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Summary 
 
Lung cancer stands as one of the two most commonly diagnosed types of cancer, and the 
foremost cause of cancer-related death worldwide, primarily due to a late-stage diagnosis 
and lack of effective treatments for a significant number of patients. Although innovative 
single-agent therapies and their combination are constantly being tested in clinical trials, the 
five-year survival rate of late-stage lung cancer remains only at 5% (Cancer Research, UK). 
Consequently, advances in the early diagnosis of lung cancer are critical for improving the 
overall survival. Circular RNAs (circRNAs) are a re-discovered type of RNA showing a stable 
structure and tissue-specific expression. Accumulating evidence indicates how abnormal 
expression of some circRNAs can play a role in carcinogenesis and tumor progression, 
positioning these molecules as putative lung cancer biomarkers. In this context, many 
laboratories are currently investigating the clinical value of circRNAs found in liquid biopsies. 
Unfortunately, the lack of standardized methodologies for the study of circRNAs, together 
with some limitations inherent to liquid biopsies such as the low quantity and poor quality of 
tumor-derived material, is holding back their clinical implementation.  
 
The NanoString nCounter FLEX system can quantify the expression levels of up to 800 RNAs 
extracted from formalin-fixed paraffin-embedded (FFPE) material, cell lysates or liquid 
biopsies. Among the different advantages of this platform, we can highlight its short 
turnaround time and the ability to work with very low quantity of highly degraded samples. 
However, to the best of our knowledge, there is no published evidence on the use of this 
platform for the study of circRNAs in lung cancer specimens. Therefore, the main objective 
of this doctoral thesis was to test the nCounter technology for the study of circRNA 
expression in lung cancer samples, including cell lines, FFPE samples and liquid biopsies. The 
results of this thesis have generated two manuscripts accepted for publication (Chapter 2 
and 3) and a third manuscript in preparation (Chapter 4). 
 
In Chapter 2, we present a proof-of-concept study of nCounter for the detection of circRNAs 
in lung cancer samples. First, we designed and validated a customized nCounter circRNA 
panel in lung cancer cell lines. Then, the panel was used to study circRNA expression in tissue 
biopsies. As a result, we found a cluster of differentially expressed circRNAs in early and late-
stage lung cancer (n=53) vs. non-cancer controls (n=16). Also, machine learning (ML) analysis 
allowed us to develop two circRNA signatures to discriminate early and late-stage lung 
cancer biopsies from non-tumor samples with high accuracy. 
 
In Chapter 3, we transitioned from solid specimens to liquid biopsies. In this second proof-of-
concept study, we established and validated a protocol for the analysis of extracellular 
vesicle (EV)-circRNAs by nCounter.  To this end, we tested different key points such as initial 
volume of plasma, EV purification method, number of cycles of pre-amplification, data 
normalization procedures or ML approaches. Then, we used the protocol to analyze the EV-
circRNAs in plasma samples of lung cancer patients (n=36) and non-cancer controls (n=30). 
Again, we found a cluster of differentially expressed EV-circRNAs that could potentially be 
used as biomarkers of lung cancer. Also, ML allowed us to find a 10-circRNA signature that 
discriminated lung cancer samples from controls. 
 
Purification of EVs may result challenging to implement in the clinical setting. Consequently, 
in Chapter 4, we tested nCounter in whole plasma and detected a higher number of circRNAs 
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compared to EV-enriched samples. Then, we analyzed plasma samples of early-stage lung 
cancer patients (n=49) and non-cancer controls (n=49), which included individuals with 
benign nodules (n=19/49). Subsequently, ML techniques generated a signature to 
discriminate early-stage lung cancer with an area under the ROC curve (AUC ROC) of  0.9.  
 
In conclusion, this thesis has proved that nCounter can be used for the study of circRNAs in 
lung cancer samples, setting the ground for the development of clinically relevant circRNA 
assays. In particular, we have demonstrated the potential of some circRNAs as lung cancer 
biomarkers and developed preliminary circRNA signatures that discriminate early-stage lung 
cancer patients. Validation of such signatures in bigger cohorts is warranted. If successful, 
circRNA signatures, particularly in plasma, could be incorporated in the clinical setting for 
early detection of lung cancer. 
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Resumen 
 
El cáncer de pulmón es uno de los dos tipos de cáncer más comúnmente diagnosticados y la 
principal causa de muerte relacionada con el cáncer en todo el mundo, principalmente 
debido a su diagnóstico en estadíos avanzados y a la falta de tratamientos efectivos para un 
número significativo de pacientes. Aunque numerosas terapias innovadoras basadas en un 
solo agente y su combinación son testadas constantemente en ensayos clínicos, la tasa de 
supervivencia a cinco años del cáncer de pulmón en estadíos avanzados sigue siendo tan solo 
del 5% (Cancer Research, Reino Unido). En consecuencia, avances en el diagnóstico precoz 
del cáncer de pulmón son muy necesarios para poder mejorar la supervivencia global de 
estos pacientes. Los ARN circulares (circRNA) son un tipo de ARN redescubierto 
recientemente que muestra una estructura estable y una expresión específica a cada tejido. 
Numerosos trabajos científicos muestran cómo la expresión anormal de algunos circRNAs 
puede desempeñar un papel importante en la carcinogénesis y la progresión del tumor, 
posicionando a estas moléculas como posibles biomarcadores del cáncer de pulmón. En este 
contexto, muchos laboratorios están investigando actualmente el valor clínico de los 
circRNAs que se encuentran presentes en las biopsias líquidas. Desafortunadamente, la falta 
de un método estandarizado para el estudio de los circRNAs, además de las limitaciones 
inherentes a las biopsias líquidas, como la baja cantidad y mala calidad del material tumoral, 
está frenando su implementación clínica. 
 
El sistema nCounter FLEX de NanoString puede cuantificar los niveles de expresión de hasta 
800 moléculas diferentes de ARN extraídas de material fijado en formalina e incluido en 
parafina (FFPE), lisados celulares o biopsias líquidas. Entre las diferentes ventajas de esta 
plataforma, podemos destacar el breve periodo de tiempo de espera para la obtención de 
resultados, así como su capacidad para trabajar con muy poca cantidad de muestras 
altamente degradadas. 
Sin embargo, hasta donde nosotros sabemos, no hay evidencia publicada sobre el uso de 
esta plataforma para el estudio de los circRNAs en muestras de cáncer de pulmón. Por ello, 
el principal objetivo de esta tesis doctoral ha sido testar la tecnología nCounter para el 
estudio de la expresión de los circRNAs en muestras de cáncer de pulmón, incluyendo líneas 
celulares, muestras FFPE y biopsias líquidas. Como resultado de esta tesis, dos manuscritos 
has sido generados y aceptados para publicación (capítulo 2 y 3), así como un tercer 
manuscrito que se encuentra en preparación (capítulo 4). 
 
En el capítulo 2, presentamos un estudio de prueba de concepto donde hacemos uso del 
nCounter para la detección de circRNAs en muestras de cáncer de pulmón. En primer lugar, 
diseñamos y validamos en líneas celulares de cáncer de pulmón un panel personalizado de 
circRNAs para nCounter. A continuación, utilizamos nuestro panel para estudiar la expresión 
de circRNAs en biopsias de tejido. Como resultado, encontramos un grupo de circRNAs 
diferencialmente expresado  en cáncer de pulmón, tanto en etapas tempranas como tardías 
de la enfermedad (n = 53), frente a controles sin cáncer (n = 16). Además, análisis de 
aprendizaje automático (en inglés, Machine Learning, ML) nos permitió desarrollar dos 
firmas de circRNAs para discriminar con alta precisión, biopsias de cáncer de pulmón (etapas 
temprana y tardía) de muestras no tumorales. 
 
En el capítulo 3, hicimos la transición de muestras sólidas a biopsias líquidas. En este segundo 
estudio piloto, establecimos y validamos un protocolo para el análisis de los circRNAs 
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contenidos en las vesículas extracelulares (EVs) por nCounter. Para ello, probamos diferentes 
puntos clave como el volumen inicial de plasma, el método de purificación EVs, el número de 
ciclos de pre-amplificación, los procedimientos de normalización de datos o diferentes 
métodos de ML. A continuación, usamos nuestro protocolo para analizar los EV-circRNAs en 
muestras de plasma de pacientes con cáncer de pulmón (n = 36) y donantes sin cáncer (n = 
30). Nuevamente, encontramos un grupo de EV-circRNAs expresados diferencialmente en 
muestras de pacientes con cáncer que podrían usarse potencialmente como biomarcadores 
de cáncer de pulmón. Además, ML nos permitió encontrar una firma de 10 circRNAs que 
permitió diferenciar las muestras de cáncer de pulmón de los controles. 
 
La purificación de los EVs es un proceso que puede resultar difícil de implementar en el 
entorno clínico. En consecuencia, en el capítulo 4, probamos nCounter en muestras de RNA 
extraídas directamente de plasma, detectando una mayor cantidad de circRNAs en estas 
muestras en comparación con aquellas procesadas para la obtención de EVs. A continuación, 
analizamos muestras de plasma de pacientes con cáncer de pulmón en estadio temprano 
(n=49) y de controles sin cáncer (n=49), los cuales incluían también individuos con nódulos 
benignos (n=19/49). Posteriormente, a través de ML, pudimos generar una firma para 
discriminar el cáncer de pulmón en etapa temprana con un área bajo la curva (AUC) ROC de 
0,9. 
 
En conclusión, esta tesis ha demostrado que la plataforma nCounter puede ser utilizada para 
el estudio de circRNAs en muestras de cáncer de pulmón, sentando las bases para el 
desarrollo de ensayos de circRNAs clínicamente relevantes. En particular, hemos 
demostrado el potencial de algunos circRNAs como biomarcadores de cáncer de pulmón, 
desarrollando varias firmas preliminares de circRNA que discriminan a los pacientes con 
cáncer de pulmón en etapa temprana. La validación de tales firmas en cohortes más grandes 
está garantizada. En caso de éxito, las firmas de circRNA, particularmente en plasma, 
podrían incorporarse en el entorno clínico para la detección temprana del cáncer de pulmón. 
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Resum 
 
El càncer de pulmó és un dels dos tipus de càncer més comunament diagnosticats i la 
principal causa de mort relacionada amb el càncer a tot el món, principalment degut al seu 
diagnòstic en estadis tardans i a la manca de tractaments efectius per a un nombre 
significatiu de pacients. Encara que es porten a terme constantment assajos amb nombroses 
teràpies innovadores basades amb un sol agent o en combinacions, la taxa de supervivència 
a cinc anys en estadis avançats continua sent sol del 5% (Cancer Research, el Regne Unit). En 
conseqüència, avanços en el diagnòstic precoç del càncer de pulmó són essencials per a 
poder millorar la supervivència global d'aquests pacients. Els ARN circulars (circRNA) són un 
tipus d'ARN re-descobert recentment que mostra una estructura estable i una expressió 
teixit específica. L'evidència acumulada indica com l'expressió anormal d'alguns circRNA pot 
exercir un paper en la carcinogènesis i la progressió del tumor, posicionant a aquestes 
molècules com a possibles biomarcadors del càncer de pulmó. En aquest context, molts 
laboratoris estan investigant actualment el valor clínic dels circRNAs que es troben en les 
biòpsies líquides. Desafortunadament, la falta d'una metodologia estandarditzada per a 
l'estudi de circRNAs, a més de les limitacions inherents a les biòpsies líquides, com la baixa 
quantitat i mala qualitat del material tumoral, està frenant la seva implementació clínica. 
 
El sistema nCounter FLEX de NanoString pot quantificar els nivells d'expressió de fins a 800 
molècules de diferents ARNs extretes de material fixat en formalina i inclòs en parafina 
(FFPE), lisats cel·lulars o biòpsies líquides. Entre els diferents avantatges d'aquesta 
plataforma, podem destacar l'obtenció de resultats en un curt període de temps, així com la 
seva capacitat per a treballar amb molt poca quantitat de mostra altament degradada. 
No obstant això, fins on nosaltres sabem, no hi ha evidència publicada sobre l'ús d'aquesta 
plataforma per a l'estudi dels circRNAs en mostres de càncer de pulmó. Per això, el principal 
objectiu d'aquesta tesi doctoral ha estat testar la tecnologia nCounter per a l'estudi de 
l'expressió dels circRNAs en mostres de càncer de pulmó, incloent-hi línies cel·lulars, 
mostres FFPE i biòpsies líquides. Els resultats d'aquesta tesi han generat dos manuscrits 
acceptats per a publicació (capítol 2 i 3), així com un tercer que es troba en preparació (capítol 
4). 
 
En el capítol 2, presentem un estudi de prova de concepte de nCounter per a la detecció 
de circRNA en mostres de càncer de pulmó. En primer lloc, vam dissenyar i validar en línies 
cel·lulars de càncer de pulmó un panell personalitzat de circRNAs per a nCounter. A 
continuació, el panell es va utilitzar per a estudiar l'expressió de circRNAs en biòpsies de 
teixit. Com a resultat, hem trobat un grup de circRNAs diferencialment expressats en càncer 
de pulmó en etapes primerenques i tardanes de la malaltia (n = 53), enfront de controls sense 
càncer (n = 16). A més, l’anàlisi d'aprenentatge automàtic (Machine Learning, ML) ens va 
permetre desenvolupar dues signatures de circRNA per a discriminar biòpsies de càncer de 
pulmó, d’estadis primerencs i tardans, de mostres no tumorals amb una alta precisió. 
 
En el capítol 3, vam fer la transició de mostres sòlides a biòpsies líquides. En aquest segon 
estudi pilot, vam establir i validar un protocol per a l'anàlisi dels circRNAs continguts en les 
vesícules extracel·lulars (EVs) per nCounter. Amb aquest propòsit, vàrem provar diferents 
punts clau com el volum inicial de plasma, el mètode de purificació d´ EVs, el nombre de 
cicles de pre-amplificació, els procediments de normalització de dades o diferents mètodes 
de ML. A continuació, vam utilitzar el nostre protocol per analitzar els EV-circRNAs en 
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mostres de plasma de pacients amb càncer de pulmó (n = 36) i donants sense càncer (n = 30). 
Novament, vam trobar un grup d'EV-circRNAs expressats diferencialment en mostres de 
pacients amb càncer que podrien usar-se potencialment com biomarcadors de càncer de 
pulmó. A més, ML ens va permetre trobar una signatura de 10 circRNAs que va permetre 
diferenciar les mostres de càncer de pulmó dels controls. 
 
La purificació dels EVs és un procés que pot resultar difícil d'implementar en l'entorn clínic. 
En conseqüència, en el capítol 4, vam analitzar nCounter en mostres d'RNA extretes 
directament de plasma, detectant una major quantitat de circRNAs en aquestes mostres en 
comparació amb aquelles enriquides en EV. A continuació, vam analitzar mostres de plasma 
de pacients amb càncer de pulmó en estadi primerenc (n=49) i de controls sense càncer 
(n=49), els quals incloïen també individus amb nòduls benignes (n=19/49). Posteriorment, a 
través de ML, vam poder generar una signatura per discriminar el càncer de pulmó en etapa 
primerenca amb un àrea sota la corba (AUC) ROC de 0,9. 
 
En conclusió, aquesta tesi ha demostrat que nCounter es pot utilitzar per a l'estudi 
de circRNAs en mostres de càncer de pulmó, establint les bases per al desenvolupament 
d'assajos de circRNA clínicament rellevants. En particular, hem demostrat el potencial 
d'alguns circRNAs com biomarcadors de càncer de pulmó, hem desenvolupat diverses 
signatures preliminars de circRNA que discriminen els pacients amb càncer de pulmó en 
estadis primerencs. Es necessari  la validació d’aquestes  signatures en cohorts més grans. En 
cas d'èxit, les signatures de circRNA, particularment en plasma, podrien incorporar-se en 
l'entorn clínic per a la detecció precoç del càncer de pulmó. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 9  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Some parts of this chapter have been adapted from the following publication: 
 

- Pedraz-Valdunciel C., Rosell R. Defining the landscape of circRNAs in non-small cell 
lung cancer and their potential as liquid biopsy biomarkers: a complete review 
including current methods. Extracell Vesicles Circ Nucleic Acids 2021;2:179-201. 
http://dx.doi.org/10.20517/evcna.2020.07 

 
  

Chapter I: Introduction 



 

 10 

 
 



Introduction 
 

 11  

1. Lung cancer 
 
1.1. Lung cancer definition and classification 
The process of tumorigenesis starts with the accumulation of genetic mutations within cells 
affecting different types of cell-cycle control genes, including tumor suppressor genes and 
oncogenes. This causes dysregulation of mitosis and inhibition of apoptosis, triggering the 
abnormal growth of the human cells, and leading to the formation of a lump [1]. When these 
tumor cells have the ability to spread to other parts of the human body, we then denote it 
malignant tumor or cancer.  During the respiratory process, air goes into the lungs through 
the trachea. The trachea divides into bronchi, which enter the lungs and subsequently divide 
into smaller bronchioles that lead to the alveoli at the tip end. Lung cancers typically start in 
those cells lining the bronchi and parts of the lung such as the bronchioles or alveoli, where 
they crowd out normal cells thus, impeding the lungs to function correctly.  
Depending on the type of cell the tumor originates from, we can classify lung cancer into  
small-cell lung cancer (SCLC) or non-small-cell lung cancer (NSCLC) (Figure 1). SCLC cells 
are flatter and smaller in appearance than those from NSCLC. In addition, SCLC tumors tend 
to grow and spread faster than NSCLC [2]. As a result, patients with this type of cancer tend 
to benefit from chemo- and radiotherapy. However, these patients show a higher recurrence 
than those with NSCLC, probably attributed to this elevated growing rate. 
In the case of NSCLC, we can subcategorize the disease in adenocarcinoma, when the tumor 
starts in the goblet cells; squamous cell carcinoma, when the cancer commences in the 
squamous cells lining the large airways in the lungs; and large-cell carcinoma, when the 
tumor develops in other outer regions of the lungs. This subtype of NSCLC tends to grow 
and spread quickly, which can make it harder to treat. A few other subtypes of NSCLC, such 
as adenosquamous carcinoma and sarcomatoid carcinoma, are much less common [3].  
Other types of lung tumors may include lung carcinoid tumors (accounting for less than 5% 
of lung tumors), or adenoid cystic carcinomas, lymphomas, and sarcomas, which are rarely 
found (Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Pie charts indicating the categories of lung cancer and NSCLC subtypes. The area of the pie chart 
reflects the proportion of each type of lung cancer / NSCLC subtype. Percentages are indicated.  
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1.2. Global lung cancer trends, etiology, and detection of the disease. 
With 11.4% of new diagnosed cases for 2020 – considering both sexes, lung cancer is the 
leading cause of cancer mortality in the world,  surpassing breast cancer with 18% of the 
almost 10 million demises estimated for this year [4] (Figure 2).  
From all new lung cancer diagnoses, 85% corresponds to NSCLC, while 10-15% is associated 
to SCLC [5] (Figure 1). The development of this disease is attributed to multileveled and 
elusive complex interactions between genetic liabilities, sex (incidence and mortality rates 
are roughly two times higher in men than in women [4]), environmental toxins, and 
imbalanced signaling processes. In this context, tobacco smoking remains the leading risk 
factor for lung cancer development. As a matter of fact, an escalation both in number of lung 
cancer cases and deaths is being observed in those developing regions where the smoking 
habit is increasing, such as China, Indonesia, Eastern Europe, and the Northern and Southern 
parts of Africa [6, 7]. In contrast, lung cancer incidence is declining in those countries that 
established smoking cessation and avoidance campaigns [6]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Pie charts representing cancer incidence and mortality rates for the Top 10 Most Common 
Cancers in 2020 for both sexes. The area of the chart reflects the proportion of the number of cases or 
deaths. Percentages are indicated. Source: GLOBOCAN 2020. 
 
 
Detecting lung cancer at an early stage has the potential to drastically improve patient 
outcomes. At early stages (stages I and II), more options for treatment with curative intent 
are available, causing a positive shift in patient survival and quality of life. Instead, at later 
stages of the disease (stages IIIB and IV), fewer, if any, curative options are available. Despite 
all efforts for early detection, lung cancer is usually diagnosed at an advanced stage owing 
to inadequate screening programs, which translates into a poor 5-year relative survival rate 
(RSR) of 3–8% [8, 9].  
Invasive tumor biopsy remains the primary method for the early diagnosis of lung cancer. 
Difficulty accessing the tumor, changes in the genetic composition or intra-tumor 
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heterogeneity are just some of the limitations related to this procedure that may hamper 
subsequent tumor characterization [10]. 
In that respect, liquid biopsies can be used to overcome, or complement, invasive tissue 
biopsies. Different body fluids can be utilized as liquid biopsies, including blood, urine, and 
saliva. Circulating molecules, such as DNA, RNA or proteins, can either be freely present 
within these liquids, or can be extracted from circulating tumor cells (CTCs) [11], extracellular 
vesicles (EVs) [12] or tumor-educated platelets (TEPs) [13]. They can be exploited to monitor 
therapy resistance and provide a more heterogeneous readout of the tumor burden [14]. This 
allows for identification of resistance mechanisms and can guide second-line therapy 
selection. Besides more effective personalized treatment regimens, a diagnostic stage-shift 
would significantly enhance patient survival. New tools for improved early lung cancer 
detection are therefore an unmet clinical need. In this regard, many liquid biopsy biomarkers 
are actively being investigated, holding potential for future clinical implementation [14]. 
 
1.3. Current landscape of lung cancer early detection and research  
A longstanding challenge in public health is to develop and expand innovative solutions for 
earlier detection, screening, and diagnosis of cancers. One major approach in early cancer 
detection is screening of asymptomatic individuals, often at higher risk for cancer. For lung 
cancer, early detection screening by low dose computed tomography (LDCT) scan, has 
demonstrated to be effective among high-risk individuals (current and former heavy 
smokers), reducing lung cancer mortality in many randomized clinical trials [15-18]. 
However, the translation of this benefit to the general population has proven challenging, 
likely impeding the implementation of lung cancer screening programs as part of a global 
strategy to reduce the disease burden, at least in the near future. 
The synergistic alliance between life science researchers and clinical investigators have 
thriven the development of new analytics and diagnostic methods and tools for the early 
identification of lung cancer, mainly through the analysis of liquid biopsies.  
The continuous development in liquid  biopsy biomarkers and genetic signatures has spurred 
greater capacity for identifying the malignancy, offering the promise of real-time detection 
and minimal invasiveness. In this regard, circulating tumor DNA (ctDNA) is one of the most 
investigated biomarkers, counting with many studies evaluating its potential clinical value as 
diagnostic tool for early lung cancer detection. Its presence has been validated in the plasma 
of lung cancer patients [19], enabling discrimination of these patients from non-cancer 
controls, including individuals with chronic respiratory inflammation [20]. However, the 
presence of ctDNA in the plasma of  early stage (stage I) lung cancer patients is not as 
frequent, being represented by only 50% of the individuals from this cohort [19].  
 
In addition to ctDNA, the screening of CTCs in blood plasma is being tested as a tool for early 
detection [21]. The value of these biomarkers has already been demonstrated as indicators 
of tumor progression in lung cancer patients [22].  However, CTCs are rather scarce in the 
blood of cancer patients, especially at early stage, hence, challenging  the implementation 
of these molecules as a tool for early detection. 
 
Lung cancer involves massive changes in RNA metabolism, both in the tumor and tumor 
microenvironment. Expression analysis of the RNA present in plasma can offer a valuable 
snapshot of the disease,  providing information about the development and progression of 
the cancer [23], and guidance to better tailor a treatment plan [24]. RNA can be found either 
freely circulating in the blood stream (cfRNA) or inside EVs, CTCs or TEPs. EVs are multisized 
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vesicles (ranging from 30 nm to 100 µm) that can be released by many types of cells, including 
those with tumor origin, being therefore an attractive source of lung cancer biomarkers [12]. 
As a result, many laboratories are exploiting their potential, investigating their clinical value 
for early detection [25]. Efforts on signature development for either lung cancer detection or 
monitoring of treatment response have mainly focused on expression of mRNA and miRNA. 
However, the number of studies focusing on other types of RNA (such as circular RNAs or 
long non-coding RNAs, lncRNAs) in lung cancer is very limited.  
 
2. Circular RNAs 
 
Circular RNAs (circRNAs) are a recently re-discovered type of RNA generated by coupling of 
the 5' and 3' ends in a non-canonical process known as backsplicing [26]. These circular 
structures lack a poly(A) tail, which confers them resistance to the exonuclease RNase R and 
turns most of them into robustly stable molecules when compared to linear mRNA.  
While thousands of circRNAs have been described thanks to the technological burst of deep 
sequencing [27], only the function of only a fraction of them has been elucidated. 
Nevertheless, recent investigations have shown the role of some circRNAs as important 
players in lung cancer, positioning as plausible biomarkers for the early detection, and 
promising candidates for seeking therapeutic and prevention strategies towards this disease 
[28]. 
 
2.1. CircRNA expression in humans 
Although circRNAs have been acknowledged for many years as abnormally spliced 
“scrambled” transcripts [29], only recently have they been re-defined as biologically active 
molecules with a significant role in human homeostasis, having a tissue-specific expression 
profile during the different stages of development [30]. 
More than 60% of human genes can express circRNAs [31]. However, their expression levels 
in tissue remain rather low, accounting for only 5%-10% of the canonical (linear) mRNA 
expression [32, 33]. 
CircRNAs are originated by an alternative process called “backsplicing”, where the 5' splice 
donor can stick to the 3' splice acceptor of an upstream exon. This process results in forming 
a circular structure that can include one or multiple exonic/intronic regions, depending on 
the specific mechanism that was inferred during this non-canonical process [34]. 
They have arisen as key post-transcriptional regulators through different functions (Figure 
3), with micro-RNA (miRNA) sponging being the most studied. During this process, the 
circRNA binds to the argonaute-miRNA complex, and either via miRNA degradation or 
inhibition of the miRNA-mRNA interaction, it triggers further mRNA expression at post-
transcriptional level [35]. 
Recent studies have also revealed that circRNAs could associate with ribosomes and be 
translated into functional short peptides, in a cap-independent manner [36]. Alternatively, 
they can also associate with proteins acting as scaffolds for enzymatic reactions. In addition, 
the process of circRNA synthesis generates an imbalance of the canonical splicing; hence, 
the backsplicing process itself stands as a direct regulator of the circRNA precursor gene at 
the transcriptional level. 
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Figure 3. Biosynthesis and molecular functions of circRNAs. CircRNAs are generated by three different 

mechanisms of backsplicing (via lariat formation, intron pairing or RNA binding proteins). Resultant 

circRNAs can be formed by only exonic regions (EcircRNAs), intronic regions (IcircRNAs) or both 

(EIcircRNAs). circRNAs are exported into the cytoplasm in a size-mediated manner by URH49 and UAP56. 

Once in the cytoplasm, circRNAs will perform their functions including miRNA and protein sponging, 

protein scaffolding, or even translate into small functional peptides. CircRNAs are released into the blood 

stream inside exosomes mediating cellular communication. Most cellular types, including tumor cells, will 

secrete circRNA-containing EVs. Platelets can modify its content when in contact with the tumor, 

including their circRNA expression profile. 
 
 

2.2. Biosynthesis and regulation of circRNAs 
Different backsplicing mechanisms have been reported in the nucleus, including RNA 
binding protein (RBP)-mediated circularization, circRNA synthesis by intron pairing, or 
circularization by intron-lariat formation [34] (Figure 3). The first mechanism is normally 
executed by associating two adjacent exons and skipping the intronic region during an RBP-
assisted circularization, resulting in an exonic-circRNA (EcircRNA). Numerous RBPs have 
been described in literature to regulate this mechanism, such is the case of the adenosine 
deaminase RNA specific-1 protein (ADAR1) [37], NF90/NF110 immune factors [38], 
muscleblind transcription factor (MBL) [39], heterogeneous nuclear ribonucleoprotein L 
[40], FUS protein [41], Quaking binding protein (QKI) [42], RNA helicase DHX9 [43], and the 
RNA-binding motif protein 20 [44]. 
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Exon-intron circRNAs are the result of two or more exons circularized along with their 
corresponding introns via intron-lariat formation. Intron pairing backsplicing is usually the 
common process in conserved RNAs with high frequency of Alu repeats in flanking 
sequences. These Alu elements complement each other, promoting the hairpin formation 
and further backsplicing, creating mono-EcircRNAs as a result [45]. Intronic circRNAs are 
another type of such a class; however, the mechanism of generation of these molecules 
remains yet unclear.  
After synthesis in the nucleus, circRNAs are exported to the cytoplasm. Recent studies have 
shown the active role of the UAP56/URH49 helicases in this size-mediated process. UAP55 is 
required to transfer molecules longer than 1300 nucleotides, while URH49 intervenes only in 
short transcript exporting [46]. Once in the cytoplasm, circRNAs accumulate and exert their 
function by regulating transcription, normally via sponging targeted miRNAs. 
How circRNA gets degraded still remains unclear; however, recent investigation has shed 
light on this conundrum, unveiling some intriguing mechanisms that underpin circRNA 
decay. Hansen et al. [47] describe an Ago2-miR-671-mediated degradation of the circRNA 
CDR1as (aka ciRS-7). In another study by Park et al. [47, 48], a cleavage mechanism induced 
by RNase P/MRP was elucidated in N6-methyladenosine (m6A)-enriched circRNAs. More 
recently, a study by Liu et al. [49] demonstrated that some circRNAs tend to form intricate 
duplexes which makes them susceptible to degradation by RNase L upon viral infection. 
A different mechanism was described by Fischer et al. [50] revealing an alternative structure-
mediated circRNA regulation process that selectively degrades circRNAs based on 3'-UTR 
structure complexity via the UPF1/G3BP1 protein complex. 
 
2.3. CircRNAs in NSCLC 
The implication of circRNAs in cancer metabolism has been studied in recent years. Their 
contribution to mutant glycolysis (via transporter, enzyme, and/or transcription factor 
regulation), lipogenesis and lipolysis, glutaminolysis, and oxidative respiration has been 
widely demonstrated [51]. 
CircRNAs are becoming a new area of interest within cancer research, including NSCLC, 
where several authors are contributing by investigating the effect that dysregulated circRNA 
expression can have on the different cancer stages. Although their implication in NSCLC has 
not been as intensively investigated as other types of non-coding RNAs, circRNAs have been 
shown to play a significant role in tumorigenesis, tumor development, proliferation, 
migration, invasion, and sensitivity to NSCLC therapy [52]. In light of these findings, recent 
publications highlight the potential of some of these circular transcripts as plausible 
biomarkers to assess the disease status. 
 

2.4. Current landscape of circRNAs in liquid biopsies as NSCLC biomarkers 
Non-coding RNA-enriched exosomes are strategic players in different cancer stages, 
especially regarding malignant tumor metastasis [53]. The assessment of circRNA 
expression by RNAseq analysis in EVs was first reported by Li et al. [54], finding circRNAs 
enriched at least 2-fold in exosomes compared to producer cells. Although some authors 
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defend the theory that exosomal circRNA enrichment may be a mechanism of cellular 
circRNA clearance [55], few investigators have shown that these circRNA are directly 
involved in cellular communication, henceforth, acting as direct readouts of several human 
malignancies, including NSCLC [56]. 
As a result, circRNAs stand as important liquid biopsy-derived biomarkers, holding potential 
for NSCLC diagnosis and prediction of treatment response [57]. 
In a recent study, Chen et al. [58] performed high throughput sequencing of plasma-EV RNA 
cargo of lung adenocarcinoma patients, finding 182 circRNA dysregulated when compared 
to cancer-free donors, including 105 up-regulated and 78 downregulated. Four upregulated 
circRNAs were successfully validated by RT-qPCR (hsa_circ_0001492, hsa_circ_0001346, 
hsa_circ_0000690, and hsa_circ_0001439) [58]. Although authors elucidated the specific 
circRNA-miRNA-mRNA interaction, not much information about their biological impact was 
provided. 
Fei et al. [59] also presented in a recent study a novel circRNA, hsa_circRNA_005661, that 
could be found enriched in plasma EVs from lung adenocarcinoma patients with lymph node 
metastasis, presenting it as a biomarker of this stage [59]. 
Not only plasma-EVs, but serum and whole plasma can serve as a good source of 
circRNAs. Xian et al. [60] studied the circRNA differential expression profile in serum EVs 
from NSCLC patients. As a result, 3 circRNAs stood out showing suitable biomarker potential 
(hsa_circ_0047921, hsa_circ_0007761, and hsa_circ_0056285) with the latter correlating with 
clinical stages and lymph node metastasis in all Chinese patients included in the study [60]. 
Exploring circRNA expression in plasma samples, Liu et al. found a two circRNA-based 
signature that could potentially be used to classify lung adenocarcinoma patients [61]. 
Hsa_circ_0005962 was found upregulated in lung cancer while hsa_circ_0086414 was found 
barely expressed when compared to controls. In addition, they observed that overexpression 
of hsa_circ_0005962 correlated to mutant EGFR expression. In vitro experiments suggested 
that this circRNA could be involved in cancer proliferation of EGFR+ lung cancer patients. 
Alhasan et al. showed for the first time that platelets are enriched in circRNAs when 
compared to nucleated cells [62]. In addition, Preußer et al. demonstrated that platelets are 
not only a good source of circRNA, but also platelet-derived EVs are enriched in these 
biomolecules, representing yet another source of potential biomarkers that may be involved 
in different signaling pathways [63].Platelets change their RNA profile when in contact with 
the tumor, enabling them to contribute to the systemic and local responses to tumor growth. 
As a result, TEP-RNA could be used as a potential biomarker for cancer diagnostics [64].  
In this context, a recent publication demonstrates the diagnostic potential of platelet 
circRNA cargo as biomarker for lung cancer [65].   
 
3. The NanoString nCounter platform 
 
The NanoString nCounter technology has lately grown popularity among translational 
investigators, both in solid and liquid biopsies, to validate previously identified gene 
expression profiles as well as to discover novel signatures. In addition to transcriptional 
research, this multiplex, fluorescence-based hybridization method allows for other type of 
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assessments, namely analysis of copy number variation or genomic mutations, among 
others[66].  
Advantages of this platform include high accuracy, short turnaround time, and the 
generation of reliable user-friendly data, especially when compared with RNAseq or next 
generation sequencing (NGS). For solid biopsies, an additional benefit of the nCounter 
platform is the fact that it can work with little amount of starting material, and does not 
require amplification, cDNA or library preparation, in comparison to the other 
abovementioned methods. In case of liquid biopsies, a pre-amplification step is required 
prior hybridization due to the minimal amount of material in this type of biosources. 
Although this process could entail additional bias to the protocol as previously reported [67], 
the low input kit developed by NanoString can overcome this issue as demonstrated by a 
recent study [68]. 
 
3.1. The nCounter technology  
The technology of the nCounter platform is based on fluorescent molecular barcode 
chemistry developed at the Institute for Systems Biology (ISB) in Seattle, USA [69]. A 
combination of short, sequence-specific reporter and biotin-labeled capture probes 
configures a CodeSet representing the target RNA/DNA molecules for the assay. This 
CodeSet is mixed with the sample for overnight hybridization, followed by a purification step 
on a preparation station machine (nCounter Prep Station) where unbound nucleic acids and 
excess probes are washed out. Following that, the resulting immobilized molecules on the 
streptavidin coated cartridge are analyzed by digital counting of each of the distinctively 
color-coded barcodes in the nCounter Digital Analyzer, to determine relative expression of 
each target. Different normalization methods can then be applied to determine the 
expression of each of the analyzed RNA/DNA targets (Figure 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. NanoString nCounter workflow. In a first step, capture and reporter probes configurating the CodeSet 
are hybridized overnight with the target of interest. Next, in a second phase, up to 12 samples are handled by 
the nCounter Prep Station where the nucleic acid-probe complexes are immobilized in the cartridge and 
purified from the excess of reagent. Then, the cartridge is placed into the nCounter Digital Analyzer to 
determine relative expression by digital counting of color-coded molecules. Finally, data are exported in form 
of RCC files and further analyzed by different software. 
 
 
Taking this technology as a foundation, NanoString has developed two different types of 
assays: standard chemistry and TagSet chemistry. The former allows identification of more 
molecules (up to 800) through the direct binding of the pre-designed color-coded probes to 
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the sequence of interest (Figure 5a); the latter can analyze up to 228 molecules 
simultaneously and allows more flexibility to the user by giving the option to change the 
targets during the development of the assay (Figure 5b). In this case, the probes are 
unlabeled oligonucleotides designed by NanoString, but obtained from an external 
oligonucleotide synthesis provider. These probes (called probe A and probe B) bind both to 
the molecular target and the NanoString TagSet (which includes both capture and reporting 
tags) during the process of hybridization. In this case, probe A and B oligonucleotides are 
designed with 35-50 nt long target-specific regions, as well as a region complementary to the 
specific reporter and capture probes of the TagSet (Figure 5b). 
Nowadays, we can find many commercially available panels for the study of immunology 
and oncology profiles using standard chemistry [66]. In addition, fully customized panels can 
be designed, using both standard and TagSet chemistry assays, for the identification of not 
only mRNA or DNA, but other forms of RNA such as miRNAs, lncRNAs or circRNAs. For the 
latter, a special divergent configuration of the probes is designed to target regions overlaying 
the backsplicing junctions, allowing the uniquely recognition of these circular transcripts 
(Figure 5c).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Standard and TagSet chemistry comparison including probe design for circRNA detection. (a) A 
color-coded reporter probe and biotin-labelled capture probe bind directly to target nucleic acid 
adjacently to each other in standard chemistry. (b) In TagSet chemistry, probes A and B bind to a 35-50 nt 
long regions of target nucleic acid as well as regions complementarity to reported and capture probes. (c) 
All probes are designed divergently spanning circRNA junction sites, so they can bind adjacently to one 
another and produce target-specific signal (left). In case of binding to a linear counterpart, probes will bind 
in an opposite orientation impeding the emission of the target-specific signal (right). 
 
3.2. nCounter in the clinical setting 
The robustness of the nCounter technology has facilitated the translation from bench to 
bedside of many molecular signatures, leading to the development of different assays for 
the prediction of tumor response [70],  breast cancer profiling [71], identification of lung 

(a) (b) 

(c) 
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cancer gene fusions [72], diagnosis of leukemia [73] and lymphoma [74], or the identification 
of genetic alterations and translocations associated with sarcoma gene fusions [75]. 
However, to this date, the Prosigna breast cancer profiling assay [71, 76], a test for the 
identification and stratification of breast cancer samples for the prediction of recurrence -or 
risk of recurrence, stands as the only nCounter panel granted with approval from the US Food 
and Drug Administration (FDA).  
 
When it comes to liquid biopsies, most clinical research is restricted to the analysis of cfDNA 
[77], cfRNA [11, 78], CTCs [11, 67] and EV cargo [79, 80].  In addition, the amount of published 
studies based on nCounter for the early detection of lung cancer is scarce, and the signatures 
found are far from clinical implementation [81].  
To the best of our knowledge, there is no scientific publication assessing nCounter for the 
detection of circRNAs in lung cancer, neither in solid tumors nor liquid biopsies. 
 
4. Central motivation and objectives 
 
Considering the lack of published data on the use of the nCounter platform for the study of 
circRNAs as lung cancer biomarkers, both in solid and liquid biopsies, this PhD thesis aimed 
to validate this platform for such purpose, in particular: 
 

- Chapter 2 contains a proof-of-concept study where we test a custom-made circRNA 
panel in lung cancer cell lines and FFPE tissues, using the nCounter FLEX platform. 
We also compared lung cancer and non-cancer tissues generating a circRNA 
signature of lung cancer via machine learning (ML). 

- In Chapter 3, we adapted our procedures to generate a protocol for the study of EV-
circRNAs from plasma of lung cancer patients. We also performed differential 
expression and ML analyses to discriminate lung cancer patients from non-cancer 
controls. 

- We transition from EVs to whole plasma in Chapter 4, to analyze the circRNAs of this 
bio-source, generating a preliminary circRNA signature able to discriminate lung 
cancer patients from non-cancer controls, including individuals with benign nodules. 

- Regarding Chapter 5, we go through a comprehensive discussion of presented 
results, providing an overview of the future perspectives. 

- Finally, the conclusions of this PhD thesis can be found in Chapter 6. 
 
5. Accepted manuscripts 
 

- Pedraz-Valdunciel C, Giannoukakos S, Potie N, et al. Digital multiplexed analysis of 
circular RNAs in FFPE and fresh non-small cell lung cancer specimens. Mol Oncol. 
2022.  doi: 10.1002/1878-0261.13182. 

- Pedraz-Valdunciel C, Giannoukakos S.; Giménez-Capitán A, et al. Multiplex analysis 
of circRNAs from plasma extracellular vesicle-enriched samples for the detection of 
early-stage non-small cell lung cancer. Pharmaceutics 2022; 14, 2034. 
https://doi.org/10.3390/pharmaceutics14102034. 
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Abstract  
 
Although many studies highlight the implication of circular RNAs (circRNAs) in 
carcinogenesis and tumor progression, their potential as cancer biomarkers has not yet been 
fully explored in the clinic due to the limitations of current quantification methods. Here, we 
report the use of the nCounter platform as a valid technology for the analysis of circRNA 
expression patterns in non-small cell lung cancer (NSCLC) specimens. Under this context, 
our custom-made circRNA panel was able to detect circRNA expression both in NSCLC cells 
and formalin-fixed paraffin-embedded (FFPE) tissues. CircFUT8 was overexpressed in 
NSCLC, contrasting with circEPB41L2, circBNC2 and circSOX13 downregulation even at the 
early stages of the disease. Machine learning (ML) approaches from different paradigms 
allowed discrimination of NSCLC from non-tumor controls (NTCs) with an 8-circRNA 
signature. An additional 4-circRNA signature was able to classify early-stage NSCLC samples 
from NTC, reaching a maximum area under the ROC curve (AUC) of 0.981. Our results not 
only present two circRNA signatures with diagnosis potential, but also introduce nCounter 
processing following ML as a feasible protocol for the study and development of circRNA 
signatures for NSCLC. 
 
 
Graphical Abstract 
 
Aberrant circular RNA (circRNA) expression is present in lung cancer. Using nCounter with 
machine learning, we discovered two signatures able to discriminate FFPE lung cancer 
samples from controls even at early stage. Our results not only highlight the potential of 
circRNAs as lung cancer biomarkers but also introduce nCounter as a suitable platform for 
circRNA expression studies in these samples. 
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1. Introduction 
 
circRNAs are a newly re-defined type of endogenous RNA molecules originated by a non-
canonical process called “backsplicing”. Through this mechanism, the 5´splice donor 
covalently links to the 3´end of an upstream exon, resulting in a single stranded circular 
structure which can include one or different exonic/intronic regions [82]. This particular 
assembly lacking a poly(A) tail makes them very stable and resistant to exonuclease-
mediated degradation when compared to their linear counterparts [83].  
The existence of circRNAs has been acknowledged for more than 45 years. First evidence 
was reported in 1976 with the first description of viroids as “single-stranded and covalently 
closed circular RNA molecules” [84], and their discovery in humans followed almost two 
decades later [85]. However, it is not until recently that their role has been clarified, evolving 
from abnormally spliced unfunctional “scrambled” transcripts to circular RNA molecules with 
a marked role in homeostasis [86, 87]. 
CircRNAs have been classified as non-coding RNA for many years, due to the lack of a 5´cap 
structure and their inability to bind to ribosomes. However, recent studies reported that 
some circRNAs can be translated into small functional peptides in a cap-independent 
manner [88]. Other functions may include serving as protein decoys, scaffolds and/or 
recruiters [89], or regulating the canonical transcription by competing with the formation of 
linear cognates via backsplicing [39, 90]. Nonetheless, the most well-studied function is their 
interaction with miRNAs. A single circRNA can have several miRNA-binding sites through 
which targeted miRNAs get “sponged”, thereby blocking their activity [91]. It is throughout 
this mechanism how they predominantly exert their role as cell proliferation regulators 
targeting mediators of classical signaling pathways, such as MAPK/ERK, PI3K/AKT and 
WNT/β-catenin, or cell cycle checkpoint regulators [91]. Because of their implication in the 
above-mentioned processes, dysregulation of circRNA expression can be associated to the 
development of different malignancies, including lung cancer. CircRNAs are  significantly 
associated with tumorigenesis, proliferation, migration and sensitivity to lung cancer 
therapies [92] and,  as a result, have been presented in many recent studies as novel 
biomarkers to assess disease status.  
However, the number of studies focusing on the development of circRNA signatures with 
either diagnostic or prognostic value in human malignancies is rather small, probably due to 
the lack of standardized circRNA quantification methods, which in turn is hampering the 
development of clinically applicable assays. RT-qPCR is widely used as a quantification tool 
for circRNA expression studies. Whilst its sensitivity and short turnaround time proves 
beneficial for circRNA research, several events such as template switching, rolling circle 
amplification or the bias attached to this technique may hinder the results [93]. In addition, 
it does not allow high-throughput analysis, which is necessary for biomarker discovery. 
Microarrays or RNAseq may overcome these limitations; however, the first have a limited 
range of detection disregarding those targets with either very low or high expression, while 
the latter not only results rather expensive, but also includes other restrictions such as the 
use of long time-consuming protocols, or complex data analysis [94, 95]. 
The nCounter technology allows multiplex analysis of up to 800 transcripts by direct capture 
and counting of individual targets [96]. With a short turnaround time and minimal hands-on 
work, it provides results in less than 48h with the use of an intelligible software. However, 
despite the growing number of laboratories using this platform, it still gets mostly restricted 
to mRNA analysis.  
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In this proof-of-concept study, we retrospectively analyzed the circRNA expression profiles 
in NSCLC cell lines and FFPE tissues by using a custom designed 78 circRNA nCounter panel. 
Our data demonstrate that nCounter can be employed not only for basic circRNA research, 
but also for the development of clinically useful circRNA signatures. 
 
2. Materials and methods 
 
2.1. Patient samples and cell lines 
This study was carried out in accordance with the principles of the Declaration of Helsinki, 
under an approved protocol of the institutional review boards of Quirón Hospitals, and the 
IGTP-HUGTP Biobank. FFPE lung cancer tissues were retrospectively collected from 27 early-
stage and 26 late-stage cancer patients from the different Quirón hospitals (Table 1). FFPE 
tissue samples from 16 donors were collected as controls from the IGTP-HUGTP Biobank. 
Most controls did not present any type of cancer, except for four samples which were 
extracted from the non-tumorigenic region of the lung from a cancer patient. Individuals 
with different pathologies were also included to ensure the development of signatures 
specific of lung cancer (Table S1). 
All collected samples were assessed for tumor and lymphocyte infiltration by a pathologist 
(Table S2). 
Written informed consent was obtained from all patients and further documented; samples 
were de-identified for patient confidentiality. Clinical information collected from each 
patient was limited to gender, age, smoking status, tumor histology, driver mutation and 
stage. 
A panel of 7 human lung cancer cell lines harboring different mutations was selected along 
with two normal epithelial cell lines (Table 2). Cell lines were maintained following standard 
culture conditions[97] in RPMI-1640 or DMEM medium (Gibco, Life Technologies, Carlsbad, 
CA, USA) supplemented with 10% fetal bovine serum (Gibco). All cell lines were tested for 
mycoplasma infection. 
 
2.2. RNA extraction 
RNA extraction was performed following previously published methods [98, 99]. RNA from 
fresh cell lines was isolated using the Allprep DNA/RNA/miRNA universal kit (Qiagen, Hilden, 
Germany). FFPE cells and tissues were deparaffined with xylene. After the removal of xylene 
using ethanol, RNA was extracted using the High Pure FFPET RNA isolation Kit (Roche, 
Rotkreuz, Switzerland). RNA quantification was performed using the Qubit 4 Fluorometer 
(Invitrogen, Carlsbad, CA, USA) with the Qubit RNA HS Assay Kit (Invitrogen). RNA integrity 
was assessed with the 2100 Bioanalyzer system (Agilent Technologies, Santa Clara, CA, USA) 
using the RNA 6000 Nano kit (Agilent Technologies). 
 
2.3. Rnase R treatment 
5 µg of total RNA was either treated or mock-treated with RNase R (Lucigen, Madison, WI, 
USA). RNA samples were denatured at 95ºC for 30 seconds following addition of a master 
mix containing RNase R (or molecular grade water in the case of mock-treated samples), 10x 
RNase R buffer adjusted to the final volume, and molecular grade water. Samples were 
incubated 160 minutes at 40ºC and kept at 4ºC prior RNA quantification and subsequent 
nCounter hybridization. 
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Table 1. Clinicopathologic characteristics of enrolled patients (n = 69). 
 

Clinicopathological 
characteristics 

Lung cancer patients 
(n= 53) 

 

Non-cancer controls 
(n = 16) 

Gender – no. (%)   
Male 28 (52.8) 10 (62.5) 
Female 25 (47.2) 6 (37.5) 

   
Age – yr.   

Median 66 59 
Range 32-85 29-76 

   
Smoking status – no. (%)   

Ex- or current smoker  40 (75.5) 9 (56.25) 
Never smoker  11 (20.8) 5 (31.25) 
Not information    2 (3.7) 2 (12.5) 

   
Histological type   

Adenocarcinoma 43 - 
Squamous carcinoma 1 - 
Other NSCLC 9 - 

   
Driver mutation   

EGFR 6 - 
     Exon19  3 - 
     Exon21  1 - 
     Exon20-21  1 - 
     Exon21 and amplification 1 - 
KRAS 12 - 
     G12A  2 - 
     G12C  3 - 
     G12V  4 - 
     G12R  1 - 
     Other 2 - 
BRAF 1 - 
ROS 1 - 
RET 2 - 
ALK 1 - 
MET (exon14 mutation) 1 - 
Other alterations 5  
Not information 24 - 
   

Tumor stage – no. (%)   
I 16 (30.2) - 
II   4 (7.5) - 
IIIA   7 (13.2) - 
IIIB   3 (5.6) - 
IV 23 (43.4) - 
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2.4. RT-qPCR and Sanger sequencing analysis 
RT-qPCR and Sanger sequencing of circRNA junction sites were performed as previously 
described [98]. 10 µl of total RNA was converted into cDNA using the M-MLV reverse 
transcriptase enzyme and random hexamers (Invitrogen).  
 
 
Table 2. Characteristics of the lung cell lines included in the study.  

 
AD, adenocarcinoma; NE, normal epithelial; ATCC, American Type Culture Collection; UCSF, University 
California San Francisco; UTSW, University of Texas Southwestern 
 
 
A 1:3 dilution of cDNA was performed, and 2.5 µl were added to the Taqman Universal 
Master Mix (Applied Biosystems) in a 12.5 µl reaction containing a specific pair of primers 
and probe for each gene. Three replicas of each sample were run for the quantification of the 
expression of each assessed circRNA. Three replicas of each sample were run for the 
quantification of the expression of each assessed circRNA. Divergent primers and probe sets 
were designed using Primer Express 3.0 Software (version 3.0.1, Applied Biosystems) with 
the latter spanning the circRNA junction site (Table 3). Quantification of gene expression 
was performed using the QuantStudioTM 6 Flex System (Applied Biosystems) and 
calculated according to the comparative Ct method.  
In all quantitative experiments, a sample was considered not evaluable when the standard 
deviation of the Cq values was >0.30 in two of the three independent analyses (n=3).  
 
For Sanger sequencing, 10 µl of each PCR product was loaded on a Precast Agarose HT-1gel 
and visualized under UV light (E-Gel™ Safe Imager™ Real-Time Transilluminator, 
Invitrogen) after electrophoresis (E-Gel™ iBase™ Power System, Invitrogen). 

Cell line Histology Gene  Mutation Origin 
A549 

AD 
 

KRAS G12S ATCC  

HOP-62 G12C ATCC 

PC9 

EGFR E746_A750 DL 

Hoffmann-La 
Roche, with 
the 
authorization 
of Dr. 
Mayumi Ono 

HCC-827 E746_A750 DL ATCC 

NCI-H1666 BRAF G466V ATCC 

NCI-H2228 

ALK 

EML4-ALK, 
variant 1 

ATCC 

NCI-H3122 EML4-ALK, 
variant 3 

ATCC 

AALE 

NE - wt 

Dr. Trever 
Bivona Lab, 
UCSF 

HBEC30KT Dr. Minna 
Lab, UTSW 
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Five microliters of each cDNA sample were purified using the PCR ExoSAP-IT Product Clean 
up Reagent (Applied Biosystems). Sequencing PCR reactions were set up using the BigDye 
Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), forward primer, cDNA and 
water in a final volume of 20 µl. Sequencing PCR was performed using a Verity 96 well 
thermal cycler (Applied Biosystems).  
After sequencing amplification, samples were loaded into a 96-well plate and subjected to 
Sanger sequencing using the 3130 Genetic Analyzer (Applied Biosystems). 
 
 
Table 3. Primer and probe design for circRNA validation by RT-qPCR.  

 
 
2.5. miRNA prediction and circRNA-miRNA network construction 
MiRNAs targeted by the differentially expressed circRNAs found in early-stage FFPE lung 
cancer tissues were predicted using the circinteractome tool 
(https://circinteractome.nia.nih.gov). circRNA-miRNA interaction network was built using 
cytoscape (v3.8.2; https://cytoscape.org). Association of miRNAs with cancer associated 
downstream signaling pathways was investigated using the miRCancer database 
(https://mircancer.ecu.edu). 
 
2.6. NanoString nCounter panel design and sample processing 
A custom-made panel of 78 circRNAs was produced, including both highly and lowly 
expressed circRNAs that could be related to lung cancer (Table S3). Each probe was designed 
to target a flanking exonic sequence between 35-55 nucleotides of the circRNA junction site.  
They also contain a complementary region to capture and reporter probes, conforming a 
precise configuration that allows specific recognition of circular transcripts (Figure S1). In 
addition, six linear reference genes (GAPDH, MRPL19, PSMC4, RPLP0, SF3 and UBB) and 
four mRNAs of FAM13B, HIPK3, MGA, and UBXN7 genes were included (Table S2). 
Sample processing in the nCounter was performed as previously described [98] following 
NanoString´s guidelines (Figure S2).  
 
 

circRNA  

circEPB41L2 
(hsa_circRNA_0001640) 

Forward GAAGACCAAAACTGTCCAGTGTAAAG 

Reverse CACTTCAGACACAGAGCCTACTTCA 

Probe TGACCTGGAGCATAAG 

circSOX13 
(hsa_circRNA_0004777) 

Forward CAGTGACTGGAAGGAGAGGTTTC 

Reverse CTGGGCAGAGATGGGGCT 

Probe AAAGATGTCAAAGGATGTCCATGA 

circBNC2 
(hsa_circ_0086414) 

Forward GTCTGCACAGTGGCTGGTTG 

Reverse GGTGATGATTTCCTCTTCTCGAG 

Probe AGACAGGATGCTGCTG 
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2.7. Data normalization and differential expression analysis 
Raw count values were exported to Microsoft Excel (version 16.40, Microsoft) using nSolver 
Analysis Software (version 4.0.70, NanoString Technologies). For each of the circRNAs 
included in the panel, raw counts lower than the cut-off value established as background 
were automatically excluded from further analysis. Background was calculated for each 
sample by using the mean of the negative probe counts plus two times the standard 
deviation.   Only circRNAs with a value > 10 counts after background substraction were 
considered as expressed. Subsequent circRNA-specific counts were normalized by dividing 
this number by the total number of counts for this sample. Resulting number was multiplied 
by 10,000 (units expressed in counts per 10,000). 
Further differential expression analysis of raw nCounter data was carried out with R (version 
4.0.2) and R studio (version 1.3.1056). Technical variability correction, normalization and 
differential expression analysis was performed using the RUVSeq (version e1.24.0) and 
DESeq2 (version 1.30.0) packages (RUVseq-DESeq2). Firstly, the RUVg function was used to 
estimate the unwanted variation among samples based on the positive controls. The positive 
controls used in the NanoString panel are Spike-In control sequences; therefore, analogous 
constant expression of positive controls is expected across all samples. Secondly. DESeq2 
was used to perform the normalization of the data, while accommodating the estimated 
factors provided by the RUVg function. Finally, DESeq2 was used to perform hypothesis 
testing in order to identify differentially expressed circRNAs. Shrunken log2 fold change 
(log2FC) was then reported by DESeq2 along with adjusted p-values. Batch effect was 
considered during normalization using RUVSeq-DESeq2. The normalized data were 
employed for ML techniques. Volcano plots were used to visualize log2FC on the x-axis and -
log10 adjusted p-values on the y-axis. 
 
2.8. Machine Learning classification 
RFE was used to perform feature selection and the LOOCV algorithm was applied on the full 
panel of circRNA transcripts. The number of features to select were set by default at 4, 8, 16 
and 78. The number of features that yielded best performance after cross-validation was 
automatically selected. To test whether generated data had enough discriminative 
information to build a robust model for the classification of cancer samples from controls, 
different paradigms of classification models were tested to provide the most accurate 
results. Under this context, three classification approaches were performed with the selected 
features: an “instance-based” model (KNN). This model uses the distances among samples 
to obtain a predictive label; and two different ensemble mechanisms with decision trees – 
bagging (RF) and boosting (GBM).  
For the analysis of early-stage lung cancer samples versus control samples, GBM was 
excluded due to the high volume of samples is required for this model. 
The model with the highest ROC AUC value was then selected as the final model.  A 
confidence threshold of 0.5 was considered for the calculation of PPV and NPV. Additional 
statistical indicators such as accuracy, sensitivity and specificity were also calculated. 
 
3. Results 
 
3.1. nCounter for circRNA detection in fresh NSCLC samples 
Based on a literature review, 78 circRNAs were selected according to their differential 
expression in lung cancer specimens for the development of an nCounter panel (Table S3). 
To test the reproducibility of this panel for circRNA detection, RNA from fresh PC9 cells was 
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subjected to nCounter analysis in 3 independent reactions. As a result, a strong correlation 
was found between the normalized counts for each individual circRNA, represented by a 
Spearman´s r of 0.82-0.88, p <0.01 (Figure S3). 
Then, RNA from the same cell line was used in an experiment with RNAase R, an enzyme 
that degrades linear RNA, to elucidate if the nCounter probes bind specifically to the circRNA 
of the genes included in the panel (Figure 1a). As a result, 18 new transcripts that could not 
be detected in mock-treated samples were observed after RNase R treatment (Figure 1b). In 
addition, among the 34 transcripts identified in both types of samples, the counts of 28 
(82.3%) increased at least 2-fold after RNAse R treatment. CircSND1 and circBANP were 
found with the highest enrichment, with a 56 and 33-fold change respectively. CircCHD9, 
circAASDH, circVRK1, circSLC8A1 and circSMARCA5 were the only circular transcripts 
affected by the exonuclease activity of RNase R, showing a lower number of c ounts after 
incubation with the enzyme (Figure 1c). All mRNA controls, including the linear forms of 
FAM13B, HIPK3, MGA, and UBXN7, were found with reduced or null expression after 
treatment (Figure 1d). 
A high correlation was found between the two replicas included for each of the conditions 
(Pearson´s r = 0.99917; p < 0.01 and r = 0.9985; p < 0.01 for mock-treated and RNase R treated 
samples, respectively) demonstrating the specificity of the assay (Figure 1e).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Analysis of circRNA from RNase R treated samples.  (a) Workflow for circRNA enrichment with RNase 
R. (b) Representation of the newly discovered circRNAs after RNase R treatment. Bars indicate the mean of the 
replicas (n=2). Error bars indicate SD. (c) CircRNA/linear HK fold-change after RNase R treatment (n=2).  (d). 
Comparison of circRNAs/mRNA cognates in RNase R/mock-treated samples. Bars indicate the mean of the 
replicas (n=2). Error bars indicates SD. (d) Correlation of the nCounter replicas (n=2) for each treatment. 
Pearson´s coefficient is indicated. 
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3.2. nCounter for circRNA detection in FFPE NSCLC samples 
To assess the performance of our panel in FFPE samples, RNA from paired FFPE and fresh 
PC9 cell line was extracted and processed in the nCounter. The number of total raw counts 
in PC9 FFPE samples was significantly lower compared to fresh PC9 samples (771.870 versus 
1.353.811). However, despite the suboptimal quality observed in the RNA extracted from the 
FFPE cells (Figure S4), a statistically significant correlation was found when comparing both 
types of input (Figure S5a).  
Next, we assessed the feasibility of RNase R treatment in FFPE samples. As a result, overall 
circRNA enrichment was not achieved, in contrast to what was previously observed in RNA 
extracted from fresh cells. Most circRNAs were found to be degraded to different extents in 
RNase R treated replicas when compared with the controls, indicating that such treatment 
should be avoided when working with FFPE samples (Figure S5b).  
Then, different concentrations of FFPE-derived RNA (between 250 ng and 2000 ng of total 
RNA) were tested assessing the effect on downstream nCounter analysis. As a result, 
saturation was not achieved with the highest concentration, suggesting that a greater RNA 
input could be applied. Analysis of normalized counts across all samples indicated similar 
performance of 250 ng compared to the rest of tested concentrations, with a Pearson´s 
correlation between 0.99-1.00 (Figure S6). As a result, 250 ng of total RNA was selected for 
the rest of the study.  
 
3.3. circRNA expression in NSCLC fresh cell lines 
A set of seven lung cancer cell lines were selected according to their driver mutation, along 
with two normal epithelial cell lines (Table 2). Duplicates of equal RNA concentrations were 
run in all cases. 
Out of the 78 circRNAs included in the panel, 33 were expressed in all cell lines. Nineteen 
were expressed in epithelial cells and not in all lung cancer cells, while only one, circFUT8 was 
only expressed in all lung cancer cell lines (Figure S7). Nineteen circRNAs included in the 
panel were not found in any of the assessed cell lines. Fifty-one was the highest number of 
circular transcripts displayed by any cell line (AALE).  The NCI-H2228 cell line showed the 
lowest number, with only 40 circRNAs detected (Figure 2a). Overall, total raw counts were 
significantly higher in normal epithelial lung cell lines compared to cancer cell lines (Figure 
S8). Hierarchical clustering led to a separation of the KRAS cell lines and normal epithelial 
cell lines from the rest (Figure 2b). The two EGFR mutant cell lines positioned together, 
showing a distinctive group of downregulated circRNAs (circBNC2, circCLK1, circCHD2 and 
circNUPL2) compared to the rest of the cell lines.  
Finally, differential expression analysis revealed 4 circRNAs that allowed for differentiation 
between the 7-lung cancer cells and normal epithelial cells. CircPIK3R1, circFARSA, and 
circCHST15 were found downregulated in the cancer cell lines, while circFUT8 was 
upregulated (Figure 2c). 
 
3.4. circRNA expression in FFPE NSCLC vs. non-tumor tissue  
A total of 53-lung cancer samples and 16 control tissue samples were selected and processed 
with the circRNA nCounter panel. Initial analysis included normalization of counts for each 
circRNA as described in the methods section, followed by unsupervised hierarchical 
clustering of patient samples based on total circRNA expression. A partial separation 
between cohorts was achieved, indicating a group of circRNAs with discriminatory potential 
(Figure 3a). 
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A differential expression analysis revealed a cluster of 10 differentially expressed circRNAs.  
CircEPB41L2, circBNC2, circSOX13, and circFOXP1 were downregulated in lung cancer 
tissues, while circRUNX1, circCHD9, circACACA, circFUT8, circRHOQ and circC1ORF116 
were overexpressed (Figure 3b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. CircRNA analysis in lung cancer (A549, HOP-62, PC9, HCC-827, H1666, H3122 and H2228) and 
epithelial cells (AALE and HBEC30KT). (a) Bar plot representing total circRNAs detected in each of the cell lines. 
(b) Hierarchical clustering of cell lines based on circRNA expression. (c) Differential circRNA expression analysis 
of log2-normalized counts between lung cancer and normal lung cells.   
 
 
Additionally, we also investigated the possible differences in circRNA expression based on 
the smoking habits of the lung cancer cohort. As a result, four circRNAs (circCSPP1, 
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circNEDD4L, circSOX13 and circCORO1C) negatively correlated with smoking status with p 
= 0.015, p = 0.043, p = 0.017 and p = 0.045 respectively (Student´s t-test). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. (a) Heatmap showing the circRNA expression in lung cancer and control specimens. Unsupervised 
clustering was performed based on total circRNA expression. (b) Volcano plot showing the circRNA log2 fold-
change in FFPE lung cancer (n = 53) versus control (n=16) FFPE tissues. (c) Area under the ROC curve for the 
classification of lung cancer and control samples.  Confusion matrix was generated based on the RF 
classification scores. Classification error scores are indicated. 
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Due to the low number of samples to be analyzed (n=59), we decided to use LOOCV as a 
validation model, which considers only one sample for testing in each interaction reducing 
the bias to the minimum when compared to other techniques such as stratified cross 
validation. As a result, a RFE algorithm selected an 8-circRNA signature (including circSOX13, 
circEPB41L2, circFOXP1, circBNC2, circCORO1C, circCHD9, circSNX25 and circPIK3R1) as 
the final model, providing a ROC AUC of 0.965, 0.953, 0.983 with RF, KNN, and GBM 
classifiers respectively (Figure 3c). A PPV of 98.1% and NPV of 81.2% were achieved with the 
final model. The accuracy, sensitivity and specificity of the signature were of 97.1%, 94.5% 
and 92.8% respectively. 
 
3.5. CircRNA expression in early-stage NSCLC tissues 
Next, the 27 early-stage NSCLC samples (stages I- IIIA) of our cohort were compared to the 
26 late-stage specimens (stages IIIB and IV) (Table 1) to assess those differentially expressed 
circRNAs emerging early in the disease.  
From the 41 circRNAs expressed in early-stage samples, 39 were shared with late-stage 
samples (Figure 4a). Only 6 out of these 39 transcripts were differentially expressed when 
compared with the control specimens (Figure 4b). Interestingly, one of these circRNAs 
(circFUT8) was found upregulated in both lung cancer tissues and lung cancer cell lines. To 
shed some light on the potential targets of these 6 circRNAs, a circRNA-miRNA network was 
built based on sequence-pairing prediction (Figure 5). Using circinteractome database, 64 
miRNAs were found to potentially bind to differentially expressed circRNAs, with 29 of them 
showing more than 1 binding site (Figure S9).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  CircRNA expression in early-stage NSCLC samples. (a) Venn diagram displaying circRNAs 
identified in early- and late-stage samples, featuring those shared by both cohorts. DE circRNAs are 
indicated. (b) Differential expression analysis of log2-normalized counts between the early-stage lung 
cancer cohort (n=27) and control (n=16) FFPE tissues. circEPB41L2, circSOX13 and circBNC2 were found 
downregulated and circFUT8, circCHD9 and circ_C1orf116 were found upregulated as previously 
described with all stages of lung cancer 
 
Additional ML analysis was performed in early-stage lung cancer and control samples. RFE 
algorithm provided a signature that included 4 circRNAs (circEPB41L2, circSOX13, circBNC2, 
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circCORO1C) and provided a ROC AUC of 0.981, 0.918 with RF and KNN respectively (Figure 
6a). PPV and NPV were of 92.6% and 87.5%, whereas accuracy, sensitivity and specificity 
were of 90.6%, 92.6% and 87.5% respectively with the selected model. Hierarchical 
clustering based on the 4 circRNA included in the signature allowed a clear differentiation 
between both cohorts (Figure 6b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Mapping network showing predicted sequence-pairing circRNA-miRNA interaction of 
differentially expressed circRNA found in early-stage lung cancer tissues. CircRNAs are represented by 
elliptic nodes and colored based on their log fold change. Complementary binding miRNAs are 
represented by diamond shaped nodes. 
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Figure 6. (a) Area under the ROC curve of the 4 circRNA-signature using recursive feature elimination 
(RFE) for cohort classification. Confusion matrix was generated based on the RF classification scores. 
Classification error scores are indicated. (b) Hierarchical clustering of samples based on the 4-circRNA 
signature.  
 
 
3.6. Univariate analysis related to lung cancer risk 
We then explored if certain patient characteristics could provide risk factors for lung cancer 
by performing a univariate analysis (Figure 7). Several characteristics that could be 
associated with higher risk of lung cancer such as age, gender, and smoking status, were 
evaluated. No significant association could be found between lung cancer and any of the 
characteristics previously mentioned. However, presented signatures for lung cancer and 
early-lung cancer classification were found to be significant predictive factors for lung 
cancer, with an odds ratio of 371 and 91 respectively.  
 
3.7. Validation by RT-qPCR and Sanger Sequencing of circRNA junction sites 
CircEPB41L2, circSOX13 and circBNC2 not only were significantly downregulated both in 
early and late stages showing the highest fold-change, but also were selected by the RFE 
algorithm as part of the two predictive signatures. As a result, these 3 targets were selected 
to validate the nCounter performance using RT-qPCR.  
Divergent primers and probes spanning the junction sites were designed for the specific 
amplification of cited circular transcripts (Figure 8a) in 10 NSCLC and 10 control FPPE tissue 
samples previously assessed with the nCounter circRNA panel. 
RT-qPCR results correlated with the data previously obtained from nCounter, indicating 
downregulation of cited circRNAs in NSCLC samples (Figure 8b).  A gel electrophoresis of 
the PCR products revealed 3 bands corresponding to the size of expected amplicons (Figure 
8c). Further Sanger sequencing validated these findings by exposing the circRNA junction 
sites (Figure 8d). 
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Figure 7. Univariate analysis exploring associations between patient characteristics and lung cancer to 
determine risk factor. Forest plot represents the odds ratios in (a) lung cancer; and (b), early-stage lung 
cancer cohorts with a 95% wald confidence limit. Student´s t-test was used for the calculation of P-values. 
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Figure 8 (reverse page). Validation of nCounter results by RT-qPCR and further Sanger Sequencing. (a) 
Representation of circRNA amplification using divergent primers. (b) Bar plot of RT-qPCR results 
depicting downregulation of circEPB41L2, circSOX13, and circBNC2 in lung cancer versus control tissues 
validating previous nCounter results. Bars indicate the mean of the 10-lung cancer (n=3) and 10 control 
samples (n=3).  Error bars indicate SD.  (c) Electrophoresis gel of amplified circEPB41L2 (113 nt), circBNC2 
(119 nt) and circSOX13 (90 nt). (d) Sanger sequencing results spanning the junction site (underlined) of 
cited circRNAs.  
 
 
4. Discussion 
 
Precision oncology currently relies on genomic, transcriptomic or proteomic-based features 
that serve as decision-making support, predicting treatment outcome [100].  
The re-discovered role of circRNAs as regulatory entities of miRNAs, affecting the 
occurrence and development of different malignancies, has been supported by the growing 
number of studies that highlight their potential as cancer biomarkers and therapeutic targets 
in future personalized medicine [101]. Investigation of novel signatures based on these 
biomolecules could therefore be of interest to achieve earlier diagnosis by developing new 
tests or complimenting existing ones. However, the lack of standardized methods for their 
study is preventing their clinical validation and further implementation in the clinical 
practice. 
 
The nCounter platform allows multiplexed digital gene expression analysis by direct 
counting of RNA molecules. With a wide use for transcriptomic studies, nCounter has been 
recently adapted for the detection of circRNAs using a specific probe design where 
sequences span the circRNAs junction site [99]. On this regard, some  authors have proved 
the benefits of this technology to study circRNA subcellular distribution [102], or elucidate 
the potential roles in skin [103, 104] or brain diseases[105]. However, to date, no one has 
explored this platform in FFPE samples for the development of lung cancer signatures. 
 
Here, we prove the use of nCounter for circRNA studies in FFPE lung cancer tissues and cell 
lines, developing a protocol for their study.   
Due to the lack of any commercially available nCounter circRNA panel, we first performed 
an extensive literature research, looking for circular RNA candidates described to be 
differentially expressed in lung cancer cells, tissues, or liquid biopsies. Out of the 78 circRNAs 
conforming the panel (Table S3), 40-51 circRNAs were detected in assessed cell lines, 
whereas 41 and 44 were detected in early and late-stage NSCLC tissues respectively. From 
the resulting circRNAs that could not be detected by nCounter, 19 could not be found in any 
control tissue nor in any assessed cell line (Figure S10). Additional experiments using liquid 
biopsies would be of interest to address if cited circRNAs are present in such material 
according to our nCounter protocol, or if on the contrary, observed discrepancies may be due 
to the technical differences (including normalization) among the diverse platforms used in 
previous studies such as RNA-seq, microarrays or RT-qPCR when compared to our nCounter 
workflow.  
The resulting thirteen circRNAs were detected in the cell lines with three of them, circPIK3R1, 
circADAM22, circCHN1 being only present in the normal epithelial cell lines (AALE and 
HBEC30KT). These three were described in literature to be downregulated in NSCLC [61, 
106-109]. From the detected circRNAs, seventeen were found upregulated, according to 
literature review [106-109], contrasting to the results achieved with nCounter; however, only 
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3 of those could be further validated by RT-qPCR [106, 108, 109]. Although we believe that 
direct comparison with another circRNA panel for lung cancer detection is instrumental to 
fully assess the clinical utility of our panel, this was not performed due to the absence of the 
latter; however, this comparison will be warranted at the time other panels become 
available. 
 
Most genetic analyses performed in the clinic come from paraffined specimens with either 
very little material or compromised quality. CircRNAs are very stable, even in this type of 
samples, due to their circular configuration [107]. Also, the nCounter technology performs 
quite well with highly degraded samples compared to other techniques since it only requires 
a short fragment of RNA (100 nt) for the capture and reporter probes to hybridize and emit a 
signal [96]. In consequence, we tested and compared results of circRNA expression from 
FFPE and fresh PC9 cells after nCounter analysis even if the RNA did not pass the quality 
control, as observed in the case of the FFPE PC9 samples, and we did obtain comparable 
results. 
RNase R treatment can efficiently degrade highly structured RNA in 3´end-dependent 
manner [110]. Since most circRNAs are resistant to this exoribonuclease activity, we tested 
the specificity of our panel by treating cell line-derived RNA with this enzyme prior nCounter 
processing. Consequently, most expressed circRNAs were enriched up to 56-fold when 
compared to controls, and only 5 circRNAs were found affected by this treatment. Sensitivity 
of specific circRNAs towards the endonuclease activity of the RNase R enzyme was expected 
since it could be found reported in other publications [111]. Full or partial degradation of all 
linear transcripts included in the panel was observed, hence, validating the circRNA nCounter 
panel. Eighteen new circRNAs could be seen after treatment, while they could not be 
detected in mock-treated samples. The degradation of the canonical mRNA which can 
represent up to 95% of the total RNA expression [32, 33]  seems to facilitate the interaction 
between the circRNAs and the nCounter probes, which otherwise would be hampered by this 
mRNA-induced noise, making those low-expressed circRNA undetectable [112].  This, along 
with the enrichment of circRNA molecules upon linear RNA depletion suggests that this type 
of treatment may be particularly beneficial for the screening of circRNA (especially those 
with very low expression) derived from fresh material.  Conversely, circRNA enrichment was 
not observed in treated FFPE-derived RNA samples. As the rest of nucleic acid present in this 
type of material, circRNAs are crosslinked to the paraffin matrix. During the process of 
purification, these molecules are subject to both mechanical and chemical breakage; thus, 
any break in the circRNA would allow for RNAse R-based degradation. As a result, we 
determined that this procedure can be recommended to improve circRNA detection in fresh 
but not paraffined specimens. However, it is imperative to mention that although RNase R 
treatment is highly recommended for circRNA screening purposes, it should be avoided in 
circRNA expression  studies since the variability of RNAase R digestion efficiency for 
different samples may lead to biased circRNA expression quantification [113]; Therefore, 
untreated total RNA samples were used for the  expression experiments in our study. 
Since circRNA represents only 5 to 10% of total RNA [32, 33], different concentrations of total 
RNA were tested. As a result, 250 ng of total RNA proved enough for expression studies. 
Technical saturation was not achieved at 2000 ng of total RNA suggesting that higher 
concentrations could be used if analysis of transcripts expressed at lower levels is intended. 
 
Using the explained workflow and custom-made circRNA nCounter panel, expression 
analysis in lung cancer cell lines was performed. Interestingly, an overall increase in the 
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number of circRNA raw counts was found in normal epithelial versus cancer cells. This result 
is in agreement with a previous study, where a global reduction of circRNA expression in 
cancer compared to healthy specimens was found, along with a negative correlation of 
overall RNA abundance and proliferation [114].  
In addition, a group of differentially expressed circRNAs was discovered in the assessed 
cancer cell lines. Interestingly, although circPIK3R1 was downregulated in agreement with 
formerly published results [108], both circCHST15 and circFARSA were also downregulated. 
CircCHST15 was recently found highly expressed in lung cancer, correlating with PD-L1 
status and promoting immune escape of lung cancer cells [115]. Similarly, circFARSA 
upregulation has been described in tumor cells, promoting migration and invasion [116]. 
Although none of the groups used AALE nor the HBEC30KT epithelial cell line for their 
transcriptional analyses preventing direct comparison with our study, additional 
experiments with other epithelial cell lines and additional transfection studies could be of 
interest to shed light on the biology of these circRNAs. 
Furthermore, a circRNA from the FUT8 gene which was found upregulated in cancer cells 
and further validated in FFPE lung cancer tissues, even at the early stage of the disease. In 
addition, circCHD9 and circC1orf116 were found highly expressed, while circEPB41L2, 
circBNC2, and circSOX13 were strongly downregulated in such material. These last three 
circRNAs could be further seen downregulated in NSCLC samples by RT-qPCR validating 
previous nCounter results. 
Circinteractome was used to further elucidate possible miRNA targets of aforementioned 
circRNAs. Out of 28 predicted miRNAs for circFUT8, hsa-mir-186 and hsa-miR-1305 were the 
only ones presenting more than one potential binding site. Hsa-miR-186 was described 
downregulated in NSCLC, acting as an inhibitor of cancer proliferation, progression and 
metastasis [117, 118]; whereas hsa-miR-1305 was not described in any type of cancer thus 
far. Another mechanism of action of circFUT8 in NSCLC has been described by Zhu et al. in 
a recent publication, where this circRNA was shown to increase proliferation, invasion and 
migration of NSCLC cells via miR-944/YESI axis [119].  
For circCHD9, only one miRNA, hsa-miR-1229, was predicted. This miRNA was found 
upregulated in breast cancer activating β-Catenin/Wnt signaling [120]; however, nothing has 
been reported to lung cancer yet. No information regarding a possible connection between 
circC1orf116 and this malignancy was found either. Nonetheless, this circRNA has been 
described to promote cell proliferation, migration and invasion in cervical cancer by binding 
to miR-518d-5p and miR-519-5p and further modulating BBX8 expression [121].  
Interestingly, among the several predicted miRNAs for circEPB41L2, circBNC2, and 
circSOX13, hsa-miR-942 was a common target of cited circRNAs with 4, 2 and 1 binding sites 
respectively (Figure S9). This miRNA was previously described to be involved in colorectal 
and esophageal cancer progression activating the Wnt/β-catenin signaling pathway [122, 
123]. However, no evidence of its role in lung cancer has been found and would require 
further investigation. 
 
Lastly, further machine learning analysis of generated data using RF, GBM, and KNN 
algorithms provided not only a signature able to correctly classify lung cancer samples from 
the control specimens, with an AUC of 0.985 (RF), 0.955 (GBM) and 0.993 (KNN) using an 8-
circRNA signature, but also a 4-circRNA signature for early-stage lung cancer classification 
with comparable accuracy.  These ML-based signatures included circEPB41L2, circSOX13, 
circBNC2, adding evidence of the potential of mentioned circRNAs as early-stage lung 
cancer biomarkers. 



nCounter circRNA assay testing in lung cancer cell lines and FFPE specimens 
 

 41  

Since we did not perform microdissection of the tumor samples nor single cell analysis, we 
could not verify whether presented signature-based circRNAs came from cancer cells or 
tumor microenvironment. Although this was out of our research scope since we mainly 
focused on the diagnostic potential of such signatures, we believe it could be of interest for 
future investigations. Also, most samples included in this study were lung adenocarcinomas, 
except for one squamous carcinoma and nine NSCLC samples with unknown histological 
subtype. Inclusion of different histologies in forthcoming validation studies are 
recommended to assess the specificity of the presented signatures. Finally, the work 
presented here was a proof-of-concept study and the main purpose was to demonstrate the 
feasibility of using nCounter for the study of circRNAs in lung cancer specimens. In 
consequence, the number of samples included was small and the abovementioned signature 
should be validated in a larger cohort.   
 
5. Conclusions 
 
In summary, we have developed a circRNA nCounter panel and workflow that can be used 
for multiplex detection of circRNA in FFPE lung cancer specimens. A cluster of differentially 
expressed circRNAs have been presented and further investigation is warranted to explore 
their potential as therapeutic targets. In addition, a 4 circRNA signature has been found 
through ML proving effective for early-stage lung cancer differentiation.  
These findings pave the way to future biomarker investigations and validation of liquid 
biopsy signatures for lung cancer detection. 
 
6. Supporting information 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1. nCouter probe design allows specific recogition of the circRNAs included in the panel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2. nCounter workflow for circRNA expression studies in FFPE lun tissues 

Fig S1. nCounter probe design allows specific recognition 
of the circRNAs included in the panel.

 Fig S2. nCounter workflow for circRNA expression studies in FFPE lung tissues.
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Figure S3. Reproducibility experiment comparing the log2 of normalizd counts by nCounter from three 
independent RNA samples derived from the PC9 cell line. Spearman´s correlation coefficient is indicated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S4. Bioanalyzer profiles of faired fresh (left) and FFPE (right) PC9 ceell line-derived RNA.RNA integrity 
number (RIN) score is indicated on the upper-left corner of each figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S5. nCounter analysis of FFPE PC9 cell line. (a) Correlation between circRNAs from FFPE PC9 versus 
fresh PC9 cell lines. Spearman´s correlation coefficient is indicated. (b) Bar plot showing circRNA and linear HK 
fold change after RNase R treatment.  
 
 
 
 

Fig S3. Reproducibility experiment comparing the log2 of normalized counts by nCounter from three independent RNA samples
derived from the PC9 cell line. Spearman´s correlation coefficient is indicated.

Fig S4. Bioanalyzer profiles of paired fresh (left) and FFPE (right) PC9 cell line-derived RNA. RNA integrity number 
(RIN) score is indicated on the upper left corner of each figure.

A B

Fig S5.  nCounter analysis of FFPE PC9 cell line. A. Correlation between circRNA from FFPE PC9 versus fresh PC9 cell lines. 
Spearman´s correlation coefficient is indicated. B. Bar plot showing circRNA and linear HK fold change after RNase R treatment. (a) (b) 
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Figure S6. Total RNA concentration assessment for circRNA analysis using the nCounter platform. (a) Figure 
showing the correlation of normalized counts among the different RNA concentrations tested. (b) Boxplot of 
the log2 unnormalized datasets showing the count distribution in each of the different RNA concentrations 
tested. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S7. Venn diagram showing circRNAs identified in all healthy cells (19) versus those only expressed in all 
lung cancer cell lines (1). Those circRNAs expressed in all cell lines are indicated (33). 
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Fig. S7. Venn diagram showing circRNAs identified in all healthy cells (19) versus those only expressed in all 
lung cancer cell lines (1). Those circRNAs expressed in all cell lines are indicated (33).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig S6. Total RNA concentration assessment for circRNA analysis using the nCounter 
platform. A. Figure showing the correlation of normalized counts among the different 
RNA concentrations tested. B. Boxplot of the log2 unnormalized datasets showing the 
count distribution in each of the different RNA concentrations tested. 
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Figure S8. Overall total number of raw counts in lung cancer (A549, PC9, H2228, H3122, HOP-62, HCC-827, 
H1666) and normal epithelial cell lines (aale, HBEC3KT). 
 
 
 
 
 

 
 
Figure S9. Different miRNA binding sites of dysregulated circRNAs in early-stage lung cancer tissues. 
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Fig S8. Different miRNA binding sites of dysregulated circRNAs in early-stage lung cancer 
tissues. 
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Fig S7. Overall total number of raw counts in lung cancer (A549,PC9, H2228,
H3122, HOP-62, HCC-827, H1666) and normal epithelial cell lines (AALE, HBEC3KT).
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Figure S10. Diagram showing the tracking of those circRNAs of the circRNA nCounter panel not detected 
in assessed FFPE tissues.  
 
 
 
Table S1. Diagnosis and associated pathologies of the control cohort. Different individuals with different 
characteristics were selected as controls to ensure that both, potential differentially expressed circRNAs 
and ML signatures, would be specific for lung cancer classification.  

 
Diagnosis and associated pathologies of control cohort 
 
Patient ID 

 
Sex 

 
Age 

 
Diagnosis 

 
Smoking status 

 
Associated 
pathologies 

 
IGTP-1 

 
M 

 
46 

 
Pulmonary congestion and emphysematous changes 

 
Severe 

 
Aortic insufficiency  

IGTP-2 M 50 Pneumonia  Severe   Polyglobulia, 
thrombopenia, 
moderate-severe 
COPD, 
hypothyroidism 

IGTP-3 M 69 Multiple infracentimetric, fibrous and whitish 
lesions in the right upper lobe, subpleural in 
location, suggestive of an old inflammatory process  

Ex-smoker Not information 

IGTP-4* F 61 Infiltrating acinar adenocarcinoma Moderate Tuberculosis in 1992 

IGTP-5* F 47 Adenocarcinoma   Severe Not information 

IGTP-6* F 76 Adenocarcinoma   N.I Not information 

IGTP-7* M 73 Metastatic carcinoma Ex-smoker Gout disease 

IGTP-8 M 29 Bullous emphysema N.I Not information 

 
 
 
 
 circEA1, circEA3, circBACH2, circNOL6, 

circLOC100506142, circCHD9, 

circSEMA5A, circPIK3R1, circPTPRM, 

circADAM22, circDUS2L, circRANGAP1, 

circPDE5A, circSNX25, circZFR, 

circNUPL2, circCOL11A1, circGNA14, 

circRHD, circPIK3C2B, circNUP98, 

circUHRF1, circTASP1, circMYBL1, 

hsa_circ_0000064 (PIK3R1), circGAS8, 

circCHN1, circRDH11. 

circANXA7, circACP6, circACACA 

circLOC100506142, circCHD9, 

circPIK3R1, circADAM22, circDUS2L, 

circSNX25, circNUPL2, circMYBL1, 

circGAS8, circCHN1, circANXA7, 

circACACA. 

circEA1, circEA3, circBACH2, circNOL6, 

circSEMA5A, circPTPRM, 

circRANGAP1, circPDE5A, circZFR, 

circCOL11A1, circGNA14, circRHD, 

circPIK3C2B, circNUP98, circUHRF1, 

circTASP1, circPIK3R1, circRDH11, 

circACP6. 

 

31 circRNAs were not detected 
in any FFPE tissue  

19 of these circRNAs were not 
detected in cell lines either  

12 of these circRNAs were 
detected in cell lines 

circPIK3R1, circADAM22, circCHN1 

3 of these circRNAs were only 
detected in normal epithelial 
cell lines (HBEC30KT and AALE)  

Figure S10. Diagram showing the tracking of those circRNAs of the circRNA nCounter panel not detected 
in assessed FFPE tissues.  
Out all circRNAs included in the panel, 31 were not identified in cancer nor control FFPE tissues. 19 out of 
these 31 circRNAs could not be detected in any cell line. From the resting 12 that could be detected in cell 
lines, circPIK3R1, circADAM22 and circCHN1 could be only detected in the control cell lines (HBEC30KT 
and AALE). 
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N.I = Not information; F = Female; M = Male. *A non-tumoral region of the lung was used as control 
 
 
 
 

IGTP-9 F 62 Emphysema, edema and pulmonary congestion, 
diffuse and bilateral.  

Smoker Endoprosthesis from 
the arch to the 
proximal segment of 
the descending aorta 
with debranching of 
the right 
brachiocephalic 
trunk and the left 
common carotid 
artery. And the 
second in 2018 due 
to a new type A 
aortic dissection with 
severe AI, 
performing 
biological aortic 
replacement and 
substitution of the 
ascending aorta up to 
the first segment of 
the arch, with a 
Dacron tube, is 
complicated by 
endocarditis and 
vegetative growth in 
biological prosthesis, 
is reoperated for 
valve replacement 
and repair of the 
aortic ring. 

IGTP-10 M 75 No remarkable evidence. N.I Arteriosclerosis 

IGTP-11 M 57 Aortic rupture at the thoracic level secondary to type 
B aortic dissection  

Severe Obesity with a 
pathological history 
of type- B aortic 
dissection, in 
addition to severe 
aortic regurgitation 
without stenosis and 
Bentall-Bono surgery 
with ATS 
mechanical 
prosthesis and 
replacement of the 
aortic arch with 
implantation of a 
Thoraflex prosthesis.  

IGTP-12 M 76 Intestinal ischemia N.I 

Ischemic heart 

disease  
IGTP-13 M 34 Pulmonary embolism N.I Arterial 

hypertension, 
dyslipidemia, and 
type 2 diabetes 
mellitus  

IGTP-14 M 47 Dilated cardiomyopathy. Ex-smoker Dilated 
cardiomyopathy with 
two-vessel coronary 
disease, stage 3 
chronic kidney 
disease. 

IGTP-15 F  N.I N.I N.I  Not associated 
pathologies 

IGTP-16 F  N.I N.I N.I  Not associated 
pathologies 
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Table S2. Characteristics of FFPE samples included in the study. Tumor and lymphocyte infiltration is indicated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Characteristics FFPE sample 

 
Lung cancer patients 

(n= 53) 
 

 
Controls 
(n = 16) 

 
Tumor infiltration – no. (%) 

  

0-20 % 1 (1.9) - 
21-40 % 6 (11.3) - 
41-60 % 13 (24.5) - 
61-80 % 16 (30.2) - 
81-100 % 4 (7.6) - 
Not information 
 

13 (24.5) - 

Lymphocyte infiltration   
0-5 % 9 (17.0) 10 (62.5) 
6-10 % 14 (26.4) 4 (25.0) 
11-20 % 9 (17.0) - 
21-30 % 2 (3.8) - 
31-40 % 4 (7.5) - 
40-50 % 2 (3.8) - 
Not information 13 (24.5) 2 (12.5) 
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Table S3. circRNA and mRNA candidates included in the nCounter panel. 
 

Accession Gene  Type of transcript 
hsa_circ_0000264 CHST15 Circular RNA 

hsa_circ_0039161 ITGAX Circular RNA 

hsa_circ_0002360 RUNX1 Circular RNA 

hsa_circ_0006276 ANXA7 Circular RNA 

hsa_circ_0004062 CHN1 Circular RNA 

hsa_circ_0004417 LYPLAL1 Circular RNA 

hsa_circ_0001320 FOXP1 Circular RNA 

hsa_circ_0004777 SOX13 Circular RNA 

hsa_circ_0003941 CLK1 Circular RNA 

hsa_circ_0003148 LIN54 Circular RNA 

hsa_circ_0001675 C1GALT1 Circular RNA 

hsa_circ_0003655 SND1 Circular RNA 

hsa_circ_0035654 USP3 Circular RNA 

hsa_circ_0037007 CHD2 Circular RNA 

hsa_circ_0009128 TXNDC11 Circular RNA 

hsa_circ_0001998 FUT8 Circular RNA 

hsa_circRNA_404643 PIK3C2B Circular RNA 

hsa_circ_0005066 SNX25 Circular RNA 

hsa_circ_0008144 PDE5A Circular RNA 

hsa_circRNA_401977 NEDD4L Circular RNA 

hsa_circ_0006296 CHD1L Circular RNA 

hsa_circ_0063526 RANGAP1 Circular RNA 

hsa_circ_0001623 BACH2 Circular RNA 

hsa_circ_0006324 DENND1B Circular RNA 

hsa_circ_0005096 NUPL2 Circular RNA 

hsa_circRNA_407081 MYBL1 Circular RNA 

hsa_circRNA_406483 AASDH Circular RNA 

hsa_circRNA_404833 NUP98 Circular RNA 

hsa_circ_0072088 ZFR Circular RNA 

hsa_circ_0039908 DUS2L Circular RNA 

hsa_circRNA_404458 RHD Circular RNA 

hsa_circ_0001806 CSPP1 Circular RNA 

hsa_circ_0006349 TMEM39B Circular RNA 

hsa_circ_0080968 ADAM22 Circular RNA 

hsa_circ_0000700 CHD9 Circular RNA 
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hsa_circRNA_406083 TASP1 Circular RNA 

hsa_circRNA_400294 COL11A1 Circular RNA 

hsa_circ_0008584 PTPRM Circular RNA 

hsa_circ_0000317 AHNAK Circular RNA 

hsa_circ_0001640 EPB41L2 Circular RNA 

hsa_circRNA_405718 UHRF1 Circular RNA 

hsa_circ_0002099 SEMA5A Circular RNA 

hsa_circ_0001845 NOL6 Circular RNA 

hsa_circ_0000999 LOC100506142 Circular RNA 

hsa_circRNA_404185 GNA14 Circular RNA 

hsa_circ_0006411 PIK3R1 Circular RNA 

hsa_circRNA_401977 NEDD4L Circular RNA 

hsa_circ_0000729 GAS8 Circular RNA 

hsa_circ_0005962 YWHAZ Circular RNA 

hsa_circ_0086414 BNC2 Circular RNA 

hsa_circ_0040809 BANP Circular RNA 

hsa_circ_0003958 HIBADH Circular RNA 

hsa_circ_0005139 RDH11 Circular RNA 

F-circEA3 EML4-ALK Circular RNA 

F-circEA1 EML4-ALK Circular RNA 

hsa_circ_0013958 ACP6 Circular RNA 

hsa_circ_0043256 ACACA Circular RNA 

hsa_circ_0012673 DHCR24 Circular RNA 

hsa_circ_0021592 HIPK3 Circular RNA 

hsa_circ_0000064 B4GALT2 Circular RNA 

circ_001569 RUSC2 Circular RNA 

hsa_circ_0049627 FARSA Circular RNA 

hsa_circ_0006916 HOMER1 Circular RNA 

hsa_circ_0001495 CCNB1 Circular RNA 

hsa_circ_0000566 VRK1 Circular RNA 

hsa_circ_0001238 CCDC134 Circular RNA 

hsa_circ_0007037 ZCCHC6 Circular RNA 

hsa_circ_0141539 C1ORF116 Circular RNA 

hsa_circ_0001083 PMS1 Circular RNA 

hsa_circ_0006151 DNA2 Circular RNA 

hsa_circ_0004458 PSD3 Circular RNA 

hsa_circ_0000847 SMAD2 Circular RNA 

hsa_circ_0000994 SLC8A1 Circular RNA 
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hsa_circ_0001535 FAM13B Circular RNA 

hsa_circ_0000591 MGA Circular RNA 

hsa_circ_0001380 UBXN7 Circular RNA 

hsa_circ_0000437 CORO1C Circular RNA 

hsa_circ_0001445 SMARCA5 Circular RNA 

NM_018955.2 UBB Linear RNA 

NM_001256799.1 GAPDH Linear RNA 

NM_014763.3 MRPL19 Linear RNA 

NM_006503.2 PSMC4 Linear RNA 

NM_001002.3 RPLP0 Linear RNA 

NM_005877.5 SF3A1 Linear RNA 

NM_005734 HIPK3 Linear RNA 

NM_001101800 FAM13B Linear RNA 

NM_001080541 MGA Linear RNA 

NM_015562 UBXN7 Linear RNA 
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Abstract 
 
Background: The analysis of liquid biopsies brings new opportunities in the precision 
oncology field. Under this context, extracellular vesicle circular RNAs (EV-circRNAs) have 
gained interest as biomarkers for lung cancer (LC) detection. However, standardized, and 
robust protocols need to be developed to boost their potential in the clinical setting. 
Although nCounter has been used for the analysis of other liquid biopsy substrates and 
biomarkers, it has never been employed for EV-circRNA analysis of LC patients. Methods: 
EVs were isolated from early-stage LC patients (n=36) and controls (n=30). Different volumes 
of plasma, together with different number of pre-amplification cycles, were tested to reach 
the best nCounter outcome. Differential expression analysis of circRNAs was performed, 
along with the testing of different machine learning (ML) methods for the development of a 
prognostic signature for LC. Results: A combination of 500 μL of plasma input with 10 cycles 
of pre-amplification was selected for the rest of the study. Eight circRNAs were found 
upregulated in LC. Further ML analysis selected a 10-circRNA signature able to discriminate 
LC from controls with AUC ROC of 0.86. Conclusions: This study validates the use of the 
nCounter platform for multiplexed EV-circRNA expression studies in LC patient samples, 
allowing the development of prognostic signatures. 
 
Keywords 
 
circRNAs; extracellular vesicles; nCounter; lung cancer; NSCLC; liquid biopsies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter III 

 54 

1. Introduction 
 

With 350 deaths per day projected for 2022, lung cancer stands as the main cause of cancer-
related mortality, leading the second highest incidence in the United States and Europe [124, 
125]. Treatments have proved to be more effective at the early stage of the disease, when 
lung cancer patients benefit from a significantly improved overall survival (OS) [126]. 
However, most cases are diagnosed at an advanced stage, with a 5-year survival rate 
dropping to only 2-8% in stage IV. 
In order to achieve early detection, many challenges need first to be faced. Classical biopsy 
techniques for sampling and profiling of suspicious pulmonary nodules often involve invasive 
procedures. Limitations of such practices include restricted access to the nodules, which 
regularly compromise the quality and quantity of extracted biopsy specimens. 
Heterogeneity of resected samples also hampers the use of these methods, especially for 
tumor identification [127]. 
Liquid biopsies offer a minimally invasive procedure for sampling, providing a practical tool 
for continuous monitoring of lung cancer patients [10], being also actively investigated for 
early detection [14]. Despite the slow progression on the development of liquid biopsies in 
this area, many possible biomarkers have been proposed in the last few years, including 
circulating tumor DNA (ctDNA), cell-free RNA (cfRNA), circulating tumor cells (CTCs), 
proteins, extracellular vesicles (EVs) and tumor educated platelets (TEPs).  
Lung cancer elicits massive changes in RNA metabolism, reflecting both in the tumor 
transcriptome and in the circulating EV and TEP cargo. EVs contain different RNA molecules, 
including mRNA and non-coding RNAs such as miRNA or circular RNAs (circRNAs) [54, 128]. 
The circRNA transcripts are generated by post-transcriptional circularization of the 5´ and 
3´ends in an alternative process called backsplicing. Their circular structure makes most of 
them resistant to exonucleases and, therefore, robustly stable RNA molecules, compared to 
the canonical (linear) mRNA. CircRNAs seem to play an important role in human homeostasis 
[86, 87]. Moreover, it has been reported that aberrant expression of certain circRNAs can 
promote cancer development and progression [92]. Also, some circRNAs have been 
investigated as liquid biopsy biomarkers for the early detection of lung cancer and other solid 
tumors [82, 129]. However, the lack of consensus on a robust and standardized protocol for 
circRNA quantification is holding back the development of clinically applicable assays. 
RT-qPCR, microarrays and RNAseq are the three methods most commonly used in circRNA 
research. However, the RT-qPCR does not allow high-throughput analysis; microarrays have 
a limited dynamic range of RNA detection; and RNAseq is associated with high cost, long 
time-consuming protocols, and high grade of complexity when it comes to data analysis. 
An alternative technique for multiplex analysis of circRNA is nCounter, which provides a cost-
effective automated solution for analysis of more than 800 targets with minimal hands-on 
time, providing highly reproducible data in less than 48 hours. nCounter is based on the 
detection of RNA of interest using target-specific probe pairs. Each pair comprises of a 
reporter probe with a unique color combination at the 5´- end, allowing specific recognition 
of the gene of interest; and a capture probe carrying a molecule of biotin, which provides a 
molecular grip to the nCounter cartridge, allowing downstream digital detection [96]. The 
expression of a particular gene is then calculated by counting the number of times a specific 
color-coded probe is detected. This technology has been embraced in translational research, 
including the development and validation of liquid biopsies, due to its capability of working 
with low quantity of highly degraded samples [69, 130]. Recent studies reported the use of 
nCounter for the study of several categories of circulating biomarkers [11, 67, 77, 78, 131], 
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including EV-derived DNA [132], miRNA [79, 80], mRNA [133] and circRNA [134]. However, 
nCounter analysis of EV-circRNAs has not been investigated for early detection of lung 
cancer. Here, we report the development of a protocol for EV enrichment from plasma 
followed by RNA purification and circRNA analysis by nCounter.  
Then, we analyzed liquid biopsies from non-cancer donors and early-stage non-small cell 
lung cancer (NSCLC) patients and applied machine learning (ML) to develop a prognostic 
signature. 
 
2. Materials and Methods 
 
2.1. Patient samples 
The study was carried out in accordance with the principles of the Declaration of Helsinki, 
under an approved protocol of the institutional review board of Quirón Hospitals. We 
obtained and documented written informed consent from all the patients. A total of 36 
samples from early-stage NSCLC (stages IA to IIIA) were selected from our institution, along 
with 30 samples from non-cancer controls (Table 1). Clinical information from patients and 
controls included age, gender, smoking status, tumor histology and stage, when applicable. 
All samples were de-identified before further processing for confidentiality purposes. 
 
 
Table 1. Clinicopathologic characteristics of enrolled patients (n=66). 
 
Clinicopathological 
characteristics 

NSCLC patients 
(n=36) 

Non-cancer controls 
(n=30) 

Gender – no. (%)   
   Male 18 (50.0) 13 (43.3) 
   Female 18 (50.0) 17 (56.7) 
Age – yr.   
   Median 71.5 38 
   Range 32-91 23-57 
Histological type   
   Adenocarcinoma 27 (75.0) - 
   Squamous carcinoma 4 (11.1) - 
   Not information 5 (13.9) - 
Smoking status – no. (%)   
   Former-orcurrent smoker 20 (55.5) 11 (36.6) 
   Never smoker 13 (36.2) 17 (56.7) 
   Not information 3 (8.3) 2 (6.7) 
Tumor stage – no. (%)   
   I 19 (52.8) - 
   II 2 (5.5) - 
   IIIA 15 (41.7) - 

 
2.2. Plasma processing 
Around 10 mL of whole blood was collected from the participants enrolled in the study using 
sterile EDTA Vacutainer tubes (BD, Plymouth, UK) and processed within the next 2 h. Blood 
samples were centrifuged twice at 2000 x g at room temperature (RT) in a Rotina 380 R 
centrifuge (Hettich, Tuttlingen, Germany) for 10 min to separate plasma from red/white 
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blood cells, platelets, and cell debris. Aliquoted plasma samples were then stored at -80 ºC 
until downstream processing. 
 
2.3. Enrichment of EVs 
EVs were isolated from plasma using differential ultracentrifugation (UC) as described 
previously [135] or the miRCURY Exosome Serum/Plasma Kit (Qiagen, Hilden, Germany).  
In the case of UC, 500 μL plasma samples were transferred into 15 mL sterile high-speed 
centrifuge tubes (VWR-Avantor, PA, USA), filled up with sterile 1x phosphate-buffered saline 
(PBS) and centrifuged twice at 10,000 x g for 30 min at 4 ºC in a Sorvall RC 6 Plus centrifuge 
(Thermo Fisher Scientific, Waltham, MA, USA). Supernatants were then transferred into UC 
tubes (Beckman Coulter, CA, USA), equilibrated with sterile 1x PBS, and spun twice at 70,000 
x g for 1h at 4 ºC in the Sorvall WX Ultra 100 centrifuge (Thermo Fisher Scientific). The EV 
enriched pellets were resuspended in 100 μL sterile PBS and stored at -80 ºC until used. EV 
enrichment with the miRCURY Kit was performed as described [133]. Debris was cleared 
from 500 μL plasma samples with thrombin and subsequent centrifugation at 10,000 x g for 
5 min at RT. Samples were then incubated with Precipitation Buffer overnight at 4 °C and 
centrifuged twice (500 x g, 5 min at RT). Supernatants were discarded, EV enriched pellets 
were resuspended in 270 μL of Resuspension Buffer and stored at -80 ºC until used. 
 
2.4. Transmission electron microscopy (TEM)  
Visualization of EV samples was performed by the TEM service of the Universitat Autónoma 
de Barcelona (UAB). A volume of 3.9 µl of EV-enriched sample was blotted onto a Holey 
Carbon Film Supported Nickel Grid (Merck, Darmstadt, Germany) previously glow-
discharged in a PELCO easiGlow glow cleaning system (Ted Pella Inc, CA, USA). Next, the 
grid containing the sample was plunged into a Leica EM GP cryo-work station (Leica, 
Wetzlar, Germany) comprising a liquid ethane bath cooled to -180 ºC, and subsequently 
transferred and visualized in a JEOL 2011 TEM (Jeol Ltd, Tokyo, Japan) operating at 200 kV. 
Samples were kept at -180 ºC during the observation and captures were obtained with a 
Gatan Model 895 UltraScan 4000 4k × 4k CCD camera (Gatan Inc, CA, USA). Image 
processing was performed using ImageJ software (version 1.8.0, National Institutes of 
Health, MD, USA).  
 
2.5. Nano-flow cytometry measurements  
The volume of EV samples was brought to 500 µL with sterile PBS. Size-exclusion 
chromatography (SEC) columns (qEVoriginal/35nm, Izon Science, Oxford, UK) were 
equilibrated with 20-30 mL of sterile PBS and eluted using the same buffer. Collection started 
immediately after loading the sample into the column, according to manufacturer 
instructions. Eluted EV-enriched samples were directly analyzed with the nanoFCM 
(NanoFCM Ltd., Nottingham, UK), a nanoparticle flow cytometer. Instrument calibration 
with standard beads enabled accurate measurements of both size and concentration of 40-
200 nm particles through the detection of their side scatter [136]. 
 
2.6. RNA isolation and DNase treatment 
EV-enriched samples were treated with 4 μg/mL of RNase A (Sigma-Aldrich, MO, USA) for 
1 h at 37 °C, to eliminate any non-vesicular RNA. TRI Reagent (MRC, OH, USA) was added to 
a final volume of 1 mL and incubated at RT for 20 min. Then, 200 μL of a Chloroform and 
Isoamyl Alcohol dilution (24:1) (Panreac Química SLU, Barcelona, Spain) were added 
followed by vigorous shaking and centrifugation at 12,000 x g for 15 min at 4 ºC. Upper 
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fraction was collected, and RNA was precipitated by adding 2.5 μL of glycogen (Merck) and 
500 μL 2-propanol (Merck), followed by incubation at RT for 10 min and further 
centrifugation at 12,000 x g for 10 min at 4ºC. RNA pellet was then washed with 75% ethanol, 
dried at 95 ºC for 3 min, and resuspended in 12 μL of nuclease-free water. 
The DNA-free DNA Removal Kit (Thermo Fisher Scientific) was used to eliminate any DNA 
remaining in the samples. Following the manufacturer´s protocol, 0.75 μL of DNase buffer 
and 1 μL enzyme were added to 7.5 μL RNA sample and incubated at 37 °C for 30 min. A 
volume of 0.75 μL of DNase inactivation reagent was then added to the reaction, incubated 
for 2 min at RT and centrifuged for 1.5 min at 10,000 x g and RT.  The supernatant containing 
EV-RNA was then transferred to a fresh tube and stored at -80 ºC until further use. 
 
2.7. RT-qPCR and Sanger sequencing analysis 
RT-qPCR and Sanger sequencing of circRNA junction sites were performed as previously 
described [98]. Divergent primers and probe sets were designed using Primer Express 3.0 
Software (version 3.0.1, Applied Biosystems) with the probes spanning the circRNA junction 
site (Table 2). Five microliters of EV-RNA was converted into cDNA using the M-MLV reverse 
transcriptase enzyme and random hexamers (both from Invitrogen, MA, USA). A 1:3 dilution 
of cDNA was performed, and 2.5 µL were added to the Taqman Universal Master Mix 
(Applied Biosystems) in a 12.5 µL reaction containing a specific pair of primers and probe for 
each circRNA. Three replicas of each sample were run for the quantification of the expression 
of each assessed circular transcript. Quantification of gene expression was performed using 
the QuantStudioTM 6 Flex System (Applied Biosystems) and the comparative Ct method.  
 
Table 2. Primer and probe design for circRNA validation by RT-qPCR. 
 

CircRNA    

circHIPK3 

Forward 5´CGGCCAGTCATGTATCAAAGAC 3´  

Reverse 5´AAAGGCACTTGACTGAGTTTGATAAA 3´ 

Probe FAM 5´AATCTCGGTACTACAGGTATG 3´ MGB 

circZCCHC6 

Forward 5´AGATGTTGTCGAATTTGTGGAAAA 3´ 

Reverse 5´TCTTCTACCATTGATAAAAGCCTTCAT 3´ 

Probe FAM 5´GAGGAGAAATGACAAATT 3´ MGB 

 
For Sanger sequencing, 10 µL of each PCR product was subjected to electrophoresis in a 2x 
agarose gel (100V, 30 minutes) and visualized under UV light (E-Gel™ Safe Imager™ Real-
Time Transilluminator, Invitrogen) after electrophoresis (E-Gel™ iBase™ Power System, 
Invitrogen). Five microliters of each cDNA sample were purified using the PCR ExoSAP-IT 
Product Clean up Reagent (Applied Biosystems). Sequencing PCRs were set up using the 
BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), forward primer, cDNA 
and water in a final volume of 20 µL and performed using a Verity 96 well thermal cycler 
(Applied Biosystems). After sequencing amplification, samples were loaded into a 96-well 
plate and subjected to Sanger sequencing using the 3130 Genetic Analyzer (Applied 
Biosystems). 
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2.8. nCounter processing 
The nCounter Low RNA Input Amplification Kit (NanoString Technologies, WA, USA) was 
used to retrotranscribe and pre-amplify 4 μL of EV-derived RNA in a Verity thermal cycler 
(Applied Biosystems, MA, USA) following NanoString´s guidelines. Briefly, samples were 
denatured at 95 °C for 10 min and hybridized for 18 h at 67 °C. Our custom-made nCounter 
panel (including 78 circRNAs, 6 linear reference genes and 4 mRNAs [137] was used to 
analyze EV-derived pre-amplified cDNA according to the manufacturer’s instructions. RCC 
files containing data outputted by the NanoString nCounter Flex System (NanoString 
Technologies) from each run were exported to the nSolver Analysis Software (version 4.0.70, 
NanoString Technologies, Seattle, WA, USA). 
 
2.9. Differential expression analysis 
Raw count nCounter values were exported to Microsoft Excel (version 16.40, Microsoft, 
Redmond, WA, USA) using nSolver Analysis Software. The background was calculated for 
each sample as (geo)mean ± 2SD of the negative probe counts (NCs) Raw counts lower than 
the background were automatically excluded from further analysis. The raw circRNA counts 
were normalized using the total number of counts of the sample and multiplied by 10,000. 
Differential expression analysis was performed comparing the means of the normalized 
counts for each circRNA in the early-stage NSCLC vs. non-cancer controls. The circRNAs with 
a fold change >1 and p-value < 0.05 were considered as differentially expressed (DE). 
 
2.10. Data pre-processing and normalization for signature development 
Raw RCC-formatted data files were exported from the nSolver Analysis Software 
(NanoString Technologies). R (version 4.0.3, R Core Team and the R Foundation for 
Statistical Computing, Vienna, Austria) and R studio (version 2021.09.0, RStudio PBC, 
Boston, MA, USA) were used for pre-processing and normalization analysis of the imported 
files. Initial evaluation of the quality and integrity of the RCC data was performed using the 
NanoStringQCPro (version 1.22.0) package. During this process, we looked for potential 
outliers based on the performance of standard control metrics provided by NanoString, such 
as Imaging, Binding Density, Positive Control Linearity, and Limit of Detection. After this 
first pre-analytical step, samples were subjected to supplementary exploratory examination, 
including Principal Component Analysis (PCA) and interquartile range (1.5 IQR rule) analysis. 
Samples found as outliers by both methods were then excluded from downstream analyses.  
NCs were employed to exclude lowly expressed circRNAs with excessive background noise. 
The arithmetic mean of the NC ± 2SD was subtracted from each endogenous circRNA for 
each sample. Any transcript scoring a value below 0 in more than 75% of the analyzed 
samples was then excluded from further analysis. PCA plot was then used to re-assess the 
data after the aforementioned filtering step. Technical variability correction and 
normalization were performed using the RUVSeq/RUVg function (version 1.24.0) and 
DESeq2 (version 1.30.1) packages (RUVseq-DESeq2). First, the RUVg function was used to 
estimate the unwanted variation among samples based on the DE genes. DESeq2 and edgeR 
(version 3.32.1) performed a first pass DE analysis and the intersected least significant genes 
(with adjusted p-value above 0.1) were used as “in-silico empirical” negative controls. 
DESeq2 was then utilized with default parameters along with the RUV factors to perform the 
normalization of the raw filtered data. The normalization performance was assessed using 
the standard relative log expression (RLE) plot.  
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2.11. Machine Learning (ML) for signature development 
The Recursive Feature Elimination (RFE) algorithm along with leave-one-out cross-
validation (LOOCV) and the random forest (RF) classifier were used to perform feature 
selection on the normalized data previously generated by RUVseq-DESeq2. The optimal 
number of features was automatically selected by keeping only those 
yielding best performance after cross-validation. These final features were to constitute the 
prognostic signature. To test the predictive power of the selected signature, extra trees 
classifier (ETC), k-nearest neighbor (KNN) and RF models were built using default 
parameters. The 5-fold cross validation (5-CV) algorithm was applied for this purpose. During 
this process, the dataset was randomly split into k-folds (k =5), being 4/5 of the data used to 
train the model, while the remaining 1/5 was used to test its behavior. The classifier showing 
the highest area under the ROC curve (AUC ROC) value was selected as the final model. 
Signature scores for each sample were obtained from the final model. A confidence 
threshold of 0.5 was considered for the calculation of the positive and negative predictive 
values (PPV-NPV). Additional statistical indicators such as accuracy, sensitivity, specificity, 
and Cohen's κ were also calculated. 
 
2.12. Univariant and multivariant analyses 
Association between clinical characteristics and ML-generated signature was assessed with 
a univariate Cox proportional-hazard regression model. Odds ratios, with a Confidence 
Interval (CI) of 95% was calculated using the MedCal Statistical Software (MedCalc Software 
Ltd. Odds ratio calculator. https://www.medcalc.org/calc/odds_ratio.php). Multivariant 
analysis using logistic regression was performed using SAS software(v9.4, SAS Institute, NC, 
USA). Significance was set at p < 0.05 for all statistical tests.  
 
3. Results 
 
3.1. Enrichment of plasma EVs and workflow development for nCounter circRNA analysis 
Two replicated 500 µL plasma samples from an early-stage NSCLC patient and a non-cancer 
control were submitted to EV enrichment by ultracentrifugation (UC) or using the miRCURY 
Exosome Serum/Plasma kit. Enriched EVs were characterized by transmission electron 
microscopy (TEM) and nanoparticle flow cytometry via nanoFCM. TEM images revealed 
different clusters of diverse-sized EVs (30 to 300 nm, all within the reported EV size range 
[138-140]) in all samples regardless of the enrichment method used (Figure 1a). Samples 
extracted using the miRCURY kit showed a higher proportion of vesicles with an exosome-
like size range (30-100 nm) by TEM, compared to the more heterogeneous UC samples 
(Figure 1a). NanoFCM analysis revealed a higher concentration of 40-100 nm particles in 
samples enriched using the miRCURY kit (Figure 1b). In addition, nanoFCM indicated a 
higher number of particles/mL in the NSCLC patient sample when compared to the control, 
both in the UC and miRCURY preparations (Figure 1b).  
 
Next, different volumes of plasma (500 µL, 1000 µL and 1500 µL) from a NSCLC patient were 
tested in duplicates to assess the effect of initial volumes on downstream circRNA analysis 
by nCounter using the custom panel we previously developed [137]. Since RNA concentration 
from EV enriched samples has been demonstrated to be insufficient for direct nCounter 
analysis [133], pre-amplification steps of 14 and 20 cycles were tested. The utmost total 
number of counts was achieved using an input of 500 µL both with 14 and 20 cycles (14151 ± 
1864 and 686525 ± 345655, respectively; Figure 2a). Consequently, 500 µL of plasma was 
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also the volume allowing the detection of more circRNAs (n = 27.5 ± 4.95 and 33 ± 7.07 for 14 
and 20 cycles, respectively; Figure 2b), even if only those with a score above 10 counts after 
background removal were selected (Table S1, Figure S1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
Figure 1. Characterization of extracellular vesicles (EVs) enriched either by differential ultracentrifugation 
(UC) or precipitation using the miRCURY Exosome Serum/Plasma kit. (a) Observation of EV samples on 
transmission electron microscopy (TEM). Yellow arrows point out EVs of different sizes. Scale bars 
indicate 200 nm.; (b) Nanoflow cytometry (nanoFCM) profiles of EV samples showing size and 
concentration of 40-200 nm particles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
Figure 2. Plasma input testing. (a) Total number of counts and (b) number of circRNAs detected by 
nCounter with each of the volumes of plasma tested with 14 and 20 cycles of pre-amplification. Plasma 
from a NSCLC patient was used for this purpose. Error bars indicate standard deviation. 
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Different amplification cycles (10, 12 and 14) were subsequently tested in a 500 µL plasma 
sample. The highest number of raw counts was obtained with 14 cycles (Figure 3a). 
Regarding the number of circRNAs, 10 and 12 cycles yielded similar results (n = 51.5 ± 9.19 
and 52.5 ± 7.78 respectively). More circRNAs were detected at 14 cycles (n = 59 ± 16.97) with 
a high variability between replicates (Figure 3b, Table S2). In view of these results, we 
selected for EV-circRNA analysis a protocol that included 500 µL of plasma input, EV 
enrichment with the miRCURY kit, extravesicular RNA elimination with RNase A, EV lysis and 
RNA extraction with TRI reagent, retrotranscription and nCounter analysis with a 10-cycle 
preamplification step (Figure 4).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Testing of different number of pre-amplification cycles. Effect of the number of pre-
amplification cycles (10, 12 and 14) on (a) the total number of raw counts and (b) total number of circRNAs 
detected. Error bars indicate standard deviation. (c) Correlation of the two technical nCounter duplicates 
subjected to 10 cycles of pre-amplification. Pearson’s correlation coefficient is indicated. (d) Correlation 
of each of the technical duplicates from the same nCounter run with the results obtained in an 
independent nCounter assay of the same sample. Pearson’s correlation coefficient is indicated 
 
The repeatability of the protocol was first tested by submitting to nCounter duplicates of a 
preamplified plasma sample. A strong correlation between the normalized counts was found 
between the duplicates, represented by a Pearson’s r of 0.98, p < 0.0001 (Figure 3c). When 
the same plasma sample was re-purified and re-analyzed, nCounter results also showed a 
strong correlation with the initial duplicates (Pearson’s r = 0.90-0.91; p < 0.0001) (Figure 3d).  
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3.2. CircRNA expression in plasma EV samples 
Plasma from 66 individuals, 36 early-stage NSCLC patients and 30 non-cancer donors, were 
analyzed using the protocol previously described in section 3.1 (Figure 4). An average of 
40±14 EV-circRNAs per sample were detected in controls vs. 47±9 in the NSCLC cohort. This 
difference was found not significant by the Mann-Whitney U test (Figure 5a). Among the 78 
circRNAs included in the panel, 70 were detected in at least one NSCLC sample and 68 in at 
least one non-cancer control. A total of 66 EV-circRNAs were shared by both cohorts, while 
4 EV-circRNAs were exclusive to NSCLC patients and 2 to non-cancer donors (Figure 5b, 
Table S3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Final workflow established for the study of circRNAs from plasma extracellular vesicles (EVs) 
using the nCounter technology. A volume of 500 μL of plasma was used in the miRCURY kit to precipitate 
EVs. Rnase A was used to remove any non-vesicular RNA that could be present in the sample before 
proceeding with manual RNA extraction with TRI reagent. RNA samples were treated with DNase to 
eliminate any trace of genomic DNA, followed by retro-transcription and a pre-amplification step of 10 
cycles. Finally, samples were hybridized overnight before nCounter processing. 
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Figure 5. EV-circRNA detection and differential expression analysis. (a) Number of circRNAs detected in 
extracellular vesicle (EV) enriched samples from cancer patients and non-cancer controls using our custom 
circRNA nCounter panel, which targets 78 circRNA (Mann–Whitney U test, p = 0.3807). (b) Venn diagram 
displaying circRNAs identified in early-stage NSCLC and non-cancer controls, featuring those shared by 
both cohorts. (c) Differential expression analysis of log2-normalized counts between the early-stage 
NSCLC and control EV samples. circEPB41L2, circC1GALT1, circZFR, circUSP3, circZCCHC6, circHIPK3 
and circCCNB1 were found upregulated in NSCLC samples. 
 
 
DE analysis revealed eight circRNAs significantly upregulated in EV-enriched samples from 
NSCLC patients vs. controls; namely circular Erythrocyte Membrane protein Band 4.1 Like 2 
(circEPB41L2), circular Core 1 Synthase, Glycoprotein-N-Acetylgalactosamine -3-Beta-
Galactosyltransferase 1 (circC1GALT1), circular Zinc Finger RNA Binding Protein (circZFR), 
circular Ubiquitin Specific Peptidase 3 (circUSP3), circular Zinc Finger CCHC Domain-
Containing Protein 6 (circZCCHC6), circular Cyclin B1 (circCCNB1), circular DENN Domain 
Containing 1B (circDENN1B) and circular Homeodomain Interacting Protein Kinase 3 
(circHIPK3) (Figure 5c). Of them, only circZFR and circC1GALT1 showed <10 counts in each 
cohort (Table S4). To validate these results, we tested the expression circZCCHC6 and 
circHIPK3 by RT-qPCR. Divergent primers and probes spanning the junction sites were 
designed for the specific amplification of these two circular transcripts (Table 2) in samples 
previously assessed by nCounter with sufficient remaining material. Gel electrophoresis of 
the RT-qPCR products revealed bands matching the size of expected amplicons and 
subsequent Sanger sequencing confirmed the expected junction sites in the circRNAs 
(Figure 6a-b). Among the six samples analyzed by RT-qPCR, 4 and 6 samples produced 
satisfactory results for circZCCHC6 and circHIPK3 respectively. A trend between nCounter 
counts and RT-qPCR ∆∆Cts was observed for both circRNAs (Figure 6c-d), with circZCCHC6 
showing a strong correlation (Pearson’s r = 0.99; p = 0.0076) (Figure 6c). 
 
3.3. Development of a circRNA-signature associated with early-stage NSCLC 
Interquartile range analysis classified 9/66 samples as potential outliers (Figure 7a) and PCA 
revealed that they deviated from the main cluster of observations (Figure S2). Consequently, 
these 9 samples were excluded from further analysis. 
Then, different R packages including DESeq2, edgeR, RUVSeq and their combination were 
tested in order to select the normalization approach that best adapts to our data. As a result, 

(a) (a) (b) (c)(b) (c) 
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RLE plots indicated a superior performance of RUVSeq-DESeq2 versus the other 
combinations (Figure 7b, Figure S3). Consequently, RUVSeq-DESeq2 normalization was 
selected for the rest of the study. 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Validation of nCounter results by RT-qPCR and further Sanger sequencing. (a) Electrophoresis 
gel of amplified circZCCHC6 (107 nt) and circHIPK3 (120 nt). (b) Sanger sequencing results spanning the 
junction site (underlined) of cited circRNAs. Comparison of nCounter normalized counts versus ∆∆Cts 
values by RT-qPCR for circZCCHC6 (c) and circHIPK3 (d) in analyzed samples. Pearson’s correlation 
coefficient is indicated. NS, not significant. 
 
Next, ML was performed using RFE along with RF classifier and LOOCV, as described in 
Methods, in order to obtain a signature associated with NSCLC. As a result, ETC was selected 
as the best model, with a signature of 10 circRNAs (including circular Family With Sequence 
Similarity 13 Member B -circFAM13B, circular ADAM Metallopeptidase Domain 22 -
circADAM22, circular UBX Domain Protein 7 -circUBXN7, circZCCHC6, circular Integrin 
Subunit Alpha X -circITGAX, circular Retinol Dehydrogenase 11 -circRDH11, circEPB41L2, 
circular CDC Like Kinase 1 -circCLK1, circular Phenylalanyl-tRNA Synthetase Subunit Alpha 
-circFARSA, and circular Phosphoinositide-3-Kinase Regulatory Subunit 1 -circPIK3R1) 
showing an AUC ROC of 0.86 (Figure 8a). Signature scores were found to be statistically 
different when comparing early-stage NSCLC and non-cancer controls (Mann-Whitney U 
test, p < 0001; Figure 8b). The sensitivity and specificity of the ETC signature were of 90% 
(CI = 73.47%% - 97.89%) and 81% (CI = 61.92%% - 93.70%) respectively, outperforming the 
RF and KNN classifiers (Table 3). The accuracy achieved with ETC was 86%, resulting in 49 
out of the 66 cases being correctly classified (Figure 8c). 
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Figure 7. Data outlier detection and normalization for machine learning (ML) processing. (a) Outlier 
detection using the 1.5 IQR rule. (b) RUVSeq/DESeq2 RLE plot of normalized data (k = 1). 
 
 
 
Then, a univariate analysis was performed to explore the association of the ETC circRNA 
signature with gender, age, smoking, cancer status and tumor stage (Figure 9a). A 
statistically significant correlation was found of the signature with age (odds ratio = 24.91, p 
< 0.0001), and particularly cancer status (odds ratio of 39.6, p < 0.0001). 
 
To further evaluate the implication of age and cancer status on the ML-developed signature, 
we first performed an exploratory study assessing the interconnexion of both variables by 
performing a chi-square test. As a result, a strong association between age and cancer status 
was found, with a p < 0.0001 (Table 4).  
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Figure 8. Machine learning (ML) analysis of extracellular vesicle (EV)-enriched samples. (a) Area under the 
ROC curve of the 10 circRNA-signature using recursive feature elimination (RFE) for cohort classification. 
(b) Scores of early-stage NSCLC versus control samples based on expression of the 10-circRNA signature 
(p < 0.001 in a two-tailed Mann–Whitney U test). (c) Confusion matrix based on the ETC classification 
scores. 
 
 
Table 3. Precision assessment of the ML generated circRNA signature with ETC, RF, and KNN. The 95% 
CI are indicated. 
 
Model ETC RF KNN 
No. concordant 
samples  

49 44 30 

No. discordant 
samples  

8 13 27 

AUC ROC 0.86 0.83 0.54 
Accuracy  86% 77% 53% 

Sensitivity  
90% 

(CI = 73.47% – 97.89%) 
83% 

(CI = 65.28% – 94.36%) 
50% 

CI = 31.30% – 68.70%) 

Specificity  
81% 

(CI = 61.92.1% – 93.70%) 
70% 

(CI = 49.82% – 86.25%) 
56% 

CI = 41.83% – 68.49%) 

PPV 
84% 

(CI = 70.81% – 92.32%) 
76% 

(CI = 63.10% – 85.10%) 
56% 

(CI = 41.83% – 68.49%) 

NPV 
88% 

(CI = 71.18% – 95.61%) 
79% 

(CI = 62.20% – 89.77%) 
50% 

(CI = 37.95% – 62.02%) 

Cohen's κ 
0.72 

(CI = 0.458 – 0.976) 
0.54 

(CI = 0.281 – 0.798) 
0.06 

(CI = - 0.202 – 0.313) 
 
ML = machine learning, AUC = Area Under the Curve, ROC = Receiver Operating Characteristic, RF = Random 
Forest, KNN = K-Nearest Neighbor, CI = confidence interval, PPV = Positive Predictive Value, NPV = Negative 
Predictive Value. 
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Figure 9. Association between clinical characteristics and ML-generated 10-circRNA signature. (a) 
Univariate analysis exploring associations between presented 10-circRNA signature and patient 
characteristics. Forest plot represents the odds ratios with a 95% Wald confidence limit. (b) Multivariate 
analysis exploring associations between presented 10-circRNA signature with age and cancer status. 
Forest plot represents the odds ratios with a 95% Wald confidence limit. 
 
Table 4. Association between age and cancer status 

 
 
 
 
 

DF = Degrees of freedom 
 
Next, a multivariate analysis was carried out. Results not only demonstrated dependency of 
these two variables, but also showed a statistically significant correlation between the 
signature and cancer status (p = 0.0036, Table 5, Figure 9b). No correlation was found 
between age and presented signature, in this regard (p = 0.0784, Table 5, Figure 9b)  
 
Table 5. Analysis of maximum likelihood estimates 

 
DF = Degrees of freedom 

Statistic DF Value p-value 

Chi-Square 1 32.245 < 0.0001 
Likelihood Ratio  
Chi-Square 

1 41.232 
< 0.0001 

Parameter DF Estimate Standard Error Wald Chi-Square p-value 

Age 1 0.356 1.301 0.075 0.7840 
Cancer status 1 3.427 1.178 8.462 0.0036 

Study Odds ratio (95% CI) P value

1.16 (0.397 - 3.385)Female vs male

Age > 60 vs ≤ 60

Age > 60 vs ≤ 60

NSCLC vs control

NSCLC vs control

Never vs
current / former smoker

NSCLC stage I - II 
vs stage III

24.91 (5.077 - 123.240)

30.80 (3.060 - 310.09)

2.08 (0.695 - 6.235)

1.43 (0.110 - 18.300)

0.73 (0.058 - 9.041)

39.60 (8.513 - 184.370)

0.273

< 0.0001

0.189

0.804

0.784

0.0036

< 0.0001
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4. Discussion 
 
EVs are released by most cell types and play an important role in cancer cell communication. 
Many publications have demonstrated the role of EVs as key modulators in cancer 
progression [141, 142], which requires intercellular communication mediated by horizontal 
transferring of biological information via the EV cargo of proteins, DNA, and coding/non-
coding RNA, including circRNAs. Therefore, analysis of EVs can provide a snapshot of the 
tumor and serve as valuable tool to discover liquid biopsy biomarkers. CircRNAs are highly 
enriched in EVs [54] and show a relatively high stability compared to other forms of RNA 
[128]. Several studies have highlighted their potential as liquid biopsy biomarkers [82] but 
current limitations in circRNA quantification methods are limiting their implementation in 
the clinical setting. Consequently, new, and robust protocols for circRNA analysis are 
needed. The nCounter platform has gained popularity among translational investigators for 
transcriptional research not only for solid biopsies but also for EV samples. However, studies 
focusing on circRNA analysis by nCounter are limited and mostly restricted to tissue 
specimens [99, 102-105, 137]. In particular, to the best of our knowledge, nCounter has never 
been applied to the analysis of circRNA in liquid biopsies of lung cancer patients. 
Consequently, we developed a comprehensive protocol for nCounter-based EV-circRNA 
expression analysis, from EV enrichment to differential expression and subsequent ML 
analysis. Key points in this protocol were the initial volume of plasma, the EV purification 
method, and the number of cycles for the pre-amplification step prior to nCounter testing. 
 
UC is currently still the method of choice for EV isolation in the research setting and we have 
previously demonstrated its utility for downstream analysis of cell line-derived EV circRNAs 
[143]. However, ultracentrifuges are not usually available in clinical laboratories, while 
precipitation-based kits such as the miRCURY Exosome Serum/Plasma Kit represent an 
easily implementable option with a simple, on-the-bench protocol and short hands-on time. 
In our study, we compared the two methodologies using plasma samples from a NSCLC 
patient and a healthy donor. The presence of EV-like particles in all preparations was 
confirmed by TEM and nanoFCM. Interestingly, a more uniform EV population with an 
exosomal size-range was found by TEM in both cancer and control samples processed with 
the miRCURY kit, along with a higher concentration of 40-200 nm particles observed by 
nanoFCM. A possible explanation to this event could be a size-selective enrichment 
attributed to this type of precipitation-based preparations, as previously reported in serum 
simples [144]. This finding prompted us to select miRCURY for further assay development. 
In addition, a higher number of EV-like particles was observed in the cancer sample 
compared to the control, regardless the isolation method used. Although a higher number 
of samples should be analyzed for further confirmation, preliminary results are in agreement 
with previous reports indicating a higher abundance of EVs in cancer patients [145]. 
 
Finally, adding to the evidence provided by TEM and nanoFCM, a treatment with RNase A 
was applied to EV-enriched samples prior to EV lysis and incorporated into our protocol to 
eliminate any extravesicular RNA. The resulting and subsequently analyzed RNA proved to 
be protected from the digestion of cited ribonuclease, indicating a vesicular origin of the 
transcripts. 
 
In a previous study, a volume of 500 µL of plasma was found to be sufficient for the analysis 
of EV-derived mRNA by nCounter [133]. Here, we compared several plasma volumes and 



Plasma-derived EV-circRNA analysis using the nCounter platform 
 

 69  

found that 500 µL outperformed 1000 and 1500 µL for circRNAs analysis, both in terms of 
the number of circRNA molecules detected and total counts. A possible explanation for these 
results may rely on saturation issues with the circRNAs/reporter-probe complexes when a 
higher plasma input is applied, which impede a correct molecule identification by the digital 
analyzer. Regarding the number of cycles for the preamplification step, we investigated a 
range from 10 to 20 in an effort to reduce amplification-related background noise to a 
minimum, and we found that a 10-cycle pre-amplification step yielded adequate results. 
 
Then, we applied our protocol to assess circular transcripts in early-stage NSCLC samples 
(n=36) and to non-tumor controls (n=30). We found that 8 circRNAs were found differentially 
expressed between the two cohorts. Among them, circEPB41L2, circZCCHC6 and circHIPK3 
showed the highest number of counts in early-stage cancer patients (Table S4). 
Interestingly, we previously found circEPB41L2 differentially expressed in FFPE tissues of 
early-stage lung cancer patients [137] and found that it displayed 4 binding sites with hsa-
miR-942, which has been described as an activator of the Wnt/β-catenin signaling pathway 
[122, 123] in colorectal and esophageal cancers. Our results warrant further investigation in 
the biology of this circRNA to characterize its role in lung cancer. Regarding circHIPK3, it has 
been extensively investigated in lung cancer and found to exert a dual activity over miR-149 
[146] and mir-124 [147, 148], inducing cell proliferation and inhibiting apoptosis. Our results 
are in agreement with these findings, since circHIPK3 was upregulated in EV samples from 
early-stage NSCLC patients. Finally, circZCCHC6 has been recently described to regulate 
lysophosphatidylcholine acyltransferase 1 (LPCAT1) levels via miR-433-3p [149] in lung 
cancer. We used circinteractome (www.circinteractome.nia.nah.gov) to investigate possible 
additional miRNA binding sites, finding matches for 7 additional transcripts (miR-579-3p, 
miR-623, miR-1197, miR-1304 miR-548l, miR-605, and miR-935). All these miRNAs have been 
reported as downregulated in lung tumors and have been related with poor prognosis, tumor 
growth and metastases [150-156].    
 
ML and other computational methods based on artificial intelligence (AI) have emerged in 
the last decade for multileveled analysis of different datasets. In particular, ML enables 
computers to make predictions by finding patterns within analyzed data [157],  offering a 
novel approach for the development of predictive signatures that often reach a higher 
predictive value than biomarkers found by differential expression analyses. Consequently, 
we decided to use ML in our study. To this end, we developed a pipeline with several steps. 
First, using IQR and PCA plots, we identified nine outliers, which were excluded from 
downstream analyses. An RLE plot from each different normalization procedure was 
generated, showing a higher performance of the RUVSeq-DESeq2 function when compared 
to the other combinations (Figure 7B, Figure S3A-C). Finally, we used RFE along with 
LOOCV and the RF classifier as the feature selection algorithm to automatically determine 
the most significant circRNAs which are best suited for the construction of the prognostic 
signature. The final 10-circRNA signature included 2 of the eight circular transcripts 
previously found by differential expression analysis and eight additional transcripts, 
including circFARSA. Interestingly, circFARSA has been described as a plasma biomarker of 
NSCLC [116], promoting tumor invasion and metastases via the PTEN/PI3K/AKT axis [158].  
 
Since we did not sort EV populations, we could not verify the vesicular cell or tissue origin of 
the circRNAs included in the ML signature nor the origin of the circular transcripts, either 
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cancer cells or tumor microenvironment. Also, we did not investigate the biological role of 
the circRNAs, being out of the scope of our work.  
 
In addition, while multivariate analysis could demonstrate that classification accuracy of 
presented signature is based on cancer status and no other clinicopathological 
characteristics (Figure 9), the lack of > 60-year-old individuals was a limitation in the study. 
The inclusion of equivalent cohorts in terms of age should be taking into consideration for 
the design of forthcoming validation studies.  
 
Finally, all 36 cancer samples included in this study were lung adenocarcinomas, with the 
exception of 4 squamous carcinoma and 5 NSCLC samples with unknown histological 
subtype. A uniform inclusion of the different lung cancer histologies is suggested for future 
validation studies to assess the predictive power of the signature for other subtypes of 
NSCLC. 
 
5. Conclusions 
 
We have demonstrated the feasibility of using nCounter for the multiplex study of plasma-
EV circRNAs in liquid biopsies of lung cancer patients, including differential expression 
analysis and development of predictive ML signatures. Further studies of larger cohorts are 
warranted in order to determine the clinical applicability of such signatures. 
 
6. Supporting information 
 
Table S1. CircRNAs detected in the different plasma volumes of the same patient with 14 and 20 cycles 
of pre-amplification.  

 
 
 
 
 
 

 
R= replica 
 
 
Table S2. CircRNAs detected in the plasma of the same individual subjected to 10, 12 and 14 pre-
amplification cycles. 

 
 
 
 
 

 
 

R= replica 
 
 
 
 
 
 

 500 µL 1000 µL 1500 µL 
 14 cycles 20 cycles 14 cycles 20 cycles 14 cycles 20 cycles 
 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 
Detected circRNA  
(counts > 0) 31 24 38 28 29 25 15 16 8 15 16 25 

Detected circRNA  
(counts > 10) 20 18 33 24 9 5 4 0 0 1 1 5 

 500 µL 
 10 cycles 12 cycles 14 cycles 
 R1 R2 R1 R2 R1 R2 
Detected circRNA  
(counts > 0) 58 45 58 47 71 47 

Detected circRNA  
(counts > 10) 38 32 39 41 48 40 
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Table S3. circRNAs identified in early-state NSCLC and non-cancer control cohorts.  

 
 
 
 
Table S4. Normalized counts of differentially expressed circRNAs found in the early-stage NSCLC 
cohort. 

 
NSCLC= non-small cell lung cancer 

 
 
 
 
 
 
 
 

 

circRNAs expressed only in the 
NSCLC cohort 

circRNAs expressed in NSCLC and 
control cohorts 

circRNAs expressed only 
in the control cohort 

circTMEM39B, circZFR, circRHD, 
circPIK3C2B 

circHOMER1,  circFARSA,  circHIPK3,  
circRUSC2,  circC1orf116,  circAHNAK,  
circBACH2,  circEPB41L2,  circSEMA5A,  
circCHD1L,  circPIK3R1,  circADAM22,  
circDENND1B,  circFUT8,  circDUS2L,  
circRANGAP1,  circPDE5A,  circSNX25,  
circNUPL2,  circCSPP1,  circCOL11A1,  
circNEDD4L,  circNEDD4L-2,  circUHRF1,  
circTASP1,  circAASDH,  circMYBL1,  
circB4GALT2,  circCHST15,  circCORO1C,  
circVRK1,  circMGA,  circGAS8,  circSMAD2,  
circSLC8A1,  circPMS1,  circCCDC134,  
circFOXP1,  circUBXN7,  circSMARCA5,  
circCCNB1,  circFAM13B,  circC1GALT1,  
circRUNX1,  circLIN54,  circSND1,  
circCLK1,  circHIBADH,  circCHN1,  
circLYPLAL1,  circPSD3,  circSOX13,  
circRDH11,  circYWHAZ,  circDNA2,  
circANXA7,  circZCCHC6,  circTXNDC11,  
circDHCR24,  circACP6,  circUSP3,  
circCHD2,  circITGAX,  circBANP,  
circACACA,  circBNC2 
 

circNOL6, circNUP98 

circRNA Gene Mean non-cancer 
cohort 

Mean early-stage 
NSCLC cohort 

(controls) 
t-test Fold change 

circRNA_HIPK3 HIPK3 161 361 0.042 2.24 
hsa_circRNA_001640 EPB41L2 109 230 0.002 2.11 
hsa_circRNA_100421 DENN1B 27 62 0.049 2.31 
hsa_circRNA_103809 ZFR 0.41 4 0.014 10.98 
hsa_circ_0001495 CCNB1 7 21 0.040 3.10 
hsa_circ_0001675 C1GALT1 1 7 0.009 10.58 
hsa_circ_0007037 ZCCHC6 54 138 0.039 2.57 
hsa_circ_0035654 USP3 3 22 0.016 7.13 
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Figure S1. Plasma input testing. Number of circRNAs with a score > 10 counts after background removal 
for each of the volumes tested. Error bars indicate standard deviation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2. Principal Component Analysis of the transformed raw data. Outliers highlighted by 
interquartile range plot analysis were also found on the far-left side of the plot. 
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Figure S3. Assessment of the different normalization processes by RLE plot analysis. (a) RLE plot of 
normalized counts by DESeq2. (b) RLE plot of normalized counts by edgeR. (c) RLE plot of normalized 
counts using a combination of the edgeR-RUVg methods (k = 1). 
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Figure S4. Confusion matrices summarizing the performance of the different classification algorithms. (a) 
Confusion matrix of the of the RFF classifier. (b) Confusion matrix of the KNN classifier. In both cases, 5-
Fold CV was used. 
RF = Random Forest, KNN = K-Nearest Neighbor, 5-CV = 5-Cross Validation, RFE = Recursive Feature 
Elimination. 
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Abstract  
 
Background: Lung cancer is the most lethal form of cancer worldwide, showing the highest 
prevalence across all types of tumors. The high mortality rate attached to the malignancy is 
attributed to a late diagnosis, with treatment proving ineffective in most cases. For this 
reason, different screening programs have been established worldwide as an effort to reduce 
these elevated lung cancer mortality rates. Under this context, many strategies based on the 
analysis of the different body fluids (liquid biopsies) are currently being tested; however, the 
implementation of this type of analysis in screening programs remains still incipient. Circular 
RNAs (circRNAs) are a type of regulatory RNAs with a stable structure which can be found 
circulating in blood plasma. Numerous studies suggest that some circRNAs could potentially 
be used as lung cancer biomarkers, improving the diagnosis and treatment of the disease. 
Throughout this project, we will make use of the nCounter technology for the analysis of 
plasma circRNA expression. Methods: circRNA was purified from early-stage NSCLC 
patients (n=49), patients with benign nodules (n=19) and healthy controls (n=30). Differential 
expression and machine learning (ML) methods were performed for the development of a 
NSCLC signature. Results: 6 circRNAs were found dysregulated in NSCLC samples. A 64-
circRNA signature selected by ML was able to differentiate NSCLC patients from controls, 
including those with benign nodules, with an AUC ROC of 0.90. Conclusions: Our study not 
only demonstrates the feasibility of using the nCounter for the study of plasma circRNAs, but 
also highlights the potential of a circRNA signature for the diagnosis of early-stage NSCLC.   
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circRNAs; plasma; early-stage; nCounter; lung cancer; NSCLC; liquid biopsies. 
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1. Introduction 
 
According to the International Agency for Research on Cancer (IARC), lung cancer still ranks 
as the most common type of cancer in the world, with 2.2 million new diagnosed cases just 
for 2020. This type of tumor is also at the foremost position in terms of lethality, with an 
estimated 1.8 million annual deaths worldwide [4, 159]. This high number of demises is 
mainly attributed to a late diagnosis, which usually accounts for 85-90% of the cases, when 
curative treatments are less effective [160]. Consequently, the overall 5-year survival rate of 
approximately 14-17% can drastically drop to less than 2-8% in advanced metastatic stages 
[9]. Currently, some emerging screening programs, such as the National Lung Screening 
Trial (NLST) in the United States, have proved effective for the early detection of lung cancer 
by using low dose computed tomography in high-risk populations, resulting in a decrease of 
6.7% of the mortality rate [161, 162]. 
Lung cancer is divided into two histological types: small cell lung cancer (SCLC) and non-
small cell lung cancer (NSCLC) [163], with the latter accounting for 85% of the cases. These 
histological types differ not only in terms of morphological features, but also in terms of 
clinical and molecular characteristics [164]. Consequently, investigation of cited subtypes 
can aid the identification of novel biomarkers with diagnostic, prognostic, and predictive 
value, contributing to an early detection of the disease. However, evaluation of such 
molecular alterations is currently being carried out on tumor tissue fragments obtained by 
classical invasive methods, such as tumor surgical biopsy [165]. Yet, tumor sampling may 
sometimes be challenging, compromising both quality and quantity of extracted biopsy 
specimens. Heterogeneity of resected samples may also hamper the use of this method, 
especially for genetic assessment [162]. Nevertheless, surgical biopsy still stands as the gold 
standard procedure for tumor diagnosis and characterization. 
 
In contrast, liquid biopsies offer a minimally invasive and reproducible tool for diagnosis and 
monitoring of lung cancer patients, detecting tumor-related biomarkers present in the 
different body fluids [166]. The use of liquid biopsies was initially restricted to circulating 
tumor DNA (ctDNA) with the FDA approval of Cobas EGFR Mutation test v.2 CE-IVD (Roche, 
Basel, Switzerland) and Therascreen mutation kits (Qiagen, Hilden, Germany) to detect 
EGFR mutations in advanced NSCLC patients [167]. Nowadays, circulating tumor cells (CTCs) 
and other subcellular components such as extracellular vesicles (EVs), proteins and cell-free 
RNA (cfRNA), can also be used as potential diagnostic biomarkers [168-171]. 
Within this context, some circRNAs have recently been investigated as liquid biopsy 
biomarkers for the early detection of lung cancer and other solid tumors. 
Although many scientific reports have demonstrated circRNA enrichment in extracellular 
vesicles (EVs) [58], implementation of an EV-purification step may be challenging in the 
clinical setting. In addition, isolation of these molecules often leads to RNA loss during this 
process, which may sometimes affect downstream analysis. 
During this project, we investigated the expression of whole-plasma circRNAs by using the 
nCounter FLEX technology. Next, we analyzed plasma samples from non-cancer controls, 
patients with benign nodules, and early-stage non-small cell lung cancer (NSCLC) patients 
and performed machine learning (ML) to develop a prognostic signature of the disease. 
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2. Methods 
 
2.1. Patient samples  
The study was carried out in accordance with the principles of the Declaration of Helsinki, 
under an approved protocol of the institutional review board of Quirón Hospitals. We 
obtained and documented written informed consent from all the patients. A total of 49 
samples from early-stage NSCLC (stages IA to IIIA) were selected from our institution, along 
with 49 samples from non-cancer controls (Table 1). Clinical information from patients and 
controls included age, gender, smoking status, tumor histology and stage, when applicable. 
All samples were de-identified before further processing for confidentiality purposes. 
 
Table 1. Clinicopathological characteristics of enrolled patients (n=98) 
 

Clinicopathological  
characteristics 

NSCLC 
Patients (n=49)  

Non-cancer controls 
(n=49) 

Gender - no. (%) 
  

    Male 25 (51.0) 19 (38.77) 

    Female 24 (49.0) 30 (61.22) 

Age - yr. 
  

    Median 65.83 51.85 

    Range 32-91 23-86 

Smoking Status - no. (%) 
  

    Former- or current smokers 33 (67.34) 21 (42.85) 

    Never smoker 13 (26.53) 20 (40.82) 

    Not information 3 (6.13) 8 (16.32) 

Nodules- no. (%) 
  

    Malignant 49 (50.0) - 

    Benign - 19 (19.38) 

    None - 30 (30.62) 

Histological type - no. (%) 
  

    Adenocarcinoma 39 (44.82) - 

    Squamous carcinoma 8 (9.19) - 

    Not information 2 (2.29) - 

Tumor Stage - no. (%) 
  

    I 21 (42.85) - 

    II 5 (10.20) - 

    III 20 (40.81) - 

    Not information 3 (6.12) - 
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2.2. Plasma processing and RNA isolation 
Around 10 mL of whole blood was collected from the participants enrolled in the study using 
sterile EDTA Vacutainer tubes (BD, Plymouth, UK) and processed within the next two hours. 
Blood samples were centrifuged twice at 2000 x g at room temperature (RT) in a Rotina 380 
R centrifuge (Hettich, Tuttlingen, Germany) for 10 minutes to separate plasma from 
red/white blood cells, platelets, and cell debris. Aliquoted plasma samples were then stored 
at -80.C until downstream processing.  
For cfRNA purification, 1.2 mL of plasma was processed using the QIAsymphony® DSP 
Virus/Pathogen Midi Kit in a QIAsymphony robot (Qiagen), following the manufacturer’s 
instructions. Final elution volume was set at 50 µL. RNA concentration was estimated the  
Qubit 3.0 kit (Thermo Fisher Scientific, MA, USA). 
 
2.3. nCounter processing 
The nCounter Low RNA Input Amplification Kit (NanoString Technologies, WA, USA) was 
used to retrotranscribe and pre-amplify 4 μL of plasma RNA in a Verity thermal cycler 
(Applied Biosystems, MA, USA) following NanoString´s guidelines. Briefly, samples were 
denatured at 95ºC for 10 minutes and hybridized for 18 h at 67ºC. Our custom-made 
nCounter panel (including 78 circRNAs, 6 linear reference genes and 4 mRNAs) was used to 
analyze plasma-derived pre-amplified cDNA according to the manufacturer’s instructions. 
RCC files containing data outputted by the NanoString nCounter Flex System (NanoString 
Technologies) from each run were exported to the nSolver Analysis Software (version 4.0.70, 
NanoString Technologies, Seattle, WA, USA). 
 
2.4. Differential expression analysis  
Raw count nCounter values were exported to Microsoft Excel (version 16.40, Microsoft, 
Redmond, WA, USA) using nSolver Analysis Software. The background was calculated for 
each sample as (geo)mean ±2SD of the negative probe counts (NCs) Raw counts lower than 
the background were automatically excluded from further analysis. The raw circRNA counts 
were normalized using the total number of counts of the sample and multiplied by 10,000. 
Differential expression analysis was performed comparing the mean of the normalized 
counts for each circRNA in the early-stage NSCLC vs. non-cancer controls. The circRNAs with 
a fold change >1 and p-value < 0.05 were considered as differentially expressed. 
 
Data pre-processing and normalization for signature development Raw RCC-formatted data 
files were exported from the nSolver Analysis Software (NanoString Technologies). R 
(version 4.0.3, R Core Team and the R Foundation for Statistical Computing, Vienna, Austria) 
and R studio (version 2021.09.0, RStudio PBC, Boston, MA, USA) were used for pre-
processing and normalization analysis of the imported files. Initial evaluation of the quality 
and integrity of the RCC data was performed using the NanoStringQCPro (version 1.22.0) 
package. During this process, we looked for potential outliers based on the performance of 
standard control metrics provided by NanoString, such as Imaging, Binding Density, Positive 
Control Linearity, and Limit of Detection. After this first pre-analytical step, samples were 
subjected to supplementary exploratory examination, including Principal Component 
Analysis (PCA) and interquartile range (1.5 IQR rule) analysis. Samples found as outliers by 
both methods were then excluded from downstream analyses. NCs were employed to 
exclude lowly expressed circRNAs with excessive background noise. The arithmetic mean of 
the NC ±2SD was subtracted from each endogenous circRNA for each sample. Any transcript 
scoring a value below 0 in more than 75% of the analyzed samples was then excluded from 
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further analysis. PCA plot was then used to reassess the data after the aforementioned 
filtering step. Technical variability correction and normalization were performed using the 
RUVSeq/RUVg function (version 1.24.0) and DESeq2 (version 1.30.1) packages (RUVseq-
DESeq2). First, the RUVg function was used to estimate the unwanted variation among 
samples based on the DE genes. DESeq2 and edgeR (version 3.32.1) performed a first pass 
DE analysis and the intersected least significant genes (with adjusted p-value above 0.1) were 
used as “in-silico empirical” negative controls. DESeq2 was then utilized with default 
parameters along with the RUV factors to perform the normalization of the raw filtered data. 
The normalization performance was assessed using the standard relative log expression 
(RLE) plot. 
 
2.5. Machine Learning (ML) for signature development 
Recursive Feature Elimination (RFE) was used to perform feature selection, and the 3-cross 
validation (3-CV) algorithm was applied across the normalized data previously generated by 
RUVseq-DESeq2. During this process, the dataset was randomly split into k-folds (k =3), 
being 2/3 of the data used to train the model, while the remaining 1/3 was used to test its 
behavior. The number of features yielding best performance after cross-validation was 
automatically selected to shape the prognostic signature. To test the predictive power of the 
selected signature, k-nearest neighbor (KNN) and random forest (RF) models were built 
using different parameters. The model showing the highest ROC AUC value was selected as 
the final model. Signature scores for each sample were obtained from the final model. A 
confidence threshold of 0.5 was considered for the calculation of PPV and NPV. Additional 
statistical indicators such as accuracy, sensitivity, and specificity were also performed. 
 
3. Results 
 
3.1. CircRNA expression in plasma samples 
Plasma samples from 98 individuals were analyzed, including 49 early-stage NSCLC and 49 
controls (19 of which were presenting benign lung nodules). Different levels of circRNA 
expression could be observed in all samples included in the study (Figure S1).  
An overall statistically significant increased number of raw counts was detected in NSCLC 
samples versus controls (Mann-Whitney U test, p-value = 0.0285, Figure 1a). In addition, an 
average of 42±12 circRNAs were detected in controls and 41±13 in the NSCLC cohort ( Mann-
Whitney U test , p-value = 0.3993, Figure 1b). Individual assessment of each of the circRNAs 
included in the panel indicated that 64 of them were detected in at least one NSCLC sample, 
and 66 in at least one non-cancer control. Out of all the circRNAs detected, only 3 were 
exclusive to NSCLC and 5 to the control cohort (Figure 1c). 
 
Additionally, we assessed the repeatability of the nCounter assay by submitting to nCounter 
duplicates of two preamplified plasma samples (one NSCLC and one control samples). As a 
result, a strong correlation between the normalized counts was found between the 
duplicates, represented by a Pearson’s r = 0.99, p < 0.001 for the NSCLC, and 0.96, p < 0.001 
for the control respectively (Figure 2a). 
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Figure 1. Plasma circRNA detection by nCounter. (a) Total number of raw counts in NSCLC patients and 
controls. (b) Total number of circRNAs detected in each cohort, out of the 78 circRNAs included in the 
nCounter panel. (c) Venn diagram displaying those circRNAs identified in at least one of the NSCLC 
patients and non-cancer controls, along with those shared by both cohorts. 
 
 
Next, we assessed reproducibility of our nCounter assay. To this end, we retrotranscribed 
and pre-amplified duplicates of the same circRNA samples (one NSCLC and one control 
samples) on two independent nCounter reactions performed on different days and 
compared the results. Consequently, a strong correlation was found between normalized 
counts for each expressed circRNA obtained in the different assay, represented by a 
Spearman’s r = 0.96 and 0.93 for NSCLC and control samples respectively (p < 0.001) (Figure 
2B). 
 
3.2. Comparison of circRNA expression in EVs and total plasma 
Since we previously reported circRNA detection in EV preparations using our circRNA 
nCounter panel [172], we tested 71 matched plasma samples (40 lung cancer and 31 non-
cancer controls) from the previous study and further assessed the number of circRNAs 
detected in each of the two biosources for each cohort. In total, 69 out of the 78 circRNA 
included in the nCounter panel could be detected in at least one individual of any of the 
analyzed cohorts (Figure 3). A total of 56 different circRNAs could be found in at least one 
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EV sample, compared to the 67 that could be detected in plasma. In this regard, 50 circRNAs 
were shared by both, EV and plasma samples, while 13 where uniquely detected  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Reproducibility and repeatability assays. (a) Correlation of the two NSCLC and control technical 
nCounter duplicates. Pearson’s correlation coefficient is indicated. (b) Correlation of the results obtained 
in two independent nCounter assays of the same NSCLC and control samples. Pearson’s correlation 
coefficient is indicated 
 
 
in at least one plasma sample. Interestingly, 3 circRNAs (circPTPRM, circRANGAP1, and 
circGNA14) were only observed in plasma samples from some NSCLC patients (Figure 3). 
Overall, a greater number of circRNAs could be detected compared to EV samples (67 vs 56). 
 
3.3. Differential expression analysis of circRNAs in NSCLC plasma samples 
After assessing the robustness of our protocol, differential expression analysis was 
performed to study the circRNA expression levels in the samples included in the study. As a 
result, 4 circRNAs (namely circSMAD, circCOL11A1, circCHST15 and circFUT8) where found 
upregulated in NSCLC, whereas only two circRNAs (circACP6, and circLYPLAL1) were 
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significantly downregulated in plasma of these patients when compared to the control 
cohort (Figure 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Venn diagram highlighting those circRNAs identified in at least one of the NSCLC patients and/or 
non-cancer controls, both in EVs and matched plasma samples. Overlapping of expressed circRNAs by the 
different groups are also indicated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Differential expression analysis in plasma circRNAs from early-stage NSCLC (n=49) patients 
versus control (n=49). 
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3.4. Development of a circRNA signature for the detection of early-stage NSCLC  
As previously described in the methods section, different normalization methods including 
DESeq2, RUVSeq, edgeR and their combination were tested to select the method that best 
adjusts to our circRNA raw data. As a result, RLE plots indicated a superior performance of 
RUVSeq-DESeq2 over the rest of combinations (Figure 5a, Figure S1). In addition, PCA plot 
did not show any significant batch effect or cluster separation (Figure 5b). Lastly, 1.5 IQR 
analysis identified 10 out of the 98 samples as possible outliers. Consequently, these samples 
were excluded from further analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Data normalization and sample analysis. (a) RUVSeq/DESeq2 RLE plot of normalized data (k = 
1). (b) PCA plot of the transformed raw data.  
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Next, ML analysis was performed in early-stage NSCLC and control samples. Hence, RFE 
algorithm provided a signature that included 64 circRNAs (Table S1), delivering a ROC AUC 
of 0.90 and 0.782 with RF and KNN respectively (Figure 6a). As a result, RF was selected as 
the final model. In addition, assessment of the signature scores allowed a statistically 
significant separation of the cohorts (Mann-Whitney U test, p < 0.0001; Figure 6b). The 
sensitivity and specificity of the RF signature were of 82.22% (CI = 67.95% - 92.00%) and 
74.42% (CI = 58.83% - 86.48%) respectively, outperforming the KNN classifier (Table 2). 
Based on the algorithm determined cutoff value of 0.5, 69 out of the 88 cases were correctly 
classified, resulting in an accuracy of 78.41% (CI = 68.35% – 86.47%) with the final model 
(Figure 6c). Amongst the 19 wrongly classified samples, 8 corresponded to NSCLC patients 
and 11 to controls. Further analysis on the clinicopathological characteristics of these 
individuals showed that only 1 of the misclassified controls presented a benign nodule. In 
addition, false negative samples were found to be of varied NSCLC stages (4 IIIA, 2 IB, and 
2IA) possibly indicating an independency of the ML-generated signature from tumor stage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Machine learning analysis of plasma circRNA samples. (a) Area under the ROC curve of the 64 
circRNA signature using RFE with RF and KNN models. (b) Signature scores of control samples versus 
NSCLC samples (p < 0.0001 in a two-tailed Mann-Whitney U test). (c) Confusion matrix based on the RF 
classification scores. 
 
4. Discussion 
 
Lung cancer is frequently diagnosed at a late stage when treatment options are not as 
effective anymore, which in turn leads to a high mortality rate. The development of a liquid 
biopsy-based assay for the detection of early-stage lung cancer could benefit these patients, 
reducing this elevated mortality rate drastically [173]. 
In addition, pulmonary nodules can routinely be found on imaging studies, particularly 
during multidetector computed tomography (MDCT). Advances in this technology and 
positron emission tomography (PET) have improved nodule characterization. However, 
besides continuous advancements in this field, many nodules remain unterminated and 
require further assessment for a definitive diagnosis, which often involves either invasive and 
limited procedures, or time-consuming follow-ups [16]. 
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In the current study, we used the nCounter technology to analyze the expression of plasma 
circRNAs to further develop a circRNA signature that could discriminate between early-stage 
NSCLC patients and control individuals, including benign nodules.  
 
 
Table 2. Precision assessment of the ML generated circRNA signature with RF, and KNN. The 
95% CIs are indicated. 

 
 
As it has been widely described that circRNAs are enriched in plasma EVs [174], we previously 
described a full protocol for the analysis of EV-derived circRNAs for the generation of NSCLC 
signatures [172] . However, isolation of EV-RNA may sometimes be associated with some 
hurdles such as RNA loss, extra cost, or additional hands-on time. To assess the feasibility of 
circRNA nCounter analysis directly from plasma samples, we adapted our protocol to this 
biological liquid, and compared results to those obtained with matched EV-RNA samples. As 
a result, more circRNAs could be detected when using whole plasma instead of EV 
preparations as initial input, with the exception of 2 circRNAs (circBACH2and circSEMA5A). 
Yet, these 2 circRNAs were neither significantly expressed nor confirming part of previously 
described EV-circRNA signature [172]. Therefore, we concluded that the overall circRNA 
expression detected through nCounter analysis of plasma samples was sufficient for 
downstream differential expression analysis and subsequent ML-based circRNA signature 
development. 
 

Next, we performed differential expression analysis and found 4 circRNAs upregulated and 
2 downregulated in NSCLC when compared to the control samples (Figure 4). Interestingly, 
circFUT8 was previously found upregulated by our group both in FFPE tissues and cell lines 
[137]. Although further investigation is crucial to unveil de biological significance of these 
findings, and the specific origin of these transcripts withing the plasma, our preliminary data 
highlight the biomarker potential held by these circRNAs. 
 

Model RF KNN 
No. concordant samples  69 63 

No. discordant samples  19 25 

AUC ROC 0.90 0.782 

Accuracy  
78.41% 

(CI = 68.35% – 86.47%) 
73.68% 

(CI = 63.65% – 82.19%) 

Sensitivity  
82.22% 

(CI = 67.95% – 92.00%) 
72.92% 

CI = 58.15% – 84.72%) 

Specificity  
74.42% 

(CI = 58.83% – 86.48%) 
74.47% 

CI = 59.65% – 86.06%) 

PPV 
77.08% 

(CI = 66.49% –85.08%) 
74.47% 

(CI = 63.47% – 83.04%) 

NPV 
80.00% 

(CI = 67.57% – 88.48%) 
72.92% 

(CI = 62.17% – 81.52%) 

Cohen's κ 
0.567 

(CI = 0.358 – 0.775) 
0.428 

(CI = 0.219 – 0.637) 
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Then, ML was performed in order to find a signature for the early detection of NSCLC. As a 
result, the final model selected a 64-circRNA signature that achieved an AUC ROC of 0.90 
and accuracy of 78.41% (Table 2). In addition, our signature was able to correctly classify 
patients with benign nodules as non-cancer, with only one false positive in the presented 
study. These results lay the grounds for the development of state-of-the-art circRNA-based 
companion diagnostics assays that, together with MDCT, may aid medical decisions in 
prospective lung screening programs. 
 
This is a proof-of-concept study. Therefore, several limitations need first to be addressed 
before further validation of our plasma-based circRNA signature. Primary, recruitment of 
bigger cohorts is necessary not only to reassess cited signature, but to feed subsequent 
training and validation phases. Also, the inclusion of symptomatic controls including other 
inflammatory diseases such as COVID-19, pneumonia, or pneumonitis is recommended in 
order to ensure the cancer specificity of the signature. Finally, only lung cancer patients were 
included in this study; therefore, we do not know if the current signature could also detect 
other types of cancer. Inclusion of other malignancies should be considered in prospective 
investigations to shed light on this matter. 
 
5. Conclusions 
 
Presented work demonstrates the use of the nCounter FLEX system for circRNA expression 
analysis in blood plasma. ML provided a 64-circRNA signature predictive of early-stage 
NSCLC. To the best of our knowledge, this is the first nCounter-based plasma circRNA assay 
for the detection of early-stage NSCLC. Further studies of larger cohorts are warranted in 
order to determine the clinical applicability of the signature 
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Figure S1. Assessment of the different normalization processes by RLE plot analysis, including DESeq2,  
edgeR, and edgeR-RUVg methods (k = 1). 
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Table S1. CircRNAs confirming the ML-generated signature of  
early-stage NSCLC 
 

hsa_circ_0003148 hsa_circ_0000437 hsa_circ_0004458 

hsa_circ_0001380 hsa_circRNA_103237 circ_001569 

hsa_circ_000153 hsa_circ_0039161 hsa_circRNA_404185 

hsa_circ_0004417 hsa_circRNA_404833 hsa_circRNA_406483 

hsa_circ_0006276 hsa_circ_0001238 hsa_circRNA_006296 

circ_C1orf116 hsa_circRNA_001937 hsa_circRNA_002099 

hsa_circ_0001445 hsa_circ_0003958 hsa_circ_0043256 

hsa_circRNA_001640 hsa_circ_0007037 hsa_circ_0001083 

hsa_circRNA_080968 hsa_circ_0004062 hsa_circRNA_101367 

hsa_circRNA_404643 circFARSA hsa_circRNA_404458 

hsa_circRNA_000997 hsa_circRNA_000317 hsa_circ_0001495 

hsa_circRNA_101833 circRNA_HIPK3 hsa_circRNA_401977 

hsa_circRNA_001288 F-circEA1 (Variant 1) hsa_circRNA_006411 

hsa_circ_0037007 hsa_circRNA_103775 hsa_circRNA_000441 

hsa_circ_0005139 hsa_circRNA_103809 hsa_circ_0001320 

hsa_circ_0005962 hsa_circRNA_403389 hsa_circRNA_400294 

hsa_circRNA_405718 hsa_circ_0000847 hsa_circRNA_104640 

hsa_circ_0003941 hsa_circ_0000064 hsa_circ_0002360 

F-circEA3 (Variant 3) hsa_circRNA_406083 hsa_circ_0000566 

hsa_circ_0012673 hsa_circRNA_006349 hsa_circ_0009128 

hsa_circ_0001675 hsa_circRNA_104329 hsa_circ_0000264 

hsa_circRNA_103727   
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While former investigations considered circRNAs as background noise derived from 
defective splicing, accumulating evidence demonstrates they are functional players, acting 
as regulators in many biological processes. Additionally, many studies highlight their 
implication in carcinogenesis and tumor progression, reporting also their contribution to 
mutant glycolysis, lipogenesis and lipolysis, glutaminolysis, and oxidative respiration 
[51]. Whilst many scientific reports position these circular transcripts as plausible lung cancer 
biomarkers and promising candidates for seeking therapeutic and prevention strategies, 
limitations of current high-throughput methods hamper the development of clinically 
applicable assays.  
The Nanostring nCounter may stand as an alternative to current quantification methods, 
facilitating the transition of circRNA biomarkers from bench to bedside. Besides its capacity 
to work with very low amount of highly degraded samples, other advantages of this 
technology include the ability to perform multiplex analysis, minimal hands-on time, and 
subsequent user-friendly data analysis. As a result, many translational investigations have 
embraced this technology performing transcriptional research in many biomaterials, 
including liquid biopsies [77, 133]. However, to our knowledge, no other group has reported 
the use of nCounter for the study of circRNAs in lung cancer as yet. 
 
Based on these premises, this thesis focused on testing the use of the nCounter FLEX 
platform for the study of circRNA expression in lung cancer specimens. As a second 
objective, we aimed to explore the biomarker potential of some of these circular transcripts 
by generating ML-based signatures for the detection of lung cancer. 
Since there is no commercially available nCounter circRNA panel, we designed a customized 
panel targeting the backsplicing junction of 78 different circRNAs. In addition, we also 
included 10 mRNAs to be used as internal controls [137]. Selection of the circRNAs 
conforming the assay was based on scientific reports showing dysregulation of cited 
transcripts in either lung cancer biopsies or cell lines. Next, we tested our circRNA assay by 
performing different experiments with RNase R in cell line-derived RNA samples to assess 
the specificity of designed probes towards the circular form of the different genes included 
in the panel. As a result, by assessing the number of counts for each circRNA in RNase R 
treated samples, we observed an overall enrichment for most circRNAs, whereas the linear 
mRNA targets that we used as control in our study were degraded to various extents as 
expected. 
As some circRNAs have proved to be sensitive towards the effect of RNase R [111] and the 
efficiency of this enzyme to remove linear RNA may range depending on different factors 
[45, 113], we cannot claim the solely recognition of circRNA based on this data. However, the 
circRNA enrichment achieved after RNase R treatment agrees to what we were expecting, 
strongly supporting the specificity of our nCounter probes towards these circular transcripts. 
Also, the specific configuration of designed probes flanking the circRNA junction sites allows 
the correct binding of capture and reporter probes. Conversely, in case of binding to a linear 
counterpart, the probes would bind divergently therefore preventing the production of a 
target-specific signal [69]. Lastly, we assessed expression levels of 3 circRNAs (circEPB41L2, 
circSOX13, and circBNC2) in different FFPE lung cancer and control samples by nCounter and 
RT-qPCR.  As a result, similar expression patterns could be observed for both quantification 
methods, with subsequent Sanger sequencing unveiling the corresponding junction sites. 
Although RNase R treatment can result useful for the screening or validation of circRNAs, its 
use should be avoided in circRNA expression studies since, as previously mentioned, 
variability in the digestion efficiency of this enzyme may bias circRNA expression 



Chapter V 

 94 

quantification. In addition, purification of RNA from FFPE material may involve both 
mechanical and chemical RNA breakage, making any circRNA susceptible to the effect of the 
RNase R. Therefore, enrichment of circRNA by RNase R treatment should be restricted only 
to RNA extracted from fresh or frozen specimens. 
 
During this part of the project, we did not only validate the use of our nCounter assay for the 
study of circRNAs in solid lung cancer specimens, but also, we tested our protocol to perform 
expression analysis in FFPE lung tissue samples from 53 lung cancer patients and 16 non-
cancer controls. As a result, a cluster of differentially expressed circRNAs, namely circFOXP1, 
circRUNX1, circRHOQ, circACACA, circC1orf116, circCHD9, circFUT8, circEPB41L2, 
circSOX13 and circBNC2 were found dysregulated in lung cancer specimens, even at early 
stages of the disease as it is the case of the last six. In addition, we examined different ML 
methods to explore the diagnostic potential of a plausible circRNA signature of lung cancer. 
As a result, a 4-circRNA signature (including circCORO1C, circEPB41L2, circSOX13 and 
circBNC2) was able to discriminate early-stage lung cancer specimens from controls with an 
AUC ROC of 0.98, resulting in only 4 out of the total 69 samples being incorrectly classified. 
Interestingly, 3 out of the 4 circRNA conforming the signature were previously found 
dysregulated, indicating the high potential that cited circRNAs hold as biomarkers. 
This first part of the research gave us the opportunity to develop and test our circRNA 
nCounter assay. In addition, we unveiled the biomarker potential of a cluster of circRNAs, 
which may open new lines of investigation for seeking new therapeutic strategies.  
This was a proof-of-concept study, therefore, validation of above presented ML-signature in 
solid biopsies was not pursued, due to the hurdles associated to this invasive procedure.  
 
Majority of life-threatening cancers, including lung cancer, are nowadays detected too late, 
when outcomes are often lethal. A shift in these mortality rates is observed when the tumor 
is detected at early stages, when more therapeutic options are available [175]. Different 
strategies are currently being investigated for the development and subsequent 
implementation of screening programs. The use of low-dose CT in different annual screening 
campaigns has proved to be beneficial for the early detection of lung cancer, as reported by 
several randomized clinical trials [15-18]. In particular, the Dutch-Belgian lung cancer 
screening trial confirmed a reduction in lung cancer mortality of 24% and 33% in men and 
women respectively, attributed to the implementation of volume CT screening [18]. 
Nevertheless, some limitations endorsed to this practice, including the number of false 
positive cases that lead to unnecessary follow-up tests and invasive procedures, need first to 
be resolved before seeing this approach globally implemented.  
Shedding light on this matter, the analysis of protein and nucleic acids circulating in blood 
(or other body fluids) has risen in the last years as an option to complement current 
strategies, providing a minimally invasive tool for the early detection of cancer.  
The burst of NGS and ML advances has contributed to the development of few detection 
tests, based on the analysis of liquid biopsies. In this regard, the first-of-kind multi-cancer 
early detection blood test, the Galleri® test developed by Grail (Illumina, CA, USA), can be 
found commercially available since 2021, allowing the detection of 50 different types of 
cancer. This technology is based on the identification of anomalous methylation patterns 
present on the cfDNA released by tumor cells, which allows classification of the cancer type 
with an 88.7% of accuracy, and a specificity and sensitivity of 99.5% and 67.6% respectively 
for stage I-III lung cancer patients [176] (Table 1). Besides this test, many groups are currently 
studying the biomarker potential of cfDNA for the detection of lung cancer [14, 77]. However, 
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the proportion of tumor-derived DNA present in the plasma of early-stage lung cancer 
patients is rather low, which slows down the development of further clinically implementable 
tests for this purpose. Consequently, investigation of other liquid biosources is necessary to 
allow the detection of lung cancer at early stages. To this end, Würdinger and colleagues 
have just published the validation of a pan-cancer signature (ThromboSeq) able to identify 
18 different types of cancer, including NSCLC [177]. The ML-developed signature is based on 
blood platelet-derived mRNA expression and demonstrates classification of early-stage 
NSCLC with decent accuracy (Table 1).  
After successfully validating the nCounter technology as a useful platform for the multiplex 
analysis of circRNAs in solid lung cancer specimens and cell lines, we explored the use of this 
platform for the study of circRNAs in liquid biopsy samples from lung cancer patients. Based 
on many publications reporting circRNA enrichment in human EVs [54, 82, 178], we initially 
designed a pilot study whereby not only we established but also validated a protocol for the 
analysis of circRNAs from plasma EVs. Then, we applied it for the development of a ML 
learning signature able to discriminate stage I-IIIA lung cancer patients (n=36) from controls 
(n=30). Resulting 10-circRNA signature was able to discriminate lung cancer patients from 
non-cancer individuals, with an accuracy of 86% and sensitivity and specificity of 90% (CI = 
73.47% – 97.89%) and 81% (CI = 61.92.1% – 93.70%) with the final model.  
While presented results were encouraging to further validate our signature, purification of 
EVs, even with the final method of choice, may result difficult to implement in the clinical 
setting due to different aspects such as the additional cost associated to this extra step, the 
time dedicated to it, or the RNA-loss related to these types of procedures. 
   
Consequently, in Chapter four, we tested nCounter in whole plasma in order to assess if first, 
we would pick up circRNA expression levels comparable to those attained to EV assessment; 
and second, develop a circRNA-signature predictive of early-stage lung cancer. Plasma 
samples of early-stage lung cancer patients (n=49) and non-cancer controls (n=49), including 
individuals with benign nodules (n=19/49) were analyzed for this purpose.  
As a result, an equivalent number of circRNAs was observed in plasma compared to EVs, 
finding non statistically differences between the cancer and control cohorts (42±12 circRNAs 
in controls vs. 41±13in the NSCLC cohort). In fact, 50 out of the 68 circRNAs were found in at 
least one individual of the EV or plasma samples. In addition, 7 circRNAs were present in at 
least one of the plasma samples, but could not be detected in matched EV samples, 
indicating a possible advantage of plasma samples over EVs when it comes to circRNA 
detection using nCounter. 
Next, differential expression analysis of plasma samples revealed a cluster of 6 differentially 
expressed circRNAs, including circFUT8. This circRNA was recently reported to promote 
cancer proliferation, invasion and migration via regulation of the miR-944/YESI pathway 
[119]. Additional in-silico investigation unveiled two miRNAs, hsa-miR-1305 and hsa-mir-186, 
that could potentially bind to circFUT8 in more than one binding site. While no data has been 
reported regarding hsa-miR-1305, hsa-mir-186 was previously described as an inhibitor of 
cancer proliferation and metastasis [117, 118]. 
Interestingly, we also found circFUT8 upregulated in lung cancer cell lines and FFPE tissues 
(including early stages), but not EV samples. This suggests that analysis of plasma may be a 
more accurate representation of the tumor carrying a higher load of tumor-derived nucleic 
acids. In contrast, in the EV preparations, the number of vesicles released by the normal cells 
may be higher than tumor cells, masking any signal coming from the tumor. Further 
investigation on the vesicular origin would be interesting to decipher this conundrum. 
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Finally, assessment of different ML techniques generated a signature to discriminate early-
stage lung cancer with an accuracy of 78.41 (CI = 68.35% – 86.47%), sensitivity of 82.22% (CI 
= 67.95% – 92.00%) and specificity of 74.42% (CI = 58.83% – 86.48%). In addition, most 
samples from control individuals expressing benign nodules were correctly classified, with 
the exception of one that was categorized as cancer. From those lung cancer samples 
misclassified as controls, no pattern in tumor stage was found indicating that the power of 
the presented signature does not rely on tumor stage. 
Although the inclusion of much bigger cohorts is necessary for both training and validation 
of presented plasma circRNA signature, precision assessment elements such as accuracy, 
sensitivity or specificity highlight its potential clinical utility (Table 1). 
 
 
Table 1. Precision assessment of the ML generated circRNA signatures, thromboSeq and Galleri® tests.  
 

Model circRNA 
EV-5CV-ETC 

circRNA 
Plasma-3CV-RF 

Platelet signature 
(ThromboSeq) Galleri® 

AUC ROC 0.86 0.90 0.94 
(Including all stages) 

 
Not information 

published 
 

Accuracy  86% 78.41% 
50% (Stage I) 
70 (Stage II) 

63% (Stage III) 
88.7% 

Sensitivity  90% (Stage I-IIIA) 82.22% (Stage I-IIIA) Not information published 
21.9% (Stage I) 
79.5% (Stage II) 
90.1% (Stage III) 

Specificity  81% 74.42% 

99% 
(Asymptomatic controls) 

78% 
(Symptomatic controls) 

99.5% 

 
The right selection of a cohort is essential for the correct scientific design of a study. One of 
the limitations described in Chapter two was the hurdle of collecting non-tumor control 
samples due to the invasiveness associated to the acquisition of lung tissue. However, we 
tried to compensate this issue including individuals representative of other inflammatory 
diseases to ensure that the selected signature was specific of lung cancer. 
 
Transitioning to liquid biopsies, the number of control samples was not a restraint in the 
study of EV-circRNAs. Yet, the disparity on the median ages of the cohorts introduced some 
challenges in the statistical analysis. Although multivariate analysis could finally 
demonstrate that classification accuracy of the EV-circRNA signature was based solely on 
cancer status, the lack of > 60-year-old donors in the control cohort was certainly a limitation; 
therefore, the inclusion of comparable cohorts in terms of age should be taken into 
consideration in future studies. 
 
Lastly, in the plasma circRNA study, the clinicopathological characteristics of enrolled 
patients and non-cancer controls were in balance. We also included a sub-cohort of patients 
presenting benign nodules to ensure discrimination of cancer from this type of lumps. This 
would allow combination of our signature with low-dose CT scan to be implemented in 
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prospective screening programs, which could help in reducing the amount of false positive 
cases. The inclusion of symptomatic patients with other inflammatory diseases as part of the 
control cohort was not considered in this initial phase. However, it is already considered for 
the training and validation phases of this study. 
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This PhD thesis has validated the use of the nCounter FLEX platform for the multiplexed 
study of circRNAs in lung cancer using a custom circRNA nCounter assay.  Due to the lack of 
previous experience, limitation in time and budget constraints, we performed an exhaustive 
scientific literature research in order to include the 78 circRNAs conforming the actual 
nCounter panel, which proved enough for the purposes of this project. However, the 
evidence provided in this thesis may create new horizons for the development of new 
circRNA-based assays including many other circRNAs that could be relevant in lung cancer. 
 
In addition, several clusters of varied circRNAs have been found dysregulated in the different 
lung cancer biosources explored in this project. Besides investigating the value of nCounter 
for the study of circRNAs in lung cancer, our second aim was to investigate their potential 
biomarker value. Therefore, a thorough investigation on the biological meaning of these 
discoveries cannot be found in this work, being out of the scope of this project. Yet, our 
investigation sets the grounds for future studies where to investigate these molecules as 
plausible therapeutic targets. 
 
Furthermore, in this work we only focused on the diagnostic value of cited transcripts for the 
early detection of lung cancer. However, several reports have demonstrated the relationship 
between circRNAs and therapy resistance [179]. Therefore, future lines of investigation could 
include the development of prognostic signatures for lung cancer to predict treatment 
response using the nCounter technology.  
 
EVs have been introduced in the last years as key players mediating cellular communication 
[56]. In Chapter three, we studied differential expression of circRNAs coming from EV 
preparations of lung cancer patients and controls. However, our findings cannot be 
attributed to a direct comparison of tumor released EVs versus normal EVs, since we did not 
perform any preliminary vesicular sorting.  Although our results showed a circRNA signature 
with potential clinical value for lung cancer detection, investigation on the type of EVs 
present in our samples would provide more clarity to better understand the biological 
meaning of our findings. A collaboration with an Italian partner has been established in order 
to shed light on this matter. 
 
Finally, we presented different circRNA signatures, coming out with a final protocol for the 
analysis of circRNAs from whole plasma samples. The absence of an EV-purification step 
makes our assay easier to implement in the medical setting than previous developed 
signatures. Since our preliminary results are promising, the continuation of this project is 
warranted, and a new prospective study has just been opened for the inclusion of bigger 
cohorts to further assess and validate our presented signature. 
Additionally, combination of our signature with of other signatures based on mRNA o miRNA 
expression will be considered in a multi-omics approach, in order to achieve higher 
classification accuracy. We believe that our assays could act as a companion diagnostics test, 
and along with LDCT could help to guide medical decisions in prospective lung cancer 
screening campaigns.   
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• The nCounter FLEX platform together with our custom-developed circRNA assay 
including 78 circRNAs and 10 mRNAs allows for the detection of circRNAs in lung 
cancer materials, including cell lines, FFPE tissues, plasma, and plasma EVs. 
 

• RNase R treatment of RNA purified from fresh or frozen lung specimens is compatible 
with downstream nCounter processing, aiding in the detection of circRNAs. 
However, this treatment should be avoided for the detection of circRNAs from FFPE 
samples since circRNAs purified from this material become susceptible to the activity 
of this exonuclease. 
 

• The protocols included in this thesis allowed differential expression analysis of 
circRNAs in lung cancer cells, tissues, and liquid biopsies, founding different clusters 
of dysregulated circRNAs in lung cancer patients. 
 

• ML analysis uncovered the biomarker potential of some circRNAs developing 
different circRNA signatures that allowed discrimination of lung cancer from controls 
with promising accuracy rates. 
 

• All circRNA-signatures presented in this thesis are proof-of-concept; therefore, the 
number of recruited patients and controls are small. The inclusion of larger cohorts 
will be necessary for the reassessment, training, and validation of cited ML-based 
signatures. 
 

• Clinically relevant multiplex circRNA assays in liquid biopsies can be developed and 
validated in the nCounter FLEX platform, helping translational researchers with the 
transition from bench to bedside. 
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Abstract
Despite the significant decrease in population-level mortality of lung cancer patients as reflected in the Surveillance 
Epidemiology and End Results program national database, lung cancer, with non-small cell lung cancer (NSCLC) in 
the lead, continues to be the most commonly diagnosed cancer and foremost cause of cancer-related death 
worldwide, primarily due to late-stage diagnosis and ineffective treatment regimens. Although innovative single 
therapies and their combinations are constantly being tested in clinical trials, the five-year survival rate of late-
stage lung cancer remains only 5% (Cancer Research, UK). Henceforth, investigation in the early diagnosis of lung 
cancer and prediction of treatment response is critical for improving the overall survival of these patients. Circular 
RNAs (circRNAs) are a re-discovered type of RNAs featuring stable structure and high tissue-specific expression. 
Evidence has revealed that aberrant circRNA expression plays an important role in carcinogenesis and tumor 
progression. Further investigation is warranted to assess the value of EV- and platelet-derived circRNAs as liquid 
biopsy-based readouts for lung cancer detection. This review discusses the origin and biology of circRNAs, and 
analyzes their present landscape in NSCLC, focusing on liquid biopsies to illustrate the different methodological 
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trends currently available in research. The possible limitations that could be holding back the clinical 
implementation of circRNAs are also analyzed.

Keywords: CircRNA, extracellular vesicles lung cancer, NSCLC, liquid biopsies, biomarkers

INTRODUCTION
Lung cancer is the most commonly diagnosed cancer, contributing greatly to cancer incidence and cancer-
related deaths worldwide[1]. Of those lung cancers, non-small cell lung cancer (NSCLC) accounts for 85% of 
the cases; the development of the disease is attributed to multileveled and elusive complex interactions 
between genetic liabilities, sex, environmental toxins, and imbalanced signaling processes.

Although the mortality rate of NSCLC has decreased in previous years, presumably due to the approval and 
routinization of targeted therapies and immunotherapies[2], the prognosis in late-stage lung cancer remains 
dismal. While the 5-year overall survival (OS) of early-stage lung cancer is 85% (stage IA), these numbers 
fall to only 5% in late-stage cases (stage IV). In addition to tumor tissue characterization, liquid biopsies 
have been introduced to overcome, or complement, invasive tissue biopsies.

Not only are they instrumental in achieving early detection of the tumor, but they can also be exploited to 
monitor therapy resistance and provide a more heterogeneous readout of the tumor burden[3]. This allows 
the identification of resistance mechanisms and can guide second-line therapy selection.

Different body fluids can be used as liquid biopsies, including blood, urine, and saliva. Circulating 
molecules, such as cell-free DNA (cfDNA), RNA, or proteins, can either be freely present within these 
media or can be extracted and analyzed from circulating extracellular vesicles (EVs) or tumor-educated 
platelets (TEPs)[4].

Lung cancer involves massive changes in RNA metabolism, both in the tumor and circulating EVs and 
TEPs. Traditional RNA biomarker discovery research for either lung cancer detection or monitoring of 
treatment response has mainly focused on the expression of mRNA and miRNA[5-7].

Circular RNAs (circRNAs) are a recently re-discovered type of RNA generated by coupling the 5' and 3' 
ends in a non-canonical process known as back-splicing[8]. This circular structure lacks a poly(A) tail, 
making most of them resistant to the exonuclease RNase R and, therefore, making them robustly stable 
molecules compared to lineal mRNA. While thousands of circRNAs have been described thanks to the 
technological burst of deep sequencing[9], only the function of a fraction has been elucidated.

Recent investigations have unveiled the role of circRNAs as important players in NCLSC, positioning them 
as valuable biomarkers for early detection and promising candidates for seeking therapeutic and prevention 
strategies[10].

This review analyzes the current state of circRNA research, starting from their biology to their different 
functions and implications in NSCLC, with a special focus on their not yet fully exploited potential as liquid 
biopsy biomarkers. We also review the most recently discovered circRNAs, both in solid and liquid 
specimens.
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In addition, we provide a practical and complete guide on the current methodology available for their study, 
stressing the current limitations that may be preventing their implementation in the clinical setting.

CIRCULAR RNA EXPRESSION IN HUMANS
Although circRNAs have been acknowledged for many years as abnormally spliced “scrambled” 
transcripts[11], only recently have they been re-defined as biologically active molecules with a significant role 
in human homeostasis, having a tissue-specific expression profile during the different stages of 
development[12].

More than 60% of human genes can express circRNAs[13]. However, their expression levels in tissue remain 
rather low, accounting for only 5%-10% of the canonical (linear) mRNA expression[14,15].

CircRNAs are originated by an alternative process called “back-splicing”, where the 5' splice donor can stick 
to the 3' splice acceptor of an upstream exon. This process results in forming a circular structure that can 
include one or different exonic/intronic regions, depending on the specific mechanism that was inferred 
during this non-canonical process[16].

They have arisen as key post-transcriptional regulators throughout different functions [Figure 1], with 
micro-RNA (miRNA) sponging being the most studied. During this process, the circRNA binds to the 
argonaute-miRNA complex, and either via miRNA degradation or inhibition of the miRNA-mRNA 
interaction, it triggers further mRNA expression[17].

Recent studies have also revealed that circRNAs could associate with ribosomes and be translated into 
functional short peptides, in a cap-independent manner[18]. Alternatively, they can also associate with 
proteins acting as scaffolding for enzymatic reactions. The process of circRNA synthesis generates an 
imbalance of the canonical splicing; hence, the back-splicing process itself stands as a direct regulator of the 
circRNA precursor gene at the transcriptional level.

Biosynthesis and regulation of circRNAs
Different back-splicing mechanisms have been reported in the nucleus, including RNA binding protein 
(RBP)-mediated circularization, circRNA synthesis by intron pairing, or circularization by intron-lariat 
formation[16] [Figure 1]. The first mechanism is normally executed by associating two adjacent exons and 
skipping the intronic region during an RBP-assisted circularization process, resulting in an exonic-circRNA 
(EcircRNA). Numerous RBPs have been described to regulate this mechanism, such is the case of the 
adenosine deaminase RNA specific-1 protein (ADAR1)[19], NF90/NF110 immune factors[20], muscleblind 
transcription factor (MBL)[21], heterogeneous nuclear ribonucleoprotein L[22], FUS protein[23], Quaking 
binding protein (QKI)[24], RNA helicase DHX9[25], and the RNA-binding motif protein 20[26].

Exon-intron circRNAs are the result of 2 or more exons circularized along with their corresponding introns 
via intron-lariat formation. Intron pairing back-splicing is usually the common process in conserved RNAs 
with high frequency of Alu repeats in flanking sequences. These Alu elements complement each other, 
promoting the hairpin formation and further back-splicing, creating mono-EcircRNAs as a result[27]. 
Intronic circRNAs are another type of such a class; however, the mechanism of generation of these 
molecules remains yet unclear.
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Figure 1. Biosynthesis and molecular functions of circRNAs. CircRNAs are generated by three different mechanisms of back-splicing 
(via lariat formation, intron pairing or RNA binding proteins). Resultant circRNAs can be formed by only exonic regions (EcircRNAs), 
intronic regions (IcircRNAs) or both (EIcircRNAs). circRNAs are exported into the cytoplasm in a size-mediated manner by URH49 and 
UAP56. Once in the cytoplasm, circRNAs will perform their functions including miRNA and protein sponging, protein scaffolding, or 
even translate into small functional peptides. CircRNAs will be released into the blood stream inside exosomes mediating cellular 
communication. Most cellular types, including tumor cells, will secrete circRNA-containing EVs. Platelets can modify its content when 
in contact with the tumor, including their circRNA expression profile.

After synthesis in the nucleus, circRNAs are exported into the cytoplasm. Recent studies have shown the 
active role of the UAP56/URH49 helicases in this size-mediated process. UAP55 is required to transfer 
molecules longer than 1300 nucleotides, while URH49 intervenes only in short transcript exporting[28]. Once 
in the cytoplasm, circRNAs accumulate and exert their function by regulating transcription, normally via 
sponging targeted miRNAs.

How circRNA gets degraded still remains unclear; however, recent investigation has shed light on this 
conundrum, unveiling some intriguing mechanisms that underpin circRNA decay. Hansen et al.[29] describe 
an Ago2-miR-671-mediated degradation of the circRNA CDR1as (aka ciRS-7). In another study by 
Park et al.[30], a cleavage mechanism induced by RNase P/MRP was elucidated in N6-methyladenosine 
(m6A)-enriched circRNAs. More recently, a study by Liu et al.[31] demonstrated that some circRNAs tend to 
form intricate duplexes which makes them susceptible to degradation by RNase L upon viral infection.

A different mechanism was described by Fischer et al.[32] revealing an alternative structure-mediated 
circRNA regulation process that selectively degrades circRNAs based on 3'-UTR structure complexity via 
the UPF1/G3BP1 protein complex.
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CIRCULAR RNAS IN NSCLC
The implication of circRNAs in cancer metabolism has been studied in recent years. Their contribution to 
mutant glycolysis (via transporter, enzyme, and/or transcription factor regulation), lipogenesis and lipolysis, 
glutaminolysis, and oxidative respiration has been widely demonstrated[33].

CircRNAs are becoming a new area of interest within cancer research, including NSCLC, where several 
authors are contributing by investigating the effect that dysregulated circRNA expression can have on the 
different cancer stages. Although their implication in NSCLC has not been as intensively investigated as 
other types of non-coding RNAs, circRNAs have been shown to have a significant role in tumorigenesis, 
tumor development, proliferation, migration, invasion, and sensitivity to NSCLC therapy[34]. In light of these 
aforementioned findings, recent publications highlight the potential of these circular transcripts as plausible 
biomarkers to assess disease status.

CircRNAs as biomarkers of NSCLC
The number of studies on circRNA profiling in NSCLC patients has exploded exponentially in the last few 
years [Table 1].

ciRS-7 was the first and best characterized circRNA in cancer and served as a foundation stone for current 
research. Its role in carcinogenesis was first described in hepatocellular carcinoma, following breast and 
cervical cancer, acting as a competing endogenous RNA for miR-7[35]. A recent study has introduced ciRS-7 
as an important player in lung cancer; its expression seems to correlate with tumor size and both lymph and 
tumor node metastasis stages[36].

A study by Wang et al.[37] recently demonstrated the involvement of circSOX4 in lung adenocarcinoma by 
activating the WNT signaling pathway via sponging miR-1270 and following upregulation of PLAL2. 
CircSOX4 was found overexpressed in all managed lung adenocarcinoma tissue samples, and further 
validated across different cell-based preclinical experiments[37].

Circular RNA HIPK3 (circHIPK3) is yet another extensively studied circRNA critical in cell proliferation of 
different types of cancer[38]. Its specific role in NSCLC has been recently discovered by Xie et al.[39] 
demonstrating impaired cell proliferation, migration, invasion and autophagy induction via the miR124-3p-
STAT3-PRKAA/AMPKa axis upon silencing of the cited circular transcript. Authors also demonstrated that 
overexpression of circHIPK3 correlates to poor survival, especially in advanced stages.

Another well studied circRNA, circSMARCA5, plays a significant role in NSCLC via the miR-19b-
3p/HOXA9 axis, setting the grounds for exploring underlying therapeutic targets[40]. On a similar note, a 
circular RNA from FGFR3 was reported in NSCLC, promoting cell invasion and proliferation of tumors by 
sequestering miR-22-3p, thus promoting galectin‐1, p‐AKT, and p‐ERK1/2 expression, and activating 
downstream pathways[41].

The oncogenic circ-FOXM1 was first discovered overexpressed in pancreatic tissues upregulating the 
pancreatic progenitor cell differentiation and proliferation factor (PPDPF) and metastasis-associated in 
colon cancer 1 (MACC1) proteins via miR-1304-5p sponging. More recently, the same circ-FOXM1/miR-
1304-5p/PPDPF/MACC1 axis was found decisive for NSCLC development and progression[42].
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Table 1. List of the most relevant recently discovered circRNAs associated with lung cancer

circRNA Gene CircBase ID Source Regulation Target Downstream 
pathway

circFGFR3 FGFR3 - NSCLC tissues Upregulated hsa-miR�22�3p Galectin�1�
AKT/ERK1/2

ircNOL10 NOL10 hsa_circ_0000977 LC cells Downregulated hsa-miR-7 SCML1

ciRS-7 CDR1 - NSCLC tissues 
and cell lines

Upregulated - -

circABCC4 ABCC4 hsa_circ_0030586 LUAC tissues 
and cell lines

Upregulated hsa-miR�3186�3p TNRC6B axis

circCDR1 CDR1 hsa_circ_0001946 LUAC tissues 
and cell lines

Upregulated hsa-miR-135a-5p SIRT1/Wnt/β-
catenin

circATXN7 ATXN7 hsa_circ_0007761 LC tissues and 
cell lines

Upregulated - -

circATAD3B ATAD3B hsa_circ_0000003 NSCLC tissues 
and cell lines

Upregulated hsa-miR-338-3p IRS2

circP2RX1 P2RX1 hsa_circ_0000735 NSCLC tissues 
and cell lines

Upregulated hsa-miR-1179, miR-1182 -

circC16orf62 C16orf62 hsa_circ_0003645 NSCLC tissues 
and cell lines

Upregulated hsa-miR-1179 TMEM14A

circPDZD8 PDZD8 hsa_circ_0020123 NSCLC tissues 
and cell lines

Upregulated hsa-miR-488e3p ADAM9

circTUBA1C TUBA1C hsa_circ_0026134 NSCLC tissues 
and cell lines

Upregulated hsa-miR-1256, miR-12 TCTN1 and GAGE1

circCAMK2A CAMK2A hsa_circ_0128332 LUAD Upregulated hsa-miR-615-5p Fibronectin 1

circFOXM1 FOXM1 hsa_circ_0025033) NSCLC tissues 
and cell lines

Upregulated hsa-miR-1304-5p PPDPF and MACC1

circMTO1 MTO1 hsa_circ_0007874 LUAD tissues 
and cell lines

Downregulated hsa-miR-17 QKI-5

circPRMT5 PRMT5 hsa_circ_0031250 NSCLC tissues 
and cell lines

Upregulated hsa-miR-377/382/498 EZH2

circRAD23B RAD23B hsa_circ_0087855 NSCLC tissues 
and cell lines

Upregulated hsa-miR-593e3p, hsa-miR-
653e5p

CCND2 and TIAM1

circZKSCAN1 ZKSCAN1 hsa_circ_0001727 NSCLC tissues 
and cell lines

Upregulated hsa-miR-330-5p FAM83A (MAP 
signaling)

circCRIM1 CRIM1 hsa_circ_0002346 LUAC cell lines Downregulated hsa-miR�182/miR�93 -

circHIPK3 HIPK3 hsa_circ_0000284 A549, H838 cell 
lines

Upregulated hsa-miR-124-3p, miR-149 STAT3-
PRKAA/AMPKα

circPDK1 PDK1 hsa_circ_0006006 LUSC tissues Upregulated - -

circPIP5K1A PIP5K1A hsa_circ_0014130 NSCLC cell lines Upregulated hsa-miR�600 HIF-1α

circPRKCI PRKCI hsa_circ_0067934 NSCLC cell lines Upregulated hsa-miR-545, hsa-miR-589 E2F7

circPTPRA PTPRA hsa_circRNA_0102984 NSCLC tissues 
and cell lines

Downregulated hsa-miR-96-5p RASSF8/E-cadherin

circPVT1 PVT1 Hsa_circ_0001821 NSCLC tissues 
and cell lines

Upregulated hsa-miR-497 -

circTP63 TP63 hsa_circ_0068515 LUSC tissues 
and cell lines

Upregulated hsa-miR-873-3p FOXM1/CENPA-
CENPB

circVANGL1 VANGL1 - NSCLC tissues 
and cell lines

Upregulated hsa-miR-195 Bcl-2

circZFR ZFR hsa_circ_0001649 NSCLC tissues 
and cell lines

Upregulated hsa-miR-101-3p CUL4B

circMras MRAS hsa_circ_0067512 LUAC samples 
and NSCLC cell 
lines

Downregulated hsa-miR�567 PTPRG

F-circSR SLC34A2-
ROS1

- HCC78 cell line Upregulated - ROS

circCDK6 CDK6 hsa_circ_000984 NSCLC tissues 
and cell lines

Upregulated - Wnt/β-catenin 
pathway

circRUNX1 RUNX1 hsa_circ_0002360 LUAC tissues Upregulated hsa-mir-3620-5p PHF19
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circZNF720 ZNF720 hsa_circ_0007059 LC tissues and 
cell lines

Downregulated hsa-miR-378 Wnt/β-catenin and 
ERK1/2

circRNF121 RNF121 hsa_circ_0023404 NSCLC tissues 
and cell lines

Upregulated hsa-miR-217 ZEB1

circTADA2A TADA2A hsa_circ_0043278 NSCLC tissues 
and cell lines

Upregulated hsa-miR-520f ROCK1, CDKN1B 
and AKT3

circLIFR LIFR hsa_circ_0072309 NSCLC tissues 
and cell lines

Downregulated hsa-miR-580-3p -

circITCH ITCH N.A. LC tissues and 
cell lines

Downregulated hsa-miR-7 and hsa-miR-214 (PI3K)/AKT

circSMARCA5 SMARCA5 hsa_circ_0001445 NSCLC tissues 
and cell lines

Downregulated hsa-miR-19b-3p HOXA9

circRAD23B RAD23B hsa_circ_0087862 NSCLC tissues 
and cell lines

Upregulated hsa-miR-1253 RAB3D

circPIP5K1A PIP5K1A hsa_circ_0014130 NSCLC tissues 
and cell lines

Upregulated hsa-miR-142-5p, hsa-miR-136-5p IGF-1 and BCL2

circABCB10 ABCB10 hsa_circ_0008717 NSCLC tissues 
and cell lines

Upregulated - KISS1

circIGF1R IGF1R hsa_circ_0005035 NSCLC tissues 
and cell lines

Downregulated hsa-miR-1270 VANGL2

circSOX4 SOX4 N.A. LUAD tissues 
and cell lines

Upregulated hsa-miR�1270 PLAGL2 (WNT 
signaling)

circACACA ACACA hsa_circ_0043256 NSCLC tissues 
and cell lines

Upregulated hsa-miR-1183 PI3K/PKB pathway

circBIRC6 BIRC6 hsa_circ_0003288 NSCLC tissues 
and cell lines

Upregulated hsa-miR-145 FSCN1 and S6K1

circCCDC66 CCDEC66 N.A. NSCLC cell lines Upregulated hsa-miR-33a-5p KPNA4/STAT3

circGFRA1 GFRA1 hsa_circ_0005239 NSCLC tissues 
and cell lines

Upregulated hsa-miR-188-3p PI3K/AKT

circLARP4 LARP4 N.A. NSCLC tissues 
and cell lines

Downregulation - SMAD7

circTCONS TCONS hsa_circ_0000326 NSCLC tissues 
and cell lines

Upregulated hsa-miR-338-3p RAB14

circDHCR24 DHCR24 hsa_circ_0012673 LC tissues and 
cells

Upregulated hsa-miR-320a LIMK18521

circMACF1 MACF1 hsa_circ_0011780 NSCLC tissues 
and cells

Downregulated hsa-miR-544a FBXW7

circPANX2 PANX2 hsa_circ_0012515 NSCLC tissues 
and cells

Upregulated hsa-miR-98-5p, hsa-miR-615-5p, 
hsa-let-7a-5p, hsa-let-7b-5p and 
hsa-let-7c-5p

-

circMET MET hsa_circ_0082003 NSCLC tissues 
and cells

Upregulated miR-145-5p CXCL3

Chromosomal translocations are cancer-associated events that may strike frequently in some genes, like 
ROS or ALK, leading to activation of downstream signaling pathways upon sustained expression[43]. These 
events can also generate oncogenic circRNAs, as has been reported with the solute carrier family 34 member 
2 (SLC34A2) and ROS proto-oncogene 1 (ROS1), producing two circRNAs (F-circSR1 and F-circSR2) both 
promoting cell migration in NSCLC[44].

Precursor mRNA of driver mutations, such as MET, can also lead to the generation of circRNAs. CircMET 
was first described in hepatocellular carcinoma driving immunosuppression and anti-programmed cell 
death 1 (PD-1) therapy resistance via the miR-30-5p/snail/DPP4 axis[45]. Its role in NSCLC was recently 
discovered promoting tumor proliferation via the miR-145-5p/CXCL3 axis[46].
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Although a circRNA from epidermal growth factor receptor (EGFR) has been reported in mouse ovaries 
during postnatal development with a marked expression profile, the implication of this circRNA in lung 
cancer has not been studied yet.

There have been no circRNAs derived from the KRAS gene reported either; however, numerous circRNAs 
have been portrayed as key intermediaries of the classical pathways and may serve as a readout of these 
foremost altered genes.

CircRNAs as biomarkers of treatment resistance in NSCLC
Although several studies have unveiled the potential role of circRNAs in lung cancer development and 
progression, not much has been clarified regarding their contribution to therapeutic resistance, and only a 
few published studies focus on their involvement in this area [Table 2]. CircRNAs can be classified as 
promoters, when their high expression enhances resistance to cancer therapy; or suppressors, when their 
expression limits the progression of the disease during treatment, thus acting as inhibitors of resistance.

Astrocyte elevated gene-1 (AEG-1) is a key player in development, progression, and metastasis of lung 
cancer by regulating the Wnt/β-catenin pathway. In a recent publication, Li et al.[47] showed that 
circMTDH.4 regulates AEG-1 expression by sponging miR-630, leading to chemo- and radio-resistance in 
NSCLC cells. Sensitivity was restored via the knockdown of the cited circRNA or over expression of its 
target, miR-630.

Two different works have recently been published describing circRNAs that regulate the expression of 
STAT3. Dong et al.[48] reported that upregulation of hsa_circ_0076305 confers DDP-resistance to NSCLC 
cells via sponging miR-296-5p, positively modulating STAT3. Xu et al.[49] introduced the role of circAKT3 
inhibiting cisplatin sensitivity by regulating mir-516b-5p/STAT3 axis.

Other important circRNAs described to be involved in chemotherapy resistance are hsa_circ_0071799 via 
miR-141 (taxol resistance)[50], hsa_circ 0091931 via miR-34c-5p[10], hsa_circ_0003998 via miR-326[51], 
hsa_circ_0001946 via miR-7-5p, miR-671-5p, miR-1270 and miR-3156-5p (NER signaling, cisplatin 
resistance)[52], circPVT1 via miR-145-5p (ABCC1, cisplatin, and pemetrexed resistance)[53], circNFIX via 
miR-132 (TMZ-resistant)[54], and cESRP1. Huang et al.[55] recently discovered a suppressor circRNA that, 
when downregulated, allows major expression of its target miR-93-5p. This process leads to the 
upregulation of downstream targets, such as Smad7/p21(CDKN1A), enhancing the transforming growth 
factor-β (TGF-β) pathway. Furthermore, cESRP1 overexpression boosts cisplatin sensitivity by repressing 
miR-93-5p and TGF-β pathway in SCLC. Related to this pathway, PDPK1, intermediary of the 
PI3K/AKT/mTOR pathway, has been discovered to be regulated by the hsa_circ_0004015-miR-1183 axis[56]. 
Overexpression of this circRNA can induce gefitinib resistance in NSCLC cells by sponging the 
abovementioned miRNA.

Other authors have centered their investigation on the differential expression of circRNAs that confer 
resistance to this and other tyrosine kinase inhibitor-based therapies. Fu et al.[57] found 
hsa_circRNA_012515 increased in gefitinib-resistant NSCLC cell lines. Further investigation in patient 
tissue indicated that high expression correlated with lower OS and shorter progression free survival. Chen 
et al.[58] found 10 differentially expressed circRNAs in different osimertinib-resistant lung cancer cell lines. 
Five of them were further validated and proved to correlate with resistance status (hsa_circ_0043632, 
hsa_circ_0048856, hsa_circ_0043634, hsa_circ_0050581, and hsa_circ_0023302)[58]. The authors made use of 
specific software to predict possible targeted miRNAs; however, the axis or mechanism of action has not yet 
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Table 2. List of circRNAs involved in NSCLC treatment resistance

circRNA Gene CircBase ID Source Regulation Resistance Drug Target
 
Downstream 
pathway

Ref.

circSEMA5A SEMA5A hsa_circ_0071799 NSCLC cells Upregulated Chemotherapy Taxol hsa-miR-141-5p; also, hsa-miR-1228-5p, 
hsa-miR-194-3p, hsa-miR-512-5p, hsa-
miR-4-5p

- Xu et al.[50], 2018

circFLNA FLNA hsa_circ_0091931 NSCLC cells Downregulated Chemotherapy Taxol hsa-miR-34c-5p; also, hsa-miR-105-3p, 
hsa-miR-1268b, hsa-miR-1226-5p, hsa-
miR-1180 

- Xu et al.[50], 2018

circMTDH.4 SNORD115 - NSCLC tissue and 
cell lines

Upregulated Chemotherapy 5�FU, cisplatin hsa-miR-630 AEG�1 Li et al.[47], 2020

circESRP1 ESRP1 hsa_circ_0084927 Lung cancer cells Downregulated Chemotherapy Generic 
chemotherapy

hsa-miR-93-5p TGF-β pathway Huang et al.[55], 
2020

circARFGEF2 ARFGEF2 hsa_circ_0003998 LUAC cells Upregulated Chemotherapy Docetaxel hsa-miR-326 - Yu[51], 2019

circCDR1 CDR1 hsa_circ_0001946 A549 cell line Downregulated Chemotherapy Cisplatin hsa-miR-7-5p, hsa-miR-671-5p, hsa-miR-
1270, hsa-miR-3156-5p

NER signaling Huang et al.[52], 
2019

circPGC PGC hsa_circ_0076305 NSCLC tissues and 
cell lines

Upregulated Chemotherapy DDP hsa-miR-296-5p STAT3 Dong et al.[48], 
2019

circAKT3 AKT3 hsa_circ_0017252 Lung cancer tissues 
and cell lines

Upregulated Chemotherapy DDP, cisplatin hsa-miR-516b-5p STAT3 Xu et al.[49], 
2020

circPVT1 PVT1 hsa_circ_0001821 LUAC tissues and 
cell lines

Upregulated Chemotherapy Cisplatin, 
pemetrexed

hsa-miR-145-5p ABCC1 Zheng et al.[53], 
2020

circCDK14 CDK14 hsa_circ_0004015 NSCLC cells Upregulated Tyrosine Kinase 
Inhibitors (TKIs)

Gefitinib hsa-miR-1183 PDPK1 gene Zhou et al.[56], 
2019

circKRT17 KRT17 hsa_circ_0043632 AZD9291-resistant 
NSCLCcell lines

Upregulated Tyrosine Kinase 
Inhibitors (TKIs)

Osimertinib hsa-miR-6861-3p, hsa-miR-492, hsa-miR-
4743-5p, hsa-miR-6829-3p, hsa-miR-
6778-3p 

- Chen et al.[58], 
2019 

circFXYD3 FXYD3 hsa_circ_0050581 AZD9291-resistant 
NSCLCcell lines

Downregulated Tyrosine Kinase 
Inhibitors (TKIs)

Osimertinib hsa-miR-6722-5p, hsa-miR-4641, hsa-
miR-4707-3p, hsa-miR-4258, hsa-miR-
652-3p

- Chen et al.[58], 
2019

circFGFR1 FGFR1 hsa_circ_0084003 NSCLC tissues and 
cells 

Upregulated Immunotherapy Anti-PD-1 therapy hsa-miR-381-3p PD-1 Zhang et al.[59], 
2019

been elucidated.

CircRNAs seem to also have a role mediating response to immunotherapy. CircFGFR1 has been described by Zhang et al.[59] to promote progression and anti-
PD-1 resistance. By sponging miR-381-3p in NSCLC cells, C-X-C motif chemokine receptor 4 would result upregulated, leading to progression and resistance 
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to therapy.

CURRENT LANDSCAPE OF CIRCULAR RNAS IN LIQUID BIOPSIES AS NSCLC 
BIOMARKERS
Non-coding RNA-enriched exosomes are strategic players in different cancer stages, especially regarding 
malignant tumor metastasis[60]. The assessment of circRNA expression by RNAseq analysis in extracellular 
vesicles was first reported by Li et al.[61], finding circRNAs enriched at least 2-fold in exosomes compared to 
producer cells. Although some authors defend the theory that exosomal circRNA enrichment may be a 
mechanism of cellular circRNA clearance[62], few investigators have shown that these circRNA are directly 
involved in cellular communication, henceforth, acting as direct readouts of several human malignancies, 
including NSCLC[63].

As a result, circRNAs stand as important liquid biopsy-derived biomarkers, holding potential for NSCLC 
diagnosis and prediction of treatment response[64].

In a recent study, Chen et al.[65] performed high throughput sequence of plasma-EV RNA cargo of lung 
adenocarcinoma patients, finding 182 circRNA dysregulated when compared to cancer-free donors, 
including 105 up-regulated and 78 downregulated. Four upregulated circRNAs were successfully validated 
by qRT-PCR (hsa_circ_0001492, hsa_circ_0001346, hsa_circ_0000690, and hsa_circ_0001439)[65]. Although 
authors elucidated the specific circRNA-miRNA-mRNA interaction, not much information about their 
biological impact was provided.

Fei et al.[66] also presented in a recent study a novel circRNA, hsa_circRNA_005661, that could be found 
enriched in plasma EVs from lung adenocarcinoma patients with lymph node metastasis, presenting it as a 
biomarker of such stage[66].

Not only plasma-EVs, but serum and whole plasma can serve as a good source of circRNAs [Table 3]. 
Xian et al.[67] studied the circRNA differential expression profile in serum EVs from NSCLC patients. As a 
result, 3 circRNA stood out showing suitable biomarker potential (hsa_circ_0047921, hsa_circ_0007761, 
and hsa_circ_0056285) with the later correlating with clinical stages and lymph node metastasis in all 
Chinese patients included in the study[67].

Hang et al.[68] explored the use of circRNA found in total plasma of NSCLC patients in order to find some 
candidates that could correlate to malignancy status. Not only did they find a notorious circRNA coming 
from the FARSA gene, circFARSA, but they also found a set of differentially expressed circRNAs 
(hsa_circ_0001495, hsa_circ_0000566, hsa_circ_0001238, hsa_circ_0007037, circ_c1orf116, 
hsa_circ_0001083, hsa_circ_0006451, hsa_circ_0004458, and hsa_circ_0000847) based on which they were 
able to discriminate NSCLC patients from healthy individuals. Additionally, they performed in silico 
investigation of possible targets of circFARSA. Consequently, miR‐330‐5p and miR‐326 emerged as direct 
target candidates. Both miR‐330‐5p and miR‐326 may interact directly with fatty acid synthase, which has 
been described as a notorious oncogene in various types of cancer[68].

Also, directly from plasma Liu et al.[69] found a two circRNA-based signature that could potentially be used 
to classify lung adenocarcinoma patients. Hsa_circ_0005962 was found upregulated while hsa_circ_0086414 
was barely expressed. In addition, they observed that overexpression of hsa_circ_0005962 was correlated to 
mutant EGFR expression. In vitro experiments suggested that this circRNA could be involved in cancer 
proliferation.
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Table 3. List of the most relevant liquid biopsy-based circRNAs associated with NSCLC

 
circRNA Gene circBase ID Source Expression Target Ref.

circERBB2IP ERBB2IP hsa_circ_0001492 LUAD plasma 
exosomes

Upregulated hsa-miR-130b-5p, hsa-miR-5195-3p, 
hsa-miR-4464, hsa-miR1236-3p, hsa-
miR-106a-3p 

circRNF13 RNF13 hsa_circ_0001346 LUAD plasma 
exosomes

Upregulated hsa-miR-34B-5P, ha-miR-654-3p, hsa-
miR-5683, hsa-miR-4452, hsa-miR-
4662b

circITGAL ITGAL hsa_circ_0000690 LUAD plasma 
exosomes

Upregulated hsa-miR-7161-3p, hsa-miR-9-5p, hsa-
miR-6843-3p, hsa-miR-4502, miR-372-
5p

circSCLT1 SCLT1 hsa_circ_0001439 LUAD plasma 
exosomes

Upregulated hsa-miR-3671, hsa-miR-452-5p, hsa-
miR-892c-3p, hsa-miR-223-3p, hsa-
miR-4676-3p 

Chen et al.[65], 
2019

circCD226 CD226 hsa_circ_0047921 NSCLC serum 
exosomes

Downregulated hsa-miR-let-7g

circATXN7 ATXN7 hsa_circ_0007761 NSCLC serum 
exosomes

Upregulated -

circRALB RALB hsa_circ_0056285 NSCLC serum 
exosomes

Downregulated -

Xian et al.[67], 
2020

circNPHP4 NPHP4 hsa_circ_0005661 LUAD plasma 
exosomes

Upregulated - He et al.[66], 
2020

circFARSA FARSA hsa_circ_0000896 NSCLC plasma Upregulated hsa-miR-330�5p, hsa-miR-326, hsa-
miR-1270

circCCCNB1 CCCNB1 hsa_circ_0001495 NSCLC plasma Upregulated -

circVRK1 VRK1 hsa_circ_0000566 NSCLC plasma Upregulated -

circCCDC134 CCDC134 hsa_circ_0001238 NSCLC plasma Upregulated -

circZCCCJC6 ZCCCJC6 hsa_circ_0007037 NSCLC plasma Upregulated -

circ_c1orf116 C1ORF116 hsa_circ_0141539 NSCLC plasma Upregulated -

circPMS1 PMS1 hsa_circ_0001083 NSCLC plasma Upregulated -

circDNA2 DNA2 hsa_circ_0006451 NSCLC plasma Upregulated -

PcircSD3 SD3 hsa_circ_0004458 NSCLC plasma Upregulated -

circSMAD2 SMAD2 hsa_circ_0000847 NSCLC plasma Upregulated -

Hang et al.[68], 
2018

circYWHAZ YWHAZ hsa_circ_0005962 LUAD plasma Upregulated hsa-miR-369-5p, hsa-miR-626, hsa-
miR-326, hsa-miR-330-5p, hsa-miR-
1265, and hsa-miR-622

circBNC2 BNC2 hsa_circ_0086414 LUAD plasma Downregulated - 

Liu et al.[69], 2019 

F-circEA EMLK4-
ALK

Lung cancer 
tissues, plasma and 
cells

Upregulated - Tan et al.[70], 
2018

circZNF91 ZNF91 hsa_circ_0109320 NSCLC plasma Downregulated -

circZNF117 ZNF117 hsa_circ_0134501 NSCLC plasma Upregulated -

Liu et al.[74], 2019

Moreover, a fusion-gene circRNA has been studied in liquid biopsies. Tan et al.[70] started their line of 
research exploring the existence of a circRNA derived from the fusion gene EML4-ALK (F-circEA) in the 
NCI-H2228 cell line. After verification, they observed that overexpression of this circRNA could trigger cell 
migration and invasion, contributing to tumor development. They validated the existence of this circRNA 
in plasma of NSCLC patients with the EML4-ALK translocation, suggesting that screening of plasma F-
circEA in this type of patients could be a valuable approach to monitor the EML4-ALK translocation, and 
provide further guidance on targeted therapy.

Alhasan et al.[71] showed for the first time that platelets are enriched in circRNAs when compared to 
nucleated tissues, and also, that their content is superior to that on mRNA. Preußer et al.[72] demonstrated 
that platelets are not only a good source of circRNA, but also platelet-derived extracellular vesicles are 
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enriched in these biomolecules, representing yet another source of potential biomarkers that may be 
involved in different signaling pathways.

Platelets change their RNA profile when in contact with the tumor, enabling them to contribute to the 
systemic and local responses to tumor growth. As a result, TEP-RNA can be used as a potential biomarker 
for cancer diagnostics[73]. Although TEPs could also possibly be enriched in circRNAs, and hold potential 
value for NSCLC diagnosis, nothing yet has been investigated.

Little has been elucidated regarding NSCLC treatment resistance based on liquid biopsy-based circRNAs. A 
study of Yu-Tao et al.[74] comparing gefitinib responder and non-responder NSCLC patients found that 
higher expression of hsa_circ_0109320 in plasma correlated with longer progression free survival in 
gefitinib-treated NSCLC patients[74]; however, no information on the potentially affected signaling pathway 
has been provided.

Current available methods for the study of circRNAs in liquid biopsies
Although there are different methods currently available for the study of circRNAs [Table 4], no consensus 
has been reached on which protocol to follow for either tissue or liquid biopsy-based circRNA expression 
analysis.

The range of possibilities when selecting a bio-source is rather ample[75]. Whilst plasma or serum can 
provide a higher yield of total RNA, tumor released EVs stand out by providing a more accurate picture of 
lung cancer at the transcriptional level[76]. Procedures such as ultracentrifugation, ultrafiltration, or size-
exclusion chromatography are examples of the range of methods accepted by the International Society for 
Extracellular Vesicles for the study and purification of these biomarkers[77].

In the case of EV circRNA investigation, concentration levels may sometimes be the limitation factor that 
restricts further downstream processes. Therefore, in this case, EV isolation methods should be focused on 
achieving a higher EV-derived circRNA yield rather than acquiring extra pure EV samples, which are 
mainly attained by compromising RNA concentration[78].

De novo discovery of circRNA
Full-length RNA sequencing emerged as the first method proving beneficial for de novo circRNA 
identification[9]. By processing total RNA, unmatched reads are selected and assembled by remapping to 
custom databases containing all human intragenic exon-exon junctions. This protocol first introduced by 
Salzman et al[79]. has since been improved with new procedures including ribosomal RNA depletion and 
non-polyadenylated RNA exonuclease-mediated enrichment (RNase R)[79]. Further validation of novel 
identified targets requires use of specific bioinformatic tools that allow junction site identification from 
deep-sequencing data. The rise of newly developed bioinformatic methods have boosted the discovery and 
analysis of thousands of circRNA [Table 5]. However, sensitivity may be a limitation when using next-
generation sequencing for circRNA discovery since library preparation is frequently associated with the loss 
of low-expressed molecules[80]. Other methodologies such as microarrays or the nCounter platform have 
emerged to overcome this issue; however, circRNA discovery in these cases gets restricted to the candidates 
included either in the array or the gene panel.

Microarrays are useful tools for high-throughput analysis and expression studies of circRNAs where probes 
are designed to bind specifically to the junction site, getting immobilized, incubated, and further 
sequenced[81]. Samples may normally be subject to RNase R to reduce background noise and enhance 
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Table 4. Current methods for circRNA study

Method Application Total RNA input Advantages Disadvantages Ref.

RNAseq circRNA discovery Normally ≥ 1µg is needed; however, 1 ng 
has been used in liquid biopsies showing 
good results 

- Allows whole transcriptome sequence 
analysis, including rare and low abundant 
circRNAs

- Time consuming 
- It involves high quality RNA 
- Requires expertise for library preparation, 
sequencing, and Bioinformatics, for data 
normalization and analysis 

Cheng et al. [125]

Microarrays circRNA discovery 2 µg - Highly sensitive and specific for circRNA 
profiling 
- Easy technology, commercial arrays ready to 
use

- Although it may be possible to work with less 
RNA, recommended input remains rather high  
- circRNA discovery gets restricted to the amount of 
circRNA included in the panel 
- Requires Bioinformatics expertise for data 
normalization and analysis 

Valladares-
Ayerbes et al. [126]

nCounter circRNA discovery 
and quantification

85 ng - Allows multiplexed analysis of up to 800 
circRNA targets 
- Does not require amplification (if enough 
RNA input) 
- Works well with low quality RNA samples 
- Very little hands-on time, with results ready 
within 24 h 
- User-friendly data analysis software reducing 
the need for Bioinformatics support 

- circRNA discovery gets restricted to the amount of 
circRNA included in the panel 
- Technology is costly, and constrained by one 
company 
 
 

Zhang et al.[127] 
Dahl et al.[85], 
2018

qRT-PCR circRNA 
quantification

250 ng (3 replicas, 1 gene) - Well-established technology 
- Cost-effective 

- Does not allow analysis of a large number of genes 
- Susceptible to template switching and rolling circle 
amplification bias 

SplintQuant circRNA 
quantification

2 nM - Sensitive and specific approach 
- Highly reproducibility rates 
- Eludes the template switching and rolling 
circle amplification bias found with qRT-PCR

- Novel protocol 
- No tested in liquid biopsies 

Conn[92], 2019

RT-PCR + end-point PCR 
+ Sanger Sequencing

circRNA identification 
and validation

100 ng - Well-established technology 
- Cost-effective 
- Specific 
- Gold standard for circRNA validation

- It may require time to test divergent primers  
- Optimization is required for each pair of primers 
- Does not allow multiplexing

Panda et al.[89], 
2018

Northern Blot circRNA identification 
and validation

1-50 µg - Specific circRNA detection 
- Allows isoform studies 
- Solves those problems attained to qRT-PCR 
such as template switching or rolling 
amplification biases 

- Low sensitivity 
- It requires a big amount of input which makes it 
incompatible with most liquid biopsy downstream 
processes 

Schneider et al.[128
]
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Table 5. Characteristics of online accessible circRNA resources

 
Name Resource Features Website Ref.

circBase Database One of the main resources 
with updated information 
discovered circRNAs. 
Provides a useful blat tool 
for circRNA alignment 
against the human genome 

http://www.circbase.org Garcia-Contreras et 
al.[84], 2014 

circBank Database Along with circBase, is one 
of the most important 
resources available 
including a database with 
most discovered circRNAs 
along with usegul 
information 

http://www.circbank.cn Liu et al.[93], 2019

circInteratome Database Complete database with 
different features that 
allow binding site 
prediction and knock-
down experiment 
designing 

https://circinteractome.nia.nih.gov Dudekula et al.[103], 
2016 

CIRCpedia Database Database for the 
identification of tissue 
specific circRNAs

http://www.picb.ac.cn/rnomics/circpedia Dong et al.[104], 2018 

circRNADb Database Searching tool for the 
identification of 
EcircRNAs. 

http://reprod.njmu.edu.cn/circrnadb Chen et al.[105], 2016

circRNABase Database Allows circRNA network 
prediction 

http://www.hzrna.com/circrn-shujuku/circrnabase circRNABase[106], 
2016

circR2Disease Database Serves for the 
identification of circRNA-
miRNA interactions 
associated to different 
diseases 

http://bioinfo.snnu.edu.cn/CircR2Disease/ Fan et al.[107], 2018

starBase Database Serves for the 
identification of circRNA-
miRNA interactions 

http://starbase.sysu.edu.cn/ Li et al.[108], 2014

circAtlas Database Databased with annotation 
of circRNAs and with tools 
that allow identification of 
circRNA-miRNA 
interactions 

http://circatlas.bols.ac.cn/ Wu et al.[109], 2020

circFunBase Database A database for functional 
circRNAs

http://bis.zju.edu.cn/CircFunBase Meng et al.[110], 2019

circad Database Serves for the 
identification of circRNA-
miRNA interactions 
associated to different 
diseases 

http://clingen.igib.res.in/circad/ Rophina et al.[111], 
2020

circView Visualization 
tool

Identification circRNA 
associated miRNAs and 
RBPs 

http://gb.whu.edu.cn/CircView/ Feng et al.[95], 2018

CSCD Bioinformatic 
tool

Identification circRNA 
associated miRNAs and 
RBPs, with a focus on 
circRNA with transcription 
potential 

http://gb.whu.edu.cn/CSCD/ Xia et al.[112], 2018

cirRNAPL Bionformatic 
tool

Identification of circRNA 
based on extreme learning 
machine 

http://server.malab.cn/CirRNAPL/index.html Niu et al.[113], 2020

nSolver Program-
Bioinformatic 
tool

Analysis of RNA 
expression data generated 
by the nCounter platform 

www.nanostring.com -

Serves for the 
identification of circRNA-

circ2Traits Pipeline http://gyanxetbeta.com/circdb/ Ghosal et al.[114], 
2013 

http://www.circbase.org
http://www.circbank.cn
https://circinteractome.nia.nih.gov
http://www.picb.ac.cn/rnomics/circpedia
http://reprod.njmu.edu.cn/circrnadb
http://www.hzrna.com/circrn-shujuku/circrnabase
http://bioinfo.snnu.edu.cn/CircR2Disease/
http://starbase.sysu.edu.cn/
http://circatlas.bols.ac.cn/
http://bis.zju.edu.cn/CircFunBase
http://clingen.igib.res.in/circad/
http://gb.whu.edu.cn/CircView/
http://gb.whu.edu.cn/CSCD/
http://server.malab.cn/CirRNAPL/index.html
http://www.nanostring.com
http://gyanxetbeta.com/circdb/
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miRNA interactions 
associated to different 
diseases 

circMeta Pipeline Genomic feature 
annotation and differential 
expression analysis of 
circular RNAs

https://github.com/lichenlab/circMeta Chen et al.[115], 2020

circRNAwrap Pipeline Pipeline designed for 
circRNA identification, 
transcript prediction, and 
abundance estimation 

https://github.com/liaoscience/circRNAwrap Li et al.[116], 2019

SpliceV Pipeline Analysis and publication 
quality 
printing of linear and 
circular RNA splicing, 
expression and regulation 

https://github.com/flemingtonlab/SpliceV Ungerleider et al.
[117], 2019

CIRCexplorer3 Pipeline Pipeline for the direct 
comparison of circular and 
linear RNA expression 

https://github.com/YangLab/CLEAR Ma et al.[118], 2019

circDeep Pipeline Permits circular RNA 
classification from other 
long non-coding RNA

https://github.com/UofLBioinformatics/circDeep Chaabane et al.[119], 
2020

Segemehl Pipeline Pipeline for the 
identification of fusion 
reads  

http://www.bioinf.uni-
leipzig.de/Software/segemehl/segemehl_0_2_0.tar.gz

Hoffmann et al.[120], 
2014

MapSplice Pipeline Application for small 
segment mapping 

http://www.netlab.uky.edu/p/bioinfo/MapSpliceDownload -

DCC Pipeline Identification of circRNA 
from fusion reads 

https://github.com/dieterichlab/DCC Cheng et al.[121], 
2016

UROBORUS Pipeline Allows identification of 
EcircRNAs 

https://github.com/WGLab/uroborus/ Song et al.[122], 2016

NCLscan Pipeline Identification of non-
coding transcripts 

https://github.com/TreesLab/NCLscan Chuang et al.[123], 
2016

Trcirc High-
throughput 
Data analysis 
tool

Allows the prediction of 
circRNA-transcription 
factor regulatory networks 

http://www.licpathway.net/TRCirc/ Tang et al.[124], 2018

detection. This systematically expression profiling process is quite sensitive and straight forward. Current 
methodology developed by Arraystar includes all necessary tools in order to get detailed annotation specific 
to circRNA biology, such as miRNA binding sites or conservation status, to reveal all possible functional 
roles as miRNA sponges.

The nCounter platform allows multiplex analysis of up to 800 circRNA transcripts by direct capturing and 
counting of individual targets[82]. This qualitative and quantitative process is rather simple and requires 
minimal hands on, providing results in less than 48 h. Although nCounter is routinely used for RNA 
expression assessment in both FFPE and fresh tissues, only few studies have investigated its potential when 
it comes to liquid biopsies. EV-DNA[83] and EV-miRNA[84] profiles have been examined with this platform 
obtaining different success rates; however, investigation with circRNA remains restricted to tumor and 
cultured cells[85], and in no case this platform has been explored for lung cancer research so far.

CircRNA identification and validation
For circRNA validation, end-point PCR has been established as the most extended practice using divergent 
primers spanning the junction site and followed by further Sanger sequencing[63].

https://github.com/lichenlab/circMeta
https://github.com/liaoscience/circRNAwrap
https://github.com/flemingtonlab/SpliceV
https://github.com/YangLab/CLEAR
https://github.com/UofLBioinformatics/circDeep
http://www.bioinf.uni-leipzig.de/Software/segemehl/segemehl_0_2_0.tar.gz
http://www.bioinf.uni-leipzig.de/Software/segemehl/segemehl_0_2_0.tar.gz
http://www.netlab.uky.edu/p/bioinfo/MapSpliceDownload
https://github.com/dieterichlab/DCC
https://github.com/WGLab/uroborus/
https://github.com/TreesLab/NCLscan
http://www.licpathway.net/TRCirc/
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RNase R treatment is still a debate whether it is beneficial or not to use it in liquid biopsy samples. RNase R 
has been widely used for the study of circRNAs since it has the property of affecting mostly linear RNA, 
henceforth, enriching our samples with circRNAs[86]. However, some circRNAs have demonstrated to be 
sensitive to the effect of this exonuclease[85]. The often-long incubation periods can compromise the quality 
of our RNA samples. In addition, RNase treatment has been proved to not be 100% effective towards 
mRNA depletion which could lead to a circRNA overestimation if quantification by qPCR is the next 
downstream process and convergent primers are used. Xiao et al.[87] proved that standard RNase R protocols 
result in up to 20% of highly expressed mRNAs being unaffected. Therefore, the correct design of divergent 
primers is instrumental for the study of circRNAs, regardless of whether RNase R treatment is applied to the 
samples or not. Authors also described that RNase R protocol could be enhanced by replacing K+ by Li+ in 
the reaction buffer so enzyme can digest complex structured linear transcripts; however, this is a convoluted 
process that, even though scientifically relevant, may not result practical in the laboratory routine.

Northern blot analysis has arisen as another common methodology for the study of circRNAs. Following 
standard protocols, once the RNA is transferred from the gel onto a blotting membrane, circRNAs are then 
hybridized with short probes normally designed spanning the junction site, hence, allowing circRNA 
identification. This method also allows studies on size, isoforms, sequence, and abundance of these circular 
transcripts[88]. However, the usual high amounts of RNA required for this method is rather high, so 
investigations get restricted mostly to RNA from either tissue or cell lines.

Quantification of circRNA
Nowadays, different methodologies are being used for the quantification of circRNAs both in solid and 
liquid biopsies. qRT-PCR has been broadly established as one of the easiest and predilected mechanisms of 
quantification[89]; however, different aspects may need to be taken into consideration.

Contrary to tissue, circRNAs are enriched in plasma exosomes[61]. In this case, RNase R treatment may not 
be recommended due to the low overall RNA concentration that is expected in these vesicles, however, 
sometimes its use is necessary to validate primer specificity or due to the nature of specific experiments. In 
this respect, it is important to stress the need of designing divergent primers as previously cited, along with 
a probe spanning the junction site. Furthermore, throughout this procedure, the expression of classical 
reference genes, such as beta-actin or GADPH, will result altered; hence, ruling out the possibility of 
performing circRNA expression evaluation by using classical normalization procedures. In this case, the 
selection of circular RNA housekeeping genes[90] is crucial for the correct assessment of circRNA expression.

CircRNA amplification via reverse transcription PCR (RT-PCR) often leads to extended concatemeric 
transcript amplification from a single priming of the reverse transcriptase. This process, triggered by the 
circular architecture of these molecules, is known as rolling circle amplification, and was first described by 
You et al.[91] while studying circRNA expression in brain tissues. This event is not problematic if de novo 
circRNA discovery is intentional and direct comparison with canonical transcripts is not envisioned (in fact, 
it can be beneficial for the study of circRNA splice variants). However, this does not apply to transcript 
abundant studies, in which this mechanism can introduce biases leading to an overestimation of circRNA 
expression.

Conn et al.[92] demonstrate this in a study with synthetic circRNAs, resulting in a five-fold increase of 
circRNAs compared to the expected expression upon RT-PCR and further qPCR amplification. This is a 
factor to take into consideration in the experimental design[92].



Pedraz-Valdunciel et al. Extracell Vesicles Circ Nucleic Acids 2021;2:179-201 https://dx.doi.org/10.20517/evcna.2020.07                  Page 195

The same group has developed a cutting-edge tool to avoid the bias introduced by normal qRT-PCR 
quantification throughout their newly designed SplintQuant method[92]. This technology is based on the 
inclusion of custom DNA oligonucleotides that complement target circRNAs, and making use of the PBCV-
1 DNA ligase, synthesize cDNA skipping reverse transcription. The system is sensitive, specific and 
reproducible, allowing the identification and quantification of canonical and non-canonical RNA 
transcripts including gene fusions and alternative splice variants.

nCounter technology stands out as a very effective and sensitive option for circRNA quantification. Its 
application for the analysis and quantification of circRNAs has been systematically studied by Dahl et al.[85] 
in different solid biosources (including formalin fixed paraffin-embedded specimens) for the study of B-cell 
malignancies, becoming the first group to use this technology for the study of circRNA expression.

Bioinformatic and computational tools for the study of circRNA
Identification of circRNAs can be a straight-forward process when using microarray or nCounter data 
where the exploratory approach gets restricted to a specific panel of genes. However, detection of circRNA 
can be a much more complex in the case of deep-sequencing data analysis due to the complexity on the 
computational workflows. For this purpose, different pipelines and computational analysis tools have been 
created to facilitate this process [Table 5]. Different publicly available databases such as circBank[93], 
circBase[94], or circView[95] have proved useful to simplify the study of circRNA throwing light on specific 
features such as miRNA binding sites, m6A modifications, mutations, or unveiling protein-coding potential 
[Table 5]. These databases also allow browsing and download of FASTA files based on specific searching 
criteria.

DISCUSSION
The recent impact of circRNAs in lung cancer research has become undeniable. Since ciRS-7 was 
introduced as the first circRNA ever described to play a role in hepatocellular carcinoma[36], many others 
have followed, extending to different types of cancer, henceforth, consolidating their position as active 
players in cancer development and progression of malignancy. Recently, publications exploring the 
biomarker potential of these molecules in NSCLC have remarkably increased, with an exponential growth 
in the last five years. Nevertheless, despite the patent progress in this field, current research is 
predominantly restricted to expression analysis of circRNA in tumor samples, with very little information 
regarding validation in liquid specimens.

EVs, including exosomes, are released by most cells in the body and can be easily isolated from plasma[96]. 
Tumor EVs can mediate intercellular communication between tumor cells and tumor 
microenvironment[97]; therefore, the study of these molecules via their molecular identification can offer a 
valuable spatiotemporal snapshot of the state of the disease. However, while several publications have 
widely demonstrated that EV cargo is enriched in circRNAs[61], not many investigators have focused on this 
line of research, delaying the development of novel liquid biopsy-based tools for NSCLC detection. While 
the potential value of liquid biopsies in the clinic has been recognized as beneficial[98], in the research 
context, liquid bio-sources can be rather challenging, including plasma circRNA investigation.

With a superior relative expression and stability in EVs than the canonical mRNA, the extent of circRNA in 
EVs still remains very low, frequently limiting further downstream analysis. This is unlikely to be an issue in 
solid tumors; while circRNA overall expression is frequently low (1%-10%)[14], RNA concentration is rarely a 
limitation. Furthermore, very often the study of circRNA expression relies on enzymatic amplification - 
qPCR. This course fueled by the circular architecture of these molecules can sometimes lead to the not-so-
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well-known rolling cycle amplification events, resulting in an inaccurate yet overestimated circRNA 
quantification[92], frequently leading to untruthful and irreproducible results.

On addition to the above exposed, there is not a general consensus about other fundamental matters such as 
EV isolation method (if we target the study of the EV circRNA cargo), potential use of RNase R, or readout 
assessment, among others. As a result, standardization of protocols for the study of circRNA has become 
instrumental for the study and implementation of these novel biomarkers into the liquid biopsy setting.

Some technologies have arisen as incipient alternatives such as the nCounter platform or the newly 
developed SplintQuant. Both of them rely on very low RNA input and can overcome the deviation issues 
that enzymatic qPCR may create.

Additionally, platelets, especially tumor educated platelets, hold a great unexplored potential as a source of 
circRNAs, not only due to their higher concentration in RNA when compared to EVs, but also due to the 
high enrichment they present towards these circular biomolecules. To elucidate wheater platelet derived 
circRNA signatures could be of better, equal, or complementary value of the ones from EVs, additional 
investigation will be required.

Nowadays, most studies aim to exploit the biomarker potential of lung cancer circRNAs, frequently leaving 
aside any additional examination of their inherent biology. Further research elucidating the different 
molecular functions of these molecules is greatly needed in order to achieve a future circRNA-based liquid 
biopsy test.

The rediscovered role of circRNAs as lung cancer biomarkers has the potential to reshape the landscape of 
liquid biopsies. They count on most features needed to be considered a good biomarker: they can be 
measured in blood[99], including plasma[68], serum[100], and urine[101]; they are reasonably robust and very 
stable due to their circular architecture[34]; and do not require special handling protocols other than those 
required for the rest of RNA types. Due to the diverse implications in cancer progression and development 
of resistance[34], circRNAs could provide additional information improving diagnosis and treatment 
guidance by either generating new signatures, or complimenting existing ones.

Circulating tumor DNA is the most commonly explored liquid biopsy for NSCLC, counting with few tests 
already clinically implemented for the detection of classical mutations such as EGFR Del19 and p. L858R 
mutation[102]. However, many lung cancer cases are not linked to a specific driver mutation; therefore, 
research on new biomarkers, including circRNAs, and further development of multi-omic signatures of 
tumor microenvironment could provide additional diagnostic opportunities for these patients.

However, as mentioned above, several circRNA quantification methods have limitations, and a clear 
protocol needs first to be established in order to develop any clinically applicable assay. In addition, clinical 
utility should be demonstrated by providing convincing evidence of the new biomarker performance (in 
comparison to currently accepted cfDNA/mRNA liquid biopsy tests), and so far, no circRNA biomarker has 
achieved that status, probably due to the difficulty of recruiting large patient cohorts required to prove 
biomarker utility.

Further studies in biomarker discovery, molecular biology, and protocol standardization are warranted in 
the upcoming years to achieve the implementation of these novel biomarkers in the clinical setting.
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Although many studies highlight the implication of circular RNAs (cir-
cRNAs) in carcinogenesis and tumor progression, their potential as cancer
biomarkers has not yet been fully explored in the clinic due to the limita-
tions of current quantification methods. Here, we report the use of the
nCounter platform as a valid technology for the analysis of circRNA
expression patterns in non-small cell lung cancer (NSCLC) specimens.
Under this context, our custom-made circRNA panel was able to detect
circRNA expression both in NSCLC cells and formalin-fixed paraffin-
embedded (FFPE) tissues. CircFUT8 was overexpressed in NSCLC, con-
trasting with circEPB41L2, circBNC2, and circSOX13 downregulation even
at the early stages of the disease. Machine learning (ML) approaches from
different paradigms allowed discrimination of NSCLC from nontumor con-
trols (NTCs) with an 8-circRNA signature. An additional 4-circRNA sig-
nature was able to classify early-stage NSCLC samples from NTC,
reaching a maximum area under the ROC curve (AUC) of 0.981. Our
results not only present two circRNA signatures with diagnosis potential
but also introduce nCounter processing following ML as a feasible proto-
col for the study and development of circRNA signatures for NSCLC.

Abbreviations

AUC, area under the curve; circRNA, circular RNA; FFPE, formalin-fixed paraffin-embedded; GBM, gradient boosting machines; KNN,

k-nearest neighbors; LOOCV, leave-one-out cross-validation; miRNA, micro RNA; ML, machine learning; NPV, negative predictive value;

NSCLC, non-small cell lung cancer; PCR, polymerase chain reaction; PPV, positive predictive value; RF, random Forest; RFE, recursive

feature elimination; RNAseq, RNA sequencing; ROC, receiver operating characteristic; RT-qPCR, quantitative reverse transcription PCR; SD,
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1. Introduction

circRNAs are a newly re-defined type of endogenous
RNA molecules originated by a noncanonical process
called ‘back-splicing’. Through this mechanism, the 50

splice donor covalently links to the 30 end of an
upstream exon, resulting in a single-stranded circular
structure which can include one or different exonic/in-
tronic regions [1]. This particular assembly lacking a
poly(A) tail makes them very stable and resistant to
exonuclease-mediated degradation when compared to
their linear counterparts [2].

The existence of circRNAs has been acknowledged
for more than 45 years. First evidence was reported in
1976 with the first description of viroids as ‘single-
stranded and covalently closed circular RNA mole-
cules’ [3], and their discovery in humans followed
almost two decades later [4]. However, it is not until
recently that their role has been clarified, evolving
from abnormally spliced unfunctional ‘scrambled’
transcripts to circular RNA molecules with a marked
role in homeostasis [5,6].

CircRNAs have been classified as noncoding RNA
for many years, due to the lack of a 50 cap structure
and their inability to bind to ribosomes. However,
recent studies reported that some circRNAs can be
translated into small functional peptides in a cap-
independent manner [7]. Other functions may include
serving as protein decoys, scaffolds, and/or recruiters
[8], or regulating the canonical transcription by com-
peting with the formation of linear cognates via back-
splicing [9,10]. Nonetheless, the most well-studied func-
tion is their interaction with miRNAs. A single cir-
cRNA can have several miRNA-binding sites through
which targeted miRNAs get ‘sponged’, thereby block-
ing their activity [11]. It is throughout this mechanism
how they predominantly exert their role as cell prolif-
eration regulators targeting mediators of classical sig-
naling pathways, such as MAPK/ERK, PI3K/AKT,
and WNT/b-catenin, or cell cycle checkpoint regula-
tors [11]. Because of their implication in the above-
mentioned processes, dysregulation of circRNA
expression can be associated to the development of dif-
ferent malignancies, including lung cancer. CircRNAs
are significantly associated with tumorigenesis, prolif-
eration, migration, and sensitivity to lung cancer thera-
pies [12] and, as a result, have been presented in many
recent studies as novel biomarkers to assess disease
status.

However, the number of studies focusing on the
development of circRNA signatures with either diag-
nostic or prognostic value in human malignancies is

rather small, probably due to the lack of standardized
circRNA quantification methods, which in turn is
hampering the development of clinically applicable
assays. RT-qPCR is widely used as a quantification
tool for circRNA expression studies. While its sensitiv-
ity and short turnaround time proves beneficial for cir-
cRNA research, several events such as template
switching, rolling circle amplification, or the bias
attached to this technique may hinder the results [13].
In addition, it does not allow high-throughput analy-
sis, which is necessary for biomarker discovery.
Microarrays or RNAseq may overcome these limita-
tions; however, the first have a limited range of detec-
tion disregarding those targets with either very low or
high expression, while the latter not only results rather
expensive but also includes other restrictions such as
the use of long time-consuming protocols, or complex
data analysis [14,15].

The nCounter technology allows multiplex analysis
of up to 800 transcripts by direct capture and counting
of individual targets [16]. With a short turnaround
time and minimal hands-on work, it provides results in
< 48 h with the use of an intelligible software. How-
ever, despite the growing number of laboratories using
this platform, it still gets mostly restricted to mRNA
analysis.

In this proof-of-concept study, we retrospectively
analyzed the circRNA expression profiles in NSCLC
cell lines and FFPE tissues by using a custom-designed
78 circRNA nCounter panel. Our data demonstrate
that nCounter can be employed not only for basic cir-
cRNA research but also for the development of clini-
cally useful circRNA signatures.

2. Materials and methods

2.1. Patient samples and cell lines

This study was carried out in accordance with the
principles of the Declaration of Helsinki, under an
approved protocol of the institutional review boards
of Quir!on Hospitals, and the IGTP-HUGTP Biobank.
FFPE lung cancer tissues were retrospectively collected
from 27 early-stage and 26 late-stage cancer patients
from the different Quir!on hospitals (Table 1). FFPE
tissue samples from 16 donors were collected as con-
trols from the IGTP-HUGTP Biobank. Most controls
did not present any type of cancer, except for four
samples which were extracted from the nontumorigenic
region of the lung from a cancer patient. Individuals
with different pathologies were also included to ensure
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the development of signatures specific of lung cancer
(Table S1).

All collected samples were assessed for tumor and
lymphocyte infiltration by a pathologist (Table S2).

Written informed consent was obtained from all
patients and further documented; samples were de-
identified for patient confidentiality. Clinical informa-
tion collected from each patient was limited to gender,
age, smoking status, tumor histology, driver mutation,
and stage.

A panel of seven human lung cancer cell lines har-
boring different mutations was selected along with two
normal epithelial cell lines (Table 2). Cell lines were
maintained following standard culture conditions [17]
in RPMI-1640 or DMEM (Gibco, Life Technologies,
Carlsbad, CA, USA) supplemented with 10% fetal
bovine serum (Gibco). All cell lines were tested for
mycoplasma infection.

2.2. RNA extraction

RNA extraction was performed following previously
published methods [18,19]. RNA from fresh cell lines
was isolated using the Allprep DNA/RNA/miRNA
universal kit (Qiagen, Hilden, Germany). FFPE cells
and tissues were deparaffined with xylene. After the
removal of xylene using ethanol, RNA was extracted
using the High Pure FFPET RNA isolation Kit
(Roche, Rotkreuz, Switzerland). RNA quantification
was performed using the Qubit 4 Fluorometer (Invitro-
gen, Carlsbad, CA, USA) with the Qubit RNA HS
Assay Kit (Invitrogen). RNA integrity was assessed
with the 2100 Bioanalyzer system (Agilent Technolo-
gies, Santa Clara, CA, USA) using the RNA 6000
Nano kit (Agilent Technologies).

2.3. Rnase-R treatment

5 µg of total RNA was either treated or mock-treated
with RNase-R (Lucigen, Madison, WI, USA). RNA

Table 1. Clinicopathologic characteristics of enrolled patients

(n = 69). NSCLC, non-small cell lung cancer.

Clinicopathological

characteristics

Lung cancer

patients (n = 53)

Noncancer

controls (n = 16)

Gender—no. (%)

Male 28 (52.8) 10 (62.5)

Female 25 (47.2) 6 (37.5)

Age—years

Median 66 59

Range 32–85 29–76
Smoking status—no. (%)

Ex- or current smoker 40 (75.5) 9 (56.25)

Never smoker 11 (20.8) 5 (31.25)

Not information 2 (3.7) 2 (12.5)

Histological type

Adenocarcinoma 43 –
Squamous carcinoma 1 –
Other NSCLC 9 –

Driver mutation

EGFR 6 –
Exon19 3 –
Exon21 1 –
Exon20-21 1 –
Exon21 and

amplification

1 –

KRAS 12 –
G12A 2 –
G12C 3 –
G12V 4 –
G12R 1 –
Other 2 –

BRAF 1 –
ROS 1 –
RET 2 –
ALK 1 –
MET (exon14

mutation)

1 –

Other alterations 5

Not information 24 –
Tumor stage—no. (%)

I 16 (30.2) –
II 4 (7.5) –
IIIA 7 (13.2) –
IIIB 3 (5.6) –
IV 23 (43.4) –

Table 2. Characteristics of the lung cell lines included in the study.

AD, adenocarcinoma; ATCC, American Type Culture Collection; NE,

normal epithelial; UCSF, University California San Francisco; UTSW,

University of Texas Southwestern.

Cell line Histology Gene Mutation Origin

A549 AD KRAS G12S ATCC

HOP-62 G12C ATCC

PC9 EGFR E746_A750

DL

Hoffmann-La

Roche, with the

authorization of

Dr. Mayumi Ono

HCC-827 E746_A750

DL

ATCC

NCI-H1666 BRAF G466V ATCC

NCI-H2228 ALK EML4-ALK,

variant 1

ATCC

NCI-H3122 EML4-ALK,

variant 3

ATCC

AALE NE – wt Dr. Trever Bivona

Lab, UCSF

HBEC30KT Dr. Minna Lab,

UTSW
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samples were denatured at 95 °C for 30 s following
addition of a master mix containing RNase-R (or
molecular grade water in the case of mock-treated sam-
ples), 109 RNase-R buffer adjusted to the final volume,
and molecular grade water. Samples were incubated
160 min at 40 °C and kept at 4 °C prior RNA quantifi-
cation and subsequent nCounter hybridization.

2.4. RT-qPCR and Sanger sequencing analysis

RT-qPCR and Sanger sequencing of circRNA junction
sites were performed as previously described [18].
10 µL of total RNA was converted into cDNA using
the M-MLV reverse transcriptase enzyme and random
hexamers (Invitrogen).

A 1 : 3 dilution of cDNA was performed, and
2.5 µL were added to the Taqman Universal Master
Mix (Applied Biosystems) in a 12.5 µL reaction con-
taining a specific pair of primers and probe for each
gene. Three replicas of each sample were run for the
quantification of the expression of each assessed cir-
cRNA. Three replicas of each sample were run for the
quantification of the expression of each assessed cir-
cRNA. Divergent primers and probe sets were
designed using Primer Express 3.0 Software (version
3.0.1, Applied Biosystems) with the latter spanning the
circRNA junction site (Table 3). Quantification of
gene expression was performed using the QuantStu-
dioTM 6 Flex System (Applied Biosystems) and calcu-
lated according to the comparative Ct method.

In all quantitative experiments, a sample was consid-
ered not evaluable when the standard deviation of the
Cq values was > 0.30 in two of the three independent
analyses (n = 3).

For Sanger sequencing, 10 µL of each PCR product
was loaded on a Precast Agarose HT-1gel and visual-
ized under UV light (E-GelTM Safe ImagerTM Real-
Time Transilluminator, Invitrogen) after electrophore-
sis (E-GelTM iBaseTM Power System, Invitrogen).

Five microliters of each cDNA sample were purified
using the PCR ExoSAP-IT Product Clean up Reagent
(Applied Biosystems). Sequencing PCRs were set up
using the BigDye Terminator v3.1 Cycle Sequencing
Kit (Applied Biosystems), forward primer, cDNA and
water in a final volume of 20 µL. Sequencing PCR
was performed using a Verity 96 well thermal cycler
(Applied Biosystems).

After sequencing amplification, samples were loaded
into a 96-well plate and subjected to Sanger sequencing
using the 3130 Genetic Analyzer (Applied Biosystems).

2.5. miRNA prediction and circRNA-miRNA
network construction

MiRNAs targeted by the differentially expressed cir-
cRNAs found in early-stage FFPE lung cancer tissues
were predicted using the CIRCINTERACTOME tool
(https://circinteractome.nia.nih.gov). circRNA-miRNA
interaction network was built using CYTOSCAPE (v3.8.2;
https://cytoscape.org). Association of miRNAs with
cancer-associated downstream signaling pathways was
investigated using the miRCancer database (https://
mircancer.ecu.edu).

2.6. NanoString nCounter panel design and
sample processing

A custom-made panel of 78 circRNAs was produced,
including both highly and lowly expressed circRNAs
that could be related to lung cancer (Table S3). Each
probe was designed to target a flanking exonic
sequence between 35–55 nucleotides of the circRNA
junction site. They also contain a complementary
region to capture and reporter probes, conforming a
precise configuration that allows specific recognition of
circular transcripts (Fig. S1). In addition, six linear
reference genes (GAPDH, MRPL19, PSMC4, RPLP0,
SF3, and UBB) and four mRNAs of FAM13B,

Table 3. Primer and probe design for circRNA validation by RT-qPCR. In blue marked the junction site.

circRNA

circEPB41L2 (hsa_circRNA_0001640) Forward GAAGACCAAAACTGTCCAGTGTAAAG
Reverse CACTTCAGACACAGAGCCTACTTCA
Probe TGACCTGGAGCATAAG

circSOX13 (hsa_circRNA_0004777) Forward CAGTGACTGGAAGGAGAGGTTTC
Reverse CTGGGCAGAGATGGGGCT
Probe AAAGATGTCAAAGGATGTCCATGA

circBNC2 (hsa_circ_0086414) Forward GTCTGCACAGTGGCTGGTTG
Reverse GGTGATGATTTCCTCTTCTCGAG
Probe AGACAGGATGCTGCTG
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HIPK3, MGA, and UBXN7 genes were included
(Table S2).

Sample processing in the nCounter was performed
as previously described [18] following NanoString’s
guidelines (Fig. S2).

2.7. Data normalization and differential
expression analysis

Raw count values were exported to Microsoft Excel
(version 16.40, Microsoft, Redmond, WA, USA) using
nSolver Analysis Software (version 4.0.70, NanoString
Technologies, Seattle, WA, USA). For each of the cir-
cRNAs included in the panel, raw counts lower than
the cut-off value established as background were auto-
matically excluded from further analysis. Background
was calculated for each sample by using the mean of
the negative probe counts plus two times the standard
deviation. Only circRNAs with a value > 10 counts
after background subtraction were considered as
expressed. Subsequent circRNA-specific counts were
normalized by dividing this number by the total num-
ber of counts for this sample. Resulting number was
multiplied by 10 000 (units expressed in counts per
10 000).

Further differential expression analysis of raw
nCounter data was carried out with R (version 4.0.2; R
Core Team and the R Foundation for Statistical Com-
puting, Vienna, Austria) and R studio (version
1.3.1056; RStudio PBC, Boston, MA, USA). Technical
variability correction, normalization, and differential
expression analysis was performed using the RUVSEQ

(version e1.24.0; Bioconductor Core Team, Buffalo,
NY, USA) and DESEQ2 (version 1.30.0; Bioconductor
Core Team) packages (RUVSEQ-DESEQ2, Bioconductor
Core Team). Firstly, the RUVg function was used to
estimate the unwanted variation among samples based
on the positive controls. The positive controls used in
the NanoString panel are Spike-In control sequences;
therefore, analogous constant expression of positive
controls is expected across all samples. Secondly.
DESeq2 was used to perform the normalization of the
data, while accommodating the estimated factors pro-
vided by the RUVg function. Finally, DESeq2 was
used to perform hypothesis testing in order to identify
differentially expressed circRNAs. Shrunken log2 fold-
change (log2FC) was then reported by DESeq2 along
with adjusted P-values. Batch effect was considered
during normalization using RUVSeq-DESeq2. The
normalized data were employed for ML techniques.

Volcano plots were used to visualize log2FC on the
x-axis and !log10 adjusted P-values on the y-axis.

2.8. Machine learning classification

Recursive feature elimination (RFE) was used to per-
form feature selection and the LOOCV algorithm was
applied on the full panel of circRNA transcripts. The
number of features to select was set by default at 4, 8,
16, and 78. The number of features that yielded best
performance after cross-validation was automatically
selected. To test whether generated data had enough
discriminative information to build a robust model for
the classification of cancer samples from controls, dif-
ferent paradigms of classification models were tested
to provide the most accurate results. Under this con-
text, three classification approaches were performed
with the selected features: an ‘instance-based’ model
(KNN). This model uses the distances among samples
to obtain a predictive label; and two different ensem-
ble mechanisms with decision trees—bagging (RF) and
boosting (GBM).

For the analysis of early-stage lung cancer samples
versus control samples, GBM was excluded due to the
high volume of samples is required for this model.

The model with the highest ROC AUC value was
then selected as the final model. A confidence threshold
of 0.5 was considered for the calculation of PPV and
NPV. Additional statistical indicators such as accuracy,
sensitivity, and specificity were also calculated.

3. Results

3.1. nCounter for circRNA detection in fresh
NSCLC samples

Based on a literature review, 78 circRNAs were
selected according to their differential expression in
lung cancer specimens for the development of an
nCounter panel (Table S3). To test the reproducibility
of this panel for circRNA detection, RNA from fresh
PC9 cells was subjected to nCounter analysis in three
independent reactions. As a result, a strong correlation
was found between the normalized counts for each
individual circRNA, represented by a Spearman’s r of
0.82–0.88, P < 0.01 (Fig. S3).

Then, RNA from the same cell line was used in an
experiment with RNAase-R, an enzyme that degrades
linear RNA, to elucidate if the nCounter probes bind
specifically to the circRNA of the genes included in
the panel (Fig. 1A). As a result, 18 new transcripts
that could not be detected in mock-treated samples
were observed after RNase-R treatment (Fig. 1B). In
addition, among the 34 transcripts identified in both
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types of samples, the counts of 28 (82.3%) increased
at least 2-fold after RNAse-R treatment. CircSND1
and circBANP were found with the highest enrich-
ment, with a 56- and 33-fold change, respectively.
CircCHD9, circAASDH, circVRK1, circSLC8A1, and
circSMARCA5 were the only circular transcripts
affected by the exonuclease activity of RNase-R, show-
ing a lower number of counts after incubation with
the enzyme (Fig. 1C). All mRNA controls, including
the linear forms of FAM13B, HIPK3, MGA, and
UBXN7, were found with reduced or null expression
after treatment (Fig. 1D).

A high correlation was found between the two replicas
included for each of the conditions (Pearson’s r = 0.99917;
P < 0.01 and r = 0.9985; P < 0.01 for mock-treated and
RNase-R-treated samples, respectively) demonstrating the
specificity of the assay (Fig. 1E).

3.2. nCounter for circRNA detection in FFPE
NSCLC samples

To assess the performance of our panel in FFPE sam-
ples, RNA from paired FFPE and fresh PC9 cell line
was extracted and processed in the nCounter. The

number of total raw counts in PC9 FFPE samples was
significantly lower compared to fresh PC9 samples
(771.870 versus 1.353.811). However, despite the sub-
optimal quality observed in the RNA extracted from
the FFPE cells (Fig. S4), a statistically significant cor-
relation was found when comparing both types of
input (Fig. S5A).

Next, we assessed the feasibility of RNase-R treatment
in FFPE samples. As a result, overall circRNA enrich-
ment was not achieved, in contrast to what was previ-
ously observed in RNA extracted from fresh cells. Most
circRNAs were found to be degraded to different extents
in RNase-R-treated replicas when compared with the
controls, indicating that such treatment should be
avoided when working with FFPE samples (Fig. S5B).

Then, different concentrations of FFPE-derived
RNA (between 250 and 2000 ng of total RNA) were
tested assessing the effect on downstream nCounter
analysis. As a result, saturation was not achieved with
the highest concentration, suggesting that a greater
RNA input could be applied. Analysis of normalized
counts across all samples indicated similar perfor-
mance of 250 ng compared to the rest of tested con-
centrations, with a Pearson’s correlation between
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0.99–1.00 (Fig. S6). As a result, 250 ng of total RNA
was selected for the rest of the study.

3.3. circRNA expression in NSCLC fresh cell lines

A set of seven lung cancer cell lines were selected
according to their driver mutation, along with two
normal epithelial cell lines (Table 2). Duplicates of
equal RNA concentrations were run in all cases.

Out of the 78 circRNAs included in the panel, 33 were
expressed in all cell lines. Nineteen were expressed in

epithelial cells and not in all lung cancer cells, while only
one, circFUT8 was only expressed in all lung cancer cell
lines (Fig. S7). Nineteen circRNAs included in the panel
were not found in any of the assessed cell lines. Fifty-one
was the highest number of circular transcripts displayed
by any cell line (AALE). The NCI-H2228 cell line showed
the lowest number, with only 40 circRNAs detected
(Fig. 2A). Overall, total raw counts were significantly
higher in normal epithelial lung cell lines compared to can-
cer cell lines (Fig. S8). Hierarchical clustering led to a sep-
aration of the KRAS cell lines and normal epithelial cell
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lines from the rest (Fig. 2B). The two EGFR mutant cell
lines positioned together, showing a distinctive group of
downregulated circRNAs (circBNC2, circCLK1,
circCHD2, and circNUPL2) compared to the rest of the
cell lines.

Finally, differential expression analysis revealed four
circRNAs that allowed for differentiation between the
seven-lung cancer cells and normal epithelial cells. Cir-
cPIK3R1, circFARSA, and circCHST15 were found
downregulated in the cancer cell lines, while circFUT8
was upregulated (Fig. 2C).

3.4. circRNA expression in FFPE NSCLC versus
nontumor tissue

A total of 53-lung cancer samples and 16 control tissue
samples were selected and processed with the circRNA
nCounter panel. Initial analysis included normalization
of counts for each circRNA as described in the meth-
ods section, followed by unsupervised hierarchical
clustering of patient samples based on total circRNA
expression. A partial separation between cohorts was
achieved, indicating a group of circRNAs with dis-
criminatory potential (Fig. 3A).

A differential expression analysis revealed a cluster
of 10 differentially expressed circRNAs. CircEPB41L2,
circBNC2, circSOX13, and circFOXP1 were downreg-
ulated in lung cancer tissues, while circRUNX1,
circCHD9, circACACA, circFUT8, circRHOQ, and
circC1ORF116 were overexpressed (Fig. 3B).

Additionally, we also investigated the possible differ-
ences in circRNA expression based on the smoking
habits of the lung cancer cohort. As a result, four cir-
cRNAs (circCSPP1, circNEDD4L, circSOX13, and
circCORO1C) negatively correlated with smoking sta-
tus with P = 0.015, P = 0.043, P = 0.017, and
P = 0.045 respectively (Student’s t-test).

Next, a ML approach was used to develop a cir-
cRNA signature predictive of lung cancer.

Due to the low number of samples to be analyzed
(n = 59), we decided to use LOOCV as a validation model,
which considers only one sample for testing in each inter-
action reducing the bias to the minimum when compared
to other techniques such as stratified cross validation. As a
result, a RFE algorithm selected an 8-circRNA signature
(including circSOX13, circEPB41L2, circFOXP1,
circBNC2, circCORO1C, circCHD9, circSNX25, and cir-
cPIK3R1) as the final model, providing a ROC AUC of
0.965, 0.953, 0.983 with RF, KNN, and GBM classifiers,
respectively (Fig. 3C). A PPV of 98.1% and NPV of
81.2% were achieved with the final model. The accuracy,
sensitivity, and specificity of the signature were of 97.1%,
94.5%, and 92.8%, respectively.

3.4.1. CircRNA expression in early-stage NSCLC
tissues

Next, the 27 early-stage NSCLC samples (stages I–
IIIA) of our cohort were compared to the 26 late-stage
specimens (stages IIIB and IV) (Table 1) to assess
those differentially expressed circRNAs emerging early
in the disease.

From the 41 circRNAs expressed in early-stage sam-
ples, 39 were shared with late-stage samples (Fig. 4A).
Only 6 out of these 39 transcripts were differentially
expressed when compared with the control specimens
(Fig. 4B). Interestingly, one of these circRNAs (cir-
cFUT8) was found upregulated in both lung cancer
tissues and lung cancer cell lines. To shed some light
on the potential targets of these six circRNAs, a
circRNA-miRNA network was built based on
sequence-pairing prediction (Fig. 5). Using circinterac-
tome database, 64 miRNAs were found to potentially
bind to differentially expressed circRNAs, with 29 of
them showing more than 1 binding site (Fig. S9).

Additional ML analysis was performed in early-stage
lung cancer and control samples. RFE algorithm provided
a signature that included four circRNAs (circEPB41L2,
circSOX13, circBNC2, circCORO1C) and provided a
ROC AUC of 0.981, 0.918 with RF and KNN, respec-
tively (Fig. 6A). PPV and NPV were of 92.6% and 87.5%,
whereas accuracy, sensitivity, and specificity were of
90.6%, 92.6%, and 87.5%, respectively with the selected
model. Hierarchical clustering based on the four circRNA
included in the signature allowed a clear differentiation
between both cohorts (Fig. 6B).

3.5. Univariate analysis related to lung cancer
risk

We then explored if certain patient characteristics
could provide risk factors for lung cancer by perform-
ing a univariate analysis (Fig. 7). Several characteris-
tics that could be associated with higher risk of lung
cancer such as age, gender, and smoking status were
evaluated. No significant association could be found
between lung cancer and any of the characteristics pre-
viously mentioned. However, presented signatures for
lung cancer and early-lung cancer classification were
found to be significant predictive factors for lung can-
cer, with an odds ratio of 371 and 91, respectively.

3.6. Validation by RT-qPCR and Sanger
sequencing of circRNA junction sites

CircEPB41L2, circSOX13 and circBNC2 not only were
significantly downregulated both in early and late
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stages showing the highest fold-change, but also were
selected by the RFE algorithm as part of the two pre-
dictive signatures. As a result, these 3 targets were
selected to validate the nCounter performance using
RT-qPCR.

Divergent primers and probes spanning the junction
sites were designed for the specific amplification of

cited circular transcripts (Fig. 8A) in 10 NSCLC and
10 control FPPE tissue samples previously assessed
with the nCounter circRNA panel.

RT-qPCR results correlated with the data previously
obtained from nCounter, indicating downregulation of
cited circRNAs in NSCLC samples (Fig. 8B). A gel
electrophoresis of the PCR products revealed three

FFPE tissues
Lung cancer (n = 53) versus non cancer 

(n = 16). ROC curve (RFE, 8 circRNA signature)
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Fig. 3. (A) Heatmap showing the circRNA expression in lung cancer and control specimens. Unsupervised clustering was performed based

on total circRNA expression. (B) Volcano plot showing the circRNA log2 fold-change in FFPE lung cancer (n = 53) versus control (n = 16)

FFPE tissues. (C) Area under the ROC curve for the classification of lung cancer and control samples. Confusion matrix was generated

based on the RF classification scores. Classification error scores are indicated.
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bands corresponding to the size of expected amplicons
(Fig. 8C). Further Sanger sequencing validated these
findings by exposing the circRNA junction sites
(Fig. 8D).

4. Discussion

Precision oncology currently relies on genomic, tran-
scriptomic, or proteomic-based features that serve as
decision-making support, predicting treatment out-
come [20].

The re-discovered role of circRNAs as regulatory
entities of miRNAs, affecting the occurrence and
development of different malignancies, has been sup-
ported by the growing number of studies that highlight
their potential as cancer biomarkers and therapeutic
targets in future personalized medicine [21]. Investiga-
tion of novel signatures based on these biomolecules
could therefore be of interest to achieve earlier diagno-
sis by developing new tests or complimenting existing
ones. However, the lack of standardized methods for
their study is preventing their clinical validation and
further implementation in the clinical practice.

The nCounter platform allows multiplexed digital
gene expression analysis by direct counting of RNA
molecules. With a wide use for transcriptomic studies,
nCounter has been recently adapted for the detection
of circRNAs using a specific probe design where
sequences span the circRNAs junction site [19]. On
this regard, some authors have proved the benefits of
this technology to study circRNA subcellular

distribution [22], or elucidate the potential roles in skin
[23,24] or brain diseases [25]. However, to date, no one
has explored this platform in FFPE samples for the
development of lung cancer signatures.

Here, we prove the use of nCounter for circRNA
studies in FFPE lung cancer tissues and cell lines,
developing a protocol for their study.

Due to the lack of any commercially available
nCounter circRNA panel, we first performed an exten-
sive literature research, looking for circular RNA can-
didates described to be differentially expressed in lung
cancer cells, tissues, or liquid biopsies. Out of the 78
circRNAs conforming the panel (Table S3), 40–51 cir-
cRNAs were detected in assessed cell lines, whereas 41
and 44 were detected in early- and late-stage NSCLC
tissues, respectively. From the resulting circRNAs that
could not be detected by nCounter, 19 could not be
found in any control tissue nor in any assessed cell line
(Fig. S10). Additional experiments using liquid biop-
sies would be of interest to address if cited circRNAs
are present in such material according to our nCounter
protocol, or if on the contrary, observed discrepancies
may be due to the technical differences (including nor-
malization) among the diverse platforms used in previ-
ous studies such as RNA-seq, microarrays, or RT-
qPCR when compared to our nCounter workflow.

The resulting 13 circRNAs were detected in the cell
lines with three of them, circPIK3R1, circADAM22,
circCHN1 being only present in the normal epithelial
cell lines (AALE and HBEC30KT). These three were
described in literature to be downregulated in NSCLC
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[26–30]. From the detected circRNAs, 17 were found
upregulated, according to literature review [26,28–30],
contrasting to the results achieved with nCounter;
however, only three of those could be further validated
by RT-qPCR [26,28,30]. Although we believe that
direct comparison with another circRNA panel for
lung cancer detection is instrumental to fully assess the
clinical utility of our panel, this was not performed
due to the absence of the latter; however, this compar-
ison will be warranted at the time other panels become
available.

Most genetic analyses performed in the clinic come
from paraffined specimens with either very little mate-
rial or compromised quality. CircRNAs are very
stable, even in this type of samples, due to their

circular configuration [29]. Also, the nCounter technol-
ogy performs quite well with highly degraded samples
compared to other techniques since it only requires a
short fragment of RNA (100 nt) for the capture and
reporter probes to hybridize and emit a signal [16]. In
consequence, we tested and compared results of cir-
cRNA expression from FFPE and fresh PC9 cells after
nCounter analysis even if the RNA did not pass the
quality control, as observed in the case of the FFPE
PC9 samples, and we did obtain comparable results.

RNase-R treatment can efficiently degrade highly
structured RNA in 30 end-dependent manner [31]. Since
most circRNAs are resistant to this exoribonuclease
activity, we tested the specificity of our panel by treat-
ing cell line-derived RNA with this enzyme prior
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A B

Fig. 6. (A) Area under the ROC curve of the 4 circRNA-signature using recursive feature elimination (RFE) for cohort classification.

Confusion matrix was generated based on the RF classification scores. Classification error scores are indicated. (B) Hierarchical clustering of

samples based on the 4-circRNA signature.
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Fig. 7. Univariate analysis exploring associations between patient characteristics and lung cancer to determine risk factor. Forest plot

represents the odds ratios in (A) lung cancer; and (B), early-stage lung cancer cohorts with a 95% Wald confidence limit. Student’s t-test

was used for the calculation of P-values.
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nCounter processing. Consequently, most expressed cir-
cRNAs were enriched up to 56-fold when compared to
controls, and only five circRNAs were found affected
by this treatment. Sensitivity of specific circRNAs
toward the endonuclease activity of the RNase-R
enzyme was expected since it could be found reported
in other publications [32]. Full or partial degradation of
all linear transcripts included in the panel was observed,
hence, validating the circRNA nCounter panel. 18 new
circRNAs could be seen after treatment, while they
could not be detected in mock-treated samples. The
degradation of the canonical mRNA which can

represent up to 95% of the total RNA expression
[33,34] seems to facilitate the interaction between the
circRNAs and the nCounter probes, which otherwise
would be hampered by this mRNA-induced noise, mak-
ing those low-expressed circRNA undetectable [35].
This, along with the enrichment of circRNA molecules
upon linear RNA depletion suggests that this type of
treatment may be particularly beneficial for the screen-
ing of circRNA (especially those with very low expres-
sion) derived from fresh material. Conversely, circRNA
enrichment was not observed in treated FFPE-derived
RNA samples. As the rest of nucleic acid present in this
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Fig. 8. Validation of nCounter results by RT-qPCR and further Sanger sequencing. (A) Representation of circRNA amplification using

divergent primers. (B) Bar plot of RT-qPCR results depicting downregulation of circEPB41L2, circSOX13, and circBNC2 in lung cancer versus

control tissues validating previous nCounter results. Bars indicate the mean of the 10-lung cancer (n = 3) and 10 control samples (n = 3).

Error bars indicate SD. (C) Electrophoresis gel of amplified circEPB41L2 (113 nt), circBNC2 (119 nt) and circSOX13 (90 nt). (D) Sanger

sequencing results spanning the junction site (underlined) of cited circRNAs.
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type of material, circRNAs are crosslinked to the paraf-
fin matrix. During the process of purification, these
molecules are subject to both mechanical and chemical
breakage; thus, any break in the circRNA would allow
for RNAse-R-based degradation. As a result, we deter-
mined that this procedure can be recommended to
improve circRNA detection in fresh but not paraffined
specimens. However, it is imperative to mention that
although RNase-R treatment is highly recommended
for circRNA screening purposes, it should be avoided
in circRNA expression studies since the variability of
RNAase-R digestion efficiency for different samples
may lead to biased circRNA expression quantification
[36]. Therefore, untreated total RNA samples were used
for the expression experiments in our study.

Since circRNA represents only 5–10% of total RNA
[33,34], different concentrations of total RNA were
tested. As a result, 250 ng of total RNA proved
enough for expression studies. Technical saturation
was not achieved at 2000 ng of total RNA suggesting
that higher concentrations could be used if analysis of
transcripts expressed at lower levels is intended.

Using the explained workflow and custom-made cir-
cRNA nCounter panel, expression analysis in lung
cancer cell lines was performed. Interestingly, an over-
all increase in the number of circRNA raw counts was
found in normal epithelial versus cancer cells. This
result is in agreement with a previous study, where a
global reduction of circRNA expression in cancer com-
pared to healthy specimens was found, along with a
negative correlation of overall RNA abundance and
proliferation [37].

In addition, a group of differentially expressed cir-
cRNAs was discovered in the assessed cancer cell lines.
Interestingly, although circPIK3R1 was downregulated
in agreement with formerly published results [30], both
circCHST15 and circFARSA were also downregulated.
CircCHST15 was recently found highly expressed in
lung cancer, correlating with PD-L1 status and pro-
moting immune escape of lung cancer cells [38]. Simi-
larly, circFARSA upregulation has been described in
tumor cells, promoting migration and invasion [39].
Although none of the groups used AALE nor the
HBEC30KT epithelial cell line for their transcriptional
analyses preventing direct comparison with our study,
additional experiments with other epithelial cell lines
and additional transfection studies could be of interest
to shed light on the biology of these circRNAs.

Furthermore, a circRNA from the FUT8 gene
which was found upregulated in cancer cells and fur-
ther validated in FFPE lung cancer tissues, even at the
early stage of the disease. In addition, circCHD9 and
circC1orf116 were found highly expressed, while

circEPB41L2, circBNC2, and circSOX13 were strongly
downregulated in such material. These last three cir-
cRNAs could be further seen downregulated in
NSCLC samples by RT-qPCR validating previous
nCounter results.

Circinteractome was used to further elucidate possi-
ble miRNA targets of aforementioned circRNAs.

Out of 28 predicted miRNAs for circFUT8, hsa-
mir-186, and hsa-miR-1305 were the only ones present-
ing more than one potential binding site. Hsa-miR-186
was described downregulated in NSCLC, acting as an
inhibitor of cancer proliferation, progression, and
metastasis [40,41], whereas hsa-miR-1305 was not
described in any type of cancer thus far. Another
mechanism of action of circFUT8 in NSCLC has been
described by Zhu et al. [42] in a recent publication,
where this circRNA was shown to increase prolifera-
tion, invasion, and migration of NSCLC cells via miR-
944/YESI axis.

For circCHD9, only one miRNA, hsa-miR-1229,
was predicted. This miRNA was found upregulated in
breast cancer activating b-Catenin/Wnt signaling [43];
however, nothing has been reported to lung cancer yet.
No information regarding a possible connection
between circC1orf116 and this malignancy was found
either. Nonetheless, this circRNA has been described
to promote cell proliferation, migration, and invasion
in cervical cancer by binding to miR-518d-5p and
miR-519-5p and further modulating BBX8 expression
[44].

Interestingly, among the several predicted miRNAs
for circEPB41L2, circBNC2, and circSOX13, hsa-miR-
942 was a common target of cited circRNAs with 4, 2,
and 1 binding sites, respectively (Fig. S9). This
miRNA was previously described to be involved in
colorectal and esophageal cancer progression activat-
ing the Wnt/b-catenin signaling pathway [45,46]. How-
ever, no evidence of its role in lung cancer has been
found and would require further investigation.

Lastly, further machine learning analysis of gener-
ated data using RF, GBM, and KNN algorithms pro-
vided not only a signature able to correctly classify
lung cancer samples from the control specimens, with
an AUC of 0.985 (RF), 0.955 (GBM), and 0.993
(KNN) using an 8-circRNA signature, but also a 4-
circRNA signature for early-stage lung cancer classifi-
cation with comparable accuracy. These ML-based
signatures included circEPB41L2, circSOX13,
circBNC2, adding evidence of the potential of men-
tioned circRNAs as early-stage lung cancer biomark-
ers.

Since we did not perform microdissection of the
tumor samples nor single cell analysis, we could not
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verify whether presented signature-based circRNAs
came from cancer cells or tumor microenvironment.
Although this was out of our research scope since we
mainly focused on the diagnostic potential of such sig-
natures, we believe it could be of interest for future
investigations. Also, most samples included in this
study were lung adenocarcinomas, except for one
squamous carcinoma and nine NSCLC samples with
unknown histological subtype. Inclusion of different
histologies in forthcoming validation studies are rec-
ommended to assess the specificity of the presented
signatures. Finally, the work presented here was a
proof-of-concept study and the main purpose was to
demonstrate the feasibility of using nCounter for the
study of circRNAs in lung cancer specimens. In conse-
quence, the number of samples included was small and
the abovementioned signature should be validated in a
larger cohort.

5. Conclusions

In summary, we have developed a circRNA nCounter
panel and workflow that can be used for multiplex
detection of circRNA in FFPE lung cancer specimens.
A cluster of differentially expressed circRNAs have
been presented and further investigation is warranted
to explore their potential as therapeutic targets. In
addition, a 4 circRNA signature has been found
through ML proving effective for early-stage lung can-
cer differentiation.

These findings pave the way to future biomarker
investigations and validation of liquid biopsy signa-
tures for lung cancer detection.
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Abstract: Background: The analysis of liquid biopsies brings new opportunities in the precision
oncology field. Under this context, extracellular vesicle circular RNAs (EV-circRNAs) have gained
interest as biomarkers for lung cancer (LC) detection. However, standardized and robust protocols
need to be developed to boost their potential in the clinical setting. Although nCounter has been
used for the analysis of other liquid biopsy substrates and biomarkers, it has never been employed
for EV-circRNA analysis of LC patients. Methods: EVs were isolated from early-stage LC patients
(n = 36) and controls (n = 30). Different volumes of plasma, together with different number of pre-
amplification cycles, were tested to reach the best nCounter outcome. Differential expression analysis
of circRNAs was performed, along with the testing of different machine learning (ML) methods for
the development of a prognostic signature for LC. Results: A combination of 500 µL of plasma input
with 10 cycles of pre-amplification was selected for the rest of the study. Eight circRNAs were found
upregulated in LC. Further ML analysis selected a 10-circRNA signature able to discriminate LC from
controls with AUC ROC of 0.86. Conclusions: This study validates the use of the nCounter platform
for multiplexed EV-circRNA expression studies in LC patient samples, allowing the development of
prognostic signatures.

Keywords: circRNAs; extracellular vesicles; nCounter; lung cancer; NSCLC; liquid biopsies

1. Introduction

With 350 deaths per day projected for 2022, lung cancer stands as the main cause of
cancer-related mortality, leading the second highest incidence in the United States and
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Europe [1,2]. Treatments have proved to be more effective at the early stage of the disease,
when lung cancer patients benefit from a significantly improved overall survival (OS) [3].
However, most cases are diagnosed at an advanced stage, with a 5-year survival rate
dropping to only 5% in stage IV.

In order to achieve early detection, many challenges need to first be faced. Classical
biopsy techniques for sampling and profiling of suspicious pulmonary nodules often
involve invasive procedures. Limitations of such practices include restricted access to
the nodules, which regularly compromise the quality and quantity of extracted biopsy
specimens. Heterogeneity of resected samples also hampers the use of these methods,
especially for tumor identification [4].

Liquid biopsies offer a minimally invasive procedure for sampling, providing a practi-
cal tool for continuous monitoring of lung cancer patients [5], being also actively investi-
gated for early detection [6]. Despite the slow progression on the development of liquid
biopsies in this area, many possible biomarkers have been proposed in the last few years,
including circulating tumor DNA (ctDNA), cell-free RNA (cfRNA), circulating tumor cells
(CTCs), proteins, extracellular vesicles (EVs) and tumor educated platelets (TEPs).

Lung cancer elicits massive changes in RNA metabolism, reflecting both in the tu-
mor transcriptome and in the circulating EV and TEP cargo. EVs contain different RNA
molecules, including mRNA and non-coding RNAs such as miRNA or circular RNAs
(circRNAs) [7,8]. The circRNA transcripts are generated by post-transcriptional circular-
ization of the 50 and 3’ends in an alternative process called back-splicing. Their circular
structure makes most of them resistant to exonucleases and, therefore, robustly stable RNA
molecules, compared to the canonical (linear) mRNA. CircRNAs seem to play an important
role in human homeostasis [9,10]. Moreover, it has been reported that aberrant expression
of certain circRNAs can promote cancer development and progression [11]. Additionally,
some circRNAs have been investigated as liquid biopsy biomarkers for the early detection
of lung cancer and other solid tumors [12,13]. However, the lack of consensus on a robust
and standardized protocol for circRNA quantification is holding back the development of
clinically applicable assays.

RT-qPCR, microarrays and RNAseq are the three methods most commonly used
in circRNA research. However, the RT-qPCR does not allow high-throughput analysis;
microarrays have a limited dynamic range of RNA detection; and RNAseq is associated
with high cost, long time-consuming protocols, and high grade of complexity when it
comes to data analysis.

An alternative technique for multiplex analysis of circRNA is nCounter, which pro-
vides a cost-effective automated solution for analysis of more than 800 targets with minimal
hands-on time, providing highly reproducible data in less than 48 h. nCounter is based on
the detection of RNA of interest using target-specific probe pairs. Each pair comprises of a
reporter probe with a unique color combination at the 5’- end, allowing specific recognition
of the gene of interest; and a capture probe carrying a molecule of biotin, which provides
a molecular grip to the nCounter cartridge, allowing downstream digital detection [14].
The expression of a particular gene is then calculated by counting the number of times a
specific color-coded probe is detected. This technology has been embraced in translational
research, including the development and validation of liquid biopsies, due to its capability
of working with a low quantity of highly degraded samples [15,16]. Recent studies reported
the use of nCounter for the study of several categories of circulating biomarkers [17–21],
including EV-derived DNA [22], miRNA [23,24], mRNA [25] and circRNA [26]. However,
nCounter analysis of EV-circRNAs has not been investigated for early detection of lung
cancer. Here, we report the development of a protocol for EV enrichment from plasma
followed by RNA purification and circRNA analysis by nCounter.

Then, we analyzed liquid biopsies from non-cancer donors and early-stage non-
small cell lung cancer (NSCLC) patients and applied machine learning (ML) to develop a
prognostic signature.
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2. Materials and Methods

2.1. Patient Samples

The study was carried out in accordance with the principles of the Declaration of
Helsinki, under an approved protocol of the institutional review board of Quirón Hos-
pitals. We obtained and documented written informed consent from all the patients. A
total of 36 samples from early-stage NSCLC (stages IA to IIIA) were selected from our
institution, along with 30 samples from non-cancer controls (Table 1). Clinical informa-
tion from patients and controls included age, gender, smoking status, tumor histology
and stage, when applicable. All samples were de-identified before further processing for
confidentiality purposes.

Table 1. Clinicopathologic characteristics of enrolled patients (n = 66).

Clinicopathological

Characteristics

NSCLC Patients

(n = 36)

Non-Cancer Controls

(n = 30)

Gender—no. (%)

Male 18 (50.0) 13 (43.3)
Female 18 (50.0) 17 (56.7)

Age—yr.

Median 71.5 38
Range 32–91 23–57

Histological type

Adenocarcinoma 27 (75.0) -
Squamous carcinoma 4 (11.1) -

Not information 5 (13.9) -
Smoking status—no. (%)

Former- or current smoker 20 (55.5) 11 (36.6)
Never smoker 13 (36.2) 17 (56.7)

Not information 3 (8.3) 2 (6.7)
Tumor stage—no. (%)

I 19 (52.8) -
II 2 (5.5) -

IIIA 15 (41.7) -

2.2. Plasma Processing

Around 10 mL of whole blood was collected from the participants enrolled in the
study using sterile EDTA Vacutainer tubes (BD, Plymouth, UK) and processed within the
next 2 h. Blood samples were centrifuged twice at 2000⇥ g at room temperature (RT) in
a Rotina 380 R centrifuge (Hettich, Tuttlingen, Germany) for 10 min to separate plasma
from red/white blood cells, platelets, and cell debris. Aliquoted plasma samples were then
stored at �80 �C until downstream processing.

2.3. Enrichment of EVs

EVs were isolated from plasma using differential ultracentrifugation (UC) as described
previously [27] or the miRCURY Exosome Serum/Plasma Kit (Qiagen, Hilden, Germany).

In the case of UC, 500 µL plasma samples were transferred into 15 mL sterile high-
speed centrifuge tubes (VWR-Avantor, Philadelphia, PA, USA), filled up with sterile
1⇥ phosphate-buffered saline (PBS) and centrifuged twice at 10,000⇥ g for 30 min at
4 �C in a Sorvall RC 6 Plus centrifuge (Thermo Fisher Scientific, Waltham, MA, USA).
Supernatants were then transferred into UC tubes (Beckman Coulter, Brea, CA, USA), equi-
librated with sterile 1⇥ PBS, and spun twice at 70,000⇥ g for 1 h at 4 �C in the Sorvall WX
Ultra 100 centrifuge (Thermo Fisher Scientific). The EV enriched pellets were resuspended
in 100 µL sterile PBS and stored at �80 �C until used. EV enrichment with the miRCURY
Kit was performed as described [25]. Debris was cleared from 500 µL plasma samples with
thrombin and subsequent centrifugation at 10,000⇥ g for 5 min at RT. Samples were then
incubated with Precipitation Buffer overnight at 4 �C and centrifuged twice (500⇥ g, 5 min



Pharmaceutics 2022, 14, 2034 4 of 18

at RT). Supernatants were discarded, EV enriched pellets were resuspended in 270 µL of
Resuspension Buffer and stored at �80 �C until used.

2.4. Transmission Electron Microscopy (TEM)

Visualization of EV samples was performed by the TEM service of the Universitat
Autónoma de Barcelona (UAB). A volume of 3.9 µL of EV-enriched sample was blotted
onto a Holey Carbon Film Supported Nickel Grid (Merck, Darmstadt, Germany) previously
glow-discharged in a PELCO easiGlow glow cleaning system (Ted Pella Inc, Redding, CA,
USA). Next, the grid containing the sample was plunged into a Leica EM GP cryo-work
station (Leica, Wetzlar, Germany) comprising a liquid ethane bath cooled to �180 �C, and
subsequently transferred and visualized in a JEOL 2011 TEM (Jeol Ltd., Tokyo, Japan) oper-
ating at 200 kV. Samples were kept at �180 �C during the observation and captures were
obtained with a Gatan Model 895 UltraScan 4000 4k ⇥ 4k CCD camera (Gatan Inc, Pleasan-
ton, CA, USA). Image processing was performed using ImageJ software (version 1.8.0,
National Institutes of Health, Bethesda, MD, USA).

2.5. Nano-Flow Cytometry Measurements

The volume of EV samples was brought to 500 µL with sterile PBS. Size-exclusion
chromatography (SEC) columns (qEVoriginal/35 nm, Izon Science, Oxford, UK) were
equilibrated with 20–30 mL of sterile PBS and eluted using the same buffer. Collection
started immediately after loading the sample into the column, according to manufacturer
instructions. Eluted EV-enriched samples were directly analyzed with the nanoFCM
(NanoFCM Ltd., Nottingham, UK), a nanoparticle flow cytometer. Instrument calibration
with standard beads enabled accurate measurements of both size and concentration of
40–200 nm particles through the detection of their side scatter [28].

2.6. RNA Isolation and DNase Treatment

EV-enriched samples were treated with 4 µg/mL of RNase A (Sigma-Aldrich, Burling-
ton, MA, USA) for 1 h at 37 �C, to eliminate any non-vesicular RNA. TRI Reagent (MRC,
Cincinnati, OH, USA) was added to a final volume of 1 mL and incubated at RT for 20 min.
Then, 200 µL of a Chloroform and Isoamyl Alcohol dilution (24:1) (Panreac Química
SLU, Barcelona, Spain) were added, followed by vigorous shaking and centrifugation at
12,000⇥ g for 15 min at 4 �C. Upper fraction was collected, and RNA was precipitated by
adding 2.5 µL of glycogen (Merck) and 500 µL 2-propanol (Merck), followed by incubation
at RT for 10 min and further centrifugation at 12,000⇥ g for 10 min at 4 �C. RNA pellet
was then washed with 75% ethanol, dried at 95 �C for 3 min and resuspended in 12 µL of
nuclease-free water.

The DNA-free DNA Removal Kit (Thermo Fisher Scientific) was used to eliminate
any DNA remaining in the samples. Following the manufacturer’s protocol, 0.75 µL of
DNase buffer and 1 µL enzyme were added to 7.5 µL RNA sample and incubated at 37 �C
for 30 min. A volume of 0.75 µL of DNase inactivation reagent was then added to the
reaction, incubated for 2 min at RT and centrifuged for 1.5 min at 10,000⇥ g and RT. The
supernatant containing EV-RNA was then transferred to a fresh tube and stored at �80 �C
until further use.

2.7. RT-qPCR and Sanger Sequencing Analysis

RT-qPCR and Sanger sequencing of circRNA junction sites were performed as pre-
viously described [29]. Divergent primers and probe sets were designed using Primer
Express 3.0 Software (version 3.0.1, Applied Biosystems, Waltham, MA, USA) with the
probes spanning the circRNA junction site (Table 2). Five microliters of EV-RNA was con-
verted into cDNA using the M-MLV reverse transcriptase enzyme and random hexamers
(both from Invitrogen, Waltham, MA, USA). A 1:3 dilution of cDNA was performed, and
2.5 µL were added to the Taqman Universal Master Mix (Applied Biosystems) in a 12.5 µL
reaction containing a specific pair of primers and probe for each circRNA. Three replicas
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of each sample were run for the quantification of the expression of each assessed circular
transcript. Quantification of gene expression was performed using the QuantStudioTM 6
Flex System (Applied Biosystems) and the comparative Ct method.

Table 2. Primer and probe design for circRNA validation by RT-qPCR.

CircRNA Primers and Probes Sequence

circHIPK3
Forward 50CGGCCAGTCATGTATCAAAGAC 30
Reverse 50AAAGGCACTTGACTGAGTTTGATAAA 30
Probe FAM 50AATCTCGGTACTACAGGTATG 30 MGB

circZCCHC6
Forward 50AGATGTTGTCGAATTTGTGGAAAA 30
Reverse 50TCTTCTACCATTGATAAAAGCCTTCAT 30
Probe FAM 50GAGGAGAAATGACAAATT 30 MGB

For Sanger sequencing, 10 µL of each PCR product was subjected to electrophoresis
in a 2⇥ agarose gel (100 V, 30 min) and visualized under UV light (E-Gel™ Safe Imager™
Real-Time Transilluminator, Invitrogen) after electrophoresis (E-Gel™ iBase™ Power Sys-
tem, Invitrogen). Five microliters of each cDNA sample were purified using the PCR
ExoSAP-IT Product Clean up Reagent (Applied Biosystems). Sequencing PCRs were set
up using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), forward
primer, cDNA and water in a final volume of 20 µL and performed using a Verity 96-well
thermal cycler (Applied Biosystems). After sequencing amplification, samples were loaded
into a 96-well plate and subjected to Sanger sequencing using the 3130 Genetic Analyzer
(Applied Biosystems).

2.8. nCounter Processing

The nCounter Low RNA Input Amplification Kit (NanoString Technologies, Seattle,
WA, USA) was used to retrotranscribe and pre-amplify 4 µL of EV-derived RNA in a
Verity thermal cycler (Applied Biosystems) following NanoString’s guidelines. Briefly,
samples were denatured at 95 �C for 10 min and hybridized for 18 h at 67 �C. Our custom-
made nCounter panel (including 78 circRNAs, 6 linear reference genes and 4 mRNAs [30]
was used to analyze EV-derived pre-amplified cDNA according to the manufacturer’s
instructions. RCC files containing data outputted by the NanoString nCounter Flex System
(NanoString Technologies) from each run were exported to the nSolver Analysis Software
(Version 4.0.70, NanoString Technologies).

2.9. Differential Expression Analysis

Raw count nCounter values were exported to Microsoft Excel (Version 16.40, Microsoft,
Redmond, WA, USA) using nSolver Analysis Software. The background was calculated for
each sample as (geo)mean ± 2SD of the negative probe counts (NCs) Raw counts lower
than the background were automatically excluded from further analysis. The raw circRNA
counts were normalized using the total number of counts of the sample and multiplied
by 10,000. Differential expression analysis was performed comparing the means of the
normalized counts for each circRNA in the early-stage NSCLC vs. non-cancer controls.
The circRNAs with a fold change >1 and p-value < 0.05 were considered as differentially
expressed (DE).

2.10. Data Pre-Processing and Normalization for Signature Development

Raw RCC-formatted data files were exported from the nSolver Analysis Software
(NanoString Technologies). R (Version 4.0.3, R Core Team and the R Foundation for
Statistical Computing, Vienna, Austria) and R studio (Version 2021.09.0, RStudio PBC,
Boston, MA, USA) were used for pre-processing and normalization analysis of the imported
files. Initial evaluation of the quality and integrity of the RCC data was performed using the
NanoStringQCPro (Version 1.22.0) package. During this process, we looked for potential
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outliers based on the performance of standard control metrics provided by NanoString,
such as Imaging, Binding Density, Positive Control Linearity, and Limit of Detection.
After this first pre-analytical step, samples were subjected to supplementary exploratory
examination, including Principal Component Analysis (PCA) and interquartile range
(1.5 IQR rule) analysis. Samples found as outliers by both methods were then excluded
from downstream analyses.

NCs were employed to exclude lowly expressed circRNAs with excessive background
noise. The arithmetic mean of the NC ± 2SD was subtracted from each endogenous
circRNA for each sample. Any transcript scoring a value below 0 in more than 75% of
the analyzed samples was then excluded from further analysis. PCA plot was used to
re-assess the data after the aforementioned filtering step. Technical variability correction
and normalization were performed using the RUVSeq/RUVg function (Version 1.24.0) and
DESeq2 (Version 1.30.1) packages (RUVseq-DESeq2). First, the RUVg function was used to
estimate the unwanted variation among samples based on the DE genes. DESeq2 and edgeR
(Version 3.32.1) performed a first pass DE analysis and the intersected least significant
genes (with adjusted p-value above 0.1) were used as “in silico empirical” negative controls.
DESeq2 was then utilized with default parameters along with the RUV factors to perform
the normalization of the raw filtered data. The normalization performance was assessed
using the standard relative log expression (RLE) plot.

2.11. Machine Learning (ML) for Signature Development

The Recursive Feature Elimination (RFE) algorithm along with leave-one-out cross-
validation (LOOCV) and the random forest (RF) classifier were used to perform feature
selection on the normalized data previously generated by RUVseq-DESeq2. The optimal
number of features was automatically selected by keeping only those yielding best per-
formance after cross-validation. These final features were to constitute the prognostic
signature. To test the predictive power of the selected signature, extra trees classifier (ETC),
k-nearest neighbor (KNN) and RF models were built using default parameters. The 5-fold
cross validation (5-CV) algorithm was applied for this purpose. During this process, the
dataset was randomly split into k-folds (k = 5), being 4/5 of the data used to train the
model, while the remaining 1/5 was used to test its behavior. The classifier showing the
highest area under the ROC curve (AUC ROC) value was selected as the final model. Sig-
nature scores for each sample were obtained from the final model. A confidence threshold
of 0.5 was considered for the calculation of the positive and negative predictive values
(PPV–NPV). Additional statistical indicators such as accuracy, sensitivity, specificity, and
Cohen’s  were also calculated.

2.12. Univariant and Multivariant Analyses

Association between clinical characteristics and ML-generated signature was assessed
with a univariate Cox proportional-hazard regression model. Odds ratios, with a Confi-
dence Interval (CI) of 95% was calculated using the MedCal Statistical Software (MedCalc
Software Ltd. Odds ratio calculator. https://www.medcalc.org/calc/odds_ratio.php.
Accessed last on 5 September 2022). Multivariant analysis using logistic regression was
performed using SAS software (v9.4, SAS Institute, Cary, NC, USA). Significance was set at
p < 0.05 for all statistical tests.

3. Results

3.1. Enrichment of Plasma EVs and Workflow Development for nCounter CircRNA Analysis

Two replicated 500 µL plasma samples from an early-stage NSCLC patient and a non-
cancer control were submitted to EV enrichment by ultracentrifugation (UC) or using the
miRCURY Exosome Serum/Plasma kit. Enriched EVs were characterized by transmission
electron microscopy (TEM) and nanoparticle flow cytometry via nanoFCM. TEM images
revealed different clusters of diverse-sized EVs (30 to 300 nm, all within the reported EV
size range [31–33]) in all samples regardless of the enrichment method used (Figure 1a).

https://www.medcalc.org/calc/odds_ratio.php
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Samples extracted using the miRCURY kit showed a higher proportion of vesicles with
an exosome-like size range (30–100 nm) by TEM, compared to the more heterogeneous
UC samples (Figure 1a). NanoFCM analysis revealed a higher concentration of 40–100 nm
particles in samples enriched using the miRCURY kit (Figure 1b). In addition, nanoFCM
indicated a higher number of particles/mL in the NSCLC patient sample when compared
to the control, both in the UC and miRCURY preparations (Figure 1b).
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Figure 1. Characterization of extracellular vesicles (EVs) enriched either by differential ultracentrifu-
gation (UC) or precipitation using the miRCURY Exosome Serum/Plasma kit. (a) Observation of EV
samples on transmission electron microscopy (TEM). Yellow arrows point out EVs of different sizes.
Scale bars indicate 200 nm.; (b) Nanoflow cytometry (nanoFCM) profiles of EV samples showing size
and concentration of 40–200 nm particles.

Next, different volumes of plasma (500 µL, 1000 µL and 1500 µL) from a NSCLC patient
were tested in duplicates to assess the effect of initial volumes on downstream circRNA
analysis by nCounter using the custom panel we previously developed [30]. Since RNA
concentration from EV enriched samples has been demonstrated to be insufficient for direct
nCounter analysis [25], pre-amplification steps of 14 and 20 cycles were tested. The utmost
total number of counts was achieved using an input of 500 µL both with 14 and 20 cycles
(14,151 ± 1864 and 686,525 ± 345,655, respectively; Figure 2a). Consequently, 500 µL of
plasma was also the volume allowing the detection of more circRNAs (n = 27.5 ± 4.95 and
33 ± 7.07 for 14 and 20 cycles, respectively; Figure 2b), even if only those with a score above
10 counts after background removal were selected (Table S1, Figure S1).

Different amplification cycles (10, 12 and 14) were subsequently tested in a 500 µL
plasma sample. The highest number of raw counts was obtained with 14 cycles (Figure 3a).
Regarding the number of circRNAs, 10 and 12 cycles yielded similar results (n = 51.5 ± 9.19
and 52.5 ± 7.78 respectively). More circRNAs were detected at 14 cycles (n = 59 ± 16.97)
with a high variability between replicates (Figure 3b, Table S2). In view of these results,
we selected for EV-circRNA analysis a protocol that included 500 µL of plasma input, EV
enrichment with the miRCURY kit, extravesicular RNA elimination with RNase A, EV lysis
and RNA extraction with TRI reagent, retrotranscription and nCounter analysis with a
10-cycle preamplification step (Figure 4).
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Figure 2. Plasma input testing. (a) Total number of counts and (b) number of circRNAs detected
by nCounter with each of the volumes of plasma tested with 14 and 20 cycles of pre-amplification.
Plasma from a NSCLC patient was used for this purpose. Error bars indicate standard deviation.
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Figure 3. Testing of a different number of pre-amplification cycles. Effect of the number of pre-
amplification cycles (10, 12 and 14) on (a) the total number of raw counts and (b) total number
of circRNAs detected. Error bars indicate standard deviation; (c) Correlation of the two technical
nCounter duplicates subjected to 10 cycles of pre-amplification. Pearson’s correlation coefficient
is indicated. (d) Correlation of each of the technical duplicates from the same nCounter run with
the results obtained in an independent nCounter assay of the same sample. Pearson’s correlation
coefficient is indicated.

The repeatability of the protocol was first tested by submitting to nCounter duplicates
of a preamplified plasma sample. A strong correlation between the normalized counts was
found between the duplicates, represented by a Pearson’s r of 0.98, p < 0.0001 (Figure 3c).
When the same plasma sample was re-purified and re-analyzed, nCounter results also
showed a strong correlation with the initial duplicates (Pearson’s r = 0.90–0.91; p < 0.0001)
(Figure 3d).
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Figure 4. Final workflow established for the study of circRNAs from plasma extracellular vesicles
(EVs) using the nCounter technology. A volume of 500 µL of plasma was used in the miRCURY kit to
precipitate EVs. Rnase A was used to remove any non-vesicular RNA that could be present in the sample
before proceeding with manual RNA extraction with TRI reagent. RNA samples were treated with
DNase to eliminate any trace of genomic DNA, followed by retro-transcription and a pre-amplification
step of 10 cycles. Finally, samples were hybridized overnight before nCounter processing.

3.2. CircRNA Expression in Plasma EV Samples

Plasma from 66 individuals, 36 early-stage NSCLC patients and 30 non-cancer donors,
were analyzed using the protocol previously described in Section 3.1 (Figure 4). An average
of 40 ± 14 EV-circRNAs per sample were detected in controls vs. 47 ± 9 in the NSCLC
cohort. This difference was found to not be significant by the Mann–Whitney U test
(Figure 5a). Among the 78 circRNAs included in the panel, 70 were detected in at least one
NSCLC sample and 68 in at least one non-cancer control. A total of 66 EV-circRNAs were
shared by both cohorts, while four EV-circRNAs were exclusive to NSCLC patients and
two to non-cancer donors (Figure 5b, Table S3).

DE analysis revealed eight circRNAs significantly upregulated in EV-enriched samples
from NSCLC patients vs. controls; namely circular Erythrocyte Membrane protein Band
4.1 Like 2 (circEPB41L2), circular Core 1 Synthase, Glycoprotein-N-Acetylgalactosamine
-3-Beta-Galactosyltransferase 1 (circC1GALT1), circular Zinc Finger RNA Binding Protein
(circZFR), circular Ubiquitin Specific Peptidase 3 (circUSP3), circular Zinc Finger CCHC
Domain-Containing Protein 6 (circZCCHC6), circular Cyclin B1 (circCCNB1), circular
DENN Domain Containing 1B (circDENN1B) and circular Homeodomain Interacting
Protein Kinase 3 (circHIPK3) (Figure 5c). Of them, only circZFR and circC1GALT1 showed
<10 counts in each cohort (Table S4). To validate these results, we tested the expression
circZCCHC6 and circHIPK3 by RT-qPCR. Divergent primers and probes spanning the
junction sites were designed for the specific amplification of these two circular transcripts
(Table 2) in samples previously assessed by nCounter with sufficient remaining material.
Gel electrophoresis of the RT-qPCR products revealed bands matching the size of expected
amplicons and subsequent Sanger sequencing confirmed the expected junction sites in the
circRNAs (Figure 6a,b). Among the six samples analyzed by RT-qPCR, four and six samples
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produced satisfactory results for circZCCHC6 and circHIPK3 respectively. A trend between
nCounter counts and RT-qPCR DDCts was observed for both circRNAs (Figure 6c–d), with
circZCCHC6 showing a strong correlation (Pearson’s r = 0.99; p = 0.0076) (Figure 6c).
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Figure 5. EV-circRNA detection and differential expression analysis. (a) Number of circRNAs
detected in extracellular vesicle (EV) enriched samples from cancer patients and non-cancer con-
trols using our custom circRNA nCounter panel, which targets 78 circRNA (Mann–Whitney U
test, p = 0.3807); (b) Venn diagram displaying circRNAs identified in early-stage NSCLC and non-
cancer controls, featuring those shared by both cohorts; (c) Differential expression analysis of
log2-normalized counts between the early-stage NSCLC and control EV samples. circEPB41L2,
circC1GALT1, circZFR, circUSP3, circZCCHC6, circHIPK3 and circCCNB1 were found upregulated
in NSCLC samples.
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Figure 6. Validation of nCounter results by RT-qPCR and further Sanger sequencing. (a) Electrophore-
sis gel of amplified circZCCHC6 (107 nt) and circHIPK3 (120 nt); (b) Sanger sequencing results
spanning the junction site (underlined) of cited circRNAs; Comparison of nCounter normalized
counts versus DDCts values by RT-qPCR for circZCCHC6 (c) and circHIPK3 (d) in analyzed samples.
Pearson’s correlation coefficient is indicated. ns, not significant. ** means two grades of significant
(p < 0.01).

3.3. Development of a CircRNA-Signature Associated with Early-Stage NSCLC

Interquartile range analysis classified 9/66 samples as potential outliers (Figure 7a)
and PCA revealed that they deviated from the main cluster of observations (Figure S2).
Consequently, these nine samples were excluded from further analysis.
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Figure 7. Data outlier detection and normalization for machine learning (ML) processing. (a) Outlier
detection using the 1.5 IQR rule; (b) RUVSeq/DESeq2 RLE plot of normalized data (k = 1).

Then, different R packages including DESeq2, edgeR, RUVSeq and their combination
were tested in order to select the normalization approach that best adapts to our data.
As a result, RLE plots indicated a superior performance of RUVSeq-DESeq2 versus the
other combinations (Figures 7b and S3). Consequently, RUVSeq-DESeq2 normalization
was selected for the rest of the study.

Next, ML was performed using RFE along with RF classifier and LOOCV, as described
in Methods, in order to obtain a signature associated with NSCLC. As a result, ETC was
selected as the best model, with a signature of 10 circRNAs (including circular Family
With Sequence Similarity 13 Member B -circFAM13B, circular ADAM Metallopeptidase
Domain 22 -circADAM22, circular UBX Domain Protein 7 -circUBXN7, circZCCHC6, circu-
lar Integrin Subunit Alpha X -circITGAX, circular Retinol Dehydrogenase 11 -circRDH11,
circEPB41L2, circular CDC Like Kinase 1 -circCLK1, circular Phenylalanyl-tRNA Synthetase
Subunit Alpha -circFARSA, and circular Phosphoinositide-3-Kinase Regulatory Subunit
1 -circPIK3R1) showing an AUC ROC of 0.86 (Figure 8a). Signature scores were found
to be statistically different when comparing early-stage NSCLC and non-cancer controls
(Mann–Whitney U test, p < 0001; Figure 8b). The sensitivity and specificity of the ETC
signature were of 90% (CI = 73.47–97.89%) and 81% (CI = 61.92%%–93.70%) respectively,
outperforming the RF and KNN classifiers (Table 3). The accuracy achieved with ETC was
86%, resulting in 49 out of the 66 cases being correctly classified (Figure 8c).
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Figure 8. Machine learning (ML) analysis of extracellular vesicle (EV)-enriched samples. (a) Area
under the ROC curve of the 10 circRNA-signature using recursive feature elimination (RFE) for cohort
classification; (b) Scores of early-stage NSCLC versus control samples based on expression of the
10-circRNA signature (p < 0.001 in a two-tailed Mann–Whitney U test); (c) Confusion matrix based on
the ETC classification scores. ***: p < 0.001.
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Table 3. Precision assessment of the ML generated circRNA signature with ETC, RF and KNN. The
95% CI are indicated.

Model ETC RF KNN

No. concordant samples 49 44 30
No. discordant samples 8 13 27

AUC ROC 0.86 0.83 0.54
Accuracy 86% 77% 53%

Sensitivity 90%
(CI = 73.47–97.89%)

83%
(CI = 65.28–94.36%)

50%
CI = 31.30–68.70%)

Specificity 81%
(CI = 61.92–93.70%)

70%
(CI = 49.82–86.25%)

56%
CI = 41.83–68.49%)

PPV 84%
(CI = 70.81–92.32%)

76%
(CI = 63.10–85.10%)

56%
(CI = 41.83–68.49%)

NPV 88%
(CI = 71.18–95.61%)

79%
(CI = 62.20–89.77%)

50%
(CI = 37.95–62.02%)

Cohen’s  0.72
(CI = 0.458–0.976)

0.54
(CI = 0.281–0.798)

0.06
(CI =�0.202–0.313)

ML = machine learning, AUC = area under the curve, ROC = receiver operating characteristic, RF = random
forest, KNN = K-nearest neighbor, CI = confidence interval, PPV = positive predictive value, NPV = negative
predictive value.

Then, a univariate analysis was performed to explore the association of the ETC
circRNA signature with gender, age, smoking, cancer status and tumor stage (Figure 9a). A
statistically significant correlation was found for the signature with age (odds ratio = 24.91,
p < 0.0001), and particularly cancer status (odds ratio of 39.6, p < 0.0001).
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Figure 9. Association between clinical characteristics and ML-generated 10-circRNA signature.
(a) Univariate analysis exploring associations between presented 10-circRNA signature and patient
characteristics. Forest plot represents the odds ratios with a 95% Wald confidence limit. (b) Multi-
variate analysis exploring associations between presented 10-circRNA signature with age and cancer
status. Forest plot represents the odds ratios with a 95% Wald confidence limit.
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To further evaluate the implication of age and cancer status on the ML-developed
signature, we first performed an exploratory study assessing the interconnexion of both
variables by performing a chi-square test. As a result, a strong association between age and
cancer status was found, with a p < 0.0001 (Table 4).

Table 4. Association between age and cancer status.

Statistic DF Value p-Value

Chi-Square 1 32.245 <0.0001
Likelihood Ratio Chi-Square 1 41.232 <0.0001

DF = Degrees of freedom.

Next, a multivariate analysis was carried out. Results not only demonstrated depen-
dency of these two variables, but also showed a statistically significant correlation between
the signature and cancer status (p = 0.0036, Table 5, Figure 9b). No correlation was found
between age and presented signature, in this regard (p = 0.0784, Table 5, Figure 9b)

Table 5. Analysis of maximum likelihood estimates.

Parameter DF Estimate
Standard

Error

Wald

Chi-Square
p-Value

Age 1 0.356 1.301 0.075 0.7840
Cancer status 1 3.427 1.178 8.462 0.0036

DF = Degrees of freedom.

4. Discussion

EVs are released by most cell types and play an important role in cancer cell com-
munication. Many publications have demonstrated the role of EVs as key modulators in
cancer progression [34,35], which requires intercellular communication mediated by the
horizontal transferring of biological information via the EV cargo of proteins, DNA and
coding/non-coding RNA, including circRNAs. Therefore, analysis of EVs can provide a
snapshot of the tumor and serve as a valuable tool to discover liquid biopsy biomarkers.
CircRNAs are highly enriched in EVs [7] and show a relatively high stability compared to
other forms of RNA [8]. Several studies have highlighted their potential as liquid biopsy
biomarkers [12] but current limitations in circRNA quantification methods are limiting their
implementation in the clinical setting. Consequently, new, and robust protocols for circRNA
analysis are needed. The nCounter platform has gained popularity among translational
investigators for transcriptional research not only for solid biopsies but also for EV samples.
However, studies focusing on circRNA analysis by nCounter are limited and mostly re-
stricted to tissue specimens [30,36–40]. In particular, to the best of our knowledge, nCounter
has never been applied to the analysis of circRNA in liquid biopsies of lung cancer patients.
Consequently, we developed a comprehensive protocol for nCounter-based EV-circRNA
expression analysis, from EV enrichment to differential expression and subsequent ML
analysis. Key points in this protocol were the initial volume of plasma, the EV purification
method and the number of cycles for the pre-amplification step prior to nCounter testing.

UC is currently still the method of choice for EV isolation in the research setting and we
have previously demonstrated its utility for the downstream analysis of cell line-derived EV
circRNAs [41]. However, ultracentrifuges are not usually available in clinical laboratories,
while precipitation-based kits such as the miRCURY Exosome Serum/Plasma Kit represent
an easily implementable option with a simple, on-the-bench protocol and short hands-on
time. In our study, we compared the two methodologies using plasma samples from an
NSCLC patient and a healthy donor. The presence of EV-like particles in all preparations
was confirmed by TEM and nanoFCM. Interestingly, a more uniform EV population with
an exosomal size-range was found by TEM in both cancer and control samples processed
with the miRCURY kit, along with a higher concentration of 40–200 nm particles observed
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by nanoFCM. A possible explanation to this event could be a size-selective enrichment
attributed to this type of precipitation-based preparations, as previously reported in serum
samples [42]. This finding prompted us to select miRCURY for further assay development.
In addition, a higher number of EV-like particles was observed in the cancer sample
compared to the control, regardless the isolation method used. Although a higher number of
samples should be analyzed for further confirmation, preliminary results are in agreement
with previous reports indicating a higher abundance of EVs in cancer patients [43].

Finally, adding to the evidence provided by TEM and nanoFCM, a treatment with
RNase A was applied to EV-enriched samples prior to EV lysis and incorporated into our
protocol to eliminate any extravesicular RNA. The resulting and subsequently analyzed
RNA proved to be protected from the digestion of cited ribonuclease, indicating a vesicular
origin of the transcripts.

In a previous study, a volume of 500 µL of plasma was found to be sufficient for
the analysis of EV-derived mRNA by nCounter [25]. Here, we compared several plasma
volumes and found that 500 µL outperformed 1000 and 1500 µL for circRNAs analysis,
both in terms of the number of circRNA molecules detected and total counts. A possible
explanation for these results may rely on saturation issues with the circRNAs/reporter–
probe complexes when a higher plasma input is applied, which impede a correct molecule
identification by the digital analyzer. Regarding the number of cycles for the preamplifica-
tion step, we investigated a range from 10 to 20 in an effort to reduce amplification-related
background noise to a minimum, and we found that a 10-cycle pre-amplification step
yielded adequate results.

Then, we applied our protocol to assess circular transcripts in early-stage NSCLC
samples (n = 36) and to non-tumor controls (n = 30). We found that eight circRNAs
were found differentially expressed between the two cohorts. Among them, circEPB41L2,
circZCCHC6 and circHIPK3 showed the highest number of counts in early-stage cancer
patients (Table S4). Interestingly, we previously found circEPB41L2 differentially expressed
in FFPE tissues of early-stage lung cancer patients [30] and found that it displayed four
binding sites with hsa-miR-942, which has been described as an activator of the Wnt/�-
catenin signaling pathway [44,45] in colorectal and esophageal cancers. Our results warrant
further investigation in the biology of this circRNA to characterize its role in lung cancer.
Regarding circHIPK3, it has been extensively investigated in lung cancer and found to
exert a dual activity over miR-149 [46] and mir-124 [47,48], inducing cell proliferation and
inhibiting apoptosis. Our results are in agreement with these findings, since circHIPK3 was
upregulated in EV samples from early-stage NSCLC patients. Finally, circZCCHC6 has
been recently described to regulate lysophosphatidylcholine acyltransferase 1 (LPCAT1)
levels via miR-433-3p [49] in lung cancer. We used circinteractome (www.circinteractome.
nia.nah.gov) to investigate possible additional miRNA binding sites, finding matches for
7 additional transcripts (miR-579-3p, miR-623, miR-1197, miR-1304 miR-548l, miR-605 and
miR-935). All these miRNAs have been reported to be downregulated in lung tumors and
have been related with poor prognosis, tumor growth and metastases [50–56].

ML and other computational methods based on artificial intelligence (AI) have emerged
in the last decade for multileveled analysis of different datasets. In particular, ML enables
computers to make predictions by finding patterns within analyzed data [57], offering
a novel approach for the development of predictive signatures that often reach a higher
predictive value than biomarkers found by differential expression analyses. Consequently,
we decided to use ML in our study. To this end, we developed a pipeline with several
steps. First, using IQR and PCA plots, we identified nine outliers, which were excluded
from downstream analyses. An RLE plot from each different normalization procedure was
generated, showing a higher performance of the RUVSeq-DESeq2 function when compared
to the other combinations (Figures 7b and S3A–C). Finally, we used RFE along with LOOCV
and the RF classifier as the feature selection algorithm to automatically determine the most
significant circRNAs which are best suited for the construction of the prognostic signature.
The final 10-circRNA signature included two of the eight circular transcripts previously

www.circinteractome.nia.nah.gov
www.circinteractome.nia.nah.gov
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found by differential expression analysis and eight additional transcripts, including circ-
FARSA. Interestingly, circFARSA has been described as a plasma biomarker of NSCLC [58],
promoting tumor invasion and metastases via the PTEN/PI3K/AKT axis [59].

Since we did not sort EV populations, we could not verify the vesicular cell or tissue
origin of the circRNAs included in the ML signature nor the origin of the circular transcripts,
either cancer cells or tumor microenvironment. Also, we did not investigate the biological
role of the circRNAs, being out of the scope of our work.

In addition, while multivariate analysis could demonstrate that classification accuracy
of presented signature is based on cancer status and no other clinicopathological charac-
teristics (Figure 9), the lack of > 60-year-old individuals was a limitation in the study. The
inclusion of equivalent cohorts in terms of age should be taking into consideration for the
design of forthcoming validation studies.

Finally, all 36 cancer samples included in this study were lung adenocarcinomas, with
the exception of 4 squamous carcinoma and 5 NSCLC samples with unknown histological
subtype. A uniform inclusion of the different lung cancer histologies is suggested for
future validation studies to assess the predictive power of the signature for other subtypes
of NSCLC.

5. Conclusions

We have demonstrated the feasibility of using nCounter for the multiplex study of
plasma-EV circRNAs in liquid biopsies of lung cancer patients, including differential
expression analysis and development of predictive ML signatures. Further studies of larger
cohorts are warranted in order to determine the clinical applicability of such signatures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14102034/s1, Table S1: CircRNAs detected in the
different plasma volumes of the same patient with 14 and 20 cycles of pre-amplification; Table S2:
CircRNAs detected in the plasma of the same individual subjected to 10, 12 and 14 pre-amplification
cycles; Table S3: CircRNAs identified in early-state NSCLC and non-cancer control cohorts; Table S4:
Normalized counts of differentially expressed circRNAs found in the early-stage NSCLC cohort;
Figure S1: Plasma input testing; Figure S2: Principal Component Analysis of the transformed raw
data; Figure S3: Assessment of the different normalization processes by RLE plot analysis; Figure S4:
Confusion matrices summarizing the performance of the different classification algorithms.
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