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SUMMARY 

In this thesis, we aimed to investigate the genetic basis of milk and morphological traits in 

Murciano-Granadina goats as well as to explore the microbial composition of several types 

of caprine cheeses. Moreover, we wanted to assess the consequences of inbreeding on dairy 

performance and to study the molecular basis of traits related with the biological viability 

of goats. In study 1, we have identified several genetic determinants of milk yield and 

composition traits in Murciano-Granadina goats with records for three lactations by 

performing three independent GWAS (one for each lactation) and a longitudinal GWAS. 

Both approaches consistently revealed a genome-wide significant QTL for protein 

percentage on a chromosome 6 (74.8 – 94.6 Mb) region which harbours the four casein 

genes. Additionally, a QTL on chromosome 2 (129.77 – 131.01 Mb) for lactose percentage 

was also consistently detected. More QTL were identified in the longitudinal GWAS than 

in the three independent GWAS, possibly because the former has far more statistical power 

than the latter. In study 2, we also used a GWAS approach to identify genomic regions 

associated with the variation of morphological traits in Murciano-Granadina goats. In this 

analysis, few significant associations were found and positional coincidence with 

morphology QTL detected in other breeds was low. These results are compatible with a 

highly polygenic determinism of morphological traits in goats. Since dairy production in 

goats is focused to the elaboration of cheese and the technological and organoleptic 

properties of this food are largely determined by its microbiota, in study 3, we have 

characterized the microbiota of six different goat cheeses by sequencing hyper-variable 

regions of the bacterial 16S rRNA gene. We have identified lactic acid bacteria as the 



x 

predominant microbial community in all six cheeses. Besides, we have detected an 

abundance of psychrophilic bacteria, which are common post-pasteurisation contaminants 

of milk, in fresh cheeses.  

With regard to viability traits, in study 4, we detected low levels of inbreeding in the 

Murciano-Granadina population under study (media FROH = 0.053 ± 0.04). Despite this, a 

significant inbreeding depression on the logarithm of the somatic cell score (lnSCC), an 

important trait for udder health and milk quality, was detected and its determinants were 

finely mapped to a few chromosome 8 and 25 regions containing immunity genes. To 

ascertain genomic regions harbouring potentially harmful mutations (that are not expected 

to show a Mendelian segregation in the offspring of carrier individuals), in study 5 we 

carried out a scan to detected transmission ratio distortion (TRD) in Murciano-Granadina 

goats at a genome-wide scale. From the 36 SNPs displaying significant TRD, 25 had low 

GenTrain scores (< 0.8) indicating poor assignment of the genotypes. This result implies 

that most of the TRD signals detected by us are artifacts attributable to defective genotyping 

and stress the importance of filtering SNPs according to their GenTrain scores when 

carrying out TRD scans. As maternal care has an important influence on offspring viability, 

in study 6, we characterized the mRNA expression profiles of 12 brain tissues in 7 goats, 

of which 3 were 1 month-pregnant. Principal component analysis of the data revealed that 

most tissues tend to cluster according to their neural vesicle of origin, suggesting that 

embryonic development leaves a durable footprint that affects gene expression in the adult 

goat. Exceptions to this trend were cerebellum and glandular tissues, possibly because of 

their highly specialized functions. Important gene expression changes associated with 1 

month gestation were observed in the adenohypophysis, frontal neocortex, hippocampus, 

pineal gland, pons and particularly in the olfactory bulb. Interestingly, many of the genes 



 

xi 

differentially expressed in the olfactory bulb are related to human behavior, and there is 

evidence that this anatomical structure has a key role in the development of maternal care.   
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RESUM 

En aquesta tesi, hem volgut investigar les bases genètiques dels caràcters lleters i 

morfològics de les cabres de la raça Murciano-Granadina, així com explorar la composició 

microbiana de diversos tipus de formatges caprins. A més, hem volgut avaluar les 

conseqüències de la consanguinitat sobre la producció i la composició de la llet de cabra i 

estudiar la base molecular de diversos caràcters relacionats amb la viabilitat biològica. En 

l'estudi 1, hem identificat diversos marcadors genètics associats a la producció i 

composició de la llet en la raça Murciano-Granadina emprant registres de tres lactacions i 

duent a terme tres GWAS independents (un per cada lactació) i un GWAS longitudinal. 

Totes dues aproximacions van revelar un QTL significatiu per al percentatge de proteïnes 

en una regió del cromosoma 6 (74, 8 – 94, 6 Mb) que alberga els quatre gens de les caseïnes. 

A més, també es va detectar un QTL al cromosoma 2 (129,77 – 131,01 Mb) per al 

percentatge de la lactosa. Es van identificar més QTL al GWAS longitudinal que als tres 

GWAS independents, possiblement perquè el GWAS longitudinal té molt més poder 

estadístic. A l'estudi 2, també hem utilitzat una aproximació GWAS per identificar regions 

genòmiques associades a la variació de caràcters morfològics en cabres de la raça 

Murciano-Granadina. En aquesta anàlisi, es van trobar poques associacions significatives i 

la coincidència posicional amb QTL morfològics detectats en altres races va ser baixa. 

Aquests resultats són compatibles amb un determinisme altament poligènic dels caràcters 

morfològics en cabrum. Atès que la producció de llet en cabra està enfocada a l'elaboració 

de formatges i les propietats tecnològiques i organolèptiques d'aquest aliment estan en gran 

part determinades per la seva microbiota, a l'estudi 3, hem caracteritzat la microbiota de 

sis formatges de cabra mitjançant la seqüenciació de regions hipervariables del gen bacterià 

16S ARNr. Els bacteris acido-làctics són els més predominants en els sis formatges. A més, 
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en els formatges frescos hem detectat una certa abundància de bacteris psicròfils, que són 

contaminants habituals de la llet després de la pasteurització,. 

Pel que fa als trets de viabilitat, a l'estudi 4 s'han detectat nivells baixos d'endogàmia a la 

població Murciano-Granadina objecte d'estudi (mitjana FROH = 0.053 ± 0.04). Malgrat això, 

es va detectar una depressió endogàmica significativa pel logaritme del recompte de 

cèl·lules somàtiques (lnSCC), un tret important per a la salut de la glàndula mamària i la 

qualitat de la llet, i es va mapejar finament els determinants d’aquesta depressió a diverses 

regions dels cromosomes 8 i 25 que contenen gens immunitaris. Per determinar les regions 

genòmiques que contenen mutacions potencialment adverses sobre la viabilitat (i que per 

tant, s'espera que no mostrin una segregació Mendeliana en la descendència d'individus 

portadors), a l'estudi 5 vam investigar l’existència de distorsions de la ratio de transmissió 

aŀlèlica (TRD) en cabres Murciano-Granadines. Dels 36 SNP que mostraven una TRD 

significativa, 25 tenien puntuacions GenTrain baixes (< 0, 8), la qual cosa indica una mala 

assignació dels genotips. Aquest resultat implica que la majoria dels senyals TRD detectats 

en el nostre estudi són artefactes atribuïbles a un genotipat defectuós i subratllen la 

importància de filtrar els SNP segons les seves puntuacions GenTrain quan es realitzen 

anàlisis TRD. Com que el comportament matern té una influència important en la viabilitat 

de la descendència, a l'estudi 6, vam caracteritzar els perfils d'expressió d'ARNm de 12 

teixits cerebrals en 7 cabres, de les quals 3 estaven prenyades d'un mes. L'anàlisi de 

components principals va revelar que la majoria dels teixits tendeixen a agrupar-se segons 

la seva vesícula neural d'origen, cosa que suggereix que el desenvolupament embrionari 

deixa una empremta duradora que afecta l'expressió gènica a la cabra adulta. El cerebel i 

els teixits glandulars constitueixen excepcions a aquesta tendència, possiblement a causa 

de les seves funcions altament especialitzades. Igualment, es van observar notables canvis 

d’expressió gènica associats a la gestació a l'adenohipòfisi, neocòrtex frontal, hipocamp, 
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glàndula pineal, pont i, particularment, al bulb olfactiu. Curiosament, molts dels gens 

expressats diferencialment al bulb olfactiu estan relacionats amb el comportament humà, i 

hi ha proves que aquesta estructura anatòmica té un paper clau en el desenvolupament del 

comportament matern. 
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RESUMEN 

En esta tesis, nuestro objetivo fue investigar la base genética de caracteres de producción 

de leche y morfológicos en cabras Murciano-Granadina, así como explorar la composición 

microbiana de varios tipos de quesos caprinos. Además, queríamos evaluar las 

consecuencias de la consanguinidad en el rendimiento lechero y estudiar la base molecular 

de los caracteres relacionados con la viabilidad biológica de las cabras. En el estudio 1 

hemos identificado varios determinantes genéticos de la producción y composición de la 

leche en cabras Murciano-Granadina con registros de tres lactancias mediante la realización 

de tres GWAS independientes (uno para cada lactancia) y un GWAS longitudinal. Ambos 

enfoques revelaron consistentemente un QTL significativo en todo el genoma para el 

porcentaje de proteína en leche en una región del cromosoma 6 (74,8 - 94,6 Mb) que alberga 

los cuatro genes de la caseína. Además, también se detectó consistentemente un QTL en el 

cromosoma 2 (129,77 – 131,01 Mb) para el porcentaje de lactosa. Se identificaron más 

QTL en el GWAS longitudinal que en los tres GWAS independientes, posiblemente porque 

el primero tiene mucho más poder estadístico que el segundo. En el estudio 2, también 

utilizamos un enfoque GWAS para identificar regiones genómicas asociadas con la 

variación de caracteres morfológicos en cabras Murciano-Granadina. En este análisis, se 

encontraron pocas asociaciones significativas y la coincidencia posicional con la 

morfología QTL detectada en otras razas fue baja. Estos resultados son compatibles con un 

determinismo altamente poligénico de los rasgos morfológicos en cabras. Dado que la 

producción láctea en cabras está enfocada a la elaboración de queso y que las propiedades 

tecnológicas y organolépticas de este alimento están determinadas en gran medida por su 

microbiota, en el estudio 3 hemos caracterizado la microbiota de seis quesos de cabra 

diferentes mediante la secuenciación de regiones hipervariables de la gen bacteriano 16S 
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rRNA. Hemos identificado bacterias del ácido láctico como la comunidad microbiana 

predominante en los seis quesos. Además, hemos detectado una gran cantidad de bacterias 

psicrófilas, que son contaminantes comunes de la leche después de la pasteurización, en 

los quesos frescos. 

En cuanto a los rasgos de viabilidad, en el estudio 4 detectamos bajos niveles de 

consanguinidad en la población murciano-granadina objeto de estudio (FROH medio = 0,053 

± 0,04). A pesar de esto, se detectó una depresión consanguínea significativa en el 

logaritmo de la puntuación de células somáticas (lnSCC), un rasgo importante para la salud 

de la ubre y la calidad de la leche, y sus determinantes se mapearon finamente en algunas 

regiones del cromosoma 8 y 25 que contienen genes de inmunidad. Para determinar las 

regiones genómicas que albergan mutaciones potencialmente dañinas (que no se espera que 

muestren una segregación mendeliana en la descendencia de individuos portadores), en el 

estudio 5 llevamos a cabo una exploración para detectar la distorsión de la relación de 

transmisión (TRD) en cabras Murciano-Granadina. De los 36 SNP que mostraban un TRD 

significativo, 25 tenían puntuaciones GenTrain bajas (< 0,8), lo que indicaba una 

asignación deficiente de los genotipos. Este resultado implica que la mayoría de las señales 

TRD detectadas por nosotros son artefactos atribuibles a un genotipado defectuoso y 

enfatizan la importancia de filtrar los SNP de acuerdo con sus puntajes GenTrain al realizar 

escaneos TRD. Dado que el cuidado materno tiene una influencia importante en la 

viabilidad de las crías, en el estudio 6 caracterizamos los perfiles de expresión de ARNm 

de 12 tejidos cerebrales en 7 cabras, de las cuales 3 tenían 1 mes de embarazo. El análisis 

de componentes principales de los datos reveló que la mayoría de los tejidos tienden a 

agruparse según su vesícula neural de origen, lo que sugiere que el desarrollo embrionario 

deja una huella duradera que afecta la expresión génica en la cabra adulta. Las excepciones 

a esta tendencia fueron el cerebelo y los tejidos glandulares, posiblemente debido a sus 
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funciones altamente especializadas. Se observaron importantes cambios en la expresión 

génica asociados con 1 mes de gestación en la adenohipófisis, el neocórtex frontal, el 

hipocampo, la glándula pineal, el puente y particularmente en el bulbo olfatorio. 

Curiosamente, muchos de los genes expresados diferencialmente en el bulbo olfatorio están 

relacionados con el comportamiento humano y existe evidencia de que esta estructura 

anatómica tiene un papel clave en el desarrollo del cuidado materno. 
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1.1 AN INTRODUCTION TO GOAT BREEDING IN EUROPE. 

1.1.1 Goat production in Europe and Spain  

Goats were domesticated about 10,000 years ago in multiple locations in the Fertile 

Crescent (Zeder 2008, Daly et al. 2018) and subsequently dispersed across Europe by 

following two main routes: the Mediterranean corridor, through which several waves of 

seafaring colonists established coastal farming enclaves scattered across the 

Mediterranean coast, and the Danubian corridor that traversed central Europe until 

reaching the British Isles and Scandinavia (Zeder, 2008; Porter et al., 2016). Initially, 

goats and other ruminants were bred for their meat, but soon milk, and to a less extent 

fermented products, became important food resources due to their high nutritional quality 

and the possibility of obtaining them without the need of slaughtering (Evershed et al., 

2008). In Europe, evidence of milk consumption and dairy food production, obtained 

from pottery with milk residuals and dental calculi in humans, dates back to 7,500 years 

ago (Salque et al., 2013; McClure et al., 2018; Charlton et al., 2019) 

Traditionally, goats have been bred as marginal livestock in subsistence agricultural 

schemes due to their high rusticity and excellent adaptation to harsh environments (de 

Asís Ruiz Morales et al., 2019). During the past 20 years, goat census has remained quite 

stable in Europe while milk production has experienced a moderate increase (Figure 1.1), 

whereas in Africa and, above all, in Asia the number of heads and total milk production 

have increased dramatically (de Asís Ruiz Morales et al., 2019). Unlike cattle, the 

majority of goat milk is dedicated to the production of cheese and other (mainly 

fermented) products, except in a few countries, like China, that produce large amounts of 

powdered milk from goats. The United States of America and other western countries 
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commercialise goat milk for human consumption since the digestibility of caprine milk 

is better than that of cows (Pulina et al., 2018). 

As depicted in Figure 1.1, Europe harbours 5.17% of the global goat census and produces 

over 15% and 35% of goat milk and cheese worldwide, respectively (FAOSTAT). Indeed, 

European countries have established increasingly intensive goat breeding programs that 

have substantially augmented the efficiency of the production system compared to other 

regions of the world (de Asís Ruiz Morales et al., 2019). Countries like France, The 

Netherlands and Spain have improved their goat breeding practices by incorporating 

technologies, like artificial insemination, computerised recording, optimised nutrition 

plans and efficient genetic selection, which have dramatically improved productivity per 

animal, mainly in terms of milk yield (de Asís Ruiz Morales et al., 2019). Noteworthy, 

European goats have an average milk production of 290 L/head per lactation, which is 

considerably higher than the 48.9, 76.2 and 93.4 L/head produced in Africa, Asia and 

America, respectively (Pulina et al., 2018). Spain occupies the second place in the ranking 

of goat milk production in Europe, right after France, with a mean of 500.000 tons of milk 

produced per year during the past decade (FAOSTAT).  

There is a great diversity of goat breeds in Europe compared to other regions of the world 

(Cañón et al., 2006). Even more, several breeds of European origin with extensive census 

and popularity, like Alpine and Saanen, have become cosmopolitan due to their excellent 

dairy performance (Dubeuf and Boyazoglu, 2009). From the 1.8 million goats bred in 

Spain, over 70% are dairy goats, and around 6% belong to the Murciano-Granadina breed 

(MAPA). 
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Figure 1.1. Evolution of the (A) census and (B) total milk production (measured in 

tonnes) in Africa, America, Asia, Europe and Oceania from the late ‘70s until 2021. 

Information was retrieved from FAOSTAT. 

 

1.2 THE MURCIANO-GRANADINA BREED:  AN OVERVIEW . 

The Murciano-Granadina breed, with a census of 119,354 heads and 194 farms registered 

in the herd book in Spain (and over 500,000 individuals considering those not included 

in the herd book), is the most popular goat breed in the country (MAPA, 

https://www.mapa.gob.es/es/ganaderia/temas/zootecnia/razas-ganaderas/razas/catalogo-

razas/caprino/murciano-granadina/iframe-ejemplo-arca.aspx). Although the majority of 

the farms are located in Andalusia (40.21 %), Murcia (18.04 %) and Castilla la Mancha 

(9.79 %), the Murciano-Granadina breed is distributed in most of Spain (MAPA). 

Moreover, its high capacity of adaptation to arid and dry environments with an extreme 

climate and its excellent milk production performance (586 kg milk per lactation) have 

increased the interest in this breed nationally and worldwide (Delgado et al., 2018). By 

these reasons, Murciano-Granadina might be considered as a cosmopolitan breed 

increasingly used in countries such as Portugal and France (MAPA). 
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1.2.1 Origins of the Murciano-Granadina breed. 

This breed was officially established in 1975 by admixing two different Murciano and 

Granadina goat populations within the framework of a government program that aimed 

to implement a new breeding program (Delgado et al., 2018). After the creation of the 

herd book in 1979, a genetic-functional scheme for evaluating bucks was successfully 

developed (Delgado et al., 2018). In 1999, two different associations approved and 

implemented the official selection scheme of sires (CAPRIGRAN and ACRIMUR). 

Finally, in 2011, these two associations were merged into one single federation 

(MURCIGRAN) to control and monitor the genetic progress more effectively and 

optimise the use of the available genetic resources (Delgado et al., 2018).  

1.2.2 The breeding program of the Murciano-Granadina 

breed. 

The Murciano-Granadina breed is subjected to one of the most innovative and well 

developed caprine breeding programs in Spain (Delgado et al., 2018). The selection 

criteria aim to improve productivity in terms of milk production, body morphology, and 

profitability 

(https://www.mapa.gob.es/en/ganaderia/temas/zootecnia/report_resolucionaprobacionpr

ogramadecriamurciano-granadina_tcm38-579711.pdf). In 2021, longevity was included 

as a selection goal in the breeding program. The three main selection goals and criteria 

that are taken into account in the Murciano-Granadina breed program are described 

below: 

Goal 1. To improve milk production in terms of quantity and quality. To do so, milk 

controls are carried out in the registered females by measuring milk yield and quality at 

official laboratories. Additionally, sires are systematically genotyped to ascertain if they 

https://www.mapa.gob.es/en/ganaderia/temas/zootecnia/report_resolucionaprobacionprogramadecriamurciano-granadina_tcm38-579711.pdf
https://www.mapa.gob.es/en/ganaderia/temas/zootecnia/report_resolucionaprobacionprogramadecriamurciano-granadina_tcm38-579711.pdf
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carry favourable alleles for the casein genes. The selection criteria taken into 

consideration are: 

• Total milk yield at 210 and 240 days of lactation. 

• Protein content at 210 and 240 days of lactation. 

• Fat content at 210 and 240 days of lactation. 

• Casein genotype. 

Goal 2. Improvement of body conformation (“Dairy type”). Morphological traits are 

categorised according to a linear score ranging from 1 to 9, and intermediate scores are 

usually optimal. The specific selection criteria are: 

• Linear classification of body structure and capacity. 

• Linear classification of mammary system. 

• Linear classification of feet. 

• Linear classification of “dairy type”. 

Goal 3. Improvement of the longevity of sires and dams by taking into account the 

following criteria: 

• Lifetime milk production. 

• Lifetime protein production. 

• Lifetime fat production. 

• Productive longevity. 

The breeding program, which is applied in several steps (Figure 1.2), only takes place at 

the selection nucleus, which is integrated by herds that apply artificial insemination (AI) 

with semen from males with genetic superiority. The several phases of the breeding 

program are described below and summarised in Figure 1.2.  
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1. The selection of the mothers of the future sires (MFS). This implies the 

selection of female goats from the “selection nucleus” based on their genetic 

indices for dairy and conformation traits as well as on the granting of awards.  

2. Preselection of young recommended sires (YRS). In this step, the male 

offspring of MFS are tested for paternity and morphology at a very young age. A 

subset of the offspring is subjected to testing in reproduction centres to be used 

for AI, and the rest are tested for natural service in their own herd.  

3. Pretesting of YRS by AI. Selected males that are sent to the reproductive centre 

are trained in semen collection with an artificial vagina. 

4. Testing of YRS by AI. Selected males are used to perform a maximum of 400 

inseminations to females randomly selected from the selection nucleus, with a 

minimum of 5 inseminations per herd to maximise connections between herds. 

Female offspring from bucks under evaluation are tested for genealogy and 

subjected to morphological classification and milk controls. 

5. Genetic evaluation. An annual genetic evaluation of all animals from the nucleus 

is applied using a BLUP animal model and all the available information from the 

individuals to be evaluated and their relatives. In the case of males, productive 

traits limited by gender are retrieved from the female offspring and collateral 

relatives. The model includes as fixed effect the herd-year interaction, month of 

parturition and the litter size, and the age at the parturition, and the individual 

additive breeding value as covariates (Delgado et al., 2018). 

The breeding program also considers a periodical evaluation of the inbreeding and kinship 

coefficients of the herds, as well as a control of the genetic flow between selection nucleus 

and other herds to minimise the increment of inbreeding 
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https://www.mapa.gob.es/en/ganaderia/temas/zootecnia/report_resolucionaprobacionpro

gramadecriamurciano-granadina_tcm38-579711.pdf.  

Since the implementation of the breeding program, there has been a sustained 

improvement of several traits of economic interest. An increase of 892 g of milk/year was 

estimated as the response to selection between 2000-2014, making a total gain of 12.5 kg 

of milk per individual (Delgado et al., 2018). An increment in the milk solid content was 

also reported, i.e. 38.5 g of fat/year and 36.6 g of protein/year (Delgado et al., 2018). 

Figure 1.2.  Diagram of the process for selecting sires of Murciano-Granadina goat breed 

in Spain. Figure adapted from Murciano-Granadina breeding program available at 

https://www.mapa.gob.es/fr/ganaderia/temas/zootecnia/report_resolucionaprobacionpro

gramadecriamurciano-granadina_tcm36-579711.pdf. 

 

https://www.mapa.gob.es/en/ganaderia/temas/zootecnia/report_resolucionaprobacionprogramadecriamurciano-granadina_tcm38-579711.pdf
https://www.mapa.gob.es/en/ganaderia/temas/zootecnia/report_resolucionaprobacionprogramadecriamurciano-granadina_tcm38-579711.pdf
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1.3 STRUCTURAL AND FUNCTIONAL ANALYSES OF CAPRINE 

GENOMES AND TRANSCRIPTOMES . 

Nowadays, with the availability of multiple “omics” technologies related to genomics, 

transcriptomics, epigenomics, metagenomics and metabolomics, it has been possible to 

study the underlying biological basis of multiple livestock traits that are economically 

relevant (Chakraborty et al., 2022). In this section, we will review these “omic” 

technologies and their impact on the elucidation of the structure and function of the goat 

genome.  

Genomics and transcriptomics are disciplines that study the structure and function of 

genomes and transcriptomes (whole set of RNAs expressed in the cells of an organism), 

respectively (Figure 1.3). They contemplate the whole molecular machinery from the 

DNA molecule to the RNA transcript, considering all the steps in between, with the aim 

of understanding and characterising the biological background of cells, tissues and 

molecular processes of the organisms under study (Kenny and McCarthy, 2017; Vailati-

Riboni et al., 2017). Other -omics disciplines are epigenomics, which focuses on the 

epigenetic modifications of the genome, proteomics, which analyses the set of proteins 

expressed in the cells of an organism, metagenomics, which studies the genomes of 

organisms recovered from a particular environment, and metabolomics, which elucidates 

chemical processes involving metabolites. The effective integration of these multiple 

sources of information leads to the generation of a holistic view of the biological 

mechanisms involved in the determination of phenotypes (Kenny and McCarthy, 2017). 

Methodological advances in data generation, like high throughput technologies, and 

computation, have been determinant to study molecules with unprecedented resolution 

and at a very large scale (Tebani et al., 2016). This section includes a revision of the 
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different -omic technologies and their implementation in livestock production and 

research.  

Figure 1.3. Dataflow and subject of study of different omic-sciences, genomics, 

transcriptomics, proteomics, metabolomics and metagenomics.  

 

1.3.1 Genomics. 

Genomics is the study of the whole DNA sequence contained in the chromosome set of 

an individual (Kenny and McCarthy, 2017). This discipline initially started in 1920, with 

the creation of the “genome” concept by Hans Wrinkler, who considered the whole set of 

chromosomes contained in the nucleus of eukaryotic cells as a unit (Noguera-Solano et 

al., 2013). This view changed the paradigm of the study of genetics from “genes” to a 

combination of genes and chromosomes (Noguera-Solano et al., 2013). The first 

approaches devoted to characterising all the genes in a given genome included the 
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identification of mutations and the construction of linkage maps using mutants (Klug et 

al., 2011). These approaches were broadly applied to several model organisms such as 

maize, Drosophila, yeast and bacteria (Klug et al., 2011). 

The emergence of the first genome sequencing methods in the late 1970s by Sanger and 

colleagues (Sanger et al., 1977; Sanger and Coulson, 1975) provided solid grounds for 

the establishment of the “genomics” field. Since then, sequencing technologies have 

evolved dramatically into faster, automated, massive and cheaper analyses, moved by the 

demand for increasing amounts of genomic data from complex organisms (Giani et al., 

2020). Nowadays, next-generation sequencing technologies (NGS) are the gold standard 

for sequencing whole genomes. NGS generate massive amounts of data quickly, 

combining chemistry with computerised automated processes and parallelising reactions 

and processes in an efficient way (Giani et al., 2020). Over 90% of genomic data obtained 

to date have been generated by Illumina platforms mostly represented by highly efficient 

machines from the HiSeq and NovaSeq lines for short-read sequencing (Giani et al., 

2020). NGS usually involves three steps: library preparation, sequencing and data 

analysis. During library preparation, nucleic acids are fragmented and specific adapters, 

the nature of which depends on the technology used, are attached to both ends of each 

fragment. Adapters bind to the flow cell and nucleic acids are amplified and purified. In 

the sequencing step, libraries are amplified and subjected to sequencing by synthesis. In 

this last step, nucleotides tagged with different fluorophores bind to the nucleic acid 

template and the type of fluorescence allows inferring the series of nucleotides that are 

sequentially incorporated to the elongating complementary chain. Finally, the software 

of the sequencer performs a base calling procedure, identifying each nucleotide and 

registering the accuracy of each detection event 

(https://www.illumina.com/science/technology/next-generation-

https://www.illumina.com/science/technology/next-generation-sequencing/beginners/ngs-workflow.html
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sequencing/beginners/ngs-workflow.html). The whole process is summarised in Figure 

1.4. During the past decade, efforts have been focused on the generation of technologies 

that allow the sequencing of single molecules with longer reads, with PacBio and 

Nanopore as leaders in the market. These technologies now offer reads in a range of 10–

20 kbp with reliability similar to Illumina short-reads (Giani et al., 2020).  

Figure 1.4. Next generation sequencing workflow from the DNA (left) or RNA (right) 

molecules to the generation of the sequences files.  

 

 

1.3.1.1 Generation of a goat reference genome.  

In the genomic era, it becomes essential to have reference genomes to identify genomic 

variants, regulatory regions, and any other functional element of interest. The availability 

of reference genomes is especially useful because it makes possible to compare the 

https://www.illumina.com/science/technology/next-generation-sequencing/beginners/ngs-workflow.html


1.3   |   STRUCTURAL AND FUNCTIONAL ANALYSES OF CAPRINE GENOMES AND 

TRANSCRIPTOMES .  

35 

discoveries of different researchers worldwide working on the same species (Ballouz et 

al., 2019). With regard to goats, Dong et al. (2012) characterised the genome of a female 

Yunnan black goat by combining Illumina sequencing with optical mapping, a technique 

by which intact large single DNA molecules are labelled, stretched out and imaged using 

a fluorescence microscope (Dong et al., 2012). Information provided by optical mapping 

substantially facilitated the assembly of contigs (Coulson et al., 1986). The goat assembly 

generated through this approach made possible to annotate 22,175 protein-coding genes 

(Dong et al., 2012), thus representing the first goat reference genome available for the 

research community. Five years later, Bickhart et al. (2017) released the ARS1 goat 

genome assembly, which is currently used as reference, by combining several approaches 

that included single-molecule long-reads sequencing, optical mapping and Hi-C-based 

chromatin interaction maps to enhance contig assembly, and short-reads for validation. 

The ARS1 genome has a total length of 2.92 Mb, with 28,921 genes annotated, 20,606 of 

which are protein-coding genes (as annotated in the NCBI, 

https://www.ncbi.nlm.nih.gov/). New efforts are being made to improve the goat 

reference genome by increasing the sequencing resolution and fixing errors and gaps 

present in ARS1 (Li et al., 2021). More specifically, in the Saanen_v1 genome, eight 

assembly errors of ARS1 were corrected, the number of gaps was strongly reduced, and 

a first goat Y chromosome scaffold was obtained (Li et al., 2021). Importantly, a reference 

genome from a single individual does not represent the whole variation segregating in a 

given species, and this is why there is an impetus to construct pangenomes, which model 

the genomic totality of a taxon of interest (Vernikos, 2020). The pangenome comprises a 

core genome, the set of genes shared by all individuals from a given species, and the 

dispensable genome, which contains genes only present in a subset of the individuals 

(Vernikos, 2020). In the case of goats, the construction of the first “pangenome” has 
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demonstrated an improvement in variant identification and transcriptomic mapping rate 

compared to the current ARS1 reference genome (Li et al., 2019). Currently, there are 

4,158 whole genome sequences of Capra hircus individuals uploaded in the Sequence 

Read Archive (SRA) database from the NCBI (https://www.ncbi.nlm.nih.gov/sra).  

In livestock, whole-genome sequencing data facilitate the analysis of the genomic basis 

of diseases and complex traits and genomic data are often used in animal breeding and 

genomic selection (Sharma et al., 2017). Variable sites on the genomes are used as genetic 

markers in association analyses with traits of interest, making it possible to identify causal 

variants or variants in high linkage disequilibrium with the causal variant for multiple 

phenotypes (Uffelmann et al., 2021). Variants highly associated with productive traits, 

including sustainability, resilience and disease resistance, can be used in the selection 

schemes of livestock species (Hayes et al., 2013).  

The most common sources of genomic variation are single nucleotide polymorphisms 

(SNPs), small insertions and deletions (INDELs), copy number variations (CNVs) and 

other structural variants (SVs). Single nucleotide polymorphisms, which are the most 

frequent genomic variants in all species, are substitutions of a single nucleotide by another 

one carrying a different nitrogenous base (Eichler, 2019). The effect of the SNP on 

biological function will depend on the genomic region where it is located. Synonymous 

SNPs, for instance, map to a protein-coding region but do not involve any change in 

amino acid sequence, so they are less likely to affect protein function than non-

synonymous substitutions, which always imply the replacement of an amino acid by 

another one (Eichler, 2019). In mammals, there is approximately one SNP every 300-

1000 bp on average (Aitken et al., 2004). In cattle, for instance, the frequency of SNPs is 

one every 700 bp in Bos taurus and every 300 bp in Bos indicus (The Bovine HapMap 

https://www.ncbi.nlm.nih.gov/sra
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Consortium 2009), meaning that they are widely distributed and well represented along 

the taurine and indicine genomes.  

1.3.1.2 Development of high-throughput genotyping 

technologies in goats and their practical applications. 

In order to make available a tool for high throughput genotyping in goats, Tosser-Klopp 

et al. (2014) designed a genotypic array that contains about 54,000 SNPs segregating in 

multiple breeds, evenly spaced along the genome, and covering all chromosomes. The 

identification of the SNPs was performed by obtaining whole-genome sequences from 97 

individuals from six breeds (Alpine, Boer, Creole, Katjang, Saanen and Savanna), and 

the selected SNPs were validated in a population of 285 individuals from 10 breeds. 

Currently, the chip is commercially available as GoatSNP50 Illumina BeadChip 

(http://snp.toulouse.inra.fr/~sigenae/50K_goat_snp_chip/index.html) and a new version 

containing 59K SNPs has been launched recently 

(http://www.goatgenome.org/projects.html). A new user-friendly database of goat 

genomic variation (GGVD, http://animal.nwsuaf.edu.cn/GoatVar) was created by Fu et 

al. (2021) by retrieving 41.4 million SNPs, 5.14 million indels and a large amount of 

selected or introgressed regions detected in a sample of 360 individuals comprising 

modern and ancient goats, wild ibex and bezoar. 

Amongst other things, the availability of high throughput SNP genotyping arrays makes 

it possible to carry out genome-wide association studies (GWAS) in order to detect 

quantitative trait loci (QTL) for phenotypes of interest (Sharma et al., 2015). In a GWAS, 

individuals from a population are phenotyped for a number of traits and also genotyped, 

either with an SNP array or by whole-genome sequencing, and then genotypic means are 

contrasted for each marker by using linear or logistic regression (this depends on the 

distribution of the studied trait) to investigate whether significant differences exist. To 

http://snp.toulouse.inra.fr/~sigenae/50K_goat_snp_chip/index.html
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ensure that the detected associations are not artifacts produced by confounding effects, 

the statistical model includes covariates like sex, age, farm, ancestry, and other factors 

that might contribute to phenotypic variation (Uffelmann et al., 2021). These analyses 

assume that the causal variant is physically close and linked to any of the genetic markers 

integrated into the genotyping platform (Bush and Moore, 2012). The study design of a 

GWAS analysis is explained in Figure 1.5. 

In goats, until April 2022, 128 QTL have been reported for traits of economic interest, 

such as udder morphology and milk composition, in the AnimalQTLdb 

(https://www.animalgenome.org/cgi-bin/QTLdb/), a curated QTL database for livestock 

species (Hu et al., 2022). Compared with other ruminant species such as sheep (4,207 

QTL) and cattle (192,925 QTL), few QTL have been detected in goats. GWAS for 

multiple phenotypes have been performed in goats during the last 5 years, including those 

related with milk yield and quality ( Mucha et al., 2018; Guan et al., 2020; Scholtens et 

al., 2020), reproduction (Talouarn et al., 2020), pigmentation (Nazari-Ghadikolaei et al., 

2018), growth ( Zhang et al., 2021; Moaeen-ud-Din et al., 2022) and morphology ( 

Rahmatalla et al., 2018; Luigi-Sierra et al., 2020; Guo et al., 2021; Zhang et al., 2022). A 

total of 857 genomic variants are described as significantly associated with 51 traits in 

the GWAS atlas (https://ngdc.cncb.ac.cn/gwas/). 

Figure 1.5. (A) Steps for conducting a genome-wide association analysis: (a) 

phenotyping and (b) genotyping of the target population, (c) quality control of the 

phenotypes and genomic markers, (d) if imputation from whole-genome sequence data if 

available, (e) application of statistical association models (if multiple groups or 

populations are analysed a meta-analysis can be applied joining all groups together, as in 

f), (g) replication of the analysis in other individuals from the same population to assess 

the reliability of the results obtained in the first analysis, (h) additional down-stream 

https://www.animalgenome.org/cgi-bin/QTLdb/
https://ngdc.cncb.ac.cn/gwas/
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analyses using external data to identify associated genes, metabolic pathways, etc. This 

figure has been adapted from Uffelmann et al. (2021). (B) Graphical explanation of the 

GWAS basis, which assumes that the causal variant is in high linkage disequilibrium with 

the significantly associated genotyped SNP. Image adapted from Bush and Moore, 

(2012). 

 

1.3.2 Transcriptomics 

The transcriptome is the total set of RNAs, including coding (mRNA) and non-coding 

(e.g. rRNA, tRNA, lncRNA, miRNA) RNAs expressed by a specific cell or tissue. The 

characterisation of the transcriptome by sequencing unveils the identities of genes 
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expressed in single cells or bulk tissues as well as their expression levels at a given time 

or condition (Kenny and McCarthy, 2017). High throughput transcriptomic analyses 

started with the development of microarrays (Schena et al., 1995). Nowadays, this 

technology has been replaced by the massive sequencing of RNAs through RNA-Seq 

(Conesa et al., 2016). The RNA-Seq procedure is based on the same principles and 

technological platforms used in DNA sequencing, but requires an additional process of 

retrotranscription of the RNA transcripts to cDNA before libraries are prepared as 

depicted in Figure 1.4 (Conesa et al., 2016). Once the RNA sequences are generated, 

they are usually stored in FASTQ files, and downstream bioinformatic analyses are 

implemented to map the sequencing reads to the reference genome and quantify the 

expression of genes and transcripts (Conesa et al., 2016).  

In general, pipelines to process and analyse RNA-Seq data comprise three different steps:  

1. Quality control of the raw reads: it is performed to evaluate sequence quality, 

checking for the presence of adapters (which need to be removed), depth, GC 

content, duplication levels, and artifacts, among others. Software packages like 

FastQC are used to perform the quality control of the sequencing data (Andrews, 

2010), and others like Trimmomatic and Cutadapt are employed to filter out low-

quality reads and remove adapters (Bolger et al., 2014; Martin, 2011).  

2. Read alignment of the trimmed reads: reads are mapped to the reference genome, 

if available, and an additional quality control step is performed to check for the 

percentage of reads mapping to the genome. From 70 to 90% of the reads are 

expected to be aligned to the reference genome in good-quality RNA-seq 

experiments (Conesa et al., 2016). There are multiple software available for read 

mapping, but some of the most popular are HISAT2 (Kim et al., 2019), STAR 

(Dobin et al., 2013) and BWA (Li and Durbin, 2009). When the reference genome 
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is unavailable or incomplete for the species under study, a de novo assembly 

process is performed. Software like Trinity (Grabherr et al., 2011), SPAdes 

(Bankevich et al., 2012), Oases (Schulz et al., 2012), SOAP-Trans (Xie et al., 

2014) and Bridger (Chang et al., 2015), are widely used for this task because of 

their excellent performances in the de novo reconstruction of transcripts based on 

short-reads (Hölzer and Marz, 2019).  

3. Transcript identification and quantification: After reads are aligned to the 

reference genome, the level of expression of each gene is measured by counting 

the number of reads mapping to it. Gene expression can be measured as raw read 

counts, which can be estimated by using software such as HTSeq (Anders et al., 

2015) and Featurecounts (Liao et al., 2014). An alternative approach is to correct 

raw read counts for different factors, including library size and feature length 

(Conesa et al., 2016), in order to obtain normalised metrics such as RPKM (reads 

per kilobase per million), FPKM (fragments per kilobase per million), TPM 

(transcripts per million), TMM (trimmed mean M-values) and CPM (counts per 

million). Importantly, the choice of one metric or another depends on the context: 

if the analysis aims to perform comparisons across samples for the same gene, 

correction for gene length is not necessary. However, for gene ranking based on 

gene expression this is absolutely required since longer genes harbour more reads 

than the shorter ones (Conesa et al., 2016). It is also relevant to emphasise that 

TPM and TMM have been described to preserve the biological signal more 

faithfully and have a better performance than other metrics, and they are more 

comparable between samples of different origins (Abrams et al., 2019). Several 

software are available to normalise sequencing data and estimate transcript 
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expression, i.e. StringTie (Pertea et al., 2015), Cufflinks (Trapnell et al., 2010), 

RSEM (Li and Dewey, 2011) and Kallisto (Bray et al., 2016).  

From the matrix of counts or normalised metrics different transcriptomic analyses can be 

performed, including the characterisation of expression patterns, identification of 

alternative splicing isoforms, identification of non-coding RNAs and differential 

expression analyses (Conesa et al., 2016).  

Differential expression analysis and the characterisation of gene expression have been 

used in the current thesis, so they will be further discussed. In the differential expression 

analysis, the transcriptomes of two or more groups of biological replicates (at least three 

per group) are sequenced to characterise gene expression levels. Subsequently, 

transcriptomes from different groups are compared to identify genes with statistically 

significant differences in terms of averaged (across replicates within groups) expression 

levels between groups (Conesa et al., 2016; Schurch et al., 2016). To perform this 

analysis, the quantification of the expression per gene or transcript is inferred by 

considering specific mathematical distributions e.g. the negative binomial distribution in 

the case of edgeR (Robinson et al., 2009) and DESeq2 (Love et al., 2014). Other software, 

such as SAMseq (Li and Tibshirani, 2013) use non-parametrical models to infer the 

distribution of gene expression from the experimental data, but such approach requires a 

large number of replicates (Anders and Huber, 2010; Soneson and Delorenzi, 2013; 

Conesa et al., 2016). Since differential expression analysis considers thousands of genes, 

statistical significance needs to be corrected for multiple testing by procedures, such as 

the false discovery rate method (Benjamini and Hochberg, 1995), aiming to reduce the 

occurrence of false positive results. The set of differentially expressed genes can be 

explored with tools like DAVID (Huang et al., 2009), enrichR (Chen et al., 2013) and 

Uniprot (Bateman, 2019), to annotate genes and to identify biological pathways that are 
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enriched in the list of differentially expressed genes. In Figure 1.6, we summarise the 

whole workflow, from sequencing to result analyses and data visualisation, associated 

with the analysis of RNA-seq data. 

Figure 1.6. RNA-seq workflow and analyses commonly performed from transcriptomic 

sequences. This figure was adapted from Conesa et al. (2016). 

 

1.3.2.1 Studies on the goat transcriptome. 

A mini-atlas of gene expression has been constructed in goats by sequencing the 

transcriptomes of 17 different tissues and three cell types in seven goats (Muriuki et al., 

2019). By doing so, 18,528 unique protein-coding genes expressed in at least one tissue 

were identified (Muriuki et al., 2019). A network clustering analysis based on the 

expression pattern of each sample showed that tissue is the main factor governing sample 

clustering. Moreover, this research reported a high transcriptional activity in neural 

tissues, i.e. brain cortex and cerebellum. Indeed 1,795 genes were exclusively expressed 

in these tissues and mainly associated with cognitive and neurotransmission functions 

(Muriuki et al., 2019). This study also showed a high number of genes with a restricted 
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single tissue expression e.g. myosin and transcription factors as well as genes that regulate 

muscle growth like MSTN, MYH1, MYL1, MYOG and MYOD1 were highly and 

specifically expressed in the muscle. Muriuki et al. (2019) also described the expression 

patterns of genes that are assumed to be important in the determinism of productive traits. 

For instance, the DGAT1 gene, which strongly influences milk fat content in goats (Martin 

et al., 2017), displays its highest expression levels in the colon and liver. Muriuki et al. 

(2019) also contrasted the expression of genes in alveolar macrophages of the udder 

exposed to bacterial lipopolysaccharide in sheep and goats. They found similar patterns 

of gene activation in both species, with high expression of genes involved in immune 

functions such as interleukins (i.e. IL34, IL1RN, IL33, IL1B) and cytokines (CCDC80).  

Besides the mini-atlas constructed by Muriuki et al. (2019), several tissues related with 

traits of economic interest have been analysed with transcriptomic tools in goats. For 

instance, Cremonesi et al. (2012) detected the upregulation of mRNAs involved in the 

immune and inflammatory response (NFKB1, BASP1, BATF3 and TNFAIP6) and innate 

response to pathogens (PLEK) when sequencing the RNA from mammary tissue exposed 

to Staphylococcus aureus infection. With regard to milk production, the transcriptomic 

profiling of the goat mammary gland at different time points of the productive cycle 

evidenced a significant mRNA upregulation (in lactating goats) of genes involved in fatty 

acid and lipid synthesis and transport, including those related with the PPAR signalling 

pathway, e.g. FASN, ACACA, SCD, FAB3 and 4, GPAT2 and 4, LPL (Guan et al., 2020; 

Li et al., 2020). In lactating goats, Guan et al. (2020) also reported an increased mRNA 

expression of genes encoding caseins, the main proteins of milk, and of α-lactalbumin 

which is essential for lactose synthesis. In contrast, the ceasing of lactation entailed the 

upregulation of several genes involved in apoptosis and tissue remodelling of the 

mammary gland (Guan et al., 2020).  
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1.3.3 Epigenomics. 

This discipline is devoted to the characterisation of the factors that regulate chromatin 

remodelling and gene expression without altering the DNA sequence. Epigenetic changes 

are commonly produced by DNA methylation (usually in CpG islands located in promoter 

regions) and also by post-translational modifications (acetylation, phosphorylation, 

methylation etc.) of histones that result in modifications of chromatin condensation and 

the accessibility of it to transcription factors, as depicted in Figure 1.7 ( Jaenisch and 

Bird, 2003; Agarwal et al., 2020). Non-coding RNAs are also important mediators of 

epigenetic changes (Kumar et al., 2020). The whole set of epigenetic marks present in a 

specific genome are called “epigenome” (Jaenisch and Bird, 2003). Epigenetic 

modifications play an essential role in gene expression regulation, switching “in” and 

“off” gene transcription (Agarwal et al., 2020). For instance, DNA methylation usually 

has a repressive effect on gene expression while acetylation stimulates it (Agarwal et al., 

2020). Epigenetic changes probably account for part of the “missing heritability” reported 

for complex phenotypic traits, as chromatin modifications and methylation patterns might 

display intergenerational transmission ( Trerotola et al., 2015; Khatib, 2021). Nowadays, 

several methods have been developed to analyse the epigenome of any organism.  

For instance, methylation can be investigated by treating DNA with sodium bisulfite, 

which transforms unmethylated cytosines into uracils (recognised as thymines in 

subsequent PCR amplification and sequencing stages) while 5-methylcytosine remains 

unaffected by such treatment (Li and Tollefsbol, 2011). Enzymatic methyl sequencing 

(EM-seq), which is based on the oxidation of methylated cytosines to protect them from 

deamination and the  subsequent use of APOBEC which deaminates non-modified, 
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cytosines, is a powerful alternative to bisulfite sequencing because such enzymatic 

treatment does not affect the integrity of the DNA (Vaisvila et al., 2021). 

Figure 1.7. Epigenetic mechanisms and variations on the DNA, comprising histone 

modifications and DNA methylation. Figure obtained from 

http://commonfund.nih.gov/epigenomics/. 

 

Histone modifications can be analysed using chromatin immunoprecipitation (ChIP-seq). 

This method uses an antibody that targets a specific histone modification or a DNA-

binding protein site (Park, 2009). In brief, cells are treated with formaldehyde and 

chromatin is sheared into fragments from 200 to 600 bp. Subsequently, an antibody 

specific to the protein of interest is added to immunoprecipitate the DNA-protein complex 

(Park, 2009). Finally, libraries are prepared from the immunoprecipitated DNA and fully 

sequenced (Park, 2009). 

The landscape of chromatin accessibility can be explored with ATAC-Seq, which stands 

for “assay for transposase accessible chromatin sequencing”. In this method, a 

http://commonfund.nih.gov/epigenomics/
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hyperactive transposase 5 (Tn5) that cuts and ligates adapters to regions of increased 

chromatin accessibility is used (Buenrostro et al., 2015). High-throughput sequencing of 

these fragments is subsequently performed using next-generation sequencing techniques. 

One of the main advantages of ATAC-Seq is that even a low input sample is, in principle, 

enough to generate a successful assay (Buenrostro et al., 2015).  

The bioinformatic pipelines to analyse methylation, CHIP-Seq and ATAC-seq data are 

similar to those reported for whole-genome sequencing and RNA-seq. In brief, reads are 

aligned to the reference genome using algorithms like BWA (Li and Durbin 2009, 2010), 

and chemically modified or accessible sites are recognised along the genome with specific 

software. For methylation, Bismark (Krueger and Andrews, 2011) and Methyldackel 

(https://github.com/dpryan79/MethylDackel) are commonly used, while for ATAC-seq 

MACS2 (Gaspar, 2018) and Genrich (https://github.com/jsh58/Genrich) have been 

widely employed. Once the methylation, histone modification or chromatin accessibility 

patterns are determined, edgeR (Robinson et al., 2009) and DESeq2 (Love et al., 2014) 

can be used to identify genomic regions displaying differential methylation, accessibility 

or histone modification patterns. 

1.3.3.1 Insights about the goat epigenome. 

The epigenome of goats and other species has been described for multiple tissues, and, in 

the framework of projects like FAANG (Clark et al., 2020), there is a continuous effort 

to generate new insights about epigenetic regulation in domestic animals. The analysis of 

transcriptome and chromatin accessibility of 4 tissues in 4 species (chicken, pig, cattle 

and goat) revealed a correlation between chromatin accessibility and gene expression, 

and made it possible to elucidate complex mechanisms regulating gene expression 

(Foissac et al., 2019). Several of these regulatory processes were conserved among the 

https://github.com/dpryan79/MethylDackel
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four domestic species under study, evidencing the existence of shared selection pressures 

over regulatory elements present in these four genomes. In goats, methylation patterns 

associated with phenotypes, like hair morphogenesis, female reproduction and hormonal 

cycles as well as adaptation to climate with low and high temperatures, have been 

described (Wang et al., 2020; Xiao et al., 2020; Denoyelle et al., 2021; Kang et al., 2022). 

In cattle, studies have reported methylation patterns associated with lactation and milk 

production, and changes of these patterns during different phases of the lactation have 

been characterised in depth (Singh et al., 2012; Osorio et al., 2016). Information about 

methylation and chromatin accessibility related with milk synthesis in the mammary 

gland are not yet available in goats, despite the fact that they could provide valuable clues 

about the genetic regulation of lactation. 

1.4 THE INHERITANCE OF DAIRY AND MORPHOLOGY TRAITS IN 

GOATS . 

As commented in section 1.1, goat breeding is an important component of dairy 

production. Most traits of economic interest are related with milk production and 

morphology (in terms of dairyness and longevity) and all of them are amenable to be 

modified by selection because they have an additive genetic component (Zonaed Siddiki 

et al., 2020). 

1.4.1 Genetic parameters of morphological and milk traits 

in goats 

In dairy goats, moderate heritabilities have been estimated for milk yield and milk 

composition traits, with values ranging from 0.20 to 0.69 (Table 1.1). In contrast, the 
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heritabilities of morphological traits in goats are quite variable (Table 1.1), with figures 

that go from 0.02 for feet and hock traits to 0.52 for udder morphology traits ( Manfredi 

et al., 2001; Carillier et al., 2014; McLaren et al., 2016).  

Miranda et al. (2019) estimated genetic parameters for peak milk yield, milk yield and 

persistency of the lactation in a population of 122,883 Murciano-Granadina goats. 

Different models were adjusted (i.e. uni-, bi- and multi-trait), and all of them evidenced 

the existence of low levels of heritability i.e. from 0.005 for lactation persistency to 0.015 

for peak milk yield (Miranda et al., 2019). These results would indicate that the additive 

genetic basis of these traits is weak, maybe because the environmental component is 

important. In contrast, morphological traits displayed heritabilities that go from 0.12 for 

the fore udder attachment trait to 0.28 for the medial suspensory ligament of the udder 

trait (Gómez-Carpio et al., 2012). By analysing the production of 4,967 goats using single 

traits models, Analla et al. (1996) reported heritabilities of 0.18, 0.16 and 0.25, for milk 

yield, fat and protein content in the Murciano-granadina breed, respectively. Many of 

these traits display moderate to high genetic correlations between each other, implying 

the existence of a common genetic background with pleiotropic effects (Falconer and 

Mackay, 1989). In Murciano-Granadina goats, milk yield and composition traits are 

negatively correlated i.e Analla et al. (1996) reported genetic correlations of rg = –0.89 

(milk yield vs fat content) and –0.65 (milk yield vs protein content), while the rg between 

milk fat and protein contents was 0.93 (Analla et al., 1996). Udder morphology in goats 

shows some degree of correlation with milk production and composition (Rupp et al., 

2011). In Saanen and Alpine goats, udder floor position displays a negative genetic 

correlation with somatic cell score (rg of 0.24 and -0.19, respectively) as reported by Rupp 

et al. (2011). In the same study, Rupp et al. (2011) described moderate genetic 

correlations between somatic cell scores and teat length, width and shape (rg of 0.29, 0.34 
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and –0.27, respectively). Morphological traits are also relevant for longevity, a trait of 

increasing importance in goat production. For instance, Castañeda-Bustos et al. (2017) 

detected moderate correlations between rump width and udder morphology, which 

influences productive life duration, highlighting the importance of using these traits as 

selection criteria.  

1.4.2 Understanding the genomic basis of milk production 

and morphology traits in goats.  

The genomic basis of dairy traits has been explored in goats by using multiple approaches 

to understand the molecular events that determine such phenotypes as well as to detect 

genetic variants with significant effects on traits of economic interest. In the next two 

sections, we will summarise the main findings reported for goats in this field. 

1.4.2.1 Genomic basis of milk yield and milk composition in 

goats. 

Milk composition traits are essential for dairy goat production as milk is mainly devoted 

to the manufacturing of cheese. In the cosmopolitan breeds Alpine and Saanen, a QTL on 

a goat chromosome (CHI) 6 region which coincides with the casein gene cluster (CHI 

6:82–86 Mb) has been reported to have strong effects on milk protein content (Martin et 

al., 2017; Tilahun et al., 2020). The same association was described by Guan et al. (2020) 

in Murciano-Granadina goats (with effects on both protein and dry matter contents), 

evidencing that variability in the casein genes is one of the most important genetic 

determinants of milk composition in goats.  
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Table 1.1. Heritabilities (h2) estimated in Alpine and/or Saanen dairy breeds for milk and 

morphological traits.  

Trait h2 Population N 

individuals 

Reference 

Milk yield 0.26 Alpine 32,256 Arnal et al. 2019 

0.31 Alpine ~1.5 M Carillier et al. 2014 

0.34 Alpine 161,121 Rupp et al. 2011 

0.29 Saanen 30,186 Arnal et al. 2019 

0.26 Saanen ~1.1 M Carillier et al. 2014 

0.34 Saanen 121,411 Rupp et al. 2011 

Protein 

Yield 

0.25 Alpine 32,256 Arnal et al. 2019 

0.31 Alpine ~1.5 M Carillier et al. 2014 

0.61 Alpine 161,121 Rupp et al. 2011 

0.3 Saanen 30,186 Arnal et al. 2019 

0.25 Saanen ~1.1 M Carillier et al. 2014 

0.3 Saanen 121,411 Rupp et al. 2011 

Fat yield 0.26 Alpine 32,256 Arnal et al. 2019 

0.28 Alpine ~1.5 M Carillier et al. 2014 

0.35 Alpine 161,121 Rupp et al. 2011 

0.33 Saanen 30,186 Arnal et al. 2019 

0.25 Saanen ~1.1 M Carillier et al. 2014 

0.6 Saanen 121,411 Rupp et al. 2011 

Protein 

content 

0.66 Alpine 32,256 Arnal et al. 2019 

0.67 Alpine 161,121 Rupp et al. 2011 

0.62 Saanen 30,186 Arnal et al. 2019 

0.62 Saanen 121,411 Rupp et al. 2011 

Fat content 0.65 Alpine 32,256 Arnal et al. 2019 

0.31 Alpine 161,121 Rupp et al. 2011 

0.6 Saanen 30,186 Arnal et al. 2019 

0.32 Saanen 121,411 Rupp et al. 2011 

Somatic 

cell score 

0.2 Alpine ~1.5 M Carillier et al. 2014 

0.24 Alpine 161,121 Rupp et al. 2011 

0.16 Saanen ~1.1 M Carillier et al. 2014 

0.2 Saanen 121,411 Rupp et al. 2011 

Udder 

shape 

0.4 Alpine ~1.5 M Carillier et al. 2014 

0.47 Saanen ~1.1 M Carillier et al. 2014 

Fore udder 0.44 Alpine ~1.5 M Carillier et al. 2014 

0.42 Saanen ~1.1 M Carillier et al. 2014 

Rear udder 

attachment 

0.47 Alpine ~1.5 M Carillier et al. 2014 

0.52 Saanen ~1.1 M Carillier et al. 2014 

Teat angle 0.42 Alpine ~1.5 M Carillier et al. 2014 

0.45 Saanen ~1.1 M Carillier et al. 2014 

Before the advent of GWAS, very few QTL had been identified in goats (due to a lack of 

well characterized microsatellite markers) but key candidate gene studies, mostly focused 
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on the casein loci, had been carried out (reviewed in Amills et al., 2012). The four casein 

genes, i.e. casein αS1 (CSN1S1), casein αS2 (CSN1S2), casein β (CSN2) and casein κ  

(CSN3), map to a 250 kb region on caprine chromosome 6 and they encode about 80% of 

the proteins in milk (Martin et al., 2002). Since caseins are insoluble, they form multi-

molecular aggregates, called micelles, that might precipitate at certain conditions of 

temperature and acidity (Jenness, 1980). In Saanen and Alpine goats, SNPs on the casein 

cluster explain 39.1% of the variance in protein content, out of which 24 to 38% is 

attributed to the polymorphism of the CSN1S1 gene (Martin et al., 2017). Different alleles 

have been reported for each casein gene based on genomic variations and their effect on 

protein content in milk (Marletta et al., 2007). The alleles of the goat CSN1S1 gene are 

classified in four categories according to their levels of CSN1S1 synthesis (Moioli et al., 

2007): 

• High content alleles: A, B1, B2, B3, B4, C, H, L, M) producing almost 3.5 g/L of 

CSN1S1 per allele. 

• Medium content alleles: E and I, 1.1 g/L of CSN1S1 per allele. 

• Low content alleles: F and G, 0.45 g/L of CSN1S1 per allele. 

• Null content alleles: O1, O2 and N, 0 g/L of CSN1S1 per allele. 

In Murciano-Granadina goats, Caravaca et al. (2008) described that individuals carrying 

the CSN1S1 BB genotype show increased levels of CSN1S1 in milk  (8.50 ± 0.60 g/l) 

when compared to other genotypes. In a subsequent study, Caravaca et al. (2011) 

demonstrated that the curdling rate of the milk from EE goats was significantly higher 

than that of BB individuals. Moreover, cheese yield was not significantly different in BB, 

EE and EF goats, a finding that does not match what has been published in Alpine and 

Saanen goats in which the CSN1S1 genotype has strong effects on milk and fat protein 
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content, technological parameters and cheese yield and organoleptic properties 

(Grosclaude et al., 1987; Barbieri et al., 1995; Manfredi et al., 1995; revised in Trujillo et 

al., 1998). Another relevant finding of the study of Caravaca et al. (2011) was that the 

CSN3 genotype was significantly associated with the rennet coagulation time but not with 

cheese yield. Currently, the CSN1S1 and CSN3 genotypes are taken into account in the 

selection of Murciano-Granadina goats, a procedure that makes a lot of sense in the light 

of the GWAS results presented by Guan et al. (2020) and also in this thesis. 

Besides caseins, the whey proteins lactalbumin α (LALBA) and lactoglobulin β (BLG) are 

important components of the milk proteome (Selvaggi et al., 2014). The two genes 

encoding these proteins have been much less characterised than the casein loci and a few 

polymorphisms have been reported, the majority located in non-coding regions ( Pena et 

al., 2000; Cosenza et al., 2003; Ballester et al., 2005; Zidi et al., 2014; Dettori et al., 2015; 

Cardona et al., 2016). Interestingly, Cardona et al. (2016) described higher protein and 

fat contents in milk from goats with AA BLG genotypes than in that from individuals with 

AB and BB genotypes across different stages of lactation. 

Regarding fat content, the DGAT1 gene (CHI 14:81,329,989 – 81,338,811 Mb), which 

plays a key role in the synthesis of triglycerides, contains polymorphisms associated with 

milk fat content. More specifically, two mutations mapping to this gene (p.Arg251Leu 

and p.Arg396Trp) cause a decrease in milk fat content (Martin et al. 2017). Additionally, 

small insertions and deletions in non-coding regions of the DGAT1 gene are associated 

with changes in the fat composition of Xinong Saanen and Guanzhong goats (An et al., 

2012).  

In terms of milk yield, Scholtens et al. (2020) reported a QTL on CHI 19:26-27 Mb with 

effects on milk protein, fat and somatic cell content in New Zealand Alpine, Saanen, 
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Nubian, Toggenburg and crossbreed goats. This genomic region has similar effects on 

milk traits in French Alpine and Saanen goats (Martin et al. 2017). Notably, this locus 

has also been associated with longevity and morphology traits in French and New Zealand 

goat populations (Martin et al. 2018; Jiang et al. 2022), indicating a pleiotropic effect of 

the QTL on milk production and longevity, two traits that are correlated (Castañeda-

Bustos et al. 2014).  

1.4.2.2 Genomic basis of morphology traits in goats.  

Considering the correlations between the morphology of the udder, feet and body capacity 

with milk production and longevity, multiple studies have focused on identifying the 

genomic basis of the variation of these traits. As commented in the previous section, in 

French and New Zealand goats a QTL with pleiotropic effects on CHI 19:24-29 Mb 

affects udder morphology traits, i.e. fore and rear udder attachment, udder depth, udder 

floor position  (Martin et al. 2018; Jiang et al. 2022). Martin et al. (2018) reported a certain 

degree of breed-specificity of this QTL, as significant effects were found in Saanen 

individuals but not in the Alpine ones. In a population of mixed-breed dairy goats 

(Saanen×Toggenburg×Alpine), significant associations between this chromosome 19 

region and udder attachment, udder depth and front legs were detected (Mucha et al., 

2018). This chromosome 19 region has a high density of genes per Mb (22.5 genes/Mb), 

making it challenging to identify potential candidate genes. To address this issue, Jiang 

et al. (2022) obtained whole-genome sequences from 302 individuals, including 48 from 

the GWAS analysis, and these sequences were screened to identify SNPs in high linkage 

disequilibrium (R2 > 0.8) with the significant SNPs identified in the GWAS. They found 

two candidate non-synonymous SNPs mapping to the proteasome 20S subunit β6 

(PSMB6) and sex hormone binding globulin (SHBG), and one in-frame deletion the 

SUMO specific peptidase 3 (SENP3) gene. The SHBG gene is a steroid transporter that 
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regulates the bioavailability of these to target cells and mediates the uptake of steroids 

into cells, stimulating mitogenesis and cellular division in the mammary gland (Denholm 

et al., 2018). Besides, the PSMB6 locus is associated with human lipid metabolism (Klarin 

et al., 2018), while SENP3 encodes a SUMO-specific protease involved in ribosome 

biogenesis (Finkbeiner et al., 2011).  

In general, there is a lack of knowledge about the molecular basis of morphological traits 

of goats and other species. The inherent complexity of morphological traits, which are 

determined by multiple pathways related with highly heterogeneous biological and 

developmental processes, poses a considerable challenge to elucidate the molecular basis 

of morphology. Interestingly, the presence of wattles in goats has been associated with 

the FMN1/GREM1 region on chromosome 10 (Reber et al., 2015). 

1.5 THE MICROBIOME AS AN IMPORTANT DETERMINANT OF 

CHEESE TECHNOLOGICAL AN ORGANOLEPTIC PROPERTIES .   

As previously said, goat milk is mostly devoted to the elaboration of cheese, and, in this 

context, a high proportion of solids in milk is desirable. Besides the genetic background 

of goats, the technological and organoleptic properties of cheese are strongly determined 

by its microbiome (Yeluri Jonnala et al., 2018). A complex network of interactions 

between enzymes, microorganisms and milk constituents, i.e. proteins, lipids, and acids, 

induces multiple physicochemical changes and results in the production of volatile and 

non-volatile compounds that determine the aroma and flavour of cheese (Fox et al., 1995). 

Certain bacterial strains are used as primary starters in cheesemaking, particularly lactic-

acid bacteria (LAB), including Lactococcus lactis, Leuconostoc sp, and Streptococcus 

thermophilus, amongst others (Fox et al., 2017; Parente et al., 2017). The main function 
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of starters is the production of lactic acid from lactose during the first stages of 

cheesemaking. This results in the acidification of milk and the induction of proteolysis 

and lipolysis events as well as the triggering of casein precipitation to produce the curd 

(Fox et al., 2017; Parente et al., 2017). The lowering of the milk pH also prevents the 

growth of pathogens like Listeria (Coelho et al., 2014). The selection of the microbial 

strain to be used as starter is determined by the type of cheese and the manufacturing 

technique employed in its elaboration (Parente et al., 2017). Cured and hard cheeses 

commonly use Streptococcus, which is a thermophilic strain and works at high 

temperatures, while in the making of fresh cheese bacteria from the Lactococcus and 

Lactobacillus genera, that are activated at lower temperatures, are commonly used 

(Parente et al., 2017). Apart from the starter cultures, other LAB and non-LAB genera are 

added to the milk or to the curd to induce the production of specific flavours, textures and 

aromas, including Hafnia alvei, several strains of Lactobacillus, Brevibacterium, 

Brachybacterium, and many others (Fox et al., 2017). Besides, bacteria present in milk 

(especially if unpasteurised) or in the surfaces of materials in contact with milk (e.g. the 

milking machine, milk receivers and pipelines, the bulk  tank, equipments in the dairy 

plant etc.) can contaminate the milk or the curd anytime (Fox et al., 2017). In Figure 1.8 

the sources of microbes at different steps of cheesemaking are displayed. The growth of 

the microorganisms in cheese depends to a high degree on water activity, salt 

concentration, pH, temperature and oxidation-reduction potential, which are conditioned 

by the manufacturing techniques and the type of cheese (Fox et al., 2017). 
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Figure 1.8. Sources of microbes at different stages of the cheese manufacturing process.

 

For the cheesemaking, microbiological information is useful to optimise technological 

processes and to ensure the safety and shelf-life of the products (Yeluri Jonnala et al., 

2018). Traditionally, the identification of microorganisms in food has been performed 

through the use of appropriate culture media, immunoassays and PCR (Beresford et al., 

2001). These techniques have some limitations. For instance, culture media cannot 

identify unculturable bacteria, PCR requires the design of specific primers for each taxon 

to be detected, and immunoassays are often taxa-specific (Miller et al., 2013). Nowadays, 

with the development of high throughput sequencing techniques, it is possible to 

characterise with unprecedented resolution the whole genome, transcriptome or specific 

marker genes of any microorganism present in cheese (Yeluri Jonnala et al., 2018). In this 

thesis, we will focus on the sequencing of marker genes to provide a first picture about 

the composition of the cheese microbiome in goats.  

1.5.1 Marker gene16S rRNA for phylogenetical analyses.  

Marker genes contain highly variable regions, flanked by conserved regions, that vary 

across species and that can be used to identify the taxonomy of the sequenced individuals 

(Knight et al., 2018). In bacteria and archaea, the most widely used marker locus for 

taxonomy assignation is the 16S rRNA gene, which encodes the RNA component of the 

30S subunit of the prokaryote ribosome (Chakravorty et al., 2007). As depicted in Figure 
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1.9, this gene contains nine hypervariable regions, with a length between 30 and 100 bp 

(Chakravorty et al., 2007). Each region of the 16S rRNA gene has a different resolution 

in identifying taxa levels, being V2 and V3 the most effective ones in identifying most 

bacteria up to the genus level (Chakravorty et al., 2007) while V4 displays a very good 

performance for clustering of communities using short reads (Caporaso et al., 2011). 

Figure 1.9. Alignment of hyper-variable regions in the 16S rRNA gene from different 

microorganisms. 

 

The analysis of bacterial marker genes requires (1) The extraction of the bacterial DNA 

from the samples, (2) The partial amplification of the 16S rRNA gene using specific 

primers that hybridise to conserved regions and amplify the targeted hypervariable 

regions, (3) The preparation of the libraries by attaching sequencing adapters to 

amplicons, and (4) The sequencing of the libraries with high throughput technologies 

(Knight et al., 2018). The amplification step of this methodology allows for detecting the 

contamination of samples with host DNA and bacterial DNA from the environment 

(Knight et al., 2018). Some of the most used sequencing platforms for metagenomics are 

Illumina MiSeq, Ion Torrent PGM and Roche 454 GS FLX+ (Allali et al., 2017). 

The bioinformatics analyses of the sequence data require a quality control step to remove 

adapters and sequencing errors (Knight et al., 2018). Subsequently, sequences are 

clustered into features, like operational taxonomic units (OTUs) or amplicon sequence 
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variants (ASVs), depending on the algorithm used. Algorithms like Deblur (Amir et al., 

2017) and DADA2 (Callahan et al., 2016) are commonly used for this purpose, as they 

assign sequences to exact features using error profiles in order to discriminate closely 

related but distinct taxa (Knight et al., 2018). Subsequently, taxonomy is assigned to the 

features using machine learning classifier processes and databases with reference 

sequences and taxonomy. Popular software to perform these analyses are QIIME (Bolyen 

et al., 2019) and Mothur (Schloss et al., 2009).  

Besides microbiome composition, the microbial diversity of each sampled environment 

can be studied. Common methods are alpha diversity, which measures the diversity within 

an environment, and beta diversity which measures the changes in taxa diversity across 

environments (Whittaker, 1972). Alpha diversity can be expressed in terms of richness, 

the total number of observed species in a sample like Chao1 (Chao, 1984), evenness, 

which combines richness and species abundances (Shannon, 1948) and measures that 

include phylogenetic distances across species (Faith, 1992). On the other hand, 

dissimilarities across samples (beta diversity) are commonly measured using Bray-Curtis 

metrics for compositional data (Bray and Curtis, 1957) and metrics that include 

phylogenetic distances, like Unifrac (Lozupone and Knight, 2005). 

1.5.2 Sequencing of the cheese microbiome.  

A considerable effort has been made to sequence the microbiomes of a wide variety of 

cheeses, mainly in cattle (Yeluri Jonnala et al., 2018). As said LAB are overwhelmingly 

predominant in the majority of cheeses, but high-depth sequencing has made it possible 

to detect many bacterial genera that were overlooked in culture-based studies (e.g. 

Dehalobacter, Desulfohalobium, Halomonas, Thermohalobacter, Haloquadratum, 

Prevotella, Faecalibacterium etc.), thus paving the way to characterise their effects, if 
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any, on cheese quality. The analysis of cheeses has also facilitated the identification of 

minority halotolerant or halophilic genera (e.g. Marinilactibacillus, Idiomarina, 

Halomonas, Pseudoalteromona, Oceanobacillus etc.) that are probably incorporated to 

the cheese during the brining process ( Yeluri Jonnala et al., 2018; Kothe et al., 2021). 

The presence of contaminating bacteria, such as Pseudomonas, has also been detected in 

cheese samples and could be explained, in some instances, by the ability of psychrophilic 

genera to grow at cold temperatures (Ribeiro Júnior et al., 2018). The detection of 

contaminating bacteria is of outmost importance because they can cause the spoilage of 

cheese or even food poisoning due to the ingestion of metabolites such as biogenic amines 

(Yeluri Jonnala et al., 2018). There are also evidences that the composition of the 

microbiome is affected by spatial factors, with the rind microbiome being more diverse 

than the core one due to its decreased acidity, augmented oxygen availability and close 

interaction with the environment (Montel et al., 2014). 

Few studies have analysed the microbiomes of cheeses of caprine origin. In a meta-

analysis of 55 artisanal cheeses, comprising cheeses from cow, goat and sheep origins 

and 107 publicly available data, Walsh et al. (2020) analysed the whole metagenome 

sequences and the volatilome of cheese samples. They reported a high microbiome 

variability across cheese types and found relations between the microbiome and the 

volatile profile. However, the microbiome of goat cheeses was not the main focus of such 

research. Salazar et al. (2018) characterised the microbiota of pasteurised and 

unpasteurised Gouda cheeses from cattle and goats. They described a higher microbiome 

diversity in goat pasteurised cheeses than in the unpasteurised cow ones. Predominance 

of bacteria from the Bacillacea family was reported in goat cheeses (~50% of the total 

abundance). Besides, Staphylococcus microorganisms were found in high abundance (5–

25%) in goat cheese samples (Walsh et al., 2020). Penland et al. (2021) characterised the 
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microbiota of Pelardon goat cheese and reported substantial changes during the ripening 

phase, and they related such changes with the development of the organoleptic properties 

of cheese. Noteworthy, Pelardon cheese harboured Lactococcus lactis, associated with 

cheese acidification, L. mesenteroides and geotrichum candidum associated with amino 

acid catabolism, and L. paracasei, Enterococcus faecalis and Penicillium commune, that 

were highly abundant during ripening and might have an environmental origin (Penland 

et al., 2021). Despite these initial efforts, there is a lot of work to do in the characterisation 

of the microbiome of goat cheeses. In this regard, implementing meta-transcriptomics and 

meta-genomics approaches to the microbiological analysis of caprine cheese might help 

to better understand the dynamics of microorganisms in diverse cheese environments and 

their impact on cheese features and properties.  

1.6 FACTORS INFLUENCING BIOLOGICAL VIABILITY IN GOATS 

AND OTHER LIVESTOCK . 

Artificial selection applied within livestock breeding programs traditionally has been 

focused on increasing productive traits, not devoting so much attention to traits associated 

with welfare, adaptation, viability, health and disease resistance, among others (Goddard 

2009). Often, the intensity of selection leads to the usage, as sires and dams, of few 

individuals with superior phenotypic performance. Nowadays, livestock breeding 

programs are giving high importance to functional traits, including those related to health, 

longevity, and survival, as a strategy to make animal production more sustainable. Indeed, 

fitness and viability traits have a high impact on reproductive performance and, in 

consequence, on the economic profit of farms (Mellado et al., 2006). Viability traits are 

affected by the genetics of animals as well as by non-genetic determinants including 

nutrition, health and management amongst others. 
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1.6.1 The genetics of viability traits. 

Viability traits reflect the reproductive and survival rate of individuals (Goddard, 2009). 

Mucha et al. (2022) retrieved data from different studies reporting genetic parameters of 

viability traits in sheep and goats. Moderate heritabilities were estimated in both species 

with regard to somatic cell score (SCS), with pooled heritabilities of 0.21 ± 0.01 in goats 

and 0.13 ± 0.02 in sheep. The increment of SCS is an indicator of the presence of mastitis 

and it has a negative impact on the welfare of the animals while causing economic losses 

(Pérez-Méndez et al., 2020). The abundance of somatic cells is highly correlated with the 

functional longevity of dairy animals and with culling in cases of high SCS (Sewalem et 

al., 2006). Negative correlations between SCS and milk composition (-0.19 ± 0.01 for fat 

content and -0.06 ± 0.05 for protein content) were reported in dairy goats. Other traits 

involved in longevity and resilience are fecal egg count (h2 = 0.07 ± 0.01 in goats and h2 

= 0.29 ± 0.14 in sheep), parasitism antibodies (h2 = 0.18 ± 0.07 in sheep) and parasitism 

immunoglobulins (h2 = 0.36 ± 0.06 in sheep). These heritabilities were estimated in the 

meta-analysis performed by Mucha et al. (2022), which had access to a higher amount of 

data from sheep than from goats and considered mainly cosmopolitan dairy goat breeds. 

In Creole goats from Guadeloupe, heritabilities for other viability and resilience traits 

have been reported, i.e. h2 of 0.13 ± 0.05 for the packed cell volume (proportion of red 

cells in blood, a proxy to anaemia produced by haemotrophics parasites) and of 0.18 ± 

0.04 for faecal egg count (Gunia et al., 2011). With regard to reproductive traits, Creole 

goats displayed heritabilities for litter size of 0.11 ± 0.02 (Gunia et al., 2011). The age at 

kidding has a reported h2 of 0.08 ± 0.02, and this trait displays negative genetic 

correlations with milk yield in cosmopolitan dairy goats (Desire et al., 2018). Other traits 

analysed by Desire et al. (2018) are reproduction out of season (h2 = 0.11 ± 0.02) and 

pseudopregnancy (h2 = 0.11 ± 0.02).   
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1.6.2 The measurement of inbreeding and inbreeding 

depression. 

Inbreeding, defined as the mating of close relatives, creates an excess of homozygosity in 

the offspring population that can have adverse consequences on any trait, but mostly on 

phenotypes related with reproduction and viability (Agarwal and Whitlock, 2012). The 

increase of inbreeding augments the frequency, in the population, of genotypes 

homozygous for deleterious alleles that segregate at low frequencies (Charlesworth and 

Willis, 2009). Deleterious mutations can disrupt gene function, thus causing diseases or 

even the death of the individual at any developmental stage (Henn et al., 2015). In the 

case of haploinsufficient genes, heterozygous individuals are likely to suffer common or 

complex diseases related with the function of the affected gene (Henn et al., 2015). 

Breeding programs have increased the selection pressure over traits of economic interest, 

like milk traits in dairy animals. Dairy cattle herds subjected to artificial selection display 

an increment of inbreeding across time, as shown in reports made by the Canadian Dairy 

Network (CDN, https://lactanet.ca/en/inbreeding-update-august-2021/). 

Artificial selection also influences the genomic patterns of homozygosity (e.g. frequency 

of regions of homozygosity and their genomic location), as Kim et al. (2013) reported 

when comparing selected and unselected cattle.  

The availability of high throughput genotyping and sequencing methods allows the 

characterization of homozygosity patterns along the genome and the estimation of 

inbreeding coefficients using SNP data independently of the availability of pedigree data 

(Ferenčaković et al., 2013). The inbreeding coefficient can be defined as the probability 

that two randomly selected alleles at a given locus are identical by descent or IBD 

(Wright, 1922). Traditionally, inbreeding coefficients were estimated from pedigree data 

https://lactanet.ca/en/inbreeding-update-august-2021/
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(FPED), thus requiring reliable records and a genealogical depth including as many 

ancestral generations as possible to accurately infer coefficients (Keller et al., 2011). 

Notably, pedigree-based methods assume no relationship between individuals of the base 

population and do not consider the effects of selection and demographic events that affect 

population diversity (Keller et al., 2011). Molecular methods, in contrast, can estimate 

inbreeding coefficients on a SNP by SNP basis, measured from deviations from Hardy-

Weinberg proportions, i.e. FYAN (Li and Horvitz, 1953) or from the diagonal elements of 

the kinship matrix estimated from genomic markers, i.e. FVR, FL&H and FNEJ (Nejati-

Javaremi et al., 1997; VanRaden, 2008; Yang et al., 2011). Runs of homozygosity (ROH) 

are genomic regions with homozygous genotypes in all nucleotide positions (Gibson et 

al., 2006). Thus, molecular inbreeding coefficients can be also estimated by measuring 

the fraction of the genome covered by ROH, i.e. FROH (McQuillan et al., 2008).  The 

relationship between FROH and FPED has been analysed in studies carried out in different 

domestic species, finding a moderate to high correlation (Peripolli et al., 2017). Currently, 

the FROH coefficient is frequently used as an indicator of inbreeding. It is considered a 

more accurate tool than the FPED (Keller et al., 2011), and this is because FROH has the 

advantage of not being affected by pedigree depth. However, its magnitude can be 

affected by the density of markers (Ceballos et al., 2018) and its measurement involves a 

great economic cost compared to the estimation of FPED from pedigrees (Zhang et al., 

2015b). Molecular inbreeding coefficients have been widely used in livestock to assess 

the inbreeding levels of the populations and study the effect of inbreeding on productive 

traits (Purfield et al., 2012, 2017; Saura et al., 2015; Bertolini et al., 2018; Peripolli et al., 

2017; Caballero et al., 2021). 

In goat dairy farms, a long productive life of the milked goats is desirable to maximise 

economic profit (Ithurbide et al., 2022). Indeed, the cost of maintaining individuals with 
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low production performances in the herd can be economically unsustainable for the 

farmer. An analysis of 86 herds of dairy goats in France evidenced that the main causes 

of culling are low production followed by udder health problems, high incidences of 

abortion and locomotor problems (Malher et al., 2001). A meta-analysis of multiple 

livestock species considering different traits indicated the existence of a negative impact 

of inbreeding depression on productive traits, diminishing 0.35% of the production for 

multiple traits (e.g. milk yield, somatic cells count, protein yield, fat yield, litter weight)  

with regard  to the population mean per each 1% increment on inbreeding (Leroy, 2014). 

The effects of inbreeding reported by Leroy et al. (2014) on reproduction/survival, 

conformation and weight/growth traits are -0.22, -0.09 and -0.24 % of the average per 

each 1% increment of inbreeding. In dairy cattle, it has been reported that a 1% increase 

in FROH is associated with a 36.3 kg decrease in 305-day milk yield, a 0.48 day increase 

in calving interval and a 0.86 unit increase in somatic cell score for day 150 through to 

400. The magnitude of these changes were equivalent to − 0.45, 0.12 and 0.05% of the 

trait means, respectively (Doekes et al., 2019). From this study, it was also evident that 

recent inbreeding was more harmful than ancient inbreeding (Doekes et al., 2019). In 

another study, Ercanbrack and Knight (1991) analysed the consequences of inbreeding 

on the reproduction and wool production of Rambouillet, Targhee, and Columbia sheep. 

They found that the mean loss of profitability per ewe in value of production was $17 for 

average inbreeding and as high as $36 for inbreeding approaching 50%. These results 

highlight the importance of minimising the incidence of inbreeding in livestock in order 

to reduce economic losses and improve animal welfare.  

Inbreeding depression has been characterised in Murciano-Granadina goats for 

production traits using pedigree information (Deroide et al., 2016). A decrease in total 

milk production was detected when inbreeding levels reached 10.59%, while no effect 
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was reported for milk composition traits. Deroide et al. (2016) reported a low number of 

inbred animals and low inbreeding levels in Murciano-Granadina goats. In Saanen goats, 

an increment of 1% of inbreeding represented a reduction of 2.31 kg of milk at 305 days 

of lactation (Paiva et al., 2020).  

1.6.3 Detection of deleterious mutations through the 

analysis of transmission ratio distortion.  

In diploid organisms, allelic transmission from one generation to another is expected to 

be Mendelian, meaning that when an individual carries two different alleles at a given 

locus both are expected to be equally transmitted to the offspring. A deviation from this 

ratio is produced when one of the two alleles is preferably inherited by the offspring, and 

this phenomenon is called transmission ratio distortion or TRD (Pardo-Manuel de Villena 

Fand Sapienz, 2001; Fishman and Mcintosh, 2019). An allele might not be efficiently 

transmitted to the next generation at any reproductive or developmental stage including 

gametogenesis, meiosis, fertilisation and zygote and fetal development (Huang et al., 

2013). The lack or lowered transmission of a given allele is usually due to the fact that it 

harbours a deleterious mutation affecting the function of an essential gene (Huang et al., 

2013). Deleterious mutations can be targeted by gamete killers that disable male sperm 

carrying deleterious mutations, like in the case of the t-haplotype in mice (Fishman and 

Mcintosh, 2019). Other sources of TRD are embryo lethality and mother-fetal 

incompatibility (Huang et al., 2013). The detection of TRD is usually performed in trios 

or extended family analyses, where allelic transmission ratios from parents and offspring 

are measured to identify deviations from the Mendelian ratio (Labbe et al., 2013). 

Transmission ratio distortion has been studied mostly in humans and model species like 

mice and Drosophila melanogaster (Huang et al., 2013), while in livestock little has been 
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reported so far (Casellas et al., 2017; Abdalla et al., 2020; Lahoucine et al., 2020; 

Vázquez-Gómez et al., 2020). In cattle, several genes close to TRD signals are related 

with postnatal (TNS3) and embryonic lethality (HUS1) as well as with mitochondrial 

architecture maintenance (GTPBP10) (Casellas et al., 2017). 

Interestingly, Casellas et al. (2014) developed a flexible Bayesian algorithm for testing 

the occurrence of transmission ratio distortion at the genome-wide level, which was 

subsequently refined to analyse haplotypes rather than single SNPs (Id-Lahoucine et al., 

2019) and to discriminate between allele and genotype-specific transmission ratio 

distortion as well (Casellas et al., 2020). This methodology has been successfully used to 

detect TRD in multiple species such as cattle, pigs and turkey (Casellas et al., 2017; 

Abdalla et al., 2020; Gòdia et al., 2020; Lahoucine et al., 2020; Vázquez-Gómez et al., 

2020). 

1.6.4 Maternal care has an important influence on 

offspring viability. 

Maternal care has a strong influence on the biological viability of the offspring. The 

contribution of the parents to the offspring takes place in two dimensions, encompassing 

the genetic load (the transmission of two states of paternal and maternal alleles) and the 

environment provided fundamentally by the mother. This maternal environment is 

determined to a certain degree by genetic factors influencing parental behaviour, 

nutrition, and any other aspects fundamental for offspring survival ( Reinhold, 2002; Lévy 

and Keller, 2009).  

Parental care is a major determinant of offspring survival, and in ruminants it is provided 

exclusively by the mother (Dwyer, 2014). In natural populations, maternal care has a 
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direct effect on offspring viability, through milking, and an indirect effect on survival 

through the mother-kid bond that provides protection against predators, shelter and 

knowledge of survival strategies (Théoret-Gosselin et al., 2015). In domestic goats and 

sheep, maternal care after birth comprises licking and grooming, vocalisation and 

assistance to help the kid finding the udder and feeding as well as acceptance of the own 

offspring while rejecting others to keep the milk for its offspring (Bordi et al., 1994; 

Dwyer, 2014). In summary, maternal care is a key factor determining the viability of the 

offspring in terms of immunological defences, growth and social behaviour (Merlot et al., 

2013). 

Maternal behaviour in mammals develops before the parturition through changes in 

physiology and sensory perception (Poindron et al., 2007a). In the framework of sensory 

perception, the olfactory function plays an important role (Romeyer et al., 1994). Studies 

focused on sheep and goats report that olfactory stimuli from amniotic fluid at the moment 

of parturition trigger a series of chemical responses at the neural and endocrine levels that 

lead to maternal responsiveness and selectivity (Poindron et al., 2007a). In goats, 

olfactory inputs from parturition and offspring odour are perceived by the vomeronasal 

organ during licking and transmitted to the olfactory bulb, where a series of 

neurochemical events elicit substantial behavioural changes related with maternity 

(Poindron et al., 2007a, 2007b). As reported during pregnancy and after parturition in 

mice (Navarro-Moreno et al., 2020), the olfactory bulb displays high plasticity and 

continuous neurogenesis related with the development of olfactory memory, odour 

discrimination and processing of olfactory cues (Belnoue et al., 2016). In sheep, the 

damage of noradrenergic projections of olfactory bulb neurons hinders offspring 

recognition and facilitates the acceptance of alien kids (Pissonnier et al., 1985), while in 

mice, the removal of the olfactory bulb in females induces a lack of maternal behaviour 
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and rejection plus cannibalism of the pups (Gandelman et al., 1971). These results 

highlight the role of olfaction, and consequently of the olfactory bulb, in maternal 

behaviour and offspring survival. 

Besides the olfactory bulb, several other brain regions display changes during pregnancy. 

In humans, a reduction of grey matter, associated with social behavioural changes, occurs 

during pregnancy and lasts up to two years after parturition (Hoekzema et al., 2017). The 

main cerebral regions displaying changes activated by pregnancy are the cerebral cortex 

and hippocampus (Hoekzema et al., 2017). Ray et al. (2016) described the transcriptomic 

changes in the hippocampus, hypothalamus, cerebellum and neocortex of virgin, pregnant 

and post-partum mice. In this study, the neocortex presented the most remarkable changes 

in gene expression when comparing individuals from different stages. The gene 

expression patterns of hippocampus and hypothalamus were also affected by pregnancy, 

while the cerebellum remained stable (in terms of gene expression) in pregnant and non-

pregnant mice (Ray et al., 2016). These studies highlight that gestation has an important 

impact on the mRNA expression profile of different brain regions. 

Although maternal behaviour is probably explained by changes in brain gene expression, 

very little information is available about the expression profiles of different brain regions 

in goats or any other livestock species. The lack of this fundamental information makes 

it difficult to dissect the molecular basis of maternal behaviour. In sheep, goats and cattle, 

a few brain tissues have been characterised when building atlases of gene expression at 

multiple organs (Harhay et al., 2010; Clark et al., 2017; Muriuki et al., 2019). A more 

systematic study was undertaken by Sjöstedt et al. (2020) in pigs. In this work, the 

cerebellum was the tissue with the most divergent profile of gene expression, and the 

olfactory bulbs from pigs and mice grouped closely together, while the olfactory bulb 
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from humans behaved as an outlier and showed similarities with the cerebrum regions of 

humans (Sjöstedt et al., 2020). 
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This PhD thesis was performed within the framework of project “CAPRAMUR” 

PID2019-105805RB-I funded by the European Regional Development Fund 

(FEDER)/Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación. This 

project is divided in two main work packages. One of them is dedicated to explore the 

genomic basis of dairy and morphological traits in Murciano-Granadina goats as well as 

to characterise the caprine cheese microbiome. The second workpackage investigates the 

genomic basis of traits related with biological viability and maternal behaviour in goats. 

The specific goals of this thesis are: 

• To identify genomic regions associated with milk and morphology traits in 

Murciano-Granadina goats. 

• To describe the microbiota of a representative set of goat cheeses. 

• To characterise the levels of inbreeding of Murciano-Granadina goats by using 

molecular coefficients and to assess the existence of inbreeding depression for 

phenotypes of economic interest. 

• To map polymorphisms with potentially harmful effects on viability by 

identifying genomic regions displaying transmission ratio distortions in sire-

offspring families.  

• To determine the effect of early pregnancy on the mRNA expression profile of 12 

brain regions by performing a differential expression analysis in pregnant and 

non-pregnant Murciano-Granadina goats. 

 

 

 

 



0   |    

73 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 PAPERS AND STUDIES 

 

 

 

 

 

 

 

 

 



3   |   PAPERS AND STUDIES  

74 

3.1 PAPER I 

RUNNING HEAD: GWAS for dairy traits in goats 
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Abstract 

Background: Milk yield and composition phenotypes are systematically recorded across 

several lactations in goats, but the majority of GWAS performed so far have rather 

ignored the longitudinal nature of such data. Moreover, comparisons of GWAS results 

across different lactations have not been carried out in goats despite the fact that milk 

traits might be affected by genetic determinants with temporal patterns of expression. 

Here, we have used two different GWAS approaches to analyse data from three lactations 

recorded in Murciano-Granadina goats. In the first one (Analysis 1), independent GWAS 

have been carried out for each trait and lactation, while a single longitudinal GWAS 

jointly considering all data has been performed in the second one (Analysis 2). 

Results: In both analyses, genome-wide significant QTL for lactose percentage on 

chromosome 2 (129.77 – 131.01 Mb) and for milk protein percentage on the chromosome 

6 (74.8 – 94.6 Mb) casein gene region were detected. In Analysis 1, a substantial number 

of QTL were not replicated in all three lactations due to the existence of lactation-specific 

genetic determinants. In Analysis 2, we identified several genome-wide significant QTL 

related to milk yield and protein content that were not uncovered in Analysis 1.  

Conclusion: The increased discovery of QTL in Analysis 2 indicates that longitudinal 

GWAS is particularly well suited for the genetic analysis of dairy traits. Moreover, our 

data confirm that the polymorphism of the casein complex is the main genetic determinant 

of milk protein content in Murciano-Granadina goats. 

Keywords: GWAS, milk yield and composition traits, Murciano-Granadina breed 
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Main text 

The performance of genome-wide association studies (GWAS) has been helpful to 

identify genomic regions associated with milk traits in several caprine breeds including 

New Zealand goats [1], French Alpine and Saanen [2, 3] and a composite breed of Saanen, 

Toggenburg, and Alpine goats [4]. One of the most consistently identified regions 

associated with milk yield maps to chromosome 19 at 26 Mb, while another chromosome 

6 region encompassing the casein cluster has been associated with milk protein content 

[1, 3, 4]. In a previous study, Guan et al. [5] performed a GWAS for dairy traits recorded 

in 822 Murciano-Granadina goats during a single lactation, and they found three genome-

wide significant associations. The location of the most significant QTL detected by Guan 

et al. [5] was coincident with the cluster of the four genes encoding casein αS1 (CSN1S1), 

casein αS2 (CSN1S2), casein β (CSN2) and casein κ (CSN3). The goal of the current study 

was to expand the reach of the GWAS carried out by Guan et al. [5] to dairy traits 

measured in three consecutive lactations. First, we aimed to compare the positional 

concordance of the QTL identified for each specific lactation by performing independent 

GWAS for each lactation (Analysis 1), and second we wanted to carry out a longitudinal 

GWAS (Analysis 2) and compare its results with those obtained in Analysis 1. 

Milk production and composition phenotypes for three lactations were recorded in 

Murciano-Granadina goats distributed on 15 farms in Andalusia (Spain). A total of 917 

individuals had phenotypes available for the first lactation, while 805 and 660 had records 

for the second and third lactations, respectively. The list of measured phenotypes included 

milk yield in kilograms at 210 days (MY210), 240 days (MY240) and 305 days (MY305) 

of lactation as well as milk fat (Fat), protein (Protein), lactose (Lactose) and dry matter 

(DM) percentages and the natural logarithm of the somatic cell count divided by 1000 

(SCS). Milk composition traits were standardised to a lactation of 210 days. The 
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distribution of each phenotype was depicted in histograms (Supplementary Figures 1, 2 

and 3) and normality was tested with the Shapiro test [6]. Traits deviating significantly 

from normality, i.e. protein, fat, dry matter and lactose percentages, were rank-based 

transformed using GenABEL in R [7]. Summary statistics for each trait and lactation are 

displayed in Supplementary Table 1. Pearson phenotypic correlations (rp) between traits 

were estimated with the R software [8]. Positive and significant correlations were 

observed between the same trait measured in different lactations (Supplementary Figure 

4 and Supplementary Table 2). As expected (Supplementary Figure 4), milk yield and 

composition traits showed low to moderate negative correlations (r = -0.05 to -0.2).  

Blood samples were collected using vacuum tubes with EDTA K3 and stored at –20ºC 

until processing. Genomic DNA was isolated using a modified salting-out protocol as 

explained in Guan et al. [5]. Goats were genotyped with the Goat SNP50 BeadChip [9] 

which features 53 347 SNP probes distributed across the whole goat genome, following 

the instructions of the manufacturer (Illumina Inc., San Diego, CA, USA). Genomic 

positions and single nucleotide polymorphism (SNP) identifiers were updated using 

PLINK 1.9 [10] and the ARS1 goat genome was used as reference [11]. The filtering of 

the data was performed using PLINK 1.9 [10] by removing (1) SNPs with missing 

genotypes in more than 10 % of the samples, (2) SNPs with a minor allele frequency 

below 0.01, (3) SNPs deviating significantly from the Hardy-Weinberg equilibrium (P-

value ≤ 1x10-5). Besides, individuals with a SNP missing rate over 10% were removed 

from the dataset. After quality control and filtering of the data, a total of 48,785 SNPs and 

917 (lactation 1), 805 (lactation 2) and 660 (lactation 3) goats were retained for 

downstream analyses.  

To identify SNPs significantly associated with the analysed traits, we adjusted a 

univariate linear mixed model (LMM) using two approaches, (1) Independent GWAS 
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were carried out for each lactation, and (2) A single GWAS combining data from the three 

lactations was performed (longitudinal analysis). 

Analysis 1 (three lactations considered independently):  here, we carried out three 

independent GWAS, one for each lactation, by using GEMMA [12]. The model was 

defined by the formula: 

y=W∝ + Xβ+ μ+ ϵ 

where y is a vector of phenotypic records from 917 (lactation 1), 805 (lactation 2), and 

660 (lactation 3) goats; W = (w1, …, wc) is an n × c matrix of three fixed effects (farm, 

with 16 levels for lactation 1 and 15 levels for lactations 2 and 3; year of birth, with 10 

levels; litter size, with 5 levels); α is a c-vector of the corresponding fixed effects 

including the intercept; X is a n-vector of marker genotypes; β is the effect size of the 

marker (allele substitution effect); u is a n-vector of random individual genetic effects 

with a normal distribution u ∼ N(0, λ τ− 1 K), where τ− 1 is the variance of the residual error, 

λ is the ratio between the 2 variance components, and K is the relatedness matrix derived 

from SNP genotypes. Finally, ϵ is an n-vector of errors. We corrected the results for 

multiple testing using the false discovery rate (FDR) method [13], and the significance 

threshold was set at a q-value ≤ 0.05. Results were visualised using custom scripts 

implemented in the ggplot2 package [14] on R [8]. 

This approach made it possible to identify several associations that reached the genome-

wide significance level (Table 1 and Figure 1). The most relevant result corresponded 

to one region on chromosome 6 (74.8 – 94 Mb) which was consistently associated (q-

value < 0.05)  with milk protein percentage in the three lactations (Figure 1; Table 1). In 

contrast, several associations were not replicated in different lactations. When analysing 

lactation 1 data, for instance, we found several genetic markers significantly associated 

with lactose percentage on chromosome 2 (125.96, 129.77 – 131.01 Mb) that did not yield 
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genome-wide significant associations with such trait in lactations 2 and 3. Similarly, when 

using data from lactation 2 we identified an association between markers from the 

chromosome 6 (81.08 – 87.41 Mb) region and dry matter. At the chromosome-wide level 

of significance, this lack of replicability was even more evident. In the case of fat 

percentage, for instance, a QTL on chromosome 18 (15.92 – 15.97 Mb) was identified 

when using data from lactation 1. For the same trait, a QTL on chromosome 25 (36.46 

Mb) and three QTL on chromosomes 2 (112.5 Mb), 11 (45.34 Mb) and 19 (34.33 –34.41; 

53.67 Mb) were identified when analysing data from lactations 2 and 3, respectively 

(Supplementary Table 3). A non-mutually exclusive explanation for the lack of 

consistency across lactations would be the existence of genetic determinants with 

temporal patterns of expression. Indeed, Cho et al. [15] performed a GWAS for estimated 

breeding values for milk production traits recorded in Holstein cattle from the 1st to 4th 

lactations and identified many associations in lactation 1 that could not be replicated in 

subsequent lactations.  

Analysis 2 (longitudinal analysis): In this second analysis, we did a longitudinal GWAS 

taking into account the joint phenotypic data from the three lactations. Herewith, we 

employed the rGLS function from the RepeatABEL package [16] included in the 

GenABEL suite [7]. The model is very similar to the one implemented in GEMMA [11], 

and it is defined as follows: 

y=Wμ + xsnpβsnp+ Zg+ ϵ 

where y is a vector of phenotypic records from 660 goats with three lactations; W is a 

matrix of three fixed effects (farm, with 15 levels; year of birth, with 10 levels; litter size, 

with 5 levels); μ is a vector of the corresponding fixed effects including the intercept; xsnp 

is a vector of the genotype dosage for each genomic position (0, 1 or 2); βsnp is the effect 

size of the marker (allele substitution effect); Z is an incidence matrix relating the 
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individuals to their observed values; g is a vector of random individual genetic effects 

with a normal distribution g ∼ N(0, σ2
g Kn), where K is the relatedness matrix derived from 

SNP genotypes and n the number of individuals. Finally, ϵ is an n-vector of errors defined 

as ϵ  ∼ N(0, σ2 ϵ IN), where I is the identity matrix and N the total number of observations. 

The false discovery rate method [13] was used to correct for multiple testing and ggplot2 

[14]  was employed to visualise the results of the GWAS.  

This longitudinal analysis yielded genome-wide significant associations between one 

chromosome 6 (78.51-93.50 Mb) region containing the casein genes and milk protein and 

dry matter contents as well as between  one chromosome 2 region (129.80-130.75 Mb) 

and lactose percentage, thus confirming the results obtained in Analysis 1 (Table 1; 

Supplementary Table 4 and Figure 1). However, with the longitudinal analysis it was 

possible to identify a larger number of SNPs significantly associated with milk traits e.g. 

one chromosome 6 region (17.02 Mb) was associated with milk yield at 210 and 240 days, 

and two regions on chromosomes 4 and 9 were associated with protein percentage. 

Detailed information about the effect of each SNP within the QTL regions can be found 

in Supplementary Table 4. This increased capacity of the longitudinal analysis to detect 

QTL is probably due to the fact that the repeated measurements model implemented in 

RepeatABEL has more statistical power than a model using single or averaged 

measurements [16]. At the chromosome-wide level of significance, the longitudinal 

analysis made it possible to detect QTL for fat percentage on chromosomes 2 (112.55 

Mb), 20 (31.78 and 53.61 Mb) and 27 (19.79 Mb). Besides, the protein content QTL on 

chromosome 6 mapping to the casein cluster was significantly associated with somatic 

cell score (Supplementary Table 5). 
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Figure 1. Negative log10 q-values (y-axis) of the associations between SNPs and milk 

production and composition traits are plotted against the genomic location of each SNP 

marker (x-axis). Markers on different chromosomes are indicated with different colors. 

Two analyses have been performed: (A) GWAS are independently done for each of the 

three lactations; and (B) A single longitudinal GWAS jointly considering the three 

lactations is carried out. Only traits with genome-wide significant results are plotted. The 

dashed red line indicates the genome-wide level of significance and it corresponds to -

log10(q-value = 0.05) = 1.30. 
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Table 1. Genome-wide significant SNPs associated with milk traits recorded in Murciano-Granadina goats with three available 

lactations (allele frequencies, substitution effects and statistical significance correspond to the lead SNP).  

Univariate analysis (3 lactations considered independently) 

Trait Lead SNP Chr1 Position, Mb # SNPs2  AF3 A14 A05 β ± SE6 p-value q-value  

Lactation 1 

Protein, % 

rs268290908 6 74.8 – 94.6 40 0.42 A G -0.36 ± 0.05 7.47E-14 3.67E-09  

rs268234071 6 99.76 1 0.29 G A -0.22 ± 0.05 1.72E-05 0.026  

rs268258054 6 103.34 1 0.13 G A -0.29  ± 0.07 1.76E-05 0.026  

rs268268932 9 82.43 1 0.21 A G -0.26  ± 0.06 1.67E-05 0.026  

Lactose, % 
rs268253126 2 125.96 1 0.27 A G -0.27  ± 0.05 8.30E-07 0.01  

rs268253425 2 129.77 – 131.01 5 0.21 A G -0.44  ± 0.06 1.42E-13 7E-0.9  

Lactation 2 

Protein, % rs268290908 6 85.57 – 87.85 11 0.43 A G -0.41  ± 0.05 1.40E-15 6.87E-11  

Dry matter, % 
rs268260283 6 81.08 1 0.28 A G 0.28 ± 0.06 2.87E-06 0.04  

rs268290908 6 86.85 – 86.90 2 0.43 A G -0.3  ± 0.05 7.50E-09 0.0003  

Lactation 3 

Protein, % rs268290908 6 83.2 – 86.9 5 0.43 A G -0.3  ± 0.05 8.17E-08 0.004  

Longitudinal analysis (3 lactations considered jointly) 

Trait Lead SNP Chr1 Position, Mb # SNPs2  AF3 A14 A05 β ± SE6 p-value q-value  

Protein, % rs268288251 4 113.17 1 0.38 A C 0.21 ± 0.05 2.93E-05 0.044  

Protein, % rs268290909 6 78.51 – 93.50 32 0.06 A G -0.37 ± 0.04 1.11E-16 5.46E-12  

Protein, % rs268235611 7 107.74 1 0.34 A G 0.18 ± 0.04 3.39E-05 0.048  

Protein, % rs268268930 9 82.51 1 0.34 A G -0.24 ± 0.05 3.29E-06 0.008  

MY210, Kg rs268284580 6 17.02 1 0.2 A G 41.28  ± 8.38 8.40E-07 0.041  

MY240, Kg rs268284580 6 17.02 1 0.2 A G 48.13 ± 9.83 9.94E-07 0.048  

Dry matter, % rs268290909 6 86.20 – 86.94 6 0.06 A G -0.21 ± 0.04 2.68E-07 0.013  

Dry matter, % rs268273385 6 92.85 1 0.42 A G -0.28 ± 0.04 1.36E-06 0.022  

Lactose, % rs268253426 2 129.80 - 130.75 3 0.29 G A -0.30 ± 0.05 4.11E-10 2.02E-05  

1Chr, chromosome; 2#SNPs, number of SNPs within a QTL region significantly associated with a specific dairy trait; 3AF, alternative 

allele frequency; 4A1, alternative allele; 5A0, reference alelle; 6β ± SE, allele substitution effect ± standard error.
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Based on the linkage disequilibrium estimates obtained by Guan et al. [5] in the 

same goat population, we retrieved all protein-coding genes mapping within a 1 Mb 

window around the significantly associated SNPs taking as a reference the NCBI 

ARS1 reference genome (GCF_001704415.1). Genes were functionally annotated 

using David bioinformatics tools [17] with goat as reference database (containing 

specie-specific data from NCBI, Uniprot, Ensembl, Gene Ontology, KEGG, among 

others). Both analyses 1 and 2 provided very strong evidence about the key role of 

casein gene variability on the determinism of milk protein content in Murciano-

Granadina goats. Caseins are the majority proteins in milk and several 

polymorphisms in the CSN1S1, CSN1S2, CSN2 and CSN3 genes have been reported 

to be associated, often causally, with milk protein content as well as with many 

other dairy and cheese traits (reviewed by Amills et al. [18]). Our results agree well 

with what was published by Guan et al. [5] in the same breed as well as by Martin 

et al. in Alpine and Saanen goats [3]. Regarding the chromosome 2 QTL for lactose 

percentage, it is worth mentioning that the very same region was identified by Costa 

et al. [19] as associated with milk lactose content in Fleckvieh cattle. This region 

contains the ORMDL sphingolipid biosynthesis regulator 1 (ORMDL1) gene, 

which is involved in the negative regulation of the synthesis of ceramides which are 

necessary for the production of sphingolipids [20]. Noteworthy, galactose can be a 

component of sphingolipids [21] and it is also a key precursor in the synthesis of 

lactose. Another locus of interest mapping to the chromosome 2 QTL for lactose 

percentage is the inositol polyphosphate-1-phosphatase (INPP1) gene, which is 

involved in phosphate and phospholipid metabolism and described, in cattle, as 
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highly associated with lactose content and with effects on the protein and mineral 

composition of milk [22]. The hydroxyacyl-CoA dehydrogenase (HADH, 

chromosome 6: 17,529,001–17,573,045) gene, mapping close to QTL 

(chromosome 6:17.02 Mb) associated with milk yield at 210 and 240 days of 

lactation, and the 3-hydroxyisobutyryl-CoA hydrolase (HIBCH, chromosome 2: 

130,422,688–130,535,003) gene mapping close to the QTL (chromosome 2:129.8–

130.7 Mb) associated with lactose percentage, are both involved in valine 

degradation. In dairy cattle, diets rich in valine significantly increase milk yield [22, 

23].  

Conclusions 

Independent GWAS based on data from lactations 1, 2 and 3 made it possible to 

detect a common chromosome 6 QTL for milk protein content mapping to the 

casein cluster, while several additional QTL were not replicated across lactations 

(e.g. the QTL for lactose percentage on chromosome 2 only reached genome-wide 

significance in lactation 1). The implementation of a longitudinal GWAS 

integrating data from the three lactations confirmed the QTL for protein content on 

chromosome 6 as well as a QTL for lactose on chromosome 2, but it also uncovered 

several QTL not identified in the three separate GWAS. This finding is consistent 

with the increased statistical power of longitudinal GWAS (when compared to the 

non-longitudinal ones) and supports its widespread use in the genetic analysis of 

dairy traits. Finally, the strong consistency of the milk protein content QTL located 

on the chromosome 6 region that harbours the casein cluster evidences the 
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fundamental role of casein polymorphism on the determination of milk protein and 

dry matter contents in Murciano-Granadina goats.  
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Supplementary tables 

Supplementary Table 1. Summary statistics of milk production and composition 

traits recorded in 917, 805 and 660 Murciano-Granadina goats during lactations 1, 

2 and 3, respectively.   

Supplementary Table 2. Pearson correlations between milk production and 

composition traits measured in 660 Murciano-Granadina goats with three available 

lactations.  

Supplementary Table 3. SNPs associated at the chromosome-wide level of 

significance with milk traits recorded in Murciano-Granadina goats with three 

available lactations. 

Supplementary Table 4. (A) SNPs identified in the longitudinal GWAS as 

associated at the genome-wide level of significance with milk protein percentage 

recorded in Murciano-Granadina goats with three available lactations (B). Genes 

located within a ± 500 kb window around each SNP displaying significant 

associations with protein percentage indicated in Table 4A (C) SNPs identified in 

the longitudinal GWAS as associated at the genome-wide level of significance with 

milk yield in kg at 210 and 240 days of lactation. (D). Genes located within a ± 500 

kb window around each SNP displaying significant associations with milk yield at 

210 and 240 lactation days indicated in Table 4C (E) SNPs identified in the 

longitudinal GWAS as associated at the genome-wide level of significance with 

milk lactose percentage recorded in Murciano-Granadina goats with three available 

lactations. (F) Genes located within a ± 500 kb window around each SNP displaying 

significant associations with lactose percentage indicated in Table 4E. (G). SNPs 

identified in the longitudinal GWAS as associated at the genome-wide level of 

significance with milk dry matter percentage recorded in Murciano-Granadina 

goats with three available lactations. (H) Genes located within a ± 500 kb window 

around each SNP displaying significant associations with dry matter percentage 

indicated in Table 4G. 
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Supplementary Table 5. SNPs identified in a longitudinal GWAS as associated at 

the chromosome-wide level of significance with milk traits recorded in Murciano-

Granadina goats with three available lactations. 
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Supplementary figures 

Supplementary Figure 1. Distribution of the raw (1A) and corrected (1B, rank-

based transformation implemented in GenABEL) milk production and composition 

measurements recorded during the first lactation of 917 Murciano-Granadina goats. 

We only corrected data that were not normally distributed. 

 Supplementary Figure 2. Distribution of the raw (2A) and corrected (2B, rank-

based transformation implemented in GenABEL) milk production and composition 

measurements recorded during the second lactation of 805 Murciano-Granadina 

goats. We only corrected data that were not normally distributed. 

Supplementary Figure 3. Distribution of the raw (3A) and corrected (3B, rank-

based transformation implemented in GenABEL) milk production and composition 

measurements recorded during the third lactation of 660 Murciano-Granadina 

goats. We only corrected data that were not normally distributed. 

 Supplementary figure 4. Pearson correlation across phenotypic records of milk 

production and composition measured during three lactations of 660 Murciano-

Granadina goats. 
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Abstract 

Morphological traits are of great importance to dairy goat production given their 

effect on phenotypes of economic interest. However, their underlying genomic 

architecture has not yet been extensively characterized. Herein, we aimed to 

identify genomic regions associated with body, udder, and leg conformation traits 

recorded in 825 Murciano-Granadina goats. We genotyped this resource population 

using the GoatSNP50 BeadChip (Illumina Inc., San Diego, CA) and performed 

genome-wide association analyses using the GEMMA software. We found 2 

genome-wide significant associations between markers rs268273468 [Capra hircus 

(CHI) 16:69617700] and rs268249346 (CHI 28:18321523) and medial suspensory 

ligament. In contrast, we did not detect any genome-wide significant associations 

for body and leg traits. Moreover, we found 12, 19, and 7 chromosome-wide 

significant associations for udder, body, and leg traits, respectively. Comparison of 

our data with previous studies revealed a low level of positional concordance 

between regions associated with morphological traits. In addition to technical 

factors, this lack of concordance could be due to a substantial level of genetic 

heterogeneity among breeds or to the strong polygenic background of 

morphological traits, which makes it difficult to detect genetic factors that have 

small phenotypic effects. 

Key words: genome-wide association study (GWAS), goat, Murciano-Granadina, 

morphological trait. 
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Introduction 

Since its establishment in 1975 (Delgado et al., 2018), the Murciano-Granadina 

breed has become the most important dairy goat breed in Spain, reaching 112,417 

heads in 2019 (https://www.mapa.gob.es/es/ganaderia/temas/zootecnia/razas-

ganaderas/razas). Murciano-Granadina goats show great ability to adapt to harsh 

environments, yielding 530 kg of milk per lactation (250 d) with fat and protein 

contents of 5.6 and 3.6%, respectively 

(https://www.mapa.gob.es/es/ganaderia/temas/zootecnia/razas-ganaderas/razas). 

The genetic improvement program of the Murciano-Granadina breed is mostly 

focused on increasing milk yield and quality and on optimizing body and dairy 

conformation traits. The association of Murciano-Granadina breeders (Caprigran) 

systematically records information about milk yield and composition and performs 

linear scoring of 17 morphological traits (Delgado et al., 2018). The inclusion of 

morphological traits as selection criteria is motivated by their association with 

mammary health and longevity (Shelton, 1978; Manfredi et al., 2001; Montaldo and 

Manfredi, 2002). Studies performed in cattle (Seykora and McDaniel, 1985; Rogers 

et al., 1991; Boettcher et al., 1998; Rupp and Boichard, 1999; Miglior et al., 2017) 

support a relationship between udder morphology and health. Indeed, higher, 

nonpendulous, and more tightly attached udders are less susceptible to mastitis 

(Seykora and McDaniel, 1985; Rupp and Boichard, 2003). Moreover, flat, disk, or 

inverted teat ends are associated with an increased risk of suffering mastitis, 

whereas funnel-shaped teats seem to be less prone to mastitis (Seykora and 
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McDaniel, 1985). Numerous reports associate body traits with fertility and 

longevity (Bastin and Gengler, 2013; Miglior et al., 2017). For instance, foot and 

leg conformation traits could be considered indicators of claw health, which, after 

reproduction and mastitis, is one of the main determinants for culling animals 

(Egger-Danner et al., 2015). 

Few studies about the genetics of morphological traits have been performed in 

goats. According to Rupp et al., 2011, udder floor position showed negative genetic 

correlations (rg) with SCS in both Alpine (rg = −0.24) and Saanen goats (rg = −0.19). 

The same authors demonstrated that, in the Saanen breed, SCS was correlated with 

teat length (rg = 0.29), teat width (rg = 0.34), and teat form (rg = −0.27). These results 

suggest that a reduction in SCC could be achieved by selection, while still 

improving milk production and udder type and teat traits. In Tinerfeña goats, 

moderate to high and mostly positive phenotypic correlations have been detected 

between udder traits and milk yield (Capote et al., 2006). 

Manfredi et al., 2001 found a high heritability (h2 > 0.4) for thorax perimeter in 

Alpine and Saanen goats, whereas other body traits such as rump angle, feet angle, 

and hock distance showed low heritabilities (h2 = 0.03–0.16). In contrast, 

heritabilities for udder and teat scores were around 0.3 for most traits, with teat 

angle displaying the lowest value (h2 = 0.15 in Saanen). Genetic correlations among 

teat dimension traits and between udder floor and rear udder attachment (rg > 0.7 in 

Alpine and Saanen) were generally high, whereas the majority of genetic 

correlations between body and udder scores were <0.3 (Manfredi et al., 2001). 
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In a more recent study, McLaren et al., 2016 described low to moderate heritabilities 

(from 0.02 to 0.38) for conformation traits recorded in mixed-breed dairy goats: 

although udder and teat traits had the highest heritabilities (h2 ∼0.28, from 0.15 to 

0.38), feet and leg traits showed lower values (h2 ∼0.13, from 0.02 to 0.25). 

Although most of the correlations estimated between milk yield and udder and teat 

traits were negative, their magnitude and sign fluctuated across the first lactation. 

For instance, estimates of the genetic correlation between udder furrow and milk 

yield ranged from −0.42 to 0.18 depending on the time point in first lactation when 

they were calculated (McLaren et al., 2016). Castañeda-Bustos et al., 2017 

described a high genetic correlation between the productive life of dairy goats (i.e., 

total days in production until 72 mo of age) and final score (appraisal of the general 

conformation of the animal), fore udder attachment, and rump width. These 

findings demonstrate that considering conformation and udder traits in selection 

schemes would be expected to increase productivity without compromising the 

viability of the animals (Castañeda-Bustos et al., 2017). 

Several investigations have been carried out to identify genomic regions associated 

with body conformation and udder traits in goats. Mucha et al., 2018 performed a 

GWAS for morphology traits in mixed-breed dairy goats and found a significant 

association between a region on chromosome 19 and udder attachment, udder 

depth, and front leg morphology. Moreover, Martin et al., 2018 detected 37 

genome-wide significant QTL for type and SCS phenotypes with linkage analyses, 

whereas a much larger number of QTL were identified by association mapping. 

These authors concluded that the inheritance of body and udder conformation traits 
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is markedly polygenic and that genetic determinants are often breed-specific. In the 

current work, we aimed to identify genomic regions associated with the phenotypic 

variation of 17 morphological traits in Murciano-Granadina goats. 

Materials and methods 

Phenotypic Recording 

A total of 825 female goats distributed in 13 farms, with an average herd size of 

500 individuals, were scored for 17 morphological traits included in the breeding 

program of the Murciano-Granadina goat breed. The scoring is performed only 

once in the lifetime of the animal. Most of the goats in our study were scored during 

their first lactation, although a group of 89 animals was scored between the second 

and sixth lactations. All traits were scored by the same specialist, using a personal 

digital device equipped with the Kalifadroid app (Fernández Alvarez, 2017) for 

carrying out scoring tasks. The following phenotypes were evaluated, with linear 

scores ranging from 1 to 9 according to the criteria established in Sánchez-

Rodríguez, 2012. 

Udder Traits 

Seven udder traits were scored: 

Fore udder attachment (FUA)—Corresponds to the angle formed by the line of the 

udder insertion and the abdominal wall. Scores 1 and 9 correspond to angles of 45° 

and 120°, respectively. 
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Rear udder height (RUH)—Scored by measuring the distance between the bottom 

of the vulva and the top of the secretory tissue of the mammary gland. Scores 1 and 

9 correspond to distances of 11 and 3 cm, respectively. 

Udder depth (UD)—Distance from the lowest part of the udder floor to the hock 

joint (tibiotarsal joint). A linear score of 1 corresponds to an udder with its deepest 

part 10 cm over the hock, whereas a score of 9 would define an udder with its 

deepest part 10 cm down the hock joint. 

Medial suspensory ligament (MSL)—Depth of the udder cleft measured at the base 

of the rear udder. Scores 1 and 9 correspond to 1 and 9 cm (or more) deep udder 

clefts, respectively. 

Udder width (UW)—Measured at the crease where the udder meets the leg. Scores 

of 1 and 9 correspond to measurements of 3 and 11 cm (or more), respectively. 

Teat diameter (TD)—Diameter of the teat at its base, when it meets the udder. The 

measurement was performed for each teat individually and the average score was 

used as final score. Score 1 = diameter of 0.5 cm and score 9 = diameter of 4.5 cm 

or more. 

Teat placement (TP)—Defines the position of the teats on the udder half. Teats 

located on the outside third of the udder half are scored as 1, whereas teats located 

very close to the medial suspensory ligament, that almost touch each other, are 

scored as 9. The measurement was performed for each teat individually and the 

average score was used as final score. Teats on the center of the udder half, with an 

intermediate placement, are considered desirable and are scored as 5. 
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Body Conformation Traits 

Seven body conformation traits were scored: 

Height (HT)—Measures the distance from ground level to the top of the withers. 

Goats with a height of 62 cm or less received a score of 1, and those over 78 cm 

received a score of 9. 

Chest width (CW)—Measured from the inside surface of the chest between the top 

of the front legs. Score 1 = 15 cm or less; score 9 = 23 cm or more. 

Body depth (BD)—Distance between the top of the spine and bottom of the body 

at the beginning of the last rib. Score 1 = low depth, if the beginning of the last rib 

is located above the elbow joint, and score 9 = high depth, if the beginning of the 

last rib is located below the elbow joint. 

Rump width (RW)—Distance between the most posterior points of the pin bones 

(ischial tuberosities). Score 1 = 13 cm (or less); score 9 = 21 cm (or more). 

Rump angle (RA)—Angle between the hook (coxal tuberosity) and pin (ischial 

tuberosity) bones. Scores 1 and 9 correspond to angles of approximately 55° and 

31°, respectively. 

Angularity or dairyness (ANG)—Angle and openness of the ribs. Score 1 defines 

an animal extremely coarse for this trait; score 9 is assigned to goats that are very 

angular. 

Bone quality (BQ)—Appraisal of the thickness and width of the bone structure, 

assessed by examining the rear leg from the rear and from the side. Score 1 
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corresponds to goats with thick and round bones; score 9 is assigned to goats with 

flat and sharp bones. 

Feet Structure 

Three feet structure traits were scored: 

Rear legs rear view (RLR)—Direction of rear feet when viewed from the rear. 

Score 1: extreme toe-out feet; score 9: parallel feet. 

Rear legs side view (RLS)—Curvature of the hock viewed laterally. Score 1: 

straight legs; score 9: very curved legs. 

Mobility (MOB)—Evaluates the locomotion patterns, including the length and 

direction of the step. Score 1: bad locomotion, with severe abduction and short 

steps; score 9: harmonic, long and uniform locomotion. 

Isolation of Genomic DNA from Blood and Genotyping with the Goat SNP50 

BeadChip 

Blood samples from the 825 Murciano-Granadina goats with morphology records 

were collected in vacuum tubes coated with K3-EDTA anticoagulant and stored at 

−20°C until processing. Genomic DNA was purified using a modified salting-out 

procedure (Miller et al., 1988). In brief, we combined 3 mL of whole blood plus 4 

volumes of Red Cell Lysis Solution (10 mM Tris-HCl, pH 6.5; 2 mM EDTA; 1% 

Tween 20) and then this mixture was centrifuged at 2,000 × g for 2 min. The 

resulting cell pellet was resuspended in 3 mL of lysis buffer (200 mM Tris-HCl, pH 

8, 30 mM EDTA, 1% SDS, 250 mM NaCl) and 100 µL of proteinase K (20 mg/mL) 

and incubated for 3 h at 55°C. The lysate was chilled, and 1 mL of 10 M ammonium 
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acetate was added. This mixture was centrifuged at 2,000 × g for 10 min, and the 

supernatant (∼4 mL) was transferred to a new tube with 3 mL of 96% isopropanol. 

Subsequently, samples were centrifuged at 2,000 × g for 3 min. The resulting DNA 

pellet was washed with 3 mL of ethanol 70% followed by an additional 

centrifugation step at 2,000 × g for 1 min. The DNA pellet was left at room 

temperature until it dried, and then was resuspended in 1 mL of Tris-EDTA buffer 

(10 mM Tris-HCl, 1 mM EDTA, pH = 8). All 825 goats were genotyped with the 

Illumina Goat SNP50 BeadChip (Illumina Inc., San Diego, CA), which contains 

54,241 SNP, following the instructions of the manufacturer. The genomic location 

of the SNPs was obtained using the goat ARS1 genome (Bickhart et al., 2017) as 

reference, and the position and the name of each SNP was updated using the 

software PLINK v 1.9 (Chang et al., 2015). The genotypic information was filtered 

using PLINK v 1.9 (Chang et al., 2015). Only individuals with <5% missing 

genotypes were taken into consideration. With regard to SNPs, only those meeting 

the following requirements were used in the GWAS: (1) mapping to autosomes, (2) 

displaying a minor allele frequency of ≥0.05, (3) not deviating very significantly (P 

> 0.001) from Hardy-Weinberg expectation, and (4) with a genotype call rate >90%. 

After applying these filtering criteria, 47,880 SNPs and 811 animals were selected 

to perform subsequent analyses. Population structure was assessed with a principal 

component analysis (PCA) implemented in PLINK v 1.9 (Chang et al., 2015). The 

visualization of the PCA results was based on the first 2 components of the PCA. 
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Statistical Analyses 

We calculated summary statistics for each of the morphological traits using R (R 

Core Team, 2017) as well as Pearson correlations (rp) between conformation traits 

and milk composition and yield records; that is, total milk yield, milk yield at 210 

d, milk yield at 240 d, milk yield at 305 d, SCS, fat percentage, protein percentage, 

and lactose percentage. The correlations were estimated and heatmap plots 

constructed with R software (R Core Team, 2017) to visualize the correlation matrix 

and the P-values of each correlation. 

The software GEMMA (Zhou and Stephens, 2012) was used to carry out the 

GWAS. This method corrects population structure by taking into account the 

relatedness matrix, which is built by considering all genome-wide SNPs as a 

random effect. Morphological phenotypes were rank-based transformed using the 

package GenAbel from R (Aulchenko et al., 2007) because we assessed, with our 

data, that this transformation yields residuals that are normally distributed. A 

univariate linear mixed model was fit for each trait as follows: 

y = Wα + xβ + u + ε, 

where y is a vector of corrected scores for morphological traits recorded in 811 

individuals; W = (w1, …, wc) is an n × c matrix of 3 fixed effects (farm, with 13 

levels; year of birth, with 10 levels; number of lactations, with 6 levels) and 1 

covariate (days producing milk); α is a c-vector of the corresponding fixed effects 

including the intercept; x is a n-vector of marker genotypes; β is the effect size of 

the marker (allele substitution effect); u is a n-vector of random individual genetic 

effects with a normal distribution u ∼ N(0, λ τ− 1 K), where τ− 1 is the variance of 
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the residual error, λ is the ratio between the 2 variance components, and K is the 

relatedness matrix derived from SNP genotypes. Finally, ε is a n-vector of errors. 

A false discovery rate (FDR) approach was applied to correct for multiple testing, 

setting the significance level to a q-value of 0.05 (Benjamini and Hochberg, 1995). 

Graphical visualization of the results of the GWAS was achieved by using the R 

software (R Core Team, 2017). 

The proportion of the phenotypic variance explained by the significant SNPs (PVE) 

was estimated using the formula reported by Shim et al., 2015: 

𝑃𝑉𝐸 =
2 𝛽2 𝑀𝐴𝐹 (1 − 𝑀𝐴𝐹)

2𝛽2 𝑀𝐴𝐹 (1 − 𝑀𝐴𝐹) + [𝑠𝑒(𝛽)]2 2𝑁 𝑀𝐴𝐹 (1 − 𝑀𝐴𝐹) 
 

where β is the effect size of the SNP variant estimated from the association analysis; 

MAF is the minor allele frequency of the SNP, se is the standard error, and N is the 

sample size. Lambda inflation factors were calculated with the median method (1 

df) implemented in GenABEL (Aulchenko et al., 2007), whereas quantile-quantile 

(Q-Q) plots were built with the gg_qqplot() function 

(https://www.rdocumentation.org/packages/lindia/versions/0.9/topics/gg_qqplot). 

To retrieve candidate genes mapping close to significant SNP, we considered an 

interval of ±1 Mb based on data previously reported by Guan et al., 2020 for the 

same population. Genes mapping within these defined boundaries were listed by 

using the Biomart tool from Ensembl (Kinsella et al., 2011) and subsequently 

analyzed with Uniprot (UniProt Consortium, 2019) and David Bioinformatic 

Resources (Huang et al., 2009) to annotate their function. 
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Results and discussion 

Population Structure and Analysis of Morphological Traits 

The first 2 components (C1 and C2) of the principal component analysis accounted 

for 42.64% and 21.76% of the genetic variance, respectively (Supplemental Figure 

S1; https://doi.org/10.3168/jds.2020-18461). Several samples were grouped 

according to their farm of origin, but we did not find an obvious within-population 

substructure in this sample of Murciano-Granadina goats. Descriptive statistics of 

the raw conformation scores are reported in Supplemental Table S1 and 

Supplemental Figures S2 and S3 (https://doi.org/10.3168/jds.2020-18461). The 

estimated phenotypic correlations and their significances are depicted in 

Supplemental Table S2 (https://doi.org/10.3168/jds.2020-18461) and Figure 1. 

We classified phenotypic correlations as low (rp < 0.2), moderate (rp = 0.2–0.4), or 

high (rp > 0.4). Phenotypic correlations between udder traits were generally low and 

positive, except for the correlation between MSL and UD that was moderate (rp = 

0.37, P < 0.001). In the study of McLaren et al., 2016, genetic correlations between 

udder traits ranged from 0.12 to 0.77, whereas those between teat traits were in the 

range of −0.10 to 0.69. Udder and teat traits were positively correlated, a result 

coincident with our findings, and also with those reported by Manfredi et al., 2001. 

We found low and positive correlations between SCS and MSL (rp = 0.14, P < 

0.001), UD (rp = 0.19, P < 0.001), and TD (rp = 0.13, P < 0.001). Udder depth (rg = 

0.10) and teat size (rg = 0.29) also showed positive genetic correlations with SCS 

in Latxa sheep (Legarra and Ugarte, 2005). Pendulous udders are closer to the floor, 

exposing the mammary gland to direct contact with fecal and other environmental 
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contaminants (Pugh and Baird, 2012). Moreover, teat diameter is highly correlated 

with the diameter of the internal cistern (Guarín et al., 2017), and it is expected that 

teat sphincters in animals with wider cisterns do not close completely, leaving a 

channel open for pathogens, thus increasing the risk of suffering mastitis (Seykora 

and McDaniel, 1985). In contrast, UW (rp = −0.11, P < 0.001) and TP (rp = −0.13, 

P < 0.001) were negatively correlated with SCS, but these 2 values were low, and 

these 2 traits in other studies do not show strong genetic correlations with SCS 

(Legarra and Ugarte, 2005; Pérez-Cabal et al., 2013). Notably, UW (rp = 0.20–0.21, 

P < 0.001) and UD (rp = 0.29–0.32, P < 0.001) showed moderate positive 

correlations with milk yield. Pérez-Cabal et al., 2013 found moderate to high and 

positive phenotypic correlations between milk yield and udder width (rp = 0.29) and 

udder depth (rp = 0.47) in Spanish Assaf sheep, and Legarra and Ugarte, 2005 

reported a strong positive genetic correlation between milk yield and udder depth 

(rg = 0.43). It is reasonable to infer that goats with wider and deeper udders produce 

more milk. 

Phenotypic correlations between body conformation traits were generally high and 

positive. For instance, HT was correlated with CW (rp = 0.65, P < 0.001), RW (rp = 

0.67, P < 0.001), and ANG (rp = 0.42, P < 0.001); and CW showed positive 

correlations with BD (rp = 0.41, P < 0.001), RW (rp = 0.74, P < 0.001), and ANG 

(rp = 0.68, P < 0.001). Zujovic et al., 2011 also observed high phenotypic 

correlations between body traits measured in Balkan goats, and Chacón et al., 2011 

observed a similar trend in Cuban goats. In general, taller goats are also bigger and 

have a wider chest and rump. We observed moderate positive correlations between 
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CW and BD and milk yield (rp = 0.2–0.3, P < 0.001) and between RW and milk 

yield (rp = 0.15–0.2, P < 0.001). In cows, individuals with a wider rump and 

increased space across their hooks and pins are reported to accommodate a higher 

and wider udder (Campbell and Marshall, 2016). These results suggest that the 

increase in udder capacity leads to a higher milk yield while decreasing the 

percentages of solid milk components (% lactose, % fat, and % protein). There are 

also indications that cows with a short and round body often lack dairy character 

and udder capacity (Campbell and Marshall, 2016), supporting the positive 

correlation between ANG and milk yield observed in our Murciano-Granadina 

population. 

With regard to leg traits, MOB displayed a positive phenotypic correlation with 

RLR (rp = 0.42, P < 0.001) and RLS (rp = 0.23, P < 0.001). Interestingly, RLR and 

RLS showed low positive and low negative correlations with milk yield, 

respectively. McLaren et al., 2016 observed a correlation of 0.33 between back legs 

and milk yield at 305 d, whereas de la Fuente et al., 2011 estimated a small genetic 

correlation of −0.09 between the back legs and milk yield in Churra ewes. Our 

interpretation is that leg morphology could be associated with the predisposition of 

goats to lameness, a pathology that results in decreased milk production and often 

in the culling of the affected animal (Archer et al., 2010). 

Figure 1(A) Heatmap depicting Pearson correlations between morphological and 

milk yield phenotypes recorded in 811 Murciano-Granadina goats. The intensity of 

the color indicates the magnitude of the correlation. (B) Heatmap displaying the 

significance of the Pearson correlations shown in panel A. The intensity of the color 
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indicates the significance of the association. Traits: HT, height; CW, chest width; 

BD, body depth; RW, rump width; RA, rump angle; ANG, angularity; BQ, bone 

quality; RLR, rear legs rear view; RLS, rear legs side view; MOB, mobility; FUA, 

fore udder attachment; RUH, rear udder height; MSL, medial suspensory ligament; 

UW, udder width; UD, udder depth; TP, teat placement; TD, teat diameter; RMY, 

total milk yield; MY210, milk yield corrected at 210 d of milking; MY240, milk 

yield corrected at 240 d of milking; MY305, milk yield corrected at 305 d of 

milking. 
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Identification of Genetic Determinants for Udder Traits 

After performing the GWAS, we detected 2 genome-wide significant associations 

for the trait MSL (Table 1 and Figures 2A and 2B). We also found chromosome-

wide associations for the traits MSL (2 SNP), UW (1 SNP), UD (3 SNP), TP (4 

SNP), and TD (2 SNP), as shown in Table 1 and Supplemental Figures S4 

(Manhattan plots) and S5 (Q-Q plots; https://doi.org/10.3168/jds.2020-18461). No 

significant SNP was found for FUA or RUH. 

The rs268273468 (CHI 16: 69617700) marker, which was significantly associated 

with MSL at the genome-wide level of significance (Table 1 and Figure 2), is 

located less than 1 Mb from the lysophosphatidylglycerol acyltransferase 1 

(LPGAT1) gene (Supplemental Table S3; https://doi.org/10.3168/jds.2020-

18461). This gene encodes an enzyme involved in conversion of 

lysophosphatidylglycerol into phosphatidylglycerol, a membrane phospholipid that 

is a key precursor in the biosynthesis of cardiolipin (Yang et al., 2004). 

Interestingly, cardiolipin is located in the inner mitochondrial membrane and plays 

a fundamental role in maintaining mitochondrial membrane stability and dynamics 

as well as in regulating apoptosis (Paradies et al., 2014). Proper mitochondrial 

function, in turn, is essential to ensure the integrity of tendons and other connective 

tissues (Lowes et al., 2009; Thankam et al., 2018). With regard to rs268249346 

(CHI 28: 18321523), the other genome-wide significant SNP for MSL, we found 

that it maps close to the ADAM metallopeptidase with thrombospondin type 1 motif 

14 (ADAMTS14) locus (Supplemental Table S3). This gene has been reported to 

encode a procollagen N-proteinase that cleaves the amino-propeptide of 
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procollagen to allow the assembly of elongated and cylindrical collagen fibrils 

(Bekhouche and Colige, 2015), although one recent study indicates that the main 

role of this molecule is the regulation of the immune response (Dupont et al., 2018). 

Figure 2(A) Negative log10 P-values (y-axis) of the associations between SNPs 

and the medial suspensory ligament phenotype are plotted against the genomic 

location of each SNP marker (x-axis). Markers on different chromosomes are 

denoted by different colors. The blue line indicates the −log10(P-value) equivalent 

to a q-value of 0.05. (B) Quantile-quantile plot corresponding to the genome-wide 

corrected P-values of the genome-wide association study for the trait medial 

suspensory ligament and its lambda (λ) inflation factor. 
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We identified 12 SNP showing significant associations with udder traits at the 

chromosome-wide level (Table 1, Supplemental Figures S4 and S5). The 

activating transcription factor 3 (ATF3) gene is located close to the SNP 

rs268273468 (CHI 16: 69617700) associated with MSL (Supplemental Table S3). 

Interestingly, this gene modulates the synthesis of collagen I and III (Zhou et al., 

2011) and regulates matrix metalloproteinases, which are fundamental in the 

development, renewal, and remodeling of tendons (Guenzle et al., 2017). Another 

interesting association is that between the rs268288193 marker (CHI 19: 38362152) 

and TP. The region containing this SNP was associated with SCS in Saanen goats 

(Martin et al., 2018). Of note, Lund et al., 1994 reported that cows with bad teat 

placement tend to be more susceptible to mastitis. Less than 1 Mb from this SNP, 

we identified the suppressor of cytokine signaling 7 (SOCS7) gene (Supplemental 

Table S3), which inhibits prolactin, growth hormone, and leptin signaling (Martens 

et al., 2005). Members of this gene family are regulators of mammary gland 

physiology. For instance, in mice, SOCS1 and SOCS2 attenuate prolactin signaling, 

thus preventing premature lactation (Sutherland et al., 2007). In dairy sheep, a 

missense polymorphism (R96C) in SOCS2 is associated with mastitis susceptibility, 

while having a positive effect on milk production and BW (Rupp et al., 2015). This 

antagonistic relationship could be due to co-selection of alleles influencing milk 

yield and susceptibility to mastitis, due to a hitchhiking effect, or to pleiotropy 

(Oget et al., 2019). Moreover, SOCS3 is a key regulator of mammary gland 

involution (Sutherland et al., 2007). In dairy cattle, polymorphisms in SOCS7 have 

been associated with different milk traits such as protein yield and percentage and 

milk yield (Arun et al., 2015). 
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The collagen type XIV α1 chain (COL14A1) gene is located 0.1 Mb away from 

rs268281312 (CHI 14:868624), which was significantly associated with UD 

(Supplemental Table S3). This gene encodes a fibril-associated collagen that 

regulates fibrillogenesis (Lindholm et al., 2019). In the human mammary gland, 

large amounts of type XIV collagen have been found in interlobular stroma, which, 

compared with intralobular stroma, contains densely packed collagen (Atherton et 

al., 1998). This differential distribution of type XIV collagen might have an 

important effect on the architecture of the mammary connective tissue. 

Identification of Genetic Determinants for Body Conformation Traits 

Although we did not detect any genome-wide significant associations for body 

conformation traits, we found 19 SNPs at the chromosome-wide level significantly 

associated with ANG (4 SNP), RW (2 SNPs), RA (1 SNP), CW (5 SNP), HT (3 

SNP), BD (3 SNP), and BQ (1 SNP). These results are displayed in Table 2 and in 

Supplemental Figures S6 (Manhattan plots) and S7 (Q-Q plots; 

https://doi.org/10.3168/jds.2020-18461). 

Several of the aforementioned SNP map close to genes involved in bone 

homeostasis and skeletal development (Supplemental Table S3). For instance, 

rs268245664, which is associated with ANG, maps to the parathyroid hormone 1 

receptor (PTH1R) locus (Table 2, and Supplemental Table S3). This gene encodes 

a protein that acts as a receptor for parathyroid hormone (PTH) and parathyroid-

related peptide (PTHrP), 2 factors regulating mineral ion homeostasis (Mannstadt 

et al., 1999). The dysfunction of PTH1R is associated with diseases that affect 

skeletal development and calcium homeostasis (Mannstadt et al., 1999). With 

https://doi.org/10.3168/jds.2020-18461
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regard to the association between ANG and rs268265191 (CHI 1: 35829812), it is 

worth mentioning that this marker maps near to the ephrin receptor A3 gene 

(EPHA3; Supplemental Table S3). Ephrin receptors and their associated ligands 

are essential modulators of bone remodeling and they ensure adequate coupling 

between bone resorption and formation (Edwards and Mundy, 2008). Interestingly, 

the inactivation of the ephrin-B1 gene causes perinatal lethality, abdominal wall 

closure defects, and skeletal abnormalities, especially of the thoracic cage 

(Compagni et al., 2003). Another interesting gene is that encoding the CGG triplet 

repeat binding protein 1 (CGGBP1), which is located 1 Mb from rs268265191 (CHI 

1: 35829812; Supplemental Table S3). Polymorphisms in this gene are associated 

with several carcass traits in cattle (Calonge, 2004), having considerable effects on 

growth (Sevane et al., 2014). Moreover, Sevane et al., 2014 described a 

nonsynonymous mutation, rs477676137 (c.206A>G, 1: 36060631), in CGGBP1 

associated with an increase in pelvis width and withers height measured at 9 mo. In 

contrast, rs268255133 (CHI 18: 34112104), which was associated with RW, maps 

close to the cadherin 11 gene (CDH11; Supplemental Table S3), which modulates 

postnatal bone growth and osteoblast differentiation (Di Benedetto et al., 2010). 

Furthermore, rs268262472 (CHI 27: 38084358), which is associated with RA, lies 

near the spermatogenesis-associated 4 gene (SPATA4), which is also involved in 

promoting osteoblast differentiation (Wang et al., 2011). 

Another marker of interest is rs268285858 (CHI 22: 45075519). This SNP was 

associated with BD and is located close to the Wnt family member 5A (WNT5A) 

gene (Supplemental Table S3) that regulates planar cell polarity signaling during 
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embryonic development (Qian et al., 2007). Loss of this gene results in a shortened 

and widened cochlea in knockout mice embryos and severe shortening of the 

anterior-posterior axis and limb truncations due to abnormal convergent extension 

(Yamaguchi et al., 1999; Qian et al., 2007; Andre et al., 2015). Finally, 

rs268249930 (CHI 16: 26773653), which is associated with HT, co-localizes with 

DNAH14 (Supplemental Table S3), which encodes an axonemal dynein heavy 

chain. Mutations in dynein genes can cause skeletal ciliopathies characterized by 

thoracic narrowing, short long bones, and pelvis dysplasia (Yildiz, 2018). 
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Table 1. Genome-wide and chromosome-wide significant associations between SNPs and udder traits (MSL, medial suspensory 

ligament; TD, teat diameter; TP, teat placement; UD, udder depth; UW, udder width) recorded in 811 Murciano-Granadina goats. 

  Trait Chr1 rs2 Pos3 A14 MAF5 β ± SE6 P-value7 q-value8 PVE9 

G
en

o
m

e 

W
id

e 

 

MSL 

16 rs268273468 69,617,700 C 0.469 -0.220 ± 0.045 1.45E-06 0.034 0.010 

28 rs268249346 18,321,523 A 0.485 -0.241 ± 0.049 

1.28E-06 0.034 

0.008 

C
h

ro
m

o
so

m
e 

W
id

e
 

MSL 16 rs268273468 69,617,700 C 0.469 -0.220 ± 0.045 1.45E-06 0.002 0.010 

28 rs268249346 18,321,523 A 0.485 -0.241 ± 0.049 1.28E-06 0.001 0.008 

TD 28 rs268248647 9,579,785 G 0.460 -0.214 ± 0.054 6.93E-05 0.042 0.007 

28 rs268243765 10,586,645 G 0.404 -0.215 ± 0.055 9.45E-05 0.042 0.007 

TP 9 rs268282545 20,855,427 G 0.498 -0.208 ± 0.047 1.09E-05 0.020 0.009 

19 rs268288193 38,362,152 G 0.181 0.243 ± 0.059 4.05E-05 0.047 0.006 

25 rs268246864 40,499,453 G 0.391 -0.205 ± 0.047 1.32E-05 0.011 0.009 

26 rs268291440 37,970,238 A 0.316 -0.238 ± 0.052 5.33E-06 0.005 0.008 

UD 14 rs268281312 868,624 A 0.263 0.216 ± 0.051 2.83E-05 0.041 0.008 

14 rs268276674 90,209,603 A 0.480 0.193 ± 0.047 4.48E-05 0.041 0.009 

15 rs268268821 47,457,448 A 0.430 -0.207 ± 0.050 3.14E-05 0.049 0.008 

UW 27 rs268251218 10,045,474 G 0.444 0.277 ± 0.062 1.00E-05 0.009 0.005 
1Chr, chromosome; 2rs, identifier code of the SNP according to the RefSNP database; 3Pos, position in base pairs; 4A1, minority 

allele; 5MAF, allele frequency; 6β ± SE, allelic substitution effect ± standard error; 7P-value, raw P-values; 8q-value, P-values 

corrected for multiple testing using a false discovery rate approach; 9PVE, percentage of proportion of variance in phenotype 

explained by a given SNP. 
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Table 2. Chromosome-wide significant associations between SNPs and body traits (ANG, angularity; BD, body depth; BQ, bone 

quality; CW, chest width; HT, height; RA, rump angle; RW, rump width) recorded in 811 Murciano-Granadina goats. 
 

Trait Chr1 rs2 Pos3 A14 MAF5 β ± SE6 P-value7 q-value8 PVE9 

C
h

ro
m

o
so

m
e 

W
id

e
 

ANG 1 rs268265191 35,829,812 G 0.496 -0.199 ± 0.045 0.032 4.980 0.010 

1 rs268280713 135,255,901 A 0.352 -0.200 ± 0.048 0.049 4.504 0.009 

22 rs268245662 52,518,237 A 0.074 -0.358 ± 0.083 0.010 4.759 0.003 

22 rs268245664 52,649,718 G 0.043 -0.512 ± 0.105 0.001 5.900 0.002 

BD 9 rs268236956 24,849,991 G 0.281 0.224 ± 0.050 0.012 5.161 0.008 

13 rs268290607 55,121,535 A 0.394 -0.190 ± 0.045 0.044 4.553 0.010 

22 rs268285858 45,075,519 G 0.48 -0.180 ± 0.044 0.045 4.393 0.011 

BQ 15 rs268289470 13,689,629 A 0.394 0.217 ± 0.052 0.012 5.109 0.008 

CW 3 rs268243320 53,360,997 C 0.139 -0.265 ± 0.062 0.044 4.715 0.005 

7 rs268240258 51,615,185 A 0.311 -0.214 ± 0.045 0.006 5.548 0.010 

17 rs268248977 26,865,599 A 0.454 0.174 ± 0.040 0.021 4.824 0.013 

17 rs268248975 26,942,955 G 0.252 0.193 ± 0.049 0.044 4.022 0.008 

17 rs268264934 58,534,119 G 0.494 0.171 ± 0.041 0.027 4.411 0.012 

HT 16 rs268249920 26,376,843 A 0.419 0.172 ± 0.043 0.031 4.213 0.011 

16 rs268249930 26,773,653 G 0.348 -0.207 ± 0.044 0.005 5.477 0.011 

16 rs268236696 59,779,757 A 0.126 -0.238 ± 0.059 0.031 4.262 0.006 

RA 27 rs268262472 38,084,358 G 0.207 -0.255 ± 0.063 0.044 4.299 0.005 

RW 17 rs268264930 58,698,058 G 0.359 0.182 ± 0.040 0.009 5.190 0.013 

18 rs268255133 34,112,104 G 0.134 -0.259 ± 0.055 0.003 5.553 0.007 
1Chr, chromosome; 2rs, identifier code of the SNP according to the RefSNP database; 3Pos, position in base pairs; 4A1, minority 

allele; 5MAF, allele frequency; 6β ± SE, allelic substitution effect ± standard error; 7P-value, raw P-values; 8q-value, P-values 

corrected for multiple testing using a false discovery rate approach; 9PVE, percentage of proportion of variance in phenotype 

explained by a given SNP. 
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Identification of Genetic Determinants for Leg Structure Traits 

No genome-wide significant SNP was found for leg structure traits, but 7 SNP 

showed significant associations at the chromosome-wide level. These findings are 

reported in Table 3 as well as in Supplemental Figures S8 (Manhattan plot) and 

S9 (Q-Q plot; https://doi.org/10.3168/jds.2020-18461). For the MOB trait, an 

association was found with rs268236663 (CHI 2:16211260), located 600 kb from 

the endothelin converting enzyme like 1 (ECEL1) gene (Supplemental Table S3), 

which encodes an endopeptidase member of the M13 family involved in the 

regulation of neuropeptide and peptide hormone activity. This molecule has an 

important function in the development of the neuromuscular junctions of the limbs 

in mice (Nagata et al., 2016). Mice lacking this gene display poor arborization of 

the neuromotor nerves and a significant reduction of the number of neuromuscular 

junctions (Nagata et al., 2016). In humans, digital arthrogryposis is caused by 

mutations in ECEL1, and affected individuals show limited flexion of the knee and 

fingers as well as muscular atrophy (Dieterich et al., 2013). 

Another interesting association was that between RLR and rs268286224 (CHI 

24:42536581), which is positioned near the gene encoding piezo type 

mechanosensitive ion channel component 2 (PIEZO2; Supplemental Table S3), 

which is also involved in the etiology of digital arthrogryposis (Delle Vedove et al., 

2016). Homozygous individuals for mutations inactivating PIEZO2 suffer from 

arthrogryposis and scoliosis (Haliloglu et al., 2017), while carriers of gain-of-

function mutations can present multiple congenital contractures of limbs and 
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variable absence of cruciate knee ligaments, among other symptoms (Coste et al., 

2013). 

The Genomic Architecture of Morphological Traits 

Comparing our results with those obtained by Martin et al., 2018 and Mucha et al., 

2018, we can state that there is a general lack of positional coincidence between the 

genomic regions associated with conformation traits in the aforementioned studies. 

Furthermore, in the study of Martin et al., 2018, different regions were identified in 

the Alpine and Saanen breeds as being associated with body phenotypes, suggesting 

that this lack of concordance is not the result of technical factors. Indeed, we found 

only 2 SNP displaying genome-wide significant associations with morphological 

traits. Such limited results are probably due to the fact that inheritance of 

morphological traits in goats is highly polygenic, with many genetic variants having 

small effects determining phenotypic variation. In other words, the success of 

GWAS largely depends on the genomic architecture of the trait rather than on the 

magnitude of its heritability. Stature is a good example of this because it is a highly 

heritable and, at the same time, a highly polygenic trait. In cattle, 163 genomic 

regions associated with stature have been detected but they explain only 13.8% of 

the phenotypic variance (Bouwman et al., 2018). Similarly, in humans, at least 180 

genetic markers mostly segregating in populations of European descent explain 

∼10% of the variance in height, a phenotype that has high heritability close to ∼0.8 

(Yang et al., 2010). This remarkable gap between genealogical heritability and the 

percentage of the phenotypic variance explained by the SNPs is caused, at least in 

part, by the existence of hundreds or thousands of genetic determinants with small 
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phenotypic effects on stature. Similar reasoning can probably be made for the 

majority of body, leg, and udder morphological traits, because with the population 

sizes often used in bovine, ovine or caprine GWAS, the number of significant hits 

is generally very low (Schmid and Bennewitz, 2017). 

Currently, we do not know whether the lack of positional concordance between 

GWAS for morphology traits recorded in goats is due to the existence of a 

substantial genetic heterogeneity across populations or to the modest size of the 

populations used in GWAS, a circumstance that limits our ability to detect variants 

with small effects that explain the majority of the phenotypic variance of 

morphological traits. Indeed, large GWAS performed in humans have demonstrated 

that many of the genetic variants that are associated with height are shared between 

individuals of European and African descent (N'Diaye et al., 2011), reinforcing the 

idea that the magnitude of genetic heterogeneity between populations is greatly 

reduced when large sample sizes are used in GWAS. 
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Table 3. Chromosome-wide significant associations between SNPs and leg traits (MOB, mobility; RLR, rear legs rear view; RLS, rear 

legs side view) recorded in 811 Murciano-Granadina goats. 

1Chr, chromosome; 2rs, identifier code of the SNP according to the RefSNP database; 3Pos, position in base pairs; 4A1, minority 

allele; 5MAF, allele frequency; 6β ± SE, allelic substitution effect ± standard error; 7P-value, raw P-values; 8q-value, P-values 

corrected for multiple testing using a false discovery rate approach; 9PVE, proportion of variance in phenotype explained by a given 

SNP. 

 
Trait Chr1 rs2 Pos3 A14 MAF5 β ± SE6 P-value7 q-value8 PVE9 

C
h

ro
m

o
so

m
e 

W
id

e 

MOB 2 rs268236663 16,211,260 G 0.237 0.325 ± 0.072 8.13E-06 0.022 0.004 

RLR 17 rs268258221 21,284,278 G 0.367 -0.255 ± 0.061 2.98E-05 0.041 0.006 

19 rs268288174 39,252,784 G 0.188 0.340 ± 0.074 4.69E-06 0.005 0.004 

24 rs268259571 38,761,188 A 0.422 -0.278 ± 0.065 1.78E-05 0.023 0.005 

24 rs268286224 42,536,581 A 0.117 -0.376 ± 0.092 4.26E-05 0.027 0.002 

RLS 3 rs268254620 8,818,355 G 0.356 -0.188 ± 0.046 4.41E-05 0.050 0.010 

3 rs268285963 43,496,497 A 0.3 0.211 ± 0.048 1.20E-05 0.027 0.009 



 

121 

Conclusions 

The number of hits detected in our GWAS for body conformation, udder, and leg 

traits was quite limited, a result that agrees well with previous studies. This outcome 

probably reflects the highly polygenic nature of morphological traits in ruminants. 

In comparing our results with previous reports, we also detected low positional 

concordance. This could be the consequence of genetic heterogeneity in the genetic 

determinism of morphological traits or because the GWAS carried out to date are 

underpowered to reliably detect the genetic determinants of such phenotypes. 

Despite these limitations, we identified several genes related to collagen synthesis 

(ATF3, ADAMTS14, and COL14A1), growth (CGGBP1), development (WNT5A 

and DNAH14), bone homeostasis and remodeling (PTH1R, CDH11, SPATA4, and 

EPHA3), limb development (ECEL1 and PIEZO2), and mammary physiology 

(SOCS7) mapping close to GWAS hits. Such information, combined with candidate 

gene sets generated in other GWAS, if possible with much larger reference 

populations, could provide valuable clues about the identity of the loci shaping the 

body, udder, and leg morphology of goats. 

Acknowledgments 

The authors are indebted to the Asociación Nacional de Criadores de Caprino de 

Raza Murciano-Granadina (Caprigran) for their cooperation in this study, 

specifically to Miguel García García and Teresa Novo Díaz, who collected all blood 

samples, and to Antonio Martín Ramírez who recorded all linear score 

measurements. This research was funded by the European Fund for Regional 

Development/Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal 



3   |   PAPERS AND STUDIES  

122 

de Investigación/ Project Reference (AGL2016-76108-R). We acknowledge the 

financial support from the Spanish Ministry of Economy and Competitiveness, 

through the “Severo Ochoa Programme for Centres of Excellence in R&D” 2016-

2019 (SEV-2015-0533), and from the CERCA programme of the Generalitat de 

Catalunya. Emilio Mármol-Sánchez was funded with an FPU PhD grant awarded 

by the Spanish Ministry of Education (FPU15/01733). Maria Gracia Luigi-Sierra 

was funded with an FPI PhD grant from the Spanish Ministry of Economy and 

Competitivity (BES-2017-079709). The authors have not stated any conflicts of 

interest. 

References 

Andre, P., H. Song, W. Kim, A. Kispert, and Y. Yang. 2015. WNT5A and WNT11 

regulate mammalian anterior-posterior axis elongation. Development 142:1516–

1527. https://doi.org/10.1242/dev.119065. 

Archer, S. C., M. J. Green, and J. N. Huxley. 2010. Association between milk yield 

and serial locomotion score assessments in UK dairy cows. J. Dairy Sci. 93:4045–

4053. https://doi.org/10.3168/jds.2010-3062. 

Arun, S. J., P. C. Thomson, P. A. Sheehy, M. S. Khatkar, H. W. Raadsma, and P. 

Williamson. 2015. Targeted analysis reveals an important role of JAK-STAT-

SOCS genes for milk production traits in Australian dairy cattle. Front. Genet. 

6:342. https://doi.org/10.3389/fgene.2015.00342. 

Atherton, A. J., M. J. Warburton, M. J. O’Hare, P. Monaghan, D. Schuppan, and B. 

A. Gusterson. 1998. Differential expression of type XIV collagen/undulin by 

human mammary gland intralobular and interlobular fibroblasts. Cell Tissue Res. 

291:507–511.https://doi.org/10.1007/s004410051020. 

Aulchenko, Y. S., S. Ripke, A. Isaacs, and C. M. van Duijn. 2007. GenABEL: An 

R library for genome-wide association analysis. Bioinformatics 23:1294–1296. 

https://doi.org/10.1093/bioinformatics/btm108. 



3.2   |   PAPER I I  

123 

Bastin, C., and N. Gengler. 2013. Genetics of body condition score as an indicator 

of dairy cattle fertility: A review. Biotechnol. Agron. Soc. Environ. 17:64–75. 

Bekhouche, M., and A. Colige. 2015. The procollagen N-proteinases ADAMTS2, 

3 and 14 in pathophysiology. Matrix Biol. 44–46:46–53. 

https://doi.org/10.1016/j.matbio.2015.04.001. 

Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate—A 

practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57:289–300. 

https://doi.org/10.1111/j.2517-6161.1995.tb02031.x. 

Bickhart, D. M., B. D. Rosen, S. Koren, B. L. Sayre, A. R. Hastie, S. Chan, J. Lee, 

E. T. Lam, I. Liachko, S. T. Sullivan, J. N. Burton, H. J. Huson, J. C. Nystrom, C. 

M. Kelley, J. L. Hutchison, Y. Zhou, J. Sun, A. Crisà, F. A. Ponce De León, J. C. 

Schwartz, J. A. Hammond, G. C. Waldbieser, S. G. Schroeder, G. E. Liu, M. J. 

Dunham, J. Shendure, T. S. Sonstegard, A. M. Phillippy, C. P. Van Tassell, and T. 

P. L. Smith. 2017. Single-molecule sequencing and chromatin conformation 

capture enable de novo reference assembly of the domestic goat genome. Nat. 

Genet. 49:643–650. https://doi.org/10.1038/ng.3802.  

Boettcher, P. J., J. C. M. Dekkers, and B. W. Kolstad. 1998. Development of an 

udder health index for sire selection based on somatic cell score, udder 

conformation, and milking speed. J. Dairy Sci. 81:1157–1168. 

https://doi.org/10.3168/jds.S0022-0302(98)75678 -4.  

Bouwman, A. C., H. D. Daetwyler, A. J. Chamberlain, C. H. Ponce, M. Sargolzaei, 

F. S. Schenkel, G. Sahana, A. Govignon-Gion, S. Boitard, M. Dolezal, H. Pausch, 

R. F. Brøndum, P. J. Bowman, B. Thomsen, B. Guldbrandtsen, M. S. Lund, B. 

Servin, D. J. Garrick, J. Reecy, J. Vilkki, A. Bagnato, M. Wang, J. L. Hoff, R. D. 

Schnabel, J. F. Taylor, A. A. E. Vinkhuyzen, F. Panitz, C. Bendixen, L. E. Holm, 

B. Gredler, C. Hozé, M. Boussaha, M. P. Sanchez, D. Rocha, A. Capitan, T. 

Tribout, A. Barbat, P. Croiseau, C. Drögemüller, V. Jagannathan, C. Vander Jagt, 

J. J. Crowley, A. Bieber, D. C. Purfield, D. P. Berry, R. Emmerling, K. U. Götz, M. 

Frischknecht, I. Russ, J. Sölkner, C. P. Van Tassell, R. Fries, P. Stothard, R. F. 

Veerkamp, D. Boichard, M. E. Goddard, and B. J. Hayes. 2018. Meta-analysis of 

genome-wide association studies for cattle stature identifies common genes that 

https://doi.org/10.1016/j.matbio.2015.04.001


3   |   PAPERS AND STUDIES  

124 

regulate body size in mammals. Nat. Genet. 50:362–367. https://doi.org/10.1038/ 

s41588-018-0056-5.  

Calonge, M. E. 2004. Identificación de genes con expresión diferencial en tejido 

muscular de bovinos pertenecientes a los tres genotipos de la miostatina (mutación 

nt821(del11)). PhD Thesis. Universidad Complutense de Madrid, Spain.  

Campbell, J. R., and R. T. Marshall. 2016. Dairy Production and Processing: The 

Science of Milk and Milk Products. 1st ed. Waveland Press Inc., Long Grove, IL.  

Capote, J., A. Argüello, N. Castro, J. L. López, and G. Caja. 2006. Short 

communication: Correlations between udder morphology, milk yield, and milking 

ability with different milking frequencies in dairy goats. J. Dairy Sci. 89:2076–

2079. https://doi.org/10.3168/ jds.S0022-0302(06)72276-7.  

Castañeda-Bustos, V. J., H. H. Montaldo, M. Valencia-Posadas, L. Shepard, S. 

Pérez-Elizalde, O. Hernández-Mendo, and G. TorresHernández. 2017. Linear and 

nonlinear genetic relationships between type traits and productive life in US dairy 

goats. J. Dairy Sci. 100:1232–1245. https://doi.org/10.3168/jds.2016-11313.  

Chacón, E., F. Macedo, F. Velázquez, S. R. Paiva, E. Pineda, and C. McManus. 

2011. Morphological measurements and body indices for Cuban Creole goats and 

their crossbreds. Rev. Bras. Zootec. 40:1671. https://doi.org/10.1590/S1516-

35982011000800007.  

Chang, C. C., C. C. Chow, L. C. A. M. Tellier, S. Vattikuti, S. M. Purcell, and J. J. 

Lee. 2015. Second-generation PLINK: rising to the challenge of larger and richer 

datasets. Gigascience 4:7. https: //doi.org/10.1186/s13742-015-0047-8.  

Compagni, A., M. Logan, R. Klein, and R. H. Adams. 2003. Control of skeletal 

patterning by EphrinB1-EphB interactions. Dev. Cell 5:217–230. 

https://doi.org/10.1016/S1534-5807(03)00198-9.  

Coste, B., G. Houge, M. F. Murray, N. Stitziel, M. Bandell, M. A. Giovanni, A. 

Philippakis, A. Hoischen, G. Riemer, U. Steen, V. M. Steen, J. Mathur, J. Cox, M. 

Lebo, H. Rehm, S. T. Weiss, J. N. Wood, R. L. Maas, S. R. Sunyaev, and A. 

Patapoutian. 2013. Gain-of-function mutations in the mechanically activated ion 

channel PIEZO2 cause a subtype of distal arthrogryposis. Proc. Natl. Acad. Sci. 

USA 110:4667–4672. https://doi.org/10.1073/ pnas.1221400110.  

https://doi.org/10.3168/jds.2016-11313
https://doi.org/10.1590/S1516-35982011000800007
https://doi.org/10.1590/S1516-35982011000800007
https://doi.org/10.1016/S1534-5807(03)00198-9


3.2   |   PAPER I I  

125 

de la Fuente, L. F., C. Gonzalo, J. P. Sánchez, R. Rodríguez, J. A. Carriedo, and F. 

S. Primitivo. 2011. Genetic parameters of the linear body conformation traits and 

genetic correlations with udder traits, milk yield and composition, and somatic cell 

count in dairy ewes. Can. J. Anim. Sci. 91:585–591. https://doi.org/10.4141/ 

cjas2010-031.  

Delgado, J. V., V. Landi, C. J. Barba, J. Fernández, M. M. Gómez, M. E. Camacho, 

M. A. Martínez, F. J. Navas, and J. M. León. 2018. Murciano-Granadina goat: A 

Spanish local breed ready for the challenges of the twenty-first century. Pages 205–

219 in Sustainable Goat Production in Adverse Environments. Vol. 2. J. Simões 

and C. Gutiérrez, ed. Springer International Publishing, Heidelberg, Germany.  

Delle Vedove, A., M. Storbeck, R. Heller, I. Hölker, M. Hebbar, A. Shukla, O. 

Magnusson, S. Cirak, K. M. Girisha, M. O’Driscoll, B. Loeys, and B. Wirth. 2016. 

Biallelic loss of proprioceptionrelated PIEZO2 causes muscular atrophy with 

perinatal respiratory distress, arthrogryposis, and scoliosis. Am. J. Hum. Genet. 

99:1206–1216. https://doi.org/10.1016/j.ajhg.2016.09.019.  

Di Benedetto, A., M. Watkins, S. Grimston, V. Salazar, C. Donsante, G. 

Mbalaviele, G. L. Radice, and R. Civitelli. 2010. N-cadherin and cadherin 11 

modulate postnatal bone growth and osteoblast differentiation by distinct 

mechanisms. J. Cell Sci. 123:2640–2648. https://doi.org/10.1242/jcs.067777. 

Dieterich, K., S. Quijano-Roy, N. Monnier, J. Zhou, J. Fauré, D. A. Smirnow, R. 

Carlier, C. Laroche, P. Marcorelles, S. Mercier, A. Mégarbané, S. Odent, N. 

Romero, D. Sternberg, I. Marty, B. Estournet, P. S. Jouk, J. Melki, and J. Lunardi. 

2013. The neuronal endopeptidase ECEL1 is associated with a distinct form of 

recessive distal arthrogryposis. Hum. Mol. Genet. 22:1483–1492. https: 

//doi.org/10.1093/hmg/dds514.  

Dupont, L., G. Ehx, M. Chantry, C. Monseur, C. Leduc, L. Janssen, D. Cataldo, M. 

Thiry, C. Jerome, J. M. Thomassin, B. Nusgens, J. Dubail, F. Baron, and A. Colige. 

2018. Spontaneous atopic dermatitis due to immune dysregulation in mice lacking 

ADAMTS2 and 14. Matrix Biol. 70:140–157. https://doi.org/10.1016/j.matbio 

.2018.04.002.  

https://doi.org/10.1016/j.ajhg.2016.09.019
https://doi.org/10.1242/jcs.067777


3   |   PAPERS AND STUDIES  

126 

Edwards, C. M., and G. R. Mundy. 2008. Eph receptors and ephrin signaling 

pathways: A role in bone homeostasis. Int. J. Med. Sci. 5:263–272. 

https://doi.org/10.7150/ijms.5.263.  

Egger-Danner, C., J. B. Cole, J. E. Pryce, N. Gengler, B. Heringstad, A. Bradley, 

and K. F. Stock. 2015. Invited review: Overview of new traits and phenotyping 

strategies in dairy cattle with a focus on functional traits. Animal 9:191–207. 

https://doi.org/10.1017/ S1751731114002614.  

Fernández Álvarez, J. 2017. Herramientas Informáticas para el Control y Gestión 

de Rebaños: Eskardillo, Kalifa, Inteka y Siamelk. VIII Foro Nacional del Caprino, 

Carmona (Sevilla), Spain. https: //www.cabrandalucia.com/inicio/foro-nacional-

caprino/viii-foro -nacional-del-caprino/.  

Guan, D., V. Landi, M. G. Luigi-Sierra, J. V. Delgado, X. Such, A. Castelló, B. 

Cabrera, E. Mármol-Sánchez, J. Fernández-Alvarez, J. L. R. de la Torre Casañas, 

A. Martínez, J. Jordana, and M. Amills. 2020. Analyzing the genomic and 

transcriptomic architecture of milk traits in Murciano-Granadina goats. J. Anim. 

Sci. Biotechnol. 11:35. https://doi.org/10.1186/s40104-020-00435-4.  

Guarín, J. F., M. G. Paixão, and P. L. Ruegg. 2017. Association of anatomical 

characteristics of teats with quarter-level somatic cell count. J. Dairy Sci. 100:643–

652. https://doi.org/10.3168/jds.2016 -11459.  

Guenzle, J., L. J. Wolf, N. W. C. Garrelfs, J. M. Goeldner, N. Osterberg, C. R. 

Schindler, J. E. Saavedra, and A. Weyerbrock. 2017. ATF3 reduces migration 

capacity by regulation of matrix metalloproteinases via NFκB and STAT3 

inhibition in glioblastoma. Cell Death Discov. 3:17006. 

https://doi.org/10.1038/cddiscovery.2017 .6.  

Haliloglu, G., K. Becker, C. Temucin, B. Talim, N. Küçüksąhin, M. Pergande, S. 

Motameny, P. Nürnberg, U. Aydingoz, H. Topaloglu, and S. Cirak. 2017. Recessive 

PIEZO2 stop mutation causes distal arthrogryposis with distal muscle weakness, 

scoliosis and proprioception defects. J. Hum. Genet. 62:497–501. https://doi.org/10 

.1038/jhg.2016.153.  

https://doi.org/10.7150/ijms.5.263
https://doi.org/10.1186/s40104-020-00435-4


3.2   |   PAPER I I  

127 

Huang, W., B. T. Sherman, and R. A. Lempicki. 2009. Systematic and integrative 

analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 

4:44–57. https://doi.org/10.1038/nprot .2008.211.  

Kinsella, R. J., A. Kähäri, S. Haider, J. Zamora, G. Proctor, G. Spudich, J. Almeida-

King, D. Staines, P. Derwent, A. Kerhornou, P. Kersey, and P. Flicek. 2011. 

Ensembl BioMarts: A hub for data retrieval across taxonomic space. Database 

(Oxford) 2011:bar030. https://doi.org/10.1093/database/bar030.  

Legarra, A., and E. Ugarte. 2005. Genetic parameters of udder traits, somatic cell 

score, and milk yield in Latxa sheep. J. Dairy Sci. 88:2238–2245. 

https://doi.org/10.3168/jds.S0022-0302(05)72899 -X.  

Lindholm, M., T. Manon-Jensen, and M. A. Karsdal. 2019. Type XIV collagen. 

Pages 121–125 in Biochemistry of Collagens, Laminins and Elastin. Vol. 2. M. A. 

Karsdal, ed. Academic Press, London, UK.  

Lowes, D. A., C. Wallace, M. P. Murphy, N. R. Webster, and H. F. Galley. 2009. 

The mitochondria targeted antioxidant MitoQ protects against fluoroquinolone-

induced oxidative stress and mitochondrial membrane damage in human achilles 

tendon cells. Free Radic. Res. 43:323–328. 

https://doi.org/10.1080/10715760902736275.  

Lund, T., F. Miglior, J. C. M. Dekkers, and E. B. Burnside. 1994. Genetic 

relationships between clinical mastitis, somatic cell count, and udder conformation 

in Danish Holsteins. Livest. Prod. Sci. 39:243–251. https://doi.org/10.1016/0301-

6226(94)90203-8.  

Manfredi, E., A. Piacere, P. Lahaye, and V. Ducrocq. 2001. Genetic parameters of 

type appraisal in Saanen and Alpine goats. Livest. Prod. Sci. 70:183–189. 

https://doi.org/10.1016/S0301 -6226(01)00180-4.  

Mannstadt, M., H. Jüppner, and T. J. Gardella. 1999. Receptors for PTH and 

PTHrP: Their biological importance and functional properties. Am. J. Physiol. 

277:F665–F675. https://doi.org/10 .1152/ajprenal.1999.277.5.F665.  

Martens, N., G. Uzan, M. Wery, R. Hooghe, E. L. Hooghe-Peters, and A. Gertler. 

2005. Suppressor of cytokine signaling 7 inhibits prolactin, growth hormone, and 

leptin signaling by interacting with STAT5 or STAT3 and attenuating their nuclear 

https://doi.org/10.1093/database/bar030
https://doi.org/10.1080/10715760902736275
https://doi.org/10.1016/0301-6226(94)90203-8
https://doi.org/10.1016/0301-6226(94)90203-8


3   |   PAPERS AND STUDIES  

128 

translocation. J. Biol. Chem. 280:13817–13823. https://doi.org/10.1074/jbc 

.M411596200.  

Martin, P., I. Palhière, C. Maroteau, V. Clément, I. David, G. T. Klopp, and R. 

Rupp. 2018. Genome-wide association mapping for type and mammary health traits 

in French dairy goats identifies a pleiotropic region on chromosome 19 in the 

Saanen breed. J. Dairy Sci. 101:5214–5226. https://doi.org/10.3168/jds.2017-

13625.  

McLaren, A., S. Mucha, R. Mrode, M. Coffey, and J. Conington. 2016. Genetic 

parameters of linear conformation type traits and their relationship with milk yield 

throughout lactation in mixed-breed dairy goats. J. Dairy Sci. 99:5516–5525. 

https://doi.org/10.3168/ jds.2015-10269.  

Miglior, F., A. Fleming, F. Malchiodi, L. F. Brito, P. Martin, and C. F. Baes. 2017. 

A 100-Year review: Identification and genetic selection of economically important 

traits in dairy cattle. J. Dairy Sci. 100:10251–10271. 

https://doi.org/10.3168/jds.2017-12968.  

Miller, S. A., D. D. Dykes, and H. F. Polesky. 1988. A simple salting out procedure 

for extracting DNA from human nucleated cells. Nucleic Acids Res. 16:1215. 

https://doi.org/10.1093/nar/16.3 .1215.  

Montaldo, H. H., and E. Manfredi. 2002. Organisation of selection programmes for 

dairy goats. No. 01–35 in 7th World Congr. Genet. Appl. Livest. Prod. Montpellier, 

France. 

Mucha, S., R. Mrode, M. Coffey, M. Kizilaslan, S. Desire, and J. Conington. 2018. 

Genome-wide association study of conformation and milk yield in mixed-breed 

dairy goats. J. Dairy Sci. 101:2213–2225. https://doi.org/10.3168/jds.2017-12919.  

N’Diaye, A., G. K. Chen, C. D. Palmer, B. Ge, B. Tayo, R. A. Mathias, J. Ding, M. 

A. Nalls, A. Adeyemo, V. Adoue, C. B. Ambrosone, L. Atwood, E. V. Bandera, L. 

C. Becker, S. I. Berndt, L. Bernstein, W. J. Blot, E. Boerwinkle, A. Britton, G. 

Casey, S. J. Chanock, E. Demerath, S. L. Deming, W. R. Diver, C. Fox, T. B. Harris, 

D. G. Hernandez, J. J. Hu, S. A. Ingles, E. M. John, C. Johnson, B. Keating, R. A. 

Kittles, L. N. Kolonel, S. B. Kritchevsky, L. Le Marchand, K. Lohman, J. Liu, R. 

C. Millikan, A. Murphy, S. Musani, C. Neslund-Dudas, K. E. North, S. Nyante, A. 

https://doi.org/10.3168/jds.2017-13625
https://doi.org/10.3168/jds.2017-13625
https://doi.org/10.3168/jds.2017-12968


3.2   |   PAPER I I  

129 

Ogunniyi, E. A. Ostrander, G. Papanicolaou, S. Patel, C. A. Pettaway, M. F. Press, 

S. Redline, J. L. Rodriguez-Gil, C. Rotimi, B. A. Rybicki, B. Salako, P. J. Schreiner, 

L. B. Signorello, A. B. Singleton, J. L. Stanford, A. H. Stram, D. O. Stram, S. S. 

Strom, B. Suktitipat, M. J. Thun, J. S. Witte, L. R. Yanek, R. G. Ziegler, W. Zheng, 

X. Zhu, J. M. Zmuda, A. B. Zonderman, M. K. Evans, Y. Liu, D. M. Becker, R. S. 

Cooper, T. Pastinen, B. E. Henderson, J. N. Hirschhorn, G. Lettre, and C. A. 

Haiman. 2011. Identification, replication, and fine-mapping of loci associated with 

adult height in individuals of African ancestry. PLoS Genet. 7:e1002298. https: 

//doi.org/10.1371/journal.pgen.1002298.  

Nagata, K., S. Kiryu-Seo, H. Tamada, F. Okuyama-Uchimura, H. Kiyama, and T. 

C. Saido. 2016. ECEL1 mutation implicates impaired axonal arborization of motor 

nerves in the pathogenesis of distal arthrogryposis. Acta Neuropathol. 132:111–

126. https://doi .org/10.1007/s00401-016-1554-0.  

Oget, C., G. Tosser-Klopp, and R. Rupp. 2019. Genetic and genomic studies in 

ovine mastitis. Small Rumin. Res. 176:55–64. https:// 

doi.org/10.1016/j.smallrumres.2019.05.011.  

Paradies, G., V. Paradies, V. De Benedictis, F. M. Ruggiero, and G. Petrosillo. 

2014. Functional role of cardiolipin in mitochondrial bioenergetics. Biochim. 

Biophys. Acta 1837:408–417. https://doi .org/10.1016/j.bbabio.2013.10.006.  

Pérez-Cabal, M. A., E. Legaz, I. Cervantes, L. F. de la Fuente, R. Martínez, F. 

Goyache, and J. P. Gutiérrez. 2013. Association between body and udder 

morphological traits and dairy performance in Spanish Assaf sheep. Arch. 

Tierzucht 56:430–442. https://doi.org/ 10.7482/0003-9438-56-042.  

Pugh, D. G., and A. N. Baird. 2012. Sheep and Goat Medicine. 2nd ed. Elsevier, St. 

Louis, MO. Qian, D., C. Jones, A. Rzadzinska, S. Mark, X. Zhang, K. P. Steel, X. 

Dai, and P. Chen. 2007. WNT5A functions in planar cell polarity regulation in 

mice. Dev. Biol. 306:121–133. https://doi.org/10 .1016/j.ydbio.2007.03.011.  

R Core Team. 2017. R: A Language and environment for statistical computing. R 

Found. Stat. Comput., Vienna, Austria. http//www .R-project.org/.  



3   |   PAPERS AND STUDIES  

130 

Rogers, G. W., G. L. Hargrove, T. J. Lawlor Jr., and J. L. Ebersole. 1991. 

Correlations among linear type traits and somatic cell counts. J. Dairy Sci. 74:1087–

1091. https://doi.org/10.3168/jds .S0022-0302(91)78259-3.  

Rupp, R., and D. Boichard. 1999. Genetic parameters for clinical mastitis, somatic 

cell score, production, udder type traits, and milking ease in first lactation Holsteins. 

J. Dairy Sci. 82:2198–2204. https: //doi.org/10.3168/jds.S0022-0302(99)75465-2.  

Rupp, R., and D. Boichard. 2003. Genetics of resistance to mastitis in dairy cattle. 

Vet. Res. 34:671–688. https://doi.org/10.1051/vetres: 2003020.  

Rupp, R., V. Clément, A. Piacere, C. Robert-Granié, and E. Manfredi. 2011. 

Genetic parameters for milk somatic cell score and relationship with production and 

udder type traits in dairy Alpine and Saanen primiparous goats. J. Dairy Sci. 

94:3629–3634. https://doi .org/10.3168/jds.2010-3694.  

Rupp, R., P. Senin, J. Sarry, C. Allain, C. Tasca, L. Ligat, D. Portes, F. Woloszyn, 

O. Bouchez, G. Tabouret, M. Lebastard, C. Caubet, G. Foucras, and G. Tosser-

Klopp. 2015. A point mutation in suppressor of cytokine signalling 2 (SOCS2) 

increases the susceptibility to inflammation of the mammary gland while associated 

with higher body weight and size and higher milk production in a sheep model. 

PLoS Genet. 11:e1005629. https://doi.org/10.1371/journal .pgen.1005629. 

Sánchez-Rodríguez, M. 2012. Valoración morfológica del ganado caprino lechero. 

Juzgamiento y calificación. 2nd ed. Editorial Servet, Zaragoza, Spain.  

Schmid, M., and J. Bennewitz. 2017. Invited review: Genome-wide association 

analysis for quantitative traits in livestock—A selective review of statistical models 

and experimental designs. Arch. Tierzucht 60:335–346. 

https://doi.org/10.5194/aab-60-335-2017.  

Sevane, N., E. Armstrong, P. Wiener, R. Pong Wong, S. Dunner, V. Amarger, D. 

Delourme, H. Levéziel, S. Boitard, B. Mangin, J. Cañón, M. L. Checa, D. García, 

M. E. Miranda, R. Pérez, M. Christensen, P. Ertbjerg, A. Crisá, C. Marchitelli, A. 

Valentini, S. Failla, S. Gigli, J. F. Hocquette, G. Nute, I. Richardson, J. L. Olleta, 

B. Panea, C. Sañudo, N. Razzaq, G. Renand, and J. L. Williams. 2014. 

Polymorphisms in twelve candidate genes are associated with growth, muscle lipid 

https://doi.org/10.5194/aab-60-335-2017


3.2   |   PAPER I I  

131 

profile and meat quality traits in eleven European cattle breeds. Mol. Biol. Rep. 

41:4721–4731. https://doi.org/10.1007/s11033-014-3343-y.  

Seykora, A. J., and B. T. McDaniel. 1985. Udder and teat morphology related to 

mastitis resistance: A review. J. Dairy Sci. 68:2087– 2093. 

https://doi.org/10.3168/jds.S0022-0302(85)81072-9.  

Shelton, M. 1978. Reproduction and breeding of goats. J. Dairy Sci. 61:994–1010. 

https://doi.org/10.3168/jds.S0022-0302(78)83680-7.  

Shim, H., D. I. Chasman, J. D. Smith, S. Mora, P. M. Ridker, D. A. Nickerson, R. 

M. Krauss, and M. Stephens. 2015. A multivariate genome-wide association 

analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 

caucasians. PLoS One 10:e0120758. 

https://doi.org/10.1371/journal.pone.0120758.  

Sutherland, K. D., G. J. Lindeman, and J. E. Visvader. 2007. Knocking off SOCS 

genes in the mammary gland. Cell Cycle 6:799–803. 

https://doi.org/10.4161/cc.6.7.4037.  

Thankam, F. G., I. S. Chandra, A. N. Kovilam, C. G. Diaz, B. T. Volberding, M. F. 

Dilisio, M. M. Radwan, R. M. Gross, and D. K. Agrawal. 2018. Amplification of 

mitochondrial activity in the healing response following rotator cuff tendon injury. 

Sci. Rep. 8:17027. https://doi.org/10.1038/s41598-018-35391-7.  

UniProt Consortium. 2019. UniProt: A worldwide hub of protein knowledge. 

Nucleic Acids Res. 47(D1):D506–D515. https://doi .org/10.1093/nar/gky1049.  

Wang, X., K. Harimoto, J. Liu, J. Guo, S. Hinshaw, Z. Chang, and Z. Wang. 2011. 

SPATA4 promotes osteoblast differentiation through Erk-activated Runx2 

pathway. J. Bone Miner. Res. 26:1964–1973. https://doi.org/10.1002/jbmr.394.  

Yamaguchi, T. P., A. Bradley, A. P. McMahon, and S. Jones. 1999. A WNT5A 

pathway underlies outgrowth of multiple structures in the vertebrate embryo. 

Development 126:1211–1223.  

Yang, J., B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders, D. R. Nyholt, P. 

A. Madden, A. C. Heath, N. G. Martin, G. W. Montgomery, M. E. Goddard, and P. 

M. Visscher. 2010. Common SNPs explain a large proportion of the heritability for 

human height. Nat. Genet. 42:565–569. https://doi.org/10.1038/ng.608.  

https://doi.org/10.1007/s11033-014-3343-y
https://doi.org/10.3168/jds.S0022-0302(85)81072-9
https://doi.org/10.3168/jds.S0022-0302(78)83680-7
https://doi.org/10.1371/journal.pone.0120758
https://doi.org/10.4161/cc.6.7.4037
https://doi.org/10.1038/s41598-018-35391-7
https://doi.org/10.1002/jbmr.394
https://doi.org/10.1038/ng.608


3   |   PAPERS AND STUDIES  

132 

Yang, Y., J. Cao, and Y. Shi. 2004. Identification and characterization of a gene 

encoding human LPGAT1, an endoplasmic reticulumassociated 

lysophosphatidylglycerol acyltransferase. J. Biol. Chem. 279:55866–55874. 

https://doi.org/10.1074/jbc.M406710200.  

Yildiz, A. 2018. Single-molecule dynein motor mechanics in vitro. Pages 113–135 

in Dynein Mechanics, Dysfunction, and Disease. 2nd ed. S. M. King, ed. Academic 

Press, London, UK.  

Zhou, H., D. F. Shen, Z. Y. Bian, J. Zong, W. Deng, Y. Zhang, Y. Y. Guo, H. Li, 

and Q. Z. Tang. 2011. Activating transcription factor 3 deficiency promotes cardiac 

hypertrophy, dysfunction, and fibrosis induced by pressure overload. PLoS One 

6:e26744. https://doi .org/10.1371/journal.pone.0026744.  

Zhou, X., and M. Stephens. 2012. Genome-wide efficient mixed-model analysis for 

association studies. Nat. Genet. 44:821–824. https:// doi.org/10.1038/ng.2310.  

Zujovic, M., N. Memisi, V. Bogdanovic, and Z. Tomic. 2011. Correlation between 

body measurements and milk production of goats in different lactations. 

Biotechnol. Anim. Husb. 27:217–225. https:// doi.org/10.2298/BAH1102217Z. 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1074/jbc.M406710200


3.2   |   PAPER I I  

133 

Supplementary Tables 

Supplemental Table S1. Descriptive statistics of body, udder and leg phenotypes 

recorded in 811 Murciano-Granadina goats and expressed as linear scores. 

Supplemental Table S2. Phenotypic Pearson correlations matrix among 

morphological and milk yield traits recorded in 811 Murciano-Granadina goats. The 

lower diagonal shows the correlation between each pair of traits, the upper diagonal 

indicates the p-value of each correlation.  

Supplemental Table S3. Distance in base pairs between SNPs showing significant 

associations with morphological traits and the closest functional and positional 

candidate gene identified in the goat ARS1 reference genome. 

Supplementary Figures 

Supplemental Figure S1. Principal component analysis based on the Illumina Goat 

SNP50 BeadChip (Illumina inc, San Diego, CA) genotypes of 811 Murciano-

Granadina distributed in 13 farms (each one encoded by a different color) and used 

in the current GWAS. 

Supplemental Figure S2. Histograms depicting the number of Murciano-

Granadina goats corresponding to each one of the linear score categories defining 

udder traits. The following abbreviations have been used, FUA, fore udder 

attachment; RUH, rear udder height; MSL, medial suspensory ligament; UW, 

udder width; UD, udder depth; TP, teat placement; TD, teat diameter. 

Supplemental Figure S3. Histograms depicting the number of Murciano-

Granadina goats corresponding to each one of the linear score categories defining 

body (A) and leg (B) traits. The following abbreviations have been used, HT, 

height; CW, chest width; BD, body depth; RW, rump width; RA, rump angle; 

ANG, angularity; BQ, bone. 

Supplemental Figure S4. Manhattan plots depicting negative log10 P-values (y-

axis) of the associations at the chromosome-wide level between SNPs and udder 

morphology traits plotted against the genomic location of each SNP marker (x-

axis). Only chromosomes hosting significant associations are shown. The dotted 

line indicates the -log10(P-value) equivalent to a q-value of 0.05. The following 
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abbreviations have been used, MSL, medial suspensory ligament; TD, teat 

diameter; TP, teat placement; UD, udder depth; UW, udder width. 

Supplemental Figure S5. Quantile-Quantile plots showing the expected 

distribution of the -log10 P-values (x-axis) compared to the observed -log10 P-values 

(y-axis) in the GWAS performed at the chromosome wide level for udder traits.The 

mean lambda (λ) inflation factor was 1.060 ± 0.201. The following abbreviations 

have been used, MSL, medial suspensory ligament; TD, teat diameter; TP, teat 

placement; UD, udder depth; UW, udder width. 

Supplemental Figure S6. Manhattan plots depicting negative log10 P-values (y-

axis) of the associations at the chromosome-wide level between SNPs and body 

morphology traits plotted against the genomic location of each SNP marker (x-

axis). Only chromosome hosting significant associations are shown. The dotted line 

indicates the -log10(P-value) equivalent to a q-value of 0.05. The following 

abbreviations have been used, ANG, angularity; BD, body depth; BQ, bone quality; 

CW, chest width; HT, height; RA, rump angle; RW, rump width. 

Supplemental Figure S7. Quantile-Quantile plots showing the expected 

distribution of the -log10 P-values (x-axis) compared to the observed -log10 P-values 

(y-axis) in the GWAS performed at the chromosome wide level for body traits. The 

mean lambda (λ) inflation factor was 1.090 ± 0.113. The following abbreviations 

have been used, ANG, angularity; BD, body depth; BQ, bone quality; CW, chest 

width; HT, height; RA, rump angle; RW, rump width. 

Supplemental Figure S8. Manhattan plots depicting negative log10 P-values (y-

axis) of the associations at the chromosome-wide level between SNPs and leg traits 

plotted against the genomic location of each SNP marker (x-axis). Only 

chromosomes hosting significant associations are shown. The dotted line indicates 

the -log10(P-value) equivalent to a q-value of 0.05. The following abbreviations 

have been used, MOB, mobility; RLR, rear legs rear view; RLS, rear legs side 

view. 

Supplemental Figure S9. Quantile-Quantile plots showing the expected 

distribution of the -log10 P-values (x-axis) compared to the observed -log10 P-values 

(y-axis) in the GWAS performed at the chromosome wide level for leg traits goats. 
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The mean lambda (λ) inflation factor was 1.098 ± 0.272. The following 

abbreviations have been used, MOB, mobility; RLR, rear legs rear view; RLS, rear 

legs side view. 
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Abstract  

In this study, we have characterised the microbiota of six soft fresh (H and M), soft 

semi-ripened (C and P), hard semi-ripened (B) and semi-hard aged (G) goat cheeses 

by sequencing the V3-V4 ultravariable region of the 16S rRNA gene. Our data 

show that lactic acid bacteria from the genera Lactococcus, Lactobacillus, 

Streptococcus, and Leuconostoc are predominant in all six goat cheeses. 

Furthermore, we have identified several psychrophilic taxa, like Pseudomonas, 

Pseudoalteromonas and Shewanella, that are highly abundant in fresh cheeses (H 

and M). The presence of such microorganisms is often explained by the post-

pasteurisation contamination of refrigerated milk. We have also compared α-

diversity indices between the core, middle part and rind microbiomes of all six goat 

cheeses and such analysis did not reveal any significant difference, thus challenging 

the notion that the core microbiome is less diverse than that of the rind due to 

increased acidity and anaerobiosis. Finally, the construction of a dendrogram based 

on Aitchison distances revealed that cheese samples cluster according to their 

manufacturing characteristics, with a clear distinction between fresh vs semi-

ripened or aged cheeses. This finding is consistent with the key impact of the 

ripening process on the composition of the cheese microbiome. 

Keywords: Microbiome, Metagenomics, Goat cheese, Bacteria, 16S rRNA, 

Cheese. 
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Introduction 

The complex network of interactions between enzymes, microorganisms and milk 

components determines, to a remarkable extent, the technological and organoleptic 

properties of cheese (Fox et al., 1995). Lactic acid bacteria (LAB), including 

mesophilic (e.g. Lactococcus lactis and Leuconostoc) and thermophilic (e.g. 

Streptococcus thermophilus) microorganisms, are regularly used as starters in 

cheese manufacturing to increase the acidity of milk to the desired point and to 

enhance the production of volatile and non-volatile compounds through proteolysis 

and lipolysis (Fox et al., 2017; Parente et al., 2017). Other microorganisms not 

added during the cheesemaking process can also have a strong impact on the 

physico-chemical and sensorial features of cheese (Fox et al., 2017).  

Besides the raw ingredients of milk and the use of specific starter cultures, the 

composition of the cheese microbiome is also affected by technological factors 

associated with the manufacturing process. For instance, milk pasteurisation 

decreases the diversity of the cheese microbiome since only thermoduric bacteria 

survive exposure to high temperatures (Salazar et al., 2018). Poor hygienic 

conditions in the dairy plant or insufficient post-pasteurisation refrigeration (> 7-

12ºC) might favour the growth of psychrotrophic bacteria, such as 

Enterobacteriaceae and Pseudomonadaceae, associated with spoilage (Sameli et 

al., 2021). The composition of cheese microbiome also changes during brining, rind 

development and ageing (Kamilari et al., 2019). For instance, cheese moisture and 

nutrient availability might become remarkably reduced during ripening, causing the 
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autolysis of certain bacteria (Salazar et al. 2018). There is also evidence that 

microbial diversity in the core part of cheese might be lower than in the rind, 

probably because the surface of the cheese is less acidic and more exposed to 

environmental influences (Montel et al., 2014). 

Sequencing of marker genes, such as the 16S rRNA locus, and whole metagenome 

sequencing have made it possible to uncover, with unprecedented resolution, the 

main features of the cheese microbiome. For instance, the meta-analysis of the 

microbiomes of 184 cheese samples from cattle, sheep and goats revealed that 

bacteria are overwhelmingly predominant (78%), followed by viruses (20%) and, 

to a much lower extent (2%), eukaryotes (Walsh et al., 2020). Lactic acid bacteria 

from the order Lactobacillales were the most abundant ones, being Lactococcus 

lactis (78%), Streptococcus thermophilus (43.5%) and Lactobacillus helveticus 

(37%) particularly prevalent (Walsh et al., 2020). High throughput sequencing 

techniques have also demonstrated the presence, in cheese, of microbes hard to 

detect with traditional culture methods and present in small proportions such as 

Pseudoalteromonas, Facklamia, Halomonas, Arthrobacter, Brachybacterium, and 

Vibrio, to mention a few (Kamilari et al., 2019).  

The majority of what is currently known about the cheese microbiome comes from 

the sequencing analysis of cow products (Afshari et al., 2020; Camargo et al., 2021; 

Dolci et al., 2014; Guidone et al., 2016; Salazar et al., 2018). In strong contrast, 

cheese microbiomes from goats have been much less characterised despite the fact 

that most of caprine milk is devoted to the production of cheese. The meta-analysis 
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of cheese microbiomes performed by Walsh et al. (2020) included a few goat cheese 

samples, although they were not the main focus of such full-scale metagenomics 

study, and the microbiomes of Gouda (Salazar et al., 2018) and Pélardon (Penland 

et al., 2021) cheeses have been reported. However, a thorough description and 

comparison of the microbial communities of a broader diversity of caprine cheese 

types is still lacking. In the current work, we have characterised the microbiomes 

of six Spanish commercial goat fresh and ripened cheeses with different textures 

(soft, semi-hard and hard) with the aim of providing a more comprehensive picture 

of the microbial diversity of this dairy product. 

Materials and methods 

Sample collection and DNA extraction. 

We acquired six commercial Spanish goat cheeses (Table 1) that were stored at 4ºC 

until processing. Three samples were retrieved from the rind, middle part and the 

core of each cheese by using sterilised instruments in a UV-irradiated cabinet to 

avoid external microbial contamination. Cheese sample homogenisation and DNA 

extraction were performed with the DNeasy PowerFood Microbial Kit (Qiagen, 

Redwood) in accordance with the instructions of the manufacturer with a slight 

modification i.e. the lysate was heated at 56ºC before vortex homogenisation. 

Library construction. 

To construct the libraries for sequencing, an initial PCR was performed by using 

the KAPA HiFi PCR Mix (Kapa Biosystems, Cape Town) to amplify the 
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hypervariable V3-V4 region of the bacterial 16S rRNA gene with the set of 

universal primers 5’-CCTACGGGNGGCWGCAG-3’ and 5’-

GACTACHVGGGTATCTAATCC-3’. Amplicons were purified with the AMPure 

XP beads (Beckman Coulter, Indianapolis). Afterwards, a second PCR was carried 

out to add Nextera adapters, with barcodes for multiplexed sequencing, to 

amplicons. Subsequently, the concentration of the PCR product was normalised and 

purified with the SequalPrep kit (ThermoFisher, Barcelona, Spain). The sequencing 

of the libraries was performed on an Illumina MiSeq equipment in order to generate 

2 × 301 bp reads. All library construction and sequencing tasks were performed at 

the Centre de Regulació Genòmica (CRG, Barcelona, Spain). 

Table 1. Main features of the six goat cheeses analysed in this study. 

Cheese 

ID 

Texture Rind Milk 

treatment 

Elaboration Fat 

content 

Production 

type 

H Soft - Pasteurization Fresh 21 % Industrial 

M Soft - Pasteurization Fresh 23 % Artisanal 

C Soft Mouldy Raw Semi-

ripened 

21 – 45 days 

? Artisanal 

P Soft Mouldy Pasteurization Semi-

ripened 

21 – 45 days 

55 % Artisanal 

B Hard Bloomy Pasteurization Semi-

ripened 

30 – 42 days 

55 % Artisanal 

G Semi-

hard 

Natural 

& thin 

coat of 

wax 

Pasteurization Aged 

180 days 

35 % Artisanal 
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Quality control of the data. 

The quality control of the data was conducted with the QIIME2 version 2021.4 

software (Bolyen et al., 2019). Demultiplexed sequences were retrieved as fastq 

files. Subsequently, primers were removed with the cutadapt plugin in QIIME2 

(Martin, 2011). Singletons and sequences with length and quality below 260 bp and 

20, respectively, were removed from the dataset. Reads were denoised and grouped 

into amplicon sequence variants (ASVs) using the DADA2 protocol 

(https://benjjneb.github.io/dada2/tutorial.html), and chimaeras were removed with 

the consensus method (Callahan et al., 2016). Filtered reads were aligned with 

MAFFT (Katoh and Standley, 2013) to generate phylogenetic trees. 

Taxonomical analysis. 

A taxonomical classifier was created using as reference DAIRYdb 2.0 (Meola et 

al., 2019), a manually curated database optimised for dairy product environments. 

The classifier was trained exclusively on the target reads generated with primers 

V3-V4 to improve its accuracy (Werner et al., 2012). Taxonomy was assigned to 

the identified ASVs using the feature-classifier classify-sklearn command of 

QIIME2 (Bolyen et al., 2019; Pedregosa et al., 2012). The unassigned features and 

those categorised as eukaryotes, archaea, mitochondria or bacteria with a taxonomy 

depth inferior to family, were removed. Barplots depicting the relative abundance 

of bacterial families and genera were built with R (R Core team, 2015). Bacterial 

taxa with relative abundances below 1% were catalogued as “Other”. 
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Microbial diversity analyses. 

The feature table, phylogenetic tree and metadata were exported to R as a phyloseq 

object using the QIIME2R package (Bolyen et al., 2019). Sequences were rarefied 

to a depth of 60,000 to avoid library size bias (Supplementary Figure 1). Chao1, 

Shannon and Faith’s phylogenetic diversity (Faith’s PD) α-diversity indices were 

estimated with the R packages Microbiome (Lahti and Shetty, 2019) and Picante 

(Kembel et al., 2010). The non-parametric Kruskal-Wallis test (Kruskal and Wallis, 

1952) was used to compare α-diversities between core, middle part and rind of all 

six cheeses. Bray-Curtis, unweighted Unifrac and weighted Unifrac β-diversity 

indices were estimated with the Vegan R package (Oksanen et al., 2022). 

Results and discussion 

Predominance of lactic acid bacteria (LAB) in goat cheeses. 

A total of 3,831,251 reads were obtained by sequencing 18 cheese samples 

(212,847.28 reads per sample on average). Sequencing data can be accessed at 

https://doi.org/10.6084/m9.figshare.20179727.v1. After applying quality control 

procedures and removing undesired taxa, we retained 1,639,816 reads assigned to 

283 ASVs for downstream analyses. Cheese microbiota was characterised at the 

genus level, because the sequencing of marker gene regions (such as 16S rRNA) 

allows a good taxonomical resolution up to such a level (Knight et al., 2018).  

Similar to data reported in cow and ewe (Choi et al., 2020b; Walsh et al., 2020), the 

main genera identified in all goat cheese samples corresponded to LAB commonly 

https://doi.org/10.6084/m9.figshare.20179727.v1
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used as starters in cheesemaking e.g. Lactococcus, Lactobacillus, Leuconostoc and 

Streptococcus (Figures 1 and 2). Lactic acid bacteria can catabolise lactose to lactic 

acid, a metabolite that decreases the pH of milk, improves curd formation and, at 

the same time, prevents the growth of pathogenic bacteria such as Listeria 

(Beresford et al., 2001; Coelho et al., 2014). Depending on the technological 

treatment of the cheese, LAB can originate from external addition as starter or come 

from the raw milk microbiota and behave as an endogenous starter (Quigley et al., 

2013).  

In a meta-analysis of cheese microbiomes, Walsh et al. (2020) showed that three 

bacterial species were the most prevalent in a wide repertoire of cheese samples i.e. 

Lactococcus lactis (78%), Streptococcus thermophilus (43.5%) and Lactobacillus 

helveticus (37%). Consistently, in our survey Streptococcus was very abundant in 

soft (cheese P, 48.38 – 63.48%) and hard (cheese B, 40.48 – 49.53%) semi-ripened 

samples as well as in semi-hard aged cheese G (40.90 – 48.23%). Thermophilic 

starters based on Streptococcus are commonly used to enhance flavour 

development because they hydrolyse αS1 and β caseins (Gomez et al., 1998), thus 

releasing amino acids and small peptides which are subsequently metabolised into 

flavour compounds e.g. esters, alcohols and aldehydes (Smit et al., 2005). 

The genus Lactococcus, a mesophilic starter, dominated the microbiota of soft fresh 

cheese M (relative abundance of 33.73 – 39.81%) and hard-paste semi-ripened 

cheese B (relative abundance of 43.95 – 51.93%), and it was also abundant in soft-

paste semi-ripened cheese C (relative abundance of 26.23 – 32.73%). The 
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Lactococcus genus was also highly prevalent (~40%) in goat Gouda cheese (Salazar 

et al. 2018). Lactococcus are sensitive to low pH (< 7) and temperatures over 42 ºC 

(Blaya et al., 2018), therefore, they are particularly abundant during the beginning 

of the ripening process. In Pélardon goat cheese, for instance, Lactococcus lactis 

abundance peaked at day 2 of ripening and then declined until becoming 

undetectable, neither in core nor rind, at three months of ripening (Penland et al. 

2021). 

Additional, but less prevalent, LAB genera were also detected in goat cheeses i.e. 

Fructilactobacillus (21.69 – 44.39% in soft semi-ripened cheese C), 

Lacticaseibacillus (22.70 – 44.61% in soft fresh cheese H and 34.01 – 44.26% in 

semi-hard aged cheese G) and Leuconostoc (18.24 – 19.16% and 3.43 – 18.66% in 

soft semi-ripened cheeses C and P). Lacticaseibacillus can inhibit the growth of 

undesired psychrotrophic bacteria (e.g. Pseudomonas), prolonging the shelf-life of 

cheese (Bassi et al., 2020). In Pélardon cheese, Lacticaseibacillus paracasei/casei 

happened to be the predominant species in cores at 62 and 90 days of ripening, 

while Leuconostoc was one of the most dominant genera during curdling (Penland 

et al. 2021). Leuconostoc bacteria are particularly relevant in cheesemaking because 

they can produce CO2, which forms “eyes” on the cheese surface, and they also 

synthesize volatile compounds, like diacetyl and acetoin, from lactate and citrate 

(Beresford and Williams, 2004).  

Non-LAB microorganisms frequently used as starters were also identified in the six 

goat cheeses under study. For instance, the flagellated Hafnia genus was present in 
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soft-paste ripened cheeses with mouldy rind (Figure 2), being particularly abundant 

in the rind of cheeses C (19.87%) and P (21.36%). Bacteria from this genus were 

not detected neither in Pélardon nor Gouda goat cheeses (Salazar et al. 2018, 

Penland et al. 2021), and this genus was also unreported in the large-scale meta-

analysis performed by Walsh et al (2020) evidencing its uncommonness in goat and 

cattle cheeses. Microorganisms from the genus Hafnia have been associated with 

food spoilage, nevertheless, certain species, like Hafnia alvei, are sometimes used 

as starters since they facilitate the development of flavour by enhancing proteolysis 

(Morales et al., 2003) and by generating volatile sulfur compounds (Irlinger et al., 

2012). Another non-LAB genus of importance is Staphylococcus (Walsh et al., 

2020), but its abundance in the six goat cheeses was quite low (0 – 0.64%). In 

contrast, Staphylococcus equorum was present in 28.9% of the cheese samples 

sequenced by Walsh et al. (2020), probably because this species is a frequent 

ingredient of starter cultures (Place et al., 2003).   

Presence of psychrophilic and/or halotolerant bacteria in cheese samples  

As shown in Figure 2, a high abundance of bacteria from the genera Pseudomonas 

and Pseudoalteromonas was detected in fresh soft goat cheeses H (13.92 – 39.80% 

Pseudomonas, 5.63 – 57.47% Pseudoalteromonas) and M (3.86 – 21.87% 

Pseudomonas, 0.44 – 4.32% Pseudoalteromonas), while Pseudomonas (but not 

Pseudoalteromonas) was abundant in soft semi-ripened cheeses P and C (0.84 – 

18.85% Pseudomonas). Pseudomonas are flagellated bacteria that can easily move 

along the fungal network of the rind (Zhang et al., 2018), so they are commonplace 
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in this compartment. In our study, Pseudomonas were more abundant in the rind of 

soft fresh M and soft semi-ripened C cheeses, but such trend was not observed in 

soft fresh H and soft semi-ripened P cheeses (Figure 2). Furthermore, Shewanella 

represented 8.78 – 13.51 % and 0.19 – 0.69 % of the microbiome of fresh M and H 

cheeses, respectively, while its presence in the ripened cheeses was negligible, if 

any (Figure 2). Shewanella is a milk contaminant known for producing a putrid 

odour due to the synthesis of volatile sulfides, amines, and the fishy-smelling 

compound trimethylamine (Stepaniak, 2022). 

 The presence of bacteria from the Pseudomonas, Pseudoalteromonas and 

Shewanella genera in several goat cheeses (Figures 2 and 3) might be due to the 

fact that these microorganisms are psychrophilic or psychrotolerant, being able to 

grow at very low temperatures. Before pasteurisation, raw milk is kept refrigerated 

both the farm and in the dairy plant, providing an opportunity for the growth of 

psychrotolerant bacteria, mainly from the genus Pseudomonas (De Jonghe et al., 

2011). The synthesis of thermoresistant extracellular proteases and lipases by these 

microorganisms can provoke the spoilage of pasteurised milk (De Jonghe et al., 

2011). On the other hand, post-pasteurisation contamination of refrigerated milk by 

Pseudomonas and other psychrophilic microorganisms present in the facilities or 

tools of the dairy plant might also occur (Martin et al., 2018).  
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Figure 1. Relative abundances of bacterial families identified in the rind, middle and core samples from soft fresh (H and M), soft 

semi-ripened (C and P), hard semi-ripened (B) and semi-hard aged (G) goat cheeses. Bacterial families with relative abundances below 

1% have been catalogued as “Other”. 
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Figure 2. Relative abundances of bacterial genera identified in the rind, middle part and core samples from soft fresh (H and M), soft semi-ripened 

(C and P), hard semi-ripened (B) and semi-hard aged (G) goat cheeses. Bacterial genera with relative abundances below 1% have been catalogued 

as “Other”. 
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Figure 3. Relative abundances of minority bacterial genera catalogued as “Other” (relative abundances below 1% when considering the whole 

microbiota) identified in the rind, medial part and core samples from fresh (H and M), soft semi-ripened (C and P), hard semi-ripened (B) and semi-

hard aged (G) goat cheeses.  
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Pseudoalteromonas, which is particularly abundant in the two fresh soft goat 

cheeses, is not only psychrophilic/psychrotolerant but also halotolerant, so we 

cannot rule out the possibility that microorganisms of this genus contaminated the 

salt used in cheese brining (Wolfe et al., 2014). Pseudoalteromona spp. have been 

implicated in the appearance of a putrid aroma in cheese due to the production of 

volatile sulfur compounds (Yeluri Jonnala et al., 2018), but in cheese aged and 

stored at low temperatures they can also participate in the synthesis of beneficial 

flavor compounds through lipolysis and proteolysis (Wolfe et al., 2014).  

Minority bacterial genera detected in cheese samples 

In the six goat cheeses, we have detected multiple low abundant (< 1%) bacterial 

genera. Among them, we have identified members of Bifidobacterium commonly 

used as probiotics in the cheese industry (Hayaloglu, 2022). The intake of probiotics 

benefits human health by enhancing the immune system and facilitating food 

digestion (Kechagia et al., 2013). We have also noticed the presence of bacteria 

from the genera Aeromonas, Clostridium, Klebsiella, Moraxella and Yersinia 

(Figures 2 and 3), which have psychrotrophic properties and might affect the 

quality and safety of cheese (Bintsis and Papademas, 2002; Gómez-Torres et al., 

2015; Marino et al., 2017; Sameli et al., 2021). Moraxella is a common spoilage 

microorganism of fresh meat (Gennari et al., 1992), while species from the genera 

Clostridium and Yersinia have been involved in food poisoning (Bintsis, 2017). 
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Several minority halophilic genera were present in goat cheeses at very low 

proportions (0.00001 – 5.1%) e.g. Acinetobacter, Brachybacterium, 

Brevibacterium, Vibrio, Psychrobacter, Flavobacterium and Corynebacterium 

(Figure 2 and 3). Although halophilic bacteria are sometimes associated with food 

spoilage, several of these genera are of technological interest. For instance, 

Acinetobacter microorganisms have a lipolytic effect during the maturation of 

Camembert cheese (Addis et al., 2001), and Brachybacterium, Brevibacterium and 

Psychrobacter produce volatile compounds correlating with a roasty to fruity aroma 

in cheese (Deetae et al., 2007). Moreover, Brevibacterium and Psychrobacter 

improve the flavour and the ripening of cheese and they are commonly found on 

the rind (Anast et al., 2019; Mayo et al., 2021). These bacterial genera have been 

also identified in cheeses from ewe and cow (Kothe et al., 2021). 

Richness, diversity and clustering of six goat cheeses 

The α-diversity analysis based on richness showed values of Chao1 that went from 

29 to 114.5 in goat cheeses (Figure 4 and Supplementary Table 1). Although the 

sample size per cheese in this study is limited, there is an evident trend in the 

richness of taxa associated with the ageing and type of cheese paste. A longitudinal 

analysis of the evolution of richness during Gouda cheesemaking supports this 

observation, as the highest richness was evidenced at the beginning of the process, 

before the addition of starter LAB, while richness significantly decreased during 

the manufacture and ageing of cheese (Choi et al., 2020a). As shown in Figure 4, 

The highest Shannon index was estimated for fresh cheese M (Shannon index = 
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2.46 – 2.89), while hard semi-ripened (B) and semi-hard aged (G) displayed the 

lowest values for this index (Shannon index of 1.15 – 1.26 and 1.29 – 1.62, 

respectively). Estimating diversity based on phylogenetic distances of the taxa 

yielded Faith PD indexes of 2.19–4.06, with the only exception of soft fresh cheese 

H (Faith’s PD = 5.17). Although it is assumed that the core of the cheese is less 

diverse than the rind because of its higher acidity and anaerobiosis (Choi et al., 

2020b), pairwise comparison of α-diversities between the core, middle and rind 

regions of cheeses sampled in our study did not yield any significant difference 

(Kruskal-Wallis test, P-value ranging from 0.26 to 1).  

Figure 4. α-diversity in the rind, middle part and core microbiomes of soft fresh (H 

and M), soft semi-ripened (C and P), hard semi-ripened (B) and semi-hard aged (G) 

goat cheeses: (a) richness (Chao1), (b) evenness (Shannon) and (c) phylogenetical 

diversity (Faith’s PD). 
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β-diversity indices, which reflect differences between microbial communities 

among samples, are depicted in Figure 5. The analysis based on non-phylogenetic 

Bray-Curtis distances (Figure 5a) showed that samples clustered according to the 

cheese type and not to the portion of the cheese sampled (i.e. core, middle part and 

rind). The PCoA visualisation of this metric made evident two defined clusters: one 

formed by soft fresh H and M samples, and the other one comprising soft semi-

ripened P and semi-hard aged G cheeses, while soft-semi-ripened C and hard semi-

ripened B cheeses were placed in separate locations in the plot (Figure 5a). The 

PCoA plot based on phylogenetic Unifrac distances, both weighted and 

unweighted, showed a consistent affinity between hard semi-ripened B and soft 

semi-ripened P cheeses (Figures 5b and 5c). Samples from the soft semi-ripened C 

cheese made from raw milk did not cluster with the other cheese types in all three 

analyses.  

In accordance with PCoA analyses, the clustering of the cheese samples in a 

dendrogram based on Aitchison distances and taking into account only the most 

abundant taxa (relative abundance > 1%) made possible to distinguish two principal 

groups (Figure 6a): one containing soft semi-ripened mouldy rind cheeses (C and 

P) and semi-hard aged cheese (G), and another group encompassing soft fresh (H 

and M) and hard semi-ripened (B) cheeses. The inclusion of the less common taxa 

(< 1%) in the analysis led to a pattern of clustering that was perfectly coherent with 

the classification of the cheese varieties portrayed in Table 1 (Figure 6b). One of 

the clusters comprised soft fresh cheeses (H and M), while the other one 
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encompassed semi-ripened and ripened cheeses (B, G, C and P). The two soft semi-

ripened cheeses (C and P) grouped in a secondary node.  

Figure 5. Principal coordinate analysis (PCoA) based on the β-diversity of core, 

middle and rind microbiomes of soft fresh (H and M), soft semi-ripened (C and P), 

hard semi-ripened (B) and semi-hard aged (G) goat cheeses. β-diversity was 

estimated on the basis of (a) non-phylogenetic (Bray-Curtis), (b) phylogenetic 

weighted by abundance (Weighted Unifrac) and (c) phylogenetic based on 

presence-absence of taxa (Unweigthed Unifrac) dissimilarity indices.  
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Figure 6. Dendrogram based on Aitchison distances between samples from soft 

fresh (H and M), soft semi-ripened (C and P), hard semi-ripened (B) and semi-hard 

aged (G) goat cheeses. Aitchison distances were estimated from the relative 

abundances of (a) Only taxa with abundances over 1% and (b) All major and 

minority (< 1%) taxa. 
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Conclusion 

Compared to previous studies focused on the microbiome of single goat cheeses 

(Gouda and Pélardon), here we provide a more comprehensive view about the 

composition, abundance and diversity of microbial communities in six caprine 

cheeses differing in terms of texture, ageing and other technological and 

organoleptic features. As a whole, we have detected 15 majority and 44 minority 

(< 1%) bacterial genera in the six goat cheeses.  Lactic acid bacteria from the 

Lactibacillaceae (Frutilactobacillus, Lactococcus and Lacticaseibacillus genera) 

and Streptococcaceae (Streptococcus genus) families are clearly predominant in all 

six goat cheeses. We have also found psychrophilic bacteria from the genera 

Pseudomonas and Shewanella, the presence of which is often explained by post-

pasteurisation contamination (sometimes associated with food spoilage), as well as 

of halophilic bacteria such as Pseudoalteromona, which can thrive in environments 

with high salinity. We did not find evidence of an increased microbial α-diversity 

in the rind, contrary to other reports indicating that the low pH and anaerobiosis of 

the inner parts of cheese result in a reduction of the diversity of microbial 

communities. Moreover, in a dendrogram cheese microbiomes clustered according 

to cheese type (fresh vs ripened) rather than to cheese portion (rind, middle and 

core), illustrating the strong impact of the ripening process on the composition of 

the goat cheese microbiome. 
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Abstract 

Background: 

Inbreeding depression can adversely affect traits related to fitness, reproduction and 

productive performance. Although current research suggests that inbreeding levels 

are generally low in most goat breeds, the impact of inbreeding depression on 

phenotypes of economic interest has only been investigated in a few studies based 

on genealogical data.  

Results 

We genotyped 1,040 goats with the Goat SNP50 BeadChip. This information was 

used to estimate different molecular inbreeding coefficients and characterise runs 

of homozygosity and homozygosity patterns. We detected 38 genomic regions with 

increased homozygosity as well as 8 ROH hotspots mapping to chromosomes 1, 2, 

4, 6, 14, 16 and 17. Eight hundred seventeen goats with available records for dairy 

traits were analysed to evaluate the potential consequences of inbreeding depression 

on milk phenotypes. Four regions on chromosomes 8 and 25 were significantly 

associated with inbreeding depression for the natural logarithm of the somatic cell 

count. Notably, these regions contain several genes related with immunity, such as 

SYK, IL27, CCL19 and CCL21. Moreover, one region on chromosome 2 was 

significantly associated with inbreeding depression for milk yield. 

Conclusions 

Although genomic inbreeding levels are low in Murciano-Granadina goats, 

significant evidence of inbreeding depression for the logarithm of the somatic cell 

count, a phenotype closely associated with udder health and milk yield, have been 
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detected in this population. Minimising inbreeding would be expected to augment 

economic gain by increasing milk yield and reducing the incidence of mastitis, 

which is one of the main causes of dairy goat culling. 

Keywords: Goat, Inbreeding, Milk yield, Murciano-Granadina, Somatic cell 

score.  
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Background  

Inbreeding is defined as the mating of individuals that are related to each other more 

closely than the average relationship within the concerned population [1]. In 

livestock species, the magnitude of inbreeding has been traditionally measured 

through genealogical information [2]. However, pedigree-based estimates are 

affected by the depth of the pedigree [2] because founders are assumed to be 

unrelated and non-inbred [3]. Consequently, inbreeding produced by distant 

ancestors not included in the pedigree is systematically ignored [4]. Another 

disadvantage of quantifying inbreeding from pedigree data is that it provides bare 

expectations about the fraction of the genome which is identical-by-descent (IBD) 

[3]. With the advent of high-density arrays of single nucleotide polymorphisms 

(SNPs), it has become possible to estimate genomic inbreeding coefficients which 

circumvent these limitations [5]. Indeed, important advantages of genomic 

inbreeding coefficients over their genealogical counterparts are: (i) higher accuracy 

to differentiate among individuals within the same pedigree, since variation due to 

Mendelian sampling is captured [4], (ii) higher accuracy to quantify shared ancestry 

of genetic haplotypes [4], and (iii) the ability to map inbreeding to specific genomic 

regions [6]. Different types of genomic inbreeding coefficients have been 

implemented. While inbreeding coefficients based on the proportion of 

homozygous SNPs (FHOM) just reflect identity-by-state (IBS) allele-sharing 

proportions [6], coefficients (FROH) based on measuring the fraction of the genome 

covered by runs of homozygosity (ROH) estimate IBD allele sharing [4, 7, 8], 

making possible to disentangle recent from ancient inbreeding [3, 5, 9].  
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The increase of inbreeding might have adverse consequences on the fitness of 

livestock populations due to the loss of genetic variability, which can entail a long-

term reduction of genetic variance (due to the fixation of alleles) and, consequently, 

a slowing down of the rate of response to selection in breeding schemes [10, 11, 

12]. Moreover, incremented levels of inbreeding might reduce the mean phenotypic 

performance of livestock populations, a phenomenon known as inbreeding 

depression (reviewed by Leroy [2]). Although inbreeding depression is particularly 

intense for fitness and reproduction traits [11], there is broad evidence that it also 

decreases dairy and growth performances [2, 13, 14 15]. Besides, susceptibility to 

certain diseases, such as mastitis, is increased in inbred animals [16, 17]. In Holstein 

cattle, a 1% increase of inbreeding is expected to cause a reduction of $22–24 of 

lifetime net income per individual [18], while in sheep the average economic loss 

per ewe amounts to $17 for moderate inbreeding and $36 when inbreeding is close 

to 50% [18].  

Several studies have used genomic methods to determine the levels of inbreeding 

in goat populations with a broad geographic distribution [19, 20, 21]. A recent 

investigation carried out by Bertolini et al. [19] revealed that short ROH (< 3 Mb) 

are particularly abundant in worldwide goat populations. Moreover, five regions on 

caprine chromosomes (CHI) 11, 12, and 18 contained ROH hotspots that 

overlapped with signatures of selection [19]. The majority of goat breeds analysed 

by Bertolini et al. [19] displayed low levels of inbreeding (FROH < 0.10), with the 

only exception of certain local breeds with small population sizes (e.g. Dutch 

Landrace goats) as well as of breeds with insular origins (e.g. Icelandic and 
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Malagasy goats) which happened to be highly inbred [19, 20]. Despite the fact that 

inbreeding depression can have adverse effects on the profitability of farmers and 

animal breeders, very few studies have investigated its consequences on goat 

production [22, 23]. In this regard, Marete et al. [22] and Deroide et al. [23] 

estimated, with genealogical methods, the effect of inbreeding depression on the 

production of Kenya Alpine and Murciano-Granadina goats, respectively, and they 

found that in both populations such effect was negligible.  

The goals of the current work were: (i) to measure the levels of inbreeding in a 

Murciano-Granadina resource population by using different genomic coefficients, 

and (ii) to use this information to infer the impact of inbreeding depression on dairy 

phenotypes recorded in this population.  

Methods 

Animal material and phenotyping 

The animal material comprised 1,040 Murciano-Granadina female goats from 15 

farms located in the autonomous region of Andalusia (Spain). Murciano-Ganadina 

is a local Spanish breed officially created in 1975 by the crossbreeding of Murciano 

and Granadina goats [24]. Currently, it has a census of 115,105 heads (2020), and 

its remarkable adaptability to harsh environments as well as its good milking 

performance (mean of 586 kg/lactation; 5.1% of fat and 3.6% of protein in milk) 

have made it a very popular breed in Spain and other countries 

(https://www.mapa.gob.es/es/ganaderia/ temas/zootecnia/razas-

ganaderas/razas/catalogo-razas/caprino/murciano-granadina/).  

https://www.mapa.gob.es/es/ganaderia/%20temas/zootecnia/razas-ganaderas/razas/catalogo-razas/caprino/murciano-granadina/
https://www.mapa.gob.es/es/ganaderia/%20temas/zootecnia/razas-ganaderas/razas/catalogo-razas/caprino/murciano-granadina/
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Blood samples were extracted from goats using vacuum tubes coated with EDTA 

K3 anticoagulant and stored at – 20 ºC until processing. Phenotypic records for milk 

yield and composition traits were recorded in the framework of the selection 

program of the Murciano-Granadina goat breed [24]. Only phenotypes 

corresponding to the first parity (recorded between the years 2009 and 2017) were 

taken into consideration. The following phenotypes were recorded in 817 goats: 

milk yield measured in kilograms at 210 days (MY210), 240 days (MY240) and 

305 days (MY305), the natural logarithm of the somatic cell count divided by 1,000 

(lnSCC, to convert this value into a somatic cell count please use the formula: elnSCC 

× 103 cells/mL), fat percentage (FP), protein percentage (PP) and lactose percentage 

(LP). Milk composition traits were standardised to a lactation of 210 days. 

Summary statistics of phenotypic records are displayed in Table 1.  

Table 1. Summary statistics of seven milk production and composition traits 

recorded in 817 Murciano-Granadina goats. 

Traitsa Mean SD 

MY210, kg 395.647 131.787 

MY240, kg 450.493 142.707 

MY305, kg 547.418 179.840 

lnSCC  6.278 0.937 

FP, % 5.190 0.766 

PP, % 3.563 0.351 

LP, % 4.865 0.228 

a MY210, milk yield at 210 days of lactation (kg); MY240, milk yield at 240 days 

of lactation (kg); MY305, milk yield at 305 days of lactation (kg); lnSCC, natural 

logarithm of the somatic cell count divided by 1,000 (to convert this value into a 

somatic cell count use the formula: elnSCC × 103 cells/mL); FP, fat percentage; PP, 

protein percentage; LP, lactose percentage. 
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Generation of high throughput genotypic data 

The isolation of genomic DNA was carried out following a salting-out protocol 

[25]. Three mL of whole blood were mixed with 4 volumes of Red Cell Lysis 

Solution (Tris-HCl 10 mM, pH = 6.5; EDTA 2 mM; Tween 20 1%), and this 

mixture was centrifuged at 2000 g. The supernatant was discarded and the pellet 

was resuspended in 3 mL of lysis buffer (Tris-HCl 200 mM, pH = 8, EDTA 30 mM, 

SDS 1%; NaCl 250 mM) plus 100 µl proteinase K (20 mg/mL) and incubated for 3 

hours at 55° C. The lysate was chilled, and 1 mL of ammonium acetate 10 M was 

added to it. After centrifugation at 2000 g for 10 minutes, the supernatant (~4 mL) 

was transferred to a new tube with 3 mL of isopropanol 96%, and this mixture was 

centrifuged at 2000 g for 3 minutes. The resulting DNA pellet was washed with 3 

mL of ethanol 70% and an additional centrifugation step at 2000 g for 1 minute was 

performed. The DNA pellet was dried at room temperature, and it was subsequently 

resuspended in 1 mL of TE buffer (Tris-HCl 10 mM, EDTA 1 mM, pH = 8). 

Murciano-Granadina goats were genotyped with the Goat SNP50 BeadChip 

(Illumina Inc., San Diego, CA) by following the instructions of the manufacturer. 

The goat ARS1 genome [26] was used as reference for inferring the genomic 

location of the SNPs, and the position and the name of each SNP were updated 

using the PLINK 1.9 software [27]. Only individuals with at least 95% of SNPs 

with genotype calls were taken into consideration. Moreover, only SNPs meeting 

the following requirements were used in the downstream analyses: (i) mapping to 

autosomes, (ii) displaying a minor allele frequency of 0.05 or higher, (iii) not 

deviating significantly (P < 0.00001) from the Hardy-Weinberg equilibrium, and 
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(iv) with a genotype call rate over 98%. Data were filtered using PLINK 1.9 [27]. 

In addition, a principal component analysis (PCA) was carried out with PLINK 1.9 

[27] in order to assess population structure. The visualisation of such results was 

based on the first two components of the PCA.  

Detection of runs of homozygosity 

The definition of ROH followed six criteria: (i) the minimum length of ROH is 1 

Mb, (ii) a ROH must contain at least 15 SNPs, (iii) the density of SNPs per ROH 

was set to at least 1 SNP every 100 kb, (iv) the maximum distance between 

consecutive SNPs is 250 Kb, (v) one heterozygous position per ROH is allowed, 

and (vi) one missing position per ROH is allowed. Said criteria were established 

based on the density of the genotyping panel, with a mean distance between 

consecutive SNPs of 51.73 Kb and a mean number of 19.35 SNPs/Mb (Additional 

file 1: Table S1), and several of them are based on the ROH definition established 

by the AdaptMap Consortium [19, 20]. Runs of homozygosity were identified with 

the PLINK 1.9 software [27] using a sliding window of 50 SNPs.  

Analysis of the genomic patterns of homozygosity  

The proportion of homozygosity per site was estimated as the ratio between the 

number of animals with homozygous genotypes for a particular SNP divided by the 

number of animals genotyped for that SNP. A sliding window encompassing 30 

SNPs was designed to estimate the average of this ratio, and chromosomal patterns 

of homozygosity were visualised as Manhattan plots using R [28]. 
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Genomic coverage and distribution of ROH were also investigated. The patterns of 

ROH size and distribution along the genome were analysed and plotted using R 

[28]. Genomic regions in which ROH are prevalent, the so-called ROH hotspots, 

were identified by measuring the proportion of animals that harbour a particular 

SNP occurring within a ROH with regard to the total number of animals genotyped 

for that SNP. Genomic regions containing the top 1% SNPs most commonly 

associated with ROH were classified as ROH hotspots [29, 30]. Both highly 

homozygous regions and ROH hotspots were compared, and overlapping segments 

were identified. Taking as reference the ARS1 goat genome [26], genes mapping 

to these overlapping segments were extracted with the Biomart tool of Ensembl 

[31]. Database for Annotation, Visualization and Integration Discovery (DAVID) 

Bioinformatics Resources [32] and UniProt [33] were used in Gene ontology 

analysis to identify over-represented (enriched) gene ontology (GO) terms and 

KEGG pathways. Amongst other things, DAVID provides biological context for 

long lists of genes by assigning them to functionally related groups through the use 

of fuzzy clustering techniques [32]. To assess the significance of gene-enrichment 

in annotation terms, a Fisher Exact is employed. Only terms with Max.Prob ≤ 0.1, 

Min.Count ≥ 2 and P-value < 0.05 were considered as significantly enriched [32] 

Estimation of inbreeding coefficients 

Six inbreeding coefficients were estimated at the whole genome level based 

on genotypic data:  

FHOM is defined as the proportion of SNPs with homozygous genotypes [6] 

and was estimated as: 
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𝐹𝐻𝑂𝑀𝑖
=

𝐻𝑜𝑖

𝑆
 

where HOi corresponds to the observed number of homozygous genotypes for all 

the SNPs for each individual i and S is the number of SNPs for which individual i 

has genotype data. It was computed from the output of the --het command of PLINK 

1.9 software [27]. 

 FROH was estimated as the proportion of the genome covered by ROH by 

using the following formula: 

𝐹𝑅𝑂𝐻𝑖
=

𝐿𝑅𝑂𝐻𝑖

𝐿𝑎𝑢𝑡𝑜
 

where LROHi corresponds to the sum of the lengths of all ROH present in each 

individual i, and Lauto is the total length of the autosomal goat genome covered by 

SNPs [5]. The same mathematical expression was used to calculate the genomic 

coverage of ROH with sizes smaller (FROHShort) or larger (FROHLong) than 5 Mb. Such 

calculations were made to assess the relative importance of distant (FROHShort) versus 

recent (FROHLong) inbreeding [6], according to the size of the genome and SNP 

density (Table 1). Assuming that the length of the ROH segments follows an 

exponential distribution with a mean equal to 12g, where g corresponds to the 

number of generations to the closest common ancestor [34], and also assuming that 

goats have a recombination rate of approximately 1 cM/Mb [35], FROHShort indicates 

the inbreeding of an individual from 10 to 50 generations in the past, while FROHLong 

estimates the inbreeding from 1 to 9 generations in the past.  
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 FIS coefficient of Wright [36] was calculated with the formula: 

𝐹𝐼𝑆 =
𝐻𝐸𝑖

−  𝐻𝑂𝑖

𝐻𝐸𝑖

 

Where HEi and HOiare the expected and observed heterozygosities of the 

individual i. This coefficient was estimated from the output of the --hardy command 

of PLINK 1.9 [27]. 

 FYANG coefficient was estimated from the diagonal of the matrix of genomic 

relationships of Yang based on the correlation between uniting gametes [37, 38]. It 

was calculated with the following formula: 

𝐹𝑌𝐴𝑁𝐺𝑖
=

1

𝑆
∑

𝑥𝑘
2 − (1 + 2𝑝𝑘)𝑥𝑘𝑖

+ 2𝑝𝑘
2

2𝑝𝑘(1 − 𝑝𝑘)

𝑠

𝑘=1

 

where, xk is the genotype of the individual i for the SNP k, and pk is the frequency 

of the reference allele in the studied population. The command --ibc of PLINK 1.9 

[27] was used to estimate it. 

The coefficients FHOM and FROH were also estimated at the chromosomal 

level. 

Inbreeding depression analyses 

The effects of inbreeding depression on dairy traits were investigated using 

data from 817 goats with available phenotypes (MY210, MY240, MY305, lnSCC, 

FP, PP and LP). Analyses were performed with the REMLF90 software [39] to 

implement a restricted maximum likelihood (REML) analysis approach, in which 

the phenotypic values of each trait in each individual are regressed onto its 

inbreeding coefficient using a linear mixed model. These analyses were performed 
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to quantify inbreeding depression at the whole genome scale as well as on a 

chromosome and regional basis. The model was fitted as follows:  

y = Xβ + Za + e, 

where y is the vector of observations for each phenotype, β is a vector of fixed 

effects, including farm (15 levels), year of birth (10 levels), and the linear regression 

on F as a covariate; a is the vector of additive genetic effects, e is the vector of 

random residual effects, and X and Z are incidence matrices relating fixed and 

random effects to observations.  

 The significance of the inbreeding effect on the analysed traits was 

determined by applying a two-tailed hypothesis test. A Z-statistic was estimated 

with the following general formula: 

𝑍 =
x̄− µ0

𝑠. 𝑒.
 

Here, x̅ corresponds to the regression coefficient representing the effect of the 

inbreeding over each trait, and μ0 is the coefficient of inbreeding corresponding to 

the null hypothesis (in this case is equal to 0), and s.e. is the standard error. The 

transformation of Z-scores into P-values was accomplished with the function 

pnorm() implemented on R [28].  

The above analysis was performed by regressing each phenotype onto four 

genomic inbreeding coefficients (FHOM, FROH, FROHLong, and FROHShort). In order to 

detect genomic regions associated with inbreeding depression, analyses at the 

chromosomal level were performed for traits that in the whole-genome analysis 

were identified as significantly affected by inbreeding depression (P-value < 0.05). 

Following Saura et al. [6], inbreeding depression was finely mapped by dividing 
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chromosomes into six segments and performing the analyses reported above in each 

segment. As previously explained, genes mapping to genomic regions associated 

with inbreeding depression for a specific trait were retrieved using Biomart [31], 

and their biological functions were assessed with UniProt [33] and David 

Bioinformatics Resources version 6.8 [32].  

Results 

Assessment of homozygosity patterns in Murciano-Granadina goats 

A total of 46,689 SNPs and 1,040 animals were selected to investigate the 

population structure and patterns of homozygosity of Murciano-Granadina goats. 

The PCA (Additional file 2: Fig. S1) indicated that goats clustered, to some extent, 

in accordance with their farm of origin. We detected 20,312 ROH that were 

classified as follows: 11,325 had sizes of 0–5 Mb, while 5,470 (5–10 Mb), 2,695 

(10–20 Mb), 789 (20–50 Mb) and 33 (> 50 Mb) displayed sizes above 5 Mb. The 

mean number of ROH per category and per individual varied slightly across farms 

(Fig. 1A and 1B). The mean ROH number was 19.53 ± 11.89 per individual, with 

an average length of 6.15 ± 2.05 Mb. As depicted in Fig. 2, the majority of the 

individuals harboured less than 50 ROH, and ROH covered a small proportion of 

the genome (< 300 Mb, about 10% of the genome). Only 2% of the individuals 

showed a genomic ROH coverage > 500 Mb, and 1% harboured more than 50 ROH. 

Larger chromosomes encompassed a greater number of ROH when compared to 

the smaller ones (Additional file 3: Fig. S2), and the correlation coefficient 

between the number of ROH and chromosome length was 0.92 (P-value < 0.05).  
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The genome-wide analysis of homozygosity, based on the proportion of 

homozygous individuals for each genotyped position, made it possible to detect 38 

genomic regions with increased homozygosity (harbouring the top 1% of the most 

homozygous positions) that were scattered on 20 goat chromosomes (CHI), i.e. CHI 

1–8, 11, 13–18, 20, 21, 24, 26 and 29 (Fig. 3A and Additional file 4: Table S2). 

Eight ROH hotspots mapping to CHI 1, 2, 4, 6, 14, 16, and 17 were identified (Fig. 

3B and Additional file 5: Table S3). One region (i.e. CHI 4:42,552,375–

48,378,207 bp) was consistently detected in the genome-wide analysis of 

homozygosity and ROH. Sixty-six genes mapped to these regions (Additional file 

6: Table S4) and a functional enrichment analysis revealed 15 GO terms 

significantly enriched at the nominal level (P-value < 0.05). Particularly significant 

were GO terms related with ferric and copper import into the cell (Additional file 

7: Table S5).  

Estimation of inbreeding coefficients 

Genomic inbreeding coefficients reached values of 0.601 ± 0.021 (FHOM); 

0.053 ± 0.046 (FROH); 0.040 ± 0.041 (FROHLong,), 0.014 ± 0.008 (FROHShort), – 0.016 

± 0.035 (FIS) and 0.023 ± 0.047 (FYANG). The magnitude and dispersion of these 

coefficients are shown in Fig. 4. The FHOM, FROH, FROHLong, FIS and FYANG 

coefficients were highly correlated, being especially high the correlations between 

FHOM and FROH, FROH and FROHLong (r = 0.99, P-value < 2.2 ×10–16) and between 

FHOM and FIS (r = – 1, P-value < 2.2 ×10–16). In contrast, FROHShort showed the 

weakest correlations with the remaining inbreeding coefficients (|r|= 0.33–0.64), 
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although their statistical significance (P-value < 2.2 ×10–16) was very high (Table 

2).  

Figure 1. (1A) Number of ROH classified according to their length. Purple and 

yellow bars represent the counts of ROH shorter and longer than 5 Mb, respectively. 

(1B) Number of ROH classified according to their length category by the farm of 

origin. 
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Figure 2. Relationship between ROH number and length in 1,040 Murciano-

Granadina goats genotyped with the Goat SNP50 BeadChip. 

 

Figure 3. (3A) Proportion of individuals with homozygous genotypes for each SNP 

marker. The y‐axis displays the proportion of individuals for which a specific SNP 

displays a homozygous genotype, while the x‐axis corresponds to the positional 

coordinates of SNPs distributed in the 29 caprine autosomes. (3B) ROH hotspots 

identified in the population of Murciano-Granadina goats under study. The y‐axis 

displays the frequency at which a given SNP is found within a ROH in the 

population; while the x‐axis corresponds to the positional coordinates of SNPs 

distributed in the 29 caprine autosomes. Markers above the red line are in the top 

1% of each category (homozygosity or frequency of being within a ROH). Markers 

highlighted in green are located in genomic regions consistently identified as 

regions of high homozygosity and ROH hotspots. 
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Table 2. Pearson correlations between molecular inbreeding coefficients (F) 

estimated in 1,040 Murciano-Granadina goats. 

F coefficient FHOM FROH FROHLong FROHShort FIS FYANG 

FHOM 1    
  

FROH 0.99 1   
  

FROHLong 0.97 0.99 1  
  

FROHShort 0.64 0.59 0.45 1 
  

FIS – 1 – 0.99 – 0.97 – 0.64 1 
 

FYANG 0.86 0.89 0.92 0.33 – 0.86 1 

*All correlation coefficients (lower part of the matrix) were significant (P-value < 

2.2 × 10–6). 
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Figure 4. Boxplots depicting the magnitude and dispersion of molecular 

inbreeding FROH, FROHLong, FROHShort, FHOM, FIS and FYANG coefficients estimated in 

1,040 female Murciano-Granadina goats. Differences in magnitude between FHOM 

and the other molecular coefficients are due to the fact that they indicate identity-

by-state and identity-by-descent allele-sharing proportions, respectively. 

 

Measurement of inbreeding depression for dairy traits 

The natural logarithmic transformation of the somatic cell count divided by 1,000 

(lnSCC) as well as milk yield at three different time points (MY210, MY240 and 

MY305) showed significant evidence of inbreeding depression when analysing 

FHOM and FROH. In contrast, no significant effects of inbreeding were identified for 

coefficients based either on short or long ROH. Increases of 0.1 units of FHOM and 

FROH coefficients involved lnSCC increments of 0.29 (P-value = 0.037) and 0.127 
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(P-value = 0.038) units, respectively (Table 3). At the chromosomal level, 

significant inbreeding depression for lnSCC was detected on CHI 8 and CHI 25 

when regressed on either FHOM  or FROH, while six additional chromosomes (CHI 

13, CHI 14, CHI 22, CHI 24, CHI 25 and CHI 27) displayed inbreeding depression 

for this trait exclusively when it was regressed onto FHOM (Additional file 8: Table 

S6). Four regions containing 666 genes on chromosomes 8 (i.e. CHI 8:37,557,623–

56,336,435 bp and CHI 8:75,115,244–93,894,055 bp) and 25 (i.e. CHI 25: 82,419–

7,143,084 bp and CHI 25:21,429,255–28,572,340 bp) displayed a significant 

inbreeding depression for lnSCC based on FHOM (Additional file 9: Table S7 and 

Additional file 10: Table S8). After performing functional enrichment analysis, 

various GO terms and pathways involved in the immune response were 

significantly enriched only at the nominal level, including integrin domains (i.e. 

ITGAM, ITGAD, ITGAX, ITGAL) and genes with protein kinase activity chemotaxis 

and cell signalling activities (i.e. CCL19, CCL21, CCL24, CCL26, SYK and IL27). 

Several of these genes display functions related with innate immunity and 

inflammatory response e.g. lymphocyte chemotaxis, cellular response to interferon-

γ, immunological synapse formation, positive regulation of chemotaxis, cellular 

response to interleukin-1, monocyte chemotaxis etc. (Additional file 11: Table 

S9).  
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Table 3. Inbreeding depression estimates for milk yield and composition traits expressed as the change of the phenotypic mean per 0.1 

units increase of the corresponding inbreeding coefficient (95% confidence intervals are displayed in brackets).  

Traitb 

FHOM FROH FROHLong FROHShort 

Mean ± s.e.a 

(CI 95%) 
P-value 

Mean ± s.e.a 

(CI 95%) 
P-value 

Mean ± s.e.a 

(CI 95%) 
P-value 

Mean ± s.e.a 

(CI 95%) 
P-value 

MY210 

– 48.503 ± 21.124 

(– 89.906 to – 

7.101) 0.011 

– 20.492 to ± 9.356 

(– 38.830 to – 2.154) 

0.014 

21.231 ± 25.901 

(– 29.536 to 71.998) 

0.206 

19.751 ± 83.308 

(– 143.533 to 

183.034) 0.406 

MY240 

– 51.017 ± 24.159 

(– 98.369 to – 

3.666) 0.017 

– 21.296 to ± 10.702 (– 

42.272 to – 0.320) 

0.023 

34.358 ± 30.841 

(– 26.090 to 94.806) 

0.133 

10.158 ± 93.948 

(– 173.980 to 

194.296) 0.457 

MY305 

– 55.719 ± 29.987 

(– 114.493 to 

3.055) 0.032 

– 23.196 to ± 13.284 (– 

49.233 to 2.841) 

0.040 

48.052 ± 47.583 

(– 45.211 to 141.315) 

0.156 

– 16.834 ± 118.042 

(– 248.196 to 

214.527) 0.443 

lnSCC 
0.290 ± 0.162 

(– 0.027 to 0.608) 0.037 

0.127 ± 0.072 

(– 0.013 to 0.268) 0.038 

– 0.268 ± 0.635 

(– 1.514 to 0.977) 0.336 

– 0.368 ± 0.649 

(– 1.640 to 0.905) 0.286 

FP  
0.119 ± 0.121 

(– 0.117 to 0.356) 0.161 

0.046 ± 0.053 

(– 0.059 to 0.150) 0.196 

– 0.016 ± 0.209 

(– 0.426 to 0.394) 0.469 

– 0.031 ± 0.428 

(– 0.871 to 0.809) 0.471 

LP  
0.029 ± 0.044 

(– 0.057 to 0.116) 0.252 

0.015 ± 0.019 

(– 0.024 to 0.053) 0.226 

– 0.090 ± 0.172 

(– 0.428 to 0.247) 0.300 

– 0.073 ± 0.169 

(– 0.404 to 0.257) 0.332 

PP  
0.071 ± 0.068 

(– 0.062 to 0.204) 0.147 

0.035 ± 0.030 

(– 0.024 to 0.093) 0.122 

0.039 ± 0.106 

(– 0.169 to 0.246) 0.358 

– 0.157 ± 0.257 

(– 0.660 to 0.346) 0.270 
as.e. standard error; CI 95%, 95% confidence interval;  bMY210; milk yield at 210 days of lactation (kg); MY240; milk yield at 240 

days of lactation (kg); MY305; milk yield at 305 days of lactation (kg); lnSCC, natural logarithm of the milk somatic cell count 

divided by 1,000 (to convert this value into a somatic cell count use the formula: elnSCC × 103 cells/mL); FP, milk fat percentage (%); 

LP, milk lactose percentage (%); PP, milk protein percentage (%). * cells in bold correspond to P-values below 0.05. 
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With regard to the milk yield traits, an increment of 0.1 units of FHOM or FROH 

involved a decrease of 48.50 kg (P-value = 0.011) and 20.49 kg (P-value = 0.014) 

of milk for MY210; 51.02 kg (P-value = 0.017) and 21.30 kg (P-value =  0.023) for 

MY240; and 55.72 kg (P-value =  0.032) and 23.20 kg (P-value =  0.040) for 

MY305, respectively (Table 3). The analysis at the chromosomal level indicated 

significant inbreeding depression for MY210 and MY240 on CHI2, CHI3 and 

CHI11, while for MY305 inbreeding depression was significant only on CHI2 

(Additional file 12: Table S10). The region on CHI2, comprised between 

22,751,824 and 68,255,473 bp displayed significant inbreeding for all three milk 

yield traits (Additional file 13: Table S11). A total of 355 genes mapped to this 

genomic region (Additional file 14: Table S12). The functional enrichment 

analysis evidenced an overrepresentation of genes involved in mitochondrial and 

energetic processes, including genes from the PPAR signalling pathway i.e. 

CYP27A1, ACADL, DBI and ACSL9 (Additional file 15: Table S13).  

Although there is no substantial overlap between regions associated with inbreeding 

depression and ROH hotspots, the CHI 8:75–93.8 Mb region associated with 

inbreeding depression for lnSCC and the CHI 2:45.5–68.25 Mb region associated 

with inbreeding depression for milk yield show positional concordance with two of 

the 38 regions displaying high homozygosity (i.e. CHI 8:76.25–77.4 Mb and CHI 

2:56.13–57.17 Mb). 
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Discussion 

Low inbreeding in Murciano-Granadina goats 

For the majority of Murciano-Granadina goats, ROH number and total length were 

below 50 and 350 Mb, respectively. Moreover, short ROH (< 5 Mb) were more 

abundant than the medium or long ones (Fig. 1A). These patterns are pretty 

consistent with what has been observed by Bertolini et al. [19] in a worldwide 

sample of goat breeds. Indeed, Bertolini et al. [19] showed that goat breeds from 

Southern Europe had, on average, 49 ROH per individual while the genomic 

coverage per individual was 183.47 Mb. In contrast, breeds from Northern Europe 

showed higher levels of homozygosity with 98 ROH per individual and genomic 

coverage of 479.17 Mb. 

The inbreeding coefficients FROH, FROHShort, and FROHLong of Murciano-Granadina 

goats were mainly in the range of 0 to 0.05. In their study, Bertolini et al. [19] 

reported that about 60% of a worldwide sample of goat breeds displayed low FROH 

coefficients (< 0.10), while the remaining ~ 30% and ~ 10% of breeds showed 

moderate (0.10 < FROH < 0.20) or high (> 0.20) FROH values. The patterns of low 

homozygosity that we have observed in Murciano-Granadina goats contrast 

strongly with what has been reported in certain local breeds, such as Mallorquina, 

Pyrenean, and Valdostana, which have undergone sharp population bottlenecks [19, 

20]. Low inbreeding and homozygosity in the Murciano-Granadina breed are 

probably explained by its large census size (> 100,000 individuals in the herdbook), 

the absence of population bottlenecks, and its broad geographic distribution 
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encompassing more than 4,000 farms across Spain 

(https://www.mapa.gob.es/es/ganaderia/temas/zootecnia/razas-ganaderas/razas) 

and other countries. Noteworthy, the Murciano-Granadina breed was founded by 

crossing, during the 1970s, two Murciana and Granadina populations with different 

historical origins [40]. Although genetic differentiation between these two 

populations was weak [40], this admixture event probably contributed to increase 

the heterozygosity of the resulting Murciano-Granadina breed. Widespread use of 

artificial insemination in reproductive management and intensive selection were 

implemented in the Murciano-Granadina breed a few decades ago [24], so their 

impact on genetic diversity and inbreeding has probably been quite limited so far.  

While correlations between FHOM, FROH, FROHLong, FIS and FYANG were high, FROHShort 

displayed the lowest correlations with the remaining inbreeding coefficients, in line 

with previous studies focused on other livestock species [6, 13, 41]. Short ROH are 

mainly derived from ancient inbreeding events [5, 42] and do not reflect the whole 

autozygosity of the sample. It is also possible that several of these homozygous 

tracks are identical by state and not by descent, being produced by a low 

recombination rate or high linkage disequilibrium in unrelated ancestors [30]. 

Besides, when working with medium density genotype arrays (e.g. 50K SNPs) the 

detection of short ROH can become quite difficult [43], thus limiting the ability to 

infer the true proportion of short vs. long ROH in the genome.  
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Several ROH hotspots are detected in the genomes of Murciano-Granadina 

goats 

We have identified several genomic regions in which ROH are particularly frequent 

(ROH hotspots). Similar patterns were found when the proportion of homozygous 

individuals was analysed at a genome-wide level i.e. 35.46% of the most common 

homozygous regions overlapped with ROH hotspots and these overlapping regions 

represented 35.42% of the total ROH hotspots. No positional coincidence was 

detected between ROH hotspots identified by us and those reported by Bertolini et 

al. [19] in a worldwide sample of goat populations. This finding agrees well with 

what has been previously observed in sheep [44]. Indeed, ROH hotspots are 

produced by factors such as positive selection and inversions suppressing 

recombination, that can differ substantially from population to population [42]. For 

instance, the characterisation of the products of 5,860 female meioses in Drosophila 

melanogaster by genotyping more than 100 million SNPs made it possible to detect 

106,964 recombination events displaying a remarkable degree of intra-specific 

variation [45]. Factors such as GC content, gene density, distribution of simple 

repeats and transposable elements, structural variation, and the presence of diverse 

poorly-characterised sequence motifs might explain the regional variation of the 

recombination rate across individuals and populations [46]. 

ROH hotspots contain genes with diverse functions 

Regarding the gene content of genomic segments co-localising with both high 

homozygosity regions and ROH hotspots (CHI 4:42,552,375–48,378,207 bp), the 
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functional enrichment analysis highlighted several gene ontology terms with 

nominally significant enrichment (P-value < 0.05) (Additional file 7: Table S5). 

From this list of genes, it is worth emphasising STEAP1, STEAP2 and STEAP4 

metalloreductases which facilitate the cellular uptake of iron and copper [47]. These 

proteins modulate the effects of intracellular oxidative stress and inflammation and 

are involved in multiple biological pathways related with molecular trafficking in 

the endocytic and exocytic pathways, metabolism, control of cell proliferation and 

apoptosis and tumour progression [48]. We also found genes with metabolic 

functions such as insulin-like growth factor binding protein 3 (IGFBP3) and 

insulin-like growth factor binding protein 1 (IGFBP1) that participate in the growth 

and postnatal development of cattle [49, 50]. These results are quite concordant 

with those reported by Mastrangelo and colleagues [30], who showed that ROH 

islands identified in Italian bovine breeds contained genes with heterogeneous 

functions related to milk production, reproduction, immune response, and 

resistance/susceptibility to infection and diseases. 

Effect of inbreeding depression over milk traits  

The lnSCC in the Murciano-Granadina population under study averaged 6.25 ± 0.93 

units, which is higher than the means reported in primiparous goats from the Alpine 

(5.09 ± 1.36 units) and Saanen (5.32 ± 1.19 units) breeds [51]. Compared with cows 

and ewes, goats display higher numbers of somatic cells in milk. Indeed, the 

apocrine nature of milk secretion in goats increases the proportion of cytoplasmatic 

particles in milk, a feature, that depending on the measurement method of choice, 



3   |   PAPERS AND STUDIES  

194 

could increase the somatic cell count [52]. Besides, somatic cell count is modulated 

by many factors including the occurrence of bacterial infections, stress, oestrous 

cycle phase, diet etc. [53]. According to our results (Table 3), inbreeding 

depression increased lnSCC, a feature that is considered adverse because high 

lnSCC values are often associated with subclinical and clinical mastitis [51, 52] 

The magnitude of inbreeding depression for lnSCC estimated from FROHShort 

strongly differed from estimates based on the other inbreeding coefficients (Table 

3), a finding consistent with the moderate (|r| = 0.33–0.64) correlations between 

FROHShort and other molecular inbreeding coefficients (Table 2). Noteworthy, recent 

rather than ancestral inbreeding is the main cause of inbreeding depression in 

mammalian populations [54, 55]. Besides, long stretches of homozygosity usually 

contain a higher proportion of deleterious mutations than the shorter ones because 

they are more recent, so deleterious variation has not been yet purged by purifying 

selection [56]. 

In Murciano-Granadina goats, a previous study performed by Deroide et al. [23] 

reported a low percentage of inbreeding (average F = 0.24%). Milk production 

showed a positive quadratic correlation with inbreeding levels, but such effect was 

not significant. Deroide et al. [23] also reported that milk fat and dry extract 

contents experienced a slight increase due to inbreeding. In our study, the dairy trait 

mostly affected by inbreeding depression was lnSCC. Consistently, Doekes et al. 

[13] reported that a 1% increase of FROH involved a 0.86 ± 0.28 unit increase in 

somatic cell score (days 150 through to 400) recorded in Dutch Holstein-Friesian 
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dairy cattle. In Iranian cattle, individuals with high inbreeding coefficients tended 

to have higher somatic cell scores than animals with low inbreeding coefficients 

[57], and similar results have been reported for Canadian Holstein cattle [58]. 

Doekes et al. [13] indicated that ancient inbreeding was the main contributor to 

inbreeding depression for somatic cell score, although such effect was not 

significant. Somatic cell score is an indicator of the health status of the mammary 

gland and substantial increases are observed in individuals suffering from mastitis 

[59]. Inbreeding has been reported to significantly reduce resistance against 

pathogens in multiple organisms [60, 61, 62], so the significant inbreeding 

depression observed for lnSCC in Murciano-Granadina goats might be explained, 

at least in part, by the weakening of the immune defences of the mammary gland. 

Thus, homozygosity for deleterious mutations might result in the partial or total 

inactivation of genes related with immunity, and low variability might also 

compromise the effectiveness of the immune response [63].  

Genomic regions associated with inbreeding depression for lnSCC contain 

several genes related with immunity 

When we investigated which enriched clusters are present in the set of genes 

mapping to chromosomes 8 (37–56 Mb and 75–93 Mb) and 25 (0.082–7 Mb and 

21–28 Mb) regions associated with inbreeding depression for lnSCC (Additional 

file 10: Table S8), we found several genes assigned to gene ontologies highly 

connected with immunity, e.g. integrin-mediated signalling pathway, lymphocyte 

chemotaxis, monocyte chemotaxis, immunological synapse formation, chemokine 
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activity, etc. (Additional file 11: Table S9). The spleen tyrosine kinase (SYK) 

protein forms part of the integrins cluster and maps to CHI 8: 86,755,291–

86,861,895 bp (Additional file 11: Table S9). One of the functions of the SYK 

molecule is to stimulate the phosphorylation of Toll-like receptor 4 (TLR4) [64], 

which recognises bacterial lipopolysaccharide and induces inflammatory and 

immune responses [65]. This gene has been described as highly variable in cattle 

[66], and many TLR4 polymorphisms and haplotypes have been associated with 

milk somatic cell count and susceptibility to mastitis [67]. Moreover, the SYK 

protein induces the recognition of pathogens and cell adhesion and platelet 

activation [65], and it also affects the proliferation of mammary epithelial cells at 

several stages of the milking cycle [66]. In the same enriched gene ontologies, we 

have detected the integrin subunit αM gene (ITGAM also known as CD11b) which 

maps to CHI25: 27,221,164–27,264,350 bp and encodes a receptor for 

lipopolysaccharide [68]. Signalling mediated by TLR4 activates the synthesis of 

ITGAM/CD11b, which is essential for the migration and adhesion of 

polymorphonuclear leukocytes to infection sites [68]. 

As previously indicated, genes related to chemotaxis were significantly enriched at 

the nominal level (P-value < 0.05) (Additional file 11: Table S9). This functional 

category is mainly represented by chemokines, such as chemokine ligand 19 

(CCL19), 21 (CCL21), 24 (CCL24), 26 (CCL26) and 27 (CCL27). Chemokines are 

essential for the development of the innate immune response since they orchestrate 

and control the migration of the immune cells (macrophages, monocytes, 

neutrophils, etc) to sites of infection [69]. During the first stages of mastitis, 



197 

3.4   |   PAPER IV 

 

chemokines contribute to the stimulation of the cellular immune response against 

the invading pathogen until acute-phase proteins are expressed [70]. Marsland et al. 

[71], described how chemokines CCL19 and CCL21 participate in the maturation 

of dendritic cells, allowing them to leverage the T cell response. These chemokines 

also enhance the migration of leukocytes through lymph and blood circulation and 

stimulate the production of pathogen-induced proinflammatory cytokines [71]. In 

the gene set associated with inflammatory response (P-value = 0.03), we detected 

the interleukin 27 (IL27) gene which encodes a molecule with both pro and anti-

inflammatory effects, thus enhancing the immune response and, at the same time, 

preventing tissue damage caused by inflammation [72]. Infections caused by Gram-

negative bacteria induce IL27 production, and this cytokine interacts with 

monocytes increasing TLR4 expression and enhancing the LPS-induced 

inflammatory response [73]. Moreover, IL27 has an autocrine effect on 

macrophages and monocytes resulting in the amplification of the inflammatory 

response via cytokine secretion [72].  

The genomic region displaying inbreeding depression for milk yield (MY210, 

MY240 and MY305) was significantly enriched at the nominal level (P-value < 

0.05) with genes associated with multiple unrelated biological processes 

(Additional file 15: Table S13). The PPAR signalling pathway (P-value =  0.032) 

influences milk production and composition in cattle. Bai and collaborators [74] 

described an overrepresentation of genes from the PPAR signalling pathway in 

cows with high daily milk yield in comparison with low yielders. Besides, genes 

from this pathway are upregulated in cows in the lactation peak when compared to 
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those in the dry period [75], suggesting a role of these genes not only in the 

determinism of fat composition [76] but also of milk yield.  

Conclusions 

Murciano-Granadina goats display low levels of inbreeding (mean FROH  =  0.053 ± 

0.046), a finding consistent with the large census size and demographic history of 

this breed. Four genomic regions on CHI 8:37,557,623–56,336,435, CHI 

8:75,115,244–93,894,055 bp, CHI 25: 82,419–7,143,084 and CHI 25:21,429,255–

35,715,425 bp were associated with inbreeding depression for lnSCC. Moreover, 

one region on CHI 2: 22,751,824–68,255,473 was consistently associated with 

inbreeding depression for three milk yield traits (MY210, MY240 and MY310). 

Genes encoding integrins, chemokines and pathogen recognition receptors, which 

play relevant roles in the elicitation of innate immune responses against microbes, 

mapped to regions associated with inbreeding depression for lnSCC. These results 

suggest that keeping inbreeding to a minimum, through an adequate reproductive 

management, might be a useful approach to decrease the incidence of mastitis in 

Murciano-Granadina goats.  
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Additional files 

Additional file 1: Table S1. Number and density of SNPs per chromosome in a 

population of 1,040 Murciano-Granadina goats genotyped with the Goat SNP50 

BeadChip.    

Additional file 2: Figure S1. Principal component analysis of 1,040 Murciano-

Granadina goats distributed in 15 farms (each farm is indicated with a different 

colour). 

Additional file 3: Figure S2. Number of ROH per chromosome (represented as 

yellow bars, left axis) and the percentage of each chromosome covered by ROH 

(represented by a red line, right axis) in 1,040 Murciano-Granadina goats. 

Additional file 4: Table S2. Genomic regions associated with the top 1% of 

homozygosity for each SNP marker in a population of 1,040 Murciano-Granadina 

goats genotyped with the Goat SNP50 BeadChip. 

Additional file 5: Table S3. ROH hotspots identified in the genomes of 1,040 

Murciano-Granadina goats. 

Additional file 6: Table S4. Genes mapping to regions consistently identified as 

ROH hotspots and regions with high homozygosity. 

Additional file 7: Table S5. Functional enrichment analysis of genes mapping to 

regions consistently identified as ROH hotspots and regions with high 

homozygosity. 

Additional file 8: Table S6. Inbreeding depression estimates (s.e: standard 

error)  per goat chromosome (CHI) for the natural logarithm of the somatic cell 

count divided by 1,000 (lnSCC) and their 95% confidence intervals (C.I). 

Additional file 9: Table S7. Inbreeding depression estimates (s.e: standard error) 

for the  natural logarithm of the somatic cell count divided by 1,000 (lnSCC) in 

specific regions of goat chromosomes (CHI) 8 and 25 and their 95% confidence 

intervals (C.I). 

Additional file 10: Table S8. Genes mapping to goat chromosome (CHI) 8 (37-56 

Mb and 75-93 Mb) and 25 (0.082-7 Mb and 21-28 Mb) regions associated with 
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inbreeding depression for the natural logarithm of the somatic cell count divided by 

1,000 (lnSCC). 

Additional file 11: Table S9. Functional enrichment analysis of genes from the 

goat chromosome 8 (37-56 Mb and 75-93 Mb) and 25 (0.082-7 Mb and 21-28 Mb) 

regions associated with inbreeding depression for the natural logarithm of the 

somatic cell count divided by 1,000 (lnSCC). 

Additional file 12: Table S10. Inbreeding depression estimates (s.e: standard 

error)  per goat chromosome (CHI) for milk yield at 210, 240 and 305 days 

(MY210, MY240 and MY305, measured in kg) and their 95% confidence intervals 

(C.I). 

Additional file 13: Table S11. Inbreeding depression estimates (s.e: standard error) 

for milk yield at 210, 240 and 305 days (MY210, MY240 and MY305, measured 

in kg) in specific regions of goat chromosomes (CHI) 2 and their 95% confidence 

intervals (C.I). 

Additional file 14: Table S12. Genes mapping to goat chromosome (CHI) 2: 22-

68 Mb region associated with inbreeding depression for milk yield at 210, 240 and 

305 days (MY210, MY240 and MY305). 

Additional file 15: Table S13. Functional enrichment analysis of genes from the 

goat chromosome (CHI) 2: 22-68 Mb region associated with inbreeding depression 

for milk yield at 210, 240 and 305 days (MY210, MY240 and MY305). 
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Summary 

Transmission ratio distortion (TRD) is the preferential transmission of one specific 

allele to offspring at the expense of the other one. The existence of TRD is mostly 

explained by the segregation of genetic variants with deleterious effects on the 

developmental processes that go from the formation of gametes to fecundation and 

birth. A few years ago, a statistical methodology was implemented in order to detect 

TRD signals on a genome-wide scale as a first step to uncover the biological basis 

of TRD and reproductive success in domestic species. In the current work, we have 

analyzed the impact of SNP calling quality on the detection of TRD signals in a 

population of Murciano-Granadina goats. Seventeen bucks and their offspring 

(N=288) were typed with the Goat SNP50 BeadChip, while the genotypes of the 

dams were lacking. Performance of a genome-wide scan revealed the existence of 

36 SNPs showing significant evidence of TRD. When we calculated GenTrain 

scores for each one of the SNPs, we observed that 25 SNPs showed scores below 

0.8. The allele frequencies of these SNPs in the offspring were not correlated with 

the allele frequencies estimated in the dams with statistical methods, thus 

evidencing that flawed SNP calling quality might lead to the detection of spurious 

TRD signals. We conclude that, when performing TRD scans, the GenTrain scores 

of markers should be taken into account to discriminate SNPs that are truly under 

TRD from those yielding spurious signals due to technical problems. 

KEYWORDS: Transmission ratio distortion, GenTrain score, genotyping, 

Mendelian segregation. 
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Introduction 

In diploid organisms, allelic transmission from parents to offspring is expected 

to follow the Mendelian law of inheritance, implying that both paternal and 

maternal alleles are transmitted to the progeny following approximately a 1:1 

ratio (Huang et al., 2013). A deviation from this ratio, the so-called transmission 

ratio distortion (TRD), is produced when either the paternal or the maternal allele 

is preferentially transmitted to the offspring (Fishman and Mcintosh, 2019). A 

few years ago, Casellas et al. (2014) implemented a new Bayesian methodology 

to scan TRD for biallelic markers in diploid organisms. This method was later 

refined by Vázquez-Gómez et al. (2020) to detect TRD even in pedigrees with 

incomplete trios. This can be achieved by inferring the probability that specific 

alleles are present in the parent with a missing genotype based on the allele 

frequencies of the SNP in the overall population. The accuracy of such inference 

might be substantially affected by the quality of SNP genotypes. In previous 

studies (Abdalla et al., 2020; Casellas et al., 2017, 2020 Gòdia et al., 2020; 

Lahoucine et al., 2020; Vázquez-Gómez et al., 2020), the filtering of SNPs used 

in TRD scans relied fundamentally on two parameters (genotype call rate and 

minimum allele frequency or MAF). Deviation from HWE has never been used 

for this purpose because SNPs showing TRD are expected to display significant 

departures from HWE. However, it should be noticed that SNPs displaying 

significant HWE deviations often do so because of genotyping errors (Hosking 

et al., 2004). In other words, HWE filtering eliminates many unreliable markers 

which might yield spurious TRD signals just because of technical problems. 
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The goal of the current work was to make a TRD scan with incomplete trios and 

then to assess the calling quality of the SNPs that are putatively under TRD 

by using the GenTrain score implemented in the GenomeStudio software from 

Illumina (Zhao et al., 2018). The GenTrain score is a metric that fluctuates 

between 0 (very poor calling quality) and 1 (excellent calling quality) and 

indicates the reliability of SNP detection based on the distribution of genotypic 

classes (Pavy et al., 2008; Zhao et al., 2018). By doing so, we aimed to assess the 

usefulness of the GenTrain score as a complementary metric to be considered in 

TRD scans as well as to recommend a specific GenTrain score filtering threshold 

to researchers interested in the detection of TRD. 

Materials and methods 

Sampling and genotyping of Murciano-Granadina goats 

As animal material, we have collected blood samples from 17 bucks and their 

offspring (N=288) in vacuum tubes with K3EDTA. These samples have been 

subsequently stored at -20ºC. Since blood collection is a routine procedure 

performed by CAPRIGRAN, no approval by the Ethics Committee on Animal and 

Human Experimentation of the Universitat Autònoma de Barcelona was required to 

perform this experiment. Information about the number of offspring per sire is 

depicted in Table S1. Genomic DNA extractions were performed following the 

modified salting out procedure described by Guan et al. (2020). Animals were 

genotyped with the Illumina Goat SNP50 BeadChip (Illumina Inc., San Diego, 

CA), which contains 54,241 SNP, following the instructions of the manufacturer. 
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Genotypic data were updated with PLINK 1.9 (Chang et al., 2015) based on the 

Capra hircus genome ARS1 assembly (Bickhart et al., 2017) and the annotation 

provided by the International Goat Genome Consortium 

(http://www.goatgenome.org/projects.html#50K_snp_chip). Genotypes were 

pruned using PLINK 1.9 (Chang et al., 2015). We selected SNPs fulfilling the 

following criteria: (1) genotype call rate over 95%, (2) minor allele frequency 

above 0.05 and (3) no missing genotypes in any of the 17 sires. Besides, the 

percentage of sires heterozygous for each SNP was estimated from the output 

obtained with the --hwe command of PLINK 1.9 (Chang et al., 2015) in order to 

remove SNPs with less than 20% of heterozygosity in the sire population (only 

SNPs with heterozygous genotypes are informative). The reference allele in this 

subset of the population was set as the most common allele in all individuals. 

Statistical methods 

To estimate TRD, we used a frequentist modification (Vázquez-Gómez et al., 2020) 

of the Bayesian method implemented by Casellas et al. (2014). Assuming two 

alleles (A1 and A2) and the existence of genotyped heterozygous sires and of 

ungenotyped dams, this method allows to compute for every marker an α-value 

which ranges between −0.5 (the A1 allele is not transmitted) and 0.5 (the A2 allele 

is not transmitted) thus providing an estimate of the magnitude of TRD. Allele 

frequencies in the ungenotyped dams were inferred by calculating a π-parameter 

which varies from 0 to 1. The two α and π parameters were estimated by 

maximizing the likelihood function and the statistical significance of α was assessed 

http://www.goatgenome.org/projects.html#50K_snp_chip
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by using a likelihood ratio test (Nelson, 2008). A correction for multiple testing was 

applied to the P-values obtained from the χ2 distribution using the false discovery 

rate approach (FDR) reported by Benjamini & Hochberg (1995) to obtain the 

corresponding q-values. Markers with α-values above 0.15 or below -0.15 and q-

values < 0.05 were considered to show significant TRD. After quality control based 

on genotype call rate and MAF, the final genotypic data included 42,272 autosomal 

SNPs. 

Results and discussion 

The implementation of the TRD test allowed us to identify 2,944 SNPs that were 

deviating from the Mendelian ratio (α-value > 0.15 or < -0.15). The highest α-value 

detected in our population was 0.499, while the lowest was -0.428; but for the 

majority of the genotyped SNPs, α-values were comprised in the [-0.15 to 0.15] 

interval which indicates the absence of TRD (Fig. 1a). After applying a likelihood 

ratio test and FDR correction, 36 SNPs were selected as significant (q-value < 0.05), 

from which 15 SNPs had an α-value below -0.15 implying a major transmission 

of the alternative allele, while the remaining 21 SNPs showed an over transmission 

(α-value over 0.15) of the reference allele (Fig. 1b). 

In order to verify the accuracy of the genotyping of the 36 SNPs displaying 

significant TRD, we calculated their GenTrain scores with the GenomeStudio 

software (Illumina Inc., San Diego, CA). Clustering of SNPs with different 

GenTrain scores and distribution of the GenTrain scores of the genotyped SNPs are 

depicted in Fig. 1c and Fig. S1. In Table S2, it can be seen that 25 of these SNPs 
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have GenTrain scores below 0.80, with values ranging from 0.16-0.63 and an 

average score of 0.51 ± 1.14 (Group 1). In contrast, eleven SNPs have GenTrain 

scores above such threshold, with an average value of 0.87 ± 0.04 (Group 2). For 

each of these two groups of SNPs, we have calculated the correlation between 

allele frequencies of the SNP in the offspring vs allele frequencies inferred for 

the ungenotyped dams with the methods reported by Vázquez-Gómez et al. (2020). 

In principle, allele frequencies of parents and their offspring should be 

significantly and positively correlated. In the Group 1 of SNPs  such correlation 

was very weak and non-significant (r = -0.007, P-value = 0.9733).   Even worse, 

when we retrieved from Group 1 seventeen SNPs with GenTrain scores between 

0.5-0.6, the correlation was -0.0932 (P-value 0.7217). In strong contrast, allele 

frequencies of mothers and offspring were highly correlated in the Group 2 of 

SNPs (r = 0.8656, P-value = 0.0005). This result implies that the method 

implemented by  Casellas et al. (2014) and subsequently modified by Vázquez-

Gómez et al. (2020) works very well in reconstructing allele frequencies in parental 

individuals without genotypes when SNPs have high GenTrain scores (> 0.80 in 

our study), which are the vast majority (Fig. 1c). 

Previous reports have indicated that SNPs with minimum GenTrain scores of 0.25 

can be safely used in most analyses (Pavy et al., 2008). Indeed, Pavy et al. (2008) 

designed highly-multiplexed SNP arrays for the genotyping of black and white 

spruce and reported that SNPs with GenTrain scores of 0.25 are very reliable and 

have a low rate of missing data. According to Pavy et al. (2008), SNPs with 

GenTrain scores of 0.25 or more had average call rates above 99%, and for SNPs 
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with GenTrain scores above 0.4 the rate of missing data became negligible and the 

average rate of missing data per successful SNP was very low, On the other hand, 

Guo et al. (2014) indicated that SNPs with GenTrain scores above 0.70 are correctly 

clustered in most cases, while the clustering of SNPs with GenTrain scores below 

0.7 might be more problematic. Based on our results, we conclude that the 

performance of TRD scans, especially in the case in which full trios are not 

available, should rely on the establishment of a stringent threshold for SNP calling 

quality. In our study, family size was small (on average 17-18 offspring per sire) 

and the density of the Goat SNP50 BeadChip (Illumina) is modest. In these 

conditions, we advise to consider markers with GenTrain scores of 0.80 or higher. 

In studies with a more optimal design (particularly regarding family size), such 

threshold could be determined empirically by analyzing the correlations between 

the allele frequencies estimated in the parental class without genotypes and those 

inferred experimentally in the offspring, which should be significant and positive. 

This simple approach should facilitate the elimination of spurious TRD signals 

produced by technical factors in order to concentrate efforts on those that have 

biological implications. 

Fig. 1a. Genome-wide detection of SNP markers that show evidence of 

transmission ratio distortion in a population comprising 17 sire-families of 

Murciano-Granadina goats. The α-value estimated for each SNP is plotted in the y-

axis while the chromosomal locations of SNPs are indicated in the x-axis. 1b. 

Manhattan plot indicating the statistical significance (y-axis), expressed as –log10 
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of the q-value, of the α- values calculated for 42,272 SNPs genotyped in a 

population comprising 17 sire- families of Murciano-Granadina goats. The 

chromosomal location of each SNP is indicated in the x-axis. The red line 

corresponds to the threshold of significance which corresponds to a q-value = 0.05 

expressed in a –log10 scale. 1c. GenTrain score distribution for 42,272 SNPs 

genotyped in 305 goats. It can be seen that the vast majority of SNPs have GenTrain 

scores above 0.70. 
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Fig. S1. GenoPlots of SNPs with different GenTrain scores (GT-scores). It can be 

seen that when the GT-score is high (0.90), the clustering of each of the three 

genotypes is quite tight. In contrast, SNPs with GT scores of 0.55 and 0.62 display 

scattered patterns of clustering for at least one of the genotypes. For the SNP with 

a GT score of 0.17, the pattern of clustering is not credible. 
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Abstract 

We have sequenced the transcriptomes of 12 brain tissues in seven female 

Murciano-Granadina goats, three of which were pregnant, to build an atlas of 

protein-coding gene expression of the goat brain. Between 14,889 (cerebellar 

hemisphere) and 15,592 (pineal gland) protein-coding genes were expressed in goat 

brain tissues, and most of them displayed ubiquitous or broad patterns of expression 

across tissues. Principal component analysis and hierarchical clustering based on 

the patterns of mRNA expression revealed that brain tissues tend to group according 

to their embryonic origin. Differential expression analysis between pregnant and 

non-pregnant goats evidenced moderate changes of mRNA expression in the frontal 

cortex, hippocampus, adenohypophysis, pons and pineal gland, and very dramatic 

changes in the olfactory bulb. Many genes showing differential expression in this 

organ are related to olfactory function and behavior in humans.  

Keywords: Goat, RNA-Seq, gestation, embryonic vesicle, differential gene 

expression, encephalon. 
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Introduction 

The mammalian brain is an extraordinarily complex organ integrating multiple 

highly specialized structures involved in the regulation of memory, behavior, 

learning, sensory function, motor skills and body homeostasis, amongst others. 

During embryo development, three vesicles emerge from the neural tube which 

roughly correspond to the forebrain (prosencephalon), midbrain (mesencephalon) 

and hindbrain (rhombencephalon) [1]. Further subdivisions take place in the 

forebrain (telencephalon and diencephalon) and hindbrain (metencephalon and 

myelencephalon), resulting in the formation of five encephalic vesicles [1]. In the 

bovine embryo, these five encephalic vesicles are visible at 24 days after 

conception, but they do not become fully developed until 110 days of gestation [2]. 

Multiple anatomical structures with specialized functions [1] are subsequently 

derived from the telencephalon (cerebral hemisphere, basal ganglia, hippocampus, 

olfactory bulb, lateral ventricles, etc.), diencephalon (thalamus, hypothalamus, 

pineal body, neurohypophysis, infundibulum, third ventricle, etc.), mesencephalon 

(rostral colliculus, tegmentum, crus cerebri, cerebral aqueduct, etc.), 

metencephalon (pons, cerebellum, upper part of the fourth ventricle, etc.) and 

myelencephalon (medulla oblongata, spinal cord lower part of the fourth ventricle, 

etc.). 

Transcriptomic analyses may hold the key to significantly advance our knowledge 

about the biological functions of brain regions. In mice, patterns of gene expression 

have been used to establish a molecular atlas of the adult brain [3], and as much as 
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737 brain structures have been identified with microscopy techniques 

complemented with other approaches, providing a comprehensive view about the 

high functional complexity of this organ [4]. An important feature of the brain is its 

high plasticity, so any atlas of gene expression is necessarily dynamic, not only in 

space but also in time. For instance, pregnancy in mice is associated with extensive 

changes in gene expression in the neocortex, cerebellum, hippocampus and 

hypothalamus, and there is evidence that several of such modifications might be 

long lasting [5,6]. 

Very few atlases of brain gene expression have been generated in domestic animals. 

Recently, Sjöstedt et al. [7] investigated the profiles of gene expression of 10 major 

mammalian brain regions in humans, mice and pigs. They found that global 

transcriptomic profiles are, in general, well conserved in these three species, with 

cerebrum and brainstem regions clustering apart in hierarchical trees and the 

cerebellum showing a highly divergent profile of gene expression [7]. The mRNA 

expression of several brain regions has also been reported in sheep [8] and cattle 

[9], although not in a comprehensive or systematic way. In goats, mRNA expression 

of two neural tissues, frontal lobe cortex and cerebellum, has also been 

characterized by RNA-Seq [10]. The main goal of the current work was to establish 

an atlas of protein-coding gene expression of the caprine brain by sequencing the 

transcriptomes of 12 encephalic regions in 7 female Murciano-Granadina goats. 

Given that 3 of these goats were pregnant at the time of slaughter, we have also 

investigated whether gestation affects the transcriptomic profiles of the 12 brain 

regions under study.  
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Results 

Sequencing of total RNA from 12 goat tissues 

In this work, we have sequenced 84 RNA samples obtained from 12 different 

brain tissues retrieved from seven Murciano-Granadina goats, i.e. 

adenohypophysis, cerebellar hemisphere, cerebellar trunk, frontal neocortex, 

hippocampus, hypothalamus, medulla oblongata, neurohypophysis, olfactory 

bulb, pineal gland, pons and rostral colliculus (Fig 1A). Three of the sampled 

goats were 1-month pregnant while the other four goats were non-pregnant. The 

average RNA integrity number (RIN) of the 84 RNA extractions was 7.53 ± 

0.62, ranging from 6.2 to 9 (Table 1). These values are in agreement with the 

conservative threshold of RNA degradation (RIN = 6.4-7.9) defined by Gallego 

Romero et al. [11] for the in-depth analysis of RNA transcripts. As shown in 

Table 1, the mean sequencing depth ranged from 37.79 to 42.12 million of 

paired-end reads per tissue, and the average alignment rate ranged from 84.44% 

(adenohypophysis) to 94.35% (pons).  

 

Fig 1. Anatomical location and PCA clustering of 12 goat brain tissues. (A) 

Anatomical location of 12 brain tissues sampled in seven Murciano-Granadina 

female goats: adenohypophysis, cerebellar hemisphere, cerebellar trunk, frontal 

neocortex, hippocampus, hypothalamus, medulla oblongata, neurohypophysis, 

pineal gland, pons, olfactory bulb and rostral colliculus. The embryonic vesicle, 

i.e. telencephalon and diencephalon in the forebrain, mesencephalon in the 

midbrain and metencephalon and myelencephalon in the hindbrain, from which 

each sampled tissue is derived is indicated with different colors. 
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Adenohypophysis does not originate from any of these five vesicles but from 

the oral ectoderm. (B) Principal component analysis (PCA) of 12 brain tissues 

from 7 Murciano-Granadina female goats by considering the mRNA expression 

patterns of all sampled tissues (adenohypophysis, cerebellar hemisphere, 

cerebellar trunk, frontal neocortex, hippocampus, hypothalamus, medulla 

oblongata, neurohypophysis, pineal gland, pons, olfactory bulb and rostral 

colliculus), (C) Same PCA excluding hypophysis and cerebellum, and (D) 

Same PCA excluding pineal gland, hypophysis and cerebellum. 
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Table 1. Quality of RNA samples and number of genes expressed in 12 

brain goat tissues. Average RNA integrity number (RIN), alignment rate and 

number of expressed genes (CPM > 0.5 in at least 2 samples per tissue) in 12 

brain tissues from seven Murciano-Granadina female goats.  

Tissue RIN 

Mean ± SD 

Average 

alignment 

rate (%) 

Average 

number of 

reads 

(millions) 

Mean ± 

SD 

Number of 

expressed 

protein-

coding 

genes 

(CPM > 

0.5) 

Adenohypophysis 7.900 ± 

0.428 

84.44 37.786 

± 2.348 

15,220 

Cerebellar 

hemisphere 

8.100 ± 

0.486 

94.11 41.461 

± 4.571 

14,889 

Cerebellar trunk 8.143 ± 

0.550 

94.17 42.117 

± 9.052 

14,898 

Frontal 

neocortex 

7.400 ± 

0.569 

94.26 41.361 

± 7.438 

15,098 

Hippocampus 7.629 ± 

0.411 

93.98 41.717 

± 7.825 

15,437 

Hypothalamus 6.943 ± 

0.326 

93.92 38.618 

± 4.817 

15,557 

Medulla 

oblongata 

6.843 ± 

0.181 

94.27 40.141 

± 5.510 

15,420 

Neurohypophysis 7.771 ± 

0.482 

87.8 39.443 

± 5.931 

15,366 

Olfactory bulb 7.214 ± 

0.422 

94.16 40.139 

± 3.938 

15,581 

Pineal gland 8.029 ± 

0.594 

94.23 39.228 

± 7.142 

15,592 

Pons 7.186 ± 

0.654 

94.35 39.505 

± 4.233 

15,273 

Rostral colliculus 7.243 ± 

0.412 

93.63 38.832 

± 3.179 

15,153 

 

Clustering of tissues according to their mRNA expression profile 

The total number of protein-coding loci expressed (counts per million, CPM > 

0.5 in at least two samples per tissue) in 12 brain tissues from 7 goats ranged 
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from 14,889 genes for the cerebellar hemisphere to 15,592 genes for the pineal 

gland. Considering all tissues, 17,054 protein-coding genes passed the quality 

control (QC) filters and were expressed in at least two samples for each tissue. 

The principal component analysis (PCA) showed that the majority of samples 

clustered according to their tissue of origin. We also observed that four tissues, 

namely adenohypophysis, neurohypophysis, pineal gland and cerebellum 

(hemisphere and trunk), displayed highly divergent gene expression patterns 

with regard to the remaining encephalic tissues (Figs 1B and 1C). The removal 

of these four outlier tissues demonstrated, particularly for the first principal 

component (PC1, 34.47% of the observed variance), that tissues group in 

accordance with the embryonic vesicle from which they are derived (Fig 1D). 

Pons and medulla oblongata, which are hindbrain structures, tended to group 

together and in close proximity with the rostral colliculus, which is derived from 

the midbrain. Another cluster of tissues was represented by the frontal 

neocortex, olfactory bulb and hippocampus, which derive from the forebrain 

telencephalon vesicle. Finally, the hypothalamus, which originates from the 

forebrain diencephalon vesicle, was located in an intermediate position between 

these two major clusters (i.e. forebrain vs. midbrain/hindbrain) of brain tissues 

(Fig 1D). Both the hierarchical clustering analysis (Fig 2) and the heatmap (Fig 

3) supported these observations, highlighting that tissue of origin, rather than 

pregnancy status, was the main factor governing the clustering of samples (Fig 

2). 
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Fig 2. Hierarchical clustering of 12 brain tissues from 7 Murciano-

Granadina goats based on their mRNA expression profiles. Dendrogram 

displaying tissue clustering patterns. In most cases, samples group according to 

their tissue of origin and, moreover, tissues tend to cluster according to the 

forebrain, midbrain or hindbrain embryonic vesicle they originate from. 

Exceptions to this general observation are hypothalamus, that groups with 

rostral colliculus, and two main groups of outliers: cerebellum and glandular 

tissues (pineal gland and hypophysis). In the right part of the Figure, we indicate 

the embryonic vesicle from which each tissue is derived. In the embryo, three 

forebrain (prosencephalon), midbrain (mesencephalon) and hindbrain 

(rhombencephalon) vesicles are initially formed. Later on, prosencephalon is 

subdivided into two further vesicles (telencephalon and diencephalon) and so 

does rhombencephalon (metencephalon and myelencephalon). 

Adenohypophysis does not originate from any of these five vesicles but from 

the oral ectoderm. 
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Fig 3. Heatmap depicting the scaled gene expression of protein-coding loci 

transcribed in 12 goat brain tissues. The 84 columns correspond to samples from 

12 brain tissues retrieved from 3 pregnant and 4 non-pregnant Murciano-Granadina 

goats, while rows correspond to a set of 17,054 protein-coding genes. It can be seen 

that tissue of origin, rather than pregnancy, is the main factor determining the 

degree of similarity between genome-wide mRNA expression patterns across 

samples. 

 

Tissue-specificity of mRNA expression 

Regarding gene expression specificity, the distribution of the tissue-specificity 

index 𝜏-values was highly skewed to the left (Fig 4A). Indeed, 5,826 (34.16%) 
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protein-coding genes showed 𝜏- values below 0.15, indicative of a highly 

ubiquitous pattern of expression across all tissues. In contrast, 9,877 (57.92%) 

protein-coding genes displayed intermediate 𝜏-values (𝜏 = 0.15-0.85) and 1,351 

protein-coding genes (7.92%) had a highly tissue-specific profile (𝜏 > 0.85) of 

mRNA expression (Figs 4A and 4B). More specifically, 469 protein-coding genes 

showed 𝜏-values of 1, indicating that they are expressed in only one of the sampled 

tissues (Figs 4A and 4C). From this set of 469 protein-coding genes, 177 were 

specifically expressed in the pineal gland, evidencing that this tissue is, by far, the 

one with the highest number of genes with tissue-specific expression (Fig 4C). In 

contrast, the rostral colliculus was the tissue with the lowest number of tissue-

specific genes (11 protein-coding genes with 𝜏 =1).  

KEGG pathway enrichment analysis of highly expressed genes  

The results of the Kyoto encyclopedia of genes and genomes (KEGG) pathway 

enrichment analysis for the 1,000 mRNA genes with the highest expression in each 

tissue (S3A-S3K Tables) revealed several pathways broadly shared across tissues 

and also reaching strong statistical significance, e.g. synaptic vesicle cycle, 

endocrine and other factor-regulated calcium reabsorption, endocytosis, 

phagosome, long-term potentiation, dopaminergic synapse, glutamatergic synapse, 

circadian entrainment, gap junction, gastric acid secretion and adrenergic signalling 

in cardiomyocytes (Fig 5). We also detected many pathways related to neurological 

conditions that attained high statistical significance and were represented in a broad 

array of encephalic tissues, e.g. Alzheimer disease, Huntington disease, Parkinson 
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disease, prion disease, amyotrophic lateral sclerosis, and, to a much lesser extent, 

spinocerebellar ataxia. Pathways related with Vibrio cholerae and Salmonella 

infection were also commonly found. Protein processing in endoplasmic reticulum, 

RNA transport and ribosome were amongst the most significant pathways in the 

adenohypophysis (S3A Table) and neurohypophysis (S3H Table), but not in the 

other tissues. As said before, in the pineal gland (S3J Table) phototransduction was 

also a highly significant pathway (q-value = 0.004), while in the remaining tissues 

it did not reach statistical significance. 

Fig 4. Tissue specificity of protein-coding genes expressed in 12 goat brain 

tissues. (A) Histogram representing the tissue specificity of 17,054 protein-coding 

genes expressed in 12 goat brain tissues (in at least one sample) and surpassing QC 

filters. The number of genes is indicated in the y-axis, while Tau specificity scores 

(𝜏, see text for details) are shown in the x-axis. (B) Number of genes with tissue-

specific expression (τ > 0.85) in each of the 12 brain tissues under study. (C) 

Number of genes expressed exclusively in one tissue (τ = 1) in 12 caprine brain 

regions. Tissues were retrieved from 7 Murciano-Granadina goats. 
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Fig 5. Heatmap depicting the enrichment level of the top 20 enriched pathways 

in 12 goat brain tissues from seven goats. The top 20 most enriched pathways per 

tissue were selected. Many pathways were shared across tissues, making a total of 

48 unique pathways. The level of expression is displayed as combined scores 

calculated with the Enrichr software as defined by Chen et al [12]. 
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Changes of brain expression associated with 1-month pregnancy 

We were interested to find out which of the brain tissues are more affected by 

pregnancy. To achieve this goal, we have used the number of differentially 

expressed genes (DEGs) as an indicator of the strength of such influence. Although 

low replicate numbers (3 pregnant and 4 non-pregnant goats) decreases the 

sensitivity to detect DEGs, we consider that such reduction of sensitivity should 

affect all 12 tissues in a similar manner so it is not expected to bias our results. 

Indeed, brain tissues from pregnant versus non-pregnant goats showed strong 

differences in terms of the number of differentially expressed genes (DEGs). Six 

tissues displayed little changes in their expression levels in response to 1 month-

pregnancy: in the cerebellar hemisphere, cerebellar trunk, hypothalamus, medulla 

oblongata, neurohypophysis and rostral colliculus, only 2, 1, 1, 12, 4 and 1 DEGs 

were identified, respectively (Fig 6). In strong contrast, we observed remarkable 

changes in the expression profiles of six brain tissues (Fig 7, S4 Table): 

adenohypophysis (201 DEGs, 13 downregulated and 188 upregulated in pregnant 

goats, S4A Table), frontal neocortex (82 DEGs, 37 downregulated and 45 

upregulated in pregnant goats, S4D Table), hippocampus (70 DEGs, 15 

downregulated and 55 upregulated in pregnant goats, S4E Table), pineal gland (62 

DEGs, 60 downregulated and 2 upregulated in pregnant goats, S4J Table), pons 

(190 DEGs, 57 downregulated and 133 upregulated in pregnant goats, S4K Table) 

and, most remarkably, olfactory bulb (1207 DEGs, 381 downregulated and 826 

upregulated in pregnant goats, S4I Table).  
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Pathways significantly associated with DEGs in each tissue are shown in S5A-S5F 

Tables and S13-S18 Figs. In the olfactory bulb (S5D Table), the majority of 

biological functions enriched in the set of  upregulated DEGs in pregnant goats 

were associated with axon guidance (c = 89.246; q-value = 7.29 E-07), 

dopaminergic synapse (c = 79.526; q-value = 6.07 E-06), neuroactive ligand-

receptor interaction (c = 53.217; q-value = 5.27 E-06), cholinergic synapse (c = 

55.712; q-value = 1.32 E-04) and phenylalanine, tyrosine and tryptophan 

biosynthesis (c = 53.087; q-value = 8.51 E-02). In contrast, downregulated DEGs 

in the olfactory bulb of pregnant goats were enriched in pathways related to nervous 

development and control of cellular activities, including migration, differentiation 

and proliferation (S5D Table). Examples of such pathways are calcium signalling 

(c = 22.865; q-value = 1.66 E-1), ErbB signalling (c = 15.898; q-value = 3.32 E-

1), ECM-receptor interaction (c = 14.828; q-value = 3.32 E-1) and tight junction (c 

= 14.492; q-value = 2.81 E-1).  

By making a literature search for each one of the genes showing differential 

expression in the olfactory bulb of pregnant vs. non-pregnant goats, we observed 

that many of them are related to human behavioral traits (S6 Table). As shown in 

S7 Table, our literature search also revealed several DEGs associated with the 

migration and maturation of olfactory bulb interneurons, olfactory bulb 

morphogenesis and establishment of a functional olfactory neural circuitry. 
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Fig 6. Volcano plots of differentially expressed genes in six brain tissues little affected by pregnancy. According to our results, 

when comparing pregnant vs. non-pregnant goats, these six tissues are unaffected or little affected by 1 month-pregnancy: (A) cerebellar 

hemisphere, (B) cerebellar trunk, (C) hypothalamus, (D) medulla oblongata, (E) neurohypophysis and (F) rostral colliculus. Genes 

with a fold change below -1.5 and a q-value < 0.05 are depicted in blue, while genes with a fold change above 1.5 and a q-value < 0.05 

are depicted in red. Grey dots represent genes that do not display differential expression (absolute fold change below 1.5 and/or a q-

value > 0.05). 
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Fig 7. Volcano plots of differentially expressed genes in six brain tissues moderately or strongly affected by pregnancy. 

According to our results, when comparing pregnant vs. non-pregnant goats, these six tissues are moderately or strongly affected by 1 

month-pregnancy: (A) adenohypophysis, (B) frontal neocortex, (C) hippocampus, (D) olfactory bulb, (E) pineal gland and (F) pons. 

Genes with a fold change below -1.5 and a q-value < 0.05 are depicted in blue, while genes with a fold change above 1.5 and a q-value 

< 0.05 are depicted in red. Grey dots represent genes that do not display differential expression (absolute fold change below 1.5 and/or 

a  q-value > 0.05). 
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Discussion 

Embryogenesis leaves a durable footprint on the patterns of brain mRNA 

expression 

The majority of the 17,054 protein-coding genes expressed in the goat brain had 𝜏-

values below 0.25, implying that they have a ubiquitous pattern of expression. 

Indeed, only 469 genes (2.75%) were expressed in just one of the 12 sampled tissues 

(𝜏 = 1). Results obtained in the Genotype-Tissue Expression (GTEx) project were 

consistent with this finding [13], since only 200 genes showed tissue-specific 

expression (95% of these genes were exclusively expressed in the testis).  

 Tissue of origin, rather than pregnancy, was the major factor explaining the 

clustering of samples. By using microarrays, Ferraz et al. [14] investigated the 

profiles of expression of 16 porcine tissues and observed that the factor “tissue of 

origin” accounted for ~11 times more variability than sex or breed. In humans, the 

GTEx Consortium retrieved 1641 post-mortem samples covering 54 body sites 

from 175 individuals and reported that tissue type was the primary factor explaining 

differences in gene expression, a result that is fully consistent with ours [15]. 

Similar findings have been obtained when building atlases of gene expression in 

cattle [9], pigs [16] and sheep [8].  

We have observed that, in goats, the majority of brain tissues cluster according to 

their embryonic origin, with the few exceptions of cerebellum, pineal gland and 

adeno/neurohypophysis which showed highly differentiated patterns of gene 

expression (Fig 1B, 1C and 1D). In the comprehensive analysis of porcine tissue 

expression carried out by Ferraz et al. [14], tissues clustered according to the germ 
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layer (ectoderm, mesoderm or endoderm) they derive from. Measurement of 

transcriptome profiles in 24 murine neural tissues also highlighted the existence of 

a relationship between the cellular position along the anterior-posterior axis of the 

neural tube and gene expression in different regions from the adult brain [17], as 

also published by Ortiz et al. [3]. These results and those obtained by us are in 

agreement with the interpretation that embryogenesis leaves a durable footprint in 

the profile of mRNA expression of mammalian brain tissues. 

Sjöstedt et al. [7] described the patterns of genome-wide expression of protein-

coding genes in a number of brain regions from humans, mice and pigs. They found 

that, in general, transcriptomic patterns are evolutionarily conserved in these three 

species, with the three forebrain structures (cerebral cortex, hippocampus, and 

amygdala) grouping together, and the midbrain, thalamus, and pons and medulla 

forming another cluster of tissues close to the hypothalamus [7]. They also found 

that the cerebellum behaves as an outlier, a finding fully coherent with ours.  

Although transcriptomic profiles of brain regions seem to be well conserved across 

species, relevant differences also exist. For instance, Sjöstedt et al. [7] indicated 

that in humans the olfactory bulb clusters with other forebrain structures (cerebral 

cortex, hippocampus, amygdala, etc.), while in pigs and mice this tissue almost 

behaves as an outlier. They reasoned that this might be due to the fact that these 

two latter species have more evolved olfactory systems than humans [7]. In goats, 

the olfactory bulb is also much more developed than in humans [18], a feature 

consistent with the fundamental role of the olfactory system in the maternal and 

social behaviors of ungulates [19]. However, our data indicate that in goats the 
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pattern of mRNA expression of the olfactory bulb is closely aligned with that of 

other forebrain tissues (Fig 1B-1D). This result agrees much more with the PCA 

reported by Sjöstedt et al. [7] for human brain tissues than for those corresponding 

to pigs or mice. A higher resemblance of goats to humans, rather than to pigs, is 

unexpected because goats and pigs are ungulates [20]. Sjöstedt et al. [7] stated that 

the functional importance of olfaction might be a key factor explaining the 

differential patterns of olfactory bulb mRNA expression observed in pigs/mice vs. 

humans. Such hypothesis is not fully consistent with our results and should be 

interpreted cautiously until further data are available in other mammalian species.  

Cerebellum, pineal gland and hypophysis have highly differentiated patterns 

of gene expression 

Cerebellum displayed a highly differentiated pattern of mRNA expression when 

compared to other brain structures (Fig 1B), a finding that, as mentioned before, is 

consistent with previous reports [3,7]. Moreover, cerebellum trunk and hemisphere 

mRNA profiles were quite similar. Cerebellum is strongly specialized in the 

learning and coordination of motor activities as well as in the triggering of reflex 

responses, and it has been suggested that it is scarcely connected with cognitive 

areas of the brain cortex [21]. One of the most distinctive features of the cerebellum 

is its extraordinarily high cell density: while this organ represents 10% of brain 

volume, it encompasses 42.0% of all brain cells and 59.8% of all excitatory neurons, 

mainly due to the conspicuous abundance of tightly packed granular cells [4]. 

Another relevant feature of the cerebellum is that the same circuit, composed by 

mossy fibers that excite granule cells that, in turn, excite Purkinje cells, forms a 
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fundamental unit that is replicated thousands of times [22]. These biological 

particularities might have contributed to transform the cerebellum into an organ 

with a very specific transcriptomic profile, not only in goats but also in other 

mammals.  

We also observed highly divergent patterns of gene expression in three glandular 

tissues: the pineal gland and the adeno/neurohypophysis (Fig 1B), a finding 

consistent with results reported by Harhay et al. [9]. The strong functional 

specialization of these three anatomical structures in hormonal secretion might 

explain these findings. In response to light, the pineal gland, which develops from 

an evagination of neuroepithelium in the dorsal midline of the diencephalon, 

synthesizes and releases melatonin, which is a key regulator of the circadian sleep-

wake cycle and seasonal rhythms [23]. Remarkably, in our study the pineal gland 

was the second organ showing the highest number of genes with tissue-specific 

expression (𝜏 > 0.85, Fig 4B and S2A Table), and presented the highest number of 

genes exclusively expressed in one tissue (Fig 4C). Neurohypophysis and 

adenohypophysis are also specialized in the secretion of molecules with key 

physiological roles, and data collected in sheep and cattle indicate that their profiles 

of mRNA expression are highly differentiated from those of other brain structures 

[8,9]. The main hormones produced by the adenohypophysis are prolactin, 

adrenocorticotropic hormone, luteinizing hormone, follicle-stimulating hormone, 

growth hormone and thyroid-stimulating hormone, which regulate a very diverse 

set of biological processes including growth, metabolism, lactation, stress and 

reproduction [24]. One particular feature of the adenohypophysis is that it does not 
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develop from any of the five neural vesicles but from the oral ectoderm [24]. In 

contrast, the neurohypophysis has a diencephalic origin and stores vasopressin and 

oxytocin (both are synthesized in the hypothalamus) regulating diuresis and a broad 

array of reproduction and behavioral processes, respectively [25]. Despite having 

completely different embryological origins, histological structure and biological 

functions, our data indicate that neurohypophysis and adenohypophysis share 

similar profiles of mRNA expression (Fig 1B and Fig 5). Our interpretation is that 

high functional specialization in hormonal secretion might erase, at least partially, 

the transcriptomic footprint associated with embryogenesis, a hypothesis supported 

by the distinctive patterns of gene expression observed in both pituitary structures 

when compared with the remainder encephalic tissues. Further studies will be 

needed to assess whether such hypothesis is correct. 

Heterogeneous effects of pregnancy on the expression profiles of twelve goat 

brain regions 

Amongst the seven individuals sampled in our study, there were three pregnant 

goats providing the opportunity to investigate the effect of pregnancy on the brain 

transcriptome. Since the number of replicates for each pregnant (N=3) and non-

pregnant (N=4) category is low, sensitivity to detect DEGs is expected to decrease 

[26]. To circumvent this difficulty, we have used the total number of DEGs as the 

main criterion to identify which brain regions are mostly affected by 1-month 

pregnancy. In principle, low number of replicates should affect the number of 

detected DEGs to a similar extent in all 12 brain tissues, so the number of DEGs 
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seems to be an appropriate indicator of which brain tissues are more affected by 

pregnancy. 

In comparisons involving cerebellar hemisphere, cerebellar trunk, hypothalamus, 

medulla oblongata, neurohypophysis and rostral colliculus, the total number of 

DEGs in pregnant vs non-pregnant goats was very low or inexistent (Fig 6). In 

contrast, in the frontal cortex, hippocampus, adenohypophysis, pons and pineal 

gland, between 62 and 201 DEGs were detected (Fig 7). By far, the organ which 

displayed the largest number of DEGs was the olfactory bulb (826 upregulated and 

381 downregulated genes in pregnant goats). From these data, we conclude that 1-

month pregnancy does not have the same effect on all goat brain regions. Ray et al. 

[5] investigated changes in the mRNA expression of four brain structures 

(hypothalamus, neocortex, hippocampus and cerebellum) in virgin, pregnant, and 

postpartum mice, and they found that in the virgin vs. pregnant comparison the 

number of DEGs was much higher in the hippocampus than in the cerebellum, 

while hypothalamus and neocortex showed intermediate values. These results 

support the notion that pregnancy does not affect all brain tissues to the same extent. 

Brain gene expression during pregnancy is dynamic and it might change depending 

on the time point under consideration. By using magnetic resonance imaging it has 

been shown that the brain of primiparous women experiences substantial 

morphological changes during gestation which mostly affect the right middle 

temporal gyrus, inferior frontal gyrus and posterior cingulate cortex [27]. A 

longitudinal morphometric study in mice also provided evidence of transient 

hypertrophy associated with gestation and/or lactation in the medial preoptic area, 
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bed nucleus of the stria terminalis, amygdala, caudate nucleus and hippocampus 

[28]. These findings indicate that certain brain structures undergo significant 

alterations in their profiles of expression and morphology as a consequence of 

gestation, and that biological changes are highly dynamic. Thus, the lists of DEGs 

detected for 12 goat brain tissues at 1-month of gestation might not be 

representative of the whole gestation but just of this specific time point. 

In the goat frontal cortex and the hippocampus, 82 DEGs (45 upregulated and 37 

downregulated in pregnant goats) and 70 DEGs (55 upregulated and 15 

downregulated in pregnant goats) were detected, respectively (S4D and S4E 

Tables). The hippocampus and the frontal neocortex play important roles in 

modulating memory and learning as well as social behavior [29,30], and there is 

evidence that hippocampal neurogenesis is affected by pregnancy [31]. Besides, 

hippocampal lesion in the female rat results in deficient nest construction and 

reduced pup survival, suggesting that this organ has a key influence on the 

development of maternal behavior [32].  

In the adenohypophysis and pineal gland, 201 DEGs (188 upregulated and 13 

downregulated in pregnant goats) and 62 DEGs (2 upregulated and 60 

downregulated in pregnant goats) were identified, respectively (S4A and S4J 

Tables). Pineal gland and adenohypophysis provide hormonal signals that are 

fundamental for the maintenance of gestation. For instance, the secretion of 

maternal pineal melatonin during pregnancy provides photoperiodic information to 

the fetus, which is essential for achieving a proper neurodevelopment and physical 

growth [33]. Moreover, the anterior pituitary is strongly enlarged during gestation 
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in response to hormones produced by the placenta and ovaries, and the secretion of 

prolactin increases gradually to prepare the female for lactation [34].  

Differential mRNA expression in the pons, with 190 DEGs (133 upregulated and 

57 downregulated in pregnant goats), is harder to interpret (S4K Table). This brain 

region is mostly involved in the regulation of breathing and sleep, and in relaying 

information to or from the cerebellum to other brain regions [35]. However, there 

is evidence that the pons has a basic role in the generation and experience of 

emotions through the integration of arousal, autonomic function, motor control, and 

somatosensory signals [35]. Moreover, it has been reported that preoptic area 

projections to lower brainstem regions affect maternal behavior in postpartum rats 

[36]. 

Dramatic changes in the mRNA expression of the olfactory bulb in response 

to early gestation 

The olfactory bulb was the brain region that displayed, by far, the highest number 

of DEGs (S4I Table), implying that this organ is strongly affected by 1 month-

pregnancy. The olfactory bulb processes smell information transmitted from 

olfactory sensory neurons expressing odorant receptors in the olfactory epithelium, 

and relays it to the olfactory cortex [37]. Importantly, the sense of olfaction is 

strongly connected to a broad array of behavioral responses related with aversion 

to food, avoidance of predators, sex arousal, partner preference, and aggression, 

amongst others [38]. For instance, bilateral bulbectomy of male rats is associated 

with indifference to the sexual status of females and suppression of mating [39], 

and it also decreases aggressive behavior between males [40]. 
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Of course, the strong changes in the mRNA expression profile of the olfactory bulb 

observed in pregnant goats, when compared to their non-pregnant counterparts, are 

not triggered by odorant signals delivered by the offspring. More likely, this 

remarkable change of gene expression might be promoted by other brain regions 

and/or endocrine glands delivering chemical signals to the olfactory bulb. As 

expected, several DEGs are related with the sense of olfaction (S7 Table). More 

enigmatic are changes in the mRNA expression of a large number of genes known 

to influence behavioral traits in humans (S6 Table). We consider that the 

disproportionate number of DEGs detected in the olfactory bulb, when compared 

to other brain tissues, is a robust result demonstrating that this organ is strongly 

affected by pregnancy. Importantly, this anatomical structure is substantially 

involved in the development of maternal behavior in mouse, i.e. its complete 

removal eliminates such capacity and, very often, implies that litters are 

cannibalized by their mothers soon after parturition [41]. Moreover, intrabulbar 

infusions of an oxytocin antagonist delays maternal behavior in rats, while oxytocin 

itself has the opposite effect [42]. In sheep, which are phylogenetically close to 

goats, disruption of the noradrenergic projections to the olfactory bulb suppresses 

the establishment of a maternal bond between mother and offspring, probably 

because such event strongly depends on odor cues [91]. These results support a 

critical role of the olfactory bulb in the induction of maternal behavior in mammals, 

although discrepant findings have also been published [91]. 

It has been proposed that in sheep and goats the increase of estrogen levels in blood 

during prepartum, combined with the vaginocervical stimulation provoked by the 
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expulsion of the fetus, trigger modifications in a neural network including the main 

olfactory system, the medial preoptic area and the paraventricular nucleus of the 

hypothalamus, in order to induce maternal behavior [44]. Our transcriptomic data 

demonstrate that extensive areas of the goat brain manifest changes in their 

expression profiles much before the peripartum period. These alterations might 

represent an adaptive response towards preparing the pregnant goat for maternity, 

and we hypothesize that the olfactory bulb might hold a very relevant role in such 

process.  

Conclusions 

As a whole, brain tissues in goats display mRNA expression profiles which are 

strongly coherent with the encephalic vesicle from which they are derived, implying 

that embryonic development leaves a durable footprint on the transcriptomic 

landscape of such tissues. Exceptions to this general rule are secretory glands 

(pineal gland and pituitary) and cerebellum, which show highly divergent patterns 

of gene expression when compared to other brain tissues, a feature attributable to 

the highly specialized functions of these organs. We have also demonstrated that 1-

month pregnancy does not affect the mRNA expression profile of goat brain tissues 

to the same extent. These patterns are probably highly dynamic, so the list of altered 

and unaltered tissues might experience substantial changes throughout pregnancy. 

At 1 month of gestation, we have observed that the olfactory bulb is the tissue 

experiencing the more drastic changes in its mRNA expression profile. Many of the 

genes with altered expression are related with behavioral traits in humans and other 
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species. This finding is consistent with the key role of this organ in the 

establishment of an affective bond between mother and offspring, which is the main 

hallmark of maternity.  

Materials and Methods 

Sample collection 

Seven multiparous non-lactating Murciano-Granadina goats raised in the 

experimental farm of the Faculty of Veterinary Sciences at the Universitat 

Autònoma de Barcelona (UAB) were slaughtered because of reasons unrelated with 

this project. Sampled goats were kept under the same management and 

environmental conditions had similar ages (6.28 ± 1.38 years). To minimize pain, 

goats were administered pentobarbital (150 mg/kg) in the jugular vein. Three of 

these goats were 1-month pregnant at the time of slaughtering. Since animals were 

killed due to the routine culling process implemented in this experimental farm, no 

permission from the Ethics Committee on Animal and Human Experimentation at 

UAB was required. 

After slaughtering, goats were transported to the Necropsy Room of the Faculty of 

Veterinary Sciences at UAB. The cranial vault of each goat was open with a bone 

saw and twelve brain tissues were carefully dissected and biopsied by an expert 

anatomist. Sample tissues were drawn from the adenohypophysis, cerebellar 

hemisphere, cerebellar trunk, frontal neocortex, hippocampus, hypothalamus, 

medulla oblongata, neurohypophysis, pineal gland, pons, olfactory bulb and rostral 
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colliculus (Fig 1A). Biopsies were immediately submerged in RNAlater 

(Thermofisher Scientific, Barcelona, Spain) to be stored at -80 ºC until processing. 

 

To purify total RNA, tissue samples were mixed with 1 ml QIAzol (QIAGEN Inc., 

Barcelona, Spain) and homogenized using the Lysing Matrix D reagent (MP 

Biomedicals, Santa Ana, CA) in a Precellys 24 tissue homogenizer (Bertin 

Instruments, Rockville, MD). The extraction of total RNA was performed using the 

RNeasy lipid tissue mini kit (QIAGEN Inc., Barcelona, Spain) following the 

protocol described by the manufacturer. The concentration and purity of extracted 

RNA molecules were analyzed using the Nanodrop ND-1000 spectrophotometer 

(Thermofisher Scientific, Barcelona, Spain) and RNA integrity was assessed with 

a Bioanalyzer-2100 equipment (Agilent Technologies, Santa Clara, CA) using the 

RNA 6000 Nano Kit 4.2 (Agilent Technologies, Santa Clara, CA). 

Sequencing of total RNA 

Paired-end sequencing (2 x 50 bp) of total RNA was carried out at the Centre 

Nacional de Anàlisi Genòmica (CNAG). Sequencing methods have been reported 

by Guan et al. [45]. Briefly, the RNA-Seq library was prepared with the KAPA 

Stranded mRNA-Seq Illumina Platforms Kit (Roche, Sant Cugat, Spain) by using 

500 ng total RNA as template. Oligo-dT magnetic beads were used to enrich the 

poly-A fraction and subsequently, RNA was fragmented. Strand cDNA synthesis 

was performed in the presence of dUTP to enforce strand-specificity. The blunt-

ended double stranded cDNA was 3’-adenylated and ligated to Illumina adaptors 

with unique dual indexes and unique molecular identifiers (Integrated DNA 
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Technologies, Coralville, IA). Enrichment of the ligation product was ensured by 

performing 15 cycles of polymerase chain reaction amplification. An Agilent 2100 

Bioanalyzer equipment was employed to verify the quality of the final library by 

using the DNA 7500 assay (Agilent Technologies, Inc., Santa Clara, CA). Library 

sequencing was carried out with a HiSeq 4000 equipment (Illumina, San Diego, 

CA) in accordance with the protocol for dual indexing advised by the manufacturer. 

Image analysis, base calling and quality scoring of the sequencing run were checked 

with the Real-Time Analysis (RTA 2.7.7) tool (Illumina, San Diego, CA) and 

FASTQ sequence files were subsequently generated. 

Quality control, alignment and quantification 

The quality of the sequences was assessed with the FastQC software v.0.11.9 [46] 

and adapters were trimmed using the TrimGalore v.0.6.6 tool [47]. In addition, 

reads with more than five ambiguous bases (Ns) were removed. Filtered sequences 

were aligned to the goat ARS1 reference genome [48] with HISAT2 v.2.2.1 aligner 

[49,50] and gene expression was quantified using StringTie v.2.1.0 [51,52] in 

accordance with the protocol described in Pertea et al. [53]. The estimated count 

matrix was obtained from coverage values of each feature (genes in our case) using 

the dedicated script “prepDE.py” from the StringTie pipeline and based on the 

following formula [54]: 

 

Reads per gene=coverage × gene lengthread length 
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Construction of a brain atlas based on the expression of protein-coding genes  

Genes expressed in each tissue were catalogued according to their Ensembl biotype 

[55]. To remove systematic technical effects (e.g. library size), count data from 

protein-coding genes were normalized with the trimmed mean of M values (TMM) 

method implemented in the Bioconductor R package MDseq [56]. The 

corresponding estimated counts per protein-coding gene were normalized to CPM 

with the edgeR package [57,58]. Finally, data were log2 transformed adding a 

pseudo-count of 1. Each tissue was normalized separately. Normalization factors 

were estimated by jointly considering pregnant and non-pregnant goats because 

library size features were quite similar in both groups. To perform downstream 

analyses, only genes with a CPM over 0.5 in at least two samples per tissue were 

taken into consideration. 

A PCA was performed using the stats R package [59,60]. Besides, a heatmap 

depicting the level of expression of each gene per tissue and sample was plotted. 

The Pheatmap software [94] was used to visualize the outputs of such analyses. 

Instead of plotting normalized expression values, data from each row (genes in our 

case) were Z-scored to a distribution with mean 0 and standard deviation 1. By 

doing so, we made sure that expression trends are not obscured because of the 

highly dissimilar expression levels of genes. Additionally, a hierarchical clustering 

dendrogram was built based on Euclidean distances and applying the Ward D 

clustering method [61]. The top 1000 genes with the highest expression levels per 

tissue considering all the individuals were selected to perform pathway enrichment 

analyses with the Enrichr package [12,62]. The KEGG release 99.0 human database 
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[63] was used as reference to annotate pathways enriched in the 12 sets of genes 

(one for each tissue). In order to identify such enriched pathways, a combined score 

(c) was estimated from the output of a traditional Fisher exact test and a Z-score 

estimated from expected ranks and variances of the set of genes. In accordance with 

Chen et al. [12] the following formula was applied: 

c=log(p) × z 

where c is the combined score, p corresponds to P-values estimated with the Fisher 

exact test, and z is the Z-score from the expected rank.  

The tissue-specificity expression of protein-coding genes was assessed by 

calculating the tissue specificity index tau (𝜏), a quantitative, graded scalar measure 

of the gene expression profile. A 𝜏-value of 0 would correspond to a housekeeping 

gene with ubiquitous tissue expression. In contrast, genes with a restricted tissue 

expression show 𝜏-values above 0.85, while genes with 𝜏=1 can be assumed to be 

expressed in a single tissue [64]. The formula to estimate the index was defined by 

Yanai et al. [64]: 

τ=i=1n (1-xi) n-1 

where n is the number of tissues, and xi corresponds to the expression profile 

component normalized by the maximal component value for that gene (i.e. the 

expression of the gene in the tissue where it is most highly expressed), making the 

estimation sensitive to extreme expression values [64]. This calculation was 

performed using the tspex v.0.6.1 program [65,66]. Genes with a 𝜏-score below 

0.15 were selected and catalogued as ubiquitous, while genes with 𝜏-score over 0.85 
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were considered tissue-specific. The genes falling into the aforementioned 

categories were identified and functional enrichment analyses were performed over 

the two datasets using Enrich R [12,62], as previously explained.  

Differential expression and pathway enrichment analyses 

The software DEseq2 [67,68] was used to perform a differential expression analysis 

comparing pregnant vs. non-pregnant goat transcriptomic profiles. Genes with a 

number of estimated counts below 10 were removed. Correction for multiple testing 

was applied using the false discovery rate (FDR) method [69]. We considered that 

a gene is differentially expressed when two conditions are met: absolute logarithm 

of the fold change (log2FC) > 1.5 and an associated q-value < 0.05. Differentially 

expressed genes were used to perform pathway enrichment analyses using the 

Enrichr R package [12]. The annotation of DEGs was performed as explained 

before, and the enrichment pathway analyses were carried out in independently in 

the sets of upregulated and downregulated genes. The level of enrichment was 

estimated by calculating a c score [12], as previously defined.  
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Supplementary information 

S1 Table. (A) Catalogue of 5,826 genes ubiquitously expressed in 12 goat brain 

tissues. (B). Functional enrichment analysis of 5,826 genes ubiquitously 

expressed in 12 goat brain tissues. 

S2 Table. Catalogue and pathway enrichment analyses of genes with high 

tissue specificity in 12 goat tissues. (A) List of 1,351 protein-coding genes with 

high tissue specificity (tau score > 0.85) in 12 goat brain tissues. (B) Pathway 

enrichment analysis of 560 tissue-specific (tau score > 0.85) protein-coding genes 

expressed in the adenohypophysis of Murciano-Granadina goats. (C) Pathway 

enrichment analysis of 221 tissue-specific (tau score > 0.85) protein-coding genes 

expressed in the cerebellar hemisphere of Murciano-Granadina goats. (D) Pathway 

enrichment analysis of 224 tissue-specific (tau score > 0.85) protein-coding genes 

expressed in the cerebellar trunk of Murciano-Granadina goats. (E) Pathway 
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enrichment analysis of 181 tissue-specific (tau score > 0.85) protein-coding genes 

expressed in the frontal neocortex of Murciano-Granadina goats. (F) Pathway 

enrichment analysis of 267 tissue-specific (tau score > 0.85) protein-coding genes 

expressed in the hippocampus of Murciano-Granadina goats. (G) Pathway 

enrichment analysis of 275 tissue-specific (tau score > 0.85) protein-coding genes 

expressed in the hypothalamus of Murciano-Granadina goats. (H) Pathway 

enrichment analysis of 225 tissue-specific (tau score > 0.85) protein-coding genes 

expressed in the medulla oblongata of Murciano-Granadina goats. (I) Pathway 

enrichment analysis of 613 tissue-specific (tau score > 0.85) protein-coding genes 

expressed in the neurohypophysis of Murciano-Granadina goats. (J) Pathway 

enrichment analysis of 290 tissue-specific (tau score > 0.85) protein-coding genes 

expressed in the olfactory bulb of Murciano-Granadina goats. (K) Pathway 

enrichment analysis of 556 tissue-specific (tau score > 0.85) protein-coding genes 

expressed in the pineal gland of Murciano-Granadina goats. (L) Pathway 

enrichment analysis of 214 tissue-specific (tau score > 0.85) protein-coding genes 

expressed in the pons of Murciano-Granadina goats. (M) Pathway enrichment 

analysis of 130 tissue-specific (tau score > 0.85) protein-coding genes expressed in 

the rostral colliculus of Murciano-Granadina goats. 

S3 Table. Pathway enrichment analysis of the top 1000 genes most expressed 

in the (A) adenohypophysis, (B) cerebellar hemisphere, (C) cerebellar trunk, 

(D) frontal neocortex, (E) hippocampus, (F) hypothalamus, (G) medulla 

oblongata, (H) neurohypophysis, (I) olfactory bulb, (J) pineal gland, (K) pons 

and (L) rostral colliculus of goats. 

S4 Table. List of protein-coding genes differentially expressed (absolute log2 

fold-change > 0.58 and q-value < 0.05) in the (A) adenohypophysis, (B) 

cerebellar hemisphere, (C) cerebellar trunk, (D) frontal neocortex, (E) 

hippocampus, (F) hypothalamus, (G) medulla oblongata, (H) 

neurohypophysis, (I) olfactory bulb, (J) pineal gland, (K) pons and (L) rostral 

colliculus from pregnant (N=3) and non-pregnant (N=4) goats. 

S5 Table. Pathway enrichment analysis of genes differentially expressed in the 

(A) adenohypophysis, (B) frontal neocortex, (C) hippocampus, (D) olfactory 
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bulb, (E) pineal gland and (F) pons of 1 month-pregnant vs non-pregnant 

goats. 

S6 Table. List of articles generated through a bibliographic search describing 

the behavioral functions of genes that are differentially expressed in the 

olfactory bulb of pregnant vs. non-pregnant goats. 

S7 Table. List of articles generated through a bibliographic search describing 

the olfactory functions of genes that are differentially expressed in the 

olfactory bulb of pregnant vs. non-pregnant goats.  

S1 Fig. Top 20 pathways enriched in tissue-specific genes expressed in the 

adenohypophysis of Murciano-Granadina goats. Combined scores generated in 

the enrichment analysis are shown in the x-axis; while pathway denominations are 

indicated in the y-axis. 

S2 Fig. Top 20 pathways enriched in tissue-specific genes expressed in the 

cerebellar hemisphere of Murciano-Granadina goats. Combined scores 

generated in the enrichment analysis are shown in the x-axis; while pathway 

denominations are indicated in the y-axis. 

S3 Fig. Top 20 pathways enriched in tissue-specific genes expressed in the 

cerebellar trunk of Murciano-Granadina goats. Combined scores generated in 

the enrichment analysis are shown in the x-axis; while pathway denominations are 

indicated in the y-axis. 

S4 Fig. Top 20 pathways enriched in tissue-specific genes expressed in the 

frontal neocortex of Murciano-Granadina goats. Combined scores generated in 

the enrichment analysis are shown in the x-axis; while pathway denominations are 

indicated in the y-axis. 

S5 Fig. Top 20 pathways enriched in tissue-specific genes expressed in the 

hippocampus of Murciano-Granadina goats. Combined scores generated in the 

enrichment analysis are shown in the x-axis; while pathway denominations are 

indicated in the y-axis. 

S6 Fig. Top 20 pathways enriched in tissue-specific genes expressed in the 

hypothalamus of Murciano-Granadina goats. Combined scores generated in the 
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enrichment analysis are shown in the x-axis; while pathway denominations are 

indicated in the y-axis. 

S7 Fig. Top 20 pathways enriched in tissue-specific genes expressed in the 

medulla oblongata of Murciano-Granadina goats. Combined scores generated 

in the enrichment analysis are shown in the x-axis; while pathway denominations 

are indicated in the y-axis. 

S8 Fig. Top 20 pathways enriched in tissue-specific genes expressed in the 

neurohypophysis of Murciano-Granadina goats. Combined scores generated in 

the enrichment analysis are shown in the x-axis; while pathway denominations are 

indicated in the y-axis. 

S9 Fig. Top 20 pathways enriched in tissue-specific genes expressed in the 

olfactory bulb of Murciano-Granadina goats. Combined scores generated in the 

enrichment analysis are shown in the x-axis; while pathway denominations are 

indicated in the y-axis. 

S10 Fig. Top 20 pathways enriched in tissue-specific genes expressed in the 

pineal gland of Murciano-Granadina goats. Combined scores generated in the 

enrichment analysis are shown in the x-axis; while pathway denominations are 

indicated in the y-axis. 

S11 Fig. Top 20 pathways enriched in tissue-specific genes expressed in the 

pons of Murciano-Granadina goats. Combined scores generated in the 

enrichment analysis are shown in the x-axis; while pathway denominations are 

indicated in the y-axis. 

S12 Fig. Top 20 pathways enriched in tissue-specific genes expressed in the 

rostral colliculus of Murciano-Granadina goats. Combined scores generated in 

the enrichment analysis are shown in the x-axis; while pathway denominations are 

indicated in the y-axis. 

S13 Fig. Top 20 pathways enriched in genes differentially expressed in the 

adenohypophysis of pregnant vs. non-pregnant goats. The x-axis displays the 

combined score calculated from the enrichment analysis, while the y-axis indicates 

the denomination of each pathway. Pathways containing upregulated genes in 
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pregnant goats are displayed in red, while pathways encompassing downregulated 

genes in pregnant goats are shown in blue. 

S14 Fig. Top 20 pathways enriched in genes differentially expressed in the 

frontal neocortex of pregnant vs. non-pregnant goats. The x-axis displays the 

combined score calculated from the enrichment analysis, while the y-axis indicates 

the denomination of each pathway. Pathways containing upregulated genes in 

pregnant goats are displayed in red, while pathways encompassing downregulated 

genes in pregnant goats are shown in blue. 

S15 Fig. Top 20 pathways enriched in genes differentially expressed in the 

hippocampus of pregnant vs. non-pregnant goats. The x-axis displays the 

combined score calculated from the enrichment analysis, while the y-axis indicates 

the denomination of each pathway. Pathways containing upregulated genes in 

pregnant goats are displayed in red, while pathways encompassing downregulated 

genes in pregnant goats are shown in blue. 

S16 Fig. Top 20 pathways enriched in genes differentially expressed in the 

olfactory bulb of pregnant vs. non-pregnant goats. The x-axis displays the 

combined score calculated from the enrichment analysis, while the y-axis indicates 

the denomination of each pathway. Pathways containing upregulated genes in 

pregnant goats are displayed in red, while pathways encompassing downregulated 

genes in pregnant goats are shown in blue. 

S17 Fig. Top 20 pathways enriched in genes differentially expressed in the 

pineal gland of pregnant vs. non-pregnant goats. The x-axis displays the 

combined score calculated from the enrichment analysis, while the y-axis indicates 

the denomination of each pathway. Pathways containing upregulated genes in 

pregnant goats are displayed in red, while pathways encompassing downregulated 

genes in pregnant goats are shown in blue. 

S18 Fig. Top 20 pathways enriched in genes differentially expressed in the pons 

of pregnant goats vs. non-pregnant goats. The x-axis displays the combined score 

calculated from the enrichment analysis, while the y-axis indicates the 

denomination of each pathway. Pathways containing upregulated genes in pregnant 
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goats are displayed in red, while pathways encompassing downregulated genes in 

pregnant goats are shown in blue. 
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4.1 UNDERSTANDING THE GENOMIC ARCHITECTURE OF 

MILK AND MORPHOLOGICAL TRAITS IN MURCIANO-

GRANADINA GOATS . 

 

4.1.1 Variation in the casein gene cluster is highly 

associated with milk protein percentage in 

Murciano-Granadina goats. 

Guan et al. (2020) performed a GWAS for milk production and composition traits 

recorded during the first lactation of the same Murciano-Granadina goats employed 

in study 2 of the current thesis. Guan et al. (2020) reported 24 QTL for milk traits, 

and three of them reached genome-wide statistical significance, i.e. CHI 6:130.72–

130.01 Mb for lactose percentage, CHI 6: 78.90–93.44 Mb for protein percentage 

and CHI 17: 11.20 Mb for both protein and dry matter percentages. In this thesis, 

we have also performed a GWAS, but the main difference with the work of Guan 

et al (2020) is that we have considered phenotypic records from three lactations. 

Two different approaches have been used: (1) Data from each lactation is analysed 

independently (so 3 GWAS are performed), (2) A longitudinal analysis jointly 

considering the three lactations is undertaken. Both approaches consistently 

identified one QTL on CHI 2 (129.77 – 131.01 Mb), which is associated with 

lactose percentage, and another QTL on CHI 6 (74.8 – 94.6 Mb) associated with 

milk protein percentage. The first approach evidenced that QTL detected on 

lactations 1, 2 and 3 are quite, but not completely, concordant. This could be due to 

differences in sample size i.e. 917, 805 and 660 goats for lactations 1, 2 and 3, 
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respectively. To check this, we performed GWAS for each lactation separately 

considering only the 660 individuals with information for all three lactations, and 

the results obtained in this way were consistent with those corresponding to the full 

sample size (data not shown). In the light of this, we conclude that sample size is 

not the main cause of detecting different QTL across lactations. Alternatively, the 

genetic determinism of milk traits might not be exactly the same across lactations 

and certain QTL might show time-dependent effects. Tong et al. (1979) obtained 

lactation records from 13,544 cows and showed that heritabilities of milk yield in 

the first and third lactations were 0.25 and 0.17 (32% lower), respectively, and the 

heritabilities of milk fat percentage were 0.45 and 0.35 (23% lower), respectively. 

Genetic correlations between milk traits measured in different lactations fluctuated 

between 0.83 and 0.93 (Tong et al., 1979). We have calculated genetic correlations 

between milk traits measured in different lactations with GCTA (Yang et al., 2011) 

and they are shown in Figure 4.1. Genetic correlations ranged between 0.72 to 1 

(lactations 1 vs. 2); 0.61 to 1 (lactation 1 vs 3) and 0.36 and 0.89 (lactation 2 vs 3). 

The lowest correlation values were estimated for lactation 3 when compared to 

lactations 1 and 2, and such coefficients were particularly low for the traits of milk 

composition (Figure 4.1). Overall, these results indicate that milk traits measured 

in different lactations share a strong common genetic basis, although certain genetic 

determinants might be lactation-specific. Moreover, the number of lactation 

significantly affects milk yield and composition of goats, with a lower production 

during the first lactation and a progressive increase until the third lactation 

(Ciappesoni et al., 2004). This variability is influenced by morphological and 
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physiological changes in the goat udder after the first and second parturitions 

(Ciappesoni et al., 2004). 

Figure 4.1. Heatmap depicting the genetic correlations of eight milk production 

and composition traits recorded during the first three lactations in 660 Murciano-

Granadina goats. 

 

The longitudinal analysis of the three lactations allowed the identification of 31 

QTLs, and 8 of them reached genome-wide significance. The longitudinal analysis 

yielded a higher number of QTL (31) than the independent analyses made for each 

one of the three lactations i.e.  22 (6 with genome wide significance), 29 (3 with 
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genome wide significance) and 9 (1 with genome wide significance) QTLs for 

lactations 1, 2 and 3, respectively. All four analyses consistently detected a QTL on 

CHI 6:74.89–96.5 Mb for protein percentage, and this region was also associated 

with dry matter percentage in the longitudinal GWAS and in the independent 

GWAS for lactations 1 and 2. Another association consistently identified in the 

longitudinal GWAS and the separate GWAS for lactations 1 and 2 was that between 

the CHI 2:129.80–130.47 region and lactose percentage. Nevertheless, multiple 

regions with statistical significance for the analysed traits were detected exclusively 

in the longitudinal analysis, specifically 22 QTLs, three of them with genome-wide 

significance. 

In general, repeated measures are difficult to model using traditional GWAS 

software (Rönnegård et al., 2016). One possibility is to use averaged phenotypic 

records, but this complicates the correction for fixed factors and it might result in 

the reduction of statistical power and the inflation of false positives (Rönnegård et 

al., 2016). A more powerful approach is to use GWAS software specifically 

developed to use repeated measurements as input, as it is the case of RepeatABEL 

(Rönnegård et al., 2016). According to Rönnegård et al. (2016), in the case of 

unbalanced data or data where there is between year variation, the inclusion of 

repeated measures in the analysis increases the power of a GWAS to detect causal 

variants. This might be the primary reason why we detected more QTL in the 

longitudinal analysis than in the three independent GWAS. 

As said, the most relevant result obtained in the longitudinal and independent 

GWAS is the highly significant QTL on chromosome 6, which is associated to 
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protein percentage. This result is very meaningful because this QTL shows 

positional concordance with the cluster of the four casein genes which encode 80% 

milk proteins. The high polymorphism of the goat CSN1S1 gene was initially 

uncovered in electrophoretic studies carried out by Boulanger et al. (1984) and 

Grosclaude et al. (1987), and later on in-depth analyses at the DNA level were 

performed (reviewed in Martin et al., 2002 and Moioli et al., 2007). Molecular 

studies demonstrated the existence of at least 17 variants that can be classified in 

four groups depending on the CSN1S1 content they are associated to (reviewed in 

Amills et al., 2012):  

• Strong alleles (3.5 g casein/allele): A, B1, B2, B3, B4, C, H, L and M.  

• Medium alleles (1.1 g casein/allele): E and I  

• Low alleles (0.45 g casein/allele): F, D and G  

• Null alleles (0 g casein/allele): 01, 02 and N 

Several causal mutations influencing transcript stability and processing have been 

identified so far in the caprine CSN1S1 gene, and results obtained in French goat 

breeds have evidenced that they have a considerable impact on milk protein and fat 

percentages as well as on micelle size, cheese yield, curd firmness and cheese flavor 

(Cosenza et al., 2003; Marletta et al., 2007; Ollier et al., 2008; Caravaca et al., 2011; 

reviewed in Amills et al., 2012). In this regard, the CSN1S1 locus is a strong 

candidate gene to explain (at least in part) the strong QTL that we have detected on 

chromosome 6 for milk protein percentage. Although Caravaca et al. (2008) 

reported the absence of associations between CSN1S1 genotypes and milk yield and 

composition traits in Murciano-Granadina goats, Pizarro Inostroza et al. (2019) 
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concluded that the inclusion of the CSN1S1 genotype in a breeding model resulted 

in a substantial increase of protein production heritability in such breed. Our results 

are more consistent with those of Pizarro Inostroza et al. (2019), although, we 

cannot rule out the possibility that the QTL detected by us is explained by the 

variation of the CSN2, CSN1S2 or CSN3 genes. Indeed, genetic variants with 

quantitative effects on milk traits have been discovered in these three genes. For 

instance, two CSN1S2 D and 0 variants have been associated to reduced 

concentrations of CSN1S2 in milk (Ramunno et al., 2001a, 2001b), and two null 

alleles have been reported for the CSN2 gene (Persuy et al., 1999; Ramunno et al., 

1995), although we do not know if these allelic variants are segregating in the 

Murciano-Granadina breed. With regard to the CSN3 gene, Caravaca et al. (2009) 

provided evidence that the milk from AB and BB goats has significantly higher 

levels of total casein and protein content than milk from their AA counterparts. 

Besides, different genotypes in the CSN1S1 and CSN3 genes significantly affect the 

coagulation and curding process in Murciano-Granadina goats, becoming an 

essential factor for cheesemaking (Caravaca et al., 2011). It would be necessary to 

genotype selected variants in the four casein genes to ascertain their relative 

contributions to the protein percentage QTL detected on chromosome 6. 

Unlike Martin et al. (2017), we did not find associations between the region 

harbouring the DGAT1 gene (CHI 14:81.32–81.33 Mb) and fat content, suggesting 

that the R251L and R396W variants detected in their study are not segregating in 

Murciano-Granadina goats. In French breeds, associations between the CSN1S1 

genotype and milk fat content have been reported (Chilliard et al., 2006; Ollier et 
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al., 2008; Vázquez-Flores et al., 2012), and they have been explained in the light of 

a coupled and co-regulated secretion of proteins and lipids in milk (Cebo et al., 

2012). However, in study 1 of this thesis, the QTL mapping to the casein cluster 

was not associated with milk fat percentage suggesting a different mechanism of 

action of the underlying causal mutations. 

Another consistent QTL was located on CHI 2 (129-130 Mb) and had effects on 

lactose percentage. Interestingly, Costa et al. (2019) detected the same 

chromosomal region (BTA 2: 5.7-5.8 Mb) as associated with lactose content, and 

proposed several loci related with transmembrane transport activity (MFSD6, 

NEMP2, and SLC40A1) as potential candidate genes. However, the relationship 

between these genes and lactose metabolism is, at best, very tenuous. In our study, 

we have proposed two candidate genes (INNP1 and ORMDL1 loci) but again the 

link with lactose metabolism or transport is not direct or fully convincing. However, 

the positional coincidence of this QTL for lactose in goats and cattle suggests the 

existence of a causal mutation with such effect in both species. An improved 

functional annotation of this region might be helpful to uncover the genetic basis of 

this QTL. 

4.1.2 Morphological traits have a highly polygenic 

genetic background. 

There is evidence that the morphological conformation of the udder has an impact 

on milkability (Rovai et al., 2004) as well as on milk yield (Keskin et al., 2005; 

Montaldo and Martínez-Lozano, 1993). For instance, Capote et al. (2006) showed 

that deep and well attached udders are significantly and positively correlated with 
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the quantity of produced goat milk. Moreover, teat angle is one of the most 

important traits that determines the suitability of the udder to machine milking 

(Peris et al., 1999). In the analyses performed in study 2, moderate positive 

phenotypic correlations were estimated between milk yield at three time points and 

udder depth (rp 0.30 – 0.32), and between milk yield and body capacity traits, i.e. 

chest width (rp 0.23 – 0.27), body depth (rp 0.21 –0.25), and also with angularity (rp 

0.21 – 0.23), a trait related with the dairy performance of the goats. We have made 

a preliminary estimation of genetic correlations between morphologic and milk 

production traits, that is depicted in Figure 4.2. This analysis was not included in 

study 2 because it was judged to be too preliminar, but at it would be worth to 

mention it herewith As previously reported for phenotypic correlations, milk yield 

at three time points showed significant genetic correlations with body depth (rg= 

0.53 – 0.61) and udder depth (rg= 0.39 – 0.46). Additionally, the anterior insertion 

of the udder displayed a genetic correlation of 0.50 with dry matter percentage of 

milk, and teat diameter was negatively correlated with protein percentage of milk 

(rg= -0.46). However, when we analysed the positional concordance of the QTL 

detected in this thesis for milk production and morphological traits, no substantial 

match was observed. In other studies, positional coincidences between QTL for 

dairy and morphology traits has been reported. For instance, a region on CHI 

19:26.61 – 26.62 Mb was identified as significantly associated with milk, fat and 

protein yield, and somatic cell score in Saanen, Alpine, Nubian, Toggenburg and 

crossbreed goats from New Zealand (Scholtens et al., 2020). In a subsequent 

analysis in the same New Zealand mixed breed population, Jiang et al. (2022) found 
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that the very same CHI 19: 26.61–26.62 Mb region was significantly associated 

with udder conformation traits (i.e. udder depth, front and rear udder attachment). 

In another study, the CHI 19: 26.61–26.62 Mb interval was associated with milk 

yield, udder attachment, udder depth and front legs conformation in Saanen × 

Toggenburg × Alpine goats (Mucha et al., 2018). Indeed, the existence of 

significant genetic correlations between milk and morphology traits recorded in 

cattle (Sartori et al., 2018), sheep (Legarra and Ugarte, 2005) and goats (McLaren 

et al., 2016) points out to the potential existence of pleiotropic genetic determinants 

with effects on both sets of phenotypes. Possibly, the use of a multivariate GWAS 

approach would have facilitated the detection of pleiotropic loci in the Murciano-

Granadina population, since such method is known to increase the statistical power 

to identify associations in the case of a shared genetic basis between phenotypes 

(Ruotsalainen et al., 2021). 

Different regions were significantly associated with morphological traits in Alpine 

and Saanen goats by Martin et al. (2018), suggesting that morphology QTL have a 

certain degree of population specificity. From the 12 QTLs identified for udder 

morphology in Murciano-Granadina goats (study 1), three were located less than 2 

Mb from those reported by Martin et al. (2018) but corresponded to different traits, 

i.e. two QTLs on CHI 15 and 19 for teat length in Alpine and Saanen goats were 

close to QTL detected  in Murciano-Granadina goats for udder width and teat 

placement, and one QTL for teat length on CHI 27, for Alpine and Saanen goats, 

was close to one significant region for udder width in Murciano-Granadina goats. 

In summary, we have observed a weak positional coincidence between morphology 
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QTL detected in Alpine and Saanen breeds vs those identified in Murciano-

Granadina goats. This result is compatible with the existence of a remarkable degree 

of genetic heterogeneity amongst breeds with regard to the determinism of 

morphological phenotypes. 

Figure 4.2. Heatmap depicting the genetic correlations of milk production and 

composition traits and morphological linear scores recorded during the first 

lactation in 825 Murciano-Granadina goats. 

 

In congruence with other GWAS studies for morphological traits performed in 

goats (Martin et al., 2018; Mucha et al., 2018), the number and significance of 

associations between genetic markers and morphological traits are quite low and 

heterogeneous in Murciano-Granadina goats. In dogs, the genetic analysis of 

average breed body size and external body dimensions and cranial, dental, and long 

bone shape and size traits revealed that for most traits a reduced (less than three) 
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number of QTL explained the majority of phenotypic variation (Boyko et al., 2010). 

But in dogs, morphological variation is much larger than in goats and it is not 

measured with linear scores. Although the scarcity of the QTL detected for 

morphological traits in Murciano-Granadina goats could be due to many technical 

and biological reasons, being limited sample size one of the most important ones, 

our results and those reported by other authors (Martin et al., 2018; Mucha et al., 

2018) suggest that morphology traits in goats have a highly polygenic architecture 

represented by a large number of variants with small effects. Indeed, the genetic 

analysis of stature in cattle (Bouwman et al., 2018) showed that the lead variants in 

163 significantly associated genomic regions explained at most 13.8% of the total 

phenotypic variance, thus suggesting the existence of a large  number of mutations 

with small or very small effects on this trait that remained undetectable despite the 

large size (58,265 cattle) of the population used in this study. This polygenic nature 

hinders the identification of genomic regions responsible for the variability of 

morphological traits due to the small contribution of each variant. In birds, for 

instance, the heritability of morphological traits is distributed along the genome and 

positively correlated with the length of the chromosome (Silva et al., 2017), 

indicating a contribution of genes mapping to multiple locations.  

4.1.3 Low and medium-density panels limit the 

detection of genomic regions associated with 

traits of economic interest in dairy goats.  

One aspect that might have limited the detection of QTL in studies 1 and 2 is the 

fact that we have used a chip with only 50,000 SNPs. Using an SNP array of 
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medium density affects the capacity to detect genomic signals in GWAS analysis 

compared with the usage of high-density chips (hundreds of thousands or millions 

of SNPs) or whole genome sequences (Tam et al., 2019). As an example, Meredith 

et al. (2013) performed a GWAS for somatic cell score in 702 Holstein sires by 

using the BovineHD BeadChip (770,000 SNPs) and compared such results with 

those obtained with the 50K chip. In the Figure below (Figure 4.3), it can be 

observed that the definition of the chromosome 6 QTL detected for somatic cell 

score is much preciser and the significance much higher when using the high-

density chip that when using the 50K chip. 

Figure 4.3. Comparisson of QTL detected for somatic cell score using (A) 

BovineHD BeadChip (770,000 SNPs) and (B) BovineSNP50 BeadChip (50,000 

SNPs). Adapted from Meredith et al. (2013). 

 

Linkage disequilibrium patterns vary across the genome and populations and 

medium-density SNP arrays might not have enough power to detect significant 

associations as they overestimate the extent of linkage disequilibrium across 

markers (Qanbari, 2020). To increase the number of markers, imputation of the SNP 
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arrays genotype to a high-density panel or whole genome sequences should be 

performed. In principle, this methodology increases the statistical power of the 

GWAS and does not require the sequencing of all the individuals included in the 

assay, but only of a reference population (Howie et al., 2009; Quick et al., 2020). 

A genotype imputation strategy based on the sequencing of a large number of 

Murciano-Granadina goats could be very helpful to significantly increase the 

resolution of the two GWAS (milk and morphological traits) carried out in this 

thesis, making it possible to increase QTL discovery (although this is also largely 

dependent on population sample size). The availability of high-density density 

genotyping SNP panels for goats would also facilitate the implementation of two-

step imputation and increase imputation accuracy (Brøndum et al., 2014). Future 

work, after this thesis, will involve the whole-genome sequence imputation of the 

genotyped Murciano-Granadina goats to perform QTL discovery and fine mapping, 

and to integrate such data with molecular information generated through a variety 

of techniques including ATAC-seq, Methyl-seq, RNA-Seq, and small RNA-Seq in 

order to identify potential causal mutations. 

4.2 THE GENOMIC BASIS OF VIABILITY TRAITS IN 

MURCIANO-GRANADINA GOATS .   

4.2.1 The effect of inbreeding depression on the 

performance of Murciano-Granadina goats. 

Doekes et al. (2021) made a systematic revision of research articles (published from 

1990 to 2021) describing the consequences of inbreeding depression on livestock 
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populations. Out of 154 studies included in this review, only eight were performed 

in goats, while 65 and 31 focused on cattle and sheep, respectively (Doekes et al., 

2021). In study 3 of this thesis, we aimed to characterise the inbreeding levels of 

Murciano-Granadina goats as well as to measure the impact of inbreeding 

depression on milk traits.  

The inbreeding coefficient based on ROH (FROH) estimated in this thesis for 

Murciano-Grandina goats ranged from 0.001 to 0.402 with an average of 0.054 ± 

0.046. This value contrasts strongly with the genealogical inbreeding coefficient 

reported by Deroide et al. (2016) for Murciano-Granadina goats, which reached a 

much lower value (F = 0.0024). Although genealogical inbreeding coefficients are 

often lower than the molecular ones, because ancient inbreeding might not be 

properly taken into account, this discrepancy is quite remarkable and difficult to 

explain. If we compare the FROH coefficient obtained for Murciano-Granadina goats 

with those obtained for a very diverse set of goat populations characterized in the 

Adaptmap project (Stella et al., 2018), it is evident that they are quite similar 

(Bertolini et al., 2018) i.e. ~ 60% of the breeds analyzed in the Adaptmap project 

displayed low FROH coefficients (< 0.10), while ~ 30 and ~ 10% of the goat 

populations showed moderate (FROH 0.10 – 0.20) or high (> 0.20) FROH values. More 

importantly, the lower FROH values detected in the populations analysed in 

Adaptmap were 0.02. We conclude that, in terms of inbreeding, the Murciano-

Granadina breed is placed at the lower range of what has been reported in a 

worldwide sample of goats by Bertolini et al. (2018). 
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Studies in popular dairy cattle breeds report higher inbreeding coefficients than the 

one calculated by us in Murciano-Granadina breed, as depicted in Table 4.1 

(Dadousis et al., 2022; Zhang et al., 2015a). Mean inbreeding values based on ROH 

using medium-density panels displayed values up to 0.150 and 0.07 for Holstein 

and Jersey cattle, respectively (Dadousis et al., 2022; Zhang et al., 2015a). The 

estimation of FROH using whole genome sequences yielded higher inbreeding values 

than the ones estimated in the same populations using medium-density chips, 

highlighting the effect of marker density on the detection of ROH and, in 

consequence, on the estimation of inbreeding FROH coefficients (Table 4.1).  

This difference in inbreeding levels between dairy cattle and goats can be attributed 

to causes related with the organization of the breeding schemes and selection 

intensity. As reviewed by Brito et al. (2021), the rate of inbreeding in dairy cattle 

has increased over time (Figure 4.4) because genomic selection and reproductive 

biotechnologies, like artificial insemination, embryo transfer and in vitro 

fertilisation, have increased selection intensity and reduced the number of parents, 

particularly sires (Weigel, 2001). As an example, popular Holstein sires have over 

250,000 daughters and 3,000 tested sons worldwide (Weigel, 2001). This 

circumstance decreased the genetic variability of dairy cattle populations and 

augmented the inbreeding rate. Noteworthy, Makanjuola et al. (2020) estimated an 

effective population size (Ne) ranging from 43 to 66 animals for the Holstein breed 

and from 64 to 85 animals for Jersey cattle (both populations belonged to the 

Canadian Dairy Network).  



4   |   GENERAL D ISCUSSION  

288 

Table 4.1. Inbreeding coefficients based on pedigree records (FPED) and runs of 

homozygosity (FROH) estimated on specialised dairy cattle breeds. Information was 

obtained from Signer-Hasler et al. (2017), Dadousis et al. (2022) and Zhang et al. 

(2012). 

Population Study Sample size Genotyping 

panel/Sequencing 

FPED FROH 

Brown 

Swiss 

(Signer-Hasler 

et al., 2017) 

281 50K SNPs chip 0.071 ± 

0.037 

0.091 ± 

0.029 

Original 

Branvieh 

(Signer-Hasler 

et al., 2017) 

167 50K SNPs chip 0.059 ± 

0.023 

0.074 ± 

0.028 

Simmental (Signer-Hasler 

et al., 2017) 

248 50K SNPs chip 0.092 ± 

0.030 

0.039 ± 

0.023 

Holstein (Signer-Hasler 

et al., 2017) 

2,568 50K SNPs chip 0.057 ± 

0.066 

0.058 ± 

0.025 

Italian 

Holstein 

(Dadousis et 

al., 2022) 

FPED 

N=393,607 

FROH 

N=95,540 

Imputation to 84K 

SNPs 

0.073 ± 

0.024 

0.150 ± 

0.041 

Holstein (Zhang et al., 

2015a) 

32 50K SNPs chip 0.036 0.066 

Jersey (Zhang et al., 

2015a) 

27 50K SNPs chip 0.018 0.070 

Holstein (Zhang et al., 

2015a) 

32 WGS 0.036 0.187 

Jersey (Zhang et al., 

2015a) 

27 WGS 0.018 0.242 

In strong contrast with cattle, dairy goats are usually raised under a semi-extensive 

management regime. In fact, the average herd size of Murciano-Granadina goats in 

Spain is 625 heads per farm. According to official reports from the Spanish Ministry 

of Agriculture, Fisheries and Food, during 2021 only 60 males were used in 

artificial insemination, while 4,580 sires were used for natural service 

(https://servicio.mapa.gob.es/arca/flujos.html?_flowId=datosCensalesRaza-

flow&tipoOperacion=CONSULTA&id=50154&isMapa=1&formatoPagina=0). 

Certain anatomical factors and low seminal motility of the sperm of bucks make 

difficult the implementation of artificial insemination in goats, causing low 

https://servicio.mapa.gob.es/arca/flujos.html?_flowId=datosCensalesRaza-flow&tipoOperacion=CONSULTA&id=50154&isMapa=1&formatoPagina=0
https://servicio.mapa.gob.es/arca/flujos.html?_flowId=datosCensalesRaza-flow&tipoOperacion=CONSULTA&id=50154&isMapa=1&formatoPagina=0
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pregnancy rates and economic losses (Mocé et al., 2022). These factors reduce the 

selection intensity in dairy goats, preventing the usage of a very small number of 

sires for reproduction purposes and maintaining a higher genetic diversity and lower 

inbreeding levels than in dairy cattle. According to our results, Murciano-Granadina 

goats displayed a moderate number of ROH per individual (< 50 ROH). The  

majority of the ROH were of short length (< 10 Mb), thus suggesting a low amount 

of recent inbreeding (Thompson, 2013). For this population, we estimated the 

effective population size with the software SNeP1.1 based on available genotypic 

data (Barbato et al., 2015). Thirteen generations ago, effective population size was 

423 (Figure 4.4), a figure considerably larger than those described for dairy cattle. 

Figure 4.4. Inbreeding percentage trends of popular specialised dairy cattle breeds 

in the United States of America. Data published in Brito et al., (2021).  

 

*They obtained it from Council on Dairy Cattle Breeding (https://queries.uscdcb.com), August, 

2020. 
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Figure 4.5. Effective population size (Ne) estimated for 13 to 54 generations ago 

from the population of 1,040 female Murciano-Granadina goats that was analysed 

in this thesis. 

 

 

4.2.1.1 Potential implications of inbreeding depression for 

milk somatic cell score in Murciano-Granadina 

goats 

Although inbreeding coefficients in the Murciano-Granadina population under 

study were generally low, we detected a significant effect of inbreeding depression 

on milk somatic cell count (SCC, computed as the natural logarithm of the somatic 

cell count divided by 1000, lnSCC). Inbreeding analyses based on molecular data 

(see study 3) evidenced the existence of inbreeding depression for lnSCC and a 

couple of regions on chromosomes 8 and 25 were associated with it. According to 

Miglior et al. (1995), a 10% increase of the inbreeding coefficient was associated 

with a 10.5% increase of the original phenotypic standard deviation of lactation 
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somatic cell score recorded in Holstein cattle. Although in this case the effect of 

inbreeding depression on SCC was relatively modest, on average, inbred animals 

tended to have higher lactation somatic cell scores (Miglior et al. 1995). In Dutch 

Holstein-Friesian cattle, a 1% increase in FROH was associated with a 0.86 unit 

(SE = 0.28) increase in somatic cell score for day 150 through to 400 (Doekes et al., 

2019). Such effect was equivalent to 0.05% of the trait averages, respectively. 

Moreover, recently generated inbreeding was more harmful than the ancestral one, 

especially for phenotypes related to milk yield (Doekes et al., 2019). Similarly, in 

Holstein cattle from Iran highly inbred individuals tended to have higher somatic 

cell scores than those with low inbreeding coefficients (Rokouei et al., 2010). 

About the potential implications of inbreeding depression for SCC, several 

considerations need to be made. Genomic regions displaying inbreeding associated 

with lnSCC in Murciano-Granadina goats were enriched in genes with 

immunological functions, e.g. chemokine ligand 19 (CCL19), 21 (CCL21), 24 

(CCL24), 26 (CCL26) and 27 (CCL27); and interleukin 27 (IL27). Inbreeding and 

the consequent decrease of genomic variation, particularly on immune genes, might 

have had detrimental effects on natural resistance to pathogens. For instance, cattle 

with high endogamy levels presented lower levels of γδ T lymphocytes in peripheral 

blood than calves with lower endogamy (Macedo et al., 2014). Besides, genetic 

diversity of the major histocompatibility complex (MHC) is essential to the 

persistence of wild populations and the health of domestic and human populations 

due to the function of this complex in antigen presentation and the activation of the 

immune response (Gutiérrez-Reinoso et al., 2022; Kardos et al., 2021; Teixeira and 
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Huber, 2021). This means that increased homozygosity, the main outcome of 

inbreeding, lowers the variability of immune-related genes, decreasing the natural 

resistance of individuals to pathogens, and increases the emergence of recessive 

hereditary diseases (Lie et al., 2009). 

Higher levels of somatic cells are expected in goats, when compared with cattle, 

due to the apocrine secretion of milk (Paape et al., 2001) and the increment of pro-

inflammatory cells (mainly leukocytes) during late lactation in goats (Silanikove et 

al., 2010). In this species, somatic cell counts above 300,000 cells/mL in the first 

lactation indicate infection of the udder and leads to a decrease in milk production 

and alteration of the milk composition (Leitner et al., 2011; Silanikove et al., 2010). 

As reviewed by Sharma et al. (2011), SCC is an indicator of mammary gland health. 

An increase in the SCC is often explained by intramammary infections (Sharma et 

al., 2011). An analysis performed on large dairy goat herds in France points out to 

udder disorders, including mastitis, as the most frequent cause of culling and 

mortality, representing over 18% of the causes of dismissal of individuals (Malher 

et al., 2001). This leads to significant economic losses because of the decrease in 

milk production, changes in milk composition that affect cheesemaking, and the 

cost of treatment and culling of individuals. Indeed, modifications of the milk 

composition alter the clotting properties of milk, negatively affecting the curd 

firmness, which is of great importance in dairy goat production since cheese is its 

main commercial product (Leitner et al., 2011). In this way, Silanikove et al. (2010) 

have proposed different degrees of intramammary infection based on the somatic 

cell counts and the impact on milk quality, the effect of each category of somatic 
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cell counts is summarised in Table 4.2. Moreover, a significant effect of inbreeding 

was detected over milk yield, i.e. a decrease ranging from 48.50 to 5.01 and 20.49 

to 23.19 Kg of milk at three different timepoints of lactation was reported for the 

increase in 1% of FHOM and FROH, respectively. Similar results were reported in 

cattle by Doekes et al. (2019) that reported a decrease in 36.3 kg of milk at day 305 

for every 1% of FROH increment. 

In summary, although inbreeding levels in the Murciano-Granadina goat population under 

study are low, it is important to implement strategies to keep them at a minimum or, 

otherwise, unwanted consequences on the incidence of mastitis and milk quality might 

arise.  

Table 4.2. Classification of intramammary infections based on somatic cell count 

(SCC) and percentage of animals affected, and the estimated losses in terms of milk 

production and curd formation obtained from Silanikove et al. (2010). 

Grade SCC 

(cells/mL) 

Herd affected 

(%) 

Milk loss (%) Curd loss (%) 

A ≤ 840,000 25 0.8 3.3 

B > 840,000 and 

< 1,200,000 

50 1.5 6.5 

C > 1,200,000 

and < 

3,500,000 

75 2.3 9.8 

Not accepted 

on market* 

> 3,500,000   Very bad 

*High probability of milk containing pathogens and toxins that might be harmful to human 

consumption. 
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4.3 THE MICROBIAL COMPOSITION OF GOAT CHEESES . 

Being the main commercial product derived from the milk of dairy goats, the factors 

that determine the technological and organoleptic properties of cheese have become 

an important subject of study (Pulina et al., 2018). In study 1, we analysed the 

genomic basis of milk composition that has an important impact on the 

manufacturing of cheese. Indeed, the solid content of milk (protein, fat, lactose) and 

the abundance of somatic cells affect curd formation. In study 4, the microbial 

composition of a set of goat cheeses has been investigated by analysing sequences 

from the ultravariable V3-V4 regions of the 16S rRNA gene. In comparison with 

cattle, the microbiome of goat cheeses has been poorly characterized. Few studies 

have reported a description of the microbial communities of goat cheeses and they 

have focused on very specific kind of cheeses like Pélardon cheese (Penland et al., 

2021) and Gouda cheese (Salazar et al., 2018).  

In our study, we investigated the microbiomes of 6 types of cheeses, i.e. two fresh 

and soft-paste cheeses (H and M), two semi-cured, soft-paste cheeses with bloomy 

rind (C and P), one semi-cured hard-paste cheese (B) and one semi-hard cured 

cheese (G). As expected, we observed a prevalence of LAB, mostly from the genera 

Lactococcus, Lactobacillus, Leuconostoc and Streptococcus, in all six cheeses. This 

result is congruent with other studies performed on a wide variety of cheeses (Choi 

et al., 2020b; Walsh et al., 2020) and with the fact that LAB are often used as starters 

in cheesemaking to induce curd formation (Quigley et al., 2013).  
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When comparing the alpha diversity of microbial communities in the three different 

cheese regions sampled (core, middle part and rind) on a pairwise basis, no 

significant differences were found. According to a previous report (Choi et al., 

2020b), higher alpha diversity is commonly observed in the rind due to its exposure 

to oxygen and environmental microorganisms, allowing the growth of aerobe taxa 

that cannot thrive in the inner portions of the cheese because of the lack of oxygen. 

Other factors that increase the microbial  diversity of the rind are related with the 

manufacturing process and include exposure to environmental factors, like brine or 

alcohol soaking (Choi et al., 2020b; Irlinger et al., 2015), and also the growth of 

other microorganisms, like fungi, in the bloomy rind cheeses thus favouring the 

expansion and dispersion of certain bacterial strains (Zhang et al., 2018). However, 

in our study the microbial composition and diversity of the rind was not strongly 

different from that of the middle and core. Although the sample size of the study is 

very small, we observed an effect of the ageing of the cheese on microbial diversity, 

with higher alpha diversity in samples from fresh cheeses than cured and semi-

cured ones. In Cheddar cheeses, Choi et al., (2020a) reported that microbial 

diversity was higher in the milk and curd, previous to the addition of LAB starters, 

than afterwards, and they also observed that diversity tends to decrease along the 

manufacturing and ageing process.  

Besides the organoleptic and technological consequences of microbial composition 

on cheese, microorganisms can also represent an important source of contamination 

that puts in risk the quality of the cheese and the health of the consumer. In this 

way, we detected high relative abundances of psychrophilic bacteria in fresh soft 
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cheeses H and M, that presented up to 38.9% and 57.47% of relative abundance of 

Pseudomonas. Semi-ripened cheeses P and C showed up to 18.85% of abundance 

of bacteria from the genus Pseudomonas. Pseudomonas bacteria have been found 

in multiple cheese rinds, especially bloomy, as they easily move along the fungal 

network (Zhang et al., 2018). This genus presents moderate positive Pearson 

correlations (r= 0.4, p-value < 0.05) with the moisture of the cheese (Wolfe et al., 

2014), explaining their high proportions in the soft-paste cheeses investigated in 

our study (H, M, C and P). Controlling cheese contamination by Pseudomonas is 

important to assure the quality and shelf-life of the product. The waste of food 

induced by microbial spoilage has a negative impact on the food industry. Microbial 

contamination often causes heavy economic losses by driving undesirable changes 

in the appearance, texture, flavor, and odor that reduce food quality (Martin et al., 

2011). Pseudomonas spp. can also have detrimental effects on refrigerated foods 

because many strains are psychrotolerant. All the steps in the productive chain need 

to be thoroughly controlled because Pseudomonas and other psychrophilic bacteria 

are common contaminants of dairy foods during the post-pasteurisation processes 

(De Jonghe et al., 2011). 

The main limitation of our microbiome study was reduced sample size. We had just 

one piece per type of cheese and three different regions of each cheese were 

sampled (core, middle and rind),. However, microbiota can change in the same type 

of cheese across pieces or production batches due to the variability of the bacterial 

content in the facilities, milk, storage, among other factors and technical 

specificities of the productive chain (Johnson et al., 2021). Given this drawback, 
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we oriented our study to determine what the microbiomes of the six types of goat 

cheeses have in common rather than assessing what is different. In the future, the 

retrieval of a larger cheese sample size and the complementation of bacterial 

sequencing with other techniques, like metatranscriptomics and volatile compound 

analysis, should provide a broader perspective not only about the bacterial 

composition of cheeses, but also about the host-microbiome interactions and their 

effect on the sensorial properties of cheese. Integrating such data might be helpful 

to select the appropriate bacterial strains in order to ensure the optimal quality of 

cheese (Solieri et al., 2013; Yeluri Jonnala et al., 2018).  

4.4 IDENTIFICATION OF TRANSMISSION RATIO DISTORTION 

IN MURCIANO-GRANADINA GOATS . 

Transmission ratio distortion (TRD) takes place when the two alleles from either 

parent do not have equal probabilities of being transmitted to the offspring, thus 

leading to a statistical departure from the Mendelian law of inheritance (Huang et 

al., 2013). This phenomenon can have multiple causes, including meiotic drive, 

gametic competition, and embryo lethality (Huang et al., 2013). Transmission ratio 

distortion is poorly characterised in livestock species (Abdalla et al., 2020; Casellas 

et al., 2020, 2014; Lahoucine et al., 2020; Vázquez-Gómez et al., 2020) and has not 

been studied in goats before. In study 5 of this thesis, we aimed to identify genomic 

regions containing genetic markers the segregation of which, in heterozygous 

individuals, deviates from the expected Mendelian 1:1 ratio. The design of our TRD 

study comprised 17 single-parent families (the genotype of the mother was not 
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available) formed by one sire and their offspring (from 10 to 30, and 18 per sire on 

average) All individuals were genotyped with a medium-density GoatSNP50 

Illumina Beadchip. Then we used the method reported by Casellas et al. (2012) to 

detect TRD on a genome-wide basis. This method can be used even when the 

genotype of one of the parents is missing (the probability that the missing parent 

has a given genotype for a SNP is inferred on the basis of its frequencies in the 

general population). Only 36 SNPs showed evidence of being subjected to TRD. It 

is well known that genotyping errors are a frequent cause of detecting strong Hardy-

Weinberg equilibrium departures (Hosking et al., 2004), so we wondered whether 

our results could be the consequence of genotyping problems rather than of a 

biological phenomenon leading to the unequal transmission of alleles from parent 

to offspring. As a quality control measure, we checked the Gentrain scores of these 

36 SNPs. The GenTrain score reflects the shape of the genotype clusters and the 

relative distance between the called clusters and it goes from 0 (very bad quality 

due to poor cluster differentiation) to 1 (excellent quality). By doing so, we found 

out that 25 SNPs had low scores (<0.8). In Figure 4.5 the clustering of the SNPs 

with different GenTrain scores based on the normalised intensity values of the 

genotyping assay from Illumina is depicted. The genotypic assignment of variants 

with GenTrain scores below 0.62 is unclear. In the light of these results, we were 

afraid that most of the TRD detected in the Murciano-Granadina population of 305 

offspring was an artifact produced by errors during the genotyping process, casting 

doubts about the validity of the whole analysis. We were also aware that a family 

size of 18 individuals and the lack of genotypic information from dams severely 
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limited our ability to identify TRD signals with enough confidence. Due to these 

drawbacks, we just did a technical discussion of the TRD results by emphasizing 

that the establishment of stringent filters for genotype quality is of paramount 

importance when carrying out TRD analysis, since genotyping errors can be an 

important source of spurious TRD signals.  

Figure 4.5. Genotype cluster plot based on normalised intensities of genotyping 

assays generated with the Illumina Goat SNP50 BeadChip (Illumina Inc., San 

Diego, CA) for SNPs with different GenTrain (GT) scores in a population of 

Murciano-Granadina goats. 
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4.5 PREGNANCY INDUCES CHANGES IN THE PROFILE  OF 

MRNA  EXPRESSION OF GOAT BRAIN TISSUES .   

A fundamental trait that affects offspring survival is maternal behaviour. Maternal 

care in mammals is provided solely by the female and comprises physiological 

factors like nutrition during pregnancy, thermoregulation, licking, milking, 

immunological protection via colostrum, and psychological aspects like learning, 

protection, and guidance (Dwyer, 2014). A series of neuro-endocrine changes occur 

in females, during gestation and parturition, triggering maternal behaviour, milk 

production and other physiological changes (Dwyer, 2014). In study 6 of this thesis, 

we have characterized the patterns of mRNA expression of 12 goat brain tissues 

and we have investigated differential expression in pregnant (N=3) vs non-pregnant 

goats (N=4).  

Between 14,889 (cerebellar hemisphere) and 15,592 (pineal gland) protein-coding 

genes were expressed in goat brain tissues, and most of them were expressed in 

multiple tissues. The analysis of the patterns of mRNA expression by principal 

component analysis and hierarchical clustering demonstrated that caprine brain 

tissues tend to group according to their embryonic origin. For instance, olfactory 

bulb, hippocampus, and frontal neocortex, which are derived from the 

telencephalon vesicle, clustered together, and pons and medulla oblongata (both 

originate from myelencephalon) grouped in another cluster. Exceptions to this 

general trend were glandular (hypophysis and pineal gland) and cerebellum tissues, 

that showed highly divergent mRNA expression profiles when compared to other 
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tissues (maybe because of their high functional specialization). Zapala et al. (2005) 

investigated gene expression in 24 neural murine tissues by using microarrays and 

observed that embryonic cellular position along the anterior–posterior axis 

influenced the gene expression patterns in adult structures. Moreover, a substantial 

number of genes related with embryonic development (e.g. homeobox transcription 

factors) displayed region-specific expression in the adult nervous system (Zapala et 

al. 2005). These results suggested that the brain of the adult mouse is imprinted to 

some extent by the initial pattern of gene expression established during 

embryogenesis, and that such “imprinting” plays a key role in setting up regional 

specificity and functional links between regions in the adult brain (Zapala et al., 

2005). Ortiz et al. (2020) also found evidence that the mRNA expression profiles 

of a reduced set of genes is enough to capture the spatial complexity of the murine 

brain, and, more importantly, they demonstrated that such set of loci is enriched in 

developmental genes, thus suggesting that developmental axes are fundamental to 

determine adult brain compartmentalization. In another study, Ferraz et al. (2008) 

showed that tissue of origin is the main factor determining the clustering of samples 

from different tissues and observed that tissues from the same germ layer 

(ectoderm, mesoderm or endoderm) tended to cluster together. Globally, these 

findings provide support to the idea that the patterns of gene expression that are 

established during the development of goat embryos leave a durable footprint on 

the mRNA expression profiles of the adult goat brain.  

In this work, we had the opportunity to sample pregnant and non-pregnant goats 

that were going to be culled due to reasons unrelated with our research. We 
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performed an exploratory differential expression analysis although we were aware 

that sample size (N=3 – 4) was quite low and limited our ability to detect truly 

differentially expressed genes. In this regard, it is known that when the number of 

replicates per group decreases then the number of genes called significant declines 

steadily, with evident changes when this number is equal or lower than eight 

(Baccarella et al., 2018). Because of the low number of replicates per group used in 

study 6, we decided that it was appropriate to use the number of differentially 

expressed genes as a signal of the “activation” of the corresponding brain region in 

response to 1 month-gestation, and at the same time we avoided to put much 

emphasis on discussing the differential expression of specific genes. Differential 

expression analyses performed on brain tissues from 1-month pregnant versus non-

pregnant goats revealed an “activation” of the adenohypophysis, frontal neocortex, 

hippocampus, olfactory bulb, pineal gland and pons, which displayed from 62 to 

1,207 genes differentially expressed between groups, being the olfactory bulb the 

anatomical structure with the highest number of differentially expressed genes. The 

“activation” pattern of these tissues is attributable to pregnancy, as these six tissues 

come from different neural vesicles and they are not closely located.  

Despite the small sample size, we wanted to better understand the dramatic 

activation of the olfactory bulb in pregnant goats, so we performed an intensive 

bibliographic revision to retrieve functional information reported for the 

differentially expressed genes in this brain structure. This analysis was not 

discussed in the paper corresponding to study 6 due to reasons stated before (low 

replicate number), but it would be worth to briefly comment it herewith. The 
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olfactory bulb plays an important role in processing olfactory information by 

integrating stimuli from the peripheral and central neural systems (Huart et al., 

2013). Interestingly, many of the genes differentially expressed in pregnant vs non-

pregnant goats are involved in human behavioural traits, including maternal 

behavior (e.g. downregulated: DDC; upregulated: DBH, DRD1, NTS and HTR2A), 

affective behavior, sociability and exploration (e.g. downregulated: FGFR4, 

GRIP2, NTRK2 and RYR3; upregulated: HTR2C, FBXO45, GPR3, KCNQ2 and 

PLXNA2), anxiety and depression (e.g. downregulated: NO2, PAN2 and H3-3B; 

upregulated: BSCL2, HRH1, SIK2, PDYN, GLRB and NRN1), autism (e.g. 

downregulated: MOCOS, CACNA1D, MBD6 and AUTS2; upregulated: RAB39B, 

BTBD11, KCNQ3, CDH9, CADPS2, DOCK4 and EXT1), aggression (e.g. 

downregulated: NOS1; upregulated: HRH3, PRNP, HNMT and GRIA3), cognition, 

memory and learning (e.g. downregulated: EPHA10, STAT5 and MMP28; 

upregulated: EPHA6, SYP, SORBS2, ARHGEF4, HCN1, CAMK2N2, MMP17, 

BTBD9, CLSTN3, STAU2RIMKLA, PAK6, SLC22A4 and NEURL1), response to 

stress (e.g. downregulated: IFIT1; upregulated: PDYN, EPOP, DPYSL2 and 

HCN2), feeding behavior (e.g. upregulated: NELL2, CXCL14, GPR45, GPR162, 

NPY and ACBD7) and diverse neuropsychiatric disorders (e.g. downregulated: 

SLITRK6, IL1RAPL1, BAHCC1, WDR62 and SLC6A1; upregulated: SCN1A, 

GABBR2, RTN4R, ACOT7, KIF5A. HECW2, NRG1, SNCA, ATP8A2, WFS1, 

HTR5A, STX1A and JPH3).  

The role of the olfactory bulb in maternal behaviour has been documented in 

multiple species (Dwyer, 2014; Gandelman et al., 1971; Navarro-Moreno et al., 
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2020; Poindron et al., 2007a), including goats (Poindron et al., 2007b). What is 

particularly interesting from our results is the marked changes of expression that 

we observe in this brain area at a very early stage of gestation. As said, three of the 

goats included in this analysis were 1-month pregnant, while goat gestation is 

approximately 150 days long. Obviously, the change of mRNA expression of the 

olfactory bulb observed by us is not triggered by parturition or the odour of the 

pups, two activation stimuli that have been reported previously (Dwyer, 2014; 

Poindron et al., 2007a). One explanation to such change would be the direct or 

indirect delivery of hormonal or any other biochemical signals modifying gene 

expression in the olfactory bulb. During the early gestation of mice and rats, there 

is a process of neurogenesis induced by prolactin in the forebrain that also affects 

the olfactory bulb (Larsen and Grattan, 2010; Shingo et al., 2003). The 

enhancement of neurogenesis in the subventricular zone and olfactory bulb 

mediated by prolactin influences multiple reproductive behaviors including 

mating/pregnancy, dominant male pheromone preference in females, and paternal 

recognition of offspring (Wang et al., 2013). 

Of course, the involvement of prolactin, or any other biochemical signal, on the 

modulation of olfactory bulb gene expression in response to gestation is just a 

matter of speculation. Further studies are needed to better understand the causes 

and biological implications of the changes in olfactory bulb mRNA expression 

elicited by gestation. A confirmatory study with a substantially higher sample size 

would help to analyse the gene and transcript levels of the different goat brain 

regions affected by pregnancy in a more reliable way (Ching et al., 2014). 
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Furthermore, in relation to pregnancy studies, the recording of hormonal 

concentrations in plasma might help to correlate the expression changes in the brain 

with hormonal changes generated by pregnancy. 
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1. The longitudinal GWAS of milk yield and composition traits recorded in 

Murciano-Granadina goats for three lactations made possible to detect as 

much as 31 QTL (eight with genome-wide significance). In contrast, 22 

QTL (6 with genome-wide significance), 29 QTL (3 with genome-wide 

significance) and 9 QTL (1 with genome-wide significance) were detected 

when performing independent GWAS for each one of the three lactations. 

The most significant and consistent QTL was associated with milk protein 

percentage and mapped to the casein gene cluster on chromosome 6, 

demonstrating that the casein genotype is a key determinant of milk quality 

in Murciano-Granadina goats.  

2. The GWAS analysis of morphological traits in Murciano-Granadina goats 

yielded few significant associations between genetic markers and the 

studied traits, for instance only two SNPs reached genome-wide 

significance, i.e. markers rs268273468 (CHI 16:69617700) and 

rs268249346 (CHI 28:18321523) significantly associated with medial 

suspensory ligament. There was low positional concordance with 

morphology QTL reported in the Saanen and Alpine breeds and those 

detected in Murciano-Granadina goats. These findings are compatible with 

the existence of genetic heterogeneity and a highly polygenic background 

regulating morphological traits in goat breeds, although technical factors 

might be also at play. 

3. The analysed population of Murciano-Granadina goats displayed in general 

low levels of inbreeding (mean FROH = 0.053 ± 0.04), likely because of its 
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demographic history and semiextensive managementIn spite of this, 

inbreeding depression was significant for somatic cell score in milk and 

milk yield at 210, 240 and 305 days of lactation from Murciano-Granadina 

goats. Genomic regions CHI 8:37–56 Mb, CHI 8:75–93 Mb, CHI 25:0.08–

7 Mb and CHI 25:21–28 Mb were significantly associated with the 

inbreeding depression for somatic cell score and CHI 2:22.75–68.25 was 

significantly associated with inbreeding for milh yield at three time points 

mentioned below. We conclude that inbreding levels needs to be kept at a 

minimum in Murciano-Granadina goats to avoid its detrimental effects on 

the sanitary status of the mammary gland.  

4. We have characterized the microbiota of six commercial types of goat 

cheeses and by doing so we have found a predominance of lactic-acid 

bacteria (i.e. Lactibacillaceae and Streptococcaceae), which are commonly 

used as starter cultures during the cheesemaking process to improve curd 

formation and prevent the growth of pathogens. Psychrophilic bacteria, 

including Pseudomonas, Shewanella and Pseudoalteromona, associated 

with post-pasteurization contamination were idenfied in fresh cheeses 

(>50% of abundance), while Pseudomonas were also prevalent in semi-

cured mouldy rind cheeses (up to 18% of abundance).  

5. Genome-wide detection of genetic markers affected by transmission ratio 

distortion (TRD) in a population of 17 sires and their offspring (N=305) 

made possible to identify 36 SNPs deviating from the Mendelian expected 

1:1 ratio. The majority of these SNPs had low GenTrain scores, so TRD 
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signals are probably caused by genotyping problems rather than biological 

factors. These findings stress the need to set high standards for genotyping 

quality parameters when performing TRD scans in animal populations. 

6. We have sequenced the transcriptomes of 12 brain tissues in seven goats, of 

which three were pregnant. The clustering of brain tissues based on gene 

expression was very consistent the embryonic encephalic vesicle of origin, 

with the only exception of tissues specialized in hormone secretion (i.e. 

pineal gland and hypophysis) and cerebellum. Embryonic development 

might leave a durable footprint on gene expression that persists even in 

adulthood. Moreover, early pregnancy (1 month) in goats induced changes 

in the transcriptome profile of six encephalic tissues, i.e. adenohypophysis, 

frontal neocortex, hippocampus, olfactory bulb, pineal gland and pons, 

being the olfactory bulb the most affected tissue(1,207 differentially 

expressed genes when comparing pregnnant and non-pregnant goats) This 

finding is consistent with the fundamental role of the olfactory bulb in the 

development of maternal care in many mammalian species. 
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