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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

by Dion Eustathios Olivier Tzamarias

Bellaterra, June 2022

Supervisor:

Dr. Joan Serra-Sagristà
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Chapter 1

Introduction

1.1 Introduction to the topic

The trend of the current technological era is the collection and accumulation of vast quanti-

ties and types of data. The purpose behind the acquisition of such a plethora of information

can differ in many ways, yet frequent applications can be found in areas such as big data,

machine learning, virtual/augmented reality, server optimization, etc. The nature of these

data can vary in many ways, but a large subset of data-types can be categorized as point-

based data. In other words, their component atoms are points, each carrying information

relevant to its location and/or attribute, which is a value that can describe a color, a temper-

ature, a flux etc.

The points can be located in spaces of lower or higher dimensions, and they can be

placed in strictly structured regular patterns or scattered irregularly in space. An example

of regular point-based data are classic images, whose component atoms, i.e., pixels, are

interpreted as color valued points placed on a regular grid. Usually, the pixel-points live in

a 2D space such as the cases of natural or depth images. Diversely, hyperspectral images

depict scenes across many bands of the electromagnetic spectrum, otherwise called spectral

components, resulting in its constituent atoms being located in a 3D space.

Other point-based data, however, are not expressed by regular grid structures as they

are represented by points, seemingly spread in random patterns. In this category belong

such data groups that offer a digital three dimensional representation of objects, or en-

1



2 CHAPTER 1. INTRODUCTION

tire sceneries. Meshes and point clouds are such examples, whose points, apart from a

geometric value, e.g., the point’s coordinates, can also carry additional attributes such as

color, reflectibility or norm. The non-uniform placement of these points is attributed to the

acquisition techniques that sample irregularly a subject through the use of portable laser

scanners or aerial photogrammetry systems. An illustration of point-based data, structured

in a regular or irregular manner, can be found in Figure 1.1.

(a) Natural image:

Baboon

(b) Natural image:

Lena

(c) Hyperspectral

image

(d) Point cloud (e) Mesh (f) Social network

Figure 1.1: Depiction of point-based data whose atoms are placed in a regular-grid structure

(a, b, and c), and whose atoms are spread irregularly (d, e, and f).
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The dimensionality of the space in which point-based data live in is not restricted to

the 3D space humans perceive. In the case of networks, for example, each point can rep-

resent a subject whose value is a feature vector and is interconnected with its neighbors

through weighted edges. For example, social networks, used to simulate user interactions

and trends, can place each point in a N-dimensional feature space, representing the inter-

ests, political views or economic status of a person.

Even though point-based data are a growing subset, historically it has been the focus of

an ever evolving series of applications. Said data have been targets of successful and long

lasting applications, as is the case of hyperspectral images, which are employed for soil

type analysis, agriculture/forest monitoring and even to forecast geological events such as

landslides. Other point-based data are found in the epicenter of many novel applications

and one would expect their usage to grow over time. As an example, we refer to point

clouds, which have been just recently employed in virtual/augmented reality, self driving

cars, or heritage preservation applications, while 3D meshes are exceedingly used in the

video game and movie industries.

The incessant accumulation of data demands large amounts of storage, which, apart

from fabrication expenses, are the source of several additional difficulties. Maintenance

of large storage facilities cumulates to huge costs, heavy storage hardware is scarce on

board remote sensing satellites, and storage in small devices, such as phones or tablets, is

limited on account of portability. However, the necessity for storage of point-based data

can be alleviated through compression algorithms whose design depends on the type of

information that the point carries.

When it comes to point-based data, classical compression techniques are not equally

well suited for all its instances. For example, classical image compression algorithms are

not suited for the compression of point cloud data. Furthermore, it is necessary for the

compression scheme to adapt to the often irregular nature of point-based data such as in the

case of epidemiological networks. This can be accomplished through the field of graph sig-

nal processing in which the attributes of point-based data are represented as graph signals,

and whose inter-point correlation information is embedded in weighted graphs. Through

the work of Ortega [1, 2, 3, 4, 5], who is considered a pioneer on the topic, many graph-

based transforms have arisen and have also been used for the compression of graph signals.
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In other point-based data, alternative methods are adopted, such as in the work of Gar-

cia [6, 7, 8, 9] for the compression of the geometry information of point clouds.

1.2 Objectives

The motivation of this thesis is focused on the resolution of problems associated to the

storage and transmission of point-based data, which is achieved through suitable compres-

sion algorithms. Therefore, our two main objectives are the research and design of novel

algorithms for the compression of a) attribute and b) location information of point-based

data. Regarding the first objective, the goal of our study had a more theoretical approach,

exploring lossy as well as lossless designs, whereas the second objective is more practical

in its nature, researching also fast and memory efficient methods.

In this dissertation, the means of achieving the attribute compression of point-based

data are accomplished via the design and application of graph filterbank transforms. Point-

based data are naturally represented by graph structures, as points form the nodes of a

graph and similarities between them are embedded in the graph structure, in the form of

weighted graph edges. The graph signal is referred to the collective attribute values of all

points that reside on the graph. Utilizing the field of graph signal processing, tools such as

wavelet filterbank transforms can be extended to the graph domain, resulting in techniques

that accomplish the compression of graph signals [1, 10]. Although graph filterbanks can

be employed for the compression of any graph signal, we have focused our research specif-

ically on their application on hyperspectral and natural images.

When it comes to the compression of location information of point-based data, the

chosen approaches are radically different in their design. In this thesis, the aforementioned

aspect of point-based data encoding is explored through the lens of voxelized point cloud

geometry compression (PCGC). A point cloud is composed by a collection of points in

a 3D space forming a three dimensional representation of people, objects and even entire

cities. A point cloud’s geometry information refers to the precise coordinates of each point,

which typically average to many hundreds of thousands, rendering geometry compression

algorithms extremely important. Geometry compression methods are usually applied on

geometrically quantized point clouds also known as voxelized. A voxel space is a regular
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grid whose unitary cells are called voxels. The irregularly located points of a point cloud

are represented by occupied voxels while the complementary empty space is formed by

empty voxels. Thus, the goal of geometry compression algorithms (applied on voxelized

point clouds) is to encode the precise coordinates of such occupied voxels.

1.3 Summary of Contributions

Our contribution to the field of point-based data compression extends to the compression

of both the attribute and location of points. The attribute compression of points, which is

more theoretical in nature, is researched by developing novel graph filterbank transforms

for the compression of natural as well as hyperspectral images. We have developed the

first lossy to lossless hyperspectral encoder based on graph filterbanks providing two dis-

crete variants. Our experimental results show that the developed transforms outperform the

widely used DWT in the lossy setting, while yielding an on-par performance on the lossless

setting. Our subsequent theoretical work on the topic of graph filterbanks relates to pre-

viously open ended questions regarding the behavior of the well established biorthogonal

graph filterbank transform known as the GraphBior [3]. Supported by recent developments

in the field, we identify the reasons behind the drawbacks of the two original variations

of GraphBior and propose a novel variation for the compression of natural images that

balances the original drawbacks.

The compression of the points’ location information is investigated by contributing to

the field of point cloud geometry compression. Our initial work in this topic improved on

the state of the art, resulting at the time in the most competitive lossless geometry com-

pression scheme, in terms of rate. This study highlighted drawbacks of relevant methods

and laid the foundations for our subsequent work. Along with state-of-the-art performance,

our next publication brought drastic improvements in computational complexity and mem-

ory usage, both fundamental properties for a geometry compressions algorithm intended

for real world use. Experimental results confirm that our most recent point cloud geom-

etry compression algorithm surpasses MPEG’s TMC13 standard in encoding speeds and

compression performance.

To summarize, the subject of this dissertation is on on the topic of point-based data
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compression, and our relevant work has been published in two conference papers and two

journal papers. Our contribution to the field of point-based attribute compression involves

hyperspectral and natural image compression through novel graph filterbank transforms.

Regarding our contribution to point-based location compression, our two publications in-

volve the geometry compression of point cloud data. The following list summarizes our

relevant publications in chronological order.

• D.E.O. Tzamarias, K. Chow, I. Blanes, and J. Serra-Sagristà. “Compression of hyper-

spectral scenes through integer-to-integer spectral graph transforms.” Remote Sens-

ing 11, no. 19 (2019): 2290, JCR impact factor: 4.848.

• D.E.O. Tzamarias, E. Pavez, B. Girault, A. Ortega, I. Blanes, and J. Serra-Sagristà.

“Orthogonality and Zero DC Tradeoffs in Biorthogonal Graph Filterbanks.” In ICASSP

2021-2021 IEEE International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), pp. 5509-5513. IEEE, 2021, CORE quality factor: B.

• D.E.O. Tzamarias, K. Chow, I. Blanes, and J. Serra-Sagristà. “Compression of point

cloud geometry through a single projection.” In 2021 Data Compression Conference

(DCC), pp. 63-72. IEEE, 2021, CORE quality factor: A+.

• D.E.O. Tzamarias, K. Chow, I. Blanes, and J. Serra-Sagristà. “Fast run-length com-

pression of point cloud geometry.” In 2022 IEEE Transactions on Image Processing,

vol. XX, pp. XXXX, IEEE, 2022, JCR impact factor: 10.856.
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Abstract: Hyperspectral images are depictions of scenes represented across many bands of the
electromagnetic spectrum. The large size of these images as well as their unique structure requires
the need for specialized data compression algorithms. The redundancies found between consecutive
spectral components and within components themselves favor algorithms that exploit their particular
structure. One novel technique with applications to hyperspectral compression is the use of spectral
graph filterbanks such as the GraphBior transform, that leads to competitive results. Such existing
graph based filterbank transforms do not yield integer coefficients, making them appropriate only for
lossy image compression schemes. We propose here two integer-to-integer transforms that are used in
the biorthogonal graph filterbanks for the purpose of the lossless compression of hyperspectral scenes.
Firstly, by applying a Triangular Elementary Rectangular Matrix decomposition on GraphBior filters
and secondly by adding rounding operations to the spectral graph lifting filters. We examine the merit
of our contribution by testing its performance as a spatial transform on a corpus of hyperspectral
images; and share our findings through a report and analysis of our results.

Keywords: hyperspectral image coding; graph filterbanks; integer-to-integer transforms; graph
signal processing

1. Introduction

Hyperspectral images are representations of scenes across many bands of the electromagnetic
spectrum (otherwise called spectral components). These images have been used to classify areas of
a landscape [1], identify clouds [2] or seeds located on the Earth’s surface [3] and even forecast
geological events such as landslides [4]. Due to their large size, these images require the use
of efficient compression techniques in the form of specialized image transforms. The above
mentioned transforms can often be computationally costly but one could strive towards real-time
compression of remotely-sensed hyperspectral images, when processed accordingly through
on-ground, high-performance parallel computing facilities.

Transform-based lossy compression techniques used on hyperspectral images are commonly
related to one of two families. The first group of algorithms are based on the Discrete Wavelet
transform (DWT) [5–8]. On one hand the advantage of these transforms manifests through their
low computational complexity, though they are not adaptive to the input signal. On the other hand,
algorithms such as those in References [9–12] are based on the Karhunen-Loeve transform (KLT), which
is adaptive at the expense of a high computational complexity. Meanwhile the techniques used for the

Remote Sens. 2019, 11, 2290; doi:10.3390/rs11192290 www.mdpi.com/journal/remotesensing
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lossless compression of hyperspectral images are generally based on a predictive coding model [13,14]
though lossy predictive techniques [15] have the benefit of a lower computational complexity. Some
lossless predictive techniques [16,17] are implemented in the CCSDS-123.0-B-2 [18] standard that also
supports near-lossless compression and whose parameter tuning is explored in Reference [19].

This paper exploits a recently emerged family of wavelet transforms which are based on graph
signal processing, a field in which data structures are represented as signals lying on the nodes of
graphs while weighted graph edges denote the degree of similarity between nodes [20,21]. Graph
wavelet transforms are derived from the graph structures, which in turn, one can also construct from
images. Applying such transforms on hyperspectral images has been shown to lead to competitive
compression results [22].

The strength of graph wavelet transforms in the field of image compression stems from the
Graph Fourier Transform (GFT), an equivalent to the classical Fourier transform that is formed by the
eigenvectors of the graph Laplacian, a matrix constructed from the values of the weighted edges of
the graph. Just like the KLT, the GFT is an adaptive transform but instead of following a statistical
approach, it attempts to encode image structures that are embedded in the graph edges. Thus, an
important attribute of the GFT is related to its flexibility, since one can decide on the degree of accuracy
with which image structures are represented on the graph [23]. It has also been shown [24] that not only
does the GFT approximate the KLT for a piece-wise first-order autoregressive process but also that the
GFT optimally decorrelates images following a Gauss-Markov random field model [25]. Consequently,
graph wavelet transforms combine the GFT with a multiresolution analysis, resulting in a powerful
tool for image compression.

A brief review of graph wavelet transforms follows. One can organize these transforms into two
general groups—vertex domain and spectral domain designs. The former are based on spatial features
of the graph such as the degree of connectivity between nodes. These vertex domain designs, though,
lack spectral localization. While the energy of the resulting transformed signal is not concentrated
around central graph frequencies, the vertex domain designs are described by a perfect localization on
the vertex domain, meaning that one can define the number of nodes that will update the value of a
vertex after the transform. One specific vertex domain design is the lifting-based graph wavelets [26]
that use distinct groups of nodes to compute the update and detail wavelet coefficients.

Transforms that belong in the latter category of spectral designs exploit characteristics of the
graph spectrum (not to be confused with the spectrum of hyperspectral images) in the form of the
eigenvectors and the eigenvalues of the graph. One key feature of these designs is good spectral as
well as vertex domain localization. One of the first spectral graph wavelet transforms are the diffusion
wavelets [27] as well as the spectral graph wavelets [28]. While these spectral graph transforms are
over-complete (the number of wavelet coefficients surpass the number of signal samples), this problem
is solved by the two-channel graph wavelet filterbanks [29] that uses quadrature mirror filters (QMF)
on bipartite graphs. These filters are not compactly supported and produce transforms that are not
well localized on the vertex domain. The next iteration of such transforms are the biorthogonal graph
wavelet filterbanks (introducing the GraphBior transform) [30] which are compactly supported as
well as critically sampled. Since then several improvements and variations of the biorthogonal graph
filterbanks have been proposed by including spectral sampling [31] or by introducing the M-channel
graph wavelet filterbanks that can be implemented on large sparse graphs [32]. One of these variations
uses polyphase transform matrices [33], proposing graph lifting structures [34] in the spectral domain
for biorthogonal graph filterbanks.

One major issue of the filters developed for biorthogonal graph filterbanks, regarding image
compression, is that they are only suited for lossy compression schemes. This drawback originates
from the fact that the graph wavelet coefficients arising from these transforms are not integer. Thus a
necessary quantization step is required rendering such compression schemes lossy. Furthermore,
the use of spectral graph transforms for the compression of hyperspectral images spawns further
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difficulties—a huge amount of side information is required, due to the necessity to transmit the graph
structure to the decoder.

In this paper, we provide transforms that allow us to construct a lossy-to-lossless compression
scheme for hyperspectral images, using biorthogonal graph filterbanks. We developed two integer
graph-transforms, both suitable for the biorthogonal graph filterbanks.

Our first approach is to modify the filtering process of GraphBior so that the resulting analysis
wavelet coefficients are integer. We solve this problem by computing the Triangular Elementary
Rectangular Matrix (TERM) [35] decomposition of the spectral GraphBior filter. At first glance this
solutions seems promising but due to the high complexity of the TERM factorization process and
the large size of the GraphBior filters, one could argue otherwise. Thus we partition each GraphBior
filter in tiles and compute the TERM factorization of each tile in parallel. This process dramatically
decreases the time complexity of the TERM factorization of GraphBior.

Our second integer spectral graph transform is achieved by introducing rounding operations
within the spectral graph lifting structures proposed in Reference [34]. Hence, we transform it into an
integer-to-integer graph wavelet transform.

Using our proposed transforms mentioned above, we design a lossy-to-lossless extension to
the scheme developed for the lossy compression of hyperspectral images through GraphBior in
Reference [22]. The compression scheme published in Reference [22] tackles the issue of transmitting
the graph structure to the decoder by assembling consecutive hyperspectral components into packets
called band groups.

In this paper we evaluate and analyze the performance of our lossy-to-lossless compression
scheme on a variety of hyperspectral images. We then explore the use of our graph transforms
for hyperspectral images. Additional, we explore the effect that different parameters have on our
compression scheme. Such parameters are the size of the tiles as well as the size of band groups.
Experimental results are provided comparing the performance of the proposed techniques for several
images from the CCSDS MHDC corpus of hyperspectral images [36].

This paper is structured as follows. First, in Section 2, we present a brief overview of graph signal
processing and biorthogonal graph filterbanks. Then, the derivation of the TERM decomposition
of the GraphBior transform, the introduction of the integer spectral graph lifting transform, as well
as the adopted coding strategy are discussed in Section 3. In Section 4 we detail the setting of our
experiments and showcase our results. Our conclusions are stated in Section 5.

2. Graphs and Biorthogonal Graph Wavelets

This section provides a brief introduction on graph signal processing and GraphBior. A graph
G = (V, E) is composed by a set of nodes V that are linked to each other by a set of edges E. There is a
large variety of graphs, each with its own special properties. One relevant example is the bipartite
graph, whose nodes can be arranged in 2 subsets such that there are no edges connecting nodes of the
same subset. In other words, one needs only two colors in order to color the nodes of the graph in a
way that no two nodes of the same color are connected through an edge. Two examples of bipartite
graphs can be seen in Figure 1b,c.

The edges of a graph can be weighted, in a way that nodes can be connected strongly or weakly
by a non discrete measure. The adjacency matrix A ∈ R|V|×|V|, of a graph, is the symmetric matrix that
describes the strength of all the possible connections between all nodes of a graph. We establish matrix
A in such a way that any of its elements located in row i and column j is a real number aij ∈ [0, 1]
representing the weight of the edge between node i and j. The stronger the connection between two
nodes, the higher the value of the weight, with the value 1 describing an edge of the highest strength.
Conversely, weaker connections are represented by lower adjacency values such that a weight value
equal to 0 represents a non existing edge between nodes. Using the Adjacency matrix one can compute
the normalized Laplacian matrix that is defined as L̃ = I − D−1/2 AD−1/2, where D is the diagonal
degree matrix whose ith element is equal to the sum of the elements of A situated on its ith row.
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In graph signal processing the normalized Laplacian matrix is of vital importance since it embeds
within its structure the spectral information of the graph. Due to its symmetric nature, the eigenvectors
of L̃ create a complete orthogonal basis that can describe any vector in R|V| as a linear combination
of its basis. Additionally the eigenvalues of L̃ are known as the spectrum of the graph and portray a
notion of frequency.

We can also assign a real value to each node of the graph such that node i has a value of fi. A graph
signal f ∈ R|V| is expressed mathematically as a vector and represents the collective values of the
nodes. A graph signal of low frequency is expected to vary slowly, meaning that strongly connected
nodes will support very similar graph signal values, while a high frequency signal is expected to assign
very dissimilar values to strongly connected nodes. In other words a low frequency signal reflects the
natural connectivity characteristics of the nodes of the graph whereas a high frequency signal goes
against the connectivities imposed by the values of the graph edges.

The GraphBior transform, just as classical wavelet filterbanks, filters in the analysis step a signal
into low pass and high pass signals that are later downsampled in order to decrease the number of
graph wavelet coefficients. In order to guarantee reversibility of the transform, GraphBior exploits
a particular characteristic of the spectrum of bipartite graphs (called spectral folding) [30]. Thus an
arbitrary graph first needs to be decomposed into a series of bipartite subgraphs. These subgraphs
share the same set of nodes as the original graph but their sets of edges do not intersect. The GraphBior
filterbanks then makes use of these graphs by creating low and high pass filters.

(a) General graph (b) First bipartite component (c) Second bipartite component

Figure 1. A graph (a) is decomposed into bipartite components (b) and (c). Node colors are the result
of the graph coloring process, required for the graph bipartition.

3. Lossy-to-Lossless Graph Wavelet Filterbanks

Our work in this paper strives towards a lossy-to-lossless extension of Reference [22] for the
compression of hyperspectral images using the GraphBior filterbanks. In this following section
we go through the compression scheme that is employed, which follows the one introduced in
Reference [22]. Then we propose an integer-to-integer version of the GraphBior filters, by applying
a TERM decomposition, as well as tiling to decrease the time complexity of the TERM factorization.
Additionally, we propose a second integer-to-integer graph transform suited for the biorthogonal
graph filterbanks by modifying the spectral graph lifting structures in Reference [34].

3.1. Compression Scheme

Our compression scheme consists of 3 modules—one whose purpose is to calculate the
biorthogonal graph filterbank transform, an encoder and a decoder.

The first module is where a single hyperspectral component is used for the construction of
a biorthogonal graph filterbank transform and follows the scheme introduced in Reference [22].
The component is first mapped into a graph, then decomposed into a series of bipartite graphs which
will finally be used to create the graph transform. We design a graph G by representing the pixels of
a component as graph nodes and connect neighboring nodes with vertical, horizontal and diagonal
edges resulting in a 8-regular graph just as the one shown in Figure 1a. Edges between two connected
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nodes are strong if the luminance values of these two pixels are similar and low when they are not.

Specifically a graph edge aij is calculated through the Gaussian kernel aij = e−
( fi− f j)

2

σ where fi and
f j are the values of pixels i and j and σ is a scaling factor. Once the graph G = (V, E) has been
constructed, it is decomposed into a series of n bipartite subgraphs Bi = (Vi, Ei) with i = 1, . . . , n.
The bipartition should be done in a way where each bipartite subgraph has the same vertex set as the
original graph, whereas the edges of E are distributed among the subgraphs Bi in such a way that no
single edge of the original graph is present in more than one bipartite subgraphs. Thus, the union of all
the sets of edges from all the bipartite graphs is equal to the set of edges of the original graph. In other
words, Vi = V, ∪iEi = E and Ei ∩ Ej = ∅ for i 6= j. To decompose a graph into a series of bipartite
subgraphs, we utilize Harary’s decomposition [37]. Other decomposition techniques are found in
References [38–40]. In the case of the 8-regular graph, shown in Figure 1a, the bipartition resulting
from Harary’s algorithm is very intuitive and is not computationally intensive. By discarding all
diagonal edges from the graph in Figure 1a, we construct the first bipartite graph, shown in Figure 1b
and by discarding all horizontal and vertical edges from Figure 1a, we construct the second bipartite
graph, shown in Figure 1c. Hence, an 8-regular graph G, constructed out of a single component, is
decomposed into two bipartite graphs that are utilized for the computation of a biorthogonal graph
filterbank transform, just as shown in Figure 2.

It is necessary, for the reversibility of the transform, that the encoder and the decoder have both
access to the same graph structure. This ensures that both modules construct the analysis and synthesis
filters out of the same graph. The first module is designed in a way that circumvents the transmission
of the graph structure to the decoder without the need of side information. This is done by only using
decoded components for the calculation of the graph wavelet transforms. Specifically, components
are bundled into packets of consecutive components called band groups. Each band group should
preferably consist of the same number, ω, of components. Once the decoder has decompressed a band
group we extract the last of its components. Using that component we create the graph G and thus the
graph wavelet transform. This process can be executed in the decoder and the encoder simultaneously.
Once the graph wavelet transform has been learned, it is then applied to the next band group, in
the analysis step within the encoder as well as in the synthesis step at the decoder. A schematic
representing the computation and usage of the graph filterbank transform is depicted in Figure 3a.

The next module is the encoder, whose first operation upon receiving an image is to partition
all but the first component into band groups. The first component is then compressed in a lossless
manner by a spatial DWT and transmitted to the decoder. Thus the first component can be used to
create the biorthogonal graph filterbank transform for the first band group. Remaining components
are partitioned in band groups and encoded sequentially. The next step involves an optional RKLT
or DWT transform across the spectral direction of the band group. This step is followed by the
application of a spatial graph wavelet transform and the resulting graph wavelet coefficients are
then quantized and coded by a plain entropy encoder. Accordingly, the module of the decoder is
composed by an entropy decoder, a dequantizer, the synthesis process of the biorthogonal graph
filterbank and the optional inverse spectral transform. The encoder and decoder modules are depicted
in Figure 3b. By introducing our integer-to-integer filters for the biorthogonal graph filterbank we
obtain a lossy-to-lossless compression scheme using graph wavelets.

It is important to note that this manuscripts aims to study graph wavelet transforms when
applied spatially to hyperspectral images. For that reason, we have followed a minimalist approach to
designing our overall compression scheme. By avoiding complex quantization or entropy encoding
stages, with complex overall interactions, we focus our efforts to the proposed graph transforms and to
measure their performance with less interference. While a more complex integration of post-transform
encoder parts would be possible, due to the adaptive nature of the biorthogonal graph filterbanks, it is
expected that these transforms perform competitively, regardless of the probabilistic characteristics of
the pre-transform data. For theoretical result on transform performance, readers can see Reference [25],
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where it is proven that the GFT optimally decorrelates images following a Gauss-Markov random
field model.

Compute graph filterbank
transform out of bipartite
graphs G1 and G2 

Construct 8-regular graph G from 
component using vertical, 
horizontal and diagonal edges

Component selected for the
computation of a biorthogonal
graph filterbank transform  

Decompose graph G into 
bipartite graphs G1 and G2 by 
applying Harary’s algorithm

G1 G2

Figure 2. Construction of the bipartite graphs out of a selected component leading to the calculation of
a graph filterbank transform.

Compute graph
wavelet transform 

Create graph Decompressed band group
N-1 of size ω

Decoder

Encoder
Band group N
of size ω

Select last component

Graph wavelet computation

(a) Computation of graph wavelet filterbank transform

Band group
of size ω

Spectral transform
(optional)

Spatial transform Quantization Entropy coding

Entropy 
decoding

DequantizationInverse spatial transform
Inverse spectral transform
(optional)

Decoded band group
of size ω

Encoder

Decoder

(b) Compression scheme
Figure 3. Schematics of the compression scheme used.

3.2. TERM factorization of GraphBior

In order for the proposed graph compression scheme, based on the biorthogonal graph filterbanks,
to develop a lossless behavior we require an appropriate transform. Specifically, an integer-to-integer
spectral graph wavelet transform. One of our solutions is to apply the TERM factorization process and
the computational scheme introduced in Reference [35] on the GraphBior transform matrix.

However, one cannot decompose any arbitrary square transform matrix through TERM.
The necessary condition in order to apply such a factorization dictates that the determinant of the
transform should be strictly equal to 1. By design the GraphBior transform is reversible, which means
that the determinant of the GraphBior analysis filter Ta ∈ R|V|×|V| is equal to an arbitrary non zero
real number d.

We scale the elements of Ta by d−1/|V|, without the loss of graph spectral information, to force
its determinant to 1. Therefore we create a new matrix T′a = Ta · d−1/|V| whose determinant is equal
to 1 and can follow the decomposition and computational scheme of Reference [35]. Applying the
TERM factorization to the transform T′a and by following the computation scheme introduced in
Reference [35] we manage to create an integer-to-integer variation of the GraphBior transform. We
shall abbreviate our proposed TERM GraphBior transform as IGB (integer GraphBior).
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This factorization procedure raises the concern for certain drawbacks, specifically if we consider
the large size of the GraphBior transform matrix. These square nonsingular matrices have as
many rows (or columns) as the total number of pixels in each hyperspectral component. Due
to its cubical computational complexity, the factorization of a GraphBior transform for an entire
component, through TERM, is computationally intensive. As a first measure we use low order
polynomials to compute the GraphBior filters. For that reason we use the GraphBior(1,1) rather than
the better performing GraphBior(5,5) transform, since the former produces a sparser transform matrix.
Additionally we split each component that is used to create the transform into smaller square tiles in
an effort to accelerate the factorization process.

3.3. Tiling

In order to alleviate the time complexity from the TERM factorization, we developed a divide and
conquer method. We initially split the component that is used to derive the graph wavelet transform
into multiple small square tiles. From each tile, we compute its corresponding GraphBior transform to
which we apply the TERM factorization. For the selection of a suitable tile size, in this subsection we
study the effect on the performance of our compression scheme with respect to the tile size. Therefore we
have experimented with IGB on our compression scheme, with no spectral transforms and using 3
different tile sizes (8 by 8, 16 by 16 and 32 by 32 square tile sizes). We tested the performance of IGB
on the hyperspectral images, listed in Table 1, that contain several hyperspectral scenes available at the
CCSDS website [36]. In Table 2 we display the entropy, in bits per pixels per component (bpppc), at
which IGB becomes lossless, while using ω = 2. We observe that the entropy where the IGB transform
becomes lossless decreases as the tile size increases. This first observation encourages us to use a larger
tiles for the lossless case. The results from Figure 4 lead to the same conclusions when testing the lossy
performance of IGB. Specifically, in Figure 4 we display the performances of IGB when using tiles of
8 by 8 and 16 by 16 pixels, relative to using larger tiles of 32 by 32 pixels. Larger tile sizes are not included
in our experiments as we are limited by the high computational complexity of the TERM decomposition.
In Figure 5 we have repeated the same experiment on other hyperspectral images. Regarding the two
AVIRIS images, due to their much larger spectral size, we have not experimented with the largest tile
option as we have done with the Landsat image. The experimental conclusions also agree with our
intuitive interpretation of the graph biorthogonal filterbanks since when using larger tiles, the graph can
exploit spatial redundancies on a bigger area of each component. This is because the graph edges that
connect adjacent nodes that belong to different tiles are not utilized. Since the number of discarded edges
rises as the tiles becomes smaller so does the performance of IGB deteriorate. Therefore it is beneficial to
keep the sizes of the tiles as large as possible but small enough to allow a fast TERM factorization. Luckily
this solution can be parallelized since we could process every tile of every component of the same group
at the same time.

Table 1. The hyperspectral images with their dimensions used in our experiments.

Name Instrument Calibrated Across-Track Along-Track Spectral Dimension

Yellowstone sc. 0 cal. AVIRIS Yes 512 512 224
Yellowstone sc. 0 raw AVIRIS No 512 512 224

Lake Monona Hyperion Yes 512 256 242
Mt. St. Helens Hyperion Yes 512 256 242

Agriculture Landsat No 512 512 6
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Table 2. Rates at which integer GraphBior (IGB) achieves a lossless compression using ω = 2 for
various tile sizes and multiple images. Units are in bpppc.

Image
IGB

Tiles of 8 by 8 Tiles of 16 by 16 Tiles of 32 by 32

Yellowstone sc. 0 cal. 7.14 6.95 -
Yellowstone sc. 0 raw 9.15 9.02 -

Lake Monona 6.40 6.31 6.26
Mt. St. Helens 6.78 6.68 6.63

Agriculture 4.39 4.27 4.21

0 1 2 3 4 5

Rate [bpppc]

-1.5

-1

-0.5

0

Mt. St. Helens

8 by 8 tiles

16 by 16 tiles

32 by 32 tiles

Figure 4. Relative rate-distortion plots for IGB, using ω = 2, when varying the tile size. Results are
relative to those of the largest tile size.

3.4. Integer-to-Integer Spectral Graph Lifting

The main disadvantage of the IGB arises from the computational complexity of the TERM
factorization step. As we have seen in the previous section although the tiling strategy reduces the
time complexity for the TERM factorization, the performance of our compression scheme decreases in
relation to the size of the tiles. For that reason we introduce a second integer-to-integer graph filterbank
transform using the spectral graph lifting filters [34].

These filters are arranged into Type 1 and 2 polyphase transform matrices (PTM) which have
an upper and lower triangular structure respectively. The final transform matrix is calculated
by multiplying alternatively Type 1 PTMs with Type 2 PTMs. One can notice that both types of
PTMs are unit triangular rectangular matrices, which means that by following the TERM filtering
process we can modify the spectral graph lifting filters into integer-to-integer transforms. Due to
their particular structure, by introducing rounding operations after applying each PTM matrix
multiplication, the transform becomes integer and reversible. We experiment with the integer-to-integer
spectral graph lifting using the quad kernel (ISGLQ) and the integer-to-integer spectral graph lifting
using the dual kernel (ISGLD) designs [41].

It should be noted that the computational complexity of this transform is comparable to the one
of the GraphBior transform and can be easily computed from an entire component without the need of
tiling operations. Specifically the computational complexity of the costlier ISGLQ is comparable to
the one of GraphBior(5,5) since the former requires a computation of a 10th and 13th degree matrix
polynomial, whereas the latter one of 10th and one of 11th. This means that by implementing the
filtering process with Chebyshev polynomials [28] one can use the same order M to approximate
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similarly well the GraphBior(5,5) as well as the ISGLQ filters resulting in a computational complexity
of O(M|E|) per filter, where E is the set of edges of the graph. By performing the appropriate
modifications, our proposed ISGLQ compresses and decompresses the calibrated AVIRIS image from
Table 1 in 4.5 min, whereas the IGB required more than 1 h to successfully perform the same action on
a computer using an Intel Core i7-7700HQ CPU and 16GB of RAM.
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16 by 16 tiles

32 by 32 tiles

Figure 5. Relative rate-distortion plots for IGB, using ω = 2, when varying the tile size, for multiple
images. Results are relative to those of the largest tile.

4. Experimental Results

In this section we describe the setting of our experiments and analyze our results. We provide
several comparisons testing the performance of our compression scheme using our proposed
transforms, in both progressive lossy-to-lossless and lossless settings. We should note that regarding
the rate computations, we compute the average of the entropies of each compressed component
instead of using any particular entropy encoder to discard any bias introduced by an entropy encoder
fine-tuned for a specific transform. All experiments have been performed using a prototype encoder
implementation in Matlab R2017b. Initially we experiment solely on spatial transforms. We compare
our proposed transforms against the GraphBior transform, with and without dividing the components
into tiles as well as the reversible 5/3 integer wavelet transform (DWT). All GraphBior transforms
are using the maximally flat GraphBior(1,1) filters. The spectral graph lifting designs are using
the maximum flatness dual (with the B7,3 Parametric-Bernstein-Polynomial for ISGLD) and quad
(with the B3,1 Parametric-Bernstein-Polynomial for ISGLQ) kernel designs without normalization
parameters [41]. We provide further comparisons between the spatial transforms by including spectral
transforms such as the Reversible Karhunen Loeve Transform (RKLT) [42] and the DWT.
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We have repeated our experiments on crops of the Aviris Yellowstone scene 00, the Hyperion
images Lake Monona and Mt. St. Helens and the Landsat Agriculture image. The dimensions of the
cropped images that have been used are displayed in Table 1. More precisely, we have discarded the
last rows and columns of each component for both Aviris as well as the Landsat scenes. Regarding the
Hyperion images we have discarded the last columns and the first 1350 and 760 rows for Lake Monona
and Mt. St. Helens respectively.

Next we explore the version of the compression scheme where we include a spectral transform
on each band group before applying the spatial transform. The graph transforms are always
computed from the luminance values of components and not the spectrally transformed results.
We experiment with the Reversible Karhunen Loeve Transform (RKLT) [42] and DWT as spectral
transforms. The spatial transforms compared in this experiment are the proposed IGB, the tiled
GraphBior, the DWT, the ISGLQ and ISGLD. In this final experiment, we also include a comparison of
our overall compression scheme with the CCSDS-123.0-B-2 standard, tuned according to Reference [19].

4.1. Parameter Variations

We first study the effect that different values of ω have on IGB, without taking into account
spectral transforms. To search for the most beneficial choices of ω to IGB we use tiles of large size.

In Figure 6 the relative rate-distortion plot displays the decrease of performance when larger
values of ω are compared against the smallest ω = 2. One can clearly conclude that it is beneficial
to choose smaller values of the parameter ω when no spectral transform is used. We repeat the
experiment with several other hyperspectral images and display the results in Figure 7. Specifically,
it is for ω = 2 that tends to lead to optimal results in all cases. This result agrees with our expectations
since components closer in the spectral dimension tend to have high correlation. Thus, the component
that has been used to create the IGB transform will capture sometimes more accurately the spatial
redundancies of its neighboring component rather than of one located further away in the spectral
dimension. Though this can lead to detrimental results for low ω values, when high quantization
occurs. As we can see from Figures 6 and 7c,d at low rates, larger parameters ω outperform lower ones.

0 1 2 3 4 5

Rate [bpppc]

-0.4

-0.3

-0.2

-0.1

0

0.1

Mt. St. Helens

Figure 6. Relative rate-distortion plot for IGB using tiles of 16 by 16 when varying ω. The reference
curve coincides with tuning the parameter ω = 2.

This could be explained by high quantization, when the surviving features preserved in a
decompressed component are general enough to construct a graph that represents sufficiently well a
larger number of components. Furthermore, the smaller the parameter ω, the higher the probability
of outlier components (ones that do not share high correlation with neighboring components such



Remote Sens. 2019, 11, 2290 11 of 18

as dead bands) to be used for the graph creation, which may result in poor reconstruction results of
components of an entire band group.

From Table 3 we also observe that the entropy where the compression scheme using the IGB
transform becomes lossless, increases with ω. This explains why at high rates, higher ω values
can be seen to sometimes perform better. This is also noticeable in classical reversible integer
wavelet transforms. Their rate distortion curves tend to plateau close to the bitrate at which they
achieve a reversible compression. As a result, sometimes, they are surpassed by the distortion curves
corresponding to methods that become reversible at higher bitrates (since they still continue to grow
with a higher gradient).

Table 3. Rates at which IGB achieves a lossless compression for different values of ω. The tiles size
is set to 16 by 16. The spectral size of the hyperspectral image should be a multiple of ω, resulting in
empty cells. Units are in bpppc.

Image
IGB

ω = 2 ω = 3 ω = 8 ω = 11 ω = 14 ω = 16 ω = 22

Yellowstone sc. 0 cal. 6.95 7.00 7.06 7.14
Yellowstone sc. 0 raw 9.02 9.06 9.14 9.15

Lake Monona 6.31 6.36 6.37
Mt. St. Helens 6.68 6.75 6.75

Agriculture 4.27 4.39
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Figure 7. Relative rate-distortion plots for IGB using tiles of 16 by 16 when varying the parameter ω

for multiple images. Results are relative to those of smallest value of ω.
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4.2. Spatial Transformations

Adopting our previous findings regarding the parameter ω as well as the size of the tiles,
we compare our proposed reversible transforms against the DWT and the GraphBior with and without
using tiles. All transforms are applied spatially whereas spectral transforms are not included in the
subsequent experiments. It should be noted that all spatial transforms are tested using the compression
scheme introduced in Section 3.

For this experiment, the rate-distortion plot, as well as the relative rate-distortion plot using the
DWT transform as reference can be observed in Figure 8a,b respectively. From the rate-distortion plots
of Figure 8 we observe that the ISGLQ performs the best for low and medium rates, whereas GraphBior
provides the best results for high rates. It is important to mention, though, that in most cases IGB
slightly outperforms the DWT as well as the ISGLD at low rates. Moreover, although in general, tiled
GraphBior outperforms IGB, at low rates, both perform similarly. This same behavior is also observed
between classical discrete wavelet transforms and their reversible counterparts. Given the previous
observation and since the results of IGB improve as the tile size increases, one could speculate that a
IGB that does not use any tiles would perform similarly to GraphBior for low rates. This experiment
has been repeated on different hyperspectral scenes and the results can be observed in Figure 9.

In Table 4 we can see the rates at which the IGB, DWT, ISGLQ and ISGLD achieve a lossless
compression. We also observe that in most cases the entropy where IGB achieves a lossless compression
is the lowest.
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(a) Relative rate-distortion plot with
respect to DWT.
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(b) Rate-distortion plot.
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Figure 8. Comparison of spatial transforms. Tiles of 16 by 16 and ω = 2 were used.

Table 4. Rates at which each integer transform achieves a lossless compression. No spectral transform
is used. The parameter ω is set to 2. The IGB transform uses tiles of 16 by 16 for the Yellowstone images
and 32 by 32 for Lake Monona, Mt. St. Helens and Agriculture. Units are in bpppc.

Image
Transform

IGB DWT ISGLD ISGLQ

Yellowstone sc. 0 cal. 6.95 7.29 7.44 7.11
Yellowstone sc. 0 raw 9.02 9.32 9.47 9.19

Lake Monona 6.26 6.23 6.50 6.28
Mt. St. Helens 6.63 6.57 6.93 6.67

Agriculture 4.21 4.37 4.67 4.37
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Figure 9. Relative rate-distortion plots comparing spatial transforms using ω = 2 for multiple images.
Results are relative to DWT. The tiles sizes are 16 by 16 for the Yellowstone sc. 0 raw image and 32 by
32 for the rest.

4.3. Spectral and Spatial Transformations

Our comparisons on strictly spatial transforms are ensued by experiments that include the
DWT and the RKLT as spectral transforms, in the compression scheme mentioned in Section 3.
Succeeding the spectral transform, we then compare our proposed reversible transforms against the
DWT and the tiled GraphBior applied in the spatial dimension of the hyperspectral images. Our overall
compression scheme including classical spectral and graph spatial transforms is also compared against
the CCSDS-123.0-B-2 standard.

In Figure 10a,b we present the rate-distortion plot as well as the relative rate-distortion plot.
The results are relative to applying a spectral RKLT along the entire hyperspectral image, followed by
a spatial DWT.

Regarding the comparison between the transforms used in our compression scheme, we observe
that a spectral RKLT followed by the proposed ISGLQ or ISGLD transforms perform the best.
Several additional comparisons are done on multiple hyperspectral images and from our results
in Figure 11 we observe that the spectral RKLT and the spatial ISGLQ systematically outperforms the
spectral RKLT and spatial DWT, mostly at medium to high rates. The spectral RKLT and spatial ISGLD,
also, usually surpasses the reference method but provides less important results when compared to
using the spatial ISGLQ instead. On the other hand the spectral RKLT and the spatial IGB is almost
always providing worse results when compared to the spectral RKLT and the spatial DWT.

Our conclusions from the comparison of the spatial transforms done in Section 4.2 are also evident
in our current experiment. Regardless of the spectral transform, the spatial IGB coincides with the
spatial tiled GraphBior for low entropy values. When we apply DWT as a spectral transform, out of
the spatial transforms, the ISGLQ performs the best followed mostly by the DWT and the ISGLD.
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From Table 5, we observe that mostly the spectral RKLT and the spatial DWT achieve a lossless
compression at lower rates. Only in the case of the Hyperion images (Lake Monona and Mt. St. Helens)
the spectral RKLT followed by the spatial ISGLQ performs better.

When comparing the compression efficiency of the latest CCSDS-123.0-B-2 standard against our
overall proposed compression scheme, we observe the usual pattern where transform-based methods
tend to perform better at lower rates while the CCSDS standard yields better results at mid to high
rates. In Figures 10 and 11, a spectral RKLT followed by a spatial DWT often outperforms CCSDS
for low rates. Furthermore, CCSDS results are also improved by the proposed compression scheme
using a spectral RKLT and a spatial ISGLQ for low-rate results in Figure 11a,b. In the mid to high rate
regions, the CCSDS standard clearly outperforms all transform-based methods. In addition, for pure
lossless compression, the CCSDS standard consistently achieves best results (Table 5). It should be
noted though that the CCSDS standard is a highly refined method, whereas the proposed compression
scheme here presented is mainly designed to compare the graph transforms. Thus, it lacks many of the
techniques that the CCSDS standard incorporates, such as quantization enhancements, noise tolerance
or entropy encoding with adaptive statistics.
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Figure 10. Comparison of spectral + spatial transforms. Tiles of 16 by 16 and ω = 11 was used.
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Table 5. Rates at which each of the integer transforms achieves a lossless compression. RKLT and
DWT are used as spectral transforms. For the methods that use tiles, their size has been set to 16 by 16.
The Yellowstone images are evaluated at ω = 8, the Lake Monona and Mt. St. Helens are evaluated at
ω = 11 and the Agriculture image is evaluated at ω = 3. For each column, the spectral transform is
mentioned first followed by the spatial transform (spectral transform + spatial transform). Units are
in bpppc.

Image
Transforms

CCSDS
DWT + IGB RKLT + IGB DWT + DWT DWT + ISGLD DWT + ISGLQ RKLT + DWT RKLT + ISGLD RKLT + ISGLQ

Yellowstone sc. 0 cal. 5.03 4.41 4.73 5.36 5.05 3.74 4.65 4.36 4.04
Yellowstone sc. 0 raw 7.17 6.47 6.97 7.54 7.25 5.93 6.72 6.44 6.19

Lake Monona 6.69 6.19 6.56 6.89 6.66 6.35 6.34 6.13 6.10
Mt. St. Helens 7.06 6.52 6.90 7.32 7.05 6.58 6.71 6.47 6.37

Agriculture 4.21 3.96 3.96 4.63 4.34 3.68 4.37 4.08 3.62

0 0.5 1 1.5 2 2.5

Rate [bpppc]

-20

-15

-10

-5

0

5

(a) Yellowstone sc. 0 cal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Rate [bpppc]

-15

-10

-5

0

5

(b) Yellowstone sc. 0 raw

0 1 2 3 4 5

Rate [bpppc]

-4

-2

0

2

4

6

8

(c) Mt. St. Helens

0 0.5 1 1.5 2 2.5

Rate [bpppc]

-20

-15

-10

-5

0

5

(d) Agriculture

DWT + IGB

RKLT + IGB

DWT + Tiled GraphBior

RKLT + Tiled GraphBior

DWT + DWT

RKLT + DWT

DWT + ISGL
D

RKLT + ISGL
D

DWT + ISGL
Q

RKLT + ISGL
Q

CCSDS

Figure 11. Relative rate-distortion plots comparing spectral + spatial transforms for multiple images.
Results are relative to the spectral RKLT followed by the spatial DWT. Tiles of 16 by 16 were used.
The parameter ω is set to 8 for Yellowstone sc. 0 cal., to 11 for Mt. St. Helens and to 3 for Agriculture.

5. Conclusions

In this paper we study the suitability of graph transforms for lossy-to-lossless hyperspectral
compression. The adopted compression scheme organizes the components into packets, called band
groups and transforms each one of them through graph wavelet filterbanks. We introduce two spatial,
integer-to-integer, biorthogonal graph filterbank transforms. The first transform is calculated by
applying a TERM factorization on the GraphBior filterbank, whereas the second one is designed
by modifying the spectral graph lifting transform [34]. The high computational complexity of the
TERM decomposition is addressed and is solved through processing the GraphBior transform in tiles.
Our theoretical interpretations as well as our experimental results show that it is advantageous to use
larger tiles and give us valuable insight about the choice of sizes of band groups. Our experiments
without spectral transformations suggest that it is preferable to use small band groups, while our
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integer-to-integer transforms outperform the DWT in the lossy regime. Further-more we show that
one of our integer transforms performs similarly to the DWT for the case of lossless compression.
Additional experimental results including spectral transforms on each bandgroup show that our
proposition improves on the results obtained by using the spectral RKLT along all the spectral
dimension of the hyperspectral image followed by the spatial DWT in the lossy setting, as well
as, in some cases, at the lossless one.
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ABSTRACT

Biorthogonal graph wavelet filterbanks, also known as GraphBior,
are one of the most popular graph transforms used in image com-
pression, but up to now, they could be designed based on two known
admissible fundamental matrices: i) the random walk Laplacian,
which heavily penalizes low degree pixels, and ii) the normalized
Laplacian, which lacks a zero-DC response. By exploiting a new
extension of the admissibility condition in GraphBior we propose
a new fundamental matrix with the goal of distributing the errors of
GraphBior more uniformly across pixels with different node degrees.
Furthermore the proposed matrix preserves high energy compaction
linked to the zero-DC GraphBior variation.

Index Terms— graph signal processing, biorthogonal filter-
banks, image compression, graph Fourier transform, irregularity-
aware graph Fourier transforms

1. INTRODUCTION

Graph structures can be used to represent data on irregular domains
[1, 2] while graph signal processing extends concepts from classical
signal processing to the graph domain. As an example, in analogy
to classical wavelet filterbanks, a family of graph filterbanks have
been proposed and applied to design image compression transforms
[1, 3, 4, 5, 6, 7]. One such transform is the biorthogonal graph filter-
bank (GraphBior) [8]. GraphBior was proposed as an extension of
the orthogonal graph filterbanks [9] by improving their spectral lo-
calization through the computation of polynomial filters of the nor-
malized Laplacian matrix. However, a drawback of the normalized
Laplacian is its non zero-DC property [8], i.e., its lowest frequency
signal is not a constant signal, which may affect its performance
negatively in the context of image compression. In order to rectify
this problem, a zero-DC GraphBior transform was proposed, where
each signal entry is scaled by a different factor (dependent on node
degree) before applying the analysis filters [8]. This pre-processing
is reversed after the signal is reconstructed with the synthesis fil-
terbank. This procedure has been shown to be equivalent to defining
GraphBior filters as polynomials of the random walk Laplacian [10].

By replacing the normalized Laplacian with the random walk
Laplacian in GraphBior, a significant gain in compression is ob-
served, mainly due to superior energy compaction. Although there
is a clear benefit in using the zero-DC GraphBior design, the random

Author email:dion.tzamarias@uab.cat This work was supported in part
by the Spanish Ministry of Economy and Competitiveness (MINECO) and by
the European Regional Development Fund (FEDER) under grant RTI2018-
095287-B-I00, and by the Catalan Government under grant 2017SGR-463.

(a) (b)

(c) (d)

Fig. 1: Reconstruction of Coins at 27.27dB using: (a) Normalized,
(b) Random Walk Laplacian, (c) visualization of degrees of Coins,
and (d) original coin image. The graph is constructed so that weights
are smaller in high gradient regions to avoid smoothing image edges.

walk Laplacian also introduces some drawbacks. For example, com-
pared to the normalized Lapliacian, as noted in [8] and illustrated
by Figs. 1a and 1b, the random walk Laplacian filterbank produces
accumulation of large errors in high gradient areas of images in an
image compression application. Although the overall reconstructed
image distortion is equal in both cases, one can clearly see that the
details on the edges and faces of the coins are less visible in the case
of the zero-DC GraphBior while the smooth background is more ac-
curate. To tackle this problem, an edge aware design was proposed
such that filtering would be restricted across boundaries [11]. This
procedure alleviates this particular drawback of the zero-DC Graph-
Bior, but does not identify or solve the root cause.

The eigenvectors of the random walk Laplacian are orthogonal
with respect to the degree inner product, defined for any two vectors
x and y as y>Dx, where D is the degree matrix [12]. Recently,
[10] shows that the zero DC GraphBior filterbanks are also approxi-
mately orthogonal in the degree inner product and not just biorthog-
onal. This explains how the reconstruction errors in the zero DC
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GraphBior concentrate near strong edges, while the non-zero DC
GraphBior penalizes uniformly each pixel. In the zero DC case, the
error near strong edges is given lower weight (because the degree is
smaller as depicted in Fig. 1c), therefore reconstruction errors can
be greater in those areas, and lower elsewhere.

The authors in [10] generalize the admissibility condition of
the fundamental matrices that can be used in GraphBior, leading
to biorthogonal graph filterbanks that are approximately orthogonal
with respect to different inner products. In this paper we propose a
novel graph variation operator MK = K−1/2LK−1/2, where K is
a diagonal matrix with positive entries, and L is the combinatorial
Laplacian. We exploit the admissibility condition in [10] to con-
struct a fundamental matrix that can replace the normalized or ran-
dom walk Laplacians in GraphBior. By appropriately optimizing the
diagonal modification matrix K, the resulting GraphBior filterbanks
are approximately orthogonal with respect to a new inner product.
Such an inner product and the proposed variation operator aim to
balance the trade-off between energy compaction and degree-error
distribution. Several experiments are conducted demonstrating this
effect, in the context of image compression, by reporting an average
increase in PSNR of up to 0.6 dB at low degree nodes for a small
penalty in total PSNR and rate.

This paper is structured as follows. In Section 2, we review
the GraphBior filterbanks. In Section 3 we introduced our proposed
approach. Sections 4 and 5 provide our main experimental results
and conclusions, respectively.

2. BIORTHOGONAL GRAPH FILTERBANKS

2.1. Graph frequency definition

An undirected graph G = (V,E) is composed of a set of vertices
V of cardinality |V | = N that are connected through a set of edges
E. The weighted graph edges are described through the symmet-
ric adjacency matrix A ∈ RN×N with elements aij referring to the
edge weight that connects node i to node j. The diagonal degree
matrix D = diag(d1, d2, ..., dN ) describes the sum of the weighted
edges incident to each node, with dj =

∑
i∈V aji. Through a graph

variation operator M, one can measure the frequency content of a
signal f ∈ RN on the graph. Two well known graph variation oper-
ators are the combinatorial Laplacian matrix, L = D −A, and the
normalized Laplacian, L = D−

1
2LD−

1
2 .

For a positive definite matrix Q we define the Q inner product as
〈x,y, 〉Q = y>Qx, and the Q-norm of x as ‖x‖Q =

√
〈x,y, 〉Q.

Given a graph variation operator M and a Hermitian positive definite
matrix Q, the (M,Q)-Graph Fourier Transform (GFT) is defined as
F = U>Q and its inverse as F−1 = U, where U is the generalized
eigenvector matrix (whose columns are the (M,Q)-Graph Fourier
modes) of the fundamental matrix Z = Q−1M [12]. The eigen-
values of the fundamental matrix correspond the the frequency of
each graph Fourier mode. It is important to note that the (M,Q)-
graph Fourier modes form an orthonormal basis with respect to the
Q-inner product.

2.2. Graph Filterbanks

The GraphBior transform can be seen as a design based on the
(L, I)-GFT, where filters are polynomials of the normalized Lapla-
cian L. In [10], it is shown that the normalization procedure that is
carried out in the zero-DC GraphBior is equivalent to replacing L
by the random walk Laplacian LRW = D−1L as the fundamental
matrix to construct the filters. Thus, the (L, I)-GFT is replaced by

the (L,D)-GFT. The DC signal corresponds then to the eigenvector
of LRW with the smallest eigenvalue λ0 = 0, so that the random
walk Laplacian GraphBior has the zero-DC property.

For GraphBior to achieve perfect reconstruction (PR), the graph
Fourier modes must obey the spectral folding property [9]. Recently,
the spectral folding property has been generalized to GFTs beyond
(L, I) and (L,D)-GFTs, allowing new fundamental matrices other
than L and LRW to be used in GraphBior [10]. Specifically, for
a given bipartite graph and variation operator M a general admis-
sible GFT with spectral folding can be designed for a choice of Q
according to the following theorem [10]:

Theorem 1. Given a positive semidefinite variation operator M
and a positive definite inner product matrix Q, defined on a bipar-
tite graph, the spectral folding condition holds for the modes of the
(M,Q)-GFT if Q = diag(diag(M)).

Thus, we are free to choose any variation operator to compute
the GraphBior filters, as long as the definition of the Q inner product
follows the theorem. As a result many new GraphBior variations can
be introduced besides the non-zero and zero-DC types.

3. PROPOSED DESIGN

3.1. Z-GraphBior

We call Z-GraphBior, a biorthogonal graph filterbank whose fil-
ters are computed through polynomials of the Z = Q−1M fun-
damental matrix, when M and Q are chosen according to Theo-
rem 1. When an admissible (M,Q)-GFT is used in GraphBior,
the corresponding analysis and synthesis filters are approximately
orthogonal with respect to the Q-inner product [10]. A linear op-
erator T is Q-orthogonal when it preserves the Q-norm of signals,
that is ||Tx||Q = ||x||Q. In the case of GraphBior the analysis
and synthesis filters are approximately Q-orthogonal, meaning that
||Tx||Q ≈ ||x||Q. The zero-DC GraphBior uses the (L,D)-GFT
and therefore the analysis and synthesis filters are approximately or-
thogonal with respect to the D-inner product. This observation jus-
tifies the large accumulation of errors at nodes with low degree when
the zero-DC GraphBior is used in image compression applications.

In order to rectify this unwanted behavior of the zero-DC Graph-
Bior, we would like to choose an admissible (M,Q)-GFT whose
inner product is close to the one of (L, I)-GFT (the identity ma-
trix) without diverging too much from the zero-DC property of the
(L,D)-GFT. We propose the variation operator

MK = K−1/2LK−1/2 = K−1/2DK−1/2 −K−1/2AK−1/2,

where K is a diagonal positive definite matrix. Following Theorem
1, its admissible inner product matrix is

QK = diag(diag(M)) = K−1/2DK−1/2.

Thus the proposed fundamental matrix that can be used in place of
L or LRW in GraphBior is

ZK = I−K1/2D−1AK−1/2.

Note that K1/2
1 is the lowest frequency graph Fourier mode. By

modifying K our proposed (MK ,QK)-GFT achieves a tradeoff be-
tween (L, I) and (L,D)-GFTs. Thus, if K ≈ D our proposed
variation operator resembles the normalized Laplacian leading to the
(L, I)-GFT. On the other hand when K ≈ I, the variation operator
is closer to the Combinatorial Laplacian leading to the (L,D)-GFT.
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3.2. Optimization of K

In order to improve the tradeoff between the (L, I) and (L,D)-
GFTs we define an optimization function C(k). The vector k0 that
minimizes C(k) will be used to define the desired (MK ,QK)-GFT
and therefore ZK . Note that we assume that the graph structure and
the combinatorial Laplacian are known, and we only seek to learn
the vector k. Our objective function C(k) is defined as:

C(k) = (k>)1/2Lk1/2 + α‖Dk−1 − 1‖22, (1)

where the non negative α ∈ R+ is a learning parameter, and k =
diag(K). By adjusting the value of α we are able to control how
close to L or LRW our fundamental matrix ZK will become.

The first term in (1), (k>)1/2Lk1/2, is the variation of k1/2 with
respect to L (i.e., the Laplacian quadratic form of k1/2). Since k1/2

corresponds to the lowest frequency eigenvector for the (MK ,QK)-
GFT, and given that 1>L1 = 0, this first term favors solutions
with the lowest frequency for (MK ,QK)-GFT close to the DC
signal. This is justified because, as noted in our discussion of the
LRW -GraphBior vs L-GraphBior trade-off, zero frequency close to
1 leads to better energy compaction for typical images.

The second term in (1), expresses the squared Euclidean distance
between the diagonal elements of the identity and the QK -inner
product matrix. Minimizing this distance allows QK to approach
I. This translates in the filters of the ZK -GraphBior to become close
to orthogonal with respect to the identity-inner product, rather than
the degree-inner product. Consequentially the ZK -GraphBior al-
leviates the degree-sensitive distribution of errors that hinders the
LRW -GraphBior. By incorporating those two terms in an optimiza-
tion problem we are able to calculate the desired matrix K such that
the resulting fundamental matrix ZK achieves a tradeoff controlled
by α between desired properties of LRW and L.

To solve the proposed optimization problem we apply a change
of variable x = k1/2 and transform the cost function to:

C(x) = xTLx+ α‖Dx−2 − 1‖22.

The convexity ofC(x) is guaranteed if the Hessian of the second
term, H(‖Dx−2 − 1‖22), is positive semidefinite, since xTLx is
convex. Given that d = D1 as well as x are composed by positive
elements, by imposing the restriction that x ≤

√
(5/3)d we assure

that all the elements of the diagonal matrix H(‖Dx−2 − 1‖22) are
non negative. Thus the convex optimization problem that we propose
for the computation of x becomes:

argmin
x

C(x), s.t. 0 < x ≤
√

(5/3)d.

4. COMPRESSION EXPERIMENTS

In this section we describe the GraphBior image compression
scheme. Next, we present the experimental settings and our nu-
merical results.

4.1. Compression scheme

We follow the compression scheme presented in [5], using a 2D sep-
arable 2-channel implementation of GraphBior. The two bipartite
graphs that are used can be seen in Figures 2a and 2b, connecting
nodes in a vertical-horizontal or diagonal manner respectively. In
order for the graph structures to be efficiently transmitted to the de-
coder we adopt an edge-aware graph design [11] such that non-zero
edges of the graphs take one of two possible values.

(a) (b)

Fig. 2: Bipartite graphs connecting nodes through: (a) vertical-
horizontal edges, and (b) diagonal edges

Image Experiment α1 α2 min. weight

peppers 1 2.86 4 · 10−4 0.1
Barbara 1 4.32 5.4 · 103 0.23
peppers 2 3.48 3.48 · 10−8 10−3

Table 1: Table of parameters used in the first and second exper-
iments.Fundamental matrices ZK1and ZK2 are computed through
learning parameters α1 and α2 respectively. The edge-aware graph
uses as a minimum weight the values indicated in the last column.

The high valued edge weight is equal to 1 whereas a lower value
is assigned to weaker edges. The low value weight is reserved for
pixels that are connected across high gradient areas of the image.
These areas are found through the Sobel edge detection algorithm.
Then the pairs of nodes connected through low weighted edges can
be expressed as image contours which are then encoded through an
arithmetic edge encoder [13]. In all of our experiments we use 5-
levels of GraphBior and the quantized analysis coefficients are then
encoded through a standard adaptive arithmetic encoder.

The complexity of the optimization procedure is dominated by
the computation of Lx. For the case of 4-connected graphs of N
nodes, like the ones used in this paper, the Laplacian matrix is sparse
with O(N) non-zero elements [14]. Therefore, since the tree filter-
bank has at most O(log(N)) levels we can deduce that the overall
complexity of the optimization problem is O(N).

4.2. Results

Based on the aforementioned compression scheme we compare the
results obtained using the proposed fundamental matrix ZK for var-
ious learning parameters α to those achieved with L and LRW . An
advantage of the ZK -GraphBior is that we control the trade-off be-
tween a zero-DC response and a uniform error distribution. To study
this trade-off, we measure both the total reconstruction distortion
and the distortion at low degree nodes (corresponding to high gradi-
ent pixels). In the following experiments we create the graphs and
calculate the fundamental matrices ZK using the empirically chosen
parameters according to Table 1.

In our first experiment we compare the L, LRW and ZK -
GraphBiors through the Bjontegaard metric [15]. We use two
versions of our proposed fundamental matrix, ZK1 and ZK2, each
one for a different learning parameter α. Specifically, ZK1 has been
computed by choosing α = α1 such that the the norm term in (1)
is penalized the most. This results in QK1 resembling more to the
identity matrix, rather than the degree matrix. Thus we expect the
ZK1-GraphBior to penalize less harshly the low degree nodes for the
cost of an overall lower energy compaction. Conversely by penaliz-
ing more the Laplacian quadratic term of C(x) using α = α2 < α1,
the ZK2-GraphBior achieves better energy compaction.
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Peppers L ZK1 ZK2 LRW

Total PSNR -2.005 -0.282 -0.024 0
Edge PSNR -0.509 0.614 0.161 0

Rate(%) 36.51 4.854 0.377 0

Barbara L ZK1 ZK2 LRW

Total PSNR -1.292 -0.132 -0.028 0
Edge PSNR -0.332 0.507 0.115 0

Rate(%) 11.317 1.158 0.245 0

Table 2: Table of Bjontegaard measurements comparing the Graph-
Bior variations using L and the proposed ZK1, ZK2 against LRW .
The comparisons are done using images peppers and Barbara

For each GraphBior variation we carry out a series of measure-
ments by compressing the images peppers and Barbara for multiple
bitrates. At each measurement, besides the bitrate, we also measure
the total PSNR of the reconstructed image as well as its edge-PSNR.
By edge-PSNR we refer to the distortion on edge pixels, i.e., pixels
having at least 2 weak edge connections in at least one of the two
bipartite graphs.

In Table 2 we report the Bjontegaard measurements comparing
the L, ZK1 and ZK2-GraphBior against the LRW -GraphBior. In
the first line we compare the difference in PSNR for all the pixels
of the image, the second line the edge-PSNR and the last line the
difference percentage in rate.

We observe that the best performing GraphBior, in terms of both
rate and total PSNR, uses the random walk Laplacian LRW . This is
expected since it has a superior energy compaction due to its zero-
DC property. However, when comparing the edge-distortion we note
that it is ZK1 that performs the best. We also note that since ZK2

is closer to LRW it outperforms ZK1 at rate and total PSNR but not
edge-PSNR. Furthermore the difference between ZK2 and LRW is
very small when regarding the bitrate and total distortion. The rate
distortion plot of these GraphBior variations are depicted in Figure 3.

The next experiment compares the distribution of errors as a
function of the degree of each node. For each fundamental matrix
we compress peppers such that the reconstructed image has a distor-
tion of approximately 35.9dB. Obviously the bitrate of each of those
compressed images is not the same. In Figures 4a and 4b we display
the average of the absolute value of the errors of the nodes in func-
tion of their degree for the diagonal-edge and vertical-horizontal-
edge graphs respectively. For the edge-aware graph design, the min-
imum edge weight has been set to 10−3. Thus the low-edge nodes
have a degree that is lower or equal to 2.002. We can clearly see
that low-degree nodes are best reconstructed by the L-GraphBior
whereas the LRW -GraphBior distorts them the most. For higher
degree nodes, the difference in average error between the zero and
non zero-DC GraphBiors becomes smaller. Meanwhile the proposed
ZK2-GraphBior and (even more so) the ZK1-GraphBior penalize
less the low degree nodes when compared to LRW -GraphBior.

5. CONCLUSION

It is known that the main disadvantage of the LRW -GraphBior used
in image compression, is related to the accumulation of large errors
at low degree nodes. Though, due its zero-DC response, the LRW -
GraphBior is linked to a large energy compaction property, which is
very useful in image compression. In this paper we propose a new
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Fig. 3: Rate Distortion curves for Peppers (a) Total Distortion, (b)
Edge-Distortion and Barbara (c) Total Distortion and (d) Edge-
Distortion
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Fig. 4: Average absolute value of node error with a 95% confi-
dence interval versus degree for (a) Diagonal-edge graph (b) vertical-
horizontal-edge graph. The peppers image was used and each recon-
struction had a total PSNR of approximately 35.9dB

variation operator as well as an inner-product matrix which depend
on a diagonal positive definite matrix K. The proposed variation
operator and the inner-product matrix are such that the resulting fun-
damental matrix ZK obeys to the spectral folding property required
from GraphBior. By defining a learning parameter α and solving
a convex optimization problem we learn the matrix K, such that
the ZK -GraphBior penalizes in more evenly manner low and high
degree nodes without deviating too much from the zero-DC char-
acteristic of the LRW -GraphBior. In our experimental results we
show that by choosing the appropriate learning parameter the result-
ing ZK -GraphBior outperforms the LRW -GraphBior when compar-
ing the distortion of low degree nodes without penalizing much the
global distortion. Our design can find useful applications in image
compression when one might require less distortion on high gradient
areas of the image.
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Abstract

Point cloud data have been put under the spotlight by many applications that play an
increasingly important role in our every day lives. Their large size and ever-growing preva-
lent use cases have raised the interest in specialized compression algorithms for point cloud
data. In this paper we propose a lossless intra-frame encoder for point cloud geometry. It
relies on a single projection of the entire point cloud on a predetermined plane, combined
with a context-adaptive binary arithmetic encoder. Our approach simplifies the current
best performing approach for intra-frame compression. The experimental results indicate
that our proposal not only improves the performance of all other intra-frame approaches,
but it even surpasses the performance of state-of-the-art inter-frame approaches. Further-
more, we suggest to replace the adaptive encoder with a semi-adaptive approach for further
performance gains.

Introduction

Point cloud data permit the digital representation of objects and sceneries in their
three-dimensional form through registering the coordinates and attributes of a collec-
tion of points. Advances in 3D scanning technologies have facilitated the acquisition
of such data, making way for numerous applications of emerging importance. Some
applications utilizing point clouds are Virtual/Augmented-Reality, automated driv-
ing, telecommunications, world heritage preservation, etcetera [1].

In order to facilitate the processing of point clouds, a quantization procedure of
the point coordinates often follows after their acquisition, mapping each point to an
occupied unitary volume in a regular cubic grid. Each unitary volume of the cubic
grid is called voxel, whereas the quantized point clouds are referred to as voxelized.

Typically, point clouds may consist of hundreds of thousands of points. Given this
huge size, compression of such data is of paramount importance to enable the afore-
mentioned applications. The compression of parameters such as colour, reflectibility
or normals of the points is accomplished through attribute compression, whereas the
compression of the coordinates of the points is referred to as geometry compression.
As opposed to static point clouds, the dynamic point clouds vary over time. There-
fore, similarly to 2D video encoders, dynamic point clouds can be compressed by inter
or intra coders depending on whether they do or do not exploit temporal redundan-
cies. Moreover, analogously to video encoders, the attribute or geometry compression
of point clouds can be achieved in a lossy or a lossless manner.
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In this paper we propose an intra frame lossless geometry compression algorithm
for voxelized point clouds. We do so by improving over the currently best performing
intra frame encoder [2], exploiting the tradeoff between the transmission of silhouettes
and the cost of encoding non-occupied voxels. We then report experimental results
for the geometry compression of point cloud sequences, showing that the proposed
method outperforms state-of-the-art lossless geometry compression approaches.

The organization of the paper is as follows. In the next section we provide a
description of state-of-the-art geometry compression algorithms for voxelized point
clouds. In the third section we describe the design of the proposed encoder and provide
experimental results, illustrating the competitive performance of our approach. In the
fourth section we provide a detailed analysis of on-going studies, unveiling possible
gains related to the use of semi-adaptive arithmetic encoders. Finally, we bring
forward our conclusions in the last section.

State of the art

An increase in the popularity of point cloud based applications has triggered the de-
velopment of many different algorithms that enable the lossless geometry compression
of this particular type of data.

One of the most common approaches for geometry compression relies on the octree
decomposition [3]. An octree is created by confining the voxelized point cloud in a
single cube, which is then iteratively subdivided into 8 smaller equally sized cubes
called octants. Each octant is further subdivided, under the condition of it containing
at least one occupied voxel. Therefore, each level of decomposition is characterized
as a byte with 1s at the locations that contain occupied voxels.

By combining entropy encoders with the octree representation, the compression
ratio of such lossless methods improves significantly [4]. One such example introduces
arithmetic or LZW coders, with contexts relating to the parents of each octant [5].
An improvement of the prior method was proposed in [6], which also included an
inter-frame variant and used a super-resolution technique similar to [7]. Other inter-
frame approaches change the scanning order in the octree using a reference frame [8]
or exploit the temporal redundancies of point cloud frames through the XOR opera-
tor [9].

The MPEG standard for intra-frame geometry compression, usually referred to as
G-PCC, is also based on the entropy encoding of an octree representation [1]. On the
other hand, the inter-frame variant of MPEG, known as V-PCC, makes use of 3D to
2D projections in order to apply standard video codecs such as HEVC [1]. Another
projection approach proposes a polynomial surface fitting algorithm to improve the
performance of V-PCC [10].

In addition to the V-PCC encoder, there are many different approaches to the
octree representation that also facilitate the geometry compression of point cloud
data. In [11], Zhu et al. use a binary tree structure to model the problem of optimally
traversing through all occupied voxels as a traveling salesperson problem and use
a predictive approach to encode the residual distances between the coordinates of
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successive points. Other geometry encoders are based on cellular automata block
transforms where each voxel is seen as an automaton whose state evolves in function
of the values of neighboring voxels [12], [13].

Recently, a new class of geometry encoders represent the voxelized point cloud
using a three dimensional binary matrixG(x, y, z) ∈ ZN×N×N

2 , called occupancy array.
Elements of the occupancy array that share common coordinates with occupied voxels
are represented by 1s, whereas the empty voxels are represented as 0s. Each N ×N
slice of the 3D matrix that is perpendicular to one of the x, y or z-axis is called
an image. The family of aforementioned geometry coders compress the occupancy
array by encoding each image through context-adaptive binary arithmetic encoders
while the number of non-occupied voxels that are encoded is reduced through various
decompositions.

In [14], Rosário and Peixoto encode an occupancy array through a 2D context-
adaptive binary arithmetic encoder, similar to JBIG. A reduction of the encoded
empty voxels is achieved thanks to their proposed boolean decomposition, performed
by a series of logical operations on pairs of adjacent images of the occupancy array.

A dyadic decomposition is later introduced by Peixoto for the compression of
the occupancy array [2]. In this decomposition, the occupancy array is iteratively
sliced into two equally sized subvolumes along a predetermined axis. Each time a
new subvolume is generated, an N ×N binary image –called silhouette– is computed
by projecting each subvolume on the plain perpendicular to the slicing axis. This
way, a series of parent and children silhouettes is defined. The purpose of the silhou-
ettes is to signal, with increasing precision, the location of non-occupied voxels for
a group of adjacent images. Notice that a value of 0 at a location of the silhouette
means that none of the images linked to the silhouette has a non-empty voxel at
that specific location. Through logical operations between parent and children sil-
houettes, the dyadic decomposition reduces the number of 1s of each silhouette that
need to be transmitted to the decoder. By additionally introducing 3D contexts, this
technique improves the results of the boolean decomposition and, to the best of our
knowledge, contributes the most competitive results regarding intra-frame geometry
encoders. An inter-frame variant using the dyadic decomposition has been recently
proposed [15], employing 4D contexts, i.e., also exploiting the temporal redundancy;
it further improves the performance of geometry encoding.

Single-silhouette projection

Our proposed lossless intra-frame geometry compression algorithm for point cloud
data is inspired by the intra-frame geometry encoder using the dyadic decomposi-
tion [2]. The performance of occupancy array-type encoders is based on the tradeoff
between increasing side information and reducing the number of non-occupied voxels
that are transmitted to the decoder. As mentioned in the preceding section, the re-
duction of the transmitted non-occupied voxels can be accomplished through various
decompositions. In the case of the dyadic decomposition, this is achieved through a
series of silhouettes that signal, with increasing precision, the location of non-occupied
voxels to the decoder.
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(a) (b) (c)

Figure 1: Contexts used to encode pixel v. In (a), 2D contexts used on the projection
matrix. In (b) and (c), voxels of, respectively, the current image and the previous image
form the 3D contexts.

(a) (b) (c) (d) (e)

Figure 2: Depiction of single frames from the Microsoft upper body database from the
sequences (a) Andrew, (b) David, (c) Phil, (d) Ricardo and (e) Sarah.

As we will show, the act of signaling very accurately non-occupied voxels does not
compensate the cost of transmitting the large number of necessary silhouettes as side-
information. Therefore, we propose a single projection along the plane perpendicular
to an axis of our choice.

In our proposed method, we adopt the occupancy-array representation, G(x, y, z) ∈
ZN×N×N

2 , of the voxelized point cloud for its intra-frame geometry compression. We

use G
(k)
m to denote the kth N ×N image of G(x, y, z) perpendicular to axis m.

The first step of our proposed algorithm is to project the entire occupancy array
G(x, y, z) on one of the 2D planes perpendicular to the x, y or z-axis. The N × N
binary matrix resulting from the projection of G(x, y, z) onto plane m is referred to
as the projection matrix Pm and is computed by the following logical sum:

Pm(i, j) =
∑

k

G(k)
m (i, j).

The projection matrix Pm is identical to the first silhouette that is calculated
in [2]. It should be noted that we use the context-adaptive binary arithmetic encoder
(CABAC) and contexts in [2] for the compression of both the projection matrix and
the images of the occupancy array.

The projection matrix is encoded using 10 pixels as contexts, as depicted in Fig-
ure 1(a). Once the projection matrix is encoded, we deploy the single-mode encoding
procedure of [2]. For each image, the only voxels that are being encoded are the ones
that share the same 2D coordinates with the elements of Pm that are equal to 1. Each
voxel of an image is then encoded with CABAC using 3D contexts. Here 3D contexts
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(a) (b) (c) (d)

Figure 3: Depiction of single frames from the full body JPEG Pleno database from the
sequences (a) Longdress, (b) Loot, (c) RedAndBlack and (d) Soldier.

mean using 5 pixels as contexts from the same image –Figure 1(b)– and 9 pixels as
contexts from the previously encoded image –Figure 1(c).

By using a single projection matrix we dramatically decrease the side information
that needs to be transmitted to the decoder in the form of silhouettes. Furthermore,
we simplify the algorithm of [2], since the entire dyadic decomposition is replaced by
a single projection.

In order to compare our proposal with the state of the art, we use the point
cloud sequences from the Microsoft Voxelized Upper Bodies dataset [16] as well as
the 8i Voxelized Full Bodies from the JPEG Pleno Database [17], with 9 and 10 bit
spatial resolution, respectively. Illustrations of such point cloud sequences can be
seen in Figure 2 and Figure 3. All methods are tested on the first 100 frames of
each point cloud sequence. It should be noted that we do not search for the optimal
projection plane. Instead, we follow an empirically-derived approach by projecting
the occupancy array always on the plane perpendicular to the z-axis, unless the spread
of the points is much larger along the y-axis. In the latter case, the projection of the
occupancy array is performed on the plane perpendicular to the y-axis.

We compare our methods using the Pz and Py projection matrices against the plain
octree representation, MPEG G-PCC v7.0 variant [18]. We also compare against the
intra- and inter-geometry compression algorithms that use the dyadic decomposi-
tion [2] and [15], which are denoted as S-3D and S-4D, respectively. The rate at
which the geometry of a point cloud is losslessly encoded is measured in bits per
occupied voxel (bpov). The results of the comparisons are reported in Table 1.

As one can see, our proposed method outperforms both the intra-frame and the
inter-frame variants of the dyadic decomposition, so far the best performing ap-
proaches. Our proposal does not select the optimal projection plane, in contrast to
the S-3D method that utilizes a computationally expensive trial-and-error approach
to guarantee that the decomposition is done along the optimal axis.

In the case of the Microsoft Upper Bodies dataset, we can see an average gain of
11.29% over G-PCC, of 9.01% against S-3D, and of 7.12% over the inter-frame S-4D
approach. Moreover, our proposal is overall the best performing one on the Full Body
JPEG Pleno dataset, reporting average gains of 13.27% over G-PCC, of 6.76% over
S-3D, and of 2.17% over S-4D. In addition, our proposal easily outperforms the plain
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Table 1: Compression between our proposed methods using the Pz or Py projection matrix
against a plain Octree encoding, G-PCC [18], S-3D [2] and S-4D [15]. We report the average
rate in bpov for the lossless geometry compression of the 100 first frames of sequences
from the Microsoft Voxelized Upper Bodies dataset [16] and the Full Body JPEG Pleno
dataset [17].

Intra Coders Inter Coder Gains of P over

Sequence Octree G-PCC S-3D Proposed S-4D G-PCC S-3D S-4D
Pz Py

andrew9 2.58 1.14 1.12 1.02 1.05 1.08 -10.53% -8.93% -5.56%
david9 2.62 1.07 1.06 0.96 1.02 1.05 -10.28% -9.43% -8.57%
phil9 2.64 1.18 1.14 1.03 1.05 1.13 -12.71% -9.65% -8.85%
ricardo9 2.59 1.10 1.04 0.96 0.97 1.02 -12.73% -7.69% -5.88%
sarah9 2.61 1.08 1.07 0.97 1.01 1.04 -10.19% -9.35% -6.73%

Average 2.61 1.11 1.09 0.99 1.02 1.06 -11.29% -9.01% -7.12%

longdress 2.99 1.03 0.95 0.94 0.89 0.95 -13.59% -6.32% -6.32%
loot 2.98 0.97 0.92 0.91 0.85 0.91 -12.37% -7.61% -6.59%
redandblack 3.00 1.10 1.02 1.00 0.95 1.02 -13.64% -6.86% -6.86%
soldier 3.00 1.04 0.96 0.93 0.90 0.81 -13.46% -6.25% 11.11%

Average 2.99 1.04 0.96 0.95 0.90 0.92 -13.27% -6.76% -2.17%

octree representation in both upper body and full body datasets.
As we have previously mentioned, a projection along the z-axis is not always

the best choice. For example, in our proposed method, our empirically derived axis
selection rule favors a projection along the y-axis for the sequences of the full body
dataset. This fluctuation in performance might be related to the large difference in
the range of coordinates of the points along the z-axis compared to the y or x-axis.
Therefore, according to our axis selection rule, in the cases where the variance of
the points along the y-axis is sufficiently larger than along the z-axis, we project the
occupancy array along the former.

The reason why our proposed scheme outperforms S-3D and S-4D might not be
only due to transmitting less silhouettes. It is clear that by using less silhouettes, there
is a larger number of empty voxels that are transmitted to the decoder. However,
the most frequent context of the additionally transmitted empty voxels is composed
entirely of zeros. Therefore, its nature is such that it expresses very accurately the
probability of a voxel being void, since it is very rare for an occupied voxel to be
surrounded entirely by non-occupied voxels. Hence, the inexpensive encoding cost
of the transmitted surplus of non-occupied voxels does not compromise the overall
bitrate.

Analysis

In addition to the single-projection proposal, we argue that further gains can be
achieved by replacing CABAC by a semi-adaptive variation. The occupancy array-
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based geometry compression algorithms [2, 14, 15] encode the transmitted voxel co-
ordinates through a context-adaptive entropy encoder. Said encoders allow to bypass
the transmission of the frequency tables that are necessary for the computation of the
conditional probabilities, describing the occupancy of voxels for a given context, as
well as the frequency of occurrence of each context. This is done by progressively up-
dating the frequency table during the encoding process, gradually approximating in
a more accurate manner the true marginal and conditional probabilities. Therefore,
the decoder is able to gradually reconstruct the frequency tables without receiving
any side information, which is an advantage over non-adaptive entropy encoders.

In some cases though, the updated probabilities converge too slowly to the true
ones and, while the estimations are not yet good enough, the voxels are not encoded
efficiently. This might occur in the presence of a redundant amount of contexts, which
might very well be the case in our proposed method, where 214 contexts are used to
encode the pixels of the images. Thus, the transmission of a partial frequency table
can offer more gains over a fully-adaptive approach.

We present a study on how the convergence speed of the updated probabilities
affects the compression ratio of our proposal. We compute the theoretical average
conditional information per occupied voxel through the set of encoded occupied voxels
vo ∈ Vo, the set of encoded non-occupied voxels vn ∈ Vn, and the set of contexts c ∈ C
as follows:

I = −
∑

c∈C(
∑

vo∈Vo
log2(p(vo|c)) +

∑
vn∈Vn

log2(p(vn|c)))
NOV

.

The number of occupied voxels is expressed as NOV , whereas p(vo|c) is the prob-
ability of voxel vo being occupied and p(vn|c) is the probability of voxel vn being
non-occupied (empty) for a given context c.

If we compute I using the true probabilities, we obtain the conditional entropy
multiplied by the total number of encoded voxels and divided by NOV . This value,
which we shall call LB, acts as a theoretical lower bound to the bitrate for the given
contexts, in the case where the true probabilities are known. The necessary side
information for the transmission of the frequency table is obviously not taken into
account.

To compute I for the adaptive case, we progressively calculate the sum through
updating the occupancy and non-occupancy probabilities p(vo|c) and p(vn|c) respec-
tively. This rate, which we symbolize as ALB, is the theoretical lower bound of any
adaptive entropy encoder using the contexts c ∈ C.

Using our proposed method, we measure the average bitrate, in bpov, of the
first 100 frames for various point cloud sequences by projecting along the z-axis and
disregarding the information related to the transmission of the projection matrix Pz.
In Table 2, using our proposed geometry compression algorithm, we display the actual
rate (AR) and compare it against the theoretical lower bounds, associated with the
true probabilities (LB), and with the adaptive probabilities (ALB).

If we focus on the second and third columns of Table 2, we observe that the
actual bitrate resulting from the CABAC is very close to the theoretical minimum
for adaptive entropy encoders. However, a significant difference in rate between the
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Table 2: Rates for the compression of the images without taking into account the cost of
the projection matrix. We compare the actual rate (AR), its theoretical lower bound using
adaptive probabilities (ALB) and its theoretical lower bound using the true probabilities
(LB). The rates are averages of the first 100 frames for each sequence and the occupancy
array is projected along the z-axis. The average side information for encoding 4% of the
contexts is displayed under SI.

Sequence AR ALB LB SI Gains of SI + LB
over AR

Andrew9 1.01 1.00 0.88 0.07 -5.94%
David9 0.94 0.93 0.83 0.06 -5.32%
Phil9 1.02 1.00 0.90 0.06 -5.88%
Ricardo9 0.94 0.93 0.81 0.08 -5.32%
Sarah9 0.95 0.94 0.82 0.07 -6.32%
Loot10 0.90 0.88 0.82 0.03 -5.56%
Longdress10 0.94 0.92 0.86 0.02 -6.38%
RedAndBlack 0.99 0.98 0.90 0.03 -6.06%
Soldier 0.92 0.90 0.85 0.02 -5.43%

theoretical lower bounds is evident, leading us to believe that, indeed, the updated
probabilities converge slowly to the true ones, resulting in inefficient encoding of vox-
els. Therefore, by selecting a few of the most important contexts and by transmitting
their corresponding probabilities, we might be able to obtain further gains. In the
second to last column of Table 2 we display, in bpov, the side information generated
by encoding the probabilities corresponding to the 4% of the total number of con-
texts. In this scenario, we assume that for each context, the conditional occupancy
probability is encoded by a 2-byte word whereas the context identifier is encoded
with 14 bits. Assuming that the encoding rate remains close to the true probability
lower bound, a semi-adaptive approach could lead to further gains of up to 6.3% with
respect to the actual rate.

On the other hand, in Table 3 we display the true rate as well as the theoretical
lower bounds corresponding to the encoding of the projection matrix. In this case,
the adaptive approach is a good choice for the encoding of the projection matrix given
that the differences between the theoretical lower bounds and the true rate are very
small.

Based on these results we speculate that using a semi-adaptive entropy encoder
to compress the images, by transmitting part of the frequency table, can lead to
important gains if we manage to transmit the necessary side information efficiently
without deviating significantly from the theoretical lower bound. Furthermore, as
we can see from the last column of Table 3, the percentage of transmitted occupied
voxels is very small, reinforcing our claim that most empty voxels are inexpensively
encoded. We also outline that decompositions that can inexpensively reduce the
number of transmitted empty voxels are still very promising for occupancy array-
based methods.
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Table 3: Rates for the compression of the projection matrix. We compare the actual rate
(AR), its theoretical lower bound using adaptive probabilities (ALB) and its theoretical
lower bound using the true probabilities (LB).The percentage of transmitted occupied vox-
els is displayed under TOV . The rates and percentages are averages of the first 100 frames
for each sequence and the occupancy array is projected along the z-axis.

Sequence AR ALB LB % TOV
Andrew9 0.02 0.02 0.01 2.27
David9 0.02 0.02 0.02 1.71
Phil9 0.02 0.02 0.02 1.76
Ricardo9 0.02 0.02 0.01 1.79
Sarah9 0.02 0.02 0.02 2.06
Loot10 0.01 0.01 0.01 1.19
Longdress10 0.01 0.01 0.01 1.44
RedAndBlack 0.01 0.01 0.01 1.59
Soldier 0.01 0.01 0.01 1.26

Conclusion

We present a lossless intra-frame geometry compression algorithm that replaces the
dyadic decomposition of [2] with a single projection of the occupancy array along a
plane of our choice. Our experimental results show that we outperform the state of
the art methods by reporting gains of up to 9.6% and 8.8% over the previously best
performing intra and inter-frame geometry compression algorithms, respectively [2]
and [15]. Moreover, we have devised an empirically-based system for the selection of
the projection plane that, although not optimal, is able to outperform the method
described in [2], which selects the optimal decomposition axis through a computation-
ally expensive trial-and-error approach. As a result of our analysis we show that an
adaptive-type entropy encoder might not be an appropriate choice for our proposed
method and we expect further gains by replacing the CABAC with a semi-adaptive
variant. In our future work we aim to explore efficient ways to transmit the partial
frequency table. Furthermore, we aim to define an automated method to identify the
set of the most important contexts to be transmitted to the decoder.

Acknowledgments

This research was partially funded by Universitat Autònoma de Barcelona under grant 472-02-
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Abstract—The increase in popularity of point-cloud-oriented
applications has triggered the development of specialized com-
pression algorithms. In this paper, a novel algorithm is developed
for the lossless geometry compression of voxelized point clouds
following an intra-frame design. The encoded voxels are arranged
into runs and are encoded through a single-pass application
directly on the voxel domain. This is done without representing
the point cloud via an octree nor rendering the voxel space
through an occupancy matrix, therefore decreasing the memory
requirements of the method. Each run is compressed using
a context-adaptive arithmetic encoder yielding state-of-the-art
compression results, with gains of up to 15% over TMC13,
MPEG’s standard for point cloud geometry compression. Several
proposed contributions accelerate the calculations of each run’s
probability limits prior to arithmetic encoding. As a result, the
encoder attains a low computational complexity described by a
linear relation to the number of occupied voxels leading to an
average speedup of 1.8 over TMC13 in encoding speeds. Various
experiments are conducted assessing the proposed algorithm’s
state-of-the-art performance in terms of compression ratio and
encoding speeds.

Index Terms—Point cloud geometry compression, run-length
encoding, context-adaptive encoder.

I. INTRODUCTION

Recent advances in 3D acquisition technologies favor point
clouds over polygonal meshes for the digital representation
of three-dimensional objects. Consisting of a set of attributes
and a dense collection of points, placed at precise 3D coordi-
nates, point clouds achieve, in a simple structure, the realistic
portrayal of static or even dynamic time-varying scenes. At-
testing to the advantages of such data are the numerous point
cloud applications in areas such as Augmented/Virtual Reality
(AR/VR), self-driving cars, or heritage preservation, to name
but a few [1]–[5]. The importance of these applications cou-
pled with the large size and irregular nature of point cloud data
have sparked the emergence of an accrescent family of new
specialized compression algorithms [6]. As the target of such
applications are often smaller devices, such as smartphones in
the case of AR/VR, there is an increasing necessity for fast,
memory-efficient, low-complexity point cloud compression
algorithms [7].

The information that a point cloud carries can be split into its
geometry data, referring to the 3D coordinates of each point,

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material includes the
the core algorithms in peudocode notation, as well as several proofs of
equations. Contact dion.tzamarias@gmail.com for further questions about this
work.

and its attribute data, referring to the value that each point
carries, such as the color, the normal or its reflectibility [8].
Therefore, depending on the target, point cloud compres-
sion schemes are grouped into geometry or attribute algo-
rithms.

A standard preprocessing step, after acquiring the point cloud
data, is the quantization of its geometry information into inte-
ger coordinates [9]. This process is referred to as voxelization,
where any point in the 3D space is represented as a cubic cell,
called voxel and placed in a regular 3D cubic grid. A voxel
is said to be occupied when it corresponds to a point of the
point cloud, in contrast to unoccupied voxels that form the
empty space. Although the voxelization of a point cloud re-
duces somewhat its original geometry information, additional
processing is required for meaningful compression.

The lossy compression of point clouds can attain relatively
low bit rates at the expense of introducing distortion on the
decompressed data, whereas lossless compression schemes
preserve flawlessly the original data at the cost of a higher rate.
In the case of dynamically time-varying point cloud scenes,
inter-frame encoders exploit redundancies among consecutive
point cloud frames. These methods typically lead to higher
compression ratios (lower bit rates), though their intra-frame
counterparts, which exploit redundancies only within each
individual frame, often perform at a lower computational
complexity.

The taxonomy of existing lossless point cloud geometry com-
pression designs can be organized according to the manner in
which a point cloud is represented throughout the encoding
process. These particular point cloud representations, apart
from laying the foundations of the encoding process, aim to
restrict the number of encoded non-occupied voxels.

The most prevalent representation of point clouds among
compression schemes follows the octree decomposition, where
the cubic voxel space is recursively subdivided into eight
identically-sized cubes called octants [10]. At each iteration,
only octants that contain at least one occupied voxel within
their volume are further subdivided into children octants,
whose occupancy status is indicated through a single bit. The
resulting tree structure achieves an a priori compression of
the point cloud geometry, though the additional use of trans-
forms, contexts and entropy encoders drastically ameliorates
an algorithm’s performance.

Some intra-frame methods combine octrees with context-based
arithmetic or LZW encoders [11], while other transform-based



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. –, NO. –, JUNE 2022 2

methods have octets reversibly transformed by a context-
adaptive binary 3D Cellular Automata [12]–[14]. For dy-
namic point cloud scenes, inter-frame-based designs employ
operations on octrees of adjacent frames [15], [16], or sort
the octree based on previously encoded frames to promote
efficient contexts [17]. In certain approaches, such is the large
amount of contexts used in the entropy encoder, that even the
context frequency tables have been compressed using an octree
representation [11], [18], [19].

Aside from the octree decomposition, there are several differ-
ent point cloud representations such as the recent G-Arrays
known for reduced memory requirements and fast lookup
speeds [20]. Unlike the TMC13 lossless geometry compression
variant of MPEG, which is also based on the octree, the
standardization working group has provided a lossy alternative
based on projecting the point cloud on 2D surfaces and
employing standard 2D video encoders [5], [8], [21], [22].
Most projection-based compression algorithms represent point
cloud geometry through a series of 2D projections using 2D
occupancy and depth maps such as the lossy [23]–[25] and
lossless methods [26].

Other lossless geometry compression designs can operate
straight on the voxel domain by directly processing the co-
ordinates of the occupied voxels, e.g. encoding the residual
differences between coordinates of occupied voxels [27]. The
advantage of voxel-domain-type encoders lies on the circum-
vention of intricate preprocessing procedures that are dictated
by the representation method, such as the construction of an
octree or the calculation of various projection maps.

A sub-family of voxel domain compression methods utilizes
the occupancy matrix to represent the point cloud structure.
The entire cubic voxel space composed by N3 voxels is
modeled as a three-dimensional N × N × N sparse boolean
matrix whose elements of value 1 correspond to occupied
voxels. Each 2D slice of the occupancy matrix, perpendicular
to the x, y or z axis is represented by a N ×N boolean array
referred to as an image.

Using this representation, the authors of [28] compress the
occupancy matrix of a point cloud through a boolean de-
composition, and later via a dyadic decomposition and 3D
contexts [29]. The latter’s impressive results were further
improved by extending its intra-frame design to an inter-
frame variant [30], as well as by refining the context selection
process [31], [32]. An amelioration of the intra-frame design
was presented in [33] by removing the dyadic decomposition
and utilizing the N ×N projection matrix, calculated through
a boolean OR operation across all images of the occupancy
matrix perpendicular to the x, y or z axis. The binary
projection matrix, as illustrated in Fig. 1b, appears as the shade
of the point cloud that falls on the plane perpendicular to
the chosen x, y or z axis. Transmitting the binary matrix to
the decoder allows to limit the number of encoded voxels as
one can deduce the absence of occupied voxels at precise 2D
coordinates of all images.

Recent proposals deploy Deep Neural Networks for the ge-

(a) Point cloud (b) Projection matrix (c) Signaling rectangle

Fig. 1. Depiction of a point cloud along with different options to limit encoded
voxels. Voxels being encoded are colored white in (b) and (c).

ometry compression of point cloud data, achieving very high
compression ratios. In the case of the lossless designs, authors
follow a hybrid representation of the point cloud, processing
voxels through an octree as well as rendering sub-volumes
of the voxel space through occupancy matrices [34]–[37].
Though it is important to mention that the complexity of these
approaches leads to increased encoding times.

Although providing competitive results in terms of rate, these
hybrid and occupancy-type methods render multiple sub-
volumes or the entirety of the voxel space, which lead to
increased memory requirements and large computational costs.
These methods’ sequential nature of processing one voxel
at a time coupled with the unavoidable encoding of a large
number of non-occupied voxels drastically decelerates the
compression. As an example, in occupancy-type methods such
as [33], it is common that only 2.3% of the processed and
encoded voxels are occupied. Likewise, hybrid-type methods
such as [37] show that the percentage of occupied voxels in
the first level of processed sub-volumes is below 5%.

Our proposed lossless intra-frame geometry compression
scheme solves the precedent drawbacks of hybrid and
occupancy-type methods while maintaining state-of-the-art
compression performance. Using only the point coordinates,
the discussed method encodes the point cloud directly on the
voxel domain without rendering the voxel space, contributing
to its memory-efficient design. Furthermore, through grouping
the encoded voxels in runs, the encoding time is drastically
decreased. The introduction of several improvements acceler-
ate key calculations, which lower the encoder’s computational
complexity to the order of occupied voxels, regardless of the
number of encoded non-occupied voxels. Lastly, the employ-
ment of 3D contexts and an adaptive arithmetic encoder yields
significant compression results.

The remainder of this paper is structured in the following man-
ner. Section II summarizes the proposed method. Section III
provides descriptions of the core processes. Experimental
results are presented and analyzed in Section IV. Conclusions
are discussed in Section V. The provided Supplementary
material includes pseudocode algorithms and several proofs
of equations.

II. PROPOSED METHOD

The proposed compression scheme, coined FRL –for Fast
Run-Length–, operates directly on the voxel domain, in the
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Fig. 2. Simplified version of the proposed single-pass compression scheme indicating the four main processes as well as their inputs and outputs. The
processes’ names match the title of their dedicated section in the manuscript.

absence of an octree or an occupancy matrix, by encoding
runs of voxels through a context-adaptive arithmetic encoder.
Its general structure bares similarities to our previous pub-
lication [33], which has been improved by virtue of several
key novelties. The occupancy matrix is discarded entirely and
the compression of individual voxels is replaced in favor of
encoding sequences of voxels. Also novel is the acceleration of
arduous calculations, required during the encoding process. As
a consequence, the memory consumption as well as the overall
computational complexity of the algorithm are significantly
reduced, yielding a fast, high-performing point cloud geometry
compression scheme. The simplified scheme of Fig. 2 indicates
the main processes, grouped into two phases, along with each
of their inputs and outputs that enable the encoding of sorted
point clouds through a single pass. For point clouds that are
not already sorted along a desired axis, a sorting preprocessing
is required.

The first phase involves the run-extraction and context-
assignment processes. Both receive as input the coordinates of
the point cloud’s occupied voxels. An essential component that
stimulates the accelerated speed of FRL consists of forming
symbols from runs of voxels rather than individual voxels.
This takes place in the process run-extraction, which scans
the point cloud’s geometry information, forming runs of voxels
that begin and end within a single 2D plane of the voxel space
called a slice. Each run is entirely contained within a single
slice and is composed by all non-occupied voxels which are
positioned after the end of the previous run and one occupied
voxel. I.e., the run ends as soon as the first occupied voxel
is found following raster-scan order. The process is concluded
after returning the voxel coordinates of each run’s starting and
ending points.

Similar to previous approaches [28], [29], [33], to enhance the
prediction accuracy associated to the occupancy of any voxel
in a run, the status of its neighboring voxels are also taken into
account by means of contexts. The contexts that are employed
in this paper are known as 3D contexts, composed by 5 voxels
located on the current encoded slice and 9 voxels located on
the previous one; cumulating to 14 voxels in total [29]. In
Fig. 3, an illustration of the context map used in the proposed
compression scheme depicts the location of the voxels that
form the context, relative to the target voxel whose status
is currently examined. Each context is identified according
to a unique integer provided by a 14-bit-long bitmask that

is defined by the occupancy status of its constituent voxels.
An occupied voxel at the position i of the context map con-
tributes 2i to the context’s integer representation. Therefore,
214 unique contexts are deployed in the proposed scheme,
whose integer representations range from 0, in the case of
the empty context composed solely of non-occupied voxels,
to 214 − 1.

On account of contexts playing such an important role in the
proposed encoder, the next key process of the phase-one stage
involves the assignment of contexts to each voxel. The use of
an occupancy matrix coupled with frequent matrix lookups
would facilitate the allocation of contexts to each voxel.
However, this would impact negatively the overall computa-
tional complexity as well as the memory consumption of the
algorithm. To our advantage, the proposed context-assignment
process, in absence of an occupancy matrix, constructs ef-
ficiently and inexpensively the context dictionary, a queue
data structure that links voxels to their corresponding context.
Therefore, the context dictionary accelerates drastically the
proposed compression scheme as its size is of the order of
occupied voxels and each of its elements is accessed a single
time throughout the compression of the point cloud.

The second phase involves the probability computation and
arithmetic encoder processes. Prior to encoding the runs
through the arithmetic encoder process, each symbol should
be associated with an upper and lower cumulative probability
limit. This takes place in the probability computation process,
which utilizes both outputs of the first phase. The introduction
of several numerical shortcuts accelerate the calculations of
the limits by restricting their complexity to the order of
occupied voxels, regardless of the number of non-occupied
voxels transmitted. Each run’s occurrence probability is cal-
culated through the independent joint probability involving
the occupancy status of its component voxels. Furthermore,
by means of contexts, the likelihood of a voxel’s status is
estimated adaptively, using conditional probabilities, through
tracking and updating the number of times each specific con-
text occurred to an occupied or a non-occupied voxel.

III. CORE PROCESSES

The first and second phase processes of the encoder’s compres-
sion scheme act as the foundations of the proposed method.
The functionality, motivation and novelties of each step are
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(a) (b)

Fig. 3. Context map employed for encoding voxel v. The 3D contexts are
formed by (a) five voxels from the current slice and (b) nine voxels of
the previously encoded slice. The 2D coordinates of v and the 9th context
coincide. If the non-occupied voxels are noted in blue and the occupied in
red, v’s context’s integer representation is 22 + 27 = 132.

detailed in the following subsections. Simplified versions of
their related algorithms as well as illustration of the pseu-
docode notation are provided as supplementary material to
demonstrate their functionality.

A. Run extraction

Similar to classical image or text compression, processing
groups of data rather than individual symbols is crucial to
the speed of an encoder. As it is expected in most hybrid or
occupancy-type point cloud geometry compression algorithms,
the encoding of non-occupied voxels is unavoidable and often
vastly surpass the number of occupied voxels. Therefore,
processing and encoding one voxel at a time burdens the
computational complexity and encoding speeds of the com-
pression algorithm since they depend fully on the surplus
of encoded non-occupied voxels. However, in the hereby
introduced method, voxels are not processed individually, but
in sequences, accelerating the encoding process and lowering
the computational complexity of the algorithm to the order of
occupied voxels.

In order to form the runs, the voxel space is first organized
into 2D planes, i.e., slices, which are all perpendicular to a
predefined axis. Such planes are never rendered as matrices
and therefore do not constitute a type of point cloud rendering
for the proposed method. For simplicity’s sake, throughout
the paper, it is assumed that the z-axis has been selected;
therefore, the 2D coordinates of any voxel on a slice can be
expressed through the x and y axis. Occupied voxels are then
grouped by their respective slice such that all of those within
a group contain the same z-coordinate. It is with the group’s
voxel coordinates that runs are formed such that collectively
they express the full contents of a slice. Each run is entirely
contained within a single slice and is composed primarily by
non-occupied voxels, ending on the first encountered occupied
voxel, following raster-scan order of the 2D plane. The unique
case when a run is permitted to end prematurely on a non-
occupied voxel is when it would otherwise extend beyond
the end of a slice to reach an occupied voxel. Only in that
particular case is the run devoid of an occupied voxel. Thus,
given a slice composed of K occupied voxels, the number of
runs in said slice is K, unless the slice ends in a non-occupied
voxel, in which case it is K + 1. Treating such sequences as
individual symbols puts in motion the first step of accelerating
the encoding process.

It is clear that compression gains can be achieved by reducing
the number of non-occupied voxels that are present in the
runs. To this end, the encoded area of a slice’s 2D voxel
space is restricted through the introduction of a signaling
rectangle. By registering the x and y coordinates of the north-,
south-, west-, and east-most occupied voxels of the point
cloud, the occupied voxels are enclosed within a tangential
rectangle, indicating the absence of occupied voxels outside
the confined area. A realistic example of a point cloud’s
signaling rectangle is depicted in Fig. 1c. Only the voxels
located within the signaling rectangle participate in the runs
as all voxels found outside the marked perimeter are dismissed.
In the case where no occupied voxels are located within the
signaling rectangle, the slice is flagged as empty, and the
next plane is processed. Once the encoding process has been
completed, the signaling rectangle can be then reproduced in
the decoder by transmitting the x and y values of its top,
bottom, left and right limits.

An example of the run extraction process is provided in Fig. 4
where each run of the slice is indicated with a different color.
All runs are confined within the signaling rectangle, traced
with a bold black line. Following raster-scan order, all runs end
at occupied voxels, which are represented as squares marked
with a dot, except for the last one in blue. The blue run is
permitted to end at a non-occupied voxel as it is the last run
that is contained within the slice.

The uniform nature of the signaling rectangle makes the com-
putation of the run’s length fast and effortless and permits the
assignment of contexts without the use of matrices. Yet, the use
of the signaling rectangle leads to the processing and encoding
of additional non-occupied voxels, compared to the projection
matrix; nevertheless, as justified later on and demonstrated in
section IV, this does not affect the compression performance
of the encoder nor its encoding speed. Since the proposed
method encodes the point cloud using directly the coordinates
of the occupied voxels, the compression scheme is clearly a
voxel-domain-type encoder.

Fig. 4. Example of runs in a slice. Squares correspond to voxels, with the
ones marked with a dot being occupied. The signaling rectangle is traced with
a bold line. Each run is marked with a different color.

B. Context assignment

The identification of each voxel’s context can significantly bur-
den the overall compression scheme in terms of computational
complexity. Competitive hybrid-type schemes and occupancy-
array-type methods often identify the context of each voxel by
rendering multiple volumes or the entire voxel-space through
a large matrix such as an occupancy array. The usage of such
a matrix burdens the algorithm’s memory consumption and
impinges on its execution speed. To obtain the context of each
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Merged context dictionary

Queues

Queue operations

Context-contribution map

Slice voxels within signaling rectangle

Fig. 5. Example demonstrating the calculation of the context dictionary. Dotted squares correspond to occupied voxels, specified by their coordinates, and
shaded squares correspond to voxels linked to a non-empty context. This simplified example considers only the context map positions 1 and 3.

of the W encoded voxels, the status of several elements of
the occupancy matrix is assessed, resulting in a complexity of
O(W ). Given that, usually, the number of occupied voxels V
is much smaller than the number of encoded voxels, the use
of the occupancy matrix heavily strains the encoding speed
and increases the overall computational complexity. In the
proposed compression scheme, the complexity of this step is
drastically decreased by discarding the occupancy matrix and
hence alleviating the memory consumption.

To bypass the aforementioned issues of the context-assignment
process, the devised method retrieves the necessary context in-
formation through, exclusively, a single-pass over the occupied
voxels of a point cloud. This way, a slice’s context dictionary is
defined. Its role is to link the voxels included in any run of the
slice with their non-empty context, having the particularity that
voxels that are related to the empty context are entirely omitted
from the dictionary. Algorithmically, the context dictionary
is represented as a queue data structure, L, composed by a
series of triplets that include the two-dimensional coordinates
of the voxel as well as the integer representation of its
corresponding, non-empty, context. Following the example
from the previous subsection and using a simplified set of
contexts, Fig. 5 illustrates an instance of a context dictionary,
in a slice composed by two occupied voxels (marked with
a dot), as well as only two voxels with non-empty contexts
(marked in gray). Therefore, if a voxel corresponds to a (non-
empty) context, both the coordinates of the voxel, as well as
the integer identifier of its context can be accessed. Voxels
that are not present in the context dictionary are deduced to
be linked to the empty context or outside the boundaries of
the signaling rectangle.

To construct a slice’s context dictionary without rendering
the voxel space, only the 2D coordinates of occupied voxels
are used. The computation of L is based on the principle
that only context map positions related to occupied voxels
are required to deduce the integer representation of a voxel’s

context. For example, referencing Fig. 3, it is only the context
map positions of the occupied voxels, i.e., 2 and 7, that are
required for the calculation of the integer representation of v’s
context as 22 +27 = 132. Therefore, a voxel’s context can be
computed as a sum of the independent contributions of the
occupied voxels in its context map.

(a) (b)

Fig. 6. Context-contribution map: Contribution of the occupied voxel v to
the integer representation of the contexts of its surrounding voxels depending
on their relative position. (a) Contribution to contexts of voxels located at the
same slice as v range from 1 to 24, while (b) the ones of voxels located at
the next slice of v range from 25 to 213. The darker colored voxels, although
located on different slices, share identical (x, y) coordinates.

To uphold the aforementioned single-pass characteristic, it
should be possible from the coordinates of an occupied voxel v
to retrieve the coordinates of all the voxels that contain v
in any position of their context map. Furthermore, each of
these voxel coordinates should be linked to the exact con-
tribution of v to their respective contexts. This is achieved
via the context-contribution map of Fig. 6. By appropriately
shifting the coordinates of an occupied voxel, one can match
its contribution with the coordinates of the affected voxel.
For example, considering an occupied voxel with coordinates
(x, y, z), using the context-contribution map it is observed that
it contributes 22 to the context of the voxel with coordinates
(x+1, y+1, z), or that it contributes 24 to the context of the
voxel with coordinates (x+2, y, z). Regardless of an occupied
voxel’s global position, each unique shift on its coordinates
is therefore linked to a unique contribution. Additionally, the
shifted coordinates correspond to those of a voxel whose
context has been impacted by said contribution.

Thus, using only the coordinates of occupied voxels, an
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individual queue is constructed for each type of shift. By
applying a given shift on all occupied voxels within a slice, a
queue groups all the coordinates of voxels that have received
a unique and identical context-contribution, storing them as
triplets. Two examples of such queues are illustrated in Fig. 5
containing in each triplet the aforementioned 2D voxel coor-
dinates and a unique context contribution. In the end, 14 such
queues are utilized for the construction of the slice’s context
dictionary, one for each shift, i.e., one for each unique context
contribution.

To illustrate the computation of such queues, the schematic
of Fig. 5 provides a visual explanation. For simplicity’s sake,
only the context map positions 1 and 3 are taken into account,
resulting in the simplified context-contribution map indicated
in the schematic. As a result, the context dictionary will be
calculated using only two queues, LA and LB , one for each
type of shift as indicated in Fig. 5. Therefore, by shifting the
x-coordinate of all occupied voxels by +1, it can be seen that
the queue LA groups all the coordinates that have an occupied
voxel at position 3 of their context-map, therefore receiving a
context contribution of 23.

By design, each such queue is sorted in ascending order,
with the intent to expedite their merging into the context
dictionary, composed by triplets with unique coordinates. As
illustrated in Fig. 5, the elements of the queues with the same
two-dimensional coordinates are integrated into a single triplet
whose context integer representation is calculated as the sum
of context-contributions of the merged triplets.

The use of the signaling rectangle facilitates the action of
determining if a voxel should be added into the context
dictionary, devoid of any matrix lookup, rendering the process
fast and inexpensive. This would not be possible with a
projection matrix since the voxel selection process would
require a complexity-raising matrix search to determine if the
considered voxel is to be encoded.

Considering that the context dictionary is constructed upon
iterating only over occupied voxels, the context identification
procedure has a computational complexity of the order of
occupied voxels, O(V). This is important as the majority of
encoded voxels are found in long runs, of lengths above 80,
and most of them in each run are related to the empty
context whose frequency is independent from the number
of occupied voxels (see Table I). By discarding the use of
the occupancy matrix, we significantly decrease the memory
usage of our algorithm. The computational complexity and the
run time are drastically reduced thanks to the use of context
dictionaries.

C. Probability computation

Ensuing the extraction of the runs and the calculation of the
context dictionary, each run is compressed via an arithmetic
encoder, which first estimates the upper and lower cumulative
probability bounds for each run from the context dictionary,

TABLE I
ON THE LEFT, THE PERCENTAGE OF ENCODED VOXELS FOUND IN RUNS OF
LENGTH HIGHER THAN 80 VOXELS. ON THE RIGHT, THE PERCENTAGE OF

VOXELS OF EMPTY CONTEXT IN RUNS OF LENGTH ABOVE 80. RESULTS
CORRESPOND TO AVERAGES ON ALL FRAMES OF EACH SEQUENCE.

Sequence Encoded voxels included
in runs of length ≥ 80

voxels (%)

Voxels linked to
empty contexts in
runs ≥ 80 voxels

(%)
andrew9 97.81 97.25
david9 99.09 98.00
phil9 97.72 97.01
ricardo9 98.31 96.52
sarah9 97.70 96.94
Average 98.13 97.14
longdress 94.44 96.75
loot 96.20 97.24
redandblack 95.21 96.81
soldier 96.92 97.21
Average 95.69 97.00
basketballplayer 98.59 99.35
dancer 98.95 99.53
Average 98.77 99.44
Egyptianmask 99.98 99.99
Shiva 99.97 99.95
Average 99.98 99.97

and subsequently encodes it. For the purpose of modeling
run probabilities, the proposed method takes into account
the length of the sequence as well as the contexts of all
its composing voxels as illustrated in the Markov chain of
Fig. 7.

The Markov chain is expressed by the tree of 2n states shown
in Fig. 7, where n is the length of the longest-possible run
(i.e., the number of remaining uncoded voxels in a slice).
The probability of a run is obtained by traversing the tree
according to the occupancy of its voxels as follows. Starting
at its root, whenever a voxel is occupied, the left child shall be
taken; otherwise, the right child shall be taken. The transition
probability leading to the ith state is given by the conditional
probability of the voxel being occupied given its context
ci.

Each run is composed by a sequence of non-occupied voxels
that ends at the first encountered occupied voxel, except for the
special case of the last run of a slice. Therefore, the probability
of any run is expressed by the independent joint probability
of all states that are being traversed starting from the root and
ending at any childless node of the tree. Hence, the probability
of a run whose length is l and terminates at an occupied voxel
is expressed by

P (l) = p(1|cl) ·
l−1∏

i=1

p(0|ci). (1)

In order to arithmetically encode such a sequence of l voxels,
one requires the upper and lower cumulative probability limits
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v1 = 1

p(1|c1)

v1 = 0

v2 = 1

p(1|c2)

v2 = 0

v3 = 1

p(1|c3)

...

vn = 1

p(1|cn)

vn = 0

p(0|cn)

p(0|c3)

p(0|c2)

p(0|c1)

Fig. 7. Markov chain tree, modeling the states of voxels affiliated with runs
of lengths shorter or equal to n. Occupied or empty voxels acquire the value
of 1 or 0 respectively. The state probability of a given voxel i depends on its
context ci.

of the sequence:

Low(l) =

l−1∑

r=1

P (r) =

l−1∑

r=1

p(1|cr) ·
r∏

i=1

p(0|ci),

High(l) =
l∑

r=1

P (r) =
l∑

r=1

p(1|cr) ·
r∏

i=1

p(0|ci).
(2)

At first glance, the calculation of the run’s upper and lower
cumulative probability bounds appears long and arduous.
Therefore, the encoder presented in this paper offers two
alternative ways of resolving this problem, each one described
in the following subsections.

D. Fast Calculation of Probability Limits

While a direct computation of Eq. 2 is of notable complexity,
it can be reformulated into the somewhat simpler Eq. 3 (see
Appendix A in the Supplementary Material for the mathemat-
ical derivation).

Low(l) = 1−
l−1∏

i=1

p(0|ci),

High(l) = 1−
l∏

i=1

p(0|ci).
(3)

However, by exploiting the adaptive nature of the encoder
as described below, the complexity of Eq. 3 can be further
decreased to the order of occupied voxels. Instead of examin-
ing each voxel in a run, this is achieved by only considering
relevant run locations, while maintaining various counts that
still allow to obtain identical probability limits.

At each run location linked to a non-empty context c, the
counts of non-occupied and occupied voxels linked to any
voxel are stored in, respectively, lists C � and C �, such that

Fig. 8. Example for demonstrating the calculation of the cumulative probabil-
ity limits of each run. Dotted squares correspond to occupied voxels and voxels
with non-empty contexts are marked with their context integer representation,
calculated at the example of the Context assignment section. Each run is
indicated with a separate color.

p(0|c) = C
�

c

C �
c+C �

c
. I.e., for a non-occupied voxel with context

c, the probability p(0|c) is updated by increasing C �
c by one;

for an occupied voxel with context c, the probability p(0|c) is
updated by increasing C �

c by one.

Conversely, the frequency of non-occupied voxels linked to
the empty context is tracked by a single variable C, which is
updated at each occurrence of a non-occupied voxel associated
to the empty context; i.e., the variable C is incremented by
one. On the contrary, variable C is divided by two whenever
the empty context is linked to an occupied voxel. The count
of occupied voxels related to the empty context is assumed to
be always equal to 1.

Employing this approach, the calculation of the lower cumu-
lative probability limit for a run composed by k voxels of
non-empty context and m voxels linked to the empty context,
is given by (see proof in Appendix B in the Supplementary
Material):

Low(l) = 1− C
C +m

·
k∏

i=1

p(0|ci). (4)

For example, by applying Eq. 4 one can compute the proba-
bility limits of the colored runs marked in Fig. 8, where dotted
squares correspond to occupied voxels, and voxels with non-
empty contexts are marked with their integer context repre-
sentation. Therefore, the cumulative probability limits of the
red, green and blue run are calculated as

[
1− C

C+2 , 1− C
C+3

)
,[

1− C
C+3 ·p(0|c1), 1− C

C+4 ·p(0|c1)
)

and
[
1− C

C+3 ·p(0|c2), 1
)

respectively. It should be highlighted that the upper cumulative
limit of the blue run can be deduced to be equal to 1 as it ends
on a non-occupied voxel, hence being represented by the final
state of the Markov chain tree.

Meanwhile, the employment of the unique manner of tracking
the frequencies related to the empty context does not influence
the estimation of its conditional probabilities. On the occur-
rence of an occupied voxel linked to c = 0, by forcing its
count N1 to be equal to 1 and dividing C by 2, the probability
p(1|c = 0) can still be computed accurately since

p(1|c = 0) =
N1

N1 + C
=

1

1 + C/2 =
2

2 + C .

This method of encoding the runs is coined fast-mode encoder
as opposed to the slower single-mode encoder that is described
in the following section.
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E. Single-Mode Encoder

During the encoding of runs, the limited numerical precision of
processors can cause small numerical errors in the calculations
of the probability limits. Most of these numerical errors
are harmless to the encoding process as they are recreated
identically at the decoder. In some cases though, the difference
between the upper and lower probability limits of long runs
becomes so small that the arithmetic encoder interprets them as
the same value. If left unchecked, this in turn would propagate
underflow errors and render the decoder unable to reproduce
the original point cloud. Therefore, these underflow cases
should be correctly identified and an alternative to the fast-
mode encoder should be devised to correctly encode such
runs.

The identification of a problematic run simply involves the
computation of its probability limits using Eq. 4 and compar-
ing their difference against a specific threshold Q. Only in the
cases where the difference becomes lower than the threshold
will the fast-mode encoder trigger underflow errors and there-
fore an alternative type of encoder should be employed.

As the component voxels of a problematic run are unable to
be encoded as a single sequence, a process should be carefully
devised to rearrange them into admissible runs. One such strat-
egy requires meticulously splitting the run into shorter sub-
runs such that their probability limits are appropriately spaced.
This procedure is coined single-mode encoding.

The mechanism of splitting a problematic run into sub-runs
is performed by having the algorithm iterate over the voxels
of the original run, in the order of their appearance in the
sequence. At each iteration, a voxel is added to the current
sub-run only if the difference of its updated probability limits
is larger than the threshold Q. Obviously, the fast calculation of
Eq. 4 is abandoned in favor of Eq. 3, which is updated at each
inclusion of a new voxel into the current sub-run. In case the
addition of a voxel would trigger an underflow, it is added in
a new empty sub-run, whereas the old sub-run is terminated at
the previous voxel. The following voxels are iteratively added
to the new sub-run unless a potential underflow error triggers
the initialization of a new sub-run.

The complexity of the single-mode encoder is of the order
of the number of encoded voxels O(W ), significantly higher
than the complexity of the fast-mode encoder. Nevertheless,
the single-mode encoder is triggered in the rarest of cases
since, on average, it is being employed 0.55 times per point
cloud.

IV. EXPERIMENTAL RESULTS

To examine the characteristics and behavior of the proposed
FRL method, several experiments are conducted including a
performance comparison against other state-of-the-art geome-
try compression schemes. The experimentation and analysis
are performed on several dynamic and static scenes. The
dynamic scenes are provided by the Microsoft upper body [38]
and the 8i Labs full body [39] datasets, containing voxelized

(a) (b) (c)

(d) (e)

Fig. 9. 2D depiction of single frames from the Microsoft upper body database
from the sequences (a) Andrew, (b) David, (c) Phil, (d) Ricardo and (e) Sarah.

point cloud sequences placed in a cubic space of dimensions
of 512×512×512 or 1024×1024×1024 voxels, respectively
known as 9 and 10 bit-depth resolution. Two-dimensional
depictions of individual point cloud frames of each sequence
are provided in Figs. 9 and 10. Each sequence’s number of
frames, average number of occupied voxels and size of voxel
space is given in Table II.

The static voxelized scenes are provided by MPEG’s test
datasets; consisting of the larger point clouds basket-
ball player vox11 00000200 and dancer vox11 00000001
of the Owlii dataset [40], as well as the sparse Egyp-
tian mask vox12 and Shiva 00035 vox12 of CTC [41].
These voxelized point clouds are contained in a 2048×2048×
2048 or 4096 × 4096 × 4096 cubic voxel space, respectively
known as 11 and 12 bit-depth resolution.

Although the proposed method follows a voxel-domain-based
approach, the compression scheme bares many similarities to
recent occupancy-array-type algorithms. Therefore, the fol-
lowing high performing –in terms of rate– lossless geometry
compression algorithms are included in the comparisons: the
intra-frame [33] and [29] methods, as well as inter-frame [32]
method, noted as SP, S3D and S4D respectively. The proposed
FRL method is also compared against competitive lossless
hybrid-type methods such as [35] (noted as MSVDNN) along
with both VDNN approaches with and without context ex-
tension, respectively [37] and [36]. The TMC13 v14 MPEG
variant [42], which is a recent standard for lossless geometry
compression, is also considered in the comparison.

A. Rate Comparison

The comparison, in terms of data compression performance,
against state-of-the-art approaches is carried out using all
frames of the dynamic scenes as well as the single-frame
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(a) Longdress (b) Loot

(c) RedAndBlack (d) Soldier

Fig. 10. 2D depiction of single frames from sequences of the 8i Labs full
body database.

TABLE II
POINT CLOUD INFORMATION PER SEQUENCE.

Sequence Frame
count

Average
occupied

voxels

Size of voxel
space

Dynamic scenes
Microsoft upper body [38]

andrew9 318 2.84 · 105 512× 512× 512
david9 216 3.49 · 105 512× 512× 512
phil9 245 3.34 · 105 512× 512× 512
phil10 245 1.49 · 106 1024×1024×1024
ricardo9 216 2.26 · 105 512× 512× 512
ricardo10 216 1.00 · 106 1024×1024×1024
sarah9 207 2.60 · 105 512× 512× 512

8i Labs full body [39]

longdress 300 8.34 · 105 1024×1024×1024
loot 300 7.94 · 105 1024×1024×1024
redandblack 300 7.27 · 105 1024×1024×1024
soldier 300 1.07 · 106 1024×1024×1024

Static scenes
Owlii data [40]

baskerballplayer 1 2.93 · 106 2048×2048×2048
dancer 1 2.59 · 106 2048×2048×2048

CTC data [41]

Egyptianmask 1 2.73 · 105 4096×4096×4096
Shiva 1 1.01 · 106 4096×4096×4096

static scenes listed in Table II. The reported results, which
are measured in bits per occupied voxel (bpov) and indicated
in Table III, are averaged over all the frames of each point
cloud sequence.

Before delving into the analysis of the results, it should be
noted that the choice of the axis in FRL, which determines
the order in which the occupied voxels are being processed, is

selected through an empirically derived rule. Unless the vari-
ance of the points’ coordinates along the y-axis is sufficiently
larger than along the z-axis, the former axis is always selected.
Therefore, the z-axis has been selected for all the sequences
of the Microsoft upper body dataset, whereas the y-axis is
selected for the rest of the sequences.

Regarding the dynamic scenes, from Table III it is visible
that the proposed compression scheme yields very low bit
rates, achieving the best reported results for 5 out of the
11 sequences. The herein described encoder significantly
outperforms the TMC13 standard, reporting gains of up to
15%. Additionally, FRL outperforms the two recent intra-
frame occupancy array-type methods: although the proposed
method surpasses S3D by a considerable margin, reporting
average gains of 9.8%, that margin narrows when focusing on
the comparison against SP. As mentioned later in section IV-B,
FRL and SP methods follow a similar order of processing
the point cloud and use identical 3D contexts, therefore
achieving similar results. It appears though, that the usage
of the signaling rectangle positively impacts the compression
performance of FRL, leading to a consistent gain over SP.
The competitive performance of FRL is also highlighted by
its comparison against the inter-frame encoder S4D: S4D is
more competitive on the upper body sequences while FRL
performs better on the full body sequences. Be that as it may,
the much larger computational complexity of S4D, aggravated
by its context selection procedure, renders FRL the preferred
choice.

Shifting the focus to the neural network hybrid algorithms, the
updated version of VDNN [37], employing context extension,
appears as the most competitive hybrid approach. The authors
report compression rates, for a single frame per sequence, of
0.73 and 0.62 bpov on the 10 bit-depth resolution sequences
of the upper and full body datasets respectively [38], [39].
The results of the neural network methods [36] and [35],
presented in Table III, are directly taken from the cited papers,
however the authors do not specify the number of frames that
were tested in each sequence. From Table III it is clear that
FRL is outperformed by VDNN for the sequences used for
its evaluation in [36]. Though, this competitive performance
is penalized by its lengthy run time, provided in [35], which
is many orders of magnitude larger than FRL’s, as indicated
later in Section IV-C. On the other hand, FRL outperforms
MSVDNN on sequences of the Microsoft upper body dataset
while the latter is more competitive only on sequences of the
8i Labs’ full body dataset.

Although the previously mentioned neural network approach
is an accelerated version of VDNN, MSVDNN is several
orders of magnitude more computationally expensive than the
proposed approach. This is highlighted by the encoding speed
measurements of MSVDNN when implemented on the opti-
mized PyTorch software and executed on a high-performance
GeForce RTX 2080 GPU [35].

In the case of larger, dense static scenes, such as basketball
or dancer, the performance of FRL does not appear to be
hindered. On these point clouds it is observed that the average
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TABLE III
RATE COMPARISON BETWEEN PROPOSED METHOD FRL AND STATE OF THE ART. MEASUREMENTS ARE AVERAGED OVER ALL AS WELL AS THE 100 FIRST

FRAMES OF EACH SEQUENCE AND DISPLAYED IN BITS PER OCCUPIED VOXEL [BPOV]

Sequence
All frames Unspecified number of frames First 100 frames
(Intra coders) (Intra coders) (Intra coder) (Inter coder)

FRL SP [33] S3D [29] TMC13 [42] VDNN [36] MSVDNN [35] FRL S4D [32]
andrew9 1.00 1.02 1.12 1.13 - - 1.01 0.95
david9 0.94 0.96 1.05 1.07 - - 0.94 0.94
phil9 1.02 1.04 1.14 1.17 0.92 - 1.02 1.02
phil10 0.95 - - - 0.83 1.02 0.95 -
ricardo9 0.93 0.95 1.03 1.07 0.72 - 0.94 0.90
ricardo10 0.89 - - - 0.75 0.95 0.90 -
sarah9 0.95 0.97 1.06 1.07 - - 0.96 0.92
Average 0.95 0.99 1.08 1.10 0.81 0.99 0.96 0.95
longdress 0.86 0.89 0.95 1.02 - - 0.86 0.88
loot 0.83 0.86 0.92 0.97 0.64 0.63 0.82 0.84
redandblack 0.94 0.96 1.03 1.09 0.73 0.87 0.93 0.94
soldier 0.88 0.91 0.97 1.04 - - 0.88 0.65
Average 0.88 0.91 0.97 1.03 0.69 0.75 0.87 0.83
basketballplayer 0.80 - - 0.90 - - - -
dancer 0.77 - - 0.89 - - - -
Average 0.79 - - 0.90 - - - -
Egyptianmask 18.20 - - 11.78 - - - -
Shiva 15.11 - - 9.68 - - - -
Average 16.66 - - 10.73 - - - -

compression gains over TMC13 are at 12%. However, in
sparse point clouds such as Egyptianmask and Shiva, FRL is
in deficit in terms of compression performance. This might
very well be due to the limited sub-volume of the voxel
space that is covered by the employed contexts, since they
are composed only by 14 voxels. That is to say, in sparse
point clouds such is the isolation of individual voxels that the
contexts struggle to extract meaningful information from local
voxel neighborhoods. Such a phenomenon has been studied
in the hybrid geometry encoder [37], where a decrease in
performance over sparse data was also reported. To somewhat
alleviate such a drawback, the authors proposed a context ex-
tension strategy which increases the volumetric space covered
by the contexts.

B. Projection matrix vs signaling rectangle

The similarity in terms of rate between the proposed FRL and
SP, whose performance are compared in section IV-A, is due
to the use of identical contexts. The main differences between
these two approaches that could affect their performance in
terms of rate is the use of different parameters in the arithmetic
encoder and the replacement of the projection matrix with
the signaling rectangle in FRL. Therefore, the demonstrated
gains over SP are attributed to both the signaling rectangle
and an optimized arithmetic encoding. That said, if the two
methods both employed a signaling rectangle, and identical
encoder parameters, the final upper and lower probability
limits determined by their arithmetic encoder related to the
entire point cloud would be identical.

In the results of Table IV it is noticeable that the encoding
of the signaling rectangle is much more cost-efficient than the

encoding of the projection matrix. This is because the corners
of the signaling rectangle are transmitted to the decoder using
16 bits apiece. On the other hand in [33], the 2D projection
matrix, which resembles a binary image with intricate curves
and forms, is much more costly to encode.

However, the advantage of the aforementioned matrix is linked
to its ability to reduce the number of encoded voxels signif-
icantly more than the signaling rectangle. In the last column
of Table IV it is evident that the proposed method, through
the signaling rectangle, encodes at least 76% more voxels
than in [33] using the projection matrix. That said, almost the
entirety of the additionally encoded non-occupied voxels are
associated with the empty context, which predicts extremely
accurately the occupancy status of a voxel. Therefore, the
low coding cost of the signaling rectangle counteracts the
small increase in rate attributed to the surplus of encoded
voxels. Hence, by introducing the signaling rectangle in the
proposed compression scheme, a significant reduction in mem-
ory consumption, computational complexity and encoding
speed can be achieved without compromising its rate-related
performance. Due to such drawbacks in memory consumption,
the SP implementation (in Matlab) is unable to process very
large point clouds, which is why the results for the static scenes
are absent from Table IV.

C. Run-Time Comparison

The proposed point cloud encoder is designed with the aim
to significantly reduce encoding times and computational
complexity while maintaining a very competitive geometry
compression performance. In the following experiment, the
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TABLE IV
CODING COST OF PROJECTION MATRIX VERSUS SIGNALING RECTANGLE.
THE RIGHT-MOST COLUMN INFORMS ON THE PERCENTAGE SURPLUS OF
ENCODED VOXELS IF THE SIGNALING RECTANGLE IS USED INSTEAD OF
THE PROJECTION MATRIX. MEASUREMENTS ARE AVERAGED OVER ALL

FRAMES OF EACH SEQUENCE.

Sequence Projection
matrix (bpov)

Signaling
rectangle

(bpov)

Surplus of
encoded

voxels (%)
andrew9 0.0170 22.5 · 10−5 145.15
david9 0.0188 18.3 · 10−5 178.19
phil9 0.0221 19.2 · 10−5 80.31
ricardo9 0.0168 28.3 · 10−5 84.29
sarah9 0.0186 24.6 · 10−5 120.32
Average 0.0187 22.6 · 10−5 121.65
longdress 0.0031 7.7 · 10−5 75.52
loot 0.0049 8.1 · 10−5 89.50
redandblack 0.0060 8.8 · 10−5 89.68
soldier 0.0034 6.0 · 10−5 92.05
Average 0.0044 7.7 · 10−5 86.69

proposed FRL is coded in C and the timing performance of
each of the algorithms was evaluated on an 8 core 2.8GHz
Intel Core i7-7700HQ CPU.

Given that the complexity of the proposed algorithm is of the
order of occupied voxels O(V ), the increase in the number
of encoded non-occupied voxels caused by the use of the
signaling rectangle does not affect the overall encoding time.
As illustrated in Fig. 11, the encoding time of the proposed
algorithm on dense point clouds (red dots), is linearly corre-
lated with the number of occupied voxels and not the number
of encoded voxels, confirming the effect of Eq. 4 on the
speed of the compression scheme. As reported in Table II,
the percentage of occupied voxels is between 0.0004% and
0.26% of the total number of voxels, which illustrate the
very competitive behavior of our approach. In the case of
sparse data (black dots) the linear correlation of Fig. 11 seems
disrupted even though the single mode encoder is not triggered
more often than in the case of dense data. This increase in
encoding time is due to the negligible terms in the complexity
calculation related to the increased number of voxels linked
to non-empty contexts (which can be at most 14 times the
number of occupied voxels on a slice).

Table V marks the encoding time measurements on static as
well as on dynamic scenes, which are provided as averages
over all frames of each sequence. The proposed FRL method
has only been compared against TMC13 v14 (implemented
in C++) since the latter is the most competitive among
the algorithms used in the experiments, in terms of execu-
tion time. To assure a fair comparison, both encoders have
been build using exactly same optimization level: -O3 and -
march=native.

In addition to the average encoding time of each sequence, the
initial sorting of the point cloud along a selected axis is also
taken into account in the case of FRL. Following the reported
results it is observed that for dense point clouds, such as the
dynamic scenes and the Owlii data, FRL is on average 1.4
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of encoded voxels of 2.9 · 1010 and 5.6 · 1010

Fig. 11. Observed relation between encoding time and voxel count.

times faster than TMC13. In the case of sparse scenes such
as Egyptianmask and Shiba, the increase in encoding speed of
the proposed method over TMC13 is almost three-fold.

In the case of the hybrid-based methods, the authors report
that, on average, the encoding speeds of MSVDNN as well
as both VDNN with and without context extension, were
respectively, 14, 3186 and 658 times slower than TMC13 [35].
These averages were computed on a test set of dynamic and
static scenes of a bit depth of 10 and 9. Therefore, since
our experimental results have demonstrated that, on average,
FRL is more than 1.3 times faster than TMC13, on a similar
test set, it is safe to say that the proposed encoder is many
orders of magnitude faster than the aforementioned hybrid
approaches.

V. CONCLUSION

A novel lossless point cloud geometry compression algorithm
is proposed in this paper. Its intra-frame design permits its use
on static and dynamic scenes. The proposed encoder is applied
directly on the voxel domain of the point cloud, therefore limit-
ing requirements on memory consumption by avoiding the use
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TABLE V
ENCODING TIME COMPARISON BETWEEN PROPOSED METHOD FRL AND

STATE OF THE ART. MEASUREMENTS ARE AVERAGED ON ALL FRAMES OF
EACH SEQUENCE AND DISPLAYED IN SECONDS.

Sequence FRL TMC13
[42]

Speedup
over

TMC13
Sorting Encoding Total

andrew9 0.005 0.07 0.07 0.10 1.4
david9 0.006 0.08 0.09 0.13 1.4
phil9 0.006 0.08 0.08 0.12 1.5
ricardo9 0.004 0.05 0.06 0.08 1.3
sarah9 0.005 0.06 0.06 0.09 1.5
Average 0.005 0.07 0.07 0.10 1.4
longdress 0.017 0.21 0.22 0.31 1.4
loot 0.016 0.20 0.21 0.29 1.4
redandblack 0.014 0.18 0.20 0.28 1.4
soldier 0.021 0.27 0.29 0.40 1.4
Average 0.017 0.22 0.23 0.32 1.4
basketball 0.061 0.67 0.74 1.05 1.4
dancer 0.054 0.58 0.64 0.92 1.4
Average 0.058 0.63 0.69 0.99 1.4
Egyptianmask 0.009 0.14 0.15 0.48 3.2
Shiva 0.025 0.44 0.47 1.30 2.8
Average 0.017 0.29 0.31 0.89 2.9

of an occupancy matrix or of an octree representation. Instead
of encoding one voxel at a time, entire runs of voxels are
encoded using a run-length-adaptive arithmetic encoder. The
proposal of several novelties that accelerate key calculations,
regarding the cumulative probability limits of each run, render
the algorithm, on average, 1.8 times faster than TMC13 and of
low computational complexity. The introduction of the signal-
ing rectangle restricts the number of encoded voxels while the
employment of 3D contexts yields competitive state-of-the-
art performance in terms of bit-rate. A series of experimental
results confirm the preceding claims, including compression
ratio (or bit-rate) and execution time comparison against
state-of-the-art compression schemes. Future research will be
steered towards ameliorating the algorithm’s performance on
sparse data, improving the contexts for each point cloud and
optimizing the axis selection choice without impacting heavily
the overall complexity of the algorithm.
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I. INTRODUCTION

This document provides supplementary material for the paper
titled Fast Run-Length Compression of Point Could Geometry.
Specifically, several algorithms are provided in pseudocode
notation, detailing the function of the key processes of the
proposed scheme, illustrated in Figure 1. Detailed proofs of
equations (3) and (4) of the journal paper are also included as
an addendum. The organization of the document is as follows:
In Section II and III, the phase one and two processes are
detailed algorithmically. The document is concluded with two
appendix sections detailing the proofs of the aforementioned
equations.

II. FIRST-PHASE PROCESSES

The processes run extraction and context assignment included
in the first phase of the encoder’s compression scheme are
algorithmically displayed in pseudocode notation to demon-
strate their functionality. Table I illustrates some examples of
the pseudocode nomenclature. All pseudocode variables are
represented in mathtext while simple variables are noted in
lower case Latin letters, lists in upper case Latin letters and
queues in the fraktur font. To access an element of a list a
subscript is added, specifying in mathtext the index of the
element such as in line 5 of the algorithm. Textmode is usually
reserved for global variables or naming purposes such as in
the case of simple variables, where the name is placed in
subscript, or in lists and queues, where it is positioned in
superscript.

A. Run extraction

The process of forming runs out of the list of occupied voxels
of a slice, noted as V , is demonstrated in Algorithm 1. The
first run of a slice starts at the upper left corner of the signaling
rectangle with coordinates (T, L) and ends at the slice’s first
occupied voxel V0. Once the run has been encoded, the new
run starts from the next voxel after V0, following a raster
scan order. Lines 7-11 ensure that the start of the new run
is located within the signaling rectangle whose top, bottom,
left and right limits are given by T, B, L and R respectively.
Meanwhile the new ending point is the next occupied voxel
V1. The process is repeated until the ending point of the last
run is the lower right corner of the signaling rectangle with
coordinates (R, B).

TABLE I
EXAMPLES OF NOMENCLATURE USED IN PSEUDOCODE

Notation Definition

Va
ri

ab
le

s

p, l Simple variables.
P,L Lists
P,L Queues
vy, vx Naming simple variables.
P low,Lup Naming lists and queues.
Pk The kth element of list P
C

�
, p

� Associated to non-occupied voxels.
C

�
, n

� Associated to occupied voxels.
C

on
st

an
ts

F Index of first occupied slice.
E Index of last occupied slice.
L Occupancy left coordinate limit.
R Occupancy right coordinate limit.
T Occupancy upper coordinate limit.
B Occupancy lower coordinate limit.
Q Single mode encoding threshold.

O
pe

ra
tio

ns

APPEND Add an element at the end of a list.
PUSH Place an element at the end of the

queue.
PEEK Look at the first element of the queue

without removing it.
POP Remove the first element from the

queue.
or Logical or.
and Logical and.

M
is

ce
lla

ne
ou

s ← Assign a value to an object.
= Evaluate if equal.
6= Evaluate if not equal.
// Comment
# Number of elements in list or queue.
C Special object.

B. Context assignment

Algorithm 2 details the process context assignment, which
using only the coordinates of occupied voxels, constructs the
context dictionary L. For simplicity sake, the pseudocode
designs the context dictionary of a slice that links voxels to the
contexts characterized by occupancies in the first two positions
of the context map displayed as 0 and 1 in Figure 2a. As a
result L is formed by two queues noted as LA and LB (linked
to the context contributions of 20 and 21 respectively), that
are associated to two unique coordinate shifts on the occupied
voxels clarified by the contribution map in Figure 2b.

As an example, in lines seven and ten of Algorithm 2, the
queue LA shifts the coordinates of occupied voxels V by
(x − 1, y + 1). This obtains the coordinates of the voxels
that contain an occupied voxel at location 0 of their context-
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Fig. 1. Simplified version of the proposed single-pass compression scheme indicating the four main processes as well as their inputs and outputs.

map therefore receiving a contribution of 20 to their context’s
integer representation. Each 2D shifted coordinates are stored
in LA, in raster-scan order, along with the unique contribution
in the form of triplets. A series of queue operators, marked
in bold textmode are defined in Table I. The queues LA

and LB are then merged into the context dictionary such
that triplets with the same two dimensional coordinates are
integrated into a single triplet whose context integer repre-
sentation is calculated as the sum of context-contributions of
the merged triplets. The signaling rectangle facilitates iden-
tification of non-transmittable voxels which are thus omitted
from the context-dictionary, via the if conditions of lines 6
and 9.

012

34 v

(a) (b)

Fig. 2. (a) Context-map used to determine the integer representation of the
context of voxel v. (b) Context-contribution-map illustrating the contribution
of occupied voxel v to contexts of voxels located at the same slice as v,
ranging from 1 to 24.

III. SECOND-PHASE PROCESSES

The probability limits of a run are computed according to
the pseudocode of Algorithm 3. As indicated in Table I
black � or white � squares are placed in superscript for
naming purposes to clarify when the object is associated to
occupied or non-occupied voxels respectively. One can note
that the product term of the limits associated to non-empty
contexts is computed sequentially in the while loop of lines
7 to 15. The context-dictionary L facilitates the retrieval of a
voxel’s non-empty context c whose count C �

c is immediately
updated during the calculation of the product. In the other hand
though, the term linked to the empty context is non-iteratively
calculated in line 18. This is achieved by keeping track of the
number of voxels linked to a non-empty context and easily
computing the total length of the run through the signaling
rectangle in lines 13 and 1 respectively.

In the case a potential underflow error is detected, by compar-
ing the difference of the probability pair against threshold Q,

Algorithm 1 The function RUN-EXTRACTION is a run
length encoder using an arithmetic encoder.Input is a list V
composed by tuples (vx, vy) of the x and y-coordinates of all
the occupied voxels located on a single slice. The lists C �, C �

and the integer C allow the calculation of the probability limits
associated to a specific run, whereas the list Smod flags the use
of the correct auxiliary function to avoid any underflow errors
in the arithmetic encoder. Output C �, C �, Smod, C are updated
for later use.

INPUT: V,C �, C �, Smod, C
OUTPUT: C �, C �, Smod, C

1: L← CONTEXT-ASSIGNMENT(V )
// Start of first run

2: (vsx, vsy)← (L,T)
// Initializing end of first run

3: (vex, vey)← (L,T)
// Iterate over occupied voxels of slice

4: for i from 0 to #V − 1 do
// End of new run at next occupied voxel

5: (vex, vey)← Vi

// encode run starting at (vsx, vsy) and ending at (vex, vey)

6: C �, C �, C, Smod ← FASTLIMITS(vsx, vsy, vex, vey, b =
1,L, C �, C �, C, Smod)

// Calculate start of new run at next voxel
7: if vex + 1 > R then
8: (vsx, vsy)← (L, vey + 1)
9: else

10: (vsx, vsy)← (vex + 1, vey)
11: end if
12: end for
13: if vex 6= R or vey 6= B then
14: (vsx, vsy)← (vex, vey)
15: (vex, vey)← (R,B)

// encode run starting at (vsx, vsy) and ending at (vex, vey)

16: C �, C �, C, Smod ← FASTLIMITS(vsx, vsy, vex, vey, b =
0,L, C �, C �, C, Smod)

17: end if

the single mode encoder is triggered in line 49. The single-
mode encoder, demonstrated in Algorithm 4, partitions the
original run into multiple sub-runs which are individually
encoded by an arithmetic encoder without causing any un-
derflow errors. In the course of encoding the point cloud,
the partitioned runs are signaled and registered at the header
bitstream through the list Smod, as demonstrated in lines 50
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to 52 of Algorithm 3. This allows the decoder to adapt its
decoding strategy depending on the mode of encoder used on
the run.

Algorithm 2 Algorithm CONTEXT-ASSIGNMENT obtains
the non-empty context of each voxel through the contexts
binary mask. Input V is a list of the slice’s occupied voxel
coordinates in raster-scan order. Output L is a queue of triplets.
For a given triplet the first 2 elements are the x and y-
coordinates of a voxel with a non-zero context, whereas the
3rd element is the (non-empty) context of that voxel. In this
pseudocode we take into account only 2 context contributions
for brevity.

INPUT: V
OUTPUT: L

1: L← Empty Queue
2: LA ← Empty Queue
3: LB ← Empty Queue
4: for i from 0 to #V − 1 do
5: (vx, vy)← Vi

// Push tuples to sorted queue LA

6: if vx− 1≥L and vx− 1≤R and vy+1≥T and
vy+1≤B then

7: PUSH triplet
(
vx− 1, vy +1, 20

)
into LA

8: end if
// Push tuples to sorted queue LB

9: if vx ≥L and vx ≤R and vy+1≥T and
vy+1≤B then

10: PUSH triplet
(
vx , vy +1, 21

)
into LB

11: end if
12: end for
13: MERGE LA, LB into L, following raster-scan order.
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Algorithm 3 The function FASTLIMITS calculates the upper and lower cumulative probability limits of a run and encodes
it via an arithmetic encoder. Inputs (vsx, vsy) and (vex, vey) are the x-y coordinates of first and last voxel of the run length
whereas the boolean b indicates if the last voxel is occupied or not. Using C �, C �, C and the queue L from Algorithm 1 we
allow a fast calculation of the probability limits. In the case the limits would trigger an underflow at the Arithmetic Encoder,
we signal the use of an alternative method through appending 1 to the list Smod. Outupts are the updated context counts and
the flag signaling a fast or sequential-type of run encoding.

INPUTS: vsx, vsy, vex, vey, b,L, C
�, C �, C, Smod

OUTPUTS: C �, C �, C, Smod

1: r ← (vey−vsy−1) · (R−L+1)+(R−vsx+1)+(vex−L)
2: p � ← 1
3: n � ← 0
4: P← Empty Queue
5: Cold ← C

// Look at the first element of the queue returning the tuple of the x

and y coordiantes of the first voxel with non empty context with context
id c

6: PEEK (vx, vy, c) from L
7: while (vy < vey or vx < vex) and vy ≤ vey do

// Probabilities of voxels with non empty contexts. Last voxel in run
is excluded.

// Remove first queue tuple
8: POP L

9: w ← C �
c

C �
c + C �

c
10: PUSH (vx, vy, w) into P
11: p � ← p � · w
12: C �

c ← C �
c + 1

13: n � ← n � + 1
14: PEEK (vx, vy, c) from L
15: end while

// Probabilities of voxels with empty contexts. Last voxel in the run
is excluded.

16: p � ← 1
17: if r > n � then

// If there are any empty context voxels
18: p � ← C/(C + r − n �)
19: C ← C + r − n �

20: end if
// Calculate probability and update context counts for last voxel in

the run.
21: PEEK (vx, vy, c) from L
22: if vx = vex and vy = vey then

// If the final voxel corresponds to a non empty context.
23: POP L

24: pend ←
C �

c

C �
c + C �

c

25: PUSH (vex, vey, pend) into P
26: if b then

// if last voxel is occupied
27: C �

c ← C �
c + 1

28: else
// if last voxel is not occupied

29: C �
c ← C �

c + 1
30: end if
31: else
32: pend ←

C
C + 1

33: if b then
// if last voxel is occupied

34: C ← bC/2c
35: else

// if last voxel is not occupied
36: C ← C + 1
37: end if
38: end if
39: pup ← p � · p � · pend
40: plow ← p � · p �

// Calculate upper and lower probability of limits.
41: if b then

// Last voxel was occupied
42: pup ← 1− pup
43: plow ← 1− plow
44: else
45: plow ← 1− pup
46: pup ← 1
47: end if

// Check if difference of probability pair is lower than the threshold
Q, therefore possibly causing undeflow error

48: if pup − plow < Q or p � · p � · pend < Q then
// Underflow: single mode encoding triggered.

49: S ← SINGLEMODE(P, Cold, b, r + 1, vsx, vsy)
50: APPEND S into Smod

51: else
52: APPEND 0 into Smod

53: ARITHMETIC ENCODER (pup, plow)
54: end if
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Algorithm 4 The function SINGLEMODE, computes the upper and lower probability limits by partitioning the initial run
into a series of sub-runs whose probability pairs do not cause underflow errors. Each sub-run is encoded through an arithmetic
encoder. Inputs (vsx, vsy) are the run’s x-y coordinates of first voxel, b the occupancy boolean describing the state of the run’s
last voxel, r the length of the run and P a queue composed by triplets containing the x-y coordinates of voxels along with
their non-occupancy conditional probability linked to non-empty contexts. Outputs list S signaling sub-runs. The probability
difference threshold is Q

INPUTS: P, C, b, r, vsx, vsy
OUTPUTS: S

1: n � ← 0
2: ph ← 0
3: pl ← 0
4: p � ← 1
5: p � ← 1
6: while r ≥ 0 do
7: PEEK (vx, vy, pt) from P

// Check if voxel linked to non-empty
context

8: if vsx = vx and vsy = vy then
9: p � ← p � · pt

10: c← 1
11: else
12: n � ← n � + 1
13: p � ← C/(C + n �)
14: c← 0
15: end if
16: r ← r − 1

// Find coordinates of next voxel
17: if vsx + 1 > R then

18: vsx ← L
19: vsy ← vsy + 1
20: else
21: vsx ← vsx + 1
22: end if
23: pl ← ph
24: ph ← 1− p � · p �

// Check if difference of probability pair is
lower than the threshold Q, therefore possibly
causing undeflow error

25: if ph−pl < Q or 1−ph < Q then
// Termination of sub-run
// pl is low cumulative probability
// 1 is high cumulative probability

26: ARITHMETIC ENCODER (1,
pl)

27: APPEND 1 into S
// Initiate new of sub-run

28: if c = 0 then
29: C ← C + n � − 1
30: n � ← 1
31: p � ← C/(C + n �)

32: p � ← 1
33: else
34: C ← C + n �

35: n � ← 0
36: p � ← 1
37: p � ← pt
38: end if
39: pl ← 0
40: ph ← 1− p � · p �

41: end if
42: end while
43: if b = 1 then

// pl is low cumulative probability
// ph is high cumulative probability

44: ARITHMETIC ENCODER (ph,
pl)

45: else
// ph is low cumulative probability
// 1 is high cumulative probability

46: ARITHMETIC ENCODER (1,
ph)

47: end if
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APPENDIX A
PROOF OF PROBABILITY LIMITS EQUIVALENCE

Eq. 3 of the Journal states that the probability limits of a run
of length l, composed by voxels with contexts ci are computed
by

Low(l) = 1−
l−1∏

i=1

p(0|ci),

High(l) = 1−
l∏

i=1

p(0|ci).

The proof of Eq. 3 is as follows. The probability
of a run of length r, composed by the set of vox-
els {v1, v2, ..., vl} with contexts {c1, c2, ..., cl} is given
by: P (r) = p(1|cr) ·

∏r−1
i=1 p(0|ci).

Therefore the high cumulative probability limit is given
by

High(l) =
l∑

r=1

P (r)

= p(1|c1) +
l∑

r=2

p(1|cr) ·
r−1∏

i=1

p(0|ci)

= (1− p(0|c1)) +
l∑

r=2

(1− p(0|cr)) ·
r−1∏

i=1

p(0|ci)

= 1− p(0|c1) +
l∑

r=2

r−1∏

k=1

p(0|ck)−
l∑

r=2

r∏

i=1

p(0|ci)

= 1− p(0|c1) +
l−1∑

r=1

r∏

k=1

p(0|ck)−
l∑

r=2

r∏

i=1

p(0|ci)

= 1 +

l−1∑

r=2

r∏

k=1

p(0|ck)−
l−1∑

r=2

r∏

i=1

p(0|ci)−
l∏

i=1

p(0|ci)

= 1−
l∏

i=1

p(0|ci).

Idem for the formula of Low(l).

APPENDIX B
PROOF OF FAST POWER OF PROBABILITY CALCULATION

Described in this section is the proof of Eq. 4 of the Journal,
which states that

Low(l) = 1− C
C +m

·
k∏

i=1

p(0|ci).

The starting point of the proof is the following Eq. 1 which
separates the terms of voxels associated to the empty contexts
c = 0 with the non-empty ones ci 6= 0:

Low(l) = 1−
m∏

i=1

p(0|c = 0) ·
k∏

i=1
ci 6=0

p(0|ci) (1)

We know that all the contexts in the first product term of Eq. 1
are non-occupied. Given that the number of occupied and non-
occupied voxels, associated with the empty context are 1 and
N respectively, the probaibility of the first non-occupied voxel
of context c = 0 is p1 = N

N+1 . The probability of the second
non-occupied voxel with context c = 0 is p1 = N+1

N+1+1 since
the number N , of non-occupied voxels related to the empty
context has been increased by one. Therefore the value N ,
keeps updaating at each occurrence of a non-occupied voxel
of context c = 0. Therefore the product of Eq. 1 is rewritten
as

m∏

i=1

p(0|c = 0) =
m∏

i=1

N + i− 1

N + i
=

∏m
i=1 N + i− 1∏m

i=1 N + i

=

∏m
i=1 N + i− 1

∏m+1
i=2 N + i− 1

=
(N + 1− 1) ·∏m

i=2 N + i− 1

(N +m+ 1− 1) ·∏m
i=2 N + i− 1

=
N

N +m
.

Therefore,

Low(l) =1−
m∏

i=1

p(0|c = 0) ·
k∏

i=1

p(0|ci)

=1− N

N +m
·

k∏

i=1

p(0|ci).



Chapter 6

Analysis

6.1 Analysis of results

In this section, we discuss the results and the conclusions of the experiments detailed in

chapters 2 to 5. First, we touch upon the results related to the attribute compression of point-

based data, which is accomplished through graph filterbank transforms. The discussion on

this topic is split into two subsections, depending on the way that the graph structure is

made available to the decoder. On one hand, the graph structure can be inferred by the

decoder without requiring the transmission of additional dedicated graph information, as

is the case of hyperspectral image compression through lossy-to-lossless graph filterbank

transforms. On the other hand, the graph structure is transmitted as side information when

such a graph inference is not possible, as is the case of lossy compression of natural images.

After discussing our results on attribute compression, we focus on the topic of compression

of point-based data location information. This was accomplished through the geometry

compression of point cloud data.

6.1.1 Point-based attribute compression with graph inference at de-
coder

In particular cases of point-based attribute compression applications, the nature of data is

such that one can avoid transmitting the graph structure to the decoder when using graph fil-

65
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terbank transforms. One such case is the compression of hyperspectral images, discussed in

chapter 2, where we provide different lossy-to-lossless graph filterbank transforms, applied

on the spatial dimension of the image. Such proposed transforms are the integer GraphBior

(IGB) and the quad or dual kernel integer-to-integer spectral graph lifting (coined ISGLQ

and ISGLD respectively). To avoid the transmission of the graph through side information,

the hyperspectral bands are grouped into packages, called band groups, consisting of ω

consecutive bands. Each band group is compressed by a graph transform computed from

a single graph, which is derived from the last component of the previously decompressed

band group. This circumvents the necessity for the transmission of the actual graph struc-

ture, as the graph can be inferred by the decoder.

However, the compression of hyperspectral images through graph transforms, based on

the inference of the graph in the decoder, has its own difficulties. Of particular concern is

the size of ω, dictating the number of components in each band group. Our experimental

results displayed in Tale 6.1 and Figures 6.1, show that in the absence of any spectral

transform, a smaller band group provides the best results in the lossless as well as lossy

cases. This is justified as the correlation of hyperspectral bands is lower the further apart

they are located on the spectral dimension. It should be noted though, that the performance

of the compression scheme might be hindered by the quality of the original image, such

as the existence of dead bands. This effect is particularly pronounced when using a small

band group. The probability of using a dead band to compute a band group’s graph becomes

higher as ω decreases. This is confirmed by the poor results when using lower ω values for

the lossy compression of the Hyperion images (Figures 6.1c and 6.1d), as those contain the

highest number of dead bands among the corpus used in the experiments.
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Table 6.1: Rates at which IGB achieves a lossless compression for different values of ω.

The tiles size is set to 16 by 16. The spectral size of the hyperspectral image should be a

multiple of ω. Units are in bpppc.

Image
IGB

ω = 2 ω = 3 ω = 8 ω = 11 ω = 14 ω = 16 ω = 22

Yellowstone sc. 0 cal. 6.95 7.00 7.06 7.14

Yellowstone sc. 0 raw 9.02 9.06 9.14 9.15

Lake Monona 6.31 6.36 6.37

Mt. St. Helens 6.68 6.75 6.75

Agriculture 4.27 4.39
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Figure 6.1: Relative rate-distortion plots for IGB using tiles of 16 by 16 when varying the

parameter ω for multiple images. Results are relative to those of smallest value of ω.
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Our comparisons regarding lossy compression, illustrated in Figures 6.2, are performed

utilizing transforms only on the spatial dimension of hyperspectral images. These demon-

strate that ISGLQ yields the best overall results, with the exception of compression at high

rates, where it is outperformed by the GraphBior transform. Noticeably all the proposed

transforms outperform the Discrete Wavelet transform (DWT) in most cases in the lossy

setting. Concerning the results on lossless compression, Table 6.2 reveals that the IGB

transform most frequently provides the best results, while DWT ranks second in these

comparisons.

Table 6.2: Rates at which each integer transform achieves a lossless compression. No

spectral transform is used. The parameter ω is set to 2. The IGB transform uses tiles of

16 by 16 for the Yellowstone images and 32 by 32 for Lake Monona, Mt. St. Helens and

Agriculture. Units are in bpppc.

Image
Transform

IGB DWT ISGLD ISGLQ

Yellowstone sc. 0 cal. 6.95 7.29 7.44 7.11

Yellowstone sc. 0 raw 9.02 9.32 9.47 9.19

Lake Monona 6.26 6.23 6.50 6.28

Mt. St. Helens 6.63 6.57 6.93 6.67

Agriculture 4.21 4.37 4.67 4.37
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Figure 6.2: Relative rate-distortion plots comparing spatial transforms using ω = 2 for mul-

tiple images. Results are relative to DWT. The tiles sizes are 16 by 16 for the Yellowstone

sc. 0 images, and 32 by 32 for the rest.



6.1. ANALYSIS OF RESULTS 71

The comparisons between the aforementioned transforms, applied spatially, are further

examined by additionally including spectral transforms in the proposed scheme, such as

the Reversible Karhunen - Loève Transform (RKLT), and the DWT. Among the transforms

used in our compression scheme, the most competitive in the lossy setting, as shown in

Figure 6.3, is the ISGLQ followed by ISGLD when paired with a spectral RKLT. Both

of these transform combinations outperform the spectral RKLT and spatial DWT, mostly

in medium and high rates. Regarding the lossless compression of hyperspectral images,

Table 6.3 suggests that it is the spatial DWT coupled with the spectral RKLT that provides

the most competitive results among the transforms tested in the proposed compression

scheme. Nevertheless, when comparing the compression scheme utilizing the proposed

graph transforms, against the CCSDS-123.0-B-2 standard [11], Figure 6.3 shows that the

latter appears as the most competitive in mid and high rate ranges. At low bitrates it is

the spectral RKLT and the spatial DWT or, at a lesser extent, the ISGLQ, that improve on

CCSDS. Although the CCSDS standard consistently outperforms the proposed scheme and

transforms in terms of lossless compression, it should be noted that the former is a highly

refined method, whereas the latter was devised as a mean to test the viability of graph

transforms in the context of hyperspectral image compression.

Table 6.3: Rates at which each of the integer transforms achieves a lossless compression.

RKLT and DWT are used as spectral transforms. For the methods that use tiles, their size

has been set to 16 by 16. The Yellowstone images are evaluated at ω = 8, the Lake Monona

and Mt. St. Helens are evaluated at ω = 11 and the Agriculture image is evaluated at ω = 3.

For each column, the spectral transform is mentioned first followed by the spatial transform

(spectral transform + spatial transform). Units are in bpppc.

Image
Transforms

CCSDS
DWT + IGB RKLT + IGB DWT + DWT DWT + ISGLD DWT + ISGLQ RKLT + DWT RKLT + ISGLD RKLT + ISGLQ

Yellowstone sc. 0 cal. 5.03 4.41 4.73 5.36 5.05 3.74 4.65 4.36 4.04

Yellowstone sc. 0 raw 7.17 6.47 6.97 7.54 7.25 5.93 6.72 6.44 6.19

Lake Monona 6.69 6.19 6.56 6.89 6.66 6.35 6.34 6.13 6.10

Mt. St. Helens 7.06 6.52 6.90 7.32 7.05 6.58 6.71 6.47 6.37

Agriculture 4.21 3.96 3.96 4.63 4.34 3.68 4.37 4.08 3.62



72 CHAPTER 6. ANALYSIS

0 0.5 1 1.5 2 2.5

Rate [bpppc]

-20

-15

-10

-5

0

5

(a) Yellowstone sc. 0 calibrated

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Rate [bpppc]

-15

-10

-5

0

5

(b) Yellowstone sc. 0 raw

0 1 2 3 4 5

Rate [bpppc]

-4

-2

0

2

4

6

8

(c) Mt. St. Helens

0 1 2 3 4 5

Rate [bpppc]

-4

-2

0

2

4

6

8
Lake Monona

(d) Lake Monona

0 0.5 1 1.5 2 2.5

Rate [bpppc]

-20

-15

-10

-5

0

5

(e) Agriculture

DWT + IGB

RKLT + IGB

DWT + Tiled GraphBior

RKLT + Tiled GraphBior

DWT + DWT

RKLT + DWT

DWT + ISGL
D

RKLT + ISGL
D

DWT + ISGL
Q

RKLT + ISGL
Q

CCSDS

Figure 6.3: Relative rate-distortion plots comparing spectral + spatial transforms for mul-

tiple images. Results are relative to the spectral RKLT followed by the spatial DWT. Tiles

of 16 by 16 were used. The parameter ω is set to 8 for Yellowstone sc. 0 raw and cal., to

11 for Mt. St. Helens and Lake Monona, and to 3 for Agriculture.
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A noticeable drawback of the IGB transform is its high time complexity caused by

arduous calculations during the TERM factorization. To rectify this issue, we proposed

a tiling method, which segments the hyperspectral components into smaller rectangular

tiles. A separate IGB transform is adaptively computed for each individual tile in parallel,

therefore reducing the overall time complexity of the process. Our experimental results of

Table 6.4 and Figures 6.4 indicate that the smaller the tile size, the lower the compression

performance of IGB. This is attributed to the fact that the smaller the tile size, the greater

the number of pairs of neighboring pixels belonging to adjacent tiles, whose correlation is

therefore never exploited.

Table 6.4: Rates at which integer GraphBior (IGB) achieves a lossless compression using

ω = 2 for various tile sizes and multiple images. Units are in bpppc.

Image
IGB

Tiles of 8 by 8 Tiles of 16 by 16 Tiles of 32 by 32
Yellowstone sc. 0 cal. 7.14 6.95 -

Yellowstone sc. 0 raw 9.15 9.02 -

Lake Monona 6.40 6.31 6.26
Mt. St. Helens 6.78 6.68 6.63

Agriculture 4.39 4.27 4.21
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Figure 6.4: Relative rate-distortion plots for IGB, using ω = 2, when varying the tile size,

for multiple images. Results are relative to those of the largest tile.
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6.1.2 Point-based attribute compression with graph transmission to
decoder

For the compression of gray-scale natural images through graph transforms, the aforemen-

tioned graph inference scheme is not viable. Instead, it is necessary to transmit the graph

structure as side information in order to decode the compressed image. To facilitate the

graph transmission, an edge-aware graph is used in such cases, consisting of only two

types of weighted edges. The strong edge links neighboring pixels that share a high corre-

lation (e.g. in intensity), while the weak type of edge connects neighboring pixels of lower

correlation.

Even though one benefit of edge-aware graphs is their relatively inexpensive transmis-

sion cost, they were originally designed to attenuate an undesirable effect linked to the

zero-DC GraphBior transform in lossy compression applications. The zero-DC GraphBior,

also known as LRW -GraphBior, tends to produce localized artifacts at high gradient re-

gions of the image. The characteristic of LRW -GraphBior, linked to the non-uniform error

distribution can be somewhat limited through edge-aware graphs, however, the theoreti-

cal foundations, to understand and control this problem, had not been developed at the

time. Interestingly, it had been observed that this adverse characteristic was absent in the

LN -GraphBior, when instead of the random walk Laplacian (LRW ), the Normalized Lapla-

cian (LN ) would be used as the fundamental matrix. Nonetheless, doing so would result

in a significant drop in compression performance, when compared to the LRW -GraphBior

variant.

Our work, detailed in chapter 3, shows that the cause of the non-uniform distribution of

reconstruction errors is due to LRW -GraphBior analysis and synthesis filters being approx-

imately orthogonal in the degree-inner product. This explains the accumulation of large

distortion errors at nodes with a low graph degree value. Therefore, we proposed a novel

GraphBior variant based on a novel fundamental matrix, which is designed to balance the

trade-off between the high energy compaction and uniform distortion distribution of the

LRW -GraphBior and the LN -GraphBior respectively. This is achieved through an opti-

mization problem, which learns the optimal values of the fundamental matrix according

to a learning parameter α. The role of the parameter is to regulate the trade-off between
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Image Experiment α1 α2 min. weight

peppers 1 2.86 4 · 10−4 0.1

Barbara 1 4.32 5.4 · 10−3 0.23

peppers 2 3.48 3.48 · 10−8 10−3

Table 6.5: Table of parameters used in the first and second experiments. Fundamental

matrices ZK1and ZK2 are computed through learning parameters α1 and α2 respectively.

The edge-aware graph uses as a minimum weight the values indicated in the last column.

non-uniform error distribution and energy compaction.

Several experiments on the compression of natural images, using the parameters indi-

cated in Table 6.5, confirm that our proposed Z-GraphBior reduces the distortion on high

gradient areas of the image, while maintaining a high energy compaction property. Specifi-

cally, we examine two different learning parameters α1 and α2, resulting in the fundamental

matrices ZK1 and ZK2 respectively. In Table 6.6, we report the results of the first experi-

ment, consisting of the Bjontegaard measurements comparing the Z-, and LN -GraphBior

against the LRW -GraphBior, for the compression of two natural images. Particularly, the

performance of each GraphBior variant is measured by computing the distortion on the

entire image, as well as on localized high gradient areas of the image, marked as Total

and Edge PSNR in Table 6.6 respectively. The results demonstrate an improvement of

the proposed Z-GraphBior over LN -GraphBior in all areas, as well as also outperform-

ing LRW -GraphBior in the PSNR of the high gradient areas of the image. However, the

LRW -GraphBior consistently yields the best overall performance, when taking into ac-

count the distortion of all the image pixels. Additionally, we were able to showcase the

influence of the choice of the learning parameter α. The smaller the parameter, the closer

to LRW -GraphBior the proposed GraphBior becomes. In other words, the proposed trans-

form achieves higher energy compaction, while the distortion at high gradient regions of

the image increases. Conversely, the larger the value of α the overall compression perfor-

mance of the method is traded for a more uniform distribution of the image reconstruction

errors.
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Peppers Barbara
LN ZK1 ZK2 LRW LN ZK1 ZK2 LRW

Total PSNR -2.005 -0.282 -0.024 0 -1.292 -0.132 -0.028 0
Edge PSNR -0.509 0.614 0.161 0 -0.332 0.507 0.115 0

Rate(%) 36.51 4.854 0.377 0 11.317 1.158 0.245 0

Table 6.6: Tables of Bjontegaard measurements of experiment 1, comparing the GraphBior

variations using LN and the proposed ZK1, ZK2 against LRW . The comparisons are done

using images peppers and Barbara
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To experimentally demonstrate the relation between the distortion and a pixel’s graph

degree, in our second experiment, an image is compressed with the LN -, LRW -, and the

proposed Z-GraphBior, such that in all cases the PSNR of the decompressed image is ap-

proximately 35.9dB. For each of the bipartite graphs used in GraphBior, all the graph nodes

are assembled into four groups, ranging from nodes of low degrees to nodes of high de-

grees. Then the absolute values of reconstruction errors, of all pixels of each group, are

averaged. By plotting in Figure 6.5 the distortion in function of the degree for each of the

aforementioned transforms, we demonstrate the tendency towards a uniform error distribu-

tion of the LN -GraphBior and the degree-dependent distortion feature of LRW -GraphBior.

Furthermore, we showcased the intermediate behavior of Z-GraphBior, which is dictated

by the learning parameter α. A higher parameter will tend to distribute in a more uniform

manner the reconstruction errors, resulting in a curve with a flatter profile, colored in green

in Figure 6.5.
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Figure 6.5: Experiment 2: Average absolute value of node error with a 95% confidence

interval versus degree for (a) Diagonal-edge graph (b) vertical-horizontal-edge graph. The

peppers image was used and each reconstruction had a total PSNR of approximately

35.9dB
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6.1.3 Point-based location compression

Our work on the compression of location information of point based data is studied through

the lens of lossless voxelized point cloud geometry compression (PCGC). Despite the emer-

gence of various PCGC methods, the core principle on which most algorithms are based

on, is the reduction of non-occupied voxels being processed and encoded. The majority

of a point cloud’s volume consist of empty space, therefore culminating in a large number

of non-occupied voxels. To limit the transmission of empty voxels, the family of octree-

based techniques iteratively divides volumes of the point cloud space, that contain at least

one occupied voxel, into sub-volumes. Diversely, occupancy matrix techniques such as

[12], perform a dyadic decomposition in order to signal through multiple 2D projections,

transmitted as side information, areas that are void of any occupied voxel.

The observation that evoked the work detailed in chapter 4 was based on our study of

[12] to provide a possible alternative to the dyadic decomposition. We noticed that through

the use of 3D contexts, it is more beneficial to reduce the amount of side information trans-

mitted to the decoder for the cost of encoding a larger number of empty voxels. That is

because empty voxels are associated with a specific 3D context that renders such voxels

inexpensive to encode. Our proposed PCGC method discarded the dyadic decomposition

in favor of a single projection of the point cloud along an axis of our choice. The pro-

posed PCGC method was compared against the state-of-the-art inter as well as intra-frame

techniques, yielding the best results on a corpus of dynamic point cloud sequences. From

Table 6.7 we report average gains higher than 11% over MPEG’s G-PCC version 7.0, and

above 6% and 2% over the intra and inter-frame dyadic decomposition variants [12, 13]

respectively.
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Table 6.7: Compression between our proposed methods using the Pz or Py projection ma-

trix against a plain Octree encoding, G-PCC [14], S-3D [12] and S-4D [13]. We report

the average rate in bpov for the lossless geometry compression of the 100 first frames

of sequences from the Microsoft Voxelized Upper Bodies and the Full Body JPEG Pleno

datasets.

Intra Coders Inter Coder Gains of P over
Sequence Octree G-PCC S-3D Proposed S-4D G-PCC S-3D S-4D

Pz Py

andrew9 2.58 1.14 1.12 1.02 1.05 1.08 -10.53% -8.93% -5.56%
david9 2.62 1.07 1.06 0.96 1.02 1.05 -10.28% -9.43% -8.57%
phil9 2.64 1.18 1.14 1.03 1.05 1.13 -12.71% -9.65% -8.85%
ricardo9 2.59 1.10 1.04 0.96 0.97 1.02 -12.73% -7.69% -5.88%
sarah9 2.61 1.08 1.07 0.97 1.01 1.04 -10.19% -9.35% -6.73%

Average 2.61 1.11 1.09 0.99 1.02 1.06 -11.29% -9.01% -7.12%

longdress 2.99 1.03 0.95 0.94 0.89 0.95 -13.59% -6.32% -6.32%
loot 2.98 0.97 0.92 0.91 0.85 0.91 -12.37% -7.61% -6.59%
redandblack 3.00 1.10 1.02 1.00 0.95 1.02 -13.64% -6.86% -6.86%
soldier 3.00 1.04 0.96 0.93 0.90 0.81 -13.46% -6.25% 11.11%

Average 2.99 1.04 0.96 0.95 0.90 0.92 -13.27% -6.76% -2.17%
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Moreover, we explore the possible benefits of discarding an adaptive arithmetic en-

coder, in favor of a semi-adaptive one. Our study compares the theoretical average condi-

tional information per occupied voxel, using the true conditional probabilities (marked as

LB), as well as the ones computed adaptively (marked as ALB). The reported results of

Table 6.8 indicate a large difference between these two theoretical limits, suggesting that

the updated probabilities converge slowly to the true ones. Therefore, we provide a sim-

plistic estimation of a semi-adaptive approach, which would transmit as side information

(SI) the true conditional probabilities of 4% of the contexts, while the rest of the conditional

probabilities would be computed adaptively. By assuming that each of the transmitted prob-

abilities are encoded in a 2-byte word, and each context identifier would require 14 bits,

the average estimated gains over our original approach (marked as AR) would cumulate to

6.3%.

Table 6.8: Rates for the compression of the images without taking into account the cost of

the projection matrix. We compare the actual rate (AR), its theoretical lower bound using

adaptive probabilities (ALB) and its theoretical lower bound using the true probabilities

(LB). The rates are averages of the first 100 frames for each sequence and the occupancy

array is projected along the z-axis. The average side information for encoding 4% of the

contexts is displayed under SI .

Sequence AR ALB LB SI Gains of SI + LB
over AR

Andrew9 1.01 1.00 0.88 0.07 -5.94%
David9 0.94 0.93 0.83 0.06 -5.32%
Phil9 1.02 1.00 0.90 0.06 -5.88%
Ricardo9 0.94 0.93 0.81 0.08 -5.32%
Sarah9 0.95 0.94 0.82 0.07 -6.32%
Loot10 0.90 0.88 0.82 0.03 -5.56%
Longdress10 0.94 0.92 0.86 0.02 -6.38%
RedAndBlack 0.99 0.98 0.90 0.03 -6.06%
Soldier 0.92 0.90 0.85 0.02 -5.43%
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Although our contribution of chapter 4 resulted in a PCGC algorithm of competitive

performance, its computational complexity are significantly large. Particularly, its com-

putational complexity is of the order of encoded voxels as each voxel is processed and

encoded sequentially. In addition to all the occupied voxels, a large number of empty vox-

els are also processed, cumulating in slow encoding speeds. In chapter 5 we improve on

our previous approach and propose a fast run length point cloud geometry encoder. Ex-

perimental results, which are illustrated in Figure 6.6, verify that the proposed fast PCGC

encoding algorithm follows a linear complexity with respect to the number of occupied

voxels, regardless of the surplus of encoded empty voxels. Furthermore, in Table 6.9, we

report average speedups of 1.8 over MPEG’s standard TMC13 version 14. In Table 6.10,

our comparisons on the performance of our approach against the state of the art, show that

we consistently outperform other intra, non-neural network approaches, reporting gains

of up to 15% over TMC13. Our proposal even outperforms the MSVDNN technique [15],

based on neural networks on the upper body point cloud dataset. Furthermore, although the

neural network-based methods [15, 16] usually outperform the proposed method in terms

of rate, the former’s high computational complexity and slow encoding speeds render the

latter the preferred method.
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Table 6.9: Encoding time comparison between proposed method FRL and state of the art.

Measurements are averaged on all frames of each sequence and displayed in seconds.

Sequence FRL TMC13
[17]

Speedup over
TMC13

Sorting Encoding Total

andrew9 0.005 0.07 0.07 0.10 1.4

david9 0.006 0.08 0.09 0.13 1.4

phil9 0.006 0.08 0.08 0.12 1.5

ricardo9 0.004 0.05 0.06 0.08 1.3

sarah9 0.005 0.06 0.06 0.09 1.5

Average 0.005 0.07 0.07 0.10 1.4

longdress 0.017 0.21 0.22 0.31 1.4

loot 0.016 0.20 0.21 0.29 1.4

redandblack 0.014 0.18 0.20 0.28 1.4

soldier 0.021 0.27 0.29 0.40 1.4

Average 0.017 0.22 0.23 0.32 1.4

basketball 0.061 0.67 0.74 1.05 1.4

dancer 0.054 0.58 0.64 0.92 1.4

Average 0.058 0.63 0.69 0.99 1.4

Egyptianmask 0.009 0.14 0.15 0.48 3.2

Shiva 0.025 0.44 0.47 1.30 2.8

Average 0.017 0.29 0.31 0.89 2.9
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Table 6.10: Rate comparison between proposed method FRL and state of the art. Measure-

ments are averaged over all as well as the 100 first frames of each sequence and displayed

in bits per occupied voxel [bpov]

Sequence
All frames Unspecified number of frames First 100 frames
(Intra coders) (Intra coders) (Intra coder) (Inter coder)

FRL SP [18] S3D [12] TMC13
[17]

VDNN
[16]

MSVDNN [15] FRL S4D [19]

andrew9 1.00 1.02 1.12 1.13 - - 1.01 0.95
david9 0.94 0.96 1.05 1.07 - - 0.94 0.94
phil9 1.02 1.04 1.14 1.17 0.92 - 1.02 1.02
phil10 0.95 - - - 0.83 1.02 0.95 -
ricardo9 0.93 0.95 1.03 1.07 0.72 - 0.94 0.90
ricardo10 0.89 - - - 0.75 0.95 0.90 -
sarah9 0.95 0.97 1.06 1.07 - - 0.96 0.92
Average 0.95 0.99 1.08 1.10 0.81 0.99 0.96 0.95
longdress 0.86 0.89 0.95 1.02 - - 0.86 0.88
loot 0.83 0.86 0.92 0.97 0.64 0.63 0.82 0.84
redandblack 0.94 0.96 1.03 1.09 0.73 0.87 0.93 0.94
soldier 0.88 0.91 0.97 1.04 - - 0.88 0.65
Average 0.88 0.91 0.97 1.03 0.69 0.75 0.87 0.83
bask/player 0.80 - - 0.90 - - - -
dancer 0.77 - - 0.89 - - - -
Average 0.79 - - 0.90 - - - -

Egyp/mask 18.20 - - 11.78 - - - -
Shiva 15.11 - - 9.68 - - - -
Average 16.66 - - 10.73 - - - -
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Finally, in Table 6.11 we show that in replacing the single projection by the signaling

rectangle, the transmitted side information further decreases. Although this results in trans-

mitting a significant surplus of empty voxels, this does not impact the overall performance

in compression results nor in encoding speeds. In fact, we are able to report a slight gain in

compression performance over our single projection approach of chapter 4.

Table 6.11: Coding cost of projection matrix versus signaling rectangle. The right-most

column informs on the percentage surplus of encoded voxels if the signaling rectangle is

used instead of the projection matrix. Measurements are averaged over all frames of each

sequence.

Sequence Projection matrix
(bpov)

Signaling
rectangle (bpov)

Surplus of
encoded voxels

(%)

andrew9 0.0170 22.5 · 10−5 145.15

david9 0.0188 18.3 · 10−5 178.19

phil9 0.0221 19.2 · 10−5 80.31

ricardo9 0.0168 28.3 · 10−5 84.29

sarah9 0.0186 24.6 · 10−5 120.32

Average 0.0187 22.6 · 10−5 121.65

longdress 0.0031 7.7 · 10−5 75.52

loot 0.0049 8.1 · 10−5 89.50

redandblack 0.0060 8.8 · 10−5 89.68

soldier 0.0034 6.0 · 10−5 92.05

Average 0.0044 7.7 · 10−5 86.69



Chapter 7

Conclusions

7.1 Conclusion

Our contribution to the field of point-based data compression has been summarized in the

aforementioned four publications, detailed in chapters 2 to 5. Our research has covered both

aspects of point-based data encoding, exploring novel methods for the compression of a

point’s attribute as well as location information. The former was accomplished through re-

search of graph filterbanks for the compression of natural and hyperspectal images, whereas

the latter was achieved through our work on point cloud geometry compression. As a result,

the conclusions of this dissertation are organized into three subsections, starting with a few

words relevant to our research on graph filterbanks, and later on, on the topic of point cloud

geometry compression. Our conclusions then end on some general thoughts, providing a

wider scope in the synopsis of the aforementioned research areas.

7.1.1 Conclusions on spectral graph filterbanks

An image can be represented as a graph by considering each pixel as a node, while inter-

pixel correlations are translated by connecting them via weighted graph edges. The struc-

ture of a graph apart from topological information, such as which nodes share common

edges, also includes the value of each weighted edge. Weighted edges tend to be large when

connecting nodes of similar values, for instance in smooth areas of an image, whereas they

87
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are lower at areas where node values are less correlated, e.g. high image gradient regions.

These are the regions where one encounters sharp intensity changes within pixels of a small

neighborhood. The graph structure is of paramount importance, since graph transforms are

fully dependent on the graph. Even removing just a few weighted links of a well designed

graph can significantly affect the performance of the transform. Such an effect was ob-

served during our research on an integer-to-integer GraphBior variant for hyperspectral

image compression, calculated through a triangular elementary matrix (TERM) factoriza-

tion. To reduce the process’s slow execution time, a tiling strategy was adopted, which

partitioned the graph into smaller, rectangular grid graphs of specific size. This highly par-

allelized process greatly increased the factorization speed. However, the smaller the tile

size, the poorer was the compression performance. This was accredited to the fact of sev-

ering a large amount of cross-tile edges during the partitioning process, strongly affecting

the algorithm’s performance. This led us to the development of a faster integer-to-integer

GraphBior variant utilizing spectral graph lifting structures.

Noticed throughout our research, an important drawback of graph based transforms, in

the context of image compression, is the necessity of transmitting the graph structure to the

decoder. The means of resolving this issue is highly dependent on the nature of the data,

while each strategy is met with its own challenges. In the case of hyperspectral images

the graph structure can be made available to the decoder from previously decompressed

components. Particularly, the hyperspectral components are grouped into bundles called

bandgroups. Those are later compressed sequentially utilizing for each group a discrete

graph, which is computed from the last component of the previously compressed group.

Although this method of sharing the graph’s structural information to the decoder does not

require any side information, it presents its own challenges. Parameters such as the size

of each bandgroup, ω, affect significantly the performance of the compression scheme and

should be selected carefully. Our research shows that when applying graph filterbank trans-

forms on the spatial dimensions of the image, and in the absence of any transforms along

the spectral dimension, it is preferable to utilize smaller values of ω. However, this comes

in contrast to the case of additionally incorporating a transform on the spectral dimension.

As the underlying characteristic of hyperspectral images is their high correlation along the

spectral dimension, the latter scenario favors bandgroups of larger size even though this
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acts as a detriment to spatially applied graph filterbanks.

This strategy however does not apply to natural images and therefore it is necessary

to transmit, as side information, the graph structure to the decoder. Typically, even the

sparser graphs that are employed in image compression applications utilize a large num-

ber of weighted edges that can easily amount to four times the number of pixels. In order

to decrease the amount of side information related to the graph structure, an edge-aware

design is adopted. The edge-aware graph is inexpensively transmitted, since its structure

embeds less information. This is achieved by utilizing only two types of weighted edges,

one to express strong links between nodes and another that expresses weak bonds. Research

has shown that such graphs impact the behavior of graph transforms, such as the zero-DC

GraphBior variant that is preferred for the compression of natural images due to its high

energy compaction quality. It is known that edge-aware graph designs were constructed

to benefit the compression performance of the above GraphBior variant, by restricting fil-

tering across boundaries. Particularly, it had been noticed that the zero-DC GraphBior

accumulated large reconstruction errors at high gradient areas of the image. Hence, the

edge-aware graphs were meant to limit undesirable artifacts that can hinder the appearance

of the reconstructed image. However, there was no clear solution on controlling the extent

of such artifacts as the cause of the phenomenon was still unknown. Our work identifies the

root of this problem, which is caused by the type of inner product in which the GraphBior

variant is biorthogonal to. To rectify this drawback, we propose a method that balances the

trade off between energy compaction and uniform reconstruction error distribution through

a novel Graphbior variant termed the Z-GraphBior.

7.1.2 Conclusions on point cloud geometry compression

Touching upon the subject of the compression of point-based data location information,

graph transforms do not appear as a popular choice. Limitations in the acquisition tech-

niques of geometric data, such as the geometry information of point clouds, render the

underlying graph signal noisy and irregular. Furthermore, the difficulties of transmitting

the necessary information for the graph construction are far more pronounced in this case.

Even so, graph based methods, devised for lossy PCGC, are found in the literature. For ex-
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ample, [20] utilizes graphs constructed from a previously decoded frame of a time varying

point cloud sequence in order to compress future frames.

Therefore, alternative methods are devised to losslessly compress point cloud geome-

try. As there is an increase in point-cloud-oriented applications, the subject of point cloud

geometry compression is a rapidly evolving field. Most PCGC algorithms are based on the

octree decomposition, which is known for its relative simplicity and high execution speed,

while recent occupancy-array-based approaches demonstrate significant improvements in

compression ratio. In both cases though, contexts play a very important role, allowing the

encoder to predict the occupancy status of a voxel. To predict if a voxel is occupied or not,

each context takes into account the occupancy status of a number of its neighboring voxels.

The number of voxels taken into consideration depends on the size of the context, but the

larger the context size, the larger the set of possible contexts.

The majority of occupancy-array type of methods employ various schemes to restrict

the amount of encoded empty voxels. This is achieved by transmitting to the decoder

the boundaries outside of which, no occupied voxels are present. As the precision and

accuracy of the boundary information increases, fewer non-occupied voxels are encoded at

the cost of a larger amount of side information. Through our work, we show that the cost

of such highly accurate side information greatly surpasses the cost of encoding additional

non-occupied voxels. This appears to be the case given that the majority of additionally

encoded non-occupied voxels is linked to a very specific context that is composed entirely

by non-occupied voxels. Therefore, this results in the occupancy of such voxels being

highly predictable, rendering them extremely inexpensive to encode. However, the large

number of non-occupied voxels being processed and transmitted might influence negatively

the speed of the encoder. To rectify this problem, we have found that it is preferable to

encode runs of voxels instead of processing them individually.

7.1.3 General conclusions

Taking a step back from our published work, it is worth discussing some general conclu-

sions, as well as predictions concerning the future direction of the topic of point-based data

compression. It appears that compression schemes that apply graph filterbanks on natural
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images do not yield a significant advantage compared to classical approaches. This defi-

ciency is likely caused by the lack of sharp edges in natural images coupled with the strict

weight constraints enforced by the edge-aware graphs. Additionally the necessity to trans-

mit the graph structure as side information further detriments the performance of such an

approach. Contrarily, edge-aware graphs coupled with graph filterbanks have reported very

promising results for the compression of image data with sharp image gradients such as

depth images [21].

Graph filterbanks are also linked to strong compression performances when the graph

structure is not required to be transmitted to the decoder. In that case the edge-aware graph

is replaced in favor of a more complex graph design, i.e. weighted edges are computed via

the bilateral filter [22], such as in the scenario of hyperspectral image compression [23].

Concerning spatial hyperspectral transforms, graph filterbanks, such as the ones based on

GraphBior, have been shown to outperform in the lossy, as well as in the lossless domain

classical filterbank transforms such as the DWT. However, classical decorrelation trans-

forms applied on the spectral dimension of hyperspectral images, such as the Karhunen -

Loève transform, vastly outperform spectrally applied graph filterbanks.

Regarding the compression performance of lossless voxelized PCGC algorithms, it is

important to highlight the significance of contexts, as they play a fundamental role in the

development of novel methods. The reason why the occupancy-array-based methods seem

to outperform the octree approach is due to the former providing the necessary framework

for introducing novel three dimensional contexts. By providing the means to render the

entirety of the voxel space, occupancy-array methods enable the deployment of highly

malleable three dimensional contexts that predict very well the occupancy status of a voxel.

Furthermore, it is well supported that 3D contexts are much more competitive than their 2D

counterparts. During the occupancy prediction of a given voxel, the 2D contexts consider

only the occupancy status of neighboring voxels lying on the same two dimensional plane.

Conversely, the three dimensional contexts consider the status of neighboring voxels in an

entire sub-volume of the voxel space.

Although 2D contexts are typically composed by fewer voxels than its 3D counterpart,

the performance of PCGC algorithms is not absolutely dependent on the context’s size. At

first glance, it would seem that the larger the context, the better its predictive power, given
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that it is able to capture more information from the target voxel’s neighborhood. This in

turn should cumulate to better compression results. In practice however, this is not the case

due to the curse of dimensionality coupled with the fact that adaptive entropy encoders

are the standard in PCGC. In other words, the larger the context size, the slower the adap-

tive encoder will learn the underlying conditional distribution of the point cloud, therefore

greatly hindering the compression performance. One way to bypass this issue is by dis-

carding the adaptive encoder for one employing a pre-trained model. This approach has

been taken by the neural network (NN) PCGC methods which employ larger 3D contexts

but learn beforehand the distribution from a large sample of point cloud data. Although

this type of PCGC algorithms are still in their infancy, they have demonstrated a strong

compression performance, paving, in my opinion, a new path of research to the topic of

interest.

Despite NN approaches vastly outranking the octree-based methods, in terms of com-

pression ratio, this cannot be stated when referring to their computational complexity and

therefore execution speed. Neural networks are highly complex techniques requiring pow-

erful GPUs to execute in parallel a huge number of operations. In contrast, octrees are

known for their fast execution speed, which constitutes the main reasons why compression

standards such as MPEG’s lossless PCGC method have adopted this technique. Therefore,

it does not seem that NN methods will render approaches, such as octree-based algorithms,

redundant in the near future. Furthermore, we might see more hybrid-type methods com-

bining the octree decomposition with classical occupancy array encoding schemes to accel-

erate compression speeds. Such hybrid approaches have already been employed in neural

network PCGC methods, though the network’s high complexity appears to be a large bottle

neck in terms of execution speed.

7.2 Future Work

Recent developments on the topic of point-based data compression has opened up multiple

paths for future investigation. Regarding our research focused on graph filterbank trans-

forms, the area of proper graph construction is still an open problem and a very interesting

subject. Specifically, in the case of edge-aware graphs, future research could explore the
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trade-off between the transmission of specific edges and transform performance. Further-

more, it is known that edge-aware graph designs that utilize only two weighted edge values

are not well suited for the compression of natural images due to the lack of abrupt changes

in the image’s pixel intensities. Therefore, methods that would embed in the graph a soft

transition of pixel intensities by smoothing the weighted edge values of an edge aware-

design, could ameliorate the graph filterbank’s compression performance.

Additionally, highly interesting is the prospect of developing new 3D filterbank trans-

forms for the compression of hyperspectral images. This could be achieved by designing

new filterbanks through the newly introduced hypergraph signal processing [24]. This

extension of graph signal processing defines methods to capture high order interactions uti-

lizing a tensor representation. More-so, existing graph filterbank transforms that have been

applied on hyperspectral images can be improved through recent developments on the the-

ory of GraphBior [5]. Due to a particular constraint of the original GraphBior framework,

the employed graph was required to be bipartite. This would result in graphs connecting

nodes with very limited patterns. Such examples would be connecting nodes with their

4 east, west, north and south-most closest neighbors. These limitations are no longer the

case, therefore allowing the freedom of choice in defining the graph topology.

Also benefiting from the extension of the GraphBior theory are areas related to attribute

compression of point cloud data. The main challenges that earlier approaches faced were

related to the construction of a bipartite graph structure from the point cloud geometry [25].

However, it is now possible, given the geometry information of a point cloud, to compose

GraphBior filterbanks on an arbitrary topology, whose edges can be weighted according to

the inverse of the euclidean distance of connected nodes [5, 26]. This important step could

bring to the forefront GraphBior filterbanks for the attribute compression of point clouds,

and trigger a plethora of further research on the use of graph filterbanks on such data.

On the subject of point cloud geometry compression, several articles highlight the im-

portance of contexts in occupancy-array based methods, though existing context selection

techniques are mostly an untouched subject. The development of optimization problems

could be used for a data driven selection of the best suited set of contexts, along with their

orientation, for the geometry compression of a target point cloud. This would allow the

design of optimal contexts when working under the constraint of context size, which, as
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discussed previously, affects the performance of adaptive entropy encoders.

In the previous section, we highlighted the promising results that neural networks-type

PCGC methods yield and pointed out that their gains are related to the large size of em-

ployed contexts. In order for such methods to by-pass the curse of dimensionality, which

heavily burdens adaptive entropy encoders, their distribution estimations are learned from

a large set of point cloud data. However, the learned distribution in some cases might be

too general and not reflect the particularities of an individual point cloud. Therefore, it

might be interesting to explore semi-adaptive approaches, employing a mix of pre-learned

context and contexts that are adaptively learned throughout the encoding process.
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