its demonstrated technological potential
[221], has motivated the design and production of artificial graphene (AG) [222], that
is, more general two-dimensional fermionic platforms that maintain the hexagonal
structure. AG systems preserve the main electronic properties of graphene, owing
to the preserved hexagonal symmetry of the lattice, while representing much more
tunable platforms that permit to model imaginative electronic interactions or explore
new phases of matter. A simple yet successful model to capture the electronic
features of material lattices, including AG, is the Fermi-Hubbard model [223]. This
model considers hopping, Coulomb and spin-orbit interactions among the free-moving
electrons in the lattice.

There already exist a number of approaches to solve this problem. It can be solved
with high accuracy with exact diagonalization methods, although the exponential
scaling of the Hilbert space makes this approach practically useless for already
relatively small lattices. Other classical methods such as DMRG [224, 225] find an
approximation to the ground state of a given system using variational approaches
and composing smaller systems into a larger one. They can only be applied on
classical machines since non-unitary operations are performed. Thus, the calculation
is subject to a dimensionality curse in the description of the quantum state, and a
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trade-off between available accuracy and size arises. In the quantum side, variational
methods are also explored [226]. Optimizing such problems is in general difficult and
requires much classical computational power.
In this work, we develop an algorithm for gate-based quantum computers that

simulates an adiabatic evolution and outputs the ground state of the free-moving
electrons in AG. The algorithm is composed of four steps. First, the problem is
mapped from the fermionic operators to a qubit-based implementation suitable for
quantum computers. The standard Jordan-Wigner map is used for this purpose.
Second, an initial state to start the adiabatic process is generated. This can be done
efficiently under some requirements [227]. Third, the adiabatic evolution is conducted.
The recipe is based on that of a square lattice [226], properly adapted and extended
to match the present problem. Finally, a tailored measurement strategy is described
to measure all terms in the AG Hamiltonian while minimizing the number of circuit
executions.

The algorithm here presented is efficient since its scaling in number of qubits and
operations increases linearly with the size of the lattice, both for the preparation of the
initial state and for each step of the adiabatic evolution. The techniques disscussed
in this chapter find a direct application in the construction of the measurement in
the algorithm. The number of measurements is constant as the system size increases.
This scaling contrasts with the classical simulation of the same problem, where only
the storing of the electronic wavefunction is exponential in the size of the system. In
addition, note that no classical computational power is needed apart from processing
data.
The quantum algorithm is tested using classical machines, including the super-

computer MareNostrum 4, hosted at BSC [228], in the case of large systems. The
simulations are carried out using an exact statevector (SV) representation, provided
by the Qibo framework [229], and a Matrix Product State (MPS) one. The latter is
obtained by translating the quantum circuit to an MPS by the library quimb [230],
and then contracted using local truncation using the library RosNet [231]. Using
exact simulation, the largest simulatable system is four hexagons in a 2× 2 lattice,
with 32 qubits. In the MPS case, four hexagons in a 1× 4 lattice, represented by 36
qubits, are achieved with high fidelities. The limits of these results are imposed by
hardware.

2.4.2. Fermi-Hubbard model graphene

The present example is based on the Fermi-Hubbard model [223] as applied to a
graphene lattice with Rashba spin-orbit coupling (SOC) term which was one of the
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Figure 2.12.: General “recipe” for an adiabatic quantum algorithm.
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main object of studying in the first chapter of this thesis manuscript. The Fermi-
Hubbard model is widely used in condensed matter as a reasonable approximation
to fermionic systems [227]. It approximates the long-range Coulomb interactions
among electrons in a crystal with local interactions in each lattice site. It includes a
kinetic term modeling the hopping of electrons among first neighbors, and we also
include the spin-orbit Rashba term, allowing electrons to hop while also switching
the spin. The Hamiltonian of such model is defined as

HFH =− t
∑
〈ij〉,σ

a†i,σaj,σ + U
∑
i

a†i,↑ai,↑a
†
i,↓ai,↓

+
2i

3
λR

∑
〈ij〉,σ,σ′

a†i,σ′aj,σ[(~σ × ~dij)z]σ,σ′ , (2.37)

and for simplicity we define the hopping, Coulomb and spin-orbit Hamiltonians
respectively as

HH = −t
∑
〈ij〉,σ

a†i,σaj,σ, (2.38)

HC = U
∑
i

a†i,↑ai,↑a
†
i,↓ai,↓, (2.39)

HSO =
2i

3
λR

∑
〈ij〉,σ,σ′

a†i,σ′aj,σ[(~σ × ~dij)z]σ,σ′ . (2.40)

t, U, λR are respectively the hopping, Coulomb and spin-orbit couplings. Operators
ai,σ and a†i,σ annihilate and create an electron in site i with spin σ. Sums over
〈ij〉 in the case of hopping and spin-orbit terms take into consideration only the
contributions between sites (i, j) connected by a single edge in the graphene lattice,
which we consider to have regular, non-periodic boundary conditions. ~σ and ~dij in
the spin-orbit term are the vector of Pauli matrices and the (unitary) vector between
sites i and j in the lattice. Any length of ~dij can be absorbed in a simple re-scaling
of λR .
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Figure 2.13.: Graphene lattice used in this work, defined by the number of hexagons in
each dimension (Nx, Ny). Sites are numbered following the red shadow.
The regular hexagons are composed of the unitary vectors connecting
sites ~di, on the right side, defined in Eq. (2.41). This figure was taken
from Ref. [232].

The graphene lattice here considered is depicted in Fig. 2.13, with each site
corresponding to two orbitals, one for spin up ↑, and another for spin down, ↓. The
lattice follows a standard honeycomb structure where the number of hexagons on
directions x and y is always maintained.
All hexagons are regular, with all sites equally spaced, and oriented in a zig-zag

configuration. The vectors connecting sites are easily found as

~d1 =
√

3
2
êx + 1

2
êy

~d2 = −
√

3
2
êx + 1

2
êy

~d1 = −êy,
, (2.41)

where êj is the unit vector in direction j.

2.4.3. Jordan-Wigner mapping

The first step in the algorithm is to map the sites and orbitals in the Fermi-Hubbard
model to qubits in a quantum computer. The correspondence between orbitals and
qubits traces the snake-like pattern shadowed in red in Fig. 2.13, with two qubit
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numbers for each site, since each orbital can be occupied by an electron with spin ↑
or ↓. The particular relation between spins and qubit numbers depends on the row
of the lattice. We follow the numbering from Fig. 2.13, and label rows and columns
of qubits from top to bottom and left to right, starting with zero. Thus, in even
rows of sites, the spins ↑ have an even label, while ↓ have an odd one. In odd rows,
the label is inverted.

seven rows → 2s, 2s+ 1 = {↑, ↓} (2.42)

sodd rows → 2s, 2s+ 1 = {↓, ↑} (2.43)

For example, in the lattice of Fig. 2.13, spins ↑ and ↓ of site number six, correspond
to labels 12 and 13, while the same spins for site number seven are mapped to qubit
numbers 15 and 14.

Each combination of site and spin is then mapped to qubits via the Jordan-Wigner
mapping [233]. According to this mapping, the creation and annihilation operators
are transformed via

a†j =

j−1∏
k=0

σ
(z)
k

1

2
(σ

(x)
j + iσ

(y)
j ) (2.44)

aj =

j−1∏
k=0

σ
(z)
k

1

2
(σ

(x)
j − iσ

(y)
j ) (2.45)

(2.46)

where the chain of operators
∏j−1

k=0 σ
(z)
k is used to keep track of the relative signs

under commutations of two fermions.

2.4.4. Initial state preparation

The initial state used for the adiabatic evolution will be the ground state of a tight
binding Hamiltonian HTB defined as

HTB = HH +HSO, (2.47)

that is, a Hamiltonian where the only energetic terms are among the sites. Alter-
natively, it is also possible to take the hopping Hamiltonian HH as the starting
point.

Both kinds of Hamiltonian satisfy the conditions to be a fermionic Gaussian state
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[227, 234] defined as

HG =
N∑

j,k=1

Mjka
†
jak +

N∑
j,k=1

(∆jka
†
ja
†
k + h.c.). (2.48)

Jiang et al. in Ref. [227] show that the ground state of an arbitrary Gaussian
Hamiltonian can be constructed efficiently on a quantum computer. In particular, it
requires O(n2) operations and O(n) depth, where n is the total number of qubits.
The scaling for the problem here considered will be n = O(NxNy). In this work, the
Openfermion [235] implementation for que quantum computing library Cirq [236] is
used to construct this ground state.
Notice that the mapping used in this algorithm follows a 1D path, while the

problem is 2D. This is a consequence of the fermionic features of the model. All
interchanges of two fermions must carry a phase change. To the best of our knowledge,
there is no 2D fermionic mapping suiting this problem, apart from the folding of a
1D chain into a larger dimensional space.

2.4.5. Adiabatic Evolution

Adiabatic evolution is the central piece of the algorithm here developed. In the
adiabatic evolution the system is initially affected by a Hamiltonian whose ground
state is known. Then, the Hamiltonian is slowly changed to another one encoding
the problem to be solved and whose ground state is unknown. If the evolution is
performed slowly enough, then the final state will be close to the ground state, the
solution of the problem, of the final Hamiltonian [237, 216, 238]. The evolution time
must be at least O(g2) where g is the gap between the ground and first-excited states
[237].
In our case, the initial Hamiltonian and ground state are HTB and |ψTB〉. The

problem Hamiltonian is HFH , with ground state |ψFH〉 . The time-depending
Hamiltonian interpolating between both extrema during a total evolution time T is

H(s) = (1− s)HTB + sHFH , s = t/T. (2.49)

By direct substitution from Eqs. (2.37) and (2.47) it is possible to rewrite the
adiabatic time depending Hamiltonian as

H(s) = HH +HSO + sHC , (2.50)

that is, the Coulomb term is adiabatically turned on.
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To perform the state evolution, the Schrödinger equation with the above time-
dependent Hamiltonian is applied,

|ψ(T )〉 = e−i
´ T
0 H(t)dt |ψ(0)〉 . (2.51)

This formal solution can be approximated by discretizing the evolution path as

|ψ(T )〉 ≈
N∏
j=0

e−iH(jδt)δt |ψ(0)〉 , (2.52)

where T is the total evolution time and δt = T/N is the time taken in each step.
The final state |ψ(T )〉 is approximated with an error in the relative fidelity of δt2

[239].

2.4.6. Measurement

Figure 2.14.: Measurement scheme for the lattice. All terms from HFH coming from
edges in the same color can be measured simultaneously. Horizontal
terms can be measured directly since they do not commute. In the case of
vertical terms, they are measured using swapping in a common substring
in the full Jordan-Wigner mapping for all edges in the same row. Each
of the four sets has two possible spins and regular and spin-orbit terms,
amounting to a total of 16 independent measurements. Together with
the Coulomb terms, the complete measurement can be done in only 17
steps, irrespective of the problem size. This figure was taken from Ref.
[232].
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Once the adiabatic evolution is performed it is necessary to devise a measurement
procedure to read out the energy of the system. A minimal set of measurements is
obtained by grouping the different parts of the Hamiltonian into terms that commute
with each other, so that they can be measured simultaneously. For each term, a set
of swapping gates is applied to bring the relevant qubits together, in case they are
not.

Then a change of basis is performed if the Hamiltonian term is non-diagonal. All
Coulomb terms commute with each other, are diagonal, and involve adjacent qubits.
They are of the form |11〉〈11|, where both qubits represent the two spins in each site.
The total Coulomb energy is the sum of probabilities of measuring 11, P11, in the
two qubits of each site times the coupling U .

In the case of hopping terms, non-adjacent qubits are involved and swapping is
needed. For horizontal terms, a set of even-odd and odd-even swaps for spins up and
down suffices to bring both qubits together.

The corresponding Hamiltonian term, |XX〉〈Y Y |, is diagonalized to |01〉〈01| with
the diagonalizing quantum circuit D = CNOT CH CNOT , being CH the control
Hadamard two-qubit gate. The energy of each term is then P10 − P01.

Notice that the measurement strategy groups different 2-local Hamiltonian terms
in such a way that all of them can be measured simultaneously, even though they
do not commute given the Jordan-Wigner mapping. For vertical hopping terms the
measurement must be done by taking many more qubits into account simultaneously.
The grouping is done in even and odd rows of hexagons separately. Each pair of
qubits in the vertical edge needs to be brought together to the right (or left) of the
row, following the Jordan Wigner mapping and qubit chain.

The number of swaps needed scales as O(N). The measurement diagonalization is
then done as in the previous case, but it must be carried through all qubits in the
corresponding row. Hopping spin-orbit Rashba terms are analogous to the regular
kinetic terms, except for the presence of an additional complex phase. The swapping
is adapted to involve qubits corresponding to different spins.

All sets of measurements add up to seventeen different groups, see Fig. 2.14 for
reference. For the Coulomb terms only one measurement is required. In the hopping
case, only four different measurements are needed. Since there are two spins per
electron, 8 terms are required. This same structure holds for the spin-orbit piece of
the problem. The number of measurements corresponds to geometrical structures
and does not depend on the size of the problem.

In conclusion, to take advantage of our method of overlapping quantum tomography
in finite lattices, we must follow the steps presented in the Fig. 2.15.
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Figure 2.15.: Applying LQOT for a quantum simulation in a quantum computing. In
first step: select the lattice model. Second step: Convert the Dirac
fermions to majorana fermions because the schemes to obtain fermionic
k-RDMs are based in Majorana fermions. Third step: Apply our
schemes of LOQT to get all proper Majorana combinations. Fourth
step: Convert all Majorana fermions product combinations into Dirac
fermions. Fifth step: Use a standard transformation to covert the
Dirac fermions into qubits.

2.5. Discussions

In this chapter, we have shown in section 2.3 the main results of an efficient set of
strategies to perform overlapping quantum tomography for finite lattices. We also
presented some outcomes (see Section 2.4) applying the knowledge acquired along this
Ph.D., which connect the two parts of this thesis’s manuscript. Thus, we proposed
some schemes of measurements to obtain the ground state of an Fermi-Hubbard
(FH) graphene system, one of the steps to building a quantum algorithm for artificial
graphene (AG).
We have shown in our main results (see Ref. [181]) that:

• The full determination of the quantum state of a many-particle system is
practically out of reach when increasing the system size. However, it is possible
to access to partial, physically relevant information about this system with a
much less demanding effort.

• We have studied local overlapping tomography of qubits and fermions in a
lattice. We have specifically focused on k-RDMs (and k-LRMs) that are
localized in neighboring sites of the lattice, which are often the subset that
draws more interest in theoretical and practical terms.

• Resorting only to projective, product measurements, we have shown that
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optimal measurement complexity can be directly tied to graph-coloring for the
lowest values of k; and we have also studied optimal measurements tailored to
several relevant geometries.

• An important result is that, unlike for the case of full RDMs, the amount of
measurements to obtain these local matrices no longer depends on system size n.
This has been seen in the studied geometries, in connection to graph-coloring,
and also in the form of a general tiling argument.

Our work opens the path towards turning this form of local overlapping tomography
into a viable candidate for measurements in practical scenarios. Thus, the application
of our method is presented in Ref. [232].

127





3. Outlook

According to the knowledge acquired during this Ph.D., we can divide our research
efforts for the near future into the following research lines.

3.1. Research line A: Quantum information in

graphene.

In Part II of this thesis, I established some collaborations, and we started studies
about how to use quantum information tools to explore physical questions in the
graphene platforms. We can point out some ongoing works/research projects:

• Formulation of an open quantum system theory for the intra-particle
entanglement in a graphene monolayer based on quasiclassical the-
ory: We brought tools typically used in superconductivity physics as matrix
quantum circuits- consisting of a semiclassical approach for studying coherent
transport in nanostructures. Our analytical description includes all modes,
different from using just a random matrix approach that is applied for zero-
mode systems. We got original results and created a complete open quantum
system theory for intra- and inter-particle correlations in graphene-based sys-
tems. In this formulation, we used the Keldysh formalism as well. So far, we
have this paper in preparation: B.G.M. Araújo, A.M.S. Macêdo , An open
quantum theory for intraparticle quantum correlations in topological matter.
Main collaborator: Prof. A.M.S. Macêdo from UFPE, Brazil.

• Emergence and detection of intra-particle entaglement in a Rashba
SOC graphene monolayer in the non-equilibrium regime. We showed
that we do not have entanglement when considering the density matrix in
equilibrium computed from the Fermi-Dirac statistics. But, when we added
the non-equilibrium density matrix, we can verify that the spin-pseudospin
entanglement emerges from the creation of currents. With this, we proposed the
detection of entanglement through the correlations of the physical observables
obtained by quantum spin hall experiments. Meanwhile, we have this work in
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preparation: B.G.M.A., A.V., A. F. , Detection of intraparticle entanglement
in non-equilibrium. Main collaborator: Dr. Aires Ferreira from University of
York, UK.

• Bayesian measurement strategies over continuous variables to obtain
the heat current in some physical platforms: Here we are using the
Gaussian states (continuous variables) to study quantum thermodynamic
properties of graphene/light-based systems, specifically, designing quantum
thermometers as application. Main collaborator: Dr. Mohammad Mehboudi,
University of Geneva, Switzerland.

• Study hierarchical theory to solve complex problems in graphene-
based platforms. We have these original results: B.G.M. Araújo, A.M.S.
Macêdo, Theoretical reformulation of the spin-lifetime mechanisms in graphene
using universality classes of hierarchical complex systems (H- theory). Main
collaborator: Prof. Macêdo, UFPE, Brazil.

• Study bipartite and n-partite correlations considering mixed states
via random matrices ensembles in topological matter.

In the coming two years, one of my research lines can be schematize in Fig. 3.1,
connecting quantum thermodynamics with graphene-based systems.

3.2. Reseach line B: Quantum tomography

techniques applied to variational quantum

algorithms.

Regarding the main project of the second part of this thesis about (LQOT), we saw
that the full determination of the information about many-particle quantum states is
practically impossible for large systems. With this, we need to look for alternatives
to contour this kind of obstacle in order to access the relevant physical information
about these quantum states. Scalability is a critical issue.
We adapted the original method of overlapping quantum tomography (QOT)

designed for free particles. We added constraints consisting of finite and periodic
lattices geometries to obtain the k-particles RDMs. For this, we mainly perform
partial quantum tomography for qubits and fermions. It focused on getting k-LRMs
for the first neighbors of fermions in a lattice, which are essential from a theoretical
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Figure 3.1.: Roadmap of Part I: We are introducing new mathematical framework
to explore some physical questions from quantum thermodynamics point
of view in graphene systems. In this approach, we combine diverse tools
from different research areas, such as: superconducting mathematical
framework, H-theory, continuous variables, quantum transport tools,
random matrices. From this, we are proposing since an open quantum
theory framework to aspects more applied such as devising quantum
thermometers for these graphene-based systems.
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and practical points of view. Our measurement schemes consists in obtained optimal
strategies to get RDMs taking into consideration spatial locality (lattice constraint).
The main result consists of when we reduce one global degree of freedom of the

original method and bring the free particles constrained to a lattice, giving us that
the measurement scaling does not depend on the size of the system. These simple
schemes open avenues to explore the local overlapping tomography for measuring
practical physical setups, as we demonstrated in applying these ideas in a quantum
algorithm.
From this, we plan to consider the following questions:

• We plan to study if we can devising an efficient method to obtain - in a unique
mathematical construction, k-RDMs for N qubits or N fermions based on
deterministic and randomized schemes of measurements. Specifically, try to
build an explicit construction of overlapping tomography valid for any N and
k particles through Young diagrams and explore applications of the resulting
method.

• Adapt our LQOT for systems where symmetries add more constraints besides
the lattice, for instance for non-periodic lattices, sparse models, or gauge lattice
systems.

In the coming two years, my planned research effort along these lines is schematized
in Fig. 3.2, which fits very well in the context of the study of variational quantum
algorithms for many-body systems.
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Figure 3.2.: Roadmap of Part II: Design multiple partial quantum tomography
methods to get RDMs and compute physical observables for use it as one
of the steps to do variational quantum algorithms (VQA) for challenging
systems.
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4. Appendix of Chapter 2

This appendix is a complementary material regarding the chapter 2.

4.1. Patching creases on looping geometries

Let us prove the statement that to measure plaquettes on the torus topology a third
labeling is in general necessary. This happens because whenever n1 mod `1 6= 0 and
n2 mod `2 6= 0 any labeling produces a vertical and a horizontal “crease” between
lattice sites, across which plaquettes cannot be measured, and the additional labelings
are meant to patch these creases (Fig.4.1). With only two labelings, we have two
pairs of creases, each pair composed of a horizontal and a vertical crease.

The torus topology ensures that these pairs cross one another in at least two
points, though. Any plaquette that encompasses one of the crossing points cannot
be covered by the two labelings, requiring a third one.

Figure 4.1.: Creases on an 8× 6 square lattice generated by different labelings. Black
jagged lines: creases by labeling a from Eq. 2.24 on a) a cylinder and
b) a torus. Gray jagged lines: creases by additional labeling b on each
geometry [in the case of `1 = 4, `2 = 3, from Eq. 2.24 exactly]. Notice
how on the cylinder a) the second labeling fully patches the creases of the
first, but on the torus b) there are two crossing points between black and
gray creases that remain unpatched (blue and red plaquettes still cannot
be measured with two labelings); the scenario calls for a third labeling.
This figure was preprinted in the Ref. [181].
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4.2. Majorana overlaps and commutation

Consider that two Majorana strings sA, sB are composed of substrings sj, sm, sk of
length j,m, k, and are ordered as

sA = sjsm , sB = smsk , (4.1)

i.e. such that the overlapping Majoranas are flushed to the right and left, respectively.
This can be done without loss of generality, because this reordering merely costs a
certain phase ±1, and in the end the reordering can be undone, canceling the extra
phase. Anticommutation relations imply

sAsB = sjsmsmsk = (−1)jm+mk+jksmsksjsm (4.2)

= (−1)(j+m)(k+m)−m2

sBsA . (4.3)

The two strings commute if, and only if, (j + m)(k + m) − m2 is even. This
condition is equivalent to the length of the overlap having the same parity as the
product of the string lengths, as in the main text.
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