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1. INTRODUCTION

Personalized medicine promises diagnosis and treatment 

of disease at the individual level and relies heavily on clinical 

specimen and diagnostic assay quality. Today, histopathological 

and molecular features of the tumor are well integrated to provide 

the best possible treatment option for the individual patient. 

Pathologist diagnosis still represents the first step in the patient 

diagnostic workflow. In routine diagnosis, formalin-fixed paraffin-

embedded (FFPE) tissues are used, being the most common 

form of preserved archived clinical samples (Gerdes et al., 2013).

Modern biopsy techniques often provide only small tumor 

specimens and serial sample sectioning is usually required 

to allow the pathologist to determine the morphology and 

immunophenotype of the tumor which will finally lead to a 

correct diagnosis. Sample use may be minimal but, in the case 

of diagnostically challenging cases, additional testing may 

be required, thus jeopardizing subsequent molecular charac-

terization of the tumor, especially when dealing with small biopsy 

specimens. The remaining tissue can be used for molecular 

analysis only after the diagnosis has clearly been established. 

This could lead to material exhaustion for further analyses and 

require a re-biopsy of the patient (Pirker & Filipits, 2016).

As more targeted treatment options become available, testing 

for multiple markers is required and abundant amount of good 

quality samples need to be acquired. Unfortunately, current 

1
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into the clinical practice. This is presumably due to our limited 

understanding of the complex and heterogeneous spatial 

organization of the tumor-immune ecosystem and of the cancer 

mechanisms that evade the immune system (Finotello et al., 

2019; Sankar et al., 2022).

The analysis of multiple biomarkers in FFPE samples include 

serial sectioning and individual staining from the same tissue 

block by chromogenic immunohistochemistry (IHC) - technique 

that is used routinely in the majority of the pathology laboratories. 

Here limitations arise as it requires serial sections that makes 

co-expression analyses on single cells not possible. Also, 

the extensive use of the sample - which may become quickly 

exhausted – adds to the restraints of current approaches.

Multiplex immunofluorescence (mIF) and multiplex 

immunohistochemistry (mIHC) addresses the aforementioned 

limitations by allowing expression analysis of multiple biomarkers 

in a single tissue section. However, the number of biomarkers 

that can be multiplexed depends on the available fluorophores/ 

chromogens.

By one hand, mIF enables the analysis of more biomarkers 

than mIHC, more quantitative results and better visualization 

at an intracellular level. However, autofluorescence makes the 

evaluation more difficult leaving even image processing algorithms 

build to remove this less successful. Furthermore, visualizations 

can’t be performed by classical bright-field microscopy, which is 

the accepted standard in pathology.

testing techniques do not allow simultaneous detection of 

gene mutations, gene expression and protein expression on 

the same starting material and multigene- based test does not 

provide histological, cellular and subcellular context(Gerdes et 

al., 2013).  Being able to do a complete diagnostic workflow and 

comprehensively  understand the cancer cells, the interactions 

between the cellular and molecular components of the immune 

system, as well as the tumor microenvironment as a whole can 

affect cancer treatment, prognosis, relapse and could help find 

various mechanisms determining sensitivity and resistance of 

cancer cells to treatments.

The advent of effective immunotherapy using immune- 

checkpoint inhibitors has led to a revolution in cancer, with 

immunotherapeutics now available across multiple tumor types. 

The characterization of the complexity of tumor microenvironment 

is becoming an important “biomarker” to combine with tumor 

genotype to predict response to these drugs. Immune cells 

consist of different subpopulations with distinct functions (de 

Obaldia & Bhandoola, 2015) and the nature and structure of the 

“cancer-immune system” may both promote and suppress tumor 

growth(Chen & Mellman, 2017).

The limited knowledge of tumor microenvironment composition 

and spatial organization affect our ability to develop predictive 

biomarkers of response to immunotherapy, which are urgently 

needed. Several biomarkers have been proposed to delineate 

responders from non-responders and to investigate their 

prognostic role, but most of them have not been incorporated 
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are effective tools for discovery studies on intact tissue sections 

providing quantification and imaging of up to 100 biomarkers from 

tissue sections labelled with metal-tagged antibodies (Giesen 

et al., 2014; Keren et al., 2018). The issue is that these are very 

time-consuming techniques requiring high acquisition costs, 

dedicated infrastructure and expertise, that limit its accessibility 

outside pure research environment, apart from the fact that they 

are less sensitive because of the nature of meta-conjugation (Tan 

et al., 2020).

New technologies of barcoding based multiplexed imaging 

like CODEX, DSP, Insituplex; fluorescence based multiplexed 

imaging systems like Vectra; and Chipcy-tometry or 3D imaging 

technologies are also being developed. These are able to provide 

comprehensive cellular spatial information but once again, they 

are expensive and not practical for clinical routine use.

Finally, other multiplexing approaches have tested the possibility 

of performing iterative cycles of staining and destaining (up to 12) 

of the same tissue section without losing tissue antigenicity and 

with absence of cross-reactivity between stainings by the use of 

an alcohol soluble chromogen(Glass et al., 2009; Remark et al., 

2016; Tsujikawa et al., 2017). However, the techniques described 

are fully manual and time consuming which limit its wider use from 

outside a research setting.

Building from these observations, we have developed the Next 

Generation Immunohistochemisty (NGI), an automatized, simple, 

and flexible IHC based technology for sequential staining using 

By the other hand, mIHC makes the evaluation difficult due to 

the fact that the different colors are in the same slide and thus 

not separated in channels, which makes it easier to evaluate. 

Moreover, the cellular localizations of the various biomarkers 

must be different in order to distinct them, also leading to the 

need of complex equipment that allow spectral differentiation if 

more than one biomarker belongs to the same compartment. 

While, some translucent chromogens HRP kits (e.g., Ventana 

medical systems DISCOVERY Green HRP kit) allow a change of 

color when co-localizing biomarkers, however these are not easy 

to evaluate and are for pure research purposes thus also not used 

in diagnostic procedures. Furthermore, the different biomarkers 

could have different pre-treatments and finding a unique pre-

treatment for the technique could make some biomarker not be 

optimally stained.

Some complex cellular populations (such as specific types 

of immune cells) are only identifiable by combining several 

biomarkers. These are routinely studied by flow cytometry (FC) 

or RNAseq, that look at cells individually but does not provide 

spatial or morphological context information and require complex 

computational analyses to obtain and visualize the data(Finotello 

et al., 2019). Moreover, RNA seq gives the result of the average 

transcriptome of the cells of the sample, while single-cell RNAseq 

can give the data from individual cells, though it requires even 

more complex and expensive equipment. 

Metal-based multiplexed imaging systems such as Multiplexed 

Ion Beam Imaging (MIBI) and Imaging mass spectrometry (IMS) 
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the combination of Ventana Discovery Ultra (Roche Diagnostics), 

Nanozoomer slide scanner (Hamamatsu) and Visiopharm image 

analysis program - equipment that is commonly used in pathology 

laboratories.

The protocol consists in sequential automatized IHC stainings 

with an alcohol soluble chromogen (AEC). After each automated 

IHC staining, the samples are mounted in aqueous medium and 

digitalized. Subsequently, the section is destained in alcohol 

and submitted to the following staining cycle (Figure 1). After 

digitalization, images are aligned in Visiopharm image analysis 

program for data extraction.

Figure 1. Next Generation Immunohistochemistry (NGI).

A) Protocol of the sequential immunohistochemical staining on a single histological section 
and image analysis with Discovery Ultra automated slide staining system (Roche Diagnostics), 
NanoZoomer Digital Pathology Slide Scanner (Hamamatsu) and Visiopharm image analysis 
program.

B) Representative example of different sequential stainings (CD3, CD8, ER, HER2, KI67) and color 
deconvoluted images for virtual color assignment for composite image creation where all stainings 
and co-expressions are shown with different virtual colors.
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2. HYPOTHESIS

Different multiplexed and non-disruptive imaging technologies 

are needed for individualized treatment in cancer and other 

malignancies to extract all the information and biological 

insights of the disease. The hypothesis is that the automatized 

technology outlined in this thesis may fill the actual limitations 

of the current approaches and become one of the multiplexed 

imaging technologies that could be used in different pathology 

and research laboratories to improve biomarker analyses in 

precision oncology.

Image analysis applied to multiplexed imaging is able to extract 

both qualitative and quantitative individual and combined 

biomarker data of multiple biomarkers at a cellular level; 

characterize complex cellular populations and integrate them 

with spatial and morphological context information; characterize 

the interaction between tumor and its associated immune 

microenvironment and explore its applications to immuno- 

oncology (IO); identify or improve biomarkers to better predict 

response to chemotherapies and immunotherapies; characterize 

the impact of intra-tumoral heterogeneity and single cell analysis 

on response to targeted therapies; and improve the reproducibility 

and analysis automation of diagnostic, prognostic, and predictive 

biomarkers.

The results generated by this study can provide a framework for 

applying this technology to address complex biological questions. 

2
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If NGI becomes a useful multiplex imagining technology it may 

allow for a comprehensive characterization of biological tissue 

samples at cellular level while maintaining important spatial 

distribution/interaction between tumor and its microenvironment. 

These insights would advance our understanding of tumor biology 

and its complexity and they might help identifying better or new 

prognostic or predictive biomarkers that predict the response 

to treatment supporting better patient stratification towards 

different therapies or their combinations and therefore, increase 

the number of patients that can benefit from them.

3
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the proliferation of the different populations.

•	 To design and validate a panel that studies the intratumor 

intrinsic molecular subtype heterogeneity in breast cancer 

tissue samples and its impact in patient prognosis and 

response to targeted therapies.

3. OBJECTIVES

The general objective is the validation and application of the high 

resolution, simple, robust and automated methodology called 

Next Generation Immunohistochemistry or NGI, that sequentially 

stains and destains different biomarkers in the same FFPE 

section allowing together with the image analysis algorithms 

that are going to be designed the quantification, co-expression 

and spatial analyses, while preserving the tissue and that would 

be useful not only in the research field but also in pathology 

laboratories.

The specific objectives are creating different panels (composed 

of highly relevant diagnostic and exploratory predictive targets) 

that are clinically useful and applicable for different tumor types or 

stages of the disease and even applicable in other malignancies:

•	 To design and validate a panel that quantifies in a simple, 

automated and reproducible way the KI67 biomarker in the 

tumor by using KI67 proliferation biomarker together with the 

PanCK that allows tumor identification.

•	 To design and validate a panel that quantifies different t-cell 

subpopulations. We will focus on the study of the tumoral 

immune compartment by extensively characterizing immune 

cell populations on tumor tissue samples. By designing a 

NGI protocol we aim to characterize the spatial interaction 

between the tumor and its immune microenvironment and 
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4 4. PUBLICATIONS

4.1- Study 1:

“Sequential immunohistochemistry and virtual 

image reconstruction using a single slide for 

quantitative KI67 measurement in breast cancer”

In this study we validated the first panel of NGI composed 

of KI67 with the PanCK and we called it KiQuant, which 

allows the quantification of the proliferating biomarker 

ki67 in the tumor cells in an easy and reproducible way 

that is one of the big problems with ki67 evaluation.

Serna G, Simonetti S, Fasani R, 
Pagliuca F, Guardia X, Gallego P, 
Jimenez J, Peg V, Saura C, Eppen-
berger-Castori S, Ramon Y Cajal S, 
Terracciano L, Nuciforo P.  Breast. 
2020 Oct; 53:102-110. 
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a b s t r a c t

Objective: Ki67 is a prognostic and predictive marker in breast cancer (BC). However, manual scoring
(MS) by visual assessment suffers from high inter-observer variability which limits its clinical use. Here,
we developed a new digital image analysis (DIA) workflow, named KiQuant for automated scoring of
Ki67 and investigated its equivalence with standard pathologist's assessment.
Methods: Sequential immunohistochemistry of Ki67 and cytokeratin, for precise tumor cell recognition,
were performed in the same section of 5 tissue microarrays containing 329 tumor cores from different
breast cancer subtypes. Slides were digitalized and subjected to DIA and MS for Ki67 assessment. The
intraclass correlation coefficient (ICC) and Bland-Altman plot were used to evaluate inter-observer
reproducibility. The Kaplan-Meier analysis was used to determine the prognostic potential.
Results: KiQuant showed an excellent correlation with MS (ICC:0.905,95%CI:0.878e0.926) with satis-
factory inter-run (ICC:0.917,95%CI:0.884e0.942) and inter-antibody reproducibilities (ICC:0.886,95%
CI:0.820e0.929). The distance between KiQuant and MS increased with the magnitude of Ki67 mea-
surement and positively correlated with analyzed tumor area and breast cancer subtype. Agreement
rates between KiQuant and MS within the clinically relevant 14% and 30% cut-off points ranged from 33%
to 44% with modest interobserver reproducibility below the 20% cut-off (0.606, 95%CI:0.467e0.727).
High Ki67 by KiQuant correlated with worse outcome in all BC and in the luminal subtype (P¼ 0.028 and
P¼ 0.043, respectively). For MS, the association with survival was significant only in 1 out of 3 observers.
Conclusions: KiQuant represents an easy and accurate methodology for Ki67 measurement providing a
step toward utilizing Ki67 in the clinical setting.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ki67 is a nuclear protein expressed throughout all the phases of
the cell cycle from G1 to M-phase [1]. Due to its association with

cellular proliferation, Ki67 detection by immunohistochemistry
(IHC) has emerged as a useful and inexpensive tool to assess the
proliferation index of a tumor. Many studies have shownprognostic
and predictive values of Ki67 in awide range of malignancies [2] [e]
[9]. In particular, in breast cancer (BC), Ki67 has been successfully
used not only for classification and risk assessment purposes but
also to decide therapeutic endpoints in the context of neoadjuvant
settings [10] [e] [13].

The promise of Ki67 as a biomarker is affected by technical and
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Hospital, Vall d'Hebron Institute of Oncology (VHIO) C/ Natzaret, 115-117, 08035,
Barcelona, Spain.

E-mail address: pnuciforo@vhio.net (P. Nuciforo).

Contents lists available at ScienceDirect

The Breast

journal homepage: www.elsevier .com/brst

https://doi.org/10.1016/j.breast.2020.07.002
0960-9776/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

The Breast 53 (2020) 102e110

scoring reproducibility issues, which make it not ready for clinical
use. Despite the efforts of the International Ki67 in Breast Cancer
Working Group (IKWG) to standardize the preanalytical, analytical,
interpretation, and data analysis steps, variations in protocols and
scoring methodologies across laboratories remain large contribu-
tors to assay variability [14,15]. Manual counting provides better
interobserver reproducibility as compared to visual estimation [16].
However, as scoring the whole section seems impractical, the
location and extent of the area that should be scored are contro-
versial and subject to observer's interpretation [17,18]. As a conse-
quence, despite different Ki67 thresholds to define luminal A vs
luminal B tumors (14%, 20%, laboratory median values [19] [e] [21])
have been proposed, no absolute standardmethodology and cut-off
point have been defined so far. In this context, the use of multigene
tests [22e24] and digital image analysis (DIA) [25e32] may be
valuable, especially across intermediate Ki67 levels where there is
high uncertainty.

While computer-assisted methods are expected to provide a
more accurate Ki67 assessment, these approaches either rely on
significant pathologist's intervention for the area of interest selec-
tion or use unique and sophisticated cell segmentation and classi-
fication algorithms that require extensive supervised learning.

In this study, we describe a novel methodology for automatic
scoring of Ki67 which relies on sequential IHC of Ki67 and cyto-
keratin using a single slide, followed by virtual image reconstruc-
tion for DIA. The use of a cytokeratin mask allows for the precise
definition of the region of interest and limits pathologist's inter-
vention. The methodology accuracy was compared with manual
scoring (MS) determined by multiple observers to demonstrate
equivalence or superiority. Finally, the outcome prediction poten-
tial of our method was investigated.

2. Material and methods

2.1. Patients and samples

Clinicopathological features of study cohorts are shown in
Table 1. A total of 186 patients from 2 different cohorts was used in
this study. Cohort 1 was composed of 99 patients with BC of
different subtypes [hormone receptor-positive (HRþ), HER2-
positive (HER2þ), and triple-negative (TN)] retrieved from the Pa-
thology Department of the Vall d’Hebron University Hospital
(Barcelona, Spain). No survival data were available for this cohort.
Cohort 2 comprised an independent set of 87 BCE patients selected
from the archives of the Pathology Department of the University
Basel Hospital (Basel, Switzerland), with 58 months median follow
up for overall survival (OS).

From the surgical specimens of primary BC of each patient, a
representative paraffin-embedded tumor tissue block was selected
and five tissue microarrays (TMAs), containing representative BC
tissue cores of 1.5mm, were built. For cohort 1, four TMAs were
constructed, containing between 2 and 3 cores of 1.5mm for each
tumor, with a total of 242 cores. Cohort 2 BCE cancer specimens
were arrayed in one TMA built using one representative core for
each tumor sample (87 cores of 1.5mm).

The protocol of this study was approved by the Vall d’Hebron
University Hospital Ethical Committee (PR(AG)76/2018) and all
methods were performed in accordance with relevant guidelines
and regulations.

2.2. Immunohistochemistry

The complete sequential IHC and image analysis workflow used
in this study (named KiQuant) is illustrated in Fig. 1A. Briefly, after
deparaffinization and antigen retrieval (CC1, 64min at 95 �C), one

single slide of each TMAwas first stained with a standard anti-Ki67
primary antibody (clone 30e9, prediluted, #790e4286, Ventana,
Tucson AZ) for 64min at 37 �C on an automated staining system
(Discovery Ultra, Ventana, Tucson AZ). Antibody binding was
amplified with an anti-Rb HRP biotin-free detection system
(#760e4315, Ventana, Tucson AZ) ,visualized using 3-amino-9-
ethylcarbazole (Mono AEC/Plus, #K050, PALEX), an alcohol solu-
ble substrate that results in red staining, and counterstained with
hematoxylin. The slides were mounted and digitalized at 20x using
a slide scanner (NanoZoomer 2.0HT, Hamamatsu Photonics, Japan).
Following digitalization, the coverslip was removed before
destaining using ethanol as previously described (Tsujikawa, Cell
Reports 2017; Glass, J Histochem Cytochem 2009). The destained
slides were then subjected to an additional antigen retrieval step
(CC2, 8min at 100 �C) to completely strip the first primary antibody
(anti-Ki67) before the second staining cycle with another antigen
retrieval (CC1, 48min at 95 �C) was started. Then, the anti-Pan-
Keratin primary antibody (clone AE1/AE3/PCK26, prediluted,
#760e2135, Ventana, Tucson AZ) was applied for 40min at 36 �C.
Antibody binding was amplified with an anti-MS HRP biotin-free
detection system (#760e4313, Ventana, Tucson AZ). For repro-
ducibility analyses, a second anti-Ki67 antibody was also used
(clone MIB-1, #M7240, DAKO/Agilent, Santa Clara, CA) for IHC in a
non-consecutive slide from a TMA of cohort 1.

Table 1
Clinicopathologic characteristcs of study cohorts.

Cohort 1 Cohort 2

N % N %

Patients 99 100 87 100

Diagnosis

Invasive ductal carcinoma 78 78.8 61 70.1
Invasive lobular carcinoma 12 12.1 14 16.1
Mixed ductal-lobular carcinoma 0 0.0 10 11.5
Medullary carcinoma 1 1.0 1 1.1
Mucinous carcinoma 3 3.0 1 1.1
Metaplastic carcinoma 5 5.1 0 0.0

Grade

I 1 1.0 8 9.2
II 39 39.4 37 42.5
III 54 54.5 42 48.3
NA 5 5.1 0 0.0

pT

T1 17 17.2 32 36.8
T2 56 56.6 41 47.1
T3 15 15.2 6 6.9
T4 1 1.0 8 9.2
NA 10 10.1 0 0.0

pN

Negative 44 44.4 39 44.8
Positive 50 50.5 43 49.4
NA 5 5.1 5 5.7

pM

0 99 100 83 95.4
1 0 0,0 4 4.6

Subtype

HER2þ 23 23.2 9 10.3
HRþ 39 39.4 62 71.3
TNBC 37 37.4 16 18.4
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2.3. Digital image analysis (DIA)

To analyze the images, we created an algorithm using the
Author® module of VISIOPHARM® (VIS) Image Analysis Software
(Visiopharm Integrator System version 2019.January 02, 6005,
Visiopharm, Denmark). Both Ki67 and cytokeratin stained digita-
lized slides were automatically registered, to fuse the information
into a single virtual digital image (VDI), using the Tissuealign®
module of VIS. Cytokeratin stained images were used to classify
tumor and stromal areas within each core. A color deconvolution
algorithm enhanced tumoral areas that were extracted using a pixel
intensity threshold algorithm. Cytokeratin-based segmentations
were transferred to the registered Ki67 image. Cells within the
cytokeratin mask were classified into Ki67 positive or negative
using a cell classification method based on form and size, and a
pixel-color intensity threshold method, which considered only
KI67 nuclear staining (algorithms specifications in Supplementary
Table 1 and algorithms in Supplementary Material).

Each core on the TMA slides was separately analyzed by locating
the tissue, using an automatic thresholding approach, and
extracting the area of interest to create separate images.
Cytokeratin-positive non cancer areas (such as ductal carcinomas in
situ, necrosis or normal ducts) were manually excluded before data
extraction. Final results are reported as the cell density, i.e. the total
number of cells within the tumor area defined by themask, number
of positive and number of negative cell nuclei, as well as the per-
centage of positive cells within the corresponding core.

The application was trained by a biotechnologist, expert in im-
age analysis, to identify positive and negative Ki67 cells within the
tumor mask in the VDI (Fig. 1B). After setting the optimal condi-
tions, themethodologywas evaluated in samples from cohort 1 and
validated on an independent group with follow up data. The
framework performance was compared to the results obtained by
manual scoring (MS) of three expert board-certified pathologists.

MS LI is defined as the ratio between the number of KI67-positive
tumor cells and the total number of tumor cells, using either
counting or estimation approaches14 (Supplementary Table 2). In-
dividual images were manually reviewed to exclude non-evaluable
cores (n¼ 24, unpaired cores, cores containing only normal tissue,
folded cores or cores without cytokeratin staining).

Method reproducibility was investigated by analyzing KiQuant
results obtained by a) staining and analysis of twoTMAs (TMA2 and
TMA3) during two non-consecutive days (inter-run reproduc-
ibility), and b) by staining of two non-consecutive sections of one
TMA (TMA2) with two different commonly used anti-Ki67 primary
antibodies [inter-antibody reproducibility, clone 30e9 from Ven-
tana (Tucson, AZ, USA) and clone MIB1 from DAKO/Agilent (Santa
Clara, CA, USA)].

2.4. Statistical analysis

Agreement between KiQuant and MS was calculated using
intraclass correlation coefficient (ICC) and Bland-Altman (BA) plot.
We considered ICC values from 0.4 to 0.6 as moderate reliability,
from 0.61 to 0.8 as good reliability, and greater than 0.8 as excellent
reliability [33]. Spearman rank correlation coefficient and Kruskal-
Wallis nonparametric test were used to determine the relationship
of the difference between KiQuant and MS scoring with analyzed
tumor area and BC subtypes, respectively. Overall survival was
modeled using the Kaplan-Meier curves, and the significance of
differences between these curves was determined using the log-
rank test. Statistical analysis, data preparation, and figures were
carried out with R-commander (v.1.9e5) and SPSS software (v.25.0;
IBM (Armonk, NY, USA).

Fig. 1. KiQuant workflow. A) This workflow uses sequential Ki67 and cytokeratin (for precise automatic tumor cells recognition) immunohistochemistry staining on the same tissue
section. The steps are: staining of the slide with the first primary antibody anti-Ki67, digitalization of the slide after the first staining, coverslip removal and staining of the slide with
the second primary antibody anti-Pan-Keratin, digitalization of the slide after the second staining, image alignment, image analysis, quality check, and data report. B) A repre-
sentative example of a tumor core sequentially stained with Ki67 (top) and Pan-Keratin (middle). In the virtual digital image (bottom), Pan-Keratin-positive brown areas are used to
automatically mark the region of interest (dotted orange line). Green and red cells represent Ki67-negative and -positive nuclei, respectively. Ki67-labelled stromal cells not stained
by the Pan-Keratin antibody are excluded from the analysis.
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3. Results

3.1. Correlation between KiQuant and MS

KiQuant was compared with a reference standard Ki67 LI MS
which was determined as the average Ki67 LI between two board-
certified pathologists scoring 218 cores of cohort 1 using the
counting method [14]. Correlation between KiQuant and MS was
excellent (ICC: 0.905, 95% CI: 0.878e0.926). KiQuant returned
systematically lower Ki67 LI results compared to MS (mean, 16.6%
vs 21.7%, respectively). The correlation was better in HRþ (ICC:
0.934, 95% CI: 0.905e0.955) than in TNBC (ICC: 0.894, 95% CI:
0.835e0.933) and HER2þ (ICC: 0.862, 95% CI: 0.758e0.923)
(Fig. 2A). BA plot revealed a significant proportional bias (regres-
sion analysis, P< 0.0001) by showing that the distance between
KiQuant and MS increased with the magnitude of Ki67 measure-
ment (Fig. 2B). The difference between KiQuant and MS correlated
with the analyzed tumor area (Spearman's rho¼ 0.455, P< 0.0001),
BC histology (mean difference, IDC¼ 5.4; ILC¼ 1.4; Medul-
lary¼ 23.85; Metaplastic¼ 7.7; Mucinous¼ 0.6; Kruskal-Wallis
test P¼ 0.001, Supplementary Figure S1) and subtype (mean dif-
ference, HER2þ ¼ 7.4; TNBC ¼ 6.3; HRþ ¼ 3.1; Kruskal-Wallis test
P¼ 0.001). Thirteen cores (6%) from 9 patients showed a difference
between KiQuant and MS KI67 LI outside the limits of agreement
(Supplementary Table 3).

3.2. Concordance of KiQuant and MS across different observers in
luminal BC

Three different pathologists scored 100 cores of luminal (HRþ)
BC and individual observer MS were compared between each other
and with KiQuant results (Fig. 3, Supplementary Table 4). Overall,
the inter-pathologist concordance was very high (ICC: 0.932, 95%
CI: 0.905e0.952). The agreement between KiQuant and each

individual observerwas excellent for all observers (OBS1 ICC: 0.877,
95% CI: 0.822e0.915; OBS2 ICC: 0.870, 95% CI: 0.810e0.911; OBS3
ICC: 0.842, 95% CI: 0.774e0.891). Then, we determined the agree-
ment between KiQuant and individual MS across different Ki67 LI
cut-offs. The highest concordance rates (ranging from 84% to 100%,
depending on the observer) were found below the 2.7% and above
the 40% cut-offs, whereas the lowest (ranging from 71% to 90%)
were observed within 14% and 30% cut-offs (Supplementary table
4). At the clinically relevant cut-off of 20% defined by St Gallen
criteria [20], concordance between KiQuant and MS ranged from
71% to 86%, depending on the observer. Inter-observer concordance
was lower below the 20% (ICC: 0.606, 95% CI: 0.467e0.727) as
compared to equal or above the 20% (ICC: 0.937, 95% CI:
0.893e0.965) cut-point defined by KiQuant.

3.3. KiQuant reproducibility

KiQuant inter-run correlation (n¼ 120 cores, ICC: 0.917, 95% CI:
0.884e0.942), and inter-antibody reproducibility (n¼ 64 evaluable
cores, ICC: 0.886, 95% CI: 0.820e0.929) were excellent
(Supplementary Figure S2).

3.4. Prognostic potential of Ki67 LI as determined by KiQuant and
MS

To test the outcome prediction potential of KiQuant, we used an
independent cohort of 87 breast invasive carcinomas with available
outcome data (Table 1). The analysis was performed using the
KiQuant workflow and obtained results were compared with the
reference MS LI determined by 3 independent observers. Median
Ki67 LI were used as cut-points. Patients with high Ki67 LI by
KiQuant had shorted overall survival (all: log-rank, P¼ 0.028; HRþ/
HER2-: log-rank, P¼ 0.043). For MS LI, the association was statis-
tically significant only in 1 out of 3 observers (Fig. 4, Supplementary

Fig. 2. A) Comparison of manual scoring (MS, y-axis) and KiQuant (DIA, x-axis) in breast cancer. The scattered plots are based on 218 evaluable cores from cohort 1. The breast
cancer subtype is indicated in the legend of the top of the plots. Box plots of MS and KiQuant data are shown in the y-axis and x-axis, respectively. B) Bland-Altman plot of
agreement between Ki67 labeling index (LI) by MS and KiQuant. In the x-axis, the average Ki67 LI between the two assessment methodologies is shown. The y-axis represents the
difference between Ki67 LI scored by manual scoring and digital image analysis. The dotted blue line shows the average difference between the two assessments (4.95). The upper
(19.51) and lower (�9.60) limits of agreement are indicated by the dotted light-blue lines.
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Fig. 3. Heatmapof Ki67 scores. Rows represent cases and columns represent observers. Cases are ordered in ascendingorder byKiQuant values. Blue color gradients indicateKi67 score
ranges (0e2.6%, 2.7e13%, 14e19%, 20e29%, 30e100%). The percentage of agreement between KiQuant and MS (manual scoring represented by the average value among the three
observers) is indicated for each Ki67 score range. Intraclass correlation coefficient (ICC) among the three observers and 95% confidence interval (CI) is shown for each Ki67 score range.
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Figure S3).

4. Discussion

Ki67 is a useful biomarker for risk stratification, helps to
differentiate luminal A- and B-type tumors, and to decide end-of-
neoadjuvant-treatment endopoint in clinical trials, thus providing
predictive and prognostic information in BC [19,34e38]. However,
its implementation in the clinical setting has been hampered by the
high technical and interpretation variability, and most significantly,
the poor reproducibility across operators and laboratories [15,39].
The European Society for Medical Oncology (ESMO) and the
American Society of Clinical Oncology (ASCO) have concluded that
Ki67 would be a useful clinical tool if standardized [40,41]. Mean-
while, the use of multigene predictors has given clinicians a more
accurate methodology for risk stratification [22e24]. DIA platforms
using machine-learning (ML) methods have been proposed as
automated systems for Ki67 LI scoring. A recent study comparing
different software packages showed an excellent agreement across

the different DIA platforms (ICC: 0.933) which suggests that DIA
can be standardized to give highly reproducible, platform-
independent Ki67 LI automatic evaluation ( [42e44].

In this study, we proposed a fairly easily implementable work-
flow named KiQuant for Ki67 LI assessment which showed excel-
lent reproducibility with reference pathologist standard
(ICC:0.905) and satisfactory analytical reproducibility (inter-run
ICC:0.917; inter-antibody ICC:0.886). KiQuant shows a series of
important features that could make standardization of Ki67 inter-
pretation simple and effective. The novelty of our analysis work-
flow is the ability to fuse the information contained in two different
images derived from sequential IHC on the same tissue slide into
one single virtual dual staining (VDS) allowing to superimpose
epithelial tumor areas, obtained from cytokeratin, and positive cells
information, from Ki67 staining. Previous studies using VDS on
serial sections for Ki67 LI determination [45,46] found a high cor-
relation between DIA and MS using both TMA and whole slide
analyses. However, a high VDS failure rate (24%) was reported [46]
due to the unsuccessful alignment of the Ki67-and cytokeratin-

Fig. 4. Kaplan-Meier curves of overall survival according to Ki67 scores determined by three different observers (A, B and C) and KiQuant (D). Negative (black) and positive (red)
lines correspond to patients having a Ki67 LI less or above the median Ki67 value, respectively. P-values are from the Log-rank test.

G. Serna et al. / The Breast 53 (2020) 102e110 107



32 | Next Generation Immunohistochemistry (NGI)   Garazi Serna Alonso | 33 

stained serial sections. By using the same slide, our workflow
overcomes many of the factors that can cause VDS misalignments,
such as differences between cuts, folding, and twisting. As a matter
of fact, in our study, none of the cores was excluded due to align-
ment issues. Additional advantages of KiQuant over conventional
VDS protocols are: a) to preservematerial for additional biomarkers
staining (useful for example for small biopsy samples with scant
material), b) to exploit previously Ki67 stained slides through the
application of amask to the original immunostaining or c) to store a
smaller number of slides in the laboratories’ archives.

In our analysis, we observed that KiQuant returned lower Ki67 LI
counts as compared to pathologists' scoring. This was already
described in other studies using DIA [46] and it is very likely related
to pathologist's underestimation of the negative over the positive
tumor nuclei. We found that this imprecision increased with the
magnitude of Ki67 LI. This might also explain the significantly
higher difference between DIA and MS in HER2þ and TNBC (high
Ki67 LI) compared to HRþ (low Ki67 LI) BC subtypes.

Our analyses were conducted using TMA cores. The KiQuant
workflow is not significantly different in whole sections. However,
as the size of the scored tumor area affected imprecision, we expect
that Ki67 heterogeneity and the choice of the scoring area in the
whole section may negatively impact on the correlation between
DIA and manual scoring in whole sections [21].

Ki67 cut-offs are needed for proper patient stratification and
treatment decision. However, there is no absolute agreement
regarding cut-off points. It has been recommended that each pa-
thology department should set its most appropriate cut-off points
[14]. A 20% cut-off was recommended for distinguishing between
Luminal A-like and Luminal B-like tumor types [19]. A recent meta-
analysis concluded that a Ki67 level of over 25% is associated with a
worse prognosis [47]. In our cohort, we observed a low concor-
dance among observers below the 20% Ki67 LI (ICC: 0.606) and
agreement rates between KiQuant and MS within the clinically
relevant 14% and 30% cut-off points ranged from 33% to 44% (Fig. 3).
In this scenario, automated approaches like KiQuantmight improve
Ki67 LI reproducibility, specifically around the grey zone area of
Ki67 LI of 10e30% where a high level of inter-observer variability
has been documented [15,16,48e51]. Importantly, our study found
a significant correlation between high Ki67 by KiQuant and worse
survival in both the overall cohort and the luminal BC subtype. This
prognostic association could be confirmed only for one out of three
pathologists' Ki67 assessment. These data, beside showing KiQuant
as a accurate method to stratify BC into good and unfavorable
prognostic groups, support the value of such
immunohistochemical-based test that, if appropriately performed
and standardized, may provide an easy and cheap alternative to
more expensive genomic-based prognostic assays.

Our study has some limitations. Analyses were conducted using
TMA cores instead of whole sections where the much more com-
plex histology and biological heterogeneity may impact on the
correlation between DIA and MS. The segmentation using
cytokeratin-based mask may not be effective in rarer breast cancer
types, such as metaplastic and medullary carcinomas. The perfor-
mance of our DIA algorithm was tested only on images acquired
using a single platform. Lastly, the analysis workflow is not fully
automatic, as it requires the supervision (although limited) of a
pathologist.

5. Conclusions

To the best of our knowledge, our study is the first one to
investigate reproducibility and prognostic potential between
standard and DIA Ki67 LI using sequential IHC on a single slide. Our
method is technically feasible and potentially useful for both

diagnostic and research use as it relies on a slide scanner and an
image analysis software which are today available in many pa-
thology departments. KiQuant may improve the standardization of
Ki67 by overcoming some of the factors that determine poor
reproducibility of Ki67 assessment, such as the selection of the
scoring area andmanual counting thus increasing the confidence of
oncologists toward the use of Ki67 in the clinical setting for treat-
ment recommendations.
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4.2- Study 2:

“Immune microenvironment characterisation and 

dynamics during anti-HER2-based neoadjuvant 

treatment in HER2-positive breast cancer”

In this study we validated a second panel of NGI com-

posed of different t-cell subpopulations to analyze the 

immune microenvironment during anti-HER2- based 

neoadjuvant treatment in HER2-positive breast can-

cers. We quantified the densities of total t-cells (CD3+), 

regulatory t-cells (CD3+FOXP3+), helper t-cells 

(CD3+CD4+), and cytotoxic t-cells (CD3+CD8+) in the 

tumor sample, obtained the proliferating percentage 

of each of the subtypes and analyzed their spatial dis-

tribution in intratumoral, proximal and distant areas in 

the tissue.
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ARTICLE OPEN

Immune microenvironment characterisation and dynamics
during anti-HER2-based neoadjuvant treatment in
HER2-positive breast cancer
G. Griguolo 1,2,3,20, G. Serna 4,20, T. Pascual 3,5,6, R. Fasani4, X. Guardia4, N. Chic3,5, L. Paré6, S. Pernas7, M. Muñoz5, M. Oliveira 8,9,
M. Vidal 5, A. Llombart-Cussac10, J. Cortés11, P. Galván3, B. Bermejo12, N. Martínez13, R. López14, S. Morales 15, I. Garau16,
L. Manso 17, J. Alarcón18, E. Martínez19, P. Villagrasa6, A. Prat 3,5,6,21✉ and P. Nuciforo 4,6,21✉

Despite their recognised role in HER2-positive (HER2+) breast cancer (BC), the composition, localisation and functional orientation
of immune cells within tumour microenvironment, as well as its dynamics during anti-HER2 treatment, is largely unknown. We here
investigate changes in tumour-immune contexture, as assessed by stromal tumour-infiltrating lymphocytes (sTILs) and by
multiplexed spatial cellular phenotyping, during treatment with lapatinib-trastuzumab in HER2+ BC patients (PAMELA trial).
Moreover, we evaluate the relationship of tumour-immune contexture with hormone receptor status, intrinsic subtype and
immune-related gene expression. sTIL levels increase after 2 weeks of HER2 blockade in HR-negative disease and HER2-enriched
subtype. This is linked to a concomitant increase in cell density of all four immune subpopulations (CD3+, CD4+, CD8+, Foxp3+).
Moreover, immune contexture analysis showed that immune cells spatially interacting with tumour cells have the strongest
association with response to anti-HER2 treatment. Subsequently, sTILs consistently decrease at the surgery in patients achieving
pathologic complete response, whereas most residual tumours at surgery remain inflamed, possibly reflecting a progressive loss of
function of T cells. Understanding the features of the resulting tumour immunosuppressive microenvironment has crucial
implications for the design of new strategies to de-escalate or escalate systemic therapy in early-stage HER2+ BC.

npj Precision Oncology �����������(2021)�5:23� ; https://doi.org/10.1038/s41698-021-00163-6

INTRODUCTION
The host immune system has an important role in HER2-positive
(HER2+) breast cancer (BC). Prior studies have revealed that ~55%
of HER2+ tumours have >10% of stromal tumour-infiltrating
lymphocytes (sTILs)1. From a clinical point of view, TILs are
associated with better survival outcomes in HER2+ early and
advanced BC1–3, higher pathological complete response (pCR)
rates after neoadjuvant anti-HER2-based chemotherapy2,4–7 and
higher response to trastuzumab plus pembrolizumab in the
advanced setting8. Thus, baseline TILs in HER2+ disease
determine prognosis and might contribute to the therapeutic
effects of anti-HER2-based treatments9,10.
Despite the recognised role of immune cells in HER2+ BC, the

composition, localisation and functional orientation of immune
cells within the tumour microenvironment (jointly referred to as
immune contexture), as well as the dynamics of TILs during and
after anti-HER2 treatment, are largely unknown. Limited and
inconsistent evidence is available regarding the prognostic impact
of TILs in residual tumours following neoadjuvant anti-HER2-based
chemotherapy. High TIL levels in residual disease have been
associated both with better outcome11, worse outcome12 and no

impact on prognosis13. A study by Ladoire S. and colleagues
evaluated the prognostic impact of different lymphocytic sub-
populations; it reported high CD8 and low Foxp3 cell infiltrates
after chemotherapy to be significantly associated with improved
long-term outcome14. This study thus further highlights the need
for a more comprehensive evaluation.
The current treatment standard of early-stage HER2+ BC is anti-

HER2-therapy plus chemotherapy. Thus, prior studies have not been
able to dissect whether the observed changes in the immune
microenvironment are owing to chemotherapy, anti-HER2 therapy,
or both. Studies without chemotherapy are the ideal scenario to
address the specific role of anti-HER2 therapy15,16. The neoadjuvant
PAMELA trial (SOLTI-1114)15 treated 151 patients with HER2+ BC
with trastuzumab and lapatinib (and endocrine therapy if the
tumour was hormone receptor [HR] positive) for 18 weeks. In this
study, sTILs at baseline and at day 15 differed significantly according
to PAM50 intrinsic subtype. Moreover, sTILs at baseline were found
significantly associated with pCR in the univariable analysis but not
in multivariable analysis. At day 15, a significant increase in sTILs
was observed in most patients; also, sTILs at day 15 were found
independently associated with pCR at multivariate analysis17.
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With this background, several questions can be addressed from
the PAMELA trial: (1) which cells compose immune infiltrate in early
HER2+ BC and how are they interacting with tumour cells?; (2) how
does this relate to the probability of achieving a pCR?; (3) which
subgroup of patients increases sTILs after 2 weeks of priming with
HER2-targeted treatment?; (4) how do these changes relate to the
probability of achieving a pCR?; (5) how do immune contexture
changes after anti-HER2 priming relate to the probability of
achieving a pCR?; (6) how are sTILs expressed at surgery following
neoadjuvant treatment? and (7) how is the presence of sTILs
associated with immune-related gene expression?
We here investigated changes in the tumour-immune microenvir-

onment following treatment with lapatinib and trastuzumab and the
relationship of sTILs with HR status, intrinsic subtype and immune-
related gene expression in patients with HER2+ BC from the
PAMELA trial. Moreover, we assessed immune contexture at baseline
and day 15 in patients with available samples by multiplexed spatial
cellular phenotyping (REMARK diagram, Supplementary Fig. 1). The
results from this analysis might help design new strategies to de-
escalate or escalate systemic therapy in HER2+ early BC.

RESULTS
A multiplexed imaging assay for immune microenvironment
characterisation
We developed a multiplexed immunohistochemistry (IHC) work-
flow (named next-generation IHC or next-generation impactor

(NGI)) comparable with that of conventional IHC. This workflow is
based upon iterative cycles of staining and destaining of the same
slide with different primary antibodies, individual slide digitalisa-
tion, virtual multiplexed digital image reconstruction and complex
image analyses (Fig. 1a). A six-plex panel was specifically designed
to interrogate the tumour-immune microenvironment and
included a tumour-related protein (cytokeratin), a functional
marker for proliferation (Ki67) and four immune-related T-cell
lineage markers (CD3, CD4, CD8 and Foxp3). The latter was
selected as established markers of T cells with an effector (CD3+

CD8+) and suppressor/regulatory (CD3+CD4+Foxp3+) functions.
The antibody staining of each target was initially optimised

using two different tissue controls (a normal tonsil and a BC) and
further validated on an independent series of HER2+ BC stained
by regular IHC to ensure consistent results among methods
(Supplementary Figs. 2 and 3). We evaluated marker specificity by
matching the staining obtained with each antibody to the known
histologic distribution and to staining with a conventional IHC
protocol: Ki67-stained cells in the germinal centre, and CD3-, CD4-
and CD8-stained cells predominantly in the mantle zone (Fig. 1b, c).
Furthermore, we evaluated the subcellular localisation of the
biomarkers and confirmed that staining of the transcription
factors Ki67 and Foxp3 were nuclear, whereas CD3, CD4 and CD8
were membrane.
The individual digitalised IHC images were aligned to obtain a

virtual multiplexed image (Fig. 1d), which was analysed using

Fig. 1 Multiplexed imaging assay. a Next-generation immunohistochemistry (NGI) workflow. An FFPE tissue section is stained, scanned and
destained six times. All the scanned images are aligned, image analysis is done to obtain the data and after doing all the quality check controls,
the data are analysed to obtain the final results. b Representative colour deconvoluted images of different biomarkers in the tonsil. From left to
right Foxp3+, CD3+, CD8+, CD4+ and Ki67+. Images at 6×. c Colour overlays of different biomarkers in the tonsil (CD3+ in red, CD8+, CD4+ and
Ki67+ in green from top to bottom). Images at 6×. d A representative example of all the stainings (Foxp3, CD4, KI67, CD8, CD3 and cytokeratin)
in breast cancer samples and virtual image reconstruction of some of them by assigning virtual colours to the deconvoluted images. Foxp3+ in
red, CD8+ in blue, CD3+ in green and cytokeratin in grey. The fine purple line in each image marks the tumour borders. Images at 5×.
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different image analysis algorithms developed for biomarker
densities, function and spatial analyses (Supplementary Fig. 4).

Immune microenvironment contexture
A total of 231 regions of interest (ROI) from 129 unique samples
had sufficient material for NGI analysis. All samples were stained
with a sequential IHC workflow that included a panel of six
antibodies for T cells subtyping (CD3, CD4, CD8 and Foxp3),
proliferation (Ki67) and tumour recognition (cytokeratin) plus
hematoxylin for counterstaining. Samples with total region of
interest (ROI) below 100,000 µm were excluded from the analysis.
After filter, a total of 114 samples (65 baseline and 49 day 15) from
75 patients were evaluable. An average (range) ROI of
7,764,692 µm2 (122,074–37,742,587) was profiled using an image
analysis pipeline for data extraction and analysis (see methods).
To identify the immune cell subpopulations within the samples, we

clustered the immune cells by canonical markers. We found that our
analytical pipeline was able to accurately classify immune cells even
when those with opposite identifiers were located in close proximity
to each other (Fig. 2a). Over a total of 1,217,249 cells identified, the
proportions of CD3+ immune subsets across all patients’ samples
were 47% CD8+CD4−Foxp3−, 30% CD4+Foxp3−CD8−, 11%
CD4+Foxp3+CD8− and 13% CD8−CD4−Foxp3− (Fig. 2b).
To chart the immune landscape in HER2+ BC, we then

quantified the number of immune cell populations per area
across patients. We found large variability in immune cells
content, which was confirmed by pathological sTILs scoring on
H&E staining (Supplementary Table 1, Fig. 2c–f, Supplementary
Figs. 5–6). Densities of all immune cell subtypes were all positively
correlated with the number of sTILs (Spearman Rho, CD3+= 0.63,
CD8+= 0.65, CD4+= 0.54, Foxp3+= 0.615, P < .0001, Supplemen-
tary Fig. 7) assessed by a board-certified pathologist according to
international TILs working group recommendation18. Densities of
all immune cell subtypes negatively correlated with the percen-
tage of tumour area in the sample (CD3+=−0.209, P= 0.028;
CD8+=−0.205, P= 0.031; CD4+=−0.184, P= 0.053, Foxp3+=
−0.203, P= 0.033, Supplementary Fig. 8a).
To evaluate the spatial organisation of the tumour-immune

landscape in HER2+ BC, we developed a method for assessing
spatial proximity enrichment of each immune cell subtype from
the tumour. We quantified the number of positive cells for each
marker located within three regions of different distance from the
tumour: A, intratumoural; B, proximal stroma within 30 µm and C,
distal stroma >30 µm from the tumour, respectively (Fig. 2g).
Higher immune cells densities were found in the proximal

peritumoural regions (B) compared with intratumoural (A) and
distal peritumoural (C) locations although the difference was
statistically significant only between location B and C for all
immune subtypes (P values for comparison between immune cell
density in area B and C, CD3= 0.017, CD8= 0.014, CD4= 0.045,
Foxp3= 0.023, Fig. 2h, Supplementary Fig. 9).
To determine the level of activation of immune cells within the

tumour microenvironment, we developed a method to quantify
the proportion of proliferating immune cells within the stromal
compartment by virtually multiplexing individual immune cell
markers with Ki67 staining obtained from the same slide (Fig. 2i).
The proportion of proliferating immune cells over total proliferat-
ing cells (Ki67+ tumour and immune cells) was 35%, with tumour
cells representing the main proliferative cell subtype within the
tissue, as expected (Supplementary Fig. 10). The proportion of
proliferating stromal immune cells was positively correlated with
the amount of tumour area in the sample (Spearman Rho,
CD3+Ki67+= 0.397, CD8+Ki67+= 0.331, CD4+Ki67+= 0.414,
Foxp3+Ki67+= 0.395, P < 0.001, Supplementary Fig. 11).
Spatial analysis revealed a differential distribution according to

immune cells proximity to the tumour, with a decreasing
proportion of proliferating CD3+ (P < 0.001), CD8+ (P < 0.001),

CD4+ (P < 0.001) and Foxp3+ (P < 0.001) T cells from the
intratumoural region (A) to the distal location (C) (Fig. 2j,
Supplementary Fig. 12, Supplementary Table 2).

Immune contexture analysis according to HR status
To evaluate if the tumour-immune microenvironment differed
according to HR status, we compared the composition, spatial
distribution and functional activity of immune subtypes in HR+
and HR− HER2+ BC.

In the whole sample area, densities of all immune cell subtypes
were significantly higher in HR− as compared with HR+ tumours
[HR− median (interquartile range) CD3+ 1669(1818), CD8+ 689
(955), CD4+ 629(884), Foxp3+ 187(215); HR+ median (interquartile
range) CD3+ 828(863), CD8+ 383(520), CD4+ 361(472), Foxp3+ 57
(89); P values, CD3+= 0.009, CD8+= 0.009, CD4+= 0.019 and
Foxp3+ < 0.001, Supplementary Fig. 13a]. As expected, these
findings paralleled what observed for sTILs both at baseline and
day 15, for which however the difference between HR− and HR+
tumours was only significant after 2 weeks of anti-HER2 treatment
(median sTILs at day 15 20% vs 10% in HR− and HR+ tumours,
respectively, P < 0.001).
The number of immune cells was higher in HR− compared with

HR+ across all peritumoural stroma locations, whereas their
intratumoural content did not differ significantly according to HR
status (Supplementary Fig. 14, Supplementary Table 3).
We further investigated if immune cells activation was

influenced by tumour HR status. The proportion of proliferating
immune cells was higher in HR- as compared with HR+ tumours
(Wilcoxon, CD3+ P= 0.007; CD8+ P= 0.011; CD4+ P= 0.009)
except for Foxp3+ (P= 0.710) (Supplementary Fig. 13b, Supple-
mentary Table 4). These differences were maintained across all
peritumoural stroma locations (Supplementary Fig. 15). In HR+, a
higher mean proportion of Foxp3+ proliferating cells (13.2%) was
observed compared with proliferating CD3+ (5.6%), CD4+ (6.2%)
and CD8+ (5.4%) (Kruskal–Wallis test, P < 0.001). The ratio of
proliferating Foxp3+/CD8+ was significantly higher in HR+ as
compared to HR− tumours (2.29 vs 1.33, P= 0.004).

Immune contexture analysis according to PAM50 molecular
subtype
We have previously shown that, within HER2+ early BC, HER2-
enriched PAM50 tumours present significantly higher sTILs as
compared with other PAM50 subtypes, both at baseline (10% vs
5%; P= 0.006) and at day 15 (20% vs 10%; P < 0.001)17. Tumour-
immune contexture analysis showed no significant difference in
immune cell subsets densities according to PAM50 subtype at
baseline (Table 1). The fraction of proliferating (Ki67+) cells for all
four immune cell subpopulations (CD3+, CD4+, CD8+, Foxp3+)
was numerically higher in basal-like tumours, whereas luminal
tumours showed the lowest fraction of proliferating cells (Table 1,
Fig. 3a, Supplementary Fig. 16a). However, this difference was not
statistically significant.
After 2 weeks of HER2-targeted treatment, tumours classified as

HER2-enriched or Basal-like by PAM50 at baseline showed
significantly higher density of all 4 immune subsets as compared
to Luminal A and B tumours (Table 1, Fig. 3b, Supplementary Fig.
16b). Similar to baseline, the fraction of proliferating (Ki67+) cells
for all four immune cell subpopulations (CD3+, CD4+, CD8+,
Foxp3+) at day 15 was numerically higher in basal-like tumours,
while luminal tumours showed the lowest fraction of proliferating
cells, although the difference was not statistically significant (Table 1,
Fig. 3c, Supplementary Fig. 16c).

Immune contexture dynamics under anti-HER2 treatment
As previously described17, overall sTILs levels at day 15 were
significantly higher than those in paired baseline samples. When
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Fig. 2 Multiplexed spatial cellular phenotyping of breast cancer. a Representative example of the analytical pipeline classifying immune
cells (top left) and colour deconvoluted images with red, green and blue colours assigned to Foxp3+, CD4+ and CD8+, respectively (bottom)
and magenta for CD3+ (top right). Images at 25×. b Proportions of CD3+ immune subsets across all patients’ samples (up), baseline samples
(down to the left) and day 15 samples (down to the right). CD8+, Foxp3+, CD4+ and CD3+-only in blue, orange, gray and yellow. c
Representative examples of breast cancers with low (up), medium (middle) and high (down) T-cell densities. Images at 5×. d CD3+ density
results across the entire population of HER2+ breast cancers. Samples are ordered from lowest to highest. e Proportions of CD8+ (blue),
Foxp3+ (orange), CD4+ (gray) and CD3+ only (yellow) cells for all patients’ samples. f Stromal tumour-infiltrating lymphocytes (TILs) in breast
cancer samples with available NGI data. g Representative example of the spatial analysis areas defined by the image analysis algorithm using
cytokeratin as tumour mask. Intratumoural (a, in red), proximal peritumoural stroma within 30 µm (b, in yellow) and distal peritumoural stroma
>30 µm from the tumour (c, in gray) regions are shown. Images at 5×. h Boxplots of immune cells densities (CD8+ and Foxp3+) according to
spatial location. Boxplot legend: centre line: median; bounds of box: interquartile range (IQR); whiskers: highest and lowest value excluding
outliers (Q3+ 1.5*IQR to Q1− 1.5*IQR); markers beyond the whiskers: potential outliers. i Representative example of CD4+, Foxp3+, CD8+ and
KI67+ sequential immunohistochemistry and co-expression analyses for T cells activity assessment on the same tissue slide (top panel). The
colour green, red, blue and green is assigned, respectively, to each individual staining for visualisation purpose, co-expression analyses and
virtually multiplexed images (first image composed by CD4, Foxp3 and CD8 and second image composed by Foxp3, CD8 and Ki67; co-
expression in yellow). Images at 50×. j Boxplots of the proportion of proliferating immune cells (CD8+ and Foxp3+) according to spatial
location. Boxplot legend: centre line: median; bounds of box: interquartile range (IQR); whiskers: highest and lowest value excluding outliers
(Q3+ 1.5*IQR to Q1− 1.5*IQR); markers beyond the whiskers: potential outliers.
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we looked at differences according to subtype, a statistically
significant increase in sTILs was observed in HR-negative (P <
0.001) and HER2-enriched subtype (P= 0.001), but not in HR-
positive and non-HER2-enriched PAM50 subtypes (Fig. 4a, Table
2). Within the HER2-enriched subtype, an increase in sTILs levels
was more evident in HR-negative disease (Table 2).
To identify which immune component was responsible for the

increase in sTILs levels after priming with 2 weeks of anti-HER2
treatment, we analysed changes in the density of each immune
cell subpopulation between these two timepoints by multiplexed
spatial cellular phenotyping. We found large differences in both
activity and densities of the immune cells when comparing
untreated tumours with on-treatment samples. In fact, densities of
all immune cells subtypes increased at day 15 [median
(interquartile range) CD3+ 1462(1453), CD8+ 688(526), CD4+ 534
(684), Foxp3+ 166(219)] as compared to baseline [median
(interquartile range) CD3+ 832(1795), CD8+ 364(841), CD4+ 445
(684), Foxp3+ 83(141)] tumours (P values, significant only for
CD8+= 0.04, Supplementary Table 1, Supplementary Fig. 13c).
When individual patient immune cell density data from the 39
patients with paired baseline-day 15 samples were considered, a
significant increase in both CD8+ and Foxp3+ cell density was
observed at day 15 (Supplementary Fig. 6).
In on-treatment samples (day 15), 50% of all immune cells were

CD8+ as compared with 42% of baselines samples (Fig. 2b). CD3+

and CD8+ immune cell densities were inversely correlated with
tumour area in on-treatment (day 15) samples (Spearman’s rho,
CD3+ −0.367 P= 0.020, CD8+ −0.368; P= 0.010) but not in
baseline samples (CD3+ −0.060; P= 0.620, CD8+ −0.014; P=
0.915; Supplementary Fig. 8b–c).

Spatial analysis revealed that the increase in the number of
immune cells at day 15 was significant in the intratumoural and

proximal peritumoural regions but not in the distal stromal region
(Supplementary Fig. 17). Upon treatment, the number of proliferat-
ing immune cells per area uniformly decreased across all location
compared to baseline pretreatment samples (P < 0.001 for all
comparisons, Supplementary Figs. 13d and 18, Supplementary Table
5). Lower percentages of proliferating immune cells at day 15 were
not significantly associated with lower tumour cellularity evaluated
on the same sample (Spearman Rho, CD3+Ki67+= 0.089,
CD8+Ki67+= 0.053, CD4+Ki67+= 0.185, Foxp3+Ki67+= 0.246, P >
0.05 for all comparisons) (Supplementary Fig. 11b, c).
Paired multiplex IHC (mIHC) data from both baseline and day

15 samples were available from 39 patients and were used to assess
changes in densities of immune cell subpopulations in day 15 and
baseline paired samples according to baseline PAM50 intrinsic
subtype and HR status (Supplementary Table 6). Although the
decrease in percentages of proliferating immune cells (all four
immune subpopulations) at day 15 was consistently observed across
all subgroups, a statistically significant increase in immune cells
density (all four immune subpopulations) at day 15 was only
observed in HR-negative and HER2-enriched subtype (all P values <
0.05 except for CD4+in HER2-enriched tumours P= 0.055), but not
in HR-positive and non-HER2-enriched PAM50 subtypes. Similar to
prior observations of sTILs levels, the increase was numerically more
evident in HR-negative disease than in HER2-enriched tumours.

Tumour-immune contexture analysis and the probability of
achieving a pCR
As previously described17, higher sTILs were significantly asso-
ciated with pCR and lower residual cancer burden scores, both at
baseline and after 2 weeks of anti-HER2 treatment.
In HR-positive disease or non-HER2-enriched subtype, no

consistent change in sTILs at day 15 versus baseline was found

Table 1. Immune cell density at baseline and after 2 weeks of anti-HER2 treatment according to baseline PAM50 intrinsic subtype.

Immune cell density at baseline

Immune cell Subpopulation Immune cell density by intrinsic subtype: median (IQR)

Luminal A (N= 11) Luminal B (N= 6) HER2-enriched (N= 43) Basal-like (N= 5) p value

CD3+ 781 (200–1035) 1277 (696–1372) 1073 (367–2313) 644 (225–1921) 0.419

CD8+ 217 (77–383) 461 (350–481) 475 (125–1018) 166 (64–648) 0.562

CD4+ 352 (84–445) 525 (340–773) 507 (151–1096) 403 (144–502) 0.374

Foxp3+ 43 (13–93) 28 (28–83) 88 (45–202) 52 (49–176) 0.178

%Ki67+CD3+ 6 (4–7) 5 (3–8) 9 (4–14) 8 (5–17) 0.178

%Ki67+CD4+ 6 (4–10) 7 (1–8) 9 (4–13) 9 (6–17) 0.184

%Ki67+CD8+ 5 (2–9) 3 (3–7) 8 (4–12) 9 (5–19) 0.188

%Ki67+Foxp3+ 18 (14–20) 15 (0–15) 15 (9–18) 19 (15–27) 0.064

Immune cell density at day 15

Immune cell
subpopulation

Immune cell density by intrinsic subtype: median (IQR)

Luminal A (N= 7) Luminal B (N= 6) HER2-enriched (N= 33) Basal-like (N= 3) p value

CD3+ 435 (193–747) 749 (710–896) 1669 (899–2461) 1544 (501–1544) 0.008

CD8+ 296 (66–367) 442 (405–492) 769 (481–1417) 583 (275–583) 0.007

CD4+ 204 (102–322) 272 (228–295) 713 (361–1136) 629 (158–629) 0.011

Foxp3+ 44 (13–48) 37 (22–39) 214 (93–300) 195 (46–195) 0.004

%Ki67+CD3+ 3 (2–3 1 (1–1) 4 (2–7) 7 (3–7) 0.051

%Ki67+CD4+ 3 (3–3) 1 (1–2) 5 (2–7) 10 (5–10) 0.062

%Ki67+CD8+ 2 (1–2) 1 (1–1) 3 (2–8) 6 (2–6) 0.058

%Ki67+Foxp3+ 7 (5–13) 2 (1–9) 7 (3–12) 15 (5–15) 0.412

Normal-like N= 0; significant p values in bold.
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according to the type of pathological response (Supplementary
Table 7). Both in HER2-enriched subtype and HR-negative disease,
a consistent increase in sTILs at day 15 versus baseline was found
regardless of the type of pathological response (Fig. 4a and
Supplementary Table 7).
To identify if the prognostic impact of sTILs might be different

according to immune contexture, we then analysed the impact of
immune cells composition, activity and spatial interaction with
tumour cells on pCR. Both at baseline and at day 15, no significant
difference in immune cell subpopulation densities was observed
between tumours achieving or not achieving pCR, despite
numerically higher densities of all four immune subpopulations
were observed in tumours achieving pCR at day 15 (Fig. 5a).

After that, to determine whether T-cell activation status
associated with the probability of pCR, we compared the rates
of proliferating (Ki67+) immune cells in tumours achieving or not
achieving pCR. No statistically significant association was
observed, although Odds ratios (OR) for % of proliferating cells
and pCR were consistently higher at baseline as compared with
day 15 for all immune cell subpopulations except Foxp3+ (Fig. 5b).
Finally, we analysed immune cells subpopulation densities

separately according to their spatial distribution. Although only
some of the associations reached statistical significance, the
association between higher immune cell density and pCR was
consistently stronger for more proximal compartments (intratu-
moural and proximal peritumoural stroma) as compared with the

Fig. 3 Immune cell density according to intrinsic subtype. a Boxplots of the proportion of proliferating immune cells (CD8+ and Foxp3+) at
baseline according to baseline intrinsic subtyping. b Boxplots of immune cells densities (CD8+ and Foxp3+) at day 15 according to baseline
intrinsic subtyping. c Boxplots of the proportion of proliferating immune cells (CD8+ and Foxp3+) at day 15 according to baseline intrinsic
subtyping. Boxplot legend: centre line: median; bounds of box: interquartile range (IQR); whiskers: highest and lowest value excluding outliers
(Q3+ 1.5*IQR to Q1 – 1.5*IQR); markers beyond the whiskers: potential outliers.
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Fig. 4 Changes in sTILs across timepoints and correlation with gene expression. a Changes in TILs between baseline and day 15 according
to hormone receptor [HR] status, subtype (HER2-enriched [HER2-E]) and response (pathological complete response [pCR] vs residual disease
[RD]). Lines are coloured according to TIL dynamics: increase (red), stable (blue) or decrease (green). b Changes in TIL levels between day 15
and surgery according to response: pathological complete response [pCR] vs residual disease [RD]. Lines are coloured according to TIL
dynamics: increase (red), stable (blue), or decrease (green). c Changes in TIL levels between baseline, day 15 and surgery in the overall study
cohort and according to response (pathological complete response [pCR] vs residual disease [RD]), hormone receptor [HR] status and
PAM50 subtype. Lines are coloured according to TIL dynamics: increase between baseline and day 15 followed by an increase between day 15
and surgery (red); increase between baseline and day 15 followed by stable or decrease between day 15 and surgery (orange); stable or
decrease between baseline and day 15 followed by an increase between day 15 and surgery (blue); stable or decrease between baseline and
day 15 followed by stable or decrease between day 15 and surgery (green). d Venn diagram representing overlaps in genes upregulated in
relation to increase in TIL levels across the three timepoints.
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distal stroma compartment for all four immune cell subpopula-
tions. Moreover, the association between higher immune cell
density and pCR was stronger at day 15 as compared with
baseline (Fig. 5c).

Changes in sTILs between day 15 and surgery
At surgery, median sTILs levels were 10% (quartile 1–3: 5–20).
Paired sTILs data from day 15 and surgery samples were available
for 124 patients (82.1%). An increase and a decrease of sTILs
between day 15 and surgery were observed in 26.4% (24/91) and
33.0% (30/91) of tumours, respectively, whereas for 40.7% (37/91)
of tumours the same percentage of sTILs was reported at day 15
and at surgery. Compared with day 15, a significant decrease in
sTILs was observed at surgery in tumours achieving a pCR (mean
difference −21.5%, 95% CI −33.3 to −9.7, P= 0.002, Fig. 4b), but
not in patients with residual disease at time of surgery (mean
difference −0.9%, 95% CI −4.1–+2.4, P= 0.548, Fig. 4b). 89.7% of
residual tumours (non-pCR) had sTILs above ≥5%. The distribution
of residual tumours (non-pCR) according to sTILs at surgery was
10.3% (sTILs < 5%), 38.1% (sTILs 5–9%), 22.7% (sTILs 10–19%),
16.5% (sTILs 20–39%) and 12.4% (sTILs ≥ 40%). Distribution of
tumour samples (non-pCR and pCR) according to sTIL levels at the
three timepoints is presented in Supplementary Tables 8–9 and
Supplementary Fig. 19. A decrease in sTILs in tumours achieving
pCR was observed irrespectively of HR status and intrinsic subtype
(Supplementary Table 10). In tumours not achieving a pCR, no
significant tendency was observed. Finally, TILs at surgery were
not found statistically significantly different according to the type
of pathological response (median sTIL levels at surgery 10% (5–20)
vs 5% (1–10) in patients with residual disease and achieving pCR,
respectively; P= 0.662).

sTILs dynamics across timepoints
Different tumour-infiltrating lymphocytes dynamics observed
across the three timepoints (N= 122 patients with sTILs data
from all three timepoints) are recapitulated in Supplementary
Table 11 and Fig. 4c. The most frequently observed pattern (N=
32, 26%) was an increase in TILs from baseline to day 15 followed
by a decrease from day 15 to surgery. This pattern was observed
especially in HR-negative tumours, HER2-enriched tumours and
tumours achieving pCR (Fig. 4c). Changes in sTILs levels between
surgery and baseline paired samples according to the achieve-
ment of pCR, HR status and PAM50 subtypes are reported in
Supplementary Table 12.

sTILs vs gene expression
To evaluate genes associated with sTILs, we explored data from
413 samples with paired gene expression and sTIL data (from all
three timepoints mixed: baseline N= 148; day 15 N= 133; surgery
N= 132). A total of 555 BC-related genes were evaluated,
including 72 immune-related genes (Supplementary Table 13).
Using a quantitative significance of microarrays (SAM) analysis, 36
upregulated genes were found associated with sTIL levels (false
discovery rate (FDR) < 1%) (Supplementary Table 14), the top
upregulated gene being MS4A1 (CD20). Functional annotation of
the 36 genes using DAVID annotation tool19 revealed that 50% of
them were significantly involved in immune response (e.g., CD3G,
CD8A, CD4 and LAG3) and regulation of the immune system
process (e.g., IDO1, IL6R, STAT1 and PD1), 33% of them were
involved in lymphocyte activation (e.g., CD84, CD86, CD3G and
CD4) and 28% of them involved in T-cell activation (e.g., CD8A, PD-
L1, RELB and CD4).
When a similar analysis was performed within each timepoint

separately, similar results were obtained (Fig. 4d; Supplementary
Tables 15–17). Among the different genes significantly associated
with sTIL levels, 10 (MS4A1, PD1, CD8A, CD19, IKBKE, IDO1, TAP1,
TYMP, CD3G and LAG3) were found consistently associated with
sTILs across all timepoints. This 10-gene list was found highly
enriched (FDR < 1%) for immune genes tracking activated CD8
T cells (e.g., CD8A, CD3G, LAG3, PD1). The correlation coefficients
of the expression of these genes with baseline sTILs ranged from
0.52 in gene CD8A to 0.34 in gene TYMP.

DISCUSSION
To our knowledge, our report is the first one to provide new
insights into TIL variations and immune contexture during HER2-
targeted therapy in the absence of chemotherapy. Moreover,
using a novel mIHC technique, immune infiltrate at baseline and
after 2 weeks of anti-HER2 treatment was characterised in its
immune cell subpopulations and analysed according to proximity
to tumour cells and activity (using co-expression of Ki67 marker to
identify proliferating immune cells).
First, in early HER2+ treatment-naive BC, tumour-immune

contexture analysis showed no significant difference in immune
cell subsets densities according to intrinsic subtyping. However, we
observed a significantly higher proportion of proliferating immune
cells in HR− as compared with HR+ tumours, except for Foxp3+

and consistently observed a numerically higher percentage of
proliferating immune cells in basal-like tumours and HER2-enriched
tumours and a numerically lower percentage of proliferating

Table 2. Changes in TILs between day 15 and baseline according to PAM50 intrinsic subtype and hormone receptor (HR) status.

N (pairs) mean difference 95% confidence interval p value

HR-positive 70 +2.1% −0.7–+4.8 0.199

HR-negative 61 +12.5% +5.5–+19.6 <0.001

HER2-enriched 85 +8.8% 3.5–14.0 0.001

HER2-enriched and HR− 53 +12.1% 4.3–20.0 0.004

HER2-enriched and HR+ 32 +3.2% −2.0–+8.4 0.235

Non-HER2-enriched 46 +3.5% −0.3–+7.4 0.120

Non-HER2-enriched and HR− 8 +15.0% −3.7–+33.7 0.106

Non-HER2-enriched and HR+ 38 +1.1% −1.6–+3.9 0.584

Basal-like 7 +11.6% −8.6–+31.7 0.201

Normal-like 2 +9.5% −365.3–+384.3 1.000

Luminal B 15 +3.9% −1.7–+ 9.6 0.236

Luminal A 22 +0.18% −2.16–+2.5 0.959

Significant p values in bold.
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immune cells in luminal tumours. However, it should be pointed
out that the very limited number of non-HER2-enriched tumours
identified in the PAMELA trial, in line with what expected in early
HER2+ BC, significantly limits the power of these analyses.
Second, after 2 weeks of dual HER2-targeted therapy, a general

increase in sTILs is observed. However, this increase appears to be

selectively present in HR-negative and HER2-enriched subtype,
regardless of pathological response at surgery, but not in HR-
positive and non-HER2-enriched subtypes. Immune contexture
analysis highlighted that this increase is not linked to a selective
increase of one immune cell subpopulation, but a concomitant
increase in cell density of all four immune subpopulations (CD3+,

Fig. 5 Immune cell density and pathological complete response. a Odds ratios (95% confidence interval) for pathologic complete response
(pCR) for 10% increases in TIL levels and 1000 cells/mm2 increases in immune cell density evaluated on baseline and Day 15 (on-treatment)
samples. b Odds ratios (95% confidence interval) for pathologic complete response (pCR) for increases in % of proliferating immune cells for
each immune cell subpopulation evaluated on baseline and day 15 (on-treatment) samples. c Odds ratios (95% confidence interval) for
pathologic complete response (pCR) for 1000 cells/mm2 increases in immune cell density according to immune cell localisation evaluated on
baseline and day 15 (on-treatment) samples.
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CD4+, CD8+, Foxp3+) after anti-HER2 treatment. However, a
significant shift was observed for CD8+ cytotoxic T cells
subpopulation, which represented 50% of all tumour-associated
immune cells in on-treatment samples.
As previously observed for sTIL levels, increase in specific

immune cell subpopulation densities was observed in HER2-
enriched subtype and HR-negative tumours, but not in non-HER2-
enriched PAM50 subtypes and HR-positive tumours.
Consistently with these trends, immune infiltrate was radically

modified after 2 weeks of anti-HER2 treatment. In fact, after
priming with anti-HER2 treatment, tumours that were HER2-
enriched at baseline showed higher densities of all four immune
cell subpopulations, highlighting the differential activation of the
immune system towards the disease after priming with anti-HER2
treatment according to tumour biology.
Moreover, the association between pCR and immune infiltrate

was stronger at day 15 than at baseline, both for sTILs and specific
immune subpopulations, especially when immune cells intratu-
mour/more proximal to the tumour were considered, pointing out
the potential biological role of immune activation after anti-HER2
priming in early HER2+ BC.
Subsequently, a general decrease in sTIL levels is observed at

surgery. However, this decrease is driven by tumours achieving
pCR, whereas no significant trend was seen in patients with
residual disease at the time of surgery. Tumours achieving pCR are
characterised by an increase in sTIL levels after 2 weeks of anti-
HER2 treatment and a decrease in sTIL levels at surgery. This might
be linked to downregulation of immune response after clearing
tumour cells. However, although the increased infiltration of
immune cells observed after HER2 priming is inversely correlated
with tumour cellularity at day 15, hinting that these immune cells
might have been actively clearing tumour cells during the first
2 weeks of HER2-targeted treatment, their activity (in terms of
fraction of proliferating immune cells) was significantly and
homogeneously reduced after 2 weeks of HER2-targeted treat-
ment, independently for the amount of residual tumour in the
sample and tumour characteristics, thus pointing out that immune
exhaustion processes might already be at work at this early
timepoint. This observation might by relevant to address the
question of which might be the ideal timing of potential
combination with immunotherapy in early HER2+ BC.
The association between pCR and decrease in sTIL levels at

surgery has also been shown after chemotherapy-containing
neoadjuvant treatment for HER2+ BC12. However, the same study
observed that higher sTIL levels at surgery, in presence of residual
disease, were associated with an adverse disease-free survival,
suggesting that post-neoadjuvant sTILs might be unable to exert
their antitumour function, possibly owing to an immunosuppres-
sive microenvironment or T-cell exhaustion. A limitation of the
present study is that immune infiltrate subtyping by mIHC was not
available for surgical samples with residual disease and therefore
functional assessment of this infiltrate could not be evaluated.
Moreover, the true prognostic value of sTIL levels after dual HER2
blockade without chemotherapy remains unknown and long-term
follow-up data from the PAMELA trial is not currently available to
provide more information on this point.
However, the presence of high sTIL levels in most residual

tumours at surgery might imply that these patients might be good
candidates for clinical trials evaluating adjuvant immune check-
point inhibitors. The KATE2 trial, which tested the addition of the
anti-PD-L1 antibody atezolizumab to trastuzumab emtansine in
metastatic BC HER2+ BC patients previously treated with
trastuzumab and taxanes, despite missing its primary endpoint,
identified a numerically longer PFS and higher 1-year OS in
patients with PD-L1+ and TIL high (≥5%) tumours20. These
hypothesis-generating data might support the evaluation of PD1/
PD-L1 inhibitors to trastuzumab emtansine in the post-

neoadjuvant setting to further improve the prognosis of patients
with inflamed residual disease.
Tumour heterogeneity has a predominant role in modulating

immune activation in HER2+ BC. Indeed, not only HR-negative and
HER2-enriched tumours had higher sTIL levels at baseline, but the
impact of tumour biology was observed even more clearly after
exposure to HER2-targeted treatment. Non-luminal subtypes
showed the highest increases in sTIL levels between baseline and
day 15, whereas luminal subtypes showed modest/no increase. Even
within HER2-enriched tumours, an increase in sTILs was predomi-
nantly seen in HR-negative tumours rather than in the HR-positive
subgroup. Indeed, HR positivity appeared to be associated with the
capacity/incapacity of HER2+ BC to inflame during dual HER2
blockade (without chemotherapy), more than to baseline sTIL levels.
These observations were also supported by immune contexture
analyses showing a significantly lower proportion of CD8+Ki67+

T cells and higher ratio of proliferating Foxp3+/CD8+ in HR+ as
compared with HR- tumours. Whether this is due to specific
regulation of the immune system by hormone signalling (or
endocrine treatment, as all HR-positive BCs also received hormo-
notherapy in the PAMELA trial), or if reduced activation of immunity
in these tumours is linked to reduced cell death after HER2-targeted
treatment and reduced antigen exposure, remains unclear and
might hopefully be the subject for further investigation.
In conclusion, in early HER2+ BC, an increase in sTIL levels is

observed following 2 weeks of dual HER2 blockade, in HR-negative
disease and HER2-enriched subtype. Immune contexture analysis
revealed that the strongest impact on pCR was achieved when
immune cells spatially interacted with tumour cells. Afterward,
sTILs consistently decreased at surgery in patients achieving a
pCR, whereas most residual tumours at surgery remained
inflamed, possibly reflecting a progressive loss of function of
T cells, which is already evident after 2 weeks of treatment.
Understanding the features of the resulting tumour immunosup-
pressive microenvironment has crucial implications for the success
of checkpoint blockade and adoptive T-cell transfer therapies.
Beyond modulating baseline immune activation, tumour biology
also has a role in modulating the dynamic activation of the
immune system after exposure to HER2-targeted treatment. This
should be taken into account as the role of immunity and
immunotherapy is further assessed in HER2+ BC.

METHODS
PAMELA clinical trial
The main results of the neoadjuvant PAMELA phase II trial (NCT01973660)
have been previously reported15. In this study, 151 early HER2+ BC
patients were treated with the combination of lapatinib (1000mg daily)
and trastuzumab (8mg/kg i.v. loading dose followed by 6mg/kg) for
18 weeks. Patients with HR-positive disease also received letrozole or
tamoxifen according to menopausal status (Supplementary Fig. 1a). In the
PAMELA trial, tissue collection was mandatory as it was used for primary
endpoint determination. Tumour samples were collected at three time-
points according to the protocol: baseline (within 28 days preceding
treatment start), day 15 (a ± 5 days window was admitted, but collection of
samples the closest as possible to preplanned timepoint was warmly
suggested) and surgery (Supplementary Fig. 1a and sample flow by
REMARK diagram in Supplementary Fig. 1b). A minimum of 2 core
formalin-fixed paraffin-embedded (FFPE) samples were collected by tru-cut
biopsy at each timepoint (except at surgery). In case of multifocality,
samples were collected from the same lesion. Samples were primarily used
for pre-specified protocol analyses, which included central HER2, ER and PR
confirmation by regular IHC, Ki67 by IHC and molecular subtyping by
PAM50 gene expression assays. The mIHC analyses performed in the
present study were post-hoc and used left-over samples.
The PAMELA trial was conducted under Good Clinical Practice guidelines

and the Declaration of Helsinki. The study protocol was approved by
independent ethics committees at each centre (trial centres listed at
clinicaltrials.gov, NCT01973660). All patients provided written informed
consent.

G Griguolo et al.

10

npj Precision Oncology (2021) ���23� Published in partnership with The Hormel Institute, University of Minnesota



46 | Next Generation Immunohistochemistry (NGI)   Garazi Serna Alonso | 47 

sTILs evaluation
Stromal TILs at baseline, day 15 and surgery were centrally evaluated on
whole sections of tumour tissue stained with H&E blinded from clinical-
pathological and outcome data. Percentages (%) of TILs at baseline and
day 15 were scored in slides of core biopsies. sTILs were quantified
according to the 2014 Guidelines developed by the International TILs
Working Group18,21. The reproducibility of this method has been described
previously2.

Multiplex IHC (NGI)
Baseline (N= 65) and day 15 (N= 49) biopsies from 75 patients were
analysed using a custom mIHC 6-plex panel, based on iterative cycles of
staining and destaining of the same slide with different primary antibodies,
individual slide digitalisation, virtual multiplexed digital image reconstruc-
tion and complex image analyses.
Before cutting, FFPE blocks were cooled to −10 °C and 3 μm sections

were cut with a microtome. Sections were collected on positively charged
Superfrost glass slides and dried overnight at 37 °C. The first IHC staining
was performed (information of all the protocols on Supplementary Table
18) in Discovery Ultra Autostainer (Ventana Medical Systems, Tucson AZ).
Mono AEC/Plus (#K050; PALEX) was used as the chromogen.
The slides were mounted with aqueous-based mounting medium. The

stained slides were digitalised at 20× using the NanoZoomer 2.0HT
(Hamamatsu Photonics, Japan). After digitalisation, coverslips were taken
and slides were put in increasing alcohol solutions until 100% and then in
decreasing alcohols until water before slides were loaded in the Discovery
Ultra autostainer for the next immunostaining.
Any residual primary antibody was stripped by an ‘extra' antigen

retrieval step before the staining process is repeated for the following
primary antibody. Heat-induced antigen retrieval was done using ULTRA
Cell Conditioning 2 (ULTRA CC2, Ventana Medical Systems, Tucson AZ) for
8 minutes at 100 °C and DISCOVERY Cell Conditioning 1 (DISCOVERY CC1,
Ventana Medical Systems, Tucson AZ) for 40minutes at 95 °C to block the
previous antibody and the process was repeated consecutively six times.
To avoid primary antibody cross-reactivity between cycles owing to

incomplete stripping, we used several strategies. First, we added an extra
antigen retrieval step before the next cycle of staining to prevent any
remnant reactivity to primary or secondary antibodies used in the first
cycle. Second, the protocol alternated rabbit and mouse primary
antibodies to reduce cross-reactivity. Third, the sequence of primary
antibodies alternated nuclear (Ki67 and Foxp3), membrane (CD3, CD8,
CD4) and cytoplasmic (CK) markers (Supplementary Fig. 20).
The sequential staining procedure was automatised, thus significantly

reducing the hands-on time (1-hour per staining cycle) and duration of the
entire process (3 days per 6-plex panel run in 30 slides).
The image analysis pipeline was the following one: first, images were

uploaded into VISIOPHARM® (VIS) Image Analysis Software (Visiopharm
Integrator System version 2019.02.1.6005, Visiopharm, Denmark) for
registration. Images were automatically aligned and fused into a single
virtual digital image (VDI) using the Tissuealign® module of VIS (order of
alignment: Foxp3, CD3, CD8, CD4, Ki67, cytokeratin). After alignment,
images were analysed with custom-developed algorithms created using
the Author® module of VIS (algorithms in Supplementary Material).
After this, we performed automatic tissue recognition of the aligned

slides and the selected areas were reviewed by a pathologist, who
manually defined the ROI, which included the tumour and surrounding
peritumoural stroma (the tumour bed in case of complete regression) and
excluded normal and/or necrotic area. Following this, we ran T-cell density
APP was run on the entire slides to obtain global results. The T-cell
application (detailed in Supplementary Table 19) uses a cell classification
method based on form and size and a pixel-colour intensity threshold
method to classify the cells into Foxp3, CD3, CD4, CD8 cells on one hand,
and uses the Ki67 staining to inform about the percentage of the cell
populations that are proliferating on the other hand. Any brown stained
nucleus was considered a positive cell.
We then applied a third APP (location APP), which uses the PANCK

staining to divide the ROI created by the pathologist into three different
ROIs: the tumour area (A), the stroma within 30 µm from tumour (B) and
the stroma >30 µm from tumour (C). For that purpose, we used HDAB-DAB
feature, which enhances the brown staining corresponding to the PANCK
staining (A). Dilation was used to create B and C ROIs. After applying the
location APP to the data set, we used the T-cell APP to obtain densities and
proliferation rates of different cell populations across different locations.

Created APPs were trained by a biotechnologist expert in image analysis
and the results validated by a board-certified pathologist. Data were finally
reported as densities of each category of cells in the tumoural area in
general, for each location, and the proliferation rate of each of the cell
categories.

Gene expression analysis
Samples from all three timepoints were analysed using the same
methodology. First, a section of FFPE breast tissue was examined with
H&E staining to confirm the diagnosis and determine the tumour surface
area. RNA purification was performed after macrodissection, when needed,
to avoid normal breast contamination. RNA was extracted from FFPE
material using the High Pure FFPET RNA isolation kit (Roche, Indianapolis,
IN, USA) following the manufacturer’s protocol. RNA samples were
quantified at the NanoDrop spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA).
A minimum of ~100 ng of total RNA was used to measure the expression

of 555 BC-related genes and five housekeeping genes (ACTB, MRPL19,
PSMC4, RPLP0 and SF3A1) using the nCounter platform (Nanostring
Technologies; Seattle, Washington, USA22). Data were log base
2–transformed and normalised using the housekeeping genes. The
complete list of genes, which included immune-related genes (e.g.,
CD8A, CD4, PD1 and PD-L1), can be found in Supplementary Table 13.
Intrinsic molecular subtyping at baseline was determined using the
previously reported PAM50 subtype predictor23.

Statistical analysis
Spearman test was used for correlation analysis and Mann–Whitney U test
and Wilcoxon test were used for all the density, location and proliferation
analyses. To determine differences in the distribution of TIL levels or
immune cell density across subgroups Mann–Whitney U and
Kruskal–Wallis test were used according to number of subgroups.
Significant changes in sTILs or immune cell density between two
timepoints were determined using paired Wilcoxon tests. The association
of each variable with pCR was determined by univariate logistic regression
analysis. As per study protocol, pCR was defined as the absence of residual
invasive cancer in the breast following neoadjuvant therapy (ypT0/is). OR
with a 95% confidence interval were estimated. All statistical tests were
two-sided and considered significant when p < 0.05.
When recapitulating TIL dynamics across the three timepoints, any

increase/decrease in sTIL levels were taken into account and sTILs were
only defined as unchanged if the same % of TILs were present at two
subsequent timepoints.
To identify genes whose expression was significantly different according

to sTIL levels as a continuous variable, we used a quantitative SAM analysis
with an FDR < 1%. Pearson correlations were used to evaluate the
association of expression of a single gene with sTILs expression. Biologic
analysis of gene lists was performed with DAVID annotation tool (http://
david.abcc.ncifcrf.gov/)19.
All statistical analyses were performed using the R software 3.6.1.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data generated and analysed during this study are described in the following
data record: https://doi.org/10.6084/m9.figshare.13681456 24. The data files under-
lying the related study are available from the corresponding authors upon reasonable
request. However, several files are not publicly available in order to protect patient
privacy. A comprehensive list of data files underlying the related manuscript along
with details of their availability is contained in the spreadsheet ‘Griguolo_et_a-
l_2021_underlying_datafile_list.xlsx’, available as part of the figshare. The custom-
developed algorithms (T-cell APP) created using the Author® module of VISIO-
PHARM® (VIS) Image Analysis Software (Visiopharm Integrator System version
2019.02.1.6005, Visiopharm, Denmark) are also available as part of the figshare data
record.
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4.3- Study 3: (See section 8. Annex)

“In situ single-cell analysis of canonical breast 

cancer biomarkers: phenotypic heterogeneity 

and implications on response to HER2 targeting 

agents”

In this study we validated a third panel of NGI to analyze 

the tumor cell composition and heterogeneity of breast 

cancer tumors. We did a panel of HER2, ER, PR, KI67 

and PanCK that allowed us to classify breast cancer 

tumor cells into 16 different phenotypes of cells. 

We used this subclassification to comprehensively 

analyze the breast cancer tumor heterogeneity in 

Her2 positive tumors that were treated with an anti-

her2 treatment.

Garazi Serna, Eloy García, 
Roberta Fasani, Xavier Guardia, 
Tomas Pascual, Laia Paré, Fiorella 
Ruiz-Pace, Antonio Llombart-
Cussac, Javier Cortes, Aleix Prat, 
Paolo Nuciforo
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5 5. DISCUSSION

Through the different studies presented in this thesis, NGI has 

shown its value as a multiplexed imaging technology by being 

able to address different clinically relevant concerns. The different 

panels that have been used in this thesis show that our NGI 

approach is a robust, automatized and relatively simple and cost-

effective technology, that can be used in research and clinical 

laboratories that are equipped for digital pathology. 

In the first study NGI demonstrated to be an easy and accurate 

methodology for KI67 quantification, providing a step toward 

using KI67 in the clinical setting. In the second study, the 

characterization of the immune microenvironment of Her2-

positive breast cancer samples was analyzed during her2-

targeted therapy was studied, not only quantifying the different 

immune populations but analyzing their spatial distribution 

towards the tumor and their proliferation status. The strongest 

impact on response was obtained when the immune cells were 

in contact with the tumor, information that was obtained thanks 

to the NGI. In the third study, for the first time, tumor cells from 

Her2-positive breast cancer samples during the treatment were 

analyzed at a single-cell resolution level providing the tumor cell 

phenotype composition, heterogeneity and spatial relationships 

with cytotoxic cells. The identification of tumor phenotypes that 

are targeted by the treatment, the ones related with response 

and some resistant ones to the treatment were obtained thanks 
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to the NGI.

Results successfully show that NGI allows reproducible biomarker 

quantification together with comprehensive characterization 

of biological tissue samples at a single cell resolution while 

maintaining the spatial distribution and the interaction between 

the tumor and its microenvironment. This is all critical information 

for understanding tumor biology and complexity, presenting NGI 

as a promising technology that could be used for comprehensive 

or reproducible analyses in any pathology or research laboratory.

Hence, NGI presents itself as superior to the traditional imaging 

techniques used to study protein biomarkers on intact tissue 

samples. Specifically, NGI is be:

Superior to standard immunohistochemistry, given its ability to 

use a unique tissue section as shown in the different studies 

maintaining tumor morphology and overcoming the limitations of 

serial sectioning and partial reconstruction.

Superior to multiplex immunohistochemistry, where one single 

slide is stained simultaneously with different chromogens, making 

interpretation and analysis of the results complex and sometimes 

not even possible without complex spectral differentiation 

machines. With NGI, each biomarker can be analyzed individually 

(as in routine diagnostic practice) while also allowing unlimited 

multiplexing through virtual image reconstruction and analysis as 

presented in the different published papers.

Superior to multiplex immunofluorescence, mIF, which is limited 

by the number of available fluorochromes (traditionally 5, new 

protocols are able to include up to 7), while in NGI the number of 

cycles of staining and destaining is virtually unlimited (previous 

studies have analyzed up to 12 biomarkers in a single slide). 

Moreover, NGI uses standard protocols routinely used for 

antibodies already approved for diagnostic use that sometimes 

do not work for IF, does not need a fluorescence microscope and 

is readily accepted by pathologists used to work with bright field 

images.

Superior to Flow Cytometry or RNAseq, because it is able to 

thoroughly characterize complex cellular populations while 

maintaining spatial and morphological context information while 

FC and other bulk technologies disrupt the tissue, that would not 

have allowed us any spatial analysis we presented

Superior to metal, fluorescence or barcode based multiplex 

imaging systems because it doesn’t need complex equipment and 

pipelines that they use, and it is a much cost-effective technology, 

that as shown, did not require any additional equipment in the 

laboratory.

Superior to other sequential IHC technologies using soluble 

chromogens because NGI is automatized and clinical routine 

focused as presented in the different studies, while sequential IHC 

technologies are manual, time consuming and research focused.

As shown in each paper, the NGI panels that have been developed 
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are equivalent to the traditional IHC as explained in the different 

papers. That means that by one hand, antigenicity is not lost during 

the rounds of stainings, and by the other hand, routine IHCs could 

be substituted by NGI that would give us more information while 

still being able to obtain the individual IHC stainings that can be 

evaluated as they currently are. By using a soluble chromogen, NGI 

can be easily scored as a traditional single analyte IHC at bright 

field microscope or computer monitor, and thus a pathologist-

friendly approach.

NGI uses 3-4µm of FFPE tissue and is performed on a single 

slide that allows the preservation of the sample which could 

revolutionize the standard diagnostic and molecular testing 

workflow, thus allowing optimization of sample use, modification 

of current diagrams of prioritization of techniques in samples 

with limited material and in particular cases, even avoiding the 

necessity to perform additional biopsies, having an impact on the 

patient and on the health system.

Slides can be stored and reused for additional diagnostic or 

research workflow thus representing a tremendous advantage 

over other techniques. The integration of different modalities 

associated with single cell data such us epigenomics, proteomics, 

transcriptomics and spatial information will be critical for cancer 

understanding. In that line, NGI can be combined with RNAscope 

technology to analyze not only proteins but mRNA molecules in the 

same exact cells. Artificial intelligence, that has shown to identify 

even mutations by the histological features of HE stainings, will 

be an opportunity to be able to extract the maximum information 

from NGI registered images.

As a part of the design rationale, we selected methodologies 

that follow a simple workflow and that all academic pathology 

laboratories may easily implement and offer to oncologists in the 

case that an exploratory biomarker panel moves from investigation 

into clinics. This would allow for a rapid implementation of the 

assay as a part of the routine molecular diagnostic activity of the 

laboratory.

These studies are examples of the multiple possible applications 

that NGI has. In our laboratory, we have already used KiQuant 

and t-cell panels in more than 15 studies or clinical trials in 

the laboratory that still haven’t been published. We have also 

developed and used more panels for specific needs for research 

and clinical trials. The fact that more and more researchers and 

clinical trials are interested and using NGI is one of the biggest 

demonstrations of the power of the technique. Further studies 

using NGI will help address problems like interobserver variability, 

sample exhaustion, spatial information analyses without the use 

of expensive and complex machines.

All the studies of the thesis have been done in breast tissues but 

KiQuant and t-cell panels are nowadays being applied in other 

tissue types because they are not tissue specific panels. Breast 

panel is the only one that is tissue specific but it can be applied 

in other breast cancer subtypes or in samples from patients that 

have received other treatments to understand more deeply the 

breast cancer and is heterogeneity.
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We developed automatized and flexible IHC protocols for 

sequential staining using the combination of Ventana Discovery 

Ultra (Roche Diagnostics), the Nanozoomer slide scanner 

(Hamamatsu) and Visiopharm image analysis program that were 

the equipment we had in the laboratory. NGI, then, as it happened 

in our laboratory, could be easily implemented in any diagnostic 

pathology laboratory equipped for digital pathology.

The scanning platform wouldn’t change the NGI workflow 

proposed, but if the staining platform is another one, the panels 

would need to be optimized for the new platform. This is a 

limitation of NGI, because optimization is the hardest part of NGI 

technology. Nevertheless, Ventana Discovery Ultra from Roche 

Diagnostics is one of the most used platforms minimizing the 

problem.

The change of the used antibodies would also impact the 

workflow due to the fact that the species of the antibody, the 

potential change of the pretreatment or primary or secondary 

conditions, the cross reactivity in successive stainings could 

affect the technique. The fact that routinely used antibodies have 

been used for the studies makes it easy to implement in any 

pathology department.

This last point is linked with the fact that the first step of optimization 

of the panels is key in NGI as well as in other techniques where 

different antibodies are applied to the same slide. Lots of efforts 

has to be put into the panel design so we are sure that each of 

the staining is equivalent to the optimized and validated golden 

standard IHC stainings. The fact that we have optimized the 

panels in a pathology laboratory where we have quality controls 

for IHC stainings makes NGI robust enough to be sure that AEC 

stained IHCs are equivalent to the validated DAB ones and this is 

something we have been sure to prove for the different panels in 

different studies.

Another key part of the panel design is the fact that no cross- 

reactivity is happening in the different stainings and that in 

each of the cycles just the antibody that we want to analyze is 

the only one that the secondary antibody will recognize, and all 

the staining comes from the primary antibody of the cycle. For 

doing so, after each of the stainings, a protocol with no primary 

antibody is applied to check and confirm that no primary antibody 

from previous round prevail. This is also something that has been 

proven in the different studies.

For avoiding cross-reactivity between antibodies, in the creation 

of the panels we combine anti-mouse and anti-rabbit antibodies 

apart from a stripping step with the Ventana platform. This 

stripping step is also being used for mIHC stainings with the 

Ventana platform. Another point is that the biomarkers sequence 

in the panel tend to be from the less expressed biomarker to the 

more expressed one.

All image analysis algorithms in the study are developed with 

Author module of Visiopharm image analysis program which is one 

of the most used image analysis programs. A limitation naturally 

exists in the cost of obtaining the program, if the laboratories 
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that wants to use it are not already users. Some free programs 

exist such as QuPath. These could provide similar results though 

currently the algorithms are not ready to be applied in other image 

analysis programs.

The scanned images must be carefully saved because the slide is 

going to be distained and that means we will not have a physically 

available slide saved. This is a risk if we lose the scanned image 

that however can be mitigated by also save a space physically.

Already stained slides can be de-stained, mounted and saved 

and be used in the future for other biomarkers that could be of 

interest if it’s in the context of biomarkers that we know they work 

in the sequence that we would apply.

The use of the staining platform with the proposed antibodies and 

the image analysis program makes the applicability of the panels 

in new laboratories easily applicable. As explained, the laborious 

parts that require time and expertise are the optimization of the 

technical panel and image analysis algorithms which are shared 

thus it would simply be a fact of applying them.

We have for the moment, optimized panels with a maximum of six 

markers though there could be several more biomarkers in the 

panel. This was not pursued as our objective was creating panels 

that were clinically relevant rather than using a slide to stain the 

maximum possible biomarkers.

The time that the technique requires could be a limitation for the 

clinical use. A 6-biomarker panel can be done in three days, as 

compared to one day if multiple slides are being used, each for 

one biomarker. If fast results are requested for rapid diagnosis, 

this could be a limitation and would necessitate an evaluation of 

any benefits of the added days. 

One of the problems of NGI and multiplex imaging technologies in 

general is the quantity of data that can be generated from them. 

Storage of big amounts of information is already being a problem 

in hospitals and research institutes. Then, the analysis of them is 

the next question that still is being addressed. Even more could 

be solved if data was shared and was publicly available, this would 

require complex systems for data protection.

As shown in the different studies and discussed here, NGI has 

allowed the study of different biomarkers in a single slide and 

could be applicable in any other pathology laboratory. It has 

also shown that it solves limitations of the actual technologies 

and not only that, but has addressed several problems with the 

different created panels: the reproducibility of KI67 evaluation 

and the comprehensive characterization of the Her2-positive 

breast cancer samples during the treatment, analyzing both the 

immune and tumor compartments and the relationship between 

them providing information for deeper understanding the tumor 

biology and complexity that, with further studies, may be used 

for resistant phenotypes identification, response prediction and 

better stratification of the patients.of the most used image analysis 

programs. A limitation naturally exists in the cost of obtaining the 

program, if the laboratories that wants to use it are not already 

users. Some free programs exist such as QuPath. These could 
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provide similar results though currently the algorithms are not 

ready to be applied in other image analysis programs.

The scanned images must be carefully saved because the slide is 

going to be distained and that means we will not have a physically 

available slide saved. This is a risk if we lose the scanned image 

that however can be mitigated by also save a space physically.

Already stained slides can be de-stained, mounted and saved 

and be used in the future for other biomarkers that could be of 

interest if it’s in the context of biomarkers that we know they work 

in the sequence that we would apply.

The use of the staining platform with the proposed antibodies and 

the image analysis program makes the applicability of the panels 

in new laboratories easily applicable. As explained, the laborious 

parts that require time and expertise are the optimization of the 

technical panel and image analysis algorithms which are shared 

thus it would simply be a fact of applying them.

We have for the moment, optimized panels with a maximum of six 

markers though there could be several more biomarkers in the 

panel. This was not pursued as our objective was creating panels 

that were clinically relevant rather than using a slide to stain the 

maximum possible biomarkers.

The time that the technique requires could be a limitation for the 

clinical use. A 6-biomarker panel can be done in three days, as 

compared to one day if multiple slides are being used, each for 

one biomarker. If fast results are requested for rapid diagnosis, 

this could be a limitation and would necessitate an evaluation of 

any benefits of the added days. 

One of the problems of NGI and multiplex imaging technologies in 

general is the quantity of data that can be generated from them. 

Storage of big amounts of information is already being a problem 

in hospitals and research institutes. Then, the analysis of them is 

the next question that still is being addressed. Even more could 

be solved if data was shared and was publicly available, this would 

require complex systems for data protection.

As shown in the different studies and discussed here, NGI has 

allowed the study of different biomarkers in a single slide and 

could be applicable in any other pathology laboratory. It has 

also shown that it solves limitations of the actual technologies 

and not only that, but has addressed several problems with the 

different created panels: the reproducibility of KI67 evaluation 

and the comprehensive characterization of the Her2-positive 

breast cancer samples during the treatment, analyzing both the 

immune and tumor compartments and the relationship between 

them providing information for deeper understanding the tumor 

biology and complexity that, with further studies, may be used 

for resistant phenotypes identification, response prediction and 

better stratification of the patients.



  Garazi Serna Alonso | 63 

6
6. CONCLUSIONS

In precision oncology nowadays, testing for multiple markers 

is required but current methodologies do not usually provide 

single-cell data while keeping the spatial information, and if 

they do, they are complex and expensive technologies.

NGI is an automated, simple, and cost-effective IHC-based 

technology that sequentially stains and destains the sample 

providing single-cell and spatial information filling the actual 

limitations of current approaches.

This thesis demonstrated that NGI is a multiplexed and non-

disruptive imaging technology that can be used in different 

pathology and research laboratories equipped for digital 

pathology.

NGI allows sample optimization using only 3µm of an FFPE 

sample per panel, saving material for further analyses.

All the designed panels proved no cross-reactivity and all 

the stainings of the panels were equivalent to pathology 

gold standard DAB stainings proving no antigenicity loss and 

applicability in pathology laboratories. 

NGI allowed the automated quantification of KI67 biomarker 

in breast cancer tumor cells in an easy and reproducible way.

1. 

2.

3.

4.

5.

6.
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NGI allowed the characterization of the immune 

microenvironment quantifying the different t-cell populations 

and providing their proliferation status and spatial interaction 

with the tumor cells.

NGI allowed the characterization of breast cancer tumor cells 

by analyzing the phenotype composition and heterogeneity 

and its impact in response to targeted therapies.

The results generated in this thesis provide a framework 

for applying NGI to better understand tumor biology and its 

complexity.

In the future, the same or new NGI panels can be used that 

may help identify better or new prognostic or predictive 

biomarkers supporting better patient stratification towards 

different therapies and increasing the number of patients that 

can benefit from them.

7. 

8.

9.

10.

7
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8. ANNEX

Study 3:

“In situ single-cell analysis of canonical breast 

cancer biomarkers: phenotypic heterogeneity 

and implications on response to HER2 targeting 

agents”

In this study we validated a third panel of NGI to analyze 

the tumor cell composition and heterogeneity of breast 

cancer tumors. We did a panel of HER2, ER, PR, KI67 

and PanCK that allowed us to classify breast cancer 

tumor cells into 16 different phenotypes of cells. 

We used this subclassification to comprehensively 

analyze the breast cancer tumor heterogeneity in 

Her2 positive tumors that were treated with an anti-

her2 treatment.
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ABSTRACT: 
 
Breast cancer is a heterogeneous disease. Tumor cells and the surrounding microenvironment 
form an ecosystem that determine disease progression and response to therapy. To characterize 
the breast cancer ecosystem and the changes induced by targeted treatment selective pressure, we 
analyzed 136 HER2-positive tumor samples for the expression of canonical BC tumor diagnostic 
proteins at a single cell level without disrupting the spatial context. The combined expression of 
HER2, ER, PR, and Ki67 in more than a million cells was evaluated using a tumor-centric panel 
combining the four biomarkers in a single tissue section by sequential immunohistochemistry to 
derive 16 tumor cell phenotypes. Spatial interactions between individual tumor cells and cytotoxic 
T cells were studied to determine the immune characteristics of the ecosystem and the impact on 
response to treatment. HER2-positive tumors displayed individuality in tumor cells and immune 
cells composition, including intrinsic phenotype dominance which only partially overlapped with 
molecular intrinsic subtyping determined by PAM50 analysis. This single cell analysis of 
canonical BC biomarkers deepens our understanding of the complex biology of HER2-positive 
BC and suggests that individual cell-based patient classification may facilitate identification of 
optimal responders or resistant individual to HER2-targeted therapies. 
 

INTRODUCTION: 
 
Breast cancer (BC) is a heterogeneous disease accompanied by differences in clinical, molecular, 
and biological features1, which creates a challenge for prognosis and treatment2. Currently, BC 
samples are stratified for clinical purposes based on tumor cells' expression of ER, PR, HER2, 
and the proliferation marker Ki67. These immunohistochemistry (IHC) biomarkers together with 
clinicopathologic indexes are used to predict disease outcome3, for treatment decisions, and serve 
as surrogates for prognostic gene expression profiles (GEP)4–7 categorizing BC into four basic 
subtypes which are related – but not equivalent – to GEP-defined intrinsic subtypes8. Luminal A 
and luminal B are roughly equivalent to [ER+|PR+] HER2− and [ER+|PR+] HER2+ tumors, 
respectively, though a small percentage of [ER+|PR+] HER2− tumors with Ki67 positivity are 
reported to belong to the luminal B subtype9. HER2 enriched tumors refer to [ER−|PR−] HER2+ 
despite the different methods used on HER2 assessment. The [ER−|PR−] HER2− (also named 
triple negative tumors) subtype is mainly composed of basal-like tumors, which are highly 
heterogeneous including at least claudin-low10, metaplastic breast cancer11 and interferon-rich 
tumours12 in addition to core basal tumors as demonstrated by the accumulated evidence. 
 
Although these stratifications have improved therapy success, patient responses vary within each 
subtype demanding better characterization of BC ecosystem. Targets of current therapies are 
heterogeneously expressed within and between patients. This heterogeneity equips cancer cells 
for proliferation, survival, and invasion and likely underlies differential treatment efficacies. This 
ecosystem is further shaped by cellular relationships (tumor cell-tumor cell, tumor cell-immune 
cell, …) and strategies targeting relationships that promote tumor development are promising.  
 
Next generation technologies such as gene expression based molecular profiling and genetic 
testing are considered as the future of cancer diagnostics. Despite that, the results generated may 
be significantly affected by the level of intra-tumor heterogeneity in the bulk sample typically 

analyzed with those methodologies. Given the heterogeneity of cellular phenotypes and 
relationships, patients classification and treatment should ideally consider the entire tumor 
ecosystem. Recent single-cell RNA sequencing and mass cytometry studies provided hints into 
breast cancer complexity and how this may influence prognostic and response to treatment 13–16. 
However, no study specifically characterizes the distribution of common breast cancer biomarkers 
at a single cell level in HER2-positive breast cancer without disrupting the tissue architecture. In 
the present study, we explored the composition, heterogeneity, and spatial organization of HER2-
positive breast cancer at a single-cell level resolution maintaining the spatial information as well 
as the treatment induced changes following dual HER2 inhibition with lapatinib and trastuzumab. 
To do so, we took advantage of an innovative technique recently developed in our lab which 
allows multiplex in situ biomarker analyses in a single FFPE tissue section. Customized 
algorithms were developed to extract the different phenotypic cell populations within the tissue 
for subsequent analyses. In addition, we analyzed the spatial distribution and interactions between 
tumor phenotypes, the interaction with immune cells and their impact in predicting response to 
treatment.  
 
The results from this analysis might help understand better intra-tumor heterogeneity and improve 
treatment strategies. 
 

MATERIALS AND METHODS: 
 

1. STUDY POPULATION: 
 
Patients enrolled in the PAMELA phase II trial will be included in the study. Briefly, 151 patients 
with operable or locally advanced HER2-positive breast cancer were treated with neoadjuvant 
lapatinib (1000 mg daily) and trastuzumab (8 mg/kg IV loading dose followed by 6 mg/kg) for 
18 weeks. Patients with hormone receptor (HR)-positive disease received letrozole or tamoxifen 
according to menopausal status. Formalin-fixed paraffin-embedded (FFPE) tumor samples at 
baseline and at D15 of treatment were collected according to protocol. Of the 151 patients enrolled 
in PAMELA study, 72 had a baseline sample and 64 had an on-treatment (day-15) sample for 
multiplexed immunohistochemistry analysis. Forty-nine patients had paired baseline and day-15 
samples. Summary shown in Supplementary Figure S1. 
 
From the all the patients, demographic patient data, tumor histopathological features (histotype, 
size, pT stage, pN stage), HER2 status (IHC and/or FISH results) and Hormone receptor status, 
PAM50 intrinsic subtype and treatment response data (pCR) were available. Clinicopathologic 
data is summarized in Table 1.  
 

2. NGI (NEXT GENERATION IHC): 
 
We used an automatized, simple, and flexible IHC protocol developed in our laboratory, named 
next generation immunohistochemistry (NGI) to study the expression of four canonical breast 
cancer biomarkers (ER, PR, KI67, HER2) at a single-cell level resolution17,18. The NGI protocol 
consists of iterative cycles of stanining/destaining on the same tissue section and uses the 
combination of Ventana Discovery Ultra (Roche Diagnostics), Nanozoomer slide scanner 
(Hamamatsu) and Visiopharm image analysis software.  Briefly, an alcohol soluble chromogen 



74 | Next Generation Immunohistochemistry (NGI)   Garazi Serna Alonso | 75 

(DISCOVERY AEC KIT (#760-258, Roche-Ventana)) was used to allow the destaining of the 
samples. After each automated IHC, samples were mounted in aqueous medium and digitalized 
(cycle 1). Subsequently, the section was destained in alcohol and submitted to the following 
staining cycle as shown in Figure1A. The sequence of the stainings were PR, KI67, HER2, ER 
followed by a PANCK staining for tumor area definition (antibody specification and protocol 
conditions in Supplementary Table 1. 
 
Before image analyses, individual images generated during each NGI staining cycle were aligned 
into a single virtual image using the VisiopharmⓇ software. Once co-registered, image-analysis 
algorithms were applied to extract the data. First, a tissue recognition APP was run and then the 
PANCK staining was used to recognize the tumor for tumor analysis. A pathologist supervised 
the regions of interest. After that, a breast panel APP was run, which localizes and classifies all 
the tumor cells in positive or negative for ER, PR, KI67 and Her2 biomarkers. Any brown stain 
above the background level (average of 210 pixel-intensity) was considered positive for the 
classification. The number of each of the generated 16 tumor phenotypes (or classes) and the 
position of them is obtained by the APP. Image analysis algorithms are shared in supplementary 
material.  
 
For subgroup analyses, the obtained classes were grouped into 4 categories (Supplementary 
Table 2): Her2-enriched (HER2E) for Her2-positive, hormone receptor negative cell phenotypes 
(classes 6 and 8), luminal A-like (LumA) for hormone receptor positive (ER -positive and/or PR -
positive), Her2-negative, and Ki67-negative cells phenotypes (classes 11,12 and 15), luminal B-
like (LumB) for hormone receptor positive (ER -positive and/or PR -positive) and  HER2 -
positive  or KI67-positive cells (phenotypes 1-5,7,9,10 and 13), and triple negative (TN) for Her2-
negative and hormone receptor negative phenotypes (classes 14 and 16).  
 
For the neighborhood analyses, CD8 staining images generated on a consecutive section from our 
previous study18 were aligned with the PR images to extract tumor cell phenotypes and location. 
CD8 APP was run (image analysis algorithms are shared in supplementary material) and the 
number and location of each of them were obtained for consecutive analyses.  
 

3.  STATISTICAL ANALYSES: 
 
R software (v.3.6.1)19 was used for all statistical analyses. Statistical significance level was set to 
<0.05. Wilcoxon-Mann-Whitney non-parametric test was used for two group comparisons and 
Kruskal-Wallis test for three group comparisons. Heterogeneity analyses were done using vegan 
package. Intratumoral diversity (alpha diversity) was analyzed using richness, Shannon and 
evenness indexes. Intertumoral diversity (beta diversity) was analyzed using one of the most 
common metrics, the Bray-Curtis dissimilarity. Significance between groups was tested with 
Peranova test (adonis). Classes that had a median higher than 1% were used for the heterogeneity 
analyses. Hierarchical cluster analysis was done using pheatmap package and using Ward’s 
method to group patients with similar compositions. For neighborhood analyses, we connected 
the cells to each other by means of a Delaunay triangulation algorithm, using the centroid of the 
segmentation mask. This allowed us to locate the nearest neighbors avoiding those connections 
that are shielded by nearest cells. In addition, to avoid connections between cells that were too far 
apart, we established a maximum distance of 20 microns between two neighboring cells. The 
percentage of connections per sample was obtained and normalized by the total tumor cells for 

statistical analyses to ensure that tumor size was not affecting the results. The affinity of the CD8 
to the different subtypes was calculated by dividing the percentage of the connections of the cd8 
for each subtype by the percentage of that particular subtype in the sample. 

RESULTS: 
 

1. Single-cell composition analysis of HER2-positive 
breast cancer 

 
We analyzed 136 prospectively collected tumor biopsies from the PAMELA trial, including 72 
baseline and 64 day-15 samples from HER2-positive breast cancer using our NGI technology 
(Supplementary Figure 1A). Clinicopathological characteristics of the NGI cohort are 
summarized in Table1. In total, 1028974 cells were analyzed (mean=7566, median=4060, 
IQR=1378-9454). To ensure data quality, we compared NGI results generated with the matched 
IHC scores available as part of central confirmation analysis of the PAMELA trial. The 
frequencies of ER+, PR+, HER2+, and Ki67+ cells determined by NGI were comparable with the 
centrally determined pathological scores (Supplementary Figure S2). 
 
To characterize the composition of breast cancer at a single cell level, we used a tumor-centric 
panel including ER, PR, HER2, and Ki67 to classify individual tumor cells in 16 different 
phenotypes based on the combined markers expression of the 4 markers. (Figure 1A, 
Supplementary Figure S2). As expected, most cells in HER2-positive breast cancer were 
expressing HER2 (intrinsic cell phenotypes: 1-8, median=92.3%) followed by ER (intrinsic cell 
phenotypes 1,3,5,7,9,11,13 and 15, median=57.9%), Ki67 (intrinsic cell phenotypes 
1,2,5,6,9,10,13 and 14, median=16.4) and PR (intrinsic cell phenotypes 1-4 and 9-12, 
median=5.7) (Supplementary Table S3).  
 
The analysis of distribution of individual intrinsic cell phenotypes revealed a heterogeneous 
distribution of tumor cell-intrinsic phenotypes in HER2-positive breast cancers, being the HER2E 
cell phenotype 8 the predominant cell phenotype (median=11.44, IQR=61.79) followed by TN 
phenotype 16 (median=3.87, IQR=9.04) and LumB phenotype 7 (median=3.63, IQR=29.01) 
(Figure 1B, Supplementary Table S4).  
 
Analysis of paired samples showed an overall decrease of HER2-positive (median 
baseline=95.7%, median day-15=87.5%, p=0.022) and Ki67-positive (baseline=20.2%, day-
15=7.5%, p<0.0001) cells from baseline to day-15. On the other hand, dual HER2 inhibition did 
not induce a significant shift in the overall composition of ER-positive and PR-positive cells. The 
overall decrease of HER2-positive and Ki67-positive cells from baseline to day-15 induced by 
the treatment was driven, at the intrinsic cell phenotype level, by the significant increase of non-
proliferating TN cells (phenotype 16, median baseline=2.1%, median day-15=6.0%, p=0.0016) 
and decrease of proliferating HER2-positive cells (HER2+Ki67+, median baseline=18.1%, 
median day-15=5.1%, p<0.0001; phenotype 6, median baseline=2.4%, median day-15=0.9%, 
p=0.0001; phenotype 5, median baseline=0.3%, median day-15=0.01%, p=0.019) (Figure 1C). 
Interestingly, no treatment effect was observed on proliferation in HER2-negative cells (median 
baseline=0.4%, median day-15=0.4%, p=0.6492) providing evidence that the treatment is 
specifically targeting Her2-positive cells (Figure 1D). 
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The cell type frequencies varied among and between tumor molecular intrinsic subtypes 
determined by GEP, with a higher frequency of HER2-positive cells in HER2E samples (p-
value<0.0001), PR-positive and ER-positive cells in luminal samples (p-value <0.0001), and 
proliferating KI67 positive cells in Basal samples (p-value <0.0001) (Figure E, Supplementary 
Table S4). 
 
At the individual intrinsic cell phenotype level, basal tumors showed a higher frequency of TN 
(phenotypes 14 and 16) and HER2E (phenotypes 6 and 8) cells compared to other breast cancer 
subtypes, which was statistically significant for TN phenotypes. Tumors of HER2E subtype were 
significantly enriched in HER2E cell phenotypes 6 and 8 with a lower frequency of the remaining 
intrinsic cell phenotypes compared to non-HER2E tumors. A higher frequency of luminal cell 
phenotypes was observed in luminal samples which were also showing significantly less HER2E 
cell phenotypes frequency than other tumor subtypes. LumB cell phenotype 5 significantly 
differentiates luminal A from luminal B tumors (median LumA=0.32, median LumB=6.77, p-
value=0.0013). Normal samples were mainly composed of HER2E cells (phenotypes 6 and 8) and 
TN cells, the latter being significantly more abundant in normal compared to non-normal samples 
(median phenotype 16, normal=11.67, non-normal=3.22, p-value=0.00026) (Supplementary 
Table S5). When comparing baseline with day-15 samples, we did not find significant differences 
neither at overall marker levels (Figure 1F) nor at individual intrinsic cell phenotype composition 
(Figure 1G) except for molecular intrinsic subtype luminal A where the percentage of 
ER+/Ki67+ and phenotypes 1 and 9 was significantly lower in on-treatment samples. 
 
Lastly, we analyzed whether intrinsic cell phenotypes distribution varied according to the 
clinicopathological features of the tumor. As expected, clinical HR positive tumors showed a 
significantly higher proportion of ER-positive and PR-positive tumor cells as compared to HR-
negative tumors and a lower proportion of KI67-positive and Her2-positive cells. Luminal 
intrinsic cell phenotypes were significantly enriched in clinical HR-positive compared to HR-
negative tumors except for PR+/ER- phenotypes which were higher (phenotypes 2 and 4) or did 
not differ significantly (phenotype 10) in HR-negative tumors. HER2E intrinsic cell phenotypes 
(6 and 8) were also significantly enriched in HR-negative compared to HR-positive tumors 
(Figure 1H, Supplementary Table S6). 
 
Tumor size and nodal stage did not significantly impact on the distribution of, neither the four 
biomarkers (Supplementary Table S6), nor the intrinsic cell phenotype tumor content.  
 

2. HER2-positive breast cancer heterogeneity  
 
Tumor heterogeneity is believed to drive disease progression or resistance to treatment. 
Intratumoral heterogeneity was determined using alfa-diversity indexes which quantify the 
number of different intrinsic cell phenotypes co-existing within a sample (richness index), their 
relative abundance (Shannon index), and how similar the phenotypes are numerically distributed 
(Pielou’s evenness index) within a sample. Intratumoral heterogeneity increased with tumor stage 
(Baseline eveness index: T1 vs T2, p=0.005; T1 vs T3, p=0.0027) indicating a progressive 
acquisition of different cell phenotypes with tumor growth. No significant differences were found 
according to nodal stage. Clinical HR-positive tumors were more heterogeneous than HR-
negative tumors. This finding was in line with the higher heterogeneity observed in luminal 

tumors compared to other intrinsic molecular subtypes by GEP (Figure 2A). Treatment did not 
induce a significant shift in intratumoral heterogeneity as shown by paired samples analyses 
(median baseline=0.88, median on-treatment=0.84, p-value=0.52) (Supplementary FigureS2A). 
Intertumoral heterogeneity was determined using the Bray-Curtis matrix which quantifies the 
similarity of tumors based on intrinsic cell phenotypes composition and visualized with principal 
coordinates analysis plot (Figure 2B). Analysis of intertumoral heterogeneity failed to show 
significantly different compositions according to their tumor size or nodal involvement, with 
tumors segregating together independently of these clinicopathological features. Clinical HR-
positive tumors segregated together and separately from HR-negative tumors (p-value <0.0001). 
This diversity was maintained during treatment in day-15 samples (p-value= 0.00316). Luminal 
tumors (A and B) clustered together and separately from Basal and HER2-E tumors. The 
difference was statistically significant at day-15 (p-value= 0.01769) with normal-like tumors 
clustering together with HER2E and Basal tumors. Intertumoral heterogeneity analyses on paired 
samples showed the same results (Supplementary Figure S3). 
 
Analysis of tumors according to response to anti-HER2 neoadjuvant therapy revealed that tumors 
from responders shared a similar composition at baseline (p-value=0.008) and separated from 
tumors from non-responders, suggesting that tumor intrinsic features predictive of pCR may be 
found before treatment is started. On the other hand, intratumor heterogeneity was not a tumor 
characteristic predictive of response at baseline but at day-15. Tumors from patients who did not 
achieve a pCR exhibited a significantly higher intratumoral heterogeneity at day-15 compared to 
tumors from patients who responded to the treatment (Shannon, p=0.044), indicating that on-
treatment survival of different cell phenotypes may predict resistance (Figure 2A). 
 

Response analysis by tumor intrinsic cell phenotype 
composition. 
 
To assess whether tumor intrinsic cell phenotype composition may affect response to neoadjuvant 
anti-HER2, we calculated whether the frequency of each individual tumor cell phenotype differed 
between patients achieving or not achieving pathological complete response (pCR).  
 
As our dataset was a subset of the original PAMELA trial, we first determined whether this 
smaller subset was representative of the entire study in terms of response analyses. At baseline, 
TILS were significantly higher in responders (median=20) compared to non-responders (median 
=10, p=0.0017). At day-15, TILs (median responders=50, median non-responders=15, p=0.0036) 
and the CelTIL (median responders=58.3, median non responders=-1.5, p<0.0001) were 
significantly higher in responders thus confirming previous finding obtained from analysis of the 
full dataset.  
 
Comparative analysis of tumor intrinsic cell phenotypes distribution between responders and non-
responders did not show significant differences of any individual cell phenotypes between 
responders and non-responders both at baseline and day-15, except for LumB phenotype 2 at 
baseline (median responders=0.1%, median non-responders=0.03%, p=0.03), LumB class 11 at 
baseline (median responders=0.0%, median non-responders=0.04%, p=0.02), and LumB class 1 
at day-15 (median responders=0.0% median non-responders=0.08%, p=0.04). However, median 
values for differentially abundant phenotypes were extremely low, being below 1% in both 
outcome groups (Supplementary Figure S4). When grouping the intrinsic cell phenotypes, we 



78 | Next Generation Immunohistochemistry (NGI)   Garazi Serna Alonso | 79 

found a higher proportion of Her2-positive (median responders=95.9%, median non-
responders=89.9%, p-value=0.028) and Her2-enriched (phenotypes 6 and 8) cells in responders 
(median=73.5%) as compared to non-responders (median=10.0%, p-value=0.047).  Luminal A 
phenotypes (11,12 and 15) were enriched in non-responders (median non-responders=1.3%) as 
compared to responders (median=0.2%p-value=0.003) (Figure 3A). 
 
The total number of HER2-positive cells significantly decreased in patients responding to anti-
HER2 (median baseline=97.9%, median day-15=87.6%, p=0.009) but not in patients who did not, 
suggesting a reduction in tumor burden. On the other hand, patients who did not achieve a pCR 
showed an increase of LumB phenotype 7 with treatment (median baseline=0.8%, median day-
15=3.9%, p=0.042) which was not observed in responders, possibly reflecting the expansion of a 
resistant clone (Figure 3B). 
 
Consensus clustering was performed to group samples from HER2+ patients according to the 
distinct cell phenotypes. Unsupervised hierarchical clustering (Figure 3C) using paired samples 
classified tumors into six groups (C1-C6). Cluster 1 (HER2E) was dominated by tumor cells from 
phenotypes 6 and 8. Tumors in cluster 1 were clinical HR-negative (86.1%) and molecular 
intrinsic subtype Her2-E or Normal-like (94.7%). Clusters 2 and 5 (LumA) were enriched in cells 
from phenotypes 15 and 11, respectively. All tumors were clinical HR-positive. 63.2% were 
LumA and 21.1% LumB by intrinsic molecular subtyping. Clusters 3 and 4 (LumB) were 
composed mostly of cells from phenotypes 7 (cluster 3) and 3 (cluster 4). All but two tumor 
samples in these clusters were clinical HR-positive and exhibited a mixed molecular intrinsic 
subtyping (32.3% Her2-E, 41.2% Lum-A, 8.8% Lum-B,5.9% Basal and 11.8% Normal). Lastly, 
cluster 6 (Basal) was enriched in TN phenotypes 14 and 16. Tumors were clinical HR-negative 
(7/8, 87.5%) and half exhibited a basal intrinsic molecular subtype. Baseline and on-treatment 
samples from the same patients tended to group together in the same cluster or moved to a similar 
cluster during treatment (Figure 3E) More treatment-induced changes were observed in 
molecular intrinsic subtyping by PAM50. Similarly, only 20% of LumB tumors remained LumB 
after treatment. Treatment did not significantly impact on LumA and Basal tumors which tended 
to maintain the same subtype after treatment (Figure 3F).  
 
To determine whether patients responding or not responding to anti-Her2 therapy segregated 
within a specific cluster, we performed consensus clustering of all (paired and unpaired) baseline 
and on-treatment samples independently. At baseline, hierarchical clustering classified patients 
into five groups corresponding to HER2E (C1, phenotypes 6 and 8), LumB (C2 and C3, 
phenotypes 7 and 3), LumA (C4, phenotype 15) and mixed Luminal/Basal (C5) clusters. Twelve 
out of 31 (39%), 3 out of 16 (19%), 0 out of 15 (0%) and 4 out of 19 (20%) patients from HER2E, 
LumB, LumA, and mixed clusters achieved a pCR, respectively. Patients in the HER2E cluster 
C1 had a significantly higher probability of responding to anti-HER2 therapies as compared to 
those in other clusters (Fischer exact test, p=0.01) (Figure 3G). At day-15, clustering analysis 
showed six tumor clusters with similar phenotype compositions as the baseline clusters. Six of 19 
patients (32%), 2 out of 21 (9.5%), 1 out of 12 (8%), and 2 out of 12 (17%) patients from HER2E, 
LumB, LumA, and mixed clusters achieved a pathological complete response, respectively. 
Patients in the HER2E cluster had a non-significant higher probability of responding to anti-HER2 
therapies as compared to those in other clusters (Fischer exact test, p=0.06) (Figure 3H).  
 

3.  Breast cancer tumor and immune cells 
relationship  

 
Interactions between tumor cells and immune cells within the tumor microenvironment drive 
disease progression and response to treatment. To study homotypic and heterotypic relationships 
between tumor and immune cells, we determined the percentage of connections between each 
individual tumor cell phenotype, the distribution of tumor cell phenotypes according to tumor 
infiltrating lymphocytes (TILs) and the spatial relationship between cytotoxic (CD8+) immune 
cells with each tumor cell phenotype.  
 
Homotypic tumor cells relationships were the most common. Most of the connections were found 
between cells belonging to the same or similar phenotype. Most of the homotypic connections 
were found between Her2E phenotype 8 cells, followed by connections between LumB phenotype 
3 cells, TN phenotype 16 cells, LumA phenotype 11 cells and heterotypic connections between 
phenotype 8 with phenotypes 6 and 7 (Figure 4A).  
 
To determine whether tumor cell phenotypes were differentially enriched in breast cancer 
according to the level of immune infiltration, we correlated the proportion of TILs with that of 
each individual cell phenotype in the same sample. Levels of TILs were positively correlated with 
HER2E phenotypes 6 and 8 both at baseline (0.49 and 0.41, respectively) and at day-15 (0.32 and 
0.55, respectively) (Supplementary Figure S5 A). When we grouped tumors into inflamed (TILs 
>50%) and non-inflamed (TILs <50%) based on TILs infiltration, inflamed tumors were again 
significantly enriched in HER2E cell phenotypes 6 (median high=8.9%, median low=0.7%, 
p=0.026) and 8 (median high=59.3%, median low=6.3%, p=0.005) and depleted of LUM-B cells 
(median high=8.9%, median low=35.6%, p=0.048) compared to non-inflamed tumors (Figure 
4B, Supplementary Table S7).  
 
After finding the enriched subtypes in inflamed tumors, we wanted to explore whether TILs levels 
differed according to tumor intrinsic cell phenotype-defined clusters. We found that patients from 
clusters 2 and 5 (non-responder clusters) had significantly lower cd8 densities (median cd8 
density in cluster 2= 114.5cells/mm2 and cluster 3 202.2 cells/mm2) while cluster 1 patients 
(responders) had the highest cd8 densities (median 723.5 cells/mm2) (Figure 4C).  
 
To determine the spatial relationship between CD8+ immune cells and tumor cell phenotypes, we 
calculated the proportion of intratumoral immune-tumor cells connections. The most common 
connections were between CD8 and HER2E tumor cell (phenotypes 8, median=22.75%; 
phenotype 6, median=2.5%) followed by TN cell phenotype 16 (median=3.93%). Similar results 
were found when dividing the dataset into baseline and day-15 samples (Figure 4D, 
Supplementary Figure S5 B). Anti-HER2 treatment induced a general increase of number of 
connections between CD8+ immune cells and tumor cells (median baseline=0.2%, median 
day15=0.5%, p=0.01) without significant changes in connections of CD8 with any individual 
tumor cell phenotypes (Figure 4D, Supplementary Table S8).  
 
The higher number of connections observed between CD8 immune cells and HER2E and TN 
tumor cells phenotypes may be attributable to the higher prevalence of these phenotypes within 
the tumor. To elucidate whether cytotoxic T cells tended to interact preferentially with a specific 
tumor cell phenotype within a tumor, we determined the affinity of cytotoxic T cells for each 
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tumor cell phenotype by dividing the percentage of connections of CD8+ cells with each of the 
phenotype by the percentage of tumor cells that were of the same phenotype.  
 
More affinity of CD8 was found with TN cell phenotype 16 (median=0.58) followed by TN cell 
phenotype 14 (median=0.50), Her2E phenotype 8 (median=0.47), LumB phenotype 10 
(median=0.44) and Her2E phenotype 6 (median=0.43) (Figure 4E). The affinity of CD8 for the 
Her2E cell phenotype 8 (median baseline=0.3%, median on-treatment=0.6%, p=0.018) and LumB 
phenotype 7 (median baseline=0.1%, median on-treatment=0.3%, p=0.029) significantly 
increased with treatment (Supplementary Table S9).  
 
Lastly, we wanted to analyze whether differences in the types of connection and affinity between 
responders and non-responders could be found. Overall, no significant differences in the number 
of connections between cd8 and the different cell phenotypes were observed between responders 
and non-responders. At baseline, no significant differences of CD8 connections or affinity were 
found between responders and non-responders. On day-15, tumors from patients responding to 
the treatment showed an overall increase in CD8/tumor cell ratio, connections of CD8 with any 
tumor cells, with HER2-positive cells and with phenotype 8 cells compared with tumors from 
non-responders. Similarly, higher CD8 affinity for HER2E phenotypes (phenotype 6 and 8), 
LumB phenotypes (4, 7, and 13) and LumA phenotype 11 was found in responders compared to 
non-responders (Figure 4F, Supplementary Table S10). These findings were confirmed in 
paired sample analysis.  
 
Anti-HER2 treatment induced a significant increase in the number of CD8 connections with any 
tumor cell (median baseline=0.2%, median on-treatment=1.7%, p=0.007) and, specifically, with 
TN phenotype 16 (median baseline=0.0%, median on-treatment=0.2%, p=0.02) in responders 
compared to non-responders (Figure 4H).  Similarly, affinity for the Her2E class8 (median 
baseline=0.3, median on-treatment=1.6, p=0.0059) and class6 cells (median baseline=0.4, median 
on-treatment=1.5, p=0.022); LumB class7 (median baseline=0.1, median on-treatment=0.7, 
p=0.04) and class4 cells (median baseline=0.3, median on-treatment=2.7, p=0.013) (Figure 4I) 
increase in the responders but not in non-responders.  
 
Due to the higher number of connections between CD8 and tumor cells observed in responders 
compared to non-responders, we included this feature to the intrinsic tumor cell phenotypes and 
performed unsupervised clustering analysis. The addition of immune feature to tumor features did 
not improve segregation of responder vs non-responders at baseline (Figure 4J). However, at 
day-15, the number of connections between cytotoxic T cells and tumor cells separated the 
HER2E cluster in two distinct clusters with different response rate the one with more connections 
specially enriched in (67% of responders) as expected as compared to the other her2 enriched 
cluster that became not enriched in responders (15% of responders) (Figure 4K). 
 

DISCUSSION:  
 
In this study, we conducted an in situ single-cell analysis of Her2 positive breast cancer using a 
sequential immunohistochemistry protocol combined with image analysis to provide virtual 
multiplexed expression of different biomarkers on the same slide. The developed methodology 
(called NGI or next generation immunohistochemistry) provided information on the expression 
of 4 canonical breast cancer biomarker at an unprecedented resolution allowing analysis of their 

co-expression in the same cell, their distribution, their spatial interaction (tumor cell-tumor cell, 
tumor cell-immune cells) and their changes during anti-Her2 treatment.  
 
ER, PR, Her2 and Ki67 are standard biomarkers used in clinical practice for diagnosis and 
prognostication of breast cancer. Their expression is determined by conventional 
immunohistochemistry and their status defined by consensus cutoffs recommended in clinical 
guidelines. HER2-positive tumors are defined by >10% tumor cells showing strong (3+) complete 
membrane positivity or equivocal 2+ weak to moderate complete membrane staining in >10% of 
the tumor cells with Fish-negative result20. Similarly, hormone receptor status is defined by >10% 
tumor cells showing positivity at any intensity of ER and/or PR. For Ki67, no standard cut-off 
exists. A 20% threshold is generally used to define a high proliferative tumor and usually 
associated with poor prognosis21–23.  
 
Treatment strategies are currently defined according to the individual status of each one of these 
biomarkers. However, treatment responses are heterogeneous and a better understanding of the 
breast cancer tumor ecosystem is needed.  
 
Transcriptomics and proteomics approaches have been used to analyze the landscape of breast 
cancer and dig into the complexity of the tumor. However, these studies are performed on bulk 
samples, thus lacking contexture analyses24–26. Single-cell studies have provided a deeper 
understanding of the different cell populations distribution, tumor heterogeneity and influence on 
cancer progression and resistance27–32, but to the best of our knowledge, no studies have performed 
single cell level resolution analyses in Her2-positive breast cancers during the anti-her2 treatment.  
 
The approach we described in this study combines a routine, widely used methodology such as 
IHC with image analyses algorithms to extract complex data from a single slide. Despite 
immunohistochemistry is traditionally considered a qualitative, single-plex, low-throughput 
methodology, our NGI protocol allows to virtually multiplex up to 6 (or more) different antibodies 
on the same slide to simultaneously study the co-expression, distribution, spatial interactions, and 
function of biomarkers of interest in the target cell (tumor or immune) with a single-cell level 
resolution and without disrupting the tissue organization by maintaining the spatial information. 
In this study, we developed a custom-made 5-plex panel which included HER2, ER, PR, Ki67 
(classical breast cancer biomarkers) and CK (as tumor mask) to classify more than million cells 
into 16 different tumor cell intrinsic phenotypes. With an average of 4060 cells/sample analyzed; 
our approach is at least equivalent (if not superior in term of cells analyzed) to other single-cell 
breast cancer studies30–34 . 
 
Cell phenotypes prevalence and distribution were investigated in HER2-positive breast cancer 
from the PAMELA trial and correlated with clinicopathological and molecular features of the 
tumors. Intratumoral and intertumoral heterogeneity was quantified and impact of anti-HER2 
inhibition on the cellular composition of the tumors and response to treatment investigated. 
Finally, tumor cell phenotype information was integrated with cytotoxic T cells spatial data to 
study homotypic and heterotypic relationships between tumor and immune cells and how 
interactions within the tumor microenvironment may predict treatment response or resistance. 
 
Several confirmatory findings validated our experimental approach. First, comparative analysis 
of biomarkers expression determined by NGI was highly correlated with those obtained by 
standard immunohistochemistry analysis performed at central laboratory. Second, the overall 
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reduction of Her2 and ki67 from baseline to day-15 confirmed previous findings reported in the 
Pamela trial using alternative methodologies as well as those from other neoadjuvant studies in 
Her2 positive breast cancer. Importantly, higher resolution analysis of tumor individual cell 
populations showed that Her2-positive breast ecosystem is constituted by multiple tumor cell 
phenotypes (both her2+ and her2-), which are differently modulated by the treatment. Non 
proliferating Her2+/ER-/PR- represents the predominant phenotype (class 8) followed by triple 
negative (16) and luminal B (7) phenotypes. Dual her2 blockade did not affect all phenotypes in 
the same manner. The significant reduction of proliferative her2 positive phenotypes-only without 
an effect on her2 negative ones is indicative of a clear pharmacodynamic effect of dual her2 
inhibition24,25,35.  
 
Poor prognosis and therapy resistance are associated with tumor heterogeneity36,37. We analyzed 
intratumor and intertumor heterogeneity according to breast cancer intrinsic cell phenotype 
composition and their impact on response to treatment. First, we found that intratumoral 
heterogeneity increases with tumor stage indicating a progressive acquisition of different cell 
phenotypes with tumor growth38. Second, we found that HR-positive tumors (clinical and luminal 
subtype by PAM50) exhibited higher intratumor and intertumor heterogeneity as compared with 
HR-negative tumors (clinical HR-negative and HER2E by PAM50). Third, tumor heterogeneity 
was inversely correlated with the probability of achieving a pCR. These findings may explain 
why her2-enriched and HR-negative patients, which are homogeneously composed 
predominantly by tumor intrinsic cell phenotypes 8 and 6, showed the highest rate of response to 
anti-HER2 treatment24,25.  
 
On the other hand, clinical HR-positive, luminal tumors by PAM50 were highly heterogenous in 
composition with significant enrichment of different LumB (3 and 7) and LumA (11, 12 and 15) 
intrinsic cell phenotypes and depletion of HER2E phenotypes (6 and 8) which, in turn, resulted 
in reduced sensitivity to HER2 targeted therapy. Interestingly, the association found between 
higher intratumoral heterogeneity at day-15 and lower response rates indicated that on-treatment 
survival of different cell phenotypes may predict resistance. Heterogeneity analysis also revealed 
that tumor intrinsic features predictive of pCR may be found before the treatment is started as 
shown by the similar ecosystem found at baseline in tumors from responder with beta diversity 
analysis.  
 
Consensus clustering was performed to group samples from HER2-positive patients according to 
the distinct cell phenotypes composition and correlated with response. Six different clusters (one 
HER2E, 2 LumA-like, 2 LumB-like, and one Basal) were identified based on tumor intrinsic cell 
phenotypes composition which only partially recapitulated molecular intrinsic subtyping by 
PAM50. Baseline and on-treatment samples from the same patients tended to group together in 
the same cluster or moved to a similar cluster during treatment. In contrast, PAM50 changes 
during treatment were notable with 20% of HER2E tumors shifting to LumA molecular subtype.  
Patients in the HER2E cluster (phenotypes 8 and 6) had a higher probability of responding to anti-
HER2 therapies as compared to those in other clusters (Baseline, p=0.01; day-15, p=0.06). 
Importantly, patients in LumA clusters (enriched in phenotypes 11 and 15) were exquisitely 
resistant to anti-HER2 inhibition. This data provides more insight into our previous observation 
that HER2E tumors cells that are sensitive to anti-HER2 therapy but do not die acquire a Luminal 
A phenotype35. Our new results point to tumor intrinsic cell phenotype 15 (ER+/PR-/HER2-
/Ki67-) as a resistant clone which pre-exist at low frequencies in HER2-positive breast cancer 
even before treatment starts, independently of the PAM50 subtype. The observed rapid 

acquisition (after 14 days of treatment) of PAM50 LumA molecular subtype may indeed reflect 
the expansion (as consequence of reduction of HER2E cells due to treatment) of this preexisting 
resistant clone. On the other hand, PAM50 HER2E tumors that became normal-like, an on-
treatment biomarker of tumor responsiveness, are still predominantly composed of HER2E cells 
(phenotypes 8 and 6) which are diluted by stromal contamination due to decrease in tumor burden 
as consequence of response.  
 
We also found LumB phenotype 7 (HER2+/ER+/PR-/Ki67-) as a resistant phenotype. This 
finding reflects the possible effect of the strong interplay between HER2 and ER, which may 
negatively impact on the response to anti-HER2 27,30,39,40. 
 

The study of how tumor and immune cells interact within the tumor microenvironment may 
increase our understanding of treatment response25,41. We’ve previously reported that patients 
responding to dual anti-HER2 inhibition showed higher TILS compared to non-responders18. In 
the present study, we further dig into tumor-immune cells relationship by spatial analysis. 
Inflamed tumors were enriched in HER2E cells (phenotypes 6 and 8) as opposed to non-inflamed 
ones where Luminal phenotypes predominated. In line with these observations, densities of CD8+ 
immune cells were higher in the HER2E cluster with LumA cluster showing the lowest levels of 
cytotoxic T cell infiltration. Connectivity analysis showed a higher number of connections 
between CD8+ immune cells and HER2E and TN tumor cells phenotypes as compared to other 
phenotypes, more affinity of CD8 for TN cells (phenotypes 14 and 16) and less affinity for 
hormone receptors positive cells in general. This observation matched with the differences in 
immunogenicity described according to breast cancer subtypes and partially explains why HER2-
positive and TN tumors are more immunogenic42 as well as why HER2-positive breast cancer 
enriched in HER2E responded significantly better to anti-HER2 inhibition compared to other 
phenotypes.  
 
During her2-treatment, cytotoxic T cells increase significantly18,24,25 and higher densities of 
intratumoral CD8s associated with pCR18. Here, we now showed that this increase reflects a 
higher number of connections and increased affinity of CD8 with tumor cells and HER2-positive 
cells in responders which is not found in patients who did not respond to the treatment. Lastly, 
the addition of the immune microenvironment status to tumor intrinsic cell phenotypes separated 
the HER2E cluster at day-15 into two subgroups with different response rates based on the 
connections between CD8 and tumor cells.   
 
One of the biggest limitations of the study is the limited number of cases which did not allowed 
us to develop a predictive model of response to the treatment. Second, the number of biomarkers 
analyzed simultaneously on the same section is lower as compared with other single-cell, high 
throughput methodologies. Third, our study did not consider the different levels of expression of 
HER2, which is particularly relevant now due to the development of antibody-drug conjugates 
targeting the HER2-low breast cancer population. Future studies would be needed to address these 
gaps. 
 
In conclusion, we have analyzed the HER2-positive breast cancer ecosystem at a single-cell 
resolution using a relatively simple and inexpensive methodology developed in our laboratory. 
Our findings confirmed previous observation using more expensive and less accessible 
approaches and expand our knowledge of Her2-positive breast cancer biology and composition 
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during anti-her2 treatment providing potential clinically important information that could be used 
to improve targeted therapies. 
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FIGURE LEGENDS: 
 
Figure 1. Her2-positive breast cancer composition.  
A) Illustration of NGI methodology used for the study. A single slide is stained for the first 
biomarker, scanned and destained and the process is repeated five times for each of the 
biomarkers. All obtained images are aligned and image analysis is used for the extraction of each 
tumor cell classification and location per sample. Information that is used for 
composition, clusterization and connectivity analyses. B) Box plot of the phenotype composition 
of her2-positive breast cancer samples, showing classes names, median, IQR for all samples and 
subtype classification into LumB, LumA, HER2-e and TN. In grey the positivity for each of the 
analyzed biomarkers (HER2, ER, PR and KI67) for each of the 16 generated classes. C) Box plots 
of phenotype-changes during the treatment in paired samples. D) Box plots of grouped 
Her2+KI67+ and Her2-Ki67+ changes during the treatment. E) Box plots of percentages of Her2, 
ER, PR and KI67 tumoral cells in the PAM50 groups. F) Box plots of general-composition of the 
different PAM50 groups. In pink SCR samples and in blue the day-15 samples. Star for significant 
differences between scr and day-15 samples medians. G) Box plots of phenotype-composition of 
the different PAM50 groups. In pink SCR samples and in blue the day-15 samples. Star for 
significant differences between scr and day-15 samples medians. H) Box plot of HR status 
differences in LumB, LumA and TN groups.  
 
Figure 2. Heterogeneity analyses. 
A) Box plots showing intratumoral diversity variation for tumor stage, nodal status, hormone 
receptor status, pam50 classifications and response in all (left), scr (middle) and day-15 
(right) samples. Star shows the significant intratumoral heterogeneity between groups. 
B) PCoA analysis plots of Bray-Curtis computed distances between all (left), scr (middle) and 
day-15 
(right) samples. Different clinicopathologic features are shown in different colors. Star shows th
e groups that are significantly different in phenotype composition. 
 
Figure 3. Response analyses. A) Boxplots of significant variables between responders and 
responders. B) Boxplots of treatment induced changes in paired responders and non-responder 
patients. C) Heatmap showing the percentage of each phenotypes of paired scr and day-15 
samples. Each cluster is generated with patients with similar phenotype compositions. Heatmap 
colors represent percentage of each of the phenotypes. Annotation colors are shown next to the 
heatmap. D) Representative images of classified tumors from each cluster. Colors of the cells are 
shown next to the classes in the heatmap. E) Alluvial plot showing the cluster changes of paired 
patients during the treatment. F) Alluvial plot showing the Pam50 group changes during the 
treatment. G) Heatmap of SCR samples. Number of responders and non-responders are shown 
for the first cluster and for the others. H) Heatmap of day-15 samples. Number of responders and 
non-responders are shown for the first cluster and for the others.  
 
Figure 4. Spatial analyses. A) Dot-plot showing the connections between different tumor 
phenotypes. The size and color of the dots represent the proportion of connections. B) Boxplot 
of significantly different variables between TIL high and TIL low groups. C) Box plot of CD8 
densities in the different clusterized groups' samples. D) Box plots of the CD8 connections with 
each of the tumor phenotypes in all samples. Dot plots of the medians in SCR and day-15 are 
shown in the right. E) Box plots of the CD8 affinity with each of the tumor phenotypes in all 

samples. Dot plots of the medians in SCR and day-15 are shown in the right. F) Representative 
dot plots and virtual multiplexed images of a responder and non-responder patient. The size and 
color of the dots represent the proportion of connections between CD8 and tumor cells. CD8 cells 
are shown in red in the image. G) Boxplots of treatment induced connection-changes in paired 
responders and non-responder patients. H) Boxplots of treatment induced affinity-changes in 
paired responders and non-responder patients. I) Heatmap of SCR samples with CD8-tumor 
connection information. Annotation colors are shown next to the heatmap. J) Heatmap of day-15 
samples with CD8-tumor connection information. Annotation colors are shown next to the 
heatmap.  
 
Supplementary Figure 1. A) Sample cohort diagram. B) Scatter plot and Spearman coefficient 
of NGI and central lab results for each of the 4 canonical biomarkers. C) Box plots of the 
percentage of positive cells for the different biomarkers with NGI for the central lab categorized 
results. 
 
Supplementary Figure 2. Heterogeneity analyses. A) Box plots showing non-significant 
intratumoral diversity variation in paired samples during the 
treatment. B) PCoA analysis plots of Bray-Curtis computed distances in paired 
samples. Different clinicopathologic features are shown in different colors. Star shows the grou
ps that are significantly different in phenotype composition. 
 
Supplementary Figure 3. Results from response analyses. A) Box plots of the different 
phenotypes proportions in responder and non-responder patients in SCR and day-15 samples. B) 
Box plots of the different phenotype proportions on responder and non-responder SCR samples. 
C) Box plots of the different phenotype proportions on responder and non-responder day-15 
samples.  
 
Supplementary Figure 4. Spatial analyses.  A) Scatter plot and Spearman correlation coefficient 
of TILs and different phenotypes in SCR and day-15 simples. B) Box plots of CD8 connections 
with the different tumor phenotypes for SCR and day-15 samples. C) Box plots of CD8 affinity 
to the different tumor phenotypes for SCR and day-15 samples.  
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Supplementary Figure S1
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